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Abstract

This  thesis investigates the investment problem in  renewable  energy technologies 

(primarily  wind and  solar technology)  under  uncertain  power  output  generation.  

Throughout the thesis we consider the energy  manager  of a  firm  who aims  at  minimiz- 

ing  the expected power  procurement  costs to  cover  the firm’s electricity demand.  In  

the first part of the thesis we  propose a “reliability-based  planning” approach  and de- 

termine the optimal  (investment  costs  minimizing)  renewable energy  portfolio  subject  

to  a  probabilistic constraint  that forces the  firm  to  cover  its demand  with an  ex-ante  

specified level  of reliability. In  the second  part  we compare this  “reliability-based  

planning  paradigm” to  the “balancing-costs-based planning  mechanism” in  which we 

additionally  include the expected  shortfall costs in  scenarios where the demand  can- 

not be  covered.  In a use case we demonstrate that the optimal  portfolio  choice in  the 

balancing-cost-based  planning  mechanism refers to  a  higher  degree of technological 

diversification  at  lower  levels of reliability  compared  to  the optimal  solution obtained  

in  the reliability-based  planning  mechanism.  

Up  to  this point  all  conclusions are drawn  based  on a  static  optimization frame-  

work  where  the  energy  manager  faces  a “now-or-never”  investment  decision  in  a  set-  

ting where the  level  of the feed-in-tariff and  the prices of the investment goods are 

deterministic.  We loosen this  assumption in  the third  part of the thesis and  analyze 

the optimal  investment decision in  a dynamic  framework  under  policy  and  technol-  

ogy  uncertainty,  where  besides the optimal renewable energy  choice also  the optimal  

timing  of the investment has to  be determined.  We apply  real options theory and  

demonstrate in  a use case that whenever  the  expected  technological  innovations  are 

low  there  is  little incentive to  postpone the  investment.  That  means,  under  these 

circumstances we  recover  the case of  the previously  discussed “now-or-never”  invest-  

ment  decision.  However,  in  case that major  technological  innovations  are expected  in  

solar technology,  the energy manager  makes use of the flexibility  options  available  and  

either  defers  the  investment  decision  or  adopts a  staged investment strategy where
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he  or  she  immediately  invests  a fraction  of  the  budget available  in  wind technology.  

With  increasing  energy  price for  purchasing  power  in  case of  a  shortfall  in  the power  

supply the staged  investment  strategy  becomes increasingly important.
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Zusammenfassung

In  dieser Dissertation untersuchen wir das Investitionsproblem  in  erneuerbare En- 

ergietechnologien (primär in  Wind- und  Solartechnologie).  Erneuerbare Energietech-  

nologien werden  zur nachhaltigen Energieversorgung  eingesetzt,  haben  aber  auch  den 

Nachteil, dass deren Stromerzeugung unsicher ist.  In  dieser Arbeit  betrachten  wir 

ein Unternehmen,  welches das  Ziel hat, die  erwarteten  Strombeschaffungskosten,  die 

zur Deckung  des Strombedarfs  notwendig  sind,  durch Investition in  erneuerbare En- 

ergietechnologien zu  minimieren.  Im  ersten Teil  der Arbeit  bestimmen  wir das op- 

timale  Energieportfolio, welches die  Investitionskosten  minimiert und  die  zusätzliche  

Nebenbedingung,  dass  der Energiebedarf des Unternehmens durch  das  Energieport- 

folio mit  einem ex-ante  spezifizierten  Zuverlässigkeitsniveau  gedeckt  werden  kann,  

erfüllen soll.  In  diesem “zuverlässigkeitsbasiertem Planungsansatz” ist das  Sicherheit-  

sniveau welches verlangt wird, ein exogener Parameter.  Im  zweiten  Teil  der Arbeit  

vergleichen  wir diesen zuverlässigkeitsbasierten Planungsansatz  mit  einem “ausgle-  

ichskostenbasierten  Planungsansatz”,  in  dem zusätzlich die erwarteten Kosten, die 

durch eine Unterdeckung  entstehen,  berücksichtigt  werden.  Durch  Anwendung der 

Planungsmodelle in  einem  Use Case zeigen wir,  dass beim  optimalen Energieportfolio  

im  ausgleichskostenbasierten Planungsmechanismus höhere Diversifizierungsgrade  bei  

niedrigeren Zuverlässigkeitsniveaus als im  zuverlässigkeitsbasierten  Planungsmecha-  

nismus realisiert  werden.  

Diese Resultate basieren auf  einem  statischen  Optimierungssetting,  bei  dem eine 

“now-or-never”  Investitionsentscheidung getroffen  werden  soll und die Höhe des Ein-  

speistarifes, sowie die Preise der  Investitionsgüter als deterministisch  angenommen  

werden.  Diese Annahmen  werden  im  letzten Teil  der Dissertation gelockert,  indem  die  

optimale  Investitionsentscheidung  unter regulatorischer und technologischer  Unsicher- 

heit in  einem dynamischen Optimierungsrahmen analysiert wird. Durch  die  Anwen-  

dung  der Realoptionsanalyse bestimmen  wir neben  dem optimalen Energieportfolio  

auch  den optimalen  Zeitpunkt  der  Investition.  Wir demonstrieren in  einem Use Case,
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dass immer  dann,  wenn  die  erwarteten  technologischen Innovationen gering sind,  

der  zuvor  diskutierte  Fall  einer “now-or-never”  Investitionsentscheidung  reproduziert 

wird. Werden jedoch  große technologische  Innovationen  in  der Solartechnologie er-  

wartet,  ist es optimal  die  vorhandenen  Flexibilitätsoptionen  zu  nutzen.  Das bedeutet, 

dass die  Investitionsentscheidung entweder verschoben  wird  oder  eine gestaffelte  In- 

vestitionsstrategie,  bei  der ein Bruchteil des verfügbaren  Budgets früh in  Windtech-  

nologie investiert wird, optimal  ist.
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1  Introduction

Electricity is an  essential  commodity  contributing  to  society’s welfare  which posses 

several peculiarities  that make accurate  planning  of electricity  production  and  con- 

sumption  –  in  both,  the long and the short run – a difficult task. From  an environ-  

mental  point  of view electricity generation and energy consumption are considered 

to  have a  major  impact on  climate change.  One approach  to  mitigating climate 

change induced  by  anthropogenic greenhouse gases is to  increase  the share in  renew-  

able energy  sources (RES).  Therefore,  renewable generation expansion planning is a 

key  factor in  policy  making  to  cope with  climate  change. The worldwide  cumulated 

renewable power  capacity1 approximately doubled  from 1.2 TW in  2010  to 2.5 TW in  

2019  (IRENA, 2020).  Taking  into  account  all  different  renewable energy technologies 

today,  wind and  solar  power  plants are among  the most  popular  alternatives,  because 

these resources are easily available.2

At a  microeconomic level  each firm participating in  the liberalized  electricity  market  

has  to  face the power  procurement  problem  which is  considered as  the  problem  to  

determine  the optimal  amount  of power  from different  energy sources to  cover  the 

electricity  demand  at  minimum  possible costs (Shafieezadeh  et  al., 2019).  Besides 

directly purchasing power,  e.g., by negotiating  contracts with  energy  retailers,  each 

firm also  has  the opportunity  to  invest in  renewable self-generation  facilities and  

thereby  act  as a prosumer (Espe et  al., 2018; Zafar et  al., 2018) by  covering  its own  

demand,  at  least to  some extent.  Generally, a prosumer  can  be  defined  as “an  energy  

user who  generates  renewable  energy  in  his  or  her  domestic  environment  and  either  

stores  the  surplus energy  for  future  use  or  trades  to  interested  energy  customers”
(Rathnayaka  et  al., 2015).  

From  a  private investor’s perspective a major  concern when  investing in  RES is  the 

fact  that renewable energy  technologies  are capital intensive with  high fixed costs.
1The maximum  net  generating  capacity  of  power  plants.
2In 2015  wind and solar  technology  accounted for approximately 77% of  new  capacities  installed, 

with  hydropower  plants  covering  most  the rest  (REN21, 2016).

1



Ubiquitous  risks  when  investing in  power  generation facilities arise due to  the fact 

that future cash  flows are uncertain (Tietjen  et  al., 2016).  More specifically,  in  this 

paper  the authors determine  various different  sources of investment risks: (i) revenue  

risk (due to  risky electricity prices),  (ii)  variable  cost  risk (due  to  risky  fuel  and carbon  

prices)  and  (iii)  RES  availability  risk (due to  uncertain production  volumes).3

The scope of  this  thesis  is  to  analyze the energy manager’s investment  decision in  

RES under uncertainty where optimally  installed  capacities of  the  renewable energy 

technologies have to  be  determined.  Since each renewable energy  technology exhibits 

specific power  output  distributions, each of  the technologies contributes  differently to 

the  cumulated  risk  of demand  coverage violations.  Therefore,  by choosing  the  optimal  

renewable energy  portfolio  the energy manager  is  able to  shape the  risk distribution  

of a  shortfall  in  the  power  supply.

1.1  Methodology

1.1.1  Optimization  under uncertainty

In  this  thesis we analyze direct  investment problems in  renewable  energy  technologies 

under  various sources of  uncertainty.  Typically,  the decision  maker  is  interested  in  the 

optimal  decision  under uncertainty and  therefore,  we  model  the underlying  decision  

problem using  an  optimization framework  under  uncertainty.  In  the  first part  of this 

thesis  we  consider  a particular  static stochastic  modeling approach,  also  known as  

the probabilistically  constrained optimization  paradigm.  The probabilistically  con- 

strained  optimization paradigm  was  first introduced in Charnes and  Cooper (1959) 

and is  getting  increasing  attention also  in  energy-economic related problems (Geng  

and Xie, 2019).  

The generic form  of  the probabilistically constrained optimization  problem is  as 

follows: We denote by x ∈ Rn the decision  variable, Ω denotes the  set of  determin-  

istic constraints, c ∈ Rn specifies the  coefficients of  the linear  objective and ξ ∈ Rd

denotes  the random vector representing the  sources of  uncertainties (in  the frame-

3Soroudi  and Amraee (2013)  classify  uncertain parameters  in  power  system studies into  two  cat- 

egories:  (i)  technical parameters  and (ii)  economical  parameters.  Technical  parameters are as- 

sociated with  topological  properties  of  the network  and operational  parameters  associated  with  

the operational  decisions of  the energy  park.  Economical  parameters  can  be further classified  

into  microeconomic  and macroeconomic parameters.
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work  of the thesis, the uncertain parameters are the power  output  from  wind  and 

solar technology).  The generic form  of the probabilistically constrained optimization  

problem, where 𝜖 denotes the probability  of violation,  is  given  by

min
x∈Ω

c′x s.t.

Pr{f(x, ξ) ≤ 0} ≥ 1− 𝜖.
(1.1) 

Generally,  the inner  constraint f(x, ξ)  : Rn × Rd → Rm consists of m individual  

constraints f(x, ξ) = (f1(x, ξ),  . .  . ,  fm(x, ξ)). In  this  thesis we consider the  case
m = 1,  i.e., a  single probabilistic  constraint.4 Hence,  in  this  framework the  stochastic 

inequality f(x, ξ) ≤ 0 has  to  hold true with  probability  larger than χ = 1 − 𝜖,  

where χ denotes  the level  of reliability.  The application  of probabilistic constraints is 

closely related to commonly used  risk measures  in  the theory of risk management.  A  

single probabilistic constraint  can  be re-written  in  terms  of the Value-at-Risk  (VaR), 

which is a commonly used risk-metric.  Let X be a  random  variable with  distribution  

function FX(u)  = Pr{X ≤ u}, where we  denote by F−1
X (u) its inverse.5 For  a  fixed  

confidence parameter α,  the Value-at-Risk VaRα is  defined  as the α-quantile

VaRα(X)  = F−1(α) (1.2)  

of the distribution.  An analytic expression  of  the probabilistic constraint  exists  in  

some cases when specific parametric  distribution,  e.g., a normal  distribution  is  im-  

posed. In  case that this is not possible,  data-driven  solution  methodologies to  solve  

the probabilistically constrained optimization  problem  have to  be  used.  Two  solution  

methodologies which  provide distribution-free results are:  (i)  the sample approach  

(Calafiore and  Campi, 2005; Calafiore, 2010; Campi and  Garatti, 2011)  and  (ii)  the 

sample  average approximation  (Sen, 1992; Ruszczyński, 2002; Luedtke and Ahmed,
2008; Pagnoncelli  et  al., 2009).  

Some properties of the VaR risk-measure are,  that VaRα is  translation-invariant:
VaRα(X + c)  =  VaRα(X)  + c, ∀c ∈ R and  positively  homogeneous: VaRα(cX) =

cVaRα(X), ∀c  > 0.  An  important  property of a  general  risk measure ρ is  the sub-  

additivity  property ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).  However,  the VaR generally  lacks

4In  the case m = 1 the probabilistic  constraint  is referred  to  as  a  single  probabilistic  constraint,  

whereas  for m > 1 the probabilistic  constraint  is referred  to  as  a  joint  probabilistic constraint.
5More specifically,  the right  continuous  inverse F−1

X (v) =  inf{u : FX(u) ≥ v}.
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the subadditivity  property  and therefore might  misinterpret  diversification effects 

(Artzner et  al., 1999).  A  related  downside  of  the  Value-at-Risk  is, that the VaR 

risk metric  only  determines the frequency of scenarios where the constraint  is  not  

met and  not  the extent of  constraint  violation. A  risk measure  which fulfills  this 

property  and exhibits subadditivity  –  and therefore is  a  coherent risk measure –  is  

the conditional Value-at-Risk CVaRα (or the expected shortfall),  which is defined for  

continuous  distributions via  the conditional tail  expectation

CVaRα(X) = E[X|X ≥ VaRα(X)]. (1.3)  

Therefore,  the CVaR  includes the extent of  constraint violation  and furthermore can  

be easily implemented in  optimization  problems (Rockafellar et  al., 2000).

1.1.2  Real options

In  a static optimization framework the decision  maker  faces  a “now-or-never”  invest-  

ment  opportunity  under uncertainty  and  irreversibility,  i.e.,  the investment decision  

has  to  be made at  a  fixed time and cannot  be postponed.  However,  in  various ap- 

plications the timing  of the investment is not exogenously fixed but can  be  chosen  

by the decision  maker.  Such  a  dynamic setting that allows for  deferring  the in-  

vestment introduces  managerial  flexibility  which  is  not reflected  in  traditional,  e.g., 

Net-Present-Value  based  approaches. Relying  on  this  standard methodology  can lead  

to  misleading  conclusions because the flexibility of waiting  (i.e.,  deferring  the invest-  

ment  opportunity)  can  have a  positive value.  In  a financial  context this flexibility  can  

be treated as a  collection  of call and  put  options that  account for  the managerial flex- 

ibility to  adapt  later  decisions  (after uncertainty is  revealed) and more information  

is  available to  the decision  maker,  see also Dixit  and  Pindyck (1994)  and Trigeorgis  

et  al. (1996). 

In  order  to  formalize this approach  we  consider a simple one-period  example.  Con-  

sider an  energy manager  who values the opportunity  to  invest an  amount I0 in  a  power  

plant  with infinite lifetime  that  generates expected cash  flows at t1 of V +, when  the  

economy is in  the  good  state or V −, if  the economy is in  the  bad state.  Furthermore,  

we assume  that V − < I0 < V + holds  true.6 The probability that the  economy is in  

the  good  state is  given  by p and  consequently,  the probability  that the economy is in
6This condition  ensures that  only in  the good  state  of  the economy  investing  is the optimal decision.
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the bad  state is q = 1− p. Furthermore,  we denote  the interest  rate by r.  When  the 

decision  to  invest in  the project  is  only  available  at t0,  the project’s NPV is  given  by

NPV =
E[V ]

1 + r
− I0 =

pV + + (1− p)V −

1 + r
− I0

= V0 − I0,

(1.4) 

where V0 denotes  the (gross)  present  value  of the investment.  The traditional (static) 

NPV investment-rule, where the option to  defer  the investment is not included, ac-  

cepts the project whenever NPV > 0 and  otherwise the project is  rejected.  

Now  consider  the additional flexibility  to  defer the investment and  denote the value  

of the investment by Ṽ .  In  the good  state of  the  economy at t1 the  value  of the 

investment at t1 is Ṽ
+
=  max{V + − I0; 0} = V + − I0 and in  the bad  state Ṽ

−
= 

max{V − − I0; 0} =  0.  Therefore,  the expected  value  of the investment  is  given  by

E[Ṽ ]  = pṼ
+
+ q Ṽ

−
= p(V + − I0). (1.5) 

In  this  illustrative example we assume that deferring  the investment decision generates 

additional costs c.  Since the energy  manager  can  decide  whether  to  invest immediately  

at t0 or  to  postpone the  investment to t1, the value  of this strategy at t0 is  given by

Ṽ 0 =  max

{︂
V0 − I0;  

1

1  + r
E[Ṽ ]− c

}︂
. (1.6)  

This  equation captures the idea  of Dynamic Programming, where Bellman’s  opti-  

mality  principle advises  how  to  make the current optimal decision under full con- 

sideration  of the conditional  solution of the continuation  problem,  which contains 

the full  sequence of future decisions.7 Therefore,  waiting  becomes  valuable  (i.e.,
E[Ṽ ]/(1 + r)− c > V0 − I0) whenever  the value  of the investment in  the bad state of 

the economy is  lower  than  the threshold value

V − ≤ I0
q + r

q
− c

1  + r

q 

, (1.7)  

which indicates that deferring the investment is the optimal decision  whenever  the 

potential losses  in  the bad  state of  the  economy are too  high.  The value  of the option

7For  further information,  see Dixit  and Pindyck (1994).
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to  defer  the investment – given that (1.7)  holds true and  waiting  is  indeed  profitable  

–  can  be re-written as

Ṽ 0 = NPV + max

{︂
0;

I0(q + r)− q V −

1  + r
− c

}︂ 

⏟ ⏞
option premium≥0

, (1.8) 

which splits up  the value  of the option  into  the “classical”  NPV  plus an  additional  

option  premium that  increases the value due to  the addition  flexibility,  see also Tri- 

georgis  et  al. (1996). This simple example therefore demonstrates that under  the 

presence of  uncertainty  and  irreversibility,  postponing the investment decision can  

have a  positive value.

1.2  Structure of  the thesis

First paper:  A probabilistically constrained extension  to  the  

generation expansion  problem

In  the first paper  (Chapter 2)  we  propose  a  probabilistic  modeling  approach  to  the 

generation expansion problem  including renewable  energy  technologies,  where  the en- 

ergy manager  aims  at  minimizing  the investment costs of  an  energy park subject to  

the  stochastic  supply-demand  constraint.  In  this  reliability-based framework, robust  

generation expansion plans are obtained by  implementing  the demand  coverage con- 

straint  as a  probabilistic constraint,  specifying required system  reliability. The prob- 

abilistic constraint  can  be  equivalently  written  as a  Value-at-Risk  (VaR) constraint 

which characterizes  the admissible set of  renewable energy portfolios. Among all  fea-  

sible renewable energy portfolios the energy  manager  prefers the one referring  to  the 

minimum  investment costs. We demonstrate that an analytic solution exists  when 

the  uncertain  parameter  instances  are assumed to  be jointly  normally  distributed.  

Therefore,  we recover  the energy manager’s efficient  frontier characterizing  the opti-  

mal  level  of investment as  a  function  of  the imposed  level  of reliability. Within  the 

probabilistically constrained framework  we analyze  the potential  of reducing  the in-  

vestment costs via  Demand Side Management (DSM).  With  increasing  participation  

in  DSM the energy manager  is  able to  reduce the necessary  level  of investment in  RES  

to  obtain the required  level  of reliability, thereby  mitigating  investment risks. How-
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ever,  in  real  life  problems the assumption of normally  distributed  random  variables  

can  be  too  restrictive.  We propose  a  data-driven  solution methodology  to  the proba-  

bilistically  constrained  optimization  problem  which  gives distribution  free  results  and  

increases  the applicability  of the model.  The application  to  a  use case shows, that the 

optimal  renewable energy portfolio  associated with  (i) normally distributed random  

variables  and  (ii)  empirical  real-world data are different.  More specifically, the Gaus-  

sian  assumption  underestimates  the tail  risk associated with an  investment in  wind 

technology.  This  tail  risk emerges  due to  the fact  that below  and  above a  threshold  

wind speed  no  power  output  from  wind  turbines can be  generated.  In  the Gaussian 

case the optimal  portfolio  decision  is  to  choose an  equally diversified  portfolio  when 

required reliability  is  high,  whereas in  the data-driven  solution methodology  the share 

in  solar  technology is  considerably  higher, which  serves  as a hedge against this  tail  

risk from  wind-turbine characteristics.

Second  paper:  Optimal  investment  strategy  in  renewable  

energy  technologies

In  the second paper  (Chapter 3)  we extend  the probabilistic view  on  the generation  

expansion problem under uncertain  production  volumes and  compare the optimal  

planning  problem introduced  in  the first paper,  referred to  as the “reliability-based  

planning”  paradigm to  the alternative “balancing-cost-based planning”  paradigm.  In  

the reliability-based  planning  paradigm,  the VaR  constraint specifies the admissible 

level  of risk via  an  exogenous threshold  on  the demand  coverage probability.  The 

VaR risk measure lacks  the subadditivity property  and  therefore might  not correctly 

reflect upon  diversification effects  (Artzner et  al., 1999). Moreover,  the VaR  only 

measures the frequency  of scenarios violating  the demand  coverage requirement,  but  

not  the extent  of constraint violation.  We overcome these conceptual shortcomings 

by proposing the balancing-cost-based  planning  paradigm, where the energy  manager  

also  includes the expected  costs of a shortfall  in  the power  supply. In  case that the 

energy park alone cannot cover  the demand,  the energy manager  has  to  make use of 

an  outside  option and purchase additional  power  to  cover  the demand  at  the market.  

Following this  modeling approach,  the underlying  objective associated  with the in-
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vestment problem can  be  written  in  terms of the conditional Vale-at-Risk (CVaR).8

The exogenous planning  parameter  in  this  planning  approach  is  the price of the bal- 

ancing  energy,  where  we assume that the firm is  a  price taker.  Therefore,  in  the 

cost-based planning  approach  the probability  of demand  coverage associated with  the 

energy park is  an  endogenous parameter  which  depends  on  the price of the balancing  

energy. We demonstrate, that even  in  case that the level  of reliability  is  the same in  

both  planning  approaches, the underlying portfolio  selection might  differ  considerably.  

To demonstrate this we  apply  the model  in  a  use case,  where we consider  different  

scenarios concerning  the price of the balancing energy.  We compare the scenario  of 

a deterministic price of the balancing  energy (corresponding to  the situation, where 

the energy manager  purchases pre-contracted  energy  at  a fixed price) to  a stochastic 

energy price (corresponding to  the situation  where the energy manager  purchases  en- 

ergy at  the spot  market). We show that there  exists a threshold  energy price below  

which the energy manager  is  reluctant  to  invest in  renewable energy  technologies.  

This is due to  the fact, that the opportunity  costs  of  purchasing  external  power  are 

lower  than  the capital  expenditures associated  with the investment opportunity.  The 

optimal  level  of investment in  RES  depends  on  the price of contracted energy and  

increases  with  increasing  energy price.  The scenario  of  purchasing  external  power  at  

the spot  market  introduces another  source of  uncertainty,  i.e.,  uncertain  electricity  

prices. In  this  case the energy manager  increases  investment in  renewable self  gener-  

ation  facilities with  increasing spot  price volatility  to  hedge against  spot  price risk.  

These results are obtained  given  the assumption of an  uncorrelated  energy price with  

RES  power  output.  In  reality  however,  we  expect that RES power  output  and  energy 

price are negatively  correlated, i.e., whenever  RES  power  output  is  low,  the  energy 

price at  the spot  market  is  high.  Incorporating  the assumption  of a  correlated  energy 

price we find that the energy manager’s optimal  decision is  to  increase (decrease)  

the optimal  level  of investment depending  on  weather the level  of investment  in  the 

benchmark  scenario of  an  uncorrelated  energy price scenario  is high (low).

8Using  the CVaR  in  the investment problem also  has  the advantage, that  the stochastic optimization  

problem  can  be  formulated as  a  linear  program,  which  can  be  solved efficiently (Rockafellar et  al.,
2000).
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Third  paper:  Strategic  capacity  choice in  renewable energy  

technologies  under  uncertainty

The third paper  (Chapter 4)  extends the investment  model  to  a  dynamic optimiza-  

tion framework,  where  besides determining  the optimal  renewable  energy  portfolio  

also  the timing of the investment  is  investigated. We propose  a  real options  approach  

to  the energy manager’s investment problem in  renewable energy  technologies under  

multiple sources of uncertainty.  Therefore,  we  consider the combined impact of uncer-  

tain renewable  energy output,  policy  uncertainty and technology  uncertainty.  Policy  

uncertainty is  modeled  by assuming  that the level  of the feed-in  tariff  is  subject to  

multiplicative geometric Brownian shocks  and  technology uncertainty is  introduced  

by assuming  that the investment price of  solar  technology is  subject to  random ex-  

ogenous  innovation shocks.  In  this  framework it  is due to  the increased managerial  

flexibility  that the optimal  investment decision  can  be to  defer the decision  and in-  

vest after the  uncertainty is  revealed and  more information  is  available  to  the decision  

maker.  Moreover,  the investment model  also  allows for  a staged investment strategy,  

where the energy manager  exercises the  option  to  invest a fraction  of  the budget  in  

wind technology and  keep  the  option  to  invest in  solar technology alive.  However,  by  

following this  investment strategy, the  energy manager  sacrifices a part  of the flexi-  

bility  options, since an  early investment in  wind technology  excludes the opportunity  

to  end up  with a renewable energy  portfolio  consisting only  of solar  technology.  The 

application to  a  use case demonstrates,  that the energy  manager  follows a staged  

investment  strategy  whenever  the  expected  technological  innovations  in  solar tech-  

nology  are sufficiently high and  the penalty  for  purchasing  external power  in  case of  

a  shortfall in  the  power  supply from the  renewable energy park is also  high.  Based on  

the energy manager’s optimal  investment decision in  this partial  equilibrium  model  

we also  infer  the optimal  subsidy retraction rate that is  set by  the regulator  such  that 

the  energy  manager  is  indifferent  between  investing  now and to  defer the investment 

decision.
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2  A  probabilistically  constrained  

extension  to  the  generation  

expansion  problem 1

Abstract. This paper  presents  a  probabilistic modeling  approach  to  the generation  

expansion problem,  where the energy manager  of a  firm  aims  at  minimizing  the in-  

vestment costs of  an  energy park subject  to  the stochastic  supply-demand  balance 

constraint.  We consider a reliability-based  framework,  where the energy manager  de- 

termines  robust  generation expansion plans by imposing a  probabilistic guarantee on  

the demand coverage distribution,  which specifies  the required system reliability.  We 

compare two  solution methodologies to  solve  the probabilistically constrained  gener-  

ation expansion  problem,  i.e.,  (i)  the sample approach  and  (ii)  the sample  average 

approximation.  Applicability  of the model  is  demonstrated  in  the use case, where the 

two  renewable energy sources wind and  solar technology are considered.  We recover  

the energy manager’s efficient  frontier  characterizing  the optimal  level  of investment 

in  renewable energy technologies as a  function  of  the  ex-ante  imposed  level  of reliabil-  

ity  which quantifies the substitution rate of investment and  reliability.  In  a use case 

we find,  that  the portfolio  selection  depends  on  the required  reliability  and  is  shifted  

towards  a  higher  share in  solar  power  when required reliability  increases. Within  the 

probabilistically constrained  framework we  demonstrate the potential  of Demand  Side 

Management (DSM)  in  reducing  capital expenditures. With  increasing  participation  

in  DSM the energy manager  is  able to  reduce the necessary  level  of investment to  

obtain  required reliability,  thereby  mitigating  investment  risks.
Keywords: Generation expansion  planning, Probabilistically  constrained  optimiza-  

tion,  Risk  management,  Demand  Side Management

1Joint  work  together  with Thomas Dangl and Christoph Hilscher, Vienna  University  of  Technology,  

Institute  of  Management  Science,  Theresianumgasse 27,  1040  Vienna.  The  full  paper  (Ondra  

et  al., 2021)  was  presented at  the EAERE  2020.
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2.1  Introduction

In  the course of the generation expansion  problem  (GEP),  the energy manager  of a  

firm has  to  answer  several questions. Besides determining  the optimal  level  of invest- 

ment  in  power  generation facilities,  one of the most  pressing  questions to  be  answered  

in  this  context is to  decide upon  the optimal  generation mix  of the technologies (Kolt- 

saklis and  Dagoumas, 2018).2 In  this paper  we consider an  energy  manager  who faces  

the “here-and-now” decision  of investment in  self-generation  facilities to  cover  the 

firm’s  electricity demand.3 Therefore,  an  energy  manager  who aims  at  minimizing  

the capital  expenditures associated  with  the energy park in  a green-field approach  

has  to  constitute the  optimal  energy portfolio  by  determining  the capacities  to  be  

installed in  the different technologies available. 

In  view of  a  firm  which  adopts the transition  to  a  green  management  (Shu  et  al.,
2019), we consider  an  energy manager  who faces  the investment decision  in  renewable 

energy technologies.  Investment in  renewables is  considerably risky  due to  various 

sources of  economical,  technological  and  policy  risks.  However,  prices  of renewable  

energy technologies dropped  in  recent  years  and are forecast to  continue  this  trend  

(Carlsson  et  al., 2014). Therefore,  investment  in  renewable  energy  sources (RES)4

becomes  more and  more interesting for  large electricity consumers  or  producers. One 

type  of an  energy manager  participating  in  the energy  market  and  whose  behavior  

differs from  a classical  investor is the so-called  “prosumer” (Espe et  al., 2018).  From  

the prosumer’s point  of view,  the primary  goal is  to  cover  the firm’s electricity de- 

mand  at  minimum  possible costs  via  self-generation facilities like wind  or  solar  power  

plants.5

One aspect  when  considering  investment  in  RES  from  the prosumer’s perspective 

is, that renewable  power  output  is  uncertain.  The immanent  uncertain  availability  

of wind and  solar power  (RES availability  risk)  (Hemmati  et  al., 2017)  affects energy 

planning  problems.  Stochastic  production  volumes  associated  with  renewable energy 

technologies introduces uncertainty  –  and thus also  risk –  in  the energy manager’s 

investment problem (Tietjen  et  al., 2016).  Therefore,  the energy manager has to

2In Koltsaklis and Dagoumas (2018),  the authors  also  consider  the optimal time to  build  but  we  

leave  this  aspect  for  future  research  and consider  a  static  framework.
3Or at  least  a  fraction  of  the demand  that  has  to  be  supplied  by  self-generation  facilities.
4We consider  primarily  wind and solar  power.
5We neglect  that  surplus power  can  be sold to  the grid and focus  entirely  on  the security  aspect  to  

cover  the demand.
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determine  expansion  plans which  are robust  enough to  hedge against unfavorable  

events in  the future,  like a  shortfall  in  the power  supply.6 Consequently,  due to  the 

intermittent  character  of RES  the firm’s  electricity  demand  can  not be  supplied  with  

certainty,  but  is  exposed to  a certain  amount  of risk.  Each technology  included in  the 

renewable energy  portfolio  exhibits a  different exposure  to  risk,  which  contributes  to  

the power  shortfall  probability.  From  the aspect  of energy security,  the question of 

determining optimally installed  capacities and identifying the optimal  generation  mix  

therefore  plays  a  significant role.  Hence, the portfolio  selection affects the shortfall  

probability.  

