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Deutsche Kurzfassung

Faktorfolgen sind stochastische Prozesse (y;; : ¢ € N,t € Z), die in Zeitachse ¢
und Querschnitt ¢ indiziert sind und eine sogenannte Faktorstruktur aufweisen.
Dynamische Faktorfolgen wurden von Forni and Lippi (2001) eingefiihrt. In dieser
Arbeit wird die Unterscheidung zwischen dynamischen und statischen Faktorfol-
gen eingefiihrt, die wir mit den Modellen in Chamberlain and Rothschild (1983a);
Bai and Ng (2002); Stock and Watson (2002a) identifizieren. Der Unterschied
besteht darin, was wir die schwache gemeinsame Komponente nennen. Diese
wird von potenziell unendlich vielen schwachen Faktoren aufgespannt. Wie in
dieser Arbeit gezeigt wird, kann das Ignorieren dieser schwachen gemeinsamen
Komponente erhebliche Folgen fiir die Anwendung von Faktormodellen haben -
sowohl in der Strukturanalyse, als auch bei Prognosen. Wir zeigen auch, dass
die dynamische gemeinsame Komponente einer dynamischen Faktorfolge unter
recht allgemeinen Bedingungen, den Beobachtungen kausal untergeordnet ist. Fol-
glich sollte nur die dynamische gemeinsame Komponente als Projektion auf die
gemeinsamen strukturellen Schocks der Wirtschaft interpretiert werden, wihrend
die statische gemeinsame Komponente ausschlieBlich die gleichzeitige gemeinsame

Variation erfasst.
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Abstract

Factor Sequences are stochastic double sequences (y;; : ¢ € Nt € Z) indexed in
time and cross-section which have a so called factor structure. The name was
coined by Forni and Lippi (2001) who introduced dynamic factor sequences. We
introduce the distinction between dynamic- and static factor sequences. The latter
are the most common workhorse model of econometric factor analysis building on
Chamberlain and Rothschild (1983a); Stock and Watson (2002a); Bai and Ng
(2002). The difference consists in what we call the weak common component
which is spanned by (potentially infinitely many) weak factors. We illustrate
that ignoring the weak common component can have substantial consequences for
applications of factor models in structural analysis and forecasting. We also show
that the dynamic common component of a dynamic factor sequence is causally
subordinated to the output under quite general conditions. As a consequence
only the dynamic common component can be interpreted as the projection on the
infinite past of the common innovations of the economy, i.e. the part which is
dynamically common. On the other hand the static common component captures

the contemporaneous co-movement.
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Chapter 1
Introduction

With the increasing availability of high-dimensional time series data, also the
demand for methods to analyse and forecast such data has been growing which
has led to the high popularity of factor analysis in macro-econometrics: In factor
analysis, we commence from considering such a high-dimensional time series as
a double indexed (zero-mean stationary, usually real-valued) stochastic process
(ye : @ € N;t € Z) =: (yi), where the index i stands for an infinitely growing
cross-section and ¢ for time observations. The most common factor model is in a

certain sense “static” and of the form
e =Cutey=NFytey, (L.1)

where (Cy) is called the “common component” and (e;) is called the “idiosyn-
cratic component”. The process F; is a “low”-dimensional r X 1 stochastic vector
of factors, the A;’s are 1 x r vectors of loadings. Set ¥} = (Y, Yot, -y Ynt)', We
may also write model (1.1) in a corresponding vector representation. The com-
mon component accounts for the co-movement in the sense that all 7 non-zero
eigenvalues of E CP(C}) =: T'% diverge with n — oo. The idiosyncratic compo-
nent is allowed to be only weakly correlated, formalised e.g. by assuming that
the first eigenvalue of E e}(e')’ =: I'? is bounded in . This so called approzimate

factor model which has become most common in macro-econometrics, has been



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Introduction

introduced by Chamberlain and Rothschild (1983a,b); Stock and Watson (2002a);
Bai and Ng (2002).

On the other hand there has been “another kind of factor model” introduced by
Forni et al. (2000); Forni and Lippi (2001) commencing from the spectrum rather

than the variance matrix. This model has the form
Vit = Xit + &t = bi(L)wg + &t (1.2)

where the common component (x;) is driven by the orthonormal g-dimensional
white noise process (u;), where ¢ < oo is usually small, while the b;(L)’s are 1 X g
square summable filters. In this model the common component has the feature
that all of the ¢ non-zero eigenvalues in the spectral densities of (x}), say fy,
diverge almost everywhere on the frequency band for n — oo, whereas the first
eigenvalue of the spectral densities of the idiosyncratic component (£]}), say fé, is
essentially bounded on the frequency band for n — oo.

It is commonly thought that the main difference between (1.1) and (1.2) is that
(1.2) allows for “infinite dimensional factor spaces” (see Forni et al., 2015) in the
sense that the space spanned by (x1z, X2t, X3¢, -+-), say SP(xi : ¢ € N), is infinite
dimensional. Consequently, if we were willing to assume that sp(x:: : ¢ € N) is
finite dimensional, we could always cast the dynamic factor model (1.2) in static
form (see Stock and Watson, 2011, section 2.1) and use static principal compo-
nents for estimation. The moot point of this dissertation is that this is not true:
The essential structural difference is that (1.2) allows for the presence of weak
factors, while (1.1) does not. Suppose that (y;) has both, a static (associated
with variance matrices) and a dynamic (associated with spectral densities) factor
structure. In this case the term e} = xi: — Cit = e;; — &t is in general non-zero
and spanned by (a potentially infinite number of) weak factors. We call (e) the
weak common component. It vanishes under static aggregation but is part of the
dynamic common component (x;:). By Onatski (2012) it is shown that in a static
factor model with weak loadings, the common component cannot be estimated
consistently via static principal components. The same applies for e¥.

In general we induce an asymptotically non-vanishing bias if we suppose eX = 0
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Introduction

for all ¢ € N. As a consequence impulse response analysis is asymptotically bi-
ased, whenever variables are influenced by weak factors. On the other hand, weak
factors can also be essential for forecasting: Though they are “weak” in the sense
that their contemporaneous influence is not pervasive, this does not imply that
they also load weakly on the subsequent period.

The aim of this thesis is to reconcile what we call the theory of static factor
sequences or the American School, grounded in the work of Chamberlain and
Rothschild (1983a,b); Stock and Watson (2002a,b); Bai and Ng (2002) with the
theory of dynamic factor sequences or the I[talian School associated with Forni
and Reichlin (1996); Forni et al. (2000); Forni and Lippi (2001). We show that
both schools are analogous commencing from static versus dynamic aggregation.
The two different aggregational schemes entail two different types of common
components (static versus dynamic) which differ by a part influenced only by
weak static factors - the weak common component. We discuss and evaluate sev-
eral implications for theory and practice of factor analysis. We also show that
the one-sidedness problem of dynamic factor sequences Stock and Watson (2011);
Forni et al. (2000, 2005, 2015) is rather a matter of estimation technique than a
structural problem. It is an essential feature of the dynamic factor structure, that
the innovations of the dynamic common component, ie. the common structural
shocks of (y;), are causally subordinated to the output if the dynamic common
component is purely non-deterministic. This justifies the interpretation of the
dynamic common component as the projection of the output on the infinite past
of the common innovations of the economy.

In chapter 2 we recapture the theory of factor sequences for both schools and
demonstrate that the corresponding proofs are analogous. Chapter 3 provides
structure theory that reconciles both schools in one model. Section 3.3 is con-
cerned with the solution of the one-sidedness problem of dynamic factor sequences.
Chapter 4 is concerned with the structural interpretation of the weak factors, the
dynamic and the static common component, and the theoretical consequences of

weak factors for forecasting.

10
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Chapter 2
The Theory of Factor Sequences

The aim of this chapter is to give a clear and self-contained account of the theory
of factor sequences covering the static and the dynamic case. By the theory of
static/ dynamic factor sequences we mainly refer to theorems 2.2.7, 2.3.5 stated
below and the lemmas that come with the corresponding proofs. There has been
a kind of “cultural clash” in the literature on factor analysis between what we call
the American and the Italian school of factor models and their relation has not
been understood. The main contribution of this chapter is the insight that both
theories can be developed analogously commencing from the notion of static versus
dynamic aggregation and that the corresponding structural results (theorems 2.2.7
can 2.3.5) can be stated analogously and proved with analogous techniques. From
the distinction between the two aggregational schemes, naturally there arise key
definitions that we consider of vital importance for factor analysis: static versus
dynamic idiosyncratic component and static versus dynamic common component.
In chapter 3 we show that distinguishing between these terms implies a new
decomposition that shows that the presence of weak factors is the general - and
therefore the “natural” case. This decomposition also clarifies how the American
and the Italian school relate to each other.

The second contribution of this chapter is that we provide in section 2.2.5 a new
and alternative asymptotic framework to prove consistent estimation of the static

common component via sample principal components. The proof is based on

11
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Basic Framework The Theory of Factor Sequences

transparent and simple assumptions for the idiosyncratic component and aligned
to the theory of static factor sequences as presented here. The proof given by Bai
and Ng (2002); Stock and Watson (2002a) imposes different and more involved
assumptions on the idiosyncratic component. We also discuss heteroskedasticity
and non-stationarity. In particular, and opposed to the framework provided by
Bai and Ng (2002); Stock and Watson (2002a), it becomes apparent that it is
not necessary at all to restrict time dependence in the idiosyncratic component
to obtain consistent estimates. The reason for this is that the definition of being
statically idiosyncratic, we provide here, is only concerned about contemporaneous

covariation - not with covariation over time lags.

2.1 Basic Framework

For a complex matrix M € C™™ we denote by M’ the transpose of M and
by M* = M’ the adjoint of M. Let P = (Q,.A, P) be a probability space and
Lo(P,C) be the Hilbert space of square integrable complex-valued, zero-mean,
random-variables defined on 2 equipped with the inner product (u,v) = Euv
for u,v € Ly(P,C). We consider complex stochastic double sequences, i.e. a

collection of random variables indexed in time and cross-section:
(yir 11 €Nyt € Z) = (yir) where y;; € Lo(P,C) V(i,t) e NXZ .

Such a process can also be thought of as a nested sequence of multivariate stochas-
tic processes: (Y7 : t € Z) =: (y}), where y®* = (Y1s, -, Ynz)’ and ¥2 = (Y, Ynr1.0)’
for n € NU {oco}. In general we will write (y; : t € Z) =: (y,) for n = occ.

A basic assumption that we will often be employed is stationarity:

Assumption 1 (Stationary Double Sequence)
For all n € N, the process (y :€ Z) is weakly stationary with ezisting (nested)
spectrum f;(0) for 6 € © := [~7,7].

Throughout the thesis, we denote by f;'(f) the “usual spectrum” times 2, i.e.
I = Eyp(yp) = 2r)~" J7, f7(0)df. This is more convenient from a notational

12
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Basic Framework

perspective, since the frequently occurring orthonormal white noise process has

then spectrum I, instead of (27)7'1,.

For a stochastic vector u with coordinates in Ly(P,C), we will often write
Vu = Euu* to denote the variance matrix, which is hermitian and al-
ways diagonalisable. If u is real valued this becomes Vu = Ewu’ which is

symmetric and diagonalisable.

Let u be a stochastic vector with coordinates in Ly(P, C), let M C Lo(P, C)
be a closed subspace. We denote by proj(u | M) the orthogonal projection
of u onto M (see e.g. Deistler and Scherrer, 2022, Theorem 1.2).

For any finite dimensional multivariate process (z;) with existing spectrum,

we write spec z; to denote the spectrum of (z;).

Ai(M) is the i-th largest eigenvalue of a square matrix M. If M is a spectral

density X;(M) is a measurable function in the frequency 6 € [—m, 7).

We use the following notation:

H(y) =3p(ys : i € N,t € Z) “time domain”
H;(y) :=5P (yis : 1 € N, s < 1) “infinite past”
sp(y:) =3P (¥t : 1 € N) “contemporaneous span”
sp(yy) =sp(yie:i=1,...,m) “abbreviation for vector span” ,

where Sp(-) denotes the closure of the linear span. The notation in the fourth line

is used to abbreviate the (contemporaneous) span of a stochastic vector.

Given an infinite dimensional row vector a = (a1, ag,---) € C'**°, we denote by

a™ the infinite row vector with zero entries after n, i.e. (a1,ag,- - ,an,0,---),

and write al™ = (a1, --,a,). As has been shown in (Forni and Lippi, 2001,

Lemma 1, 2), also for infinite dimensional stochastic processes (y;) there exists a

corresponding isometric frequency domain to the time domain H(y):

H(y) & L (f,) (2.1)

13
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Basic Framework The Theory of Factor Sequences

where ®(-) is an isomorphism that preserves the inner product, L (f,) is the
complex linear space of all infinite row vectors of complex valued equivalence

classes ¢ = (c1(+),c2(+), - - - ), such that for all i € N, we have

1. ¢; : © — C is a measurable function,

o

- Nimg, [T ™ (8) f2(0) " (8)do < oo,

w

. the space L$°(f,) is endowed with the inner product

(e, dyg, = lim(2m) ™ [~ cHo) fr(0)ar (6o

-7

4. and the norm ||c[[ e (s = 1/{c; )y,

5. two vectors ¢y, ¢, are equivalent if ||c; — C2||Lg°(fy) = 0.

For processes in H(y) that are outputs of filters, we write
2 = c(L)y, := @71 (c(ﬂ)ewt> ; (2.2)

where ®(-) is the isomorphism from (2.1). Accordingly, we write L°([), if f; is
the identity matrix I,, for all n.
Next, we consider sequences of infinite row vectors (of equivalence classes of func-

tions):
(®:keN) = (¥, )| keN) .
In general, for the limit outputs filtered by such a sequence (c®)), we write:
2z, = limy, ) (L)y: (2.3)

where “lim” denotes the limit with respect to mean square convergence. Analo-

gously, we treat the limit of cross-sectional weighted sums:

n
2 = limy, ¥y, = lim, lim,, Y &y, ,
i=1

14
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Static Factor Sequences: The American School The Theory of Factor Sequences

where éz(k) is the i-th entry of the infinite row vector of constant weights &*).

Now drop Al for the moment, if (I';(t) : t € Z) = (Vyi* : t € Z) is the sequence
of variance matrices (which may depend on time t) associated with (y;;) - not
necessarily with existing spectrum - we denote by f/go(f‘y (t)) the set of all constant
vectors ¢ € C*™ such that lim, ¢"™T7(t) (é{"}>* < oo and L(I) ¢ LP(I) as
the the set of all vectors with lim, & (¢{"})" < co. So by infinite row vectors
equipped with “*”, we denote vectors of weightings for computing cross-sectional

weighted averages.

2.2 Static Factor Sequences: The American School

The theory of static factor sequences, as we propose to call it, originates in the
“approximate factor model” by Chamberlain and Rothschild (1983a,b), which is
formulated not specifically in a time series context. The authors develop theory
for the case that population second moments are known. They do not provide an
estimation theory. Stock and Watson (2002a); Bai and Ng (2002) were the first
to set the idea of “the approximate factor model” in a time series framework, and
to provide estimation theory for it.

In this section, we present the main result of the theory of static factor sequences
(see Theorem 2.2.7 below), implicitly contained in Chamberlain and Rothschild
(1983a), and prove it by applying and adapting the techniques from Forni and
Lippi (2001). So part of the reconciliation of the theory of factor sequences consists
in demonstrating that both theories can be proved and understood with analogous
mathematical frameworks and proof-techniques: In the static case we work with
variance matrices (see section 2.2.3), in the dynamic case we work with spectral

densities (see section 2.3.1).

Remark 2.2.1 (Setting the Static Factor Model in a Time Series Context)

The theory developed by Chamberlain and Rothschild (1983a) commences from
a nested sequence of variance matrices I'y corresponding to a stochastic vector
y" = (y1,--,yn) of growing dimension n — oo or alternatively from a “cross-

sectional sequence of random variables” (y; : © € N). Here, we set the theory in a

15
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Static Factor Sequences: The American School The Theory of Factor Sequences

time series framework by adding a time index t and supposing that we have such
a cross-sectional sequence for every time point t € Z.

Strictly speaking, the time index is technically irrelevant for the main results of the
theory of “static factor sequences”; theorems 2.2.6, 2.2.7. Nonetheless we add the
time index to contrast “static factor sequences” which emerge from cross-sectional
or contemporaneous aggregations with “dynamic factor sequences” which emerge
from aggregations over both - cross-section and time (see section 2.2.1). Thereby,

we can reconcile the two schools of factor models in one theoretical framework.

Remark 2.2.2 (Time-Dependent I';(t))

The corresponding variances I'y(t) := Vy* may depend on time or may be constant
if (yit) 1s stationary. For the sake of notational convenience, we present and prove
the structural results below for the “stationary case” All results hold also when
Iy or It == VC and I'Y = Vep depend on time. In section 2.2.6, we discuss

non-stationarity and heteroskedasticity in more detail.

2.2.1 Intuition: Factor Models in Terms of Aggregation

In the literature it is most common to approach factor sequences from a “model-
driven point of view”: This means that we start by assuming that the data is
generated by a model like (1.1), assuming “strong factor loadings” in the sense
that A.(I'%) — oo and assuming weakly dependent idiosyncratic terms (e;;) (see
e.g. Stock and Watson, 2002a; Bai and Ng, 2002). If we formalise the notion
of weak dependence by A1(I'?) < oo, we readily obtain the following about the

behavior of eigenvalues of I') for n — oco:

M(T2) < A () = oo (2.4)
and )\'H'l(FZ) < )\T_H(FTCL-) + /\1(P2) <00 . (25)

The remarkable result by Chamberlain and Rothschild (1983a) which has been
extended by Forni and Lippi (2001) to the “frequency domain” and which we are
going to prove in this section, is that the converse is also true: If the eigenvalues

of I'; behave as in equations (2.4), (2.5), i.e. if the following assumption holds

16



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Static Factor Sequences: The American School The Theory of Factor Sequences

Assumption 2 (r-Static Factor Structure)

There exists r < 00, such that
(i) sup, M (I7) = o0
(i) sup, Aria () < 00

it can be shown (theorem 2.2.7) that y;; has a factor model representation
(1.1). For this reason, we will call a stochastic double sequence (y;;) for which A2
holds a static “factor sequence” (see definition 2.2.8). In contrast, as discussed
below, there are also double sequences (y;;) which do not have a factor structure,
e.g. if no or all eigenvalues of I} diverge. Summing up, we distinguish the
“structural approach” from the “model driven approach” in the follwoing sense:
The existence of (1.1) does not hold by a “model-assumption” but is implied by
the specific eigenvalue structure, i.e. A2, of the observed output process.
In my point of view, one of the key contributions of Forni and Lippi (2001)
is to provide the clear link of factor models/sequences to aggregation. To give
an intuition for this, consider taking the cross-sectional average over the first k&

variables. The variance of that average is

k 2 k
Vg =E (% Zyit) = % {ZV% + 3 Eyz'tyjt} ;
i=1 i=1 4 i<k
The term on the RHS is the sum of the variances plus the sum of all cross-
covariances multiplied by 1/k2. Now let k — oo: If the y;’s were cross-sectionally
independent and identically distributed, we know that by the law of large numbers
V4¥ — 0. On the other hand if the cross-sectional covariances among the variables
are “strong enough” such that they are not killed by 1/k?, the variance of ¥ does
not vanish with increasing k. The operation of computing the limit of the cross-
sectional average is a special case of static aggregation which is performed with

the static averaging sequence (see definition 2.2.3 below)

(é(k)) = (égk}':agk): ) = (}/k, l/ka e vl/kii O: 0: t ) € Clxoo )

k times
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with the special property that

1
L2

?s-'ll—t

k
lim k) (@Y’ ; = 75 = lim
As it turns out the factor space, i.e. the Hilbert space spanned by the static
factors sp(F;), is the space that is generated by the set of all static aggregates,
namely all possible random variables z; that can be represented as the limit of a
static aggregation z; = lim, é#¥)yF where &®) (e®)* — 0 for k — oco. So if (i)
has a non-trivial static factor space, it means that the cross-sectional covariances
are strong enough such that they are not killed under cross-sectional aggregation
for suitably chosen averaging sequences (¢*)). In this sense “factor modelling is

about capturing covariances not variances” (see Barigozzi, 2018).

