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Deutsche Kurzfassung Faktorfolgen sind stochastische Prozesse (Yit : i E N, t E Z), die in Zeitachse t und Querschnitt i indiziert sind und eine sogenannte Faktorstruktur aufweisen. Dynamische Faktorfolgen wurden von Forni and Lippi (2001) eingeführt. In dieser Arbeit wird die Unterscheidung zwischen dynamischen und statischen Faktorfol­gen eingeführt, die wir mit den Modellen in Chamberlain and Rothschild (1983a); Bai and Ng (2002); Stock and Watson (2002a) identifizieren. Der Unterschied besteht darin, was wir die schwache gemeinsame Komponente nennen. Diese wird von potenziell unendlich vielen schwachen Faktoren aufgespannt. Wie in dieser Arbeit gezeigt wird, kann das Ignorieren dieser schwachen gemeinsamen Komponente erhebliche Folgen für die Anwendung von Faktormodellen haben -sowohl in der Strukturanalyse, als auch bei Prognosen. Wir zeigen auch, dass die dynamische gemeinsame Komponente einer dynamischen Faktorfolge unter recht allgemeinen Bedingungen, den Beobachtungen kausal untergeordnet ist. Fol­glich sollte nur die dynamische gemeinsame Komponente als Projektion auf die gemeinsamen strukturellen Schocks der Wirtschaft interpretiert werden, während die statische gemeinsame Komponente ausschließlich die gleichzeitige gemeinsame Variation erfasst. 2 



Abstract Factor Sequences are stochastic double sequences (Yit : i E N, t E Z) indexed in time and cross-section which have a so called factor structure. The name was coined by Forni and Lippi (2001) who introduced dynamic factor sequences. We introduce the distinction between dynamic- and static factor sequences. The latter are the most common workhorse model of econometric factor analysis building on Chamberlain and Rothschild (1983a); Stock and Watson (2002a); Bai and Ng (2002). The difference consists in what we call the weak common component which is spanned by (potentially infinitely many) weak factors. We illustrate that ignoring the weak common component can have substantial consequences for applications of factor models in structural analysis and forecasting. We also show that the dynamic common component of a dynamic factor sequence is causally subordinated to the output under quite general conditions. As a consequence only the dynamic common component can be interpreted as the projection on the infinite past of the common innovations of the economy, i.e. the part which is 
dynamically common. On the other hand the static common component captures the contemporaneous co-movement. 
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Chapter 1 

Introduction With the increasing availability of high-dimensional time series data, also the demand for methods to analyse and forecast such data has been growing which has led to the high popularity of factor analysis in macro-econometrics: In factor analysis, we commence from considering such a high-dimensional time series as a double indexed (zero-mean stationary, usually real-valued) stochastic process 
(Yit : i E N, t E Z) =: (Yit), where the index i stands for an infinitely growing cross-section and t for time observations. The most common factor model is in a certain sense "static" and of the form (1. 1) where ( Cit) is called the "common component" and ( eit) is called the "idiosyn­cratic component". The process Ft is a "low"-dimensional r x 1 stochastic vector of factors, the A/s are 1 x r vectors of loadings. Set yf := (Yu, Y2t, ... , YntY, we may also write model (1. 1) in a corresponding vector representation. The com­mon component accounts for the co-movement in the sense that all r non-zero eigenvalues of JE Cf (Cf)' =: rc diverge with n ➔ oo. The idiosyncratic compo­nent is allowed to be only weakly correlated, formalised e.g. by assuming that the first eigenvalue of lEef(ef)' =: r� is bounded in n. This so called approximate factor model which has become most common in macro-econometrics, has been 
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Introduction introduced by Chamberlain and Rothschild (1983a,b); Stock and Watson (2002a); Bai and Ng (2002). On the other hand there has been "another kind of factor model" introduced by Forni et al. (2000); Forni and Lippi (2001) commencing from the spectrum rather than the variance matrix. This model has the form Yit = Xit + fo = b.i(L )ut + fo (1.2) where the common component (Xit) is driven by the orthonormal q-dimensional white noise process (ut), where q < oo is usually small, while the Qi (L)'s are 1 x q square summable filters. In this model the common component has the feature that all of the q non-zero eigenvalues in the spectral densities of (xɖ), say f;, diverge almost everywhere on the frequency band for n ➔ oo, whereas the first eigenvalue of the spectral densities of the idiosyncratic component ( ˑ f), say ff, is essentially bounded on the frequency band for n ➔ oo. lt is commonly thought that the main difference between (1. 1) and (1.2) is that (1.2) allows for "infinite dimensional factor spaces" (see Forni et al. , 2015 ) in the sense that the space spanned by (X1t , X2 t , x3 t , . . .  )', say sp(Xit : i E N), is infinite dimensional. Consequently, if we were willing to assume that sp(Xit : i E N) is finite dimensional, we could always cast the dynamic factor model (1.2) in static form (see Stock and Watson, 2011, section 2. 1) and use static principal compo­nents for estimation. The moot point of this dissertation is that this is not true: The essential structural difference is that (1.2) allows for the presence of weak 
factors, while (1. 1) does not. Suppose that (yit ) has both, a static (associated with variance matrices) and a dynamic ( associated with spectral densities) factor structure. In this case the term e� := Xit - Cit = eit - fo is in general non-zero and spanned by (a potentially infinite number of) weak factors. We call (eȓ) the 
weak common component. lt vanishes under static aggregation but is part of the dynamic common component (Xit)- By Onatski (2012) it is shown that in a static factor model with weak loadings, the common component cannot be estimated consistently via static principal components. The same applies for e�. In general we induce an asymptotically non-vanishing bias if we suppose e� = 0 9 



Introduction for all i E N. As a consequence impulse response analysis is asymptotically bi­ased, whenever variables are influenced by weak factors. On the other hand, weak factors can also be essential for forecasting: Though they are "weak" in the sense that their contemporaneous influence is not pervasive, this does not imply that they also load weakly on the subsequent period. The aim of this thesis is to reconcile what we call the theary af statie faetar 
sequenees or the Ameriean Sehaal, grounded in the work of Chamberlain and Rothschild (1983a,b); Stock and Watson (2002a,b); Bai and Ng (2002) with the theory of dynamie faetar sequenees or the Italian Sehaal associated with Forni and Reichlin (1996 ); Forni et al. (2000); Forni and Lippi (2001). We show that both schools are analogous commencing from static versus dynamic aggregation. The two different aggregational schemes entail two different types of common components (static versus dynamic) which differ by a part influenced only by weak static factors - the weak common component. We discuss and evaluate sev­eral implications for theory and practice of factor analysis. We also show that the one-sidedness problem of dynamic factor sequences Stock and Watson (2011); Forni et al. (2000, 2005 , 2015) is rather a matter of estimation technique than a structural problem. lt is an essential feature of the dynamic factor structure, that the innovations of the dynamic common component, i.e. the common structural shocks of (Yit) , are causally subordinated to the output if the dynamic common component is purely non-deterministic. This justifies the interpretation of the dynamic common component as the projection of the output on the infinite past of the common innovations of the economy. In chapter 2 we recapture the theory of factor sequences for both schools and demonstrate that the corresponding proofs are analogous. Chapter 3 provides structure theory that reconciles both schools in one model. Section 3.3 is con­cerned with the solution of the one-sidedness problem of dynamic factor sequences. Chapter 4 is concerned with the structural interpretation of the weak factors, the dynamic and the static common component, and the theoretical consequences of weak factors for forecasting. 10 



Chapter 2 

The Theory of Factor Sequences The aim of this chapter is to give a clear and self-contained account of the theory of factor sequences covering the static and the dynamic case. By the theory of static/ dynamic factor sequences we mainly refer to theorems 2.2.7 , 2.3.5 stated below and the lemmas that come with the corresponding proofs. There has been a kind of "cultural clash" in the literature on factor analysis between what we call the American and the Italian school of factor models and their relation has not been understood. The main contribution of this chapter is the insight that both theories can be developed analogously commencing from the notion of static versus dynamic aggregation and that the corresponding structural results (theorems 2.2.7 can 2.3.5) can be stated analogously and proved with analogous techniques. From the distinction between the two aggregational schemes, naturally there arise key definitions that we consider of vital importance for factor analysis: static versus dynamic idiosyncratic component and static versus dynamic common component. In chapter 3 we show that distinguishing between these terms implies a new decomposition that shows that the presence of weak factors is the general - and therefore the "natural" case. This decomposition also clarifies how the American and the Italian school relate to each other. The second contribution of this chapter is that we provide in section 2.2.5 a new and alternative asymptotic framework to prove consistent estimation of the static common component via sample principal components. The proof is based on 1 1  



Basic Framework The Theory of Factor Sequences transparent and simple assumptions for the idiosyncratic component and aligned to the theory of static factor sequences as presented here. The proof given by Bai and Ng (2002); Stock and Watson (2002a) imposes different and more involved assumptions on the idiosyncratic component. We also discuss heteroskedasticity and non-stationarity. In particular, and opposed to the framework provided by Bai and Ng (2002); Stock and Watson (2002a), it becomes apparent that it is not necessary at all to restrict time dependence in the idiosyncratic component to obtain consistent estimates. The reason for this is that the definition of being statically idiosyncratic, we provide here, is only concerned about contemporaneous covariation - not with covariation over time lags. 
2.1 Basic Framework For a complex matrix M E ccnxm we denote by M' the transpose of M and by M* = M' the adjoint of M. Let P = (0, A, P) be a probability space and 
L2 (P, CC) be the Hilbert space of square integrable complex-valued, zero-mean, random-variables defined on S1 equipped with the inner product (u,v) = lEuv for u, v E L2 (P, CC). We consider complex stochastic double sequences, i.e. a collection of random variables indexed in time and cross-section: (Yit : i E N, t E Z) =: (yit) where Yit E L2(P, CC) V(i, t) E N x Z . Such a process can also be thought of as a nested sequence of multivariate stochas­tic processes: (yf : t E Z) =: (yf), where yf = (Y1t, ···,Ynt)' and yf+l = (yf',Yn+l,t)' for n E NU { oo }. In general we will write (Yt : t E Z) =: (Yt) for n = oo. A basic assumption that we will often be employed is stationarity: Assumption 1 (Stationary Double Sequence) 
For all n E N, the process (yf : E  Z) is weakly stationary with existing (nested) 
spectrum 1;(0) lor 0 E 8 := [-7r, 7r]. Throughout the thesis, we denote by 1;(0) the "usual spectrum" times 27r, i.e. 
r� := lEyf(yf )* = (27r)- 1 fqn 1;(0)d0. This is more convenient from a notational 12 



Basic Framework The Theory of Factor Sequences perspective, since the frequently occurring orthonormal white noise process has then spectrum Iq instead of (21r)- 1 Iq. • For a stochastic vector u with coordinates in L2 (P, CC), we will often write V u := JE uu* to denote the variance matrix, which is hermitian and al­ways diagonalisable. lf u is real valued this becomes V u = JE uu' which is symmetric and diagonalisable. • Let u be a stochastic vector with coordinates in L2 (P, CC), let M C L2 (P, CC) be a closed subspace. We denote by proj ( u I M) the orthogonal projection of u onto M (see e.g. Deistler and Scherrer, 2022, Theorem 1.2). • For any finite dimensional multivariate process (zt) with existing spectrum, we write spec Zt to denote the spectrum of ( Zt). • >...i (M) is the i-th largest eigenvalue of a square matrix M. lf M is a spectral density >...i (M) is a measurable function in the frequency 0 E [-1r, 1r]. We use the following notation: IHI(y) := sp (Yit : i E N, t E Z) IHit (Y) := sp (Yis : i E N, s r t) 
"time domain" "infinite past" sp(yt) := sp (Yit : i E N) "contemporaneous span" sp(y˒) := sp(yit : i = 1, . . .  , n) "abbreviation for vector span" , where sp(·) denotes the closure of the linear span. The notation in the fourth line is used to abbreviate the ( contemporaneous) span of a stochastic vector. Given an infinite dimensional row vector a = (a1, a2, • • •) E cc1x00 , we denote by 

a [n] the infinite row vector with zero entries after n, i.e. (a1, a2, · · · , an , 0, · · · ), and write a{n} := (a1, • • • , an )- As has been shown in (Forni and Lippi, 2001, Lemma 1, 2), also for infinite dimensional stochastic processes (Yt) there exists a corresponding isometric frequency domain to the time domain IHI(y): (2. 1) 13 



Basic Framework The Theory of Factor Sequences where <I>(·) is an isomorphism that preserves the inner product, L2 (fy) is the complex linear space of all infinite row vectors of complex valued equivalence classes c = (c1(·), c2(·), •••), such that for all i E N, we have 1. ci : 8 ➔ (C is a measurable function, 3. the space L2 (fy) is endowed with the inner product 5. two vectors c1, c2, are equivalent if llc1 - c2II Lr(fy) = 0. For processes in IHI(y) that are outputs of filters, we write (2.2) where <I>(·) is the isomorphism from (2. 1). Accordingly, we write L2 (J), if J; is the identity matrix In for all n. Next, we consider sequences of infinite row vectors (of equivalence classes of func­tions): In general, for the limit outputs filtered by such a sequence (c (k)), we write: (2.3) where "lim" denotes the limit with respect to mean square convergence. Analo­gously, we treat the limit of cross-sectional weighted sums: 14 



Static Factor Sequences: The American School The Theory of Factor Sequences where c?) is the i-th entry of the infinite row vector of constant weights 8,(k). Now drop Al for the moment, if (r;(t) : t E Z) = (V yf : t E Z) is the sequence of variance matrices (which may depend on time t) associated with (yit) - not necessarily with existing spectrum - we denote by L2 (r y ( t) ) the set of all constant vectors c E (C lXoo such that limn c,{n}r;(t) ( c,{n} )* < oo and L2(J) c L2(1) as the the set of all vectors with limn c,{n}(c{n})* < oo. So by infinite row vectors equipped with "".'", we denote vectors of weightings for computing cross-sectional weighted averages. 
2.2 Static Factor Sequences: The American School The theory of static factor sequences, as we propose to call it, originates in the "approximate factor model" by Chamberlain and Rothschild (1983a,b), which is formulated not specifically in a time series context. The authors develop theory for the case that population second moments are known. They do not provide an estimation theory. Stock and Watson (2002a); Bai and Ng (2002) were the first to set the idea of "the approximate factor model" in a time series framework, and to provide estimation theory for it. In this section, we present the main result of the theory of static factor sequences (see Theorem 2.2.7 below), implicitly contained in Chamberlain and Rothschild (1983a), and prove it by applying and adapting the techniques from Forni and Lippi (2001). So part of the reconciliation of the theory of factor sequences consists in demonstrating that both theories can be proved and understood with analogous mathematical frameworks and proof-techniques: In the static case we work with variance matrices (see section 2.2.3), in the dynamic case we work with spectral densities (see section 2.3. 1). Remark 2.2.1 (Setting the Static Factor Model in a Time Series Context) 
The theory developed by Chamberlain and Rothschild (1983a) commences from 
a nested sequence of variance matrices r; corresponding to a stochastic vector 
yn = (y1, . . .  , Yn ) '  of growing dimension n ➔ oo or alternatively from a "cross­
sectional sequence of random variables" (Yi: i E N). Here, we set the theory in a 
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Static Factor Sequences: The American School The Theory of Factor Sequences 

time series framework by adding a time index t and supposing that we have such 
a cross-sectional sequence for every time point t E Z . 
Strictly speaking, the time index is technically irrelevant for the main results of the 
theory of "static factor sequences"; theorems 2. 2. 6, 2. 2. 7. Nonetheless we add the 
time index to contrast "static factor sequences" which emerge from cross-sectional 
or contemporaneous aggregations with "dynamic factor sequences" which emerge 
from aggregations over both - cross-section and time (see section 2. 2. 1) .  Thereby, 
we can reconcile the two schools of factor models in one theoretical framework. Remark 2.2.2 (Time-Dependent r;(t)) 
The corresponding variances r;(t) := V yf may depend an time or may be constant 
if (Yi t ) is stationary. For the sake of notational convenience, we present and prove 
the structural results below for the "stationary case ': All results hold also when 
r; or r0 := V Cf and rń := V ef depend on time. In section 2. 2. 6, we discuss 
non-stationarity and heteroskedasticity in more detail. 

2 .2 . 1 Intuition: Factor Models in Terms of Aggregation In the literature it is most common to approach factor sequences from a "model­driven point of view": This means that we start by assuming that the data is generated by a model like (1. 1), assuming "strong factor loadings" in the sense that Ar (fö) ➔ oo and assuming weakly dependent idiosyncratic terms (eit) (see e.g. Stock and Watson, 2002a; Bai and Ng, 2002). If we formalise the notion of weak dependence by .X 1 (rǒ) < oo, we readily obtain the following about the behavior of eigenvalues of r; for n ➔ oo: 
-Xr (rŅ) J -Xr (r; ) ➔ oo and Ar+1(r; ) J Ar+1(rņ) + -X1(rŇ ) < oo (2.4 ) (2.5) The remarkable result by Chamberlain and Rothschild (1983a) which has been extended by Forni and Lippi (2001) to the "frequency domain" and which we are going to prove in this section, is that the converse is also true: If the eigenvalues of r; behave as in equations (2.4 ), (2.5 ), i.e. if the following assumption holds 16 



Static Factor Sequences: The American School Assumption 2 (r-Static Factor Structure) 
There exists r < oo, such that 

The Theory of Factor Sequences it can be shown (theorem 2.2.7 ) that Yit has a factor model representation (1. 1). For this reason, we will call a stochastic double sequence (Yit) for which A2 holds a static "factor sequence" (see definition 2.2.8). In contrast, as discussed below, there are also double sequences (yit) which do not have a factor structure, e.g. if no or all eigenvalues of r; diverge. Summing up, we distinguish the "structural approach" from the "model driven approach" in the follwoing sense: The existence of (1. 1) does not hold by a "model-assumption" but is implied by the specific eigenvalue structure, i.e. A2, of the observed output process. In my point of view, one of the key contributions of Forni and Lippi (2001) is to provide the clear link of factor models/sequences to aggregation. To give an intuition for this, consider taking the cross-sectional average over the first k variables. The variance of that average is The term on the RHS is the sum of the variances plus the sum of all cross­covariances multiplied by 1/k2 . Now let k ➔ oo: If the Yit's were cross-sectionally independent and identically distributed, we know that by the law of large numbers V y} -+ 0. On the other hand if the cross-sectional covariances among the variables are "strong enough" such that they are not killed by 1/k2, the variance of y} does not vanish with increasing k. The operation of computing the limit of the cross­sectional average is a special case of static aggregation which is performed with the static averaging sequence (see definition 2.2.3 below) 
k times 17 



Static Factor Sequences: The American School The Theory of Factor Sequences with the special property that As it turns out the factor space, i.e. the Hilbert space spanned by the static factors sp(Ft), is the space that is generated by the set of all static aggregates, namely all possible random variables Zt that can be represented as the limit of a static aggregation Zt = limk c(k)y} where c(k) (c(k) ) * ➔ 0 for k ➔ 00 . So if (Yit ) has a non-trivial static factor space, it means that the cross-sectional covariances are strong enough such that they are not killed under cross-sectional aggregation for suitably chosen averaging sequences (c(k) ) . In this sense "factor modelling is about capturing covariances not variances" (see Barigozzi, 2018 ). 
2 .2 . 2  The Structure Theory of Static Factor Sequences In the following, we formalise the theory static factor sequences adapting the concepts of Forni and Lippi (2001) to the static case. As pointed out in remark 2.2. 1, all of the results in this section hold also if we allow r;(t) to change over time. To keep notation simple, we omit the time index on the variance matrices involved and refer to the discussion in section 2.2.6 . Definition 2.2.3 (Static Averaging Sequence (SAS)) 
Let c(k) E L2 (I) n L2 (r y) for all k E N. The sequence of cross-sectional aggre­
gations (c(k) : k E N) is called Static Averaging Sequence (SAS) if We denote the set of all static averaging sequences corresponding to (yit) as S(r ) := { (c(k) ) : c(k) E L00 (J) n L00 (r ) n c 1 x oo  Vk E N and lim l l c(k) 1 1 . = o}  . y 2 2 y k L� (I) The set of all random variables that can be written as the limit of a SAS defines a closed subspace of sp(yt) (see Forni and Lippi, 2001, Lemma 6 ). 18 



Static Factor Sequences: The American School The Theory of Factor Sequences Definition 2.2.4 (Static Aggregation Space) 
The space § t (Y) := { Zt : Zt = limk 8,(k)Yt , where (c(k) ) E S(r y)} c sp(yt) is called 
Static Aggregation Space at time t. Henceforth, we will write §t instead of § t (Y) when it is clear from the context. Note that the Static Aggregation Space changes over t E Z as it emerges from aggregation of the cross-section of Yit holding t fixed. Definition 2 .2 .5  (Statically Idiosyncratic) 
A stochatic double sequence (zit ) is called statically idiosyncratic, if limk 8,(k) z t = 0 
for all (c(k) ) E S(r z) for all t E Z. The concept of a statically idiosyncratic double sequence is implicitly con­tained in Chamberlain and Rothschild (1983b). In particular Forni and Lippi (2001) introduce a notion of idiosyncraticness that we identify with being dynam­
ically idiosyncratic. On the other hand Bai and Ng (2002) define idiosyncratic in a different way that involves also a limitation of time dependence (see also sections 2.2.6 , 2.2.5). One of the main aspects of this thesis is, that it is fundamentally important to distinguish between the two ideas of static and dynamic aggregation (see below) since two different types of "common-ness" and "idiosyncraticness" are associated with that. As we will illustrate in section 3, a double sequence that vanishes under static aggregation does not need to do so under dynamic aggrega­tion. Fortunately, there is an easy and very useful characterisation of a statically id­iosyncratic double sequence: Theorem 2.2.6 (Characterisation of Statically Idiosyncratic) 
The following statements are equivalent: 

(i) A stochastic double sequence (zit ) is statically idiosyncratic . 