Due to  RES availability  risk,  power  generation robustness can  only be  achieved  

to  a  certain level  of reliability.  Recently,  various authors considered energy planning 

problems within the conceptual framework of probabilistically constrained  problems  

(PCP)  (see Geng and Xie (2019) for  a review on  the applications of probability con- 

strained optimization  in  power  systems). This  probabilistically constrained  paradigm 

was  first introduced  in Charnes and Cooper (1959) and later studied  on  a  theoret-  

ical  level  (Prékopa, 1971; Pinter, 1989; Prekopa et  al., 1998). Most  applications  of 

probabilistically  constrained optimization in  energy planning  problems can  be found  

in  short-term economic  dispatch  (Vrakopoulou  et  al., 2013; Bienstock et  al., 2014) 

and medium-term  unit  commitment  problems (Bertsimas  et  al., 2012; Zheng et  al.,
2014). In  generation  expansion  planning,  the energy manager  determines the capac- 

ities to  be installed  and  it  therefore is  considered as a long-term  energy planning 

problem. We consider an  energy manager  who makes the investment  decision  subject 

to  the stochastic  supply-demand constraint,  which  has  to  hold  true with  an  ex-ante  

specified level  of reliability.  In  the regime of probabilistically  constrained optimiza-  

tion problems,  the energy  manager  imposes a  threshold  confidence  parameter on  the 

demand  coverage distribution.  This level  of reliability  therefore acts as a  tuning  pa- 

rameter in  the investment decision  and  represents the probability of demand  coverage 

via  self-generation facilities.  The majority of papers addressing the probabilistically 

constrained  long-term  generation expansion problem however,  assume Gaussian  dis- 

tributions (Sanghvi  et  al., 1982; López et  al., 2007; Manickavasagam  et  al., 2015) and 

use the second  order  cone equivalent form  in  the formulation of stochastic optimiza-

6From  a  macroeconomical  point  of  view, investment  in  RES might  also  come  along with some 

unfavorable properties. Liebensteiner  and Wrienz (2020)  give  empirical  evidence,  that  increased 

shares in  intermittent  RES has  a  negative  impact on  investment in  flexible  peak-load  capacities.

12



tion problems to  obtain computationally  tractable  results. Jabr (2013) presents  a  

solution algorithm which does not require  knowledge of  the  probability  distribution  

associated with the uncertain  parameters and  considers the transmission network  ex-  

pansion planning  problem  to  incorporate  uncertainties of renewable power  output  and  

load via uncertainty  sets. 

Another research  stream  addressing  the problem of uncertainty  in  energy  econom- 

ical  problems focuses on  portfolio  theoretic applications in  energy  economics. Awer-  

buch  and  Berger (2003)  consider fossil fuel  price risk and  show that adding a  renewable  

energy technology in  the energy portfolio  consisting of  conventional  plants can  de- 

crease the  costs at  the same level  of risk,  or  decrease the risk at  the same level  of the 

costs, see Odeh et  al. (2018)  for  a review of  portfolio  applications in  the electricity 

market.  Such  a  diversification  effect between fossil-fuel  based and  renewable energy 

technologies,  which was  introduced in  the context of  portfolio  theoretic  approaches  

in  energy management  in  (Awerbuch  and  Berger, 2003; Awerbuch  and Yang, 2007)  

via  fossil fuel  price risk, can  also  be observed  in  generation expansion  planning  of 

renewable energy technologies when  RES availability  risk is  considered  as the major  

source of  uncertainty.  

This paper  intends to  analyze  the energy  manager’s investment decision in  re- 

newable energy  technologies,  when  a threshold  probability on demand  coverage is  

imposed.  Therefore,  we consider a probabilistic modeling  approach  to  the long-term  

generation expansion problem. Besides  proposing an analytic solution in  case of  nor- 

mally  distributed  power  sources, we use a  purely data-driven  approach  and apply  

non-parametric techniques which provide  distribution free results and  thereby  allow  

the use of real-world  output  data  of renewable energy technologies.  First,  we construct 

the model  by  implementing  the probabilistic  supply-demand constraint  with  the ob- 

jective to  minimize capital  expenditures (CAPEX).  We then  set up  the model  in  a  

use case using real-world  output data  of wind speed  and  solar irradiance for  a typical  

location  in  Central  Europe.  The solution quality  (its  reliability)  is  validated ex-post  

based  on  resampled scenarios,  where we compare two  solution methodologies  to  solve  

the probabilistically constrained  investment problem  (PCIP),  (i) the sample  average 

approximation  and  (ii)  the sample approach  of Calafiore  and  Campi (2005). Based 

on  the optimal  solution  of  the  probabilistically constrained  optimization  problem, we 

recover  the energy  manager’s  efficient frontier  of the optimal portfolio  of  installed  

capacities as a  function  of the required level  of reliability. The efficient portfolio  fron-
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tier implicitly  contains the information associated  with the costs of  an  additional unit  

of reliability. Within the scope of  the  probabilistic modeling approach,  we therefore  

determine  the marginal  rate of substitution between  reliability  and  investment costs. 

The optimal  solution defines  a  generation plan  that is  robust enough to  meet  the 

reliability  requirement.  This efficient  portfolio  frontier is  strictly convex,  i.e., high  lev- 

els of  reliability  require  high  levels of investment in  order to  obtain  robust  expansion  

strategies. In  view of  the  volatile  power  output  from  RES,  Demand  Side Management  

(DSM) is considered as  a  valuable  strategy to  mitigating  risks  resulting  in  demand  

coverage violations.  One particular  strategy within  DSM is  Demand Response (DR),  

where the demand  is  considered to  be responsive and  deferrable,  i.e., the demand  can  

be reduced  temporarily  and increased  at  another time. This corresponds to  a shift  

of  critical peak  demand  scenarios in  order  to  reduce  the stress on  the  self-generation 

facilities. Since the demand  is  traditionally  considered  as  relatively  inelastic  (Pat-  

erakis  et  al., 2017)  this  is  possible only  to  some extent.  Generally,  DSM introduces 

flexibility  by  including  the option  to  shifting  weights in  the distribution  of the power  

shortfall, i.e., reducing  the weight  in  the tail  of the shortfall  distribution.  This in- 

crease in  the  flexibility  decreases  the necessary  level  of investment in  order  to  obtain  

robust generation  expansion  plans.
Behboodi  et  al. (2016) considers the  problem  of determining  the optimally  installed 

capacity  in  wind  power  technology,  when demand  response is  considered simultane-  

ously  and  shows, that demand  response can  reduce uncertainty  costs of  wind tech-  

nology,  which  is  defined in  terms of  the producer  surplus. Strbac (2008) shows that 

DSM increases the utility  of existing plants,  since the demand  can  be  used to  bal- 

ance fluctuations from volatile RES  power  output. Pinson et  al. (2014) suggests, 

that the  flexibility  of demand shifting could  potentially  reduce installed capacities 

of  power  utilities  and  therefore the necessary  level  of investment.  Similarly, Zhang  

and Li (2012)  argues that  DSM serves  as  an  alternative to  the investment in  new 

power  plants or, that  investment  arising due to  growing demand  can  be postponed  

(Paterakis  et  al., 2017).  

Within  the probabilistically constrained optimization  approach  we  study the  effect  

of  Demand Side Management on  the optimal  investment decision in  renewable  energy 

technologies.  In  a risk neutral  evaluation of the investment costs,  the  difference of  

the optimal  level  of investment  in  RES  with and without DSM  relates  to  the value  

of implementing  DSM.  Moreover,  we  show that introducing  DSM ex-post,  i.e., after
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the optimal  level  of investment is  determined without the flexibility option to  shift  

the peak  demand,  leads to  an  increase in  the obtained level  of reliability, i.e.,  reduces  

the probability of a power  shortfall.  

The rest of the paper  is  organized  as follows:  Section 2.2 introduces  the probabilistic 

modeling  approach  using the probabilistically constrained optimization paradigm.  

Section 2.3 introduces  and  compares two approaches to  solve  the model,  i.e.,  the 

sample  average approximation and  the sample  approach.  Section 2.4 presents the use 

case and Section 2.5 reflects  upon  the computational  simulations  carried  out. Section
2.6 concludes  the paper.

2.2  From deterministic  to  probabilistic  generation 

expansion planning

In  the deterministic GEP, we consider  an  energy manager who  aims at  minimizing  

the investment costs  by  choosing optimally installed  capacities x ∈ Rn, where n

denotes the number  of  different  technologies considered in  the investment scenario.  

The prices of the investment goods are denoted  by pi and represent  the costs per  

one unit  of capacity  installed  of  the i-th  technology.  To  account  for  different power  

output  profiles,  we denote the power  available per  unit of installed  capacity of  the
i-th  technology at  time t by Pit.  In  the deterministic regime,  the future values of the 

power  available  are assumed to  be  perfectly  known. Therefore,  the energy manager  

disregards uncertainties in  the power  output  which arise in  real world  problems (Oree 

et  al., 2017).  

We consider  a  power  output  model  which exhibits constant economies of  scale. 

Therefore,  the total  power  output  associated  with  the i-th technology is  given  by
xiPit and  the firm’s  hourly  demand  that has to  be  supplied  at  time t is  denoted by dt.  

The mathematical  formulation  of the deterministic GEP is given by  the optimization  

problem of minimizing the capital  expenditures (CAPEX) associated  with  the  renew- 

able energy  portfolio,  subject to  the deterministic supply-demand constraint  over  the 

planning  horizon  which is  specified by  elementary hourly time intervals t = 1,  .  . . , T . 

Hence,  the mathematical  formulation  of the energy  manager’s  deterministic invest-
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ment  problem  is  given  by

min
x1,...,xn

p1x1 + . . .+ pnxn s.t.

x1P1t + .  . .+ xnPnt ≥ dt, t = 1,  . . .  , T

x ∈ Ω.

(2.1) 

In  this  formulation,  the set Ω = {x ∈ Rn : x1 ≥ 0,  . . . ,  xn ≥ 0} restricts the in- 

stalled  capacity to  positive values.7 Oree et  al. (2017)  discuss different  sources of  

uncertainty that traditionally  arise in  the context of  the  GEP and  potentially  affect 

the energy manager’s  investment  decision.  Disregarding uncertain  elements present  

in  the decision process can  lead  to  investment decisions  which are infeasible  or  overly 

expensive (Beraldi  et  al., 2017).  Therefore,  stochastic modeling  techniques  to  address  

the generation expansion problem are needed.  

In  the probabilistic modeling  approach,  the major  source of  uncertainty  affecting 

the risk of demand  coverage violations is  due to  uncertain production  volumes and  

uncertain demand.  Therefore,  we consider  the hourly RES  power  output  per  unit  

of installed  capacity  in  the i-th  technology Pi as random variables  in  the supply- 

demand  constraint,  thereby  converting  the deterministic into  a  stochastic  supply- 

demand  constraint.  In  this  way,  the intermittent  and stochastic  characteristics  of 

non-dispatchable renewable energy technologies are represented in  the investment 

decision. 

The energy manager  implements  risk-awareness associated with RES  power  output  

by requiring  that the solution has  to  be  robust against  demand coverage violations.  

We introduce  the loss  function

f(x,P)  = d− x1P1 − . . .− xnPn, (2.2)  

where a positive value f(x,P) > 0 denotes a shortfall  of  the power  supply.  In  this  

case, the  power  available from  renewable energy  technologies  is  not  sufficient to cover  

the demand.  Conversely,  a  negative value  of the loss  function f(x,P) < 0 denotes 

the  scenario of  surplus power  being  available.  The loss itself is  a  random  variable  

and  its distribution  is  induced  by the joint  distribution  of the demand and  the power

7Generally,  in  the context  of  the probabilistically  constrained optimization  approach,  the domain
Ω can  be  used to  model  (convex)  deterministic  constraints  which do  not involve  uncertain pa-  

rameters,  e.g.  capacity  limitations.
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available  from  the installed  capacities.  

Demand  coverage robustness associated with  the renewable energy portfolio x is  

achieved,  by  requiring  an  ex-ante chosen  level  of reliability χ ∈ [0, 1) on the loss 

function,  which acts as a  threshold  of the energy manager’s requirement  on  the sys- 

tem’s reliability.  The level  of reliability  can  thus  be considered  as  a  tuning  parameter 

associated with the  robustness of the solution. Therefore,  the  probability  of demand  

coverage8,  has  to  exceed  the  imposed  level  of  reliability.  The mathematical  formula- 

tion of the  probabilistic GEP is given by

min
x1,...,xn

p1x1 + . . .+ pnxn s.t.

Pr{f(x,P) ≤ 0} ≥ χ,

x ∈ Ω.

(2.3) 

In  financial  applications of probabilistically constrained  optimization problems,  the 

probabilistic  constraint  is  referred to  the Value-at-Risk  (VaR) which  is  defined as the 

quantile  of the underlying  risk distribution.  The VaR has  become a popular  risk 

measure  of investment practitioners and  is  accepted  in  various  financial  institutes.  

However,  a  fundamental  issue arising in  optimization  problems including the VaR 

risk metric  is,  that it  is  generally  hard  to  compute unless the  risk distribution is of  

a  special parametric form,  e.g., normal or  log-normal  (Duffie  and  Pan, 1997; Jorion,
2000).  To allow  for  a distribution free  result,  i.e., where no  parametric distribution  of 

the random variables has  to  be  imposed,  approaches  based on  empirical  samples are 

introduced  e.g.  in Sen (1992); Calafiore and  Campi (2005); Gaivoronski  and  Pflug
(2005).

2.3  Methodologies  to  solve the probabilistic  GEP

First  of all,  we  consider the approximation  of Gaussian  variables and derive an  an- 

alytic solution to  the PCIP problem  (2.3).  To  generalize  this  concept  to  arbitrary 

distributions, we impose  a  data-driven  approach  that allows to use  general empir-  

ical  distributions.  Two  of the most frequently used data-driven  methodologies  to  

solve  probabilistically constrained  optimization  problems are: (i)  the sample  average 

approximation  (SAA)  and  (ii)  the scenario approach  (SA)  (Geng and  Xie, 2019).

8Measured in  terms of  the loss  function  (2.2).
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2.3.1  Analytic solution  of  normally  distributed  uncertain  

parameters

Fist we consider the case,  where  the uncertain  parameters associated  with the power  

output  from  RES,  i.e.,  the hourly  power  per  one unit  of installed  capacity  of the 

different  technologies is  normally  distributed P ∼ N (µ,Σ).  Therefore, the total  

power  output  of the energy park is again  normally  distributed x′P ∼ N (x′µ,x′Σx).  

Furthermore, let  the demand be normally  distributed d ∼ N (µd,  σ2
d) and uncorre-  

lated  with  the total  power  output  of the energy park.  Under these assumptions,  the 

power  shortfall  (2.2) is  again  normally distributed f(x,P ) ∼ N (µd−x′µ,x′Σx+σ2
d).  

Therefore,  the probabilistic constraint  can  be equivalently written  as9

x′µ− µd√︀
x′Σx+ σ2

d

= Φ−1(χ), (2.4) 

where Φ−1 denotes the quantile  of the standard normal  distribution.  By  taking the 

square  of both  sides  we obtain  that the probabilistic  constraint  is  given  in  terms  of 

a  quadratic form  which  –  in  the case of  two  energy assets, i.e., n = 2 –  represents a 

conic section. However,  due to  the fact that we square (2.4),  we obtain an  artefact  

solution that has  to  be discarded  later.  For  this  artefact  solution, the  probabilistic 

constraint  (2.4)  does not  hold  true.  We find

(x′µ− µd)(x
′µ− µd) = Φ−1(χ)2(x′Σx+ σ2

d)

x′(Φ−1(χ)2Σ− µµ′)x+  2µdµ
′x+  Φ−1(χ)2σ2

d − µ2
d =  0

(2.5)  

In order  to  rewrite this  expression  in  terms of a  quadratic constraint x′Qx+x′b+c = 

0,  we define Q = Φ−1(χ)2Σ − µµ′, b =  2µdµ, c =  Φ−1(χ)2σ2
d − µ2

d.  In  terms  of  this

9Solving the integral in  the probabilistic constraint Pr{d− x′P ≤ 0} ≥ χ gives the constraint

x′µ− µd√︀
x′Σx+ σ2

d

≥ Φ−1(χ).

We replace the inequality  by  an  equality  sign  due  to  the fact  that  the cost  minimizing  solution 

is on  the boundary  of  the associated feasible  set.
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quadratic form,  the energy  manager’s investment problem is  given  by

min
x

p′x s.t.

x′Qx+ x′b+ c = 0.
(2.6) 

Note,  that the parameters of the quadratic  constraint  depend on  the exogenously 

given level  of reliability χ.  In  case of χ = 0.5,  the original  probabilistic  constraint 

(2.3) gives x′µ = µd.  Therefore,  in  this  special case the investment problem reduces  

to  a  linear  program

min
x

p′x s.t.

x′µ = µd.
(2.7) 

In  this  special case,  the optimal solution is  the single energy  investment x∗ = µd/µ
∗

in  the most  profitable  technology  characterized  by p∗/µ∗ =  min{p1/µ1,  .  .  .  ,  pn/µn}.

Proposition 2.1. Consider the  investment problem (2.6) based  on  the  probabilisti-  

cally  constrained  optimization  problem (2.3) for n ∈ N energy  assets  and  let  the  RES 

power  output P ∼ N (µ,Σ) be  normally  distributed  with mean µ and  covariance  ma-  

trix Σ.  Furthermore,  let  the  demand d be  normally  distributed d ∼ N (µd, σ2
d) and  

uncorrelated  with  the  power  output  of  the  renewable  energy  portfolio x.  Assume  that  

the  matrix  of  the  quadratic  form Q = Φ−1(χ)2Σ − µµ′ is  nonsingular  and  further- 

more,  let b′Q−1b ≥ 4c10 Then  the  critical  points  (i.e.,  candidates  for  extreme  values)

10For  the case  of  one energy  asset,  this  condition  gives:

φ−1(χ)2 <  

µ2

σ2
+

µ2
d

σ2
d

and relates  to  the fact  that  the uncertainty  within the system  has to  be  sufficiently small  to  

guarantee the existence  of  real valued  solution candidates  that  meet the required  reliability.
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are  given by

x(χ) =

 ⏐⏐⏐⏐⏐⏐⏐⏐⏐ ⏐⏐⏐⏐⏐⏐⏐⏐⏐

Q−1

2

 −
√︃

b′Q−1b− 4c

p′Q−1p  

p− b

   , for χ > 0.5,

Q−1

2

  

√︃
b′Q−1b− 4c

p′Q−1p  

p− b

  , for χ < 0.5,  

x∗, for χ = 0.5,

where x∗ = µd/µ
∗ denotes  the  capacity  of  the  most  profitable  energy  investment,  

characterized  by p∗/µ∗ = min{p1/µ1,  .  .  .  ,  pn/µn}.  

Moreover, for  the  single  energy  investment  problem n = 1,  the  optimally  installed  

capacity  is  given by

x(χ)  =
µdµ

(µ2 − Φ−1(χ)2σ2)
×

  ⏐⏐⏐⏐⏐⏐⏐⏐  ⏐⏐⏐⏐⏐⏐⏐⏐  

(︃
1 +

√︃
1− (µ2 − Φ−1(χ)2σ2)(µ2

d − σ2
dΦ

−1(χ)2)

µ2
dµ

2

)︃
, for χ  > 0.5(︃

1−
√︃
1− (µ2 − Φ−1(χ)2σ2)(µ2

d − σ2
dΦ

−1(χ)2)

µ2
dµ

2

)︃
, for χ  < 0.5, 

µd

µ  

, for χ =  0.5.

Proof. The proof is  given  in  the Appendix 2.7.1.

In  case the matrix Q is  positive semidefinite the optimization problem  is  a  convex 

program.  To find  the global  cost  optimal renewable energy  portfolio  in  the general  

case of n energy assets, the types  of the extreme values have to  be  analyzed  and these 

candidate  solutions have to  be  compared  to  the corner  point  solutions correspond-  

ing to  feasible single energy investment  solutions,  in  order  to  account  for  the non-  

negativity  constraint  of the installed capacities. Therefore,  the optimization  problem  

can  be  solved  by  applying  the Karush-Kuhn-Tucker  conditions,  see e.g., Boyd  and  

Vandenberghe (2004).

Demand  response programs

One strategy to mitigating  risks  of a  shortfall  in  the  power  supply is  given by the 

application of demand response  programs (DRP). Participating  in  DRP shifts the 

demand  curve to better  match  the power  supply of  intermittent power  generation
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facilities. However,  total  power  consumption  is  not  reduced  but  the peak  demand  

is  shifted  and  consumed  later.  Therefore,  demand  and  RES  power  supply become 

correlated  with correlation parameter ρ ≥ 0, where  the value  of the correlation indi-  

cates the level  of participation  in  the DRP.  A  high  level  of correlation  implies,  that 

whenever  the RES  power  output  is  low,  the demand is  also  low,  which  reduces  the  

risk of a  shortfall in  the power  supply. Conversely,  when  RES  power  output  is  high,  

the demand  is  also  high,  which  reduces surplus capacities. Therefore,  a high level  of  

correlation  refers to an effective DRP  since the  power  output  can  be  used more effi- 

ciently.  An energy  manager  who  invests in  RES  and  additionally adopts DRP is  able 

to  mitigate investment risks.  To see this, consider  the  single energy  investment sce- 

nario n = 1 and denote by f0 ∼  N (µd − xµ,  x2σ2 + σ2
d) the  stochastic  power  shortfall  

without DRP,  i.e.,  where demand  and RES  power  output  are uncorrelated and  denote  

by f1 ∼  N (µd−xµ, x2σ2+σ2
d−2ρxσ σd) the  stochastic power  shortfall associated with  

a DRP.  For  every  choice of the installed  capacity x > 0 and  every  level  of participa-  

tion in  DRP ρ  > 0,  we observe that DRP  reduces  the variance  of  the risk distribution
σ2(f1) < σ2(f0),  i.e., f0 has  higher  uncertainty.  Due to  the assumption  of normally  

distributed risk  distributions  with  equal  expected  power  shortfall E[f0] = E[f1], this  

implies that f1 second  order  stochastically  dominates f0 (Levy, 2015). Therefore,  

the  energy manager  prefers to  adopt DRP  in  order  to  decrease  the risk associated  

with demand coverage violations imposed  by the reliability  constraint.  Introducing  

DRP in  the investment  decision therefore  potentially reduces the  risk of a  shortfall  

in  the  power  supply associated with  the  investment  decision, as the optimal  level  of 

investment is decreasing  with  increasing level  of DRP  participation,  i.e.,  increasing 

level  of correlation. The next  proposition  quantifies  the necessary  capacities in  the  

presence of  an  DRP:

Proposition 2.2. Consider  the  investment  problem (2.6) based  on  the  probabilisti-  

cally  constrained  optimization  problem (2.3) for  a  single  energy  asset n = 1 and  let  

the  RES power  output  and  the  demand (P  , d)T be  jointly  normally  distributed,  with  

mean (µ, µd)
T and  covariance  matrix

Σ  =

(︃
σ2 ρσ σd

ρσ σd σ2
d

)︃
,

i.e.,  the  demand  is  assumed  to  be  correlated  with  the  RES power  output  with correla-
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tion  parameter ρ ≥ 0.  The  candidates  for  extreme  values  are  given  by

x(χ, ρ) =  

1

(µ2 − Φ−1(χ)2σ2)

×

  ⏐⏐⏐⏐⏐⏐⏐⏐  ⏐⏐⏐⏐⏐⏐⏐⏐  

(︂
(µdµ− ρΦ−1(χ)2σ  σd) +

√︁
(µdµ− ρΦ−1(χ)2σ  σd)2 − (µ2 − Φ−1(χ)2σ2)(µ2

d − σ2
dΦ

−1(χ)2)

)︂
for χ ≥ 0.5,(︂
(µdµ− ρΦ−1(χ)2σ  σd)−

√︁
(µdµ− ρΦ−1(χ)2σ  σd)2 − (µ2 − Φ−1(χ)2σ2)(µ2

d − σ2
dΦ

−1(χ)2)

)︂
for χ  < 0.5.

In  case  of χ = 0.5,  the  optimal  solution is  given  by x(0.5, ρ) = µd/µ.

Proof. The proof is  given  in  the Appendix 2.7.2.

On  the one hand,  imposing  normally  distributed  uncertain variables allows for  an  

analytic  solution of the investment problem.  On  the other hand, in  real  life  appli- 

cations the assumption  of Gaussian  distributions can  be too  restrictive,  which  over- 

simplifies the system or  does not correctly reflect upon  shortfall  risk characteristics 

which depend  on  the shape of the risk distribution.  In  order  to  generalize this  ap- 

proach  towards  a  data-driven  framework where  distribution free  results are obtained,  

i.e., no  assumption  on  the underlying distribution  has  to  be made,  more advanced  

numerical  methodologies have to  be used.

2.3.2  The sample  average approximation

Geng and  Xie (2019)  note,  that  the underlying  idea of using  the sample average 

approximation  to  handle  probabilistic constraints  first appeared  in Sen (1992).  In  

this approach,  the probabilistic constraint  is  replaced by a  set of N realizations  of the 

uncertain  parameter instances {P(1), . .  . ,P(N)}, where P(i) denotes the i-th  sample  of  

the  output  power  of the different  technologies.  According to  the imposed  probabilistic 

constraint  with  confidence parameter χ,  a  renewable energy  portfolio  is  considered 

as  feasible when  for  at  least χ · 100% of  the  sampled constraints demand  coverage
f(x,P(i)) ≤ 0 holds true.  These are the scenarios where the energy  manager  does 

not  observe a  loss. The associated empirical  probability  of demand  coverage for  a
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renewable energy portfolio x based  on  the observations  is  given  by

χ̂N(x)  = 

1

N

N∑︁
i=1

1{f(x,P(i))≤0}, (2.8) 

where 1 denotes  the characteristic  function, which  is  defined by

1{f(x,P(i))≤0} =

    1 if f(x,P(i)) ≤ 0  

0 else.
(2.9) 

The required probabilistic  guarantee can be  achieved,  by  imposing that the empirical  

probability  has  to  be  greater  than  the ex-ante  specified level  of reliability χ̂N(x) ≥ χ.  

That is, in  the sample  average approximation,  the probabilistic  constraint  is  modeled  

via  the proportion  of sampled scenarios in  which  the energy manager  observes full 

demand  coverage (Pagnoncelli  et  al., 2009).  

In  the sample  average approximation, we reformulate  the estimation  of the empiri- 

cal  demand  coverage probability  (2.8)  via  binary  variables zm ∈  {0, 1}, m =  1,  .  .  .  ,  N ,  

which select  the responsive and non-responsive scenarios.  This corresponds to  the re- 

formulation  of the problem as a  mixed  integer  problem  (Ruszczyński, 2002; Luedtke 

and Ahmed, 2008)

min
x1,...,xn
z1,...,zN

{p1x1 + . . .+ pnxn} s.t.

x1P
(1)  

1 + . . .+ xnP
(1)
n +M z1 ≥ d(1),

...

x1P
(N) 

1 + . . .+ xnP
(N)
n +M zN ≥ d(N), 

zm ∈ {0, 1},  m = 1,  . . .  , N ,

N∑︁
m=1

zm ≤ (1− χ) ·N

x ∈ Ω,

(2.10) 

where M is  a  large enough  constant in  the big-M  approach.  Thus, for zm = 1 the con- 

straint  associated with  them-th  scenario is always fulfilled, irrespective of the capacity  

choice in  the renewable energy  portfolio  and  corresponds  to  a  non-responsive scenario.
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Therefore,  such  a constraint  can  be  ignored within  the optimization  problem. The 

cardinality constraint imposes the condition that only a  fraction  of (1− χ) · 100% of  

the  scenarios are allowed  to  be  discarded  and  therefore  imposes a  threshold  on  the 

empirical  probability  of constraint violation.  Under some regularity  conditions,  the 

optimal  value  of the SAA  approach  and the associated  optimal  solution  converges  

to  its true counterpart  with probability one as N approaches infinity  (Ahmed and  

Shapiro, 2008; Pagnoncelli et  al., 2009).

2.3.3  The scenario  approach

In  the  SA  based on Calafiore and  Campi (2005)  we  use the same empirical  dataset 

consisting ofN sampled realizations  of the uncertain parameters.  The original  proaba- 

bilistically  constrained optimization  problem  (2.3)  is  approximated by the associated  

sampled  program

min
x1,...,xn

{p1x1 + . . .+ pnxn} s.t.

x1P
(1) 

1 + . . .+ xnP
(1)
n ≥ d(1),

...

x1P
(N ′) 

1 + . . .+ xnP
(N ′)
n ≥ d(N

′),

x ∈ Ω,

(2.11) 

of size N ′ (we can  also  use the full  empirical  sample,  i.e., N ′ = N constraints).  In  the  

SA  the solution has to  be  valid  for  all  constraints entering the  optimization  problem.
Calafiore  and Campi (2005) show,  that the  solution of the sampled  program  (2.11) 

is  feasible with probability  of at least 1− β,  whenever  the sample size is chosen  such  

that

N ′ ≥ n

β(1− χ)
− 1 (2.12) 

holds  true.11 This equation  relates  the a-priori  sample  size N ′ to  the a-posteriori 

solution validity χ,  i.e.,  its reliability.  This a-priori  bound on  the sample size has 

been  refined in Campi et  al. (2009). The advantage of this  approach  in  the context of 

the energy manager’s investment problem is,  that we  can  utilize the underlying linear

11I.e., Pr{χ̂ ≥ χ}  ≥ 1− β holds  true  (Calafiore and Campi, 2005)  .
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structure of  the supply-demand  constraint and therefore  end up  with  a simple linear  

program that can  be  solved  efficiently.  

In  order  to  obtain a  less  conservative solution to  the probabilistcally  constrained op- 

timization  problem, we apply  the sample  and discard algorithm  introduced  in Campi 

and Garatti (2011). Therefore,  we  initialize the problem with the  full  empirical  sam- 

ple of N observations.  The sample  and  discard algorithm  allows for  discarding  a  

number  of r scenarios  according  to any algorithm A,  where r is given  by

r ≤ (1− χ)N − n+  1−
√︃

2(1− χ)N ln

(︂
((1− χ)N)n−1

β

)︂
. (2.13) 

To identify the constraints  to  be  removed  from the set of  empirical  observations I =

{1,  .  . .  ,  N}, the algorithm A is  applied to  the set of  initial  constraints and  returns  an  

index  set of  the r constraints  to  be  excluded,  i.e., A(I)  = {i1,  . .  . ,  ir}. The feasibility  

result  of Campi and Garatti (2011)  shows,  that the associated solution of the reduced  

problem is  robustly feasible  with probability  of at  least 1 − β. We apply  a  discard 

algorithm  which is also  suggested in Calafiore (2010)  and  corresponds to the  iterative 

solution of the updated optimization  problem according to the  marginal  costs,  where 

in  each iteration one constraint  is  discarded. In  this  procedure, we sequentially  discard 

the constraint  which  refer  to  the highest  shadow  prices.12 Since discarding  binding 

constraints  relaxes  the problem, the associated objective value of the optimal  solution  

decreases  with  every  iteration.