2.2.2 The Structure Theory of Static Factor Sequences

In the following, we formalise the theory static factor sequences adapting the
concepts of Forni and Lippi (2001) to the static case. As pointed out in remark
2.2.1, all of the results in this section hold also if we allow I';(t) to change over
time. To keep notation simple, we omit the time index on the variance matrices

involved and refer to the discussion in section 2.2.6.

Definition 2.2.3 (Static Averaging Sequence (SAS))
Let &%) € LP(I) N LP(Ty) for all k € N. The sequence of cross-sectional aggre-
gations (6(’“) 1k e N) is called Static Averaging Sequence (SAS) if

lim‘ & := lim &®) (é(k))* =i .
k 2o (1) k
We denote the set of all static averaging sequences corresponding to (y;;) as

S(Ty) = {(a<k>) :e® € £2(1) N L§°(1,) NC* Wk € N and lim Hé(k)Hﬁw(I) = 0} .
2

The set of all random variables that can be written as the limit of a SAS defines

a closed subspace of sp(y;) (see Forni and Lippi, 2001, Lemma 6).
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Definition 2.2.4 (Static Aggregation Space)
The space S;(y) = {zt . z = lim, ¢®)y,, where (é(k)) € S(Fy)} C 5p(y:) is called
Static Aggregation Space at time t.

Henceforth, we will write S, instead of S;(y) when it is clear from the context.
Note that the Static Aggregation Space changes over t € Z as it emerges from

aggregation of the cross-section of y;; holding ¢ fixed.

Definition 2.2.5 (Statically Idiosyncratic)
A stochatic double sequence (zy) is called statically idiosyncratic, if lim, é*)z, = 0
for all (¢®™) € S(T,) for allt € Z.

The concept of a statically idiosyncratic double sequence is implicitly con-
tained in Chamberlain and Rothschild (1983b). In particular Forni and Lippi
(2001) introduce a notion of idiosyncraticness that we identify with being dynam-
ically idiosyncratic. On the other hand Bai and Ng (2002) define idiosyncratic in
a different way that involves also a limitation of time dependence (see also sections
2.2.6, 2.2.5). One of the main aspects of this thesis is, that it is fundamentally
important to distinguish between the two ideas of static and dynamic aggregation
(see below) since two different types of “common-ness” and “idiosyncraticness”
are associated with that. As we will illustrate in section 3, a double sequence that
vanishes under static aggregation does not need to do so under dynamic aggrega-
tion.

Fortunately, there is an easy and very useful characterisation of a statically id-

iosyncratic double sequence:

Theorem 2.2.6 (Characterisation of Statically Idiosyncratic)

The following statements are equivalent:
(i) A stochastic double sequence (z) is statically idiosyncratic.

(i) The first eigenvalue of the variance matriz is bounded, i.e.

sup A\ (I}) < o0, forall teZ .
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The proof of theorem 2.2.6 works analogously to the proof of theorem 2.3.4
(see Forni and Lippi, 2001, theorem 1) and is given in the Appendix.
As is well known, we can compute static low rank approzimations (SLRA) of rank r
of y by “static” principal components. For this consider the eigen-decomposition

of the variance:
Iy = PoyAw) Pin) (2.6)

where P, is a unitary matrix of row eigenvectors and A is a diagonal matrix
of eigenvalues sorted from the largest to the smallest. Denote by py; the j-th row
of Py and by B, the sub-unitary matrix consisting of the first r rows of Fi).
Recall that we associate 7 with the number of divergent eigenvalues of I} (see
A2). As we will frequently use P,,, we make notation easier by writing P, := P,,
which is 7 X n in contrast to P,y which is n x n, analogously we write A, to denote

the r X r diagonal matrix of the largest r eigenvalues of I'). Set

Kni == Kni(Ty) = pr; P, the i-th row of P: P, (2.7)
M .= p* Pyt = PrPy" (2.8)
Citn = Kny?  the i-th row of C") . (2.9)

Recall that C’t"] is the best (with respect to squared error) possible approximation
of y7* by an r dimensional vector of linear combinations of yy;, ..., yn:. The r X 1
vector P,y are the first 7 principal components of y;* and provide such a vector
of linear combinations, though not uniquely. We call C’t["] the static rank r ap-
prozimation of y}* which is unique. For details on principal component analysis/
low rank approximations see Jolliffe (2002).

Here comes the main result of the theory of static factor sequences. This theorem
is implicitly contained in Chamberlain and Rothschild (1983a). Here we present
a different formulation aligned to Forni and Lippi (2001):

Theorem 2.2.7 (Chamberlain and Rothschild (1983a): r-Static Factor Sequence)
Consider a stochastic double sequence (y;:) in Lo(P, C)
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1. A2 holds if and only if we can decompose
Yit — O@'t =+ Eit — Ath —+ Eit where IE Cjteit = 0 VZ, j, t, (210)

where F; is such that EF,FF = I and (Cy) and (e;) are stochastic double se-
quences such that for I't, = VC}, I't == Ve it holds that

(i) sup, M(T) = oo
(i4) sup, M() < o0

2. Cit = h_mn C’it,n)
3. r,Cy, e are uniquely determined from the output sequence,

4. Cyt = proj(yat | Se(y)) -

The proof is given in section 2.2.3. Some comments in order. The “if” direc-
tion of the first statement has already been proved in section 2.2.1. The “only if”
part of the first statement is a representation result: It allows us to conclude from
the characteristic behaviour of the eigenvalues of the variance matrices I'}, i.e.
A2, to the existence of unique representation as a sum of (Cj;) which we call the
static common component (static CC) and (e;:) which we call static idiosyncratic
component. The uniqueness of that decomposition holds by the third statement.
By the fourth statement, the static common component is the projection of the
output variables on the static aggregation space. So it represents the part that
does not vanish under static, i.e. cross-sectional aggregation. As a consequence,
in general, it is not orthogonal to the static idiosyncratic component at all leads
and lags but only contemporaneously orthogonal. The second statement provides
the link to principal components analysis: The i-th static common component is
the mean square limit of the i-th element of the static rank r approximation of the
output process letting n — oo. This is very useful for proving that the sample low
rank approximations converge in probability to the true common component (see
section 2.2.5). It also provides another way of interpreting an approximate factor
model: The number of static factors, r, is a “good choice” for the number of prin-

cipal components in a low rank approximation. Since asymptotically (n — o)
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the relative gain in terms of explained variance from choosing r + 1 instead of r
principal components is negligible compared to the relative gain from choosing r
instead of » — 1 principal components. The first method for determining r has
been given by Bai and Ng (2002). In Ahn and Horenstein (2013) an eigenvalue
ratio test for r is provided.

By theorem 2.2.7.1 the eigenvalue structure of I'y in A2 is equivalent to a repre-

sentation as a factor model. This justifies the name “static factor sequence”:

Definition 2.2.8 (r-Static Factor Sequence (r-SFS))
A stochastic double sequence (y;;) in Lo(P,C) that satisfies A2 is called r-Static
Factor Sequence, r-SFS.

If we assume in addition that (y;;) is weakly stationary, e.g. Al, it readily
follows that, factors, common component and idiosyncratic component are sta-
tionary as well. Note that we do not need the existence of the spectrum (A1) for
weak stationarity. The following corollary holds whenever (y;;), which is always

supposed to be zero mean, satisfies Ey2 < oo, Evyuyl, = Eyirsys-

Corollary 2.2.9 (Stationarity of the Static Factors)
If (yit) s a stationary r-SFS then (F}), (Cy) and (e) are stationary processes.

Proof. If (y;) is stationary, the auto-covariance function of (y* : ¢ € Z) does
not depend on time, so Ey}(y)* = Eyp ,(yg)* =: Tj(t — s), say and therefore
(Citins Cji—tn) = Knil'y (k) for all ¢ € Z and k € N. By continuity of the inner

product (see also lemma A 0.3), for every t € Z, we have
<h_mn Citn, lim,, Cj,t-k,n) = li,r?l(Cit,m Cj,t_k,n> = ’Yc,z'j(k) say

which is independent of ¢. Consequently, also e;; = y;; — Cy; is stationary. Since
the factors F; = (Fy, ..., Fyrt) can be also defined as the mean square limit of a
cross-sectional weighted average (see lemma 2.2.13, propositions 2.2.15 and 2.2.20)

for the same arguments (F;) is stationary. [ |
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2.2.3 Proof of the Main Result: Static Case

In this section we prove Theorem 2.2.7. The proof for the static case is very
analogous to the proof for the dynamic case. In the static case we deal with
eigenvectors and eigenvalues of the nested sequence of variance matrices Vy* =
l—‘n

y’
of the nested sequence of spectral densities, i.e. specy; = fy- We will use the

whereas in the dynamic case we deal with the eigenvalues and eigenvectors

following notation throughout the proofs in this section

« Canonical projection static case: y;; = proj(yit | St)+dix = i+ where
v+ is the orthogonal Hilbert space projection onto the static aggregation

space

o IV = PALP, + Q7 9,Qn, where A,, @, are diagonal matrices containing
the first r largest and the remaining n — r eigenvalues in order and F,, @,

are the associated unitary matrices of row-eigenvectors.
« Normalised static principal components: ¥} := A 1/2 Py
¢ Rotation matrix C € C™" matrix: C*C = I, = CC*
« Rotated version of the normalised principal components: wtm,c = Cy"

o We write P,y short for (P,,0---0)y; = P,y", i.e. we add n —m zero

columns to fit the dimension
o A =A(1Y)
o "™ = proj(Cyy | SB(YY)).

e D(m,n,C) =: D = CA™Y2P,,P*A;*/? is the projection matrix that trans-
forms 9 to $"™C, so "™ = Dyft and V"™ = Dy = DD*

e (ay) is a scalar sequence, such that lim, oy, = 0o and A, == A (I'}) > ap

In this section, we prove the “only if” direction of theorem 2.2.7.1, i.e. we show

that a factor model representation exists if A2 holds. We also prove the other
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statements of theorem 2.2.7. We follow the steps in Forni and Lippi (2001) adapt-
ing them to the static case.

The proof consists of the following main steps: a) We construct a r-dimensional
stochastic vector V; in S;(y) having unit variance using suitably rotated normalised
principal components (proposition 2.2.15). b) We show that this vector is a basis
for Si(y) (proposition 2.2.15). ¢) We show that the normalised principal com-
ponents (¢}') generate a Cauchy sequence of static spaces sp(¢}') (see definition
2.2.16). Projections proj(y;: | sp(¢f")) must converge in mean square and they
converge to proj(y;: | S;). d) We show that the residual of this projection is id-
iosyncratic (lemma 2.2.21). e) All this implies the uniqueness of the number of
factors, the common and the idiosyncratic component (proposition 2.2.22) and
that C;; = proj(ys | St).

We start with constructing an r-dimensional basis V; for S; with the following

lemmas:

Lemma 2.2.10
Suppose m < n then

CY = proj (i | sp(¢y)) + Ry(m,n)
= CAV2P, PrAY2 A2 Pyl + CAGY P Qi Quyl
— ‘ - A -

D(m,n,C) vy R (m,n,C)

Proof.

CY* = CAL 2Py = CA™/2 Py, (P By + Q1Qn) oF
>
= CA; V2P, PEAYAA Y2 Py + CAS Y2 P Qi Qu i

R(m,n,C)

which is by the projection theorem already the decomposition in projection plus

residual, as the first term is in sp(¢}) and the second term is orthogonal to
sp(¥7)- u

Note that D(m,n,C) =: D is the population projection matrix, when pro-
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jecting Y™ on sp Y. On the other hand R(m,n,C) =: R is the matrix that
transforms ;' to the residual of that projection.

The main idea is that even though the normalised principal components do not
converge, the spaces which they span generate a “Cauchy sequence”. The notion
that the spaces sp(¢["), sp(¢}') become close for m,n — oo is formalised by look-
ing at the projections ¢™™¢ = proj(Cy™ | sp(¢})) for m,n € N and showing
that the residual term of this projection tends to zero for m,n — oo. The idea of

a Cauchy sequence of spaces will be formalised in more detail below.

Lemma 2.2.11
Suppose A2 holds, then \(V Ri(m,n, C)) < Anri1/Amyr, where Anj = X;(I7).

Proof. We know that

Iy —Qr@n=FP, >0

Mgttlnr =P 20 = Qr(Anry1— Pn)@n >0

Ang1(In — QnQn) + A rt1Q0Qn — Q1 PnQrn  (using the two equations above)
= Mri1ln — Q. 9,Q, > 0 by Fact A.0.1.

Next we pre- and postmultiply CA_Y/2P,, which yields:

Angr1CALIC* — CAL V2 PQr QuTe Qs Qun PrAM?C* > 0
|
®,
)\n’fr+1CA7_nlC* -V Rt(m, n, C) Z 0
/\1(/\n’T+1CA,,—nlC*) = B\LH > )\1(V Rt(m, n, C)) by Fact A.0.1.

m,r
[ ]

Clearly if m,n — oo, the first eigenvalue of V R;(m,n, C) tends to zero by
A2. We can regard this as a crucial feature of an m-SFS (y;;) (see A2), that for
increasing cross-sectional dimension the spaces spanned by the first r principal

components become closer.
Next, we look at the projection /"¢ = proj(Cy™ | sp(¥7)). We show that the

25



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Static Factor Sequences: The American School The Theory of Factor Sequences

eigenvalues of DD* = Vqﬁ{”’"’c tend to one from below. For this let a,, — oo be

an increasing sequence such that A,, > a, and let A, , 1 < W for all n.

Lemma 2.2.12 (Squeeze Lemma for eigenvalues of V7)
There ezists m*, such that 1 > X\;(DD*) > 1 — W/au, > 0 for all m > m* and
j=1..,r.

Proof.

I, =V4*° = DD* + RITR* from Lemma 2.2.10
DD* =1, — RTUR* > I, — I \;(RT}R")

> 1, il poma 22,11
Am

ZIT—ITK.

Um

So choosing m* such that W/a,, < 1 for all m > m*, we have 1 > \.(DD*) >
ML — L(W/aw)) =1 = W/ag,. ]

Note that even though the normalised principal components C%;"* are or-

thonormal, the projection 1[);” "¢ isnot. In the next step we orthonormalise 1/3

Let HAH* = DD* be the eigen-decomposition of DD* (in the usual manner with

. . . . n @
orthonormal eigenvectors in H), we define an orthonormalised version of ;"™

m)nac.
t .

as
bi¢ = HAY2H” proj(Cyy" | sp(y7)) = HATPH* Dy = Fyf . (2.11)
Smn,C =:F(D)=F
Py
In Lemma 2.2.10, we showed that for large m, n the projection ﬁtm e gets close

to w:n’c. Now we show that this holds also for the orthonormalised version of
the projection, i.e. ™ of ¥7. The idea behind the construction of a basis
for S; is to construct a Cauchy sequence from the orthonormalised versions of the

projections by iteration:

Lemma 2.2.13 (The orthonormalised projection)

For all T € (0,2), there exists m,, such that
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® W/am'r < 1
e For alln > m > m, we have A\ (V [ mC _ ‘;n,n,CD <7
Proof. We have

YO — g = Oyt — Fy = Dy} + Ry — Py} = Ryl + (D — F)y}
hence V(Cy}* — Fyy') = I, — DD* + (D ~ F)(D ~ F)* = I, - DD* + DD* — DF* + FD* + FF",
I,
=2I, - D(HA"Y2H*D)* — (HA"Y2H*D)D* = 2I, - DD*HA"Y2H* - HA"Y2H*DD*
=2I, - HAH*HA™Y2H* - HA"Y?H*HAH* = H(2I, — 2AY?)H*
hence Ay (V(Cyy* — Fy)) = M (2(1, — AY?)) = 2 - 2/A.(DD*)
—

<2-201—-W/ap,) =2W/an, <7 by Lemma 2.2.12 .
|

Next we use Lemma 2.2.13 to show by construction that there exists an or-
thonormal process V; in the static aggregation space S; which is also a basis for
Si.

Proposition 2.2.14 (Existence of an orthonormal stochastic vector in the static
aggregation space)

Suppose A2 holds, then there exists a zero-mean process V; = (Viy, ..., Vuy)', such
that

1. Vi €St forallt€Z,j=1,...,7

2.VV, =1,

Proof. We construct a Cauchy sequence V¥ in S;.

(k =1) : We start with 7, = (3)* = (3)%. Let C € C™" be unitary. By Lemma,

2.2.13, we know that there exists m,,, such that

AL (V[ ;n,C _ -;n,n,CD <T = (%)2 Yn>m>s;. (2.12)
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Set s; = m.,,, which is a number from which all orthonormalised projections are
closer to ¥/ (m > s;) than 7. Set V! = ¢ = Cyf* = CA;YV2Py ys, 4. So
for all n > s;, we have \; (V[ R _tsl’”’c]) < 1. In other words, for n > s;
the orthonormalised projection ¥:*™ is “closer” than 7 to C¥' - measuring
closeness in terms of the first eigenvalue of the variance of the difference.
(k=2): 1 = (5)% = (3)*. Now consider £}, := F(C) as in equation (2.11) and
set Sp == my,:

Now by Lemma 2.2.13, we know that for sy = m.,,, we have

- 134
A1 (V[ e ?’”’FZD < Ty = (i) Vn > m > ss.
We set V2 1= ¢>'2 = Fpypf2 = HATV2HY Oy = FpA /2Py = ¢7°C. Here

F(C)
H, A is the corresponding eigen-decomposition as in equation (2.11) for D = Fj.