(ii) The first eigenvalue of the variance matrix is bounded, i. e. sup -\1(fÎ) < oo, for all t E Z . 19 



Static Factor Sequences: The American School The Theory of Factor Sequences The proof of theorem 2.2.6 works analogously to the proof of theorem 2.3.4 (see Forni and Lippi, 2001, theorem 1) and is given in the Appendix. As is well known, we can compute static low rank approximations (SLRA) of rank r of yf by "static" principal components. For this consider the eigen-decomposition of the variance: (2.6 ) where P(n) is a unitary matrix of row eigenvectors and A (n) is a diagonal matrix of eigenvalues sorted from the largest to the smallest. Denote by Pnj the j-th row of P(n) and by Pnr the sub-unitary matrix consisting of the first r rows of P(n) · Recall that we associate r with the number of divergent eigenvalues of r; (see A2). As we will frequently use Pnr , we make notation easier by writing Pn := Pnr which is r x n in contrast to P(n) which is n x n, analogously we write An to denote the r x r diagonal matrix of the largest r eigenvalues of r; . Set ICni := ICni (r;) := PƌiPn the i-th row of P;Pn C [n] . _ p* n n _ p* n n t .- nr i nrYt - n i nYt Cit,n := ICniY; the i-th row of cJnl . (2.7 ) (2.8) (2.9) Recall that cJnl is the best (with respect to squared error) possible approximation of yf by an r dimensional vector of linear combinations of Y1t , . . .  , Ynt · The r x 1 vector Pnyf are the first r principal components of yf and provide such a vector of linear combinations, though not uniquely. We call cJnl the static rank r ap­proximation of yf which is unique. For details on principal component analysis/ low rank approximations see Jolliffe (2002). Here comes the main result of the theory of static factor sequences. This theorem is implicitly contained in Chamberlain and Rothschild (1983a). Here we present a different formulation aligned to Forni and Lippi (2001): Theorem 2.2.7 (Chamberlain and Rothschild (1983a): r-Static Factor Sequence) Consider a stochastic double sequence (Yit) in L2 (P, C) 20 
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1. A2 holds if and only if we can decompose 

where JE Cj tei t = 0 Vi, j, t, (2. 10) 
where Ft is such that IE FtF/ = Ir and ( Ci t ) and ( ei t ) are stochastic double se­
quences such that for rc := V Cf, r� := V ef it holds that 

2. ci t = limn ci t ,n , 
3. r, Ci t , ei t are uniquely determined from the output sequence, 
4 - Ci t = proj(yit 1 §t (Y) )  · The proof is given in section 2.2.3. Some comments in order. The "if" direc­tion of the first statement has already been proved in section 2.2. 1. The "only if" part of the first statement is a representation result: lt allows us to conclude from the characteristic behaviour of the eigenvalues of the variance matrices r; , i.e. A2, to the existence of unique representation as a sum of ( Ci t ) which we call the 
static common component (static CC) and ( ei t )  which we call static idiosyncratic 
component. The uniqueness of that decomposition holds by the third statement. By the fourth statement, the static common component is the projection of the output variables on the static aggregation space. So it represents the part that does not vanish under static, i.e. cross-sectional aggregation. As a consequence, in general, it is not orthogonal to the static idiosyncratic component at all leads 
and lags but only contemporaneously orthogonal. The second statement provides the link to principal components analysis: The i-th static common component is the mean square limit of the i-th element of the static rank r approximation of the output process letting n -+  oo. This is very useful for proving that the sample low rank approximations converge in probability to the true common component (see section 2.2.5). lt also provides another way of interpreting an approximate factor model: The number of static factors, r, is a "good choice" for the number of prin­cipal components in a low rank approximation. Since asymptotically ( n ➔ oo) 2 1  



Static Factor Sequences: The American School The Theory of Factor Sequences the relative gain in terms of explained variance from choosing r + l instead of r principal components is negligible compared to the relative gain from choosing r instead of r - l principal components. The first method for determining r has been given by Bai and Ng (2002). In Ahn and Horenstein (2013) an eigenvalue ratio test for r is provided. By theorem 2.2.7. 1  the eigenvalue structure of r; in A2 is equivalent to a repre­sentation as a factor model. This justifies the name "static factor sequence": Definition 2.2.8 (r-Static Factor Sequence (r-SFS)) 
A stochastic double sequence (yit ) in L2 (P, C) that satisfies A2 is called r-Static 
Factor Sequence, r-SFS. If we assume in addition that (Yit) is weakly stationary, e.g. Al, it readily follows that, factors, common component and idiosyncratic component are sta­tionary as well. Note that we do not need the existence of the spectrum (Al) for weak stationarity. The following corollary holds whenever (yit ) , which is always supposed to be zero mean, satisfies JE Yit < oo, JE YitYls = JE Yi , t- sYÖ · Corollary 2.2.9 (Stationarity of the Static Factors) If (Yit) is a stationary r -SFS then (Ft), (Cit) and (eit) are stationary processes. Proof. If (Yit) is stationary, the auto-covariance function of (yf : t E Z) does not depend on time, so JE yň (y; ) *  = JE yf_8 (y0 ) *  =: r;(t - s) , say and therefore (Cit ,n, Cj ,t-k,n) = ICnir;(k)JCȔj for all t E Z and k E N. By continuity of the inner product (see also lemma A.0.3), for every t E Z, we have which is independent of t. Consequently, also eit = Yit - Cit is stationary. Since the factors Ft = (F1t, . . .  , Frt)' can be also defined as the mean square limit of a cross-sectional weighted average (see lemma 2.2. 13, propositions 2.2. 15 and 2.2.20) for the same arguments (Ft) is stationary. ■ 22 



Static Factor Sequences: The American School The Theory of Factor Sequences 2 .2 .3  Proof of  the Main Result : Static Case In this section we prove Theorem 2.2. 7. The proof for the static case is very analogous to the proof for the dynamic case. In the static case we deal with eigenvectors and eigenvalues of the nested sequence of variance matrices V yf = r; , whereas in the dynamic case we deal with the eigenvalues and eigenvectors of the nested sequence of spectral densities, i.e. spec yf = J; . We will use the following notation throughout the proofs in this section • Canonical projection static case: Yit = proj(Yit I §t)+öit = iit+öit where iit is the orthogonal Hilbert space projection onto the static aggregation space 
• r; = P;AnPn + QȔ <I>nQn , where An , <I>n are diagonal matrices containing the first r largest and the remaining n - r eigenvalues in order and Pn, Qn are the associated unitary matrices of row-eigenvectors. • Normalised static principal components: 'lj;f := A:;;, 1/2 Pnyf • Rotation matrix C E  crx r matrix: C*C = Ir = CC* • Rotated version of the normalised principal components: 'lj;''/1,c := C'lj;f • We write Pmyf short for (Pm, 0 · • · O)yf = Pmyf, i.e. we add n - m zero columns to fit the dimension • >-n ,j = >.j (r;) • ,$;i,n ,C := proj(C'lj;f I sp('lj;f)). • D(m, n, C) =: D = CA- 1l2PmP;A:;;, 1!2 is the projection matrix that trans­forms 'lj;f to ,$;i,n ,C , so ,$;i,n ,C = D'lj;f and V ,$;i,n ,C = D'lj;f = D D* • (an) is a scalar sequence, such that limn an = oo and >-n ,r := >-r (r;) � an In this section, we prove the "only if" direction of theorem 2.2.7. 1, i.e. we show that a factor model representation exists if A2 holds. We also prove the other 

23 



Static Factor Sequences: The American School The Theory of Factor Sequences statements of theorem 2.2. 7. We follow the steps in Forni and Lippi (2001) adapt­ing them to the static case. The proof consists of the following main steps: a) We construct a r-dimensional stochastic vector ½ in §t (Y) having unit variance using suitably rotated normalised principal components (proposition 2.2. 15 ). b) We show that this vector is a basis for §t (Y) (proposition 2.2. 15 ). c) We show that the normalised principal com­ponents ( 'l/Jn generate a Cauchy sequence of static spaces sp( 'l/Jn (see definition 2.2. 16 ). Projections proj (Yit I sp( 'lj;f)) must converge in mean square and they converge to proj(Yit 1 §t)- d) We show that the residual of this projection is id­iosyncratic (lemma 2.2.21). e) All this implies the uniqueness of the number of factors, the common and the idiosyncratic component (proposition 2.2.22) and that Cit = proj (Yit 1 §t). We start with constructing an r-dimensional basis ½ for §t with the following lemmas: 
Lemma 2 .2 .10 
Suppose m J n then 

Proof. 

C'ljJ"; = proj('l/J":'0 1 sp('l/J˒)) + Rt (m, n) = cA-1/2 p P* Al/2 A-1/2 p yn + cA-1/2 p Q* Q yn 
m n n  n n t m m n n t _________ _,,-.,--, D(m ,n ,C) ,J;f Rt (m ,n,C) 

0• 1,m = cA-1;2 p yn = cA-1;2 p (P* p + Q* Q ) yn 'f/t m m t m n n n n t 

R(m ,n,C) which is by the projection theorem already the decomposition in projection plus residual, as the first term is in sp( 'lj;f) and the second term is orthogonal to sp('l/Jf). ■ Note that D(m, n, C) -· D is the population projection matrix, when pro-24 



Static Factor Sequences: The American School The Theory of Factor Sequences jecting 'lf;1;'c on sp 'lj;f. On the other hand R(m, n, C) =: R is the matrix that transforms yf to the residual of that projection. The main idea is that even though the normalised principal components do not converge, the spaces which they span generate a "Cauchy sequence". The notion that the spaces sp( 'lj;f), sp( 'lj;f) become close for m, n ➔ oo is formalised by look­ing at the projections ,(/;7:,n ,c := proj(C'lj;f I sp('lj;f)) for m, n E N and showing that the residual term of this projection tends to zero for m, n ➔ oo. The idea of a Cauchy sequence of spaces will be formalised in more detail below. Lemma 2.2.11 Suppose A2 holds, then ,\ 1 (V Rt(m, n, C)) ɗ An ,r+i/ Am ,r , where An ,i := ,\i (r;). Proof. We know that In - QƌQn = P;Pn 2: Ü An ,r+lln-r - <I>n 2: Ü ⇒ Qƌ (An ,r+l - <I>n)Qn 2: Ü • An ,r+l (In - QƌQn) + An ,r+lQƌQn - Qƌ<I>nQn (using the two equations above) = An ,r+lln - Qƌ<I>nQn 2: 0 by Fact A.0. 1. Next we pre- and postmultiply CAÏ1/2 Pm, which yields: A cA- 1C* - cA- 1/2 p Q* Q rnQ* Q P* A- 1/2c* > 0 n ,r+ l m m m n n y n n m m -
4'n An ,r+lCA;;/C* - V Rt(m, n, C) 2: 0 ,\ -\1 (An ,r+1 CA;;/C*) = ;,r+l 2: -\1 (V Rt(m, n, C)) by Fact A.0. 1. m,r ■ Clearly if m, n ➔ oo, the first eigenvalue of V Rt(m, n, C) tends to zero by A2. We can regard this as a crucial feature of an r-SFS (Yit) (see A2), that for increasing cross-sectional dimension the spaces spanned by the first r principal components become closer. Next, we look at the projection ,(/;7:,n ,c := proj(C'lj;f I sp('lf;f)). We show that the 25 



Static Factor Sequences: The American School The Theory of Factor Sequences eigenvalues of DD* = V {/;,n ,c tend to one from below. For this let an ➔ oo be an increasing sequence such that An ,r � O:n and let An ,r+l < W for all n. Lemma 2.2.12 (Squeeze Lemma for eigenvalues of V '1/Jn There exists m*, such that l � >.j (DD*) � 1 - W/am > 0 for all m � m* and 
j = l, . . .  , r. 
Proof. Ir = V f';,c = DD* + Rr;R* from Lemma 2.2. 10 DD* = Ir - Rr;R* Ð Ir - Ir>-1(Rr;R*) > I - I An ,r+l Lemma 2.2. 11  - r r Am w � Ir - Ir -0:m So choosing m* such that W/am < 1 for all m � m*, we have 1 � >-r (DD*) � Ar (Ir - Ir (W/am)) = 1 - W/am. ■ Note that even though the normalised principal components C'ljJf are or­thonormal, the projection ,J;r,n ,C is not. In the next step we orthonormalise ,J;r,n ,C: Let H l:!:.H* = DD* be the eigen-decomposition of DD* (in the usual manner with orthonormal eigenvectors in H), we define an orthonormalised version of ,(/;";,n ,c as if;";,c = Ht:i- 112H* proj(C'l/J"; 1 sp('I/Jf)) = Ht:i-112H*D 'ljJf = F'ljJf . '"-v--' =:F(D)=:F 

(2. 1 1) In Lemma 2.2. 10, we showed that for large m, n the projection ,(/;";,n ,c gets close to 'l/J":'c. N ow we show that this holds also for the orthonormalised version of the projection, i.e. if;";,c of 'l/J":'c. The idea behind the construction of a basis for §t is to construct a Cauchy sequence from the orthonormalised versions of the projections by iteration: Lemma 2.2.13 (The orthonormalised projection) For all T E  (0, 2), there exists m7 1 such that 26 
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• For all n � m � mT we have >.1 (v [7P;n,c - s;n,n ,c] )  < T . Proof. We have 
'lj/(' 'c - if;';'•n ,c = C'lj;f" - F'lj;f = D'lj;f + Ryf - F'lj;f = Ryf + (D - F)'lj;f , 

hence V(C'lj;f' - F'lj;f) = Ir - DD* + (D - F) (D - F)* = Ir - DD* + DD* - DF* + FD* + FF* ._.,...,, 
= 2Ir - D(Hß- 1!2 H* D) * - (Hß- 1/2 H* D)D* = 2Ir - DD* Hß- 1!2 H* - Hß- 1/2 H* DD* 
= 2Ir - HßH* Hß- 1/2 H* - Hß- 1/2 H* HßH* = H(2Ir - 2ß 1/2 )H* 

hence >- 1 (V(C'lj;f' - F'lj;f) )  = >- 1 (2 (Ir - ß 112 ) )  = 2 - 2 J>-r (DD* ) 

� 2 - 2( 1 - W/amJ = 2W/amT < T by Lemma 2 .2 . 12 . 

