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Kurzfassung

Seit jeher sind wir bestrebt die Leistung, Effizienz und Funktionalität von Datenbanksys-
temen zu verbessern. Dies beinhaltet auch Techniken zur Bewältigung des andauernden
Anstieges der Datenmengen in Datenbanken. Ein Schritt zur Bewältigung dieser großen
Datenmengen war die Einführung von NoSQL, und folgend für das relationale Datenmo-
dell, sowie die Anforderungen von relationalen Datenbanken, NewSQL Datenbanken.

Gleichzeitig müssen die Methoden zur Datenabfrage an die ständig steigenden Daten-
mengen angepasst werden. Ein derzeit kaum genutzter Ansatz ist strukturbasierte Abfra-
geoptimierung, welche die Struktur einer Abfrage nutzt, um einen optimalen Join-Baum,
basierend auf einer Zerlegung der Abfrage, zu bilden. Darüber hinaus eliminiert der in
der Datenbanktheorie bekannte Algorithmus von Yannakakis redundante Tupel, die nicht
zum Endergebnis beitragen, durch zwei Runden Semi-Joins. Eine kürzlich durchgeführte
Analyse hat gezeigt, dass die meisten realistischen Datenbankabfragen azyklisch oder
fast azyklisch sind, so dass sie mit dem Algorithmus von Yannakakis gut verarbeitet
werden können. Diese Technik löst zwei der größten Probleme bei der Auswertung von
Datenbankabfragen: die Suche nach einer optimalen Join-Reihenfolge und die Vermeidung
einer Explosion von Zwischenergebnissen bei der Auswertung einer konjunktiven Abfrage.
Trotz der bewiesenen Leistungsvorteile für einige Abfragen wird dieser Algorithmus in
der Praxis jedoch von keinem der großen Produktionsdatenbanksysteme verwendet.

Das Ziel dieser Arbeit ist es, diese Lücke zwischen theoretisch möglicher Leistung und prak-
tisch genutzten Ansätzen zu schließen, indem wir strukturbasierte Abfrageoptimierung in
das NewSQL DBMS TiDB integrieren. TiDB zählt zu den bekanntesten Open-Source
NewSQL DBMS. Die empirischen Auswertungen zeigten Leistungsvorteile für einige
Abfragen durch strukturbasierte Abfrageauswertung. 40% unserer Full-Enumeration
Testabfragen, sowie 30% unserer 0MA Testabfragen hatten mit unserer Implementie-
rung eine geringere Laufzeit als mit herkömmlicher Abfrageauswertung. Der Bedarf an
Hauptspeicher ist durch die temporäre Speicherung von Zwischenergebnissen während
der Abfrageausführung leicht angestiegen. Besonderes Augenmerk fällt auf die Klasse
der Full-Enumeration Abfragen, deren Ergebnis nicht leer ist. Unsere Implementierung
hat die Mehrzahl dieser Instanzen mit niedrigerer Laufzeit als die konventionelle Ab-
frageauswertung gelöst. Die Ergebnisse verdeutlichen die Nützlichkeit der Integration
von strukturbasierter Abfrageoptimierung als zusätzliche Abfrageoptimierungsoption in
einem DBMS.
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Abstract

Ever since database systems exist, we strive to improve performance, efficiency, and
functionalities of databases, including techniques to handle the ongoing trend of rising
amounts of data in databases. One step towards dealing with these big amounts of data
was the introduction of NoSQL, and subsequently for the relational data model and
requirements of RDBMS, NewSQL databases.

In parallel, querying of data needs to be adapted to handle the rising amounts of data.
One possible approach, which is hardly used at all, is structure guided query optimization,
leveraging the structure of a query to build an optimal join tree based on a decomposition
of the query, without the need to find an optimal join ordering through traditional query
optimization. Additionally, Yannakakis’ algorithm, which is well known in database
theory, eliminates redundant tuples not contributing to the end result by conducting two
rounds of semi-joins, before the actual join of the remaining tuples. A recent analysis
showed that most real-world database queries are acyclic, or at least almost acyclic,
which can be handled well by Yannakakis’ algorithm. This technique solves two of the
most urgent problems in database query evaluation, finding an optimal join order, and
avoiding an explosion of intermediate results during evaluation of a conjunctive query.
However, no major production database system uses this algorithm in practice, despite
these proven performance benefits for some queries.

The aim of this thesis is to fill this gap between theoretically possible performance and
practically used approaches, and integrate structure guided query optimization into
the NewSQL DBMS TiDB, which lies among the most popular Open-Source NewSQL
DBMS. Our empirical evaluations showed performance benefits for some queries through
structure guided query evaluation. 40% of our full enumeration test queries, and 30% of
our 0MA test queries were faster with our implementation. The memory usage slightly
increased, due to the need for additional temporary tables to store intermediate results.
Particular attention falls into the class of full enumeration queries whose result is not
empty, for which the majority of instances were faster with our implementation. The
results clearly show the benefit of integrating structure guided query optimization, as
additional query optimization option, deeply and directly into a DBMS.
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CHAPTER 1
Introduction

1.1 Problem Statement and Motivation
Ever since databases exist, we strive to improve their performance and abilities. Whether
it is the amount of data which can be worked on, the resilience of the database against
failures and scalability, or the querying performance. All of those aspects were improved
in the past, and are going to be improved in the future.
As the amount of data used in databases rose, new database architectures, different from
the traditional relational Database Management System (DBMS), which are often bound
to one hardware system, had to be developed. First, Not Only SQL (NoSQL) emerged
and solved many problems regarding scalability and failure resistance. However, a lot of
NoSQL databases did not provide the necessary consistency guarantees. This was one
reason why NewSQL databases came up. NewSQL uses a relational data model, together
with a scalable and failure resistant storage backend, running in a cluster architecture.
Furthermore, Structured Query Language (SQL) could be used as a familiar query
language in this architecture. However, with more data in the database, queries and
results are potentially bigger. This leads to the problem of efficient evaluation of these
big queries, especially when they include joins of many relations.
Arguably, the most fundamental form of queries are conjunctive queries, defined as a
select ... from ... where ... query, in which the where clause only contains conjunctions
of equalities. The query planners of most modern relational DBMS, including NewSQL
databases, use statistical information on the data to determine the best join order to join
pairs of relations or intermediate results together. In this approach, the intermediate
results possibly contain tuples not contributing to the end result of the query (referred to
as dangling tuples). This can lead to an exponential blowup of intermediate results. Fur-
thermore, as finding an optimal join order is NP-complete, often times, only approximate,
suboptimal solutions for the ordering are determined, which additionally contributes to
this problem [NR18].
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1. Introduction

For acyclic and almost acyclic conjunctive queries, the explosion of intermediate results
could be prevented by using a join approach, which is well known in the field of database
theory, Yannakakis’ algorithm [Yan81], also referred to as structure guided query evalua-
tion [GLL+23]. In the process of joining, two additional passes are introduced, which
eliminate tuples not contributing to the end result, i.e. preventing an explosion of inter-
mediate results. Additionally, this approach naturally yields a good join order. With this
algorithm, the decision if there are result tuples for a query can be made in polynomial
time, and enumerating the output can be done in output polynomial time. This is
especially interesting as a recent paper by Fischl et al. [FGLP21] analyzed hundreds of
real-world and benchmark database queries for their acyclicity. The result of the analysis
found that most real-world database queries are acyclic, or at least almost acyclic, which
can be handled well by Yannakakis’ algorithm. However, no major production database
system uses this algorithm in practice, despite these proven performance benefits for
some queries. This divergence between the theoretically possible performance and the
currently used practical approaches has to be overcome.

1.2 Aim of the Thesis
The goal of this thesis is to fill this gap and find out whether Yannakakis’ theoretically
advantageous algorithm plays to its strengths in practice. To this end, we will integrate
the execution of acyclic and almost acyclic conjunctive queries according to Yannakakis’
algorithm deep into the NewSQL DBMS TiDB (https://github.com/pingcap/
tidb).

Modern DBMS already optimize queries quite well, especially as the optimizers can
use parallelized computation to simultaneously handle multiple possible optimization
paths. However, even when an optimal join order is found, there can still be an explosion
of intermediate results, due to dangling tuples. Therefore, we integrate Yannakakis’
algorithm deep into a NewSQL DBMS, namely TiDB. From a theoretical standpoint, by
eliminating redundant tuples before the actual join, the join should be sped up. Following,
we expect to see a performance optimization for these queries. However, it should be noted
that Yannakakis’ algorithm also introduces additional costs caused by the addition of two
rounds of semi-joins and materializing their results during query computation. It therefore
remains to be seen if there are actual performance improvements. Additionally, it will be
interesting to see if there are certain types of queries, for example the computation of
extreme values, as shown by Gottlob et al. in [GLL+23], which yield better results than
others, compared to normal execution.

This thesis is the first to directly and deeply integrate Yannakakis’ algorithm into a
NewSQL DBMS, creating an extended DBMS that makes use of a proven theoretical ap-
proach, which should solve two of the most urgent problems in database query evaluation,
finding an optimal join order, and avoiding an explosion of intermediate results. Extensive
experimental evaluations provide useful insights into the effects of this integration, and
answer the question whether this extended DBMS delivers increased performance.

2
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1.3. Methodology

1.3 Methodology
The methodological approach of this thesis is composed of the following elements:

1. Literature Review
To fully understand the topics of structural query decomposition, Yannakakis’
algorithm, join optimization and NewSQL databases, a thorough literature search,
as well as review of the relevant literature, and discussion of the respective topics
is carried out. This acts as the theoretical base of the thesis.

2. Integration of the Optimization into TiDB
The identified optimization, including Yannakakis’ algorithm [Yan81], is archi-
tecturally designed and integrated into TiDB and its query planner. Therefore,
Yannakakis’ algorithm is implemented and integrated into the query optimizer as
an additional query optimization alternative inside the DBMS TiDB. This requires
a substantial extension of the current query planner.

3. Performance Evaluation of the System Including Yannakakis’ Algorithm

a) Experimental Performance Evaluation
The performance of the resulting system, compared to the basic system,
is evaluated through a benchmark containing acyclic and almost acyclic
queries. The data will be based on the MusicBrainz dataset, with queries
from previous works of Mancini et al. [MKC+22] and Gottlob et al [GLL+23].
As the architectures and requirements of the databases used in [MKC+22]
and [GLL+23] are different to those of TiDB, it is not useful for us to compare
our results with theirs.

b) Analysis of the Results of the Benchmark
The results of the benchmark are analyzed as a foundation for the reasoning
about the benefits and pitfalls of the newly integrated algorithm. In particular,
there is also an analysis about which types of queries performed better or
worse.

c) Interpretation and Discussion of the Results
Finally, the results are interpreted and discussed, whether they reflect the
expected theoretic results, and what the reasons might be. A final conclusion
is drawn regarding the usefulness of integrating Yannakakis’ algorithm into
the DBMS.

As query optimizers are complex and highly efficient software, the biggest challenge of
the work is to integrate structure guided query optimization as additional optimization
alternative in the optimal places within the query optimizer, and reuse as much code as
possible. Additionally, the existing functionality and performance of the database should
not be disrupted through this integration.

3
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1.4 State of the Art
Current DBMS already implement heavy optimization techniques to boost query perfor-
mance. This helps with a lot of problems, however, not so with the problem of exponential
blowup during query computation.

As Chandra and Merlin [CM77] showed, the evaluation of conjunctive queries is NP-
complete. Yannakakis [Yan81] was one of the first to identify that a subclass of conjunctive
queries, the class of acyclic queries, is indeed solvable in polynomial time with respect
to the input and output of the query, and provided an algorithm for the evaluation
of such queries. A formal definition for acyclic and cyclic queries will be given in
Section 3.1. As a conjunctive query and the respective scheme can be seen as a hypergraph,
Fagin [Fag83] identified various classes of acyclic hypergraphs. Of these classes, alpha
acyclic hypergraphs correspond to queries solvable by Yannakakis’ algorithm [BB16].
Gottlob et al. [GLS02] generalized and extended the notion of acyclicity to almost acyclic
conjunctive queries. This makes the methods with which acyclic queries can be efficiently
evaluated applicable to almost all conjunctive queries. Furthermore, they found that
hypertree decompositions with hypertree width 2 or 3 can be efficiently computed. This
is sufficient, since most real-world queries are acyclic or almost acyclic, characterized by
a hypertree width of at most 2 or 3 [FGLP21].

Following, the field of structural query optimization has seen some experimental systems
and implementations, which integrated Yannakakis’ algorithm:

Distributed processing: In the field of distributed query processing, Afrati et
al. [AJR+17] proposed a Map-Reduce algorithm to compute a join query in a distributed
way based on Yannakakis’ algorithm and a generalized hypertree decomposition (GHD).

Security: Yannakakis’ algorithm did also find its way into security research, as Wang
and Yi [WY21] used the algorithm to evaluate queries across multiple parties, in a privacy
preserving way, not revealing their local data to the other parties.

Graph databases: Concerning graph databases, Tu and Re [TR15] developed a new ex-
perimental query engine, DunceCap, which uses worst-case optimal joins, and Yannakakis’
algorithm. This query engine was then used by Aberger et al. in EmptyHeaded [ALT+17],
a relational high level, graph processing engine which uses Yannakakis’ algorithm, among
other optimizations and join algorithms, to efficiently process queries on graphs. Further,
Aberger et al. [ALOR18] created LevelHeaded, a unified database engine, which combines
abilities to compute Business Intelligence and Linear Algebra queries in order to be
capable of handling machine learning algorithms. It is built on the same join processing
techniques, including structural methods, as EmptyHeaded.

Queries under updates: Considering querying under updates, Idris et al. [IUV17]
introduced a dynamic version of Yannakakis’ algorithm, and developed a data structure
which reduces the effort of IVM (Incremental View Maintenance), and replaces material-
ized results with this data structure, but still does not need complete recomputation of
results on updates.

4



1.5. Results

Relational databases: Finally, in relational databases, Ghionna et al. [GGGS07,
GGS11] made an attempt to implement a query rewriter, that was experimentally also
integrated in PostgreSQL, using hypertree decompositions and a variation of Yannakakis’
algorithm (later named H-DB). This system works in a way that the root node (specifically
the node’s λ label) of the hypertree decomposition contains all relations needed for the
output of the query. Therefore, in the root node of the decomposition, all relations directly
involved in the output have to be joined, building all possible tuples for the output. This
approach is suboptimal, since for the root of the decomposition, the complete join(s) have
to be computed, possibly causing an explosion of intermediate results. However, their
approach eliminates the second and third phase of Yannakakis’ algorithm by directly join-
ing along the structure of the decomposition, which is beneficial for some queries. More
recently, Gottlob et al. [GLL+23] presented YanRe, a SQL query rewriter, which uses
structure guided query evaluation and Yannakakis’ algorithm to rewrite certain queries to
a list of statements. These statements resemble the steps of Yannakakis’ algorithm. They
also identified a class of conjunctive queries, Zero-Materialization Answerable (0MA)
queries, with special properties, enabling an efficient evaluation through rewriting.

Although the experimental systems and concepts mentioned above have shown very
promising results, matching the possibilities which are theoretically possible through
these algorithms, there is still no deep integration of a Yannakakis style query evaluation
in a production database, and therefore no knowledge of the effects of such. This thesis
targets a deep integration of Yannakakis’ algorithm and structural query optimization
into the NewSQL DBMS TiDB and evaluates the effects of this integration over a test
dataset.

1.5 Results
Our contributions include the development and implementation of algorithms to inte-
grate structure guided query optimization and evaluation deeply into existing database
systems. Specifically, structure guided query optimization is integrated into TiDB
(https://github.com/pingcap/tidb), which lies among the most popular Open-
Source NewSQL DBMS. Our implementation is published on GitHub (https://github.
com/MichaelMartinek/StructureGuidedTiDB). This integration is followed by
a performance evaluation, which compares structure guided query optimization and
evaluation with conventional query evaluation, and an analysis of the results.

The results of our evaluation show that some query instances benefit from our implemen-
tation of structure guided query optimization and evaluation. 40% of our full enumeration
test queries, and 30% of our 0MA test queries were faster with our implementation.
Furthermore, considering full enumeration queries whose result is not empty, our imple-
mentation dominates the original DBMS in a majority of instances. Although executing
queries through Yannakakis’ algorithm with our implementation increases memory usage
to some extent, the outcome of our evaluation is promising towards a deep integration of
these techniques into production databases, and suggests the usefulness thereof.

5
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1. Introduction

1.6 Structure of the Thesis
The remainder of the thesis is structured as follows: In Chapter 2, we discuss the
relational data model, the basic data structure of Relational Database Management
Systems (RDBMSs), outline challenges which appeared with bigger amounts of data,
and look at a solution to scale relational databases towards big data with NewSQL, in
particular TiDB. Following, we discuss how to solve the problem of exponential blowup for
query evaluation from a theoretical viewpoint, in Chapter 3, including the introduction of
0MA queries, which allow for even more efficiency during query evaluation. Going from
the theoretic view to the practical realization, we review the query evaluation workflow
of TiDB, including references to the source code of the database system, and describe
our implementation of structure guided query optimization into said DBMS in Chapter 4.
Chapter 5 then contains evaluations of our implementation, as well as a discussion of the
results. Finally, we conclude the thesis with Chapter 6.

6



CHAPTER 2
Emergence of NewSQL

One of the predominant forms of data from a database perspective is relational data.
From a high-level view, it is composed of entities, containing member variables, attributes.
Entities are connected with other entities through relationships. This kind of data is
queryable through a standardized query language, SQL. However, RDBMS, databases
working with relational data and using SQL, are restricted when it comes to scalability
and failure resistance, which could be realized by running multiple nodes in a cluster.
This led to the rise of several types of NoSQL DBMS, which significantly improve those
aspects. Furthermore, NoSQL offers a high flexibility regarding the structure of the data,
often times without the necessity to define the data structure prior to using the database.
Eventually, drawbacks regarding missing strict consistency guarantees, as provided by
RDBMS, and a missing standardized query language brought the rise of another type of
databases, NewSQL DBMS. NewSQL uses the relational data model, just as RDBMS,
and is functionally equivalent to RDBMS in many aspects. Data storage is maintained by
a cluster of key-value stores, which provides features as scalability and failure resistance.
The actual computing nodes, however, are stateless, and can be scaled quickly. The
NewSQL system we are considering in this thesis, TiDB, lies among the most popular
Open-Source NewSQL DBMS.

2.1 Relational Data Model - RDBMS - SQL
The data model (or schema when talking about a specific instance) on which RDBMS
are based is especially optimized at using minimal storage. It is characterized by the
process of normalization and the underlying normal forms. Basically, in a high-level
view, data saved in this data model consists of entities, containing member variables,
attributes. Entities are connected with other entities through relationships. Relationships
are constrained by their cardinalities, which indicate the number of concrete objects
being linked by one specific relationship. Entities in the database are represented as

7



2. Emergence of NewSQL

relations, concrete instances as records, tuples, or rows of these relations. Records can
be linked with other records of the same or other relations, using relationships through
foreign keys, which basically reference other records. An example relation with labels is
illustrated in Figure 2.1, an example relationship in Figure 2.2. [RG11]

Figure 2.1: Example Relation [EN11, Figure 3.1]

Figure 2.2: Example Foreign Key Relationship

A foundation in designing a relational data model are the normal forms, which provide
several rules for the data structure in order to use the full potential of an RDBMS
through avoiding redundancies and anomalies. The most common normal forms and
their descriptions are listed in Table 2.1. These are for example the existence of a
primary key, which fully and uniquely identifies a record and all its attributes in a
relation. [EN11, RG11]

To fully understand the descriptions of the normal forms, the terms functional dependency
and multivalued dependency have to be introduced:

A functional dependency is a tuple (X, Y ), with the notation of X → Y , where X and
Y are attributes of a relation R, in which the value of X uniquely defines the value of
Y . [EN11, Chapter 3.2.5]

A multivalued dependency (MVD) X ↠ Y , where X and Y are one or more attributes of
a relation R, and two tuples t1 and t2 exist in the relation, has the following properties:

• Tuples t3 and t4 exist with:

• t3[X] = t4[X] = t2[X] = t1[X]

8



2.1. Relational Data Model - RDBMS - SQL

• t3[Y ] = t1[Y ] and t4[Y ] = t2[Y ]

• ∃Z, Z ∈ (R − (X ∪ Y )): t3[Z] = t2[Z] and t4[Z] = t1[Z]

If Y ⊂ X, or X ∪ Y = R, then the multivalued dependency is trivial. [EN11, Chapter
15.6.1]

Normal Form Description
1NF All attributes of a relation are atomic, i.e., contain only one value,

and relations are not nested.
2NF If a primary key is composed of multiple attributes, all non-primary

key attributes have to be functionally dependent of the whole
primary key. Otherwise, all non-primary key attributes have to be
functionally dependent on the primary key.

