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Kurzfassung 
Genome-Mining- und Bioinformatik-Technologien sind in der heutigen Zeit für die Suche 

nach neuartigen Sekundärmetaboliten (SM) unverzichtbar geworden. SM sind eine große Gruppe 

von Verbindungen mit unterschiedlichen Strukturen und Eigenschaften. Sie werden meist von 

Enzymen produziert, deren entsprechende Gene im Genom kolokalisiert sind und in 

biosynthetischen Genclustern (BGC) organisiert sind. Die Identifizierung und Suche von BGC ist 

ein Schlüsselaspekt der Naturstoffbioinformatik geworden. Darüber hinaus ist die Entdeckung 

neuer SM-Klassen in den Genomen von Pilzen, sogenannter „Dark Matter“-BGC, ein Gegenstand 

derzeitiger Forschung. In dieser Dissertation wurden verschiedene Themen mit dem Ziel 

behandelt, den Nachweis und die Analyse exotischer Biosynthesewege von SM zu erleichtern. 

Diese verschiedenen Themen besitzen als gemeinsamen roten Faden die Suche und Beschreibung 

von SM-BGC. 

Diese Doktorarbeit umfasst mehrere veröffentlichte und eingereichte Studien, die in einer 

angemessenen Reihenfolge thematisch geordnet sind. Das erste angesprochene Thema ist die 

Identifizierung neuer BGC in Pilzen. Zu diesem Zweck wurde eine neue Methode zum 

Analysieren von Pilzgenomen eingeführt, diese detektiert ribosomal synthetisierte und 

posttranslational modifizierte Peptide (RiPPs) durch Kombination und Anpassung vorhandener 

Werkzeuge, gefolgt von einer umfangreichen manuellen Kurierung basierend auf der 

Identifizierung konservierter Domänen, (vergleichende) phylogenetische Analysen und durch die 

Anwendung von RNASeq-Daten. RiPPs sind eine sehr vielfältige Gruppe von SM und wurden vor 

kurzem in Pilzgenomen eingehend untersucht. Gene, die an der Biosynthese von RiPPs in Pilzen 

beteiligt sind, wie für viele andere SM, sind in BGC gepackt. Die vorliegende Veröffentlichung 

ist der erste Bericht über das Potenzial der Pilzgattung Trichoderma zur Produktion von RiPPs. 

Erwähnenswert ist, dass die mit dieser neuartigen Methode entdeckten Cluster, Gene beinhalten 

die Enzyme kodieren für den Biosyntheseweg für neuartige uncharakterisierte Pilz-RiPPs. 

Neben dem Aspekt, nach neuartigen BGCs zu suchen, war die eingehende Analyse der 

gefundenen BGC ein Ziel. BGC können sogenannte Gap-Gene enthalten, die nicht an der 

Biosynthese des SM beteiligt sind. Gap-Gene von Genen zu unterscheiden, die an der Biosynthese 

beteiligt sind, ist eine langwierige, teure und mühsame Aufgabe. Diesem Thema widmeten sich 

zwei Studien, von denen die erste das Functional Order Tool (FunOrder) als halbautomatische 
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Methode zur Identifizierung koevolutionär verknüpfter Gene in BGC vorstellte. Die Ergebnisse 

legen nahe, dass die Koevolution von Proteinfamilien für die Differenzierung von Gap-Genen von 

biosynthetisch aktiven Genen genutzt werden kann. In der anschließenden Studie wird das 

verbesserte und vollautomatisierte FundOrder 2 vorgestellt, bei dem frühere Einschränkungen 

durch die Einführung einer vollautomatisierten und verbesserten Bestimmung von koevolvierten 

Genen behoben wurden. Der automatisierte Nachweis koevolvierender Gene verwendet mehrere 

mathematische Indizes, um die optimale Anzahl von Gengruppen in den FunOrder-Daten zu 

bestimmen und die Implementierung von k-Means-Clustering basierend auf den ersten drei 

Hauptkomponenten (PC) einer Hauptkomponentenanalyse (PCA) bestimmt diese. FunOrder 2 

kann als wesentliche Verbesserung gegenüber seinem Vorgänger angesehen werden, insbesondere 

durch die automatisierte Analyse ohne Bias und die Anpassung an größere Datenbanken. 

Im weiterer Folge wird Sequenzierung, Assemblierung und Analyse neuartiger 

uncharakterisierter Pilzarten thematisiert, mit dem Hauptfokus auf die Suche und Analyse ihres 

SM-Produktionspotenzials. Vier Genome wurden sequenziert und in zwei Studien präsentiert, die 

das letzte Thema dieser Arbeit behandeln. Zunächst wird die Genomsequenz des schwarzen 

hefeähnlichen Pilz Aureobasidium pullulans var. aubasidani CBS 100524, mit industrieller 

Relevanz durch ausgeschiedene extrazelluläre Polysaccharide, vorgestellt und kurz beschrieben. 

Darauf folgt eine Studie, die eine eingehende vergleichende Genomanalyse und die 

phylogenetische Reklassifizierung von drei sequenzierten Wardomyces moseri Stämmen 

durchführt. W. Gams beschrieb den Ascomyceten W. moseri erstmals 1995. Während einer 

phylogenetischen Studie im Jahr 2016 wurde W. moseri als phylogenetisch fehlplaziert 

beschrieben und sollte daher neu bewertet werden. Das metabolische Potenzial dieses historischen 

Pilzes wurde analysiert und seine Taxonomie neu bewertet, indem die Genome des Ex-Isotyp-

Stamms W. moseri CBS 164.80 und zwei Isolate von der anderen Seite der Welt, W. moseri 

TUCIM 5827 und TUCIM 5799, sequenziert wurden. Es konnte gezeigt werden, wie historische 

Stämme aus bereits bestehenden Stamm-Sammlungen für die Suche nach neuartigen Naturstoffen 

benutzt werden können. 

Im Anhang aufgeführt sind abschließend interdisziplinäre Studien, die aus Kooperationen 

mit verschiedenen Arbeitsgruppen hervorgegangen sind. 
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Abstract 
Genome mining and bioinformatics technologies have become essential to the discovery 

process of novel secondary metabolites (SMs). SMs are a vast group of compounds with different 

structures and properties. Enzymes whose corresponding genes are co-localized in the genome, 

organized in biosynthetic gene clusters (BGCs), readily produce them. The identification and 

search of BGCs is a key aspect of natural product bioinformatics. Further, the detection of novel 

SM classes in the genomes of fungi, so termed “dark-matter” BGCs, is an ongoing subject of 

research. In this thesis, various topics were addressed for the ultimate goal to facilitate the detection 

and analysis of exotic biosynthetic pathways of SMs. These different subjects are connected by 

the search for and description of SM BGCs. 

This thesis encloses several published and submitted studies and orders them thematically. 

The first issue addressed is the identification of novel BGCs in fungi, a novel method to mine 

fungal genomes for ribosomally synthesized and post-translationally modified peptides (RiPPs) by 

combining and adapting existing tools followed by extensive manual curation based on conserved 

domain identification, (comparative) phylogenetic analysis, and RNASeq data was introduced for 

this purpose. RiPPs are a highly diverse group of SM and have been recently started to be studied 

in more depth in fungal genomes. Genes involved in the biosynthesis of fungal RiPPs, as for many 

other SMs, are packed in BGCs. The presented publication is the first report of the potential of the 

fungal genus Trichoderma to produce RiPPs and the clusters detected by this novel method encode 

genes that ultimately lead to novel uncharacterized fungal RiPPs. 

Besides the aspect to search for novel BGCs, the in depth analysis of detected BGCs was 

a target. BGCs may contain so-called gap genes, which are not involved in the biosynthesis of the 

SM. To differentiate gap genes from genes involved in the biosynthesis is a lengthy, expensive 

and arduous task. This topic was addressed by two studies the first describing and introducing the 

Functional Order tool (FunOrder), as a semi-automated method for the identification of co-

evolutionary linked genes in BGCs. The results suggest that protein family co-evolution can be 

leveraged for the differentiation of gap genes from genes involved in the biosynthesis of a SM. In 

the subsequent study, the improved and fully automated FunOrder 2 is presented, where previous 

limitations were address by introducing a fully automated and enhanced determination of co-

evolved genes. The automated detection of co-evolving genes uses several mathematical indices 
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to determine the optimal number of gene groups in the FunOrder output and the implementation 

of k-means clustering based on the first three principal components (PC) of a principal component 

analysis (PCA) detects them. FunOrder 2 can be seen as a major improvement over its predecessor, 

especially considering the unbiased automated analysis and the adaptation to larger databases. 

The last theme is the topic of sequencing, assembly and analysis of novel uncharacterized 

fungal species primarily for the search and analysis of their slumbering SM production potential. 

Four genomes have been sequenced included in two studies that address the final topic in this 

thesis. First, the genome sequence of the black yeast-like strain Aureobasidium pullulans var. 

aubasidani CBS 100524 with industrial relevance due to excreted extracellular polysaccharides is 

introduced and briefly described. This is followed by a study performing an in depth comparative 

genomic analysis and phylogenetic replacement of three sequenced Wardomyces moseri strains. 

W. Gams first described the ascomycete W. moseri in 1995. During a phylogenetic study in 2016

W. moseri was suggested to be phylogenetically misplaced and should therefore be re-evaluated.

The metabolic potential of this historic fungus was analyzed and its taxonomy re-evaluated, by

sequencing the genomes of the ex-isotype strain W. moseri CBS 164.80 and two isolates from the

opposite side of the world, W. moseri TUCIM 5827 and TUCIM 5799. It could be demonstrated

how historic strains from already existing collections can be used for the search of novel natural

products.

Finally listed in the appendix, are interdisciplinary studies fruited from collaborations with 

different working groups. 
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Introduction 
Secondary metabolites (SMs) are a diverse group of compounds with different chemical 

structures and properties which are found in all domains of life, but are predominantly studied in 

bacteria, fungi, and plants (1). SMs are not essential for the survival and growth of an organism 

but can be advantageous under particular environmental circumstances, for instance antibiotics 

under competitive conditions, pigments to tolerate radiation, and toxins as either defensive or 

virulence factors (2, 3). SMs can be grouped into different classes based on their biosynthetic 

pathways and chemical structures. In fungi, the two main classes are non-ribosomal peptides (e.g. 

the antibiotic penicillin (4) or the immunosuppressant cyclosporine (5)) and polyketides (e.g. the 

mycotoxin aflatoxin (6) or the cholesterol-lowering drug lovastatin (7)). Further SM classes are 

alkaloids, terpenes, melanins (8, 9), and ribosomally synthesized and post-translationally modified 

peptides (RiPPs) (10, 11). The genes encoding the enzymes responsible for the production of SMs 

are spatially organized in biosynthetic gene clusters (BGCs) in many cases (12, 13). SMs from 

fungal sources have been used for therapeutic purposes and to promote and preserve the human 

well-being already since ancient times (14-16). Fungal SMs and chemically modified variants 

are widely used as antibiotics, immunomodulators and anti-cancer drugs (17). The study of 

the secondary metabolism of fungi, especially from understudied strains and genera, holds the 

promise for much needed novel antibiotics, pharmaceuticals, and most recently also 

precursors for the synthesis of innovative plastics (18). 

In the last decades, genome mining and bioinformatics have played a crucial role and 

became an essential tool in the discovery of novel natural products. Especially the detection and 

classification of BGCs has contributed to the ongoing unraveling of biochemical space. Several 

databases (e.g. minimum information about a biosynthetic gene cluster (MIBiG) repository (19, 

20)) and tools have been developed for the analysis and detection of BGCs. Some developed 

software for the discovery of BGCs are antiSMASH (21-23), Cassis/CASSIS and SMIPS (24), 

SMURF (25), TOUCAN, a supervised learning framework capable of predicting BGCs on amino 

acid sequences (26), and DeepBGC, a unrestricted machine learning approach using deep neural 

networks (27). These programs can be used for the identification of BGCs in fungi, Cassis/CASSIS 

and SMIPS (24), and SMURF (25) have been developed especially for this purpose. The position 

as gold standard for BGC detection and definition is currently held by antiSMASH (23) in both 

7



bacterial and fungal genomes. AntiSMASH uses a rule based approach for the definition of BGCs, 

it detects core biosynthetic enzymes and by applying a greedy-approach it includes surrounding 

genes into the newly defined BGC (23). This possibly will result in overlaps or combinations of 

closely situated clusters. Nevertheless, the genes within the predicted BGCs are defined as core 

biosynthetic genes, additional biosynthetic genes, transport-related genes, regulatory genes, and 

other genes based on profile hidden Markov models by the antiSMASH tool. As for other types of 

BGCs, fungal RiPP BGCs (28) are detected by antiSMASH with a rule based approach based 

primarily on the ustiloxin B cluster of Aspergillus flavus (23, 29). This restriction was addressed 

in this thesis by introducing a novel method for detecting the precursor peptides of RiPPs within 

fungal genomes. RiPPs are a rapidly increasing group of natural products that can be classified in 

several different compound classes [reviewed in (10, 11, 30)]. A more in depth description of the 

biosynthesis of RiPPs and the structure of RiPP BGCs in fungi can be found in the first chapter of 

this thesis. 

A major limitation in the discovery of yet undescribed SMs is the fact that most BGCs are 

inactive under standard laboratory conditions, as they do not serve a purpose for the organisms 

then. Currently, different approaches are followed to circumvent this difficulty (31, 32). 

Untargeted approaches aim to induce the expression of any SM. To this end, biotic and abiotic 

stresses are applied, or global regulators and regulatory mechanisms are manipulated (33). These 

strategies may lead to the discovery of novel compounds, whose corresponding genes have to be 

subsequently identified (32). The targeted approach would be to manipulate the genes within the 

BGC or, if no molecular tools are available for the organism from which it originates, to follow a 

heterologous expression strategy by introducing the essential genes in an established host 

organism. Apart from core enzymes, BGCs may also contain genes encoding for transporters (34), 

transcription factors (35), or resistance genes (36). While their gene products are not directly 

involved in the biosynthesis of a SM, they are still essential for the production in the organism. In 

contrast, only the biosynthetic genes and a selection of other essential genes (e.g. transporters) are 

necessary for heterologous expression [reviewed in (37)]. Adjacent to essential genes for the 

production of SMs, BGCs can contain so-called gap genes. Gap genes are not involved directly or 

indirectly in the biosynthesis, export or gene activation of the production of a SM. The inclusion 

of gap genes in targeted approaches can lead to valuable time spent futilely in the laboratory 

without meaningful results. For this purpose, the detection of genes involved in the biosynthesis 
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of a SM and differentiation from gap genes is advantageous. This information can be obtained by 

the exploration of transcriptome data since the genes essential for SM production within a BGC 

are typically co-expressed with each other but not with the gap genes (38). Then again, this 

demands the knowledge of expression conditions and does not work for silent BGCs. In general, 

BGCs are suggested to undergo a distinct and faster evolution than the rest of the genome, based 

on different mechanisms and genetic drivers (39-45). This suggests that protein family co-

evolution can be used to distinguish gap genes from essential genes in the BGC. In other words, 

genes involved in the biosynthetic process of a certain SM share a similar evolutionary background 

and can therefore be considered co-evolutionary linked. The two chapters included in this thesis 

describing and introducing the Functional Order tool (FunOrder), as a semi-automated method for 

the identification of co-evolutionary linked genes in BGCs, and FunOrder 2, as the fully automated 

and enhanced software package, capitalize on this hypothesis. More details on this subject can be 

found in both chapters.  

As previously introduced, novel uncharacterized fungal genomes might harbor the 

potential for the production of novel drug lead compounds (46). This hypothesis is addresses by 

sequencing, assembly and analysis of yet uncharacterized fungal species primarily for the search 

and analysis of their slumbering SM production potential. Plant-associated endo- and epiphytic 

fungi are considered to be among the most prolific SM producers (16, 47-49). Consequently, many 

new fungi have been isolated from the phyllosphere with the aim to find novel SMs. In the recent 

years, the search area was broadened towards more extreme environments such as marine or arctic 

habitats (39). These efforts and the further sampling from host associated fungi have led to the 

discovery of manifold diverse species, which were described and classified, but remained 

understudied in respect to their secondary metabolism due to the sheer quantity of new isolates 

(16). The first genome presented is from Aureobasidium pullulans var. aubasidani strain CBS 

100524. A. pullulans is a black yeast-like ascomycete with industrial importance due to its 

extracellular polysaccharides (50). The main exopolysaccharide of A. pullulans var. aubasidani 

strain CBS 100524 is aubasidan instead of pullulan (51, 52). This strain was previously isolated 

from plant exudates of a Betula sp. from the Leningrad region, Russia (51). Based on a previous 

multilocus analysis, A. pullulans var. aubasidani strain CBS 100524 and A. pullulans var. 

pullulans EXF-150 are part of the same phylogenetic group (52). The second group of sequenced 

and analyzed genomes were from the species Wardomyces moseri. The ascomycete W. moseri was 
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first isolated from a dead petiole of Mauritia minor in Colombia in 1980.  Walter Gams described 

the fungus in 1995 and named it after his mentor Meinhard Moser (CBS 164.80) (53). This fungus 

forms sporodochium-like structures and aggregates conidia loosely in slimy masses. W. moseri 

was described already in 1995 as an unusual Wardomyces species, because of its easily released 

conidia. Later, Sandoval-Denis et al. showed that the large subunit (LSU) rRNA gene and the 

internally transcribed spacer (ITS) sequences of W. moseri clustered among the Xylariales but not 

with the genus Wardomyces (54). The fungal order of Xylariales (Ascomycota) holds a large 

number of symbionts, saprotrophs, a variety of isolated endophytes, and plant pathogens (47, 49, 

55). W. moseri appears related to members of the Amphisphaeriaceae and Clypeosphaeriaceae. 

Based on these findings, W. moseri was suggested to be re-examined regarding its taxonomic 

assignment. To date, there is only one more preprint mentioning this fungus indicating again the 

apparent misclassification (56). The metabolic potential of this historic fungus was analyzed and 

its taxonomy re-evaluated, by sequencing the genomes of the ex-isotype strain W. moseri CBS 

164.80 and two isolates from the opposite side of the world, W. moseri TUCIM 5827 and TUCIM 

5799.  

As a final remark, very large supplemental files (some surpassing hundreds of pages) 

connected to the aforementioned studies are deposited online and can be found following the 

respective links for the repositories or the journal. This is necessary especially but not exclusively 

for the sequenced genomes, their annotation and gene prediction. Nevertheless, the genomes are 

publicly available in the NCBI National Center for Biotechnology Information repository.   
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Aims 
The major aim of this PhD was the modeling and establishment of novel approaches to 

investigate secondary metabolite (SM) production in primarily fungal microorganisms. The first 

endeavor to address this aim was to attempt to discover a method for the identification and search 

of fungal ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic 

gene clusters (BGCs). To achieve this first objective existing bioinformatics tools, the combination 

of said tools and elucidation of novel pipelines using available genomic and transcriptomic data 

were applied. 

A central target to achieve the major aim was the development of a novel strategy in 

analyzing detected fungal BGCs with the ultimate goal to decide which genes should be included 

in heterologous expression efforts. For this purpose, a new software package leveraging protein 

family co-evolution was developed to facilitate future studies.  

Another aim of this thesis, as stated by the PhD program TU Wien bioactive, was to 

sequence and analyze fungal genomes, focusing on their SM production potential. To this end, 

fungal strains were chosen for sequencing based on their respective taxonomic placement.  

11



Conclusions 
The five included peer reviewed publications make evident that the specified aims were 

fully addressed during the work on this thesis. A new method for the detection of ribosomally 

synthesized and post-translationally modified peptide (RiPP) precursors in fungal genomes was 

introduced. A new software package was written and validated for the differentiation of essential 

biosynthetic genes from gap genes within fungal biosynthetic gene clusters (BGCs). Finally, the 

genomes of four fungal strains were sequenced and analyzed with a special focus on their 

secondary metabolism. 

The first presented publication is the first report of the potential of the fungal genus 

Trichoderma to produce RiPPs and the clusters detected by the presented novel method might 

eventually lead to the discovery of uncharacterized fungal RiPPs. This study ultimately led to the 

funded FWF-Project Nr. P 34036 “Identification and Characterization of Novel Fungal RiPPs”. 

The second and third study focused on a new software package, the Functional Order 

(FunOrder) tool, which aims to distinguish gap genes from biosynthetic genes within fungal BGCs. 

The results of these two studies indicate that protein family co-evolution can be leveraged for the 

differentiation of gap genes from genes involved in the biosynthesis of a secondary metabolite 

(SM). 

The two final publications address the aim of sequencing and analysis of uncharacterized 

fungal strains. Four whole fungal genomes including its mitochondria were successfully sequenced 

and it could be demonstrated how historic strains from already existing strain collections can be 

used for the exploration of novel natural products. Further, considering the presented phylogenetic 

evidence, the species Wardomyces moseri was suggested to be placed in the phylogenetic family 

Sporocadaceae. 
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Novel approach in whole genome mining
and transcriptome analysis reveal
conserved RiPPs in Trichoderma spp
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Abstract

Background: Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a highly diverse group
of secondary metabolites (SM) of bacterial and fungal origin. While RiPPs have been intensively studied in bacteria,
little is known about fungal RiPPs. In Fungi only six classes of RiPPs are described. Current strategies for genome
mining are based on these six known classes. However, the genes involved in the biosynthesis of theses RiPPs are
normally organized in biosynthetic gene clusters (BGC) in fungi.

Results: Here we describe a comprehensive strategy to mine fungal genomes for RiPPs by combining and
adapting existing tools (e.g. antiSMASH and RiPPMiner) followed by extensive manual curation based on conserved
domain identification, (comparative) phylogenetic analysis, and RNASeq data. Deploying this strategy, we could
successfully rediscover already known fungal RiPPs. Further, we analysed four fungal genomes from the Trichoderma
genus. We were able to find novel potential RiPP BGCs in Trichoderma using our unconventional mining approach.

Conclusion: We demonstrate that the unusual mining approach using tools developed for bacteria can be used in
fungi, when carefully curated. Our study is the first report of the potential of Trichoderma to produce RiPPs, the
detected clusters encode novel uncharacterized RiPPs. The method described in our study will lead to further
mining efforts in all subdivisions of the fungal kingdom.

Keywords: Genome mining, RiPP, Trichoderma, Ascomycota, Basidiomycota, Secondary metabolism

Background
Secondary metabolites (SMs) from fungal sources have
played a crucial role in improving human health not
only since the discovery of Penicillin, but even in prehis-
toric times [1, 2]. These natural products and chemically
modified variants are widely used as antibiotics, immu-
nomodulators and anti-cancer drugs [3]. Generally well-
known examples of fungal SMs belong to two main clas-
ses. They are either polyketides (e.g. the mycotoxin afla-
toxin and the cholesterol-lowering drug lovastatin) or
non-ribosomal peptides (e.g. the antibiotic penicillin and

the immunosuppressant cyclosporine). However, also
other SM classes are present in fungi: e.g. terpenes, mel-
anins [4, 5], and ribosomally synthesized and post-
translationally modified peptides (RiPPs). RiPPs are a
rapid growing group of natural products that can be
classified in more than 20 different compound classes.
Please refer to the reviews by Arnison, P. G. et al. and
Luo, S. & Dong, S. H [6, 7]. Small peptides are of in-
creasing interest due to unique bioactive properties aim-
ing at “undruggable” diseases and successfully
eradicating anti-biotic resistant microorganisms [8]. The
many applications of natural cyclic peptides, including
potent lipid-lowering effects of fungal cyclic peptides,
are reviewed by Abdalla, M. A. & McGaw, L. J [9].
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It is important to differentiate RiPPs from fungal
Kexin-like proteinase (KEX2)-processed repeat proteins
called KEPs. KEPs are small secreted peptides that do
not undergo post-translational modifications, their pre-
cursor peptide is cleaved by different proteases and then
released by exocytosis [10]. As described by Le Marquer
et al., many of these KEPs are putative sexual phero-
mones but may also play other important roles.

Biosynthesis of RiPPs follows a very straight forward
production pathway (Fig. 1). A precursor peptide con-
sisting of a leader, a core and a follower amino acid se-
quence is synthesized by the ribosome. The subsequent
post-translational modifications of the core sequence are
mediated by modifying enzymes as specified by the
leader and follower sequences. After removal of the
leader and the follower sequences, the finished bioactive
RiPP is released. Many RiPPs undergo a cyclisation step
that stabilizes them, reduces their toxicity, improves
binding affinity and selectivity. These properties make
cyclized RiPPs very attractive candidates for drug devel-
opment. This labels fungal RiPPs the potential next gen-
eration therapeutics [11]. However, only six different
classes of RiPPs are described in fungi, yet. Two classes
are found in basidiomycetes, i.e. the amatoxins and phal-
lotoxins in the genus Amanita, and the borosins with se-
lective nematotoxic activity in Omphalotus olearius.
RiPPs produced by ascomycetes are the dikaritins and

are classified as ustiloxins, asperipins, phomopsins and
epichloëcyclins [7].

The genes encoding for the biosynthetic enzymes for
SMs are often arranged in individual clusters named bio-
synthetic gene cluster (BGC), regardless of the class of
SM [1]. This organization of clusters is also given for the
previously described fungal RiPPs ustiloxins, phomop-
sins, amatoxins, phallotoxins, borosins and asperipins
[7]. This clustered organization is one important feature
for the in silico identification of BGCs. Recent advances
in next generation sequencing (NGS) lead to the publi-
cation of more and more high-quality full genomes from
various fungal species and genera such as Aspergillus
flavus or various Trichoderma spp. [12, 13]. Today, fungi
represent a vast and generally untapped pool for new
lead compounds with pharmaceutical and agricultural
applications [14]. However, efforts in genome mining for
the search of RiPP BGCs, that encode for the machinery
responsible to produce secondary metabolites, have thus
far been focused on bacterial genomes due to the lack of
a large database of fungal RiPPs [11, 15]. Therefore,
most bioinformatic tools available are tailored to mine
bacterial genomes for RiPPs.

The current online version of antiSMASH ver. 5.0 in-
cludes the identification of RiPP clusters in fungal ge-
nomes based on the query sequence (YVIPID) of the
putative precursor peptide sequence of phomopsin and

Fig. 1 General RiPP biosynthetic pathway. The leader and follower peptide direct the modifications (e.g. addition of functional groups, indicated
by stars, or formation of additional bonds, indicated by the connective lines) on the core peptide. After removal of the leader and follower
sequence the mature RiPP is released. The figure is an adaptation of the original figure in [6]
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ustYa/ustYb together with the ustA precursor peptide of
the ustiloxin cluster [16]. This approach, although being
restrictive in its potential to detect novel classes, will aid
in the mining for ustiloxin and phomopsin like RiPPs in
fungi. Previously, this approach was able to detect 94 pu-
tative RiPP precursor peptides in Aspergillus spp. This
led to the discovery of structurally new cyclic peptides
(Asperipins) even though the clusters exhibit high hom-
ology to the ustiloxin clusters [7, 17, 18]. We reason that
a broader, unconventional forward approach for the de-
tection of putative precursor peptides can be achieved
by utilisation and adaptation of bioinformatic tools de-
veloped for bacteria. This approach might lead to the
discovery of novel fungal RiPPs with potentially new ap-
plications and unknown adjacent modifying enzymes.
These novel enzymes and the identified precursor pep-
tides can furthermore be used to identify more homolo-
gous RiPP BGCs across the fungal kingdom as it was
done for the ustiloxin cluster, thereby broadening our
search parameters for novel RiPP BGCs.
Trichoderma spp. are mesophilic ascomycetes and part

of the sordariomycetes, one of the largest classes within
their division. The genus Trichoderma contains myco-
parasitic, saprophytic and opportunistically pathogenic
fungi. T. reesei is a well-studied saprobe and used indus-
trially for the production of cellulases and hemicellulases
[12]. T. harzianum is a ubiquitous species with agricul-
tural applications, the opportunistically pathogenic T.
citrinoviride is often isolated as endophyte and T. brevi-
compactum is a producer of antifungal metabolites [12,
19–21]. All mentioned Trichoderma species contain
various classes of BGCs, Type 1 polyketide synthetases
(T1pks), nonribosomal peptide synthases (NRPSs), ter-
pene BGCs, fatty acid BGCs and various combined and
putative clusters.

In this study we demonstrate in silico that by combin-
ing antiSMASH [22], the ClusterFinder algorithm and a
full HMMer analysis a large set of putative SM BGCs
can be identified. After cross-referencing the individual
results, we predicted potential RiPP precursor peptides.
These sequences were further refined by using previ-
ously published RNASeq data [23] and thereby providing
a comprehensive highly probable in silico prediction
backed up with genomic and transcriptional data.

Results
Diversity of secondary metabolite gene clusters in
Trichoderma spp. and known fungal RiPP producers
First, we compared the biosynthetic gene clusters diver-
sity of nine randomly chosen Trichoderma species for
which high quality genomes were available. To this end,
they were all mined with the command line version of
antiSMASH ver. 4.3.0 [22]. We also mined the genomes
of A. flavus and Amanita phalloides in which fungal

RiPPs were previously described. The results of the min-
ing with the command line version of antiSMASH are
shown in Table 1. The total number of SM BGCs ranges
from 11 for the A. phalloides genome to 186 found in
the SM producer A. flavus. There was neither Type 3
pks clusters found in the Trichoderma spp. nor any sid-
erophore or indole clusters. Notably, antiSMASH ver.
4.3.0 [22] does not yet include the search for fungal RiPP
clusters. The web based antiSMASH ver. 5.0 [16] con-
tains this feature, and was able to detect the ustiloxin B
cluster in the A. flavus genome, but no other fungal
RiPP clusters were found in the mined genomes. Never-
theless, the Trichoderma spp. already display a high po-
tential to produce a diverse range of SMs, based on the
antiSMASH results.

Next, we calculated the average nucleotide identity
(ANI) for each strain against each other (Fig. 2). Within
the Trichoderma spp. there are three distinct clusters de-
tectable based on the ANI value and the computed den-
drogram when applying 85% ANI as cutoff. The first
containing T. harzianum, T. atrobrunneum and T.
virens; the second T. arundinaceum and T. brevicompac-
tum; the third T. reesei, T. koningii and T. citrinoviride.
Based on these findings T. reesei and one high quality
genome from each cluster were chosen to be mined for
putative RiPP precursor genes namely T. harzianum, T.
citrinoviride and T. brevicompactum.