■ Next we use Lemma 2.2. 13 to show by construction that there exists an or­thonormal process ½ in the static aggregation space §t which is also a basis for §t · Proposition 2.2.14 (Existence of an orthonormal stochastic vector in the static aggregation space) 
Suppose A2 holds, then there exists a zero-mean process ½ = (V1t , . . .  , Vrt)' , such 
that 
1. ½t E §t for all t E Z, j = 1, . . .  , r 2. V ½ = Ir Proof. We construct a Cauchy sequence v? in §t · 
(k = 1) : We start with Ti = (½)2k = (½)2. Let C E ccr x r  be unitary. By Lemma 2.2. 13, we know that there exists mTu such that (2. 12) 

27 



Static Factor Sequences: The American School The Theory of Factor Sequences Set s 1 = mT1 , which is a number from which all orthonormalised projections are closer to 'l/J7;''c (m 2 s 1) than T1 . Set \1;? = 'lj)f1 'c = C'l/Jt1 = CA;/12 Ps1 Ys i ,t · So for all n 2 s 1 , we have ,\1 (v ['l/Jf 1 'c - �:i ,n,c] )  < T1 . In other words, for n 2 s 1 the orthonormalised projection ::i ,n,c is "closer" than Ti to C'l/J%1 - measuring closeness in terms of the first eigenvalue of the variance of the difference. 
(k = 2) : T2 = (½)2k = (½)4 . Now consider F2 := F(C) as in equation (2. 1 1) and set s2 := mT2 : Now by Lemma 2.2. 13, we know that for s2 = mT2 , we have We set v? := 'l/J%2 'F2 = F2'l/J%2 = Ñ C'l/J? = F2AÒ1/2 Ps2 Y%2 = Ó%1 ' 82 '0. Here 

F(C) H, Ô is the corresponding eigen-decomposition as in equation (2. 1 1) for D = Fi. Thus by equation (2. 12) for m = s 1 , n = s2 and therefore also for the coordinates ½'t of ½. with · = 1, 2, j := 1, . . .  , r  we have (k = 3) : T3 = (½)2k = (½)6. Set F3 := F(F2) and S3 = mT3 • Again by Lemma 2.2. 13, we know that for s3 = mT3 28 



Static Factor Sequences: The American School The Theory of Factor Sequences therefore that: We continue like this for k = 4 ,  5 ,  6 ,  . . . .  and obtain sequence (½k : k E N) which is a Cauchy sequence since: l l v.k - v.k+h l l  < I I v.k - y_k+l l l  + . . .  + l l v.k+h-1 - y_k+h l l  Jt Jt - Jt Jt Jt Jt 
< ( 1 / 2) k < (1/2) k+h h-1 ( 1 ) k+l ( 1 ) k h-1 ( 1 ) l ( 1 ) k-1 < L - = - x L - < - ➔ 0 for k -+ oo . - l=O 2 2 l=O 2 - 2 

'--v-' <2 Since ½k is a Cauchy sequence for every t, it converges in IHI(y). We are left with showing that the limit ½ is in the static aggregation space, i.e. ½ E §t for all t E Z. For this consider Gk := FkA;/ P8k . Obviously: consequently considering the row vectors, say gjk with j = 1, . . .  , r from Gk (gÕk) , we know that gjk9jk :s; 1 1/-Xr (fÖk )I -+ 0 and (gjk) is a SAS. By lemma 9rk A.0.3, we know that V ½  = V limk ½k = lim V ½k = Ir which completes the proof. ■ The process (½) which we define by the limit of the Cauchy sequence ½k for 
t E Z, is as the following proposition shows a basis for the static aggregation space. However the uniqueness of (½) has not been shown, since we start with an arbitrary rotation C of normalised principal components 'lj;f which are also not unique. Proposition 2.2.15 (½ is a basis for §t) For all t E Z, sp(½) = §t • 29 



Static Factor Sequences: The American School The Theory of Factor Sequences Proof. Suppose that Wt E §t · We have to show that in decomposition of Wt into projection onto sp(½) and residual, i.e. Wt = proj (wt I sp (½)) + Tt ............., the residual rt is equal to zero. For this consider the vector 
½ := for each of these elements there exist static averaging sequences ( a;k) )  for j 1, . . .  , r + 1, such that ½t = limk aY)Yt = lim ½� and (2. 13) Clearly, which implies that also (gY)) * .§Jk) -+ 0 and consequently The main argument of the proof is the following: Denoting by h} = ( htt • • • hØ+l , t)* and p} likewise, we obtain det V ½  = det V (limk v/) = det V limk (h: + p:) = det V limk h: = det lim V h: = lim det V h: = 0, k k 30 



Static Factor Sequences: The American School The Theory of Factor Sequences where by Lemma A.0.3 (or by continuity of the inner product), we know that det V limk h} = det limk V h} and the last equality follows since det V h} is a zero­sequence (V h} is singular for every k E N). ■ A key insight of this proof is (2. 13): In fact we can represent every element in the aggregation space as a limit of a sequence of projections on the first r principal components corresponding to cross-sectional dimension k .  If we let k ----+ oo the corresponding projection will converge. In the following, we will show that this holds not only for elements in the aggregation space but in general, since the normalised principal components ( '!/Jf) generate a Cauchy sequence of static spaces. Even though the normalised principal components themselves do not converge (we can always change the direction by a change of sign), the spaces which they span converge in the sense that projections of random variables on the spaces spanned by the principal components (irrespective of directions) converge. Definition 2.2.16 (Cauchy sequence of static spaces generating process) 
Suppose Wt is stationary orthonormal, i. e. V Wt = Ir lives in IHI(y) and is co­
stationary with (yit) for every n E N. We say that (Wtn ) generates a Cauchy 
sequence of static spaces if tr V [Wt - proj(Wt I sp(Wt))] ----+ 0 for m, n ----+  oo .  This feature ensures that the sequence of projections on these spaces converges: Lemma 2.2.17 (The projection onto a Cauchy sequence of static spaces is con­vergent) 
Let (Wtn ) be a Cauchy sequence of static spaces generating process. Suppose (z t )  
is scalar stationary and lives in IHI(y) - co-stationary with (yit), then proj (z t 1 sp(Wt)) converges in IHI(y). Proof. For this proof set zf := proj (z t I sp(Wt)), and let rn t be the residual from 31 



Static Factor Sequences: The American School The Theory of Factor Sequences the projection of Zt on sp(Wt)- We have that 
An A ffi  SO Zt - Zt = T mt - T nt where the last equal sign follows by the orthogonality relations corresponding to the orthogonal projection. Next, we show that both terms S1 , S2 go to zero for 

n, m ➔ oo. For this consider writing n An + Bnwn + Zt = Zt r nt = t r nt Wtm = proj(Wt I sp(Wt)) + p";n = Amnwt + p";n so S1 = JE BmwtmTnt = JE (Bm Amnwt + Bmp";n) Tnt = JE Bmp";nrnt . Now by Cauchy-Schwarz inequality, we have since by assumption p"(in ➔ 0 in mean square. Analogously, we can proceed with �- ■ Lemma 2.2.18 
The sequence ( 'ljJf) generates a Cauchy sequence of static spaces . Proof. We distinguish between two cases: 1. Case: Projection with n > m: 

'ljJ"; = proj('ljJ;n I sp(?jJ;)) + p";n = D'ljJ; + p";n 
SO tr(V p";n) ǰ q>. 1 (V p";n) ǰ r >-;,r+l 

m,r where >-n,i = >.i (r;). 2. Case: Projection of 'ljJf on sp( 'ljJf) with n > m: Since D = A;,{2 PnP:nA:;;, 1!2 we 
32 



Static Factor Sequences: The American School The Theory of Factor Sequences have n- 1 = A 1/2 Po P* A- 1/2 = D* We now show that n m n m • 

• nm ,; ,n D* ,1,m ..1n* ,l,m 1.e. Pt = n - 'f/t 'f/t where the equivalence of these statements follows by the projection theorem. 
JE (A - 1/2 Po - D* A 1/2 Po yn) (D* A - 1/2 Po yn) * 

n n m m t m m t 
ry n '"-...r" 

ry n '"-...r" = A- 1/2 Po P* A Po P* A- 1l2 D - D* D = D* D - D* D = 0 n n n n n m m  

Ir lt follows that 
Ir = V 'i/J": = DD* + V p;m = V 'i/J; = D* D  + V P":n so tr V p;m = tr V P":n -+ 0 for n, m -+ oo . Lemma 2.2.19 

The sequence (!Cni : n E N) , is a static averaging sequence. Proof. Consider so • ( 1 (ai ,n)) _ Al/2 A- 1/2 D n prOJ Yit Sp 'f/t - 1rni n n rnYt 
,f;f 

1rni1r;)•nq :'.S 1rniAn7r;i = V /Ù :'.S V y< < 00 , 

lC JC* * < V Yit O r ni ni = 1rni1rni _ = -+ 1or m -+ 00 , 
/\nq so (!Cni) is a static averaging sequence for every i E N. Proposition 2.2.20 ■ ■ 

If (yit ) is a r -SFS, then the i - th element in the SLRA of rank r converges in mean 33 
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square to the projection of Yit on the static aggregation space, i. e. Proof. Since (1/Jf) generates a Cauchy sequence of static spaces (Lemma 2.2. 18 ) it follows by Lemma 2.2. 17 , that proj(Yit I sp('lj;f)) = KniYf =: ,Ü is convergent in L2 to the limit say li1. Call the L2 limit of the residual 6i1 = Yit - li1 = limn 6ü, say. By Lemma 2.2. 19, we know that (Kni) is a SAS, therefore ,i1 E §t · We show that 6i1 1-§t which implies that li1 = proj(yit 1 §t)- For this suppose Zt E §t, so we can represent Zt = limn a,(n)'lj;f (see proof of proposition 2.2. 15 ), thus ( XX ) _ (l " A (n) 0 1,n 1 · xn) _ 1 · ( A (n) 0 1,n xn) _ Ü Zt, Uit - lffin a 'f't , Imn Uit - Im a 'f't , Uit - , n by continuity of the inner product. 
Lemma 2 .2 .21  

■ 
The double sequence of residuals (6it) from the orthogonal projection of the output 
on the static aggregation space, i. e. iit = proj (Yit 1 §t) is statically idiosyncratic. Proof. Let 6f = (61t, . . .  , 6nt)' be the n-dimensional L2 limit of c5;n,n = (6ft, . . .  , 6Út)'. Set r8 := V 6f and r;r,,n = V c5;n,n. To show that (6it) is statically idiosyncratic, we use the characterisation theorem and show that supn -X1(f8) ::; supn Ar+i (r;) < 
00 .  Let m be fix. Since limn 6ü = 6it by proposition 2.3. 18 , it follows that also starting with n > m, the sequence of variance matrices converges, i.e. r;,m ➔ r6 (note that the roles of n, m are exchanged here). By continuity of eigenvalues we have but also Al (r;· m) ::; Al (r;,n) = Ar+ l (r;) for all n 2: m therefore Al (ri) ::; SUPn Ar+1)(r;) and since this holds for all m, also SUPn A1(fJ') ::; SUPn Ar+1(r;) so ( 6it) is idiosyncratic by theorem 2.2.6 . ■ 34 



Static Factor Sequences: The American School The Theory of Factor Sequences Proposition 2.2.22 
Suppose that (Yi t ) has a factor model representation as in ( 2. 10) satisfying the 
assumptions from theorem 2. 2. 7. 1, then 
1 .  sp( Ct) = sp(Ft) = §t 
2. ci t  = proj(yit 1 §t) -Proof. Suppose (yi t ) has a representation as a factor model as in equation (2. 10), so while supn ,\r (f0) = oo and supn ,\1(rǒ) < oo. Furthermore, we know that 

Yi t  = proj(Yit 1 §t) + öi t  = 1it + öi t  = ci ½ +öi t from proposition 2.2. 15 . 
'-..,-" '-..,-" l x r  r x  l Since (eit) is idiosyncratic, we know that §t C IHI(Ct), because for any Zt limk c(k)Yt E § t , where (c(k) ) is the SAS corresponding to Zt , we have But also sp(Ct) C sp(Ft) since Ci t = AiFt . lt follows that On the other hand, we know that V Ft = Ir = IE ½ ½' , so noting that there exists an r x r matrix b, we can write ½ = b Ft while bb' = Ir, which implies that b is 

'-..,-" r x r  invertible and consequently Ft = b-1 ½, so from sp(Ft) C sp(½) = §t it follows that §t = sp(Ft) = sp( Ct) 35 



Static Factor Sequences: The American School The Theory of Factor Sequences and Cit E §t and ei tl_§t = (Ct) which implies that Ci t  = proj(Yit 1 §t) and öi t  = ei t  by the projection theorem. ■ 2 .2 .4  Real Valued Data Observed data is usually real valued. In this section we show that we can formulate the structural results presented above also for real valued (Yit): We show that if (yit) is real valued, the static common component and the static idiosyncratic component are as well and we can choose (Ft ) to be real valued. First, recall that if (Yi t ) is real valued, in terms of orthogonal projections, we can without loss of generality only consider real valued spans: Remark 2.2.23 (see Deistler and Scherrer (2022), excercise on p.55 ) 
Let (yit) be a real valued stochastic double sequence and • let JHIIR (y) be the real expansion of (yit), i . e. we use only real numbers as 

scalars, • denote by JHIC (y) the corresponding complex span, with complex numbers as 
scalars, • let M C JHIIR (y) be a subspace of JHIIR (y), • let Mc := sp(z I z E MIR) C JHIC (y) be the subspace generated by M in JHIIC (y), • let z E JHIIR (y) be real valued, 

then the projection of z an M in JHIIR (y) is the same as the projection of z an Mc 
in IHic (y). If r; E IR;_nxn is real, we can choose real orthonormal eigenvectors for P(n) and all eigenvalues of r; are real, so equation (2.6 ) becomes (2. 14 ) 36 



Static Factor Sequences: The American School The Theory of Factor Sequences Accordingly, for real valued (Yit) instead of equation (2.8) and (2.9) we can write ICni := ICni(r;) = PÛiPn the i-th row of PÜPn C [n] . _ p' n n t .- n rnYt Cit,n := ICniY; the i-th row of crl . 

(2. 15 ) Now define §f (y) as the "complex aggregation space", which we obtain from building the limits with complex SAS, i.e. f;(k) E c1 x oo. Set §r (y) as the "real aggregation space", obtained from limits with real SAS, i.e. c(k) E IR.1 x 00. Define 
Ct := proj(Yit 1 §f (y)) in IHIIC (y) C! := proj(Yit 1 §° (y) ) in IHIIB. (y) , where IHIIB. (y), IHIIC (y) were defined in remark 2.2.23. Note that Cu corresponds to Ct in theorem 2.2. 7. Corollary 2.2.24 

Suppose (yit ) is a real valued static factor sequence. We have C! = Ciŉ =: Ci t . 
Furthermore, the factors (Ft) and factor loadings Ai can be chosen to be real 
valued. Also static common and static idiosyncratic component are real valued. Proof. By remark 2.2.23, we know that C! = proj(yit 1 §° (y) )  in IHIIB. (y) = proj (Yit 1 (§Ý (y) t) where (§r (y)t is the subspace generated by §r(y) in IHiic (y). Now, working with the real eigen-decomposition of equation (2. 14 ), we can reproduce the proofs from section 2.2.3 by using only real eigenvectors and eigenvalues. This produces a real valued r x 1 basis, say (½ll), in proposition 2.2. 15 of §r (y) . However, ½IB. is also 37 



Static Factor Sequences: The American School The Theory of Factor Sequences a basis for §f (y) , replacing equation (2. 13) by where a;k) E c1x00  and Pk are the real eigenvectors from (2. 14 ) and proceeding analogously with the proof. lt follows that Therefore C! = Cf; = Cit, where Cit is the static common component from theorem 2.2.7 , which completes the proof. ■ 
2 .2 . 5  Estimation We will present the section in terms of real valued observations (Yit ) - In Chamber­lain and Rothschild (1983a) only population results are provided and estimation is not investigated. Proofs for the consistent estimation of the approximate fac­tor model via principal components have first been given in the seminal work of Stock and Watson (2002a); Bai and Ng (2002, 2020, 2021). In these papers idiosyncraticness is formalised and assumed by limiting cross-sectional and time dependence in (eit)- This involves quite technical conditions compared to assum­ing that supn ..\1 (rǒ) < oo (see A2). To provide the link to the theory presented above, we prove consistency of the static principal components estimator under A2. A key element of the proof is to use that we know already that the popula­tion SLRA of rank-r converges in mean square to the true common component (theorem 2.2. 7.3). Assumption 3 (Consistent Estimation of the Covariance) 
Let ,l ( 0) be an estimator for the covariance tij ( 0) = "JE YitYj t using T time obser­
vations. For every ö > 0, we have lim IP'(l,l; (0) - tij (0) 1 > ö) = 0. 
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Static Factor Sequences: The American School The Theory of Factor Sequences For example Brockwell and Davis (2009), eh. 7 ,  discuss consistent estimation of the auto-covariance in the stationary case. Accordingly, we define the coordinates of the sample rank-r approximation as follows: 
r; := ( ,l (o)) . .  _ i ,J -1 , . . .  ,n 
CA 

. _  JCT yn it . - ni t , 

(2. 16 ) (2. 17 ) which depend both on (n, T) and where IC'{;i is obtained from equation (2.7 ), replacing the population variances by their sample counterparts ,'f; (0). Theorem 2.2.25 (Consistency of the Static Rank-r Approximation) 
If (yit) is a r-SFS and A3 holds, then Cit,n Þ Cit in probability for min(n, T) ➔ oo 
for all i E N. The corresponding result for the dynamic rank-q approximation has been shown in Forni et al. (2000). In the following proof, we employ similar techniques as in Forni et al. ( 2000). Proof of theorem 2.2.25. Since the suitably normalised eigenvectors are con­tinuous functions of the matrix entries, we know that for all ö, rJ > 0 there exists 
T1 (n, ö, TJ) such that for all T 2:: T1 (n, ö, TJ) Therefore we can write: (2. 18) Let E > 0, we show there exists n, T such that R'{;1 + R'{;2 < E .  By theorem 2.2.7.4 , we know that R'{;2 converges to 0 for n ➔ oo, so choose n large enough such that 
R'{;2 < c/2. Next, we show that we can choose T large enough, such that R'{;1 < c/2. Set 39 



Static Factor Sequences: The American School The Theory of Factor Sequences B'{:i := (/C;i - !Cni) and A,, := { I I B';:i l l  :S: 5} and A8 = 0 \ A,,, then for some TJ > 0, we have Rß1 = IID ({ IB!iY; I > 5/2 } n ({ I I B!i l l  :s: 5} u { I I B!i l l  > 5}) )  
:s: w ({ I B!iY; I > 5/2 } n A,,) + IID (A'.D :S: IID ( IB!iY; I > 5/2 I A,,) + TJ(5) for T 2:: T1 (n, 6, TJ) .  Next, by Chebyshev's inequality and the properties of conditional expectation, we have where the last inequality, we used Jensen's inequality since the first eigenvalue ,\ 1 (·) is a continuous and convex function in the set of non-negative definite ma­trices. ■ In Stock and Watson (2002a); Bai and Ng (2002, 2020, 2021) the authors provide consistency rates and prove consistent estimation of the factors and the loadings-matrix. Here, we do not provide rates and prove consistency for the common component ( Cit) instead. Furthermore note also that Stock and Watson (2002a); Bai and Ng (2002, 2020, 2021) start from assumptions about an under­lying true factor model rather than imposing assumptions on the structure of the output process (A2). 
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2 .2 .6  Time Dependent Variance In this section, we discuss heteroscedasticity and non-stationarity. Firstly, note that the idiosyncratic part in the variance matrix r; is irrelevant for the compu­tation of the common component: Corollary 2.2.26 
Let (yi t ) be a r -SFS with Yi t = Ci t + ei t , then for all rn with supn .\1 (rn) < oo, we 
have 

where Kni ( · ) is defined in (2. 15) . Proof. From lemma 2.2. 19, we know that Kni (fä+fn) is a SAS since supn Ar (rä+ rn) = oo and SUPn Ar+1(fä + rn) < oo by the same arguments as in (2.4 ), (2.5 ). Suppose (vit ) is a statically idiosyncratic double sequence with V vf = rn. lt follows that limnKni (rc + rn )yŊ = limn Kni (rc + rn)c; + limn Kni(rc + rn)e; 
= limn Kni (fc + rn)c; , since Kni (fä + rn) is a SAS = limn Kni (rc + rn) ( c; + v;) , since Kni (fä + rn) is a SAS = Ci t , by theorem 2.2.7 . Assumption 4 (Heteroscedasticity) ■ 

Suppose (Yi t )  is an r -SFS with Yi t = AiFt + ei t = Cit + ei t , where Ci t is weakly 
stationary and ( eit ) is such that 

(i) Heteroscedasticity:  .\1 (fǒ (t)) < oo for all t E Z 
(ii) r; � fä + f'� in probability for t ➔ oo. 4 1  



Static Factor Sequences: The American School The Theory of Factor Sequences We can estimate the static common component consistently also under het­eroscedastici ty: Corollary 2.2.27 
Suppose A4 holds for (Yit ), then Cit,n � Cit in probability for min(n, T) ----+ oo for 
all i E N. Proof. We replace J(,ni (r;) by J(,ni (rc + f'ǒ) and J(,';;_i (r;(t)) by J(,';;_i (r;) in the proof of theorem 2.2.25. By corollary 2.2.26 , we know that R';;,2 ----+ 0 in equation (2. 18 ). Complete the proof by proceeding in the same way as in the proof of theorem 2.2.25. ■ The setup of Stock and Watson (2002a); Bai and Ng (2002, 2020, 2021) restricts serial correlation in the idiosyncratic component. However this restriction is kind of unnecessary, since by definition a statically idiosyncratic double sequence only limits the contemporaneous covariation and not the covariation over time, as 2.2.28 illustrates. Example 2.2.28 (Random Walks as Static Idiosyncratic Component) 
Let ( Ut) be a scalar white noise process with unit variance and let eit = ei,t- l + Eit 
be a random work where ( Eit ) is zero-mean i. i. d. with variance a2 - orthogonal to 
Ut . Say eiO = 0 for all i E N. 
Consider the following factor model 