Thus
Al (V ﬁfwzl - Vt2D =X (V [ tSl,C’ _ ‘f1,sz,0]) & (%)2 ;

by equation (2.12) for m = s;, n = s, and therefore also for the coordinates V/;
of V; with - =1,2, 5 = 1,...,7 we have
1 2
Vi - vill = v i - i < (v -] < 3)
(k=3):73=(5)% = (3)5 Set F3 == F(F,) and s3 = m,,.

Again by Lemma 2.2.13, we know that for s3 = m,,

M (V[ ;’n,Fa _ @:?I,H,Fs]) < T3 = (%)6 Vn > m > Ss.

We set V2 1= 9™ = Fyyf* = F(F) Py = F3A; 2 Poyy® = ¢*™ and have
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therefore that:

vi-vi|<nre-vd) < ()

We continue like this for k = 4,5,6, .... and obtain sequence (V[ : k € N) which

is a Cauchy sequence since:

k k+h k k+1 k+h—1 k+h
I - v s g v+ - )
S —— ~ ,

<(1/2)k <(1/2)k+h
= k-t = l 1\ k-1
Z() =<> Z() <2> — 0 for £k = .
= =
<2

Since V¥ is a Cauchy sequence for every t, it converges in H(y).
We are left with showing that the limit V; is in the static aggregation space, i.e.
V; €S, for all t € Z. For this consider Gy := FyA, ' P,,. Obviously:

1
GGy = Felj Fy so M (GrGy) < PNivD) — 0 for k— o0,

consequently considering the row vectors, say g;; with 7 = 1,...,r from G} =

91k
, we know that g;rgi, < [1/A(T5%)| — 0 and (g;x) is a SAS. By lemma

grk
A0.3, we know that VV, = Vlim, V¥ = limVV} = I, which completes the
proof. [ ]

The process (V;) which we define by the limit of the Cauchy sequence V¥ for
t € Z, is as the following proposition shows a basis for the static aggregation
space. However the uniqueness of (V) has not been shown, since we start with an
arbitrary rotation C of normalised principal components ;" which are also not

unique.

Proposition 2.2.15 (V; is a basis for S;)
For allt € Z, 5p(V;) = S;.
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Proof. Suppose that w; € S;. We have to show that in decomposition of w; into

projection onto sp(V;) and residual, i.e.

wy = proj (w; | sp (Vi) + ¢
E‘ét €Sy

the residual r; is equal to zero. For this consider the vector

V _
,” Vit
Vi=| =
Vit _
Vi1
Tt

for each of these elements there exist static averaging sequences (dg.k)) for j =
(k)

1,...,7 + 1, such that Vj;, = limy a;"y; = mvﬁ and

V1= a0 = proj (7 | () +5 = &8 PL L + 48— iR
¥ H—/ N

gt =9 )

% (k) (k)
hit 5 9j

(2.13)
Clearly,
() 60 = () (2 0 = () 19+ () 0 o0

which implies that also (g](.’“))* QJ(-k) — 0 and consequently

Vo = (387) 1560 < (sup A (1)) (37) 90 20 for k00

*

The main argument of the proof is the following: Denoting by h¥ = (h%, - - k¥ 1t)

and pF likewise, we obtain

det VV; = det V (limy, V) = det Vlimy (hf + pf) = det V limy hf
= det 1i,£thf = 1i’£ndechf =0,
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where by Lemma A 0.3 (or by continuity of the inner product), we know that
det V lim; h¥ = det lim; V k¥ and the last equality follows since det V kY is a zero-

sequence (V k¥ is singular for every k € N). [ |

A key insight of this proof is (2.13): In fact we can represent every element
in the aggregation space as a limit of a sequence of projections on the first r
principal components corresponding to cross-sectional dimension k. If we let £ —
oo the corresponding projection will converge. In the following, we will show that
this holds not only for elements in the aggregation space but in general, since
the normalised principal components (¢{*) generate a Cauchy sequence of static
spaces.
Even though the normalised principal components themselves do not converge (we
can always change the direction by a change of sign), the spaces which they span
converge in the sense that projections of random variables on the spaces spanned

by the principal components (irrespective of directions) converge.

Definition 2.2.16 (Cauchy sequence of static spaces generating process)
Suppose W}* is stationary orthonormal, i.e. VW = I, lives in H(y) and is co-
stationary with (yi) for every n € N. We say that (W}*) generates a Cauchy

sequence of static spaces if
tr VW™ — proj(W™ | sp(W}*))] =0 form,n — oo .

This feature ensures that the sequence of projections on these spaces converges:

Lemma 2.2.17 (The projection onto a Cauchy sequence of static spaces is con-
vergent,)

Let (W}*) be a Cauchy sequence of static spaces generating process. Suppose (z)
is scalar stationary and lives in H(y) - co-stationary with (yi), then proj(z; |

sp(W})) converges in H(y).

Proof. For this proof set 2 := proj(z; | sp(W;)), and let 7,,; be the residual from
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the projection of z; on sp(W;). We have that

A A AN 2m
Y =20+ T =2 +Tmt, 802 —Z =Tmt—Tnt
A A AN AM A A _ AN sm
V(2 — 2™ = E(57 — 31" (Pt — Pre) = E 201y + E 21y
—_—— N———

S1 Sa

where the last equal sign follows by the orthogonality relations corresponding to
the orthogonal projection. Next, we show that both terms S;,Ss go to zero for

n, m — 0o. For this consider writing

7 = 2 4 T = B"W 4 1y
W = proj(W™ [ sp(W}*)) + pi*" = A™" W + pi™"
SO Sl = ]EBthm'rnt =K (BmAmnth + Bmp;nn) Tt = EBmp:nnT'nt ]

Now by Cauchy-Schwarz inequality, we have
| E(B™p{"rne)| < (VB™pi"")(Vrpe) = 0 for m,n — o0,

since by assumption p;** — 0 in mean square. Analogously, we can proceed with
So. [ |

Lemma 2.2.18

The sequence (Vy) generates a Cauchy sequence of static spaces.

Proof. We distinguish between two cases:

1. Case: Projection with n > m:

Vit = proj(¥;" | sp(¥y)) + pf"" = DYy + pi"

/\n T
s tr(V ™) < gh(Vpj™) < re

m,r

where >‘n,j = )\] (FZ’)
2. Case: Projection of 9 on sp(™) with n > m: Since D = AY2P,P* A1/% we
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have D=1 = AY2P,, PA;}/? = D*. We now show that
Dy = proj(yy | sp(y")) e pp™ = — D*Y" LD™)y"
where the equivalence of these statements follows by the projection theorem.

E (A;Y2B, — D'AY?Puyp) (D°AGY? Pa)”
=A;Y2P, Y P*AM:D — D*AM2P, Y
" - mem m —
PxAn Pn+Q5AnQn Pl Am Pm~+QAmQm
= AY2 B, P A P, PiAY?D — D*D =D*D—-D*D =0 .
N——

Ir

P:*A12D

It follows that

L =V = DD* + V gj™ = Vi = D"D +V ™

so trVpi™ =trVp™ — 0 for n,m — oo .

[ ]
Lemma 2.2.19
The sequence (K,; : n € N), is a static averaging sequence.
Proof. Consider
proj (v | sp(¥F)) = mil\y/® A2 Poy?
N—_— ——
vy
TniTpidng < TnilAnT, = Vi < Vyi < oo,
Vs
so Knl,, = mpmy; < Y g form — oo,
Ang
so (KCni) is a static averaging sequence for every i € N. ]

Proposition 2.2.20
If (yis) is a r-SFS, then the i-th element in the SLRA of rank v converges in mean
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square to the projection of y;; on the static aggregation space, i.e.

lim,, proj(ys | sp(¢7)) = lim, Krniyi' = lim, ¥ = proj(y | St) -

Proof. Since (¢}') generates a Cauchy sequence of static spaces (Lemma 2.2.18)
it follows by Lemma 2.2.17, that proj(y;: | sp(v?)) = Ky =: 42 is convergent in
L? to the limit say ;5. Call the L? limit of the residual 6} = y;; — 7 = lim, 62,
say. By Lemma 2.2.19, we know that (IC,;;) is a SAS, therefore 7;; € S;.

We show that d;; LS; which implies that ~;; = proj(y;: | S;). For this suppose
z € Si, so we can represent z, = lim,, a™y" (see proof of proposition 2.2.15),
thus

(2, 6%) = (I, 497, limy, 87) = lim(@™yy, 63) = 0,

by continuity of the inner product. [ ]

Lemma 2.2.21
The double sequence of residuals (6;;) from the orthogonal projection of the output

on the static aggregation space, i.e. vz = proj(ys: | S¢) is statically idiosyncratic.

Proof. Let 67 = (01, ..., 0n¢)’ be the n-dimensional L? limit of 6;"" = (&%, ..., d%,)’.
Set I'y := V47 and I'{"" = V §;™. To show that (d;;) is statically idiosyncratic, we
use the characterisation theorem and show that sup, A\i(I'§) < sup, Ar1(I'y) <
00.

Let m be fix. Since lim, J}; = J;; by proposition 2.3.18, it follows that also starting
with n > m, the sequence of variance matrices converges, i.e. Iy — I'f* (note

that the roles of n, m are exchanged here). By continuity of eigenvalues we have

limA [ T2 | = X (nmrg’m) — (T
n S—— n
mxXm
but also A\ (T3™) < M(I5™) = Aya(Ty) for all n > m therefore A\i(I'y) <
sup,, Ar+1)(I'y) and since this holds for all m, also sup, A1(I'y) < sup,, Ar41(I7) so
(6;¢) is idiosyncratic by theorem 2.2.6. [ |
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Proposition 2.2.22

Suppose that (yi;) has a factor model representation as in (2.10) satisfying the
assumptions from theorem 2.2.7.1, then

1. 5p(Cy) = sp(F) =S¢

2. Cy = proj (yit | St)-

Proof. Suppose (y;;) has a representation as a factor model as in equation (2.10),

SO
Uie =G+ e =Nl +6n

while sup,, A\;(I'%) = oo and sup,, A1 (I'?) < oco.

Furthermore, we know that

Yit = Proj(Yae | Se) + dae = vir + a
= ¢ V; 46y from proposition 2.2.15 .
~—~~

Ixr rx1

Since (e;) is idiosyncratic, we know that S; C H(C;), because for any z, =

lim, é®)y, € S,, where (¢®)) is the SAS corresponding to z, we have
2z = lim, é®y, = lim, ¢®(C; + €;) = lim, 6¥C, .
But also sp(C;) C sp(F}) since Cyy = A Fy. Tt follows that
sp(V2) =S, Cp(Cy) C sp(F).
On the other hand, we know that V F; = I, = EV,V/, so noting that there exists
an r X r matrix b, we can write V; = \b/ F; while bV = I, which implies that b is

TXT
invertible and consequently F; = b='V,, so from

sp(F}) C sp(Vi) = Sy
it follows that S; = sp(F;) = sp(C})
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and Cy; € S; and e; LS, = (C;) which implies that C;; = proj(ys: | S¢) and &;; = ey
by the projection theorem. n

2.2.4 Real Valued Data

Observed data is usually real valued. In this section we show that we can formulate
the structural results presented above also for real valued (y;:): We show that if
(yir) is real valued, the static common component and the static idiosyncratic
component are as well and we can choose (F}) to be real valued.

First, recall that if (y;;) is real valued, in terms of orthogonal projections, we can

without loss of generality only consider real valued spans:

Remark 2.2.23 (see Deistler and Scherrer (2022), excercise on p.55)

Let (y;;) be a real valued stochastic double sequence and

o let HR(y) be the real expansion of (yi;), i.e. we use only real numbers as

scalars,

o denote by HC(y) the corresponding complex span, with complex numbers as

scalars,
o let M C HR(y) be a subspace of HR(y),
o let M® :=5p(z | 2 € MR) C H®(y) be the subspace generated by M in HC(y),
o let z € HR(y) be real valued,

then the projection of z on M in HR(y) is the same as the projection of z on MC
in HC(y).

If I, € R™ " is real, we can choose real orthonormal eigenvectors for P, and

all eigenvalues of I'y are real, so equation (2.6) becomes

Iy = PoyAimy Py - (2.14)
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Accordingly, for real valued (y;;) instead of equation (2.8) and (2.9) we can write

Kni = Kn(Ty) = ph;Pn  the i-th row of PP, (2.15)
cl .= P. By
Citn = Kniyy  the i-th row of Ct[n] .

Now define SF(y) as the “complex aggregation space”, which we obtain from
building the limits with complex SAS, i.e. ¢® € C**®. Set SK(y) as the “real

aggregation space”, obtained from limits with real SAS, i.e. ¢¥) € R Define

CS = proj(yu | SS(y)) in HE(y)
Ciy = proj(va | S;(y)) in HY(y),

where HR(y), H®(y) were defined in remark 2.2.23. Note that C'S corresponds to
C; in theorem 2.2.7.

Corollary 2.2.24
Suppose (yi;) is a real valued static factor sequence. We have CX = CF =: Cy.
Furthermore, the factors (F;) and factor loadings A; can be chosen to be real

valued. Also static common and static idiosyncratic component are real valued.

Proof. By remark 2.2.23, we know that

Cit = proj(yat | S{(y))  in H¥(y)
. C
= proj (ua | (S¥®)°)
C
where (SF(y)) is the subspace generated by SF(y) in H®(y). Now, working with
the real eigen-decomposition of equation (2.14), we can reproduce the proofs from

section 2.2.3 by using only real eigenvectors and eigenvalues. This produces a real

valued 7 x 1 basis, say (V;¥), in proposition 2.2.15 of SF(y). However, V¥ is also
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a basis for SF(y), replacing equation (2.13) by

> ~(k - {17 ~(k A

V= a{y, = proj (Vi | sp@)) +of, = al” PP yf + ab (1 — PLPo) of
~ s - N’ R e

% 7 i

where &§k) € C'** and Py are the real eigenvectors from (2.14) and proceeding

analogously with the proof. It follows that
C c
(SFw) = (V¥) =5Fw) -

Therefore C’ff = Cg = Cy, where Cj is the static common component from

theorem 2.2.7, which completes the proof. [ ]

2.2.5 Estimation

We will present the section in terms of real valued observations (y;;). In Chamber-
lain and Rothschild (1983a) only population results are provided and estimation
is not investigated. Proofs for the consistent estimation of the approximate fac-
tor model via principal components have first been given in the seminal work
of Stock and Watson (2002a); Bai and Ng (2002, 2020, 2021). In these papers
idiosyncraticness is formalised and assumed by limiting cross-sectional and time
dependence in (e;;). This involves quite technical conditions compared to assum-
ing that sup, A\ (I'?) < oo (see A2). To provide the link to the theory presented
above, we prove consistency of the static principal components estimator under
A2. A key element of the proof is to use that we know already that the popula-
tion SLRA of rank-r converges in mean square to the true common component
(theorem 2.2.7.3).

Assumption 3 (Consistent Estimation of the Covariance)
Let v5(0) be an estimator for the covariance v;(0) = Eysy;: using T time obser-

vations. For every § > 0, we have
lim B((55(0) — 75(0)] > 6) = 0.
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For example Brockwell and Davis (2009), ch. 7, discuss consistent estimation of
the auto-covariance in the stationary case. Accordingly, we define the coordinates

of the sample rank-r approximation as follows:

f‘Z = (%:g(o))i,j:l,...,n (2.16)
Ci = KLy (2.17)

which depend both on (n,T") and where KZ; is obtained from equation (2.7),

replacing the population variances by their sample counterparts 717;(0)

Theorem 2.2.25 (Consistency of the Static Rank-r Approximation)
If (yi) is ar-SFS and A3 holds, then C’it’n 5 Cy in probability for min(n,T") — oo
for all© € N.

The corresponding result for the dynamic rank-q approximation has been
shown in Forni et al. (2000). In the following proof, we employ similar techniques
as in Forni et al. (2000).

Proof of theorem 2.2.25. Since the suitably normalised eigenvectors are con-
tinuous functions of the matrix entries, we know that for all 4,7 > 0 there exists
Ti(n,d,n) such that for all T' > Ty(n,d,n)

P(”’@ — K

>4d)<n.
Therefore we can write:

P (|KZgp — Cal > 8) <P (K% — K| > 6/2) + P (|KCuitff — Cil > 6/2)
= RT, + RL, say. (2.18)

Let € > 0, we show there exists n, T’ such that RI, + RL, < ¢. By theorem 2.2.7.4,
we know that RZ, converges to 0 for n — oo, so choose n large enough such that
RL, < /2.

Next, we show that we can choose T' large enough, such that Rl; < /2. Set

39



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Static Factor Sequences: The American School The Theory of Factor Sequences

Bl i= (KL — Kni) and A; := {|| B

we have

} and A§ = Q\ A, then for some 1 > 0,

F =P({|Bmyt > o230 ({5l < spu] })
<P ({|BLy}| > 6/2} N As) + P (45)
<P (]Bmyt | >d/2 | A5> +n(d) for T >Ti(n,d,n) .

Next, by Chebyshev’s inequality and the properties of conditional expectation, we

have

E (‘ it | Aa)
P(IB5ar > 8/2] 4s) < ——r

BT’
|B ||

T
Bm n, n!
i

1BL] Y
N e’

T

<o [ Uapu AP <20° [ MGy

I, Braypyy' BE
E (IBRaf | 45) = 2505 ap<2 | |

<287 EM(yfy)) < 28°M (V1)) <

where the last inequality, we used Jensen’s inequality since the first eigenvalue
A1(+) is a continuous and convex function in the set of non-negative definite ma-

trices.

In Stock and Watson (2002a); Bai and Ng (2002, 2020, 2021) the authors
provide consistency rates and prove consistent estimation of the factors and the
loadings-matrix. Here, we do not provide rates and prove consistency for the
common component (C;;) instead. Furthermore note also that Stock and Watson
(2002a); Bai and Ng (2002, 2020, 2021) start from assumptions about an under-
lying true factor model rather than imposing assumptions on the structure of the

output process (A2).
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2.2.6 Time Dependent Variance

In this section, we discuss heteroscedasticity and non-stationarity. Firstly, note
that the idiosyncratic part in the variance matrix Iy} is irrelevant for the compu-

tation of the common component:

Corollary 2.2.26
Let (yi) be a r-SFS with yu = Cy + ey, then for all ™ with sup, A1 (I'™) < oo, we

have

where Kp;(+) is defined in (2.15).