The RiPPMiner standalone tool detects fungal RiPP
precursors
As a prerequisite for our analysis, we needed to test the
applicability of the RiPPMiner [24] software to recognize
precursor peptides of fungal RiPPs. To this end, we
tested the software on known precursor peptides of fun-
gal RiPPs extracted from the UniProt database, namely
precursors for α-amanitin (A8W7M4), β-amanitin
(ABW87785), phallacidin (ABW87771), phalloidin
(ABW87787) and 75 diverse known precursor peptides
(see Additional file 1). RiPPMiner was able to recognize
all of them as precursor peptides, even though it classi-
fied them into bacterial groups and predicted improper
structure models (Additional file 1). This is a conse-
quence of the used model for these predictions; the
model is based on a manually curated database of known
precursor peptides of bacterial RiPPs. The precursor
peptides for α-amanitin and β-amanitin were predicted
to be lassopeptides, whereas phallacidin and phalloidin
had no RiPP class prediction (Additional file 1). Next,
we evaluated the potential of the RiPPMiner to detect
RiPP precursors in known RiPP BGCs and distinguish
them from functional polypeptides. To this end, we
extracted the sequences from the ustiloxin B BGC from
A. flavus using the web based antiSMASH ver. 5.0 [16]
output and subjected them to an analysis using the

Vignolle et al. BMC Genomics          (2020) 21:258 Page 3 of 12

18



Table 1 Prediction of SM BCGs using antiSMASH ver. 4.3.0

Species Total BGC NRPS T1pks T3pks Sid.a Terb Indc Mixd Other fatty acid putativ

T. reesei 80 7 9 0 0 6 0 3 4 1 50

T. citrinoviride 85 8 8 0 0 5 0 4 6 2 52

T. harzianum 129 5 19 0 0 7 0 8 8 2 80

T. brevicompactum 96 9 14 0 0 5 0 6 6 2 54

T. asperellum 92 5 9 0 0 7 0 6 4 2 59

T. arundinaceum 117 9 14 0 0 8 0 11 7 2 66

T. atrobrunneum 114 9 18 0 0 5 0 8 7 2 65

T. koningii 69 7 9 0 0 4 0 2 4 2 41

T. virens 145 16 14 0 0 10 0 8 11 2 84

A. flavus 186 11 19 2 1 10 4 10 12 3 114

A. phalloides 11 0 1 0 0 5 0 0 1 1 3
aSiderophore, bTerpene, cIndole, dT1pks-NRPS/Mix

Fig. 2 Heatmap of the average nucleotide identity (ANI) between the analyzed fungal species. The respective ANI value is represented by the
color gradient. In addition, a histogram indicates the number of species with that certain ANI value. The dendrogram in the heatmap is
computed with the complete linkage method to find similar clusters based on the Euclidean distance, representing a whole genome phylogeny
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RiPPMiner software (Additional file 2). The RiPPMiner
was able to detect the verified RiPP precursor (#INPUT
13, AFLA_095020) but misclassified it as cyanobactin.
The RiPPMiner predicted three additional input se-
quences (AFLA_094930, AFLA_094970, AFLA_095000)
as RiPP precursors (Additional File 2). These are hypo-
thetical proteins without predicted conserved regions
[17]. These results demonstrate that the RiPPMiner soft-
ware is able to identify fungal RiPP precursors, although
it was designed to predict bacterial RiPPs. This leads to
misclassifications and false positives.

Genome mining of Trichoderma spp. for putative RiPP
precursors
As we could verify the in principal applicability of the
RiPPMiner for the identification of fungal RiPP precur-
sors, we proceeded with the search for RiPPs in Tricho-
derma spp. As shown in Fig. 3, the amino acid query
sequences were extracted from the results from anti-
SMASH ver. 4.3.0 from the “putative clusters” found by
the ClusterFinder algorithm. Only genes without classifi-
cation from antiSMASH were chosen as query se-
quences. This means that core biosynthetic genes,
additional biosynthetic genes, transport-related genes
and regulatory genes were not included in the RiPP pre-
diction. The prediction was performed with the standa-
lone version of RiPPMiner. The results of the RiPP
mining procedure for the four Trichoderma spp. are
shown in Table 2. For T. harzianum 23% of the query
sequences were predicted to be putative precursor
RiPPs. In the T. reesei genome 15% of the query se-
quences were recognized as putative precursor peptides
by the RiPPMiner, for T. citrinoviride 17% of the query
sequences and in the T. brevicompactum genome 22% of

the query sequences were predicted as putative RiPP
precursor peptides (Table 2).

All amino acid sequences predicted to be RiPPs were
manually inspected. This included aligning the se-
quences using Blastp v2.9.0+ [25] against the non-
redundant protein database and a manually curated
database of fungal proteomes to refine the search. Se-
quences with highly conserved active domains found in
the Conserved Domain Database (CDD) [26] were re-
moved, as well as classified sequences such as transcrip-
tion factors, enzymes and ribosomal proteins. After
manual inspection the sequences of T. harzianum were
reduced to a final set of 222 sequences, T. citrinoviride
was reduced to 110 and T. brevicompactum to 92. For T.
reesei the genes for putative precursor sequences were
furthermore compared to RNASeq data, and based on
our analysis of the alignments to these genes, those
without RNASeq data mapping to them were discarded
as false positives. After further manual curation of the
BGCs T. reesei was left with a final set of 6 putative RiPP
precursor peptide genes.

RiPP analysis by maximum likelihood method
We then inferred a maximum likelihood (ML) phylo-
genetic tree based on the putative precursor RiPP
peptides from T. reesei, T. citrinoviride, T. harzianum
and T. brevicompactum, the known fungal RiPP pre-
cursor peptides α-amanitin (A8W7M4), β-amanitin
(ABW87785), phallacidin (ABW87771) and phalloidin
(ABW87787), in order to find evolutionary linked se-
quences and to detect possible precursor peptide fam-
ilies. The analysis involved a total of 434 amino acid
sequences, with sequence lengths ranging from 27 to
150 amino acids. Following the multiple sequence

Fig. 3 Schematic diagram of the pipeline used to discover possible RiPP precursor peptides
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alignment computed with muscle [27], a total of 231 rele-
vant positions were extracted for all sequences. These
were used in the final data set to infer the phylogenetic
distance corrected for multiple substitutions based on the
substitution-rate matrices. The ML tree with the highest
log likelihood (− 101,279.17) (Additional file 3) was used
to extract the sub-trees including the putative RiPP pre-
cursor peptides from T. reesei and those including known
precursor peptides of fungal RiPPs extracted from the
UniProt database (Additional file 4). The branch lengths
of the ML sub-tree are proportional to the relative dis-
tance between the sequences measured in the number of
substitutions per site. As expected, the sequences of α-
amanitin (A8W7M4), β-amanitin (ABW87785) and phal-
loidin (ABW87787) clustered together defining an own
clade (Fig. 4). Within this amanitin/phalloidin sub-tree
two sequences clustered closely together, one from the T.
reesei set and one from T. citrinoviride (Additional file 1).
These two putative RiPP precursor peptides were both de-
fined by the RiPPMiner to be cyanobactins and have a
bootstrap value of 0.98, making it highly likely that they
are sisters to each other. Additionally, the Trichoderma se-
quences within this clade all showed high similarities to
the putative structural toxin protein of Eutypa lata
(UCREL1), the structural toxin protein RtxA of Aspergillus
oryzae and Metarhizium rileyi in the Blastp output
(Additional file 5).

We identified another outstandingly interesting subtree
within the ML-tree. The amino acid sequence from T. ree-
sei found in the BGCs 50 on contig 16 of the genome in
the open reading frame 123 clusters within a conserved
clade with the bootstrap values 0.64–0.89 (Fig. 5). The clade
consists of one putative precursor RiPP peptide sequence
from T. harzianum, T. citrinoviride, T. brevicompactum

and T. reesei respectively. We called this clade the Tricho-
derma-putative-RiPP clade because the subtree of these se-
quences resembles the dendrogram in the heatmap,
representing a whole genome phylogeny of the Tricho-
derma genus (Fig. 2). Within the other extracted sub-trees,
the T. reesei putative RiPP precursor peptide sequences
cluster with different sequences from each set of putative
RiPP precursors namely T. harzianum, T. citrinoviride and
T. brevicompactum. The sequences from the T. harzianum,
T. citrinoviride and T. brevicompactum sets also made up
own clades, these were not considered in the exploratory
analysis due to the lack of RNASeq data for these specific
strains and therefore the unknown high amount of false
positive predicted RiPP precursor peptide sequences.

Analysis of the putative RiPP cluster 55 of T. reesei
Based on the phylogenetic and exploratory analyses of
the putative RiPP precursor peptide sequences, we de-
cided to perform a detailed analysis of a possible novel
RiPP cluster found in T. reesei, namely cluster 55. Clus-
ter 55 contains the putative RiPP precursor peptide that
clustered in the ML tree in the amanitin/phalloidin clade
(Fig. 4). This putative RiPP precursor peptide from T.
reesei has a sister in T. citrinoviride with a high boot-
strap value (Fig. 4). Furthermore, the RNASeq data
showed that the putative RiPP precursor peptide from
cluster 55 is transcribed at low levels. These findings
highly suggest that this putative RiPP precursor peptide
is indeed present in the genome of T. reesei. First, we
manually annotated all genes in cluster 55 (as predicted
by antiSMASH) by performing a Blastp v2.9.0+ [25]
search against the non-redundant protein database, the
conserved region finder and a manually curated database
(Additional file 5). The results are visualized in Fig. 6.

Table 2 Number of predicted RiPPs (and subclasses) found by RippMiner

T. reesei T. citirinoviride T. harzianum T. brevicompactum

Query sequences 690 759 1099 518

Total predicted RiPPs 108 131 258 118

Cyanobactin 34 41 77 39

LanthipeptideB 10 7 18 4

LanthipeptideC 0 0 2 0

Lassopeptide 4 3 9 3

Linaridin 3 5 7 4

Microcin 1 5 5 0

Bacterial head to tail 0 0 1 2

Thiopeptide 1 0 0 0

Auto inducing peptide 0 1 0 0

NONE 54 69 140 66

After manual inspection 6 110 222 92

The protein sequences extracted from the predicted SM BGCs using antiSMASH ver. 4.3.0 (query sequences) were analyzed with the RiPPMiner software for T. reesei, T.
citrinoviride, T. harzianum, and T. brevicompactum. False positives were removed via manual inspection
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Gene D was classified as a putative major facilitator
superfamily (MFS) general substrate transporter. Not-
ably, the same kind of transporter is found in the usti-
loxin B cluster of A. flavus [17]. Adjacent to the gene of
the putative RiPP precursor peptide a sulfatase gene is
encoded (Gene F). Additionally, a putative hydrolase
(Gene L), acid phosphatase (Gene N), cytochrome P450
(Gene P) and peptidases (Gene S) are found. This gives
the cluster 55 the potential arsenal of enzymes needed
for posttranslational modification and transport of the
finished putative RiPP. Notably, these and further genes
of T. reesei cluster 55 have homologs in T. citrinoviride
cluster 75 (Additional files 6, 7 and 8).

RiPP precursor peptide analysis
Next, we performed a more in-depth analysis of the pu-
tative RiPP precursor peptide sequence found in cluster
55 of T. reesei (Fig. 6). The analysis involved a multiple
sequence alignment with the 20 top hits from the Blastp
output using the ClustalW algorithm and was performed
with PRALINE [28] (Fig. 7). The putative RiPP precursor
peptide from T. reesei is 109 amino acids long. There
was no O-glycosylation potential predicted with NetO-
Glyc4.0 [29] and only a single low potential N-
glycosylation site could be detected at the asparagine in
position 33 with NetNGlyc1.0 [30]. There was no N-

myristoylation site found nor was there a C-terminus ap-
propriate for peroxisomal import detected. To detect
DNA motif binding sites NsitePred [31] was used, only
low probability motifs were found (below 0.264) not giv-
ing the precursor peptide the ability to bind DNA effect-
ively. These analyses were performed to exclude the
possibility of the putative precursor peptide being in-
volved in transcriptional regulation. To determine the
core sequence of the putative precursor peptide firstly
the possible posttranslational modifications based on the
enzymes found in the cluster 55 were evaluated. The ad-
jacent sulfatase gene strongly suggests a sulfated residue.
To detect an appropriate sulfating site within the peptide
the Sulfinator [32] application was used. It found the
Tyrosine in position 96 to be the only possible sulfated
site within the peptide. This suggests residue 96 to lie
within the core sequence. The RiPPMiner software pre-
dicted the core sequence to be residues 91 to 99, com-
prising the core sequence KKAHPYEEP (Fig. 7). The
start of this putative core sequence is a typical peptidase
cut site (KK) only found once in the putative precursor
peptide. Tyrosine 101 (2 residues after the C-terminal
end of the predicted core sequence) is a predicted phos-
phorylation site according to NetPhos3.1 [33]. This
might suggest a possible activation site for further pro-
cessing of the core peptide sequence. Furthermore, the

Fig. 4 The extracted subtree showing the amanitin/phalloidin clade from a maximum likelihood phylogenetic tree. The ML phylogenetic tree was
inferred based on 434 amino acid sequences. The evolutionary history was inferred by using the Maximum Likelihood method and Dayhoff w/
freq. Model. The tree with the highest log likelihood (− 101,279.17) is shown. Initial tree(s) for the heuristic search were obtained automatically by
applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology
with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The final
dataset consisted of a total of 231 sites. The analyses were conducted in MEGA X [27].
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predicted core sequence is highly conserved, the main part
is not predicted to be part of either an alpha-helix nor a
beta-sheet, and the amino acids of the possible predicted
core sequence are mainly hydrophilic (Fig. 7), making
them easily accessible for enzymatic posttranslational
modification. These findings further support the peptide

from residues 91 to 99 to be the core sequence or at least
part of the core of the putative RiPP precursor peptide.

Discussion
Using antiSMASH ver. 5.0 [16] for the search of BGCs
returned one identified fungal RiPP cluster in the genome

Fig. 6 Schematic representation of biosynthetic gene cluster 55 of T. reesei. The gene cluster is located on scaffold 19 (571843–660,892 nt) and
contains 22 predicted genes and two possible pseudogenes. Gene A is a putative general substrate transporter, position B is a possible
pseudogene, gene C a glycosyltransferase from the family 1, gene D is a putative MFS general substrate transporter, gene E is a HET-domain-
containing protein, gene F is a sulfatase, gene G is a putative RiPP precursor peptide, gene H is a putative amino acid transporter, gene I is a
chitinase, gene J is a putative GMC oxidoreductase, gene K is a casein kinase II alpha subunit, gene L is a putative alpha/beta-hydrolase, gene M
is a GroES-like protein, gene N is an acid phosphatase, gene O is a hypothetical protein, gene P encodes for a cytochrome P450, gene Q is a
putative NAD (P)-binding protein, gene R is a family 54 glycoside hydrolase, gene S is a putative carboxypeptidase S, gene T is a possible
pseudogene, gene U is a putative class I glutamine amidotransferase-like protein, gene V is a PTH11-type GPCR and gene W is a GMC
oxidoreductase. The gene annotations were manually curated and based on a Blastp v2.9.0+ (protein-protein BLAST) [25] search against the non-
redundant protein database, the conserved region finder and a manually curated database (Additional file 5)

Fig. 5 The extracted subtree showing the Trichoderma-putative-RiPP clade from a maximum likelihood phylogenetic tree. The ML phylogenetic
tree was inferred based on 434 amino acid sequences. The evolutionary history was inferred by using the Maximum Likelihood method and
Dayhoff w/freq. Model. The tree with the highest log likelihood (− 101,279.17) is shown. Initial tree(s) for the heuristic search were obtained
automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting
the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site.
The final dataset consisted of a total of 231 sites. The analyses were conducted in MEGA X [27].
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of A. flavus. This was expected since the underlying search
for fungal RiPP clusters in antiSMASH ver. 5.0 [16] is
based on the ustiloxin B cluster from A. flavus. In contrast,
the search for BGCs in the Trichoderma spp. and the A.
phalloides genomes yielded the same results using the last
two versions of antiSMASH (ver. 4.3.0 [22] and ver. 5.0
[16]) and no predictions of fungal RiPP clusters. Our un-
conventional approach found a total of 615 potential RiPP
precursor peptides in the 4 mined Trichoderma genomes.
Notably, the results from our approach were obtained by
using tools designed for bacterial sequences. This proced-
ure would strongly benefit from a database of fungal RiPPs
that could be integrated in the RiPPMiner software. Con-
sequently, these findings have to be carefully manually
inspected and thereafter verified by RNA sequencing data
to reduce false positives, as we did for the T. reesei results
in this study. As we have shown for T. reesei after careful
inspection of the results we could reduce our set of poten-
tial RiPP precursor peptides from 108 to 6.

One of these predicted putative RiPP precursor peptides
is found in the Trichoderma-putative-RiPP clade, suggest-
ing the existence of a conserved putative RiPP precursor
peptide within the Trichoderma genus. Another putative
novel fungal RiPP cluster in the T. reesei genome is cluster
55 (Fig. 6). Its precursor peptide sequence clustered in the
amanitin/phalloidin clade together with a sequence from
T. citrinoviride. Furthermore, the putative precursor pep-
tide sequences within this clade all showed high similar-
ities to the putative structural toxin protein of E. lata

(UCREL1), the structural toxin protein RtxA of A. oryzae
and structural toxin protein RtxA of M. rileyi in the Blastp
output. The putative precursor peptide found in this clus-
ter shows in the potential core sequence a predicted sulfa-
tation site similar to the one found in the known fungal
RiPP precursor peptide α-amanitin. (Fig. 7) Our results
largely support the hypothesis that fungal genomes con-
tain biosynthetic gene clusters for RiPPs that might be a
vast untapped source for possible new lead compounds
with yet undescribed potential applications. Further
in vitro and in vivo investigations are needed to be able to
predict a preliminary biosynthetic pathway for the de-
scribed RiPP clusters and to definitively classify these six
clusters found in silico as novel fungal RiPP clusters in T.
reesei.

Conclusion
In this study we describe a novel, unconventional mining
approach for the search for RiPPs in fungi. While this
method offers new possibilities it also demands a rather
long hands on time to refine the search, due to the lack
of automatization. However, we could successfully find
previously known fungal RiPPs and predict several puta-
tive novel RiPPs in the genus Trichoderma.

In the fight against the rising threat of multiresistant
pathogenic strains, fungal RiPPs represent an indispens-
able new armament of possible diverse lead compounds.
Our study is the first report of the potential of
Trichoderma to produce RiPPs and might pave the way

Fig. 7 Multiple sequence alignment of the putative RiPP precursor peptide from cluster 55. The putative RiPP precursor peptide from T. reesei was
aligned to the 20 top hits from the Blastp output using the ClustalW algorithm and was performed with PRALINE [28]. The 21 aligned amino acid
sequences are colored according to the ClustalX residue color-scheme. The row labeled ‘Consistency’ is color-coded based on the amino acid
conservation performed by PRALINE, 0 representing the least conserved alignment position colored in blue up to 10 marked by an asterix in red.
Below the Consistency row the blue and red colored blocks stand for the representative secondary structure prediction using DSSP and PSIPRED.
The β-Strand predictions are colored in blue and the red colored blocks are the α-Helix predictions. The predicted putative core peptide
sequence is indicated by a black frame
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for further studies on fungal RiPPs in Trichoderma. The
method described in our study will lead to further min-
ing efforts in all subdivisions of the fungal kingdom.

Methods
Extraction of RNA and sequencing
The RNASeq data used in this study was generated in a
previous study by Derntl et al. [23]. Therein the wild-
type like T. reesei strain QM6a Δtmus53 strain [34] cul-
tivated in Mandels-Andreotti medium [35] containing
1% carboxy methyl cellulose as carbon source. After 48 h
of solid-state incubation at 30 °C, the RNA was isolated
using the RNeasy Plant Mini Kit (Quiagen) and libraries
were prepared using a TruSeq Stranded mRNA Sample
Prep Kit including poly (A) enrichment (Illumina). The
libraries were sequenced on a NextSeq500 instrument
(Illumina) with paired-end 75 nt long reads [23].

Full genomes
The genomes of T. asperellum CBS 433.97 (assembly Trias
v. 1.0; BioSample accession: SAMN00769595), T. virens
Gv29–8 (assembly TRIVI v2.0; BioSample accession:
SAMN02744059), T. arundinaceum (assembly Tricho-
derma_arundinaceum_IBT40837_contigs; BioSample acces-
sion: SAMN06320351), T. reesei QM6a (assembly v2.0;
BioSample accession: SAMN02746107), T. citrinoviride (as-
sembly Trici v4.0; BioSample accession: SAMN05369575), T.
harzianum CSB 226.95 (assembly Triha v1.0; BioSample ac-
cession: SAMN00761861), T. atrobrunneum (assembly
ASM343991v1; BioSample accession: SAMN08325511), T.
brevicompactum (assembly Trichoderma_brevicompactum_
IBT40841_contigs; BioSample accession: SAMN06320626)
and T. koningii (assembly JCM_1883_assembly_v001; Bio-
Sample accession: SAMD00028335) were downloaded from
the NCBI database. Furthermore, the genomes of Amanita
phalloides (assembly ASM198338v1; BioSample accession:
SAMN05444494) and Aspergillus flavus NRRL3357 (assem-
bly JCVI-afl1-v2.0; BioSample accession: SAMN05591370)
were downloaded from the NCBI database, to evaluate our
mining procedure.

Genome mining
The command line version of antiSMASH ver. 4.3.0 [22]
was used to mine the selected genomes for secondary me-
tabolite biosynthetic gene clusters with following specifi-
cations in order to yield the best results for the fungal
genomes. The taxon was specified with the option --taxon
to be of fungal origin, the --clusterblast, −-subclusterblast
and --knownclusterblast options were used to compare
the identified clusters against a database of antiSMASH-
predicted clusters, known subclusters that synthesize pre-
cursors and known gene clusters from the MIBiG data-
base [36] respectively. The --smcogs option enables a
search for BGCs of orthologous SM groups. Furthermore,

the ClusterFinder algorithm was activated with the --in-
clusive option for additive cluster discovery. In parallel a
genome wide HMMer analysis was performed by specify-
ing the --full-hmmer option and the active site finder
module with the --asf option. The results for T. reesei, A.
flavus and A. phalloides were then cross referenced with
the online version of antiSMASH ver. 5.0 [16] that in-
cludes the identification of fungal RiPP clusters.

To verify the presence of similar precursor peptides
within the Trichoderma genus four full genomes were
chosen based on their average nucleotide identity (ANI)
calculated with a fast alignment-free implementation for
computing whole-genome ANI between genomes called
fastANI [37]. The choice which Trichoderma spp. were
to be mined for RiPPs was based on their average nu-
cleotide identity (ANI). Within the putative clusters,
when applying an 85% ANI cutoff, of the chosen ge-
nomes the amino acid sequences of the genes classified
as “other genes” were extracted and concatenated in a
single file. Core biosynthetic genes, additional biosyn-
thetic genes, transport-related genes and regulatory
genes were not included. The extracted sequences were
then analyzed using the standalone version of RiPPMi-
ner [24] to predict possible RiPPs within the genomes.
The method of RiPP prediction was tested on known
precursor peptides of fungal RiPPs extracted from the
UniProt database, namely α-amanitin (A8W7M4), β-
amanitin (ABW87785), phallacidin (ABW87771) and
phalloidin (ABW87787) and 75 diverse known precursor
peptides (Additional file 1).

All extracted amino acid sequences, that were predicted
as putative RiPP precursor peptides by the RiPPMiner
software, were blasted using Blastp v2.9.0+ (protein-pro-
tein BLAST) [25] against the non-redundant protein data-
base (All non-redundant GenBank CDS translations, PDB,
SwissProt, PIR, PRF excluding environmental samples
from WGS projects) to refine the search and a manually
curated database (e.g. KEPs could be identified and re-
moved). Sequences with highly conserved active domains
were removed from the total set, as well as classified se-
quences such as transcription factors, enzymes and ribo-
somal proteins. Only hypothetical proteins, small secreted
cysteine rich proteins of unknown function (SSCRP) and
sequences without considerable similarities were kept.
The refined putative RiPP precursor peptides and the
known precursor peptides of fungal RiPPs as reference
were aligned with MUSCLE and a Nearest-Neighbor-
Interchange (NNI) tree with 100 Bootstraps using the
Jones-Taylor-Thornton (JTT) model was inferred by using
the maximum likelihood method and Dayhoffw/freq.
Model. The analysis was conducted with the MEGA X
software platform [27].

Further analysis, visualizations and exploratory data
analysis were carried out in R v3.6.0 [38] with the

Vignolle et al. BMC Genomics          (2020) 21:258 Page 10 of 12

25



following packages: phangorn v2.5.4 [39]; ape v5.3 [40];
ggplot2 v3.1.1 [41]; ggtree v1.17.1 [42]; gplots v3.0.1.1
[43]; stats v3.6.0.

Transcriptome analysis
The raw RNASeq paired-end reads were aligned to
the Trichoderma reesei QM6a genome (assembly v2.0;
BioSample accession: SAMN02746107) without using
predefined annotations. This was done following the
protocol for mapping RNASeq reads with a 2-pass
procedure described by Dobin and Gingeras with the
software STAR v 2.7.0c [44]. The alignments were vi-
sualized with IGV v2.5.3 (Integrative Genomics
Viewer) [45]. This procedure was chosen to reduce
false positive putative precursor peptide gene calls.
Putative precursor peptide genes to which RNASeq
data aligned were considered true positives. A sche-
matic diagram depicting the overall scheme of the
pipeline used to discover and curate possible RiPP
precursor peptides is illustrated in Fig. 3.

RiPP precursor peptide analysis
The most highly likely putative RiPP precursor peptide
from T. reesei was aligned to the 20 top hits from the
Blastp output using the ClustalW algorithm and was
performed with PRALINE [28]. Furthermore, the peptide
sequence was analyzed with NetOGlyc 4.0 [29] to pre-
dict O glycosylation sites, NetNGlyc 1.0 [30] to find pos-
sible N glycosylation sites, NsitePred [31] to evaluate if
there are probable DNA motif binding sites, NMT [46]
was used to recognize glycine N-myristoylation sites of
fungi and to detect if the C-terminus is appropriate for
peroxisomal import, NetPhos 3.1 [33] to predict phos-
phorylation sites and ExPASy – Sulfinator [32] to find
appropriate sulfatation sites within the peptide. Further-
more, the conservation scoring was performed with
PRALINE and the secondary structure prediction was
performed using the Define Secondary Structure of Pro-
teins (DSSP) algorithm and PSI-blast based secondary
structure PREDiction (PSIPRED).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6653-6.
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Additional File 1 
 
 
#INPUT 1 sp|P85421|AAMAT_AMAPH Alpha-amanitin proprotein (Fragment) 
OS=Amanita phalloides OX=67723 PE=1 SV=2 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 2 sp|P0CU56|ANT_AMAPH Antamanide OS=Amanita phalloides OX=67723 
PE=1 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 3 sp|A0A067SLB9|AAMA1_GALM3 Alpha-amanitin proprotein 1 OS=Galerina 
marginata (strain CBS 339.88) OX=685588 GN=AMA1-1 PE=1 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 4 sp|H2E7Q6|AAMA2_GALM3 Alpha-amanitin proprotein 2 OS=Galerina 
marginata (strain CBS 339.88) OX=685588 GN=AMA1-2 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 5 sp|P0CU60|CYAD_AMAPH Cycloamanide D OS=Amanita phalloides 
OX=67723 PE=1 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 6 sp|P0CU59|CYAC_AMAPH Cycloamanide C OS=Amanita phalloides 
OX=67723 PE=1 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
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#INPUT 7 sp|A8W7M4|AAMAT_AMABI Alpha-amanitin proprotein OS=Amanita 
bisporigera OX=87325 GN=AMA1 PE=3 SV=1 
 
Predicted RiPP Class: Lassopeptide 
 
MODEL 1 
Cleavage Site: 14 
Leader Peptide: MSDINATRLPIWGI 
Core Peptide: GCNPCVGDDVTTLLTRGEALC 
Predicted Crosslinks: 1,8,(Gly-Asp);2,21,(Cys-Cys);5,0,(Cys-Cys); 
SMILES
 N3CC(=O)NC(CS4)C(=O)NC(CC(=O)N)C(=O)N(CCC1)C1C(=O)NC(CS5)C(=O)NC(C(C)C)C
(=O)NCC(=O)NC(CC3(=O))C(=O)NC(CC(=O)O)C(=O)NC(C(C)C)C(=O)NC(C(C)O)C(=O)NC(C(C)O
)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CCCN=C(N)N)C(=O)NCC(=O)NC
(C(CC(=O)O))C(=O)NC(C)C(=O)NC(CC(C)C)C(=O)NC(CS4)C(=O)O 
 
MODEL 2 
Cleavage Site: 14 
Leader Peptide: MSDINATRLPIWGI 
Core Peptide: GCNPCVGDDVTTLLTRGEALC 
Predicted Crosslinks: 1,9,(Gly-Asp);2,21,(Cys-Cys);5,0,(Cys-Cys); 
SMILES
 N3CC(=O)NC(CS4)C(=O)NC(CC(=O)N)C(=O)N(CCC1)C1C(=O)NC(CS5)C(=O)NC(C(C)C)C
(=O)NCC(=O)NC(CC(=O)O)C(=O)NC(CC3(=O))C(=O)NC(C(C)C)C(=O)NC(C(C)O)C(=O)NC(C(C)O
)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CCCN=C(N)N)C(=O)NCC(=O)NC
(C(CC(=O)O))C(=O)NC(C)C(=O)NC(CC(C)C)C(=O)NC(CS4)C(=O)O 
 
MODEL 3 
Cleavage Site: 25 
Leader Peptide: MSDINATRLPIWGIGCNPCVGDDVT 
Core Peptide: TLLTRGEALC 
Predicted Crosslinks: 1,7,(Thr-Glu); 
SMILES
 N3C(C(C)O)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CCCN=C(N)N
)C(=O)NCC(=O)NC(C(CC3(=O)))C(=O)NC(C)C(=O)NC(CC(C)C)C(=O)NC(CS)C(=O)O 
 
 
#INPUT 8 sp|P0CU58|CYAB_AMAPH Cycloamanide B proprotein OS=Amanita 
phalloides OX=67723 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 9 sp|U5L406|AAMA1_AMAEX Alpha-amanitin proprotein 1 OS=Amanita 
exitialis OX=262245 GN=AMA PE=2 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
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#INPUT 10 sp|U5L3X2|AAMA2_AMAEX Alpha-amanitin proprotein 2 OS=Amanita 
exitialis OX=262245 GN=AMA PE=2 SV=1 
 
Predicted RiPP Class: Lassopeptide 
 
MODEL 1 
Cleavage Site: 25 
Leader Peptide: MSDINATRLPIWGIGCNPCVGDDVT 
Core Peptide: SVLTRGEA 
Predicted Crosslinks: 1,7,(Ser-Glu); 
SMILES
 N3C(CO)C(=O)NC(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CCCN=C(N)N)C(=
O)NCC(=O)NC(C(CC3(=O)))C(=O)NC(C)C(=O)O 
 
MODEL 2 
Cleavage Site: 14 
Leader Peptide: MSDINATRLPIWGI 
Core Peptide: GCNPCVGDDVTSVLTRGEA 
Predicted Crosslinks: 1,8,(Gly-Asp);2,5,(Cys-Cys); 
SMILES
 N3CC(=O)NC(CS4)C(=O)NC(CC(=O)N)C(=O)N(CCC1)C1C(=O)NC(CS4)C(=O)NC(C(C)C)C
(=O)NCC(=O)NC(CC3(=O))C(=O)NC(CC(=O)O)C(=O)NC(C(C)C)C(=O)NC(C(C)O)C(=O)NC(CO)C(
=O)NC(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CCCN=C(N)N)C(=O)NCC(=O)NC(C(C
C(=O)O))C(=O)NC(C)C(=O)O 
 
MODEL 3 
Cleavage Site: 14 
Leader Peptide: MSDINATRLPIWGI 
Core Peptide: GCNPCVGDDVTSVLTRGEA 
Predicted Crosslinks: 1,9,(Gly-Asp);2,5,(Cys-Cys); 
SMILES
 N3CC(=O)NC(CS4)C(=O)NC(CC(=O)N)C(=O)N(CCC1)C1C(=O)NC(CS4)C(=O)NC(C(C)C)C
(=O)NCC(=O)NC(CC(=O)O)C(=O)NC(CC3(=O))C(=O)NC(C(C)C)C(=O)NC(C(C)O)C(=O)NC(CO)C(
=O)NC(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CCCN=C(N)N)C(=O)NCC(=O)NC(C(C
C(=O)O))C(=O)NC(C)C(=O)O 
 