3NF A non-primary key attribute should not be functionally dependent
on another non-primary key attribute.

BCNF
(Boyce-Codd) An attribute of a key candidate (of which one or multiple other

attributes are functionally dependent) should not be functionally
dependent on a primary key attribute.

4NF Multivalued dependencies (X ↠ Y ) have to be trivial or X has to
be a superkey (key candidate or a superset of a key candidate) of
the relation.

Table 2.1: Most Common Normal Forms [EN11, Chapter 15.3 onwards]

A data model conforms to one of these normal forms, if all previous normal forms are
conformed to, and the description of the current normal form is conformed to. In practice,
data models are normalized until 3NF or BCNF. Higher normal forms are only used in
special cases. There is also a 5NF, which is mostly irrelevant in practice and therefore
omitted.

As previously mentioned, foreign keys implement relationships. These foreign keys
are instances of other primary keys or attributes of records, which reference the said
record from another record of the same or other relations. Furthermore, there are some
restrictions, constraints, in RDBMS, which assure the structure and other properties
of the data. The most popular among them are UNIQUE, which must be applied for
primary keys, PRIMARY KEY itself, FOREIGN KEY referential constraints, NOT NULL,
as well as user-defined CHECK constraints. [EN11, RG11]

The data is saved by the database in so-called database files. Each file contains a
sequence of records, as illustrated in Figure 2.3, encoded in a certain format, which can
be read and written performantly. Records can be saved unordered, which leads to a
high write performance, with a worse read performance, and ordered according to certain
criteria (e.g., numerical, alphabetical, or hashes of attributes), which takes longer to
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write, however the read performance, especially when specific entries are searched, is
better. Storing and accessing the ordered records itself can be realized through multiple
structures, with B or B+ Trees often being used. Additionally, there are indexes. Primary
indexes are realized as ordering of the relations database file(s), secondary indexes, as
an additional index of a relation, are realized in separate database files, wherein every
file, one secondary index can be contained. These files are structured in a key-value like
format, having an ordered key field, which then has a pointer to the actual record in the
database file. This pointer could for example be implemented through the value of the
relation’s primary index. [EN11, Chapter 17] [RG11, Chapter 8]

Figure 2.3: Illustration of an Ordered Database File [EN11, Figure 17.7]

SQL is a standardized query language, which is supported by almost all RDBMS.
SQL has sublanguages to query data (Data Query Language (DQL)), modify data
(Data Manipulation Language (DML)) and define data structures, relations, and their
relationships, in the database (Data Definition Language (DDL)). This standardized
query language is one of the main reasons for the wide adoption of RDMBS. Another
reason therefore is the level of consistency and concurrency delivered by these DBMS
by using transactions, which enforce the ACID properties. The ACID properties are
followed throughout the execution of a transaction. These are:

• Atomicity: Transactions are executed entirely, or not at all, representing an atomic
unit of processing.

• Consistency: A transaction is executed as one uninterrupted unit of processing,
meaning the state of the database after transaction execution is, just as before the
execution, consistent, i.e., valid regarding to constraints.
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• Isolation: A transaction appears to be executed as if it was the only running
execution on the database.

• Durability: Changes in the databases state by finished/committed transactions
are applied permanently, are not lost, and persist in the database.

Transactions may be successfully committed or aborted by the user or some error occurring
during execution. [EN11, Chapter 21.3] [RG11, Chapter 16.1]

Isolation is available in multiple levels of varying strictness. These are in rising order:

• Read Uncommitted: All data written by other transactions, even uncommitted,
can be read.

• Read Committed: Only committed data (even committed during the runtime of
the current transaction) and changes done by the current transaction can be read.
The data could be changed by other transaction during the transaction, which
means there could be different values read for the same data.

• Repeatable Read: Only data committed before the current transaction started,
and changes done by the current transaction can be read. If a value is read, any
following read of this data gives the same value, as changes are not allowed.

• Serializable: Transactions appear as if they would be executed in sequential order.

Depending on which level of isolation is guaranteed or configured for an ACID trans-
action, different phenomena or anomalies can occur. These are caused by concurrent
transactions and include dirty read (reading values written by other transactions which
are rollbacked afterwards), non-repeatable reads (reading different values for the same
data in a transaction) and phantom reads (reading more or less data, caused by other
transaction inserting or deleting data) [ISO, RG11]. Most RDBMS feature isolation up
to serializability. [CDD+23]

As a result of the properties guaranteed by ACID, the relational data model, and
SQL, RDBMS are suitable for a broad variety of use cases, including a high number of
concurrent users. Therefore, they have been the state-of-the-art solution for a lot of use
cases.

2.2 Path to NewSQL

2.2.1 Challenges and Solutions
With the rise of Big Data, and new applications, which should have a high availability,
have varying loads, and often produce non-uniform data, RDBMS could not satisfy all
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requirements anymore. RDBMS do have weaknesses when it comes to scaling1 and failure
tolerance, which is a reason why several types of NoSQL DBMS were developed. The
most important types of NoSQL DBMS are key-value stores, document stores, column
stores and graph databases. Most universally usable among these are document stores,
which can save data of different structures in a distributed way to satisfy previously
mentioned weaknesses of RDBMS. [Cat11]

NoSQL DBMS were developed with the goal of creating an easily scalable, highly
available, failure tolerant and largely constraint free2 DBMS. This is realized by running
the database in a cluster consisting of multiple nodes. Each node stores a (overlapping)
part of the data, and synchronizes changes in the state among them, to guarantee failure
tolerance and availability. Furthermore, to scale the cluster, nodes can be quickly added or
removed. [Cat11] The respective satisfiable property therefore is the elasticity [GHTC13].
The most important types of NoSQL DBMS for this thesis are the following:

• Key-Value Stores: Store data in a key-value structure, with arbitrary values for
the key and the value field, similar to a dictionary. The key acts as an identifier.

• Document Stores: Similar to key-value stores, however, the DBMS understands
the structure and the data of the value, also named document, typically a Javascript
Object Notation (JSON) document, and is able to work with its contents. [Cat11]

In contrast to ACID, NoSQL DBMS mostly follow the BASE properties, which means the
database is BAsically available, maintaining a Soft state and having Eventual consistent
data. Therefore, the level of consistency is not as good as in RDBMS. [Cat11]
Although some NoSQL DBMS found solutions for the missing consistency guarantees
and eventually also integrated ACID transactions (e.g., [Mon]), this still poses a problem
for applications.

Besides, for distributed systems, which means also for the later mentioned NewSQL
DBMS, the CAP theorem applies. This theorem claims that out of the three properties,
Consistency, Availability and Partition tolerance, only two can be guaranteed. [Cat11]
Daniel Abadi further elaborated the challenges outlined through the CAP theorem, which
does not distinguish between cases with a network partition, and normal operation, with
the PACELC theorem, integrating these two states into the properties tradeoff. This
theorem states that, if there exists a Partition in the network, there is the preference of
either Availability, or Consistency, otherwise (E lse), in normal operation, the system
design decides whether a low Latency, or Consistency is preferred. This leads to the

1Scaling is the process of adding or removing (hardware) resources to/from a node or cluster. Vertical
scaling describes the process of adding more resources to or removing resources from single nodes (also
named scale up for more resources, and scale down for less resources). Horizontal scaling describes adding
or removing whole nodes from a cluster (also named scale out for more nodes, and scale in for less nodes).
When we mention scaling without further specification, we always mean horizontal scaling.

2Constraint free in this context means free of various database constraints, like FOREIGN KEY,
UNIQUE, and CHECK.
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result that systems delivering strict ACID properties, including serializability, have a
PC/EC classification, preferring consistency in both cases, whereas more lax systems, like
the previously discussed NoSQL systems with enhanced consistency (supporting ACID
transactions) fall into the PA/EC category. NoSQL systems not focussing on consistency
are categorized as PA/EL, preferring a low latency in normal operation, and availability
in case of a network partition. [Aba12]

Additionally, NoSQL DBMS do not use a standardized query language or interface,
which results in separate query languages and interfaces for each NoSQL system, mainly
focusing on the basic Create/Read/Update/Delete (CRUD) operations. [Cat11]

2.2.2 NewSQL as Remedy

As a result of these pitfalls, another category of databases, NewSQL, was developed,
which combines the features of RDBMS, including SQL, the relational data model and
the consistency and concurrency, and NoSQL DBMS, with its abilities for scaling, failure
tolerance and availability. NewSQL DBMS are multi-node DBMS, run in a cluster, which
provide a separation of computing and storage, each in separate nodes. Nodes do not
share any resources with other nodes, meaning they are designed as shared-nothing nodes.
Optimally, the database is able to run on commodity hardware without the need for
special real-time and time synchronization hardware. Storage nodes provide storage for
the data state, whereas computing, or database, nodes are stateless, access the storage
nodes through an API, and compute the data. This model enables fast and easy scaling,
which describes the capability to realize elasticity and failure tolerance of the system.
An example NewSQL cluster with computing/database nodes, storage nodes and their
communication paths is illustrated in Figure 2.4. [OV20, Chapter 11.6.2]

Figure 2.4: Illustration of a NewSQL Cluster with Database and Storage Nodes
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Storage nodes synchronize the data among themselves (replication3) and divide data
accesses to provide a better overall performance (partitioning4 the data). Therefore,
consensus algorithms, like Raft [OO14] or Paxos [Lam19], are used by these nodes to
keep the state synchronized and consistent. This could, dependent on the used protocol,
be done through synchronization with a master node, or through gossip between the
nodes. Furthermore, replication and partitioning deliver availability and therefore failure
tolerance, and scalability, for the storage.

Database nodes on the other hand are stateless and do not need to store any data. Their
main job is to receive SQL statements, build an execution plan, and execute the plan by
translating single relational operations into read/write instructions understandable by
the storage nodes. In the course of execution, they have to keep the ACID properties for
the transaction, finish computing the statement or transaction by combining the results
received by the storage nodes, and return the result to the user. Thus, computing nodes
contain multiple layers to realize the described flow. Generally seen, there is a SQL layer,
a transaction layer, and a storage layer. The SQL layer handles the compatibility of the
DBMS with SQL and executes queries on a high-level, building and optimizing the query
plan, and executing it, including communication with lower layers. The transaction layer
contains the adherence to concurrency and consistency guarantees, as for example the
ACID properties, for data read from and written to the storage nodes. This typically
involves checking or providing timestamps and versioning of storage entries. Finally, the
storage layer manages the communication with the storage nodes, and executes SQL
statements, or parts thereof, in a low-level view by issuing commands to read and write
data from and to the storage nodes. Figure 2.5 illustrates the operations of the layers of
a computing/database node.

As NewSQL databases are distributed systems, the level of isolation is slightly lower
than with RDBMS. Whereas almost all RDBMS are able to deliver serializability, some
NewSQL DBMS do not reach this level of isolation. [CDD+23]

Other than RDBMS, NewSQL DBMS not only focus on Online Transaction Processing
(OLTP) or Online Analytical Processing (OLAP) workloads. An important class of
NewSQL databases support Hybrid Transaction/Analytical Processing (HTAP) workloads,
which is a combination of OLTP with transactional workloads, and OLAP, with analytical
workloads. [OV20] This also brings the ability to completely abolish the need for extra
databases as data warehouse, and Extract/Transform/Load Operations (ETLs) to merge
the data, as it would be needed with a combined SQL and NoSQL system. [VJPO21] Some
NewSQL DBMS offer the functionality to connect and interact with them, additionally
to the traditional SQL interface, through other interfaces, like Apache Spark [Pin23n],

3Replication is the process of synchronizing data across multiple independent nodes, which contain so
called replicas, copies of the data. [CHMA21]

4Partitioning describes the process of splitting data into multiple parts. For vertical partitioning,
data is split up into sets of different columns or attributes. Horizontal partitioning however splits data
into sets of different rows or instances. An alternative name for this is sharding, in which the shards, or
partitions, are split up across multiple storage nodes. When mentioning partitioning without the addition
of horizontal or vertical, we are talking about horizontal partitioning. [CHMA21]
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Figure 2.5: Illustration of the Described Layers

direct key-value interaction through some API [CHMA21, Chapter 4.3], or synchronize
the data with other well known and often used platforms, e.g., Apache Kafka [Pin23a].
The aforementioned functionalities further enhance the analytical capabilities of HTAP
NewSQL DBMS.

Examples of NewSQL DBMS are CockroachDB [Coc23] and TiDB [Pin23b]. We are
going to extend TiDB in this thesis, therefore, we are taking a closer look at this database.

2.3 TiDB
TiDB (Ti comes from titanium and stands for the reliability of the database) is a NewSQL
HTAP DBMS, which features a complete database solution including possibilities to
interface with and integrate other data processing environments and technologies, manage
a cluster and the possibility of a serverless cloud database. It has multiple components,
some of which are mandatory, and some are optional. The basic architecture of TiDB
consists of three component groups: TiDB, which is the database computing engine, a
distributed storage layer which consists of two types of storage systems (one of which is
mandatory), and a managing component, named Placement Driver (PD). An illustration
of a basic deployment is shown in Figure 2.6. Responsibilities of these components, as
well as other optional components and tools are listed below:

• TiDB: This is the main SQL and database computation engine. It receives
statements from clients, manages transactions and communicates with other com-
ponents in order to read or write data (storage layer), or to obtain timestamps and
information about data distribution (PD).

• PD: The Placement Driver is a distributed component, that acts as the time oracle
in the cluster, assigning monotonically increasing timestamps to transactions, and
managing the placement of data on the storage cluster.
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• Storage: The distributed storage consists of two storage engines, one of which has
to be used.

– TiKV: TiKV is a row-based distributed key-value storage engine. It is the
main storage engine, as row-based data is frequently used with SQL. Internally,
RocksDB is used as the key-value engine.

– TiFlash: TiFlash is a column-based distributed storage engine. It is essential
in answering OLAP Queries, as they can be computed more performantly
in a column-based style. Furthermore, isolation between OLAP and OLTP,
regarding the resource usage, is guaranteed through this component. Usage
of this storage engine has to be explicitly configured for every relation of the
data model.

• TiSpark: TiSpark enables to use the database with Apache Spark. Data can
be used in a Spark environment through this component, as well as data can be
read from other sources and inserted into TiDB. This component is an optional
extension of TiDB and further enhances the OLAP capabilities of TiDB. [Pin23n]

• TiCDC: TiCDC (CDC = Change Data Capture) is a data migration tool, which
directly interacts with the storage and PD in order to replicate data to other TiDB
databases and export data to other platforms, like a MySQL Database or an Apache
Kafka cluster. This is an optional tool. Data import in a very large scale is also
possible with TiDB Lightning. [Pin23a]

• TiUP: TiUP enables easy deployment and maintenance of TiDB clusters, acting
as a package manager for the cluster. This tool is optional. TiDB can also be
deployed and managed in Kubernetes by TiDB Operator. [Pin23o]

2.3.1 Consistency
TiDB provides ACID transactions with isolation level Repeatable Read (RR), or Snapshot
Isolation (SI), and Read Committed [HLC+20, Pin23m]. SI is a term, which is not strictly
defined in the SQL standard. Some DBMS see SI as RR, some saw it equivalent to
serializable. TiDB implements SI as RR. Additionally, optimistic, and pessimistic
transaction modes are supported. This describes the point in a transaction when a lock
of an object is obtained. With optimistic mode, locks are obtained before committing, in
pessimistic mode, locks are obtained when data is written (for updates of data). When
keeping the architecture of the database in mind, data is always written in the local
memory of the database engine first, which means as soon as data is changed locally
in TiDB, a lock is acquired in TiKV (TiFlash does not directly accept writes from
TiDB). [HLC+20]

The transactional properties are enforced by all components of the cluster in a collaborative
manner. TiDB, the computational engine, is the main transaction coordinator (for one
transaction), and enforces the Two-Phase Commit (2PC) protocol. PD acts as the time
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Figure 2.6: TiDB Architecture of a Basic Cluster [Pin23b]

oracle of the cluster, and TiKV provides the Multi Version Concurrency Control (MVCC)
versioned datastore. Therefore, when TiDB receives a transaction begin, TiDB obtains
a timestamp from PD, and reads the respective needed data for the current snapshot
time/timestamp from TiKV. Afterwards, data manipulation, i.e., writes, inserts, or
deletes, is carried out locally on TiDB. At commit, the 2PC is started. The changed data
is locked on the storage (in case of a pessimistic transaction, this happens directly after
local data manipulation on TiDB), and the changes are sent to the storage. In the case
of successfully applying these locks and changes, a commit timestamp is obtained from
the PD, and TiDB sends the commit to the storage. This concludes the 2PC. Finally, the
result is returned to the client and secondary indexes are updated, as well as resources
are released, asynchronously, by TiDB. [HLC+20]

2.3.2 Storage

TiKV stores data, other than RDBMS, in key-value pairs, which are part of a sorted
map. The key of a pair, respectively a database record, is built as string similar to the
following: table[table_ID]_record[row_ID], and the value consists of the values
of the record’s columns. The table_ID is an internal identification for the current
table, the row_ID is the value of the primary key, which is either a specifically defined
primary key, or an internal artificial rowid. Secondary indexes have to be persisted
separately, as in RDBMS. Depending if a secondary index is unique, or not, there
are different storage formats. For a unique secondary index, the key consists of this
format: table[table_ID]_index[index_ID]_[indexValue], with the value of
the primary key, respectively the rowid, being the value. For non-unique indexes, the
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key is table[table_ID]_index[index_ID]_[indexValue]_[row_ID], with a
null value. In both situations, for each record of the table participating in the index, one
key-value pair in the mentioned format is required for the index. Since TiKV implements
versioning through MVCC, version numbers, i.e., timestamps, are also included in the
keys, such that for every key, multiple versions exist. [Pin23k, Pin23d]

The key space of TiKV is split in contiguous ranges of key-value pairs, so-called Regions.
Every Region has a max size of 96 MB, and is replicated three times on the storage
cluster. Additionally, for every Region, a Raft group, which is an instance of a Raft
process, exists. [HLC+20, Pin23k]

TiFlash on the other hand, stores columnar data. Therefore, a specialized data structure
and storage engine, DeltaTree, is used to efficiently append current data in memory and
apply the changes to a stable space on persistent storage afterwards. [HLC+20]

Replication

The data on the storage has to be available, synchronized, replicated, and held consistent.
This is done through the Raft [OO14] consensus algorithm [HLC+20, CHMA21, Pin23k].
A Raft instance features three different node states, which are leader, follower, and
candidate. A leader is the main node for a Raft instance, managing a Region in TiKV.
There is only one leader per Raft instance, elected by all followers. It sends heartbeats,
as AppendEntries message, to all followers, signaling regular operation of the leader and
the whole Raft instance. Follower is the default state for every starting Raft participant.
Other than the leader, which serves read and write requests, the followers are passive
and serve as failure tolerance measure. If any of the followers do not receive a heartbeat
in a certain time frame (e.g., because a node failed or crashed), it can start an election
by sending a RequestVote message. The candidate role is used during the election of a
new leader. All nodes, which do not get enough votes during an election fall back to the
follower role. Raft splits the time in so-called terms, which describes a phase between
two elections. The term is a monotonically increasing number, incremented for every new
election. [OO14]