Proof. From lemma 2.2.19, we know that IC,,; (I'3+I") is a SAS since sup,, A (I'g+
I') = 0o and sup, A\r+1(I'& + ') < 0o by the same arguments as in (2.4), (2.5).
Suppose (v;) is a statically idiosyncratic double sequence with V' = I'™. It
follows that

lim K (T + T™)g = lim, Kona(T + T™)CP + lim, K (T + T™)e
= lim, IC,,;y (T + T™)CY ,  since K (TH +T™) is a SAS
= lim,, IC,,; (T + T™)(CY 4+ ),  since Ky (T + ™) is a SAS
=Cy, by theorem 2.2.7.

Assumption 4 (Heteroscedasticity)
Suppose (yit) is an r-SFS with yy = NF; + e = Ci + eir, where Cy is weakly

stationary and (e;;) is such that
(1) Heteroscedasticity: A(I'}(t)) < oo forallt € Z
(ii) Average variance: limp T~ YL T(t) = T, and sup, A () < oo

() f‘;‘ Ei I'% + T in probability for t — oo.
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We can estimate the static common component consistently also under het-

eroscedasticity:

Corollary 2.2.27
Suppose A4 holds for (yi), then CA’it,n 5 ¢y oin probability for min(n,T) — oo for
all i € N.

Proof. We replace K,;(I") by Kps(I% + I7) and KZ,(I%(t)) by KZ,(I) in the
proof of theorem 2.2.25. By corollary 2.2.26, we know that RI, — 0 in equation
(2.18). Complete the proof by proceeding in the same way as in the proof of
theorem 2.2.25. [ ]

The setup of Stock and Watson (2002a); Bai and Ng (2002, 2020, 2021) restricts
serial correlation in the idiosyncratic component. However this restriction is kind
of unnecessary, since by definition a statically idiosyncratic double sequence only
limits the contemporaneous covariation and not the covariation over time, as
2.2.28 illustrates.

Example 2.2.28 (Random Walks as Static Idiosyncratic Component)

Let (ut) be a scalar white noise process with unit variance and let e;; = €;4—1 + €5,
be a random work where (£5,) is zero-mean i.i.d. with variance o* - orthogonal to
ug. Say e;o =0 for all i € N.

Consider the following factor model
Yip = U+ € = U+ €+ 65 = Cy + 64 .
The variance matriz of y;* depends on t:
Vyr =T5@)=|: ~-. |+t =T% +T7%(t) .
1 -1 &

Here for all t we have \;(T%(t)) =n — oo for n — oo and A\ (I (t)) = to? < o

for all n, which satisfies the conditions of theorem 2.2.7.
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In general, if we have a procedure to consistently estimate FZ(t), we can consis-
tently estimate common and idiosyncratic component also in the non-stationary

case as long as A2 holds for every t € Z.

2.3 Dynamic Factor Sequences: Italian School

All results and definitions stated in sections 2.3, 2.3.1 are from Forni and Lippi
(2001). The common component in the Generalized Dynamic Factor Model in-
troduced in Forni et al. (2000); Forni and Lippi (2001) emerges from dynamic
aggregation rather than from static aggregation: This means that we consider
limits of averaging sequences, which are weighted averages over time and cross-

section:
Zt =11_me Z cg-“)yz-,t_j = limy o (L)y: - (2.19)

Forni and Lippi (2001) allow very general transfer functions from the “dynamic
shocks” to what we call the dynamic common component (see also Forni et al.,
2005).

Definition 2.3.1 (Dynamic Averaging Sequence (DAS))
Let ¢® € L(I) N LP(f,) for k € N. The sequence of filters (c®) : k € N) s
called Dynamic Averaging Sequence (DAS) if

lin e Lem fc—) M (0) (M (0)) do =0.

If (c(k)) in equation (2.19) is a DAS, the scalar valued output process (z:) is
called dynamic aggregate. It is useful to introduce a notation for the set of all
DAS corresponding to (y;):

D(fy) = {(c““)) 1M € LE() N L (fy) vk € N and lim [ = o} _
;

Definition 2.3.2 (Dynamic Aggregation Space)
The set G(y) = {zt . 2z = lim, ¢ (L)y, and (C(k)) € D(fy)} is called Dynamic

43



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Dynamic Factor Sequences: Italian School The Theory of Factor Sequences

Aggregation Space.

Henceforth we might often write G to denote G(y) when it is clear from the
context. For a stationary double sequence (y;;) (see A1), the dynamic aggregation
space G(y) is a closed subspace of the time domain H(y) (see Forni and Lippi,

2001, Lemma 6). Therefore orthogonal projections onto G are again in G.

Definition 2.3.3 (Dynamically Idiosyncratic)
We call a stationary (A1) double sequence (zix) dynamically idiosyncratic, if

lim, Q(k)(L)Zt =0

for all (c®) € D(f,).

In other words, a double sequence which is dynamically idiosyncratic vanishes
under all possible dynamic aggregations. Analogously to theorem 2.2.6, we can
characterise dynamic idiosyncraticness by the boundedness of the first eigenvalue

of the spectrum (see Forni and Lippi, 2001, Thm 1).

Theorem 2.3.4 (Forni and Lippi (2001), Dynamically Idiosyncratic)

The following statements are equivalent:
(i) A stochastic double sequence (z;) is dynamically idiosyncratic.

(i) The first eigenvalue of spectrum is essentially bounded, i.e.

esssupg sup A1 (f7)(0) < oo .

From what follows in the remainder of this section, we may say that a station-
ary stochastic double sequence (y;;) with the properties specified in A5 below has

a dynamic factor structure:

Assumption 5 (¢-Dynamic Factor Structure)

There exists ¢ < 0o, such that
(i) sup, Ay(f]) = o0 a.e. on O.
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(i) esssup, sup, Ag1(fy) < 0o,

where “esssup” denotes the essential supremum of a measurable function.
Analogously to the static case, we can also compute dynamic low rank approx-
imations with dynamic principal components (see Brillinger, 2001, ch. 9). For
this, consider the eigen-decomposition of the spectrum
f;(Q) — P(Z)(H)A{n)(H)P(n)(H) for0 e O,

where P,)(6) is a unitary matrix of row eigenvectors, A(,)(f) is a diagonal matrix
of eigenvalues sorted from the largest to the smallest both having equivalence
classes of (measurable) functions as entries. Denote by pp;(#) the j-th row of
Pn)(0) and by Pn4(0) = P,(f) the sub unitary matrix consisting of the first ¢
rows of P,)(6). We set

Kni(0) = p;;(0)P,(0) the i-th row of P;(0)P,(6)
X" = Py(L)Pu(L)y} (2:20)
Xitm i= Kni(L)y?  the i-th row of x| . (2.21)

where (2.20) is the dynamic low rank approximation (DLRA) of rank q. The
process XLn] emerges from a filter of rank g a.e. applied to ¥ in order to best
approximate y; with respect to mean squares.

Here comes the main result for the dynamic case:

Theorem 2.3.5 (Forni and Lippi (2001): ¢g-Dynamic Factor Sequence or ¢g-DFS)
Suppose A1 holds, then
1. A5 holds if and only if we can decompose

Yir = Xt + &t = bi(L)ue + & where Exués =0 Vi, j,t, s, (2.22)

such that w, is an orthonormal white noise gX 1 process, b;(0) is a square summable
(in general two-sided) filter and (xit), (&) are stationary double sequences (full-
filling A1) with
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(1) sup,, A (f;) =00 a.e. on ©
(i) esssupgsup, M (fg) < 00.

Furthermore in this case, it holds that

2. Xie = limy, Xitn,

3. q, xit and &; are uniquely determined from the output (i),
4. Xit = proj(yit | G) for all i € Nt € Z.

The proof is given in section 2.3.1. The double sequence () is called dynamic
common component (dynamic CC) and (&) is called dynamic idiosyncratic com-
ponent since it is dynamically idiosyncratic by theorem 2.3.4. The equivalence
statement 1. justifies the wording dynamic factor sequence as the “structure” de-
scribed in A5 corresponds to an underlying factor model. Therefore we also call
the “only if” part in theorem 2.3.5.1 representation result. By 4. we obtain the
dynamic common component through projecting the output on the dynamic ag-
gregation space. Statement 2. provides the link to dynamic principal component
analysis: the dynamic common component is the mean square limit of the DLRA

of rank ¢ (see equation 2.21).

Definition 2.3.6 (Forni and Lippi (2001): ¢-Dynamic Factor Sequence (¢-DFS))
A stationary stochastic double sequence (assumption A1) that satisfies A5 is called
q-Dynamic Factor Sequence, q-DFS.

Methods to estimate g have been proposed by Hallin and Liska (2007); Bai
and Ng (2007). In Onatski (2009) a test for determining g is provided.

2.3.1 Proof of the Main Result: Dynamic Case

In this section we prove theorem 2.3.5. In the proof of theorem 2.2.7, we dealt
with the static principal components arising from the eigen-decomposition of the
variance. The proof of theorem 5 for dynamic factor sequences is mainly anal-
ogous to the static case, but here we operate with dynamic rather than static

principal components. We replace the eigenvectors/eigenvalues of [y with the

46



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Dynamic Factor Sequences: Italian School The Theory of Factor Sequences

eigenvectors/eigenvalues of the spectrum specyy = [ (0). As such, they are fil-
ters, but we will suppress that in the notation for simplicity. We will use the

following notation throughout the proof in this section:

 canonical projection dynamic case: y; = proj(yi | G) + 6 = Vi +
0;; where ~;; is the orthogonal Hilbert space projection onto the dynamic

aggregation space

o For a multivariate stationary zero-mean stochastic vector process (z;) with

existing spectrum, we denote by spec(v;) the spectrum of (z;)

e A(A) is the i-th largest eigenvalue of a square matrix A. If A is a spec-
tral density );(A) is an equivalence class of (measurable) functions in the

frequency 0 € [—m, 7.

« J3(0) = Br(0)An(0)Pu(0) + Q1 (0)2n(0)Qu(0) =: PyAnPr + QnQp (com-
pare notation in section 2.2.3)

« normalized Dynamic Principal Components: ¢f := A Y(L)P,(L)y} =:
AL Py

o In the following M C [—m, 7| is a subset of the frequency band of non-zero

measure that will be given in the context

o unitary bandpass filter: Let M C ©, and C be ¢ x q filter
By ={C:C()=00¢M,C6)C*(0) =1,} (2.23)

o Let IT C © be the set of 0’s for which A\,(f;')(#) — co. Recall that by A5,
the set © \ II is a Lebesgue zero set.

« Rotated version of a normalised principal components: ¥/ := C (L)Y

o If we write P,y we mean that (P,,(L),0---0)y} filled up with n —m zeros

to match the dimension
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« We use A\, ; = )\;j(fy) as a shorthand notation for the j-th spectral eigen-

value.

o P = proj(C(L)y™ | H(y")). Note that we project here on the whole

time domain of (¢}*) rather than on the contemporaneous space.

e D(m,n,C) =: D= C(0)A~Y2(0)P,,(0)P:(0)A;1/%(0) is the projection ma-
trix that transforms ¢ to Pl = proj( m.C | H(¢™)), so Pl =
D(L)Y and spec )™ = spec D(L)y" = D(8)D*(8) =: DD*. We sup-

press dependence on n in the notation.

e (ay) an increasing scalar sequence with a,, — oo for n — oo such that
Ang(0) == A (f(0)) > oy, for all 0 € M.

From a birds’ eye view, the main steps of the proof are the same as in the static
case (see steps a) - d) in the beginning of section 2.2.3). Now, in steps a)-b),
we construct a basis that is orthonormal and white noise, (v;), that spans G in
time domain, i.e. G = H(v). The main additional complication of this basis
construction compared to the static case, is that the first g-eigenvalues might not
diverge uniformly. As pointed out by Forni and Lippi (2001), this is for example
the case for elementary common components like x;; = (1 — L)u;. Therefore the
basis construction for the dynamic aggregation space is conducted “piecewise” on
the frequency band. The remaining steps c)-e) are essentially analogous to the

static case.

Lemma 2.3.7
Suppose m < n and C € By, defined in (2.23), then

C(L)Y™ =: Cy™ = proj (v~ | H(y})) + Ry(m,n)
= CA V2P, P A2 AV2Pym + CA Y2 P Qi Quyl

D(m,n,C) P R (m,n,C)

Proof. The proof is analogous to lemma 2.2.10, replacing matrices by the corre-

sponding filters. [ ]
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Note that D(m,n,C) =: D(0) =: D is the population projection matrix, when
projecting "™ onto the time domain of Y. On the other hand R(m,n,C)(8) :=
CALY2PnQriQ, =: R(6) is the filter matrix that transforms y? to the residual of
that projection, so R;(m,n,C) =: R(L)y} =: Ry}.

Lemma 2.3.8
Suppose A5 holds, then A\ (spec [Ry (m,n,C)] (0)) < A g+1(0)/Am q(0), where A j =
Aj(fiH(0)) for all0 € M.

Proof. The proof is analogous to the proof of lemma 2.2.11, replacing matrices

by the analogous filters and replacing the variance operator “V” by “spec”. ]

Lemma 2.3.9 (Squeeze Lemma for eigenvalues of spec )
For given Lebesgue non-zero M C [—m, 7|, there exists m*, such that 1 > \;(DD*) >
1—W/ay, >0 foralld e M, m>m* and j =1, ...,q.

Proof. The proof is analogous to the proof of lemma 2.2.12, replacing matrices

by the analogous filters, operating on the subset M of the frequency band. [ |

Note that even though the normalised dynamic principal components C (L)Y =:

Cy[* are orthonormal, the projection @ZA)Z""C is not. In the next step we orthonor-

malise )7 Let H()A(0)H*(#) =: HAH* = DD* be the eigen-decomposition
of DD* (in the usual manner with orthonormal eigenvectors in H), we define an

. . n (6
orthonormalised version of 1);"™" as

piC = H(DATH(L)H(L) proj(C(L)¢y" | H(¥r))

rm,n, O
'Jrjf

= HAY2H'Dy" = F(L)yY? =: Fy . (2.24)
=:F(D)=:F

Lemma 2.3.10 (The orthonormalised projection)
For all T € (0,2), there exists m,, such that

e W/an, <1
e For allm >m > m, we have \; (Spec[ ™0 _ _;n’"’CD <7 forall € M.
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Proof. The proof is analogous to the proof of lemma 2.2.13, replacing matrices

by filters and replacing “V” by “spec”. [ ]

Next we use the previous lemmas to construct a g-dimensional orthonormal
white noise “dynamic” basis for G, i.e. H(v) = G. We begin with constructing a

process (vM) that is orthonormal on M and lives in G

Lemma 2.3.11 (Existence of a band-white noise process in the Aggregation
Space)

Suppose A1 and A5 hold and M C [—m,m| as above, then there exists a q-
dimensional process (vM), such that

1. v% eGforj=1,..q

I, for 6 € M |
2. specvM = {7 * d
0 else .

Proof. Analogous to the proof of proposition 2.2.15, replacing matrices by the
corresponding filters and “V” by “spec”, we obtain a Cauchy sequence (vfw ’k),
with limit (vM) having the required spectrum and living in H(y).

We are left with showing that the limit process (v}) lives also in G. For this
we show that the sequence of filters G () = Ek(G)/_\;cl/z(G)Esk (0) =: FehA 2P,

defines a DAS. For this note that

1
Ag( ")

consequently considering the row vectors, say g;, with j = 1,...,q from G} =
91k

GGy = FrX, Fy so M(GrGp) <

— 0 a.e.on ©

we know that grgf;, < |1/Ag(f;*¥)| which is integrable and tends to zero

9ak
a.e. in M C ©. By the theorem of dominated convergence, it follows that
limg fo gjxgik = Jolimg gjrgj, = 0. Since specv; ™ = I, for all # € M and
specv* = ( else, we have that spec vM = spec(lim, vth) = lim spec(vtM’k) =1,

for 6 € M and specvM = 0 else by lemma A 0.3 which completes the proof. M
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Proposition 2.3.12 (There exists an orthonormal white noise process in G)
Suppose A1, A5 hold, then there exists an orthonormal white noise process (v;) ~

WN(I,) in G.

Proof. As usual set A (0) =: \jq = Ag(f7(9))
We construct a sequence of sets (N, : b € N) as follows. At first set b = 1.
Algorithm a): We construct a sequence of sets M} C II together with a

sequence of integers v} while we set M} =11, 11 =«
(a = 1, determine v}): Let v{ be the smallest natural number, such that £({0 €

Mo : Ay > 1}) > m. Such v{ must exist since )\, , diverges at every 6 € II, set

M} :={0 € My: Ay, >1}and L(M]) >m =7 .

(a = 2, determine v4): Let 13 be the smallest natural number, such that £({0 €

M Ay q > 2}) > T, set

M; = {0 € M;: Aulg > 2} and L(M) > T .

(For any a, determine »}): Let v} be the smallest natural number, such that

L{0 € My_y : Mg > a}), set

M} ={0€M;_,:\y1,>a}and L(M;) > m .

It follows that for

o0

Ny =MinM}n-- = ﬂ M} we have L(N;) > m =7 .
a=2

Algorithm b): We construct the sequence (V) of subsets of II using (M?)
and v’
(b=1): Set Ny := N2, M, using algorithm a) with m = 7 we know that
L(N) >m =m.
(b=2): Set MZ := I\ Ny, my == L(IT \ N;)/2 and apply algorithm a) starting
with M2 to obtain the sequence of sets (M2 : a € N) together with the index

o1
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sequence (v, : a € N) while
M2:={0€ M2 :\z,>a}and L(M?) > .

setting Ny := N ; M2, we know that L(N3) > .
(b =3): Set M2 :=TI\ (N;NNy), w3 == L(IT\ (N1 N Ny)), algorithm a) yields Ns.

(b=4): ..
Consequently (N, : b € N) is a sequence of disjoint subsets of II such that

Z?’l’b < L (U Nb) = Z'E(Nb) =27 .

b=1 b=1 b=1
We apply lemma 2.3.11 with M = N, to obtain processes (v"'), (v)'?), ... which
oscillate on disjoint sets of the frequency band, but v; == Y2, v is white noise

and lives in G, which completes the proof. [ ]

So far we have shown the existence of a white noise process (v;) in G. Next

we prove that such a (v;) is a “dynamic basis” for G:

Proposition 2.3.13 ((v;) is a dynamic basis for G)
Given (v;) from proposition 2.8.12, it holds that H(v) = G.

Proof. The proof works analogous to the proof of proposition 2.2.15 replacing
matrices by the corresponding filters, replacing “V” by “spec” and working with

the projection onto H(v) instead of projecting onto sp(V;). [

Definition 2.3.14 (Cauchy sequence of dynamic spaces generating process)
Suppose (w}) ~ WN(I,) is orthonormal white noise, lives in H(y) and is co-
stationary with (yi) for every n € N. We say that (w}) generates a Cauchy

sequence of dynamic spaces if
tr spec [wi" — proj(w}* | sp(wy'))] =+ 0 form,n — oo a.e. on © .