The variance matrix of yf depends on t: 

Here for all t we have ,\ 1 (fä (t)) = n ----+  oo for n ----+  oo and ,\1 (fǒ (t)) = ta2 < oo 
for all n, which satisfies the conditions of theorem 2. 2. 7. 4 2  



Dynamic Factor Sequences: Italian School The Theory of Factor Sequences In general, if we have a procedure to consistently estimate rà (t), we can consis­tently estimate common and idiosyncratic component also in the non-stationary case as long as A2 holds for every t E Z. 
2.3 Dynamic Factor Sequences: Italian School All results and definitions stated in sections 2.3, 2.3. 1 are from Forni and Lippi (2001). The common component in the Generalized Dynamic Factor Model in­troduced in Forni et al. (2000); Forni and Lippi (2001) emerges from dynamic aggregation rather than from static aggregation: This means that we consider limits of averaging sequences, which are weighted averages over time and cross­section: 

00 00 

Zt = limk L L ciJ) Yi, t-j = limk c(k) ( L )Yt . 
i=l j=-oo 

(2. 19) Forni and Lippi (2001) allow very general transfer functions from the "dynamic shocks" to what we call the dynamic common component (see also Forni et al., 2005 ). Definition 2.3.1 (Dynamic Averaging Sequence (DAS)) 
Let c(k) E L2 (J) n L2 (fy ) for k E N. The sequence of filters (c(k) k E N) is 
called Dynamic Averaging Sequence (DAS) if If ( c(k) ) in equation (2. 19) is a DAS, the scalar valued output process (zt) is called dynamic aggregate. lt is useful to introduce a notation for the set of all DAS corresponding to (yit): 

V(f ) := { (c(k) ) : c(k ) E L= (J) n L= (f ) Vk E N and lim l l c(k) I I  = o} y 2 2 y k L� (I) Definition 2.3.2 (Dynamic Aggregation Space) 
The set G(y) := {z t : Z t = limk r(k) (L)Yt and (c(k) ) E 'D(fy)} is called Dynamic 4 3  
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Aggregation Space. Henceforth we might often write (G to denote G(y) when it is clear from the context. For a stationary double sequence (yit) (see Al), the dynamic aggregation space G(y) is a closed subspace of the time domain IHI(y) (see Forni and Lippi, 2001, Lemma 6 ). Therefore orthogonal projections onto (G are again in G. Definition 2 .3 .3  (Dynamically Idiosyncratic) 
We call a stationary ( A l) double sequence (zi t )  dynamically idiosyncratic, if 

for all (c(k) ) E 'D(Jz ) -In other words, a double sequence which is dynamically idiosyncratic vanishes under all possible dynamic aggregations. Analogously to theorem 2.2.6 , we can characterise dynamic idiosyncraticness by the boundedness of the first eigenvalue of the spectrum (see Forni and Lippi, 2001, Thm 1). Theorem 2.3.4 (Forni and Lippi (2001), Dynamically Idiosyncratic) 
The following statements are equivalent: 

(i) A stochastic double sequence (zi t ) is dynamically idiosyncratic . 

(ii) The fisst eigenvalue of spectrum is essentially bounded, i. e. ess sup0 sup >. 1 (J;i)(0) < oo .  From what follows in the remainder of this section, we may say that a station­ary stochastic double sequence (yit) with the properties specified in A5 below has a dynamic factor structure: Assumption 5 (q-Dynamic Factor Structure) 
There exists q < oo, such that 
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Dynamic Factor Sequences: Italian School The Theory of Factor Sequences where "ess sup" denotes the essential supremum of a measurable function. Analogously to the static case, we can also compute dynamic low rank approx­imations with dynamic principal components (see Brillinger, 2001, eh. 9). For this, consider the eigen-decomposition of the spectrum where P(n) ( 0) is a unitary matrix of row eigenvectors, A (n) ( 0) is a diagonal matrix of eigenvalues sorted from the largest to the smallest both having equivalence classes of (measurable) functions as entries. Denote by Pnj (0) the j-th row of P(n) (0) and by Pnq (0) = Pn (0) the sub unitary matrix consisting of the first q rows of P(n) (0). We set Kni (0) := Pƌi (0)Pn (0) the i-th row of P; (0)Pn (0) xinl := I_!ƌ (L)I_!n (L)y; Xit,n := l';;,ni (L)y; the i-th row of xtl . 
(2.20) (2.21) where (2.20) is the dynamic low rank approximation (DLRA) of rank q .  The process xin] emerges from a filter of rank q a.e. applied to yf in order to best approximate yf with respect to mean squares. Here comes the main result for the dynamic case: Theorem 2.3.5 (Forni and Lippi (2001): q-Dynamic Factor Sequence or q-DFS) 

Suppose A 1 holds, then 
1 .  A S holds if and only if we can decompose (2.22) 
such that Ut is an orthonormal white noise q x 1 process, bi ( 0) is a square summable 
(in general two-sided) filter and (Xit ) ,  (fo ) are stationary double sequences (Jull­
filling A 1) with 4 5  
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(i) supn Aq (!�) = oo a. e. on 8 
(ii) ess supe supn ..\1 (!r) < 00 . 

Furthermore in this case, it holds that 2. Xit = limn Xit,n, 
3. q, Xit and fo are uniquely determined from the output (Yit), 
4 - Xit = proj(Yit I G) for all i E N, t E Z. The proof is given in section 2.3. 1. The double sequence (Xit) is called dynamic 
common component (dynamic CC) and (fo) is called dynamic idiosyncratic com­
ponent since it is dynamically idiosyncratic by theorem 2.3.4 . The equivalence statement 1. justifies the wording dynamic factor sequence as the "structure" de­scribed in A5 corresponds to an underlying factor model. Therefore we also call the "only if" part in theorem 2.3.5. 1  representation result. By 4 .  we obtain the dynamic common component through projecting the output on the dynamic ag­gregation space. Statement 2. provides the link to dynamic principal component analysis: the dynamic common component is the mean square limit of the DLRA of rank q (see equation 2.21). Definition 2.3.6 (Forni and Lippi (2001): q-Dynamic Factor Sequence (q-DFS)) 
A stationary stochastic double sequence (assumption A l) that satisfies AS is called 
q -Dynamic Factor Sequence, q-DFS. Methods to estimate q have been proposed by Hallin and Liska (2007 ); Bai and Ng (2007 ). In Onatski (2009) a test for determining q is provided. 
2 .3 . 1 Proof of the Main Result : Dynamic Case In this section we prove theorem 2.3.5. In the proof of theorem 2.2.7 , we dealt with the static principal components arising from the eigen-decomposition of the variance. The proof of theorem 5 for dynamic factor sequences is mainly anal­ogous to the static case, but here we operate with dynamic rather than static principal components. We replace the eigenvectors/ eigenvalues of r� with the 
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Dynamic Factor Sequences: Italian School The Theory of Factor Sequences eigenvectors/eigenvalues of the spectrum spec yf = 1; (0). As such, they are fil­ters, but we will suppress that in the notation for simplicity. We will use the following notation throughout the proof in this section: • canonical projection dynamic case: Yit = proj (Yit I CG) + öit = fit + 
Öit where fit is the orthogonal Hilbert space projection onto the dynamic aggregation space • For a multivariate stationary zero-mean stochastic vector process (zt) with existing spectrum, we denote by spec( Vt) the spectrum of (zt) • ,\i (A) is the i-th largest eigenvalue of a square matrix A. If A is a spec­tral density ,\i (A) is an equivalence class of (measurable) functions in the frequency 0 E [-7r, 7r]. • 1; (0) = P; (0)An (0)Pn (0) + QȔ (0)<Pn (0)Qn (0) =: P;AnPn + QȔ<PnQn (com­pare notation in section 2.2.3) • normalized Dynamic Principal Components: '!/Jf ·- .i1;;, 112(L)En (L)yf - · 
A- 1;2 Po yn n n t • In the following M C [-7r, 7r] is a subset of the frequency band of non-zero measure that will be given in the context • unitary bandpass filter: Let M C 8, and C be q x q filter 

BM := {C : C(0) = 0 0 (/. M, C(0)C* (0) = Iq} (2.23) • Let II c 8 be the set of 0's for which ,\q (l;) ( 0) ➔ oo. Recall that by A5 , the set 8 \ II is a Lebesgue zero set. • Rotated version of a normalised principal components: f',:,c := C(L)'l/J'f • If we write Pmyf we mean that (Em (L), Ü • • • O)yf filled up with n - m zeros to match the dimension 47  



Dynamic Factor Sequences: Italian School The Theory of Factor Sequences • We use An ,j = >.j (J;) as a shorthand notation for the j-th spectral eigen­value . • ,j;r;,n ,C := proj(Q(L)1/Jf I IHI(1/Jn). Note that we project here Oll the whole time domain of ( 1/Jf) rather than on the contemporaneous space. • D(m, n, C) =: D = C(0)A- 112 (0)Pm (0)P; (0)A:;; 112 (0) is the projection ma­trix that transforms 1/Jf to ,j;7;,n ,C := proj ( 1f;1;'c I IHI( 1/Jn)), so ,j;7;,n ,C = 
l)(L)1j;f and spec ,j;r;,n ,c = spec l)(L)1j;f = D(0)D*(0) =: DD*. We sup­press dependence on n in the notation. • (an) an increasing scalar sequence with an ➔ oo for n ➔ oo such that An ,q (0) := >.q (J; (0)) 2: an for all 0 E M. From a birds' eye view, the main steps of the proof are the same as in the static case (see steps a) - d) in the beginning of section 2.2.3). Now, in steps a)-b), we construct a basis that is orthonormal and white noise, ( Vt), that spans (G in time domain, i.e. (G = IHI( v) . The main additional complication of this basis construction compared to the static case, is that the first q-eigenvalues might not diverge uniformly. As pointed out by Forni and Lippi (2001), this is for example the case for elementary common components like Xit = (1 - L )ut. Therefore the basis construction for the dynamic aggregation space is conducted "piecewise" on the frequency band. The remaining steps c )-e) are essentially analogous to the static case. Lemma 2.3.7 Suppose m :'.S n  and C E  BM defined in (2. 23), then Q(L)1f;7; =: C1f;7; = proj(1f;7;'c I IHI(1J;;)) + Rt (m, n) = cA-1/2 P, P' Al/2 A-1/2 P, yn + cA-1/2 P, Q* Q yn m n n n n t m m n n t __________ ..._,._., D(m,n ,C) 1/Jf Rt(m,n ,C) Proof. The proof is analogous to lemma 2.2. 10, replacing matrices by the corre­sponding filters. ■ 4 8  



Dynamic Factor Sequences: Italian School The Theory of Factor Sequences Note that D(m, n, C) =: D(0) =: D is the population projection matrix, when projecting 'l/J":''c onto the time domain of 'I/Jf. On the other hand R(m, n, C)(0) := CA:;,/12 PmQáQn =: R(0) is the filter matrix that transforms yf to the residual of that projection, so Rt (m, n, C) =: ]],(L)yf =: Ryf. Lemma 2.3.8 
Suppose A S holds, then >.1 (spec [Rt (m, n, C)] (0)) ::::; An ,q+1(0)/>.m ,q (0), where An ,j := >.j (J; (0)) for all 0 E M. Proof. The proof is analogous to the proof of lemma 2.2. 11, replacing matrices by the analogous filters and replacing the variance operator "V" by "spec". ■ Lemma 2.3.9 (Squeeze Lemma for eigenvalues of spec 'I/Jf) 
For given Lebesgue non-zero M C [-1r, 1r], there exists m*, such that l 2: >.j (DD*) 2: 1 - W / O'.m > 0 for all 0 E M, m 2: m* and j = 1, . . .  , q .  Proof. The proof is analogous to the proof of lemma 2.2. 12, replacing matrices by the analogous filters, operating on the subset M of the frequency band. ■ Note that even though the normalised dynamic principal components C(L)'l/J'f =: C'ljJ'f are orthonormal, the projection ,((J;i,n ,c is not. In the next step we orthonor­malise ,((J;i,n ,c : Let H(0)ß(0)H* (0) =: HßH* = DD* be the eigen-decomposition of DD* (in the usual manner with orthonormal eigenvectors in H), we define an orthonormalised version of ,((J;i,n ,c as if;";,c = JJ(L)ã -112(L)JJ* (L) proj(Q(L)'l/J"; I IHI('I/Jf )) = ä 'l/Jf = l!(L)'l/Jf =: F'ljJf . 

=:F(D)=:F Lemma 2.3.10 (The orthonormalised projection) 
For all T E ( 0, 2), there exists mr , such that 

(2.24 ) • For all n 2'. m 2: mT we have >.1 (spec ['I/J":'"c - ,J;;i,n ,c] )  < T for all 0 E M. 4 9  



Dynamic Factor Sequences: Italian School The Theory of Factor Sequences Proof. The proof is analogous to the proof of lemma 2.2. 13, replacing matrices by filters and replacing "V" by "spec". ■ N ext we use the previous lemmas to construct a q-dimensional orthonormal white noise "dynamic" basis for CG, i.e. IHI(v) = CG. We begin with constructing a process ( vf') that is orthonormal on M and lives in (G Lemma 2.3.11 (Existence of a band-white noise process in the Aggregation Space) Suppose A l and A S hold and M C [-7r, 7r] as above, then there exists a q­dimensional process ( vf'), such that 1. vf{ E CG f or j = l, ... , q 
M { Iq for 0 E M , 2. specvt = 0 else . Proof. Analogous to the proof of proposition 2.2. 15 , replacing matrices by the corresponding filters and "V" by "spec", we obtain a Cauchy sequence (vt1'k), with limit ( vf') having the required spectrum and living in IHI(y). We are left with showing that the limit process ( vf') lives also in CG. For this we show that the sequence of filters Gk (0) := lfk (0)11-;t2 (0)f!sk (0) =: FkA-;/12 Psk defines a DAS. For this note that consequently considering the row vectors, say gj,k with j = l, . . .  , q from Gk (91k) : we know that 9jk9jk < ll/-\q (J;k )I which is integrable and tends to zero 9qk a.e. in M c 8. By the theorem of dominated convergence, it follows that limk J 8 9jk9jk = J 8 limk 9jk9jk = 0. Since spec vt1'k = Iq for all 0 E M and spec vt1'k = 0 else, we have that spec vf' = spec(limk v:4 ,k) = lim spec( vt1'k) = Iq for 0 E M and spec vf' = 0 else by lemma A.0.3 which completes the proof. ■ 50 



Dynamic Factor Sequences: Italian School The Theory of Factor Sequences Proposition 2.3.12 (There exists an orthonormal white noise process in G) 
Suppose A 1, A 5 hold, then there exists an orthonormal white noise process ( Vt ) ~ 
WN(Iq ) in G. Proof. As usual set Aj ,q (0) =: Aj ,q = >.q (Jl (0)) We construct a sequence of sets (Nb : b E N) as follows. At first set b = l. Algorithm a):  We construct a sequence of sets MJ C II together with a sequence of integers vJ while we set MJ = II, 1r1 = 1r (a = 1, determine vi): Let vt be the smallest natural number, such that L:({0 E M0 : >.,,,t ,q > 1}) > 1r1 . Such vt must exist since An ,q diverges at every 0 E II, set Mt := {0 E Mo : AvLl > 1} and ,C(Mi) > 7r1 = 7r . ( a = 2, determine vJ): Let vJ be the smallest natural number, such that ,C( { 0 E Mf : AvJ ,q > 2}) > 1r1 , set MJ- := {0 E Mt : >.,,,J ,q > 2} and ,C(Mi) > 1r1 . (For any a, determine v˔): Let v˔ be the smallest natural number, such that L:({0 E M;_ 1 : AvJ ,q > a}), set M; := {0 E M;_ 1 : AvJ ,q > a} and ,C(M; )  > 1r1 . lt follows that for N1 := Mt n MJ- n · · · = n M; we have L: (N1 ) , 1r1 = 1r . a=2 Algorithm b): We construct the sequence (Nb) of subsets of II using (Må) and væ: 
(b = 1): Set N1 := n�1 MJ using algorithm a) with 1r1 := 1r we know that L: ( N1 ) , 1r1 = 1r .  
( b  = 2): Set MJ := II \  N1 , 1r2 := ,C(II \ N1)/2 and apply algorithm a) starting with MJ to obtain the sequence of sets ( M;, : a E N) together with the index 
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Dynamic Factor Sequences: Italian School The Theory of Factor Sequences sequence (va2 : a E N) while setting N2 := n�1 M;, we know that C(N2) 2: 1r2 . 
(b = 3): Set MJ := II \  (N1 n N2), 1r3 := C(II \ (N1 n N2)), algorithm a) yields N3 . 
(b = 4 ): ... Consequently ( Nb : b E N) is a sequence of disjoint subsets of II such that We apply lemma 2.3. 11  with M = Nb to obtain processes (vf1 ), (vf2), . . .  which oscillate on disjoint sets of the frequency band, but Vt := çè1 vfb is white noise and lives in (G, which completes the proof. ■ So far we have shown the existence of a white noise process ( Vt) in G. Next we prove that such a ( Vt) is a "dynamic basis" for G: Proposition 2.3.13 ((vt) is a dynamic basis for G) 
Given (vt) from proposition 2. 3. 12, it holds that IHI(v) = G. Proof. The proof works analogous to the proof of proposition 2.2. 15 replacing matrices by the corresponding filters, replacing "V" by "spec" and working with the projection onto IHI(v) instead of projecting onto sp(½). ■ Definition 2.3.14 (Cauchy sequence of dynamic spaces generating process) 
Suppose ( wf) ~ W N (Iq ) is orthonormal white noise, lives in IHI(y) and is co­
stationary with (Yit) for every n E N. We say that ( wr) generates a Cauchy 
sequence of dynamic spaces if tr spec [w;1 - proj(w;1 I sp(w;))] ➔ 0 for m, n ➔ oo a. e. on 8 . Lemma 2.3.15 (The projection onto a Cauchy sequence of dynamic spaces is convergent) 52 



Dynamic Factor Sequences: Italian School The Theory of Factor Sequences 
Let ( wf) be a Cauchy sequence of dynamic spaces generating processes as in defi­
nition 2. 3. 14 . Suppose ( Zt) is scalar stationary and lives in IHI(y) - co-stationary 
with (yit ) , then proj (z t I IHI( wf) )  converges in IHI(y). Proof. The proof works analogous to the proof of proposition 2.2. 17 replacing matrices by the corresponding filters, replacing "V" by "spec", covariances by cross-spectrum and working pointwise on the frequency band with the projection onto IHI(wn) instead of projecting onto sp(Wt). For the last part of the proof, consider if := proj(zt I IHI(wn)), we have that by the theorem of dominated convergence, we have 0 = { lim spec(i;11 - if ) = lim { spec(z;11 - zf ) where m, n ➔ oo , Je Je which implies that zf is a Cauchy sequence and therefore convergent. ■ Lemma 2.3.16 
The sequence ( 'l/JI') generates a Cauchy sequence of dynamic spaces. Proof. The proof works analogous to the proof of proposition 2.2. 17 replacing matrices by the corresponding filters, replacing "V" by "spec", covariances by cross-spectrum and working pointwise on the frequency band. Lemma 2.3.17 
The sequence Kni ( 0) ,  is a dynamic averaging sequence. Proof. Consider " ( 1 JHI(n i,n)) _ Al/2 A- 1/2 n n proJ Yit 'i't - 'lrni n n 1nYt 