The basic mode of operation for a Raft instance is that the leader receives read and
write commands from a client, in the case of TiDB, the database engine. This leader
then creates logs from these commands, representing changes to the data state. Changes
are replicated by sending them to the followers as AppendEntries message, which reply
whether the new log is current for them and is appended to their log. They then also
apply the new log entries to their local data state. [OO14] These two steps, locally
appending the log message on the leader, and sending the new log to all followers, happen
in parallel in TiDB, to optimize the process. Moreover, logs are sent to the followers
in batches. [HLC+20] Once the leader has received a majority or quorum of successful
replies, the log entry is applied to the leaders local state. Afterwards, the result of
the command is returned to the client. Even after this, until all followers have replied
with a success, the leader retries to send the AppendEntries message for the log. This
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is important for followers which experience a network partition and are rejoining the
network at a later point, or for slow followers. As long as there is one such case, all logs
which are not applied for all followers are replayed, such that an order is guaranteed, and
they do not fall behind the other nodes. To keep track of the logs in a term, a log index,
which is a monotonically increasing logical timestamp, is introduced. Every log entry is
identified by one log index. Since the leader is the main node in normal Raft operation,
heartbeats and log replication, which are both AppendEntries messages with different
arguments, are sent by the leader in a push-based way. [OO14]

In the basic Raft implementation, read requests can only be served by leaders. This
causes performance drawbacks when a Region has a high load with multiple read requests,
or a big amount of data to be read. As a logical consequence of the majority of the
followers holding the current state (from a leader’s perspective), reads can also be served
by followers, named follower reads. In this case however, followers serving read requests
always have to check if they have already applied the latest log by sending their current
log index to the leader and asking if this is the current version. If not, they have to wait
until the synchronization up to the current version, served through the leader’s current
log index, is done. This optimization realized in TiKV provides a significantly improved
level of parallelization, considering that every Region is replicated at least three times,
increasing the number of read serving TiKV instances from one to three. [HLC+20]

Until now, we have only mentioned TiKV nodes for the Raft process. To keep the data
in TiFlash instances synchronized and consistent, an additional node state, the learner,
is added. A learner does not participate in elections and majorities for data replication,
and therefore only adds low computational cost to the Raft process. Learners are part of
a Raft group and just receive the logs from the leader, in the same order as other Raft
participants, to keep consistency between TiKV and TiFlash. As TiFlash is column-based,
logs have to be transformed. In this course, a compaction and removal of redundant
information, as well as finally the transformation of the row-based logs into column-based
data, is carried out. This data is then saved into the previously mentioned DeltaTree data
structure. For the transformation of the logs from row-based to column-based format,
the TiFlash node needs to know the current schema. Since the schema is stored as data
in TiKV, TiFlash has a schema syncer component, which periodically, or at mismatches
during data transformation, requests the newest schema from TiKV. The current schema
is then cached in TiFlash. [HLC+20]
In case the amount of data to synchronize is too big, for example when a new node joins
the Raft process, the initial synchronization is performed using a snapshot of the current
data state. [HLC+20]
When reading from a learner, as with follower reads, the learner has to check with the
leader of the Raft instance, if it holds the latest version, respectively the version with the
requested timestamp. [HLC+20]
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Figure 2.7: Multi-Raft System as Part of TiDB [Pin23k]

Balancing the Storage - PD

As already mentioned, every Region is managed by one Raft instance, applying the
functionalities described above, making the cluster with multiple Regions a multi-Raft
system. This is illustrated in the context of the architecture of TiDB in Figure 2.7. Regions
with the same number or color symbolize a Raft group. To manage the participants of the
Raft processes, distribution of Regions, and maintain the datastore, PD acts as a smart
scheduling component, enforcing certain strategies to optimize the datastore. PD keeps
track of distribution of data and usage on storage nodes, and keeps the balance in load and
storage needs across the storage cluster. Finally, PD is the timestamp oracle in the TiDB
cluster, and provides information on data location to TiDB. [Pin23c, Pin23h, HLC+20]

PD itself is operated as a cluster to ensure high availability and failure tolerance. This
cluster normally consists of at least three members [Pin23c], which run the distributed
key-value storage etcd5, and therefore Raft, as a distributed datastore for a systems
critical data, to keep data synchronized [TiK23]. The state of PD is not persistent,
meaning the data PD needs is either collected entirely new from TiKV instances, or from
other, already running PD nodes. [HLC+20] The collection of data from TiKV instances
works through periodic heartbeat messages received from all TiKV nodes, containing
information about hardware storage, storage performance, number of Regions residing on
a TiKV node, and configured metadata regarding data placement (labels). Additionally,
the heartbeat messages allow for deriving the availability state of the node. Moreover,
leaders of a Region provide specific information about the Region. Along with inputs
from the user, e.g., to scale the cluster in or out, decisions on how to schedule Regions

5https://github.com/etcd-io/etcd
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are made. [Pin23h] Also, TiDB, the database engine, requests current metadata from PD,
such as the physical location of data, i.e., the TiKV or TiFlash node, where a specific
key or key range resides on the storage. This is important for the database engine to
know which storage node to contact for reading or writing specific data. [HLC+20]

The strategies maintained by PD include the following:

• Keeping the correct number of replicas for every Region: E.g., if one storage node
fails, move a new replica to another node.

• Distributing the replicas of a Region across the cluster: To keep the availability.
E.g., all replicas on one storage node would be fatal in case of a failure.

• Distributing all replicas across the cluster: First step in balancing the storage need
on the cluster.

• Distributing the leaders across the cluster: Since write operations have to be done
through the leader of a Range, this helps to balance the load on the storage cluster.

• Distributing hotspots across the cluster: In case there are especially active Ranges,
these have to be distributed in order to keep the performance high and balance the
load.

• Balancing the storage need across the cluster: To keep one node from overflowing
in case of sudden big write operations.

• Keeping the frequency of scheduling operations reasonable, according to configura-
tion: Frequent scheduling operations could restrict the availability of the data for
short periods of time. [Pin23h]

Following these constraints, the most important scheduling operations are adding a new
replica to a Raft group, removing a replica from a Raft group, advise a Raft group to
set a specific node as leader, and transfer Regions to other Raft groups [Pin23h], which
involves splitting and merging Regions [HLC+20]. Note that only neighboring Regions
can be merged, since they have to form one contiguous Range. The same applies to split
operations. All the operations mentioned above besides merge and split can be realized
through Raft only, and in one specific Raft group. For split, a respective Raft command
is issued, which creates a new Region. Afterwards, a new Raft instance is started by
PD on one of the storage nodes, which then synchronizes the data from the previous
Raft group. Merge, however has to be controlled externally, since Raft does not provide
the functionality to agree on killing one group and synchronizing its data to another
one. [Pin23h, HLC+20] An example of a properly balanced storage cluster is illustrated
in Figure 2.8. Region leaders are marked with an asterisk, hot Regions, meaning Regions
with a high read/write load on this specific node, are marked with a red border.
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Figure 2.8: Balanced Storage Cluster

2.3.3 Query Planning and Execution
Finally, to utilize the previously described features, the actual SQL computation and
execution engine is needed. TiDB supports the MySQL SQL dialect, and can therefore
compute queries of this dialect. To begin with, the SQL statement has to be parsed
into an Abstract Syntax Tree (AST). Based on this tree, a query plan realizing the
semantics described in the statement is built and optimized. The optimization is the
key process in enabling efficient and performant query execution. This optimized plan
contains nodes (or operators), which can either be executed locally on the computation
engine, or involve fetching some data from the storage nodes. The plan is executed in an
iterator style execution, implementing the Volcano iterator model [Gra94]. Finally, the
result is returned to the client. [HLC+20, Pin23d]

The query optimizer is composed of two parts. First, a RBO (rule-based optimizer), or
logical optimizer, creates a logical plan from the AST. This logical plan is then optimized
using certain rules which are always valid, independent from the dataset. This involves
e.g., logical tautologies, changing the positions of certain operators, like selection and
projection pushdowns, and removing redundant operators. The logical plan is then
handed to the physical optimizer, a CBO (cost-based optimizer), whose task is to get
the best physical plan, i.e., having the lowest costs, based on the actual dataset, cost for
reading data, computing certain operators, etc. Finally, the optimized physical plan is
executed. [HLC+20]

In TiDB, due to the distributed architecture of the database and storage, it is possible
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for the database engine to outsource certain operations to the storage cluster. Therefore,
executions can be parallelized up to a certain degree. Normally, in non-distributed
databases, operators can only be parallelized locally on the database engine. Thus, e.g.,
the hash bucket computation of hash joins can be sped up, or parallel branches of the
execution plan can be executed concurrently. In TiDB however, some operations can be
evaluated by a coprocessor implemented in TiKV or TiFlash, distributed on the cluster.
The benefit here is that additional to the local parallelization on the database node,
the storage nodes in which the data resides, are available for distributed parallelized
execution, which then return the precomputed result to TiDB. Supported operations
are for example selections using various predicates and functions, and some aggregation
operations. This does not only bring the benefits of parallelization, it does also reduce
the network usage. [HLC+20]
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CHAPTER 3
Structure Guided Query

Optimization

Querying describes finding data with a specified format and properties, as well as
conditions. The DBMS has to search its data and find respective tuples meeting the
mentioned conditions. Then, a result set can be returned. Queries specify the properties
for the output data. However, they do not specify how to compute the result. This
represents the declarative nature of SQL queries. The database has to create a so-called
query plan, which specifies with which order of operations the result set can be obtained.
There can be many query plans for a query, returning an equivalent result, however,
possibly having wildly varying execution (and planning) times. Query optimization is
the process of finding an optimal, or at least good, query plan for a query.

Query optimization is based on multiple steps, i.e., building an initial plan (modifying
queries in this step is often referred to as query rewriting), followed by general, logical
optimization, valid for every possible dataset (executed by a rule-based optimizer), and
optimization specialized on the data in the database, physical optimization (executed by
a cost-based optimizer).

Optimizers often used, like a traditional System R style optimizer [SAC+79], Vol-
cano [GM93], or a Cascades style optimizer [Gra95], do not use the full optimization
potential. An initial query plan is just built recursively before handed to the logical
optimizer, without further special meaning or optimization in this step. They then focus
on transformations and search of the optimal access path. However, there would be
information in the query itself which can be exploited for a possibly more performant
execution of the query.

One of the most expensive operations when executing a query, joins, are reordered by
these traditional optimizers, based on costs of different possible plans, discovered in the
search space of the plan optimization process. The join order is the order in which (pairs)
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of relations and intermediate results are joined together. The goal of reordering joins is to
get the smallest intermediate results, according to statistics from the database, which, in
an optimal case, yields a low computational cost (of course also depending on the chosen
implementations for operators). However, the information mentioned above, structural
information given by the query itself, is not considered, although incorporating it in the
query execution would solve the join ordering problem as a natural consequence.

Additionally, and with a potentially much bigger influence at the query execution time,
the size of intermediate results would be reduced through structural methods, such
that an exponential blowup of intermediate results, as it is possible without using these
methods, cannot happen anymore. The tuples eliminated from the intermediate results
are redundant, i.e., not contributing to the end result of the query. This would help
especially when computing queries with a lot of joins, as the size of intermediate results
can grow exponentially through many joins.

Structure based optimization focuses on the structure of the query first and tries to find
an optimal query plan, which is based on the structure of the joins and their conditions
in the query. Through building a hypergraph, decomposing this graph into a hypertree
decomposition, and executing the query using Yannakakis’ algorithm, exponential blowups
of intermediate query results can be avoided. With this technique, every tuple in the
intermediate results directly contributes to the end result of the query. Structure based
optimization can be applied to queries being acyclic or almost acyclic, which makes up a
huge part of all real-world queries, according to a recent analysis [FGLP21].

3.1 Queries
Queries are a declarative way to search for data in a database. As previously mentioned,
they define a format and properties or conditions to which data has to conform in order
to be included in the result set of the query. When operating a RDBMS, queries are
formulated using the DQL sublanguage of SQL. SQL acts as a high-level representation
of queries. Generally seen, queries for relational databases or data models can also be
defined using relational algebra, logical expressions, or Datalog, which is another query
language based on logical predicates, with a syntax similar to logical formulae.

Arguably, the most fundamental form of queries are conjunctive queries. Conjunc-
tive queries are logically formulated, using existential ∃ operators and conjunctions
of conditions, that is, conditions concatenated using the ∧ operator, in first-order for-
mulae [FGLP21, GLS02]. The formulae are built using atoms, representing relations.
Atoms contain at least one parameter, as every relation is expected to have at least one
column [GGGS07]. In these atoms, equality conditions for columns/attributes, as well as
equi-join conditions can be embedded. Joins are expressed using the same variable in
multiple atoms, defining an equality for an equi-join, i.e., a join that only uses equality
conditions. As SQL statement, conjunctive queries would be of the structure select ...
from ... where ... in which the select list defines the attributes of atoms to select, from
defines from which data sources, i.e., relations or atoms, the tuples should origin, and
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where defines the conditions for the result tuples [GGGS07, GLS02]. From now on, in
this chapter, when we mention queries, we mean conjunctive queries, as long as not
declared differently.

As an example conjunctive query, we introduce a database schema (from [GLS02]) with
the following relations and attributes:

enrolled(StudentPersID, CourseID, Date)
teaches(TeacherPersID, CourseID, Assigned)
parent(ParentPersID, ChildPersID)

The following example query selects all parents who are teachers, and whose child is
enrolled to some course:

QCQ : ans(P ) ←− enrolled(S, C ′, R) ∧ teaches(P, C, A) ∧ parent(P, S)

To specify a variable, i.e., set a (equality) condition, for example the ID of the teacher,
the respective variable would be exchanged with the ID of the teacher.

The left side of the query is named the head defining the queries result attributes/schema
and the name of the resulting returned table, the right side is called body, defining the
conditions for the query, and from which relations the data originates. Atoms of a query
Q are denoted with atoms(Q), attributes or variables of Q as var(Q), and variables of a
specific atom a as var(a). [GGGS07]

Conjunctive queries return either concrete data, or a statement about the existence
of data matching the query. The latter is also named a boolean conjunctive query, or
existential query. A boolean conjunctive query is a conjunctive query just querying
whether data matching the query exists, or not [GLS02]. An example for such a query,
applying the same conditions as with the previous example is listed below. This query
checks if there exists at least one parent which teaches a course, and their child is enrolled
to some course.

QBCQ : ans ←− enrolled(S, C ′, R) ∧ teaches(P, C, A) ∧ parent(P, S)

Chandra and Merlin showed that the evaluation of conjunctive queries is NP-complete
[CM77]. However, there are some exceptions from this. Yannakakis’ was one of the
first to identify that a subclass of conjunctive queries, acyclic conjunctive queries, is
indeed solvable in polynomial time with respect to the input and output of the query
and provided an algorithm for the evaluation of such queries [Yan81]. This algorithm
will be discussed further into the chapter.

Acyclic queries do not contain any loops regarding joins, i.e., with the overlap of variables
of atoms. An example to differentiate acyclic and cyclic queries is shown in Figure 3.1.
The circles around the variables represent atoms, the letters variables. In the query
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(a) Cyclic Query
enrolled(S, C, R) ∧ teaches(P, C, A) ∧

parent(P, S)

(b) Acyclic Query
enrolled(S, C ′, R) ∧ teaches(P, C, A) ∧

parent(P, S)

Figure 3.1: Cyclic and Acyclic Query

illustrated in Figure 3.1a, a student who is enrolled in a course taught by their parent
is queried, whereas in the query in Figure 3.1b a student, whose parent is a teacher,
enrolled in any course is queried. That said, the former, as cyclic query, contains a circle.
In the latter query, this circle is cut by introducing an additional variable C ′. However,
the acyclic query does not have the same meaning as the cyclic query.

As a proof of the usability of the polynomial evaluation of acyclic conjunctive queries,
Fischl et al. [FGLP21] analyzed hundreds of real-world and benchmark database queries
for their acyclicity. The result of the analysis found that most real-world database
queries are acyclic, or at least almost acyclic, a notion that will be handled further into
the chapter, and also holds beneficial properties of an acyclic query. Therefore, the
polynomial time evaluation is applicable to these queries.

Formally, a query is acyclic, if there exists a join tree for the query. As the name
join tree already implies, no circles are allowed. They essentially define an efficient
order, i.e., a query plan, in which a query can be evaluated. A join tree JT = {V, E}
of a (conjunctive) query Q consists of vertices V = {v | v ∈ atoms(Q)} and edges
E ⊆ {(a, b) | a, b ∈ V ∧ var(a) ∩ var(b) ̸= ∅}. This means, vertices are labeled with their
atom, e.g. Parent(P, S), and edges connect two vertices having a variable intersection in
their atoms. The latter is not a formal necessity, however, omitting the variable overlap
would introduce cartesian products in the join tree. Following this definition, for every
two vertices a, b ∈ V containing equal variable(s), there exists a path from a to b. The
special property of the path is that all vertices on the path between a and b also contain
the same variable(s). Additionally, join trees meet the so-called connectedness condition.
Thus, in a join tree, vertices with matching variables form a connected subtree. [GLS02]

In Figure 3.2, we illustrate an example join tree. This join tree corresponds to the query
QCQ on page 27. The connectedness condition can be observed, on the root and the left
child, which contain the variable P , and the root and the right child, which contain the
variable S. There are no variables which do not form a connected subtree. Furthermore,
as we can see, the cyclic query illustrated in Figure 3.1a has no join tree, since there
exists a circle.
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Note that for a query, multiple join trees can exist. They could differ in which vertex is
chosen as root. We could use each of the three vertices as root of our join tree in Figure 3.2,
changing the shape of the tree. Additionally, the way which vertex is connected to which
other vertex could be changed, as long as the mentioned conditions are adhered to.

parent(P, S)

teaches(P, C, A) enrolled(S, C ′, R)

Figure 3.2: Join Tree of the Query QCQ

Join trees for queries can be efficiently computed (if existent), and therefore also their
existence decided, with the GYO-reduction (Graham, Yu, and Ozsoyoglu) [Gra79, YO79].
The GYO-reduction itself checks whether there exists a join tree. Additionally, if the
check decides that the query is acyclic, an order, including so-called witnesses, is created,
which defines one possible join tree.

In order to understand the algorithm, we need to define two terms. An atom r1(Z⃗1) is
contained in an atom r2(Z⃗2), if Z⃗1 ⊆ Z⃗2. Furthermore, a witness w(Z⃗1) for an atom
a(Z⃗2), is an atom, such that a only contains variables which do not occur in other atoms,
and variables which are contained by the witness w.

The GYO-reduction algorithm [Gra79, YO79] can be described in multiple ways. We use
an approach, which makes it easy to create a join tree afterwards. It is carried out as
follows: First, atoms which only contain variables which do not occur in other atoms are
eliminated and appended to the ordering. Next, all atoms for which witnesses exist, can
be eliminated. The eliminated atoms are appended to the ordering, and the witnesses
are remembered for building the join tree. This is repeated as long as there are atoms to
eliminate.

If all atoms are eliminated at the end, a join tree, which can be built with the collected
ordering of atoms, and the remembered witnesses, exists. The join tree is built as follows:
In reverse order, take an atom from the ordering, and add it to the join forest, i.e.,
multiple join trees. The first one, and other atoms which were no witnesses, are roots.
If an atom ra was a witness of another atom rb, then rb is a child of ra in the join tree.
The result is a forest of join trees. They can be merged arbitrarily to form one possible
join tree.

As an example for a cyclic query, we can take a look at the query in Figure 3.1a. There
are no atoms containing only unique variables, as well as no atoms for which a witness
exists. Each atom would span across two other atoms, enrolled contains variables of
teaches and parent, parent of teaches and enrolled and teaches of enrolled and parent.
Therefore, we cannot eliminate all atoms and have to decide that this query is not acyclic.
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For an example for an acyclic query, we add two new relations, grade(StudentPersID,
CourseID, Grade), and exam(StudentPersID, CourseID, Percentage) to
our schema, and consider the following query:

QJT _Ex : ans(P ) ←−enrolled(S, C ′, R) ∧ teaches(P, C, A) ∧ parent(P, S)∧
grade(S, C ′, G) ∧ exam(S, C ′, P ′)

The query asks for a person who is a teacher and teaches some course. Additionally, the
teacher’s child is enrolled to some course, took an exam at this course and has a grade
assigned for that course.