2.3.4  Comparison  of  the  data-driven  approaches

The SA  is generally  considered as  an  approximation  of the SAA approach  in  the 

following sense: When both  procedures SA  and SAA are initialized with the  same 

empirical  sample of  size N , the  SAA  approach  globally  discards (1−χ) · 100% of  the 

scenarios in  an  optimal way.  On  the other  hand,  the sample and discard algorithm  

in  the SA approach  allows to  remove a  fraction of r /N ≤ (1− χ) · 100% constraints.  

As  it  can  be  obtained  in  (2.13),  only  in  the limit of large sample sizes  the number  

of  constraints to be  discarded  converges to  the same fraction  of (1 − χ) · 100% as  in  

the SAA.  However,  in  the SA  approach  the constraints are discarded  according to an

12In order  to  account  for  feasibility  in  the sampled  program  the algorithm is equipped with a  pre-  

solving  procedure which discards  constraints,  where P
(i) 

1t + .  .  .+ P
(i)
nt = 0 holds true.
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not  necessarily  optimal  algorithm,  whereas  in  the SAA  the constraints  are discarded  

in  a  globally optimal  way.  Hence,  the SA  is  considered as a suboptimal routine  

compared to  the SAA  whenever  the sample size N is  sufficiently large. However,  

this might  not  hold  true when  the sample  size is  small,  s.t.  the characteristics of 

the underlying distribution  are not  properly  reflected  by  the empirical  sample.  The 

sample  and discard algorithm  in  the SA  approach  accounts  for  a sampling error (which  

can  be  large in  small sample sizes),  where the number  of constraints to  be discarded  

is  adjusted via  the sample size N , see (2.13). In  contrast  to  that,  the SAA approach  

discards a  fraction of (1−χ) · 100% of  the  scenarios,  regardless  of the sample  size N . 

However,  the data  availability  of wind speed  and solar irradiance is generally high,  s.t.  

a lack  of data  is  not a  problem in  the use case. Therefore,  as  we later  demonstrate  in  

the use case,  the sample size N can be  chosen,  s.t. sampling error  is small. Another 

advantage of the SA  approach  is,  that  the underlying  linear structure  of the problem  

can  be  utilized efficiently.  A  small simulation study that illustrates this  is  given  in  

Appendix 2.7.3.

2.4  Computational  experiments

2.4.1  The use case

To demonstrate the applicability  of the model  as well  as the data-driven  solution  

methodology,  we analyze the energy  manager’s decision  in  minimizing  the investment 

costs of  an  energy park  when  the  probability  of hourly demand  coverage is  exoge- 

neously  fixed. We consider  investment in  the  renewable energy  technologies  wind
(i = 1) and  solar  power (i = 2) in  a  daytime model.13 The demand d = 0.1M W

is  assumed to  be deterministic and constant.  The associated prices of  the invest-  

ment  goods  per  one unit  of installed  capacity  are given  by p1 =  1400=C/k W and
p2 = 1000=C/k  W 14 (Carlsson et  al., 2014).  

Uncertainty  in  the power  output is  modeled  by  translating empirical  hourly  data  

on  solar  irradiance I and  on  wind  speed v15 via  the  physical  energy model  into  supply

13The data  are sampled  in  the time from 10:00-18:00  for the time span  of  one year, i.e.,  we  consider  

seasonal  variations of  the power  output.
14Approximated Values.
15The wind speed is measured  at the ground  level  and extrapolated  to  the hub  height of  the wind 

turbine.
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of power.16 Solar  power  output  for  one unit  of installed capacity is given by

Psolar(I) =
I

Iref
, (2.14) 

where Iref = 1[kW/m2] is  the reference irradiance.  The associated  power  output  of 

wind power  is  given  by17

Pwind(v) =

 ⏐⏐⏐ ⏐⏐⏐
0, for v ≤ vCI and v  > vCO 

1
vRO−vCI

(v − vCI), for vCI ≤ v ≤ vRO

1, for vRO ≤ v ≤ vCO.

(2.15) 

A  plot  of the histogram of the power  available  per  one unit  of installed  capacity of both  

power  sources considered in  the use case is given  in  Fig. 2.1.  Due to  the threshold  wind  

speeds below  and  above of which  no  power  output  from  wind technology  is  obtained,  

the wind  power  distribution  exhibits the properties of a heavy  tailed  distribution.

2.5  Computational  results

First,  we analyze  the manager’s investment problem  by  assuming  that the underlying  

distribution  of the uncertain parameters is  Gaussian. In  order  to  investigate the 

error introduced  by  this  approximation,  we compare the optimal  investment  decision  

in  the Gaussian case with  the optimal  investment  decision  based  on  a  data-driven  

approach  where empirical data  are used. Concerning the data-driven  approach  using  

real world  output  data,  we  average ñ = 100 runs of  the  optimization problem to  

obtain  robust results.  Each run of  the optimization  problem is  carried  out  with a 

block-bootstrapped  sample  of  hourly  values  of the power  available per  one unit  of 

installed capacity for  one year,  i.e., N = 2880 samples.18 Therefore,  we incorporate 

auto-correlation structures that are present  in  the empirical  data  in  the investment 

problem. Moreover,  to  include short-term  weather  trend,  we choose a block  size of 3  

days.

16Sources:www.soda-pro.com  (solar  irradiance),  www.mesonet.agron.iastate.edu (wind speed),  loca- 

tion:  Schwechat,  Austria,  hourly  data  available from  2012  to  2018.
17The  wind  turbine  is specified  via  the cut-in  speed vCI =  3m/s,  the rated-output  speed vRO =  

11m/s and the cut-out  speed vCO =  25m/s.
18We consider  8h in  the daytime  for 12  months,  where each  month is assumed  to  have 30  days.
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Figure  2.1: Histograms  of the hourly  values of the power  per  installed capacity in  the 

daytime for  (a) wind  and (b) solar power  for  one sampled year.  The values 

are given  in  MW for  one MW  of installed capacity.

2.5.1  Investment  costs

Based on  the solution of the energy manager’s investment  problem according to  the 

different approaches proposed to  solve  the probabilistically  constrained optimization 

problem, we recover  the energy manager’s frontier  of the optimal  level  of investment 

as  a  function of the level  of reliability.  The optimal  capacity  choice of  the  renewable 

energy  portfolio  in  the i−th  optimization  run x∗(i) induces  the minimum  expected 

capital  expenditures in  the i−th  optimization  run  as a  function of the ex-ante  chosen 

level  of reliability CAPEX(i) = p′x∗(i) for  both  data  driven  approaches.  We determine 

the overall  capital expenditures as  a  function of  the  imposed  level  of reliability  by  

averaging over  the ñ optimization  runs

CAPEX(χ) = 

1

ñ

∑︁
i

CAPEX(i)(χ), (2.16) 

which is  illustrated  in  Fig. 2.2(a). In  this plot,  also  the  analytic  solution  based  on  

the  assumption of Gaussian variables  is  illustrated.  Obviously,  the energy manager  

increases optimally installed  capacities  with increasing levels of reliability.  In  the 

regime of lower  levels of reliability,  the analytic solution reproduces the optimal  level  of
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investment of the data-driven  solution. However,  when  required  reliability  increases,  

the tail  risks  associated with the empirical distribution  are not  well  approximated 

in  the Gaussian case.  Therefore,  the underlying assumption  of normally  distributed 

uncertain parameters does not  hold true and  the optimal  level  of investment under 

the Gaussian  assumption differs from the optimal  level  of investment using  real-world 

output  data.  

We demonstrate that over  a large range of reliability  levels the efficient expansion 

frontier is  linear,  i.e.,  additional  reliability  comes at  a  constant price. Only at  very  

high levels of reliability  the frontier is  expected to be  strictly convex. The frontier  

implicitly contains the rate of substitution (SR)  between  reliability  and  investment 

costs

SR = 

dCAPEX

dχ 

, (2.17) 

which quantifies the expected  additional investment costs  for  an  additional unit  of 

reliability. Considering  the energy  manager’s conflict  in  interests,  i.e., maximizing  

reliability  vs.  minimizing invested  capital, the expected  rate of substitution eco-  

nomically  evaluates  the additional required  investment costs for  one additional  unit  

of reliability.  The convexity of  the investment  frontier  indicates that the marginal  

rate of substitution is  increasing. However,  for  lower  levels of required reliability  we 

observe that the efficient  frontier  is  approximately linear.  

The strong  increase  in  the optimal  level  of investment in  response to  increased 

required reliability  can  be explained by the portfolio  choice of the optimal  renewable  

energy portfolio,  which  is  illustrated  in  Fig. 2.2(c)  for  the SAA approach.  With  

increasing required reliability,  the energy manager avoids the tail  risk introduced by  

wind technology  and  consequently increases the  share in  solar technology.  However,  

covering  the demand  with solar power  requires a  higher  level  of investment,  due to 

less  power  available  from  solar  panels in  the morning  and  in  the afternoon.  

As it  can  also  be observed  in  Fig. 2.2(a)  the investment  costs associated with the  

solution of the SA  are higher  than the investment costs  associated with  the  SAA  

approach.  The conservatism  in  the  SA  approach  manifests  itself  by introducing addi- 

tional  contingency capacities which  overall  increase the invested  capacity  and  there-  

fore refers to higher capital expenditures.
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Figure  2.2: Fig.  (a) shows the expected invested  capital in  units  of 106=C for different  

levels of reliability.  Fig.  (b)  and  (c) show the installed  capacities for  wind  

and solar technology.
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Figure  2.3: Fig.  (a)  shows the invested shares  in  the different technologies for  the 

SAA approach  and (b)  for  the Gaussian approximation.

2.5.2  Portfolio  shares

A  plot  of the capacities  installed in  the different technologies is  given  in  Fig. 2.2(b)  for  

wind technology  and  Fig. 2.2(c)  for  solar technology.  We observe,  that the optimal  

renewable energy  portfolio  is  a  proper  mix  in  the different technologies.  Including the 

probabilistic  supply-demand constraint therefore introduces a  diversification effect in  

the portfolio  selection.  This diversification effect in  the optimal capacities installed  

translates to  the ex-post  portfolio  shares αi(χ)  = x∗
i pi/(x

∗
1p1 + x∗

2p2),  i.e.,  the share 

of invested  capital19 in  the i-th  technology for  a given  level  of reliability. In  Fig. 2.3
the portfolio  shares  are illustrated for  the approximation  of Gaussian  variables (Fig.
2.3(b))  and  for  the data-driven  approach  of the SAA  (Fig. 2.3(a)). Due to  the fact,  

that the optimal  renewable energy portfolio  depends on  the underlying  distribution  

of the power  shortfall the portfolio  selection  differs considerably when  using  Gaussian  

approximations or  using  real-world  output  data.  

First,  consider  the case of  empirical  distributions.  Due to  differences in  the em- 

pirical  distribution of  the  power  available (see Fig. 2.1), technology weights in  the 

optimal  portfolio  change when  requested  reliability  increases.  We observe,  that for

19Since the associated solutions  of  the optimization  problem are random variables  itself,  the capital  

shares are also  realizations  of  the underlying  random variable.
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low  reliability  levels χ ≈ 0.5 the energy manager’s optimal  decision is  to  opt  for a 

diversified technology  portfolio  and to  invest in  similar shares  of  wind and  solar tech-  

nology,  with  slightly  higher weight  in  favor  of wind  technology.  Due to  the low  levels 

of reliability  imposed,  the tail  risk emerging  from the integration  of wind technology 

is  within  the acceptable  region.20 However,  for  higher levels of reliability  this  tail risk 

becomes  increasingly important.  Therefore,  the energy manager’s optimal  decision  is  

to  decrease the share in  wind technology  and increase the share in  solar  technology  to  

reduce exposure to  the tail risk associated with a power  outage of wind  technology.  

Under  the assumption of normally  distributed random  variables (Fig. 2.3(b)),  these 

properties emerging from  the tail  characteristics of the distribution  of the power  

shortfall are not  well  represented. At  an  imposed  level  of reliability  of χ ≈ 0.5,  

the optimal  renewable energy portfolio  under  the assumption of normally  distributed 

variables  is  the single energy  investment in  wind technology.  With  increasing  required  

reliability  the optimal  portfolio  selection converges  to  a  diversified  portfolio  with  

approximately equal  shares.  Therefore,  although  the  Gaussian scenario approximates 

the optimal  level  of investment in  renewable energy  technologies –  at  least in  the 

low-reliability  regime –  the tail  characteristic  of the shortfall  distribution is  not  well  

captured  and  therefore  refers to a  different  portfolio  selection, especially  for  higher  

required levels of reliability.

2.5.3  Ex-post  validation  and  runtime

The lack  of the Gaussian approximation  in  adequately  capturing the  tail characteris- 

tics  can also  be observed  in  an  ex-post validation of the probabilistic constraint based  

on  resampled  scenarios of  the empirical  data,  which  is  illustrated  in  Fig. 2.4(a). Over  

a wide range of reliability  levels,  the Gaussian model  underestimates the risks  of a  

shortfall in  the  power  supply. The SAA  approach,  however,  reproduces on  average 

the exact required  levels of reliability. In  this  case the  sample  size is sufficiently large, 

s.t.  the  sampling  error  becomes small and  a  correction  term  for  small samples is not 

needed.  The fact  that the  SA approach  is  generally a suboptimal  procedure  com-  

pared  to  the SAA  approach  (whenever  the  sample size is sufficiently large)  can  be  

observed  by comparing the optimal  level  of investment in  both  approaches, which is 

higher  in  the SA approach.  The increased  investment costs arising  due to  additional
20This risk  arises  from the physical  energy  model  of  wind  power  in  (2.15),  which  introduces a  

threshold  wind  speed  below and above of  which  no  power  can  be  produced from wind turbines.
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Figure  2.4: Fig.  (a)  shows the result of the ex-post  validation.  The simulations  are 

carried out for  a sample size of N = 2880 constraints.  Fig.  (b)  shows a 

comparison of  the  runtime  of the algorithm, where in  the SAA  approach,  

the gap tolerance was  set to  6%  and  an  upper  bound on  the runtime  for  

one optimization  run of 30  min  is  imposed.  The errorbars show the  min  

and  the max  value  of the 100 runs of the optimization  problem.  The 

computations have been  carried  out  on  Windows  7  with a Intel  Core i7  @ 

2.50  GHz.

Table  2.1: Summary  of the t-test to  test  the hypothesis  that  the average reliability 

obtained in  the SA  approach µSA is lower  compared  to  the SAA approach
µSAA. The model  is  validated for  100 resampled  years.

Methodology  Level  of reliability χ

0.5 0.55 0.6 0.65 0.7 0.75  0.8 0.85 0.9 0.95

SA: µSA 0.57 0.61  0.66  0.71  0.75 0.79  0.84  0.89  0.93 0.97
σSA 0.021 0.021 0.020  0.019 0.018 0.016 0.013  0.011 0.009 0.004 

SAA: µSAA 0.50 0.55  0.60  0.65  0.70 0.75  0.80  0.85  0.90 0.95
σSAA 0.023 0.022 0.021  0.020 0.019 0.018 0.015  0.013 0.010 0.006

p-value p < 10−12
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contingency  capacities can  also  be  observed  by  higher  ex-post  levels of reliability.  

In  order to  quantify this results of the ex-post  reliability,  which  can also  be  seen 

in  Fig. 2.4(a),  we test  for  the mean  value  of the ex-post  reliability  level  in  the SA  

and the SAA  approach.  More specifically, we compare the average level  of reliability  

obtained in  the SA  approach µSA with  the average reliability  obtained  in  the SAA  

approach µSAA for  different  levels of reliability  based  on  100 optimization runs. For  

each reliability level  we perform a  t-test H0 : µSA ≤ µSAA vs. H1 : µSA > µSAA. The 

results of  the  test  are reported  in  Tab. 2.1.  We find  the mean  value  of the probability  

of demand coverage is  significantly higher  in  the SA  approach,  for  a significance level  

of α = 0.05.

2.5.4  Demand  fluctuations  and  DSM

To this  point,  we have considered  uncertainty only  in  the RES  power  output  and  

assumed the demand d to  be a  fixed, i.e.,  deterministic value.  However,  generally 

also  the  demand  that has  to  be  supplied  by the energy park  is  subject  to  fluctuations 

and therefore subject  to  uncertain.  Hence,  demand volatility  introduces another  

source of  uncertainty  in  the energy  manager’s  investment decision.  To  illustrate the 

consequence of demand uncertainty in  the energy manager’s  investment problem,  

assume  that the global  solution to  the investment problem is  given  by the interior 

solution stated in  Proposition 2.1 for the single energy  asset  case and for χ ≥ 0.5

(which is  true in  this use case). Then  the optimal  level  of investment  as a  function 

of the required  reliability I(χ)  = px(χ), for χ ≥ 0.5 is given by

I(χ)  =
pµdµ

(µ2 − Φ−1(χ)2σ2)

(︃
1 +

√︃
1− (µ2 − Φ−1(χ)2σ2)(µ2

d − σ2
dΦ

−1(χ)2)

µ2
dµ

2

)︃
. (2.18) 

Now,  fix a level  of reliability χ ≥ 0.5 and consider  the optimal  level  of investment to  

obtain  the required reliability  as a  function  of  the volatility  of the demand σ2
d. We 

find that

dI

dσ2
d

=
pΦ−1(χ)2

µdµ

⎯⎸⎸⎸⎷ 1

1− (µ2 − Φ−1(χ)2σ2)

µ2

(µ2
d − σ2

dΦ
−1(χ)2)

µ2
d

. (2.19)

34



0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(a)

Level  of  reliability χ

In
ve
st
m
en
t 
co
st
s

σd/µd = 0
σd/µd =  1

0.5 0.6 0.7 0.8 0.9 1.0

0.
0
0.
5
1.
0
1.
5
2.
0
2.
5
3.
0

(b)

Level  of  reliability χ
In
ve
st
m
en
t 
co
st
s

Increasing ρ

Figure  2.5: Fig.  (a)  shows the optimal  level  of investment,  when  the demand is as- 

sumed  to  be deterministic σd = 0 and  in  the case where the demand  is  

assumed  to  be  volatile σd = 0.1[M W ]. Fig.  (b) shows the optimal level  

of investment in  case the demand  is  uncertain σd/µd = 1 and correlated, 

with  different correlation parameters ρ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} between 

RES  power  output  and  the demand.

Therefore,  the optimal level  of investment is increasing  with increasing  uncertainty 

in  the demand dI  /dσ2
d > 0.  However,  this  theoretical  result  holds true under  the 

assumption of normally  distributed  uncertain  parameters. The application to  the 

use case shows,  that in  the data  driven-approach  using  real-world  RES  output  data,  

where the demand is  assumed to  be  truncated  normally  distributed,21 this effect  

also occurs,  see Fig. 2.5(a). Therefore,  with increasing  demand uncertainty  the 

energy manager  increases  optimally  installed capacities to  meet  the required reliability  

and thus obtains  generation  expansion  plans which  are also  robust  against  demand  

uncertainty.  

To  analyze the effect of  DSM on  the optimal  level  of investment,  assume that  the 

global  solution to  the investment problem is  given  by  the interior solution stated in  

Proposition 2.2 for the single energy asset case and for χ ≥ 0.5.  Therefore,  Proposition
2.2 gives the optimally installed capacities in  the one energy asset scenario when  the  

demand  is  shifted according  to DSM.  In  this  case,  the  demand  is  correlated  with

21With left  truncation  parameter a =  0 to  obtain  positive demand  and no  right  truncation b = ∞.

35



the RES  power  output,  with  correlation  parameter ρ ≥ 0.  Therefore,  the optimal  

level  of investment in  RES  technology  as a  function  of the level  of reliability  and  the 

correlation  parameter for χ ≥ 0.5 is given by

Ĩ(χ,  ρ)  =
p

(µ2 − Φ−1(χ)2σ2)

(︂
(µdµ− ρΦ−1(χ)2σ  σd)  

+
√︁
(µdµ− ρΦ−1(χ)2σ  σd)2 − (µ2 − Φ−1(χ)2σ2)(µ2

d − σ2
dΦ

−1(χ)2)

)︂
.

(2.20)

Thus, the marginal  decrease of the optimal  level  of investment  in  response to  increas-  

ing  DSM effectiveness for  a fixed level  of reliability  is  given  by

∂  Ĩ

∂  ρ
=

−pσ σd

(µ2 − Φ−1(χ)2σ2)

(︃
1  + 

(µdµ− ρΦ−1(χ)2σ  σd)√︀
(µdµ− ρΦ−1(χ)2σ  σd)2 − (µ2 − Φ−1(χ)2σ2)(µ2

d − Φ−1(χ)2σ2
d)

)︃
(2.21) 

Therefore,  we observe that whenever  the ratio  of the mean  demand and the standard 

deviation of the demand  as well  as the ratio  of the mean  power  available and  the 

standard deviation of the power  available  is  not  too  low,22 i.e., for µd/σd > |Φ−1(χ)|
and µ/σ > |Φ−1(χ)|,  that ∂ Ĩ/∂  ρ < 0 holds  true.  Hence, with increasing  participation  

in  DSM the energy  manager  reduces  the optimal  level  of investment and  thereby  is  

able to  mitigate investment risks.  

In  the empirical  approach  we model  DSM  participation  by  introducing  a  correlation 

factor between  the demand  and  the cumulated RES  power  output  per  unit  of installed 

capacity. Therefore, when  RES  availability  is  low,  active participation in  DSM shifts 

the peak  demand to  a lower  level.  Using  the data-driven  solution methodology  which 

incorporates real-world output  data  of the RES  power  output,  we observe that the 

optimal  level  of investment  is  decreasing  with  increasing  level  of the correlation ρ, 

i.e., with  increasing efficiency  of DSM,  see Fig. 2.5(b).  Moreover,  cost  savings in- 

crease with increasing required  reliability.  Due to  the risk-neutral  evaluation of the 

investment  problem  the difference in  the efficient frontiers with (ρ > 0) and  without 

(ρ = 0) DSM represents  the value  of implementing  DSM mechanism.  

However,  in  case the energy  manager  does not  consider DSM ex-ante  and  plans 

optimally  installed  capacities without the flexibility  option  to  shift  the  peak  demand,  

implementing  DSM ex-post  (i.e.,  after  the  optimal  renewable energy portfolio  is de-

22This conditions  refer  to  the existence of  the solution,  i.e.,  positive installed  capacities.
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Figure  2.6: Fig.  (a)  shows the empirical  cdf for  the ex-ante optimal  investment strat- 

egy  associated  without DSM in  two  cases: (i) without DSM (black  line)  

and  (ii)  with  ex-post  DSM adjustment,  Fig.  (b)  shows a section of  plot  

(a)  to  illustrate the increase in  reliability,  when DSM is  included. The 

plots are given for µd = 0.1M W,  σd =  0.1M W , ρ = 0.5 and χ = 0.9.

termined  without DSM)  leads to  an  increase in  the obtained level  of reliability,  i.e.,  

an  increase in  the system’s reliability.  This is illustrated in  a plot  of the cumu-  

lative distribution  function  of the stochastic  power  shortfall  without DSM f0 and  

with implementing DSM ex-post f1. The plot Fig. 2.6(a)  illustrates  the probability
Pr{fi < s} to  obtain a  power  shortfall  smaller  than s, without DSM (i = 0) and  

with DSM (i = 1),  based  on  resampled  scenarios.  We observe that in  the regime 

of a  power  shortfall s > 0,  the level  of reliability  including  DSM χ1 = Pr{f1 < 0}
is increased compared  to  the level  of reliability  associated with not adopting  DSM
χ0 = Pr{f0 < 0},  see Fig. 2.6(b).  Moreover,  in  the regime of surplus power s  < 0 the 

probability  to  observe unused  capacities is reduced, due to demand  shifting.

2.6 Conclusion

In  this  paper  we  analyze the energy manager’s  investment decision in  renewable  energy 

technologies  when a threshold  reliability  on  demand coverage is  required. We thereby
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extend the application of probability  constrained  programming to  the long-term gen- 

eration expansion  problem,  where we  use a  data-driven  decision  model,  which  allows 

for  using  empirical  data. Two  solution  methodologies, the sample  approach  and the 

sample  average approximation,  are compared. Whenever  the sample size is  sufficiently 

large,  s.t.  the sampling error  associated  with  small sample  sizes vanishes,  we demon- 

strate in  the use case that the sample average approximation  refers  to  solutions that 

are closer to  the required level  of  reliability  compared to  the sample approximation. 

Furthermore, we derive a  closed-form solution for  the underlying  investment  model  

when  the uncertain  parameters are assumed  to  be  Gaussian. Within  the probabilis- 

tic  modeling  approach  the energy manager’s attitude  towards  risk can  be directly  

incorporated  in  the model  formulation via  the ex-ante chosen level  of reliability.  The 

model supports the energy  manager’s  decision  to  find the optimal  investment decision 

such  that the hourly supply-demand  balance holds true with the imposed probabil-  

ity.  The application  of this  model to  the use case,  where we  consider wind  and  solar 

power  plants points out,  that the optimal  (cost  minimizing)  generation  mix  shifts 

to increased shares of  solar technology in  response to  increasing required reliability. 

This is due to the  fact, that the  optimal  portfolio  avoids the tail  risk introduced  by  

the wind power  distribution.  We recover  the efficient  frontier  of  investment  in  renew- 

able energy technologies  and demonstrate that over  a  wide range of reliability  levels 

additional reliability  comes  at  a  constant price,  whereas at  higher  levels of required  

reliability  it  is  strictly  convex. Based on  this efficient expansion  frontier we determine  

the substitution  rate of the level  of investment and the level  of reliability  and  thereby  

evaluate the additional  costs for  an  extra unit of  reliability.  Furthermore, we study 

the  effect of  demand  uncertainty  in  the optimal  investment decision. With  increasing  

demand  uncertainty,  the energy manager increases investment  in  RES  technology in  

order  to  provide  robust  generation expansion  plans which  meet  the required  relia- 

bility.  This effect is shown in  the  case of  a  single energy  investment and normally  

distributed random  variables but  we demonstrate that it  is also  present  in  the use 

case, i.e., using  real-world  RES output  data.  Within the probabilistically constrained 

framework we  analyze the effect of  DSM  on  the optimal  level  of investment in  RES.  

With  increasing  effectiveness of  DSM,  i.e.,  with  increasing  correlation parameter of  

RES power  output and  demand  the energy manager  is  able to  reduce investment in  

RES,  while  still providing the required system  reliability.
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2.7  Appendix

2.7.1  A:  Proof  of  Proposition 2.1

The Lagrangian  associated with  the optimization  problem  is  given  by

L(x,  λ)  = p′x− λ(x′Qx+ b′x+ c). (A1)  

The first-order condition is  therefore given  by

∂L
∂x

= p− 2λQx− λb = 0 (A2)

∂L
∂ λ

= x′Qx+ b′x+ c = 0. (A3)  

Equation (A2)  gives the candidates for  the solution

x = 

1

2λ
Q−1(p− λb) 

=
Q−1

2 

(
p

λ
− b).

(A4)  

The Lagrange multiplier  can  be  determined by inserting  into  (A3)  and we  obtain two 

candidates  for  the solutions according to  the different branches  of the conic section

1

4λ2

(︀
Q−1(p− λb)

)︀′
Q

(︀
Q−1(p− λb)

)︀
+ 

1

2λ
b′Q−1(p− λb) + c = 0 

(p′ − λb′)Q−1(p− λb) + 2λb′Q−1p− 2λ2b′Q−1b+ 4λ2c = 0

p′Q−1p− λp′Q−1b− λb′Q−1p+ λ2b′Q−1b+ 2λb′Q−1p− 2λ2b′Q−1b+ 4λ2c = 0

λ2(4c− b′Q−1b) + p′Q−1p = 0.

(A5)  

Therefore,  the solutions of the Lagrange multiplier  are given  by

λ1,2 = ±
√︃

p′Q−1p

b′Q−1b− 4c  

. (A6)  

Since  we are interested  in  the cost-minimal  solution the Karush-Kuhn-Tucker  condi- 

tions require the Lagrange multiplier  to  be  negative (for  the minimization  problem).  

Hence,  the candidate for  a minimum  corresponds  to  the Lagrange multiplier λ∗ < 0
(and the candidate for  a maximum  is  associated  with λ∗ > 0). The candidate for  the

39



cost-minimizing energy  portfolio  is

x∗ =
Q−1

2

  −
√︃

b′Q−1b− 4c

p′Q−1p  

p− b

   . (A7)  

To check for  the sufficient  condition  to  obtain a  local  minimum,  we have to  analyze 

the bordered  Hessian.  For  the case of  one constraint  and n variables  we  have to  check 

if the last n − 1 leading principal  minors have alternating  signs, beginning  with +1. 

Let us call the quadratic constraint g(x) = x′Qx+x′b+c.  Then the bordered Hessian  

is  given  by

B =

(︂
0 ∇g(x∗)T

∇g(x∗) λ∗Hg(x
∗)

)︂
(A8)

=

(︂
0  2x∗TQ+ bT

2Qx∗ + b λ∗Q,

)︂
(A9) 

where Hg = Q denotes the Hessian  of the constraint g. These conditions depend  

on  the parameters of the distribution  and the imposed level  of reliability  have to  be 

evaluated  for the particular  application.  For  the case of n = 2 energy  assets, we 

obtain

B =

   0  2(Q11x
∗
1 +Q21x

∗
2)  + b1 2(Q12x

∗
1 +Q22x

∗
2)  + b2

2(Q11x
∗
1 +Q21x

∗
2)  + b1 λ∗Q11 λ∗Q21

2(Q12x
∗
1 +Q22x

∗
2)  + b2 λ∗Q21 λ∗Q22

 
(A10)  

and the condition  for  a minimum  is  given  by  det(B) > 0.  

Alternatively,  we can  compare this  solution to  a special  case to  find the correct sign 

of  the solution. Hence,  the candidates for  solutions of  the optimal  renewable  energy 

portfolio  are given  by

x1,2 =
Q−1

2

 ±
√︃

b′Q−1b− 4c

p′Q−1p  

p− b

  . (A11)  

To obtain  optimally  installed  capacities in  the one energy  asset  scenario, consider  the 

case n = 1 and use the formula  from  the general  case:

x1,2 =
µdµ

(µ2 − Φ−1(χ)2σ2)

(︃
1∓

√︃
1− (µ2 − Φ−1(χ)2σ2)(µ2

d − σ2
dΦ

−1(χ)2)

µ2
dµ

2

)︃
. (A12)  

In  order  to  discard the artifact solution, we note that  this  equation has  to  hold  true 

for  all  possible values of σ2
d.  Therefore,  it  has  to  hold  true in  the special  case σd = 0.
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In  this  special  case (A12) gives

x1,2(χ) = µd
µ∓ |Φ−1(χ)|σ

(µ− Φ−1(χ)σ)(µ+ Φ−1(χ)σ)
. (A13)  

Therefore,  we have

x1,2(χ)  =

  ⏐⏐  ⏐⏐
µd

µ∓  |Φ−1(χ)|σ
(µ−  |Φ−1(χ)|σ)(µ+ |Φ−1(χ)|σ) for χ ≥ 0.5

µd
µ∓ |Φ−1(χ)|σ

(µ+ |Φ−1(χ)|σ)(µ− |Φ−1(χ)|σ) for χ < 0.5.
(A14)  

In  this  special  case, the probabilistic constraint  gives

µd − xµ = −Φ−1(χ)xσ 

x(χ) =
µd

µ− Φ−1(χ)σ 

,
(A15)  

which can  be rewritten  by  a  case distinction

x(χ)  =

 ⏐ ⏐
µd

µ− |Φ−1(χ)|σ for χ ≥ 0.5

µd

µ+ |Φ−1(χ)|σ for χ < 0.5
(A16)  

Therefore,  to  obtain the correct  sign  the solution has  to  be given  by

x(χ)  =
µdµ

(µ2 − Φ−1(χ)2σ2)
×

  ⏐⏐⏐⏐  ⏐⏐⏐⏐  

(︃
1 +

√︃
1− (µ2 − Φ−1(χ)2σ2)(µ2

d − σ2
dΦ

−1(χ)2)

µ2
dµ

2

)︃
, for χ ≥ 0.5(︃

1−
√︃
1− (µ2 − Φ−1(χ)2σ2)(µ2

d − σ2
dΦ

−1(χ)2)

µ2
dµ

2

)︃
, for χ  < 0.5. 