 
#INPUT 11 sp|U5L408|AAMA5_AMAEX Alpha-amanitin proprotein 5 OS=Amanita 
exitialis OX=262245 PE=2 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 12 sp|P0CU65|PHAD3_AMAPH Phalloidin proprotein OS=Amanita phalloides 
OX=67723 PE=1 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
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Predicted RiPP Class: NONE 
 
 
#INPUT 13 sp|P0CU57|CYAA_AMAPH Cycloamanide A OS=Amanita phalloides 
OX=67723 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 14 sp|A0A023IWM8|AAMA1_AMARI Alpha-amanitin proprotein OS=Amanita 
rimosa OX=580330 GN=AMA PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 15 sp|A0A023IWK7|AAMAT_AMAPL Alpha-amanitin proprotein OS=Amanita 
pallidorosea OX=1324310 GN=AMA PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 16 sp|U5L3K1|AMAN2_AMAEX Amanexitide proprotein 2 OS=Amanita exitialis 
OX=262245 PE=2 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 17 sp|A0A023IWG4|AAMAT_AMAFU Alpha-amanitin proprotein OS=Amanita 
fuliginea OX=67708 GN=AMA PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 18 sp|A8W7M7|PHAT1_AMABI Phallacidin proprotein 1 OS=Amanita bisporigera 
OX=87325 GN=PHA1_1 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
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#INPUT 19 sp|U5L3J5|AMAN1_AMAEX Amanexitide proprotein 1 OS=Amanita exitialis 
OX=262245 PE=2 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 20 sp|P0CU64|PHAD2_AMAPH Phalloidin proprotein OS=Amanita phalloides 
OX=67723 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 21 sp|P0CU63|PHAD1_AMAPH Phalloidin proprotein OS=Amanita phalloides 
OX=67723 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 22 sp|A0A023UBX6|PHAT1_AMAEX Phallacidin proprotein 1 (Fragment) 
OS=Amanita exitialis OX=262245 GN=PHA3 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 23 sp|A0A023IWE3|AAMA1_AMAFL Alpha-amanitin proprotein OS=Amanita 
fuligineoides OX=580329 GN=AMA PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 24 sp|U5L397|PHAT2_AMAEX Phallacidin proprotein 2 OS=Amanita exitialis 
OX=262245 GN=PHA PE=2 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 25 sp|U5L3M7|BAMAT_AMAEX Beta-amanitin proprotein OS=Amanita exitialis 
OX=262245 PE=2 SV=1 
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The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 26 sp|A0A023UCA6|AAMA2_AMAFL Alpha-amanitin proprotein (Fragment) 
OS=Amanita fuligineoides OX=580329 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 27 sp|D6CFW3|BAMA3_AMAPH Beta-amanitin proprotein OS=Amanita 
phalloides OX=67723 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 28 sp|A0A023IWE2|BAMAT_AMAPL Beta-amanitin proprotein OS=Amanita 
pallidorosea OX=1324310 PE=3 SV=1 
 
Predicted RiPP Class: Lassopeptide 
 
MODEL 1 
Cleavage Site: 14 
Leader Peptide: MSDINATRLPIWGI 
Core Peptide: GCDPCVGDDVTAVLTRGEA 
Predicted Crosslinks: 1,8,(Gly-Asp);2,5,(Cys-Cys); 
SMILES
 N3CC(=O)NC(CS4)C(=O)NC(CC(=O)O)C(=O)N(CCC1)C1C(=O)NC(CS4)C(=O)NC(C(C)C)C
(=O)NCC(=O)NC(CC3(=O))C(=O)NC(CC(=O)O)C(=O)NC(C(C)C)C(=O)NC(C(C)O)C(=O)NC(C)C(=
O)NC(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CCCN=C(N)N)C(=O)NCC(=O)NC(C(C
C(=O)O))C(=O)NC(C)C(=O)O 
 
MODEL 2 
Cleavage Site: 14 
Leader Peptide: MSDINATRLPIWGI 
Core Peptide: GCDPCVGDDVTAVLTRGEA 
Predicted Crosslinks: 1,9,(Gly-Asp);2,5,(Cys-Cys); 
SMILES
 N3CC(=O)NC(CS4)C(=O)NC(CC(=O)O)C(=O)N(CCC1)C1C(=O)NC(CS4)C(=O)NC(C(C)C)C
(=O)NCC(=O)NC(CC(=O)O)C(=O)NC(CC3(=O))C(=O)NC(C(C)C)C(=O)NC(C(C)O)C(=O)NC(C)C(=
O)NC(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CCCN=C(N)N)C(=O)NCC(=O)NC(C(C
C(=O)O))C(=O)NC(C)C(=O)O 
 
MODEL 3 
Cleavage Site: 25 
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Leader Peptide: MSDINATRLPIWGIGCDPCVGDDVT 
Core Peptide: AVLTRGEA 
Predicted Crosslinks: 1,7,(Ala-Glu); 
SMILES
 N3C(C)C(=O)NC(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CCCN=C(N)N)C(=O
)NCC(=O)NC(C(CC3(=O)))C(=O)NC(C)C(=O)O 
 
 
#INPUT 29 sp|A8W7P1|BAMA2_AMAPH Beta-amanitin proprotein (Fragment) 
OS=Amanita phalloides OX=67723 GN=AMA2 PE=3 SV=1 
 
Predicted RiPP Class: Lassopeptide 
 
MODEL 1 
Cleavage Site: 14 
Leader Peptide: MSDINATRLPIWGI 
Core Peptide: GCDPCIGDDVTILLTRGE 
Predicted Crosslinks: 1,8,(Gly-Asp);2,5,(Cys-Cys); 
SMILES
 N3CC(=O)NC(CS4)C(=O)NC(CC(=O)O)C(=O)N(CCC1)C1C(=O)NC(CS4)C(=O)NC(C(C)CC)
C(=O)NCC(=O)NC(CC3(=O))C(=O)NC(CC(=O)O)C(=O)NC(C(C)C)C(=O)NC(C(C)O)C(=O)NC(C(C)
CC)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CCCN=C(N)N)C(=O)NCC(=O)
NC(C(CC(=O)O))C(=O)O 
 
MODEL 2 
Cleavage Site: 14 
Leader Peptide: MSDINATRLPIWGI 
Core Peptide: GCDPCIGDDVTILLTRGE 
Predicted Crosslinks: 1,9,(Gly-Asp);2,5,(Cys-Cys); 
SMILES
 N3CC(=O)NC(CS4)C(=O)NC(CC(=O)O)C(=O)N(CCC1)C1C(=O)NC(CS4)C(=O)NC(C(C)CC)
C(=O)NCC(=O)NC(CC(=O)O)C(=O)NC(CC3(=O))C(=O)NC(C(C)C)C(=O)NC(C(C)O)C(=O)NC(C(C)
CC)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CCCN=C(N)N)C(=O)NCC(=O)
NC(C(CC(=O)O))C(=O)O 
 
MODEL 3 
Cleavage Site: 25 
Leader Peptide: MSDINATRLPIWGIGCDPCIGDDVT 
Core Peptide: ILLTRGE 
Predicted Crosslinks: 1,7,(Ile-Glu); 
SMILES
 N3C(C(C)CC)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CCCN=C(N)
N)C(=O)NCC(=O)NC(C(CC3(=O)))C(=O)O 
 
 
#INPUT 30 sp|A8W7N5|MSD7_AMABI MSDIN-like toxin proprotein 7 (Fragment) 
OS=Amanita bisporigera OX=87325 GN=MSD7 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
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#INPUT 31 sp|U5L3J9|MSD8_AMAEX MSDIN-like toxin proprotein 8 OS=Amanita 
exitialis OX=262245 PE=2 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 32 sp|A0A023IWK3|MSD2_AMAFU MSDIN-like toxin proprotein 2 OS=Amanita 
fuliginea OX=67708 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 33 sp|A0A023IWE0|MSD1_AMAFL MSDIN-like toxin proprotein 1 OS=Amanita 
fuligineoides OX=580329 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 34 sp|U5L3X0|MSD1_AMAEX MSDIN-like toxin proprotein 1 OS=Amanita 
exitialis OX=262245 PE=2 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 35 sp|A0A023IWG1|MSD3_AMAFL MSDIN-like toxin proprotein 3 OS=Amanita 
fuligineoides OX=580329 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 36 sp|U5L409|MSD2_AMAEX MSDIN-like toxin proprotein 2 OS=Amanita 
exitialis OX=262245 PE=2 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
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#INPUT 37 sp|A8W7N4|MSD6_AMABI MSDIN-like toxin proprotein 6 OS=Amanita 
bisporigera OX=87325 GN=MSD6 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 38 sp|A0A023IWI4|MSD2_AMAFL MSDIN-like toxin proprotein 2 OS=Amanita 
fuligineoides OX=580329 PE=3 SV=1 
 
Predicted RiPP Class: Lassopeptide 
 
MODEL 1 
Cleavage Site: 24 
Leader Peptide: MSDINATRLPHLVRYPPYVGDGTD 
Core Peptide: LTLNRGEK 
Predicted Crosslinks: 1,7,(Leu-Glu); 
SMILES
 N3C(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CC(C)C)C(=O)NC(CC(=O)N)C(=O)NC(CCCN=C(
N)N)C(=O)NCC(=O)NC(C(CC3(=O)))C(=O)NC(C(CCCN))C(=O)O 
 
MODEL 2 
Cleavage Site: 23 
Leader Peptide: MSDINATRLPHLVRYPPYVGDGT 
Core Peptide: DLTLNRGEK 
Predicted Crosslinks: 1,8,(Asp-Glu); 
SMILES
 N3C(CC(=O)O)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CC(C)C)C(=O)NC(CC(=O)N)
C(=O)NC(CCCN=C(N)N)C(=O)NCC(=O)NC(C(CC3(=O)))C(=O)NC(C(CCCN))C(=O)O 
 
MODEL 3 
Cleavage Site: 14 
Leader Peptide: MSDINATRLPHLVR 
Core Peptide: YPPYVGDGTDLTLNRGEK 
Predicted Crosslinks: 1,7,(Tyr-Asp); 
SMILES
 N3C(CC1=C(C=C(O)C=C1))C(=O)N(CCC1)C1C(=O)N(CCC1)C1C(=O)NC(CC1=C(C=C(O)C
=C1))C(=O)NC(C(C)C)C(=O)NCC(=O)NC(CC3(=O))C(=O)NCC(=O)NC(C(C)O)C(=O)NC(CC(=O)O)
C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CC(C)C)C(=O)NC(CC(=O)N)C(=O)NC(CCCN=C(N)N
)C(=O)NCC(=O)NC(C(CC(=O)O))C(=O)NC(C(CCCN))C(=O)O 
 
 
#INPUT 39 sp|A0A023IWE1|MSD4_AMAPH MSDIN-like toxin proprotein 4 OS=Amanita 
phalloides OX=67723 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 

36



#INPUT 40 sp|A0A023IWG3|BAMAT_AMAFL Beta-amanitin proprotein OS=Amanita 
fuligineoides OX=580329 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 41 sp|A0A023IWM6|MSD1_AMARI MSDIN-like toxin proprotein 1 OS=Amanita 
rimosa OX=580330 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 42 sp|A0A023IWM4|MSD1_AMAFU MSDIN-like toxin proprotein 1 OS=Amanita 
fuliginea OX=67708 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 43 sp|A8W7P0|MSD12_AMABI MSDIN-like toxin proprotein 12 OS=Amanita 
bisporigera OX=87325 GN=MSD12 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 44 sp|A0A023IWK5|MSD2_AMARI MSDIN-like toxin proprotein 2 OS=Amanita 
rimosa OX=580330 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 45 sp|A8W7N1|MSD3_AMABI MSDIN-like toxin proprotein 3 (Fragment) 
OS=Amanita bisporigera OX=87325 GN=MSD3 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 46 sp|A8W7N2|MSD4_AMABI MSDIN-like toxin proprotein 4 (Fragment) 
OS=Amanita bisporigera OX=87325 GN=MSD4 PE=3 SV=1 
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The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 47 sp|U5L3J7|MSD7_AMAEX MSDIN-like toxin proprotein 7 OS=Amanita 
exitialis OX=262245 PE=2 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 48 sp|U5L396|MSD6_AMAEX MSDIN-like toxin proprotein 6 OS=Amanita 
exitialis OX=262245 PE=2 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 49 sp|U5L3M6|MSD5_AMAEX MSDIN-like toxin proprotein 5 OS=Amanita 
exitialis OX=262245 PE=2 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 50 sp|A8W7N0|MSD2_AMABI MSDIN-like toxin proprotein 2 (Fragment) 
OS=Amanita bisporigera OX=87325 GN=MSD2 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 51 sp|U5L3M8|MSD3_AMAEX MSDIN-like toxin proprotein 3 OS=Amanita 
exitialis OX=262245 PE=2 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 52 sp|A8W7N6|MSD8_AMABI MSDIN-like toxin proprotein 8 (Fragment) 
OS=Amanita bisporigera OX=87325 GN=MSD8 PE=3 SV=2 
 
Predicted RiPP Class: Lassopeptide 
 
MODEL 1 
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Cleavage Site: 15 
Leader Peptide: MSDINTARLPCIGFL 
Core Peptide: GIPSVGDDIEMVLRHG 
Predicted Crosslinks: 1,7,(Gly-Asp); 
SMILES
 N3CC(=O)NC(C(C)CC)C(=O)N(CCC1)C1C(=O)NC(CO)C(=O)NC(C(C)C)C(=O)NCC(=O)NC
(CC3(=O))C(=O)NC(CC(=O)O)C(=O)NC(C(C)CC)C(=O)NC(C(CC(=O)O))C(=O)NC(CCSC)C(=O)NC
(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(CCCN=C(N)N)C(=O)NC(CC1=C(NC=N1))C(=O)NCC(=O)O 
 
MODEL 2 
Cleavage Site: 15 
Leader Peptide: MSDINTARLPCIGFL 
Core Peptide: GIPSVGDDIEMVLRHG 
Predicted Crosslinks: 1,8,(Gly-Asp); 
SMILES
 N3CC(=O)NC(C(C)CC)C(=O)N(CCC1)C1C(=O)NC(CO)C(=O)NC(C(C)C)C(=O)NCC(=O)NC
(CC(=O)O)C(=O)NC(CC3(=O))C(=O)NC(C(C)CC)C(=O)NC(C(CC(=O)O))C(=O)NC(CCSC)C(=O)NC
(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(CCCN=C(N)N)C(=O)NC(CC1=C(NC=N1))C(=O)NCC(=O)O 
 
MODEL 3 
Cleavage Site: 17 
Leader Peptide: MSDINTARLPCIGFLGI 
Core Peptide: PSVGDDIEMVLRHG 
Predicted Crosslinks: 1,8,(Pro-Glu); 
SMILES
 N3(CCC1)C1C(=O)NC(CO)C(=O)NC(C(C)C)C(=O)NCC(=O)NC(CC(=O)O)C(=O)NC(CC(=O
)O)C(=O)NC(C(C)CC)C(=O)NC(C(CC3(=O)))C(=O)NC(CCSC)C(=O)NC(C(C)C)C(=O)NC(CC(C)C)C
(=O)NC(CCCN=C(N)N)C(=O)NC(CC1=C(NC=N1))C(=O)NCC(=O)O 
 
 
#INPUT 53 sp|A8W7N8|MSD10_AMABI MSDIN-like toxin proprotein 10 OS=Amanita 
bisporigera OX=87325 GN=MSD10 PE=3 SV=2 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 54 sp|A0A023IWK4|MSD3_AMAPH MSDIN-like toxin proprotein 3 OS=Amanita 
phalloides OX=67723 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 55 sp|A8W7N9|MSD11_AMABI MSDIN-like toxin proprotein 11 (Fragment) 
OS=Amanita bisporigera OX=87325 GN=MSD11 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
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Predicted RiPP Class: NONE 
 
 
#INPUT 56 sp|A8W7P2|MSD1_AMAPH MSDIN-like toxin proprotein a (Fragment) 
OS=Amanita phalloides OX=67723 GN=MSDa PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 57 sp|A8W7N3|MSD5_AMABI MSDIN-like toxin proprotein 5 (Fragment) 
OS=Amanita bisporigera OX=87325 GN=MSD5 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 58 sp|A8W7N7|MSD9_AMABI MSDIN-like toxin proprotein 8 (Fragment) 
OS=Amanita bisporigera OX=87325 GN=MSD9 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 59 sp|A0A023IWG2|MSD6_AMAPH MSDIN-like toxin proprotein 6 OS=Amanita 
phalloides OX=67723 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 60 sp|A8W7M9|MSD1_AMABI MSDIN-like toxin proprotein 1 (Fragment) 
OS=Amanita bisporigera OX=87325 GN=MSD1 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 61 sp|A0A023IWI5|MSD5_AMAPH MSDIN-like toxin proprotein 5 OS=Amanita 
phalloides OX=67723 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
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#INPUT 62 sp|A0A023IWM5|MSD2_AMAPH MSDIN-like toxin proprotein 2 OS=Amanita 
phalloides OX=67723 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 63 sp|A0A023IWI6|BAMAT_AMAFU Beta-amanitin proprotein OS=Amanita 
fuliginea OX=67708 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 64 sp|A0A023UA23|PHAT_AMAFU Phallacidin proprotein (Fragment) 
OS=Amanita fuliginea OX=67708 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 65 sp|A0A023UCC1|PHAT_AMAFL Phallacidin proprotein (Fragment) 
OS=Amanita fuligineoides OX=580329 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 66 sp|A0A023IWM7|BAMAT_AMARI Beta-amanitin proprotein OS=Amanita 
rimosa OX=580330 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 67 sp|A8W7P3|PHAT_AMAOC Phalloidin proprotein (Fragment) OS=Amanita 
ocreata OX=235532 GN=PHD PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 68 sp|A0A023UBY3|PHAT_AMAPH Phallacidin proprotein 1 (Fragment) 
OS=Amanita phalloides OX=67723 GN=PHA1 PE=3 SV=1 
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The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 69 sp|A0A023IWD9|MSD4_AMAEX MSDIN-like toxin proprotein 4 OS=Amanita 
exitialis OX=262245 PE=2 SV=2 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 70 sp|A0A023IWK6|BAMA1_AMAPH Beta-amanitin proprotein OS=Amanita 
phalloides OX=67723 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 71 sp|A8W7M6|PHAT2_AMABI Phallacidin proprotein 1 (Fragment) OS=Amanita 
bisporigera OX=87325 GN=PHA1_2 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 72 sp|A0A023UBA8|PHAT_AMARI Phallacidin proprotein (Fragment) 
OS=Amanita rimosa OX=580330 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 73 sp|A0A023IWI8|PHAT_AMAPL Phallacidin proprotein OS=Amanita 
pallidorosea OX=1324310 GN=PHA PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 74 sp|P0CU61|CYAE_AMAPH Cycloamanide E proprotein OS=Amanita 
phalloides OX=67723 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
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#INPUT 75 sp|P0CU62|CYAF_AMAPH Cycloamanide F proprotein OS=Amanita phalloides 
OX=67723 PE=3 SV=1 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
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Additional File 2 
 
 
#INPUT 1 AFLA_094900_1627:3671 Forward 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 2 AFLA_094910_5519:7213 Reverse 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 3 AFLA_094920_8996:10049 Reverse 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 4 AFLA_094930_10952:11494 Forward 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 5 AFLA_094940_11820:12633 Reverse 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 6 AFLA_094950_12983:14794 Forward 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 7 AFLA_094960_15001:16869 Forward 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 8 AFLA_094970_16928:17447 Reverse 
 
The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 9 AFLA_094980_17572:18341 Forward 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 10 AFLA_094990_18786:19695 Reverse 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 11 AFLA_095000_19986:20251 Forward 
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The Input Peptide sequence is predicted as RiPP! 
 
Predicted RiPP Class: NONE 
 
 
#INPUT 12 AFLA_095010_20853:22342 Forward 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 13 AFLA_095020_22443:22987 Reverse 
 
Predicted RiPP Class: Cyanobactin 
 
 
#INPUT 14 AFLA_095030_23859:25923 Forward 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 15 AFLA_095040_26031:27483 Reverse 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 16 AFLA_095050_27748:29397 Forward 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 17 AFLA_095060_29612:30961 Forward 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 18 AFLA_095070_31085:32875 Reverse 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 19 AFLA_095080_35067:35960 Forward 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 20 AFLA_095090_35976:36893 Forward 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 21 AFLA_095100_37200:38432 Reverse 
 
The Input Peptide sequence is not predicted as RiPP! 
 
#INPUT 22 AFLA_095110_38515:39246 Forward 
 
The Input Peptide sequence is not predicted as RiPP! 
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Trich brevicom C85 ctg620 orf10 Cyanobactin
Trich harz C128 ctg38 orf14 Lassopeptide
Trich harz C114 ctg22 orf87
Trich harz C73 ctg10 orf25 CyanobactinTrich harz C119 ctg25 orf20Trich harz C120 ctg25 orf81Trich brevicom C78 ctg483 orf04 CyanobactinTrich harz C109 ctg18 orf14 CyanobactinTrich harz C4 ctg1 orf195Trich harz C24 ctg3 orf381Trich harz C39 ctg5 orf376Trich brevicom C38 ctg176 orf14

Trich harz C78 ctg10 orf242 Linaridin
Trich harz C106 ctg16 orf187
Trich harz C19 ctg2 orf972
Trich harz C79 ctg10 orf254 Cyanobactin

Trich citr C80 ctg18 orf111
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18 ctg3 orf191

Trich harz C19 ctg2 orf961
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Trich harz C4 ctg1 orf203 Lassopeptide

Trich harz C42 ctg6 orf24

Trich harz C55 ctg7 orf146 Cyanobactin

Trich harz C39 ctg5 orf400

Trich harz C61 ctg7 orf400

Trich harz C36 ctg5 orf65 Cyanobactin

Trich citr C13 ctg2 orf349

Trich harz C11 ctg2 orf34

Trich harz C41 ctg5 orf647 Cyanobactin

Trich brevicom C93 ctg788 orf8 Lassopeptide

Trich citr C13 ctg2 orf340

Trich citr C78 ctg17 orf76 Microcin

Trich harz C90 ctg13 orf216

Trich harz C126 ctg33 orf7

Trich harz C36 ctg5 orf70

Trich harz C90 ctg13 orf209

Trich harz C68 ctg8 orf296

Trich citr C75 ctg16 orf198

Trich harz C73 ctg10 orf34 Lassopeptide

Trich brevicom C59 ctg324 orf10 Cyanobactin

Trich citr C34 ctg6 orf55 Cyanobactin

Trich brevicom C49 ctg243 orf13

Trich harz C10 ctg2 orf11 Cyanobactin

Trich harz C55 ctg7 orf136 Cyanobactin

Trich harz C58 ctg7 orf244

Trich harz C23 ctg3 orf353

Trich harz C79 ctg10 orf257

Trich harz C89 ctg13 orf32

Trich citr C27 ctg4 orf397

Trich citr C33 ctg6 orf7 lanthipeptideB

Trich brevicom C93 ctg788 orf10

Trich harz C119 ctg25 orf29 Cyanobactin

Trich brevicom C19 ctg71 orf41

Trich brevicom C73 ctg437 orf00001 Cyanobactin

Trich brevicom C57 ctg312 orf12 Linaridin

Trich harz C118 ctg24 orf73 Cyanobactin

Trich harz C102 ctg16 orf20

Trich citr C28 ctg4 orf548 lanthipeptideB

Trich brevicom C76 ctg455 orf6 Cyanobactin

Trich harz C102 ctg16 orf18 Cyanobactin

Trich citr C46 ctg8 orf293

Trich harz C4 ctg1 orf188 Cyanobactin

Trich citr C31 ctg5 orf490

Trich harz C46 ctg6 orf225 Cyanobactin

Trich harz C34 ctg4 orf760

Trich brevicom C24 ctg81 orf54

Trich harz C21 ctg3 orf90 Cyanobactin
Trich citr C13 ctg2 orf341

Trich harz C41 ctg5 orf653
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Additional File 5 

This is a very large file and can be found online following this link: 

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-6653-6#Sec17 
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Additional file 6. Comparison of biosynthetic gene cluster 55 of T. reesei and biosynthetic gene cluster 75 of 
T. citrinoviride. The gene cluster of T. citrinoviride is located on scaffold KZ680222.1 (605524-667527 nt) and
contains 16 predicted genes and three possible pseudogenes. The schematic representation of the two clusters was
extracted directly from the antiSMASH results. The gene annotations were manually curated and based on a Blastp
v2.9.0+ (protein-protein BLAST) (25) search against a manually curated database (Figure 6, Additional file 7). The
gene designations of the T. reesei cluster 55 genes is the same as in Figure 6. The number of the open reading
frames (orf) assigned by antiSMASH in the T. citrinoviride cluster 75 begin are indicated above the genes. All
annotations and protein accession numbers for their corresponding orf can be found in Additional file 8. Orf 184
encodes a general substrate transporter, orf 185 a possible pseudogene, orf 186 a aldehyde dehydrogenase, orf
187 a glycosyltransferase family 1 protein, orf 188 encodes for a major facilitator superfamily (MFS) general
substrate transporter, orf 189 a carbon-nitrogen hydrolase, orf 190 encodes for a Heterokaryon incompatibility
protein, orf 191 a sulfatase, orf 192 the putative RiPP precursor peptide with the Location 636556 – 636948 nt, orf
193 a amino acid transporter, orf 194 a possible pseudogene, orf 195 a hypothetical protein, orf 196 a putative
fungal transcription protein, orf 197 a carbohydrate-binding module family 1 protein, orf 198 a possible
pseudogene, orf 199 a GMC oxidoreductase, orf 200 a alpha/beta-hydrolase, orf 201 a GroES-like protein and orf
202 encodes for a putative 3-hydroxyisobutyrate dehydrogenase.

The lines between genes of the two clusters indicate homology. The percentages beneath the T. citrinoviride genes 
represent the sequence similarities between the two homologous genes. Genes O – S, U W have homologs in T. 
citrinoviride (Additional file 5) at the corresponding location, but this is not depicted here, because antiSMASH did 
not predict these genes to be part of the BGC in T. citrinoviride.  

Additional File 6

49



Additional File 7 
 

This is a very large file and can be found online following this link: 

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-6653-6#Sec17 
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Additional File 8 
 
 
Cluster 75 from T. citrinoviride KZ680222.1 Location 605524 - 667527 
 
# orf 184 
XP_024746026.1 general substrate transporter  95.06% sequence similarity with T. reesei 
 
# orf 185 
no hits 
 
# orf 186 
XP_024746029.1 aldehyde dehydrogenase  [52.88% sequence similarity with T. reesei] 
 
# orf 187 
XP_024746030.1 glycosyltransferase family 1 protein  86.71% sequence similarity with T. 
reesei 
 
# orf 188 
XP_024746031.1 MFS general substrate transporter  94.97% sequence similarity with T. 
reesei 
 
# orf 189 
XP_024746033.1 carbon-nitrogen hydrolase  [76.77% sequence similarity with T. reesei] 
 
# orf 190 
XP_024746034.1  Heterokaryon incompatibility protein  70.00% sequence similarity with T. 
reesei 
 
# orf 191 
XP_024746035.1 sulfatase  95.16% sequence similarity with T. reesei 
 
# orf 192 
XP_024746036.1 putative RiPP precursor peptide   97.25% sequence similarity with T. 
reesei  Location: 636556 - 636948 
 
# orf 193 
XP_024746038.1 amino acid transporter  93.18% sequence similarity with T. reesei 
 
# orf 194 
no hits 
 
# orf 195 
XP_024746039.1 hypothetical protein   [26.65% sequence similarity with T. reesei] 
 
# orf 196 
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XP_024746040.1 hypothetical protein / fungal transcription protein  [26.96% sequence 
similarity with T. reesei] 
 
# orf 197 
XP_024746041.1 carbohydrate-binding module family 1 protein  94.133% sequence 
similarity with T. reesei 
 
# orf 198 
no hits 
 
# orf 199 
XP_024746042.1 GMC oxidoreductase  95.760% sequence similarity with T. reesei 
 
# orf 200 
XP_024746046.1 alpha/beta-hydrolase  86.634% sequence similarity with T. reesei 
 
# orf 201 
XP_024746047.1 GroES-like protein  88.703% sequence similarity with T. reesei 
 
# orf 202 
XP_024746048.1 hypothetical protein / 3-hydroxyisobutyrate dehydrogenase  77.032% 
sequence similarity with T. reesei 
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Abstract

Secondary metabolites (SMs) are a vast group of compounds with different structures and

properties that have been utilized as drugs, food additives, dyes, and as monomers for

novel plastics. In many cases, the biosynthesis of SMs is catalysed by enzymes whose cor-

responding genes are co-localized in the genome in biosynthetic gene clusters (BGCs).

Notably, BGCs may contain so-called gap genes, that are not involved in the biosynthesis of

the SM. Current genome mining tools can identify BGCs, but they have problems with distin-

guishing essential genes from gap genes. This can and must be done by expensive, labori-

ous, and time-consuming comparative genomic approaches or transcriptome analyses. In

this study, we developed a method that allows semi-automated identification of essential

genes in a BGC based on co-evolution analysis. To this end, the protein sequences of a

BGC are blasted against a suitable proteome database. For each protein, a phylogenetic

tree is created. The trees are compared by treeKO to detect co-evolution. The results of this

comparison are visualized in different output formats, which are compared visually. Our

results suggest that co-evolution is commonly occurring within BGCs, albeit not all, and that

especially those genes that encode for enzymes of the biosynthetic pathway are co-evolu-

tionary linked and can be identified with FunOrder. In light of the growing number of genomic

data available, this will contribute to the studies of BGCs in native hosts and facilitate heter-

ologous expression in other organisms with the aim of the discovery of novel SMs.

Author summary

The discovery and description of novel fungal secondary metabolites promises novel anti-

biotics, pharmaceuticals, and other useful compounds. A way to identify novel secondary

metabolites is to express the corresponding genes in a suitable expression host. Conse-

quently, a detailed knowledge or an accurate prediction of these genes is necessary. In

fungi, the genes are co-localized in so-called biosynthetic gene clusters. Notably, the clus-

ters may also contain genes that are not necessary for the biosynthesis of the secondary
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metabolites, so-called gap genes. We developed a method to detect co-evolved genes

within the clusters and demonstrated that essential genes are co-evolving and can thus be

differentiated from the gap genes. This adds an additional layer of information, which can

support researchers with their decisions on which genes to study and express for the dis-

covery of novel secondary metabolites.

This is a PLOS Computational BiologyMethods paper.

Introduction

Secondary metabolites (SMs) are a diverse group of compounds with a plethora of different

chemical structures and properties which are found in all domains of life, but are predomi-

nantly studied in bacteria, fungi, and plants [1]. SMs are not necessary for the basic survival

and growth of an organism but can be beneficial under certain conditions. For example, pig-

ments help to sustain radiation, antibiotics help in competitive situations, and toxins can serve

as defensive compounds or as virulence factors [2,3]. Notably, many SMs are used by human-

kind as drugs and pharmaceuticals, pigments and dyes, sweeteners and flavours, and most

recently also as precursors for the synthesis of plastics [4]. The study of the secondary metabo-

lism holds the promise for novel antibiotics, pharmaceuticals and other useful compounds [5].

