
lable at ScienceDirect

Trends in Analytical Chemistry 159 (2023) 116859
Contents lists avai
Trends in Analytical Chemistry

journal homepage: www.elsevier .com/locate/ t rac
A critical review of recent trends in sample classification using Laser-
Induced Breakdown Spectroscopy (LIBS)

L. Brunnbauer*, Z. Gajarska, H. Lohninger, A. Limbeck**

TU Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164-I2AC, 1060, Vienna, Austria
a r t i c l e i n f o

Article history:
Received 26 July 2022
Received in revised form
18 November 2022
Accepted 24 November 2022
Available online 24 December 2022

Keywords:
LIBS
Classification
Discrimination
Identification
Chemometrics
Machine learning
* Corresponding author.
** Corresponding author.

E-mail addresses: Lukas.brunnbauer@tuwien.ac.a
Limbeck@tuwien.ac.at (A. Limbeck).

https://doi.org/10.1016/j.trac.2022.116859
0165-9936/© 2022 The Authors. Published by Elsevie
a b s t r a c t

LIBS-based classification has experienced an ever-increasing interest in the last few years. LIBS is a well-
suited technique for classification tasks based on elemental fingerprinting, providing fast simultaneous
multi-element analysis with stand-off, online, and portable capabilities. The topic of classification gained
even more momentum due to the current hype on machine learning, big data, and chemometrics.
Nevertheless, with many LIBS users not being data scientists by training, classification algorithms are
often used and considered “black boxes,” hindering the adequate application of these tools. This review
provides a comprehensive introduction and overview of the steps necessary (e.g., normalization, back-
ground correction, feature selection) to go from recorded data to a well-performing classifier. Addi-
tionally, the basic principles, advantages, and limitations of the most used machine learning algorithms
reported in LIBS-classification literature are discussed. Finally, the review offers an overview of the
literature published in the field, highlighting the great diversity of applications.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In various fields of modern science but also for routine appli-
cations in industry, food inspection, and health care, there is an
increasing need to discriminate samples with differences in
behavior or origin. The main goal of the efforts is to ensure the
quality of produced goods (e.g., to guarantee specifications) or to
protect them against fraud or imitation. For example, the deter-
mination of provenance, adulteration, and mislabeling is an
important problem inmany areas of the food industry, affecting the
credibility of producers and traders and the rights of consumers [1].
Reliable authentication of samples is not limited to commercial
food products such as wine, liquors, or ham and cheese, the
determination of the authenticity is also imperative in archaeology,
where counterfeit ancient artifacts must be differentiated from
extremely similar authentic objects [2]. In the field of forensic
analysis, the samples collected at a crime scene, including but not
limited to broken glass, automotive paint chips, gunshot residues,
drugs, or blood were often compared with reference samples to
solve crimes, uncover mysteries, and convict criminals [3]. Such
t (L. Brunnbauer), Andreas.
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discrimination and, if possible, identification of samples is also
required in many industrial procedures. For example, for effective
recycling of valuable metals, a comprehensive screening of e-waste
is mandatory [4]. Nowadays, the reuse of synthetic materials (e.g.,
plastic bottles) has become an important issue. However, the
quality of recycled plastic is poor when no reliable sorting method
is used for separating dumped plastics [5].

In recent years much progress has been made in sample clas-
sification based on elemental fingerprinting techniques [6e8]. For
this purpose, elemental analysis using optical or mass spectro-
metric techniques are combined with multivariate statistical anal-
ysis of the obtained data to gain information about differences or
variations within the investigated samples [9,10]. Determination of
the prevailing elemental contents is usually accomplished using
atomic absorption spectrometry (AAS), inductively coupled plasma
optical emission spectrometry (ICP-OES), and inductively coupled
plasma mass spectrometry (ICP-MS). The main benefit of the ICP-
based approaches is that more than one element can be analyzed
simultaneously, enabling fast and sensitive measurement of multi-
elemental fingerprints. In the case of ICP-MS, additional informa-
tion about the isotopic composition of the sample is accessible,
providing further evidence about the geographical origin of the
sample [11]. However, the conventional application of these tech-
niques requires converting solid samples into liquid solutions. For
this purpose, various kinds of digestion, combustion, or fusion
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Total number of recorded LIBS spectra and the number of investigated sample
classes reported in the literature in the last decade.
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procedures were reported [12]. Although these approaches are well
established, the need for a sample dissolution step prior to analysis
is related to some drawbacks. In particular, the time demand for
sample preparation and the risk of sample contamination or ana-
lyte losses must be mentioned [13,14]. These undesired sample
modifications could bias the quality of sample classification, prov-
enance determination, or food authenticity.

Direct analysis of solid samples allows to overcome the prob-
lems associated with sample dissolution. Besides, applying solid-
sampling techniques often permits improvements in sensitivity
since unnecessary sample dilution is avoided. Moreover, solid
sampling techniques such as X-ray fluorescence analysis (XRF) [15],
electron micro probe analysis (EMPA) [15], laser ablation-
inductively coupled plasma-mass spectrometry (LA-ICP-MS)
[16,17] or laser-induced breakdown spectroscopy (LIBS) [18,19]
offer the possibility of spatially resolved analysis, providing infor-
mation about the distribution of major, minor, and trace constitu-
ents within the sample. Compared to LIBS, LA-ICP-MS excels with
its high sensitivity and capabilities of gathering isotopic informa-
tion whereas EMPA can provide sub mm lateral resolution. Never-
theless, LA-ICP-MS usually allows only targeted analysis whereas
EMPA only provides limited sensitivity. Even though, LA-ICP-MS
[20e22], EMPA [23e25], and XRF [26e29] are also used for clas-
sification based on elemental fingerprinting, LIBS has gained
increasing popularity in this field due to its many advantages which
are outlined in the next paragraphs.

LIBS analysis is based on applying a high-power laser pulse on
the sample surface leading to a certain amount of mass being ab-
lated and a localized plasma forming on the ablation spot. In this
plasma, the ablated material is partly atomized, and excited atoms
and ions are generated. When these excited states decay back to
their ground levels, the energy of the corresponding transitions is
emitted in the form of electromagnetic radiation. Collection and
detection of the emitted light provides information about the
elemental composition of the investigated sample spot. In contrast
to most other techniques used for elemental analysis LIBS offers
access to the whole periodic table of elements, thus the main
constituents of all biological and geological materials, the non-
metals H, C, N and O can be measured with this technique.
Another major benefit of LIBS is that this analytic technique pro-
vides not only information about the elemental sample composi-
tion, to some extent also molecular information is accessible [30].
Incomplete atomization of organic sample constituents but also the
recombination of atoms within the laser-induced plasma results in
the formation of excited molecular species e in particular the C2
swan band and the CN violet band. The use of these molecular
emission signals is widely reported for the classification and
discrimination of polymers [31,32].

LIBS allows a non-targeted analysis since no prior knowledge
about sample composition and no preliminary definition of emis-
sion lines detected is necessary. However, the simultaneous mea-
surement of all elements of the periodic table is only possible with
the use of broadband spectrometers covering thewavelength range
from approximately 200 to 900 nm. Besides recording broadband
spectra, only selected spectral regions are monitored in some cases.
With this approach, an improved resolution can be achieved, but
the number of simultaneously accessible elements is usually
limited. Thus, prior to sample analysis a careful optimization of the
measurement conditions is crucial, which is a prerequisite for
sensitive but also selective analysis. In this context instrumental
parameters such as laser energy, gate delay, gate width and the
applied atmosphere (e.g., ambient air, Ar or He) are important.
Using optimized conditions detection limits ranging from the mg/g
level for alkaline and earth alkaline metals to the per mill range for
non-metals can be achieved. Further improvements in the signal to
2

noise ratio as well as in the reproducibility of analysis are possible
by accumulating the LIBS spectra from multiple laser shots. More-
over, frequently various data preprocessing steps are performed,
such as background correction or data normalization, to further
increase the quality of the obtained results.

An attribute thatmakes LIBS especially attractive for provenance
and authentication studies and the detection of product adultera-
tions is its minimal invasive character, which is in contrast to non-
destructive techniques such as XRF or EMPA. Thus, separating
surface layers or coatings is possible, providing access to the un-
derlying bulk material. This characteristic feature of LIBS is vital for
the analysis of samples with a layered structure such as techno-
logical materials containing special surface coatings necessary to
achieve the aspired material properties (e.g., strength, hardness,
stiffness, …) but also all kinds of samples which undergo surface
reactions in the environment leading to the formation of passiv-
ation or corrosion layers.

One of the major challenges in the field of LIBS is quantitative
analysis of the elemental composition. To achieve reliable quanti-
fication, typically an external calibration with matrix-matched
standards is required [33], or other approaches such as
calibration-free LIBS (CF-LIBS) [34] are used. Since quantification is
typically not performed in classification studies, this topic is not
further discussed within this review.

With the above-mentioned advantages, LIBS has become a great
candidate for classification applications in a wide range of fields.
Moreover, the current boom in the machine learning field and a
growing number of advanced chemometric tools available for
processing of LIBS data have boosted the application potential even
more. Nevertheless, as outlined by Hahn and Omenetto [35], if
applied incorrectly, these tools might provide statistically signifi-
cant outcomes (e.g., high classification accuracy) even in cases with
no chemical/elemental difference present in the samples. Classifi-
cation of LIBS data is a complex task requiring expertise in
analytical chemistry, plasma physics, and chemometrics/machine
learning. Neglecting one of these aspects may easily result in over-
fitted models and improper classification results in general which
is, unfortunately, often found in the literature. The following
paragraph aims to summarize the most common malpractices.