'1/J'f 

J(, J(,* * spec Yit so ni ni = 1rni1rni ǰ ;.. -+ 0 a.e. 
nq so O = { lim 1r ni'lr;i = lim { 1r ni'lr;i , Je n n Je 53 Oll 8 
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Dynamic Factor Sequences: Italian School The Theory of Factor Sequences where the last equality follows by the theorem of dominated convergence. ■ Proposition 2.3.18 
If (Yi t ) is a q -DFS, then the i - th element in the DLRA of rank r converges in L2 
to the projection of Yit on the dynamic aggregation space, i. e. Proof. The proof is analogous to the proof of proposition 2.2.20. ■ Lemma 2.3.19 
The double sequence of residuals (öit) from the orthogonal projection of the out­
put on the dynamic aggregation space, i. e. tit = proj (Yit 1 (G) is dynamically 
idiosyncratic . Proof. The proof is analogous to the proof of proposition 2.2.21. ■ Proposition 2.3.20 
Suppose that (Yi t ) has a factor model representation as in (2. 22) satisfying the 
assumptions from theorem 2. 3. 5. 1, then 
1 .  IHI(x) = IHI(u) = G 
2. Xit = proj(Xit I G). Proof. Suppose (yit) has a representation as a factor model as in equation (2.22), so while supn Aq (f; ) = oo a.e. on 8 and supn A1(ff) < oo. Furthermore, we know that 

Yit = proj (Yi t 1 (G) + öit = 1it + öit = c;;i(L) Vt +öi t from proposition 2.3. 13 . 
"'-v--' > 

l x q  q x l 54 



Dynamic Factor Sequences: Italian School The Theory of Factor Sequences Since (fo) is idiosyncratic, we know that (G C IHI(x), because for any Zt limk G(k) (L)Yt E G, where (c (k)) is the DAS corresponding to Zt, we have But also IHI(x) c (ut) since Xit = !J.i (L)ut. lt follows that IHI(v) = (G C IHI(x) C IHI(u). On the other hand, we know that spec ut = Iq = specvt a.e. on 8, so noting that there exists an q x q filter d(L), we can write Vt = ..j;_, Ut while dd* = Iq a.e. on qx q 8, which implies that d is invertible and consequently Ut = i;1-1(L)vt, so from sp( Ut) C sp( Vt) = (G it follows that (G = IHI( u) = IHI(x) and Xit E (G and fol_(G = IHI(x) for all i, t which implies that Xit = proj (Yit 1 (G) and Öit = Öit by the projection theorem. ■ 55 



Chapter 3 

Reconciling the Schools in One 
Model Given the discussion of the previous chapter, naturally the question arises whether every static factor sequence is a dynamic factor sequence. However, the "Gener­alised Dynamic Factor Model" (A5), is actually not more general than the dass of static factor sequences (A2): For example, we might have divergence only on a subset of the frequency band: Example 3.0.1 (1-SFS but not a q-DFS) 
Let (u t ) be scalar white noise and (ETt ) be i . i .d .  across all leads and lags and 
independent of ( U t ) . Consider a double sequence with common component given 
by 

where I[-n/2 ,n;2] is the index function being equal to one for 0 E [-1r /2, 7r /2] and 
zero otherwise. The spectrum of (Xit) is 56 



Reconciling the Schools in One Model 

on [- -n-/2, 1r/2] and zero on [-1r, 1r] \ [-1r/2, 1r/2], so supn .X 1 (rŋ) = oo. This is a 
1 -SFS but not a DFS since there divergence does not happen a. e. in [-1r, 1r]. On the other hand A5 is also violated if all eigenvalues of f; diverge: Example 3.0.2 (Infinite Number of Blocks: oo-DFS) 
Let ( u{ ) be a collection of mutually orthogonal scalar white noise processes: So for 
each j ,  ( u{ : t E Z) is white noise and for all j #- l we have u{ 1-uŌ for all t ,  s E Z. 
Define filters b.Y\ L) for i, j E N such that xōj) = b.Y) ( L )u{ is the common compo­
nent of a 1 -DFS for i E N .  Hence the collection { (xif > )  : j E N} is an infinite set 
of mutually orthogonal dynamic factor sequences. 
N ext we use these factor sequences and blend them to a new double sequence in 
the f ollowing manner: ( - ) ( ( 1) 1 ( 1) (2) 1 ( 1) (2) (3) 1 ) Xl t : l E N, t E Z := X1t X2 t , X1t X3 t , X2 t , X1t • • • • (3. 1) 
In Hallin and Liska (2011), it is shown that if two dynamic factor sequences with 
dynamic dimensions q1, q2 are combined to one factor sequence, the resulting dou­
ble sequence is a again a factor sequence of dimension q with max(q1 , q2 ) � q J 
q1 + q2 . In particular the dimension q of the blended factor sequence is q1 + q2 - qn , 
where qn is the dimension of the intersection of the two aggregation spaces. 
Since by construction of the model above, the dimension of the interesction of 
the aggregation spaces of two factor sequences (xif> ) and (xi;) ) is zero, as the dy­
namic shocks are mutually orthogonal. Set spec xf =: ff . By iteratively applying 
this result, it follows that there exists no finite q, such that supn Aq+ 1 (ff) is es­
sentially bounded, where ff is the n-dimensional spectrum corresponding to (X1 t ) 
from equation (3. 1) .  In this chapter, we reconcile the two schools in one model: We suppose that 
(yit ) is weakly stationary (Al), and has both, a static (A2) and a dynamic factor structure (A5). In section 3. 1, we provide a new decomposition of Yit which has been overlooked in the literature and which is the moot point of this thesis: We can decompose Yit into the static common component, the weak common compo­nent and the dynamic idiosyncratic component. The weak common component 57 



A New Decomposition Theorem Reconciling the Schools in One Model lives in the dynamic aggregation space, vanishes under static aggregation and is spanned by a potentially infinite number of weak factors. We interpret this result in detail from a structural point of view. In section 3.2, we provide a canoni­cal representation for double sequences which have a dynamic and a static factor structure and model the dynamic common component as a state space system. Finally, in section 3.3, we show that under quite general and common conditions, there exists a representation of the dynamic common component that is causally subordinated to the output. 
3.1 A New Decomposition Theorem The main statement of this thesis emerges from a combination of theorem 2.3.5 by Forni and Lippi (2001) and the reformulation of the results from Chamberlain and Rothschild (1983a) in theorem 2.2.7. Theorem 3.1.1 
1. For every t E Z the static aggregation space is contained in the dynamic 
aggregation space, i. e. § t C CG.  
2 .  ff A l, A S and A2 hold, then Ci t 
decompose (Yi t ) into three parts: 

proj(Xit I §t) - In particular we can (3.2) 
where Xit = Ci t + e� in equation ( 2. 22) and eit = e� + fo in equation ( 2. 10), with 
e�, Cit..léjs for all i, j, s, t and Cit..le_?t for all j, i. Furthermore ( e�) is statically 
idiosyncratic while (Xit ) , (fo), (Cit) and (eit) satisfy the conditions of theorems 
2. 3. 5 and 2. 2. 7. Proof. Clearly, under the given assumptions .L2 (ry) c L2 (fy) and .L2 (I) c L2 (I), so every static averaging sequence is a dynamic averaging sequence, i.e. S (r Y) c V (f Y) .  I t follows that every sta tic aggrega te is a dynamic aggrega te and therefore § t c CG for all t E Z. 58 



A New Decomposition Theorem Reconciling the Schools in One Model For the second statement note that we have 
Ci t = proj (Yit I §t) by theorem 2.2. 7.4 = proj (Xit + fo 1 §t) by theorem 2.3.5. 1  = proj (Xit 1 §t) + proj (fo 1 §t) since §t C G. Since e� = Xit - Cit E (G it follows that e�l_Ŏjs for all i, j, s, t. Furthermore e� = 

eit - fo, and both terms on the right hand side vanish und er static aggregation, so does e�. ■ Definition 3.1.2 (Weak Common Component) 
In (3. 2), we call (e�) the weak common component. Reconciling the American and the Italian school, we can state that the ap­proaches can be regarded as mathematically analogous (see chapter 2) while employing two different types of aggregation being static- ( obtained via SLRA) versus dynamic aggregation (obtained via DLRA). The two schools have struc­
turally two different types of common components - a dynamic and a static one. The dynamic common component arises from a projection onto a (much) larger Hilbert space G. Note that (G contains all static aggregation spaces, i.e. the union sp (UtEZ §t) = lliI( C) which is the whole time domain of the static common component. So naturally, the dynamic common component, in general, explains a larger part of the variation of the outputs (Yit ) ,  This however does not imply that static aggregation is in any sense "worse" than dynamic aggregation ( as we will examine below). The moot point of this thesis, and the discussion that follows, is that a careful distinction between the two concepts has theoretical and empirical relevance and implies a number of interesting research questions. The weak common component is the residual term from the projection of the dy­namic common component on the static aggregation space. As such, it is the static idiosyncratic component of the dynamic common component and lives in the dy­namic aggregation space. On the other hand it is also the projection of the static idiosyncratic component on the dynamic aggregation space, i.e. e& = proj ( eit 1 (G) 59  



A New Decomposition Theorem Reconciling the Schools in One Model or that part of the static idiosyncratic component which is dynamically common to the output sequence. lt vanishes under static aggregation and is spanned by (a potentially infinite number) of weak static factors (see definition 3.2. 1 below). The weak common component - though always being statically idiosyncratic - can be dynamically idiosyncratic or not: In an extreme case, the static common com­ponent can be even zero while ( eȓ) is not equal to zero for every cross-sectional unit: (see a similar example in a different narrative also in Hallin and Lippi, 2013): Example 3.1.3 (1-DFS but 0-SFS) 
Let ( Ut ) be a scalar white noise process with unit variance. Consider a dynamic 
common component of the form 

he spectrum of (Xt ) is 

Xi t = Ut-i+l . 1 ei0 e2i0 
e-i0 1 ei0 1 

Firstly note that r� = In for all n, so the first eigenvalue of r� is bounded and 
Ci t = 0 by theorem 2. 2. 6 and §t = {0}. 
The first row of f; equals the k - th row of f; times eike . Thus f; has rank one 
a. e. on 8 and therefore >. 1 (!; (0)) = tr J; (e) = n ➔ oo. lt follows that (Xit ) is a 
1 -DFS by theorem 2. 3. 5. 
Relating to equation (3. 2), we have e� = Xit and by the special construction of 
this double sequence, we have that X2,t+1 = ut+1-2+1 = Ut = X1t and X3,t+l = 
ut+l-3+1 = Ut-1 = X2t and so on. Here we can perfectly predict Xi,t+l for i 2'. 2 
through Xit , that means that all the predictive power is due to the term ( e�) which 
would be lost under static aggregation. Admitted, this is example is really pathological, though illuminating, as it demonstrates the range of possibilities when distinguishing between dynamic and 

60 



A Canonical Representation Reconciling the Schools in One Model static aggregation. Note also that in this example 1 = q > r = 0, so in general it does not hold that q :S r as is commonly assumed. In other words the number of dynamic shocks is in general not less or equal than the number of strong static factors. We know that (eȓ : t E Z) lives in CG, but this does not imply that the double se­quence as a whole ( e�) has a non-trivial aggregation space, i.e. is not dynamically idiosyncratic. Example 3.1.4 
Consider a double sequence where the dynamic common component is given by 

X1t = Ut 
Xit = Ut-1 for i > l , 

where (ut) is as in example 3. 1 . 3. Here Ci t = Ut-l for all i > l and e� = Ut 
for i = l and e� = 0 for i > l. So ( e�) itself is dynamically and statically 
idiosyncratic . 
Also here, we can perfectly predict Xi,t+l for i > l from X1t · 

3.2 A Canonical Representation Next we would like to construct a "canonical representation" of yf for finite n in terms of strong and weak factors. Again suppose Al, A5 and A2 hold. Denote now by (F/) the r x 1 dimensional stochastic vector of "strong" factors obtained from static aggregation (corresponding formerly to (Ft )  in theorem 2.2.7 ). By theorem 3. 1. 1, we know that F/ E sp(Xt) and sp(Fn = §t (y) . We use the Gram-Schmidt­orthogonalisation procedure to iteratively add weak factor basis dimensions to sp(xt): Choose the first i in order for which Xi t - proj (Xi t I sp( F n )  -=/- 0, set this to i1. Set 
V1t = Xi1 ,t - proj (Xi1 ,t I sp(Fn) and set FJJ = llv1t 1 1 - l V1t - Let i2 > i1 be the next i in order such that Xi t - proj(Xit I sp(F/, Fü ) ) -=/- 0 and set V2t = Xi2 ,t - proj(Xi2 ,t 1 sp(F/, Fü) )  and Fü = llv2t ll- l V2t • This way we obtain indices i1, i2, . . .  , ir{ (n) with 6 1  



A Canonical Representation Reconciling the Schools in One Model 

rx (n)+ ::::; n along with Ft'n = (FjJ,, . . .  , F'll!+- ( ) t)' having orthonormal variance rx. n , matrix and being contemporaneously orthogonal to F t  Set rx (n) := r + rt (n) . The static factors Ftn = (F/, Ft'n)' are r x (  n) x 1. For every finite n, we can write the decomposition of theorem 3. 1. 1 in vector form as = An ps + An pw ,n +cn = [An s t w t ',,t s (3.3) with E Ftn (ptn)' = Irx (n) by construction. Furthermore theorems 2.2.7 and 3. 1. 1 imply that Ar ( (Aȕ)' Aȕ) ----+ oo and supn >.1 ( (A:)' A:) < oo. In general, it is clear that the dimension r; ( n) of Ft'n may increase, when we add new variables in equation (3.3). Definition 3.2.1 (Strang and Weak Static Factors) 
We shall use the term static factor for any basis coordinate of sp(Xt) - distinguish­
ing as in equation (3. 3) between strong static factors, (F/ )  associated with strong 
loadings, and weak static factors, (Ft'n) associated with weak loadings. The term "weak factor" has first been used by Onatski (2012) which gives a notion of weak factors that is consistent with what we defined above. In par­ticular Onatski (2012) considers the model yf = A:Ftw + ef with weak loadings supn ,\1 ( (A:)' A:) < oo and shows that the principal components estimator is not consistent. Weak factors may load e.g. only on a finite number of cross-sectional units -though their influence might be large for those units - or their loadings are "thinly" distributed in the cross-section with vanishing influence or both. On the other hand their influence on the subsequent period might be large and consequently, they can be important for forecasting (see section 4 .3). We shall use the term 
dynamic factor for a shock that is a dynamic basis coordinate for (G as in theorem 2.3.5. Naturally in this framework, there is no such a thing as a weak dynamic factor. In light of the discussion above, the term "factor space" is to be used with care 6 2  



A Canonical Representation Reconciling the Schools in One Model as we have to distinguish between §t = sp(F/), sp(Xt) and G. For example Forni et al. (2015 , 2017 ) provide theory and methods for "infinite dimensional factor spaces" by which they actually mean that sp(Xt) is infinite dimensional. How­ever, sp(Xt) might be infinite dimensional even though §t is finite dimensional (see example 4 .4 .2). We may suppose that dim sp(Xt) is finite dimensional: Assumption 6 The contemporaneous space of the dynamic common component is finite dimen­sional, i. e. supn rx (n) =: rx = dim sp(Xt) < oo. This guarantees that we have a SFS. The static and dynamic common com­ponent coincide if and only if all r x non-zero eigenvalues of the variance of the dynamic common component diverge. Some structural results in order: Theorem 3.2.2 Suppose (yit) is a q-DFS (A l, A 5) . 1. If supn rx (n) = rx < oo, then (yit) is a r -SFS (A2) with r ::;  rx · 2. If (yit) is also a r-SFS (A2), then Cit = Xit, for all i E N, t E Z if and only if there exists an r -dimensional process Zt with non-singular variance matrix 
r z = IE Ztz; together with a nested sequence of n x r loadings-matrices Ln such that Xɖ = Lnzt and >.r (Ln' Ln) ➔ oo. 3. Suppose (Yit) is also a r -SFS ( A2) and consider a representation of the dynamic common component of the form where x} is (r X 1) and supn >.r ( (L1) ' L1) = oo and supn >-.1 ( (L2) ' L2) < oo, r xi  = V x} and rê2 = V x;'n are non-singular and IE xi ( x;'n )' = 0 for all n E N. Then Cf' = L1x} and ef'n = L2x;,n for all n E N. Proof. If dim IHI(xt) = rx, then there exists some rx dimensional process, together with a loadings Ln such that Xɖ = Lnzt for all t E Z. By theorem 3. 1. 1 we 63 



Causa] Subordination Reconciling the Schools in One Model know that §t (Y) C IHI(xt), therefore there exists Ft from theorem 2.2.7 as a linear transformation of Zt of dimension r :S r x · For the second statement, note that if Cit = Xit for all i E N, t E Z, we know that Xit is finite dimensional with r x = r being the number of divergent eigenvalues in 
r0 by theorem 2.2.7.3. Setting Zt = Ft (theorem 2.2.7. 1), we obtain the desired result. On the other hand, let now xf = Lnzt, with >-.r (Ln'Ln) ➔ oo with rz = V zt = P DP' having full rank and D is a diagonal matrix of eigenvalues and P is an orthonormal matrix of eigenvectors. Since (Yit) is a SFS by assumption A2, there exists some f :S r such that >-.r (rȖ) ➔ oo and Af+1 (rȖ) < oo by theorem 3. 1. 1 and theorem 2.2.7. 1. Suppose f < r, so >-.r (r x) = >-.r (LnrzLn') < oo. But >-.r (Lnr zLn') = >-.r (Ln P DP' Ln ') = >-.r (D 1l2 P' Ln' Ln P D 112) (3.4 ) 2: >-.1 (D 112P')>-.r (Ln'Ln)>-.1 (PD 112) ,  (3.5) which is a contradiction as ).. 1 ( P D 112) > 0 since r z is of full rank and Ar ( Ln' Ln) ➔ 
00 . Set Xit = Li, 1Xi and XTt = Xit - Xit · Recall that §t (Y) = §t (X) by theorem 3. 1. 1. By theorem 2.2. 7.3 the decomposition into static common and static idiosyncratic component of (Xit) is unique - given the number r of divergent eigenvalues and the contemporaneous orthogonality between Xit and XTt is satisfied. This completes the proof. ■ 
3.3 Causal Subordination As we have seen above, the dynamic common component retains a larger part of the variation of the output process by accounting for the presence of weak factors which is a desirable feature. However, a theoretical downside at first glance is that dynamic principal components is in general a two-sided operation on the observed data. As a consequence neither the dynamic common component nor the dynamic shocks ( Ut) as they arise from computation via DLRA are causally subordinated 64 



Causa] Subordination Reconciling the Schools in One Model to (Yit ) , and therefore cannot be used for forecasting. In this section, we show that under quite general conditions there exists a representation of (Xit ) and of the innovations of (Xit ) causally subordinated to the output (yit ) -Suppose (zt ) is a multivariate d x 1 zero-mean weakly stationary process. Let 
Et := Zt - proj (zt I IHit_ 1 (z) ) be the innovation of Zt - Recall that by the Wold representation theorem (see e.g. Deistler and Scherrer, 2022 , theorem 2.3) we may say that (zt ) is purely non-deterministic iff we can represent Zt = L�o K(j)Et-j , where K(O) = Id and L�o II K(j) ll2 < oo. We call k (0) = L�o K(j ) e-iOj transfer function of (zt ) in the frequency domain. Corresponding to equation (2.2) we can also write Zt = lf (L)Et - Consider k (z) = L�o K(j)zj where z is a complex num­ber. Recall that the transfer function k (z) of a purely non-deterministic process is analytic on the open unit disc. We extend the definition of pure non-deterministicness to stationary double se­quences in the following way: Definition 3.3.1 ( Innovation for a stochastic double sequence) 
Suppose that (zit ) is a stationary stochastic double sequence of dynamic dimension 
q, i. e. there exists a q x 1 orthonormal white noise process ( Ut ) together with square 
summable filters (bi : i E N) (not necessarily causal), s. t. Zit = Qi (L)ut for every i E N. 