A major hinderance in the discovery of yet undescribed SMs is the fact that most SMs are

not produced under standard laboratory conditions, as they do not serve a purpose for the

organisms then. Currently, different strategies are followed to circumvent this problem [6,7].

Untargeted approaches aim to induce the expression of any SM. To this end, biotic and abiotic

stresses are applied, or global regulators and regulatory mechanisms are manipulated [8].

These strategies may lead to the discovery of novel compounds, whose corresponding genes

have to be identified subsequently by time-consuming and expensive methods [7]. An extreme

example are the aflatoxins, major food contaminants with serious toxicological effects [9]. It

took over 40 years from the discovery of the aflatoxins as the causal agent of “turkey X” disease

in the 1950s [10] until the corresponding genes were finally described in 1995 [11]. Targeted

SM discovery approaches aim to induce the production of specific SMs by either overexpres-

sing genes in the native host or by heterologous expression in another organism [12]. The tar-

geted approaches, also called reverse strategy or bottom-up strategy allows a direct connection

of SMs to the corresponding genes and does not rely on the inducibility of SM production in

the native host. Inherently, the bottom-up approach is depending on modern genomics and

accurate gene prediction tools [13].

In bacteria and fungi, the genes responsible for the biosynthesis of a certain SM are often

co-localized in the genome, forming so called biosynthetic gene clusters (BGCs) [14,15]. The

BGCs consists of one or more core genes, several tailoring enzymes, and genes involved in reg-

ulation and transport. As all these genes are essential for the production of a SM in the native

host, we will refer to them as “essential genes” in this study. The core genes are responsible for

assembling the basic chemical scaffold, which is further modified by the tailoring enzymes

yielding the final SM [16]. We refer to the core genes and the tailoring genes as “biosynthetic

genes” in this study. Depending on the class of the produced SM, the core genes differ. In

fungi, the main SM classes are polyketides (e.g. the cholesterol-lowering drug lovastatin [17]
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and the mycotoxin aflatoxin [9]) and non-ribosomal peptides (e.g. the immunosuppressant

cyclosporine [18] and the antibiotic penicillin [19]), with polyketide synthases (PKS) or non-

ribosomal peptide synthetases (NRPS) as core enzymes, respectively. Other SM classes are ter-

penoids, alkaloids, melanins [20,21], and ribosomally synthesized and posttranslationally

modified peptides (RiPPs) [22,23], whose corresponding genes may also be organized in

BGCs. As mentioned, BGCs may also contain genes encoding for transporters [24], transcrip-

tion factors [25], or resistance genes [26]. While their gene products are not directly involved

in the biosynthesis of a SM they are still essential for the biosynthesis; we will call them „further

essential genes”in the following and differentiate them from the „biosynthetic genes“. The bio-

synthetic genes and the further essential genes are both necessary for the biosynthesis of a SM

in the native organisms. In contrast, only the biosynthetic genes and a selection of the further

essential genes (e.g. transporters) are necessary for heterologous expression [reviewed in [27]].

Notably, fungal BGCs often also contain genes that are not necessary for the production of a

SM, the so-called gap genes. The gap genes are not involved in the biosynthesis, regulation, or

transport of the SM, but have an unrelated function (Fig 1). We would like to stress here, that

this cannot be predicted based only on the class of the gene product. For instance, a gene

encoding for a transporter in the aflatoxin BGC was reported to have no significant role in afla-

toxin secretion [28].

As mentioned, the bottom-up approach for SM discovery is depending on modern geno-

mics and the accurate prediction of genes and BGCs. Each important gene missing in the pre-

diction is detrimental for obvious reasons, whereas each unnecessarily considered gap gene

makes the study of a BGCmore complicated and complex, and the construction and transfor-

mation processes for heterologous expression more challenging. Currently, several BGC pre-

diction tools are available for fungi. Some tools for genome mining are antiSMASH [29],

CASSIS and SMIPS [30], SMURF [31], TOUCAN, a supervised learning framework capable of

predicting BGCs on amino acid sequences [32], and DeepBGC, an unrestricted machine learn-

ing approach using deep neural networks [33]. These tools are effective and successful in find-

ing and predicting BGCs based solely on genomic data. AntiSMASH uses a rule-based

approach to identify BGCs based on the identification of core or signature enzymes and

applies a greedy approach to extend a cluster on either side. This may result in overlaps or

combinations of closely situated clusters. However, the genes within the predicted BGCs are

classified into core biosynthetic genes, additional biosynthetic genes, transport-related genes,

regulatory genes, and other genes based on profile hidden Markov models by the antiSMASH

tool. The BGC prediction method of CASSIS and SMIPS is based on the principle that the pro-

moter regions of genes in a BGC contain one or more shared motif, as they are co-expressed

and presumably regulated by the same regulatory factors and/or mechanisms [30].

Fig 1. Schematic representation of the lovastatin BGC from Aspergillus terreus (lov). In red the biosynthetic genes for SM production, in
gold the further essential genes, and in blue the genes not involved in the biosynthetic pathway.

https://doi.org/10.1371/journal.pcbi.1009372.g001
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As mentioned above, the class of an enzyme may be a good indication for a potential

involvement in the biosynthesis of a SM but does not guarantee a correct prediction. This

problem can be solved by the analysis of transcriptome data because the genes necessary for

SM production within a BGC are normally co-expressed with each other but not with the gap

genes [34]. Notably, this demands the knowledge of expression conditions and does not work

for silent BGCs. However, it is an obvious advantage to have as much information as possible

about a BGC before studying it in the native host or performing heterologous expression for a

bottom-up approach for SM discovery.

We speculate that a comparative genomics analysis focusing on the evolutionary history of

the genes in a BGCmight be a feasible alternative to a transcriptomics analysis in fungi for the

following reasons. In general, BGCs are suggested to undergo a distinct and faster evolution

than the rest of the genome, based on different mechanisms and genetic drivers [16,35–40]. In

bacteria, the evolution of BGCs is strongly influenced by the strong occurrence of horizontal

gene transfer in these group of microorganism [39]. Medema et al. performed a large-scale

computational analysis of bacterial BGCs and found that many BGCs consist of sub-clusters.

These sub-clusters encode for enzymes that work together to form a distinct chemical struc-

ture. Notably, this sub-clusters were described as “independent evolutionary entities” and the

contained genes are co-evolving. The authors suggested a “bricks and mortar” model. Therein,

different sub-clusters, the “bricks” form different chemical building blocks for a secondary

metabolite. Additional genes within the BGCs are encoding for enzymes that combine the

building blocks, and fulfil other functions such as tailoring, regulation and transport. These

individual genes are the “mortar” in the “brick and mortar” model [40]. The “bricks” corre-

spond to what we term “biosynthetic genes” and the “mortar” to our “further essential genes”.

Through horizontal gene transfer, the “bricks” can be easily exchanged and recombined to

form novel BGCs and secondary metabolites[40]. Notably, not all bacterial BGCs are com-

posed of exchangeable sub-units but some BGCs keep a stable architecture over a long time

[40].

In fungi, three molecular evolutionary processes were suggested to be responsible for shap-

ing the BGCs in a recent study, i.e., functional divergence, horizontal gene transfer, and de
novo assembly [41]. Rokas et al. define functional divergence as a “process by which homolo-

gous BGCs, through the accumulation of genetic changes, gradually diverge in their functions

changes” [41] and horizontal gene transfer as a “process by which an entire BGC from the

genome of one organism is transferred and stably integrated into the genome of another

through non-reproduction related mechanisms” [41]. This implies in both cases, that fungal

BGCs are staying intact. Further, the genes are suggested to undergo a co-evolution which is

faster than the rest of the genome [41]. Medema’s “brick and mortar” model would more or

less correspond to what Rokas et al. describe as “de novo assembly”. This is defined as a “pro-

cess by which an entire BGC is evolutionarily assembled through the recruitment and reloca-

tion of native genes, duplicates of native genes, and horizontally acquired genes” [41]. Notably,

Rokas et al. state that this is the”least well-documented evolutionary process involved in the

generation of fungal chemodiversity” [41], suggesting that in known and described fungal

BGCs functional divergence and horizontal gene transfer are the two main evolutionary pro-

cess, during which BGCs are staying intact and genes undergo a similar evolution. Further, we

hypothesize that especially the biosynthetic genes in a BGC are co-evolutionary linked by the

selection pressure to keep the biosynthetic pathway intact. Notably, a co-evolution analysis is a

laborious and time-consuming task because a phylogenetic tree has to be calculated for each

gene and then the trees compared to each other manually [42]. Recently, a method for the

detection of co-evolution in bacterial BGCs was developed with the aim to identify sub-clusters

[43]. That method is based on the detection of orthologous genes that are present in close
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vicinity in many BGCs. This method is working unsupervised but requires a large set of BGCs

as input [43].

In this study we describe a method (FunOrder) that allows a fast, semi-automated co-evolu-

tion analysis using individual BGCs as input. Based on this analysis and the assumption that

the essential genes undergo a shared or similar evolution, FunOrder aims to identify essential

genes in BGCs. To this end, we constructed a database of fungal proteomes as basis for the

identification of co-evolutionary linked genes in ascomycetes. We determine the thresholds

for the detection of co-evolution within different control gene sets. Then, we evaluated FunOr-

der and tested the underlying hypothesis, whether essential genes within a BGC could be iden-

tified based on the principle of co-evolution. We demonstrated the robustness and the

applicability of the FunOrder method by analysing different control gene sets, including

empirically validated BGCs and evaluated our method using stringent statistical tests.

Material andmethods

Construction of a fungal proteome database

In this study we aim to identify co-evolutionary linked genes in ascomycetes. As the basis for

the detection of co-evolution is a suitable database [42], we compiled an empirically optimized

database consisting of 134 fungal proteomes from mainly ascomycetes and from two basidio-

mycetes for this method (Table 1). The two basidiomycete proteomes were included for the off

chance of analysing gene clusters that do not originate from ascomycetes. The database covers

the complete ascomycetes phylum and was iteratively tested and optimized for the detection of

co-evolution in ascomycetes. The sequences were downloaded from the National Center for

Biotechnology Information (NCBI) database and the Joint Genome Institute (JGI) [44]. A

short identifier, unique in the database for each proteome, was introduced to enable multiple

pairwise tree comparisons by the treeKO application [45]. A custom Perl script was used for

removing duplicated entries in the database. The database is deposited in the GitHub reposi-

tory https://github.com/gvignolle/FunOrder (doi:10.5281/zenodo.5118984).

Workflow

The workflow for the FunOrder method is depicted in Fig 2. First, the sequences of the BGC to

be analysed are fed into the software bundle. FunOrder accepts a single file in either genbank

file format or fasta format as input. The input files contain BGCs predicted by tools such as

antiSMASH [29] or DeepBGC [33]. In case a genbank file is provided, a python script

(Genbank to FASTA by Cedar McKay and Gabrielle Rocap, University of Washington) is

called to extract the amino acid sequence of the genes in the BGC and create a fasta file. The

multi-fasta file is then split into individual fasta files each containing a single protein sequence.

These are placed in a subfolder created for the analysis of the BGC. Each file is named either

after the position of the gene in the BGC or after the respective protein sequence description.

This varies from the input file and the varying annotations used (If needed this can be changed

in the script following the instructions of Genbank to FASTA by Cedar McKay and Gabrielle

Rocap, University of Washington). Each header of the query sequences is tagged with the iden-

tifier "query" at the beginning of the header. The individual sequences are compared to the

empirically optimized proteome database (Table 1) by a sequence similarity search using blastp

2.8.1+ (Protein-Protein BLAST) [133]. The output of this search is saved in a file with the ".

tab" extension. Additionally, an optional remote search of the non-redundant National Center

for Biotechnology Information (NCBI) protein database can be performed, yielding a file with

the "ncbi.tab" extension. This allows a preliminary manual analysis of the input sequences and

facilitates subsequent annotations of the BGCs.
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Table 1. Fungal proteomes included in the empirically optimized database.

Organism Source Database Identifier Reference

Acremonium chrysogenum JGI AcCh [46]

Alternaria alternata NCBI AlAl [47]

Alternaria arborescens NCBI AlAr [48]

Alternaria gaisen NCBI AlGa [49]

Alternaria sp. MG1 NCBI AlSp [50]

Alternaria tenuissima NCBI AlTe [49]

Amanita muscaria NCBI AmMu [51]

Amorphotheca resinae JGI AmRe [52]

Arthrobotrys oligospora JGI ArOl [53]

Arthroderma benhamiae JGI ArBe [54]

Ascobolus immersus JGI AsIm [55]

Aspergillus costaricaensis NCBI AsCo [56]

Aspergillus fijiensis NCBI AsFi [56]

Aspergillus flavus NCBI AsFl [57]

Aspergillus fumigatus NCBI AsFu [58]

Aspergillus homomorphus NCBI AsHo [56]

Aspergillus ibericus NCBI AsIb [56]

Aspergillus japonicus NCBI AsJa [56]

Aspergillus niger NCBI AsNi [59]

Aspergillus oryzae NCBI AsOr [60]

Aspergillus phoenicis NCBI AsPh [61]

Aspergillus terreus NCBI AsTe [62]

Blumeria graminis JGI BlGr [63]

Botryosphaeria dothidea JGI BoDo [64]

Botrytis cinerea NCBI BoCi [65]

Botrytis elliptica NCBI BoEl [66]

Botrytis galanthina NCBI BoGa [66]

Botrytis hyacinthi NCBI BoHy [66]

Botrytis paeoniae NCBI BoPa [66]

Botrytis porri NCBI BoPo [66]

Botrytis tulipae NCBI BoTu [66]

Cadophora sp. JGI CaSp [67]

Capronia semiimmersa JGI CaSe [68]

Chaetomium globosum JGI ChGl [69]

Choiromyces venosus JGI ChVe [55]

Cladonia grayi JGI ClGr [70]

Cladophialophora bantiana JGI ClBa [68]

Cladophialophora carrionii JGI ClCa [68]

Cladophialophora immunda JGI ClIm [68]

Cochliobolus heterostrophus JGI CoHe [71]

Cochliobolus victoriae JGI CoVi [72]

Colletotrichum nymphaeae JGI CoNy [73]

Colletotrichum orchidophilum JGI CoOr [74]

Colletotrichum salicis JGI CoSa [73]

Colletotrichum simmondsii JGI CoSi [73]

Colletotrichum tofieldiae JGI CoTo [75]

Coniosporium apollinis JGI CoAp [68]

(Continued)
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Table 1. (Continued)

Organism Source Database Identifier Reference

Coniosporium apollinis CBS 100218 JGI Capo [68]

Corynespora cassiicola JGI CoCa [76]

Daldinia eschscholzii JGI DaEs [77]

Diaporthe ampelina JGI DiAm [78]

Diplodia seriata JGI DiSe [78]

Erysiphe necator JGI ErNe [79]

Eutypa lata NCBI EuLa [80]

Exophiala aquamarina JGI ExAq [68]

Exophiala dermatitidis JGI ExDe [68]

Exophiala oligosperma JGI ExOl [68]

Exophiala spinifera JGI ExSp [68]

Exophiala xenobiotica JGI ExXe [68]

Fonsecaea monophora JGI FoMo [81]

Fusarium fujikuroi NCBI FuFu [82]

Fusarium graminearum NCBI FuGr [83]

Fusarium oxysporum NCBI FuOx [84]

Fusarium proliferatum NCBI FuPr [85]

Fusarium pseudograminearum NCBI FuPs [86]

Fusarium verticillioides NCBI FuVe [83]

Gaeumannomyces graminis JGI GaGr [87]

Glonium stellatum JGI GlSt [88]

Hypoxylon sp. EC38 JGI HyEC [77]

Hypoxylon sp.CO27 JGI Hysp [77]

Magnaporthe grisea JGI MaGr [89]

Magnaporthiopsis poae JGI MaPo [87]

Meliniomyces bicolor JGI MeBi [52]

Meliniomyces variabilis JGI MeVa [52]

Metarhizium acridum NCBI MeAc [90]

Metarhizium album NCBI MeAl [91]

Metarhizium anisopliae NCBI MeAn [91]

Metarhizium brunneum NCBI MeBr [91]

Metarhizium guizhouense NCBI MeGu [91]

Metarhizium majus NCBI MeMa [91]

Metarhizium rileyi NCBI MeRi [92]

Metarhizium robertsii NCBI MeRo [90]

Monacrosporium haptotylum JGI MoHa [93]

Morchella importuna JGI MoIm [94]

[Nectria] haematococca NCBI NeHa [95]

Nectria haematococca JGI NeHa [95]

Neurospora crassa JGI NeCr2 [96]

Neurospora crassa FGSC JGI NeCr [97]

Neurospora tetrasperma JGI NeTe [98]

Oidiodendron maius JGI OiMa [51]

Ophiostoma piceae JGI OpPi [99]

Paecilomyces variotii JGI PaVa [100]

Panaeolus cyanescens NCBI PaCy [101]

Paracoccidioides brasiliensis JGI PaBr [102]

(Continued)
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Next, the top 20 results of the blastp analysis are extracted and combined with the query

sequence for each gene. A custom Perl script removes potential duplicate entries based on

sequence identity. Using emma, a multiple sequence alignment of these protein sequences is

Table 1. (Continued)

Organism Source Database Identifier Reference

Penicillium camemberti NCBI PeCa [103]

Penicillium chrysogenum NCBI PeCh [104]

Penicillium digitatum NCBI PeDi [105]

Penicillium expansum NCBI PeEx [106]

Penicillium nalgiovense NCBI PeNa [107]

Penicillium oxalicum NCBI PeOx [108]

Penicillium roqueforti NCBI PeRo [103]

Penicillium rubens Wisconsin NCBI PeRu [109]

Penicillium vulpinum JGI PeVu [107]

Periconia macrospinosa JGI PeMa [67]

Pestalotiopsis fici NCBI PeFi [110]

Phaeoacremonium aleophilum JGI PhAl [111]

Phaeomoniella chlamydospora JGI PhCh [78]

Phialocephala scopiformis JGI PhSc [112]

Pneumocystis jirovecii JGI PnJi [113]

Pseudogymnoascus destructans JGI PsDe [114]

Pseudomassariella vexata JGI PsVe [115]

Rhizoctonia solani NCBI RhSo [116]

Saccharomyces arboricola NCBI SaAr [117]

Saccharomyces cerevisiae NCBI SaCe [118]

Terfezia boudieri JGI TeBo [55]

Tolypocladium ophioglossoides NCBI ToOp [119]

Tolypocladium paradoxum NCBI ToPa [120]

Trichoderma arundinaceum NCBI TrAr [121]

Trichoderma asperellum NCBI TrAs [122]

Trichoderma atroviride NCBI TrAt [123]

Trichoderma citrinoviride NCBI TrCi [122]

Trichoderma harzianum NCBI TrHa [124]

Trichoderma longibrachiatum NCBI TrLo [125]

Trichoderma reesei NCBI TrRe [126]

Trichoderma virens NCBI TrVi [123]

Trichophyton rubrum JGI TrRu [127]

Tuber aestivum var. urcinatum JGI TuAe [55]

Tuber magnatum JGI TuMa [55]

Venturia inaequalis JGI VeIn [128]

Verruconis gallopava JGI VeGa [68]

Verticillium dahliae JGI VeDa [129]

Xylona heveae JGI XyHe [130]

Zymoseptoria brevis JGI ZyBr [131]

Zymoseptoria pseudotritici JGI ZyPs [132]

The sequences were downloaded from the National Center for Biotechnology Information (NCBI) database or the Joint Genome Institute (JGI). The identifiers were

used in the FunOrder software package.

https://doi.org/10.1371/journal.pcbi.1009372.t001
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calculated based on the ClustalW [134] algorithm, and a dendrogram computed. Based on the

multiple sequence alignment, 100 rapid Bootstraps and a subsequent search for the best-scor-

ing maximum likelihood (ML) tree are performed using RAxML (Randomized Axelerated

Maximum Likelihood) [135]. The phylogenetic trees are computed using the LG amino acid

substitution model. Furthermore, a standard ascertainment bias correction by Paul O. Lewis is

performed. At this stage, we have obtained a phylogenetic tree (within the context of our

empirically optimized database) for each protein of the input BGC.

To estimate if and to what extent the different genes within a BGC are co-evolved, the strict

distance and speciation distance among the ML trees of the individual genes are calculated

using the TreeKO algorithm [45]. This tool was designed for automated tree comparison and

was already suggested to be used for the detection of co-evolution in protein families [45]. The

tool compares the topology of different trees; a distance of 0 in both distance measures repre-

sents identical trees. In this context, a higher similarity between the different trees of the indi-

vidual genes points towards a shared evolution. The strict distance is a weighted Robinson-

Foulds (RF) distance measure that penalizes dissimilarities in evolutionarily important events

such as gene losses and gene duplications; it has been suggested to be more significant in the

detection of co-evolution than the evolutionary distance [45]. In contrast, the evolutionary or

Fig 2. Schematic representation of the workflow of FunOrder.

https://doi.org/10.1371/journal.pcbi.1009372.g002

PLOS COMPUTATIONAL BIOLOGY FunOrder: Detection of essential genes in BGCs through co-evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009372 September 27, 2021 9 / 32

61

https://doi.org/10.1371/journal.pcbi.1009372.g002
https://doi.org/10.1371/journal.pcbi.1009372


speciation distance is computed without taking evolutionary exceptions, such as duplication

events or different species content of the two compared trees into account and infers shared

"speciation history" based solely on topology without considering branch lengths and only

considering shared species of the compared trees. Therefore, an evolutionary distance of 0

does not necessarily describe identical trees but shared "speciation history" of shared species.

All pairwise strict and evolutionary distances are combined into matrices which are used as

input for an R script [136–140].

In this R-script, first, the strict and evolutionary distances are summed up to a third com-

bined distance matrix combining the information about co-evolution and shared speciation

into a single measure. In our experience, this measure can be helpful to detect genes that share

little co-evolution with the core-enzymes but are still essential for the biosynthesis, which is

reflected in a shared speciation. The evolutionary distance is not directly part of the output of

FunOrder as is not intended to be used for the detection of co-evolution. Second, the strict

and the combined distance matrices are visualized as heatmaps with a dendrogram computed

with the complete linkage method, to find similar clusters in these data sets. Next, the Euclid-

ean distance within the matrices is computed and clustered using Ward’s minimum variance

method aiming at finding compact spherical clusters, with the implemented squaring of the

dissimilarities before cluster updating, for the two distance matrices separately, with scaled

input data [141]. Lastly, a principal component analysis (PCA) is performed on the two dis-

tance matrices and the score plot of the first two principal components visualized, respectively.

These outputs enable the adoption of a larger view on the distance measures and thereby allow

the analysis of co-evolution within the BGC from different perspectives. We describe in a fol-

lowing subchapter how to interpret these visualisations.

The software bundle is written in the BASH (Bourn Again Shell) environment and includes

all necessary subprograms. As BASH is the default shell-language of all Linux distributions

and MacOS, FunOrder can run on these two operation systems. The FunOrder software pack-

age is deposited in the GitHub repository https://github.com/gvignolle/FunOrder (doi:10.

5281/zenodo.5118984). Notably, the software package includes scripts adapted to the use on

servers and for the integration in various pipelines; details on these can be found in the

ReadMe file on the GitHub repository. FunOrder requires some dependencies e.g., RAxML

(Randomized Axelerated Maximum Likelihood) [135] and the EMBOSS (The European

Molecular Biology Open Software Suite) package [142], for details and links to all dependen-

cies please refer to the ReadMe file on the GitHub repository.

Compilation of benchmark gene clusters (GCs)

To test and evaluate the applicability of the FunOrder method, we used different control and

test gene (or protein) sets. The sequences of all test and control sets are deposited in the

GitHub repository https://github.com/gvignolle/FunOrder (doi: 10.5281/zenodo.5118984).

The first set of negative control gene clusters (GCs) were 42 completely randomly generated

synthetic GCs, which were created with a custom BASH script. Therein, ATGC strings of ran-

dom composition and length were translated to amino acid strings using transeq from the

EMBOSS package and the asterisks were removed. The second set of negative controls were 60

random GCs which were created by subsampling randomly the fungal proteome database with

a Perl script from the MEME suit [143]. For each random GC a different seed number was

given to guarantee non repetitive GCs, each random GC contained 3–10 randomly chosen

protein sequences in a random order. These negative control GCs were subsampled from dif-

ferent genomes to maximize the randomness and use gene clusters that should not contain co-

evolved genes.
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We used a set of 30 empirically well characterized BGCs from a broad range of different

genera (Table 2) as positive controls. The BGC sequences were downloaded from NCBI or the

MIBiG (Minimum information about a biosynthetic gene cluster) database [144]. The

sequences are available at the GitHub repository https://github.com/gvignolle/FunOrder

(doi:10.5281/zenodo.5118984). All BGCs were manually inspected for correctness and com-

pleteness based on the respective literature (S1 Table, references in Table 2). We further added

2 genes on each side of the BGC to mimic the greedy gain performed by antiSMASH, if possi-

ble (sequences available) and applicable (only few or no gap genes present). Next, we defined

the class of each gene (biosynthetic gene, further essential gene, gap, or extra gene) according

to the described function of the enzymes in the literature (S1 Table).

Further, we compiled 10 protein sets containing the sequences of enzymes of conserved

metabolic pathways from organisms that were not included in the proteome database, termed

„Biosynthetic_pathways“, or „BioPath”(S2 Table; sequences deposited at the GitHub reposi-

tory https://github.com/gvignolle/FunOrder (doi:10.5281/zenodo.5118984)). As we anticipate

a strong co-evolution among the corresponding genes, we used these sets as positive controls

for co-evolution in general. Finally, we subsampled the genomes of organisms that were not

Table 2. Empirically characterized biosynthetic gene clusters used as positive controls.

Product—BGC Organism MIBiG id Reference(s)

2-Pyridon-Desmethylbassianin (dmb) Beauveria bassiana BGC0001136 [145]

Aflatoxin (afl) Aspergillus flavus BGC0000008 [146,147]

Botrydial (bot) Botrytis cinera BGC0000631 [148,149]

Cephalosporin (cef) Acremonium chrysogenum BGC0000317 [150]

Compactin (mlc) Penicillium citrinum BGC0000039 [151,152]

Cyclosporin (cyc2) Beauveria felina BGC0001565 [18,153–155]

Destruxin (dtxs) Metarhizium robertsii BGC0000337 [156]

Fumagillin (fma) Aspergillus fumigatus BGC0001067 [157]

Fumitremorgin (ftm) Aspergillus fumigatus - [158–161]

Fumonisin (fum1) Fusarium oxysporum BGC0000063 [162]

Fumonisin (fum2) Fusarium verticilloides BGC0000062 [163–170]

Fusaric acid (FUB) Fusarium fujikuroi - [171]

Ilicicolin H (ili) Neonectaria sp. DH2 BGC0002035 [172]

Leporin (lep) Aspergillus flavus BGC0001445 [173]

Lovastatin (lov) Aspergillus terreus - [17,62,174]

Mycophenolic acid (mpa1) Penicillium brevicompactum BGC0000104 [175–180]

Mycophenolic acid (mpa2) Penicillium roqueforti BGC0001360 [181]

Mycophenolic acid (mpa3) Penicillium roqueforti BGC0001677 [182]

Paxillin (pax) Penicillium paxilli BGC0001082 [183]

Penicillin (pen1) Penicillium chrysogenum BGC0000404 [184]

Penicillin (pen2) Penicillium chrysogenum BGC0000405 [19]

Pestheic acid (pta) Pestalotiopsis fici BGC0000121 [185]

Pneumocandin (GL) Glaera Iozoyensis BGC0001035 [186–188]

Sorbicillinol (sor1) Penicillium rubens BGC0001404 [189,190]

Sorbicillinol (sor2) Trichoderma reesei - [191]

Tenellin (ten) Beauveria bassiana BGC0001049 [192,193]

Terrein (ter) Aspergillus terreus BGC0000161 [194]

Tetramic acid (tas) Hapsidospora irregularis - [195]

Ustiloxin B (ust) Aspergillus flavus - [196]

Xanthocillin (xan) Aspergillus fumigatus BGC0001990 [197]

https://doi.org/10.1371/journal.pcbi.1009372.t002
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included in the proteome database for 30 random loci containing 8 to 10 genes (S3 Table;

sequences available at the GitHub repository https://github.com/gvignolle/FunOrder (doi:10.

5281/zenodo.5118984)). We termed this control set „sequential GCs“. This set should repre-

sent the random degree of co-evolution based only on genomic vicinity. Notably, due to the

randomness of the sampling, the sequential GCs may also contain evolutionary linked genes.

Calculation of MEM and determination of thresholds for co-evolution

As the thresholds for the strict and/or evolutionary distance for the analysis of protein co-evo-

lution are database dependent, we needed to define these thresholds manually. To this end, we

performed a manual comparison of the phylogenetic trees of genes anticipated to be co-

evolved and of not presumably co-evolved genes. As positive control datasets (anticipated co-

evolution), we used the essential genes within the positive control BGCs. As negative control

data set (anticipated to not have co-evolved), we used the genes in the random GCs. For the

manual tree comparisons, we considered the topology (defined in S4 Table), branch lengths,

number of nodes, and shared leaves of the trees and calculated the manual evaluation measure

(MEM) according to the definitions in S5 Table. We calculated the MEM for each gene tree

pair of the positive and the negative control data sets (S6 and S7 Tables, respectively). The mea-

sure ranges from 3 (same) to 0 (no shared leaves). The MEM values of each pair-wise tree com-

parison were then manually reconciled with the corresponding strict and the combined

distance measures obtained from the treeKO analysis and the subsequent R script, respectively.

The procedure is exemplary described for the 2-Pyridon-Desmethylbassianin (dmb) BGC

from Beauveria bassiana in S1 File. Based on these manual comparisons, we defined the

threshold values for strict and combined distances in the following: two genes are considered

as co-evolved if the strict distance value is less than 0.7 or if the combined distance is equal to

or less than 60 percent of the maximum value in the combined distance matrix of the analysed

set.

Calculation of the Internal co-evolutionary quotient (ICQ)

The internal co-evolutionary quotient (ICQ) expresses how many genes in a GC or proteins in

a protein set are co-evolved according to the previously defined threshold for strict and com-

bined distances within the distance matrices of an analysed GC (or protein set). To calculate

the ICQ, each protein is compared with every other protein. The total number of all possible

pairwise comparisons is 2� [d�(d-1)] for d proteins. The ICQ was calculated using Eq 1, result-

ing in values between 0 and 1, with 1 representing no co-evolved genes, and 0 representing

that most genes are co-evolved with each other in the insert GC.

ICQ ¼ 1
g

2 � ½d � ðd 1Þ�
� �

Eq 1

ICQ = internal co-evolutionary quotient; g = number of strict distances< 0.7 and com-

bined distances< = (0.6 � max value of the combined distance matrix) in all matrices (visual-

ized in the heatmaps); d = number of genes in the GC.