Even though recent instrumental developments (lasers with a
higher repetition rate, spectrometers with a higher resolution)
facilitate collection of more andmore data, the amount of data used
for classification studies is still limited which may easily lead to
over-fitting. Fig. 1 shows both the total number of raw LIBS spectra
recorded and the number of sample classes reported in the revised
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literature over the last decade. Although, the amount of data used
for classification studies has steadily increased over the last years,
in most works, today's modern instrumentation is still not used at
its full potential.

The other aspects that are applied suboptimal in the literature
are mostly based on data handling and performance evaluation.
Here, especially the use of the whole LIBS spectrumwithout proper
data preprocessing and feature selection should bementioned. This
approach may lead to over-fitted models (e.g., fitted to the noise of
the data) and the “curse of dimensionality” [36]. Additionally,
hyperparameters are often tuned inadequately resulting in non-
optimal performing models. Lastly, in many cases, the perfor-
mance of the established classification model is evaluated by cross-
validation only resulting in overestimated performance metrics.
Whereas, using independent data (e.g., recorded on a different day)
provides a more realistic performance and reflects the generaliz-
ability of the model.

In this review we provide an overview of good practices in the
field of LIBS-based classification ranging from data pre-processing
to the training of a reliable classifier applicable in the real-life
scenario. Therefore, the review provides an intuitive guide to the
supervised classification methods most frequently applied in the
field. Finally, we present an extensive overview of publications
within the last 10 years and application fields in which LIBS is ex-
pected to play a major role in the future.
Fig. 3. Development of a classifier. The dashed line between the test set and final
validation indicates that the data processing strategy “learned” during the training
phase is to be applied to the test data before the final evaluation can begin.
2. Introduction to chemometrics/classification

From a chemometric perspective, LIBS spectra (Fig. 2 a)) can be
seen as points in a multi-dimensional space. Whereas the analyzed
wavelengths define the coordinate system, the corresponding
spectral intensities specify the position within the space (Fig. 2 b)).

Assuming that substances of the same class deliver similar
spectral fingerprints and that distances in the space are a reliable
measure of the spectral similarity, spectra belonging to the same
class are expected to cluster in a particular region of the LIBS space
representative of the class (Fig. 2 b)). Allocating a spectrum of an
unknown substance in such a space, one gains information about
its identity.

Given a classification problem, it is common to first explore the
relationships in the data, e.g., by employing exploratory tools such
as PCA to find out whether there are chemical differences in the
classes reflected in the LIBS spectra and, if so, whether they are
sufficiently distinct to provide a reliable class separation. Once the
discriminability of the classes by means of LIBS has been proven,
Fig. 2. a) Representative LIBS spectra and b) Intuitive

3

one can proceed with the development of a classification model
(Fig. 3), enabling the mapping of the spectra to their classes.

As the development of a reliable classifier comprises multiple
steps that profoundly influence its quality, each step shall be per-
formed with care and ideally with the ultimate goal of the analysis
e a reliable prediction of new samples e in mind. Even before the
LIBS analysis, one shall ensure that the selected type of samples and
representation of the chemometric (LIBS) space.
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experimental conditions are representative of the future identifi-
cation scenario. After the data acquisition, it is common to divide
the available dataset into a training (approx. 80%) and a test set
(approx. 20%). Whereas the training set is employed in the further
process of classifier development and optimization, the test set
shall be left “untouched” until the final evaluation of the classifier's
performance.

In the subsequent step, it is good to check for anomalies or in-
consistencies in the training data by a visual inspection of the raw
spectra and/or use of various visualization and outlier detection
techniques such as PCA [37]. Depending on their nature and
severity, the detected outliers can be removed. Nevertheless, too
harsh outlier filtering is not recommended as it can distort the
natural data structure crucial for the training. The data selection is
followed by a series of pre-processing steps aiming to reduce
irrelevant spectral variations, which might complicate the training.
Before letting the classifier “learn”, it is common to reduce the
dimensionality of the “learning” space by a down-selection or en-
gineering of spectral variables representative of the involved clas-
ses. Throughout these steps, it is often helpful to track changes in
the data structure by means of an unsupervised technique such as
PCA. Once the data become representative of the true class distri-
butions, one can employ a suitable classification algorithm to
“learn” the function which maps the spectra to the corresponding
classes.

In this process, the classifier's characteristics (hyperparameters)
often need to be “tuned” for the particular scenario, which is
typically done by either using a validation set (a subset of training
data set aside for the purpose of model optimization) or a process of
k-fold cross-validation [38,39]. The latter is based on splitting the
training data into k subsets. The k-1 subsets are then employed for
the training, and the left-out (k-th) subset is used for validation.
This process is repeated k times until all subsets have been
employed for the validation once. As the prediction results of the
individual subsets are averaged to provide an estimate of the
classifier's performance, k-fold cross-validation is typically
preferred and perceived as a more reliable estimate of the model's
performance. Additionally, by reporting the corresponding stan-
dard deviation, it is possible to gain insight into the classifier's
stability (sensitivity to outliers/overfitting). As Fig. 3 demonstrates,
the process of classifier development is iterative - if the classifier's
performance does not meet the expectations, it is possible (and
recommended) to return to any of the preceding steps and alter the
employed strategy. The different settings can be compared by
means of a k-fold cross-validation, which allows for the selection of
the best-performing model.

Having the final classifier, its ability to correctly identify new
samples shall be tested on an independent set of samples repre-
sentative of the future application scenario. Nevertheless, such an
additional set of data is often difficult to obtain (e.g., high cost). One
therefore, accommodates the scenario of an independent validation
set by splitting the data into training (approx. 80%) and test set
(approx. 20%) as described above. Only at this point does the test set
become revealed, subjected to the pre-processing strategy devel-
oped during the training, and used for the final evaluation of the
model's prediction ability. As previously outlined, given the high
sensitivity of the spectral fingerprint to the instrument character-
istics and experimental conditions, conclusions about the gener-
alization ability of the LIBS classifiers trained on spectra coming
from the same measurement as the validation set could be
disputable and might require additional training data obtained
under different conditions.

To shed more light on the individual stages of analysis, the
following sections provide a detailed discussion of each stage
together with the methods employed for their handling, references
4

to well-known reviews on the topic, as well as specific application
examples from the LIBS literature.

2.1. Data preprocessing

After the data selection, one typically involves a series of pre-
processing steps aiming at the reduction or complete removal of
spectral variations/artifacts arising from phenomena other than the
chemical nature of the classes (e.g., fluctuations of the laser energy
or sample homogeneity). Whereas a suitable pre-processing
strategy can greatly enhance the effectiveness of the training and
stability of the corresponding classifier, improper treatment can
distort the class distributions and negatively impact the classifier's
performance. As outlined before, the suitability of the different
strategies for the given scenario can be investigated by means of
the k-fold cross-validation. In the field of LIBS, three steps discussed
below are commonly employed for data preprocessing.

� Background correction (e.g., to compensate for continuum
background in LIBS spectra)

� Data normalization (e.g., to address varying measurement
conditions)

� Removal of noise
2.1.1. Background correction
Background correction is not only of interest in the field of LIBS

but also in all other spectroscopic techniques. Schulze et al. provide
an excellent review of approaches for background correction in
various spectroscopic techniques [40]. LIBS spectra often exhibit
noticeable background signals originating from various sources
within the plasma. For reliable classification, only the contribution
of the analytes to the observed signal intensities should be
considered. The two major sources of continuous background sig-
nals are caused by Bremsstrahlung and radiation caused by
recombination of species present in the plasma [41e43]. Although
continuous background signals can be drastically reduced by
careful optimization of the time and duration used for detection
(gate delay and gate width of a gated detection system), back-
ground correction of LIBS spectra is still an important step in data
preprocessing [44]. Gornushkin et al. proposed a method using
polynomial fitting through a number of intensity minima in the
spectrum for background correction [45]. This approach was
improved and updated by Sun and Yun [46]. Yaroshchyk and
Eberhardt introduced a modification of Friedrichs’ method [47] for
the correction of LIBS background [48]. Other approaches for
background correction reported in LIBS literature include a spline
interpolation [49] or Lorentz fitting [50]. In the work of K�epe�s et al.
[51], different background correction approaches to LIBS datasets
are investigated and comprehensively discussed.

2.1.2. Data normalization
One of the main goals of spectral normalization in the field of

LIBS is the reduction of signal fluctuations observed during mea-
surement. The main causes for unwanted signal fluctuations are
often found in changing measurement conditions such as laser
energy, efficiency of light collection, or defocusing of the laser.
Additionally, insufficient sample homogeneity or changes in the
morphological properties of the sample (e.g., roughness) may also
lead to unwanted signal fluctuations [52e54]. In the field of LIBS,
there are several established approaches for signal normalization
summarized in a reviewarticle by Guezenoc et al. [55]. Po�rízka et al.
investigated the influence of different data normalization strategies
on classification performance using LIBS [56]. Zorov et al. provide a
review article on different normalization strategies for LIBS [57].
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The most commonly used approaches in LIBS literature are
normalization to the total emission intensity, normalization to an
internal standard, and normalization to the standard normal
variate (SNV), which will be discussed in more detail below. Other
normalization approaches include normalization to the Euclidean
norm, normalization to the signal maximum or minimum,
normalization to the background [58], normalization to the ablated
mass [59], normalization to the acoustic signal measured after the
laser pulse [57], and normalization to plasma images [60,61].