.

(A17)

2.7.2  B:  Proof  of  Proposition 2.2

By  the reproduction  property  of the normal  distribution,  the power  shortfall f(x,  P ) =
d − xP ∼ N (µd − xµ, x2σ2 − 2ρxσ σd + σ2

d) is normally  distributed.  Therefore,  the 

boundary of the probabilistic  constraint  is  given  by

x2(µ2 − Φ−1(χ)2σ2)  + x(2ρσ  σdΦ
−1(χ)2 − 2µdµ)  + µ2

d − Φ−1(χ)2σ2
d = 0. (B1)
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Hence,  we  find  that by applying  the general  formula  (A11)  for n = 1 and adapted  

coefficients

x1,2(χ,  ρ) =  

1

(µ2 − Φ−1(χ)2σ2)

×
(︂
(µdµ− ρΦ−1(χ)2σ  σd)±

√︁
(µdµ− ρΦ−1(χ)2σ  σd)2 − (µ2 − Φ−1(χ)2σ2)(µ2

d − σ2
dΦ

−1(χ)2)

)︂
,

(B2)

where  again  for ρ → 0,  we  recover  the uncorrelated  case. A  case distinction gives,  

similar to  Proposition 2.1

x(χ, ρ) =  

1

(µ2 − Φ−1(χ)2σ2)

×

 ⏐⏐⏐⏐⏐⏐⏐ ⏐⏐⏐⏐⏐⏐⏐ 

(︂
(µdµ− ρΦ−1(χ)2σ σd) +

√︁
(µdµ− ρΦ−1(χ)2σ  σd)2 − (µ2 − Φ−1(χ)2σ2)(µ2

d − σ2
dΦ

−1(χ)2)

)︂
for χ ≥ 0.5,(︂
(µdµ− ρΦ−1(χ)2σ  σd)−

√︁
(µdµ− ρΦ−1(χ)2σ  σd)2 − (µ2 − Φ−1(χ)2σ2)(µ2

d − σ2
dΦ

−1(χ)2)

)︂
for χ  < 0.5.

(B3)

2.7.3  C: Simulation  study

In  order  to  demonstrate the effect of  the sampling error  for smaller sample sizes  in  

the SA  and the SAA  approach  we  perform a  small simulation study. We assume that 

the power  available from the power  facilities is normally  distributed23. In  a situation 

where the decision  maker  has  access to  only  a  small data sample24 he  or  she can  only 

weakly rely  on the assumption  that the observed  data  sample sufficiently represents 

the population  distribution,  on  which  the SAA  approach  is  built.  However,  by  using  

the sample and discard  algorithm  accounts for  the sampling error by  discarding  a  

fraction  of  the  constraints,  where the number  of  constraints that can be removed  

depends  on  a  user-specified confidence parameter β, see (2.13).25 We validate the 

solution of the SA  and the SAA  approach,  respectively,  based  on  resampled  scenarios.  

The results are given  in  Fig. 2.7.  This figure demonstrates, that the SAA  approach  on  

average underestimates the true solution due to the  lack  of data.  The SA approach,  

however,  on  average exceeds the  reliability  requirement.  One reason for  this  is  that  

the discard  algorithm  does not  discard  the constraints in  a  globally  optimal  way  and  

thus, introduces  conservatism in  the  solution.  Another reason is that the  number  

of  constraints that can be removed  accounts for  a correction of the sampling error.

23For  the two  power  sources, we  choose: µ1 =  0.4, σ1 =  0.2 and µ2 =  0.3, σ2 =  0.1.  Negative  

sampled  values  are replaced  by  0.
24In  this  simulation we  choose N =  50.
25In the simulation study β = 0.4 was  chosen.
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Figure  2.7: This  figure shows the average level  of  reliability associated with  the so- 

lution of  the  SA  and  the SAA  approach,  where  in  each of  the  100 op- 

timization  runs  the sample  size (i.e.,  the number  of  constraints in  the 

optimization  problem)  is N = 50.

Therefore,  for  small sample  sizes,  the SA approach  can  lead  to  more accurate results 

(in  terms of the ex-post  level  of reliability,  see also  Fig. 2.4 where the  ex-post  level  

of reliability  for  the  empirical  data  and a  large data  sample is plotted).
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3  Optimal  investment strategy  in  

renewable  energy  technologies 1

Abstract. This paper  analyzes  the energy manager’s investment  decision  in  re- 

newable energy technologies in  the presence  of uncertain production volumes under  

different planning methodologies.  We assume the energy manager  to  be  a  price taker  

who aims  at  minimizing  the cost  to  cover  the firm’s  electricity  demand  by  decid- 

ing  upon  the optimal  level  of investment in  renewable self-generation  facilities. The 

“reliability-based planning  paradigm”,  where a constraint  on  the probability  of de- 

mand  coverage is  imposed, leads to  different renewable energy  portfolios compared to  

the “balancing-cost-based  planning  paradigm”,  where the price of demand  coverage 

violations is  exogeneously  fixed.  We analyze  the energy  manager’s optimal  investment 

decision  in  renewables in  the balancing-cost-based  approach  for  two  different types  of 

the outside option,  i.e.,  purchasing residual  power  to  cover  the demand  (i)  via  pre-  

contracted  energy at  a  fixed price or  (ii)  at  the balancing market  with a stochastic 

energy price.  We find  that the energy manager  is  reluctant  to  invest in  renewable en- 

ergy technologies when the price of pre-contracted energy is below  a  critical  threshold  

price,  which is decreasing  with decreasing  prices  of the investment goods. Moreover,  

the  energy  manager  increases  investment  in  renewables  with  increasing spot  price 

volatility  in  order  to  hedge against  spot  price risk.  In  the  presence of a  negative cor- 

relation between  the power  output and  spot  price,  i.e., whenever  there  is  a  shortfall in  

the  power  supply energy prices tend to be higher, the energy manager’s optimal  de- 

cision is to increase (decrease) the  optimal  level  of investment depending  on  whether 

the  level  of investment in  the  uncorrelated scenario is high (low).
Keywords: Generation expansion  problem; Risk  management  in  Energy  Economics;

1Joint  work  together  with Thomas Dangl, Vienna  University  of  Technology,  Institute  of  Manage- 

ment Science,  Theresianumgasse 27,  1040  Vienna.  The  full  paper  (Ondra  and Dangl, 2021a)  was 

presented at  the FAERE 2020  and parts  of  it  at  the AIEE  2020.
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3.1  Introduction

One approach to  mitigating  climate change induced  by  anthropogenic  greenhouse 

gases is  increasing the share in  renewable energy  sources (RES).  Taking  into  account  

all  available  power  generation  facilities today,  wind  and solar technologies are among  

the most popular alternatives because these resources are available throughout  the 

globe.  A  decarbonization  policy  which  requires  high  shares of renewables,  however,  

can  simultaneously  induce a  transition  to  an  autark  energy system, at  least to  some 

degree  (Tröndle et  al., 2019). In  this  context, energy autarky  is  considered  an  idea 

of using  global  resources  locally  rather  than a  concept of isolation (Pieńkowski  and 

Zbaraszewski, 2019).  A  necessary  condition in  this  autarkic energy policy  scenario  

is, that the potential for  renewable electricity  is  sufficiently high to  cover  the demand  

on  all  national  and sub-national  levels.  In  the trend  of decreasing  prices  of renewable  

energy technologies  (Carlsson  et  al., 2014),  the opportunity  to  invest in  RES becomes  

increasingly  valuable,  not  only  from an  ecological  but also  from  an  economical  point  

of view.  Therefore,  each enterprise participating in  the liberalized  energy  market  has  

the option to  invest in  RES  and  thereby  act  as a  prosumer  by  covering  a  part of its 

demand  via  self-generation facilities. The optimal  level  of investment in  renewable 

energy technologies is  determined in  the course of the generation  expansion  problem.2

The major  question arising  in  this  context is “how  much  to  invest in  which  kind  of 

technology?”  such  that the  supply meets the demand.  

From  a  private investor’s perspective a  major  concern when investing  in  RES  is  

given  by  the fact  that renewable energy technologies  are capital  intensive with  high  

investment  costs.  Portfolio theory  has  been  applied  in  several studies (Awerbuch,
2000; Awerbuch  and  Berger, 2003; Awerbuch  and Yang, 2007)  which  show, that adding  

RES in  a  portfolio  of conventional  plants with volatile  fuel  costs lowers portfolio  risk 

for  a given level  of costs (Tietjen et  al., 2016). However,  approaches  following this 

research stream  have focused on  fossil fuel  price uncertainty  solely  (Odeh  et  al., 2018).  

In  a more general  setting, optimal  dynamic capacity  expansion models for  a firm 

have been  addressed  early in Manne (1961).  This problem  can be  considered  in  a 

real options framework,  in  which optimal  investment timing is  determined (Dixit and  

Pindyck, 1994). Dangl (1999) discusses an  investment  problem,  where  a firm has 

to  determine  optimal  investment timing and  optimal  capacity choice simultaneously

2For  a  review of  the generation  expansion  problem,  see Koltsaklis and Dagoumas (2018).
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under  demand uncertainty.  A  general result which  highlights the effect of  uncertainty 

is,  that with  higher levels of uncertainty,  the firm finds  it  optimal to  invest later  in  

larger  quantity.  In  this  paper,  however,  we use a  static optimization  framework and  

focus on  the  optimal  portfolio  decision  under uncertainty in  a  “now-or-never”  setting.  

When it  comes  to integrating  RES  in  the generation expansion  problem, the energy 

manager  has  to  take into  account  that the  associated  power  output of the renewable  

energy  park  is  volatile, see Fig. 3.1 where  the  histograms of the power  available  

per  installed capacity  for  wind (Fig. 3.1(a))  and solar  (Fig. 3.1(b))  technology  are 

shown. The empirical  distributions  of  the power  output  are generated via  the  physical  

energy model,  which translates wind speed  into  power  output  of wind  technology, see 

(3.1),  and  solar irradiance  into  the power  output  of solar power,  see (3.2).  Each 

renewable energy  technology  exhibits a specific exposure  to shortfall  risk. Especially 

the  distribution  of wind  power  per  installed  capacity,  see Fig. 3.1(a),  exploits  the 

characteristics of a  heavy-tailed  distribution.  This is due to the  fact, that below  the 

cut-in  and above the cut-out wind speed no power  can  be generated  due to  technical 

limitations.  Therefore,  uncertain  production  volumes associated with RES  introduces 

risk in  the energy manager’s investment  problem. The shape of  the distribution of  

the power  output  induces the exposure  to shortfall risk,  since the  energy park has  

to  supply a certain demand.  Therefore,  an  energy  manager  who chooses optimally  

installed capacities is concerned  with  avoiding  the tail  risk introduced  by  investment 

in  wind technology.  In  the  course of  the energy manager’s investment decision  in  

RES,  he  or  she has to  shape the  risk distribution  (induced  by the joint  density of  the 

total  power  output),  by  determining  the optimal  renewable energy portfolio,  which 

is defined  by the installed  capacities of  the different technologies.  This  effect of  risk 

shaping is  illustrated in  Fig. 3.1(c), where the  power  output  of a  renewable  energy 

portfolio  with xw = 1M W and xs = 2M W installed  capacity  is  plotted.  As it  can  be  

observed in  this  example,  a diversified portfolio  shifts the  weight  in  the probability  

distribution  such  that the tail  risk is  reduced.  

In  the  liberalized  energy market  where energy  is traded like any  other  commodity,  a  

higher  penetration  of renewable  energy  technology  has  an  impact on  electricity price 

variability.  However,  the literature  is  inconclusive about  the overall  effect. Green  and  

Vasilakos (2010) show,  that the increased  use of wind technology can increase price 

volatility  in  the British electricity  market. Rintamäki  et  al. (2017) find,  that wind 

power  decreases the daily  volatility  of prices by flattening the hourly price profile  in
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Figure  3.1: Fig.  (a)  shows a histogram  of the wind power  per  installed capacity.  Fig.  

(b)  shows a histogram  of the solar  power  per  installed  capacity, both  for  

typical  locations  in  Central  Europe.  Fig.  (c) illustrates  the distribution 

of the power  available  for  an  energy portfolio  of 1  MW installed  wind 

capacity and  2  MW  installed solar capacity.
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Denmark.  

In  this  paper  we  analyze different renewable generation expansion  planning  mech-  

anisms imposed  by  a  system  planner  who is  responsible for  electricity  supply of an  

entire electricity system.  These two  approaches  are (i)  the “reliability-based planning 

mechanism”,  where the planner  imposes a  threshold level  of reliability  on  the supply- 

demand  constraint  and  (ii)  the “balancing-cost-based  planning  approach”,  where  the 

planner  introduces the price of  the  balancing energy for  a constraint violation as the 

planning  parameter. The underlying foundations  of the two planning  mechanisms are 

also  used  in  a  similar  way in  (Saez-Gallego  et  al., 2014),  who compare the efficiency  

of transmission system planning  mechanisms in  order  to  determine  optimal  reserve 

capacities.3 In  our  approach,  we compare  these planning  mechanisms in  the light  of 

renewable generation expansion  planning strategies and  consider RES  availability  risk 

as a  key  factor on  which the investment  decision  is  based.  In  our  approach  the design  

variables,  i.e.,  the installed  capacities of  the  different technologies directly  affect the  

risk distribution  of power-shortfall  and therefore introduces the need  of “risk-shaping” 

by determining  the optimal  renewable energy portfolio,  see Fig. 3.1.

3.1.1  The reliability-based  and  balancing-cost-based  planning  

approach

We consider  a planner  controlling  security of  electricity  supply by  planning  or  regulat- 

ing  generation expansion of  the electricity utility  of the individual subsidiary  system.  

Due to  uncertain  production  volumes associated  with  renewable energy technologies,  

the planner incorporates risk management  into  strategic planning  of renewable gen- 

eration  expansion. 

In  the “reliability-based planning  mechanism”, the planner is  considered  to  be  a  

decentral  planner  who prescribes a  necessary  level  of reliability χ on  the demand cov- 

erage distribution  of the electric utility.  In  the reliability-based  planning  mechanism,  

the central planner  establishes a minimum  constraint on  the reliability  of the sub-  

sidiary  system. The manager  of the subsidiary  electric  utility  will then  determine  the 

optimal  technology portfolio  which minimizes investment costs of  the  self-generation 

facilities subject to  the reliability  requirement.  

One approach  to  incorporate the reliability  requirement  in  optimization  based plan-

3The  availability  of  the reserve  capacities  is assumed  to  be  deterministic.
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ning problems is  via  the implementation of probabilistic  constraints.  The use of prob-  

abilistic constraints in  stochastic  optimization  problems dates back  to  the work  of
Charnes and Cooper (1959). Recently,  this  approach  also  gained increasing attention  

in  the generation expansion problem,  although mostly  restricted  by  the assumption 

of normally distributed  random variables  (Geng and  Xie, 2019). Ondra  et  al. (2021)  

propose  a  data-driven  approach  to  the generation expansion problem  including un-  

certainty in  the power  supply. The probability of supply-demand coverage,  i.e.,  the 

level  of reliability χ ∈ [0, 1) with which the supply-demand  constraint  holds true,  is  

incorporated  within the energy manager’s generation  expansion  problem via  a prob- 

abilistic constraint.  Generally,  a  probabilistic  constraint can  be  equivalently stated  

as a Value-at-Risk  (VaR) constraint on  the risk distribution,  with  confidence level χ.  

The solution of the probabilistic generation  expansion  problem  recovers the energy 

manager’s efficient  frontier of investment costs as  a  function  of the imposed  level  of 

reliability. In  the reliability-based planning  scenario based  on  the VaR risk measure,  

the planning  parameter is  the exogeneously  given  level  of reliability,  which  is  imposed  

on  the demand coverage distribution.  In  this  context, the question  arises whether 

the level  of reliability  is  a  sufficient planning parameter that contains all  relevant  

information  such  that the energy manager is  able to  determine optimal  renewable  

energy portfolios regarding  cost  efficiency? Imposing the level  of reliability  as the 

planning  parameter within  the model comes  along with some conceptual  shortcom-  

ings. First, only the frequency of scenarios violating  the demand  coverage constraint 

is considered,  but not the extent of  constraint  violation.  This is also  indicated in  

(Saez-Gallego  et  al., 2014)  where the authors  remark, that load shedding costs are 

not  considered in  the probabilistically  constrained planning  approach.  The VaR risk 

measure is  therefore indifferent to  extreme tails, i.e., in  the scenarios where the power  

output  of the energy park is  low and  thus, the power  shortfall  is large.  Moreover,  

using  the VaR  as a  risk measure comes  along with the  unfavorable  property  of the 

lack  of subadditivity  (Artzner et  al., 1999).  The lack  of subadditivity introduces the 

possibility  of the VaR  of a  portfolio  to  be higher  than  the sum  of  VaRs of the as-  

sets in  the  portfolio. Therefore,  VaR might  misinterpret  diversification effects and  

investment decisions based on  the VaR  risk measure can  lead  to  suboptimal  solutions  

(Embrechts  et  al., 2014). 

In  the  “balancing-cost-based  planning”  approach  we consider  the  planner  to  be  

a  regulator  who  follows a decentralized  planning  mechanism.  In  this  decentralized
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planning  approach,  the regulator  requires that the energy manager realizes an  inte- 

grated  view  of the total  costs associated  with  the electric utility  in  the investment  

decision. Therefore,  he  or  she has to  account for  the expected  expenses  in  case of  

a  shortfall  in  the power  supply, which are not  in  the scope of  the  reliability-based  

planning  approach.  However,  in  the decentralized approach  the planner does not  

impose the reliability  requirement,  such  that the energy manager  can  autonomously  

determine the optimal  level  of  reliability. Hence,  in  the balancing-cost-based planning 

approach reliability  is  not  an  explicit  objective imposed on  the subsidiary  but  an  im-  

plicit  choice of decentralized  planning.  And  even  if – by coincidence – both  planning  

approaches result in  the  same sub-system  reliability,  the underlying  portfolio  selection  

might  differ  considerably.  The expected  shortfall costs  in  the power  supply are given  

by  the price of the balancing energy, ξ. Therefore,  the planning  parameter in  the 

balancing-cost-based  planning  framework is  the price of the balancing energy.  This  

corresponds to  introducing  a  penalty  on  the violation of demand  coverage,  when  the 

energy manager has  to  make use of an  outside  option and purchase residual  power  to  

cover  the demand at  the balancing market.  On the one hand,  with  increasing invest- 

ment  in  renewable self-generation facilities the energy  manager  can  cover  the demand  

via  self-generation facilities with a higher  probability.  Hence,  additional  payments  

which come as the expected  costs of a power  shortfall  are reduced. On  the other  

hand,  imposing  high  levels of reliability  requires  the installation  of high capacities 

which are used  on  rare occasions  and therefore come as idle costs.  An optimal  de- 

cision therefore must balance costs and economic benefits associated with a certain  

level  of system reliability, χ.  Evaluating the capitalized costs  of making  use of an  

outside  option in  case of a shortfall  in  the power  supply consequently endogenizes4

the choice of the optimal  level  of reliability  of supply-demand coverage of the energy 

park, which is  illustrated  in  Fig. 3.2. A  low  level  of reliability χ = 0,  which is  ob- 

tained whenever  the price of balancing energy  is also low,  corresponds to  the energy 

manager’s  procurement  policy of purchasing total  power  at  the market  to  cover  the 

demand  and  to  refuse investment in  self-generation facilities. With  increasing  prices  

of the balancing energy,  the energy manager  increases  the level  of investment in  RES  

to  supply the demand  via  self-generation facilities and therefore chooses a higher  level

4Ovaere  et al. (2019)  shows,  that  the value of  lost  load  which  corresponds  to  the price  of  the 

balancing  energy  affects  the level of  reliability  when  total  costs  of  the energy  system consist  of  

reliability  costs  and interruption  costs.
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Figure  3.2: Illustration  of the total  costs associated with the energy  park  as a  function  

of the confidence parameter χ of  the  supply demand constraint.

of reliability. An  energy manager  who aims  at  minimizing the total  costs of  the energy 

park determines the optimal  level  of reliability,  when  the costs  for  an  additional unit  

of reliability  equals the expected reduction of  costs  for  purchasing additional  power  

at  the balancing  market  in  case of  a  shortfall  in  the power  supply. Hence, based on 

the price of the balancing  energy the energy manager  determines the optimal  level  of 

investment and  therefore also  the  optimal  level  of reliability. Therefore, prescribing  a 

necessary level  of reliability  associated with  the  power  output,  as it  is  the case in  the  

reliability-based planning  approach,  affects the  energy manager’s decision and  he  or  

she  chooses a suboptimal renewable energy portfolio. Thus, incorporating  the price 

of balancing energy instead  of the level  of reliability  itself yield  efficient renewable en- 

ergy portfolios and  therefore  the price of the balancing  energy  is a sufficient planning 

parameter.  

Moreover,  another  motivation  to discuss  optimal  portfolio  selection within the  bal-
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ancing  costs based  planning  approach  is,  that not  every  firm is willing  to  invest in  

capital intensive renewable self-generation facilities to  cover  the demand,  but  to  make 

use of an  outside  option  and,  e.g., purchase power  at  the balancing  market  or  nego- 

tiate contracts with  retailers  (Gómez-Villalva  and  Ramos, 2004). However,  besides 

uncertain  production  volumes of RES,  volatile spot  prices introduce another  source  

of uncertainty in  the investment  decision  and forward  contracts can  be  used to  hedge 

against spot  price volatility. Vehviläinen and  Keppo (2003) discuss the importance of 

using  risk management  techniques  to  manage electricity  market  price risk.  An  early 

application of using forward  contracts as  risk sharing instruments for spot  price risks  

in  the electricity market  is  conducted  in Kaye et  al. (1990). Woo  et  al. (2004b)  con- 

sider an  electricity distribution company  and approach  the problem of determining  

the optimal  amount  of forward  electricity  to  reduce the exposure to  inherent  risks  of 

spot  price volatility.  Based on  this  model,  an  efficient frontier of tradeoff  between  

expected  cost  and  cost  risk measured in  terms  of cost  variance  is constructed in Woo  

et  al. (2004a).  In  this  constrained  least cost  setting however,  the authors  do  not  

include the option  to  invest in  self-generation facilities. Bjorgan  et  al. (1999)  discuss  

hedging using  future contracts and  also  investigate  how production  scheduling  of non- 

intermittent  technologies can  be used  to  reduce overall  risk,  where  stochastic input  

variables  are assumed  to  be normally  distributed. Conejo et  al. (2008)  consider  an  

existing energy  park with thermal  power  plants and  addresses the  problem of optimal  

investment in  the  electricity  futures  market,  where  price uncertainty is  described  by  

a  set of  scenarios. 

This paper  contributes to the  existing  literature  by analyzing  the energy manager’s 

investment decision  in  renewable energy  technologies,  in  the presence  of uncertain  

production volumes,  when  the  outside option to  purchase power  at  the market  also  

exists.  We analyze the optimal  renewable portfolio  selection in  the  balancing-cost- 

based  planning  approach,  where the  price  of  balancing energy  is exogenously fixed.  

Therefore,  investment in  RES comes as  opportunity  costs  of  a  shortfall in  the  power  

supply. We determine  the energy manager’s optimal  level  of self coverage of the de- 

mand,  characterized by the energy park’s level  of reliability  which  acts as a  threshold  

probability  on  the supply-demand  constraint.  We compare the  reliability-based  plan- 

ning approach  with the  cost-based balancing approach in  a use case and  show that 

the  energy  manager  chooses different renewable energy  portfolios, depending  on  the 

type  of the regulatory  mechanism.  Moreover,  we analyze  the optimal  renewable en-
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ergy portfolio  in  the balancing-cost-based approach,  when  the energy  price is  assumed 

to  be  uncertain  and  show that the energy manager increases investment in  RES  in  

response to  an  increase in  the energy  price volatility,  when  the spot  price is assumed 

to  be  uncorrelated  with RES power  output.  We analyze the effect of  a  correlated  

energy price on  the  level  of investment,  by  simulating different levels of correlation  of  

the  energy price and  RES  power  output.  Thereby,  we observe two different scenarios:

(i) The energy manager  increases the optimal  level  of reliability  (i.e.,  the proba-  

bility  of covering  the demand  via  RES)  in  response to  increasing  levels of  the  

correlation of  the  energy  price and  the power  shortfall, which  corresponds to an 

insurance effect.  This effect occurs whenever  the  optimal  level  of investment in  

the  benchmark  scenario of  an  uncorrelated  energy  price is high.

(ii) The energy manager  decreases  the optimal  level  of reliability  in  response to  in-  

creasing correlation in  order  to  avoid scenarios,  where power  is  procured  power  

from  capital  intensive RES  although  the energy  price is low.  This effect oc-  

curs,  whenever  the optimal  level  of investment in  the  benchmark  scenario of  a  

uncorrelated energy price is low.  

The rest of  the paper  is  organized  as follows.  In  Section 3.2 we introduce the 

formal  model.  Section 3.3 presents the  use  case and  illustrates  the results.  Section
3.4 concludes  the paper.

3.2  The model

We divide the construction of  the model  into  two  parts.  In  the  first part,  we consider 

the  reliabiltiy based  planning  approach,  where an  exogenous probability  of demand  

coverage χ is  imposed.  We obtain the energy manager’s  investment decision in  re- 

newable energy technologies  as a  function  of the exogenously  given level  of reliability. 

As  a  result  we  recover  the efficient  generation-portfolio  frontier,  that  allows to char- 

acterize (i)  the optimal  generation mix  and  (ii)  the marginal  cost for  an  additional  

unit of system reliability. In  the  second part  of the model  construction we  extend this  

approach  to  the balancing-cost-based planning  approach  and additionally include the 

expected  capitalized  costs  of  making use of an  outside option in  case of  a  shortfall  

in  the power  supply of the  energy  park  within the  evaluation of  the total  costs.  In
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Table  3.1: Notation.

χ . . . . . .  Level  of reliability
x− . . . .  Optimal technology  portfolio  in  the reliability-based  planning  approach

[M  W inst.]
x+ . . . .  Optimal technology portfolio  in  the cost-based-planning approach

[M  W inst.]
Pi . . . . .  Power  per  installed capacity  of the i-th  technology [M  W /M W  inst.]
pi . . . . .  Price per  installed  capacity  of the i-th  technology [=C/M W inst.]
d . . . . . .  Demand [M  W ]
ξ . . . . . .  Price of  balancing energy [=C/M W h]
X . . . . .  Power  shortfall [M W ] 

ΔT . . .  Expected  useful  life time  of the energy  park [y]
δ(x) . . .  Expected  excess payments for  purchasing  residual  power  in  case of  a  

power  shortfall  of  the renewable energy portfolio x at  the market [=C]
I(x) . . .  Capital  expenditures to  install  the renewable energy  portfolio x [=C]
C(χ) . .  Total  costs of  the  energy  park  at  the level  of reliability χ [=C]

the cost-based-planning  approach the penalty  for  constraint  violation ξ,  i.e., the price 

for  making  use of an  outside option  is  exogenous. Table 3.1 shows  the notation  used  

throughout the paper.

3.2.1  General framework

A central  aspect  in  this  paper  is  to  analyze the energy  manager’s optimal  investment 

decision  in  renewable energy technologies under uncertain production  volumes.  The 

power  output of RES  is  uncertain  due to  the dependence on  the environmental  condi-  

tions,  i.e., the wind  speed v in  case of wind  power  technology  and  the solar irradiance
I in  case of  solar power.  Each technology exhibits a specific exposure to  shortfall  

risk.5 For  two of the most popular  renewable energy technologies,  the power  per

5Which  is introduced by  the physical  power  model  that  translates  the environmental  conditions 

into  the power  output.
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installed capacity  is  given  by

Pw(v)  =

  ⏐⏐⏐  ⏐⏐⏐
0, for v ≤ vCI and v > vCO

v−vCI

vRO−vCI
, for vCI ≤ v ≤ vRO

1, for vRO ≤ v ≤ vCO

(3.1) 

for  wind technology6 and

Ps(I) =
I

Iref
(3.2) 

for  solar  technology7.  The economies of scale of such  an  investment in  renewable 

energy are (approximately) constant over  a the range of capacity that we want  to  

consider8 The power  output  associated with an  installed capacity  of xw in  wind  tech-  

nology  and xs in  solar technology is  given  by P ′
w = xwPw for  wind  technology and

P ′
s = xsPs for  solar  technology,  respectively.  The joint  density  of wind  and  solar  power  

output  of one unit  of capacity  installed  in  each technology is  denoted  by f(Pw,  Ps).  

Hence,  the joint  distribution  of wind and solar  output  when xw units  of wind and xs

units  of solar  power  is  installed is  given  by

f ′(P ′
w,  P ′

s)  = 

1

xwxs

f

(︂
P ′
s

xs

,  

P ′
w

xw

)︂
. (3.3)  

The total  power  output of the energy park is  given  by  the cumulated  power  output  of 

the power  sources, P ′ = P ′
w + P ′

s. Therefore,  the probability  to  obtain a  total  power  

output  smaller than z can  be  derived  via  the convolution

Pr{P ′ ≤ z} =

∫︁ ∞ 

−∞

∫︁ z−P ′
s

−∞

1

xsxw

f

(︂
P ′
s

xs

, 

P ′
w

xw

)︂
dP ′

wdP
′
s. (3.4)

6In  this  model  the wind turbine  is specified via  the cut-in  speed vCI = 3m/s,  the rated-output  

speed vRO =  11m/s and the cut-out  speed vCO = 25m/s.
7Iref = 1[kW/m2] denotes  the reference irradiance.
8Constant  economies  of  scale are only violated  if  the area  of  the energy  park  is large such that  

wind  speed  and solar  irradiance vary  considerably  between different  locations in  the park.
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Consequently  the joint  density of  the total  power  output is  given  by

f(z)  =  

d  Pr{P ′ ≤ z}
dz

=

∫︁ ∞ 

−∞

1

xsxw

f

(︂
P ′
s

xs

,  

z − P ′
s

xw

)︂
dP ′

s

=

∫︁ ∞ 

−∞

1

xsxw

f

(︂
z − P ′

w

xs

, 

P ′
w

xw

)︂
dP ′

w,

(3.5) 

which can  be obtained either by integrating  over  the solar  or  the wind  power  distri-  

bution.  The general framework of  the model is,  that the energy manager  can  shape 

the risk distribution of  the total  power  output  of the energy park  by choosing  the 

installed capacities  of  the  different  technologies and thereby  control  the distribution  

of the total  power  output.  Therefore,  the energy manager chooses optimally  installed 

capacities of renewable energy sources based on  the joint  density of the solar and 

wind power  output  distribution f .