Manual interpretation of the FunOrder output

The FunOrder outputs three different visualizations (heatmap, dendrogram, PCA) each of the

strict and combined distance matrices among the genes (or proteins) of an inserted GC (or

protein set). These visualizations need to be interpreted manually. For the manual interpreta-

tion, we first searched for genes that clustered together with the core enzyme(s) in any of the
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three visualisations of the strict distance. The definition of the clusters needs to be performed

carefully keeping the biological background (gene predictions) in mind. For instance, a cluster

containing typical tailoring enzymes (e.g., hydrolases, P450 cytochrome oxidases, FAD-con-

taining enzymes, etc.) and/or further essential genes (e.g., transcription factors or transporters)

make sense, whereas clusters containing a lot of genes encoding for unknown genes and/or

genes that are unlikely to be involved in the biosynthesis of a secondary metabolite) do not

make sense. Next, clustering in the visualizations of the combined distances is considered. As

the combined distance also contains information about the speciation history, it may be used

to add further genes to the list of “detected genes”. Notably, this needs to be critically evaluated

and decided on a case-to-case basis, taking the gene predictions into account. Please also refer

to S2 File for a detailed step-by-step description of the interpretation procedure, the exemplary

analysis of the lovastatin BGC from A. terreus in the results, and S3 File and S4 File for the

exemplary analysis of two unknown BGCs.

Performance evaluation

To test the robustness of FunOrder, we analysed 42 completely randomly generated synthetic

GCs. To test whether the FunOrder method can be used to detect co-evolution within GCs (or

protein sets), we calculated the ICQ for different control sets and compared the results in a

kernel density plot. To evaluate the performance of the FunOrder method regarding its capa-

bility to identify presumably co-evolved essential genes (as defined in S1 Table) and to distin-

guish them from (presumably not co-evolved) gap genes and genes outside of the BGC via the

detection of co-evolution, we performed a manual interpretation of 30 empirically character-

ized BGCs (Table 2) as described above. Genes that clustered together with the core enzyme(s)

according to the procedure described above were considered as „detected“. Then we counted

the total number of (1a) detected essential genes or (1b) detected biosynthetic genes, (2a) not

detected essential genes or (2b) not detected biosynthetic genes, (3) detected gap and extra

genes, and (4) not detected gap or extra genes in all BGCs, and defined (1a or 1b) as true posi-

tives (TP), (2a or 2b) as false negatives (FN), (3) as false positives (FP), and (4) as true negatives

(TN). The values were used for a final statistical evaluation of FunOrder as suggested by

Chicco and Jurman [198].

Results and discussion

Applicability of FunOrder for the detection of co-evolution

First, we analyzed the 42 synthetic negative control GCs with the FunOrder software. We

could not find any sequence similarities with the empirically optimized fungal proteome data-

base, demonstrating the robustness of the FunOrder method towards non-biological random

amino acid sequences. Consequently, the 42 synthetic negative control GCs were not consid-

ered in the following.

Next, we performed FunOrder analyses of different control GCs and protein sets and calcu-

lated the internal co-evolutionary quotients (ICQs) using Eq 1. The ICQ is a value for the rela-

tive amount of co-evolutionary relations among the genes (or proteins) in a given GC or

protein set. An ICQ of 0 means that most genes (or proteins) are co-evolved with each other.

An ICQ of 1 means, that no co-evolution can be detected using the defined thresholds. As neg-

ative control for co-evolution, we used 60 randomly assembled negative control GCs (random

GCs, S8 Table). The random GCs were compiled by subsampling different proteomes, to mini-

mize the chance of random, unwanted co-evolution in the clusters. As positive control for co-

evolution we used 10 protein sets from conserved metabolic pathways of different ascomycetes

(S2 Table), termed „Biosynthetic pathways“, or „BioPath“. Given, that the proteins are part of
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the conserved primary metabolism and that their enzymatic functions are interrelated, we can

assume a high level of internal co-evolution among the proteins within these protein sets. As

control for the basic co-evolutionary value of co-localized (or sequential) genes, we used 30

random genetic loci containing 8 to 10 genes (S3 Table). We termed this control set „sequen-

tial GCs“. As test set for BGCs of the secondary metabolism in ascomycetes we used 30 empiri-

cally characterized BGCs (Table 2, S1 Table), also termed positive control BGCs.

We compared the ICQs of the different sets in an ANOVA (S5 File) and in a kernel density

plot (Fig 3). We found that the ICQs for the random GCs were significantly different from all

the other sets, demonstrating that the workflow of the FunOrder method can be used to detect

co-evolution, that the ICQ is a meaningful measure to represent the content of co-evolutionary

relationships within a GC or protein set, and that the manually defined thresholds for strict

and combined distances are applicable to define co-evolution within GC or proteins sets.

Based on these results, we defined the threshold of the ICQ for biologically relevant co-evolu-

tion within a GC as the point of intersect between the random GCs and the BGCs (0.718). GCs

with an ICQ above this threshold do not contain significantly more co-evolutionary connec-

tions among the contained genes than randomly assembled GCs.

To our surprise, we could not detect a statistically significant difference between the

sequential GCs and the positive control GCs. However, the maxima for the BioPath proteins

and the BGC are at the same value and the shape of the corresponding density plot is

Fig 3. Kernel density plot of the ICQ values for co-evolutionary linked enzymes of different control sets. BioPath, protein sets of
conserved biosynthetic pathways of the primary metabolism (S2 Table); randomGCs, randomly assembled protein sets from 134 fungal
proteomes (Table 1); BGCs, previously empirically characterized fungal BGCs (Table 2); sequential GCs, co-localized genes from
random loci of different ascomycetes (S3 Table).

https://doi.org/10.1371/journal.pcbi.1009372.g003
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remarkably similar (Fig 3), whereas the maximum of the sequential GC is shifted towards the

random GCs and the shape of the curve is different to the two positive control sets (Fig 3).

These results indicate, that using only the absolute values of strict and combined distance may

not be enough to distinguish co-evolutionary linked genes within the context of co-localized

genes, but that the distances need to be assessed and interpreted in a case-by-case scenario

considering the biological background and context of the analyzed GC.

Exemplary analysis of the lovastatin BGC (lov)

The FunOrder method allows the detection of co-evolved genes within a set of genes or pro-

teins. As mentioned, we speculate that essential genes in BGCs are co-evolving and can there-

fore be differentiated from gap genes. In this context, the application of FunOrder might be

used to detect the essential or at least the biosynthetic genes in BGCs. The software package of

the FunOrder method calculates two distance matrices for the proteins within an input GC

representing the evolutionary similarities (based on pair-wise comparisons of the phylogenetic

trees using the treeKO tool [45]). First, we tried to use the previously defined thresholds for

the strict and combined distances to automatically detect the co-evolutionary relations in

BGCs. As insinuated above, this proofed not to be a successful strategy (not shown). We specu-

late, that the evolutionary similarities or distances among neighbouring genes are highly loca-

tion specific and that the absolute values are therefore not meaningful as general thresholds.

However, as the underlying strategy and method is clearly able to detect co-evolution (Fig 3),

we speculated that the obtained data may need to be represented in different forms and/or

reduced. Consequently, we added the following data visualizations to the FunOrder pipeline.

The strict and combined distances are visualized in a heatmap and clustered by higher similari-

ties (complete linkage method). Next, the Euclidean distances within the scaled distance matri-

ces are calculated and clustered (hierarchical clustering) using the Wards minimum variance

method aiming at finding compact spherical clusters, with the implemented squaring of dis-

similarities before cluster updating. The clustering is visualized in dendrograms. Finally, the

principal components of the data are represented in a score plot. Here, we exemplary describe

the manual interpretation of these visualizations (S6 File and Fig 4) with the aim to detect co-

evolution within the lovastatin BGC of A. terreus (lov, Fig 1). Please refer also to the step-by-
step description on how to interpret the FunOrder output in S2 File.

For the analysis of the lovastatin BGC, we first had a look at the heatmap representing the

strict distance matrix (S6 File). Therein all biosynthetic genes (lovA-D, F, G; Fig 1, red arrows)
are clustering together with each other and with the gap gene orf1, although not all inter-gene

distances were below the previously defined threshold (S6 File, heatmaps). This demonstrates

again that, evaluating only the numerical values (regardless of the concrete thresholds) is not

enough for a thorough analysis of a BGC. It is necessary to consider the distances within the

genomic context by comparing all provided visualisations. The biosynthetic genes of lovastatin

(lovA-D, F, G) also formed distinct clusters in the dendrograms and in the PCA of the strict

distance (S6 File and Fig 4A) In our experience, it was often helpful to additionally take the

combined distance values into consideration to get a more comprehensive picture of the BGC.

As mentioned before, the combined distance also considers speciation history. In the case of

the lovastatin BGC, orf10 and extra03 clustered together with lovA, B, D, F, G in the PCA of

the combined distance (Fig 4B). The gene orf10 encodes for an MFS (major facilitator super-

family) transporter, which warrants adding it to the „detected genes“; the transporter is actu-

ally necessary for the export of lovastatin [17] (Fig 1). The gene extra03 is predicted to encode
for an alpha-glucuronidase (AguA) which is involved in the hydrolysis of xylan. Therefore, the

clustering only in combined distance matrix does not justify classifying the gene extra03 as
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„detected“. The other two „further essential genes“, lovE and orf8 did not cluster together with
the biosynthetic genes in any visualizations of the distance matrices (Fig 4 and S6 File)). LovE

is a transcription factor and the main regulator of the lovastatin cluster [17] and essential for

the lovastatin biosynthesis in the native organism, although it is not directly part of the biosyn-

thetic pathway. The gene orf8 encodes for a 3-hydroxy-3-methylglutaryl coenzyme-A

(HMG-CoA) reductase, which is the target of statins [199] and in this case is conveying self-

resistance to lovastatin [200]. These results suggest that these two genes did not undergo the

same evolutionary process as the biosynthetic genes. This is in accordance with the „brick and

mortar”model suggested by Medema et al. [40]. The biosynthetic genes represent a co-evolving

„brick“, that is integrated into the biological context of A. terreus via the „mortar”that are the

further essential genes.

This exemplary analysis demonstrates how the different data output formats of the software

package need to be considered and compared manually, to decide on which genes are co-evo-

lutionary linked and likely to be involved in the biosynthesis of a secondary metabolite. When

considering only one output, one might get a distorted view of the analysed BGC. Notably, we

did not intend to leave this step up to automation, because the human (expert or child) pattern

recognition and mind still outperforms artificial intelligence (AI) algorithms and machine

learning algorithms in this regard [201]. Please also refer to S3 File and S4 File in which we

describe the analysis of two yet undescribed BGCs.

Speed and scalability of the software

As the empirically optimized proteome database contained only 134 fungal proteomes, we

were able to use the blastp algorithm for sequence similarity search. The analysis of the lova-

statin BGC of A. terreus (lov) with 17 genes, took 1 h 19 m 48 sec real time using 22 threads on

an Ubuntu Linux system with 128 GB DDR4 RAM. The same analysis took 6 h 54 m 50 sec

real time using 3 threads and 5 h 48 m 50 sec using 4 threads on a Linux Mint Laptop,

Fig 4. A selection of the standard output of the FunOrder analysis of the lovastatin BGC (lov). Score plots of the first two principal components from a
PCA performed on the strict distance matrix (A) and on the combined distance matrix (B). The biosynthetic genes and the further essential genes are
indicated in red and gold, respectively. Clusters in the PCA are indicated by the dashed boxes.

https://doi.org/10.1371/journal.pcbi.1009372.g004
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demonstrating that the analysis of such a large cluster as the lovastatin cluster is fast and feasi-

ble. The number of threads can be defined, to increase the scalability and the overall

performance.

Performance evaluation

Up to this point, we demonstrated that the FunOrder method can be used to detect the overall

level of internal co-evolutionary relations within a GC or set of proteins. We demonstrated

that similar levels of co-evolutionary relations occur among the genes in BGCs and among

proteins of conserved metabolic pathways of the primary metabolism, and that these positive

control sets can be distinguished from negative control GC, containing randomly stringed

together proteins from different organisms with a threshold of 0.718 for the ICQ (Fig 3). Fur-

ther, we showed that the values of strict and combined distances need to be visualized in differ-

ent forms and then interpreted manually to detect co-evolution of individual genes within

fungal BGCs. Next, we aimed to test, whether the detection of co-evolved genes is indeed a use-

ful approach to identify the essential genes in fungal BGCs. To this end, we analysed the 30

empirically verified BGCs (Table 2) as described for the lovastatin cluster before. We looked

for genes that are co-evolutionary linked with the core biosynthetic gene. These genes were

considered as “detected”. The “detected” genes sets were compared to the previously empiri-

cally obtained set of essential genes and classified the genes in true positives (TP), false nega-

tives (FN), false positives (FP), or true negatives (TN) (S1 Table). To test and evaluate, how

well FunOrder is performing in detecting either all essential or just the biosynthetic genes, we

determined two different sets of TP and FN. TPs were either all detected essential genes, or all

detected biosynthetic genes. Accordingly, FNs were either all not detected essential genes or all

not detected biosynthetic genes (S1 Table). In both cases, FPs were all detected gap and extra

genes, and TNs were all not detected gap and extra genes (S1 Table) because it makes biologi-

cally no sense to define a „detected”further essential gene as a FP, even when defining detected

biosynthetic genes as TP. For an initial performance estimation, we calculated the percentages

of detected essential and biosynthetic genes (S1 Table) and compiled them in a kernel density

plot (Fig 5). More than 75% of all essential genes and biosynthetic genes were found to be co-

evolving using the FunOrder method in 13 and 16 BGCs (out of 30 BGCs), respectively. The

curves in the density plot also differ at high percentages; nearly all (above 90%) biosynthetic

genes could be detect in more cases than nearly all essential genes. These two observations

point in the direction, that especially the biosynthetic genes share a more coherent co-evolu-

tionary history and can thus be identified by looking for co-evolved genes in BGCs. Obviously,

not all essential genes in all BGCs are co-evolving and/or can be detected as co-evolved with

this method. This is at least partly based on the biological background. Each BGC has a unique

evolutionary background and needs to be interpreted individually. The FunOrder method

offers additional information about co-evolution for already defined BGCs and may be useful

in deciding which genes might be most relevant when studying a BGC.

For a stringent statistical evaluation, we calculated the normalized Matthews correlation

coefficient (normMCC) and other classical metrics and global metrics (Table 3) as indicated

by Chicco and Jurman [198] based on the previously defined TP, FN, FP, and TN (S1 Table).

To determine the degree of balance between positive and negative controls we calculated the

no-information error rate ni which is best for balanced test sets with the value 0.5. The

obtained values of 0.5084 and 0.5444 allowed for the usage and confirmed the validity of the

classical metrics such as F1 score and Accuracy. The FunOrder method displays overall high

metrics in identifying essential and/or biosynthetic genes in a BGC. Despite the differences

between biosynthetic and essential genes in Fig 5, we could not detect strong differences in the
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overall statistical assessment. FunOrder can be used to detect essential and biosynthetic genes

in a BGC based on protein family co-evolution with a accuracy of 0.7215 and 0.743,

respectively.

Concluding remarks

The FunOrder method was created to identify the essential genes in a BGC and distinguish

them from gap genes based on the hypothesis that the essential genes are co-evolutionary

linked. We evaluated this method and simultaneously tested the underlying hypothesis using

different control sets of genes and proteins, respectively. We observed on the one hand that

Fig 5. Kernel density plots of the relative discovery rate of essential or biosynthetic genes in 30 tested fungal BGCs.

https://doi.org/10.1371/journal.pcbi.1009372.g005
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co-evolutionary linkage in fungal BGCs is commonly occurring—especially within the biosyn-

thetic genes, and on the other hand that the FunOrder method can be used to detect the bio-

synthetic genes within BGCs and to some extent also the further essential genes. We would

like to stress that this method is delivering data on co-evolution, that needs to be critically eval-

uated and interpreted keeping the biological background in mind, and that FunOrder is not to

be considered a stand-alone tool but meant to deliver supplementary data about co-evolution

within predefined BGCs.

During the testing and evaluation, we encountered several cases of ambiguous results,

where the different visualizations clustered different genes together. One way to handle such

ambiguous results is to critically assess the results by considering the gene predictions. We fur-

ther suggest adding and/or removing genes at the edges of the BGC and re-running the analy-

sis. This might change the clustering behaviour and clarify the results. Alternatively,

homologous BGCs from other fungi may be analysed by FunOrder and the clustering of the

corresponding genes compared to the initial BGC.

The basis but also limitation for the method is the database [42]. Here we used a specific set

of proteomes (Table 1) and were thus able to detect co-evolved genes in ascomycetes. Notably,

the underlying strategy and workflow of FunOrder can be adapted to analysing genomic

regions in other phyla, orders, or even kingdoms by using different databases. In case a larger

database is integrated into the software package, alternative search algorithms, such as DIA-

MOND [202] or HMMER (similarity search using hidden Markov models) [203] might be

used instead of blastp to enhance the performance. Nevertheless, each novel database, even if

only one single proteome would be introduced in an existing database, will have to be verified

and validated.

In this study, we looked for genes that share the same or a similar evolutionary background

with the core genes of BGCs and could demonstrate that FunOrder is a fast and powerful

method that can support scientists to decide which genes of a BGC are promising study

objects. Notably, the application of this method is not limited to fungal BGC. It can be used for

any applications where information of a shared co-evolution can contribute to a better under-

standing. FunOrder with the existing ascomycete database might already be used for a genome

wide analysis of co-evolving transcription factors or detection of functionally connected pro-

tein-protein interactions [42]. As a future perspective, FunOrder might be even used for the

analysis of total proteomes to detect evolutionary linked genes.

Table 3. Statistical evaluation of the performance of FunOrder in detecting relevant genes in BGCs.

essential genes biosynthetic genes

Sensitivity 0.6349 0.6615

Specificity 0.8112 0.8112

Precision 0.7766 0.7457

Negative Predictive Value 0.6823 0.7412

False Positive Rate 0.1888 0.1888

False Discovery Rate 0.2234 0.2543

False Negative Rate 0.3651 0.3385

Accuracy 0.7215 0.743

F1 Score 0.6986 0.7011

Matthews Correlation Coefficient 0.4524 0.4797

Normalized Matthews Correlation Coefficient 0.7262 0.73985

No-information error rate ni 0.5084 0.5444

https://doi.org/10.1371/journal.pcbi.1009372.t003
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133. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25
(17):3389–402. Epub 1997/09/01. https://doi.org/10.1093/nar/25.17.3389 PMID: 9254694; PubMed
Central PMCID: PMC146917.

134. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, position-specific gap penalties and weight matrix
choice. Nucleic acids research. 1994; 22(22):4673–80. Epub 1994/11/11. https://doi.org/10.1093/nar/
22.22.4673 PMID: 7984417; PubMed Central PMCID: PMC308517.

135. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phyloge-
nies. Bioinformatics. 2014; 30(9):1312–3. Epub 2014/01/24. https://doi.org/10.1093/bioinformatics/
btu033 PMID: 24451623; PubMed Central PMCID: PMC3998144.

136. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical
Computing. 2019.

137. Kucheryavskiy S. mdatools: Multivariate Data Analysis for Chemometrics. 2019.

138. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, et al. gplots: Various R Pro-
gramming Tools for Plotting Data. 2019.

139. Wickham H, Hester J, Francois R. readr: Read Rectangular Text Data. 2018.

140. Fox J, Weisberg S. An {R} Companion to Applied Regression. Sage. 2019.

141. Murtagh F, Legendre P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms
Implement Ward’s Criterion? Journal of Classification. 2014; 31(3):274–95. https://doi.org/10.1007/
s00357-014-9161-z

142. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite.
Trends Genet. 2000; 16(6):276–7. Epub 2000/05/29. https://doi.org/10.1016/s0168-9525(00)02024-2
PMID: 10827456.

143. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif dis-
covery and searching. Nucleic acids research. 2009; 37(Web Server issue):W202–8. https://doi.org/
10.1093/nar/gkp335 PMID: 19458158; PubMed Central PMCID: PMC2703892.

144. Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR, van der Hooft JJJ, et al. MIBiG 2.0: a
repository for biosynthetic gene clusters of known function. Nucleic Acids Research. 2019; 48(D1):
D454–D8. https://doi.org/10.1093/nar/gkz882 PMID: 31612915

145. Heneghan MN, Yakasai AA, Williams K, Kadir KA, Wasil Z, Bakeer W, et al. The programming role of
trans-acting enoyl reductases during the biosynthesis of highly reduced fungal polyketides. Chemical
Science. 2011; 2(5):972–9. https://doi.org/10.1039/C1SC00023C

146. Ehrlich KC, Chang PK, Yu J, Cotty PJ. Aflatoxin biosynthesis cluster gene cypA is required for G afla-
toxin formation. Appl Environ Microbiol. 2004; 70(11):6518–24. Epub 2004/11/06. https://doi.org/10.
1128/AEM.70.11.6518-6524.2004 PMID: 15528514; PubMed Central PMCID: PMC525170.

147. Bhatnagar D, Cary JW, Ehrlich K, Yu J, Cleveland TE. Understanding the genetics of regulation of afla-
toxin production and Aspergillus flavus development. Mycopathologia. 2006; 162(3):155–66. Epub
2006/09/01. https://doi.org/10.1007/s11046-006-0050-9 PMID: 16944283.

148. Porquier A, Morgant G, Moraga J, Dalmais B, Luyten I, Simon A, et al. The botrydial biosynthetic gene
cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the puta-
tive Zn(II)2Cys6 transcription factor BcBot6. Fungal Genet Biol. 2016; 96:33–46. Epub 2016/10/22.
https://doi.org/10.1016/j.fgb.2016.10.003 PMID: 27721016.

149. Pinedo C, Wang CM, Pradier JM, Dalmais B, Choquer M, Le Pecheur P, et al. Sesquiterpene synthase
from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea. ACS Chem Biol.
2008; 3(12):791–801. Epub 2008/11/28. https://doi.org/10.1021/cb800225v PMID: 19035644;
PubMed Central PMCID: PMC2707148.

150. Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ. The enzymes
of β-lactam biosynthesis. Natural product reports. 2013; 30(1):21–107. Epub 2012/11/09. https://doi.
org/10.1039/c2np20065a PMID: 23135477.

151. Abe Y, Suzuki T, Ono C, Iwamoto K, Hosobuchi M, Yoshikawa H. Molecular cloning and characteriza-
tion of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum. Mol Genet Genomics.
2002; 267(5):636–46. Epub 2002/08/13. https://doi.org/10.1007/s00438-002-0697-y PMID:
12172803.

PLOS COMPUTATIONAL BIOLOGY FunOrder: Detection of essential genes in BGCs through co-evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009372 September 27, 2021 29 / 32

81

https://doi.org/10.1073/pnas.1201403109
http://www.ncbi.nlm.nih.gov/pubmed/22711811
https://doi.org/10.1093/nar/25.17.3389
http://www.ncbi.nlm.nih.gov/pubmed/9254694
https://doi.org/10.1093/nar/22.22.4673
https://doi.org/10.1093/nar/22.22.4673
http://www.ncbi.nlm.nih.gov/pubmed/7984417
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1093/bioinformatics/btu033
http://www.ncbi.nlm.nih.gov/pubmed/24451623
https://doi.org/10.1007/s00357-014-9161-z
https://doi.org/10.1007/s00357-014-9161-z
https://doi.org/10.1016/s0168-9525%2800%2902024-2
http://www.ncbi.nlm.nih.gov/pubmed/10827456
https://doi.org/10.1093/nar/gkp335
https://doi.org/10.1093/nar/gkp335
http://www.ncbi.nlm.nih.gov/pubmed/19458158
https://doi.org/10.1093/nar/gkz882
http://www.ncbi.nlm.nih.gov/pubmed/31612915
https://doi.org/10.1039/C1SC00023C
https://doi.org/10.1128/AEM.70.11.6518-6524.2004
https://doi.org/10.1128/AEM.70.11.6518-6524.2004
http://www.ncbi.nlm.nih.gov/pubmed/15528514
https://doi.org/10.1007/s11046-006-0050-9
http://www.ncbi.nlm.nih.gov/pubmed/16944283
https://doi.org/10.1016/j.fgb.2016.10.003
http://www.ncbi.nlm.nih.gov/pubmed/27721016
https://doi.org/10.1021/cb800225v
http://www.ncbi.nlm.nih.gov/pubmed/19035644
https://doi.org/10.1039/c2np20065a
https://doi.org/10.1039/c2np20065a
http://www.ncbi.nlm.nih.gov/pubmed/23135477
https://doi.org/10.1007/s00438-002-0697-y
http://www.ncbi.nlm.nih.gov/pubmed/12172803
https://doi.org/10.1371/journal.pcbi.1009372


152. Abe Y, Ono C, Hosobuchi M, Yoshikawa H. Functional analysis of mlcR, a regulatory gene for ML-
236B (compactin) biosynthesis in Penicillium citrinum. Mol Genet Genomics. 2002; 268(3):352–61.
Epub 2002/11/19. https://doi.org/10.1007/s00438-002-0755-5 PMID: 12436257.

153. Hoffmann K, Schneider-Scherzer E, Kleinkauf H, Zocher R. Purification and Characterization of
Eucaryotic Alanine Racemase Acting as Key Enzyme in Cyclosporin Biosynthesis. Biological Chemis-
try. 1994; 269(17):12710–4. PMID: 8175682

154. Yang X, Feng P, Yin Y, Bushley K, Spatafora JW, Wang C. Cyclosporine Biosynthesis in Tolypocla-
dium inflatum Benefits Fungal Adaptation to the Environment. Molecular Biology and Physiology.
2018; 9(5). https://doi.org/10.1128/mBio.01211-18 PMID: 30279281

155. Weber G, Leitner E. Disruption of the cyclosporin synthetase gene of Tolypocladium niveum. Current
Genetics. 1994; 26:461–7. https://doi.org/10.1007/BF00309935 PMID: 7874740

156. Wang B, Kang Q, Lu Y, Bai L, Wang C. Unveiling the biosynthetic puzzle of destruxins in Metarhizium
species. Proc Natl Acad Sci U S A. 2012; 109(4):1287–92. Epub 2012/01/11. https://doi.org/10.1073/
pnas.1115983109 PMID: 22232661; PubMed Central PMCID: PMC3268274.

157. Lin H-C, Chooi Y-H, Dhingra S, Xu W, Calvo AM, Tang Y. The Fumagillin Biosynthetic Gene Cluster in
Aspergillus fumigatus Encodes a Cryptic Terpene Cyclase Involved in the Formation of β-trans-Berga-
motene. Journal of the American Chemical Society. 2013; 135(12):4616–9. https://doi.org/10.1021/
ja312503y PMID: 23488861

158. Kato N, Suzuki H, Takagi H, Uramoto M, Takahashi S, Osada H. Gene disruption and biochemical
characterization of verruculogen synthase of Aspergillus fumigatus. Chembiochem. 2011; 12(5):711–
4. Epub 2011/03/16. https://doi.org/10.1002/cbic.201000562 PMID: 21404415.

159. Kato N, Suzuki H, Takagi H, Asami Y, Kakeya H, Uramoto M, et al. Identification of cytochrome P450s
required for fumitremorgin biosynthesis in Aspergillus fumigatus. Chembiochem. 2009; 10(5):920–8.
Epub 2009/02/20. https://doi.org/10.1002/cbic.200800787 PMID: 19226505.

160. Maiya S, Grundmann A, Li SM, Turner G. Improved tryprostatin B production by heterologous gene
expression in Aspergillus nidulans. Fungal Genet Biol. 2009; 46(5):436–40. Epub 2009/04/18. https://
doi.org/10.1016/j.fgb.2009.01.003 PMID: 19373974.

161. Kato N, Suzuki H, Okumura H, Takahashi S, Osada H. A point mutation in ftmD blocks the fumitremor-
gin biosynthetic pathway in Aspergillus fumigatus strain Af293. Biosci Biotechnol Biochem. 2013; 77
(5):1061–7. Epub 2013/05/08. https://doi.org/10.1271/bbb.130026 PMID: 23649274.

162. Proctor RH, Busman M, Seo JA, Lee YW, Plattner RD. A fumonisin biosynthetic gene cluster in Fusar-
ium oxysporum strain O-1890 and the genetic basis for B versus C fumonisin production. Fungal
genetics and biology: FG & B. 2008; 45(6):1016–26. Epub 2008/04/01. https://doi.org/10.1016/j.fgb.
2008.02.004 PMID: 18375156.

163. Zaleta-Rivera K, Xu C, Yu F, Butchko RA, Proctor RH, Hidalgo-Lara ME, et al. A Bidomain Nonriboso-
mal Peptide Synthetase Encoded by FUM14 Catalyzes the Formation of Tricarballylic Esters in the
Biosynthesis of Fumonisins. Biochemistry 2006; 45:2561–9. https://doi.org/10.1021/bi052085s PMID:
16489749

164. Butchko RA, Plattner RD, Proctor RH. Deletion Analysis of FUM Genes Involved in Tricarballylic Ester
Formation during Fumonisin Biosynthesis. J Agric Food Chem. 2006; 54:9398−404. https://doi.org/10.
1021/jf0617869 PMID: 17147424

165. Butchko RA, Plattner RD, Proctor RH. FUM13 Encodes a Short Chain Dehydrogenase/Reductase
Required for C-3 Carbonyl Reduction during Fumonisin Biosynthesis in Gibberella moniliformis. J
Agric Food Chem 2003; 51:3000−6. https://doi.org/10.1021/jf0262007 PMID: 12720383

166. Butchko RA, Plattner RD, Proctor RH. FUM9 is required for C-5 hydroxylation of fumonisins and com-
plements the meitotically defined Fum3 locus in Gibberella moniliformis. Appl Environ Microbiol. 2003;
69(11):6935–7. Epub 2003/11/07. https://doi.org/10.1128/AEM.69.11.6935-6937.2003 PMID:
14602658; PubMed Central PMCID: PMC262316.

167. Brown DW, Butchko RA, Busman M, Proctor RH. The Fusarium verticillioides FUM gene cluster
encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot
Cell. 2007; 6(7):1210–8. Epub 2007/05/08. https://doi.org/10.1128/EC.00400-06 PMID: 17483290;
PubMed Central PMCID: PMC1951116.

168. Du L, Zhu X, Gerber R, Huffman J, Lou L, Jorgenson J, et al. Biosynthesis of sphinganine-analog
mycotoxins. J Ind Microbiol Biotechnol. 2008; 35(6):455–64. Epub 2008/01/25. https://doi.org/10.
1007/s10295-008-0316-y PMID: 18214562.