Normalization to the total emission intensity: The idea behind
normalization to the total emission intensity (often also referred to
as normalization to the total area) is the correlation between the
total signal recorded in a LIBS spectrum and the laser energy [62].
Therefore, fluctuations in laser energy can be compensated by
normalization to the total emission intensity.

Normalization to an internal standard: Normalization to an
internal standard is an effective approach to compensate for
instrumental drifts and measurement fluctuations. In this case, the
signal from an element that is homogeneously distributed within
the analyzed sample is used for normalization. Observed signals
originating from this element should be constant during the mea-
surement. If measurement fluctuations occur, the internal standard
is equally affected as the analytes of interest and, therefore can be
used for compensation. For proper application of an internal stan-
dard, some requirements have to be fulfilled, which is difficult in
many cases [63].

� The internal standard must be homogeneously distributed
within the sample

� The internal standard should have similar physical and chemical
properties as the analyte of interest to be equally affected by
measurement fluctuations

If no suitable internal standard is available within the investi-
gated sample, some works have proposed the application of thin
films (Au or spiked polymers) onto the surface of the compact
sample, which can be used as an internal standard [53,64,65].

Normalization to the standard normal variate: This approach
for data normalization is well-established in the field of IR- and
Raman-Spectroscopy [66,67] and has recently also found its way to
the field of LIBS [68,69]. When performing standard normal variate
normalization, each spectrum is shifted to a mean value m¼ 0 and a
standard deviation s ¼ 1. Using this approach, a significant
reduction of shot-to-shot variations in LIBS signals was reported in
the literature.

2.1.3. Removal of noise
A LIBS spectrum is always a superposition of useful spectral

information and noise originating from the measurement. Tognoni
et al. provide a comprehensive review of signal and noise in LIBS
analysis [70]. Schlenke et al. describe three fundamental sources of
noise present in LIBS spectra: photon noise, detector noise, and
flicker noise [71], whereas Mermet et al. describe four different
sources of noise in LIBS analysis: noise caused by plasma fluctua-
tions, shot noise due to the random arrival of the photons on the
detector, detector noise, and drifts [72]. To improve the perfor-
mance of classification using LIBS data, one approach is to reduce
noise in the data set as much as possible. There are several methods
used for this task reported in the literature, most of which are based
on a wavelet decomposition transformation (WDT) [73,74] of the
LIBS spectra [71,75,76].

2.2. Extraction of spectral features

Since LIBS is a non-targeted analysis, observed spectra often
5

have a great number of emission signals present, some of which can
contribute to a classification task and others might not contain
useful information. Broadband LIBS spectra covering wavelength
ranges of >500 nm often consist of up to 10,000 data points per
spectrum. Therefore, each measured LIBS spectrum can be repre-
sented as a point in a 10,000-dimensional space. Without proper
reduction of spectral data, one could easily run into the so-called
“curse of dimensionality” when establishing multivariate classifica-
tion models. The “curse of dimensionality” is a term introduced by
Bellman in 1961 [36] and describes various problems when
analyzing data in high-dimensional spaces if the number of
measured data points is much lower than the dimensionality of the
space itself. As a rule of thumb, in the field of machine learning, at
least five training samples are necessary for each dimension of the
data space [77]. Therefore, without proper data reduction and
extraction of significant spectral features, one would need to
measure more than 50,000 LIBS spectra to circumvent the “curse of
dimensionality” for proper classification results. When extracting,
e.g., 20 significant variables from the LIBS spectra, the dimension-
ality of the data space is reduced, and the amount of necessary
training samples is reduced to a reasonable number [78].

By now, a great variety of feature selection approaches has been
reported in the field. The simplest is based on the extraction of all
emission lines present in the spectrum. Although fulfilling the goal
of dimensionality reduction, this approach might still retain spec-
tral information irrelevant to the sample's identity, such as emis-
sion signals of impurities or measurement contributions (e.g.,
emission lines originating from the atmosphere e Ar, He, or air).
Including such variables in the model might not only prolong the
computational times but also result in “memorization of noise”
(overfitting), leading to a poor classification of new samples
(generalization ability). Thus, many works in the field use an
alternative approach of manually selecting spectral intensities or
spectral regions subjected to the analysis.

The concept of manual selection can be further extended to
“feature engineering,” which involves the concentration of the
relevant spectral information in a set of derived features (so-called
spectral descriptors) representing unique spectral traits of the
investigated classes. In the field of LIBS, these are often spectral
intensities or integrated spectral regions automatically accounting
for the baseline. Nevertheless, definition of more complex non-
linear variables derived from multiple spectral regions is possible.
As this approach requires chemical knowledge about the problem
not always available to the analyst, it can be accompanied by in-
formation from another method such as PCA. For more information
on spectral descriptors, we refer the readers to the work of Loh-
ninger and Ofner [79].

Although the training of a classifier in a highly specific “chemical
space”might greatly enhance the classifier's robustness and reduce
the computational times, the manual definition of suitable de-
scriptors requires expert knowledge and time. One can therefore
generate a larger number of variables and employ a variable se-
lection strategy to fully automatize the feature selection process. In
general, three types of methods are recognized. The so-called filter
methods select features prior to the modeling based on some kind
of metrics evaluating their suitability, such as information gain,
correlation, or Chi-square [80]. A recent example of a filter
approach in the field of LIBS was presented in the work of Huffman
et al. [81]. In contrast to filter methods, the so-called wrapper
approach [82] bases the evaluation of different feature combina-
tions on the performance of a classification algorithm. The gener-
ation of variable subsets in filter and wrapper methods can be
governed by different algorithms such as genetic algorithm, for-
ward or backward selection, or successive projection algorithm
(SPA) [83]. This was demonstrated in the work of Pontes et al.
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employing different modes of variable selection for the classifica-
tion of Brazilian soils [84]. The last feature selection approach - the
embedded method - selects the features automatically during the
algorithm's execution, either as its normal (e.g., PLS-DA) or
extended functionality (e.g., by including a penalty in the objective
function of a classifier). Additionally, there is a number of hybrid
modes [85] combining the different approaches. For more infor-
mation on the available options, we refer the readers to general
works on the topic [80,86e94].

Last but not least, many works report dimensionality reduction
by means of PCA [78], which allows for a semi-automatized con-
centration of informative spectral content in a reduced set of var-
iables. Nevertheless, these might not always represent an optimal
space for the classifier training (see Section 2.3. for more details).
Furthermore, as pointed out by K�epe�s et al. [95], with the increasing
size of the modern LIBS data, the computational and memory re-
quirements become significant. The authors, therefore, suggest
Restricted Boltzmann Machine (RBM) - an unsupervised method
based on artificial neural networks (ANN) - as an effective PCA
alternative for the (pre-)processing of large LIBS datasets. With the
increasing data volumes and recent advances in the deep learning
field, the development of advanced ANN-based methods for auto-
mated feature extraction is currently on the rise (see the work of
Zhao et al. presenting a convolutional neural network (CNN)-
assisted strategy for classification of iron ores [96]) and is expected
to further grow in the future [97e99].

Having the final variable set, it might be necessary to perform a
column-wise (feature-wise) centering and scaling of the data ma-
trix. This is especially important if the features have greatly
different ranges (e.g., raw intensities and integrated peak areas), as
otherwise, features with greater scales might dominate the
analysis.

Highlighting the importance of proper data preprocessing and
feature selection, PCA (introduced in more detail in the next
chapter) is applied to an exemplary LIBS dataset of 23 different
polymer composite materials (Fig. 4). The dataset was recorded
using a commercial LIBS J200 system (Applied Spectra, Inc., Sac-
ramento, CA) operating at awavelength of 266 nmwith a 6-channel
Cherny Turner Spectrometer and CCD detection system under Ar
Fig. 4. Score-score plot of the same dataset of 23 polymer composite materials calculated wi
of obtained spectra (SVM), feature selection and integration with baseline subtraction and s
intensities of raw LIBS spectra are used as input variables for the PCA.

6

atmosphere. For each sample, 50 LIBS spectra on individual sample
positions were recorded with each LIBS spectrum resulting from
the accumulation of 50 laser shots (resulting in a total number of
2500 laser shots applied to each sample). Two different cases of
data preprocessing are shown: In one case (proper data pre-
processing), spectra are normalized (SNV) to compensate for
instrumental drifts, atomic and molecular emission signals origi-
nating from the sample are identified and integrated with baseline
subtraction, and the so-generated variables (total number of 41) are
scaled prior to calculating the PCA. In the other case (no data pre-
processing), all spectral intensities of the raw spectra are used as
input variables for the PCA. Looking at the score-score plots, better
separation of data from individual sample types is obtained after
proper data preprocessing. The intra-class variability of each class is
significantly reduced using data preprocessing (clusters are more
concentrated at a location compared to more spread-out clusters
obtained with no data preprocessing). Additionally, the number of
outliers is reduced by data preprocessing. These two aspects are
typically compensated by proper spectra normalization, noise
removal, and background correction. Besides these considerations,
score-score plots obtained after no data preprocessing might be
biased showing information that is not chemically relevant since
emission signals not originating from the sample are also included.
Therefore, separation of two classes might be based on changing
background or signals originating from the atmosphere (e.g., Ar, He,
H, O, N). Using feature selection can not only circumvent this
problem but can also simplify the interpretation of obtained results.
Additionally, it should be noted that the computational time of the
PCA increases significantly if no feature selection is carried out.
2.3. Exploratory data analysis (EDA)

Throughout the classifier development, it is often helpful to gain
a better insight into the data. This is typically achieved by means of
unsupervised techniques providing either a graphical representa-
tion of the multivariate space or other (non-visual) information
about patterns and relationships within the data. Over the past few
years, principal component analysis (PCA) has become one of the
most widely employed techniques used for this purpose, which is
th different data preprocessing. a) “Proper data preprocessing” including normalization
caling of the variables prior to calculating the PCA. b) “No data preprocessing” spectral
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well reflected in the LIBS classification literature where PCA occurs
in a myriad of contexts, from data visualization to inference of
variable importance and chemical relationships. As an extensive
review of this topic was recently provided by Po�rízka et al. [78], the
following discussion is limited to the most important features and
applications of the method.