First, we check if there are atoms with unique variables. This is not the case. Then, we
look for witnesses. The first witness is enrolled, which is a witness for grade, which we
eliminate. Next, we eliminate exam, whose witness is again enrolled. The next step is to
eliminate enrolled, having its witness in parent. Then we eliminate teaches. And finally,
its witness, parent. We managed to eliminate all the atoms, consequently, QJT _Ex is an
acyclic query.

Now we need to build the join tree. As described, we start with the last atom in the
ordering, parent, which will be the root of the join tree. We then know that the next
atom, teaches had parent as its witness, adding it as child of parent. The same happens
with enrolled. Finally, enrolled was a witness for grade and exam, which will be added as
children of enrolled. The finished join tree is illustrated in Figure 3.3.

parent(P, S)

teaches(P, C, A) enrolled(S, C ′, R)

grade(S, C ′, G) exam(S, C ′, P ′)

Figure 3.3: Join Tree of the Query QJT _Ex

3.2 Query Decomposition
Structural information of a query is extracted through decomposition of said query. For
this, first, a hypergraph for the query has to be created. Following, the hypergraph has to
be decomposed through a hypertree decomposition. In the course of creating a hypertree
decomposition, the query is also checked for its degree of acyclicity, i.e., if the query is
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qualified to be executed with structural methods. The hypertree decomposition contains
all the structural information necessary for query evaluation.

3.2.1 Query Hypergraph
A hypergraph H = (V, H) is a generalization of a graph in which, different to a normal
graph, the edges, or hyperedges H, can connect multiple vertices at once. Theoretically,
every hyperedge h ∈ H contains of a set of vertices (h ⊆ V ) which are connected by this
hyperedge.

In the context of queries, we have already seen illustrations of hypergraphs in Figure 3.1.
The circles represent atoms, or hyperedges. The variables are vertices of the hypergraph.
Therefore, we define the query hypergraph of a query Q as follows: V = var(Q),
H = {{v1, ..., vn} ∈ V | atom(v1) = ... = atom(vn)}. The edges of H are also denoted
as edges(H), vertices or variables as var(H). Every vertex connecting to more than one
hyperedge represents a SQL join column. [SGL04]

As an additional example, we are going to build a hypergraph for the following query:

QHG_Ex : ans ←−a(A, B) ∧ b(B, C) ∧ c(B, D, E) ∧ d(E, F )

The corresponding hypergraph in Figure 3.4 shows four circles for the atoms, respectively
hyperedges, as well as the vertices. Vertex B connects to three hyperedges, E to two
hyperedges. These two vertices match with the joined columns of a respective SQL
statement.

A B C

D

E F

a

b

c

d

Figure 3.4: Query Hypergraph of the Query QHG_Ex

3.2.2 Hypertree Decompositions
A hypertree decomposition for a hypergraph H consists of a triple ⟨T, χ, λ⟩ where
T = (N, E) is a rooted tree, and λ and χ are node labeling functions, which associate
each vertex (or node) p ∈ N with a set λ(p) ⊆ edges(H), representing relations or atoms,
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and a set χ(p) ⊆ var(H), representing attributes or variables. Instead of χ(p), we can as
well write var(p). λ(p) is also named the cover (or edge cover, because it covers vertices of
the respective hypergraph, forming edges) of p, χ(p) the bag of p. A subtree of T rooted
at the vertex p is denoted as Tp. Furthermore, the width of the hypertree decomposition
is defined as maxp∈N |λ(p)|, meaning the maximum number of relations in a cover across
the hypertree decomposition. [SGL04, GGGS07, GLS02]
A hypertree decomposition with hypertree width 1 is acyclic, all with a width above
1 are cyclic. Fagin [Fag83] defined the term alpha acyclic for a hypergraph, which
corresponds to an acyclic hypergraph. This is similar to an existing join tree for
a query [GGLS16]. Therefore, alpha acyclic hypergraphs define queries solvable by
Yannakakis’ algorithm [BB16].

Continuing our thoughts of decomposing a query Q, by first creating a hypergraph H,
and then creating a hypertree decomposition HT = ⟨T, χ, λ⟩ from the hypergraph, the
following conditions are met by HT :

1. For each atom a ∈ atoms(Q) of the query, (which created a hyperedge h ∈ edges(H)
in the hypergraph), there exists a p ∈ vertices(T ), such that var(a) ⊆ χ(p), i.e.,
the variables of every atom are covered by some bag.

2. For each variable va ∈ var(Q) (var(Q) = var(H) = vertices(H)), there exists a
set {p ∈ vertices(T ) | va ∈ χ(p)} in the hypertree decomposition, which forms a
connected subtree of T , realizing the connectedness condition. Thus, every vertex
of the connected subtree, and therefore every vertex on a path between two vertices
containing the variable, also contains this variable.

3. For each vertex p ∈ vertices(T ), χ(p) ⊆ var(λ(p)), i.e., the attributes in the bag of
p are part of the relations in the cover of p.

4. For each vertex p ∈ vertices(T ), var(λ(p)) ∩ χ(Tp) ⊆ χ(p), with Tp being the
subtree of T rooted at p. I.e., all attributes whose relations are in the cover of p
and are contained in any bag of the subtree rooted at p are part of the bag of p.
This is also named the special descendant condition. [SGL04, GGGS07, GLS02]

A hypertree decomposition HT = ⟨T, χ, λ⟩ of a query Q is complete, if for each atom
a ∈ atoms(Q), there is a vertex p ∈ vertices(T ), such that var(a) ⊆ χ(p) and a ∈ λ(p)
[SGL04, GLS02]

In case there exists a complete hypertree decomposition for a query, which is acyclic,
i.e., having a hypertree width of 1, efficient structural query evaluation methods can be
used. The notion of completeness however, can be established easily in linear time, and
in logspace, for every existing hypertree decomposition. Therefore, atoms not contained
in a hypertree decomposition can be added as children of other atoms containing the
same variables. This is possible, since for every atom, variables must occur in a vertices
bag, which is described by condition 1. As a result, the size of the complete hypertree
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decomposition HT ′ of the query Q is O(||HT || + ||Q||). The width of the hypertree
decomposition is not affected by the transformation. [GLS02]

Completeness is important for the evaluation to obtain the right result set, joined with
every dependency. An incomplete hypertree decomposition would leave out some atoms,
leading to a possibly incorrect result.

Gottlob et al. [GLS02] found that hypertree decompositions with a low fixed width of
up to 2 or 3, are tractable. Contrary to the strict differentiation between acyclic and
cyclic queries, there is also the notion of almost acyclic queries. These are characterized
by queries for which hypertree decompositions with a low hypertree width of 2 or 3
exist. These almost acyclic hypertree decompositions resolve cyclic queries to almost
acyclic queries. Due to the low hypertree width k, which is used as constant exponent
for the complexity of the evaluation, O(||D||k ∗ ||Q||) for boolean conjunctive queries, or
O((||D||k + ||Out||) ∗ ||Q||) for a full enumeration, where ||D|| is the size of the database,
||Out|| is the size of the query’s output, and ||Q|| is the size of the query, the evaluation
is efficiently computable for a low k [GLL+23]. Therefore, these queries can also be
efficiently computed using structural methods.

As an empirical study by Fischl et al. [FGLP21] showed, this is sufficient for most queries.
In a recent paper they analyzed hundreds of real-world and benchmark database queries
for their acyclicity. The result of the analysis found that most real-world database
queries are acyclic, or at least almost acyclic, which can be handled well by Yannakakis’
algorithm.

A generalized form of hypertree decompositions, generalized hypertree decompositions
(GHD), is defined just as hypertree decompositions, with the exception of the special
descendant condition. They also deliver the same beneficial properties necessary for
decomposition of a query and efficient structural query evaluation. [GGGS07, GLS01]

According to Gottlob et al. [GGLS16], only hypertree decompositions are generally
suitable for decomposing and computing queries. This is the case, because they meet the
following three conditions:

1. Generalization of Acyclicity: A certain fixed width k indicates an acyclic query.

2. Tractable Recognizability: The time complexity of recognizing queries of the
fixed width k is polynomial.

3. Tractable Query-Answering: Answering of queries of fixed width k is possible
in polynomial time.

GHDs generally do not satisfy the second condition, since for any fixed k (k ≥ 2), it is
NP-hard to decide if there exists a decomposition with width k [GGLS16, FGP18]. This
is due to the missing special descendant condition, which restricts the search space in
hypertree decompositions, but not in GHDs.
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Fischl et al. [FGLP21] developed some new and improved algorithms, including BalSep,
using balanced separators, creating sub-hypergraphs from input hypergraphs, to compute
GHDs efficiently. These algorithms achieve a tractable generalized hypergraph decompo-
sition with fixed width k through leveraging the so-called bounded intersection property
and bounded multi-intersection property [FGP18]. These properties define favorable
forms of hypergraphs, e.g. enabling tractable computation of a GHD for any fixed
k ≥ 1. The algorithms proposed in the paper are designed to deliver a result relatively
quickly, similar to det-k-decomp [GS09]. This is opposing to opt-k-decomp [GLS99],
which is designed to deliver an optimal hypertree decomposition, however, not being
that efficient [GGLS16]. As a result thereof, the decompositions created might not be
optimal, although having a certain width k, guaranteeing a certain degree of quality of
the (generalized) hypertree decomposition.

As an example for a hypertree decomposition, we consider the following query:

QHD_Ex : ans ←−a(S, X, C, F ) ∧ b(S, Y ) ∧ c(C, Z) ∧ d(X, Z) ∧ e(Y, Z)∧
f(F, G) ∧ j(J, X, Y )

A corresponding hypertree decomposition for this query is illustrated in Figure 3.5. The
resulting (G)HD has a width of 2. The first line in the nodes represents the edge cover λ
of the node, the second line shows the bag χ of the respective node.

a(S, X, C, F ), b(S, Y )
S, X, C, F, Y

f(F, G)
F, G

j(X, Y, J)
X, Y, J

a(S, X, C, F ), e(Y, Z)
S, X, C, F, Y, Z

a(S, X, C, F ), d(X, Z)
S, X, C, F, Z

c(C, Z)
C, Z

Figure 3.5: (G)HD of the Query QHD_Ex

The result of a hypertree-, or generalized hypertree decomposition, can be seen, similarly
to a join tree, as a plan on how to evaluate a certain query. However, for relational
databases, further steps have to be added to transform a hypertree decomposition into a
real join tree, resulting in a query plan.
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3.3 Yannakakis’ Algorithm - Structure Guided Execution
Yannakakis’ [Yan81] was one of the first to identify that a subclass of conjunctive queries,
the class of acyclic queries, as we discussed before, is indeed solvable in polynomial
time with respect to the input and output of the query, and provided an algorithm for
the evaluation of such queries. Additionally to simple acyclic queries, almost acyclic
queries can also be handled by this algorithm. This is due to the existence of a hypertree
decomposition for these queries. In normal query execution, the size of intermediate
results can exponentially grow, due to the execution of join operations on the whole
dataset. In this approach, also tuples not contributing to the end result, which may
be dropped by a later join, are contained in the intermediate results. Therefore, they
grow, could easily exceed available memory and storage, and get exponentially big. As a
consequence, the amount of data causes the evaluation of the query to either take very
long, or even not finish at all in reasonable time.

The key operation enabling the strength of Yannakakis’ algorithm when executing acyclic
and almost acyclic queries, and preventing exponential growth of intermediate results, is
the semi-join. A semi-join, denoted as ⋉, is a join operation in which, as with normal
joins, certain conditions should apply in order for a tuple to be part of the result.
However, different to a normal join, a semi-join result only includes the attributes of one
operand [VG84]. Additionally, each tuple of the included operand is at most contained
once in the result, even if there were multiple matches. In Yannakakis’ algorithm, we are
only using equi semi-joins, relying on equality conditions.

The execution of the algorithm consists of the following steps:

• Step 0: This is a preparatory step, which prepares the base data for each node p
of the hypertree decomposition. It is only necessary if the edge cover has a size
of at least two |λ(p)| ≥ 2. In this case, all relations of the edge cover are joined
together, to form the base data of the node. The data is then used in the following
steps. In case the size of the edge cover is 1, the base data is the data in the single
relation. When we refer to data of a node in the next steps, we always mean either
the data from the previous step(s), or the base data.

• Step 1: Bottom-up semi-join traversal: This step starts the elimination of dangling
tuples, i.e., tuples not contributing to the end result. Therefore, it is checked
whether hypertree decomposition nodes further down than the current one justify
keeping tuples. In order to achieve this, we execute semi-joins pnew = p ⋉ c in
a bottom-up fashion, such that every parent p checks with each of its children
c, whether to keep tuples, or drop them. If a node has multiple children, the
computations are carried out sequentially. The data of each node (except leaves),
is set to pnew after execution of the semi-join. This translates to the formula
R′

t = πvar(t)(▷◁v∈V (Tt) Rv) for each node t ∈ T , with R′
t being the data for the node

t after this step, assuming that all attributes of a node’s relations are contained in
the bag of the node [GLL+23].
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As previously mentioned, this step is sufficient for boolean conjunctive queries,
as well as queries which can be answered through the root node of the hypertree
decomposition. Because of the semi-joins, every tuple in the root node is backed by
at least one tuple of every other node. Therefore, the root essentially contains a
distinct enumeration of the result for the relations in its edge cover, which can be
used to answer queries, as we will see further into this chapter.

• Step 2: Top-down semi-join traversal: For the second part of eliminating dangling
tuples, we execute the same procedure in a top-down fashion, meaning we execute
semi-joins cnew = c ⋉ p, setting the data of all children for the whole hypertree
decomposition to their respective cnew. This happens for every node except the
root, since it is not a child of any other node. Afterwards, we have computed
the fully reduced dataset, represented by the formula R′′

t = πvar(t)(▷◁v∈V (T ) Rv)
for each node t ∈ T , with R′′

t being the data for the node t after this step, and
assuming that all attributes of a node’s relations are contained in the bag of the
node [GLL+23].
If a join along the edges of the hypertree decomposition is conducted now, all tuples
will find a match, hence directly contributing to the result of this join.

• Step 3: Bottom-up join traversal: The only step missing now is the computation of
the final results. As previously mentioned, we join along the edges of the hypertree
decomposition in a bottom-up manner, in order to calculate the complete solution.
Since we performed a reduction in steps 1 and 2, all tuples have matches and thus
directly contribute to the end result. Therefore, each parent p is joined with the
result of its children c, pres = p ▷◁ c. The childrens’ result is either their previous
data (in case of a leaf node), or a result computed in this step. If a node has
multiple children, the computations are carried out sequentially. Resulting from
this step, every node contains all results of its subtree, represented by the formula
R′′′

t = πvar(Tt)(▷◁v∈V (T ) Rv) for each node t ∈ T , with R′′′
t being the data for the

node t after this step, and assuming that all attributes of a node’s relations are
contained in the bag of the node [GLL+23]. Consequently, the root node contains
the full enumeration for the hypertree decomposition, and the query.

The join conditions are always determined by an intersection of the bags of the respective
nodes, and the existence of the attributes/columns in the current schema. Note that
instead of a hypertree decomposition, a join tree could be used. The edge cover of a
hypertree decomposition node translates to the relation of a join tree node.

Although unusual for evaluating a query with a join tree and query plan in relational
databases, this algorithm reuses intermediate results several times, in particular nodes
with more than one child in the second step, as well as internal nodes in the third step.
This is slightly different to the concept of the iterator execution model, which passes
tuples directly to the next operator as they are computed.
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The runtime of a query executed through Yannakakis’ algorithm depends on the type
of the query. If the query is a boolean conjunctive query, or can be answered by just
using the relations in the edge cover of one node from the hypertree decomposition, the
algorithm only has to be conducted until step 1 is finished. Therefore, the complexity
is polynomial with respect to the input. If a full enumeration of the data is needed, all
three steps of the algorithm have to be executed in order to answer the query. Following,
the complexity is polynomial with respect to the input and output, as we described in
Section 3.2.2 on page 33. Additionally, as mentioned earlier, the width of the hypertree
decomposition has a big effect on the complexity. Every hypertree decomposition node’s
base data has to be built through joins. With the worst case of a cartesian product,
the width directly affects the amount of data to be processed in later steps. Thus, the
(constant) width k is used as exponent of the size r of the biggest input relation, which
defines the input for one node as rk [GGLS16]. However, this is not too much of a
problem, since Fischl et al. [FGLP21] found that most real-world queries have a low
hypertree width.

As an example, we are going to evaluate the following query with Yannakakis’ algorithm:

QY an_Ex : ans ←−a(X, Y ) ∧ b(A, X) ∧ c(B, Y, Z) ∧ d(Z, F ) ∧ e(Z, G) ∧ f(C, X)

The preparatory step can be skipped, because the width of the given hypertree decom-
position is 1. An illustration of the hypertree decomposition, including the data in the
relations is shown in Figure 3.6a.

The first step in Yannakakis’ algorithm is to conduct a bottom-up semi-join traversal.
Thus, tuples not backed by a child node are eliminated. Therefore, we start at the
bottom, with a non-leaf node. This would be the relation a(X, Y ). We execute the
semi-join a ⋉ b ⋉ f , to get the new data for a. The same is done for c with its children,
including the result of the just mentioned semi-join for a. Eliminated tuples are marked
with a strike through in Figure 3.6b, which displays the intermediate result after this
step. Since in the next step, we do not change the root node, and its data is backed
by all other nodes of the hypertree decomposition, the root would already be prepared
for answering a query. This includes a boolean query, also named an existential query,
which just asks if there is some data in the queries answer. In this case, the question can
be answered with yes, since there are tuples left in the root node’s data. Additionally,
queries, which are just outputting data from variables contained in the root node, and
do not need exact multiplicity, as we mention later, can be answered.

Next, the top-down semi-join traversal has to be carried out. In this step, previous results
may be used several times. It is executed for all nodes, except the root. Therefore, we
set the data of e.g. e as e ⋉ c, d as d ⋉ c, and a as a ⋉ c. As we can see, we used c three
times in this computation. The same procedure is performed for the nodes in the next
lower level. The resulting and fully eliminated data is illustrated in Figure 3.7a.

Finally, the actual joins can be computed in the last step. Every tuple has a join partner
during this procedure. The structure of the hypertree decomposition acts as a join tree,
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(a) (G)HD of the Query QY an_Ex, with
Data

(b) Yannakakis Example after Bottom-Up
Semi-Join

Figure 3.6: Yannakakis Example Part 1

along which the joins are, from the bottom up, performed. We put intermediate results of
the joins next to the nodes for a and c in Figure 3.7b. The table next to c also represents
a full enumeration of the queries result.

3.3.1 Detecting Empty Results
As discussed in Section 3.3, after step 1 of Yannakakis’ algorithm, the bottom-up semi-
join, we can determine if the query contains tuples in its result, by checking whether the
result of the hypertree decompositions’ root node is empty or not. In fact, this can be
extended to nodes further down in the hypertree decomposition and their subtrees. Also,
as the hypertree decomposition fulfills the connectedness condition, essentially giving the
hypertree decomposition properties of a join tree, every hypertree decomposition nodes’
data is backed by all of its children. Hence, if one of its children has an empty dataset,
the parent will also have an empty dataset. Likewise, this phenomenon can be applied to
all later stages of Yannakakis’ algorithm. Bringing all pieces together, we can claim that,
as soon as the (intermediate) result for one of the hypertree decompositions’ nodes is
empty, the final result of the complete query will also be empty.
This claim can be justified with a simple line of thought. As every semi-join or inner
join, as we use them, must have two non-empty inputs in order to result in a non-empty
output, we can conclude that in either case, as soon as some hypertree decomposition
node’s result is empty during the first step, the empty result propagates up to the root.
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(a) Yannakakis Example after Top-Down
Semi-Join (b) Yannakakis Example Results Joined

Figure 3.7: Yannakakis Example Part 2

Furthermore, if the root’s result is empty after the first step, we know that the query’s
result is empty. To show this, we can use the same line of thought for the second step,
according to which an existing empty result of the first step propagates to the result of
the second step. This also applies to the inner joins in the third step, finally giving us
the empty result detected earlier.