(i) We cal l  an orthonormal white noise q x 1 process (et) innovation of (zit ) if 
there exists an index set (i1, . . .  , iq) such that ( (Zi1 ,t) ( Zi1 ,t ) ) Cf E sp 

Z ·
: - proj 

Z ·
: IHit-1(zi1 ' . . .  Ziq ) 

iq ,t iq ,t 

(ii) ff (et) is an innovation of (zit ) ,  we say (zit ) is purely non-deterministic if 
Zit E IHit (c) for all i E N with Zit = L�o Ki (j )Et-j and L�o 1 1 Ki(J) ll2 < oo. We impose the following assumption on the common component: 65 



Causa] Subordination Reconciling the Schools in One Model Assumption 7 (Purely Non-Deterministic Dynamic Common Component) 
The common component (Xi t ) is purely non-deterministic with orthonormal white 
noise innovation (et ) and innovation-form 

Xi t = L, Ki (j )e t-j . 
j=O Note that we can also write Xi t = b;i (L)et as in equation (2.2). In factor analysis (American and Italian school) the common component or the factors respectively are modelled by a linear system (Stock and Watson, 2011; Forni et al. , 2005 , 2009; Anderson and Deistler, 2008 ) which implies that the common component is purely non-deterministic. Assumption A 7 is much more general than supposing a rational spectrum for (Xi t ) -Consider the sequence of 1 x q row transfer functions (ki : i E N). We look at partitions of consecutive q x q blocks k (j ) = ( k(

j-l)q+l '  . . .  , kJq) ' . Intuitively, if 
(Xi t )  is the dynamic common component of a q-DFS, we would expect to "find" all q coordinates of the innovation process (et ) infinitely often: In other words, looking at Definition 3.3. 1 there exists an infinite number of selections of the form 
X t = (Xii , t , . . .  , Xiq , t ) ' , such that (X:t) has innovation (et) , This is confirmed by the following lemma: Lemma 3.3.2 
If (Xi t )  is the dynamic common component of a q-DFS and is purely non-deterministic 
(A5, A 7), there exists a reordering (ki1 : l E N) of the sequence (ki : i E N) such 
that all q x q blocks (kU) ) of (ki1 : l E N) have full rank q a. e. an 8. Proof. By A5 and theorem 2.3.5. 1, we know that (3.6 ) We proof the statement by constructing such a reordering using induction. Clearly, we can build the first q x q block, having full rank a.e. on 8 by selecting the first linearly independent rows i1, . . .  , iq that we find in the sequence of row transfer functions (ki : n E N), i.e. set k(l) = (kt , . . .  kU ' · 66 



Causa] Subordination Reconciling the Schools in One Model Now look at the block j + 1: We start by using the next ki available in order, as the first row of k (j+l) , i.e. kii
q
+i . Suppose we cannot find ki with i E N\ { i 1 : l ::; jq+ 1} linearly independent of kii

q
+i . Consequently, having built already j blocks of rank q, all subsequent blocks that we can built from any reordering are of rank 1. In general, for q_ < q, suppose we cannot find rows ki

jq+ii
+1 ' . . .  , kii

q
+

q 
linearly independent of kii

q
+1 ' . . .  , ki

j qH ' then all consecutive blocks that we can built from any reordering have at most rank q_. For all m = j + 1, j + 2, . . .  by the RQ-decomposition we can factorise k(m) = 
R(m) ( 0)Q(m) , where Q(m) E (Cqx q is orthonormal and R(m) ( 0) is lower triangular q x q filter which is analytic in the open unit disc. N ow suppose n 2'. ij and say without loss of generality that n is a multiple of q: 

( kn ) * kn = L k7 ki 
i=l where x is a placeholder. By the structure of the reordering, there are q - q zero end columns/rows in Bn for all n 2'. jq where A remains unchanged. Now by Lancaster and Tismenetsky (1985 , theorem 1, p.301), we have Aq ( ( kn ) * kn) = Aq (A + Bn ) ::; >-. 1 (A) + >-.q(Bn) = >-.1 (A) < oo for all n E N a.e. on 8 . However this is a contradiction to (3.6 ) which completes the induction step and the proof. ■ We impose the following regularity condition that will be relaxed below: 67 



Causa] Subordination Reconciling the Schools in One Model Assumption 8 (Strictly Miniphase) 
There exists a astrictly miniphase " sub-sequence k(jz) of k(j) of transfer functions 
in the sense that Aq (kJ1 (kJ1 ) * )  > ö > 0 a. e .  on 8 for all jz . Theorem 3.3.3 
Suppose A l , A 5, A 7, AB hold for the q -DFS (Yit ) with dynamic common compo­
nent (Xit ) ,  then the innovations ( Et ) of (Xit ) are causally subordinated to (Yit ) ,  i. e. 
Et E IHlt (y) .  Proof. Suppose ( ki : i E N) is re-ordered such that all q x q blocks k(j) for 
j = 1, 2, . . .  are of full rank a.e. on 8 (such as in lemma 3.3.2) .  Next, redefine (ki : i E N) as a suitable sub-sequence of itself such that A8 holds. Suppose q divides n without lass of generality. We look at 

( 1 )  Xt 
(2) Xt By the Wald Representa tion we know that all k (j) , j = 1, . . .  , n / q are analytic in the open unit disc and det '5/1\z) =J. 0 for all l z l  < 1 and j = 1 , 2, . . .. 

(3 .7) Clearly, the first term on the RHS is a q-static factor sequence, where all eigen­values diverge (at rate n). Therefore, if the double sequence ((it) corresponding to 'lj)f on the RHS is statically idiosyncratic, we obtain Et (up to a rotation) from static averaging over ('Pit ) by theorem 2.2.7. Consequently, also (et) is causally subordinated to (yit ) -To see why ((it) is statically idiosyncratic, let U/2::,J ½* = k(j) (0) be the singular 68  



Causa] Subordination Reconciling the Schools in One Model value decomposition of k(j) ( 0), where we suppressed the dependence on 0 in the notation on the LHS. Let ff (0) = PAP* be the eigen-decomposition of ff with orthonormal eigenvectors being the columns of P. Then 
J J J J J 1; (0) = E9 uj E9 I;;-1 E9 ½* PAP* E9 ½I;;-1 E9 u; 

j=l j=l j=l j=l j=l The largest eigenvalue of f'[' (0) is equal to the largest eigenvalue of An (0) which 
A 1 (L f,) � k A1 (!,) ɗ 21r ess sup0 sup A1 (!,) n ɗ 21r ess sup0 sëp A1 (!;) (iìf Aq (I;j) ) -2 < 21r ess sup0 sup Ai (!;) (ö)-2 < oo n which completes the proof by theorem 2.2.6 . ■ Note that condition A8 can be relaxed. Firstly, look at the following example: Yit = Xit + fo = (1 - L )Et + fo where (ut) is orthonormal white noise and (fo) is dynamically idiosyncratic. Con­sider the cross-sectional average Yt = n- 1 limn I:f=1 Yit = ( 1 - L )Et - The innova­tions Et E IHit_ 1 (y) are the innovations of (Xit) and causally subordinated to (yit)­More generally, recall that we can "factor out" zeros from an analytic function: So we can write det 15U) = !l./h, where !l.j is a polynomial with all zeros of det 15U) which are on the unit circle. As is well known, the zeros of an analytic function are isolated, so if z0 is a zero, we have llj (z) =/- 0 in a neighbourhood of z0 . Fur­thermore the degree of a zero can be only finite or the function is zero everywhere. This implies there can be only finitely many different zeros on a compact set (like the unit circle). So we can write !j_j (z) = rr{�1 (z - Zj t)mz where lzj z l = 1. lt follows that g;-1 (0) det kU) (0) = hj (0) =/- 0 a.e. on 8, where gj (0) := !j_j (e-i0) and 6 9  



A State Space Representation Reconciling the Schools in One Model hj (0) := l_lj (e-i0). Thus instead we may assume that there exists a sub-sequence of (k (j) : j E N) such that hj (0) > ö a.e. on 8. Therefore equation (3.7 ) becomes instead: (3.8) Hence instead of A8 it is enough to assume 1. that there exists a sub-sequence of reordered (k(j) : j E N), such that after factoring out zeros, we have infj Aq (hj) > ö a.e. on 8. 2. that we can compute a static aggregate of the left term on the RHS of (3. 7 ) which has Et as its innovations. Summing up, we may argue that it is the very feature of dynamic factor sequences, as opposed to the "usual" DLRA of double sequences without a factor structure, that the innovations of (Xit) are fundamental to the observed double sequence (Yit) ­The causal subordination originates from the fact that the remainder of the rank-q DLRA vanishes under aggregation and thus the second term on the RHS of (3.8) vanishes under aggregation. Thus, we may say that the non-fundamentalness of the shocks arising from DLRA is not a structural feature of dynamic factor sequences but rather a matter of estimation technique. 
3.4 A State Space Representation In this section, we propose how to model factor sequences incorporating strong and weak factors in a state space framework. Linear system representations for factor models without the incorporation of weak factors have been investigated in Anderson and Deistler ( 2008); Deistler et al. ( 2010). Let (Et) be a q-dimensional orthonormal white noise process of innovations of (Xit)- We distinguish between 70 



A State Space Representation Reconciling the Schools in One Model the following observation equations: dynamic CC: static factors: Ft = [ Ir Ir{ 0] Xt static CC: c; = A;F/ = [Aȕ 0 o] Xt strong factors: F/ = [ Ir O O] Xt . The corresponding transition equation is: �(:.�) Hn Xt í 
Xt (F/+1) (

Mss Msw Msr
) (

F/
) ( Gs ) Xt+l = F:"t1 = Mws Mww Mwr Ft� + Gw Ct+l • 

xt+l Msr Msw Mrr xt Gr In short we have __________ _, � M n n + cn cn + x,n + cn cn + n Yt = Xt ',,t = t et ',,t = t et Xî =  Hnxt = A;F/ + A::VFt 
xt+1 = Mxt + Gct+1 (3.9) (3. 10) 

(3.11) (3. 12) (3. 13) (3. 14 ) (3. 15 ) In the finite dimensional case r x < 0 the growing cross-sectional dimension is associated with adding rows to Hn or An respectively. Equations (3.9) to (3. 12) are observation or "measurement" equations for the dynamic common component, the static factors, the static common component and the strong static factors respectively. Equation (3. 13) is the corresponding transition equation. The rational transferfunction of (xf) is uniquely determined on z E (C and given 7 1  



A State Space Representation Reconciling the Schools in One Model by where z is a complex number. The spectrum of (xf) is rational and given by ���, [; (z) = lf (z) ls;* (z) where lf* (z) := lf (:z-1) .  See Deistler and Scherrer (2022) for details. The transfer function of the strong static factors is We suppose that the parameters (M, G, Hn ) are such that (Yi t ) satisfies assump­tions A5 and A2. We assume that JE F/ (Ftw ) ' = 0 and the loadings Aȕ, Aï are of dimension (r x n) and (rx - r x n) respectively and like in theorem 3.2.2.3 which ensures that Ci t is the static common component of (Yi t ) and spanned by the strong factors ( Ft). Furthermore we impose the following standard linear system assumption: Assumption 9 (Canonical State Space Representation) 
The dynamic common component (xf) is generated by the system (M, G, Hn ) for 
all n E N in equations (3.9) to (3. 12) .  In addition we assume that (M, G, Hn ) is 
in canonical state space representation (see e. g. Hannan and Deistler, 2012, for 
details), which includes 

(i) Minimality of (M, G,  Hn ) with minimal state dimension m .  The state di­
mension does not increase for all n 2:: N ( m). We suppose that n 2:: N ( m). 

(ii) The system is stable which is satisfied if A1 ( M) < 1 

(iii) The system is miniphase. Minimality means that the dimension of the state Xt , say m 2:: r x, cannot be reduced (for details on linear system theory see e.g. Hannan and Deistler, 2012; 72 



A State Space Representation Reconciling the Schools in One Model Deistler and Scherrer, 2022, chapters 2 and 7 respectively) and is an important condition for identification and estimation. The coordinates x; in Xt in equation (3. 13) are potential "remainder" state dimensions that we may need to describe the full dynamics of the system. The static factors Ft are the minimal static factors for (xf) in the sense of Anderson and Deistler (2008 ) which is ensured by rk Hn = rx · Stability ensures that (Xit) is stationary and the transferfunction does not explode. The miniphase condition ensures the left-invertability of the transfer function meaning that the innovation Et can be obtained from multiplying the left-inverse of b; (z) to Xt · If 
rk M (z) :ð rk [Im ;nMz -oG] � m + q for all lz l < 1 ,  (3. 16 ) the miniphase condition is satisfied (see e.g. Kailath, 1980; Anderson and Deistler, 2008 ). Next, the question naturally arises under which conditions, the dynamic common component (Xit) is identified from the strong static factors (F/) alone. In this case, we could obtain the dynamic common component from SLRA - bypassing DLRA and therefore frequency domain methods which would improve the prac­tical usability. To examine this, we look at the state space system corresponding to the strong static factors, i.e. the system given by equations (3. 12) and (3. 13). By A9. (ii) we know that also k8 (z) is stable. If the transfer-function of the strong static factors is also miniphase which can be checked by condition (3. 16 ) replacing Hn with [Ir, 0, 0], this implies that IHit (c) = IHit (F8) by the Wold representation theorem (see e.g. Deistler and Scherrer, 2022, eh. 2). Consequently, if '5;8 (z) is miniphase, then the dynamic common component is identified from projecting Yit on the infinite past of (F/), i.e. Xit = proj(yit I IHit (F/)). In this case also Xit is causally subordinated to Yit, i.e. IHit (X) C IHit (Y) since IHit (X) C IHit (F8

) C IHit (y). Note that, for this identification procedure we do not even need to assume that Xit is generated by a state space system. lt is sufficient to assume that (F/) and (Xit) have the same innovations. 73 



A State Space Representation Reconciling the Schools in One Model If we suppose in addition that the system (3. 12) and (3. 13) is also minimal - even easier, the dynamie eommon eomponent is the projeetion of the output variables on the state of the strong statie faetors. Reeall that a state spaee system is mini­mal if and only if it is observable and eontrollable (see e.g. Deistler and Seherrer, 2022, eh. 7 ). Controllability is a feature of the matriees (M, G) in the transi­tion equation (3. 13) and holds by A9. (i). Observability is a feature of the system matriees in the observation equation, i.e. here of ( [Ir, 0, 0], M) and is satisfied e.g. by the Popov-Beleviteh-Hautus-Test (see Kailath, 1980, eh. 2.4 ) if all right eigenveetors of M are not in the right-kernel of [Ir , 0, O]. In either ease, we have the following relations that allow identifieation of the dynamie eommon eommon eomponent from the strong static faetors: IHI(C) = IHI(Fs) = G(y) IHit (C) = IHit (F8) = IHit (c) = IHit (X) 
Xit = proj(yit I IHI(c)) = proj(yit I IHit (c)) = proj(yit I IHit (F8)) = proj(yit I sp(xt)) We summarise the diseussion above: Theorem 3 .4.1 (Identifiability from Strang Faetors) 

Suppose A l, A2, A5 hold. 
1 .  If in addition A 7, A 8 hold, ( F/) is generated by the system ( 3. 12, 3. 13) and '5;8 ( z) is miniphase, then the dynamic common component is identified from the 
strong static factors via Xit = proj(Yit I IHit (F8)). 
2. If A 6 and A9 hold and ( [Ir, 0, 0], M) is observable, then Xit = proj(yit I sp(xt)). Theorem 3.4 . 1  provides another struetural interpretation of weak faetors: We ean regard dynamic faetor sequenees as a "natural extension" of statie faetor sequenees: The dynamie eommon eomponent is the part of Yit , that is driven not only by the eontemporaneous strong statie faetors but also by their infinite past or state dimensions respeetively. The vast majority of "finite dimensional" approximate faetor models suggested in the eeonometrics literature ean be east in the state spaee form above. For example 
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A State Space Representation Reconciling the Schools in One Model a very common model is to incorporate dynamics within the strong static factors as (see e.g. Stock and Watson, 2005 , 2011; Bai and Wang, 2016 ; Bai and Ng, 2007 ): 
Yit = >..fo ft  + >..f i ft-1 + • • • + >..i,p. ft-Pc + eit 
Cit = AfF/ 

(3. 17 ) (3. 18 ) where Un is q x 1 and are called "dynamic factors" (note that these dynamic factors do in general not coincide with the definition of dynamic factors that we use in this thesis as the common orthonormal white noise shocks which span the dynamic aggregation space) and So >..f is the i-th row of As in equation (3.9). Furthermore the factors Un are modelled as a VAR(p1) process: 
fs = Af,s fs + Af,s fs + . . .  + Af,s fs + c t l t- 1 2 t- 1 p t-pf t • lt follows that also the stacked vector of strong static factors (Ft) can be repre­sented as solution of a singular VAR(p) system, so (3. 19) where b is r x q and p = max{pc + l, PJ }. A VAR system is called singular if the innovation variance matrix is singular. The properties of singular VAR systems also in connection to factor models have extensively been studied e.g. in Deistler et al. (2010, 2011); Anderson et al. (2012); Chen et al. (2011). lt is easy to see, how to put such a system into the state space representation (3. 14 ), (3. 15 ). Min­imality of that system can always be achieved by reducing the state dimension 75 



A State Space Representation Reconciling the Schools in One Model (Hannan and Deistler, 2012, eh. 2). lt is also common to only suppose that the strong static factors follow a VAR(p)­system (see e.g. Doz et al. , 2011; Ruiz et al., 2022), i.e. only suppose (3. 19) -without the additional restrictions given by (3. 17 ) but usually with regular inno­vation variance matrix. 
Remark 3 .4 .2  (Most Dynamic Factor Models are not as Dynamic as They Think) 
Models like (3. 1 7), (3. 18), (3. 19) are also referred to as "dynamic factor models" 
and the representation ( 3. 18) together with ( 3. 1 7) is also referred to as "casting the 
dynamic factor model in static form" (see e . g. Stock and Watson, 2011) .  Clearly, 
these models are "dynamic" in the sense that the strong factors are modelled in 
a dynamic way. However, they are not dynamic in the sense that the strong 
static factors in equation (3. 18) emerge from static rather than from dynamic 
aggregation. As a consequence the model ( 3. 1 7)  is structurally not comparable to 
the dynamic factor sequences from Fomi et al. (2000); Fomi and Lippi (2001) as 
is often stated. 76 