Assuming that the maximum information is stored along with
the directions of greatest data variation, PCA represents data in
terms of a new coordinate system in which the individual di-
mensions (the so-called principal components) are mutually
orthogonal and sorted in the descending order of the represented
variance. The projections of data onto the planes spanned by
different combinations of principal components can therefore
result in greatly informative two-dimensional insights into the
multivariate data (revealing data clusters and possible outliers).
Furthermore, by displaying the loading/loading plots on top of the
score plots (constructing the so-called bi-plot, Fig. 5), one can
investigate the relationships between the clusters and spectral
features contributing to their formation, which might greatly
enhance the chemical understanding and interpretability of the
data. Data shown in Fig. 5 is from the same experiment described in
the previous section.

Nevertheless, when interpreting such visualizations, it is
important to realize that PCA represents an insight into the data
capturing the greatest variation in the spectral features, which
might or might not represent the underlying variation among the
classes. Thus, the clusters revealed in the plots generated by the
first few PCs become representative of the true class distributions
only if no other (interfering) sources of variation dominate. This is
also important when employing PCA for dimensionality reduction
(letting the classifier learn class distributions in the reduced space
of PCA instead of the original one). Such an approach is based on
the assumption that the first few retained principal components
contain the information required for the class discrimination while
the last components mainly contain noise.

The fact that the human brain is one of the best pattern recog-
nizers in the world often leads to a tendency to use PCA as a clas-
sification tool. Nevertheless, as stressed in the work of Oliveri [100],
this approach is erroneous as PCA is an unsupervised technique and
therefore provides no trustworthy means of estimating the pre-
diction error.
Fig. 5. Bi-plot showing the relationships between the clusters and emission lines
responsible for their formation.
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3. Supervised classification

Given the distribution of training data is representative of the
true class distribution, one can employ a classification algorithm to
estimate a mathematical function mapping the spectrum (input) to
a class label (output). The “learned” function can subsequently be
used for mapping new samples to their class labels. The process of
training and classification can be perceived from different points of
view.

From a probabilistic perspective, each class can be described in
terms of a probability distribution. Thus, each point (which repre-
sents a spectrum) in the LIBS space can be assigned a probability of
belonging to a particular class, which is greatest at the centroid of
the distribution, evaluates to 0.5 at an interface of two classes
(separation boundary) and further decreases to 0 as the distance of
the point from the centroid increases. From this perspective,
training can be seen as modeling the class distribution from the
distribution of training data. Having established a model, one can
identify new spectral points by evaluating their probability of
belonging to each class and assigning them a label of the class
exhibiting the highest probability.

From a geometric point of view, training can be perceived as a
division of the LIBS space into subspaces representing the indi-
vidual classes. Based on its spectral characteristics, a new point
ends up in a particular region of the space (defined during training)
and gets assigned a corresponding class label. Depending on the
classifier employed, the class boundaries are modeled by a linear
(e.g., LDA or PLS-DA) or a non-linear (e.g., kNN, ANN) function,
which results either in a simple linear hyperplane or a more com-
plex non-linear hypersurface separating the classes. The position
and shape of the boundary are given by parameters learned during
the training with the goal of achieving optimum discrimination of
the training data. While linear functions provide robust discrimi-
nation in linearly separable cases, their lack of flexibility might
result in poor separation of non-linear data. Although the non-
linearities can be accounted for by non-linear classifiers, the
increased flexibility of non-linear models combined with an effort
to achieve perfect discrimination of the training data can result in
boundaries perfectly separating the training datawhile delivering a
poor prediction of new samples (known as overfitting resulting in
poor generalization). The balance between the lack of flexibility
(high bias) and poor generalization ability (high variance) of the
classification model is known as the bias-variance trade-off (Fig. 6)
and represents the ultimate challenge of designing a reliable clas-
sifier. In addition to the classifier type (linear or non-linear), it can
be influenced by a set of hyperparameters controlling the training.
Thus, each type of classifier is based on different assumptions about
the data and comes with different hyperparameters to be tuned.

As implied by the “no free lunch” theorem [101], no single al-
gorithm is able to deliver superior performance in all classification
problems of the world. Therefore, the following section aims to
provide an informative overview of the machine learning algo-
rithms most commonly employed in the LIBS classification litera-
ture, together with specific application examples from the praxis. A
note-worthy comparison of different data evaluation approaches
and the performance of various classification algorithms was
generated within the EMSLIBS 2019 contest. Here, the organizers
provided an extensive LIBS dataset challenging the data handling
skills of the participants. The results of the contest were published
by Vr�abel et al. [102] concluding “that even the simple classification
(chemometric) techniques provided by a sufficient data pre-
processing (spectroscopic data exploration, feature selection) can
overcome the most recent machine learning approaches”.



Fig. 6. Bias-variance trade-off. a) Overly flexible boundaries (overfitting, high variance). b) Lacking flexibility of the decision boundaries (high bias). Circles represent training data
and squares represent test data.
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3.1. Linear discriminant analysis (LDA)

In linear discriminant analysis (LDA) [103], the discrimination is
based on a linear decision boundary optimally separating two-class
distributions under the assumption that each class has a normal
distribution and the same correlation structure (common variance-
covariance matrix) (Fig. 7).

The probability density of each class is first estimated from the
training data using the class centroid (position of the class in the
space) and a pooled variance-covariance matrix (dispersion) com-
mon to all classes. The identification of new samples proceeds by
computing the posterior probability of each class depending on the
Mahalanobis distance (distance between the point and distribution
mean corrected by the inverse covariance matrix) and the prior
probability of the class (the fraction of all samples belonging to that
class) and a subsequent assignment of the sample to the class with
the greatest probability. The optimal decision boundary is formed
where the density contours with equal probability of the class
intersection (i.e., the Mahalanobis distance of the point to both
class centroids adjusted by a “prior probability offset” is equal). In a
multi-class scenario, one such linear delimiter is defined for each
pair of the classes.

Despite the assumptions of class normality and common
covariance (which are rather uncommon in real life), LDA can often
Fig. 7. Linear discriminant analysis. a) Distribution of the training data, classes hav
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result in sufficiently good discrimination of the classes. Neverthe-
less, in scenarios with a greater number of dimensions than sam-
ples (n > p), LDA has no mathematical solution. Thus, LDA is
especially problematic in the field of spectroscopy, where the
number of dimensions often exceeds the number of observations
by far. This limitation can be addressed by combining LDA with a
feature selection strategy (as done in the work of Pontes et al. on
the classification of Brazilian soils [84]) or, more commonly, by a
PCA dimensionality reduction. Examples of the PCA-LDA in-
vestigations from the field of LIBS include the classification of
archaeological and paleontological materials [104], bricks from
different localities [105], bone samples originating from different
individuals [106], as well as differentiation of tissues as a real-time
feedback mechanism during clinical laser surgery applications
[107]. However, as discussed previously, PCA might or might not
result in a training space representative of the true class
distributions.
3.2. Partial least squares discriminant analysis (PLS-DA)

Partial least squares discriminant analysis (PLS-DA) is a classi-
fication technique combining dimensionality reduction (PLS) and
linear discrimination (DA) in a single algorithm, which makes it
especially suitable for handling the high-dimensional data common
e the same covariance matrix. b) Linear decision boundary found by the LDA.



L. Brunnbauer, Z. Gajarska, H. Lohninger et al. Trends in Analytical Chemistry 159 (2023) 116859
in spectroscopy. In contrast to PCA, PLS searches for directions in
space, maximizing the covariance between the spectral features
and the class labels. The original set of features is reduced to a small
number of so-called latent variables (LV) or factors capturing the
greatest variation in the spectra relevant for the class discrimina-
tion. The DA part of the algorithm proceeds with finding a linear
decision boundary allowing for the classification of new samples
projected to the reduced space. The identification efficiency of a
PLS-DAmodel is affected by the number of latent variables selected
by the user. Whereas too few LVs might not retain enough infor-
mation for constructing a reliable classifier, too many LVs might be
counterproductive and result in overfitting. Obviously, the optimal
number of LVs is characteristic of the given classification scenario
and shall be determined bymeans of cross-validation. In the field of
LIBS, PLS-DA was employed for the classification of explosives
[108e110], consumer plastics [111], or minerals [109,111]. Further-
more, Merk et al. [112] developed an efficient approach for high-
speed sorting of metal scrap based on PLS-DA. The authors pro-
vide an insightful description of developing a classifier for an in-
dustrial setting. The choice of PLS-DA was reasoned by the
simplicity enabling for a fast evaluation of new samplese an aspect
highly relevant for real-time analysis.