3.3.2 Further Optimization
As mentioned earlier, after the first bottom-up semi-join pass, a query can potentially
already be answered. This is the case for boolean conjunctive queries, as well as queries
which can be answered through the schema of the base data, i.e., the relations in the
edge cover λ, of the hypertree decomposition’s root node. Ghionna et al. [GGGS07]
experimented with this phenomenon. They created query-oriented hypertree decomposi-
tions as base for the query evaluation. These decompositions contain all relations needed
for answering the query in its root node, in other words, all attributes are covered by
the relations in the root’s edge cover. They were therefore able to eliminate the second
and third step of Yannakakis’ algorithm during evaluation. A disadvantage is that the
relations in the edge cover may not have an attribute overlap and thus cause a cartesian
product, which could lead to an exponential blowup. We already mentioned this topic
above, however, this time, it is more likely for the width to be higher. The reason
therefore lies in the properties of the query-oriented hypertree decomposition, which is
forced to cover all output attributes with its root. Additionally, Gottlob et al. [GLL+23]
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noticed that in such a case, set-safety has to be given for the result. Following, the
multiplicity of the result tuples may not be fully guaranteed. Consequently, all distinct
tuples are contained in the result, but tuples, which would occur multiple times when
evaluating normally, due to multiple join partners in other hypertree decomposition
nodes, are only contained once. Reconsidering the first step of the algorithm, we can see
that semi-joins are performed, thus it is clear that the multiplicities in the result do not
reflect the number of join partners.

3.4 Special Queries: 0MA
Additionally to the approach mentioned above, which tries to solve all queries with only
one pass through the (query-oriented) hypertree decomposition, Gottlob et al. [GLL+23]
identified a class of queries, which only requires executing the algorithm until the bottom-
up semi-join, and therefore eliminates materialization of intermediate results. We already
saw that this was sufficient for boolean conjunctive queries, and queries answerable
through the hypertree decomposition’s root node. Now, the 0MA queries extend the
scope of applicable queries to queries including aggregates in the select list of a statement
select ... from ... where ... group by ..., which is not the case in conjunctive queries.

To fully specify these queries, we have to introduce and define some terms. First,
aggregation, respectively group by clauses, are denoted as γU (...), where the subscript
U defines the columns to aggregate and output, as well as aggregational operations.
Aggregation normal form describes a query Q = γU (πS(Q′)), where Q′ is a query
consisting of equi-joins and selections. As we already mentioned before, the root node
of the respective hypertree decomposition of the query (with the relation R in its edge
cover) has to contain all attributes which are included in the output, and additionally
the group by clause. Hence, if there is such a relation R in the query, this relation R
guards the query. Furthermore, set-safetyness has to be given, i.e., the result of a query
Q = γU (πS(Q′)) is equal no matter if the duplicates are eliminated before the aggregation,
or not. Finally, we can define a zero-materialization answerable query as a query Q which
is in aggregation normal form, guarded, and set-safe. [GLL+23]

With the conditions mentioned above in mind, we can directly infer that 0MA queries can
contain the aggregation operations MIN and MAX, since these are set-safe. As an addition,
COUNT can be combined with distinct in order to achieve set-safety. Consequently, an
example 0MA query would be Q = γA,MIN(B),C(a(A, B, C) ∧ b(C, D, E) ∧ c(D, E, F )).
The attributes to aggregate could be based in any relation, as long as the query is guarded
by said relation. This is due to the fact that a hypertree decomposition of a 0MA query
can be rerooted, without loosing any positive property. Indeed, rerooting is possible for
any hypertree decomposition, independent of the type of query.

Apart from 0MA queries, other aggregates, like SUM, AVG, and COUNT without distinct
could be implemented through counting algorithms, like Pichler and Skritek proposed
in [PS13].
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CHAPTER 4
Integrating Structure Guided

Query Optimization into TiDB

In the previous chapters, we described how NewSQL databases work, as well as how
queries can be optimized through structure guided methods. This chapter is going to
describe the challenges faced during implementation of structure guided optimization
into an existing database optimizer. Besides, we are going to describe the algorithms
used for implementing this optimization.

We chose TiDB (https://github.com/pingcap/tidb), an Open-Source NewSQL
database, to implement structure guided query optimization into. TiDB lies within the
most popular Open-Source DBMS. Specifically, we are going to implement our approach
into the database engine component of the TiDB ecosystem, which requires a substantial
extension of the current database engine’s query optimizer. As query optimizers are
complex and highly efficient software, the biggest challenge of the work is to integrate
structure guided query optimization as additional optimization alternative in the optimal
places within the query optimizer, and reuse as much code as possible. Additionally, the
existing functionality and performance of the database should not be disrupted through
this integration.

On the way to implement the optimization, we had to investigate how TiDB, including
query parsing, planning and execution, works. TiDB is quite a big project, therefore,
getting hold of the mode of operations, and where the respective code lies in the code
repository, is quite a challenge. Additionally, the documentation of the project is not the
best, since we experienced a rapidly changing and growing development documentation,
during our time working with TiDB, partially missing essential parts of the database’s
computational flow.

Furthermore, since structural query execution methods, especially Yannakakis’ algorithm,
slightly break with the traditional iterator executor model, as described before, we had
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to find a way to integrate the algorithm without adding too much overhead. This lies
mainly in the repeated usage of intermediate results.

During the implementation and first tests, we collected several ideas on how to further
optimize the approach implemented. These additional features and optimizations will be
discussed in this chapter, including in which way they affect query planning and execution.
Additionally, we are going to incorporate results from previous works attempting to
integrate structural methods into databases, as well as theoretical inspirations, gained
from literature research during the thesis.

We are going to publish our implementation on GitHub https://github.com/
MichaelMartinek/StructureGuidedTiDB, and make it available as Open-Source
software.

Summarized, we are going to document the means of operation, steps, and where this
is hidden in the code repository, describe the added optimization for each step of the
query execution pipeline, and briefly go over further optimizations, further improving
our implementation.

4.1 Current Database Implementation
At the time we started implementing our optimized query execution approach, we took the
current version of the main/master branch, which was 7cd2029 in the repository https:
//github.com/pingcap/tidb, corresponding to TiDB v6.7.0-alpha. We created a
fork and inspected the means of operation of the database. The main language of the
code base is Go. Fortunately, it is possible to run the database for testing purposes,
without creating a full cluster and allocating the full resource set needed in a proper
test or production database [Pin23e]. We outlined the big picture of the architecture in
Section 2.3, including Figure 2.6 on page 17, which illustrates the different components
of the database working together. For our optimization, we focus on the TiDB database
computing component. With the mentioned possibility to run the database without all
components, small and lightweight mocks are used to deliver the basic functionality of
the database. With the same approach, the databases code can also be debugged, which
is an important part of analyzing and understanding the current code, and eliminating
any occurring bugs.

As a query optimizer, including the execution of a query, is handled by complex software,
we have to get hold of the components working on these tasks, as well as where to
start altering the software to achieve our goal. The development documentation of
TiDB [Pin23e] gives a coarse overview of this pipeline, however, lacks in explaining some
essential parts, as well as the depth needed to really understand the software. Therefore,
it was important to go through the code manually, and also debug the code with certain
inputs, to fully understand how the query execution works. The outcome of this analysis
was a major step towards understanding how the query execution was realized, which
will be explained below.
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We already shortly discussed query planning and execution in TiDB in Section 2.3.3. In
this section, we are going to discuss it more detailed. When speaking of a query, we
mean an SQL DQL statement, querying data from the database.

A query passes three high-level layers when being executed. These layers are the protocol
layer, managing the connection to the client, the SQL Layer, parsing, planning, and
executing a statement from an SQL point of view, and the KV API Layer, which handles
key-value requests originated from query plan operators/executors, forwards them to the
right storage instance, and therefore realizing the distributed SQL features. Our focus
will be the SQL layer, since it contains the query optimizer, thus, the most relevant part
of the query execution workflow for our implementation. In Figure 4.1, the Protocol Layer
and the KV API Layer are outlined, with the SQL Layer in between them, including
further details. [Pin23f]

Protocol Layer SQL Layer KV API Layer

SQL

Parser

Logical Optimizer

AST

Logical Plan

Physical Optimizer

Local Executor

Distributed Executor Coprocessor

Statistics Executor

Physical Plan

Data

RecordSet

Use Executor

Plan Builder

Logical Plan

Figure 4.1: Current Implementation Architecture of TiDB - SQL Layer [Pin23j]

In general, a SQL statement, as string, is handed to the entry point of the illustrated work-
flow, shown by the arrow on the top left, denoted with SQL. At the end, a RecordSet,
including the root executor, and providing methods to iterate the result, is returned.
The corresponding interface definition is shown in Listing 4.1. This result is enumerated
by the protocol layer, presenting the results to the user.

In the following pages, we will describe the means of operation of the SQL Layer, as
shown in Figure 4.1. The green box in the illustration represents the parsing section,
blue shows the planning part, and purple shows the executors. As an addition, database
internal statistics, which are collected and queried, are illustrated by the red box.

The first step to handle an SQL statement is to parse it into a representation that
can be performantly handled by the database. To this end, an AST is created. The
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type RecordSet interface {
// Fields gets result fields.
Fields() []*ast.ResultField

// Next reads records into chunk.
Next(ctx context.Context, req *chunk.Chunk) error

// NewChunk create a chunk, if allocator is nil, the
default one is used.→

NewChunk(chunk.Allocator) *chunk.Chunk

// Close closes the underlying iterator, call Next
after Close will→

// restart the iteration.
Close() error

}

Listing 4.1: RecordSet Interface

respective parser realizing this functionality is located in the parser module of the code
repository. A SQL statement is a concrete word, which conforms to the SQL language
and grammar defined in the files parser.y and hintparser.y. The hintparser
is mainly responsible for parsing optimizer hints [Pin23g], influencing how and what
is optimized for a statement, as well as further properties about execution of a query,
like for example the maximum execution time. Yacc, a parser generator, generates the
respective go files realizing the parsing functionality. After parsing, the structure of
the parsed statement is recreated using the types ast.*, such that all following steps
handling the statement just access this data structure.

Next, the first planning step is conducted. Planning an SQL statement consists of the
steps of building the initial plan, often named rewriting, logical optimization, and physical
optimization. The module planner is the relevant module in the code repository for these
steps. The Optimize(...) method in the file optimize.go acts as entry point for this
process. For building the initial plan, originally, no optimized strategy, considering how
the plan is built, is followed. The plan is built just as the statement was defined, without
using any statistics, rules, etc. This is especially important for joins, which are unordered
after this step. Initial logical plans are built using the PlanBuilder. Every plan
is created by the PlanBuilder.Build(...) method in core/planbuilder.go.
Methods for different constructs of statements, e.g., joins, selects, selections, aggregations,
projections, etc., and their corresponding AST, creating logical plans, are defined in
logical_plan_builder.go as members of PlanBuilder. We set our focus on the

44



4.1. Current Database Implementation

PlanBuilder.buildSelect(...) method, which is the first method to be called
for a select statement in the rewriting step, thus, being the optimal entry point for our
implementation.

The resulting logical plan is then handed to the logical optimizer. The logical optimizer
holds a list of rules, defined in core/optimizer.go, as optRuleList. Logical
optimization generally is independent of the specific database instance and its data,
applying tautologies to the current logical plan, without the use of database statistics and
concrete data from the database. However, there are some instances of rules also using
statistics, e.g., join reordering for cardinality estimation. Optimization rules implement
an interface logicalOptRule, providing an optimize(...) method, in order to
invoke the rules’ specific optimization procedure. The procedures themselves are defined
in multiple source files of format core/rule_*.go, including their rule names in the
file name. The list of rules is enumerated, and each rule gets executed in the main
method for logical optimization, logicalOptimize(...) in core/optimizer.go.
The order of these rules is relevant, since they are executed in the same order as defined in
optRuleList. Additionally, rules can be contained in the list, and therefore executed,
arbitrarily often, which, for example, is needed for the column pruning, being added a
second time at the last position.

Following, the logical plan is converted into a physical plan, that is chosen with knowl-
edge of specifics of the database instance, including statistics. For each logical operator,
the best physical operator is chosen, such that the cost of the whole plan is as low as
possible. Physical operators differ in the way they access the data, whether it is reading
an index, reading the whole table, or read with selection/functions as condition, as
well as which type of storage is used. As we discussed in Section 2.3, TiDB supports
different types of storage, with TiKV (row-based), and TiFlash (column-based), as
options. Our primary focus for the implementation of structure guided query evaluation
will be on row-based storage. Furthermore, they differ in their (or their respective
executors’) concrete implementations, which are used for different prerequisites, and
obviously have differing costs. One example would be different join implementations,
like HashJoin and MergeJoin. A MergeJoin requires the data to be ordered, whereas
a HashJoin does not. In addition, they will have different costs, due to different com-
putational requirements. The goal of physical optimization is to get a plan realizing
the given logical plan, with the lowest cost possible. Again, core/optimizer.go
contains the starting point for physical optimization, physicalOptimize(...). In-
side this method, LogicalPlan.findBestTask(...) is called for the root ex-
ecutor. findBestTask(...) must be implemented by every logical plan opera-
tor, some of which implicitly implement it, some use the default implementation of
baseLogicalPlan. Some of the logical plans implicitly implementing the method
include a DataSource, LogicalMemTables, LogicalDualTables, and LogicalCTE(-Tables).
Logical plans for which the LogicalPlan.findBestTask(...) method is implicitly
defined either only have one possibility, and therefore nothing to optimize in this stage,
like DualTables, MemTables, and Common Table Expressions (CTEs), or require special
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handling, like DataSources. For baseLogicalPlan, physical plans are created for one
logical plan node in LogicalPlan.exhaustPhysicalPlans(...), which are re-
cursively built in baseLogicalPlan.enumeratePhysicalPlans4Task(), calling
findBestTask(...) for the children of this plan. Therefore, the best plan, according
to its cost is found.

As soon as the optimized physical plan is found, it gets converted into executors, imple-
menting the actual procedures for executing the physical plan nodes. Executors work
based on the iterator concept [Gra94], as we mentioned earlier. The interface Executor,
as shown in Listing 4.2, defines the methods realizing the iterator functionality for every
executor, since all executors must implement the interface in order to be usable. Executors
are built, just like (physical and logical) plans, in a tree-based structure, taking results
from their children and hand new results to their parents. Chunks, a set of rows of data,
are used as unit of iteration. The idea behind the iterator concept is to consume every
chunk just in the moment of creation by the child executor, eliminating the need to store
this data in memory or storage. However, some executors need to store data in order to
operate, these are for example a HashJoin, storing the HashTable and associated rows,
or a CTE. Every executor is free to choose how to realize their functionality, whether
they compute their result single-threaded, or multi-threaded, respectively, in multiple
parallel go routines, storing results, or do a just in time computation without storing the
results. All executors are located in the executor module in the code repository.

type Executor interface {
base() *baseExecutor
Open(context.Context) error
Next(ctx context.Context, req *chunk.Chunk) error
Close() error
Schema() *expression.Schema

}

Listing 4.2: Executor Interface

To handle some universal scenarios and collect statistics, executor.go provides a
Next(..., e Executor, ...) wrapper function, calling the executor’s e.Next
(...) method after finishing these tasks.

Executors can be classified into two types, local executors, which run directly and en-
tirely on the TiDB database node, and DistSQL (distributed SQL) executors, including
TableReaders, IndexReaders, etc. Distributed SQL executors access the distributed
storage provided by the storage engines TiKV (row-based) and TiFlash (column-based).
Additionally, a coprocessor is provided by the storage, enabling the distributed and
parallelized execution of tasks on these nodes. With the coprocessor, certain tasks, like
fetching rows only if an expression, including selections with simple scalar values, other
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columns (in the same or other tables), or functions, applies, or computing an aggregate,
can be executed directly on the storage nodes. It enables the simple distributed storage
to be a distributed storage and computing component.
DistSQL executors are contained in distsql.go, among other source files. Since
we focus on the database node itself, they are of minor importance for our imple-
mentation. Other executors are scattered across the module, some of which include
the HashJoin executors, in join.go, CTE and CTETable executors in cte.go and
cte_table_reader.go, and HashAggregates in aggregate.go.

To complete the circle for the description of the database, the root executor, as mentioned
before, is then returned in the RecordSet, to iterate the result.

Optimization as it is in TiDB is deterministic, leading to the same plans after the
optimization process without change of the actual data, parameters, or database instance.
Following, execution times for queries are stable, with possible improvements on repeated
executions due to cached results. Further properties influencing the optimization can be
set through optimizer hints. Some operators, like specific join implementations, could be
excluded or forced to be used. Depending on the effects, hints are used during initial plan
creation, logical optimization, or physical optimization, i.e., on the whole optimization
process.

4.2 Integrating Structure Guided Query Optimization
As we discussed the process of structure guided query optimization in Chapter 3, we will
now integrate actual structure guided query optimization into TiDB. Other than in the
theoretic position we took in Chapter 3, we now integrate the approach into an existing
DBMS. Therefore, we cannot abolish the stages of logical and phyiscal optimization
including some join reordering, etc. We will instead integrate structure guided query
optimization and evaluation into the existing workflow.

One component we will take as given is the creation of hypertree decompositions from
query hypergraphs. This will be solved by the software BalancedGo, published as Open-
Source software https://github.com/cem-okulmus/BalancedGo, being a result
of research by Gottlob et al. [GOP22, GLOP22]. All other steps will be realized directly
in TiDB. A list of these steps are:

1. Parse the query to a query hypergraph

2. Decompose the query hypergraph with BalancedGo into a hypertree decomposition

3. Create the query plan realizing the procedure of Yannakakis’ algorithm, as shown
in Section 3.3

4. Execute the created query plan
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(a) Execution Tree with-
out CTEs

(b) Execution Tree with CTE: CTE Defines a new Tree
which can be Used in Main Tree

Figure 4.2: CTE Usage Example

We already saw in Section 3.3, that some of the intermediate results need to be accessed
multiple times during execution of Yannakakis’ algorithm. This contrasts with the
iterator concept we discussed earlier. Therefore, we had to either find an existing plan
node enabling repeated usage of subplans, or create a new one. We chose CTEs as the
best concept to satisfy our requirements.

CTEs can be seen as stored intermediate result in a plan. They change a simple plan,
in tree structure, to a forest of trees, one of which is the main tree, representing the
root executor. Results of other plans/trees can be read multiple times. Figure 4.2
illustrates the difference between an execution tree with (Figure 4.2b) and without CTEs
(Figure 4.2a).
The respective components in the code, in module executor, are CTEExec in cte.go,
representing the root of a tree, and CTETableReaderExec in cte_table_reader.go,
capable of reading a previously created CTE. Every CTE has an ID, which identifies
the CTE and its storage. E.g., a CTEExec has ID 1, then the CTETableReaderExec
with ID 1 reads the same storage. Interestingly, CTEExec acts as a combined writer
and reader, such that at the first call of Next(...) for a CTEExec, as long as no other
CTEExec with the same ID had calls to Next(...), the seed executor, the underlying
executor, is entirely executed and the result stored in memory. Afterwards, the first chunk
is returned. On every subsequent call to the same CTEExec, the result is further iterated,
and chunks are returned. Other CTEExec executors referring to the same storage ID do
not execute the seed executor, but rather access the storage and iterate and return the
result chunks, just as a CTETableReaderExec would do. CTEs have the disadvantage,
that they can be very memory-intensive because of the intermediate result being stored
in memory. However, we need to use the results several times to replicate Yannakakis’
algorithm. Hence, we are willing to accept this drawback.
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4.2.1 Basic Implementation
The core of our implementation is a query rewriting mechanism, manipulating the initial
plan built. Figure 4.3 illustrates the main steps and decisions for the plan creation.
Orange squares are branching components, blue nodes are operations. Furthermore, the
illustration shows how the cases to use structure guided query evaluation, or not, and
0MA queries, are handled.

AST

Create Query Hypergraph

Create Hypertree decomposition

(BalancedGo)

Create LogicalPlan based on HD

0MA? Reroot HD

Yes

No

LogicalPlan

Use SG

Eval?