Lemma 2.3.15 (The projection onto a Cauchy sequence of dynamic spaces is

convergent)
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Let (w}) be a Cauchy sequence of dynamic spaces generating processes as in defi-
nition 2.3.14. Suppose (z) is scalar stationary and lives in H(y) - co-stationary

with (yit), then proj(z: | H(w])) converges in H(y).

Proof. The proof works analogous to the proof of proposition 2.2.17 replacing
matrices by the corresponding filters, replacing “V” by “spec”, covariances by
cross-spectrum and working pointwise on the frequency band with the projection
onto H(w™) instead of projecting onto sp(W}*).

For the last part of the proof, consider 2] := proj(z; | H(w")), we have that

spec(3" — 27') < spec(z) < o0
by the theorem of dominated convergence, we have
0= / limspec(2* — 3}') = lim/ spec(2;* — ') where m,n — oo ,
e Q)

which implies that 2} is a Cauchy sequence and therefore convergent. [ ]

Lemma 2.3.16

The sequence (f) generates a Cauchy sequence of dynamic spaces.

Proof. The proof works analogous to the proof of proposition 2.2.17 replacing
matrices by the corresponding filters, replacing “V” by “spec”, covariances by

cross-spectrum and working pointwise on the frequency band. [ ]

Lemma 2.3.17

The sequence K,;(0), is a dynamic averaging sequence.

Proof. Consider

proj(yir | H(P)) = mailh/2 A2 Pyl
e —
Wy
Tni(0) i (0) Ang(8) =: TriTi; Ang < SPECYs < 00,
SpeC Yit

S0 ICm-IC;;i = 7Tni7r;k”; <———>0ae. on O
nq

so 0= / lim 77, = lim / TniToi
o n nJe
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where the last equality follows by the theorem of dominated convergence. ]

Proposition 2.3.18
If (yi) is a q-DFS, then the i-th element in the DLRA of rank r converges in L?

to the projection of y; on the dynamic aggregation space, i.e.
li_mn proj('yit | H(‘/’?)) = li_mn ,_Crn(-l")yi?;L = h_mn 7'3 = proj(yit | G) #

Proof. The proof is analogous to the proof of proposition 2.2.20. [ ]

Lemma 2.3.19
The double sequence of residuals (8;) from the orthogonal projection of the out-
put on the dynamic aggregation space, i.e. i = proj(yx | G) is dynamically

idiosyncratic.
Proof. The proof is analogous to the proof of proposition 2.2.21. [ ]

Proposition 2.3.20

Suppose that (yi;) has a factor model representation as in (2.22) satisfying the
assumptions from theorem 2.3.5.1, then

1. H(x) =H(u) =G

2. Xit = Proj(xi | G).

Proof. Suppose (y;;) has a representation as a factor model as in equation (2.22),

SO
Vit = Xit + & = bi(L)uy + it

while sup, Ay(f7) = oo a.e. on © and sup, Ai(f¢') < co.

Furthermore, we know that
Yir = proj(yi | G) + die = vir + das

=¢;(L) vy +6; from proposition 2.3.13 .
N——

1xg gx1
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Since (&;;) is idiosyncratic, we know that G C H(x), because for any z =

lim, ¢®)(L)y, € G, where (c®) is the DAS corresponding to z;, we have
z = limy, (P (L)y, = limy ¢ (L) (xe + &) = limy, ¢ (L) -
But also H(x) C (u;) since xi: = b;(L)u;. It follows that
H(v) = G C H(x) C H(u).
On the other hand, we know that specu; = I; = specw; a.e. on ©, so noting that
there exists an g x ¢ filter d(L), we can write v; = \d/ u; while dd* = I a.e. on

gaxq
©, which implies that d is invertible and consequently u; = d~*(L)v, so from

sp(us) C sp(vy) =G
it follows that G = H(u) = H(x)

and x;; € G and &, 1 G = H(x) for all 4,¢ which implies that x;; = proj(vyi: | G)
and d;; = & by the projection theorem. [ |
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Chapter 3

Reconciling the Schools in One
Model

Given the discussion of the previous chapter, naturally the question arises whether
every static factor sequence is a dynamic factor sequence. However, the “Gener-
alised Dynamic Factor Model” (A5), is actually not more general than the class
of static factor sequences (A2): For example, we might have divergence only on a

subset of the frequency band:

Example 3.0.1 (1-SFS but not a ¢-DFS)
Let (u;) be scalar white noise and (€5,) be i.i.d. across all leads and lags and

independent of (uz). Consider a double sequence with common component given

by
Xit = Fy = 2![77r/2,1r/2] (L)ut s

where Ij_r2.x/2) is the index function being equal to one for 6 € [—n/2,m/2] and

zero otherwise. The spectrum of (xit) 1S

11
11
o6
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on [~m/2,7/2] and zero on [—m, 7|\ [~7/2,7/2], so sup, M(I'y) = co. This is a
1-SFS but not a DFS since there divergence does not happen a.e. in [—m,7].

On the other hand A5 is also violated if all eigenvalues of f;} diverge:

Example 3.0.2 (Infinite Number of Blocks: co-DFS)

Let (u{ ) be a collection of mutually orthogonal scalar white noise processes: So for
each j, (ug : t € Z) is white noise and for all j # | we have uﬂJ_ui forallt,s € Z.
Define filters b(j )( L) fori,j €N such that x? = ) = b(j)(L)ug is the common compo-
nent of a 1-DFS fori € N. Hence the collection {(x\) : j € N} is an infinite set
of mutually orthogonal dynamic factor sequences.

Next we use these factor sequences and blend them to a new double sequence in

the following manner:

(Xe:leNteZ) = (Xlt) | th >X1t) | Xg?;Xg)aXu) |--0) - (3.1)

In Hallin and Liska (2011), it is shown that if two dynamic factor sequences with
dynamic dimensions q1,q are combined to one factor sequence, the resulting dou-
ble sequence is a again a factor sequence of dimension q with max(q1,q2) < q <
q1+qo. In particular the dimension q of the blended factor sequence is q¢1+q2 — qn,
where qn is the dimension of the intersection of the two aggregation spaces.

Since by construction of the model above, the dimension of the interesction of
the aggregation spaces of two factor sequences (ng)) and (th)) is zero, as the dy-
namic shocks are mutually orthogonal. Set spec X' =: fZ. By iteratively applying
this result, it follows that there exists no finite q, such that sup, Ag41( f;) s es-
sentially bounded, where 3 is the n-dimensional spectrum corresponding to (X1t)

from equation (3.1).

In this chapter, we reconcile the two schools in one model: We suppose that
(yi) is weakly stationary (A1), and has both, a static (A2) and a dynamic factor
structure (A5). In section 3.1, we provide a new decomposition of y;; which has
been overlooked in the literature and which is the moot point of this thesis: We
can decompose ¥;; into the static common component, the weak common compo-

nent and the dynamic idiosyncratic component. The weak common component
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A New Decomposition Theorem Reconciling the Schools in One Model

lives in the dynamic aggregation space, vanishes under static aggregation and is
spanned by a potentially infinite number of weak factors. We interpret this result
in detail from a structural point of view. In section 3.2, we provide a canoni-
cal representation for double sequences which have a dynamic and a static factor
structure and model the dynamic common component as a state space system.
Finally, in section 3.3, we show that under quite general and common conditions,
there exists a representation of the dynamic common component that is causally

subordinated to the output.

3.1 A New Decomposition Theorem

The main statement of this thesis emerges from a combination of theorem 2.3.5
by Forni and Lippi (2001) and the reformulation of the results from Chamberlain
and Rothschild (1983a) in theorem 2.2.7.

Theorem 3.1.1

1. For every t € Z the static aggregation space is contained in the dynamic
aggregation space, i.e. S; C G.

2. If A1, A5 and A2 hold, then Cy = proj(xit | St). In particular we can

decompose (y;;) into three parts:
Yie = Cir + e + &, (32)

where xi = Ciy + €% in equation (2.22) and ey = e + & in equation (2.10), with
ex, Ciul&js for all i, j, s,t and CyLe}, for all j,i. Furthermore (e}) is statically
idiosyncratic while (Xit), (&it), (Cit) and (e;) satisfy the conditions of theorems
2.3.5 and 2.2.7.

Proof. Clearly, under the given assumptions L2 (I,) € LP(f,) and LE(I) C
L(I), so every static averaging sequence is a dynamic averaging sequence, i.e.
S(Ty) € D(fy). It follows that every static aggregate is a dynamic aggregate and
therefore S, C G for all t € Z.
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For the second statement note that we have

Cit = proj (ys | St) by theorem 2.2.7.4
= proj (xit + &t | St) by theorem 2.3.5.1

= proj (xit | St) + proj (& | St)
= proj (xi | St) since S; C G.

Since € = xit — Ci € G it follows that eX L;s for all 4, j, s, ¢t. Furthermore e} =
eir — &it, and both terms on the right hand side vanish under static aggregation,

so does e}. [ |

Definition 3.1.2 (Weak Common Component)

In (3.2), we call (e}) the weak common component.

Reconciling the American and the Italian school, we can state that the ap-
proaches can be regarded as mathematically analogous (see chapter 2) while
employing two different types of aggregation being static- (obtained via SLRA)
versus dynamic aggregation (obtained via DLRA). The two schools have struc-
turally two different types of common components - a dynamic and a static one.
The dynamic common component arises from a projection onto a (much) larger
Hilbert space G. Note that G contains all static aggregation spaces, ie. the
union 8P (Uez St) = H(C) which is the whole time domain of the static common
component. So naturally, the dynamic common component, in general, explains a
larger part of the variation of the outputs (y;;). This however does not imply that
static aggregation is in any sense “worse” than dynamic aggregation (as we will
examine below). The moot point of this thesis, and the discussion that follows, is
that a careful distinction between the two concepts has theoretical and empirical
relevance and implies a number of interesting research questions.

The weak common component is the residual term from the projection of the dy-
namic common component on the static aggregation space. As such, it is the static
idiosyncratic component of the dynamic common component and lives in the dy-
namic aggregation space. On the other hand it is also the projection of the static

idiosyncratic component on the dynamic aggregation space, i.e. eX = proj(e; | G)
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or that part of the static idiosyncratic component which is dynamically common
to the output sequence. It vanishes under static aggregation and is spanned by
(a potentially infinite number) of weak static factors (see definition 3.2.1 below).
The weak common component - though always being statically idiosyncratic - can
be dynamically idiosyncratic or not: In an extreme case, the static common com-
ponent can be even zero while (e) is not equal to zero for every cross-sectional

unit: (see a similar example in a different narrative also in Hallin and Lippi, 2013):

Example 3.1.3 (1-DFS but 0-SFS)
Let (uy) be a scalar white noise process with unit variance. Consider a dynamic

common component of the form
Xit = Ut—i+1 -

he spectrum of (x;) is

Firstly note that Iy, = I, for all n, so the first eigenvalue of Iy is bounded and
Ci = 0 by theorem 2.2.6 and S; = {0}.

The first row of fy equals the k-th row of [, times e*0. Thus fx has rank one
a.e. on © and therefore A\1(f7(0)) = tr f7(0) = n — oco. It follows that (xi) is a
1-DF'S by theorem 2.3.5.

Relating to equation (3.2), we have e} = xi and by the special construction of
this double sequence, we have that xoi41 = Ury1-241 = W = X1t ANd X3441 =
Upr1-3+1 = Us—1 = Xat and so on. Here we can perfectly predict x;+1 for ¢ > 2
through x.t, that means that all the predictive power is due to the term (eX) which

would be lost under static aggregation.

Admitted, this is example is really pathological, though illuminating, as it

demonstrates the range of possibilities when distinguishing between dynamic and
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static aggregation. Note also that in this example 1 = ¢ > r = 0, so in general
it does mot hold that ¢ < r as is commonly assumed. In other words the number
of dynamic shocks is in general not less or equal than the number of strong static
factors.

We know that (eX : ¢t € Z) lives in G, but this does not imply that the double se-
quence as a whole (€X) has a non-trivial aggregation space, i.e. is not dynamically

idiosyncratic.

Example 3.1.4

Consider a double sequence where the dynamic common component is given by

X1t = Uy

Xit = U1 for i >1,

where (u;) is as in example 3.1.3. Here Cy = w;_1 for all i > 1 and e} = wu,
fori =1 and e = 0 for i > 1. So (e}) itself is dynamically and statically
idiosyncratic.

Also here, we can perfectly predict X; 11 fori > 1 from X1

3.2 A Canonical Representation

Next we would like to construct a “canonical representation” of y;* for finite n in
terms of strong and weak factors. Again suppose A1, A5 and A2 hold. Denote now
by (F}’) the r x 1 dimensional stochastic vector of “strong” factors obtained from
static aggregation (corresponding formerly to (F}) in theorem 2.2.7). By theorem
3.1.1, we know that F;? € sp(x;) and sp(Fy) = S;(y). We use the Gram-Schmidt-
orthogonalisation procedure to iteratively add weak factor basis dimensions to
5P(Xe):

Choose the first 7 in order for which x;; — proj(x;: | sp(#¥)) # 0, set this to ;. Set
V1 = Xiyt — PO} (Xt | SP(FY)) and set F% = |luy|| ™" vy Let i3 > 41 be the next
in order such that x;; — proj(xit | sp(#¥, F1y)) # 0 and set va; = Xip .t — Proj(Xis,z |

sp(F¥, F)) and F = |lug|| " va. This way we obtain indices i1, s, ..., byt () With
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ry(n)t < n along with F/"" = (F{‘t’,...,F:;_’(F(n)’t)

matrix and being contemporaneously orthogonal to Fy. Set ry(n) = r 4 rf(n).

' having orthonormal variance

The static factors F{* = (F¢, F{"™)" are ry(n) x 1. For every finite n, we can write

the decomposition of theorem 3.1.1 in vector form as

F=Cr g
w,n 11
e ;

S

xP b

with E F/(F}') = I, () by construction. Furthermore theorems 2.2.7 and 3.1.1
imply that A, ((A’;)' A?) — 00 and sup,, A\ ((AZ))' AZ,) < 00. In general, it is clear
that the dimension 7 (n) of F;" may increase, when we add new variables in

equation (3.3).

Definition 3.2.1 (Strong and Weak Static Factors)
We shall use the term static factor for any basis coordinate of Sp(x:) - distinguish-
ing as in equation (3.3) between strong static factors, (Fy) associated with strong

loadings, and weak static factors, (F}"™) associated with weak loadings.

The term “weak factor” has first been used by Onatski (2012) which gives a

notion of weak factors that is consistent with what we defined above. In par-
ticular Onatski (2012) considers the model y* = AZF + e} with weak loadings
sup,, A\1 ((AZ)'A’U‘)) < oo and shows that the principal components estimator is
not consistent.
Weak factors may load e.g. only on a finite number of cross-sectional units -
though their influence might be large for those units - or their loadings are “thinly”
distributed in the cross-section with vanishing influence or both. On the other
hand their influence on the subsequent period might be large and consequently,
they can be important for forecasting (see section 4.3). We shall use the term
dynamic factor for a shock that is a dynamic basis coordinate for G as in theorem
2.3.5. Naturally in this framework, there is no such a thing as a weak dynamic
factor.

In light of the discussion above, the term “factor space” is to be used with care
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as we have to distinguish between S; = sp(F}), sp(x:) and G. For example Forni
et al. (2015, 2017) provide theory and methods for “infinite dimensional factor
spaces” by which they actually mean that Sp(x:) is infinite dimensional. How-
ever, 5p(x:) might be infinite dimensional even though S; is finite dimensional
(see example 4.4.2).

We may suppose that dimsp(x;) is finite dimensional:

Assumption 6
The contemporaneous space of the dynamic common component is finite dimen-

sional, i.e. sup, ry(n) =: 1, = dimsp(x;) < oo.

This guarantees that we have a SFS. The static and dynamic common com-
ponent coincide if and only if all 7, non-zero eigenvalues of the variance of the

dynamic common component diverge. Some structural results in order:

Theorem 3.2.2

Suppose (yi;) is a ¢-DFS (A1, A5) .

1. If sup, Ty (n) =1y < 00, then (yit) is a r-SES (A2) with r < r,.

2. If (yi) is also a r-SES (A2), then Cy = xu, for all i € Nt € Z if and
only if there exists an r-dimensional process z; with non-singular variance matrix
I', = Ezz, together with a nested sequence of n X r loadings-matrices L™ such
that x? = L™z, and \.(L" L") — oo.

3. Suppose (y;;) is also a r-SFS (A2) and consider a representation of the dynamic

common component of the form

z,
LT
X = L8 Lg] | |
Ty

where x} is (r x 1) and sup, A, ((L?)’L?) = 00 and sup, A1 ((LQ)'L’;) < 00,
Fp=Vai and I, = V 2™ are non-singular and Ez!(z?™) = 0 for alln € N.

Then C* = Lz} and e¥™ = L3xz?" for alln € N.

Proof. If dimH(x;) = ry, then there exists some 7, dimensional process, together
with a loadings L™ such that x} = L"z for all ¢t € Z. By theorem 3.1.1 we
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know that S;(y) C H(x;), therefore there exists F; from theorem 2.2.7 as a linear
transformation of z; of dimension r < 7.

For the second statement, note that if Cy; = x;; for all i € N, t € Z, we know that
Xit is finite dimensional with r, = r being the number of divergent eigenvalues in
I'% by theorem 2.2.7.3. Setting z; = F; (theorem 2.2.7.1), we obtain the desired
result.

On the other hand, let now x? = L"z;, with \,(L" L") — oo with [, = V2, =
PDP' having full rank and D is a diagonal matrix of eigenvalues and P is an
orthonormal matrix of eigenvectors. Since (y;;) is a SFS by assumption A2, there
exists some 7 < r such that A\#(I'}) — oo and A#1(I'}) < oo by theorem 3.1.1
and theorem 2.2.7.1. Suppose 7 < 7, s0 \(I'y) = A (L"T",L™) < co. But

A (LT, L) = A\ (L"PDP'L") = \(DY*P'L™V L" PD'/?) (3.4)
> A (DY2P\ (LY L")\ (PDY?) (3.5)

which is a contradiction as A\;(PDY/2) > 0 since T', is of full rank and \.(L" L") —
00.