3.2.2  Reliability-based  planning  approach

In  the reliability-based  planning  approach  to  the generation  expansion  problem we 

consider a scenario, where  the energy  manager  is  instructed to  determine  the mini- 

mum  costs  of  investment in  an  energy park,  such  that the firm’s electricity demand  

can  be  covered with  an  ex-ante specified  level  of reliability χ.  We denote  by pi the 

price per  installed  capacity  and  by xi the capacity  installed  of the i-th  technology.  

The vector of  installed capacities represents the renewable energy  portfolio  and is  

denoted  by x ∈ Rn,  where n denotes the number  of  different  technologies  considered.  

The energy manager  aims at  minimizing the investment costs  associated  with  the 

renewable energy portfolio  choice.  The capital  expenditures associated  with a renew-  

able energy portfolio x are given  by I(x)  =
∑︀n  

i=1 pixi. Moreover,  in  the probabilistic 

approach to  the generation expansion  problem, the energy manager  requires that the 

stochastic hourly  supply-demand  imbalance,  or  power  shortfall, X(x) = d−x′P ≤ 0,  

where d denotes  the demand  and Pi denotes  the stochastic power  available per  in-  

stalled  capacity  of the i-th  technology,  has  to  hold true with  an  ex-ante specified level  

of reliability χ ∈ [0, 1),  i.e.,

Pr{X(x) ≤ 0} ≥ χ. (3.6) 

This constraint can  be  equivalently  formulated  via  the Value-at-Risk  (VaR) of the
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probability  distribution of  power  shortfall.9 Since the power  output of the energy 

park is  subject  to uncertainty,  the hourly  supply-demand  imbalance is  also  stochas-  

tic.  Therefore,  the power  shortage X is  a random  variable with a distribution  induced  

by that of the demand and  the supply associated  with  the renewable energy port-  

folio x. The level  of reliability χ acts as the threshold confidence parameter of the 

energy manager’s requirement  on  the system’s reliability  and  consequently, 1 − χ is  

the tolerance to  constraint violation.  We denote by θ(x)  = Pr{X(x) ≤ 0} the de- 

mand  coverage probability  of the renewable energy portfolio x.  The mathematical  

formulation  of the probabilistically constrained  generation expansion  problem  as a  

constrained  least cost  problem is  given  by

min
xi

n∑︁
i=1

xipi

Pr{X(x) ≤ 0} = χ  

xi ≥ 0,  i =  1,  .  .  .  ,  n.

(3.7)  

Let  us assume that we  can  exclude singularities10in  the  distribution  of the power  

shortfall  and  impose  further regularity conditions on  the quantile  function of the 

power  shortfall  (i.e.,  that θ(x)  = Pr{X(x) ≤ 0} is quasi-concave s.t.  for each level  

of the required reliability χ the upper  contour  set {x : θ(x) ≥ χ} is a convex  set 

(Mas-Colell  et  al., 1995)).  For  a  discussion of  this  assumption,  see Appendix 3.5.1. 

Then we obtain  the following proposition.

Proposition 3.1. Let  the  power  shortfall X(x) be  a  continuous  random  variable  with  

a  differentiable  and  strictly  quasi-concave  distribution function.  The  energy  manager

9The  probabilistic  constraint  can  be  equivalently written in  terms of  the Value-at-Risk
VaRχ(X(x)) ≥ 0,  with  the loss  function  induced by  the supply-demand  imbalance,  i.e.,  a  shortfall  

in  the power  supply X(x) > 0 denotes a loss.  Due to  monotonicity  of  the VaR,  a  portfolio  where 

this  inequality  is strict is optimal. An  energy  manager  who  chooses a renewable energy  portfolio 

which has the property  of  a  strictly  positive VaR  contradicts the cost  efficiency conjecture.
10Due to  the threshold wind speeds  above and below of  which no  power  output  from wind tech- 

nology  is available,  the wind distribution  shows atomic features  which leads to  discontinuities 

in  the distribution  function.  This, however, is not  the case  for  the distribution  function  of  solar  

technology.  Typically,  wind power  plants  available are not  build  at  a  single,  but  geographically 

diverse  locations.  Whenever  one  wind power  plant does not produce any  power  output  it  is 

unlikely  that  all  other  power  plants,  which are located  sufficiently far  away,  do  also  produce  no  

power  output.  Therefore,  geographical  diversification  helps to  smoothen  this  discontinuity.  The 

slope  of  distribution  function  can  be very  steep,  however,  singularities  are ruled  out.
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chooses  optimally  installed  capacities,  such  that  for  all  technologies

pi
∂VaRχ

∂  xi

= pj
∂VaRχ

∂  xj

(3.8)

holds  true. Moreover, the  shadow  price  is  given by

λ =

(︂
1

pi

∂  θ

∂ xi

)︂−1

, (3.9)

which  is  a  global  constant,  independent  of  the  technology i.

Proof. See Appendix 3.5.2.

The optimal  renewable energy  portfolio  for  a given  level  of reliability  is  denoted  by
x−(χ) and  induces  the energy  manager’s optimal  investment frontier  as a  function  

of the level  of reliability I(χ)  =
∑︀

i pix
−
i (χ).  Therefore,  the marginal  costs  for  an  

additional unit  of reliability  are given  by

dI

dχ
=

n∑︁
i=1

pi
dx−

i

dχ  

, (3.10) 

where dx−
i /dχ are the total  derivatives of portfolio  investments along the efficient 

frontier,  i.e.,  for  the optimal  portfolio choice x = x−(χ).  However,  we can also  apply  

the Envelope theorem dI  /dχ = −λ∂  h/∂  χ,  which gives  (h(x, χ)  = θ(x) − χ denotes  

the constraint in  the Lagrange function)

dI

dχ
= λ = pi

(︂
∂ θ

∂  xi

)︂−1

, (3.11) 

which is the same for  each technology i.  Moreover,  for  the optimal  renewable  energy 

portfolio θ(x)  = VaR−1
χ (X(x)) holds true.  Therefore,

∂ θ

∂ xi

= 

1
∂VaRχ

∂  xi

=

(︂
∂VaRχ

∂  xi

)︂−1

. (3.12) 

The marginal  contribution to  the investment  costs  for  an  additional unit  of reliability
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is  determined  by  the marginal  contribution of the i−the technology to  the VaR

dI

dχ
= pi

∂VaRχ

∂  xi

. (3.13) 

Note,  however,  that in  this  setting the level  of reliability  is  an  exogenous parameter 

chosen by the energy manager.

3.2.3  Balancing-cost-based  planning  approach

To account  for  an  integrated  view on  the costs of  the  energy park,  the energy manager  

who follows the balancing-cost-based planning  approach aims at  minimizing the total  

costs associated  with  covering  the demand.  This  includes (i) investment costs in  

RES and  (ii) expected  excess payments in  case of  a  shortfall in  the power  supply. 

Additional  expenses of  making  use of an  outside option and  purchasing  power  at  the 

balancing market  therefore might  come as  the opportunity  costs of  a  shortfall  in  the  

power  supply. However,  this  expenses only  incur,  whenever X(x) > 0.  Therefore,  we 

introduce the loss function11 which penalizes  a  shortfall  in  the power  supply

l(x) = ΔT  ξmax{X(x), 0}, (3.14) 

where the energy price is denoted  by ξ and ΔT denotes  the expected  useful  life time  

of the energy park.  The loss l(x) itself  is  therefore a  random  variable.  Its distribution  

is  induced  by  the joint  distribution  of energy  supply, demand  and  the energy price.  

Whenever  the demand  is  higher than the power  supply of the  energy  park,  the loss  

is  positive and  requires  additional  excess payments to  cover  the demand.  By  the  law  

of total  probability,  the expected  excess payments δ(x) can  be split into  two parts

δ(x)  = E[l(x)|X(x) > 0] · Pr{X(x) > 0}
+ E[l(x)|X(x) ≤ 0] · Pr{X(x) ≤ 0}
= ΔT (1− χ)E[ξ  X(x)|X(x) > 0],

(3.15)

11We consider  a  scenario  without  a feed-in tariff.  In this  case,  excess  power  can  neither  be  sold at  

the market,  nor stored  in  the absence  of  a  storage device  and therefore has  no  economic  value.  

However,  in  case  of  a  power  shortfall,  there  is an  outside option  of  last  resort  to  purchase energy  

at  the electricity  market.
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where χ = Pr{X(x) ≤ 0} denotes the level  of reliability.  Due to  the fact  that we 

consider positive energy  prices ξ ≥ 0 and by  definition  of the level  of reliability χ,  we 

have that VaRχ(ξ  X(x))  =  VaRχ(X(x))  =  0.  Therefore,  we  find  that  the additional  

expected  expenses in  case of  a  shortfall in  the power  supply are given  by

δ(x)  = ΔT (1− χ)E[ξ  X(x)|X(x) > VaRχ(X(x))]  

= ΔT (1− χ)CVaRχ(ξ  X(x(χ))),
(3.16) 

where CVaRχ denotes  the conditional  Value-at-Risk with  the  confidence parameter
χ.  Thus, the total costs  associated with  demand  coverage are given  by

C̃(x)  = I(x)  + δ(x)  

=
n∑︁

i=1

pixi + ΔT (1− χ)CVaRχ(ξ X(x)).
(3.17) 

In  the  balancing costs based  planning  approach,  the energy manager  measures  riski-  

ness of electricity supply associated  with an  investment in  RES  using the concept of  

the CVaR. In  the  course of  the investment  decision,  the energy  manager  has  to  shape 

the  risk distribution  by  choosing  the  amount  of installed capacity in  each technol-  

ogy  in  order  to  find the minimum of the total  costs.  The optimal  renewable energy 

portfolio  in  the balancing-cost-based  planning  approach,  denoted  by x+,  is  given  by  

solving

min
x

n∑︁
i=1

pixi +  ΔT (1− χ)CVaRχ(ξ  X(x))

xi ≥ 0,  i =  1,  .  .  .  ,  n.

(3.18)

Proposition 3.2. Let  the  stochastic  energy  price  at  the  balancing  market ξ and  the  

power  shortfall X be  uncorrelated.  The  energy  manager chooses  optimally  installed  

capacities,  such  that

pi = ΔT  E[ξ]E[Pi1X(x)>0] (3.19)

holds  true  also  for all  renewable  energy  technologies.  Moreover,  the  marginal  costs  of
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an  additional  unit  of  reliability  is  given  by

dC

dχ
= −ΔT  E[ξ]VaRχ(X(x+)) (3.20)

and  the  endogenized  optimal  level  of  reliability χ∗ minimizing  the  total  costs  is  given  

by VaRχ∗(X(x+))  = 0

Proof. See Appendix 3.5.3.

Whenever  the outside option of buying  power  at  the market  exists, the level  of reli- 

ability  is  endogenized  and the energy manager  chooses the renewable energy portfolio  

which  corresponds  to  the optimal  level  of  reliability χ∗.  We observe that the energy 

manager  chooses a different portfolio  when  he or  she  includes the expected expenses 

of  a  shortfall  in  the power  supply, due to  the different  first-order condition in  Propo-  

sition 3.1 and 3.2,  respectively.  In  the reliability-based planning  approach,  where 

the energy  park  has  to  supply the  demand  with an  ex-ante  chosen  level  of reliability, 

the energy  manager  chooses optimally  installed capacities  according to  the price of  

the investment goods  and the  contribution to  the risk shape of  a  power  shortage,  

see Proposition 3.1.  In  the  scenario  of an  integrated  evaluation of  the total  costs, 

where  the energy manager also  considers the  expected costs in  case of  a  shortfall  of  

the supply, he or  she  chooses optimally  installed  capacities  by  evaluating the costs 

associated with  the  technology and the expected  costs of  making  use of an  outside 

option,  see Proposition 3.2.

3.2.4  The single technology  case

In  the  balancing-cost-based  planning  approach,  the energy manager  can  also  refuse 

to invest  in  RES  and  purchase total  power  to  cover  the demand  via pre-contracted 

energy. In  order  to  evaluate if  the investment decision  in  the balancing-cost-based 

planning  approach  agrees  with  economic intuition  in  a  simplified scenario,  we consider 

the  scenario of  a  single energy  asset,  i.e., n = 1.  More specifically, we formulate a 

participation  constraint which denotes the regime,  where  the  energy manager  invests  

in  RES,  i.e.,  such  that for  the  optimal  level  of reliability χ > 0 holds true.  However,  

this single energy  asset  scenario  ignores diversification effects in  the  renewable energy 

portfolio.  By  using  the definition  of the covariance Cov(X  ,  Y )  = E[X  Y ]−E[X]E[Y ],
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Proposition 3.2 gives

p = ΔT  E[ξ] (Cov[P  ,1X  >0]  + E[P ]E[1X  >0])  

=  ΔT  E[ξ] (Cov[P  ,1X  >0]  + E[P ](1− χ))  

=  ΔT  E[ξ]
(︁
σ 𝜚(χ)

√︀
χ(1− χ)  + µ(1− χ)

)︁
,

(3.21) 

where µ and σ denotes the expected power  output  of the renewable  energy technology 

and the volatility  for  the power  output  of one unit  of capacity  installed,  respectively.  

The correlation of  the  power  output  with the power  shortfall  is denoted  by ρ(χ) and  

depends on  the optimal  level  of reliability. Furthermore, we denote  by

α =
p/µ

ΔT  E[ξ]
(3.22) 

the cost  ratio  of the average price of one unit of power  produced by the self-generation 

facility and  the average price associated  with  purchasing  one unit  of power  at  the 

market.  Therefore,  (3.21) gives

α =
σ  𝜚(χ)

µ

√︀
χ(1− χ)  + (1− χ). (3.23) 

In  the absence of uncertain production  volumes,  i.e., σ = 0 or  whenever  the coefficient  

of variation associated with the technology  is  small σ /µ ≪ 1,  the optimal  level  of 

reliability  is  determined by  the cost  ratio χ = 1 − α.  Therefore,  in  a deterministic 

scenario of  the  power  output  and a  stochastic scenario, where power  output  is  weakly 

volatile  such  that σ /µ ≪ 1 holds,  lower  values of the cost  ratio α implies higher  

optimal  levels of reliability. Hence,  a  low  price of the investment good incentivizes  

the energy  manager  to  increase the optimal  level  of investment  in  renewable energy 

technologies.  The energy  manager  decides  to  invest in  RES,  i.e., χ > 0,  whenever  the 

participation  constraint

α  < 1 ⇔ p

µ 

< ΔT  E[ξ] (3.24)  

holds  true.  Hence,  in  order  to  obtain  investment in  RES,  the average costs of one unit  

of power  output  associated  with the RES  has  to  be smaller  than  the expected costs 

for  purchasing one unit  of power  at  the market  over  the expected  useful life time  of

62



the technology.  

The presence of a  volatile  power  output (σ  > 0),  were  the volatility  cannot be 

considered negligible, generally  introduces  a  nonlinear  effect in  the energy  manager’s  

optimal  decision.  However,  the participation  condition obtained  in  the deterministic  

and weakly volatile power  scenarios holds true for  general levels of the volatility σ  > 0.  

To see this,  note that the correlation is bounded from  above by |ρ(χ)|  ≤ 1.  Therefore,  

in  the limit χ → 0,  we have that α = 1.  Since we are interested  in  the participation 

constraint,  where the energy  manager  just  starts to  invest in  RES,  we  consider  the 

level  of reliability  to  be  small.  To  obtain  the asymptotic  behavior  for  small values of
χ,  we  assume  differentiability  and  expand the right  hand side of  (3.23) in  a  Taylor  

series. Therefore,  (3.23)  gives

α =
σ

µ

(︀
ρ(0) + ρ′(0)χ+ o(χ2)

)︀ (︀
χ1/2 + o(χ3/2)

)︀
+ (1− χ)  

=
σ

µ

(︀
ρ(0)χ1/2 + [ρ(0) + ρ′(0)]o(χ3/2)

)︀
+ (1− χ).

(3.25) 

In  the limit χ → 0,  the asymptotic behavior  for  parameter  values µ,  σ, ρ(0) ̸= 0 is 

determined by

α =  1  +
σ

µ  

ρ(0)χ1/2. (3.26) 

Since ρ(χ) denotes the correlation of  the  power  shortfall  and the power  output  for  

a given level  of reliability,  we  expect that the correlation to  be  negative ρ(χ) ≤ 0.  

Therefore,  we have that

χ1/2 =

(︂
µ

σ|ρ(0)|
)︂
(1− α). (3.27) 

Therefore,  also  in  the general  case σ > 0,  the energy manager invests in  RES  whenever  

the right hand side of  this equation is larger  than  zero,  which is the case when

α < 1, (3.28) 

which reproduces the participation constraint  (3.24) obtained in  the deterministic 

and weakly volatile  power  scenario.  Moreover,  (3.27) shows how the optimal  level  of 

reliability  depends  on  the price of the investment  good for small levels of investment,
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Figure  3.3: This  figure  shows the optimal  level  of reliability  as a  function of  the  price 

of  the  investment good p for  a low level  of investment,  i.e.,  when χ is 

small.

i.e., whenever  the level  of reliability  is  small

χ(p) =

(︂
µ

σ|ρ(0)|
)︂2 (︂

1− 2p

µΔT  E[ξ] 

+
p2

(µΔT E[ξ])2

)︂
, (3.29) 

see Fig. 3.3,  which illustrates the quadratic  dependence of  the  level  of reliability  on  

the price of the investment  good  for  low levels of the investment in  the participation  

regime α  < 1.  Therefore,  in  the participation regime α  < 1 the energy  manager  

increases  the optimal  level  of reliability  with decreasing  price of the investment good.

3.3 Computational  experiments

3.3.1  The use case

We demonstrate the  applicability  of the model  in  a  use case,  where the  energy manager  

considers to invest in  wind (i = 1) and solar (i = 2) technology in  the absence of 

a  feed-in tariff. The energy manager  decides  upon  the optimal  level  of investment 

in  renewable energy technologies  and the optimal  generation mix  of technologies.
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Uncertainty  in  the power  available from  both  technologies is  modeled  by  translating  

empirical data on  solar  irradiance and  on  wind speed  via  the physical energy model  

into  supply of power.  We sample  from real world  output  data  of the solar irradiance 

and the wind speed  in  Schwechat,  Austria.12 A  sample to  initialize the data-driven  

optimization  problem  is  generated via  blockbootstrapping  with a block  size of three  

days  to  incorporate short-term  weather  trends  and contains hourly values of wind 

and solar output  power  for  one year  to  incorporate  also  long-term  (seasonal)  weather  

characteristics.  The demand  that has  to  be  supplied  by  the energy park  is  assumed 

to  be  deterministic and constant d = 1M W . The costs of  investment  are specified 

by the prices of the investment goods  per  installed  kW,  where  we consider  two  price 

scenarios based on Carlsson  et  al. (2014): (i)  the high price scenario of  2013,  given 

by p1 =  1400=C/k W for  wind technology and p2 = 1000=C/k W for  solar technology 

and (ii)  the low  price scenario of  2050,  where the price for  wind  technology  is p1 = 

800=C/k W and the price for  solar technology  is p2 = 640=C/k W .13

Moreover,  we investigate  the energy manager’s  investment decision in  two alterna- 

tive frameworks concerning the  type  of the outside  option  to  purchase residual  power  

at  the market.  First, we  consider the  case where the  energy manager  includes a  fixed  

price contract  with  pre-contracted power  price ξ per  purchased  unit  of power  and  in-  

spect how his or  her optimal investment  strategy changes with  increasing price ξ. We 

compare this  deterministic price scenario  with  the  stochastic price scenario,  where ξ

is assumed  to  be random. This  corresponds to purchasing  power  in  case of  a  shortfall  

of  the power  supply at  the spot  market.  In  an  economy  characterized  by a  low  share 

of  renewable energy technologies, RES  availability  risk  is  only  a  minor  contribution 

to spot  price volatility.  In  this  case,  spot  price and  RES  power  output  are assumed 

to  be  uncorrelated, ρ ≈ 0.  Conversely,  in  an  economy characterized  by  higher  shares  

of renewable energy technologies the latter does not  hold  true any  more.  Cumulated 

RES power  output  is  then  a  major  driver of  the spot  market  price.  Hence, whenever  

there is a shortfall in  the  power  supply of the  energy  park,  we expect that spot  prices 

are high.  In  this  case,  the  correlation of the RES  power  output  and  spot  market  price
ρ  < 0 affects the energy manager’s optimal  investment policy.

12source:  www.soda-pro.com (solar  irradiance), www.mesonet.agron.iastate.edu  (wind speed), loca- 

tion:  Schwechat,  Austria,  hourly  data  available from  2012  to  2018  in  the daytime  10:00-18:00.
13Approximated values.
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3.3.2  Numerical  solution  of  the  reliability-based planning  

scenario

The energy manager’s probabilistically constrained optimization  problem14 in  (3.7) is  

solved  numerically  by  the sample average approximation,  introduced  in Sen (1992).  

In  this  data-driven  stochastic  optimization  approach,  the probabilistic constraint  is  

replaced  by  an  empirical  sample of  the  power  output  of size {P(1), . . . ,P(N)}. The 

confidence parameter χ of  the  probabilistic constraint  is  included in  this approach via  

the fraction  of  scenarios violating  demand  coverage.  To indicate the responsive and  

non-responsive scenarios,  we introduce a  binary  variables zi ∈  {0, 1}, i = 1,  . .  . ,  N ,  

one for  each constraint in  the optimization problem. A  constraint  is  discarded  as a  

non-responsive scenario when zi = 1 and  is  included in  the optimization  problem for
zi = 0,  respectively. The cardinality  constraint  ensures, that the proposed level  of 

reliability  is  below  the imposed limit.  The mathematical  formulation  as a  constrained 

mixed-integer  problem is  given  by

min
x1,x2

z1,...,zN

p1x1 + p2x2 s.t.

x1P
(i) 

1 + x2P
(i) 

2 ≥ d(1− zi)

zi ∈  {0, 1},  i = 1,  .  .  . ,  N

N∑︁
i=1

zi ≤ (1− χ) ·N 

x1 ≥ 0,  x2 ≥ 0.

(3.30) 

A plot of the optimal  investment frontier as a  function of the level  of reliability
I(χ)  =

∑︀
pix

−(χ),  where x−(χ) denotes the optimal solution of  (3.30), is  given  in  

Fig. 3.4(a).  Based on  the  efficient  frontier,  the technical  rate of transformation  

between  investment costs and the level  of reliability  can  be derived.  Hence,  we  also  

quantify the additional  costs of  one extra unit of reliability  in  the energy park.

14For  more information  on  the probabilistically  constrained  generation  expansion problem,  see On- 

dra et al. (2021)
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Figure  3.4: Fig.  (a)  shows the energy manager’s optimal  investment frontier  for  dif- 

ferent values of the reliability  parameter.  The costs  of investment  is  given  

in  units of 106=C.  Fig.  (b)  shows a simulation  of the total  costs when the 

expected  costs for  a shortfall  of the power  supply are integrated and  a  

shortfall  in  the power  supply is penalized  with 200=C/M W h.

3.3.3  Numerical  solution  of  the  balancing-cost-based  planning  

approach

In  an  integrated evaluation  of the total  costs  associated  with supplying the  demand,  

the expected costs of  a  power  shortfall  have to  be included. We simulate  the total  

costs C(χ) for  different levels of the level  of reliability  based on  the solution  obtained  

in  the reliability-based planning  scenario  ex-post. The total  costs as  a  function of 

the level  of reliability  are given  in  Fig. 3.4(b). Introducing  a  penalty  on  scenarios  

of a  shortfall  in  the power  supply increases the total costs,  especially when the level  

of reliability  is  low.  For  higher  levels of reliability, there  are only  few scenarios  of 

a shortfall in  the power  supply and hence, the penalty  due to  purchasing  outside 

power  is  also  low,  however,  in  this case the investment  costs are high,  see also  Fig.
3.2.  Overall, at  a  specific level  of reliability  the total  costs attain  a  minimum value.  

Therefore,  the price of balancing  energy  endogenizes  the optimal  choice of the level  

of reliability. Fig. 3.4(b) illustrates the existence of this optimal level  of reliability  

and demonstrates the insufficiency  of the level  of reliability  as a  planning  parameter.
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An  energy  manager  who  additionally includes the expected  costs of a shortfall  in  

the power  supply determines the optimal renewable  energy portfolio by  evaluating  

riskiness of  the  power  supply via  the CVaR  and therefore implicitly  chooses the op- 

timal  level  of reliability. Rockafellar et  al. (2000) show,  that optimization problems  

including the CVaR can  be reformulated  in  terms  of a  linear program  via

min
x1,x2,

z1,...,zN

p1x1 + p2x2 + 

ΔT

N

N∑︁
i=1

zi

zi ≥ ξ(i)(d− x1P
(i) 

1 − x2P
(i) 

2 )

zi ≥ 0, ∀i = 1, . . . , N , 

x1 ≥ 0, x2 ≥ 0.

(3.31) 

The optimal  solution to  the optimization  problem  (3.31)  is  denoted  by x+ and  consti- 

tutes a portfolio  which  exhibits the property, that the probability  to  cover  the demand  

is χ∗,  i.e., VaRχ∗(X(x+))  =  0 holds  true.  

In  the optimization  approach  corresponding  to  the empirical  scenario approach,  

the participation constraint  introduced  in  the one asset  scenario can  be  made explicit  

for  an  arbitrary number  of  technologies considered,  where in  the use case n = 2 is  

considered.  Therefore,  we define the function

g(x1,  x2) = p1x1 + p2x2 + 

ΔT

N

N∑︁
i=1

ξ(i)(d− x1P
(i) 

1 − x2P
(i) 

2 ). (3.32) 

The energy manager  invests  in  RES,  whenever ∇g(0, 0) < 0,  i.e.,  whenever

pi − ΔT

N

N∑︁
j=1

ξ(j)P
(j)
i < 0

pi −ΔT E[ξ  Pi] < 0

pi/µi

ΔT  E[ξ]
< 1, ∀i,

(3.33) 

where in  the last line we consider the case where ξ is  uncorrelated  with RES  power  

output.  Note,  that in  this  case each technology i introduces  a  technology specific 

participation  constraint αi < 1 referring  to  an  investment in  the i-th technology,  where
αi = piµi/(ΔT E[ξ]). In  the one-asset scenario,  this  reproduces the participation
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constraint  (3.24).  In  the following, we discuss two  different  types  of  the  outside 

options  in  case of  a  shortfall  in  the power  supply, i.e.,  (i)  purchasing power  via  pre-  

contracted  energy  at  a  deterministic  energy price and  (ii)  purchasing  power  at  the 

balancing market  at  a  stochastic  energy  price.

Investment  and  pre-contracted  energy

The fixed-price scenario corresponds to a  deterministic  penalty  in  the stochastic  loss  

function (3.14).  The only  source of  uncertainty  in  this  investment  scenario is intro- 

duced  by the uncertain  production volumes associated with  the  power  output  from 

renewable energy technologies. 

In  the  absence of  investment  in  RES,  the loss function is  deterministic due to  the 

constant demand.  This corresponds to a  scenario,  where the  energy  manager decides  

not  to  invest in  RES,  i.e., χ = 0,  but  purchases total  power  to  cover  the demand  via  

pre-contracted energy. This  constitutes  total  costs  of C(ξ) = ΔT  ξ  d.  In  this  case, 

total  costs increase linearly with the  energy price and  the option to  consume total  

power  to  cover  the demand  at  the market  introduces an  upper  bound of the total  

costs, i.e., investing in  RES  comes as  opportunity  costs. 

The total  costs  in  an  integrated  evaluation of the energy  park are given  in  Fig.
3.5(a)  for  both  price scenarios of  the investment goods. We observe that the energy 

manager  does not invest in  capital intensive renewable self-generation facilities until  

the pre-contracted energy  price ξ exceeds a threshold  price ξ∗.  This threshold price  

illustrates  an  investment barrier,  which reflects upon  the energy manager’s willingness 

to invest in  RES  and  is  lower,  the lower  the associated prices of the investment  goods.  

More specifically, the participation  constraint  can  be  used  to  illustrate the existence 

of  the threshold  price below  which the  energy  manager  refuses  to  invest in  RES.  To 

see this, note that (3.33)  gives

ξ∗ = min  

1

ΔT

{︂
p1
µ1

,  

p2
µ2

}︂
, (3.34) 

which is ξ∗high ≈ 41=C/M W  h in  the high  price scenario and ξ∗low ≈ 23=C/M W h in  the 

low  price scenario of  the investment goods.  Therefore,  lower  prices of the investment 

goods  create an  incentive for  the energy manager  to  invest in  RES.  The optimally  

installed capacities  in  wind and  solar  technology  induce  the ex-post  portfolio  shares
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Figure  3.5: Fig.  (a)  shows the total  costs  of the energy  park for  the two price sce- 

narios  of the renewable  technology  investment goods (solid  line: low-price 

reference case 2013,  dashed line:  high-price price scenario  of 2050).  The 

values are given  in  units  of 106=C.  Fig.  (b)  shows the portfolio  shares in  

the reliability-based planning  approach  and  Fig.  (c) shows the portfolio  

shares  in  the cost-based  planning  approach.  Both figures illustrate  the op- 

timal portfolio  shares in  the scenario  of  the  low  prices of the investment 

goods.
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αi,  which are defined by the share  of  the  investment in  RES  in  the i-th  technology

αi =
xipi

x1p1 + x2p2
. (3.35) 

The energy manager  chooses optimally  installed  capacities  according to  the different  

planning  mechanisms, i.e.,  the reliability-based  planning  approach,  where an  exoge- 

nous level  of reliability  is  imposed  and  the balancing-cost-based  approach,  where 

the level  of reliability  is  endogenized  via  an  exogenous energy price.  Therefore,  the  

portfolio  shares  associated with  the  planning approaches are different.  The portfolio  

shares  obtained  in  the reliability-based planning approach  are given  in  Fig. 3.5(b)  

and  Fig. 3.5(c)  shows the  portfolio  shares obtained  in  the balancing-cost-based ap- 

proach.  Both  plots show the  optimal  renewable  energy portfolio  as a  function of  the 

level  of reliability.  In  the  reliability-based planning  approach,  the energy manager  

opts for  a technology  portfolio,  where investment  in  wind technology is  dominant.  

However,  the optimal  share in  wind technology  decreases as the required level  of re- 

liability  increases.  This is due to the  fact  that investment in  wind technology comes  

along with increased tail  risk in  the distribution  of the power  shortfall.  Therefore,  

with higher levels of reliability,  the energy  manager  opts for  a technology  portfolio  

which prefers solar technology  over  wind  technology in  order  to  avoid  the tail  risk.  

In  the  cost-based-planning approach  Fig. 3.5(c)  the level  of reliability  is  endogenized  

by the energy price ξ, where  the  optimal  level  of reliability χ → 1,  whenever  the  

energy price ξ → ∞. Compared  to the  reliability-based  planning  approach,  the en- 

ergy manager  increases  the share  in  solar  technology  at  a  lower  level  of the reliability. 