Normal Plan Creation

Yes

No

PlanBuilder

Hypergraph

HD

Figure 4.3: Plan Builder with Structure Guided Query Evaluation

Initially, the plan builder receives an AST of the query. Based on the AST, a check
whether the given statement should be solved with structure guided query evaluation, is
conducted. This decision is done based on the components of the query. Additionally, we
already check if the statement is a 0MA query, and prepare several properties needed for
0MA query computation, which will be used further into the process.

We already inspected the logical_plan_builder.go to find the optimal entry point
for handling structure guided queries. Our implementation starts in PlanBuilder
.buildSelect(...), since all select statements pass through this method.

The first step, creating the query hypergraph from the AST, is realized similar to an
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Open-Source SQL to Hypergraph converter written in Java https://github.com/
dmlongo/sql2hg. For performance reasons, we created a new native go implementation
including buildHypergraphForSelect(...) in logical_plan_builder.go and
the module util.hypergraphBuilder. As shown in Listing 4.3, first, every table of
the statement is registered in the hypergraph builder, followed by all equality conditions.
The hypergraph builder uses a UnionFind data structure to compute overlapping parts
of the hypergraph. Finally, a string representation of the hypergraph, as well as the
mapping of variables (which are used in the hypergraph instead of columns) to column
names, are created and returned.

tables = getTables(ast)
eq = getEqualityConditions(ast)
hgb = initHypergraphBuilder(getUniqueExpressions(eq))

for t in tables:
hgb.buildEdgeInit(t)

for c in eq:
hgb.buildEdge(c.left.table, c.left.column)
hgb.buildEdge(c.right.table, c.right.column)
hgb.buildJoin(c)

return hgb.MakeHypergraph(), hgb.GetMapping()

Listing 4.3: Pseudocode for Creating a Hypergraph

Before creating the hypertree decomposition, all hypergraph edges without vertices,
e.g. relA(), are removed. For these relations, a cartesian product has to be built.
Calculating the cartesian product will be conducted after the last join of the plan, to
minimize the number of rows in intermediate results.
Next, the created hypergraph has to be decomposed into a hypertree decomposition.
Therefore, we use the software BalancedGo https://github.com/cem-okulmus/
BalancedGo, which can either be used as standalone executable, or as go library,
since BalancedGo itself is written in go. With BalancedGo, we use the BalSepLocal
algorithm to create a hypertree decomposition. The decomposition and algorithm itself
are taken as given, without further looking into specifics of the used algorithms.
Two cases which we want to avoid, are empty or duplicated hypertree decomposition
node covers, or empty elements in node bags. Hypertree decompositions with one of
these two properties will not be accepted. Thus, they are recomputed until an acceptable
decomposition is found. The term acceptable also includes the correctness of the hypertree
decomposition. For performance reasons, we limit the number of tries to 10. BalancedGo
uses some randomness in its computations, making repeated tries a necessity, since every
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hypertree decomposition can potentially be different. Considering that the hypertree
width for the intended decomposition has to be set manually for BalancedGo, and that
the lower the width, the better the performance of the respective plan, we first attempt
to find decompositions for hypertree width 1. If there is no acceptable decomposition, the
same procedure is carried out for hypertree width 2. In case neither of the two options
yields an acceptable decomposition, the optimizer reverts to normal query planning.

Now, as we mentioned in Section 3.4, 0MA queries require the hypertree decomposition
to be rooted at a particular node. This node must contain the guard relation in its edge
cover, such that one traversal with Yannakakis’ algorithm suffices to get all result tuples.
Consequently, the hypertree decomposition has to be rerooted for a 0MA query in case
the guard is not contained in the root node.

Based on the hypertree decomposition, a logical plan is built. For this reason, we have
defined three traversal algorithms, that represent the three steps of Yannakakis’ algorithm,
i.e., bottom-up semi-join, top-down semi-join, bottom-up join, traversing the hypertree
decomposition. These traversal algorithms build the logical plan step by step. For 0MA
queries, the first bottom-up traversal is sufficient.

The first bottom-up traversal is defined in Listing 4.4. DecompRoot is the current
root node of the hypertree decomposition, isRootNode is a Boolean parameter, set
to true at the first call, indicating that the current node is the root node. Note that
buildSemiJoin(planA, planB, expr) always builds a semi-join planA⋉planB,
whose result schema is identical with planA.

First, we check for a special case in which the root node of the hypertree decomposition
contains all relations in its cover, without children. In this case, the relations in the cover
are joined via semi-joins and the result is saved as CTE for the respective relation. The
schemes of the CTEs and the returned plan are identical to the schema of the relation
dealt with last.
Without this special case, a logical plan node for the current hypertree decomposition
node’s DataSource is created. If the node contains more than one entry in its cover,
these relations are joined first by getCTEOrDatasource(decompRoot). Selections
applicable to single relations are added at creation of the DataSource, to keep the
number of tuples in intermediate results as low as possible. For each child, the method
is recursively called, followed by building a semi-join decompRoot⋉ child, such that
the resulting schema only contains decompRoot’s columns, representing an upwards
semi-join in the hypertree decomposition. The recursion itself also follows a bottom to
top order. Before returning the created logical plan, a LogicalCTE operator is added to
the plan for internal nodes of the hypertree decomposition, such that these results can be
reused in later steps. The logical plan returned in this traversal represents the bottom-up
semi-join pass of Yannakakis’ algorithm, which is sufficient for 0MA queries, as well as
existential queries. For these types of queries, leftover relations without join conditions,
i.e., causing cartesian products, are added, as well as aggregates and projections to
complete the respective computation.
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buildPhase1(decompRoot, isRootNode):

// special case
if isRootNode and len(decompRoot.Cover) > 1 and

len(decompRoot.Children) == 0:→
for rel in decompRoot.Cover:

if currPlan == null:
currPlan = buildDataSource(rel)

else:
newPlan = buildDataSource(rel)
expr = buildExpressionsForJoin(decompRoot,

decompRoot)→
currPlan = buildSemiJoin(newPlan, currPlan,

expr)→
currPlan = buildCTE(currPlan, rel)

return currPlan

currPlan = getCTEOrDatasource(decompRoot)

for each child of decompRoot:
childPlan = buildPhase1(child, false)
expr = buildExpressionsForJoin(decompRoot, child)
currPlan = buildSemiJoin(currPlan, childPlan, expr)

if decompRoot is not a leaf:
currPlan = buildCTE(currPlan, decompRoot)

return currPlan

Listing 4.4: Pseudocode for First Bottom-Up Traversal of Plan Builder

As an example, we are going to define a hypertree decomposition in Figure 4.4. We are
going to assume that the hypertree width is 1, and name the relations according to the
numbering of the hypertree decompositions nodes. Moreover, bags are omitted, since we
are just going to show the structure of the created join trees, not the conditions. The
intermediate plans after finishing the first phase are illustrated in Figure 4.5. Note that
the plans are created from left to right, and as soon as a plan for a relation is created,
it is used as CTE in all following plans (illustrated with an underline). Empty nodes
represent intermediate results of joins or semi-joins. In this stage, we are only conducting
semi-joins, in which, the left child defines the schema of the intermediate result after
the join. Also, the plan for 1, illustrated in Figure 4.5b will be directly returned by
buildPhase1(decompRoot, isRootNode).

The next traversal, the top-down step, is defined in Listing 4.5 as pseudocode. Here,

52



4.2. Integrating Structure Guided Query Optimization
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Figure 4.4: Example of a Simplified Hypertree Decomposition
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Figure 4.5: Resulting Join Trees After Bottom-Up Semi-Join

again, we have to consider the same special case as in the first traversal, in which the root
node of the hypertree decomposition contains all relations in its cover, without children.
Since the first traversal iterated over the hypertree decomposition node’s cover from the
beginning to the end, and used the respective last semi-joined relation as schema, plan
initially contains this schema. Therefore, we can skip this relation during the top-down
traversal. Opposite to the first traversal, the relations are semi-joined in reverse order
with the previously created CTEs. These result logical plans are stored as CTEs, with
the last one being directly returned.
Otherwise, we conduct semi-joins with each child of the current hypertree decomposition
node, such that the child defines the schema, i.e., a downward semi-join in the hypertree
decomposition is carried out. For the semi-join with the leftmost child, we can directly
use the given plan, representing the query plan for the current hypertree decomposition
node decompRoot. For all semi-joins with subsequent children of the current node, the
same data has to be reused. Therefore, a CTE(-Reader), with which the data can be
read again, is created. After building the semi-join, the result thereof is saved with a
CTE, to be made available for the following steps. The just saved plan, is then used to
recursively call the method for the current child, creating a subPlan, which is either
set as leftMostPlan, in case the current child is the leftmost child in the leftmost
branch of the hypertree decomposition, or saved as plan for the current child. The
recursion defines the top to bottom traversal. Finally, the leftMostPlan is returned.
Considering a tree, and calling the method for the root of the tree as decompRoot, the
final result will be the plan for the leftmost and deepest node. Plans saved as subPlans
are used in the third phase.

Continuing our example, the plans created during the second phase of the algorithm for
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our simplified hypertree decomposition in Figure 4.4, are illustrated in Figure 4.6. As in
the previous phase, all illustrated joins are semi-joins. Note that the only new plans, i.e.,
using DataSources, visible by not being underlined in the figure, are the leaf nodes of the
hypertree decomposition. These are not included in the bottom-up semi-join phase. For
this reason, CTEs are saved for them for the first time during this stage. The plan for
node 4 will be returned as the leftMostPlan at the end of the stage. All others are
made available via CTEs.

buildPhase2(decompRoot, plan, isLeftMostBranch, isRootNode):

// special case
if isRootNode and len(decompRoot.Cover) > 1 and

len(decompRoot.Children) == 0:→
for rel in decompRoot.Cover, penultimate to first:

newPlan = getSubplanOrCTE(rel)
expr = buildExpressionsForJoin(decompRoot,

decompRoot)→
plan = buildSemiJoin(newPlan, plan, expr)
plan = buildCTE(plan, rel)

return plan

leftMostPlan = plan
for each child of decompRoot:

if child is not the leftmost child:
plan = getCTE(decompRoot)

childPlan = getCTEOrDatasource(child)
expr = buildExpressionsForJoin(decompRoot, child)
newPlan = buildSemiJoin(childPlan, plan, expr)
newPlan = buildCTE(newPlan, child)

subPlan = buildPhase2(child, newPlan, child is leftmost
child and isLeftMostBranch, false)→

if child is leftmost child and isLeftMostBranch:
leftMostPlan = subPlan

else:
save subPlan for node child

return leftMostPlan

Listing 4.5: Pseudocode for Top-Down Traversal of Plan Builder

The final traversal step for building the plan is defined in Listing 4.6. This step unifies
the previously prepared subPlans and CTEs to a complete plan. Just as the first
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Figure 4.6: Resulting Join Trees After Top-Down Semi-Join

bottom-up traversal, this traversal again passes the hypertree decomposition from the
bottom to the top, joining along the structure of the hypertree decomposition. Also, the
special case in which the root node of the hypertree decomposition contains all relations
in its cover, without children, has to be handled again. For this reason, we traverse
decompRoot.Cover, get a subplan or CTE for each relation, and join them together
with inner joins. The final join tree is then returned. Just as in the top-down traversal,
we skip the first element of the cover, since it is already included in the given plan
parameter.
In any other case, we traverse the hypertree decomposition such that we reach the bottom,
i.e., the current plan’s CTE name, which was the result of the second step, matches
with the decomposition node. This plan is then returned and used in the parent. For
all other children, subPlans are used or CTE(-Readers) (to use the data) have to be
created. The children are one after each other inner joined with the parent, until the
root is reached again, and the join plan is finished.

Also, finishing our example, the final plan created for our simplified hypertree decom-
position in Figure 4.4, is illustrated in Figure 4.7. Note that at this point we are only
conducting inner joins. Additionally, as we can see, all the nodes are underlined now,
meaning we use the plans created in the previous phases.

3

5

4 2

1

Figure 4.7: Resulting Join Trees After Bottom-Up Join

One essential part we abstracted until now is the method buildExpressionsForJoin
(hdNode1, hdNode2), creating expressions for joins between these two hypertree
decomposition nodes. Join expressions are determined by a certain procedure. For this

55



4. Integrating Structure Guided Query Optimization into TiDB

buildPhase3(decompRoot, plan, isRootNode):

// special case
if isRootNode and len(decompRoot.Cover) > 1 and

len(decompRoot.Children) == 0:→
for rel in decompRoot.Cover, skip first element:

newPlan = getSubplanOrCTE(rel)
expr = buildExpressionsForJoin(decompRoot,

decompRoot)→
newPlan = buildInnerJoin(plan, newPlan, expr)

return newPlan

if plan is a CTE for decompRoot:
return plan

currPlan = getSubplanOrCTE(decompRoot)

for each child of decompRoot:
childPlan = buildPhase3(child, plan, false)
expr = buildExpressionsForJoin(decompRoot, child)
currPlan = buildInnerJoin(childPlan, currPlan, expr)

return currPlan

Listing 4.6: Pseudocode for Bottom-Up Join Traversal of Plan Builder

purpose, the bags of the two involved hypertree decomposition nodes are intersected.
We then collect the involved columns for each element of the intersection in different
lists. Each of the lists defines columns which should match. Consequently, each list is
traversed for elements occurring in the schemes of the given plans. If two elements occur
as columns, an equality expression is created for these columns.
Additionally, for cyclic queries, in the third phase of Yannakakis’ algorithm, we have to
check for columns which originate from the same relation, and occur in some variable
mapping (mapping bag variables to columns), or are primary keys in their original
relation, and create equality conditions for them, to avoid duplicated result tuples. This
is necessary, because for this kind of queries, it is possible that data originating from
the same relation is joined with each other. Due to aliases created for CTEs, columns
originating from the same original table and original column could be contained multiple
times across the schemes of the left and right plan. To avoid duplicates resulting from
this phenomenon, and therefore wrong query results, the respective columns have to
be compared with each other. Most importantly, legitimate duplicates originating from
bag semantics are not affected by this measure. Finally, the complete list of equality
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conditions is returned to be used for (semi-)joins.

We added an example for the above explained procedure in Figure 4.8. The illustration
shows two hypertree decomposition nodes, with their bags’ contents. To understand the
example, we just need the mapping for v5, which contains relA.ID, relB.FK and relC.FK.
The intersection of vertices just contains v5. For this reason, all elements occurring in
the respective schema, i.e., relA and relB, are taken to build equality conditions, with
the result as shown in the illustration.

v1 v5v3 v4v5

relA relB

relA.ID = relB.FK

Figure 4.8: Example for Building an Expression Between Two HD Nodes

Finishing the created query plan, just as for 0MA queries, we still need to add cartesian
joins, if there are any, and a projection to project any duplicate columns resulting from
CTE aliasing, or unused columns, like artificial row IDs, away. This plan is then handed to
the further steps of the optimizer, as illustrated in Figure 4.1. The optimizing procedure
may include some form of join reordering, optimizing to equivalent query plans, e.g.,
by changing the inner join order of the third phase of Yannakakis’ algorithm, predicate
pushdowns, and elimination of redundant expressions, as well as physical optimization.

The plan created by these algorithms already implements the essentials of structure
guided query optimization and evaluation, including Yannakakis’ algorithm. However,
we added other features, making controlling the execution easier, and further optimized
query evaluation, using database internals.

4.2.2 Further Features and Optimizations
During planning of our implementation and testing, we realized there are multiple
possibilities to give the user more control over the usage of structure guided query
optimization and execution, and further leverage internal database mechanisms, as well
as generate hypertree decompositions with higher quality. We define the quality of a
hypertree decomposition as the ability of the implied query plan to quickly reduce the
number of redundant tuples. Hence, we implemented them and tested these possibilities
for their usefulness. Our additionally implemented features and optimizations include
the following ones:

• Optimizer hint to disable structure guided query optimization and evaluation

• Optimizations in handling CTEs

• Optimizations in case it is foreseeable that the query result will be empty
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• Optimizations regarding the stability and quality of the hypertree decompositions
and the associated query plan

Optimizer Hint to disable new Implementation

The first feature is an optimizer hint, giving the user more control over the used optimiza-
tion and execution options. As other optimization features and executors can be enabled
and disabled via hints, we added a feature to disable our implementation. The respective
optimizer hint YAN_NORMAL() can be used just as any other optimizer hint, after the
SELECT keyword: SELECT /*+ YAN_NORMAL() */ * FROM .... In Section 4.1,
we already discussed how to manipulate the query parsing process in order to add new
optimizer hints.

This feature is not only useful for the actual end users, but also for our testing process, as
it enables us to switch between normal execution and structure guided execution without
patching and restarting the database.

CTE handling Optimization: CTEMock

Considering we are heavily using CTEs for our plans, and some of these CTEs are only
used once, we developed a new CTE executor, optimizing execution for these cases.
CTEs work in a way, such that at the first call of Next(...) for the CTEExec, the
whole seed plan is executed, and the result is stored in memory. This is, depending on
the amount of data, very resource intensive, especially if some of these CTEs are only
used once. So, instead of using CTEExec for these CTEs, we developed a new executor,
CTEMockExec, which just hands Next calls to the seed plan, executing the seed plan
just in time, instead of in advance, and passing-through the chunks. As we noticed during
testing, the memory resources were reduced through this measure. Although there is an
existing capability of the database to ’merge’ CTEs into plans, this did not work properly
for us, and we had to implement our own solution to this problem.

To check which CTEs are only used once, we traverse the logical plan after creating it, and
count the occurrence of every CTE ID. The counts are saved in the statement context, from
which they can be retrieved at any step during planning and execution. When building the
executor from the physical plan, in executorBuilder in executor/builder.go,
specifically the executor matching the PhysicalCTE plan, we check these counts. In case
the count for the current ID is 1, we return a CTEMockExec instead of an CTEExec in
executorBuilder.buildCTE(...). During execution, the CTEMockExec is then
used for computing the respective CTE.

Early Stop

During testing, we observed long runtimes on queries with an empty result, compared to
normal execution. Given that our test queries and dataset cover this case pretty well, we
had strong evidence of a problem to fix.
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We already discussed how to detect empty results early during query evaluation through
Yannakakis’ algorithm in Section 3.3.1. The same technique is now integrated into our
implementation to try to solve the aforementioned problem.

In our implementation, we can use the CTEs to check for empty intermediate re-
sults. We implemented the detection for CTEExec, CTEMockExec (and additionally for
IndexLookUpExecutor), in whose Next(...) methods, we set a flag in the state-
ment context as soon as an empty intermediate result is found. Conveniently, the flag
can be checked for all executors in the Next(...) wrapper function, that we discussed
in Section 4.1 on page 46. Once the flag is set, only empty chunks are returned by all
executors. This is especially important for executors in other branches of the query plan.
As we cannot revoke previously returned chunks for other executors, this measure pri-
marily reduces the amount of data to be worked on. Eventually, however, the empty
result, which would also appear without setting the flag sooner or later, will propagate to
other executors. With this measure, we aim to reduce the runtime for the aforementioned
queries.

Due to the fact that an empty result can be detected at any point during query compu-
tation, it is possible that indices and the following readers reading the respective tuples
return a differing number of tuples. Therefore, consistency checks, e.g., comparing the
number of returned tuples of IndexReaders, and their following TableReaders reading
ranges returned by the IndexReader, need to be incorporated into this feature. Since the
earlyStop feature potentially changes the number of returned tuples, we had to add an
exception to these checks.