169. Proctor RH, Desjardins AE, Plattner RD, Hohn TM. A Polyketide Synthase Gene Required for Biosyn-
thesis of Fumonisin Mycotoxins in Gibberella fujikuroi Mating Population A. Fungal Genetics and Biol-
ogy 1999; 27:100–12. https://doi.org/10.1006/fgbi.1999.1141 PMID: 10413619

170. Lia Y, Lou L, Cerny RL, Butchko RA, Proctor RH, Shen Y, et al. Tricarballylic ester formation during
biosynthesis of fumonisin mycotoxins in Fusarium verticillioides. Mycology. 2013; 4(4):179–86. Epub

PLOS COMPUTATIONAL BIOLOGY FunOrder: Detection of essential genes in BGCs through co-evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009372 September 27, 2021 30 / 32

82

https://doi.org/10.1007/s00438-002-0755-5
http://www.ncbi.nlm.nih.gov/pubmed/12436257
http://www.ncbi.nlm.nih.gov/pubmed/8175682
https://doi.org/10.1128/mBio.01211-18
http://www.ncbi.nlm.nih.gov/pubmed/30279281
https://doi.org/10.1007/BF00309935
http://www.ncbi.nlm.nih.gov/pubmed/7874740
https://doi.org/10.1073/pnas.1115983109
https://doi.org/10.1073/pnas.1115983109
http://www.ncbi.nlm.nih.gov/pubmed/22232661
https://doi.org/10.1021/ja312503y
https://doi.org/10.1021/ja312503y
http://www.ncbi.nlm.nih.gov/pubmed/23488861
https://doi.org/10.1002/cbic.201000562
http://www.ncbi.nlm.nih.gov/pubmed/21404415
https://doi.org/10.1002/cbic.200800787
http://www.ncbi.nlm.nih.gov/pubmed/19226505
https://doi.org/10.1016/j.fgb.2009.01.003
https://doi.org/10.1016/j.fgb.2009.01.003
http://www.ncbi.nlm.nih.gov/pubmed/19373974
https://doi.org/10.1271/bbb.130026
http://www.ncbi.nlm.nih.gov/pubmed/23649274
https://doi.org/10.1016/j.fgb.2008.02.004
https://doi.org/10.1016/j.fgb.2008.02.004
http://www.ncbi.nlm.nih.gov/pubmed/18375156
https://doi.org/10.1021/bi052085s
http://www.ncbi.nlm.nih.gov/pubmed/16489749
https://doi.org/10.1021/jf0617869
https://doi.org/10.1021/jf0617869
http://www.ncbi.nlm.nih.gov/pubmed/17147424
https://doi.org/10.1021/jf0262007
http://www.ncbi.nlm.nih.gov/pubmed/12720383
https://doi.org/10.1128/AEM.69.11.6935-6937.2003
http://www.ncbi.nlm.nih.gov/pubmed/14602658
https://doi.org/10.1128/EC.00400-06
http://www.ncbi.nlm.nih.gov/pubmed/17483290
https://doi.org/10.1007/s10295-008-0316-y
https://doi.org/10.1007/s10295-008-0316-y
http://www.ncbi.nlm.nih.gov/pubmed/18214562
https://doi.org/10.1006/fgbi.1999.1141
http://www.ncbi.nlm.nih.gov/pubmed/10413619
https://doi.org/10.1371/journal.pcbi.1009372


2014/03/04. https://doi.org/10.1080/21501203.2013.874540 PMID: 24587959; PubMed Central
PMCID: PMC3933019.

171. Studt L, Janevska S, Niehaus EM, Burkhardt I, Arndt B, Sieber CM, et al. Two separate key enzymes
and two pathway-specific transcription factors are involved in fusaric acid biosynthesis in Fusarium
fujikuroi. Environ Microbiol. 2016; 18(3):936–56. Epub 2015/12/15. https://doi.org/10.1111/1462-
2920.13150 PMID: 26662839.

172. Lin X, Yuan S, Chen S, Chen B, Xu H, Liu L, et al. Heterologous Expression of Ilicicolin H Biosynthetic
Gene Cluster and Production of a New Potent Antifungal Reagent, Ilicicolin J. Molecules. 2019; 24
(12). Epub 2019/06/21. https://doi.org/10.3390/molecules24122267 PMID: 31216742; PubMed Cen-
tral PMCID: PMC6631495.

173. Cary JW, Uka V, Han Z, Buyst D, Harris-Coward PY, Ehrlich KC, et al. An Aspergillus flavus secondary
metabolic gene cluster containing a hybrid PKS-NRPS is necessary for synthesis of the 2-pyridones,
leporins. Fungal Genet Biol. 2015; 81:88–97. Epub 2015/06/09. https://doi.org/10.1016/j.fgb.2015.05.
010 PMID: 26051490.

174. Manzoni M, Rollini M. Biosynthesis and biotechnological production of statins by filamentous fungi and
application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol. 2002; 58(5):555–64. Epub
2002/04/17. https://doi.org/10.1007/s00253-002-0932-9 PMID: 11956737.

175. Zhang W, Cao S, Qiu L, Qi F, Li Z, Yang Y, et al. Functional characterization of MpaG’, the O-methyl-
transferase involved in the biosynthesis of mycophenolic acid. Chembiochem. 2015; 16(4):565–9.
Epub 2015/01/30. https://doi.org/10.1002/cbic.201402600 PMID: 25630520.

176. Zhang W, Du L, Qu Z, Zhang X, Li F, Li Z, et al. Compartmentalized biosynthesis of mycophenolic
acid. Proc Natl Acad Sci U S A. 2019; 116(27):13305–10. Epub 2019/06/19. https://doi.org/10.1073/
pnas.1821932116 PMID: 31209052; PubMed Central PMCID: PMC6613074.

177. Hansen BG, Genee HJ, Kaas CS, Nielsen JB, Regueira TB, Mortensen UH, et al. A new class of IMP
dehydrogenase with a role in self-resistance of mycophenolic acid producing fungi. BMC Microbiol.
2011; 11:202. Epub 2011/09/20. https://doi.org/10.1186/1471-2180-11-202 PMID: 21923907;
PubMed Central PMCID: PMC3184278.

178. Hansen BG, Salomonsen B, Nielsen MT, Nielsen JB, Hansen NB, Nielsen KF, et al. Versatile enzyme
expression and characterization system for Aspergillus nidulans, with the Penicillium brevicompactum
polyketide synthase gene from the mycophenolic acid gene cluster as a test case. Appl Environ Micro-
biol. 2011; 77(9):3044–51. Epub 2011/03/15. https://doi.org/10.1128/AEM.01768-10 PMID:
21398493; PubMed Central PMCID: PMC3126399.

179. Regueira TB, Kildegaard KR, Hansen BG, Mortensen UH, Hertweck C, Nielsen J. Molecular basis for
mycophenolic acid biosynthesis in Penicillium brevicompactum. Appl Environ Microbiol. 2011; 77
(9):3035–43. Epub 2011/03/15. https://doi.org/10.1128/AEM.03015-10 PMID: 21398490; PubMed
Central PMCID: PMC3126426.

180. Hansen BG, Mnich E, Nielsen KF, Nielsen JB, Nielsen MT, Mortensen UH, et al. Involvement of a nat-
ural fusion of a cytochrome P450 and a hydrolase in mycophenolic acid biosynthesis. Appl Environ
Microbiol. 2012; 78(14):4908–13. Epub 2012/05/01. https://doi.org/10.1128/AEM.07955-11 PMID:
22544261; PubMed Central PMCID: PMC3416377.

181. Del-Cid A, Gil-Duran C, Vaca I, Rojas-Aedo JF, Garcia-Rico RO, Levican G, et al. Identification and
Functional Analysis of the Mycophenolic Acid Gene Cluster of Penicillium roqueforti. PLoS One. 2016;
11(1):e0147047. Epub 2016/01/12. https://doi.org/10.1371/journal.pone.0147047 PMID: 26751579;
PubMed Central PMCID: PMC4708987.

182. Gillot G, Jany JL, Dominguez-Santos R, Poirier E, Debaets S, Hidalgo PI, et al. Genetic basis for
mycophenolic acid production and strain-dependent production variability in Penicillium roqueforti.
Food Microbiol. 2017; 62:239–50. Epub 2016/11/28. https://doi.org/10.1016/j.fm.2016.10.013 PMID:
27889155.

183. Scott B, Young CA, Saikia S, McMillan LK, Monahan BJ, Koulman A, et al. Deletion and gene expres-
sion analyses define the paxilline biosynthetic gene cluster in Penicillium paxilli. Toxins (Basel). 2013;
5(8):1422–46. Epub 2013/08/21. https://doi.org/10.3390/toxins5081422 PMID: 23949005; PubMed
Central PMCID: PMC3760044.

184. Fierro F, Garcia-Estrada C, Castillo NI, Rodriguez R, Velasco-Conde T, Martin JF. Transcriptional and
bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin
gene cluster in Penicillium chrysogenum. Fungal Genet Biol. 2006; 43(9):618–29. Epub 2006/05/23.
https://doi.org/10.1016/j.fgb.2006.03.001 PMID: 16713314.

185. Xu X, Liu L, Zhang F, Wang W, Li J, Guo L, et al. Identification of the first diphenyl ether gene cluster
for pestheic acid biosynthesis in plant endophyte Pestalotiopsis fici. Chembiochem. 2014; 15(2):284–
92. Epub 2013/12/05. https://doi.org/10.1002/cbic.201300626 PMID: 24302702.

PLOS COMPUTATIONAL BIOLOGY FunOrder: Detection of essential genes in BGCs through co-evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009372 September 27, 2021 31 / 32

83

https://doi.org/10.1080/21501203.2013.874540
http://www.ncbi.nlm.nih.gov/pubmed/24587959
https://doi.org/10.1111/1462-2920.13150
https://doi.org/10.1111/1462-2920.13150
http://www.ncbi.nlm.nih.gov/pubmed/26662839
https://doi.org/10.3390/molecules24122267
http://www.ncbi.nlm.nih.gov/pubmed/31216742
https://doi.org/10.1016/j.fgb.2015.05.010
https://doi.org/10.1016/j.fgb.2015.05.010
http://www.ncbi.nlm.nih.gov/pubmed/26051490
https://doi.org/10.1007/s00253-002-0932-9
http://www.ncbi.nlm.nih.gov/pubmed/11956737
https://doi.org/10.1002/cbic.201402600
http://www.ncbi.nlm.nih.gov/pubmed/25630520
https://doi.org/10.1073/pnas.1821932116
https://doi.org/10.1073/pnas.1821932116
http://www.ncbi.nlm.nih.gov/pubmed/31209052
https://doi.org/10.1186/1471-2180-11-202
http://www.ncbi.nlm.nih.gov/pubmed/21923907
https://doi.org/10.1128/AEM.01768-10
http://www.ncbi.nlm.nih.gov/pubmed/21398493
https://doi.org/10.1128/AEM.03015-10
http://www.ncbi.nlm.nih.gov/pubmed/21398490
https://doi.org/10.1128/AEM.07955-11
http://www.ncbi.nlm.nih.gov/pubmed/22544261
https://doi.org/10.1371/journal.pone.0147047
http://www.ncbi.nlm.nih.gov/pubmed/26751579
https://doi.org/10.1016/j.fm.2016.10.013
http://www.ncbi.nlm.nih.gov/pubmed/27889155
https://doi.org/10.3390/toxins5081422
http://www.ncbi.nlm.nih.gov/pubmed/23949005
https://doi.org/10.1016/j.fgb.2006.03.001
http://www.ncbi.nlm.nih.gov/pubmed/16713314
https://doi.org/10.1002/cbic.201300626
http://www.ncbi.nlm.nih.gov/pubmed/24302702
https://doi.org/10.1371/journal.pcbi.1009372


186. Chen L, Yue Q, Zhang X, Xiang M, Wang C, Li S, et al. Genomics-driven discovery of the pneumocan-
din biosynthetic gene cluster in the fungusGlarea lozoyensis. BMC Genomics. 2013; 14(339). https://
doi.org/10.1186/1471-2164-14-339 PMID: 23688303

187. Chen L, Li Y, Yue Q, Loksztejn A, Yokoyama K, Felix EA, et al. Engineering of New Pneumocandin
Side-Chain Analogues fromGlarea lozoyensis by Mutasynthesis and Evaluation of Their Antifungal
Activity. ACS Chem Biol. 2016; 11(10):2724–33. Epub 2016/10/22. https://doi.org/10.1021/
acschembio.6b00604 PMID: 27494047; PubMed Central PMCID: PMC5502478.

188. Chen L, Yue Q, Li Y, Niu X, Xiang M, Wang W, et al. Engineering of Glarea lozoyensis for exclusive
production of the pneumocandin B0 precursor of the antifungal drug caspofungin acetate. Appl Envi-
ron Microbiol. 2015; 81(5):1550–8. Epub 2014/12/21. https://doi.org/10.1128/AEM.03256-14 PMID:
25527531; PubMed Central PMCID: PMC4325176.

189. Salo O, Guzman-Chavez F, Ries MI, Lankhorst PP, Bovenberg RAL, Vreeken RJ, et al. Identification
of a Polyketide Synthase Involved in Sorbicillin Biosynthesis by Penicillium chrysogenum. Appl Envi-
ron Microbiol. 2016; 82(13):3971–8. Epub 2016/04/24. https://doi.org/10.1128/AEM.00350-16 PMID:
27107123; PubMed Central PMCID: PMC4907180.

190. Guzman-Chavez F, Salo O, Nygard Y, Lankhorst PP, Bovenberg RAL, Driessen AJM. Mechanism
and regulation of sorbicillin biosynthesis by Penicillium chrysogenum. Microb Biotechnol. 2017; 10
(4):958–68. https://doi.org/10.1111/1751-7915.12736 PMID: 28618182; PubMed Central PMCID:
PMC5481523.

191. Derntl C, Guzman-Chavez F, Mello-de-Sousa TM, Busse HJ, Driessen AJM, Mach RL, et al. In Vivo
Study of the Sorbicillinoid Gene Cluster in Trichoderma reesei. Frontiers in microbiology. 2017;
8:2037. https://doi.org/10.3389/fmicb.2017.02037 PMID: 29104566; PubMed Central PMCID:
PMC5654950.

192. Heneghan MN, Yakasai AA, Halo LM, Song Z, Bailey AM, Simpson TJ, et al. First heterologous recon-
struction of a complete functional fungal biosynthetic multigene cluster. Chembiochem. 2010; 11
(11):1508–12. Epub 2010/06/25. https://doi.org/10.1002/cbic.201000259 PMID: 20575135.

193. Halo LM, Heneghan MN, Yakasai AA, Song Z, Williams K, Bailey AM, et al. Late Stage Oxidations dur-
ing the Biosynthesis of the 2-Pyridone Tenellin in the Entomopathogenic Fungus Beauveria bassiana.
J Am Chem Soc. 2008; 130:17988–96. https://doi.org/10.1021/ja807052c PMID: 19067514

194. Zaehle C, Gressler M, Shelest E, Geib E, Hertweck C, Brock M. Terrein biosynthesis in Aspergillus ter-
reus and its impact on phytotoxicity. Chem Biol. 2014; 21(6):719–31. Epub 2014/05/13. https://doi.org/
10.1016/j.chembiol.2014.03.010 PMID: 24816227.

195. Kakule TB, Zhang S, Zhan J, Schmidt EW. Biosynthesis of the Tetramic Acids Sch210971 and
Sch210972. Organic Letters. 2015; 17(10):2295–7. https://doi.org/10.1021/acs.orglett.5b00715
PMID: 25885659

196. Umemura M, Nagano N, Koike H, Kawano J, Ishii T, Miyamura Y, et al. Characterization of the biosyn-
thetic gene cluster for the ribosomally synthesized cyclic peptide ustiloxin B in Aspergillus flavus. Fun-
gal Genet Biol. 2014; 68:23–30. Epub 2014/05/21. https://doi.org/10.1016/j.fgb.2014.04.011 PMID:
24841822.

197. Lim FY, Won TH, Raffa N, Baccile JA, Wisecaver J, Rokas A, et al. Fungal Isocyanide Synthases and
Xanthocillin Biosynthesis in Aspergillus fumigatus. mBio. 2018; 9(3). Epub 2018/05/31. https://doi.org/
10.1128/mBio.00785-18 PMID: 29844112; PubMed Central PMCID: PMC5974471.

198. Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score
and accuracy in binary classification evaluation. BMC Genomics. 2020; 21(1):6. Epub 2020/01/04.
https://doi.org/10.1186/s12864-019-6413-7 PMID: 31898477; PubMed Central PMCID:
PMC6941312.

199. Frishman WH, Rapier RC. Lovastatin: an HMG-CoA reductase inhibitor for lowering cholesterol. The
Medical clinics of North America. 1989; 73(2):437–48. Epub 1989/03/01. https://doi.org/10.1016/
s0025-7125(16)30681-2 PMID: 2645482.

200. Hutchinson CR, Kennedy J, Park C, Kendrew S, Auclair K, Vederas J. Aspects of the biosynthesis of
non-aromatic fungal polyketides by iterative polyketide synthases. Antonie van Leeuwenhoek. 2000;
78(3):287–95. https://doi.org/10.1023/a:1010294330190 PMID: 11386351

201. Gauglitz G. Artificial vs. human intelligence in analytics. Analytical and bioanalytical chemistry. 2019;
411(22):5631–2. https://doi.org/10.1007/s00216-019-01972-2 PMID: 31240356

202. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nature methods.
2015; 12(1):59–60. https://doi.org/10.1038/nmeth.3176 PMID: 25402007

203. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching.
Nucleic acids research. 2011; 39(Web Server issue):W29–W37. Epub 05/18. https://doi.org/10.1093/
nar/gkr367 PMID: 21593126.

PLOS COMPUTATIONAL BIOLOGY FunOrder: Detection of essential genes in BGCs through co-evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009372 September 27, 2021 32 / 32

84

https://doi.org/10.1186/1471-2164-14-339
https://doi.org/10.1186/1471-2164-14-339
http://www.ncbi.nlm.nih.gov/pubmed/23688303
https://doi.org/10.1021/acschembio.6b00604
https://doi.org/10.1021/acschembio.6b00604
http://www.ncbi.nlm.nih.gov/pubmed/27494047
https://doi.org/10.1128/AEM.03256-14
http://www.ncbi.nlm.nih.gov/pubmed/25527531
https://doi.org/10.1128/AEM.00350-16
http://www.ncbi.nlm.nih.gov/pubmed/27107123
https://doi.org/10.1111/1751-7915.12736
http://www.ncbi.nlm.nih.gov/pubmed/28618182
https://doi.org/10.3389/fmicb.2017.02037
http://www.ncbi.nlm.nih.gov/pubmed/29104566
https://doi.org/10.1002/cbic.201000259
http://www.ncbi.nlm.nih.gov/pubmed/20575135
https://doi.org/10.1021/ja807052c
http://www.ncbi.nlm.nih.gov/pubmed/19067514
https://doi.org/10.1016/j.chembiol.2014.03.010
https://doi.org/10.1016/j.chembiol.2014.03.010
http://www.ncbi.nlm.nih.gov/pubmed/24816227
https://doi.org/10.1021/acs.orglett.5b00715
http://www.ncbi.nlm.nih.gov/pubmed/25885659
https://doi.org/10.1016/j.fgb.2014.04.011
http://www.ncbi.nlm.nih.gov/pubmed/24841822
https://doi.org/10.1128/mBio.00785-18
https://doi.org/10.1128/mBio.00785-18
http://www.ncbi.nlm.nih.gov/pubmed/29844112
https://doi.org/10.1186/s12864-019-6413-7
http://www.ncbi.nlm.nih.gov/pubmed/31898477
https://doi.org/10.1016/s0025-7125%2816%2930681-2
https://doi.org/10.1016/s0025-7125%2816%2930681-2
http://www.ncbi.nlm.nih.gov/pubmed/2645482
https://doi.org/10.1023/a%3A1010294330190
http://www.ncbi.nlm.nih.gov/pubmed/11386351
https://doi.org/10.1007/s00216-019-01972-2
http://www.ncbi.nlm.nih.gov/pubmed/31240356
https://doi.org/10.1038/nmeth.3176
http://www.ncbi.nlm.nih.gov/pubmed/25402007
https://doi.org/10.1093/nar/gkr367
https://doi.org/10.1093/nar/gkr367
http://www.ncbi.nlm.nih.gov/pubmed/21593126
https://doi.org/10.1371/journal.pcbi.1009372


Representative calculation of the manual evaluation measure (MEM) and comparison 
of the results to the FunOrder output for determination of thresholds based on the 2-
Pyridon-Desmethylbassianin (dmb) BGC from Beauveria bassiana 

Two phylogenetic trees, each representing a gene within a cluster in the context of our empirically optimized 
database, were compared. For each tree comparison we first determined if there were similar leaves (similar 
Species) between the two trees. If yes, branch length differences, node-differences, branch colours and overall 
topology between the leaves and the query were determined. 
The branch lengths were measured, and the differences then calculated. The nodes between a species and the 
query were counted and compared to the number of nodes of the other phylogenetic tree. The branch colour 
describes the similarity to the most common node based on the Robinson-Foulds (RF) distance. 0 to 40% 
similarity was defined as “yellow”, 40 – 66,6% similarity was defined as “green” and the rest was defined as 
“blue”. For each of the four measures average pairwise distances were determined. If the trees contained more 
than two similar leaves, another average would be calculated of the resulted average measures, called manual 
evaluation measure (MEM). These MEMs (the higher the MEM the higher the similarity) (S6 Table) were put 
together in matrices to calculate heatmaps, dendrograms and PCA to evaluate the FunOrder output based on 
the treeKO algorithm (lower distances indicated higher similarities).  

Table 1 FunOrder strict matrix Table 2 FunOrder evol matrix 

dmbS dmbA dmbB dmbC dmbS dmbA dmbB dmbC 
dmbS 0 0.524 0.864 0.672 dmbS 0 0.12 0 0.343 
dmbA 0.524 0 0.793 0.533 dmbA 0.153 0 0 0 
dmbB 0.864 0.793 0 0.807 dmbB 0 0 0 0.103 
dmbC 0.672 0.533 0.807 0 dmbC 0.322 0 0.103 0 

The 2-Pyridon-Desmethylbassianin (dmb) BGC from Beauveria bassiana (BGC0001136) consists of 4 genes 
(dmbA, dmbB, dmbC, dmbS). According to literature dmbS and dmbC are needed for the production of  2-
Pyridon-Desmethylbassianin (Heneghan, Yakasai et al. 2011). 

We can now compare the highest MEMs to the corresponding strict distances from the FunOrder output to 
determine if they are comparable. The highest MEM was calculated for the dmbA:dmbC comparison (MEM 
=2.61), in the FunOrder output for the strict distance this comparison (0.533) is next to lowest (Table 1 and S6 
Table). The evolutionary distance for this comparison is 0 (Table 2). Next the the dmbA:dmbS comparison (MEM 
= 2.53) is the lowest in the strict matrix but has the evolutionary distance (0.12 and 0.153) (The differences 
between the two values are created due to the treeKO algorithm and the decision which tree to use as 
reference). This clarifies the strength of the MEMs, that they consider evolutionary history in one value, and the 
introduction of the combined distance measure, where speciation is considered with the strict distance as 
background. The comparison dmbS:dmbC had a MEM of 2.4 and a strict distance of 0.672. When comparing the 
clustering of the Ward`s minimum variance on the unscaled data, we can further observe similar clustering 
(Figure 1 A and B). 
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Figure 1 A – Standard output of the FunOrder analysis of the 2-Pyridon-Desmethylbassianin BGC of Beauveria 
bassiana (BGC0001136) (dmb). Dendrogram based on the Euclidean distance within the unscaled strict distance 
matrix clustered using Ward’s minimum variance method aiming at finding compact spherical clusters, with the 
implemented squaring of the dissimilarities before cluster updating. B – Dendrogram based on the Euclidean 
distance within the unscaled MEM matrix of the 2-Pyridon-Desmethylbassianin BGC of Beauveria bassiana 
(BGC0001136) (dmb) clustered using Ward’s minimum variance method aiming at finding compact spherical 
clusters, with the implemented squaring of the dissimilarities before cluster updating. 
 
In this example, we can see clear similar clustering (Figure 1) between the dendrograms based on the MEM 
values and those based on the strict distances. Further, we can see how strict distance values below 0.7 reflect 
manual determination and refinement of co-evolution (Table 1, Table 2 and S6 Table). We can further see how 
the manual determination of co-evolution takes speciation history into account and therefore the validity of the 
introduction of the combined distance, which resembles the manual comparison. We further compared 
Heatmaps and PCAs and performed these comparisons for all analysed positive control BGCs and negative 
control gene clusters.  
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Standard Operation Procedure for the Interpretation of the FunOrder Results 

1) The internal co-evolution quotient (ICQ) gives information about the total co-evolution
within an insert BGC. If the ICQ is above 0.718, the content of the co-evolution is not
significantly different to randomly assembled GCs. Such BGCs must be interpreted with
extreme caution. It might be worth trying to add or remove some gene from the edges of the
BGC and re-run the FunOrder analysis.

2) The heatmap based on the strict distances is representing the calculated raw data (treeKO
output) and can be used for an initial, general overview. Genes with a shared co-evolution
may cluster together and form distinct clusters in the heatmap (regardless of the absolute
values) and the corresponding dendogram. Such clusters may be a good first indication for
co-evolution but are not a necessity.

3) Next, the dendrogram based on the euclidean distances within the scaled strict distance
matrix is inspected. In the context of BGCs, it is sensible to look for genes that cluster
together with the core enzyme(s) in the dendrogram. Notably, the dendrogram is still a
representation of the complete data set. Clustering (or the absence of clustering) may not
only be caused by co-evolution but also by potential generated noise.

4) Therefore, the final and crucial step to detect co-evolving genes is to consider the PCA-plot of
the strict distance. First, the percentage described by the principal components must be
compared and taken into account for the clustering. For example, if PC1 (x-axis) describes
50% of the data and PC2 (y-axis) describes 10% of the data, longer vertical distances between
genes are allowed, because of the stronger horizontal impact. Genes that cluster together
with the core enzyme(s) are highly likely to share a similar co-evolution.

5) Genes that are clustering together with the core enzyme(s) in any of the three visualisations
are considered ‘detected’ and can be anticipated to share a similar co-evolution.

6) Finally, the steps 2 – 4 are repeated with the visualizations of the combined distances. This
may add further genes to the pool of ‘detected’ genes.
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Phialocephala scopiformis biosynthetic gene cluster analysis with FunOrder 

To give an example for the FunOrder analysis of an undescribed biosynthetic gene cluster (BGC), 
we chose a putative Type I polyketide synthase (T1pks) BGC from the fungal conifer needle endophyte 
Phialocephala scopiformis (1) (located on scaffold NW_017263581, 125525-172708 nt). This cluster was 
predicted with antiSMASH 4.3.0 (2) (Figure 1) and the output was directly analyzed with FunOrder.  

Figure 1 Screenshot of the cluster defined by antiSMASH. 
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The first step of the analysis was to inspect the internal co-evolutionary quotient (ICQ) calculated 
for this specific cluster. The ICQ was 0.5727, which is below the previously defined threshold for relevant 
co-evolution detected of 0.718. We therefore continued with the inspection of the heatmap based on the 
strict distance matrix (Figure 2). The color key in the heatmap is a direct visualization of the values of the 
strict distance, they are clustered based on a calculated dendrogram based on the complete linkage 
method. We observed a first indication of which genes might share a potential co-evolution with the core 
enzyme LY89DRAFT_1527 (marked as LY89DRAFT_1527_T1PKS in all figures). The inspection of figure 2 
indicated LY89DRAFT_1492 (annotated as hypothetical protein and after a sequence similarity search with 
blastp (3) against the non redundant protein database revealed as putative serine hydrolase), 
LY89DRAFT_603930 (annotated as NAD(P)-binding protein and a smCOG short chain 
dehydrogenase/reductase) and LY89DRAFT_603910 (annotated as type 1 phosphodiesterase/nucleotide 
pyrophosphatase) as sharing relatively lower distance values among each other.  

 

 

Figure 2 Standard output of the analysis of the putative T1pks BGC of Phialocephala scopiformis (located 
on scaffold NW_017263581, 125525-172708 nt). Heatmap of the strict distance matrix. The clustering 
mentioned in the text is indicated by a blue circle. 

Next we examined the dendrogram (Figure 3) based on the Euclidean distances within the scaled 
strict distance matrix clustered using Ward´s minimum variance method aiming at finding compact 
spherical clusters, with the implemented squaring of the dissimilarities before cluster updating. Again, we 
looked for the core enzyme LY89DRAFT_1527. This enabled us to determine that LY89DRAFT_1492 seems 
to share the strongest similarity in strict distances with LY89DRAFT_1527. Clustering relatively close to the 
T1pks were LY89DRAFT_603930 and LY89DRAFT_603910. This clustering considered the complete strict 
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distance matrix, including potential noise, which could distort the detection of true co-evolution within 
the BGC. 

 

 Figure 3 Standard output of the analysis of the putative T1pks BGC of Phialocephala scopiformis (located 
on scaffold NW_017263581, 125525-172708 nt). Dendrogram based on the Euclidean distances within 
the scaled strict distance matrix clustered using Ward´s minimum variance method aiming at finding 
compact spherical clusters, with the implemented squaring of the dissimilarities before cluster updating. 
The clustering mentioned in the text is indicated by an orange circle.  

 

We moved on to evaluate the score plot of the first two principal components (PC) of the principal 
component analysis (PCA) performed on the strict distance matrix (Figure 4 A). After inspecting the 
explained percentage of variance from each PC (indicated as Comp 1 and Comp 2 in Figure 4), we observed 
a clear clustering of the core enzyme LY89DRAFT_1527 with LY89DRAFT_1492 and LY89DRAFT_603930. 
Whereas LY89DRAFT_603910 clearly clustered with a different group of genes. This clustering pattern is 
further supported by the score plot of the first two PC of the PCA performed on the combined distance 
matrix (Figure 4 B).  
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Figure 4 Standard output of the analysis of the putative T1pks BGC of Phialocephala scopiformis (located 
on scaffold NW_017263581, 125525-172708 nt). A - Score plot of the first two principal components (PC) 
of the principal component analysis (PCA) performed on the strict distance matrix. The clustering 
mentioned in the text is indicated by an orange circle. B - Score plot of the first two PC of the PCA 
performed on the combined distance matrix. The clustering mentioned in the text is indicated by an 
orange circle.  

 

 

This lead to the hypothesis, that the T1pks LY89DRAFT_1527 with the putative serine hydrolase 
LY89DRAFT_1492 and the putative short chain dehydrogenase/reductase LY89DRAFT_603930 are 
responsible for the biosynthesis of the secondary metabolite (SM) encoded in this BGC, because they 
exhibit a shared co-evolution based on the FunOrder analysis. This hypothesis would have to be verified 
by corresponding in-vitro/in-vivo methods. 
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Pestalotiopsis fici biosynthetic gene cluster analysis with FunOrder 

To give an example for the FunOrder analysis of an undescribed biosynthetic gene cluster (BGC), 
we chose a putative Non-ribosomal peptide synthetase (NRPS) BGC from Pestalotiopsis fici (1) (located on 
scaffold NW_006917091, 3350456 - 3550012 nt). This cluster was predicted with antiSMASH 4.3.0 (2) 
(Figure 1) and the output was directly analyzed with FunOrder.  

Figure 1 Screenshot of the cluster defined by antiSMASH. 
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The first step of the analysis was to inspect the internal co-evolutionary quotient (ICQ) calculated 
for this specific cluster. The ICQ was 0.5908, which is below the previously defined threshold for relevant 
co-evolution detected of 0.718. We therefore continued with the inspection of the heatmap based on the 
strict distance matrix (Figure 2). The color key in the heatmap is a direct visualization of the values of the 
strict distance, they are clustered based on a calculated dendrogram based on the complete linkage 
method. We observed a first indication of which genes might share a potential co-evolution with the core 
enzyme PFICI_01040 (marked as PFICI_01040_NRPS in all figures). In this case, there was no significant 
clustering detectable with the core enzyme PFICI_01040. PFICI_01040 appeared to share mostly high strict 
distances to the other genes in the BGC.  

 

Figure 2 Standard output of the analysis of putative NRPS BGC from Pestalotiopsis fici (located on scaffold 
NW_006917091, 3350456 - 3550012 nt). Heatmap of the strict distance matrix.  
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Next we examined the dendrogram (Figure 3) based on the Euclidean distances within the scaled 
strict distance matrix clustered using Ward´s minimum variance method aiming at finding compact 
spherical clusters, with the implemented squaring of the dissimilarities before cluster updating. Again, we 
looked for the core enzyme PFICI_01040. This enabled us to determine that PFICI_01040 seems to share 
the strongest co-evolution within the BGC with PFICI_01039 (annotated as hypothetical protein and 
recognized by antiSMASH as putative multi drug transporter) and PFICI_01038 (annotated as hypothetical 
protein and revealed to contain a putative DNA binding domain based on a sequence similarity search 
using blastp (3) against the non redundant protein database and conserved domain database). This 
clustering considered the complete strict distance matrix, including potential noise, which could distort 
the detection of true co-evolution within the BGC. 