Therefore,  imposing a  required level  of reliability  in  the reliability-based  planning  

approach  overestimates the technology  share in  wind technology and underestimates  

the technology  share in  solar  technology,  especially for  lower  levels of reliability.  In  

the  limit  of high  levels of the reliability χ → 1,  both  approaches  avoid  the tail risk 

introduced  by  wind  technology  such  that there is no  shortfall  in  the  power  supply 

and the total  costs in  the  balancing-cost-based  planning  approach  are given  by  the 

capital expenditures. Therefore,  in  the  limit  of high  levels of reliability,  the different 

planning  approaches yield the same generation mix.  In  the  reliability-based planning  

approach  (Fig. 3.5(b)), the tail  risk introduced  by  wind  technology is  not  in  the scope 

of  the probabilistic  constraint and  therefore investment  is  only  obtained  in  the tech-  

nology  which is more profitable  in  terms of the unit  costs per  average power  output,
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which is wind  technology.  Similarly,  in  the balancing-cost-based  planning approach  

(Fig. 3.5(c))  the participation  constraint  (3.33)  shows that below  a  critical threshold  

price the less profitable technology,  i.e.,  the technology with  higher  costs per  power  

output  is  excluded from  the optimal  renewable energy portfolio. However,  in  the 

transition  region  where χ → 0 the energy  manager  obtains noticeable  different en- 

ergy portfolios for  the different  planning  mechanisms.  Whereas in  the reliability-based  

planning  approach  (Fig. 3.5(b)),  the energy manager  obtains single energy invest- 

ment  in  wind technology for  lower  levels of the reliability,  an  energy  manager  following 

the balancing-cost-based approach  (Fig. 3.5(c))  considers expected  payments in  the 

scenario of  a  shortfall  of  the  power  supply and  opts  for a more diversified energy 

portfolio.  

The renewable energy  portfolio  defines the energy  park’s optimal  level  of reliability
χ,  i.e.,  the probability  that the energy  park  supplies the demand.  We evaluate the 

optimal  level  of reliability  ex-post, by  estimating  the energy park’s capability to  

supply the demand  based  on  resampled  scenarios. The empirical  level  of reliability  is  

then given  by

χ̂(x)  = 

1

N ′

N ′∑︁
i=1

1{x′P(i)≥d} (3.36) 

and is  illustrated  in  Fig. 3.6 as a  function  of the exogenous energy price ξ for  the 

solution obtained in  the balancing-cost-based  planning approach.  Obviously,  with  

increasing prices of the balancing  energy  the energy  manager  increases installed ca- 

pacities in  the renewable energy technologies and  therefore increases the optimal  level  

of reliability.

Investment and volatile  energy balancing  prices

Next,  we  consider the case where the energy  manager  faces  the decision to  invest in  

RES and  to  purchase power  at  the spot  market.  In  this  setting, the energy  price ξ in  

the loss function  (3.14)  is  assumed to  be  stochastic. Therefore,  the energy manager  

considers two potential  sources of  uncertainty  in  the investment decision which enables 

the possibility  of exceptionally high losses.  First, investment in  renewable technologies 

introduces RES  availability  risk and  therefore also  the risk of a  shortfall  in  the power  

supply. Second,  spot  price at  the  balancing  market  is  also  volatile. The energy
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Figure  3.6: This figure shows the ex-post  reliability  level  for  the two different scenarios 

associated  with  the prices of  the investment goods.

manager’s problem  is  therefore to  simultaneously  balance these risks  and  to  find  

the optimal  investment policy  in  renewable energy  technologies.  We investigate  two 

correlation  scenarios in  which the energy manager  has  to  determine  the optimal  level  

of investment.  In  the first case, spot  price and  RES  power  output  are assumed 

to  be independent  and  thus also  uncorrelated,  i.e., ρ = 0.  To  analyze  the energy 

manager’s investment decision,  spot  market  price is  simulated via  a  truncated  normal  

distribution15 with mean µ′ and volatility σ′.16 In  the second  case, spot  price and 

cumulated RES  power  output  per  installed capacity is  assumed  to  be correlated  with  

correlation  parameter ρ < 0,  i.e., whenever  the cumulated  RES  power  output  is  low,  

spot  prices tend  to  be  higher.17 Since the demand  is  assumed  to  be  constant in  the 

use case, the negative correlation parameter −ρ agrees with the correlation  of the 

power  shortfall  and  the energy  price,  i.e.,  whenever  there is  a shortfall  in  the power  

supply, the price of balancing energy is  high.

15We do  not consider  the possibility  of  negative  prices  and left-truncate  the distribution  at  zero.
16In  this  framework,  the volatility  measures  the uncertainty  associated with  the energy  price at  the 

spot  market.
17The construction  of  the correlated spot  market  price is illustrated in  the appendix 3.5.4.
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Figure  3.7: The investment costs  as  a  function  of spot  price volatility  in  the low  invest- 

ment  price case for µ′ = 30=C/M W h.  Fig.  (a)  shows the results  in  the high  

price scenario of  the  investment  goods  and Fig.  (b)  shows the scenarios  

in  the low  price scenario  of  the  investment  goods.  The computational  ex-  

periments are carried  out for  values σ′/µ′ = {0, 0.01, 0.05, 0.1, 0.5, 1, 2, 3}.  

The black  line  denotes the total  investment costs, the red  line corresponds 

to  the partial  investment costs in  solar technology  and  the blue line  cor- 

responds  to  the partial  investment costs in  wind  technology.  All  values 

are the mean values of the  100  optimization  runs.

Case  1: Uncorrelated  spot  market price. The plot of the energy manager’s 

optimal  investment decision as a  function  of spot  price volatility  is  given  in  Fig.
3.7(a)  and  (b), for  both  price scenarios of  the investment  goods.  The case σ = 0

corresponds to the  deterministic energy price scenario with  the  energy price ξ = µ

and has  been  discussed  in  the previous case. We find,  that with increasing  spot  price 

volatility σ  > 0,  the energy manager  increases investment in  RES  to  hedge against  the 

spot  price risk at the  electricity market.  Due to  the occurrence of multiple sources of  

uncertainty,  the energy  manager  is  sensitive to  an increase in  the spot  price volatility  

and increases investment in  RES  with  increasing price risk.  

In  the  high  price scenario of  the investment  goods  (see Fig. 3.7(a)) we obtain a  

threshold value  for the  spot  price volatility  below  which  no  investment in  RES  is  

obtained,  similar to  the threshold  energy price ξ∗. Note that in  this  scenario,  the  

mean value  of the energy price is µ′ = 30=C/M W h.  Compared  to  the situation of  a
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Figure  3.8: This  Figure  shows the energy  manager’s optimal  investment  decision  in  

RES,  when  the energy price at  the balancing market  is  correlated  with  the 

cumulated RES  power  output.  Both plots represent  the situation  of  the  

high price scenario of  the  investment goods.  Fig.  (a) shows the optimal  

level  of investment,  when  the mean  energy price is µ′ = 40=C/M W h and  

spot  price risk is σ′ = 40=C/M W h.  Fig. (b)  shows the optimal  level  of 

investment for µ′ = 100=C/M W h and  a  spot  price risk of σ′ = 40=C/M W h.

deterministic  energy  price of ξ = 30=C/M W h,  where the  energy  manager does not 

invest  in  RES  (see Fig. 3.5(a)),  the energy manager  now  has  to  additionally  consider 

the  aspect  of  a  risky energy  price.  We obtain  that whenever  spot  price risk exceeds 

a certain threshold,  also  in  this scenario  the  energy manager  invests in  renewable 

energy technologies.  Fig. 3.7(b) shows the  capital  expenditures in  the  scenario  of low  

prices of the investment goods.

Scenario  2: Correlated spot  market price. Let us now  consider  a scenario,  

where  the energy  price is  negatively  correlated with RES  power  output.  In  this  case 

one intuitively expects increased  investment  in  RES  in  order  to  avoid  scenarios of  a  

power  shortfall  where balancing energy has to  be  purchased  in  case of  a  power  shortfall  

compared to the  benchmark  case of  an  uncorrelated energy price.  This corresponds 

to using RES  investment  as an  insurance against  shortfall scenarios  of high balancing  

prices. However,  analyzing the optimal  investment decision  with respect  to different 

levels of the correlation,  we find that  the optimal  investment decision  in  response  to  

increasing  magnitude of the correlation  depends on  the price of balancing  energy  (and
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therefore on  the optimal  level  of investment  in  the benchmark  scenario ρ = 0) and  

can  be  either  to  increase or to  decrease the level  of investment in  RES.  

In  case the initial level  of investment at ρ = 0 is  low,  i.e.,  the expected price of  

balancing energy  is  low,  increasing  the  level  of investment  with decreasing levels of 

correlation  turns out  to  be  not the optimal  investment decision.  This is due to  the  

fact, that the energy  manager prevents  himself or  herself from purchasing balancing  

power  at  low  costs.  Instead of  purchasing  cheap  balancing power,  the energy manager  

covers the demand  via additionally installed  capacities.  Overall,  this  corresponds to  

an  increase in  the total  costs and  therefore it  is  not  optimal  to  increase investment in  

renewable energy technologies with  decreasing  correlation.  This can  be seen  in  Fig.
3.8(a),  where  the  optimal  level  of investment as  a  function of the correlation for  the  

mean  price of balancing energy µ′ = 40=C/M W h,  referring to  an  initially  low  level  

of investment,  is plotted.  Hence,  in  order  to  minimize the total  costs, the  energy 

manager  decreases the  optimal  level  of investment in  RES with  decreasing  levels of 

the correlation.  

At a  higher  initial  level  of investment we observe the opposite  investment policy.  

In  Fig. 3.8(b)  the optimal  level  of investment as  a  function  of  the correlation  for  

the  mean price of balancing energy µ′ = 100=C/M W h is  plotted.  In  this  case,  the  

energy manager increases  investment in  RES  with  decreasing  level  of the correlation 

to reduce scenarios where the  energy park  does not  cover  the demand  and  expensive 

power  has  to  be  purchased  at  the market.  Therefore,  in  this  scenario we observe the  

insurance effect of  RES  investment in  order  to  avoid  scenarios of  expensive balancing  

power.

3.4  Conclusion

In  this  paper  we  analyze the energy manager’s investment decision in  renewable energy 

technologies,  characterized by  uncertain  production volumes.  The energy manager  

aims at  minimizing  the costs to cover  the firm’s  electricity demand.  In  this  framework,  

the  stochastic  production volumes  associated with renewable energy technologies in-  

troduces  uncertainty and  thus also  risk in  the investment decision. In  the  reliability-  

based  planning  approach  to  the investment problem,  the energy manager  imposes a  

threshold reliability  level  with which the supply-demand  constraint  has  to  hold  true.  

However,  an  energy  manager  who imposes the reliability-based planning  approach
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constitutes suboptimal  renewable energy portfolios,  since the expected  costs  of short-  

fall  in  the power  supply are not included.  Therefore,  prescribing a level  of reliability  is  

an  insufficient planing  parameter.  We extend  this  approach  by  penalizing  the power  

shortfall in  the worst  case scenarios,  which are not in  the scope of the probabilistic 

constraint.  Increasing  investment in  volatile renewable self-generation  facilities re- 

duces expected  additional  expenses  of purchasing power  at  the balancing  market  and  

therefore increases the energy park’s level  of reliability.  However,  costs that emerge 

from a high level  of reliability  can  be economically  infeasible  and come as idle costs. 

By  considering  the expected  costs of a shortfall  in  the power  supply over  the expected  

lifetime of the energy park, the energy manager  evaluates  both  (i)  investment costs 

and (ii)  costs  for  making  use of an  outside option in  case of  a  shortfall  in  the power  

supply. Hence,  in  this  balancing-cost-based  approach,  where the expected costs  of  

constraint  violation  are included,  the level  of reliability  is  endogenized.  Therefore,  

the price of  the balancing energy, which  acts as a  penalty  per  unit of demand coverage 

violation  is  an  adequate  planning  parameter. Penalizing  the power  shortfall  from the  

energy park  corresponds to  the situation,  where the  energy  manager  a-priori  includes 

the possibility  to  purchase power  at  the electricity wholesale market.  We compare 

two  different scenarios concerning the  type of the outside option in  case of  a  shortfall  

in  the  power  supply. Within the scope of  the model,  the energy manager  has  the 

option  to  purchase residual  power  to  cover  the demand either  via  (i)  pre-contracted  

power  at  a  fixed price or  (ii)  at  the spot  market  with a volatile  spot  market  price.  

The application of the model  to  a  use case without  a feed-in tariff shows,  that 

in  the case of  a  fixed price contract the  energy manager  is  reluctant  to  invest in  

RES whenever  the  pre-contracted  energy price is below  a  critical threshold. This  

critical threshold price depends  on  the prices of the RES  investment goods  and is  

decreasing  with decreasing  prices  of the investment goods.  Moreover,  we also  compare 

the  technology portfolio  in  the reliability-based planning  approach  to  the balancing- 

cost-based planning  approach.  The application  to  the use case shows,  that the  energy 

manager  overestimates  the technology  share  in  wind  technology  for  lower  levels of 

reliability  in  the reliability-based  planning  approach  compared  to  the balancing-cost-  

based  planning  approach.  

In  the  second  case, where the  energy manager  has the option  to  purchase power  

at  the balancing  market,  volatile  spot  market  prices introduces another  source  of  

uncertainty in  the investment  decision.  Whenever  the spot  price is  assumed to  be
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uncorrelated  with the power  output  from renewable energy  technologies, we find that 

the energy manager is  sensitive to  spot  price volatility  and  increases investment in  

renewable energy technologies to  hedge against  spot  price uncertainty.  In  real life  

applications,  we  expect the spot  market  price to  be negatively  correlated  (correlation  

parameter ρ) with RES  power  output,  i.e.,  in  scenarios where the RES  power  output  

is  low,  energy prices  tend  to  be high  or  equivalently  in  scenarios of a shortfall in  the 

power  supply, spot  prices tend to  be  high.  In  the presence of such a correlation struc- 

ture, ρ < 0,  we observe that the energy  manager’s investment decision  in  increasing 

or  decreasing  the optimal  level  of investment with respect  to  the benchmark  case of 

an  uncorrelated  energy  price ρ = 0 in  response to  a  stronger correlation, depends 

on  the initial  level  of investment in  the benchmark  scenario.  Whenever  the initial  

investment at ρ = 0 is  low,  the energy  manager  decreases the optimal level  of in-  

vestment.  Conversely, for  higher  levels of investment with  respect  to  the benchmark  

scenario ρ = 0,  the energy  manager  increases installed  capacities to  reduce scenarios  

of a  power  shortfall,  which corresponds to  an  insurance effect.
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Figure  3.9: This  figure  demonstrates the quasi-concavity  of the distribution  function  

in  an  example.

3.5 Appendix

3.5.1  A:  Quasi-concavity  of  the  empirical  distribution  function

Let  us now  discuss the economic  intuition behind the assumption of the distribution  

function of  the  power  shortfall  as  a  function  of the renewable energy portfolio θ(x) to  

be quasi-concave.  Formally  this  condition can  be  written  for  two  renewable  energy 

portfolios x1 and x2,  as

θ(φx1 + (1− φ)x2) ≥ min{θ(x1); θ(x2)}, (A1) 

with φ ∈ [0, 1]. Since θ(x) is  the  level  of reliability  that can  be obtained with  the 

renewable energy portfolio x,  imposing  this  condition implies that  diversifying  the 

portfolio  (with  weights φ and 1−φ)  increases the reliability compared  to  the minimum  

level  of reliability  of the two portfolios.  This  also  implies  that there is  a  diversification 

effect between  wind and solar technology at work.  Consider  for  example the case 

where x1 is  the single energy portfolio  consisting only  of wind  technology and x2 is  

the single energy  portfolio  consisting only  of solar technology.  Then,  according to 

(A1) mixing  these  technologies  refers  to  higher  levels of reliability  than  the inferior  

single energy investment.  In  order  to  check if this  assumption  is  compatible  with  the  

empirical  wind and  solar  data  we demonstrate this  condition graphically  for  a fixed
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amount  of total  installed capacities. Fig. 3.9 shows a plot that demonstrates this 

property  in  an  example.  To ensure  convexity of  the optimization  problem, one has  

to  check this  condition for  each level  of totally  installed  capacities along  the  efficient 

frontier.

3.5.2  B:  Proof  of  Proposition 3.1

Proof. We denote by θ(x)  = Pr{X(x) ≤ 0} the demand  coverage probability  of the re- 

newable energy portfolio x.  Therefore,  for  the optimal  portfolio θ(x)  = VaR−1
χ (X(x))

holds  true.  The Lagrangian  associated  with the  probabilistically  constrained least 

cost  generation expansion  problem  is  given  by

L(x,  λ)  =
n∑︁

i=1

pixi − λ(θ(x)− χ). (B1) 

The stationary condition for  each of  the n commodities to  be  optimal  is  given  by
∂L/∂  xi = ∂L/∂  λ =  0,  for all  technologies i = 1,  . . . , n. Hence the energy manager  

chooses the  technology  portfolio  for  which

pi = λ 

∂ θ

∂ xi

(B2) 

holds true.  This equation  also  gives  an  interpretation of the Lagrange multiplier

λ =

(︂
∂ θ

∂(pixi)

)︂−1

(B3)  

as the inverse ratio  of the marginal  contribution to  the demand  coverage probability  

per  monetary  unit invested  in  the i-th technology.  However,  from  (B2) we  obtain,  

that for  all  technologies i = 1,  .  . .  , n 

pi

(︂
∂ θ

∂  xi

)︂−1

= const (B4) 

has  to  hold  true.  By  using

∂ θ

∂ xi

= 

1
∂VaRχ

∂  xi

=

(︂
∂VaRχ

∂  xi

)︂−1

, (B5)  

we have that

pi
∂VaRχ

∂  xi

=  const (B6)
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and that the shadow  price is  given  by

λ = pi
∂VaRχ

∂  xi

. (B7)

3.5.3  C: Proof  of  Proposition 3.2

Proof. The energy manager  determines the optimal  portfolio  by  solving the optimiza-  

tion problem.  The FOCs are given  by

0  = pi +  ΔT  E[ξ]
∂

∂  xi

(1− χ)CVaRχ(X(x))  

= pi −ΔT  E[ξ](1− χ)E[Pi|X(x) > 0],

(C1) 

where  the last  equation follows from Tasche (2001).  Since the conditional expectation 

can  be  rewritten  in  terms of the probability  of a  power  shortfall

E[Pi|X(x) > 0]  =
E[Pi1X >0]

1− χ 

, (C2) 

the FOCs are given  by

pi =  ΔT  E[ξ]E[Pi1X  >0]. (C3)  

The optimal  level  of reliability, such  that the total  costs associated  with  the tech-  

nology  portfolio x+(χ) are minimized  is  given  by dC
dχ

=  0.  The Envelope theorem  

characterizes the costs of  an  additional  unit of reliability

dC

dχ
=

∂  C̃

∂  χ

⃒⃒⃒⃒
x=x+

= ΔT E[ξ]
∂

∂  χ
(1− χ)CVaRχ(X(x+)),

(C4) 

where C̃ denotes  the objective function.  By  the integral  representation  of the CVaR

CVaRχ = 

1

1− χ

∫︁ 1

χ

VaRβdβ , (C5)  

we have that

∂

∂ χ
(1− χ)CVaRχ(X(x+))  = −VaRχ (C6)
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holds  true.  Hence,  the marginal  cost  of reliability  is

dC

dχ
= −ΔT E[ξ]VaRχ(X(x+)). (C7) 

A  necessary  condition for  the optimal  reliability  level  is  that the marginal  costs for  

an  addition  unit  of reliability  is  zero,  which  is  equivalent to

VaRχ∗(X(x+))  =  0. (C8)

3.5.4  D:  Simulation  of  correlated  spot prices

We simulate  spot  market  price via a  left  truncated  normal  distribution  with µ = 

30=C/M W h and  spot  price volatility  is  indicated by σ.  The left-truncation  parameter 

is  set to a = 0,  i.e. we  consider only positive spot  market  prices.  We generate  

correlated  samples (with  correlation ρ) of  spot  market  price and RES  power  output18
by introducing  the systematic risk component  in  the energy market 𝜖t ∼ N (0,  σ2

𝜖 ). 

In  order  to  generate a  sequence of  uniformly  distributed  observations of RES  power  

output  we transform  the empirical  data  of the cumulated RES  power  output P
(i)
t

using  the standard Gaussian  cdf via P̂
(i)

t = Φ(P
(i)
t ).  This  sample  is an  observation  of 

a  uniformly  distributed random  variable  on  the set [0, 1] and  thus  has  mean µP = 1/2
and standard deviation σP = 1/

√
12. We construct  a corresponding, i.e. correlated  

sequence  of  uniformly distributed observations of spot  prices via  the transformation

ξ̂t = α + ρP̂ t + 𝜖t. (D1)  

The parameter ρ induces  correlation  of  spot  market  price and RES  power  output

Corr(ξ̂t, P̂ t) = 

Cov(ξ̂t,  P̂ t)

σξσP

=  

Cov(α + ρP̂ t + 𝜖t, P̂ t)

σξσP

=
ρ2σ2

P

ρσ2
P

= ρ.

(D2)  

Furthermore, we impose  that the mean  and the variance of both  samples are the same, 

i.e. that the price characteristics follows the characteristics  from the cumulated  power

18we  consider  the random  variable of  the cumulated  RES power  output.
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distribution.

E[ξ̂t] = E[P̂ t] (D3)

Var[ξ̂t]  =  Var[P̂ t]. (D4) 

The first equation (D3)  imposes a condition on  the parameter α via

α = µP (1− ρ) 

= 

1

2
(1− ρ)

(D5)  

and the second  equation  (D4) reflects  the influence of the correlation  on  the  systematic 

risk

σ𝜖 = σP

√︀
1− ρ2

σ𝜖 = 

1√
12

√︀
1− ρ2.

(D6)  

Given  these  parameter choices,  the re-transformed values ξ(i)t = F−1(ξ̂
(i)

t ),  where F−1

is  the quantile  of the truncated normal  distribution,  constitutes  a  sample  of spot  

prices which are correlated with  the observed  empirical data of RES  power  output  

with correlation ρ. In  case of ξ̂
(i)

t ≥ 1 or ξ̂
(i)

t < 0,  we repeat  the procedure.
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4  Strategic  capacity  choice  in  

renewable  energy  technologies  

under  uncertainty 1

Abstract. In  this  paper  we discuss  optimal  renewable energy investment (in wind  

and solar  technology)  under uncertainty  in  a  real options approach  framework.  We 

consider the combined impact  of uncertain  production  volumes  associated with  renew- 

able energy power  output,  policy  uncertainty  via  uncertain  remuneration of surplus 

power  and  stochastic technological  learning,  which  –  in  expectation – decreases  future  

costs of solar technology.  An  energy manager  who determines the optimal  dynamic  

investment strategy aims at  minimizing  expected power  procurement  costs, which  

consist  of investment costs  in  renewable energy  technologies,  expected  shortfall  costs 

and expected  benefits from  selling surplus power  to  the grid.  This  results  in  nonlinear 

costs of power  procurement  and introduces  –  similar to  classical portfolio  theory  –  

a  diversification  effect between wind  and solar  technology.  Concerning the optimal 

timing  of the investment,  we show that a  staged investment strategy  can  reduce ex-  

pected power  procurement  costs compared  to  a  lumpy  investment strategy.  Therefore,  

if  technological  innovations in  solar technology  are expected, an  early investment  in  

wind technology and  keeping the option to  expand  the energy park can  be  the optimal  

strategic renewable portfolio  choice.
Keywords: Feed-in tariff; Renewable energy policy;  Renewable energy  investment 

under uncertainty

1Joint  work  together  with Thomas Dangl, Vienna  University  of  Technology,  Institute  of  Manage- 

ment Science,  Theresianumgasse  27,  1040 Vienna.  The full  paper  (Ondra  and Dangl, 2021b)  was 

presented at  the IEWT 2021.
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4.1  Introduction

Nowadays  energy managers of industrial firms are facing investment decision  in  power  

generation facilities in  a risky  environment,  where multiple  potential sources of  uncer-  

tainty  arise.  On  the one hand  renewable energy  sources (RES)  are more sustainable 

investment choices from  an  environmental  point  of view.  On  the other  hand they  are 

capital intensive and exposed to  uncertain production  volumes,  a  fact  that increases 

the shortfall risk in  the power  supply. Therefore,  in  order  to  overcome the investment 

burden in  RES,  remuneration  policies  that promote environmentally friendly  power  

technologies are put  into  place.  However,  the  level  of  the remuneration  is  uncer-  

tain and  is  expected to  decrease in  the future.  Therefore,  besides  facing  uncertain  

production  volumes,  the energy manager  is  also  exposed to policy  uncertainty.  In  a 

competitive environment  technology  manufacturers of RES  decrease the prices of the 

investment goods  by  active research  and  development.  These technological  innova-  

tion shocks  occur randomly  over  time  and  thus the prices of the investment goods 

are also  considered  as  uncertain.  This illustrates  that the energy manager  is  exposed 

to various sources of  uncertainties which increases the  complexity  of the investment 

decision. 

The scope of  the paper  is  to  consider an  investment  project  in  RES  (wind  and  solar 

technology),  where the  timing  of  the investment  decision  is not exogenously fixed but 

can  be chosen by the energy manager.  In  such  a dynamic optimization framework the  

opportunity  to  postpone the  investment  decision  to  acquire knowledge  over  time and  

perform better-informed  investment decisions  at  some time in  the future is explicitly 

included  in  the model.  We analyze the optimal  investment decision in  RES  in  a  real 

options  framework,  where uncertainty  associated with the  investment  opportunity  in  

RES not  only  arises due to stochastic  production  volumes of RES,  but  also  due to  

policy  risk (uncertain remuneration of  surplus energy  that  can be delivered to  the 

grid)  and investment price risk (uncertain prices  of the investment goods).  Since all  

of  these uncertain parameters potentially  affect  the optimal  investment decision,  we 

analyze  their  combined  impact.2

2Policy  risk  arises  due  to  the uncertain  remuneration policy  of  surplus power,  where the level of  

the FIT is assumed to  be  subject  to  multiplicative  geometric Brownian  shocks  and is expected to  

decrease  over  time. Investment price risk  is due  to  stochastic technological  learning  and diffusion  

which decreases the prices  of  the investment goods.  Therefore,  the prices  of  the investment  goods  

are assumed to  be  subject  to  exogenous technological  innovation shocks.
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The bulk  of  the  real  options  literature focuses on  optimal  timing of the investment 

(Dixit  and Pindyck, 1994; Trigeorgis  et  al., 1996).  A  general  result  of applications  of 

real options theory  to  investment models is  that the option  to  defer  the investment 

decision  to later  periods introduces managerial  flexibility,  which constitutes poten- 

tially  significant  economic  value  –  the value  of the real option.  Investment,  i.e., the  

exercise of  the  real  option,  is  inevitably  associated with  a loss  in  flexibility  and  hence 

the value  of the real option has to  be considered  in  the  investment decision. On  the  

one hand,  by  investing  a large amount  in  RES  the firm takes the risk that if  ex-post  

a significant innovation occurs, deferring  the investment  would  have yielded  higher  

profits or  lower  costs. On  the other  hand,  postponing the investment decision  to  later  

periods not  only  waives potential  cashflows but waiting  for  technological  innovations 

bears  the risk of a  decreased remuneration policy  which  reduces expected benefits 

from selling surplus power.  Therefore,  in  this  setup the two sources of  uncertainty 

drive the timing  of the investment  towards  opposite  directions,  i.e.,  a  high subsidy 

retraction  rate implies that  immediate investment is beneficial,  whereas uncertain  

investment prices  imply  that the investment should be postponed  to  later  periods.
Balcer and  Lippman (1984) analyze the optimal  timing problem associated  with  

adopting  a  new technology  when  innovations are uncertain and  show that the  current 

best practice technology  will be adopted if  the technological lag  exceeds a certain  

threshold. Grenadier  and Weiss (1997) consider an  option  pricing model  to  evaluate 

technological innovations,  which are assumed to  be  stochastic  in  their  arrival times  as 

well  as their  profitability  and  show that depending  on  the structure of  the innovations 

the firm  might  adopt  the initial  technology,  even  if potentially  more valuable  innova-  

tions  might  occur in  the  future.3 (Sendstad and Chronopoulos, 2020) emphasizes  that 

many  studies ignore technological  uncertainty.  In  their paper  the authors compare 

different  investment strategies under policy  and  technological  uncertainty.  The au- 

thors  demonstrate that “[. . . ]  the  option to  invest  sequentially  in  improved  technology  

raises  the  value  of  the  investment  opportunity” (Sendstad  and Chronopoulos, 2020).
Boomsma et  al. (2012)  analyze different support  schemes associated with renewable 

energy output and demonstrate in  a use case,  that feed-in  tariffs encourage earlier 

investment. Ritzenhofen and  Spinler (2016) show that under market-independent,  

fixed and  sufficiently attractive FIT schemes  investment  projects in  RES  can  be  con-

3This is also  due  to  benefits  from learning  and the resulting  easy  adaption  to  technologies  arising  

in  the future,  which makes them  better  able to  benefit from future innovations.
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sidered as “now-or-never”  decisions. Nagy et  al. (2021) analyze  the effect of subsidy 

withdrawal  on  the optimal  investment decision  under demand uncertainty  and show 

that increasing  probability of subsidy withdrawal accelerates the investment,  however,  

at  a  smaller size. Dalby et  al. (2018) propose  a  real options model  that  incorporates 

Bayesian  learning, through which  the investor updates  his or  her subjective beliefs 

on  subsidy retraction.  The authors  demonstrate that “[. . . ]  investors are  less  likely  

to  invest  when  the  arrival  rate  of  a  policy  change  increases” (Dalby  et  al., 2018). 

In  our  investment  model, the optimal  renewable energy  portfolio  choice,  as well  as 

the optimal  timing of the investment have to  be  determined simultaneously.  In  several  

applications  of standard real options theory  the investment opportunity  is  assumed 

to  be of a  given  size. Dangl (1999) was among the first to  consider optimal  timing 

and optimal  capacity  choice in  a monopolistic setup simultaneously  and  shows that 

with increasing uncertainty  the investment  decision  occurs later  in  a  higher capacity,  

which highlights  the effect of  uncertainty  in  the investment  decision. Huisman  and  

Kort (2015) extend this  approach  by  considering a duopoly  setting  and  found that 

under an  entry deterrence  policy  the first investor overinvests  in  capacity  and that 

the entrant invests in  less capacity.  

Generally, the energy  manager  of a  firm  has  available  a  bundle  of different  invest-  

ment  opportunities in  renewable energy technologies (we focus on  wind  and  solar 

technology). Dixit (1993) evaluates investment opportunities  in  a  general  setting un- 

der  output  price uncertainty,  when  a menu  of different projects exist. He  argues, 

that each project  should be  evaluated separately,  and  that the optimal  solution is  

the one with the  highest option value,  see also Décamps et  al. (2006).  Therefore,  

the analysis in Dixit (1993)  can be  considered as  the multi-project  extension of  the 

single project  case  discussed in McDonald and Siegel (1986). In  our  paper  –  where 

the  energy  manager  faces  the  opportunity  to  invest in  wind and  solar  technology –  

we adopt  a  different  view and do  not  consider  the  investment  opportunity  in  different 

renewable energy technologies as mutually exclusive,  but  highlight  the diversification 

effect arising  from investment in  a mix  of different generation technologies.  