Quality of the Hypertree Decomposition and Query Plans

As it turns out, the quality of the hypertree decompositions potentially differs in each
run, with the degree of difference dependent on the size of the query, and the width of the
hypertree decomposition. As we mentioned at the end of Section 4.1, normally, execution
times are consistent. Not so with structure guided query optimization and execution, as we
originally realized it. In our initial implementation, we used BalancedGo’s BalSepLocal
algorithm, without the possibility to add inputs considering how expensive joins between
different relations are. However, the fact that BalancedGo uses algorithms tailored
towards a lower resource usage and finding an acceptable hypertree decomposition in
reasonable time, instead of finding the best one, as we discussed in Section 3.2.2 on
page 33, makes it necessary to add further data to the computation. Consequently,
we switched the algorithm to JCostBalSepLocal, allowing us to take join costs into
account. This approach was already used by Gottlob et al. in [GLL+23]. Whereas
these join costs help with the general quality of the hypertree decompositions, they do
not rule out the occurrence of bad ones, rather just lowering the probability of bad
hypertree decompositions being created. One problem that was nearly completely solved
through this step was the occurrence of cartesian products in the plans of cyclic queries.
Cartesian products occur in case the hypertree width is 2, and the respective relations
in the hypertree decomposition nodes’ cover are not sufficiently covered by the vertices
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in the bag, such that there exists no join condition between them. One essential part
responsible for this was how we created the join costs. The costs are created based on the
hypergraph of the query. Each pair of relations and their vertices are compared. Costs
for a potential join between each of the involved relations are defined as follows:

• In case there are no conditions applying to a potential join, we set the cost to
100000000.0, since this reflects a cartesian product, which should be avoided.

• If there is a direct relationship, meaning the vertices applying to one relation are a
subset of the vertices applying to the other relation, we set the cost to 1.0.

• For any other relationship, the number of rows in the table is taken into account:
1 + (1 + rowCount1

10000 ) ∗ (1 + rowCount2
10000 ). The goal of the formula is for the cost to be

above the 1.0 of direct relationships (including some difference), below 100000000.0
of cartesian products (hence, we use rowCount

10000 ), and to reflect the worst case
result rowCount, by multiplying the rowCounts of the involved relations, with
guarantee that the factors are at least 1.0, to create a difference compared to a
direct relationship. In any case, the resulting cost is at least 2.0.

Row counts are retrieved from the databases internal statistics, slightly changing the
architecture of the plan builder, as shown in Figure 4.9.
Although the above-mentioned optimization improves the quality of hypertree decom-
positions, their quality still fluctuates from run to run. To improve this situation, and
even out these fluctuations, we added another feature, secondaryPlans. SecondaryPlans
creates three plans instead of one during plan building. After physical optimization, the
plan’s costs are compared and the best one is chosen for execution. We classify this
feature as part of the physical optimizer, since this is when the final decision which plan
to use is made. The main manipulations for computing secondary plans are contained in
PlanBuilder.buildSelect(...), building the initial secondary plans, as well as
optimize(...) in planner/optimize.go, where the creation of the physical plan
is invoked, and the decision for a plan is made.
Originally, we planned to fully parallelize the creation of secondary plans, their hypertree
decompositions, and the respective optimizer stages. However, it turned out that the
optimization process heavily relies on a set of shared context variables, which did not allow
us to parallelize the optimization process. Additionally, BalancedGo, as we use it, does
not seem to be fully designed to be used for inter-query parallelization, which not only
includes decomposing multiple queries at once, but also creating multiple decompositions
for the same query at once. This is due to the usage of global variables, especially in
the parsing process, through which different go routines influenced each other. This
problem is, as already mentioned, not restricted to secondary plans, but also existent
for concurrent operation of the database, working on multiple queries at the same time.
A solution for this problem would be to use a precompiled binary of BalancedGo, and
invoke it in child processes. Still, we decided to use BalancedGo as library for now, as
our testing procedure does not include concurrent queries.
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Figure 4.9: Plan Builder with Structure Guided Query Evaluation Including JoinCosts

4.3 Final Architecture
At the end, we want to take a look at the final architecture, and which components in
the flow of processing the query were changed. In Figure 4.10, we marked the changed
components with a red highlight on the illustration. An optimizer hint was added to the
parser, followed by the main query rewriting in the plan builder, decomposing the query
and realizing Yannakakis’ algorithm in the form of a query plan. The decomposition
with join costs also incorporates database statistics. Secondary plans are created in the
plan builder. Subsequently, the final plan is chosen in the physical optimizer. Lastly,
local executors are modified to include the CTEMockExec, easing resource usage during
query execution. In addition, for queries for which it is foreseeable that the result will be
empty, the resource usage is reduced with the earlyStop feature.
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Figure 4.10: Implementation Architecture of TiDB with Changes marked Red - SQL
Layer [Pin23j]
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CHAPTER 5
Experimental Evaluation

In this chapter, we are going to report on experimental evaluations on several aspects
of our implementation, beginning on the usefulness of our additional features, assessing
their performance and benefits compared to not having these features. Moreover, we will
evaluate the complete implementation including all beneficial features. We are going to
determine reasons for the results, and conduct a discussion about them.

The goal of this chapter is to collect data of the performance of our implementation,
compared to normal query execution, enabling us to draw a conclusion whether structure
guided query optimization and execution, as we integrated it in TiDB, provides benefits
for query execution.

5.1 Methodology
The methodology of our tests and evaluations mainly includes the setup in terms of
hardware and software, the data we use for our tests, and the associated queries. In some
scenarios, the used software versions, especially the used TiDB database engine, and the
execution modes, are different to others. Additionally, depending on the goal of the test,
all queries or subsets thereof are executed. However, these cases will be marked and
explained in their respective sections.

5.1.1 Setup
Our setup consists of a cluster of VMs with specifications as listed in Table 5.1. Our
setup is oriented on the recommendations by PingCap for a TiDB test cluster [Pin23i].
Moreover, we modified the amount of resources of some machines after conducting initial
tests. The machines of the cluster run Ubuntu 22.04 LTS. Our implementation is compiled
on one of our machines in the test cluster, Monitor01, running Go version 1.20.6. We
use TiUP to manage the TiDB database cluster. The base version of the TiDB cluster
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Host CPUs RAM Storage Roles

Monitor01 4 8 GB
Basic

100 GB Disk for Repo
200 GB Disk for TiDB

TiUP
Test-Manager & Executor
Build new TiDB patches

Monitor02 4 8 GB Basic
200 GB Disk for TiDB

TiDB Monitoring (
Prometheus,

Grafana,
Alertmanager

)

Compute01 8 64 GB Basic
200 GB Disk for TiDB

TiDB DB Engine
PD

Storage01 8 32 GB Basic
200 GB Disk for TiDB TiKV

Storage02 8 32 GB Basic
200 GB Disk for TiDB TiKV

Storage03 8 32 GB Basic
200 GB Disk for TiDB TiKV

Table 5.1: Test Cluster Setup

is v7.2.0. Our implementation is based on TiDB v6.7.0-alpha. The roles assigned to
machines, regarding to TiDB and test execution, are listed in Table 5.1. All machines,
except of Monitor01, are dedicated solely to the TiDB cluster. Monitor01 manages the
cluster, contains a clone of our source code repository, used for building new versions
and patching the database, and manages and runs the experiments.

By default, the memory quota for a query in TiDB, is set to 1 GiB. This gives every query a
possible amount of memory of up to this quota. If this quota is exceeded, the database ac-
tively tries to stop the corresponding query. [Pin23l] We quickly realized that we are not go-
ing to be very effective with this low quota. Therefore, we raised the quota multiple times,
until finally reaching 56 GiB. The quota can be set with an SQL client through the follow-
ing command: SET GLOBAL tidb_mem_quota_query = 56 << 30;, and checked
with show global variables like 'tidb_mem_quota_query';. The respec-
tive value for our cluster after setting the quota is 60129542144 bytes, which is equivalent
to 56 GiB.

To limit the time spent for testing, and keep the runtimes at a reasonable level, we
set the timeout for a query to 15 minutes. This can be done with the optimizer hint
MAX_EXECUTION_TIME([durationInMS]). If a query takes longer than the given
time, the database actively tries to stop the query. In case this is not possible, which
happens from time to time, our testing scripts manually restart the database by issuing
the shutdown command. TiUP automatically restarts the database again.

Figure 5.1 illustrates the flow of our tests. In this illustration, the database is assumed
to be setup, and fully initialized with test data. The left part of the figure shows the
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Repository

Pull

Build

Patch

DB Cluster

Command

TestWrapper

TestScript

Execute Queries

Output

Manual Evaluation
DB Logs

Figure 5.1: Test Flow

process of patching the database system with a new TiDB database engine. To do that,
we pull the version to a local repository, where the build process is initialized. The built
and prepared binary can then be used to patch the database cluster.
Tests are executed through a command to either our test wrapper script, or our test
script, both written in python. The difference between them is that the test wrapper
detects failures and queries running longer than allowed, in case the database system
fails to automatically stop a query. We run queries either with explain to just create
a plan, or with explain analyze, to also execute the plan. Additionally, for 0MA
queries, we run the plain select statement for validation of the returned data. Other
queries are validated through the number of result tuples returned. The output data,
including runtimes, explain, explain analyze, and validation outputs is stored.
Together with the database logs, which contain further data about memory consumption
of queries, etc., the output is then manually, respectively semi-automated, evaluated. All
elements shown in the illustration take place, or are located on Monitor01, except the
database cluster and the final (manual) evaluation.

5.1.2 Testdata

For evaluating our implementations with queries, we need some data. The requirements
to our test data are that the schema is comprised of a medium to high number of relations,
and that the amount of data is big enough to be able to recognize situations in which
intermediate results of queries are getting too big to compute them. We found a good
test dataset which complies with our requirements, the MusicBrainz database [MF23].
This dataset has already been used in previous works of Gottlob et al. [GLL+23], working
with structure guided query optimization, and Mancini et al. [MKC+22], working on
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parallel join computation. The MusicBrainz database consists of 232 relations, with 55
relations relevant for our tests, ending up with 30 - 40 GiB of data in each of our TiKV
nodes, including redundancy among the nodes.

We created the schema and inserted the data once on our cluster, working on the same
data for the whole time of experimentation.

5.1.3 Queries
Mancini et al. [MKC+22] also provided queries for the MusicBrainz database, ranging
from 2 to 30 involved relations. 84 out of 435 queries are of hypertree width 2, meaning
cyclic queries, all others are acyclic, with hypertree width 1. We use two sets of
queries, first, full enumeration queries, essentially selecting all columns of the result with
SELECT * FROM ..., and 0MA queries used in the previously mentioned paper by
Gottlob et al. [GLL+23], using functions like min and max to compute an aggregate over
the output. For some of our tests, we may only use a subset of the queries. Our tests
include running the aforementioned queries sequentially, one at a time. We refer to the
execution time of the query plans’ root executor as query runtime.

5.2 Feature Evaluations
In the following section, we will discuss the evaluations for our additional features, and
assess their performance and usefulness.

5.2.1 CTE Mock
For the tests of CTEMock, we ran all queries on the basic implementation and the basic
implementation including the CTEMock feature. The full enumeration and 0MA queries
were run with separate planning (explain) and execution (explain analyze) runs.
We conducted one run per implementation.

We expected the results to show a lower memory usage with CTEMock for the majority of
the queries. Additionally, as the memory usage is expected to be lower, we also expected
CTEMock to be able to run more queries than the basic version (without exceeding the
memory quota).

Results

The results more or less reflect our expectations for the CTEMock feature. As we can
see in Figure 5.2, where each line on the x axis shows one query, and the green or red
line show an advantage in form of a positive difference in regards of memory usage to
CTEMock (red) or basic (green), the feature benefits 0MA queries (244 queries better
with CTEMock vs. 59 queries better w/o CTEMock) more than full enumeration queries
(153 vs. 97). Other than expected, this does not reflect on the number of unsolved
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(a) Memory Difference Plot Full Enumeration

(b) Memory Difference Plot 0MA

Figure 5.2: CTEMock Evaluation: Memory Difference Plots. Green: w/o CTEMock
better, Red: with CTEMock better

instances, as CTEMock solves the same number of instances as basic in full enumeration,
and three instances less than basic with 0MA queries.

Interestingly, in terms of runtime, full enumeration without CTEMock is better for 153
instances, compared to 91 with CTEMock. 0MA queries turn the results, with CTEMock
being faster for 196 instances, compared to 107 without CTEMock. Additionally, this
can be clearly seen in the corresponding plots in Figure 5.3.

In both aspects, memory usage and runtime, we saw a better result for CTEMock with
0MA queries. We think this is due to the fact that 0MA queries only use CTEMocks,
other than full enumeration queries, where CTEMocks play a minor role regarding the
amount of data being handled by them. With 0MA queries, the whole result for all
hypertree decomposition nodes, especially the root’s result, which would otherwise need
to be persisted in case of full enumeration queries, is handled by CTEMocks.

With the results in mind, we conclude that CTEMocks are an effective measure to reduce
resource usage through CTEs in our implementation of structure guided query execution.
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(a) Runtime Scatterplot Full Enumeration, Ex-
cerpt

(b) Runtime Scatterplot 0MA Queries, Ex-
cerpt

Figure 5.3: CTEMock Evaluation: Runtime Scatterplots. Above Red Line: w/o CTEMock
better, Below: with CTEMock better

5.2.2 Join Costs
Early in our testing process, we saw that the quality of hypertree decompositions heavily
varies. Also, for cyclic queries, there were a lot of plans including cartesian products, thus
being potentially inefficient. The joinCosts feature was built to fix these aspects. For
evaluating the feature, we conducted 5 runs of just plan creation of all full enumeration
queries for the joinCosts feature and the basic implementation. Additionally, we ran all
full enumeration queries for these two versions.

Our expectations were the elimination of a majority of the plans with cartesian joins.
Moreover, due to better quality of hypertree decompositions, we expected lower runtimes,
and, with the two mentioned effects combined, more solved instances.

Results

Regarding the planning of all queries, our results clearly show an improvement, lowering
the average number of cartesian products per run by almost 72% across all full enumeration
queries, with the joinCosts feature, as illustrated in Figure 5.4a. Our expectations were
met in this regard.

As visible in Figure 5.4b, the majority of datapoints lies underneath the red line, indicating
a runtime advantage for the joinCosts feature. Looking at the exact values of queries
solved by both versions, joinCosts has a clear advantage with 130 queries faster with
joinCosts vs. 116 queries faster with the basic version. Also, while the basic version has
173 unsolved instances, the joinCosts feature just fails with 139 instances.

The situation is even more clear for cyclic queries. Of 84 cyclic queries included in our
test queries, 80 are unsolved with the basic implementation, however, only 45 with the
joinCosts feature, a reduction of over 40%.
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(a) Average Number of Plans including
Cartesian Products over 5 Planning Runs

(b) Join Costs Evaluation: Runtime Scatter-
plot, Excerpt

Figure 5.4: Join Costs Evaluation: Number of Plans with Cartesian Products and
Runtime Scatterplot

The results clearly show the benefits of the joinCosts feature, additionally to the fact
that a similar idea was already used by Gottlob et al. [GLL+23]. Hence, this feature will
be included in the final implementation.

5.2.3 Early Stop
Queries with an empty result are especially well represented in our test queries. Specifically,
the queries with a higher number of involved relations often do not have tuples in their
results due to the many conditions applying to them. To help improve these cases, we
implemented the earlyStop feature.

For evaluating the effects of this feature, we conducted a test run of about a third of
our full enumeration test queries, mostly with non-empty results, to check if there is
an impact on these. Besides, we ran all full enumeration queries with empty results, to
see if there are any benefits caused by the newly added feature. The resulting data is
compared with the basic implementation.

We are looking for an improvement of runtimes and resource usage (in particular memory
usage) for queries with empty results through the feature, along with no negative impact
on other queries.

Results

This time, the result for the empty result queries was worse than our expectations.
Especially in terms of runtime, the earlyStop version and the basic version had a tie
in number of instances where one of each was better. This is clearly visible in the
distribution of datapoints in Figure 5.5a. Nonetheless, a look at the average runtime
difference of these queries shows us a 25 second benefit for earlyStop, with a 40 ms

69



5. Experimental Evaluation

(a) Empty Result Queries Runtime Scatterplot,
Excerpt

(b) All Queries Runtime Scatterplot,
Excerpt

Figure 5.5: Early Stop Evaluation: Runtime Scatterplots

median advantage. EarlyStop and the basic version solved nearly the same number of
instances, with an advantage of one instance for the basic version. In terms of memory
usage, there is a clear benefit on the earlyStop version, with 57 instances using less
memory than basic, in comparison to 40 instances using more memory than basic. More
so when inspecting the average of memory differences, for which earlyStop uses 1.1 GB
less memory than the basic version, along with the median testifying earlyStop uses 26
MB less memory per query.

The check for other queries shows no visible pitfall whatsoever. There is even an
improvement without any changes in the execution flow of these queries, also visible in
Figure 5.5b. We explain this improvement with the variation of hypertree decomposition
quality, and a coincidence in accumulation of better hypertree decompositions.

Following, although the results were not as clear as expected, we see earlyStop as a
notable addition to our basic version. Especially as there is no drawback for queries with
a non-empty result. Also, we should keep in mind that the effect of the earlyStop feature
is dependent on the depth of the first empty result in the query plan, as well as the point
in time (empty result occurs quickly vs. empty result occurs later), at which the empty
intermediate result is detected. Depending on these factors, the impact could vary in
each run, from a significant improvement to no improvement at all. However, we see no
case where worse results, solely caused through this feature, could happen.

5.2.4 Secondary Plans
The secondaryPlans feature is meant to further increase the quality of query plans. We
evaluated this feature along with the basic version, as well as in combination with the
joinCosts feature. This is because the joinCosts feature and this feature have the same
overall goal of increasing the query plan quality. Therefore, it is possible that the extent
and measure of benefits is affected by the combination of these two features.
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We introduced a way to measure the effect of secondaryPlans with this feature, by logging
the initial cost of the physical plan, as well as the final cost of the physical plan. In
this way, it is possible to measure to which extent the query plan improved through the
secondaryPlans feature.

The method of testing for this evaluation contained 5 runs of creation of plans for all full
enumeration queries with the secondaryPlans feature, and combined with the joinCosts
feature. With this data, percentage improvements for these two versions, compared to
the initial plan computed with the basic version, or in the combined version, compared
to the joinCosts feature, can be recorded.

Additionally, we chose 4 full enumeration queries with 4, 6, 11, and 30 involved relations,
one of which is a cyclic query (11ag), to directly compare the execution with the basic
version, secondaryPlans, and secondaryPlans combined with joinCosts, over 5 runs.

We expected to see improvements in query plan costs by the secondaryPlans feature,
simply because with more tries and differing hypertree decompositions, there is a higher
probability of computing a better plan. Moreover, combined with the joinCosts feature,
it is possible that the improvements are lower than without this feature. Due to the fact
that, when including the joinCosts feature, more consistent hypertree decompositions are
produced, the probability for bigger differences in plan costs is less.

Results

The results of the test show the effects of the two additional features secondaryPlans
and secondaryPlans combined with joinCosts. Since the queries gain complexity, and
therefore their hypertree decompositions are more complex, including more possible
results, with a rising number of involved relations, we separated the queries in three
equal sized groups, from a list of queries ordered by rising number of relations, to reflect
their complexity (i.e., Group 1 ∼ 2-10 relations, Group 2 ∼ 11-20 relations, Group 3 ∼
21-30 relations). Each group has a higher query complexity than the previous one. The
formula for calculating the percentage improvements is as follows: (1 − costafter

costbefore) ∗ 100.

In Table 5.2, we can see that with rising number of involved relations, a higher rate of
improvement is achieved. Furthermore, the discrepancy between averages and medians
indicates outliers on the upper range of values, with the majority of values being in the
lower range. Reviewing the boxplots of the distributions confirms the situation.

As expected, the improvement of plans for the combination of the joinCosts and sec-
ondaryPlans features is lower than without joinCosts. Also, the range of results from
the runs indicate a slightly lower variation. The additional planning time, as listed
in Table 5.3, is consistent between these two versions, and increases with rising query
complexity.

The single queries executed generally show a visible difference between the runtime with
the basic version and the other two versions in Figure 5.6. Especially Figure 5.6c, for the
cyclic query 11ag, illustrates the difference in quality of the hypertree decompositions
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achieved through multiple tries with secondaryPlans, where 4 out of 5 executions timeout,
compared to the combined version in which only 2 out of 5 executions run into the
timeout. Moreover, the basic version runs into timeout on every execution. As observed
before, improvements between the basic version and the other versions are higher for
more complex queries.