Despite the favorable ability of PLS-DA to handle entire LIBS
spectra, the term PLS-DA encompasses an entire group of algorithm
modifications, each suitable for a particular classification scenario.
As discussed by Brereton and Lloyd [113], the lacking knowledge of
the method might result in its inappropriate use and misinterpre-
tation of the results. The interested readers are, therefore, greatly
referred to a critical tutorial by Pomerantsev and Rodionova [114].
3.3. Support vector machines (SVM)

SVM is a very powerful method proposed by Vapnik and co-
workers in 1992 [115], delivering a great performance in a wide
range of classification scenarios, from linearly separable cases to
highly complex non-linear problems. The binary (two-class)
discrimination proceeds by means of a separating hyperplane
constructed in away to provide a good separation of the two classes
while maximizing the distance (known as margin) between the
hyperplane and the closest training observations on both sides of
the plane (Fig. 8).

The exact position of the hyperplane is controlled by the so-
called support vectors e usually a small number of training
Fig. 8. Linear separation of the classes. a) There are infinitely many linear boundaries resultin
linear separation of the training data while maximizing the distance of the closest training
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observations located closest to the margin. The width of the margin
is governed by the hyperparameter C reflecting the tolerance to-
wards the misclassification of the training points. While high C
values call for little misclassification tolerance resulting in a narrow
margin highly fit to the data, lower C values allow for wider mar-
gins resulting in the poorer classification of the training data but a
better generalization of the model (Fig. 9). Thus, the parameter C
plays an important role in defining the variance-bias trade-off of
the SVMs, which is important for achieving good performance. As
the optimal value of C largely depends on the problem at hand, it
shall be determined by means of cross-validation.

Once the separating hyperplane is defined, new samples can be
assigned with a class label depending on which side of the
boundary they fall.

Nevertheless, many real-life distributions are not linearly
separable. To account for this fact, the SVM algorithmwas extended
to a non-linear approach by introducing the so-called kernel trick
allowing the construction of separating hyperplanes in an
expanded (non-linear) space without the need for its explicit
construction (Fig. 10). This way, the inherently linear SVM achieves
a non-linear separation of classes. One of the most widely applied
kernels is the radial basis function (RBF), regulated by a hyper-
parameter gamma. In the case of applying RBF, one typically per-
forms a simultaneous optimization of the hyperparameters C and
gamma (e.g., by employing a grid search as demonstrated in the
work of Sheng et al. [116]).

Although the original SVM concept applies to a two-class sce-
nario, it can be extended to multiple classes by employing a one-
versus-one or one-versus-all scenario followed by voting.

Due to their flexibility, SVMs can achieve superior performance
in a wide range of scenarios, including high-dimensional spaces,
which can be especially beneficial in the field of spectroscopy.
However, the superior performance is conditioned by a suitable
parameter tuning, which requires a good understanding of the al-
gorithm and problem at hand. In the field of LIBS, SVMs were
employed by Dingari et al. [117] for the analysis of pharmaceutical
samples. The authors used RBF kernel and performed grid search
over a wide range of hyperparameters to optimize the model.
Additional works investigated SVMs for the classification of steel
samples [118], iron ores [116], and sedimentary rocks [119].
Recently, K�epe�s et al. [120] demonstrated different approaches to
the interpretation of SVM models on an example of 19 cyano-
bacterial strains.
g in perfect separation of the training data. b) Decision boundary of the SVMs provides
samples to the boundary from both sides.



Fig. 9. Regularization of the linear SVMs. a) High C values result in a small number of support vectors defining the boundary and thus a higher tendency to overfit. b) Low C values
allow for a greater number of support vectors and a better generalization of the decision boundary. Circles represent training data and squares represent test data.

Fig. 10. Kernel trick. a) The two classes cannot be separated by a linear decision boundary. b) Transformation of the space by a radial basis function allows for linear separation of the
classes. c) Back-transformation of the data to the original space results in a non-linear decision boundary. Circles represent training data and squares represent test data.
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3.4. K nearest neighbors (kNN)

kNN [121] is a very simple non-linear classification method
based on the assumption that the similarity of the samples in the
multivariate space is reliably represented by their mutual distances.
The classification of a new sample is achieved by the identification
of its k nearest neighbors in the training data (Fig. 11). The class of
the unknown sample is derived from the class of the nearest
neighbors with the greatest frequency.

As Fig. 6 shows, mapping the multivariate space according to
this rule results in a non-linear decision boundary. While a k of 1
results in complex boundaries overfitting the training data, larger k
results in their smoothening/linearization. Whereas the first sce-
nario leads to misclassification of new samples due to poor
generalization, the second scenario might result in wrong pre-
dictions due to insufficient flexibility of the decision boundary.

In addition to k, the efficiency of a kNN classifier greatly depends
on the distance metrics: the better its ability to reflect the sample
similarity, the better its performance. The distance-based nature of
the kNN classifier additionally implies its sensitivity to measure-
ment units and pre-processing steps. All of the above-mentioned
(hyper)parameters shall be tuned by cross-validation to deliver
an optimal classifier for the problem at hand. Nevertheless, the
validity of these statements is conditioned by the basic assumption
of kNN. As the dimensionality (the number of spectral features)
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increases, the samples become spread across the outer range of the
space, the mutual distances become similarly large, and the idea of
the sample's “neighborhood” diminishes.

All in all, kNN is a simple and easy-to-implement method
requiring no training. However, its reliability is conditioned by the
preservation of local neighborhood (low-dimensional spaces or
data “living” within a low-dimensional subspace or sub-manifold).
Additionally, as the number of samples increases, kNN becomes
computationally inefficient.

Specific application examples of kNN from the field of LIBS
include classification of polymer e-waste [122], quality control of
toys [123], and discrimination of soft tissues [124].

3.5. Random forests (RF)

Random forests [125] are robust non-linear classifiers based on
the idea of “ensemble learning” e a method combining multiple
weak learners (here decision trees) into a single classifier with
superior performance. Training of a single decision tree involves
the successive splitting of the multivariate space into subspaces
according to a threshold on a variable resulting in the best sepa-
ration of classes. The greedy nature of this process (i.e., its ultimate
effort to achieve a perfect separation of the training data) results in
a high tendency of the decision trees to overfit, which leads to a
poor prediction power of the individual trees (Fig. 12).



Fig. 11. Basic principle of kNN. Class assignment of new samples depends on the
identity of k nearest training samples considered.
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RF addresses this issue by combining multiple decision trees,
each overfitting a different part of the data and averaging their
results (Fig. 12). As the averaging effect improves with increasing
tree diversity, each tree is trained on a slightly different subset
(bootstrap sample) of the original data and considers only a random
subset of all features at each splitting. The classification of new
samples happens by majority voting of all trees. As each bootstrap
sample includes only approx. 2/3 of the original observations, it is
possible to estimate the predictive performance internally by
means of the remaining 1/3 of observations left out from the
training of each tree (known as out-of-bag sample (OOB)), which
allows for even more efficient use of the training data than cross-
validation. Additionally, the OOB sample is used to calculate the
variable importance, which is another attractive trait of RF coming
Fig. 12. Non-linear decision boundaries of tree-based methods. a) Decision boundaries of a
results in decision boundaries with greater generalization ability. Circles represent training
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“for free” with its training.
The main hyperparameters of RFs are the number of trees and

the number of features considered at each splitting. The perfor-
mance usually improves with the increasing number of trees,
however, only up to a certain level (typically 70 to 100 trees).
Adding more trees does not improve the performance but solely
increases the computational complexity. The number of features
considered has typically little effect and is often set to the empiri-
cally determined optimum of the square root of the total number of
features [126].

All in all, the influence of hyperparameters on the predictive
performance is usually smaller than in other advanced classifica-
tion algorithms such as SVM. Thus, random forests often deliver
great results even in the hands of non-experts, which gives them a
unique position in the field. In the field of LIBS, RF was employed by
Qi et al. [127] for the classification of archaeological ceramics. The
authors used different pre-processing steps and optimized the
model by trying different variable importance thresholds. Addi-
tional works employing RFs aimed at the classification of slag
samples [128], iron ores [116], coal ash [129], and wines [130].
3.6. Artificial neural networks (ANN)

The term “artificial neural networks” (ANN) designates a set of
highly complex and diverse classification algorithms which differ
considerably in their architecture. The common feature of ANNs are
rather small and simple processing units (“neurons”) which are
interconnected in various ways and which process one or several
inputs to form an output signal which is then propagated to other
connected neurons. While the transfer function (also called “acti-
vation function”) of an individual neuron is rather simple (for
example, a hyperbolic tangent applied to the weighted sum of the
inputs), the complexity of the overall model function arises from
the connection of many of these neurons.

Depending on the structure and the types of connections,
different types of networks can be distinguished, for example,
multi-layer perceptrons (MLP), convolutional neural networks
(CNN), or self-organizing maps (SOM). As the MLP type pre-
dominates in the LIBS literature, the following discussion will be
constrained to this architecture. Nevertheless, the fast development
in the ANN field and the great range of application possibilities it
has to offer result in ever greater interest of the LIBS community in
this technique. In order to gain a greater insight into the topic, we
single decision tree tend to overfit the training data. b) Averaging of 100 decision trees
data and squares represent test data.
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refer the readers to a recent review of Li et al. [131], providing an
exhaustive overview of the intersection between the LIBS and ANN
fields.