Set x4, = Liaz; and x2 = xi — X, Recall that S;(y) = S;(x) by theorem 3.1.1.
By theorem 2.2.7.3 the decomposition into static common and static idiosyncratic
component of (x;) is unique - given the number r of divergent eigenvalues and the
contemporaneous orthogonality between x;, and x? is satisfied. This completes
the proof. [ ]

3.3 Causal Subordination

As we have seen above, the dynamic common component retains a larger part of
the variation of the output process by accounting for the presence of weak factors
which is a desirable feature. However, a theoretical downside at first glance is that
dynamic principal components is in general a two-sided operation on the observed
data. As a consequence neither the dynamic common component nor the dynamic

shocks (u;) as they arise from computation via DLRA are causally subordinated
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to (i), and therefore cannot be used for forecasting. In this section, we show
that under quite general conditions there exists a representation of (x;;) and of
the innovations of (;:) causally subordinated to the output (y;).

Suppose (z;) is a multivariate d x 1 zero-mean weakly stationary process. Let
g = 2y — proj(z; | Hi—1(2)) be the innovation of z;. Recall that by the Wold
representation theorem (see e.g. Deistler and Scherrer, 2022, theorem 2.3) we may
say that (2;) is purely non-deterministic iff we can represent z; = 3272, K (j)e:—j,
where K (0) = I and 3252, 1K (5)||> < oo. We call k(6) = 20K (j)e™ transfer
function of (z;) in the frequency domain. Corresponding to equation (2.2) we can
also write z, = k(L)e;. Consider k(z) = 332, K(j)2’ where z is a complex num-
ber. Recall that the transfer function k(z) of a purely non-deterministic process
is analytic on the open unit disc.

We extend the definition of pure non-deterministicness to stationary double se-

quences in the following way:

Definition 3.3.1 (Innovation for a stochastic double sequence)

Suppose that (zi) is a stationary stochastic double sequence of dynamic dimension
g, i.e. there exists a ¢x 1 orthonormal white noise process (u;) together with square
summable filters (b; : i € N) (not necessarily causal), s.t. z; = bj(L)u, for every
i € N.

(i) We call an orthonormal white noise ¢ x 1 process (g;) innovation of (zi) if

there exists an indez set (i1, ...,3,) such that

Zi],t Zilat
€t € sp : | — proj Do | Hma (2, -e24,)

Rigt Rigt

(ii) If (e¢) is an innovation of (zy), we say (zi) is purely non-deterministic if
zi € Hy(e) for alli € N with zy = 2524 Ki(j)er—; and %2 ||Kz(])||2 < 0.

We impose the following assumption on the common component:
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Assumption 7 (Purely Non-Deterministic Dynamic Common Component)
The common component (x;;) is purely non-deterministic with orthonormal white

noise innovation (&;) and innovation-form
o0
Xit = ZKi(j)Et—j .
3=0

Note that we can also write x;: = k;(L)e; as in equation (2.2). In factor analysis
(American and Italian school) the common component or the factors respectively
are modelled by a linear system (Stock and Watson, 2011; Forni et al., 2005,
2009; Anderson and Deistler, 2008) which implies that the common component is
purely non-deterministic. Assumption A7 is much more general than supposing
a rational spectrum for (x;).

Consider the sequence of 1 x g row transfer functions (k; : ¢ € N). We look at
partitions of consecutive ¢ x ¢ blocks k) = (kzj_l)q 1) ...,k;-q),. Intuitively, if
(xit) is the dynamic common component of a g-DF'S, we would expect to “find”
all ¢ coordinates of the innovation process (e;) infinitely often: In other words,
looking at Definition 3.3.1 there exists an infinite number of selections of the form
Xt = (Xir,ts - Xig,t)'» Such that (X;) has innovation (e;). This is confirmed by the

following lemma:

Lemma 3.3.2

If (xit) is the dynamic common component of a q-DF'S and is purely non-deterministic
(A5, A7), there exists a reordering (k;, : 1 € N) of the sequence (k; : i € N) such
that all ¢ x q blocks (kW) of (k;, : | € N) have full rank q a.e. on ©.

Proof. By A5 and theorem 2.3.5.1, we know that

A (f2) = )\q( (k™)* k”) 500 ae on®. (3.6)

We proof the statement by constructing such a reordering using induction.
Clearly, we can build the first ¢ x g block, having full rank a.e. on © by selecting
the first linearly independent rows ¢, ...,7, that we find in the sequence of row
transfer functions (k; : n € N), i.e. set k1) = (k! k)

117
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Now look at the block j+1: We start by using the next k; available in order, as the
first row of kUt ie. k Suppose we cannot find k; with i € N\ {; : | < jg+1}

linearly independent of &

ig+1°
i;041- Consequently, having built already j blocks of

rank ¢, all subsequent blocks that we can built from any reordering are of rank

tararrr o B
then all consecutive blocks that we can built from

1. In general, for ¢ < g, suppose we cannot find rows k linearly

k

any reordering have at most rank q.

jg+q
independent of ki, , ..., Ki;q\q)
For all m = j + 1,5 + 2, ... by the RQ-decomposition we can factorise k(™ =
R™(6)Q™), where Q™ € C9*9 is orthonormal and R(™)(f) is lower triangular
q % q filter which is analytic in the open unit disc.

Now suppose n > ¢; and say without loss of generality that n is a multiple of g:

K"k =S Kk
=1

()] RU+1)
:[(k(n)* (k(j))*] : +[(R<j+1))* (R(n/q))*} ;
k@) R(/9)
:k(l): 0
~ (kY . (50 * ") =4+ B s
() = @) ¢ Lo (5 o) v

where X is a placeholder. By the structure of the reordering, there are ¢ — ¢ zero
end columns/rows in B" for all n > jq where A remains unchanged.
Now by Lancaster and Tismenetsky (1985, theorem 1, p.301), we have

(G i) = A+ B
< A (A) + A(B™)
=M(A) <ooforallneNae. on©.

However this is a contradiction to (3.6) which completes the induction step and
the proof. [ ]

We impose the following regularity condition that will be relaxed below:
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Assumption 8 (Strictly Miniphase)
There exists a “strictly miniphase” sub-sequence k%) of kW) of transfer functions
in the sense that Ay (K% (k?)*) > § > 0 a.e. on © for all j;.

Theorem 3.3.3

Suppose A1, A5, A7, A8 hold for the q-DFS (y;:) with dynamic common compo-
nent (Xit), then the innovations (€;) of (xit) are causally subordinated to (ys), i.e.
e € Hi(y).

Proof. Suppose (k; : i € N) is re-ordered such that all ¢ x ¢ blocks k) for
j = 1,2, ... are of full rank a.e. on © (such as in lemma 3.3.2). Next, redefine
(k; : i € N) as a suitable sub-sequence of itself such that A8 holds. Suppose ¢

divides n without loss of generality. We look at

XEI) 1 1
@ KW(L) ED(L) I,
W Xt ; . 3
Xt = : = : €t = b N =
" (7;. 1) ;_g(n/q) ( L) ;_g{n/q) (L) L
i

By the Wold Representation we know that all k%), j = 1,...,n/q are analytic in
the open unit disc and det k% (z) £ 0 for all [z| <1 and j =1,2, ...

)™ w o
o = ' :
(E(n/q))_l (L) ygﬂ/t})
I ()™ @) \ [ &Y I
s et = ]at ¢, say. 3.7
I, (k,(n/Q)) -1 (L) .ft(”/q) 1,

Clearly, the first term on the RHS is a g¢-static factor sequence, where all eigen-
values diverge (at rate n). Therefore, if the double sequence ((;;) corresponding
to ¥} on the RHS is statically idiosyncratic, we obtain &; (up to a rotation) from
static averaging over (i;) by theorem 2.2.7. Consequently, also (&) is causally
subordinated to (y;).

To see why (i) is statically idiosyncratic, let U;%;V;* = k@) (6) be the singular
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value decomposition of k()(6), where we suppressed the dependence on 6 in the
notation on the LHS. Let f£(0) = PAP* be the eigen-decomposition of fZ with

orthonormal eigenvectors being the columns of P. Then

J J J
f30)=DU; B DV PAP DV;E; DU .
j=1 j=1

N -

W

An

The largest eigenvalue of f(0) is equal to the largest eigenvalue of A™(¢) which

(L)< ()

< 27 ess supy sup A\q ( fEL)
n

-2
< 27 ess supy sup A\ (fg‘) (inf Ag (E,-))
n J

< 27 eSS Supy SUp A (fg") (6% < o0,
n

which completes the proof by theorem 2.2.6. [ ]

Note that condition A8 can be relaxed. Firstly, look at the following example:
Yie = Xt + & = (1 — L) + &t

where (u;) is orthonormal white noise and (&) is dynamically idiosyncratic. Con-
sider the cross-sectional average g, = n~!lim, > ; yix = (1 — L)&;. The innova-
tions ¢, € H;_;(y) are the innovations of (x;;) and causally subordinated to (y;).
More generally, recall that we can “factor out” zeros from an analytic function:
So we can write det k) = gji_Lj, where g; is a polynomial with all zeros of det k¥)
which are on the unit circle. As is well known, the zeros of an analytic function
are isolated, so if z is a zero, we have h;(z) # 0 in a neighbourhood of z,. Fur-
thermore the degree of a zero can be only finite or the function is zero everywhere.
This implies there can be only finitely many different zeros on a compact set (like
the unit circle). So we can write g;(z) = I, (z — zj)™ where |z;;| = 1. Tt
follows that g;*(0) det k9 (0) = h;(0) # 0 a.e. on ©, where g;(0) = g,(e7) and
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hj(0) := h;j(e™™). Thus instead we may assume that there exists a sub-sequence
of (k) : j € N) such that h;(#) > & a.e. on ©. Therefore equation (3.7) becomes
instead:

9, (L) () (D) 2

wr= : £ + e, : . (3.8)
-1
Qn/q (L)Iq (bﬂn/q) (L) gg?l/q)

Hence instead of A8 it is enough to assume 1. that there exists a sub-sequence of
reordered (kU) : j € N), such that after factoring out zeros, we have inf; A\g(h;) > 0
a.e. on ©. 2. that we can compute a static aggregate of the left term on the RHS
of (3.7) which has ¢, as its innovations.

Summing up, we may argue that it is the very feature of dynamic factor sequences,
as opposed to the “usual” DLRA of double sequences without a factor structure,
that the innovations of (x;;) are fundamental to the observed double sequence (y;;).
The causal subordination originates from the fact that the remainder of the rank-q
DLRA vanishes under aggregation and thus the second term on the RHS of (3.8)
vanishes under aggregation. Thus, we may say that the non-fundamentalness
of the shocks arising from DLRA is not a structural feature of dynamic factor

sequences but rather a matter of estimation technique.

3.4 A State Space Representation

In this section, we propose how to model factor sequences incorporating strong
and weak factors in a state space framework. Linear system representations for
factor models without the incorporation of weak factors have been investigated in
Anderson and Deistler (2008); Deistler et al. (2010). Let (¢;) be a g-dimensional

orthonormal white noise process of innovations of (x;;). We distinguish between
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the following observation equations:

FS
E? :
dynamic CC: xf =A"F,=[A7 Ag][ L) =[Ar Az o |Fr| (39
B — | .
H" Ty
N——
static factors: F, = [Ir Iy 0] x (3.10)
static CC: Cpt = ATF? = [A? 0 0] (3.11)
strong factors: F; = [IT 0 0} T . (3.12)
The corresponding transition equation is:
téii-l Mss Msw Msr ES Gs
Ti41 = Ft’lf)l—l = Mws Mww er Ftw + Gw Et+1 - (313)
I:-H Msr Ms'w MT”I‘ .T'{ CTY'r
~ ~ - N——
M G

In short we have

V=X G = O =+

X* = H'z, = APFS + AR P (3.14)
Tiy1 = M.’L’t + G€t+1 . (315)

In the finite dimensional case 7, < 0 the growing cross-sectional dimension is
associated with adding rows to H™ or A" respectively. Equations (3.9) to (3.12)
are observation or “measurement” equations for the dynamic common component,
the static factors, the static common component and the strong static factors
respectively. Equation (3.13) is the corresponding transition equation.

The rational transferfunction of (x7) is uniquely determined on z € C and given
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by

k(z) = k"(2) = H*(I,, — M2)"'G,

where z is a complex number. The spectrum of (x}') is rational and given by
[(z) = k(2)k*(z) where k*(z) := l_c(?‘l),. See Deistler and Scherrer (2022) for
details.

The transfer function of the strong static factors is

k(2) = I 0 0] (L, — M2)7'G .

We suppose that the parameters (M, G, H") are such that (y;;) satisfies assump-
tions A5 and A2. We assume that E F? (F*)" = 0 and the loadings A", A? are
of dimension (r x n) and (r, — r x n) respectively and like in theorem 3.2.2.3
which ensures that Cj; is the static common component of (y;;) and spanned by
the strong factors (F}’).

Furthermore we impose the following standard linear system assumption:

Assumption 9 (Canonical State Space Representation)

The dynamic common component (X}) is generated by the system (M, G, H™) for
all m € N in equations (3.9) to (3.12). In addition we assume that (M,G, H") is
in canonical state space representation (see e.g. Hannan and Deistler, 2012, for

details), which includes

(1) Minimality of (M,G,H"™) with minimal state dimension m. The state di-

mension does not increase for alln > N(m). We suppose that n > N(m).
(ii) The system is stable which is satisfied if \y(M) < 1
(iti) The system is miniphase.
(iy) tk H® =y

Minimality means that the dimension of the state z;, say m > r,, cannot be

reduced (for details on linear system theory see e.g. Hannan and Deistler, 2012;
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Deistler and Scherrer, 2022, chapters 2 and 7 respectively) and is an important
condition for identification and estimation. The coordinates zj in z; in equation
(3.13) are potential “remainder” state dimensions that we may need to describe
the full dynamics of the system. The static factors F; are the minimal static
factors for (x}') in the sense of Anderson and Deistler (2008) which is ensured by
rtk H" =ry.

Stability ensures that () is stationary and the transferfunction does not explode.
The miniphase condition ensures the left-invertability of the transfer function
meaning that the innovation €; can be obtained from multiplying the left-inverse
of k(z) to x;. If

I, — Mz -G

rk M(z) :=rk [
H"» 0

] =m+gqforall 2| <1, (3.16)
the miniphase condition is satisfied (see e.g. Kailath, 1980; Anderson and Deistler,
2008).

Next, the question naturally arises under which conditions, the dynamic common
component (x;:) is identified from the strong static factors (F;) alone. In this
case, we could obtain the dynamic common component from SLRA - bypassing
DLRA and therefore frequency domain methods which would improve the prac-
tical usability. To examine this, we look at the state space system corresponding
to the strong static factors, i.e. the system given by equations (3.12) and (3.13).
By A9.(ii) we know that also k*(z) is stable. If the transfer-function of the strong
static factors is also miniphase which can be checked by condition (3.16) replacing
H™ with [I,,,0,0], this implies that H,(¢) = H,;(F*) by the Wold representation
theorem (see e.g. Deistler and Scherrer, 2022, ch. 2). Consequently, if £°(z) is
miniphase, then the dynamic common component is identified from projecting y;,
on the infinite past of (F¥), i.e. xit = proj(yi | Hy(FF)). In this case also x; is
causally subordinated to y;, i.e. H(x) C H(y) since Hy(x) C H,(F*) C Hy(y).
Note that, for this identification procedure we do not even need to assume that
Xit is generated by a state space system. It is sufficient to assume that (F}) and

(xi¢) have the same innovations.
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If we suppose in addition that the system (3.12) and (3.13) is also minimal - even
easier, the dynamic common component is the projection of the output variables
on the state of the strong static factors. Recall that a state space system is mini-
mal if and only if it is observable and controllable (see e.g. Deistler and Scherrer,
2022, ch. 7). Controllability is a feature of the matrices (M, G) in the transi-
tion equation (3.13) and holds by A9.(i). Observability is a feature of the system
matrices in the observation equation, i.e. here of ([L,0,0], M) and is satisfied
e.g. by the Popov-Belevitch-Hautus-Test (see Kailath, 1980, ch. 2.4) if all right
eigenvectors of M are not in the right-kernel of [I,.,0,0].

In either case, we have the following relations that allow identification of the

dynamic common common component from the strong static factors:

H(C) = H(F*) = G(y)
H,(C) = H,(F*°) = Hy(e) = Hi(x)
Xit = Proj(yi: | H(e)) = proj(yir | Hi(e)) = proj(ysr | He(F*))
= proj(yu | sp(z:)) -

We summarise the discussion above:

Theorem 3.4.1 (Identifiability from Strong Factors)

Suppose A1, A2, A5 hold.

1. If in addition A7, A8 hold, (F¥) is generated by the system (3.12, 3.13) and
k*(z) is miniphase, then the dynamic common component is identified from the
strong static factors via xi; = proj(ys | Hy(F*®)).

2. If A6 and A9 hold and ([I,,0,0], M) is observable, then x;: = proj(yit | sp(x))-

Theorem 3.4.1 provides another structural interpretation of weak factors: We
can regard dynamic factor sequences as a “natural extension” of static factor
sequences: The dynamic common component is the part of y;, that is driven not
only by the contemporaneous strong static factors but also by their infinite past
or state dimensions respectively.

The vast majority of “finite dimensional” approximate factor models suggested in

the econometrics literature can be cast in the state space form above. For example
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a very common model is to incorporate dynamics within the strong static factors
as (see e.g. Stock and Watson, 2005, 2011; Bai and Wang, 2016; Bai and Ng,
2007):

Yie = Nofy T NS+ Xy fipe T Gt (3.17)
Ci = A°F? (3.18)

where (ff) is ¢ x 1 and are called “dynamic factors” (note that these dynamic
factors do in general not coincide with the definition of dynamic factors that we
use in this thesis as the common orthonormal white noise shocks which span the

dynamic aggregation space) and

/s
N s T
M=o Mo A, and By = |

fts—pc

So A{ is the i-th row of A, in equation (3.9). Furthermore the factors (ff) are
modelled as a VAR(py) process:

B= AP AR e AL, e

It follows that also the stacked vector of strong static factors (F;®) can be repre-

sented as solution of a singular VAR(p) system, so
F=A{F + AJFL,+ -+ A+ be (3.19)

where b is 7 x ¢ and p = max{pc + 1,ps}. A VAR system is called singular if the
innovation variance matrix is singular. The properties of singular VAR systems
also in connection to factor models have extensively been studied e.g. in Deistler
et al. (2010, 2011); Anderson et al. (2012); Chen et al. (2011). It is easy to see,
how to put such a system into the state space representation (3.14), (3.15). Min-

imality of that system can always be achieved by reducing the state dimension
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(Hannan and Deistler, 2012, ch. 2).

It is also common to only suppose that the strong static factors follow a VAR(p)-
system (see e.g. Doz et al., 2011; Ruiz et al., 2022), i.e. only suppose (3.19) -
without the additional restrictions given by (3.17) but usually with regular inno-

vation variance matrix.