This portfolio  diversification  effect is due to the  nonlinear  pricing relation  of the 

expected  power  procurement  costs which have to  be minimized.  In  the  investment de- 

cision in  renewable energy technologies the energy manager  evaluates the total  costs 

of  the energy park  by  including  investment  costs,  expected  shortfall  costs as  well  as 

expected  remunerations  from surplus power.  Each technology  included in  the renew-
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able energy portfolio  exhibits  different characteristics  of the power  output.  Therefore,  

each technology  contributes  differently to  the shortfall  risk.  By  choosing  the optimal  

technology portfolio, the energy  manager  can  shape the risk distribution  associated  

with a shortfall  in  the power  supply (Ondra  and  Dangl, 2021a).  Due to  the existence 

of  a  portfolio  diversification effect  we  do  not  consider investment opportunities in  dif- 

ferent RES  technologies as mutually  exclusive but  as interrelated projects,  where the 

synergy  gains result  from  risk shaping associated  with  the  renewable energy portfolio  

selection.4

Due to  the fact,  that the  timing of the  investment  is  not  exogenously fixed, the 

investment model  basically  allows for  different  investment strategies:  (i)  a  lumpy  

investment strategy  and (ii)  a  staged investment  strategy. In  the lumpy investment  

strategy the budget available  for  building the energy park  is  spent at  one specific 

point  in  time.  In  contrast to  that,  it  might  be valuable  to  adopt a  staged investment  

strategy and  partially  invest in  a single technology  at  an  early stage of  the investment  

period  and  invest later  in  the lagged technology.  This investment  strategy  corresponds 

to investing  a  fraction of  the budget  and  to  keep  the  option to  expand the  energy 

park alive.  Sequential  investment is investigated  for  example in Dixit  and Pindyck
(1998)  and Bar-Ilan and  Strange (1998). Applications of  sequential  investment models  

in  the power  sector  can  be  found in Gollier et  al. (2005),  who discuss an  investment  

model of nuclear  power  plants and  evaluate the flexibility  of investing in  a sequence of  

small power  plants in  contrast to investing in  a large scale power  plant.  The authors 

demonstrate that despite  the presence of economies of scale, the  option to  invest 

in  a modular  project  can  have a  higher  value  and  therefore is able to  outperform 

a  lumpy  investment strategy. Sendstad and  Chronopoulos (2020) consider policy  

risk and  technological uncertainty together and show that a  greater  likelihood  of 

subsidy retraction lowers the incentive to  invest.  Moreover,  the authors demonstrate 

how  sequential  investment facilitates  earlier technology  adoption  compared  to  lumpy  

investment.  

This paper  aims at  investigating the energy manager’s investment decision  in  RES  

(specifically wind and  solar  technology) associated with uncertain production  vol-  

umes,  which  are subsidized  by  a  remuneration  policy  that  is  uncertain over  time.

4Childs et  al. (1998)  discuss  the effect  of  project  interrelationships on  investment decisions,  where  

there  is a  development  and implementation  stage and projects are considered  as  complements  in  

the sense that  implementing  projects together  yields  synergy  gains.
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Moreover,  we  consider  the prices of  the  investment  goods to  be subject to  random ex-  

ogenous innovation  shocks and therefore also  consider technological uncertainty.  The 

energy manager  consequently  faces the power  procurement  problem  under  multiple  

sources of  uncertainty  and  has  to  determine  whether an  investment  in  RES  is  bene- 

ficial,  or  if  power  to  cover  the firm’s demand  should  be purchased  via  pre-contracted 

energy at  a  fixed  exogenous energy price. Therefore,  we extend the  real options  litera- 

ture in  the field  of energy  economics  by highlighting  the optimal  dynamic investment 

behavior  in  renewable energy technologies in  the presence of a  renewable portfolio  

diversification  effect under policy  and  investment price uncertainty.  The rest of  the 

paper  is  organized as follows.  Section 4.2 introduces the investment model. Section
4.3 values the investment decision and  Section 4.4 derives the Bellman equation.  Sec- 

tion 4.5 reports on  the numerical  results of the use case and Section 4.6 concludes the  

paper.

4.2  The investment  model

We consider an  energy manager who aims  at  minimizing the firm’s  costs of  power  

supply by  investing  in  renewable self generation facilities (wind and solar  technology),  

where the firm is  considered to be  a  price taker.  Furthermore,  we assume a  regulatory  

framework promoting  renewable  energy such  that surplus power  from renewable self 

generation facilities can be  sold  to the  grid  at  the level  of the feed-in  tariff (FIT).  In  

case of  a  shortfall  in  the  power  supply of  the energy  park  (or  in  the absence of  an  

investment  in  renewable energy sources (RES))  there exists  an  outside option,  where 

pre-contracted  power  can  be  purchased  at  a  fixed exogenous energy price.5 Therefore,  

the expected costs of  power  supply of the  firm  are given  by:  (i)  the investment costs 

in  self generation facilities, where the  budget  that can  be used  to  build  the energy 

park is  constrained  by I0,  (ii) plus expected costs in  case of  a  shortfall associated 

with the  self generation facilities and (iii) minus expected  remunerations for  selling  

surplus power  to  the grid.  

We consider  a dynamic investment framework,  where the  timing  of the  investment  

opportunity  is  not  exogeneously  fixed but  can  be  chosen by  the energy manager. 

Therefore,  the energy manager  has  to  determine  simultaneously:  (i)  optimally  in-  

stalled  capacities in  wind and  solar  technology subject  to  a  budget  constraint  and  (ii)

5We assume,  that  the exogenous energy  price is fixed and uncorrelated  with  power  supply.
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the optimal  timing  of the investment.  Moreover,  the energy manager  faces  the deci-  

sion in  an  uncertain environment,  i.e., under multiple sources of uncertainties which 

potentially  affect  the optimal  investment decision.  Generally, the major  sources of 

uncertainty associated with  an  investment in  RES are:  (i) uncertainty in  the renew- 

able energy  output  (uncertain  production  volumes)  (ii)  policy risk (uncertain levels 

of the remuneration  of surplus power  from  renewable energy  technologies)  and  (iii)  

technology  risk (uncertain  prices of the investment  goods).  

One of the most important  aspects discussed  in  this  paper  arises from  the fact,  

that power  output  from  renewable energy technologies is  uncertain.  Wind  and  solar 

technology can  be associated with different distributions  of the power  output  per  

unit of installed capacity.  A  special  characteristic of  the  power  output  distribution  

associated with wind technology is  that due to  the existence of a  threshold wind  speed  

below  and  above which  no power  output  can  be  generated,  the wind distribution  

exhibits the characteristics of a  heavy-tailed  distribution.  Therefore,  investment  in  

wind technology comes along with  a higher tail-risk of a power  shortfall  compared  to  

an  investment  in  solar  technology.  However,  by  choosing  optimally  installed  capacities 

the energy  manager  is  able to  shape the underlying risk distribution of  a  shortfall  in  

the power  supply. Hence,  by  diversifying  the energy  portfolio  the energy manager  can  

lower  the power  shortfall  risk  which  introduces the renewable energy portfolio  effect.  

The histograms associated  with  the distribution  of the power  output  are illustrated  for  

a numerical  example in  Fig. 4.1 for  the case of  (a)  a  single energy investment  in  wind 

technology,  (b)  a  single energy investment  in  solar  technology  and  (c) a  diversified 

energy portfolio  with equal  capital shares  invested  in  wind  and  solar technology.  

In  classical  portfolio  theory,  the risk diversification effect is due to  maximizing  ex-  

pected  utility  of a risk-averse investor.  In  our approach,  we don’t  maximize expected  

utility of  wealth  but  minimize total  expected  power  procurement  costs,  i.e., we con- 

sider a risk-neutral  energy  manager. In  this  scenario,  risk diversification is  formally 

introduced  via the underlying non-linear pricing relation of expected  surplus and ex-  

pected  shortfall  costs.6 For  the sake of  tractability  we  consider 3 different types of

6The  optimal decision  of  a  risk  neutral  investor  is to  invest  in  a  portfolio consisting  of a  single  asset  

(the asset  with  the highest  return),  since the costs as  well  as  the return of  the portfolio  is linear  

in  its  portfolio  weights.  It  is only the degree  of  risk-aversion that  leads to  non-linear effects  and 

thus introduces diversification.  An  energy  manager who  aims  at  minimizing  the expected power  

procurement costs,  however,  will  also  invest  in  a  diversified renewable energy  portfolio  since the 

expected power  procurement costs is a  non-linear  function  of  the portfolio  weights.

90



(a) Wind only

Shortfall/surplus power

D
en

si
ty

-0.10 -0.05 0.00 0.05

0
5

10
15

20

(b) Solar only

Shortfall/surplus power

D
en

si
ty

-0.10 -0.05 0.00 0.05 0.10

0
2

4
6

8

(c) Diversified

Shortfall/surplus power

D
en

si
ty

-0.10 -0.05 0.00 0.05 0.10

0
2

4
6

8

Figure  4.1: These figures show the empirical  distribution of the shortfall/surplus 

power  in  case of:  (a) single energy investment  in  wind  technology,  (b)  

single energy investment in  solar technology  and  (c) a  diversified  energy 

portfolio  with  equal  capital  shares  in  wind and  solar technology.  The red  

line indicates demand  and  supply equality and  separates the regions where 

a shortfall  in  the power  supply occurs (left  from the red  line)  from the 

region of  surplus power  (right  from red  line).

renewable energy portfolios that reflect  the characteristic  features of  the  underlying 

shortfall risk distribution:  (i)  the single energy investment  in  wind technology,  (ii)  the 

single energy  investment in  solar  technology and (iii)  a  diversified  portfolio  consisting 

of  equal  capital shares in  wind and  solar  technology. Of course, the portfolio  consist-  

ing of  equal  shares of  both  technologies might  not  be  the optimally  diversified energy 

portfolio  whenever  the full  range of possible capacity  choices is  considered, however,  

it  demonstrates the characteristic feature of  portfolio  diversification and  allows us to 

study conditions under which the  diversified portfolio dominates the pure  choices (i)  

and (ii).  

To  highlight  the benefits of the portfolio  diversification  effect we consider an  illus- 

trative example.  More specifically, we investigate the  static problem (i.e.,  the “now- 

or-never”  decision problem)  where the  exogenous  parameters of the pre-contracted 

energy price and the prices  of the investment goods  are assumed  to  be  determinis-  

tic,  i.e.,  perfectly  known. To do  so,  we  determine  the optimal  portfolio  choice as a  

function of  the level  of the feed-in  tariff ξ+ and  the price for  solar technology ps in  

two  scenarios.  First,  where the  opportunity  to  invest either  in  wind  or  in  solar exists 

(i.e.,  a  diversified portfolio  is not allowed).  And  second,  where the  opportunity  to  

invest in  wind,  solar or  a  diversified  portfolio  exists.  The optimal  portfolio  decision  

associated with the  static problem is  illustrated in  Fig. 4.2,  where the  type of renew-
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Figure  4.2: This  figure illustrates the optimal  renewable energy  portfolio  choice in  a  

static framework (a) in  case a diversified portfolio  is  not  included  and  (b)  

in  case a diversified portfolio  is  included.  The price of  wind technology 

is  assumed to  be pw =  1.4M=C/M W ,  the pre-contracted energy price is
ξ− = 100=C/M W h and the budget I0 = 0.25M=C.

able energy  portfolio  for  different levels of the FIT and  prices for  solar  technology 

(i.e.,  different levels of technological  innovations)  is  plotted.  Fig. 4.2(a)  shows the 

optimal  portfolio  choice,  whenever  only  the pure  investment choices are considered,  

i.e., a diversified portfolio  is  not  in  the scope of the decision maker.  Fig. 4.2(b)  

illustrates the situation  when  the diversified renewable energy portfolio  is considered 

as  a  feasible investment opportunity.  Despite  the fact  that the average power  output  

per  unit  of installed  capacity  in  wind  technology  is  higher  than the average power  

output  per  unit of installed capacity  in  solar  technology,7 the optimal  investment  is  

not  necessarily  to  invest in  wind technology,  but depends on  the level  of the exoge-  

nous parameters. The optimal  strategy might  even  be to  reject  investment in  RES  

and purchase total  power  to  cover  the demand  from  outside.  This occurs e.g., in  the  

absence of a  remuneration policy (or  whenever  the  level  of the FIT is  exceptionally 

low) and  when  the costs of  purchasing total  power  to  cover  the demand are lower  

than the capital  expenditures associated with  the  RES  investment.  However,  we con-

7The average hourly  power  output per  monetary  unit of  the investment are 0.317M W /M=C for 

wind technology  and 0.314M W /M=C for solar technology,  when  daytime  data  are used.
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sider a situation  where the investment  in  renewable energy technologies  is  affordable.  

Fig. 4.2 generally  demonstrates  that for  lower  levels of the FIT the cost-minimal  

choice is  to  invest in  the diversified  energy  portfolio. This portfolio  choice can  be  

explained by taking into  account  the different  shortfall/surplus power  distributions 

of the underlying energy assets. A  low level  of FIT weakens  the disadvantage of solar 

energy in  terms of lower  average energy output  per  unit of invested  capital  and puts 

more emphasis on  avoiding  large power  shortages (the advantage of solar power  as  

discussed  earlier). In  the  case of  very  high  levels of FIT,  the optimal  decision  is in  

favor  of a  technology  that maximizes energy output,  i.e.,  wind energy.  Higher risk  of 

shortfalls associated with wind technology is  less  critical  in  this  case. A  diversified 

energy portfolio  can  balance out the expected costs in  case of  a  shortfall  in  the  power  

supply and the expected  remunerations  for selling surplus power  to  the grid.  

This example illustrates that due to  the stochastic  production volumes of wind and  

solar technology,  the investment decision in  the optimal generation mix  (or  investment 

in  RES  at  all) highly depends on  the level  of the exogenous  parameters,  i.e., the level  

of the FIT and  the energy price,  even  in  case they  are assumed to  be  deterministic.  

Of course,  the  complexity  of the investment  problem  increases when  the  exogenous 

parameters are assumed to  be  subject  to uncertainty that also  impact  the investment 

decision, which is the  scope of  this  paper.  

Concerning policy  risk,  we expect  the  level  of the FIT to  undergo multiplicative 

geometric Brownian shocks.  Since support  schemes for RES  are gradually  withdrawn,  

the drift of the geometric Brownian motion is  taken  to  be  negative.  At the time the 

investment in  wind and solar  technology is  made,  the current level  of the FIT is  locked  

in  and  used to  price surplus power  that  is  sold  to the  grid  over  the  expected  useful  

lifetime of  the energy park.  Therefore,  the  current level  of the FIT has  also  an  impact  

on  the optimal  generation mix, since the  current level  of the FIT enters as  a  parameter 

in  the  non-linear pricing relation  affecting the  optimal  renewable energy portfolio.  A  

detailed  description of the stochastic process  associated with  the  remuneration  policy 

can  be  found in  Appendix 4.7.1.  

Due to  technology  diffusion and  technological  learning,  the prices of the investment 

goods  for  renewable energies  are subject  to random  exogenous innovation shocks.  

Therefore,  the  prices of the investment  goods are uncertain and  are expected  to de- 

crease.  Since renewable energy  investments are characterized  by  high  capital costs, 

uncertainty over  the capital expenditures is a major  driver  of investment risk. Gen-
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erally, the price of  both  technologies  can  be  considered  as  subject  to  uncertainty.  

However,  we  assume  that major  technological  process and  product  innovations occur 

only for  solar  technology.  In  contrast  to  that, only  minor  technological  innovations 

are expected in  wind  technology and  are considered as  negligible.8 Therefore,  the  

exogenous  price for  wind technology is  assumed  to  be  fixed.  A  detailed  description of 

the stochastic process associated with the stochastic innovations in  solar technology 

can  be  found in  Appendix 4.7.2.

4.2.1  Timing  of  the  investment

Let us illustrate the effects  of  investment timing in  a  simplified  one step-model  before 

turning to  the fully  dynamic model.  In  the one-step  model  only at  two points in  time  

(today t0 and the future state t1) an  investment in  RES  can  be  made. Since the timing 

of the investment in  wind and  solar technology  is  not  exogenously fixed,  the  energy 

manager  has  the option  to  postpone the  investment  decision today  at t0 to  the future
t1 and  to  receive new information  about  the evolution of  the  uncertain  parameters, in  

order  to  re-evaluate the investment opportunity.  During  this  time  period [t0, t1] the 

energy manager has  to  secure  the  electricity  supply of  the firm  and  purchases power  

to  cover  the demand.  However,  including  the possibility  of deferring the  investment  

decision  to the  future state t1 generally  introduces managerial  flexibility  and  therefore  

creates a value  which  has  to  be considered in  the  investment  decision.  

Since we consider  the combined impact of the multiple sources of  uncertainty,  we 

solve  for  the  optimal  investment decision  on  the joint  grid representing uncertainty 

of the states of  nature,  i.e.,  the level  of the remuneration  policy  and  the stochastic 

price per  unit  of solar  technology installed, which  is  illustrated  in  Fig. 4.3. These  

two  dynamic sources of  uncertainty,  i.e.,  policy  uncertainty and  uncertainty  over  

the investment price of  solar technology,  drive the optimal  timing  of the investment 

towards  different directions.  Due to  the expected decrease of the level  of the FIT, the 

energy manager  tends to  invest in  RES  earlier, since the likelihood  of the remuneration 

policy  to  offer  a higher  compensation for  selling  surplus power  to  the grid  is  also  

higher.  In  contrast  to  policy  uncertainty,  due to  the expected decreasing price of 

solar technology  the energy manager  tends to  invest later  in  order  to  reduce  the 

expected  capital expenditures of the energy  investment.  The optimal investment
8This represents a  model  limitation which,  however,  can  methodologically  be  treated  in  the same 

way  as  uncertainty  associated  with  solar  technology.
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Figure  4.3: This  figure represents  the joint  grid  of the states of nature in  the one-step  

problem with  the 4 possible states arising in  the future.

decision  therefore has  to  balance the expected  trade-off associated with  investing in  

RES at t0 or  investing in  RES  at t1.  

The energy manager  not only has the opportunity  to  adopt  a  lumpy  investment 

strategy or  to  postpone the investment  decision  as such  to the  future state t1 (which  

includes the opportunities to  invest in  wind technology/solar  technology/a  diversified 

energy portfolio  at t0 or t1,  or  to  not  invest at  all),  but  also  to  follow a staged  

investment  strategy. In  the  staged investment strategy,  the energy manager  introduces 

additional flexibility  in  terms of including  the possibility  to  invest partially  (we assume  

–  as a  simplifying assumption – that in  staged investment the  investment budget is 

split in  two  equally sized  portions)  in  wind technology at  the first stage decision at t0
and to  keep  the  option  to  expand  in  solar/wind technology in  the second  stage decision  

at t1 alive.9 Therefore,  following this strategy, the  energy manager  has  the option  

to  choose the  timing of the  partial  investments in  wind and  /  or  solar  technology 

independent  of each other.  For  the energy manager who follows a staged  investment  

strategy,  the current level  of the FIT is  locked  in  at  time t0 the early investment  in  

wind technology is  made.  However,  if  he  or  she  decides to  expand  this energy  portfolio

9This  also  includes  to  reject  in  expanding  the energy  park  at t1.
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in  the future t1, the new level  of the FIT at t1 is  assigned  from t1 onwards  to  price 

surplus power  and  therefore  overwrites  the old  level  of the FIT at t0.10 Hence,  the 

benefit  associated  with  a staged  investment  strategy  is  that the energy manager can  

immediately alter cash-flows that arise from  purchasing outside  power  to  cover  the 

demand.  The trade-off is  that the energy  manager  sacrifices  a  part of the flexibility  

options, since the single solar  energy portfolio –  which is  valuable  in  case of a low price 

of solar technology  – is  not  attainable  due to  the early  investment in  wind technology. 

For  completeness we remark  that also the investment strategy to  partially  invest in  

solar technology at t0 and  to  keep  the option to  invest in  wind/solar technology at t1
alive,  exists.  However,  technological  innovations are expected only in  solar  technology 

and due to  the characteristic features of the wind distribution,  an  investment in  wind  

technology  is  more valuable  in  this case.  Therefore,  an  early partial  investment  in  

solar technology  and keeping  the option  to  expand the energy  park  is  not  in  the scope 

of  the  model.11

In  order  to  simplify the problem, we  assume an  effective infinite  lifetime of the 

energy park.  This can be  made plausible  by  assuming  that the energy manager  re- 

invests  in  the same energy portfolio after the expected useful lifetime of the energy 

park.12 The underlying assumptions in  the investment  model  are summarized  in  Tab.
4.1.
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Table 4.1: This table summarizes the model  assumptions.

Variable Assumptions

FIT ξ+ [=C/M W  h]
(i)  GBM with negative  drift µ < 0
(ii) At time  of investment the current level  of FIT is  locked  in

Price per  unit  of solar  

technology ps
[=C/M W  h  inst.]

(i) Number  of innovations  per  year  Poisson  distributed  

(ii) Fixed size of  innovation α

Energy price ξ−
[=C/M W  h]

Fixed  price per  MWh  of shortfall  in  the power  supply

Demand d [M  W ] Deterministic demand  over  efficient lifetime of the energy  park

Budget I0 [=C]
Max.  amount  that can  be  invested in  RES.  We impose
I0 ≤ 2pwd,  ensuring that with a staged investment  no  

surplus power  can  be sold.

Timing of  the 

investment 

Only at  two points in  time t0,  t1 an  investment  in  RES can 

be made

Renewable energy 

portfolio x = (xw, xs) 

[M  W ]

We consider 3 different energy portfolios:  

(a)  single energy  investment wind xw = I0/pw, xs = 0
(b) single energy  investment solar xs = I0/ps, xw = 0
(c)  diversified energy portfolio xw = I0/(2pw), xw = I0/(2pw)

Investment strategy 

(i) Lumpy  investment :  invest in  portfolios (a)-(c) either at t0
or  at t1
(ii) Staged  investment: invest in  wind capacity
xw = I0/(2pw) at t0 and  keep  the option  to  expand
xs = I0/(2ps) in  solar technology  at t1 alive
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4.3  Valuing  the renewable energy  investment

In  order  to  determine  the value  of the option (in  terms of the total  costs of the firm’s 

power  supply) of investing in  a renewable energy  park  (with different renewable energy 

portfolio  options),  we have to  determine expected  costs of every  energy portfolio  in  

every  possible state of  the future (see Fig. 4.3). Generally, in  this  dynamic investment 

problem  at  two  points in  time  a  decision has  to  be  made: The first stage decision  at
t0 and the second stage decision at t1.  We assume, that the firm’s  power  demand d is  

deterministic  and  that the budget that can be  used  for the energy investment  is  given  

by I0.  The costs of  purchasing  one unit  of pre-contracted power  in  case of  a  power  

shortfall is exogenously fixed and  denoted  by ξ−.  Since the power  output  per  unit of 

installed capacity in  wind technology Pw and the power  output  per  unit of installed 

capacity  in  solar technology Ps are stochastic,  the energy manager  takes into  account  

the expected shortfall  costs (where  balancing  energy has to  be  purchased) and  the 

expected  remunerations for  selling surplus power  to  the grid.  For  a  given  level  of the 

FIT ξ+,  the current price of  solar  technology ps (which is different in  the future states 

since they  are subject  to  uncertainty)  and the price of wind technology pw (which  is  

fixed),  the  expected costs of  power  procurement  are given  by:  (i)  the investment costs
I to build the energy park,  minus (ii)  expected remunerations from  selling surplus 

power  to  the grid  and plus (iii) purchasing pre-contracted power  in  case of  a  shortfall  

in  the  power  supply. The investment  costs  (i)  have to  be paid  instantaneously and  

are considered as  sunk  costs,  whereas the cash  flows associated  with  the  expected 

remunerations and  expected shortfall  costs (ii)  and  (iii)  arise continuously  during  the 

effective lifetime  of the energy  park  and  therefore  have to  be discounted.

10This assumption  is done  for  reasons of  tractability.  If the level of  the FIT for the early  investment 

and the level of  the FIT for later  investment is fixed  independently,  the FIT fixed  for the early  

invested  capacity  serves as  a  state  variable for the second  stage  investment decision,  increasing 

the dimensionality  of  the investment problem.  Since the insight  from  our analysis is not driven 

by  these subtleties,  we  avoid  the overly complex model  structure. It  would also  be  possible to  

fix  the level of  the FIT with  the early  investment in  wind  technology  for all  times.  In this  case, 

however,  we  do  not allow for small  first  stage  investments.
11Moreover,  a  staged  investment strategy  where the first  and the second  stage  decision  is to  invest  

in  solar  technology  excludes the benefits  from the renewable diversification effect.
12Formally,  we  introduce  the re-investment in the energy  assets by  introducing  an  effective  interest  

rate r′,  s.t.  the present value associated  with  the finite  investment  opportunity  at  the interest  rate
r is the same as  the present value of  the infinite  investment at  the effective  rate r′.  Therefore,  

generally r′ ≥ r holds  true.  This  represents  a  model  limitation  since we  don’t consider  the 

flexibility  to  re-balance the energy  portfolio  after  the finite  lifetime  but  continue  to  re-invest  in  

the same energy  portfolio.
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We describe the evolution of  the  states of  nature,  i.e.,  the level  of the FIT ξ+ and  

the technological  innovation α via  a  set of  trees. Each tree characterizes  the state of  

the  investment,  i.e.,  investment  decisions  which are already  fixed.  All  possible energy 

portfolios considered in  this  investment  model  are shown in  Fig. 4.4,  i.e.: no  invest- 

ment  in  RES  (A),  staged  investment in  wind  technology  (B),  the diversified energy 

portfolio  (C),  the single energy investment in  wind technology (D)  and the single 

energy  investment in  solar  technology  (E). In  case of  a  RES  investment  that exhausts  

the  budget  (i.e.,  the trees C,D and  E),  the  corresponding  investment opportunities 

can  be immediately  valued since there are no  further flexibility  options  left  and  nodes 

in  these trees represent stopping at  absorbing  nodes.  Since we assume irreversibility  

of the investment,  we  do  not  consider the  opportunity  of selling the  power  generation  

facilities. Therefore, undoing the  investment  and  returning to  the tree A  representing  

no  investment in  RES is  not  in  the scope of  this  model.  In  contrast  to trees C,  D,  

and E  where the  investment  decision  is  already  fixed,  trees A  and B  represent  states 

with investment flexibility.  

Given  that  currently (at a  given  time t)  no  investment (tree  A) or a  staged  in- 

vestment (tree  B) was  made,  the budget left (i.e., I0 or I0/2) can  be used  to  expand  

the  energy park in  the future.  Fig. 4.4 indicates  these  flexibility  options  associated 

with the  investment  strategy via  arrows.  Investing in  a renewable energy  technology 

and thereby  expanding the  current renewable energy portfolio  corresponds to a  jump 

between  the trees  A-E.  Investment at t +  1 can  be  done in  the same way  as at t,  

leading to a  jump to  the corresponding  node  in  the tree that represents  the invest- 

ment  decision  (the state of  nature  is  preserved).  The costs associated  with  the  jump 

between  the trees corresponds to the  investment I ∈  {I0/2,  I0} necessary  to  obtain  

the target  renewable  energy  portfolio.  In  case the  energy manager  has  not  invested  in  

RES (black  arrows starting  at  tree A)  he or  she can  decide to invest half the budget
I0/2 in  wind technology  (tree  B) and  keep  the  option  to  expand the  energy park  alive 

(stay  in  tree A)  or  invest the  full  budget I0 in: a diversified  portfolio  (tree  C),  an  

undiversified portfolio  in  wind technology (tree  D)  or  an  undiversified portfolio  in  

solar technology  (tree  E).  The energy manager  can  always  choose to postpone the  in-  

vestment decision,  continue  the current energy portfolio  and  therefore also  to  remain  

within  the  current tree, at  least for  the  coming time step  (thereby keeping the  flexibil-  

ity  alive and  reconsidering an  investment  after observing  the shocks to  the stochastic 

state variables ps and ξ+).  In  case of  an  early investment  in  wind technology  (tree B),
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the energy manager  has  the option to  expand in  wind  or  solar  technology  (tree C  or  

tree D).  However,  due to  irreversibility  of the investment  the portfolio  representing  a  

single energy investment in  solar  technology  cannot  be  obtained  in  this case.

4.3.1  Costs and  cash  flows  of  the  investment

Let  us now  discuss  the costs and expected  cash flows associated  with an  investment 

in  RES  in  more detail.  The decision to  invest in  RES  corresponds to  a jump between  

the trees in  Fig. 4.4 and  generates sunk  costs of either I0/2 or I0, depending on  

the type of the investment strategy.13 However,  the actual  capacity  installed in  solar 

technology  depends on  the current level  of the investment price of solar technology
xs = I /ps and  therefore  varies according  to  the  possible states of  nature in  the 

future.  In  contrast  to  that,  the price of wind  technology is  constant and  therefore  the 

installed  capacity in  wind technology  is  either xw = I0/pw or xw = I0/(2pw),  for  all 

possible states of  nature that occur in  the future.  This is of special  importance,  since 

the value  of the investment depends on  the installed  capacities  in  wind and solar  

technology,  respectively.  We assume that the hourly  stochastic power  output  per  

capacity  installed  in  wind Pw and solar  technology Ps to  be iid  distributed.  Therefore,  

if  the capacity  installed  in  wind technology is xw, the capacity  installed in  solar  

technology is xs and  the level  of the FIT at  the time of the last  investment  in  RES  is
ξ+,14 the value  of the investment is given by

VI(xw,  xs,  ξ+)  = δ(−ξ+E[max{xwPw + xsPs − d; 0}]⏟ ⏞
expected remunerations from selling 

surplus power  to the grid

+ ξ−E[max{d− xwPw − xsPs; 0}]⏟ ⏞
expected shortfall costs

),

(4.1) 

where δ denotes the present  value factor. Therefore,  the value  associated  to  the defi- 

nite decision  of rejecting an  investment in  RES  once and for  all and, thus, purchasing  

total  power  to  cover  demand in  the future is  given  by VI(0, 0,  ξ+)  = ξ−dδ and  is  inde- 

pendent  of the level  of the FIT.  However,  if  the energy manager  decides  to  postpone 

the investment by Δt and  previously an  early  investment in  RES  with xw capacity

13Investing  half  of  the budget  available I0/2 corresponds  to  a  staged  investment strategy  (black  

arrows in  Fig. 4.4)  and investing  the total  budget  available I0 corresponds  to  a  lumpy  investment 

strategy  (red  arrows in  Fig. 4.4).
14The level of  the FIT at  the time a  consecutive investment  in  RES overwrites the previously  

locked-in FIT.
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Figure  4.4: This  figure  illustrates  all possible  energy portfolios of wind and solar  tech-  

nology considered.  The arrows illustrate the flexibility  options (black:  

flexibility  options  when  no  investment has occured,  red: flexibility op- 

tions when  a partial  investment  in  wind technology has  occured).
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installed in  wind  technology (tree  B) occurred,  where the level  of the FIT at  the time  

of the investment in  wind technology was ξ+,  the cash flow arising during the period
Δt due to  deferring the investment is simply given by

c(xw,  ξ+)  =  Δt(−ξ+E[max{xwPw − d; 0}]⏟ ⏞
expected remunerations from selling 

surplus power  to the grid

+ ξ−E[max{d− xwPw; 0}]⏟ ⏞
expected shortfall costs

). (4.2) 

If no  investment  was  made in  RES  the cash flow arising  due to  deferring the investment  

is  given  by c(0,  ξ+)  =  Δtξ−d and  corresponds  to  purchasing  total  power  to  cover  the 

firm’s  electricity  demand  during  the time span Δt via  pre-contracted  energy.  