Chapter 4 

lmplications for Factor Analysis The structural results discussed in the previous two sections have a number of important implications for the theory and practice of factor analysis. Let us first turn to a structural interpretation. 
4.1 Structural lmplications Given our discussion in section 3.3, the innovations (Et) of the dynamic common component (Xi t )  are to be interpreted as the common innovation process or the 
common fundamental shocks or the structural dynamic shocks (see e.g. Stock and Watson, 2005 ) of the economy. The dynamic common component is the projec­tion of the observed variables on the infinite past of these structural shocks. Consequently, if we are interested in finding the part that is driven by the struc­tural shocks of the economy, we make in general a structural error, which does not vanish for ( n, T) ➔ oo, if we would merely use the static common component and ignore the impact of weak static factors. The size of this error in general varies with the cross-sectional units and depends on the data generating process. In other words, if the cross-sectional unit we are interested in, say Yit has a non­trivial weak common component, the projection onto the static strong factors alone Ci t = proj (Yi t I Fn does not tel1 the whole story - but only represents the part that is contemporaneously common. We have to carefully distinguish between 
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Structural Implications Implications for Factor Analysis 

contemporaneously- and dynamically common. The common component based on SLRA of the American school captures the contemporaneous co-movement whereas the DLRA of the Italian school captures the dynamic co-movement of the variables. Both parts might be of structural interest for the researcher but have to be kept separate when interpreting and analysing them. Nonetheless, we still may specify a time series model for the strong static fac­tors but also this does not make the corresponding common component to be the dynamic common component (see Remark 3.4 .2), i.e. capture the dynamic co-movement. Remark 4.1.1 ( Impulse Responses to Structural Dynamic Shocks and Factors as Intstrument Variables) 
The consideration of a non-trivial weak common component may be important 
e. g. when using the common component by means of removing measurement er­
rar (see Lippi, 2021) .  Literally, a measurement error is reintroduced when using 
the static rather than the dynamic common component. Also, if we consider the 
impulse responses to structural shocks like in Forni et al. (2009) or in terms of a 
factor augmented VAR Stock and Watson (2005), we induce a "population error" 
whenever the weak common component is non-trivial but we estimate the common 
component via SLRA . These papers are all correct as they contain the implicit 
assumption that Cit = Xit for all i E N. However, this is not innocent. We in­
duce an asymptotically non-vanishing error to impulse response analysis by not 
controlling for the presence of weak factors. 
Another important application of factor analysis is to use the strong static factors 
as instrumental variables Bai and Ng (2010) .  If the dependent variable in the re­
gression equation also depends on weak factors, incorporating them as instruments 
will reduce variance of the parameter estimates while maintaining instrument­
exogeneity. Remark 4.1.2 (Reconsidering Integer Parameters) 
Under the assumptions of theorem 3. 1 . 1, if we furthermore assume that the strong 
static factors (Ft )  are purely non-deterministic, the spectrum of (Ft)  has rank 
q0 ::; r almost everywhere on 8 :  Since § t C G, the innovations of (F/)  are of 78 



Structural Implications Implications for Factor Analysis 

dimension qc :::; q .  
We may also assume that supn rx (n) = dim sp(Xt ) = rx < oo is finite dimensional 
which implies a static factor structure where r x :::; r (see theorem 3. 2. 2) .  In 
summary, we distinguish the following integer parameters qc , q ,  r, rx with 

qc :::; r :::; r x 
qc :::; q :::; r x 

Note that methods which determine the number of dynamic factors via the dynamic 
dimension of the strong factors (Fn (see e. g. Bai and Ng, 2007) target q0 rather 
than q .  H owever, it might be that q0 < q only happens for very pathological cases 
(see example 3. 1 . 3) .  
Theorem 3. 2. 2 also implies that in general we cannot use methods like in Bai 
and Ng (2002); Ahn and Horenstein (2013) which are designed for determining 
the number of strong static factors, for estimating r x ( n) the dimension of the 
dynamic common component unless we assume that e� = 0 for all i :::; n .  This is 
common practice (see e. g. Forni et al. , 2005, 2009; Barigozzi and Luciani, 2019) .  
For example Forni e t  al. (2005) use first DLRA to estimate r� and in a second 
step approximate xf with a static factor structure using an optimisation procedure 
based an 11generalised principal components ': The proposed algorithm enforces 
e� = 0 for all i :::; n which makes it - from a structural point of view - unnecessary 
to estimate r� with frequency domain methods in the first place. 

Remark 4 . 1 .3  
It is often assumed that (Fn and ( eit ) are uncorrelated for all leads and lags (see 
e. g. Bai and Ng, 2006, Assumption D) . Again, this is only the case if e� = 0 for 
all i ,  t which is in general not the case. 
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Estimation of the Dynamic Common Component Implications for Factor Analysis 
4.2 Estimation of the Dynamic Common Com­

ponent By Onatski (2012) it was shown that the method of static principal components is not a consistent estimator for weak factors. While Onatski (2012) considered weak factors in general, the same holds true for weak factors that live in the dynamic aggregation space and are part of the dynamic common component. In Forni et al. (2000, 2004 ) it was shown that sample DLRA is consistent for the dynamic common component for (n, T) ➔ oo. In the following we demonstrate by means of a Monte-Carlo simulation that sample DLRA can capture the weak common component wheres sample SLRA cannot. For this, consider the following model: Let Et ~ N(0, 1) be scalar Gaussian white noise. We construct an idiosyncratic component with cross-sectional correlation as follows: Let wi = (1, 1 + 1/20, 1 + 2/20, . . .  , 1 + n/20) be a vector of weights. We draw independently ,\f ~ w; 1 x N(0, 1). Now set fo = ,\f cP + cf/ , where 
cP ~ N(0, 1) and cf/ ~ N(0, 1) are drawn independently, also independent from (et). To obtain data generated from a state space system, we consider r x = 2 with one strong factor F/ and one weak factor Ft: 

Yit = Xit + fo (4 . 1) 
Xit = Ft for i = 1, . . .  , 10 and Xit = F/ for i = 1 1, . . .  , n  (4 .2) (Ft:l) = [Mss Msw ] ( FC) + [Gs ]  Ct+l Ft+l Mws Mww Ft Gw 

...__,___., ------.,.--- '--v--' 
Xt+l M G [0. 1945375 -0.384 2384 ] ( F/ ) [0.9025054 ] 0.27 02844 0.90546 25 Ft 

+ 0.3272368  Et+1 ' 
M G 

(4 .3) where the parameters were chosen such that V Xt = 12 . lt is easy to see that the first eigenvalue of the spectrum of xf diverges a.e. on the frequency band. 80  



Estimation of the Dynamic Common Component Implications for Factor Analysis Furthermore .X.1 (rȖ) = n - 10 diverges with rate n, whereas the second eigenvalue of .X.2 (rȖ) = 10 is bounded. We compare three different methods: (i) Estimation with sample DLRA. We estimate the spectrum of (yf) using the lag-window estimator 
M(T) J; (e) = (2nt 1 L 11,(k/M(T))e-lkOf'; (k) , 

k=-M(T) where r;(k) = r- 1 I:t= lk l+l yfyf_ l k l ' and 11,(•) is the Bartlett kernel where M(T) = 0 . 75\iT. We compute DLRA from the estimated spectrum with q = l as in Forni et al. (2000). (ii) Estimation with SLRA for r = 1, where we compute the SLRA from the sample variance matrix r; . (iii) Estimation with SLRA for r = 2, estimates are computed as in (ii). As a performance measure, we evaluate the average mean squared error (AMSE) - averaging over the cross-sectional index set I with cardinality #I, 1 1 T 
AMSE = - I: - L (Xit - Xit)2 

#I iEl T t=l 
(4 .4 ) where Xit in ( 4 .4 ) is the true common component and Xit is the estimated common component. As the final performance measure, we take the average of (4 .4 ) over all replications. The results of ( 4 .4 ) for i = 1, . . .  , 10 are shown in table 4 . 1. Table 4 .2 shows the results for i = 1 1, .. . , n, and table 4 .3 shows the results for the whole cross-section, i.e. I = {l, 2, . . .  , n }. Some observations in order: Table 4 . 1  reveals that in our example, DLRA can estimate the weak common component better if n and T gets larger, and has difficulties to estimate Xit - especially while T is still small. In contrast, estimates for the weak common component of SLRA do not improve for increasing n, T as expected. 8 1  



Estimation of the Dynamic Common Component Implications for Factor Analysis 

1 d,T�60 s,T=60 s2,T=60 d,T�120 s,T=120 s2,T=120 d,T�240 s,T=240 s2,T=240 d,T�480 s,T=480 s2,T=480 d,T�960 s,T=960 s2,T=960 
n=30 0.586 1.054 0.696 0.533 1.022 0.648 0.519 1 .016 0.684 0.51 1.009 0.694 0.517 1 .007 0.697 
n=30 (0. 162) (0.259) (0.408) (0.128) n� (0.165) (0.396) (0.101) (0. 102) (0.377) (0.077) (0.075) (0.324) (0.059) (0.049) (0.256) 
n=60 0.571 1.049 0.894 0.541 1.003 1 .001 0.511 1 1.066 0.514 1.006 1 . 142 0.51 1 .007 1.172 
n=60 (0.151) (0.216) (0.443) (0.116) (0.143) (0.388) (0.084) (0.101) (0.327) (0.064) (0.07) (0.255) (0.052) (0.048) (0.178) 
n=120 0.547 1.043 1 . 119 0.495 1.013 1 .201 0.482 1 .005 1 .287 0.476 0.995 1 .329 0.478 1 .001 1.351 
n=120 (0.14) (0.202) (0.392) (0.113) (0.145) (0.298) (0.077) (0. 105) (0.185) (0.056) (0.072) (0.115) (0.048) (0.05) (0.08) 
n=240 0.48 1.022 1.219 0.423 1.013 1 .304 0.394 1 .005 1.357 0.395 1.004 1.378 0.398 1 .004 1.386 
n=240 (0. 128) (0.218) (0.328) (0.089) (0. 148) (0.239) (0.076) (0. 105) (0.14) (0.055) (0.074) (0.094) (0.042) (0.052) (0.066) 
n=480 0.425 1.024 1 .238 0.319 0.998 1 .314 0.279 1.011 1.37 0.276 1.002 1 .389 0.285 1 .003 1.393 
n=480 (0.126) (0.214) (0.291) (0.074) (0.141) (0. 199) (0.062) (0.107) (0.129) (0.057) (0.071) (0.088) (0.043) (0.051) (0.061) Table 4 . 1: Units influenced by weak factors only: AMSE (equation 4.4) over 500 replications for I = {1, ... , 10} of model (4. 1)-(4.3): d = DLRA, s = SLRA, r = 1, s2 = SLRA with r = 2. Standard errors in parentheses. 

1 d,T�60 s, T=60 s2,T=60 d, T�120 s,T=120 s2,T=120 d,T�240 s,T=240 s2,T=240 d,T�480 s,T=480 s2,T=480 d,T�960 s,T=960 s2,T=960 

n=30 0.288 0.286 0.31 0.251 0.15 0.236 0.221 0.088 0.214 0.203 0.07 0.205 0. 193 0.064 0 . 199 
n=30 (0.082) (0.267) (0.17) (0.059) (0.15) (0.12) (0.045) (0.055) (0 .102) (0.031) (0.021) (0.085) (0.024) (0.012) (0.066) 
n=60 0.179 0.057 0. 169 0.163 0.038 0.16 0.136 0.03 0.153 0. 125 0.027 0.155 0.114 0.025 0 . 155 
n=60 (0.04) (0.031) (0.067) (0.028) (0.012) (0.055) (0.02) (0.006) (0.045) (0.015) (0.004) (0.035) (0.011) (0.002) (0.025) 
n=120 0.121 0.033 0.123 0.11 0.021 0.108 0.09 0.015 0.103 0.08 0.013 0.1 0.072 0.012 0.099 
n=120 (0.03) (0.011) (0.033) (0.018) (0.004) (0.024) (0.011) (0.002) (0.016) (0.007) (0.001) (0.01) (0.006) (0.001) (0.007) 
n=240 0.082 0.026 0.087 0.075 0.014 0.069 0.059 0.009 0.062 0.051 0.007 0.057 0.044 0.006 0.055 
n=240 (0.026) (0.007) (0.017) (0.015) (0.002) (0.011) (0.008) (0.001) (0.007) (0.005) (0) (0.004) (0.003) (0) (0.003) 
n=480 0.061 0.022 0.063 0.055 0.011 0.045 0.039 0.007 0.036 0.033 0.004 0.032 0.028 0.003 0.03 
n=480 (0.023) (0.006) (0.01) (0.013) (0.001) (0.005) (0.007) (0.001) (0.003) (0.004) (0) (0.002) (0.002) (0) (0.001) Table 4 .2: Units influenced by strong factors only: AMSE (equation 4.4) over 500 replications for I = { 1 1 ,  . . .  , n} of model (4. 1) - (4 .3) :  d = DLRA, s = SLRA, r = 1 ,  s 2  = SLRA with r = 2. Standard errors in parentheses. For the cross-sectional units influenced only by the strong factors, i.e. i = 1 1, . . .  , n, SLRA with r = 1 outperforms DLRA especially if n/T is large. Asymptotically DLRA catches up, but does not reach the performance of SLRA with r = 1 in our setup. This suggests SLRA benefits from being the more parsimonious and stable procedure compared to DLRA. However if n/T is small DLRA is slightly better than the "correctly specified" SLRA with r = 1 which indicates that the identification of the factors benefits from dynamic averaging if the spectrum is estimated more precisely ( with larger T) . Of course this effect would not occur if the factors were serially uncorrelated. For r = 2 SLRA seems also to be consistent (see Barigozzi and Cho, 2020) but has higher variance. Finally, the results in table 4 .3 of AMSE evaluated over the whole index set are not really different from the results in table 4 .2. When it comes to evaluating whether the weak common component is captured well, AMSE is not a suitable evaluation criterion since the contribution of the weak common component is "averaged out" by taking the cross-sectional mean. Instead we shall rather look at each series 
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1 d,T�60 s,T=60 s2,T=60 d,T�120 s,T=120 s2,T=20 d,T�240 s,T=240 s2,T=240 d,T�480 s,T=480 s2,T=480 d,T�960 s,T=960 s2,T=960 

n=30 0.387 0.542 0.439 0.345 0.44 0.374 0.32 0.397 0.371 0.305 0.383 0.368 0.301 0.379 0.365 
n=30 (0.103) (0.195) (0.225) (0.079) (0 .112) (0.204) (0.062) (0.048) (0.192) (0.045) (0.028) (0.164) (0.034) (0.018) (0.129) 
n=60 0.245 0.223 0.29 0.226 0. 199 0.3 0. 199 0 .192 0.305 0. 189 0.19 0.319 0.18 0. 189 0.324 
n=60 (0.054) (0.045) (0.127) (0.041) (0.026) (0. 109) (0.029) (0.017) (0.091) (0.023) (0.012) (0.071) (0.018) (0.008) (0.05) 
n=120 0.157 0 .117 0.206 0. 142 0.104 0.199 0.123 0.098 0.202 0.113 0.095 0.203 0. 106 0.094 0.203 
n=120 (0.034) (0.02) (0.061) (0.024) (0.013) (0.045) (0.016) (0.009) (0.029) (0.011) (0.006) (0.017) (0.009) (0.004) (0.012) 
n=240 0.099 0.067 0. 134 0.09 0.056 0.121 0.073 0.051 0 .115 0.065 0.048 0.113 0.059 0.047 0 .111  
n
240 (0.026) (0.011) (0.028) (0.016) (0.006) (0.019) (0.01) (0.004) (0.011) (0.006) (0.003) (0.007) (0.005) (0.002) (0.005) 
n=480 0.068 0.043 0.088 0.061 0.032 0.071 0.044 0.028 0.064 0.038 0.025 0.061 0.033 0.024 0.058 
n=480 (0.022) (0.007) (0.014) (0.013) (0.003) (0.008) (0.008) (0.002) (0.005) (0.005) (0.001) (0.004) (0.003) (0.001) (0.002) Table 4 .3: All: AMSE (equation 4.4) over 500 replications for all cross-sectional units, i.e. I = {1, ... , n} of model (4. 1)-(4.3): d = DLRA, s = SLRA, r = 1, s2 = SLRA with r = 2. Standard errors in parentheses. individually. Summing up, we can cast the trade-off between SLRA and DLRA as follows. Let 

Cit = Cit + DftLRA where Cit is the estimate of Cit with SLRA and DftLRA is the corresponding estimation error. And let Xit = Xit + Df!LRA . We have so we compare (Xit - Cit ) = DftLRA + e� d ( A ) A DLRA an Xit - Xit = vit The simulation results indicate that Di1LRA has smaller variance than Df!LRA -except if the dynamics is strong and T is large relative to n. On the other hand if eȓ is large this can dominate the stability advantage of SLRA. 
4.3 lmplications for Forecasting Although the contemporaneous influence of weak factors might be important for 
individual cross-sectional units, we know that it vanishes under static aggrega­tion and is therefore small "on average". On the other hand, this situation might change when looking at the contribution of weak factors to subsequent periods. The potential gains of considering weak factors for forecasting becomes already apparent in the extreme examples 3. 1.3, 3. 1.4 . In this section we further inves­tigate the role of weak factors in forecasting within the state space framework. Consider again the simple model from section 4 .2. The population projection of 
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Implications for Forecasting Implications for Factor Analysis Yi,t+l on the infinite past of all variables IHit (y) is given by: proj(yi,t+l I IHit (Y)) = proj(xi,t+l + ñi,t+l I IHit (c) EB IHit (ˑ)) = proj(xi,t+l I IHit (c)) = proj(Ai, sFtò1 + Ai ,wFt!t-1 1 sp(F/) EB sp(Ft)) = proj(Ai ,s (MssF/ + MswFt + Gsct+1) 
+ Ai ,w (MwsF/ + MwwFt + Gwct+1) 1 sp(F/) EB sp(Ft)) where we used that (fo) is orthogonal to (Xit) for all leads and lags, that fo l_�js for all i, j and t =/- s and lEF/ Ft' = 0. Equation ( 4 .5 ) reveals the following: When considering factors for a forecasting regression model, it is not vital whether a factor is strong or weak, but rather how it enters the dynamics of the common component. For most i, we expect Ai , s  to be "large". So "in most cases" the weak factors enter the one-step ahead prediction via Msw · If Msw is large - even if Ai ,w = 0 - part of the variation of Yi,t+l is explained by the weak factor Ft. Clearly, considering the system in (3. 14 )(3. 15 ), the remainder state dimensions x; influence Xit not contemporaneously but in a time lag. In this sense they are "super weak factors" and can improve forecasting even more. The factor augmented auto-regression suggested in the seminal work of (see Stock and Watson, 2002a,b; Bai and Ng, 2006 ) is probably the most common method for forecasting with factor models: Yi, t+h = ßF/ + g(L)Yi, t + vt+h for h 2:: 1 , (4 .6 ) where g(L) is a lag-polynomial to incorporate lags of the output variable in order to account for individual dynamics. To relate ( 4 .6 ) to ( 4 .5 ), consider for example the population projection proj(Yi,t+l I sp(F/ , Yit)) = proj(Yi,t+l I sp(F/) EB sp(eit)) = (Ai ,sMss + Ai ,w Mws)F/ 