The MLP architecture in its modern form was introduced by
Werbos in 1974, who provided the backpropagation of errors as a
then-new training method [181]. As depicted in Fig. 13, a typical
MLP consists of an input layer (each neuron represents a particular
spectral variable) and an output layer (each neuron represents a
particular class) connected by one or several hidden layers. This
structure enables a non-linear mapping of the input (spectral fea-
tures) to the output (class label). When applying an ANN to classify
a spectrum, each neuron of the input layer is connected to a
particular spectral feature which is then fed forward to the next
layers until the signal front arrives at the output layer. The indi-
vidual layers are fully connected so that each neuron receives all
output signals of the previous layers, weighting the received signals
before processing the sum of these signals by the non-linear acti-
vation function and passing it on to the next layer. In the final step,
the output is rescaled by the so-called softmax function to values
representing the class probabilities.

The “strength” of the individual connections is governed by
weights adjusted during the training by means of the back-
propagation algorithm, which tries to minimize the output errors
in an iterative way.

This process has several implications for the application: The
basic ANN architecture and the wide range of options it offers
(number of hidden layers, number of neurons in each layer,
learning rate, etc.) results in great flexibility and ability of ANNs to
learn any kind of discriminatory hypersurface (Fig. 14). Neverthe-
less, the more complicated the architecture becomes, the greater
the number of parameters (weights) is which need to be adapted
during the training phase and the greater the risk of overfitting
becomes (especially if the number of training samples is small).
Additionally, a higher number of neurons increases the computa-
tional demand resulting in long training times.

All in all, ANNs provide extreme flexibility and exciting appli-
cation potential. However, their performance heavily depends on
the knowledge and experience of the analyst as there is a consid-
erable set of hyperparameters to be tuned. A detailed listing of
specific ANN examples in the field of LIBS can be found in the
above-mentioned review of Li et al. [131]. For more details we
Fig. 13. Typical structure of a multilayer perceptron (MLP). Each neuron in the input
layer represents a particular spectral feature, and each neuron in the output layer is
one of the target classes. Neurons in the hidden layer(s) are responsible for a non-
linear mapping of the spectral features to the classes.
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would like to refer the interested reader to the excellent compre-
hensive introduction and overview of ANNs applied for LIBS data
analysis provided in the book chapter by Vr�abel et al. [132].

3.7. Soft independent modelling of class analogy (SIMCA)

Soft independent modeling of class analogy (SIMCA) is the only
representative of the so-called class-modeling approaches pre-
sented in the current review. It is the oldest and most commonly
used class-modeling approach [133,134] and gave a lot of impetus
to classification methods in general. SIMCA results in a one-class
classifier that positively identifies a class without looking at other
(in contrast to, for example, discriminant techniques, such as PLS/
DA). The class modeling approach is in some way similar to an
“inverse” outlier detection, posing the question of whether a
particular observation belongs to an assumed distribution or not.

The principle behind SIMCA is to create either a box or an
ellipsoid around a particular class. Because different classes are
normally recognized by different sets of variables, SIMCA tries to
focus on the significant class-specific variables by processing the
data for each class separately. The significant variables for a
particular class are extracted by calculating the principal compo-
nents (PCs) of the particular class, retaining only those components
which contribute to the class model. The identified (latent) vari-
ables then form a p-dimensional coordinate system, where p can be
different for each class (Fig. 15). The class box (or the ellipsoid) is
then formed by establishing limits along each axis such that the
majority of the class data is locatedwithin these limits. For ellipsoid
models, the Mahalanobis distance from the class center is used
instead of the hard limits along the axes. The critical distances of
the classification boundaries are established by calculating the 95%
(or 99%) confidence intervals for the class to be within the interval.

Unknown objects are classified by projecting them into the PC
space of each class and checking whether this object falls into the
particular class boundaries. Please note that an unknown obser-
vation may fall into several class boxes resulting in ambiguities
(hence the expression “soft” in the name of the method because
there may not be a hard clear-cut decision for a class). Thus, SIMCA
can produce overlapping regions of classes, which may show up
adversely for the classification process on the one hand but, on the
other hand, can be used to indicate the quality of the model simply
by counting the number of observations that fall into several class
boxes.

Several modifications of the SIMCA approach have been pro-
posed and evaluated [135,136]. A meanwhile common approach is
to use distances obtained from a combination of the sum of squared
residuals and the Mahalanobis distance of the sample to the class
center [137]. This approach has the advantage that the classification
rule for an unknown sample is very simple (d2 < 2 if the T and Q
statistics are normalized to the 0.95-quantile).

In the context of LIBS, SIMCAwas applied for the classification of
pharmaceutical tablets [138], characterization of historical building
materials [139], polymer e-waste [122], and warfare agents [93].

3.8. Model validation

Having established a classifier, its prediction ability shall be
validated using an independent set of samples that is representa-
tive of the future application scenario. As discussed previously, a
new set of samples is often not readily available, and the evaluation
is typically done on a small fraction of the original data (approx.
20%), which has not been used during the training. The comparison
of the true class labels with the ones predicted by a binary classifier
(class label of 1 if sample belongs to the class, 0 otherwise) results
in 4 possible outcomes (true positive, true negative, false positive,



Fig. 14. Dependence of the MLP decision boundaries on the hyperparameter settings. The great number of options offers great flexibility of the classifier as well as great danger of
overfitting in case of lacking expertise in the field. Circles represent training data and squares represent test data.

Fig. 15. Class models of SIMCA. Each class is modeled separately by calculating the
principal components of the class and retaining only PCs which contribute to the class
model.

Fig. 16. Confusion matrix for a binary classification.
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and false negative), which are typically tracked in a confusion
matrix (Fig. 16). This provides the basis for the calculation of
different quality metrics summarized in Table 1.

Whereas in the field of LIBS, accuracy has become the most
commonly employed metric to report the quality of a classifier,
certain application fields such as medicine or detection of explo-
sives might require reports of additional metrics such as specificity
or sensitivity. If reporting a single metric to characterize the per-
formance of a classifier, it is important to keep in mind that each
metric has its limitations e e.g., accuracy is not suitable in imbal-
anced scenarios as the majority of a particular class will bias the
overall result. Therefore, the use of alternatives (e.g., Matthews
Correlation Coefficient (MCC)) and report of multiple metrics shall
be considered. Additionally, in the case of multi-class scenarios, it is
often convenient to report the entire confusion matrix tracking the
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misclassification rates and types of errors made for each class. Last
but not least, in real-time applications (e.g., identification of metals
in the recycling industry [112]), the time required for the identifi-
cation might become equally or even more important than the
prediction accuracy.
4. Applications

With LIBS providing fast and simultaneous multielement anal-
ysis, it is a very suitable technique for sample classification based on
elemental fingerprinting and molecular information. Providing
ease of use and the capability to analyze all kinds of solid samples
without any restrictions (e.g., samples do not have to be stable in
high vacuum or do not have to be electrically conductive), LIBS-
based classification has been applied to a vast range of applica-
tion fields ranging from materials science (e.g., polymers, steel,
alloys, ceramics, …), life science applications (e.g., foodstuff, bac-
teria, tissue, plants, …), geology (rocks, minerals, ores, soil, …), to
forensics (e.g., gunshot residuals, explosives,…). Fig. 17 provides an
interactive figure enabling exploration of the revised LIBS classifi-
cation literature of the last decade. The figure is based on a
generated database containing relevant information (application
field, number of classes, feature selection, applied algorithm, model
validation, …) from all revised papers in this review. For explora-
tion, the literature can be clustered by this information providing
insights into the main chemometric approaches commonly
employed in various fields or by different research groups.



Table 1
Summary of the most commonly used metrics for evaluation of the classifier's performance.

Metric Formula Meaning

Accuracy (%) TP þ TN
TP þ FP þ TN þ FN

� 100
Percentage of correct predictions out of all predictions made. Max: 100%

MCC (�) TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp

Correlation between the observed and predicted samples. Suitable for imbalanced scenarios. Max: 1

Sensitivity/Recall (%) TP
TP þ FN

� 100
Percentage of actual positives (e.g., explosives) identified correctly. Max: 100%

Specificity (%) TN
TN þ FP

� 100
Percentage of actual negatives (e.g., non-explosives) identified correctly. Max: 100%

Precision (%) TP
TP þ FP

� 100
Percentage of positive predictions which was correct. Max: 100%

F-score TP

TP þ 1
2
ðFP þ FNÞ

Harmonic mean of precision and sensitivity. Max: 1

Fig. 17. Interactive figure providing insights into the revised LIBS classification literature of the last decade. All LIBS-based classification literature explicitly mentioned within this
review as well as other works are included in the interactive figure [140e219]. Publications can be clustered by various variables (application field, applied algorithm, data pre-
processing, …) and the node size and node color can be adjusted accordingly. The interactive figure can be accessed via this link. https://mybinder.org/v2/gh/gajzuz/binder-bokehh-
test.git/HEAD?urlpath=%2Fproxy%2F5006%2Fbokeh-app.
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Additionally, a table containing an extensive list of publications
in LIBS-based classification, giving an overview of the various sci-
entific fields where it is applied regularly, and which classification
algorithms are commonly used is provided in the supporting file.
The table also highlights works where data fusion with other
techniques (e.g., Raman spectroscopy, LA-ICP-MS, …) was
employed, adding information to the dataset used for training the
classifier. Additionally, information is provided whether special
instrumentation such as stand-off LIBS or double-pulse LIBS, or
other approaches such as nanoparticle enhanced LIBS (NELIBS) was
used.