Besides, we can clearly see that even with our improvements, bad hypertree decomposi-
tions, and therefore bad query execution plans with long runtimes, occur. Examples are
the red execution by the secondaryPlans version for query 4ag, or the timeout by the
combined version for query 30ag.

Concluding this evaluation, we see the improvements for the used runtime as worthwhile,
in particular considering the improvements for cyclic queries, and queries of the second
and third group. Even if the combination of the two aforementioned features lowers the
effect of secondaryPlans, it is definitely beneficial to integrate these two additions into
the final version of our implementation.

secondaryPlans joinCosts&secondaryPlans
Group 1 Avg. 6 - 8 % 6 - 8 %
Group 1 Med. ∼ 0 % 0 %
Group 2 Avg. 25 - 33 % 20 - 26 %
Group 2 Med. 2 - 15 % 4 - 6 %
Group 3 Avg. 39 - 51 % 30 - 37 %
Group 3 Med. 10 - 47 % 8 - 18 %

Table 5.2: Secondary Plans & Join Costs Evaluation: Improvements (%) over Init Plan

secondaryPlans joinCosts&secondaryPlans
Group 1 Avg. PT 5 - 6 ms 5 - 6 ms
Group 1 Med. PT 5 - 6 ms 5 - 6 ms
Group 2 Avg. PT 18 - 20 ms 18 - 19 ms
Group 2 Med. PT 16 - 18 ms 17 - 18 ms
Group 3 Avg. PT 42 - 79 ms 43 - 44 ms
Group 3 Med. PT 38 - 41 ms 38 - 41 ms

Table 5.3: Secondary Plans & Join Costs Evaluation: Additional Planning Time (ms)
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(a) Query 04ag, Full Enumeration (b) Query 06an, Full Enumeration

(c) Query 11ag, Full Enumeration (d) Query 30ag, Full Enumeration

Figure 5.6: Secondary Plans & Join Costs Evaluation: Runtime (ms) over 5 Runs

5.2.5 Summary

Summarized over all feature evaluations, we can conclude that all features have their
benefits, making their integration into the final version irresistible. Even considering the
downsides, which especially occur because of the combination of secondaryPlans and join-
Costs do not overrule this decision. Consequently, we will integrate all four optimizations,
CTEMock, joinCosts, earlyStop, and secondaryPlans, into the final implementation,
which is then considered for the main evaluation.
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5.3 Main Evaluation
The evaluation of the final version was conducted in multiple runs for our implementation,
and one run for normal query evaluation, since there are no differing plans, and therefore
no fluctuations in query runtime, expected. Among the runs, we chose the result with
the respective lowest runtime as base for our evaluations. We ran the full enumeration-,
and 0MA queries, acyclic- and cyclic queries, for both, the normal query evaluation, and
our final implementation.

Our expectations included some improvements through structure guided query optimiza-
tion and evaluation in terms of runtime and solved instances. As we already discussed in
Section 4.2 on page 48, the CTEs used in the plans result in increased memory usage.

5.3.1 Results
The overall results show a benefit for structure guided query optimization for some queries,
confirming the advantages of this approach, compared to normal query evaluation. The
results are better for full enumeration queries than for 0MA queries, despite the need for
only one phase of Yannakakis’ algorithm with 0MA queries.

Full Enumeration

As mentioned, we see an improvement in runtime for some queries, however, the majority
of queries still evaluates with a faster runtime through the original version of the database
system, with 125 instances being solved faster through structure guided query evaluation,
compared to 180 with the original evaluation and optimization, as can be seen in Figure 5.7.
Figure 5.8 presents the extent of runtime differences between the two versions. A bar
going all the way to the top or bottom of the diagram represents a query solved by one
of the two implementations. Missing bars show queries for which none of the versions
was able to calculate a solution before running into the timeout, or out of memory. Our
implementation also holds a little advantage of one query in instances solved.

As expected, the memory usage is higher in our implementation for a majority of the
queries, where 274 instances use less memory when evaluated with normal query evalua-
tion, compared to 32 with our implementation. On average, the original implementation
uses 2.8 GB less memory when evaluating one of the queries. This one-sided relation is
also illustrated in Figure 5.9. Other than we would have expected, instances with the
biggest memory benefit for our implementation are not characterized by exceptionally
high memory usage when evaluated with the normal version.

Cyclic and acyclic queries replicate the situation with 30-45% of the instances being
faster with our implementation when both versions solved them, and the benefit for the
majority on the side of the original version (14 vs. 27 instances for cyclic queries, 111
vs. 153 instances for acyclic queries). The memory benefit remains as in the overall
picture, with an advantage towards the original implementation. Considering the number
of solved instances, our implementation still holds a favor of three instances over normal
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(a) Runtimes up to 10 Seconds (b) Runtimes up to Timeout (900 Seconds)

Figure 5.7: Final Evaluation: Full Enumeration Overall Runtime Scatterplot

Figure 5.8: Final Evaluation: Full Enumeration Runtime Differences (ms); Red Shows an
Advantage for the Original Version, Green for our Implementation; one Bar per Query

evaluation and optimization for acyclic queries. However, looking at cyclic queries, our
implementation solves two instances less.

To identify any correlations of the results with the size and complexity of the queries, we
separated our test queries into 10 roughly equal sized groups, created from a continuous list
of queries. The results are illustrated in Table 5.4. Regarding runtime, our implementation
prevails in the first two groups, with additional close results in groups 3 and 7. The
memory counts repeat the data from before, testifying our implementation a disadvantage.
In the matter of solved instances, the data shows a tie. Although this characterization
into groups shows us that there is a potential advantage for our implementation for
smaller queries, there are other factors, like cyclicity, which first appears in a 09xx query,
and is larger represented in higher groups, and queries with an empty result, which we
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Figure 5.9: Final Evaluation: Full Enumeration Memory Usage Differences; Red Shows
an Advantage for the Original Version, Green for our Implementation; one Bar per Query

Group Queries Runtime count
(SGQE vs. Normal)

Memory count
(SGQE vs. Normal)

Unsolved instances
(SGQE vs. Normal)

0 02aa - 04an 23 vs. 19 7 vs. 35 2 vs. 2
1 04ao - 07am 25 vs. 14 7 vs. 33 4 vs. 4
2 07an - 10al 15 vs. 21 0 vs. 36 6 vs. 7
3 10am - 13ak 13 vs. 16 1 vs. 28 12 vs. 14
4 13al - 16aj 11 vs. 21 1 vs. 31 12 vs. 12
5 16ak - 19ah 7 vs. 22 3 vs. 26 12 vs. 14
6 19ai - 22af 9 vs. 16 2 vs. 23 16 vs. 17
7 22ag - 25ad 10 vs. 10 5 vs. 15 18 vs. 17
8 25ae - 28ab 7 vs. 20 2 vs. 25 13 vs. 13
9 28ac - 30ao 5 vs. 21 4 vs. 22 15 vs. 11

Table 5.4: Final Evaluation: Full Enumeration Groups and Results

will take a look at next.

These queries with an empty result, which we name zero result queries, are prominently
represented in our test database, as we identified over 150 instances meeting this require-
ment. We filtered the results to take a look at these queries. Thus, we saw that our
implementation performs worse with these queries than overall. The runtime is better
with normal query evaluation for 102 queries, whereas our implementation dominates in
28 cases, as illustrated in Figure 5.10. Additionally, structure guided query optimization
and evaluation has 16 instances unsolved, with only 5 for the original implementation.

On the other hand, non-zero result queries, queries whose result is not empty, of which
over 280 are contained in our test queries, seems to deliver a better result for our
implementation. It has better runtime for the majority of these queries (97 vs. 78), as
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Figure 5.10: Final Evaluation: Full Enumeration Zero Result Queries Runtimes Scatter-
plot, Relevant Part

(a) Runtimes up to 10 Seconds (b) Runtimes up to Timeout (900 Seconds)

Figure 5.11: Final Evaluation: Full Enumeration Non-Zero Result Queries Runtime
Scatterplot

shown in Figure 5.11, and solves 12 instances (11%) more, than normal query evaluation.

Following this result, we had the assumption that big results suit our implementation
better than small or empty results. We could check this assumption with the 20 queries
with most and least (i.e., all zero result queries) result tuples. Other than expected, both
groups show a benefit for the original query evaluation.

0MA

The overall situation with 0MA queries is similar as with full enumeration queries. Our
implementation has a better runtime for some instances. However, the majority of
instances still evaluates faster with the original version of the database system. Our data
shows a runtime advantage in 250 instances for the conventional optimizer and evaluation,
as opposed to 106 instances for structure guided query optimization and evaluation. In
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(a) Runtimes up to 10 Seconds (b) Runtimes up to Timeout (900 Seconds)

Figure 5.12: Final Evaluation: 0MA Overall Runtime Scatterplot

the runtime diagrams in Figure 5.12, we can see that the results are densely packed
parallel to the x axis, with an advantage for normal evaluation. Also, there are some
outliers further along the x and y axis, representing exceptionally good results for one of
the two versions.

Regarding the memory usage, although for 0MA queries, only the first phase of Yannakakis’
algorithm is needed, normal evaluation has a big lead of 344 instances using less memory
than our implementation, compared to 13 instances for structure guided query evaluation.
Following, on average, an instance uses 2.3 GB less memory with the conventional
evaluation than with our implementation.

A statistic which gives our version an advantage is the number of solved instances. It
manages to solve 26 instances (45%) more than the original version.

As with full enumeration queries, the statistics continue as before regarding the groups
of cyclic and acyclic queries, evaluated on their own. Our data shows that cyclic queries
are handled worse by our implementation, with 8 vs. 41 instances having lower runtimes
with structure guided query evaluation vs. the original query evaluator. Acyclic queries
deliver a slightly better ratio with 98 vs. 209 instances in favor of the respective version.
Interestingly, our implementation seems to be more performant in handling hard instances
of acyclic queries (60% less unsolved instances than normal evaluation), compared to
hard instances of cyclic queries (20% less unsolved instances).

We proceeded to separate the queries into 10 groups, matching with previous groups
created for full enumeration queries. The runtime counts in Table 5.5 show fluctuating
results. Apart from the weaker results for structure guided query execution for the last
two groups, there is no dominating trend towards one or the other version. In terms of
unsolved instances however, there is an advantage for our implementation in the matter
of the trend of unsolved instances. For the conventional version, the number rises quicker
than for our version, indicating an advantage for structure guided query execution with
rising query size.
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Group Queries Runtime count
(SGQE vs. Normal)

Memory count
(SGQE vs. Normal)

Unsolved instances
(SGQE vs. Normal)

0 02aa - 04an 13 vs. 31 1 vs. 43 0 vs. 0
1 04ao - 07am 11 vs. 32 2 vs. 41 1 vs. 0
2 07an - 10al 12 vs. 30 1 vs. 41 1 vs. 1
3 10am - 13ak 19 vs. 20 0 vs. 39 3 vs. 3
4 13al - 16aj 11 vs. 28 1 vs. 38 2 vs. 4
5 16ak - 19ah 12 vs. 25 3 vs. 34 1 vs. 6
6 19ai - 22af 8 vs. 20 2 vs. 26 5 vs. 12
7 22ag - 25ad 10 vs. 15 0 vs. 25 9 vs. 11
8 25ae - 28ab 5 vs. 25 1 vs. 30 4 vs. 9
9 28ac - 30ao 5 vs. 24 2 vs. 27 5 vs. 11

Table 5.5: Final Evaluation: 0MA Groups and Results

0MA queries previously identified as zero result queries produce a better percentage of
instances with lower runtimes for our implementation, than with full enumeration queries,
with 41 instances for our implementation vs. 92 instances for the original evaluation
being solved faster than the respective other version. Yet, we still see more unsolved
instances, with 14 vs. 6, with structure guided query evaluation.

Whereas the full enumeration result showed a benefit for our implementation for non-zero
result queries, this is not true for 0MA queries, where our implementation is better for
only 30% of the queries.

5.4 Discussion
Now, we are going to discuss and analyze the aforementioned results. First, we focus
on the memory usage. The increased memory usage by our implementation is the
consequence of temporarily storing intermediate results for the execution of Yannakakis’
algorithm. Moreover, we see that in 0MA queries, our implementation is not as far off
of the conventional evaluation as with full enumeration queries, on average 2.3 GB vs.
2.8 GB. This is a direct impact of the reduced complexity of plans created for 0MA
queries, which only contain the first phase of Yannakakis’ algorithm. Also, we assume
this as the reason for the lower number of unsolved instances by structure guided query
execution, compared to the original implementation, for 0MA queries, as opposed to full
enumeration queries.

As we saw in the test results, 0MA queries are handled more performantly by the original
version, than full enumeration queries. Therefore, the ratio where our implementation is
performing better is higher with full enumeration queries (40%), than with 0MA queries
(30%).

One reason for this behavior could be the usage of DistSQL operations via coprocessor on
the distributed storage, which allow some computations to be performed on the storage
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nodes. One of these operations is a selection filter when fetching data via a Table- or
IndexReader. As we found out when reviewing some query plans, the DBMS already
tries to implement an approach to reduce the number of redundant tuples, only fetching
matching rows for the current join operation. This is especially useful in combination
with various types of IndexJoins, in which only matching index entries are read from the
storage. Thus, there is no redundant computation on this immediate join, since every
fetched tuple matches.

Our implementation, however, rarely uses coprocessor functions besides simple fetching.
Normally, the physical optimizer should automatically recognize these possibilities. How-
ever, this is not always the case. As a result, some operations, for instance when fetching
big relations, add a noticeable delay to query evaluation.

Figure 5.13 illustrates an execution plan created by the conventional optimizer and
evaluator, heavily using coprocessor tasks (marked red in the illustration). The two
leftmost and deepest coprocessor tasks do not contain any additional condition. The
remaining ones, however, include equality conditions adopted from the above joins.
Subsequently, they only return matching tuples for the current joins. In particular, the
join with the recording relation, which contains around 30 million tuples, is sped up
significantly through this measure, reducing the number of fetched tuples to roughly
372000.

Additionally, plans created by the original implementation are oriented on the indexes of
the database, which is not the case for our implementation, realizing the plan implied by
the hypertree decomposition. This does not rule out usage of indexes at all, they are used
as soon as it is possible to use them. However, with structure guided query optimization,
the plan is not primarily built to optimally utilize all possible indexes, since the hypertree
decomposition specifies the join order without the knowledge of existing indexes.

We saw a huge variation of up to multiple orders of magnitude in runtime of queries
run with structure guided query optimization between different runs. We think this is
primarily due to the varying quality of hypertree decompositions. Quality of hypertree
decompositions, in our view, is defined by the ability of the implied query plan to reduce
the number of redundant intermediate result tuples as quickly as possible. Additionally,
the runtime fluctuations for queries with empty results can be explained with the
differing effect of the earlyStop feature. Query plans produced by structure guided query
optimization and execution contain more steps than conventional query plans, causing a
higher runtime. Additionally, the earlier an empty intermediate result is detected by the
earlyStop feature, the earlier the query finishes. However, if this happens at a later point,
the query ultimately runs longer. The point of detection is primarily determined by the
hypertree decomposition. Hence, differing hypertree decompositions yield different query
runtimes.

Figure 5.14 illustrates two plans for an instance giving structure guided query evaluation
the better runtime. On the left side, the plan created for the third phase of Yannakakis’
algorithm by our implementation is shown, on the right side the conventional plan. CTEs,
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5.4. Discussion

StreamAggregation

IndexHashJoin

IndexJoin

MergeJoin

IndexLookUp
release_group

IndexReader
release_group_primary_type

IndexReader
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eq(artist_credit.id,
release_group_primary_type.artist_credit)

IndexReader
recording

eq(recording.artist_credit,
artist_credit.id)

Figure 5.13: Execution Plan of 04aa as 0MA Query with the Original Version

plan nodes with a subtree underneath them, are outlined in orange, coprocessor tasks in
red. As we can see, the number of rows in the CTE nodes, which already passed through
the semi-join stages, are far less than on the conventional plan. Although the conventional
plan uses selections through coprocessor tasks twice, it is not possible to achieve the
same effect as with structure guided query evaluation, since coprocessor selections do
only optimize locally, for the current join. Albeit our implementation added the semi-join
stages, the final runtime is far lower than with the conventional plan, because of less
tuples to be handled during the inner joins.

In conclusion, it is clearly observable that there are cases, distributed over all types
of queries, in which structure guided query optimization and evaluation show their
advantages and outperform conventional query execution. Moreover, there is a class of
queries performing better than others. In particular, full enumeration queries, whose
result is expected to be non-empty, are the best performing group of queries, with a
benefit for structure guided query evaluation in a majority of instances, according to our
evaluation. Additionally, the number of failed instances for 0MA queries were significantly
reduced. However, we should keep in mind that there are still big fluctuations in query
execution times from run to run. Therefore, sensible usage of this technique should
always consider the expected plan costs, compared to conventional plans, to get the
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5. Experimental Evaluation
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Figure 5.14: Comparing two plans: 05al by the Original Version vs. Our Implementation

biggest benefit possible and exclude worse query plans. Nevertheless, structure guided
query optimization, as we implemented it, is a notable addition to an existing query
optimizer, resulting in a lower runtime for some queries.
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CHAPTER 6
Conclusion

In this thesis, we have investigated how structure guided query optimization can be
used to reduce query runtimes and minimize the number of unsolved queries through
memory exhaustion or timeouts. Furthermore, we presented our implementation realizing
structure guided query optimization and evaluation through Yannakakis’ algorithm in
the NewSQL DBMS TiDB for acyclic and cyclic queries, with a hypertree width up to
2 (i.e., almost acyclic queries). Our implementation manages to execute all stages of
Yannakakis’ algorithm in one statement through usage of CTEs. Finally, we conducted
an evaluation comparing our implementation with the database systems’ conventional
query optimizer and evaluator.
An analysis of several query plans showed that the quality of hypertree decompositions,
i.e., the ability of the implied query plan to reduce the number of redundant tuples
quickly, is crucial for the quality of the resulting query plan, and therefore the ability to
compete with conventional query evaluation. We therefore added measures to keep the
quality of hypertree decompositions high, including the creation of multiple hypertree
decompositions competing with each other, considering the physical plan costs of their
implied plans.
The results of our evaluation indicate benefits for structure guided query evaluation for
some of our test queries, with 40% of the full enumeration queries being executed with
lower runtime than with the original DBMS. Furthermore, the need to temporarily store
intermediate results for the execution of Yannakakis’ algorithm caused the memory usage
to be slightly increased. However, we avoid an exponential blowup of intermediate results
through Yannakakis’ algorithm. Interestingly, a majority (55%) of full enumeration
queries whose result is not empty was solved with a lower runtime by our implementation
than with conventional query execution. Considering 0MA queries, the original database
implementation heavily uses coprocessor tasks, leveraging performance benefits through
parallelization across the database cluster, which, in return, causes a worse result for
our implementation. Despite these optimizations, structure guided query evaluation still
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6. Conclusion

manages to be more performant for about a third of all instances solved by both versions.
Finally, our implementation causes 45% less timeouts or out-of-memory errors for 0MA
queries than the conventional evaluator.

The results mentioned above clearly show the meaningfulness of structure guided query
optimization, deeply integrated in the DBMS, as an additional option in a database
systems’ query optimizer.

6.1 Future Work
We started to deeply integrate structure guided query optimization into a NewSQL
database, namely TiDB. In the course of this thesis, even more possibilities to profit
from this technique came up. One interesting follow-up research question would be how
the integration of counting algorithms, in order to fully support aggregate operations,
and therefore broaden the effects of structure guided query optimization, affects query
execution.

Furthermore, an additional step would be the integration of the same techniques into the
distributed storage. Consequently, some operations could be loaded off to the storage
nodes, benefiting from increased parallelization, and more memory capacity, in case the
location of the data across the distributed storage cluster, i.e., data locality, allows to do
so. We would expect a major advantage for structure guided query optimization through
this measure.

Finally, investigating the field of query plan cost comparison between conventional
plans and structure guided query plans, possibly infering the cost from the hypertree
decomposition, or directly from created plans, would be a further step towards sensible
use of deeply integrated structure guided query execution.
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