 

 Figure 3 Standard output of the analysis of the putative NRPS BGC from Pestalotiopsis fici (located on 
scaffold NW_006917091, 3350456 - 3550012 nt). Dendrogram based on the Euclidean distances within 
the scaled strict distance matrix clustered using Ward´s minimum variance method aiming at finding 
compact spherical clusters, with the implemented squaring of the dissimilarities before cluster updating. 
The clustering mentioned in the text is indicated by an orange circle.  
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We moved on to evaluate the score plot of the first two principal components (PC) of the principal 
component analysis (PCA) performed on the strict distance matrix (Figure 4). After inspecting the 
explained percentage of variance from each PC (indicated as Comp 1 and Comp 2 in Figure 4), we observed 
6 genes clustering with the core enzyme PFICI_01040 (Table 1). As non-ribosomal peptides (NRP) 
produced by NRPS can undergo several modifications after their synthesis (4), the number of genes 
clustering is no surprise. 

  

Figure 4 Standard output of the analysis of the putative NRPS BGC from Pestalotiopsis fici (located on 
scaffold NW_006917091, 3350456 - 3550012 nt). Score plot of the first two principal components (PC) of 
the principal component analysis (PCA) performed on the strict distance matrix. The clustering mentioned 
in the text is indicated by an orange circle.  
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Table 1 Genes clustering in the Score plot of the first two principal components (PC) of the principal 
component analysis (PCA) performed on the strict distance matrix with the core enzyme PFICI_01040. 

Gene Locus-tag Annotation Manual annotation 
PFICI_01040 Hypothetical protein Putative NRPS 
PFICI_01038 Hypothetical protein Putative DNA binding domain 

containing protein 
PFICI_01039 Hypothetical protein putative multi drug transporter 
PFICI_01062 Hypothetical protein Putative Hydrophobic surface 

binding protein 
PFICI_01057 Hypothetical protein Putative feruloyl esterase 
PFICI_01042 Hypothetical protein Putative Peroxidase 
PFICI_01060 Hypothetical protein Putative Inositol 

monophosphatase 

Nevertheless, this led to the hypothesis, that the NRPS PFICI_01040 produces a NRP that might 
be finally excreted by PFICI_01039, because they exhibit a shared co-evolution based on the FunOrder 
analysis. Further we hypothesized that PFICI_01038 might be involved in the regulation of the 
transcription of the NRPS gene. The enzymes encoded by the genes PFICI_01057 and PFICI_01042 may 
well play a part in the modification of the NRP. Besides, it could be possible that the NRPS already 
produces the final compound. This possibility was supported by the overall high strict distances shared by 
the core enzyme with the other genes of the BGC. These hypotheses would have to be verified by 
corresponding in-vitro/in-vivo methods. 

References: 

1. Wang X, Zhang X, Liu L, Xiang M, Wang W, Sun X, et al. Genomic and transcriptomic analysis of
the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural
products. BMC Genomics. 2015;16:28.
2. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, et al. antiSMASH 4.0-improvements
in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017;45(W1):W36-
W41.
3. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture
and applications. BMC Bioinformatics. 2009;10:421-.
4. Le Govic Y, Papon N, Le Gal S, Bouchara J-P, Vandeputte P. Non-ribosomal Peptide Synthetase
Gene Clusters in the Human Pathogenic Fungus Scedosporium apiospermum. Frontiers in Microbiology.
2019;10(2062).

96



Statistical analysis of the Internal Co-evolutionary Quotient (ICQ)

All the statistical tests were performed in the R environment (1). The Shapiro-Wilk test used 
below was used to check for the normality of the ICQ data sets (table 1). Normality assumptions 
underlie outlier detection hypothesis tests. If the p-value is above the set alpha significance 
value (0.01) then the null hypothesis is not discarded. In other words it can be considered a 
normal distribution. 

Table 1 Shapiro-Wilk normality tests. 
ICQ data set p-value
random GC 0.01901 
BioPath 0.119 
BGC 0.228 
sequential GC 0.2093 

Table 2 Levene's Test for Homogeneity of Variance (center = median) performed on the ICQ 
data sets from the analysis of the BioPath, BGCs, random GCs and sequential GCs. 

Df F value Pr(>F) 
ICQ data sets 3 2.1335 0.09933 

From the output in table 2, it can be seen that the p-value was not less than the significance 
level of 0.05. This means that there was no evidence to suggest that the variance is statistically 
significantly different for the data sets. Levene’s test is an alternative to Bartlett’s test when the 
data is not normally distributed. 

Table 3 Computed one-way ANOVA test the analysis of variance performed on the ICQ values 
from the analysis of the BioPath, BGCs, random GCs and sequential GCs. 

Df Sum Sq Mean Sq F value Pr(>F) 
ICQ data sets 3 1.267 0.4224 33.45 6.11e-16 
Residuals 125 1.579 0.0126 

The output in table 3 includes the columns F value and Pr(>F) corresponding to the p-value of 
the test. As the p-value is less than the significance level 0.05, we could conclude that there are 
significant differences between the ICQ data sets in the model summary. We could therefore 
continue to perform an analysis of variance (ANOVA). In one-way ANOVA test, a significant p-
value indicates that some of the ICQ data sets means are different, but we don’t know which 
pairs of the ICQ data sets are different. It is possible to perform multiple pairwise-comparison, 
to determine if the mean difference between specific pairs are statistically significant. As the 
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ANOVA test was significant, we could compute Tukey HSD (Tukey Honest Significant 
Differences), for performing multiple pairwise-comparison between the means of the ICQ data 
sets. It can be seen from the output in table 4 that only the differences are significant with an 
adjusted p-value lower than 0.05. 
 
Table 4 Tukey multiple comparisons of means based on an ANOVA performed on the ICQ values 
from the analysis of the BioPath, BGCs, random GCs and sequential GCs with a 95% family-wise 
confidence level. 
comparison diff lwr upr p adj 
BioPath-BGC -0.02870077 -0.13554943 0.07814789 0.8971149 
random GC-BGC 0.2120088 0.14657762 0.27743997 0 
sequential GC-BGC 0.05503562 -0.02116633 0.13123758 0.2416214 
random GC-BioPath 0.24070957 0.14076179 0.34065734 0 
sequential GC-
BioPath 0.08373639 -0.02357184 0.19104462 0.1818826 
sequential GC-
random GC -0.15697317 -0.22315216 -0.09079419 0.0000001 
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S1 Table 

 

The first table of this file (31 rows and 28 columns) can be found online with following link: 

https://doi.org/10.1371/journal.pcbi.1009372.s001 

 

 
 
 TP FN TN FP 
1) essential genes 153 88 189 44 
2) biosynthetic genes 129 66 189 44 

 
 
 

 
essential 
genes 

biosynthetic 
genes 

Sensitivity 0,6349 0,6615 
Specificity 0,8112 0,8112 
Precision 0,7766 0,7457 

Negative Predictive Value 0,6823 0,7412 
False Positive Rate 0,1888 0,1888 

False Discovery Rate 0,2234 0,2543 
False Negative Rate 0,3651 0,3385 

Accuracy 0,7215 0,743 
F1 Score 0,6986 0,7011 

Matthews Correlation Coefficient 0,4524 0,4797 
Normalized Matthews Correlation Coefficient 0,7262 0,73985 

No-information error rate ni 0,5084 0,5444 
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S2 Table

Pathway Species ICQ
AAA_lysin_biosynthesis Vanderwaltozyma_polyspora 0,46429
citrate_cycle Lachancea_thermotolerans 0,77273
ergocalciferol_biosynthesis Podospora_anserina 0,65934
Glycolysis Kluyveromyces_marxianus 0,57778
Histidin_biosynthesis Verticillium_alfalfae 0,54762
IMP_biosynthesis Naumovozyma_castellii 0,6
Neurosporaxanthin_biosynthesis Baudoinia_panamericana 0,71795
Pentosephosphate_pathway Ashbya_gossypii 0,58929
Pyrimidine_biosynthesis Marssonina_brunnea 0,67582
terpenoid_backbone_biosynthesis Paracoccidioides_brasiliensis 0,2
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S3 Table

Species ICQ
Alectoria_fallacina 0,652778
Aplosporella_prunicola 0,321429
Ascodesmis_nigricans 0,589286
Ascoidea_rubescens 0,6
Aulographum_hederae 0,666667
Candida_albicans_L26 0,619048
Cephellophora_europea 0,488889
Cryomyces_minteri 0,666667
Dactylellina_haptotyla 0,55
Dactyrella_cylindrospora 0,866667
Drechslerella_brochopaga 0,714286
Eremomyces_bilateralis 0,714286
Heterodermia_speciosa 0,5
Kalaharituber_pfeilii NA
Lasiodiplodia_theobromae 0,652778
Neofusicoccum_parvum 0,655556
Neolecta_irregularis 0,644444
Orbilia_oligospora 0,866667
Phialophora_americana 0,476191
Piedraia_hortae 0,75
Polychaeton_citri 0,688889
Pseudovirgaria_hyperparasitica 0,666667
Pyronema_omphalodes 0,642857
Rhinocladiella_mackenziei 0,642857
Rhizodiscina_lignyota 0,777778
Saccharata_proteae 0,666667
Saitoella_complicata 0,738095
Taphrina_deformans 0,785714
Tirmania_nivea 0,857143
Yamadazyma_tenuis 0,8
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S1 Table. Definition of topology. 

Topology Definition 

same min. 8 similar species, same topology with only little exceptions, colour 70-100% 

very similar min.5 similar species, similar topology, colour min. 70% 

similar distance < 2, colour min. 50% 

somewhat similar either 1 or 2 similar species with distances < 0.5 and nodes <3, or more species 
but only little similarities 

different no similarities or only 1 similar species 

S4 Table

105



S5 Table. Parameters used to calculate the manual evaluation measure (MEM). 

ΔBranch lenghth ΔNodes Color Topology MEM 

0 – 0.5 0 blue same 3 

0.5 - 1 1 -  very similar 2.5 

1 – 1.5 2 green Similar 2 

1.5 - 2 3 - somewhat similar 1.5 

> 2 > 4 yellow different 1 
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S6 Table 
This is a very large file and can be found online following this link: 

https://doi.org/10.1371/journal.pcbi.1009372.s006 

 

 

S7 Table 
This is a very large file and can be found online following this link: 

https://doi.org/10.1371/journal.pcbi.1009372.s007 
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Random BGC ICQ
1 0,8
2 0,66
3 0,64
4 0,83
5 0,66
6 1
7 0,66
8 1
9 0,66

10 1
11 0,81
12 0,75
13 0,6
14 0,66
15 0,66
16 1
17 0,83
18 0,81
19 0,73
20 0,7
21 1
22 0,95
23 0,92
24 0,62
25 0,68
26 0,86
27 0,65
28 0,77
29 0,74
30 0,5
31 0,61
32 0,83
33 0,8
34 0,75
35 0,75
36 0,75
37 0,83
38 0,66
39 0,9
40 0,76
41 0,55
42 0,83
43 0,58
44 0,76
45 0,76
46 0,59
47 0,75
48 0,85
49 0,5

S8 Table
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50 0,83
51 0,76
52 0,83
53 0,7
54 0,8
55 0,65
56 0,81
57 0,73
58 0,75
59 0,7
60 1

S8 Table
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ABSTRACT 
Coevolution is an important biological process that shapes interacting species or even proteins – may it be 
physically interacting proteins or consecutive enzymes in a metabolic pathway. The detection of co-evolved 
proteins may contribute to a better understanding of biological systems. Previously, we developed a semi-
automated method, termed FunOrder, for the detection of co-evolved genes from an input gene or protein 
set. We demonstrated the usability and applicability of FunOrder by identifying essential genes in a 
biosynthetic gene cluster from different ascomycetes. A major drawback of this original method was the 
need for a manual assessment, which may create a user bias and prevents a high-throughput application. 
Here we present a fully automated version of this method termed FunOrder 2. To fully automatize the 
method, we used several mathematical indices to determine the optimal number of clusters in the FunOrder 
output, and a subsequent k-means clustering based on the first three principal components of a principal 
component analysis of the FunOrder output. Further, we replaced the BLAST with the DIAMOND tool, 
which enhanced speed and allows the future integration of larger proteome databases. The introduced 
changes slightly decreased the sensitivity of this method, which is outweighed by enhanced overall speed 
and specificity. Additionally, the changes lay the foundation for future high-throughput applications of 
FunOrder 2 in different phyla to help answer different biological questions. 

AUTHOR SUMMARY 
Coevolution is a process, which arises between different species or even different proteins that interact with 
each other. Any change occurring in one partner must be met by a corresponding change in the other partner 
to maintain the interaction throughout evolution. These interactions may occur in symbiotic relationships 
or between rivaling species. Within an organism, consecutive enzymes of metabolic pathways are also 
subjected to coevolution. We developed a fully automated method, FunOrder 2, for the detection of co-
evolved proteins, which may contribute to a better understanding of protein interactions within an organism. 
We demonstrate that this method can be used to identify essential genes of the secondary metabolism of 
fungi, but FunOrder 2 may also be used to detect pathogenicity factors or remains of horizontal gene transfer 
next to many other biological systems that were shaped by coevolution. 

INTRODUCTION 
Every form of life known to humankind 

is subjected to evolution. This process shapes and 
forms all biological systems on macroscopic and 
molecular level. Thus, understanding and 
detecting evolutionary processes substantially 
contributes to understanding life forms and life 

itself. An important evolutionary process is the 
so-called coevolution. This is defined as a 
“process of reciprocal evolutionary change that 
occurs between pairs of species or among groups 
of species as they interact with one another” (2). 
This definition can be extended to interacting 
proteins (3), may it be physical interactions or 
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may it be consecutive actions in a metabolic 
pathway. In this regard, coevolution describes a 
similar evolutionary process with a similar 
evolutionary history among interacting proteins 
and the corresponding genes.  

In a previous study, we described a semi-
automated method for the identification of 
coevolutionary linked genes, named FunOrder 
(1). Therein, the protein sequences of an input set 
of proteins are blasted against an empirically 
optimized proteome database. The top 20 results 
of each search are then compared in a 
multisequence alignment and a phylogenetic tree 
is calculated for each input protein. Next, the 
phylogenetic trees of all proteins are compared 
pairwise using the treeKO tool. This tool 
calculates how similar two trees are, and in thus 
how similar the evolutionary history of two 
proteins is. The treeKO tool calculates two 
distances, the strict distance and the speciation 
distance. Notably, the strict distance had 
previously been suggested to be more suitable for 
the detection of coevolution in protein families 
than the speciation (or evolutionary) distance (4). 
However, we combined the two distance values 
to a third measure, the combined distance, in 
order to consider also the speciation history in the 
FunOrder method. The strict and the combined 
distances of all pairwise comparisons were then 
compiled in two matrices and visualized as 
heatmaps, dendrograms and two principal 
component analyses (PCA) were performed. In 
the final step of this method, the user needed to 
assess these different visualizations of the 
underlying data to detect co-evolved proteins (Fig 
1A). Please also refer to the original study for a 
detailed description of this method (1). 

Previously, we demonstrated the 
functionality and applicability of this method by 
identifying essential genes in biosynthetic gene 
clusters (BGCs) of ascomycetes (1). Fungal 
BGCs contain genes whose corresponding 
enzymes catalyze the biosynthesis of secondary 
metabolites (SMs) (5). SMs are a vast group of 

compounds with different structures and 
properties that are not necessary for the normal 
growth of an organism but can be beneficial 
under certain conditions (6). Notably, many SMs 
also have medicinal or other useful purposes, 
such as dyes, food additives, and as monomers for 
novel plastics (7). However, we can classify the 
genes in a BGC into biosynthetic genes, further 
essential genes, and gap genes. The biosynthetic 
genes encode for enzymes that are directly 
involved in the biosynthesis of the SM, while the 
further essential genes encode for transporters 
(8), transcription factors (9), or resistance genes 
(10). In contrast, gap genes are not involved in the 
biosynthesis of the SM despite being co-localized 
in the BGC (11). Both, the biosynthetic genes and 
the further essential genes are necessary for the 
biosynthesis of a SM in the native organisms 
(12). We could use FunOrder to detect theses 
essential genes, because they share a similar 
evolutionary background in many fungal BGCs 
(1). The FunOrder method contributes to a better 
understanding of fungal BGCs by adding an 
additional layer of information. This may support 
users in the decision which genes should be 
considered for detailed studies in the laboratory. 
Importantly, the application of FunOrder is not 
limited to BGCs from ascomycetes but may be 
useful to answer any biological problem that 
contains molecular coevolution of genes or 
proteins. Notably, this requires the compilation 
and evaluation of a suitable proteome database.  
The obvious major shortcoming of the original 
FunOrder method is the final manual assessment 
which prevents full automation and high-
throughput analyses. Further, the very sensitive 
but slow BLAST algorithm (13) limits the size of 
the proteome database used in this method. If this 
method shall be used for the analysis of 
coevolution in plants or mammals, larger 
databases will be needed. In this study we 
describe an improved version of the method, 
termed FunOrder 2 which solves the two 
mentioned limitations. For an automated 
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detection of co-evolving genes, we determine the 
optimal number of gene groups in the FunOrder 
output and then use k-means clustering based on 
the first three principal components of a PCA. 
Further, we replace BLAST with the recently 
published and upgraded DIAMOND tool (14) to 
enable searching of larger databases and lay the 
foundation for future different applications of 
FunOrder 2.  

RESULTS 
Integration of the DIAMOND algorithm 

The first major improvement of the 
FunOrder method was the integration of the 
DIAMOND algorithm (14, 15) for searching the 
proteome database instead of the previously used 
BLAST algorithm (13) (Fig 1). This change will 

allow the usage of larger databases in FunOrder 
2, since DIAMOND is as sensitive as BLAST, 
but is faster and is adapted to larger databases 
(14). With DIAMOND the run time of the first 
step in the FunOrder pipeline was reduced 
significantly. For instance, the database search 
for the lovastatin BGC of Aspergillus terreus 
(lov) (16) took 1 m 25 sec using the original 
FunOrder method, and 45 sec real time using 
FunOrder 2. This difference will of course be 
more pronounced and obvious when a larger 
database is used. 

To test, whether the integration of 
DIAMOND might have altered the ability of 
FunOrder to detect coevolution, we analysed the 
same control gene clusters (GCs) we had 

Fig 1. Comparison of the workflow of the original FunOrder method (A) and FunOrder 2 (B). 
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previously used to evaluate the original FunOrder 
method (1) and calculated the internal 
coevolution quotient (ICQ). The ICQ expresses 
how many genes in a gene cluster are detected as 
coevolutionary linked and is calculated 
subsequently to the treeKO comparison (Fig. 1). 
Since no other changes have been introduced 
until this point in the workflow, the ICQ values 
are a feasible way to compare BLAST and the 
DIAMOND software. We found only marginal 
differences between the original FunOrder 
method (using BLAST) and FunOrder 2 (using 
DIAMOND) (Table S1). For visualization, we 
compared the ICQ results in a kernel density plot 

(Fig 2). Therein, the curve for the ICQs of the 
positive control GCs (BioPath in Fig 2) slightly 
shifted to the left (higher internal coevolution) 
compared to the original method, while the curve 
for the negative control GCs (random GCs in Fig 
2) slightly shifted to the right (lower internal
coevolution). These results indicate that
DIAMOND might be better suited than BLAST
within the FunOrder method, as the usage of
DIAMOND resulted in a better distinction of the
positive and negative control GCs. The curve for
the sequential GCs was flattened and broadened
compared to the original curve (Fig 2), which can
also be explained by the assumed better

Fig 2. Kernel density plot of the ICQ values for co-evolutionary linked enzymes of different 
control sets comparing the original FunOrder method (dashed lines) and FunOrder 2 (solid lines). 
BGCs, previously empirically characterized fungal BGCs; BioPath, protein sets of conserved 
biosynthetic pathways of the primary metabolism; random GCs, randomly assembled protein sets from 
134 fungal proteomes; sequential GCs, co-localized genes from random loci of different ascomycetes. 
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performance of DIAMOND in this workflow. As 
the sequential GCs are random loci from different 
ascomycetes (1), they contain random numbers of 
co-evolved and independently evolved genes. 
Consequently, the usage of DIAMOND lowers 
the ICQ for GCs containing many co-evolved 
genes and raises the ICQ for GCs with many 
independently evolved genes compared to the 
original FunOrder method. This results in the 
detection of simultaneously more and less 
coevolution in all sequential GCs and therefore a 
flattening of the curve in Fig 2. For the 
benchmark BGCs, we could not observe a drastic 
change of the height or position of the curve, but 
a change of the shape with no significant 
differences of the variance and the mean (File 
S1). However, the changes of the curves of the 
random GCs and the BGCs, resulted in a new 
point of intersection (0.708), which should be 
considered in the final assessment of fungal 
BGCs, as described in our previous publication 
(1).  

Automated Cluster definition 
As mentioned, a major limitation of the 

original FunOrder method was the need for a 
manual assessment of the output, during which 
the proteins are grouped into clusters based on 
different data visualizations (Fig 1A). Please 
refer to our previous method for a detailed 
description of the procedure (1). To solve this 
problem, we integrated two R scripts for 
automatic definition of co-evolved protein groups 
(or clusters) (Fig 1B). The two R scripts use the 

first three principal components of the PCA of the 
strict and the combined distance matrices as input 
(Fig 1B) and group the proteins by k-means 
clustering. In the original FunOrder method, only 
the first two components were considered.  

The first R-script for automated protein 
(or gene) clustering initially determines the 
optimal number of gene clusters within the first 
three principal components of the PCAs using the 
R Package NbClust (17). This package uses 
different indices and varies the number of 
clusters, distance measures and clustering 
methods to determine the optimal number of 
clusters in a data set based on the majority rule. If 
the prediction of the optimal number of clusters 
fails, the second (a back-up) script with a 
predefined number of clusters is called. The 
prediction of the optimal number of clusters 
might fail for instance if the majority rule cannot 
be applied. As we aim to distinguish biosynthetic, 
further essential, and gap genes in fungal BGCS, 
we predefined the number of clusters to 3. 
Regardless of the script used, the final output is 
an excel file (Table S2) and a color-coded 
visualization of the PCA (File S2). 

To test how this automated cluster 
definition compares to the previously performed 
manual cluster definition, we analyzed the same 
30 BGCs as in our previous study. To observe 
only the influence of the automated cluster 
definition, we kept the BLAST tool for the initial 
database search still in place (Fig. 1). Then, we 

Table 1. Number of BGCs in which the automated cluster detection (in combination with BLAST or 
DIAMOND) delivered the same, better, worse, or different results for the given gene categories 
compared to the manual method.  

BLAST / DIAMOND same better worse different genes 
biosynthetic genes 16 / 17 4 / 4 10 / 9 - / -
further essential genes 11 / 11 3 / 3 5 / 5 - / -
gap genes 13 / 13 8 / 8 3 / 3 3 / 3 
extra genes 16 / 16 5 / 5 2 / 3 1 / - 
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compared the obtained results to those of the 
previously performed manual analyses (1) (Table 
1 and Table S3). In only 5 out of the tested 30 
BGCs, the exact same results were obtained 
(Table S3). In 15 BGCs, the automated cluster 
definition missed at least one biosynthetic or 
further essential gene in comparison to the 
manual assessment, but it could detect more of 
these essential genes in 5 BGCs. Regarding the 
gap and extra genes, the automated cluster 
definition returned less false positives than the 
manual assessment in 12 BGCs but found more 
in 4 BGCs. In summary, the automated cluster 
detection appeared to be more stringent than the 
manual assessment method, which led to slightly 
reduced sensitivity but enhanced selectivity (see 
Table S3 for a detailed statistical analysis). 

Next, we tested the simultaneous 
influence of DIAMOND and the automated 
clustering on the overall performance of 
FunOrder 2 during the analysis of fungal BGCs. 
To this end, we performed the same comparative 

analysis of the benchmark BGCs as described 
above. The results were very similar to the 
automated analysis using the BLAST analysis 
(Table 1 and Table S3). In a few cases, the usage 
of DIAMOND improved the automated cluster 
definition compared to BLAST, but it remained 
still more stringent than the manual assessment 
(Table 1 and Table S3). Fewer biosynthetic genes 
or further essential genes were detected in 13 of 
the 30 BGCs by FunOrder 2, but also fewer gap 
or extra genes in 12 BGCs (Table 1 and Table 
S3). Yet, FunOrder 2 clustered more genes 
together than the original method in other BGCs 
- to be precise, more essential genes were
detected in in 5 BGCs and more gap or extra
genes in 4 BGCs compared to the original method
(Table S3). The overall enhanced stringency
reduced the sensitivity slightly (Table 2) but also
improved several statistic measures, including
specificity, precision, and the normalized
Matthew correlation coefficient (Table 2, in
bold). To test if the observed differences have a

Table 2. Performance comparison of the original FunOrder (1) and FunOrder 2 for detecting relevant 
genes in fungal BGCs. Improved statistical measures are highlighted in bold. 

FunOrder 
essential genes 

FunOrder 2 
essential genes 

FunOrder 
biosynthetic genes 

FunOrder 2 
biosynthetic genes 

Sensitivity 0.6349 0.6266 0.6615 0.6564 
Specificity 0.8112 0.8541 0.8112 0.8541 
Precision 0.7766 0.8162 0.7457 0.7901 
Negative Predictive 
Value 

0.6823 0.6886 0.7412 0.7481 

False Positive Rate 0.1888 0.1459 0.1888 0.1459 
False Discovery Rate 0.2234 0.1838 0.2543 0.2099 
False Negative Rate 0.3651 0.3734 0.3385 0.3436 
Accuracy 0.7215 0.7384 0.7430 0.764 
F1 Score 0.6986 0.7089 0.7011 0.7171 
Matthews Correlation 
Coefficient 

0.4524 0.4926 0.4797 0.5242 

Normalized Matthews 
Correlation Coefficient 

0.7262 0.7463 0.73985 0.7621 

No-information error rate 
ni 

0.5084 0.5084 0.5444 0.5444 
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significant impact on the overall applicability of 
FunOrder 2 in fungal BGCs, we further compared 
the percentages of correctly identified genes in 
each BGC between the original FunOrder and 
FunOrder 2 (Tables S3) in an ANOVA (File S1) 
and found no significant difference. Taken 
together, we conclude that the introduced 
changes allow the detection of coevolution 
between different proteins with an enhanced 
stringency and precision compared to the original 
method, and that FunOrder 2 can be used to 
identify essential genes in fungal BGCs.  

The automation of the cluster detection in 
FunOrder 2 prevents a user bias and improves the 
overall speed. The analysis of the lovastatin BGC 
of Aspergillus terreus (lov) (16) with 17 genes, 
took 1 h 19 m 48 sec real time using 22 threads 
on an Ubuntu Linux system with 128 GB DDR4 
RAM with the original FunOrder (excluding 
manual cluster definition) and 1 h 19 m 58 sec 
real time with FunOrder2. Notably, the runtime 
for FunOrder 2 includes already the automated 
detection and grouping of co-evolving genes, 
which takes an experienced user additional 30 - 
45 minutes during the original method.  

MATERIALS AND METHODS 
Changes of the workflow  

Within the previously developed work 
flow (1) (Fig. 1A), we replaced BLAST (13) with 
DIAMOND (14) for the database search (Fig 1B). 
The previous and subsequent steps up to the 
integrated R-scripts remained the same as 
described in the original FunOrder method (1). 
Notably, the BLAST algorithm was kept in the 
software bundle to extract the sequences from the 
local database and can be used for an optional 
remote search of the NCBI database (18). The 
distances measure obtained after the treeKO 
algorithm were compiled in matrices, which were 
used as input for three alternative R-scripts (Fig 
1B). All R-scripts combine the strict distance 
matrix and the evolutionary distance matrix to a 
third distance, the combined distance matrix. 

These matrices were used for the calculation of 
the ICQ and as basis for the determination of co-
evolved genes. The three scripts differ only in 
how exactly the co-evolved genes are 
determined. The first R-script is a revised version 
of the R-script used in the original FunOrder 
method (1). It was simplified by removing 
unnecessary Euclidean distance calculations and 
the order of the called functions was rearranged 
in a manner, that all calculations were performed 
on a single matrix and then on the next. The first 
matrix to be analyzed is the strict distance matrix 
followed by the combined distance matrix. 
Further, we rearranged the order of the 
visualizations in the output, which is saved as 
“FunOrder_Supplementary_Rplots.pdf”. This 
output is similar to the original FunOrder method 
and can be assessed manually as described 
previously (1).  

The second and third R-scripts aim to 
determine the co-evolved genes automatically. 
To this end, a PCA is calculated for the strict and 
the combined distance matrices each. The first 
three principal components are then considered 
for defining the clusters by a k-means clustering 
approach. The difference between the second and 
the third R-script is the number of clusters used 
in the k-means clustering approach. In the second 
R-script, the optimal number of clusters in the 
first three principal components of the PCAs is 
determined by NbClust (17) using 28 indices 
(Table 3). We limited the maximum number of 
possibly definable clusters to 5 and chose the 
Ward´s minimum variance method based on the 
Euclidean distance for optimal cluster search 
within the NbClust function (19). The third R-
script performs a k-means clustering with 3 
clusters; it is only called as a back-up if the 
prediction of an optimal number of clusters in the 
second script fails. In both cases, the determined 
clusters are visualized in a color-coded plot of the 
first two principal components of the PCAs under 
“FunOrder_clustering_Rplots_pred.pdf” or 
“FunOrder_clustering_Rplots_defined.pdf” and 
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as table under “cluster_definition_pred.xlsx” or 
“cluster_definition_3.xlsx”.  

Table 3. Indices used to determine the optimal 
number of clusters. 

Index Reference 
Bale index (20) 
Ball index (21) 
CCC index (22) 
CH index (23) 
C-index (24) 
DB index (25) 
Duda index (26) 
Dunn index (27) 
Frey index (28) 
Friedman index (29) 
Gamma index (30) 
Gap index (31) 
Gplus index (32, 33) 
Hartigan index (34) 
KL index (35) 
Marriot index (36) 
McClain index (37) 
Pseudot2 index (26) 
Ptbiserial index (32, 38) 
Ratkowsky index (39) 
Rubin index (29) 
Scott index (40) 
SD index (41) 
SDbw index (42) 
Silhouette index (43) 
Tau index (32, 33) 
Tracew index (44) 
Trcovw index (44) 

The software bundle is written in the 
BASH (Bourn Again Shell) environment and is 
deposited in the GitHub repository 
https://github.com/gvignolle/FunOrder 
(doi:10.5281/zenodo.5118984). Details on all 
included scripts can be found in the ReadMe file 
on the GitHub repository. FunOrder 2 requires 

some dependencies, for details and links to all 
dependencies please refer to the ReadMe file. 

Control gene clusters 
For the evaluation of FunOrder 2, we 

used the same control gene clusters (GC) as in the 
original study (1). As benchmark BGCs, we used 
30 previously empirically defined BGCs. As 
negative controls, we used randomly assembled 
GCs. As positive control, we used enzymes of 
conserved metabolic pathways of the primary 
metabolism. The sequences of all test and control 
sets are deposited in the GitHub repository 
https://github.com/gvignolle/FunOrder. 