The following chapter highlights the advantages of LIBS-based
classification for specific research fields, and a selection of
14
outstanding publications in the corresponding area are presented
and discussed.

4.1. Geomaterials

The first reported works of using LIBS for the classification of
geomaterials were already published at the beginning of the 21st
century by McManus [220], McMilan [221,222], and Harmon
[223,224]. An overview of the application of LIBS for the investi-
gation of geological samples with a focus on elemental finger-
printing for the classification is provided by Hark et al. [225]. The
unique capabilities making LIBS an excellent tool for the charac-
terization of geomaterials include a sufficient sensitivity for light

https://mybinder.org/v2/gh/gajzuz/binder-bokehh-test.git/HEAD?urlpath=%2Fproxy%2F5006%2Fbokeh-app
https://mybinder.org/v2/gh/gajzuz/binder-bokehh-test.git/HEAD?urlpath=%2Fproxy%2F5006%2Fbokeh-app
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elements (H, Li, Be, B, and C) and the possibility to detect F, O, S, and
N, which is important in this field.

An extensive range of different geomaterials (carbonates, fluo-
rites, silicate rocks, and soil) was investigated in the work of
Gottfried et al. [226]. Additionally, the performance of a table-top
instrument, a double-pulse system, and a stand-off LIBS device
were compared. This work used PCA for exploratory data analysis,
and PLS-DA was used for sample classification. The work demon-
strates that PCA is a versatile tool to investigate large datasets of
LIBS spectra of geological samples investigating composition,
origin, and color. Moreover, PLS-DA can classify most of the
investigated sample types correctly. The stand-off system's
outstanding performance in terms of geomaterials classification
enables investigations in the field in real-time.

The possibility of carrying out laterally resolved analysis using
LIBS was exploited in the work of Moncayo et al. [227]. In this work,
an area of 468 mm2 of a thin section bloc of a turquoise sample
consisting of three main mineral phases (turquoise, pyrite, and
silica) was mapped with a lateral resolution of 15 mm. This mapping
generated a large dataset of more than 2 million LIBS spectra. As a
first step, the authors conducted a conventional data analysis
investigating the intensity map of individual elements of geological
interest (Fe, Si, Cu, P, and Al). In the next step, PCA was used for
exploratory data analysis looking at intensity maps of individual
scores. Looking at the loadings, it was concluded that PC1 showed
the lateral distribution of pyrite and turquoise, whereas PC2 rep-
resents the silicate phase. Besides using PCA as a tool to identify the
distribution of the different phases present, low concentration
compounds were also identified. This is typically a difficult task as it
includes finding emission signals which are only present in a very
small number of spectra within a large dataset. Looking at higher-
order PCs, the authors were able to identify Mg and Ti within
their dataset, which might have easily been missed without
exploratory data evaluation.

An outstanding contest in the field of LIBS-based classification
was held at the EMSLIBS2019 conference in Brno, Czech Republic,
based on data obtained from 138 different soil samples belonging
to 12 distinct classes. A training dataset with labels and a test
dataset without labels was provided to the participants to build a
classification model which generalizes well [228]. Several different
research groups and individuals participated in this contest, all
using different strategies. The approaches of the five teams
obtaining the best results are presented by Vr�abel et al. [102]. This
summary highlights that a wide range of machine learning algo-
rithms can lead to satisfying results. Nevertheless, feature selection
and dimensionality reductionwere vital steps in all five approaches
highlighting their importance when building reliable classification
models. This demonstrates that for the classification of LIBS data,
both expertise in spectroscopy as well as data science is of
importance.

4.2. Materials

LIBS is widely applied to the analysis and classification of all
kinds of different materials. Especially in metalworking, LIBS is
used for the classification of steel, various alloys, slag, and metal
scrap. Here the possibility of online measurements using LIBS with
no required sample preparation and fast sample throughput, e.g., in
recycling plants, is an interesting aspect for the industry.

In the work of Kong et al. [168], steel samples are analyzed and
classified using LIBS. In this work, the authors investigated the in-
fluence of the variable selection from the LIBS spectra on the
classification performance of PCA and ANN. The three spectral
feature selection approaches include selecting all emission signals
in the spectra, selecting only rather intensive emission signals, and
15
using the whole spectrum. This study showed that using only the
most intense spectral features resulted in the most robust classifi-
cation model highlighting the importance of proper variable se-
lection for a classification task.

Merk et al. [112] developed a LIBS-based system to identify
metal scrap directly on a conveyor band. Therefore, two laser shots
are applied to each sample: The first shot removes potential dirt,
paint, or an oxide layer, and the second shot is used for the actual
measurement. The samples analyzed in this study to train a clas-
sifier weremetal scrape of 9 different alloys from a recycling facility
representing a real-life classification scenario. Data pretreatment
considering possible harsh environments at a recycling plant that
might cause spectral shifts was carried out. The authors validated
the performance of their developed PLS-DAmodel with a validation
data set and investigated the robustness of the classifier by inves-
tigating data recorded with different laser and spectrometer sys-
tems. Finally, the model is tested for online classification of samples
on a conveyer belt with satisfying results.

The possibility of aluminum alloy identification in post-
consumer scrap on a moving conveyor belt (3 m s-1) using 3D
scanning LIBS was described by Werheit et al. [170]. To have access
to a measurement volume of 600 � 600 � 100 mm3, the authors
use galvo-scanner mirrors to deflect the laser beam within a few
milliseconds onto the sample of interest enabling up to 6 mea-
surements on each sample while passing by. For classification, a
total of 60 aluminum cast and 168 aluminum wrought pieces of 8
different alloys were analyzed. Data preprocessing is used to
discard spectra where insufficient plasma ignition due to the laser
not hitting the desired measurement position occurred. Being able
to classify the 8 different aluminum alloys with a correctness of
>95%, an application in an industrial sorting facility is feasible.

4.3. Biological samples/Life science

The application of LIBS for the classification of biological mate-
rial and samples from the field of life sciences ranges from plants,
hard and soft tissue to bacteria. In these fields, LIBS's beneficial
properties are especially the high sample throughput and the
possibility to detect the most common elements in biological
samples (C, H, N, O, S, …). Classification of bacteria using LIBS
spectra is a field that has been steadily growing over the last 15
years. The interested reader is kindly referred to review articles by
Steven Rehse [229] and Gaudiuso et al. [230], giving a compre-
hensive overview of the work performed in this field.

Lung tumor tissue and healthy boundary tissue were discrimi-
nated using LIBS in the work of Lin et al. [231]. Therefore, tissue
sections of tumor tissue and boundary tissue of 45 different pa-
tients were prepared. In this work, recorded spectra are pretreated
using a wavelet de-noising procedure and are normalized. The
multivariate data analysis uses a selection of emission signals,
including C, Mg, CN, Ca, Na, and K. Since measurements were car-
ried out under air, signals from H, N, and O are neglected. The au-
thors investigated the performance of different classification
algorithms using 10-fold cross-validation, concluding the possibil-
ity of discriminating between tumor tissue and boundary tissue.

Another work dealing with the distinction between cancerous
tissue and healthy tissue was carried out by Choi et al. [232] by
mapping a tissue section of murine skinwith embedded melanoma
with 15 mm lateral resolution. Investigating LIBS spectra of mela-
noma and dermis, 12 signals were identified. Using a maximum
likelihood estimation of intensity ratios of the 12 identified signals,
each element's ability to discriminate between the two tissue types
was estimated, and K was selected as the element showing the
most significant discrimination power. Additionally, SVM with a
3rd order polynomial kernel function was used to build a classifier
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for melanoma and dermis tissue classification. Applying the SVM to
the LIBS mapping, the classification of each pixel reveals the lateral
distribution of cancerous tissue, which is in good agreement with
conventional H&E staining.

Archaeological bone samples were classified using LIBS in the
work of Siozos et al. [233]. In this work, the authors investigated not
only the classification capabilities but also examined the influence
contamination of the burial soil has on the classification results. The
work demonstrates that a careful feature selection is necessary to
avoid overfitting of the developed classificationmodel by excluding
signals not originating from the sample under investigation itself
but rather from contaminations.
4.4. Foodstuff

Characterization of all kinds of foodstuff is an important field
regarding authentication, origin determination, and investigation
of adulteration. In this field, elemental fingerprinting is a widely
used approach since the elemental fingerprint is usually expected
to be similar to the soil composition [234]. As LIBS enables simul-
taneous multielement analysis and provides access to all elements
of the periodic table, it is a promising technique for this field. The
preparation of a representative sample of foodstuff for LIBS analysis
is often challenging since these samples often require drying or
conversion of liquid samples into solids to improve the quality of
the analysis.

Origin determination of 20 different kinds of rice was carried
out in the work of Yang et al. [235]. In this work, emphasis was put
on different sample preparation strategies and how these influence
the classification performance. Sample preparation methods are
based on pressed pellets, including different additives with ground
and whole rice grains. The authors identified 90 spectral lines,
including both atomic/ionic (C, H, O, N, K, Ca, Na, Mg, Al, Mn, Si) and
molecular signals (C2, CN), which were used as input variables after
normalization to the carbon line at 247.86 nm. Using PCA for var-
iable reduction the computational time is reduced and overfitting is
avoided. Therefore, the first 30 PCs were used as an input for SVM
classification. Classification accuracies were determined by a 5-fold
cross-validation ranging from 94.1% to 99.25%, depending on the
sample preparation method.