Note that in  (4.2)  the cash-flow  depends  also  on  the current level  of the FIT that 

is  locked-in.  However,  we impose  the constraint I0 ≤ 2pwd on the investment budget. 

This guarantees  that in  case of  a  staged  investment the first stage investment in  wind 

technology (with  investment  costs I0/2) installs a  capacity which is  sufficiently low 

such  that no  surplus power  can  be  generated,  i.e., Pr{xwPw − d ≤ 0} = 1 holds true.  

In  this  case the cash-flow  is  independent  of the level  of the FIT but  depends only  on  

installed capacities in  wind  technology xw.  This is due to the  fact that in  this  case
E[max{xwPw − d; 0}]  =  0 and  (4.2)  becomes

c(xw) = Δtξ−E[max{d− xwPw; 0}]. (4.3)  

We impose  this  constraint to avoid  the level  of the FIT of the first stage investment  

as a  state variable  in  the investment problem  of the second  stage. Since the power  

output  per  installed capacity of  wind technology  is  bounded from  above Pw ≤ 1 and  

the capacity in  case of  a  partial  investment in  wind technology  is xw = I0/(2pw),  we 

have that xwPw ≤ d holds  true with certainty,  given  the budget  is  constrained  by
I0 ≤ 2pwd.

4.4  Value of  the option to  invest

We determine the value  of the investment opportunity  in  RES  by  using  dynamic pro- 

gramming  methods based  on  Bellman’s Principle  of  Optimality. Vt(ξ+,  ps) denotes  

the value  of the investment opportunity  in  terms of the minimum  attainable  present  

value  of the power  procurement  costs at  time t, given that  the current state of  nature
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is (ξ+,  ps).  The terminal  value  at  the end of the decision  horizon T is  determined by  

investing  in  the energy portfolio  that refers to  the minimum  expected  power  procure- 

ment  costs under given  flexibility,  or  refrain  from  investment at  all.  Due to  different 

flexibility  options,  the value  of the terminal  nodes of the trees A and B are different.  

Let  us denote the value  of the investment at  the final  decision nodes of:  (i)  the di-  

versified  portfolio  (tree C),  (ii)  the single wind technology  portfolio  (tree D)  and  (iii)  

the single solar technology portfolio  (tree E)  by:

V C(ps,  ξ+)  = VI

(︂
I0
2pw

,  

I0
2ps

, ξ+

)︂
V D(ps,  ξ+) = VI

(︂
I0
pw

, 0,  ξ+

)︂
V E(ps,  ξ+) = VI

(︂
0,  

I0
ps
,  ξ+

)︂
.

(4.4)  

Furthermore, the value of rejecting  to  invest in  RES and  purchasing total  power  to  

cover  the demand is  given  by V N  i(ps,  ξ+)  = VI (0, 0,  ξ+) and  the  value  to  abandon the 

option  to  expand, given that an  early investment in  wind  technology has  occurred  is 

given by V N  e(ps,  ξ+)  = VI (I0/(2pw), 0,  ξ+).  

In  case of  a  staged investment strategy,  represented by  tree B,  the only  investment 

opportunities  at  the final  nodes are to:  (i)  invest I0/2 to  obtain  the single wind tech-  

nology  portfolio  (tree D)  (ii)  invest I0/2 in  solar  technology  to  obtain  the diversified 

technology  portfolio  (tree C) or (iii)  abandon the option to  expand the  energy park 

(stay  within tree B). Therefore,  at  the final  nodes we  have

V B  

T (ps,  ξ+)  =  min

{︂
I0
2  

+ V D(ps,  ξ+);
I0
2  

+ V C(ps,  ξ+);V
N  e(ps,  ξ+)

}︂
. (4.5)  

In case of  no  previous  investment  in  renewable energy  technologies,  represented by  

tree A,  the investment opportunities are to:  (i)  invest I0 in  the single wind  technology 

portfolio  (tree D)  (ii)  invest I0 in  the diversified technology  portfolio (tree C),  (iii)  

invest I0 in  the single solar  technology portfolio (tree E),  (iv)  to  abandon the option  

to  invest in  RES  or  (v)  invest I0/2 in  wind technology (tree B).  Therefore, at  the
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final  nodes we  have

V A  

T (ps,  ξ+)  =  min

{︂
I0 + V D(ps,  ξ+); I0 + V C(ps,  ξ+); I0 + V E(ps,  ξ+);

V N  i(ps,  ξ+);
I0
2  

+ V B  

T (ps,  ξ+)

}︂
.

(4.6)  

Having  determined the value  of the investment opportunity  at  the final  nodes,  we 

iterate  backwards in time to  determine the value  of the investment opportunity  at  

each preceding node.  Therefore,  assume that we  have determined the value  of the 

trees in  each possible state of  nature at  time t.  Since  the value  of the investment 

in  RES  depends on  the value  of expanding the energy park,  given  that  an  early 

investment  in  wind  technology has  already occurred  (i.e.,  it  is possible to  jump from 

tree A to tree B), we first have to  solve  for  the  value  of tree B.  

Concerning the  tree B, at  each point  in  time t − 1 the energy manager  has  the 

opportunity  to:  (i)  invest I0/2 to obtain  the single wind  technology  portfolio  (tree
D)  (ii)  invest I0/2 in  solar  technology  to  obtain the diversified technology  portfolio  

(tree C)  or  (iii)  defer  the investment decision,  obtain  the cash  flow and  stay within  

tree B. Therefore,  the  value  of the option to  expand  the  energy  park,  given  by  the 

Bellman equation is

V B 

t−1(ps, ξ+) = min

{︂
I0
2  

+ V D(ps,  ξ+);
I0
2  

+ V C(ps,  ξ+); c

(︂
I0
2pw

)︂
+ e−rΔtEt−1[V

B  

t (ps,  ξ+)]

}︂
,

(4.7)  

where

Et−1[V
B 

t (ps, ξ+)]  =
∑︁
p′s,ξ′+

p(p′s, ξ′+|ps, ξ+)V
B 

t (p′s, ξ′+) (4.8)  

and p(p′s,  ξ′+|ps, ξ+) denotes the conditional probability  to  obtain  the state of  nature
(p′s, ξ′+) in  the next time step,  given the current state of  nature  is (ps, ξ+).  

Concerning the tree A representing the full  flexibility, in  every  preceding node  at 

time t− 1 the energy manager  has the opportunity  to:  (i)  invest I0 in  the single wind 

technology portfolio  (tree D)  (ii)  invest I0 in  the diversified technology  portfolio  (tree
C),  (iii)  invest I0 in  the single solar  technology portfolio  (tree E), (iv) invest I0/2

in  wind technology and keep  the  option  to  expand the  energy park  alive (tree B)  or

104



(v)  defer the investment  decision  (stay  in  tree A). Therefore,  the Bellman equation  

derives to

V A  

t−1(ps, ξ+) = min

{︂
I0 + V D(ps,  ξ+); I0 + V C(ps,  ξ+); I0 + V E(ps,  ξ+);

I0
2  

+ V B  

t−1(ps,  ξ+); c(0) + e−rΔtEt−1[V
A  

t (ps,  ξ+)]

}︂
,

(4.9)  

where  the expected value  of the investment  in  the next  period  is

Et−1[V
A  

t (ps,  ξ+)]  =
∑︁
p′s,ξ′+

p(p′s, ξ′+|ps, ξ+)V
A 

t (p′s, ξ′+). (4.10) 

This procedure can  be  followed  iteratively to  determine  the current value  of the 

investment opportunity  in  RES  at t = 0,  which is denoted by V = V A
0 .

4.5  Numerical  results

We demonstrate the model  in  a  use case, where we sample from  real-world wind speed  

and solar  irradiance data  for  a typical  location  in  Central  Europe where hourly data 

of the solar  irradiance and the wind speed  are available  in  the daytime.15 The prices 

of  the  investment goods  are given  by pw = 1.4M=C/M  W for  wind  technology  and at  

the starting time t = 0 ps = 1M=C/M W for  solar  technology.  The market  rate is  

assumed to  be r =  1%16. All  the results  presented  in  this  section are obtained for  the 

one-step  problem.  

In  order to  analyze the sensitivity of  the  value  of the option  to  invest in  RES with  

respect  to  a change in  the policy  of the FIT and  the innovations  in  solar technology,  

we perform “what-if”  analysis by  simulating  different  parameters of  the underlying 

stochastic  processes,  which is illustrated  in  Fig. 4.5.  Fig. 4.5(a) shows the value  

of the RES  investment  as a  function of the parameters µ and σ of the stochastic 

process associated with  the remuneration policy,  for  fixed values of the parameters  

describing  stochastic innovations in  solar technology. Since the drift is  assumed  to  

be negative µ < 0,  the absolute  value |µ| indicates the long-term  subsidy  retraction

15From  10:00-18:00.
16Which  gives an  effective interest  rate which considers re-investment  of r ≈ 5%.
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Figure  4.5: Figure (a)  shows the value  of the option  to  invest in  RES  as a  function  of 

the drift  rate µ for  two levels of σ (α = 0.3, πInv
↓ = 0.5). Figure  (b)  shows 

the value  of the option  as a  function of the level  of the innovation  in  solar 

technology for  two  levels of the probability  to  obtain  an  innovation  in  the 

next period  (µ = −0.1, σ = 0.2).

rate.17 We observe expected power  purchasing  costs to  be  decreasing  with  lower  values 

of the subsidy retraction rates. To  highlight  the effect of  the uncertainty  associated 

with the  withdrawal  of the remuneration policy,  Fig. 4.5(a)  shows the value  of the 

investment opportunity  in  RES  for  two  scenarios of the uncertainty σ associated with  

the remuneration  policy.  In  this  context, a higher  uncertainty  leads to  lower  expected 

power  procurement  costs  as  increasing uncertainty in  the retraction  of the FIT refers 

to  a  higher  probability that the FIT will increase in  the future.  

Fig. 4.5(b) illustrates  the value  of the investment option  in  RES  as a  function of the 

parameters of the stochastic  process associated with  the stochastic  innovations  in  solar 

technology α and πInv
↓ , for  fixed values of the parameters describing the stochastic 

level  of the FIT. Obviously, the  expected  total  power  procurement  costs are decreasing  

with increasing  size of  the expected innovation  in  solar  technology α.  Whenever  

the expected  technological  innovations  in  the future are below  a  threshold  value,  the

17Due to  the fact  that  the energy  manager expects an  exponential  decrease  of  the level of  the FIT
E[ξ+t]  = ξ+0e

−|µ|t,  higher values  of |µ| refer  to  a  scenario where the remuneration  is withdrawn  

more quickly.
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Figure  4.6: This  plot shows the optimal  investment strategy in  RES  for  the scenario  

where minor  innovations in  solar  technology  are expected α = 0.1 and: 

the (a)  low ξ− = 50=C/M W h,  (b)  mid ξ− = 100=C/M W h and  (c) high  

energy  price regime ξ− = 200=C/M W h.

optimal  investment strategy is to invest immediately and  obtain the benefits  that arise 

from a potentially  higher  remuneration of  excess power  (therefore,  for  small values of
α,  the value  of the option  is  constant,  i.e., independent  of α).  Furthermore,  we observe 

that the value  of the option  is  more sensitive to an increase in  the level  of exogenous 

innovations in  solar technology α compared to a  decrease in  the subsidy retraction 

rate.  This highlights the impact  of technological  learning  on  the optimal  investment 

strategy.  To analyze the impact  of uncertainty  associated with  the  technological 

jumps,  Fig. 4.5(b)  shows the  value  of the investment opportunity  in  RES  for  two 

scenarios of the probability πInv
↓ to obtain a  technological  innovation in  the future. 

When  the probability  to  obtain  a  technological  innovation  is  higher, the expected 

power  procurement  costs are decreasing.

4.5.1  Strategic  investment  choice

We now  discuss the optimal  investment strategy in  more detail. To do so,  we  illustrate 

the optimal  investment strategy at t = 0 as  a  function  of  the current level  of the FIT ξ+

and the current price of  solar  technology ps,  for  different scenarios of  the exogenous 

energy price ξ− ∈ {50=C/M W h, 100=C/M W h, 200=C/M W h} and the parameters of  

the stochastic  processes πInv
↓ = 0.5, α ∈ {0.1, 0.3} (minor  or  major  technological 

innovations in  solar  technology), µ = −0.1 and σ = 0.2.
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Figure  4.7: This  plot shows the optimal  investment strategy in  RES  for  the scenario  

where major  innovations in  solar  technology are expected α = 0.3 and: 

the (a)  low ξ− = 50=C/M W h,  (b)  mid ξ− = 100=C/M W h and  (c) high  

energy  price regime ξ− = 200=C/M W h.

Fig. 4.6 illustrates the optimal  investment strategy for  the  case of  low  technological 

innovations in  solar technology α = 0.1 and  for  different scenarios  of the price of 

pre-contracted power:  the low-range (Fig. 4.6(a)), mid-range (Fig. 4.6(b)) and  high- 

range (Fig. 4.6(c))  energy price regime.  In  the  case of  a  low  energy price (Fig.
4.6(a)), we  observe that  both  a  lumpy  and a  staged investment  strategy can  be  the 

optimal  investment  choice, depending  on  the current level  of the FIT and the current 

price for  solar  technology.  Generally we observe for  the  low  energy  price regime,  

that whenever  the  level  of the FIT is  sufficiently high the  optimal  strategy  is to 

invest  in  RES  immediately  and  obtain the benefits  from  selling surplus power  to  the 

grid due to  the high  level  of the remuneration  policy.  However,  for  the  majority  

of scenarios considered,  deferring the  investment decision  is the  dominant  strategy. 

Therefore,  low  energy prices trigger  early investment  only  on  rare occasions and  cause 

the  energy  manager  to  adopt  a  “wait-and-see” attitude.  With  increasing price of pre-  

contracted  energy  (Fig. 4.6(b)  and  (c)),  the energy manager  tries  to  avoid  purchasing 

expensive power  to  cover  the demand  and speeds up  investment  in  self-generation 

facilities. More specifically, higher  energy  prices emphasize the  importance  of avoiding  

power  shortfall  and  thus, the optimal  decision is  investing  early in  a solar dominated  

production.  

This situation is quite different,  when  there are major  innovations  in  solar tech-
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Figure  4.8: This  figure shows the relationship  between  the level  of  innovation in  solar 

technology  and  the endogenized  drift rate µ∗ s.t.  the energy manager  

is  indifferent  in  investing  now or  to  defer the investment  decision.  The 

impact of the probability  to  obtain an  innovation in  solar technology is  

also  demonstrated. In  this  numerical  example σ = 0.2, πInv
↓ = 0.1 and

ξ− = 100=C/M W h are chosen.

nology  expected α = 0.3 (Fig. 4.7).  In  this scenario, keeping the  flexibility  to  invest 

in  shares of  solar  power  in  the future when the  price for  solar technology is  low  be-  

comes a valuable strategy.  Fig. 4.7(a)-(c) illustrates  the optimal  investment choice 

in  the low-,  mid-,  and high-energy price regime. With  increasing  energy  price we 

observe,  that adopting  a  staged investment  strategy becomes increasingly  important.  

With  the early investment in  wind technology,  the energy  manager  sacrifices a part  

of the flexibility  to  invest in  solar  technology.  However,  in  this scenario the  staged  

investment  strategy  optimally  balances the benefits  of an  expected decrease in  the 

investment price of  solar  technology and the cash-flow due to purchasing  power  and  

deferring a  part of the investment.
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4.5.2  Policy  implications

Based on  the  energy manager’s  optimal  decision  as a  price taker,  we  now  discuss  

policy  implications  associated  with  the optimal design of the remuneration  policy.  To 

do  so,  consider the regulator’s point  of view  who is  in  charge of determining  the level  

of the FIT that is  used  for  pricing surplus power  that is  sold to  the grid by  power  

generation facilities. We assume,  that  the policy  maker  regulates  the long term trend  

of the remuneration policy by setting  the subsidy  retraction  rate.  Given  the exogenous 

level  of the innovations in  solar  technology α and  the probability πInv
↓ with  which this 

innovation  occurs in  the next period,  the regulator  is  interested  in  finding the critical 

subsidy retraction  rate (i.e.,  the subsidy retraction rate µ∗(α  , πInv
↓ )),  where  the energy 

manager  is  indifferent  in  investing immediately in  RES  or  to  postpone the investment  

decision  to  the future. In  this setting,  the parameter µ∗ is therefore an  endogenous 

parameter  that depends  on  the innovations of solar technology of the market.  This 

boundary region  is  of particular  importance,  since choosing  slightly  higher  values of 

the subsidy retraction rate facilitates early investment in  RES.  In  contrast  to  that,  

slightly  lower  values of the subsidy retraction  rate incentives the energy  manager  to  

defer  investment in  renewable energy  technologies.  

The condition of how to  obtain  the endogenized  subsidy  retraction rate is  indiffer-  

ence in  the  investment decision.  The energy  manager  is  indifferent  in  investing in  RES  

at t0 or  deferring the  investment decision  to t1, whenever the  continuation  value of the 

option  to  invest in  RES  is  equal  to the  minimum  power  procurement  costs associated 

with an  investment at t0. The subsidy  retraction  rate µ∗ that fulfills  this  condition 

implicitly defines the boundary  region  denoting  indifference  of investing now or  to  

postpone the  investment  decision,  which is illustrated  in  Fig. 4.8.18 Obviously, re-  

munerations for  surplus power  must  be  withdrawn more  quickly,  whenever  expected 

technological innovations  in  solar technology  are higher.  Fig. 4.8 also  illustrates  that 

the optimal  portfolio  choice is  changing  along the boundary  region.

18This boundary  region can  be determined by  applying  a  bi-sectioning  algorithm to  iteratively find  

the value of  the drift  s.t.  equality  of  the continuation  value and the optimal  portfolio choice  

associated  with  the static  problem holds  true.
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4.6  Conclusion

This paper  extends  the real options literature  in  the field of renewable energy invest-  

ment.  We analyze the optimal  investment decision in  renewable energy technologies 

(primarily  wind and  solar technology),19 which  is  characterized  by uncertain  pro- 

duction  volumes under  policy  uncertainty and  stochastically  decreasing  prices  for  

solar technology.  The expected total power  procurement  costs  to  cover  the firm’s 

demand  consists of  the investment costs,  minus expected remunerations for selling  

surplus power  to  the grid plus expected  costs of a shortfall  in  the power  supply. This  

nonlinear pricing  relation  introduces diversification benefits  even  for  the risk neutral  

decision  maker.  Generally,  the optimal  investment decision  in  renewable energy tech-  

nologies  is  not  the investment in  the  energy technology with the  highest  expected 

power  output  per  amount  of invested  capital,  but to  opt  for  a properly diversified en- 

ergy portfolio  that balances shortfall  risks  and benefits obtained  from  selling  surplus 

power  to  the grid.  Following the real options  approach,  we not  only determine  the 

optimal  portfolio  decision  in  renewable energy technologies but also  the optimal  tim- 

ing  of the investment.  More specifically, the dynamic  investment model also  allows a 

staged investment  strategy, i.e., an  early partial  investment in  wind technology and  

keeping the option  to  expand  in  solar  technology  alive.  An  early investment in  wind 

technology might  be beneficial  since it  allows to  immediately  alter  the cash-flow. In  

the use case we find  that this  staged investment strategy is of  special  importance,  

whenever  the price of the energy that has to be purchased  in  case of  a  shortfall  in  

the power  supply is  high,  but  major  innovations in  solar  technology are expected. In  

this  scenario,  the  optimal  investment  decision is  to  sacrifice a  part of the flexibility  

for  an  early investment in  wind  technology.  This  demonstrates,  that the option of 

a  staged investment  strategy in  RES  facilitates early investment  in  wind  technology.  

Furthermore, with  increasing  price of  pre-contracted energy  (i.e.,  shifting  more weight  

to  the shortfall-tail  of the cost  distribution),  the likelihood  of the energy  manager  to  

adopt  a  staged investment  strategy  increases.  Our  investment model  also  provides 

valuable insights  from  the  regulator’s point  of view,  who sets the  optimal  subsidy  

retraction  rate (i.e.,  creating a stimulus  for  early investment  that  counterbalances  

the incentive to  delay  investment which  is  usually present  in  investment decisions 

under  uncertainty).  Based  on  the partial equilibrium  model  referring  to  the energy

19I.e.,  we  do  not take  conventional (fossil fuel  based)  power  plants  into  account.
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manger’s optimal  portfolio  choice,  we infer  the optimal  subsidy  retraction to  be  set 

by the regulator.

112



Figure  4.9: (a)  shows the grid associated  with  the GBM of the level  of the FIT and  

(b)  shows the grid for  the evolution of the investment price for  solar  tech-  

nology.

4.7  Appendix

4.7.1  A:  Remuneration  policy

We assume the level  of the FIT follows a geometrical  Brownian  motion  (GBM) dξ+t =

µξ+tdt + σ ξ+tdzt, with  drift µ and  volatility σ2,  where dzt is increment to a  Wiener 

process.  Therefore, future values  of the level  of the FIT are log-normally  distributed 

with mean E[ξ+t]  = ξ+0 exp (µt) and  variance V[ξ+t] = ξ2 

+0 exp (2µt)(exp (σ
2t) − 1). 

Following Cox et  al. (1979),  we  approximate the GBM via  a binomial  lattice,  where 

the  decision  horizon  is  subdivided  in  elementary time intervals of  length Δt. The up  

and down factors specifying  the  level  of the FIT in  the proceeding time step  are given  

by

u = eσ
√
Δt,  

d = e−σ
√
Δt.

(A1)
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The probability πFIT
↑ to  obtain an up  movement  of the level  of the FIT in  the pro- 

ceeding time  step  is  given  by

πFIT
↑ =

eµΔt − e−σ
√
Δt

eσ
√
Δt − e−σ

√
Δt
. (A2)  

To obtain a  valid  probability πFIT
↑ ∈ [0, 1] has to  hold  true.  Since the level  of the 

remuneration policy  is  expected  to  decrease over  time,  the drift is  negative µ ≤ 0.  

The requirement to  obtain  a  probability  measure therefore imposes a  condition on 

the size of  the  time step,  which has to  be sufficiently small
√
Δt ≤ σ /|µ|.  For Δt → 0

this time-discrete process converges  to  a  GMB. The process associated  with the one 

step  problem is  illustrated  in  Fig. 4.9(a).

4.7.2  B:  Prices of  the  investment  goods

Due to  technological  learning  and diffusion, the price per  one unit of installed  solar 

capacity ps can  decrease over  time. We consider a stochastic  model  of technological 

learning and diffusion  and assume  that stochastic exogenous technological  innovations 

occur over  time.  Whenever  an  innovation shock  occurs, the price of  solar  technology 

decreases  instantaneously  by  a  fraction of α% and when no  innovation shock  occurs,  

the price remains the same. We assume, that the number  of  innovations associated  

with solar  technology ν follows a Poisson  process with  a rate of λ innovations per  

year.  Therefore,  the expected number  of  innovations  in y years is  given  by E[ν]  = λy

and the probability  to  obtain k innovations  over  a  time period  of y years  is  given  by

Pr{ν = k} = 

(λy)k

k!
e−λy. (A1)  

Therefore,  the price of  solar  technology in  the future is

ps(t1) =

{︃
ps(t1, ↓) = ps(t0)(1− α), if an  innovation  occurs

ps(t1,→) = ps(t0), if no  innovation  occurs.
(A2)  

Similar  to  the construction of  the  GBM,  we divide  the time horizon  into  time  intervals 

of length Δt.  Hence, the probability of  obtaining  a  technological  innovation  in  solar 

technology is  approximated  (linearly)  with πInv
↓ = λΔt.  The probability  of multiple  

innovations within  one time  step Δt is of  order (Δt)2 and  can  safely  be ignored
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Figure  4.10: This  figure  illustrates  the optimal  investment strategy  in  the fully dy- 

namic model  as a  function  of the current price for  solar  technology and  

the current level  of the FIT at t = 0.

for  small Δt. Consequently,  the probability  that no  innovation occurs is given by
πInv
→ = 1 − πInv

↓ . To  obtain a  probability πInv
↓ ∈ [0, 1], the condition Δt ≤ 1/λ has  to  

hold true.  The number  of  inventions in  the decision  period  is  Binomially distributed
ν ∼ B(n,  πInv

↓ ),  where  for  the number  of intervals within  the decision horizon n →  ∞, 

the probability  mass function  of the Binomial distribution  converges to  the probability  

mass function  of  a  Poisson  distribution  with  rate λ. The process associated with the 

one step  problem  is  illustrated  in  Fig. 4.9(b).

4.7.3  C: Dynamic  N-period  Problem

Up  to  this  point  we  have illustrated  the investment model  in  the one-step problem.  

Let  us now  discuss the fully  dynamic model  and  analyze the solution which  is  obtained
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for  an  arbitrary but  finite time  horizon T .20 Therefore,  we split  the time horizon  into
N equally spaced  sub-intervals of  length Δt.21 In  the fully  dynamic model  the same 

logic as in  the one-step problem applies.  At each point  in  time  the energy  manager  

faces the flexibility  options  to  invest in  RES,  invest partially  in  wind technology or  

defer  the investment decision,  see Fig. 4.4.  We solve  the Bellman equations (4.7) and  

(4.9) backwards in  time,  starting at  the  terminal  nodes at  time T .  We follow this 

procedure recursively and determine  the value  function iteratively up  to time t = 0.  

In  the  one-step  problem  we  have applied  this  iteration  one time, whereas in  the  fully  

dynamic model  we have to  apply  this  step N times.  

In  the  use  case we assume that the decision to  invest in  RES can be  made on  a  semi- 

annual  basis,  i.e., Δt = 0.5 with a time horizon T = 10y. Furthermore,  we  impose  for  

the  underlying process of the FIT µ = −0.1, σ = 0.2 and  for  the  underlying process 

of technological  innovations in  solar  technology α = 0.025 and πInv
↓ = 0.25 (per  time  

step Δt, i.e., λ = 0.5). The energy price is ξ− = 50=C/M W  h,  the budget  available is
I0 = 0.25M=C and  the effective interest rate r ≈ 5%. 

The fully dynamic model  (Fig. 4.10)  basically recovers the model  effects obtained  

one-step  problem. With  increasing level  of the remuneration  policy,  the optimal  

decision  is to invest immediately  in  RES  and  with  decreasing price of solar  technology,  

the investment decision is  in  favor  of solar  technology.  When the current level  of the 

FIT is  not sufficiently high, the optimal  decision  is  either  to postpone the  investment  

decision  or  to  follow a staged investment  strategy and  invest a fraction of the budget  

available  in  wind  technology.

20The existence of  a  stationary  solution  requires  some restrictions on  the discount  rate and on  

the expected rate of  price reduction  for solar  production  technology.  The  discount  rate must  be  

sufficiently large to  outweigh  the growth effect  coming  from  expected price reduction.  If expected  

price reduction  is high,  the area  of  solar  panels  that  can  be  installed with fixed investment 

costs I0 (or I0/2)  exhibits  a  large positive growth  rate which  must  be  more than offset  by  the 

discount  factor  in  order  to  obtain  stationarity.  In real-life, however,  also  limited  area  available 

for solar  panels  and further  limiting  effects  impose an  upper  bound  to  the installed  capacity  even  

when  prices  decline  steeply.  Hence,  simple and realistic adaptations  of  the model  will  provide  a  

stationary  solution  even with low interest  rates and large expected price reductions.  Therefore,  

for T sufficiently large,  the solution  approximates  the stationary  solution.
21With N →  ∞,  i.e., Δt → 0 the price  process of  the level of  the FIT converges  to  a  Geometric  

brownian  motions.
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5  Conclusion

This thesis aims at  determining the optimal  investment choice in  renewable energy 

technologies under uncertain  production  volumes.  One of the key features of the 

model presented  in  this  thesis is  the renewable energy  portfolio  effect.  More specif- 

ically, this means that due to  the different characteristics of the power  output  per  

installed capacity  of wind and solar  technology  the optimal  generation  mix  is  prop- 

erly diversified energy  portfolio  rather than the pure  investment choices.  In  this  way 

the risk of a  shortfall in  the power  supply of the energy park can  be balanced.  

The first two papers (Chapter 2 and 3)  discuss different planning  mechanisms where 

the energy manager  aims at  minimizing  the expected  power  procurement  costs in  the 

absence of a remuneration scheme of renewable energy  technologies.  The first  pa- 

per  (Chapter 2)  introduces the reliability-based  planning  approach,  where the energy 

manager’s planning  paradigm  is  to  choose the renewable energy portfolio  that refers 

to  the minimum  capital expenditures such  that the probability that the energy park 

is  able to  cover  the demand  is  larger than  a  pre-specified threshold.  Obviously, when 

a very  high  level  of reliability  is  imposed,  the investment costs of  the  energy  park  

become exceptionally high. Although  the reliability-based  planning  approach  sta- 

tistically guarantees  a  threshold  probability  of supply-demand  coverage,  it  does not  

take into  account the extend of  constraint  violation in  the scenarios where the supply 

does not  cover  the demand.  The second paper  (Chapter 3)  introduces the cost-based 

planning  approach,  where the energy manager  determines the renewable  energy port-  

folio  that minimizes  the investment costs and the expected  shortfall  costs.  In  this 

planning  approach  the price of energy  in  case of a shortfall  in  the power  supply endo- 

genizes the level  of reliability  associated with the optimal portfolio  choice. Comparing 

these two planning  mechanisms,  we find  that the underlying optimal  portfolio  deci-  

sion is  different,  even  if  – by coincidence –  the level  of reliability  is  the same.  More 

specifically, including  the expected  shortfall  costs implies that the energy manager  

opts for  a properly  diversified  portfolio  at  lower  levels of reliability  compared  to  the
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reliability-based planning  approach  where  the optimal portfolio  choice is  an  undiver- 

sified portfolio.  These two papers discuss the investment problem in  a  static context,  

i.e., where the investment opportunity  is  considered  as a “now-or-never”  problem.  

The third paper  (Chapter 4) discusses the optimal  portfolio  selection problem under  

multiple sources of uncertainty in  a  dynamic framework,  where the possibility  to  defer  

the investment decision  to  the future exists.  In  this  paper,  the optimal investment 

choice in  renewable energy technologies is  analyzed  when  the level  of  the  feed-in  tariff  

and the price of solar  technology  is  subject to  uncertainty in  the future.  This paper  

proposes a  real options  approach,  where  also  the optimal  timing  of the investment  is  

discussed.  It  is demonstrated  in  a  use case that whenever  only  minor  technological 

innovations are expected, a high  level  of the energy price facilitates early investment  

in  renewable energy technologies.  High  expected  innovations in  solar  technology on 

the contrary induces the  energy  manager  to  defer the  investment  decision.  However  

in  between theses  two  scenarios, the  optimal  decision  is  to  follow a staged investment  

strategy and  to  invest partially  in  wind  technology  and  to  keep  the  option to  expand 

the  energy park  alive.  The results of  this work  can be  used to  determine  the optimal  

subsidy retraction rate to  avoid  overcompensation and  underinvestment.
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