Remark 3.4.2 (Most Dynamic Factor Models are not as Dynamic as They Think)
Models like (3.17), (3.18), (3.19) are also referred to as “dynamic factor models”
and the representation (3.18) together with (3.17) is also referred to as “casting the
dynamic factor model in static form” (see e.g. Stock and Watson, 2011). Clearly,
these models are “dynamic” in the sense that the strong factors are modelled in
a dynamic way. However, they are not dynamic in the sense that the strong
static factors in equation (3.18) emerge from static rather than from dynamic
aggregation. As a consequence the model (3.17) is structurally not comparable to
the dynamic factor sequences from Forni et al. (2000); Forni and Lippi (2001) as

is often stated.
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Chapter 4
Implications for Factor Analysis

The structural results discussed in the previous two sections have a number of
important implications for the theory and practice of factor analysis. Let us first

turn to a structural interpretation.

4.1 Structural Implications

Given our discussion in section 3.3, the innovations (&;) of the dynamic common
component (Xit) are to be interpreted as the common innovation process or the
common fundamental shocks or the structural dynamic shocks (see e.g. Stock and
Watson, 2005) of the economy. The dynamic common component is the projec-
tion of the observed variables on the infinite past of these structural shocks.

Consequently, if we are interested in finding the part that is driven by the struc-
tural shocks of the economy, we make in general a structural error, which does
not vanish for (n,T") — oo, if we would merely use the static common component
and ignore the impact of weak static factors. The size of this error in general
varies with the cross-sectional units and depends on the data generating process.
In other words, if the cross-sectional unit we are interested in, say v;; has a non-
trivial weak common component, the projection onto the static strong factors
alone Cy; = proj(yi; | F¥) does not tell the whole story - but only represents the

part that is contemporaneously common. We have to carefully distinguish between
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contemporaneously- and dynamically common. The common component based
on SLRA of the American school captures the contemporaneous co-movement
whereas the DLRA of the Italian school captures the dynamic co-movement of
the variables. Both parts might be of structural interest for the researcher but
have to be kept separate when interpreting and analysing them.

Nonetheless, we still may specify a time series model for the strong static fac-
tors but also this does not make the corresponding common component to be
the dynamic common component (see Remark 3.4.2), i.e. capture the dynamic

co-movement.

Remark 4.1.1 (Impulse Responses to Structural Dynamic Shocks and Factors
as Intstrument Variables)

The consideration of a mon-trivial weak common component may be important
e.g. when using the common component by means of removing measurement er-
ror (see Lippi, 2021). Literally, a measurement error is reintroduced when using
the static rather than the dynamic common component. Also, if we consider the
impulse responses to structural shocks like in Forni et al. (2009) or in terms of a
factor augmented VAR Stock and Watson (2005), we induce a “population error”
whenever the weak common component is non-trivial but we estimate the common
component via SLRA. These papers are all correct as they contain the implicit
assumption that Cy = xu for all i € N. However, this is not innocent. We in-
duce an asymptotically non-vanishing error to impulse response analysis by not
controlling for the presence of weak factors.

Another important application of factor analysis is to use the strong static factors
as instrumental variables Bai and Ng (2010). If the dependent variable in the re-
gression equation also depends on weak factors, incorporating them as instruments
will reduce variance of the parameter estimates while maintaining instrument-

exogeneity.

Remark 4.1.2 (Reconsidering Integer Parameters)
Under the assumptions of theorem 3.1.1, if we furthermore assume that the strong
static factors (F}) are purely non-deterministic, the spectrum of (F¥) has rank

gc < 1 almost everywhere on ©: Since Sy C G, the innovations of (Fy) are of
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dimension qc < q.
We may also assume that sup,, 7y (n) = dimsp(x;) = ry < 00 is finite dimensional
which implies a static factor structure where r, < r (see theorem 3.2.2). In

summary, we distinguish the following integer parameters qc, q, 7,y with

Note that methods which determine the number of dynamic factors via the dynamic
dimension of the strong factors (F¥) (see e.g. Bai and Ng, 2007) target qc rather
than q. However, it might be that qc < q only happens for very pathological cases
(see example 3.1.3).

Theorem 3.2.2 also implies that in general we cannot use methods like in Bai
and Ng (2002); Ahn and Horenstein (2013) which are designed for determining
the number of strong static factors, for estimating ry(n) the dimension of the
dynamic common component unless we assume that e =0 for all i < n. This is
common practice (see e.g. Forni et al., 2005, 2009; Barigozzi and Luciani, 2019).
For example Forni et al. (2005) use first DLRA to estimate I'y and in a second
step approzimate xi with a static factor structure using an optimisation procedure
based on “generalised principal components” The proposed algorithm enforces
ex. = 0 for all i < n which makes it - from a structural point of view - unnecessary

to estimate I'Y with frequency domain methods in the first place.

Remark 4.1.3
It is often assumed that (F¥) and (e;;) are uncorrelated for all leads and lags (see
e.g. Bai and Ng, 2006, Assumption D). Again, this is only the case if e = 0 for

all i,t which is in general not the case.
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4.2 Estimation of the Dynamic Common Com-

ponent

By Onatski (2012) it was shown that the method of static principal components
is not a consistent estimator for weak factors. While Onatski (2012) considered
weak factors in general, the same holds true for weak factors that live in the
dynamic aggregation space and are part of the dynamic common component. In
Forni et al. (2000, 2004) it was shown that sample DLRA is consistent for the
dynamic common component for (n,7) — oo. In the following we demonstrate
by means of a Monte-Carlo simulation that sample DLRA can capture the weak
common component wheres sample SLRA cannot.

For this, consider the following model: Let &, ~ N(0, 1) be scalar Gaussian white
noise. We construct an idiosyncratic component with cross-sectional correlation
as follows: Let w; = (1,1 + 1/20,1 4 2/20,...,1 + n/20) be a vector of weights.
We draw independently X ~ w;! x N(0,1). Now set & = Meb' + 5%, where
et ~ N(0,1) and €5* ~ N(0, 1) are drawn independently, also independent from
(1).

To obtain data generated from a state space system, we consider r, = 2 with one

strong factor F}’ and one weak factor F;*:

Yie = Xae + &t (4.1)
xa =FY for i=1,..,10 and x;=F for i=11,..,n (4.2)

Fp, My, My [Fs G,
w = w + €41
Fe, Mys Muyw| \F; G
—_——— e———— ——

Ttt1 M G

0.1945375 —0.3842384

0.2702844  0.9054625 I 0.3272368
— " " - ’

M G

E? 0.9025054

where the parameters were chosen such that Vz; = I. It is easy to see that

the first eigenvalue of the spectrum of x} diverges a.e. on the frequency band.

80



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Estimation of the Dynamic Common Component Implications for Factor Analysis

Furthermore A (I'}) = n — 10 diverges with rate n, whereas the second eigenvalue
of A2(I'y) = 10 is bounded.

We compare three different methods:

(i) Estimation with sample DLRA. We estimate the spectrum of (y}*) using the

lag-window estimator

) M) .
fp@)=0m™ > w(k/M(T)e™*Ty(k)

k=—M(T)

where f‘g(k) = T Yo k1 Yvr and k() is the Bartlett kernel where
M(T) = 0.75/T. We compute DLRA from the estimated spectrum with
g =1 as in Forni et al. (2000).

(ii) Estimation with SLRA for r = 1, where we compute the SLRA from the

sample variance matrix f‘;‘
(iii) Estimation with SLRA for r = 2, estimates are computed as in (i7).

As a performance measure, we evaluate the average mean squared error (AMSE)

- averaging over the cross-sectional index set I with cardinality #I,

T
AMSE = —— Z (Xt — Rae)? (4.4)
#I ey A
where x;; in (4.4) is the true common component and X;; is the estimated common
component. As the final performance measure, we take the average of (4.4) over
all replications.
The results of (4.4) for ¢ = 1, ...,10 are shown in table 4.1. Table 4.2 shows the
results for ¢ = 11, ..., n, and table 4.3 shows the results for the whole cross-section,
ie. I ={1,2,..,n}. Some observations in order: Table 4.1 reveals that in our
example, DLRA can estimate the weak common component better if n and T" gets
larger, and has difficulties to estimate x;; - especially while T is still small. In
contrast, estimates for the weak common component of SLRA do not improve for

increasing n,T" as expected.
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dT=60 sT—60 s2,T=60 d,T=120 sT=120  s2,T—120 d,T=240 sT=240 s2,T=240 d,T—480 sT—480 s2,T—480 d,T=960 5T—=960 52,T=960
n=30 | 0586 1054 0696 0533 1022 0.648 0519 1016  0.684 051 1.009 0694 0517 1007 0697
n=30 | (0.162) (0.259) (0.408) (0.128) n—(0.165) (0.396)  (0.101)  (0.102) (0.377)  (0.077)  (0.075) (0.324)  (0.059)  (0.049)  (0.256)
n=60 |0.571 1049 0894 0541 1.003 1.001 0511 1 1.066 0514 1006  1.142 051 1007 1172
n=60 | (0.151) (0.216) (0443) (0.116)  (0.143) (0388)  (0.084) (0.101) (0.327)  (0.064) (0.07)  (0.255)  (0.052)  (0.048)  (0.178)
n=120 | 0547 1043 1119 0495 1013 1.201 0482 1.005  1.287 0476 0995  1.329 0478 1001 1351
n=120 | (0.14)  (0.202) (0.392) (0.113)  (0.145) (0298)  (0.077)  (0.105) (0.185)  (0.056)  (0.072) (0.115)  (0.048)  (0.05)  (0.08)
n=240 | 048 1022 1219 0423 1013 1.304 0394 1005  1.357 0395 1004 1378 0398 1004 1386
n=240 | (0.128) (0.218) (0.328) (0.089)  (0.148) (0.239)  (0.076)  (0.105)  (0.14) (0.055)  (0.074) (0.094)  (0.042)  (0.052)  (0.066)
n=480 | 0.425 1024 1238 0319 0998 1.314 0279 1011 137 0276 1002  1.389 0285 1003 1393
n=480 | (0.126) (0.214) (0.291)  (0.074)  (0.141) (0.199)  (0.062)  (0107) (0.129)  (0.057)  (0.071)  (0.088)  (0.043)  (0.051)  (0.061)

Table 4.1: Units influenced by weak factors only: AMSE (equation 4.4) over 500 replications
for I = {1,...,,10} of model (4.1)-(4.3): d = DLRA, s = SLRA, r = 1, s2 = SLRA with r = 2.

Standard errors in parentheses.

dT=60 5, T=60 s2,T—60 d, T=120 5T—120 s2,T—120 d,T—240 5T—240 s2,T—240 d,T—480 sT—480 s2,T—480 d,T=060 sT—060 s2,T=960

n=30 |0288 0286 0.3l 0.251 015 0236 0221 0088 0214 0203 0.07 0.205 0.193 0064  0.199
n=30 |(0.082) (0267) (0.17)  (0.089)  (0.15)  (0.12) (0.045)  (0.055) (0.102)  (0.031)  (0.021) (0.085)  (0.024)  (0.012)  (0.066)
n=60 |0.79 0057  0.169  0.163 0038 016 0136 0.03 0.153 0125 0027  0.55 0114 0025 0155
n=60 |(0.04) (0.031) (0.067) (0.028)  (0.012) (0.055)  (0.02)  (0.006) (0.045)  (0.015)  (0.004) (0.035)  (0.011)  (0.002)  (0.025)
n=120 | 0121 0033 0123 0.1 0021 0.108 0.09 0015 0.103 0.08 0013 0.1 0072 0012 0.099
n=120 | (0.03) (0.011) (0.033) (0.018)  (0.004) (0.024)  (0.011)  (0.002) (0.016)  (0.007)  (0.001)  (0.01) (0.006)  (0.001)  (0.007)
n=240 | 0.082 0026 0087  0.075 0014 0.069 0.059 0009  0.062 0051 0007  0.057 0044 0006 0055
n=240 | (0.026) (0.007) (0.017) (0.015)  (0.002) (0.011)  (0.008)  (0.001) (0.007)  (0.005)  (0) (0.004)  (0.003)  (0) (0.003)
n=480 | 0.061 0022  0.063  0.055 0011 0.045 0039 0007 0036 0033 0004 0032 0028 0003 003

n=480 | (0.023) (0.006) (0.01)  (0.013)  (0.001) (0.005)  (0.007)  (0.001)  (0.003)  (0.004)  (0) (0.002)  (0.002) (0) (0.001)

Table 4.2: Units influenced by strong factors only: AMSE (equation 4.4) over 500 replications
for I = {11,...,n} of model (4.1)-(4.3): d = DLRA, s = SLRA, r = 1, s2 = SLRA with r = 2.
Standard errors in parentheses.

For the cross-sectional units influenced only by the strong factors, i.e. ¢ =11, ..., n,
SLRA with r = 1 outperforms DLRA especially if n/T is large. Asymptotically
DLRA catches up, but does not reach the performance of SLRA with = 1 in
our setup. This suggests SLRA benefits from being the more parsimonious and
stable procedure compared to DLRA. However if n/T is small DLRA is slightly
better than the “correctly specified” SLRA with r = 1 which indicates that the
identification of the factors benefits from dynamic averaging if the spectrum is
estimated more precisely (with larger 7). Of course this effect would not occur if
the factors were serially uncorrelated. For » = 2 SLRA seems also to be consistent
(see Barigozzi and Cho, 2020) but has higher variance.

Finally, the results in table 4.3 of AMSE evaluated over the whole index set are not
really different from the results in table 4.2. When it comes to evaluating whether
the weak common component is captured well, AMSE is not a suitable evaluation
criterion since the contribution of the weak common component is “averaged out”

by taking the cross-sectional mean. Instead we shall rather look at each series
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d,T=60 sT=60 s2,T=60 d,T=120 s5T=120 s2,T=20 d,T=240 s,T=240 s2,T=240 d,T=480 s5T=480 s2,T=480 d,T=960 s,T=960 s2,1=0960
n=30 | 0387 0542 0439 0345 044 0374 032 0397 0371 0305 0383 0368 0301 0379 0.365
0=30 |(0.103) (0.195) (0225) (0.079) (0.112) (0.204) (0.062)  (0.048) (0.192)  (0.045)  (0.028) (0.164)  (0.034)  (0.018) (0.129)
n=60 |0.245  0.223 029 0226 0199 03 0199 0192 0305 0189 019 0.319 0.18 0189 0324
n=60 | (0.054) (0.045) (0.127) (0.041) (0.026) (0.109) (0.029)  (0.017) (0.091)  (0.023)  (0.012) (0.071)  (0.018)  (0.008)  (0.05)
n=120 | 0157  0.117 0206  0.42 0104 0199 0123 0098  0.202 0113 0095  0.203 0.106 0094  0.203
n=120 | (0.034) (0.02) (0.061) (0.024)  (0.013) (0.045) (0.016)  (0.009) (0.020)  (0.011)  (0.006) (0.017)  (0.009)  (0.004)  (0.012)
n=240 [ 0099  0.067 0134  0.09 0056 0121 0073 0051 0115 0065 0048 0113 0059 0047 0111
n=240 | (0.026) (0.011) (0.028) (0.016)  (0.006) (0.019) (0.01)  (0.004) (0.011)  (0.006)  (0.003) (0.007)  (0.005)  (0.002)  (0.005)
n=480 | 0.068  0.043  0.088 0.6l 0032 0071 0044 0028  0.064 0038 0025  0.061 0033 0024  0.058
n=480 | (0.022) (0.007) (0.014) (0.013)  (0.003) (0.008)  (0.008)  (0.002) (0.005)  (0.005)  (0.001)  (0.004)  (0.003)  (0.001)  (0.002)

Table 4.3: All: AMSE (equation 4.4) over 500 replications for all cross-sectional units, i.e.
= {1,...,n} of model (4.1)-(4.3): d = DLRA, s = SLRA, r = 1, s2 = SLRA with r = 2

Standard errors in parentheses.

individually.
Summing up, we can cast the trade-off between SLRA and DLRA as follows. Let
Cy = Ciy + D5ERA where Cj, is the estimate of Cy, with SLRA and 95584 is the

correspondmg estimation error. And let y;; = Xu + P2F4. We have

ASLRA
Xit = Cir + eq,t Czt = ezt + 7,

so we compare (i — Cy) = D" + e

and (th - th) DLRA

The simulation results indicate that ;%4 has smaller variance than D2LEA -

except if the dynamics is strong and 7T is large relative to n. On the other hand

if eX is large this can dominate the stability advantage of SLRA.

4.3 Implications for Forecasting

Although the contemporaneous influence of weak factors might be important for
individual cross-sectional units, we know that it vanishes under static aggrega-
tion and is therefore small “on average”. On the other hand, this situation might
change when looking at the contribution of weak factors to subsequent periods.
The potential gains of considering weak factors for forecasting becomes already
apparent in the extreme examples 3.1.3, 3.1.4. In this section we further inves-
tigate the role of weak factors in forecasting within the state space framework.

Consider again the simple model from section 4.2. The population projection of
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Implications for Forecasting Implications for Factor Analysis

Yit+1 on the infinite past of all variables H,(y) is given by:

Proj(Xi+1 + &1 | He(e) @ He(€)) = proj(Xsz+1 | He(e))
proj(AisFyy + NiwFy | sP(FY) © sp(£7°))
proj(Ass(Mss FY + My Fy” + Ggery)

+ Aio(Mys FY + My F}* + Gueri) | sp(Fy) @ sp(FY))

proj (yz’,t+1 | Ht(y)) =

= (Ai,sMss + Ai,was)FtS + (Ai,sMsw + Ai,waw)F;:w ’ (45)

where we used that (&) is orthogonal to (x;:) for all leads and lags, that &;L¢;,
for all 4, j and t # s and EFfF*’ = 0. Equation (4.5) reveals the following: When
considering factors for a forecasting regression model, it is not vital whether a
factor is strong or weak, but rather how it enters the dynamics of the common
component. For most 7, we expect A;, to be “large”. So “in most cases” the
weak factors enter the one-step ahead prediction via Mg,. If My, is large - even
if A = 0 - part of the variation of y;;1; is explained by the weak factor F".
Clearly, considering the system in (3.14)(3.15), the remainder state dimensions
x; influence x;; not contemporaneously but in a time lag. In this sense they are
“super weak factors” and can improve forecasting even more.

The factor augmented auto-regression suggested in the seminal work of (see Stock
and Watson, 2002a,b; Bai and Ng, 2006) is probably the most common method

for forecasting with factor models:
Yitrh = BF +a(L)yir + veyn,  for h> 1, (4.6)

where a(L) is a lag-polynomial to incorporate lags of the output variable in order
to account for individual dynamics.