+ (Ai ,sMsw + Ai,w Mww) proj(Ft I sp(eit)) , (4 .7 ) 
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Implications for Forecasting Implications for Factor Analysis which has a larger population forecasting error due to the fact that we project 
Ft on eit = Ai ,wptw + vit, which is a linear combination of Ft contaminated with "noise", rather than on Ft itself as in equation ( 4 .5 ). Of course, if we add further lags of Yit to the projection in ( 4 .  7 ) the prediction error can be reduced and we obtain more complicated calculations but the rationale stays the same. What the potential gains are from including weak factors in a forecasting regression is ultimately an empirical question and varies from unit to unit. Though model ( 4 .6 ) is probably mostly used in practice, (Stock and Watson, 2002b, see equation (2.5 )) already suggested to include also lags of F/ into the forecasting model which is quite anticipatory in light of our discussion above: Given the strong factors follow a VAR system and the conditions of theorem 3.4 . 1  are satisfied if that VAR system is put into state space representation, including lags of F/ in the forecasting regression is equivalent to including weak factors. Next, we investigate these thoughts in a Monte-Carlo simulation: For this consider three competing models: (i) "b": regressing Yi,t+l on both, i.e. F/ and Ft, (ii) "S": regressing Yi,t+l only on the strong factors F/, (iii) "SW": the Stock and Watson (2002a) method, i.e. regressing Yi,t+l on the strong factors and Yi ,t plus lags, where lag order is selected for each regression individually by A IC. We draw 500 replications from the data generating process presented in section 4 .2 and evaluate Mean Squared Forecast Error (MSF E) performance defined as 

MSF E :=  n- 1 L)Yi ,T - Yi ,T )2 
i=l where Yi ,T is the prediction of one of the competing methods estimated with data from t = l, . . .  , T - l. The results presented in table 4 .4 demonstrate that in all circumstances the model regressing on strong and weak factors outperforms the others. They also indicate that including lags of the output can account partly for 85 



Infi.nite-Dimensional Static Aggregation Space Implications for Factor Analysis 

1 b,T�60 S,T�60 SW,T�60 b,T�120 S,T�120 SW,T�120 b,T�240 S,T�240 SW,T�240 b,T�480 S,T�480 SW,T�480 b,T�960 S,T�960 sw 960 
n=30 1.815 2.298 2. 103 1.701 2.247 2.015 1.666 2.178 1.964 1.721 2.266 2.058 1.66 2.297 2.016 
n=30 (0.023) (0.027) (0.025) (0.022) (0.027) (0.024) (0.02) (0.025) (0.023) (0.022) (0.027) (0.025) (0.021) (0.027) (0.024) 
n=60 1.634 2.179 1.909 1.507 2.21 1.863 1.488 2.126 1.835 1.477 2. 187 1.859 1.443 2.114 1.811 
n=60 (0.015) (0.018) (0.016) (0.013) (0.018) (0.016) (0.013) (0.018) (0.016) (0.013) (0.018) (0.016) (0.013) (0.017) (0.015) 
n=120 1.429 1.992 1.718 1.38 2.117 1.73 1.363 2.08 1.731 1.3 2.007 1.667 1.309 2.027 1.702 
n=120 (0.009) (0.012) (0.01) (0.008) (0.012) (0.01) (0.008) (0.012) (0.01) (0.008) (0.012) (0.01) (0.008) (0.012) (0.01) 
n=240 1.365 2.039 1.671 1.294 2.054 1.659 1.236 1.902 1.584 1.228 2.004 1.614 1. 194 2.03 1.616 
n=240 (0.006) (0.008) (0.007) (0.006) (0.009) (0.007) (0.005) (0.008) (0.007) (0.005) (0.008) (0.007) (0.005) (0.008) (0.007) 
n=480 1.306 1.953 1.613 1.247 1.992 1.573 1.211 2.021 1.603 1 .197 2.026 1.608 1. 169 1.942 1.568 
n=480 (0.004) (0.006) (0.005) (0.004) (0.006) (0.005) (0.004) (0.006) (0.005) (0.004) (0.006) (0.005) (0.003) (0.006) (0.005) Table 4 .4 :  MSFE for one step ahead forecasts for model (4. 1) ,  (4 .3) :  "b" regressing on strong 

and weak factors , " S "  regressing on strong factors only and "SW" Stock Watson method from 
equation ( 4 .6) .  Standard errors in parentheses . the influence of weak factors as the SW model outperforms regressing on strong factors alone. 
4.4 Infinite-Dimensional Static Aggregation Space In the literature it is commonly thought that the main advantage of DLRA/the Italian School over SLRA/the American school is the ability to deal with "infinite dimensional factor spaces" (see Forni et al., 2015 ). In this section we investigate this idea in more detail. The following example is from Forni et al. (2015 ): Let Ut be scalar white noise and 
o:i be drawn independently from a uniform distribution over ( - 1, 1) and suppose the dynamic common component is given by (4 .8) In light of the discussion in section 3.2, we need to distinguish between sp(Xt) and 
§t being infinite dimensional. Clearly, sp(Xt) is infinite dimensional but this does not imply that also §t is infinite dimensional and a static factor model would be mis-specified as is claimed in Forni et al. (2015 ). Unfortunately, we were not able to prove that §t is infinite dimensional. However with a small adaptation of this example using the "infinite blocks" idea, we can provide an example for §t being infinite dimensional: Example 4.4.1 (Infinite Dimensional Static Aggregation Space) 86 
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Let CYj and U t  and (Xit ) be as in equation (4 - 8) above. Define the dynamic common 
component (Xit ) as follows: Xlt X1t 1 (l - a1L )-1 X2t X1t (1 - et1L)-1 

X3 t X2t (1 - et2L)-1 
X4 t X1t (1 - et1L)-1 U t  and Yit = Xit + fo ' (4 .9) 
X5 t X2t (1 - et2L)-1 
XB t X3 t (1 - a3L )- 1 

for some dynamically idiosyncratic double sequence ( fo ) .  lt is straightforward 
to see, that the result from Hallin and Liska (2011) holds analogously for static 
factor sequences: In particular, given two SFS (Yió1 ) )  and (yj;)) with dimensions 
r1 and r2 , the blended double sequence, say (ih t ) ,  is again a r -SFS with dimension max(r1, r2) :S r :S r1 + r2. 
In (4- -9) we create an infinite amount of linearly independent static aggregates 
Fi t = X1t , F2 t = X2t, . . .  by computing the average over the respective cross-sectional 
sub-sequence in (Xit ) . Consequently § t is infinite dimensional and by theorem 
2. 2. 7 there exists no finite r, such that supn Ar+i (r; ) < oo. However, we still 
have Xit = proj(yit I G) = proj(yit 1 §t) - So (yit ) from equation (4- -9) is a l -DFS. From theorem 3.2.2. 1  we know that dim sp(Xt) < oo implies that dim §t < oo. However the converse is not true as the following example 4 .4 .2 illustrates. Example 4.4.2 (1-SFS, 1-DFS, rx = oo) 
Let ( U t )  be scalar white noise, define the common component by (4 . 10) 
while we suppose that (Ai,s ) is a sequence of strong loadings, i. e. I:�1 A;,s = oo 
and (Ai,w ) is a sequence of weak loadings, i. e. I:�1 Af,w < oo and Ai,w > 0 for 
all i and the ai 's are as in (4 . 8) .  We have one strong factor, so dim §t = 1 and 
infinitely many weak factors, so dim sp(Xt) = oo. 87 



Empirical Indication for Weak Factors ? Implications for Factor Analysis Finally, even though §t is infinite dimensional, it might be still approximated well by SLRA with a finite number of static aggregates. We investigate this ques­tion by a simulation study: We compute average mean squared error AMSE, see equation (4 .4 ), for 500 replications of model (4 .9) and compare DLRA and SLRA. The idiosyncratic component is drawn independently from a standard normal dis­tribution. The number of factors is chosen for each replication separately by the 
ICp2 criterion proposed in Bai and Ng (2002). Results are shown in table 4 .5. The 

1 d,T-60 f,T-60 s,T=60 d,T-120 f, T-120 s,�120 d,T-240 f,T-240 s,T-240 d,T-480 f,T-480 s,T-480 d,T-960 f,T-960 s,T-960 

n=30 0 .17 1 .514 0 .218 0.13 1 .714 0.181 0. 103 1 .862 0 .154 0.086 1 .964 0. 138 0.076 1 .996 0 .131 
n=30 (0.02) (0 .5) (0.03) (0.013) (0.452) (0.03) (0.007) (0.345) (0.024) (0.005) (0. 186) (0.015) (0.003) (0.063) (0.007) 
n=60 0. 145 1.95 0. 147 0.101 1 .994 0 . 111  0.075 2 0.094 0.059 2 0.086 0.049 2 0.083 
n=60 (0.019) (0.218) (0.018) (0.009) (0.077) (0.008) (0.006) (0) (0.005) (0.003) (0) (0.003) (0.002) (0) (0.002) 
n=120 0. 138 1 .994 0. 128 0.091 2 0.096 0.063 2 0.082 0.046 2 0.075 0.036 2 0.071 
n=120 (0.018) (0.077) (0.012) (0.009) (0) (0.007) (0.005) (0) (0.005) (0.003) (0) (0.004) (0.002) (0) (0.002) 
n=240 0. 134 2 0 .118 0.086 2 0.087 0.057 2.002 0.074 0.04 2 . 1 1  0.063 0.03 2.664 0.044 
n=240 (0.018) (0) (0.012) (0.008) (0) (0.007) (0.004) (0.045) (0.005) (0.003) (0.313) (0.008) (0.002) (0.473) (0.012) 
n=480 0. 132 2 0 .113 0.085 2.004 0.086 0.055 2.492 0.056 0.037 3 0.031 0.027 3 0.026 
n=480 (0.018) (0) (0.013) (0.009) (0.063) (0.008) (0.004) (0.5) (0.013) (0.003) (0) (0.001) (0.002) (0) (0.001) Table 4 .5 :  AMSE for 500 replications for the dynamic "d" and static "s" low rank approxi­mations, together with the average of the number of chosen static factors "f" by ICp2 from Bai and Ng (2002). Standard deviation of AMSE is reported in parentheses. results indicate that overall, the infinite dimensions in §t can be approximated well by a finite number of static factors, since the performance of SLRA is not so much worse compared to DLRA. If T is small relative to n, the SLRA can outperform DLRA even in the infinite dimensional case with only 2 factors, e.g. for T = 6 0  and n = 480. On the other hand DLRA outperforms SLRA if T is large and n is small. For both n and T being large the performance of SLRA and DLRA is very similar. Thus we may conclude that in general even if §t is infinite dimensional this does not imply that we should use DLRA for estimation of the common component, since in terms of AMSE we might approximate the common component well by a finite number of static factors. 

4.5 Empirical Indication for Weak Factors? Often it is implicitly assumed that e( = 0 for all i E N, e.g. in Forni et al. (2005), assumption D, or in Forni et al. (2009), assumption 4 (b), or Bai and Ng (2006 ) assumption D .  In this section, we aim to check whether we can find empirical 
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Empirical Indication for Weak Factors ? Implications for Factor Analysis indication to falsify such an assumption. The focus of this thesis is on structure theory, so we leave detailed treatment of estimation and statistical inference for weak factors for future research. If e( = 0 for all i E N holds, this would imply zero-correlation between the (strong) static factors and the static idiosyncratic terms at all time lags/leads. We consider the macroeconomic time series data on the US-economy published and maintained by the Federal Reserve Bank1 . Following McCracken and Ng (2016 ), we transformed the time series to stationarity and use r = 8 (strong) static factors. Using the estimated static factors Fjt for j = 1, . . .  , 8 and estimated idiosyncratic terms ei,t-h we compute sample correlations i = 1, . . .  , n and h = l, 2, 3 ,  (4 . 1 1) at three time lags. Figure 4 . 1  shows the distribution of these correlation coeffi­cients across i where each distribution corresponds to a j, h pair in (4 . 1 1). The vertical lines indicate the critical values for rejecting the Null hypothesis of zero correlation if the underlying data would be normally distributed. Clearly, we would need a statistical test to make a robust a statement here since factors and idiosyncratic terms are estimated and not observed data. What we can observe is that even though there is a lot of mass concentrated around zero (indicating Cit = Xit), for some (j, h) combinations we have correlations are considerably large which is a hint for the presence of weak factors/ a non-trivial weak common component. 
1 See https : //research . stlouisfed . org/econ/mccracken/fred-databases/ 89 
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0 . 1  0.2 0.3 Figure 4.1 : The graph shows the distribution of sample correlations of eight estimated strong static factors with 1st, 2nd and 3rd time lag of the estimated static idiosyncratic component. 
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Chapter 5 

Summary and Outlook In the first part, we introduced the distinction between static and dynamic factor sequences. In particular, we rephrased the results from Chamberlain and Roth­schild (1983a) and re-proved them using the arguments and proof techniques from Forni and Lippi (2001) operating with variance matrices instead of spectral den­sities. We saw that dynamic factor sequences (DFS) emerge from dynamic aggre­gation, and decompose a stationary double sequence into a dynamic common and a dynamic idiosyncratic component. On the other hand, static factor sequences (SFS) emerge from static aggregation and decompose a double sequence into a static common and a static idiosyncratic component. The static aggregation space is different for every time period and contained in the dynamic aggregation space. We also proved that the static common component can be estimated consistently via static low rank approximation (SLRA). This consistency result makes static factor sequences as defined in this thesis relatable to the "static factor models" which are most commonly used in practice based on Stock and Watson (2002a); Bai and Ng (2002). The assumption for the idiosyncratic component is simplified ( compared to Stock and Watson, 2002a; Bai and Ng, 2002) and embeds static fac­tor sequences into the larger theoretical framework presented in this thesis while providing a new asymptotic framework. We also discussed heteroscedasticity and non-stationarity. In the second part, we showed that we can reconcile both schools into one model by 91  



Summary and Outlook a decomposition of the output into three terms: The static common component, the weak common component and the dynamic idiosyncratic component. The weak common component makes the difference between the American and the Italian school and is spanned (by a potentially infinite number of) weak factors. lt can or cannot be dynamically idiosyncratic but always lives in the dynamic aggregation space and is therefore associated with the common structural shocks of the double sequence/the economy. We also provided a canonical representation for double sequences which have a dynamic and a static factor structure and in­vestigated state space representations. We showed that under certain conditions, we can identify the dynamic common component/factors from the strong static factors, and therefore obtain the dynamic common component without using fre­quency domain techniques. The dynamic common component is the projection of the output on the infi­nite past of the common innovations/structural shocks of the economy. This is justified by the fact that under general conditions, the innovations of a purely non-deterministic dynamic common component are causally subordinated to the output as we have shown. Consequently in the presence of weak factors, by the static common component, we only capture the part of contemporaneous co-movement but not the entire dy­namic co-movement. This implies structural errors when looking e.g. at impulse responses. Furthermore we showed that weak factors can have a big influence on forecasting performance - not only for those variables influenced by weak factors but for all. In particular, the impact of weak factors for subsequent periods de­pends also on how important they are in the dynamics of the strong factors. This can of course vary substantially over the cross-sectional units. Finally, we did a first examination whether we can find an empirical indication for the presence of weak factors in a large data set of macroeconomic time series of the U .S. economy. We find that a considerable amount of correlation coefficients between estimated strong static factors and time lags of estimated idiosyncratic terms are non-zero and potentially large. This is aligned to the theoretical notion of weak factors elaborated in the previous sections. 92 



Summary and Outlook The results presented in this thesis trigger in our view a lot of questions that are to be investigated in future research: • Estimation and inference accounting for weak factors, e.g. via SLRA. • Empirical study - which variables are influenced by weak factors in macroe­conomic data? • Design and apply new forecasting methods incorporating weak factors. • We have seen that not every r-SFS is a q-DFS (example 3.0. 1). Can we em­bed the set of static factor sequences into the set of dynamic factor sequences given some regularity conditions? • We may introduce generalised dynamic factor sequences allowing divergence of the spectral eigenvalues only on a subset of the frequency band. Is such a model empirically relevant? • We have seen that in pathological cases we can have q > r (example 3. 1.3). Under which regularity conditions do we know that q :S r? In particu­lar, when are the innovations of the strong static factors the same as the innovations of the dynamic common component (see remark 4 . 1.2)? • We need a procedure to determine rx(n), the total number of static factors. • Can we use the ideas from section 2.2.6 to provide a new estimation theory for factor models in the non-stationary case? 93 



Appendix A 

Auxiliary Results Proof of Theorem 2.2.6. 1. ⇒ 2. : Assume that ..\ 1 (rô) ➔ oo for n ➔ oo, then ( A(k) - 1 ( )) s C - ✓ P1 k ,  0, . . .  E ' ..\1(rõ) ' k where Pl,k is the first normalized eigenvector of r!. Now, c(k)r! (c(k)r = 1 for any k which contradicts the presupposition that (zit ) is idiosyncratic. 2. ⇒ 1. : Suppose that (c(k) ) E S, we then have to show that (A. 1) which is equivalent to Zt = limk limn I:f=1 c?)zit = 0. Now, equation (A. 1) follows from the fact that for any an E (Cl x n  ■ Fact A.0.1 Let A, B 2: 0 be Hermitian matrices of dimension n :  1 .  As (A + B) ǰ As (A) + ..\1(B), so in particular ..\1(A + B) ǰ ..\1(A) + ..\1(B) 94 



Auxiliary Results 

f or all l ::; s ::; n 

2. A8 (A + B) � A8 (A) and A8 (A + B) � A8 (B) for all l ::; s ::; n therefore 

3. If A ŏ B, we have >.s (A - B + B) = >-s (A) � >.s (B) for all l ::; s ::;  n .  Fact A.0.2 
For k = l, 2, suppose Un) is a sequence in Lk (P, C). If fn Ő f for n -+  oo, then 
there exists a subsequence Usn ) of Un) that converges a. e. to f for n -+ oo. Proof. See (Klenke, 2020, Korrolar 6 . 13) . ■ Lemma A.0.3 (L2 convergence implies convergence of cross-spectra) 

L2 L2 Suppose (An t ) ,  (Bn t ) are sequences in IHI(y) with An t -----+ At E IHI(y) , Bn t -----+ Bt 
then spec(Ant, Bn t )  -+ spec(At, Bt )  a. e. for n -+  oo. Proof. By continuity of the inner product, we know that l\ö_n(Ant, Bn t )  = liR1 1_: spec(Ant, Bn t ) = (limn An t , limn Bn t )  

= lE AtBt = 1_: spec(At, Bt ) Consequently, the cross-spectrum spec(Ant, Bn t )  converges in L1 on the frequency band to spec(At, Bt )  and by Fact A.0.2, there exists a subsequence where it con­verges a.e .  on [-1r, 1r]. ■ 95 
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