Origin determination of thirty-eight different red wines from
eleven protected designations of originwas carried out byMoncayo
et al. [236]. Therefore, the wines under investigation were trans-
formed into a gel using commercial collagen, which facilitated the
subsequent LIBS analysis. The selection of spectral features was
carried out by excluding signals originating from the collagen and
using only signals from the wine samples (Mg, Ca, K, and Na). This
decreases the discrimination power of the applied neural network
but increases the ability to generalize. The authors tested their
model's sensitivity, generalization ability, and robustness and
concluded that LIBS can correctly classify the geographic origin of a
wine.

Different meat species were identified by Sezer et al. [237].
Therefore, dried protein extracts of processed beef, chicken, and
pork meat were prepared. Additional to samples containing only
one type of meat, blends were also prepared for quantitative
analysis. Even though a wide range of elemental emission signals
was identified, the authors used the whole recorded LIBS spectrum
as input for PCA and PLS analysis. PCA revealed a separation of the
three different types of meat based on the recorded LIBS spectra.
Additionally, a PLS model was calculated based on the different
blends. Here the authors report satisfying RMSC, RMSEP, RSD, and
REP for the validation data set, confirming the possibility of a
quantitative assessment of beef, chicken, and pork mixtures.
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4.5. Forensics/Explosives

The capabilities of LIBS to be used as a stand-off device enabling
probing samples from a distance or using handheld instruments are
beneficial for investigating potential hazardous and suspicious
samples such as explosives. Using LIBS spectra has been proven to
be able to distinguish between different explosive materials using
their characteristic emission signals in the LIBS spectrum. Similar to
the classification of polymers, C, H, N, and O, as well as the mo-
lecular fragments C2 and CN can be used to distinguish between
different explosive materials [238,239].

De Lucia et al. [240] used a stand-off LIBS instrument to
distinguish between three different explosives (cyclo-
trimethylenetrinitramine (RDX), trinitrotoluene (TNT), and
Composition-B) deposited on various car panels. Additional to the
application of explosives, non-explosive samples such as road dust,
sand, diesel fuel, lubricant oil, and fingerprints were prepared. The
main goal of this study was to investigate the influence of various
substrates on the classification performance. Single-shot LIBS
spectra were recorded with a stand-off instrument (25e30 m dis-
tance), and PLS-DA was calculated to classify samples either as
explosive or nonexplosive. Investigating variable importance scores
(VIP), the authors could identify signals only originating from the
explosives. Using only these variables, computational time was
significantly reduced, and classification performance was
enhanced.

In forensics science, elemental fingerprinting is widely used to
get additional information and insights for crime investigations.
Twenty window glass samples from different crime scenes were
analyzed using LIBS by El-Deftar et al. [241], and the discrimination
capabilities were compared to LA-ICP-MS, mXRF, and SEM-EDX,
techniques conventionally used for this task. First, the authors
assessed LODs and precision of several elements (Ba, K, Sr, Ti) in
LIBS analysis of glass samples using NIST610, NIST 612, and
NIST1831. Additionally, the stability of LIBS analysis over seven days
was investigated. Using ratios of emission signals with ANOVA and
Turkey's HSD test, all three above-mentioned techniques showed a
discrimination power greater than 96%. Finally, the authors state
that LIBS analysis has significant advantages over LA-ICP-MS, mXRF,
and SEM-EDX due to its fast sample throughput, simple instru-
mentation, and low cost.

Laterally resolved discrimination of latent fingerprints using
elemental patterns obtained from LIBS analysis was investigated by
Yang et al. [242]. Samples were prepared by applying individual and
overlapping fingerprints on an Aluminum substrate. Different ele-
ments were identified in recorded LIBS spectra of fingerprints,
including Fe, Al, Ca, Na, K, and O. Analyzing the data using PCAwith
the whole spectrum as an input, a clear separation of 4 different
fingerprints in the score-score plot was observed. Using SIMCA, an
average classification accuracy of 90.36% was achieved. PLS-DAwas
also investigated, showing similar performance. Finally, they
mapped overlapping fingerprints and reconstructed the arrange-
ment using their multivariate classification models.

4.6. Polymers

Conventionally, LIBS is considered a technique used for
elemental analysis. Nevertheless, under certain circumstances, LIBS
spectra do not only show elemental signals but also exhibit signals
from molecules either originating from the sample itself due to
incomplete atomization or from recombination within the plasma.
Combining elemental signals from the main constituents of poly-
mers H, C, N, and O with signals from molecular fragments proves
to be capable of distinguishing different polymer types. Addition-
ally, the possibility to perform online and stand-off analysis and
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measurements not being constrained by sample color makes LIBS a
promising tool for polymer sorting in recycling plants.

In the work of Junjuri et al. [209], five of the most common post-
consumer plastics (PET, HDPE, LDPE, PP, PS) were analyzed using fs-
LIBS. The investigated samples were obtained from a local recycling
unit providing a close real-life scenario of polymer classification.
This is especially important since pristine and well-defined sam-
ples are often used for method development. In contrast, in a real-
life application, surface contaminations, uneven shapes, or other
variations must be considered leading to a significant bias in the
performance of a classifier. When training the classifier (ANN), the
authors investigated the influence of feature selection by providing
five different sets of variables generated from the recorded LIBS
data. The authors reported identification rates up to 100%.

Gajarska et al. [243] successfully discriminated 20 different
polymer types, the highest number reported in the literature. This
work investigated the effect of different experimental conditions
(laser energy, atmosphere, and gate delay), and careful optimiza-
tion of feature selection based on a Random Forest was carried out.
Additionally, in this work, the influence of various organic and
inorganic additives commonly used in polymer manufacturing on
the discrimination ability of polymer samples was investigated. It
was concluded that additives present in the samples do not inter-
fere with polymer type identification.

A recent work by Sommer et al. [244] applied LIBS to identify
microplastics. Therefore, the authors analyzed environmental
samples from the Lahn river (Marburg, Germany). The collected
microplastics were first identified using FT-IR spectroscopy (PS, PE,
PP, PA). In the next step, LIBS reference spectra of the corresponding
polymer types were recorded. Comparing LIBS spectra of micro-
plastics with pristine polymer samples show that the polymer-
specific signals are still present in the microplastics. However, the
spectrum usually has additional spectral features, which are often
also present in naturally occurring particles resulting in challenging
discrimination. Nevertheless, PCA analysis of the dataset shows
that microplastics can be differentiated from naturally occurring
particles, and PE and PS can be distinguished.

5. Conclusion

LIBS-based classification has experienced a rapidly growing in-
terest in the last years. Providing unique characteristics such as
simultaneous multi-element analysis with little to no sample
preparation necessary, online and stand-off analysis capabilities,
and imaging and depth profiling LIBS has many benefits over other
techniques used for elemental fingerprinting. These properties
make LIBS a suitable technique for classification tasks in a diverse
range of application fields discussed within this review. Especially
applications in the field of recycling and online material sorting, or
online quality control in production facilities in general can pave
the way of LIBS for routine industrial applications. Besides these
promising industrial applications, rapid LIBS-based classification in
life-science may have a significant impact on diagnostics in the
medical field in the future.

Nevertheless, to successfully establish LIBS as a state-of-the-art
technique capable of sample classification, a refinement of the
community's chemometric awareness is necessary: designing the
experiment, optimizing measurement conditions, and recording
the data required for the successful development of a classifier is
only one step. The other step, including data preprocessing, feature
selection and training, and optimizing the classification model, is
not less important. Each small step and decision made in this
process of training a classification model can significantly influence
the performance and generalizability of the model and should only
be carried out after careful consideration.
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Nowadays, a wide range of machine learning algorithms and
tools are readily available even to non-experts enabling the training
of a classifier with only a few lines of code. Nevertheless, one should
keep in mind that building a classification model is not only about
applying an algorithm to the dataset. Hyperparameters should be
optimized, feature selection/data reduction/data normalization
considered, different algorithms investigated, and the performance
of the final model should be tested. Additionally, the classifier's
performance should not only be evaluated with one test dataset
recorded on the same day as the training dataset, but the stability of
the model over a particular time should be considered.

With the development of new instrumentation, especially lasers
providing higher repetition rates and detection systems providing
more data points per spectra, the amount of data generated per
time will increase even further. Therefore, data handling and
proper data evaluation assisted by machine learning and other
chemometric tools combined with exploratory data analysis will
become even more critical in the future since manual data
screening becomes impossible. Thus, it is of major importance that
LIBS users can rely on and apply these tools properly.

With increasing complexity and size of the spectroscopic data,
the typical LIBS users should possess basic understanding of
analytical chemistry, plasma physics, andmachine learning. It is the
interdisciplinary approach to the LIBS data processing that gains
the best possible performance. When combining this expert
knowledge of experimental design, carefully optimized measure-
ment parameters, and chemical knowledge of the operator for
feature selection with a well-thought-out classification model
construction, LIBS can provide reliable, robust, and reproducible
results. Therefore, it is crucial to note that the successful develop-
ment of a classification model requires both expert knowledge in
the field of LIBS and in chemometrics and machine learning.
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