To relate (4.6) to (4.5), consider for example the population projection

Proj(Yie+1 | SP(FY, ¥i)) = proj(yizs1 | sp(Fy) @ sples))
= (Ai,sMss + Ai,was)Fts
+ (Ai,sMsw + Ai,waw) pI‘Oj(Ftw I Sp(eit)) ) (47)
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Implications for Forecasting Implications for Factor Analysis

which has a larger population forecasting error due to the fact that we project
FY on ey = A o F¥ + &, which is a linear combination of F} contaminated with
“noise”, rather than on F} itself as in equation (4.5). Of course, if we add further
lags of y;; to the projection in (4.7) the prediction error can be reduced and we
obtain more complicated calculations but the rationale stays the same. What
the potential gains are from including weak factors in a forecasting regression is
ultimately an empirical question and varies from unit to unit. Though model
(4.6) is probably mostly used in practice, (Stock and Watson, 2002b, see equation
(2.5)) already suggested to include also lags of F into the forecasting model
which is quite anticipatory in light of our discussion above: Given the strong
factors follow a VAR system and the conditions of theorem 3.4.1 are satisfied if
that VAR system is put into state space representation, including lags of F}® in
the forecasting regression is equivalent to including weak factors.

Next, we investigate these thoughts in a Monte-Carlo simulation: For this consider

three competing models:
(i) “b”: regressing y;++1 on both, i.e. F and F}*,
(if) “S”: regressing y; ;41 only on the strong factors F},

(i) “SW?: the Stock and Watson (2002a) method, i.e. regressing y;;+1 on the
strong factors and y; ; plus lags, where lag order is selected for each regression

individually by AIC.

We draw 500 replications from the data generating process presented in section

4.2 and evaluate Mean Squared Forecast Error (MSFE) performance defined as

T
MSFE :=n"! Z(yi,T - Qi,T)2 ;
i=1
where §; 7 is the prediction of one of the competing methods estimated with data
from t = 1,...,7 — 1. The results presented in table 4.4 demonstrate that in all
circumstances the model regressing on strong and weak factors outperforms the

others. They also indicate that including lags of the output can account partly for
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Infinite-Dimensional Static Aggregation Space Implications for Factor Analysis

b,T=60 S,T=60 SW,T=60 b,T=120 S,T=120 SW,I=120 b,T—240 S,T—240 SW,T—240 b,T—480 S,T—480 SW,T—480 b,T=060 S,T=060 SW_060

n=30 | 1815 2208 2103 1701 2.247 2.015 1.666 2178 1.964 1721 2.266 2.058 166 2297 2.016
n=30 | (0.023) (0.027) (0.025) (0.022)  (0.027)  (0.024) (0.02) (0.025)  (0.023) (0.022)  (0.027)  (0.025) 0.021)  (0.027)  (0.024)
n=60 | 1634 2179 1909 1507 2.21 1863 1488 2.126 1835 1477 2.187 1.859 1443 2.114 1.811
n=60 | (0.015) (0.018) (0.016) (0.013)  (0.018)  (0.016) (0.013)  (0.018)  (0.016) (0.013)  (0.018)  (0.016) 0.013)  (0.017)  (0.015)
n=120 | 1429 1992 1718 138 2.117 173 1363 2.08 1731 13 2.007 1667 1309 2.027 1702
n=120 | (0.009) (0.012) (0.01) (0.008)  (0.012)  (0.01) (0.008)  (0.012)  (0.01) (0.008)  (0.012)  (0.01) (0.008)  (0.012)  (0.01)
n=240 | 1365 2039 1671 1.294 2.054 1659 1.236 1.902 1584 1228 2.004 1614 1.194 2.03 1616
n=240 | (0.006) (0.008) (0.007)  (0.006)  (0.009)  (0.007) (0.005)  (0.008)  (0.007) (0.005)  (0.008)  (0.007) (0.005)  (0.008)  (0.007)
n=480 | 1306 1953 1613 1247 1.992 1573 1211 2.021 1.603 1.197 2.026 1608 1.169 1942 1568
n=480 | (0.004) (0.006) (0.005) (0.004)  (0.006)  (0.005) (0.004)  (0.006)  (0.005) (0.004)  (0.006)  (0.005) (0.003)  (0.006)  (0.005)

Table 4.4: MSFE for one step ahead forecasts for model (4.1), (4.3): “b” regressing on strong
and weak factors, “S” regressing on strong factors only and “SW?” Stock Watson method from
equation (4.6). Standard errors in parentheses.

the influence of weak factors as the SW model outperforms regressing on strong

factors alone.

4.4 Infinite-Dimensional Static Aggregation Space

In the literature it is commonly thought that the main advantage of DLRA /the
Italian School over SLRA /the American school is the ability to deal with “infinite
dimensional factor spaces” (see Forni et al., 2015). In this section we investigate
this idea in more detail.

The following example is from Forni et al. (2015): Let u; be scalar white noise and
a; be drawn independently from a uniform distribution over (—1, 1) and suppose

the dynamic common component is given by
i = (1 — 0sL) (4.8)

In light of the discussion in section 3.2, we need to distinguish between Sp(x:) and
St being infinite dimensional. Clearly, Sp(x:) is infinite dimensional but this does
not imply that also S; is infinite dimensional and a static factor model would be
mis-specified as is claimed in Forni et al. (2015). Unfortunately, we were not able
to prove that S; is infinite dimensional. However with a small adaptation of this
example using the “infinite blocks” idea, we can provide an example for S; being

infinite dimensional:

Example 4.4.1 (Infinite Dimensional Static Aggregation Space)
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Infinite-Dimensional Static Aggregation Space Implications for Factor Analysis

Let a; and u; and (xi:) be as in equation (4.8) above. Define the dynamic common

component (Xit) as follows:

X1t ) (Xlt\ ((1—a L)~

Xat X1t 1- OﬁlL)_l

X3t Xat 1—aL)™!

Xae | = | x| =0~ alL)_l Ut and  Yir = Xit + &it (4.9)
X5t Xat 1 —asL)™!

X6t X3t (1— 043L)71

vEd NEL N

for some dynamically idiosyncratic double sequence (§). It is straightforward

to see, that the result from Hallin and Liska (2011) holds analogously for static
r1 and ro, the blended double sequence, say (Uit), is again a r-SFS with dimension

factor sequences: In particular, given two SFS (yz(t1 ) ) and (y;,’) with dimensions
max(ry,72) < r <7+ T
In (4.9) we create an infinite amount of linearly independent static aggregates
Fi = x1e, For = Xot, --- by computing the average over the respective cross-sectional
sub-sequence in (xit). Consequently S; is infinite dimensional and by theorem
2.2.77 there exists no finite r, such that sup, )\r+1(FZ) < 00. However, we still
have x;; = proj(yi | G) = proj(yit | St). So (yit) from equation (4.9) is a 1-DFS.
From theorem 3.2.2.1 we know that dimSp(;) < oo implies that dimS; < oo.
However the converse is not true as the following example 4.4.2 illustrates.
Example 4.4.2 (1-SFS, 1-DFS, r, = 00)

Let (u) be scalar white noise, define the common component by

Xit = Ai,sut + Ai,w(l = aiL)_lut—l 3 (410)

while we suppose that (A;s) is a sequence of strong loadings, i.e. Y52, A?’S = 00

and (M) is a sequence of weak loadings, i.e. > 32, A?’w < 00 and Ay > 0 for
all i and the a;’s are as in (4.8). We have one strong factor, so dimS; = 1 and

infinitely many weak factors, so dimsp(y:) = oo.
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Finally, even though S; is infinite dimensional, it might be still approximated
well by SLRA with a finite number of static aggregates. We investigate this ques-
tion by a simulation study: We compute average mean squared error AMSE, see
equation (4.4), for 500 replications of model (4.9) and compare DLRA and SLRA.
The idiosyncratic component is drawn independently from a standard normal dis-
tribution. The number of factors is chosen for each replication separately by the

IC,, criterion proposed in Bai and Ng (2002). Results are shown in table 4.5. The

d,T=60 7,T=60 s,T=60 d,I=120 7, T=120 s,T=120 d,1=240 #,T=240 sT=240 d,T=480 7 T=480 sT=480 d,T=960 #,T=960 s,T=960
n=30 |[0.17 1514 0218 0.3 1714 0.181 0.103 1.862 0.154 0.086 1.964 0.138 0.076 1.996 0.131
n=30 | (0.02) (0.5) (0.03) (0.013)  (0452)  (0.03)  (0.007)  (0.345)  (0.024) (0.005) (0.186)  (0.015) (0.003)  (0.063)  (0.007)
n=60 |0.145  1.95 0.147  0.101 1.994 0.111 0.075 2 0.094 0.059 2 0.086 0.049 2 0.083
n=60 | (0.019) (0.218) (0.018) (0.009)  (0.077)  (0.008)  (0.006)  (0) (0.005)  (0.003)  (0) (0.003)  (0.002)  (0) (0.002)
n=120 [ 0.138 1994  0.128  0.091 2 0.096 0.063 2 0.082 0.046 2 0.075 0.036 2 0.071
n=120 | (0.018) (0.077) (0.012) (0.009)  (0) (0.007)  (0.005)  (0) (0.005)  (0.003) (0) (0.004) (0.002) (0) (0.002)
n=240 [ 0.134 2 0.118  0.086 2 0.087 0.057 2.002 0.074 0.04 2.11 0.063 0.03 2.664 0.044
n=240 | (0.018) (0) (0.012) (0.008)  (0) (0.007)  (0.004)  (0.045)  (0.005) (0.003) (0.313)  (0.008) (0.002)  (0.473)  (0.012)
n=480 [ 0.132 2 0.113  0.085 2.004 0.086 0.055 2.492 0.056 0.037 3 0.031 0.027 3 0.026
n=480 | (0.018) (0) (0.013) (0.009)  (0.063)  (0.008) (0.004) (0.5 (0.013)  (0.003)  (0) (0.001)  (0.002) (0) (0.001)

Table 4.5: AMSE for 500 replications for the dynamic “d” and static “s” low rank approxi-
mations, together with the average of the number of chosen static factors “#” by ICp, from Bai
and Ng (2002). Standard deviation of AMSE is reported in parentheses.

results indicate that overall, the infinite dimensions in S; can be approximated
well by a finite number of static factors, since the performance of SLRA is not
so much worse compared to DLRA. If T" is small relative to n, the SLRA can
outperform DLRA even in the infinite dimensional case with only 2 factors, e.g.
for T'= 60 and n = 480. On the other hand DLRA outperforms SLRA if T is
large and n is small. For both n and 7" being large the performance of SLRA and
DLRA is very similar. Thus we may conclude that in general even if S; is infinite
dimensional this does not imply that we should use DLRA for estimation of the
common component, since in terms of AMSE we might approximate the common

component well by a finite number of static factors.

4.5 Empirical Indication for Weak Factors?

Often it is implicitly assumed that eX = 0 for all i € N, e.g. in Forni et al. (2005),
assumption D, or in Forni et al. (2009), assumption 4 (b), or Bai and Ng (2006)

assumption D. In this section, we aim to check whether we can find empirical
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Empirical Indication for Weak Factors? Implications for Factor Analysis

indication to falsify such an assumption. The focus of this thesis is on structure
theory, so we leave detailed treatment of estimation and statistical inference for
weak factors for future research.

If e = 0 for all ¢ € N holds, this would imply zero-correlation between the
(strong) static factors and the static idiosyncratic terms at all time lags/leads.
We consider the macroeconomic time series data on the US-economy published
and maintained by the Federal Reserve Bank!. Following McCracken and Ng
(2016), we transformed the time series to stationarity and use r = 8 (strong)
static factors. Using the estimated static factors F‘jt for j =1,...,8 and estimated

idiosyncratic terms é; ;—, we compute sample correlations
Corr(Fy, €i1-n), i=1,..,nand h=1,23, (4.11)

at three time lags. Figure 4.1 shows the distribution of these correlation coeffi-
cients across ¢ where each distribution corresponds to a 7, h pair in (4.11). The
vertical lines indicate the critical values for rejecting the Null hypothesis of zero
correlation if the underlying data would be normally distributed. Clearly, we
would need a statistical test to make a robust a statement here since factors and
idiosyncratic terms are estimated and not observed data. What we can observe
is that even though there is a lot of mass concentrated around zero (indicating
Ci = Xit), for some (j,h) combinations we have correlations are considerably
large which is a hint for the presence of weak factors/ a non-trivial weak common

component.

1See https://research.stlouisfed.org/econ/mccracken/fred-databases/
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Figure 4.1: The graph shows the distribution of sample correlations of eight estimated strong
static factors with 1st, 2nd and 3rd time lag of the estimated static idiosyncratic component.
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Chapter 5
Summary and Outlook

In the first part, we introduced the distinction between static and dynamic factor
sequences. In particular, we rephrased the results from Chamberlain and Roth-
schild (1983a) and re-proved them using the arguments and proof techniques from
Forni and Lippi (2001) operating with variance matrices instead of spectral den-
sities. We saw that dynamic factor sequences (DFS) emerge from dynamic aggre-
gation, and decompose a stationary double sequence into a dynamic common and
a dynamic idiosyncratic component. On the other hand, static factor sequences
(SFS) emerge from static aggregation and decompose a double sequence into a
static common and a static idiosyncratic component. The static aggregation space
is different for every time period and contained in the dynamic aggregation space.
We also proved that the static common component can be estimated consistently
via static low rank approximation (SLRA). This consistency result makes static
factor sequences as defined in this thesis relatable to the “static factor models”
which are most commonly used in practice based on Stock and Watson (2002a);
Bai and Ng (2002). The assumption for the idiosyncratic component is simplified
(compared to Stock and Watson, 2002a; Bai and Ng, 2002) and embeds static fac-
tor sequences into the larger theoretical framework presented in this thesis while
providing a new asymptotic framework. We also discussed heteroscedasticity and
non-stationarity.

In the second part, we showed that we can reconcile both schools into one model by
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Summary and Outlook

a decomposition of the output into three terms: The static common component,
the weak common component and the dynamic idiosyncratic component. The
weak common component makes the difference between the American and the
Italian school and is spanned (by a potentially infinite number of) weak factors.
It can or cannot be dynamically idiosyncratic but always lives in the dynamic
aggregation space and is therefore associated with the common structural shocks
of the double sequence/the economy. We also provided a canonical representation
for double sequences which have a dynamic and a static factor structure and in-
vestigated state space representations. We showed that under certain conditions,
we can identify the dynamic common component/factors from the strong static
factors, and therefore obtain the dynamic common component without using fre-
quency domain techniques.

The dynamic common component is the projection of the output on the infi-
nite past of the common innovations/structural shocks of the economy. This is
justified by the fact that under general conditions, the innovations of a purely
non-deterministic dynamic common component are causally subordinated to the
output as we have shown.

Consequently in the presence of weak factors, by the static common component,
we only capture the part of contemporaneous co-movement but not the entire dy-
namic co-movement. This implies structural errors when looking e.g. at impulse
responses. Furthermore we showed that weak factors can have a big influence on
forecasting performance - not only for those variables influenced by weak factors
but for all. In particular, the impact of weak factors for subsequent periods de-
pends also on how important they are in the dynamics of the strong factors. This
can of course vary substantially over the cross-sectional units.

Finally, we did a first examination whether we can find an empirical indication for
the presence of weak factors in a large data set of macroeconomic time series of
the U.S. economy. We find that a considerable amount of correlation coefficients
between estimated strong static factors and time lags of estimated idiosyncratic
terms are non-zero and potentially large. This is aligned to the theoretical notion

of weak factors elaborated in the previous sections.

92



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Summary and Outlook

The results presented in this thesis trigger in our view a lot of questions that are

to be investigated in future research:
o Estimation and inference accounting for weak factors, e.g. via SLRA.

e Empirical study - which variables are influenced by weak factors in macroe-

conomic data?
e Design and apply new forecasting methods incorporating weak factors.

o We have seen that not every r-SFS is a ¢-DFS (example 3.0.1). Can we em-
bed the set of static factor sequences into the set of dynamic factor sequences

given some regularity conditions?

e We may introduce generalised dynamic factor sequences allowing divergence
of the spectral eigenvalues only on a subset of the frequency band. Is such

a model empirically relevant?

o We have seen that in pathological cases we can have ¢ > r (example 3.1.3).
Under which regularity conditions do we know that ¢ < r? In particu-
lar, when are the innovations of the strong static factors the same as the

innovations of the dynamic common component (see remark 4.1.2)7
« We need a procedure to determine r,(n), the total number of static factors.

e Can we use the ideas from section 2.2.6 to provide a new estimation theory

for factor models in the non-stationary case?
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Appendix A
Auxiliary Results

Proof of Theorem 2.2.6. 1. = 2.: Assume that A;(I'?) — oo for n — oo, then

(a<k> R SR .>) e s,
YA(T%) .

where p;  is the first normalized eigenvector of F’;. Now, 6(’“)F’z“ (é(k))* =1 for
any k which contradicts the presupposition that (z;) is idiosyncratic.

2. = 1.: Suppose that (¢®)) € S, we then have to show that
5 - A(k) {n} n A(k) {n}\* _
li lim (2®) ™ 17 ((c )™ =0, (A1)

which is equivalent to z; = lim; lim,, >, égk)

from the fact that for any a, € C1x"

ziz = 0. Now, equation (A.1) follows

a,ITa; < A (THaya) .

Fact A.0.1

Let A, B > 0 be Hermitian matrices of dimension n:

1. As(A+ B) < A(A) + M\i(B), so in particular A\1(A + B) < A\1(A4) + A\ (B)
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Auxiliary Results

forall1<s<n
2. Ms(A+ B) > Xs(A) and As(A+ B) > A\(B) for all 1 < s < n therefore
3. If A> B, we have \j(A — B + B) = M\s(A) > X\(B) for all1 < s <n.

Fact A.0.2
For k = 1,2, suppose (f,) is a sequence in Ly(P,C). If f, <LK f forn — oo, then

there exists a subsequence (fs,) of (fn) that converges a.e. to f for n — oc.
Proof. See (Klenke, 2020, Korrolar 6.13) . [ |

Lemma A.0.3 (L? convergence implies convergence of cross-spectra)

2 2
Suppose (Ant), (Bnt) are sequences in H(y) with Ap Lo e H(y), Bn L B
then spec(Apt, Bnt) — spec(Aq, By) a.e. for n — oo.

Proof. By continuity of the inner product, we know that

liy{Il(Ant: Bnt> = h};n /W SpeC(Ant, Bnt) = ﬁ_nhm Ant;li_mn Bnt)

= ]EAtBt = /’n— SpeC(At, Bt) 5

-7

Consequently, the cross-spectrum spec(Ay;, By:) converges in L' on the frequency
band to spec(A;, B:) and by Fact A.0.2, there exists a subsequence where it con-

verges a.e. on [—m, 7. [ |
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