Calculation of the internal coevolution quotient 
(ICQ) 

“The internal coevolutionary quotient 
(ICQ) expresses how many genes in a GC or 
proteins in a protein set are co-evolved according 
to the previously defined threshold for strict and 
combined distances within the distance matrices 
of an analysed GC (or protein set).”(1) In 
accordance with the original method the ICQ 
values were calculated using Equation 1(1). 

𝐼𝐼𝐼𝐼𝐼𝐼 = 1 −  � 𝑔𝑔2 ∗  [𝑑𝑑 ∗ (𝑑𝑑 − 1)]� 
Equation 1. ICQ = internal coevolutionary 
quotient; g = number of strict distances < 0.7 and 
combined distances <= (0.6 * max value of the 
combined distance matrix) in all matrices; d = 
number of genes in the GC (1). 

Performance evaluation 
Similar as in the original method we 

analyzed 30 empirically characterized BGCs to 
evaluate the ability of FunOrder 2 to identify 
presumably co-evolved essential genes (as 
defined in Table S3) and to distinguish them from 
so-called gap genes and genes outside of the 
defined BGC borders. The genes clustering with 
the core enzyme(s) were considered as 
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“detected”. As previously described “we counted 
the total number of (1a) detected essential genes 
or (1b) detected biosynthetic genes, (2a) not 
detected essential genes or (2b) not detected 
biosynthetic genes, (3) detected gap and extra 
genes, and (4) not detected gap or extra genes in 
all BGCs, and defined (1a or 1b) as true positives 
(TP), (2a or 2b) as false negatives (FN), (3) as 
false positives (FP), and (4) as true negatives 
(TN)” (1), which were finally used as input for a 
stringent statistical analysis (1). 

DISCUSSION 
The integration of the DIAMOND tool 

and the automated detection of co-evolved genes 
improved the run time and total analysis time, 
allowing high throughput analysis of protein sets 
and GCs without the risk of a user-bias. In 
general, the automated cluster definition appears 
more stringent than the manual assessment, 
which resulted in improved specificity and 
precision and a slightly reduced sensitivity during 
the analysis of fungal BGCs by FunOrder2 
compared to the original method. In summary, we 
consider the integration of a fully automated 
cluster definition a major improvement, as the 
advantages (speed, reproducibility, precision) 
clearly outweigh the slightly reduced sensitivity.  
As demonstrated, FunOrder 2 can be used to 
determine the essential genes in fungal BGCs, but 
this is not the only potential application of 
FunOrder 2. As protein coevolution can be used 
to predict protein-protein interactions and 
biosynthetically linked enzymes (1, 45), 
FunOrder 2 may be used to answer many 
different research questions. Given enough 
computational time, even complete fungal 
genomes might be assessed by our method. It is 
also exciting to speculate if and how FunOrder 
may be used in other clades of life. A limitation 
in this regard might be the maximum number of 
predicted clusters. NbClust limits the number of 
potential clusters to 15, we further lowered this 
number to 5 for the analysis of BGCs. This 

problem might be circumvented by an arbitrary 
definition of the number of clusters or by 
consecutive FunOrder analyses, in which a large 
output cluster is used as input for a new analysis. 
FunOrder 2 is provided with a database of 
ascomycete proteomes and can therefore be used 
for the detection of coevolution of proteins in this 
fungal division. If other divisions, classes, or 
even kingdoms shall be analyzed, a suitable new 
proteome database must be compiled and tested. 
As mentioned, the integration of the DIAMOND 
tool enables the integration of larger databases. 
However, at least 25 different proteomes must be 
used, because the phylogenetic trees are 
calculated with a maximum of 20 homologous 
sequences. Naturally, the proteomes should be of 
high quality (best RNASeq derived). The 
proteomes shall be equally distributed among the 
taxonomic rank to be analyzed but also take the 
size of the different subordinate ranks into 
consideration. Put differently, if a division 
contains 4 small classes, and two large classes, 
the database should contain proteomes of all six 
classes, but more from the larger classes than 
from the smaller classes. The database shall be 
representative sample of the phylogenetic group 
to be analyzed. This also means that highly divers 
phylogenetic groups need to be over-represented 
in comparison to evolutionary uninventive 
clades. Further, evolutionary outliers and special 
clades shall be considered in the database design. 
For instance, if a phylum contains a family that is 
the only member of its class, the user needs to 
decide whether that family shall be part of the 
proteome database at all, depending on the size 
and importance of the family. If the family shall 
be considered, several proteomes need to be 
included in the database, otherwise the 
evolutionary distances of the tested proteins 
might be too large to be successfully evaluated by 
FunOrder. Any new database must be tested 
thoroughly according to the procedure we 
described previously (1). This means, that 
suitable test gene clusters must be compiled and 
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that meaningful thresholds for the strict and 
combined distance should be defined. If possible, 
a test set of target gene clusters should be 
analyzed and compared to previous results. 
Please refer to our previous study on how we 
tested the ascomycete database, determined the 
thresholds, and tested the applicability of 
FunOrder for the detection of essential genes in 
BGCs in ascomycetes (1). A possible short-cut in 
this procedure might determining the thresholds 
of strict and combined distance via threshold 
optimizing (best obtained distinction of positive 
and negative control gene clusters). Please also 
refer to the technical guidelines for construction 
and integration of the database at the GitHub 
repository 
https://github.com/gvignolle/FunOrder. 
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S1 File 

Statistical analysis of the relative discovery rates of essential or biosynthetic genes 

All the statistical tests were performed in the R environment (1). The Shapiro-Wilk test used below was 
used to check for the normality of the percentages of detected essential or biosynthetic genes, as 
previously defined (2), between the FunOrder 1 and FunOrder 2 output (table 1). Normality assumptions 
underlie outlier detection hypothesis tests. If the p-value is above the set alpha significance value (0.01) 
then the null hypothesis is not discarded. In other words, it can be considered a normal distribution. 

Table 1 Shapiro-Wilk normality tests. 
data set p-value
FunOrder 1 – % essential genes 0.2236 
FunOrder 1 – % biosynthetic genes 0.007389 
FunOrder 2 – % essential genes 0.1738 
FunOrder 2 – % biosynthetic genes 0.05362 

Table 2 Levene's Test for Homogeneity of Variance (center = median) performed on the percentages of 
detected essential or biosynthetic genes, as previously defined, between the FunOrder 1 and FunOrder 2 
output. 

Df F value Pr(>F) 
performance data sets 3 0.4007 0.7527 

From the output in table 2, it can be seen that the p-value was not less than the significance level of 0.05. 
This means that there was no evidence to suggest that the variance is statistically significantly different for 
the data sets. Levene’s test is an alternative to Bartlett’s test when the data is not normally distributed. 

Table 3 Computed one-way ANOVA test the analysis of variance performed on the percentages of 
detected essential or biosynthetic genes, as previously defined, between the FunOrder 1 and FunOrder 2 
output. 

Df Sum Sq Mean Sq F value Pr(>F) 
performance 
data sets 

3 1443 481.0 0.853 0.468 

Residuals 116 65447 564.2 

The output in table 3 includes the columns F value and Pr(>F) corresponding to the p-value of the test. As 
the p-value is higher than the significance level 0.05, we could conclude that there are no significant 
differences between the percentages of relative discovery rate of essential or biosynthetic genes in the 
model summary between FunOrder 1 and FunOrder 2.  

We further compared the internal co-evolution quotient (ICQ) of both the FunOrder 1 and FunOrder 2 
output for the BGCs. A F-test resulted in F = 0.76644 with a p-value = 0.4783, since the p-value is above 
the significance level 0.05 we could conclude that there is no significant difference between the variances 
in the two sets of ICQs. We continued with a two sided two sample t-test to compare the means of the two 
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datasets. The t-test had a p-value of 0.2682, since we obtained a p-value greater than 0.05 we can conclude 
that means of the two datasets have no significant difference and can be regarded as equal. 
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Score plot of PCA of strict distance
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Score plot of PCA of combined distance
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S1 Table 

Biosynthetic pathways 
Pathway Species FunOrder 2 - ICQ org. FunOrder - ICQ 
AAA_lysin_biosynthesis Vanderwaltozyma_polyspora 0,3928571 0,4642857 
citrate_cycle Lachancea_thermotolerans 0,4727273 0,7727273 
ergocalciferol_biosynthesis Podospora_anserina 0,5934066 0,6593407 
Glycolysis Kluyveromyces_marxianus 0,5666667 0,5777778 
Histidin_biosynthesis Verticillium_alfalfae 0,547619 0,547619 
IMP_biosynthesis Naumovozyma_castellii 0,6363636 0,6 
Neurosporaxanthin_biosynthesis Baudoinia_panamericana 0,5128205 0,7179487 
Pentosephosphate_pathway Ashbya_gossypii 0,6964286 0,5892857 
Pyrimidine_biosynthesis Marssonina_brunnea 0,7307692 0,6758242 
terpenoid_backbone_biosynthesis Paracoccidioides_brasiliensis 0,1111111 0,2 

Sequential GC 
Species FunOrder 2 - ICQ org. FunOrder - ICQ 
Alectoria_fallacina 0,5833333 0,6527778 
Aplosporella_prunicola 0,5178571 0,3214286 
Ascodesmis_nigricans 0,7321429 0,5892857 
Ascoidea_rubescens 0,8 0,6 
Aulographum_hederae 0,75 0,6666667 
candida_albicans_L26 0,6666667 0,6190476 
cephellophora_europea 0,6666667 0,4888889 
Cryomyces_minteri 0,6166667 0,6666667 
Dactylellina_haptotyla 0,75 0,55 
Dactyrella_cylindrospora 0,5 0,8666667 
Drechslerella_brochopaga 0,7857143 0,7142857 
Eremomyces_bilateralis 0,4464286 0,7142857 
Heterodermia_speciosa 0,6111111 0,5 
Kalaharituber_pfeilii NA NA 
Lasiodiplodia_theobromae 0,5972222 0,6527778 
Neofusicoccum_parvum 0,6111111 0,6555556 
Neolecta_irregularis 0,5555556 0,6444444 
Orbilia_oligospora 0,9 0,8666667 
Phialophora_americana 0,5238095 0,4761905 
Piedraia_hortae 0,45 0,75 
Polychaeton_citri 0,6888889 0,6888889 
Pseudovirgaria_hyperparasitica 0,7666667 0,6666667 
Pyronema_omphalodes 0,6607143 0,6428571 
Rhinocladiella_mackenziei 0,8035714 0,6428571 
Rhizodiscina_lignyota 0,6111111 0,7777778 
Saccharata_proteae 0,5714286 0,6666667 
Saitoella_complicata 0,8333333 0,7380952 
Taphrina_deformans 0,9047619 0,7857143 
Tirmania_nivea 0,6785714 0,8571429 
Yamadazyma_tenuis 0,6666667 0,8 
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Negative control GC 
NC GC Total number of trees calculated FunOrder2 - ICQ org. FunOrder - ICQ 

1 5 0,95 0,8 
2 4 0,6666667 0,66 
3 7 0,8333333 0,64 
4 4 0,8333333 0,83 
5 4 0,5833333 0,66 
6 3 1 1 
7 4 0,6666667 0,66 
8 3 1 1 
9 7 0,7380952 0,66 

10 3 1 1 
11 7 0,8333333 0,81 
12 5 0,85 0,75 
13 5 0,95 0,6 
14 6 0,9 0,66 
15 3 1 0,66 
16 3 1 1 
17 4 0,8333333 0,83 
18 7 0,7619048 0,81 
19 6 0,8333333 0,73 
20 5 0,8 0,7 
21 3 1 1 
22 5 0,95 0,95 
23 4 0,75 0,92 
24 7 0,8095238 0,62 
25 8 0,7321429 0,68 
26 7 0,7857143 0,86 
27 5 0,7 0,65 
28 6 0,8 0,77 
29 7 0,7619048 0,74 
30 3 0,5 0,5 
31 8 0,6785714 0,61 
32 3 0,8333333 0,83 
33 5 0,8 0,8 
34 5 1 0,75 
35 5 0,8 0,75 
36 5 0,85 0,75 
37 4 1 0,83 
38 4 0,8333333 0,66 
39 5 0,85 0,9 
40 6 0,7666667 0,76 
41 5 0,9 0,55 
42 3 0,8333333 0,83 
43 4 0,6666667 0,58 
44 7 0,8095238 0,76 
45 7 0,7142857 0,76 
46 8 0,6607143 0,59 
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47 5 0,8 0,75 
48 5 0,8 0,85 
49 5 0,55 0,5 
50 4 0,8333333 0,83 
51 6 0,8333333 0,76 
52 6 0,8 0,83 
53 5 0,8 0,7 
54 5 0,9 0,8 
55 5 0,75 0,65 
56 7 0,8571429 0,81 
57 8 0,7142857 0,73 
58 4 0,75 0,75 
59 5 0,75 0,7 
60 2 1 1 
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S2 Table 
 
Cluster definition based on the strict distance matrix 
 cluster 
orf1 4 
orf2 1 
lova 2 
lovb 3 
lovg 3 
lovc 3 
lovd 2 
orf8 1 
love 4 
orf10 2 
lovf 2 
orf13 1 
orf14 4 
orf15 1 
orf16 1 
orf17 1 
orf18 1 

 
Cluster definition based on the combined distance matrix 
 cluster 
orf1 3 
orf2 1 
lova 3 
lovb 3 
lovg 3 
lovc 1 
lovd 3 
orf8 1 
love 2 
orf10 3 
lovf 3 
orf13 1 
orf14 2 
orf15 1 
orf16 1 
orf17 1 
orf18 1 
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S3 Table 
 
The first part of this table (91 rows 28 columns) is too large to be displayed. The S3 Table can be found 
online at the publishing journal. 
 
 
 
Statistical analysis 
 
Original FunOrder method 

 TP FN TN FP 
1) essential genes 153 88 189 44 

2) biosynthetic genes 129 66 189 44 
 
 
 essential genes biosynthetic genes 

Sensitivity 0,6349 0,6615 
Specificity 0,8112 0,8112 

Precision 0,7766 0,7457 
Negative Predictive Value 0,6823 0,7412 

False Positive Rate 0,1888 0,1888 
False Discovery Rate 0,2234 0,2543 

False Negative Rate 0,3651 0,3385 
Accuracy 0,7215 0,743 
F1 Score 0,6986 0,7011 

Matthews Correlation Coefficient 0,4524 0,4797 
Normalized Matthews Correlation Coefficient 0,7262 0,73985 

No-information error rate ni 0,5084 0,5444 
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BLAST + Automated Cluster Detection 

 TP FN TN FP 
1) essential genes 148 93 199 34 

2) biosynthetic genes 125 70 199 34 
 
 essential genes biosynthetic genes 

Sensitivity 0,6141 0,641 
Specificity 0,8541 0,8541 

Precision 0,8132 0,7862 
Negative Predictive Value 0,6815 0,7398 

False Positive Rate 0,1459 0,1459 
False Discovery Rate 0,1868 0,2138 

False Negative Rate 0,3859 0,359 
Accuracy 0,7321 0,757 
F1 Score 0,6998 0,7062 

Matthews Correlation Coefficient 0,4813 0,5103 
Normalized Matthews Correlation Coefficient 0,74065 0,75515 

No-information error rate ni 0,5084 0,5444 
 
 
 
DIAMOND + Automated Cluster Detection (FunOrder 2) 

 TP FN TN FP 
1) essential genes 151 90 199 34 

2) biosynthetic genes 128 67 199 34 
 
 essential genes biosynthetic genes 

Sensitivity 0,6266 0,6564 
Specificity 0,8541 0,8541 

Precision 0,8162 0,7901 
Negative Predictive Value 0,6886 0,7481 

False Positive Rate 0,1459 0,1459 
False Discovery Rate 0,1838 0,2099 

False Negative Rate 0,3734 0,3436 
Accuracy 0,7384 0,764 
F1 Score 0,7089 0,7171 

Matthews Correlation Coefficient 0,4926 0,5242 
Normalized Matthews Correlation Coefficient 0,7463 0,7621 

No-information error rate ni 0,5084 0,5444 
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Genome Sequence of the Black Yeast-Like Strain Aureobasidium
pullulans var. aubasidani CBS 100524

Gabriel A. Vignolle,a Robert L. Mach,a Astrid R. Mach-Aigner,a Christian Derntla

aInstitute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria

ABSTRACT In this work, we present the whole-genome sequence and the complete
mitochondrial sequence of the black yeast-like strain Aureobasidium pullulans var.
aubasidani CBS 100524, which produces the exopolysaccharide aubasidan and was
previously isolated from Betula sp. slime flux from the Leningrad Region of Russia.

A ureobasidium pullulans is a yeast-like ascomycete with industrial relevance due to
its extracellular polysaccharides (1). The main exopolysaccharide of A. pullulans

var. aubasidani strain CBS 100524 is aubasidan rather than pullulan (2, 3). This strain
was previously isolated from plant exudates of a Betula sp. from the Leningrad Region
of Russia (2). Despite the difference in the secreted extracellular polysaccharides, A. pul-
lulans var. aubasidani strain CBS 100524 is part of a main phylogenetic group (phyloge-
netic difference below 0.25 based on a multilocus alignment with a bootstrap value of
100) within the A. pullulans species complex. This group also includes the ex-neotype
strain A. pullulans var. pullulans CBS 584.75 and the sequenced strain A. pullulans var.
pullulans EXF-150 (3).

A. pullulans strain CBS 100524 was cultivated in malt extract medium (30 g/liter
malt extract, 1 g/liter peptone) at 24°C and 220 rpm for 24 h. The biomass was filtered
through Miracloth (EMD Millipore Corp., Burlington, MA, USA), lyophilized, and stored
at 220°C. Genomic DNA was extracted as described in reference 4, sheared through
sonication, purified using the GeneJET PCR purification kit (Thermo Fisher Scientific,
Inc., Waltham, MA, USA), and then size selected for 800-bp fragments using NEBNext
Ultra sample purification beads (New England Biolabs, Ipswich, MA, USA). The library
was prepared using the NEBNext Ultra II DNA library kit with purification beads and
NEBNext multiplex oligos for Illumina (index primer set 2) (both New England Biolabs)
and sequenced on a MiSeq instrument using a v3 reagent kit (600 cycles, 2 300-bp
paired-end reads) (both Illumina, Inc., San Diego, CA, USA).

The sequencing yielded 2,892,731 read pairs. First, a crude de novo assembly was
performed using SPAdes v3.13.1 (5) with default parameters. From this initial assembly,
mitochondrial sequences were identified by a BLAST analysis against the nonredun-
dant nucleotide database (6). Next, these sequences were used as seed input for
NOVOplasty v3.7 (7) for a de novo assembly of the mitochondrial genome sequence
(one circular contig; size, 37,556 bp; coverage, 358 ). Using the mitochondrial genome
sequence as index built with Bowtie v1.2.2 (8), the mitochondrial reads were extracted
from the raw reads. The mitochondrion-free reads were then re-paired using Fastq-pair
(9), quality checked and trimmed using Trimmomatic (10), leaving 2,543,186 read pairs,
and then mapped against the reference genome A. pullulans strain EXF-150 (GenBank
accession no. GCA_000721785.1) with BWA (11) and combined and sorted using
SAMtools v1.7 (12) and Picard (13). A first genome representation was extracted using
ANGSD v0.925 (Analysis of Next Generation Sequencing Data) (14). The genome as-
sembly was iteratively improved using SSPACE-Standard v3.0 (15), GapFiller v1-10 (16),
and Pilon v1.21 (17). tRNA genes were detected using tRNAscan-SE v1.3.1 (18). Genes
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were predicted with AUGUSTUS v3.3.2 (19), trained with the reference genome A. pullulans
strain EXF-150 according to reference 20. The assembly was masked using RepeatMasker
v4.0.9 (21), based on the Dfam_3.0 database to identify repetitive elements. We used
QUAST v5.0.2 (22, 23), including the fungal (fungi_odb9) Benchmarking Universal Single-
Copy Orthologs (BUSCO) v3.0.2 (24), for the final evaluation.

The assembly consists of 83 scaffolds (total sequence length, 30,265,078 bp; N50,
1,201,293 bp; GC content, 50.50%; mean coverage, 28 ), and 10,978 genes (99.31%
complete BUSCO genes found) and 353 tRNAs were predicted.

Data availability. The raw reads were uploaded to the Sequence Read Archive (SRA)
under the accession no. SRR12830835. The complete genome sequence was deposited at
DDBJ/ENA/GenBank under the accession no. JADGIM000000000. The version described in
this paper is version JADGIM000000000.1. The complete mitochondrial genome sequence
was deposited under GenBank accession no. MW148763.
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Genome sequencing of Wardomyces moseri: a rare but cosmopolitan fungus 
with an outstanding secondary metabolite production potential  
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ABSTRACT  
Background: Most secondary metabolites with industrial and biomedical importance are produced by 
only a small set of filamentous fungi of the Eurotiales (e.g. Aspergillus, Penicillium) and the 
Hypocreales, (e.g. Tolypocladium, Fusarium). Therefore, the analysis of filamentous fungi from other 
clades, promises the discovery of yet unknown substances with yet unknown properties. The ascomycete 
Wardomyces moseri was first isolated from a dead petiole of Mauritia minor in Colombia in 1980 and 
described by W. Gams in 1995. During a phylogenetic study in 2016, focusing on the taxonomy of the 
family Microascaceae, W. moseri was suggested to be phylogenetically misplaced and should therefore 
be re-evaluated. 
Results: We analyse the slumbering metabolic potential of this historic fungus and re-evaluate its 
taxonomy, by sequencing the genomes of the ex-isotype strain W. moseri CBS 164.80 and two isolates 
from the opposite side of the world, W. moseri TUCIM 5827 and TUCIM 5799. We show how historic 
strains from already existing collections can be leveraged for the search of novel natural products.  
Conclusion: We could demonstrate the vast and untapped secondary metabolite potential of the historic 
W. moseri strain CBS 164.80. Further, we identified numerous and diverse biosynthetic gene clusters
(BGC), including a melanin cluster potentially responsible for the dark spore pigmentation. Many of
these novel BGCs are not represented in the genomes of other compared fungi. Confirming the
suggested slumbering potential in historic fungal strain collections. Furthermore, we leveraged the
genome assemblies to re-evaluate a disputed taxonomic placement of the species and could indicate,
that Wardomyces moseri is part of the family Sporocadaceae within the order of Xylariales (Dikarya,
Ascomycota, Pezizomycotina, Sordariomycetes, Xylariomycetidae).

KEYWORDS  
Fungi, Wardomyces moseri, genome mining, ascomycota, Xylariales, reclassification, secondary 
metabolism, comparative genomics 

BACKGROUND 
The ascomycete Wardomyces moseri 

was first isolated from a dead petiole of 
Mauritia minor in Colombia in 1980.  Walter 
Gams described the fungus in 1995 and named 
it after his mentor Meinhard Moser (CBS 
164.80) (4). This fungus forms sporodochium-

like structures and aggregates conidia loosely in 
slimy masses. W. moseri was described already 
in 1995 as an unusual Wardomyces species, 
because of its easily liberated conidia. Later, 
Sandoval-Denis et al. showed that the large 
subunit (LSU) rRNA gene and the internally 
transcribed spacer (ITS) sequences of W. moseri 
clustered among the Xylariales but not with the 
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Wardomyces (5). W. moseri appears related to 
members of the Amphisphaeriaceae and 
Clypeosphaeriaceae. Based on these findings, 
W. moseri was suggested to be re-evaluated
concerning its taxonomic placement. To date,
there is only one more preprint mentioning this
fungus indicating again the apparent
misclassification (6).

The fungal order of Xylariales 
(Ascomycota) contains a large number of 
symbionts, saprotrophs, a variety of isolated 
endophytes, and plant pathogens (7-9). Many 
Xylariales are macromycetes, forming club or 
wart like fruiting bodies (stromata). Two 
prominent species of the Xylariales are Eutypa 
lata and Pestalotiopsis fici. E. lata is most 
commonly known as the vascular pathogen that 
causes Eutypa dieback in grapevines (10). 
Whereas P. fici is a commonly isolated 
endophyte from healthy plant tissue and, at the 
same time, a plant pathogen with a strong 
economic impact (1). The Xylariales are one of 
the largest clades of filamentous fungi and 
represent one of the most prolific lineages of 
secondary metabolite (SM) producers. Until 
now, several hundred SMs of unique carbon 
backbone structure were discovered from fungi 
of this order, including various drug lead 
compounds (7, 8).  

In general, SMs are compounds with an 
abundance of diverse chemical structures and 
properties. They are found in each domain of 
life but are predominantly studied in 
microorganisms and plants. SMs are not 
essential for the survival and growth of an 
organism but can be beneficial under specific 
environmental conditions, e.g., antibiotics in 
competitive situations, pigments to withstand 
radiation, and toxins as either defensive or 
virulence factors (11, 12). SMs can be classified 
into different classes according to their 
biosynthetic pathways. In fungi, the two main 
classes are non-ribosomal peptides (e.g. the 
antibiotic penicillin (13) or the 
immunosuppressant cyclosporine (14)) and 
polyketides (e.g. the mycotoxin aflatoxin (15) 
or the cholesterol-lowering drug lovastatin (16)). 
Further SM classes are alkaloids, terpenes, 
melanins (17, 18), and ribosomally synthesized 

and post-translationally modified peptides 
(RiPPs) (19). The genes encoding the enzymes 
responsible for the production of SMs are 
spatially organized in biosynthetic gene clusters 
(BGCs) in many cases. 

SMs from fungal sources have been 
used for medicinal purposes and to promote and 
maintain the human well-being already since 
ancient times (20-22). Fungal SM and 
chemically modified variants are widely used as 
antibiotics, immunomodulators and anti-cancer 
drugs (23). Interestingly, most SMs with 
industrial and biomedical importance are 
produced by only a small set of filamentous 
fungi of the Eurotiales (e.g. Aspergillus, 
Penicillium) and the Hypocreales, (e.g. 
Tolypocladium, Fusarium) (24-26). Therefore, 
the analysis of filamentous fungi from other 
clades, especially prolific SM producers such as 
the Xylariales promises the discovery of yet 
unknown substances with yet unknown 
properties (7-9, 27). 

In this study, we isolate two new W. 
moseri strains (TUCIM 5827 and TUCIM 5799) 
and compare them to the type strain W. moseri 
CBS 164.80 in a comparative genetics approach. 
The genomes of all three strains were sequenced 
using an Illumina MiSeq platform, and their 
genes predicted and annotated. Based on high 
accuracy phylogenetic tree inference, we 
suggest replacing W. moseri in the family 
Sporocadaceae (order Xylariales). 

RESULTS 
Isolation of two new W. moseri strains 

The epiphytic fungi TUCIM 
5827 and TUCIM 5799 were isolated from the 
adaxial surface of the healthy high canopy leaf 
of Shorea johorensis (Dipterocarpaceae, 
Malvales; DNA BarCode maturase K (matK) 
deposited in NCBI GenBank MF993320.1, 
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Laciny et al., 2008) (Borneo).  The macro- and 
microscopic morphology of W. moseri CBS 
164.80, TUCIM 5827 and TUCIM 5799 are 
shown in figure 1 (Fig. 1). For a detailed 
macroscopic and microscopic description of W. 
moseri CBS 164.80 we refer to the original 
publication by W. Gams (4). The ITS sequences 
of both isolates were highly similar to W. moseri 
CBS 164.80 (Additional file 1). Additionally, 

the average nucleotide identity (ANI) between 
the three W. moseri strains (Table 1) strongly 
suggested that these isolates belong to the same 
species. Furthermore, the high ANI suggests a 
stable genomic architecture and high 
relatedness especially considering the 
spatiotemporal distance of their isolation and 
origin.   

 

Table 1 Average nucleotide identity (ANI) between the W. moseri strains. 
Genomes compared ANI 
CBS 164.80 : TUCIM 5799 99.0276 
CBS 164.80 : TUCIM 5827 99.0091 
TUCIM 5799 : TUCIM 5827 99.1092 

 

                  
Fig. 1 Macro- and microscopic morphology of W. moseri CBS 164.80, TUCIM 5827 and 
TUCIM 5799. The three W. moseri strains were grown on malt extract agar plates at 28 °C in 
darkness and pictures were taken after 15 days of incubation. The first row displays the plates 
underside of W. moseri CBS 164.80 (A), TUCIM 5827 (B) and TUCIM 5799 (C). The second row 
shows pictures taken from above of W. moseri CBS 164.80 (D), TUCIM 5827 (E) and TUCIM 5799 
(F). The third row visualizes the spores of W. moseri CBS 164.80 (G), TUCIM 5827 (H) and TUCIM 
5799 (I) using scanning electron microscopy (SEM). 
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Phylogenetic placement 
    To determine the 

phylogenetic placement of W. moseri, we 
first performed a high accuracy orthogroup 
inference on the predicted proteomes of 
the three W. moseri strains, Trichoderma 
reesei, Coccidioides immitis, Aspergillus 
flavus, P. fici, Sporothrix schenckii, E. lata, 
Penicillium roqueforti, and Fusarium 
fujikuroi, applying 4213 single-locus 

gene trees, each based on a single copy 
orthologue (Fig. 2). This approach clearly 
places W. moseri among the Xylariales between 
P. fici and E. lata (Fig. 2), which had previously
been suggested by Sandoval-Denis et al. (2).
For a more precise phylogenetic placement, we
performed a high accuracy orthogroup
inference on the predicted proteomes of the
three W. moseri strains, E. lata, P. fici,
Neopestalotiopsis clavispora, Truncatella

Fig. 2 Inferred rooted phylogenetic tree based on single-locus gene trees. Phylogenetic inference 
applying 4213 single-locus gene trees, each based on a single copy orthologue, from the predicted 
proteomes of W. moseri CBS 164.80, W. moseri TUCIM 5827, W. moseri TUCIM 5799, T. reesei 
QM6a, C. immitis, A. flavus NRRL3357, P. fici, S. schenckii, E. lata URCEL1, P. roqueforti LCP96 
04111 and F. fujikuroi IMI 58589 (3). The species tree extrapolation was performed with STAG 
(Species Tree Inference from All Genes), which uses the fraction of species trees derived from 
single-locus gene trees supporting each bipartition as its degree of support for each node. The red 
colored box indicates the order of Hypocreales, the blue colored box the order of Xylariales, the 
yellow box the order of Ophiostomatales, the purple colored box the order of Onygenales and the 
green colored box the order of Eurotiales. 
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angustata, Xylariales sp. AK1849, 
Pseudomassariella vexata, Khuskia oryzae, 
Apiospora montagnei, Phialemoniopsis curvata, 
Monosporascus cannonballus, Daldinia 
childiae, Hypoxylon sp. EC38, Xylaria 
flabelliformis, Rosellinia necatrix and 
Microdochium bolleyi, applying 3041 single-
locus gene trees, each based on a single copy 
orthologue (Fig. 3). The phylogenetic tree 
places the W. moseri strains as sisters to a 
phylogenetic subtree containing the species P. 

fici, N. clavispora and T. angustata. Further, W. 
moseri can be found between the above-
mentioned subtree and Xylariales sp. AK1849, 
all of them have previously been taxonomically 
placed within the phylogenetic family 
Sporocadaceae (1, 28, 29) (Fig. 3). 

The obtained results indicate that this 
fungus lineage is part of the family 
Sporocadaceae within the order of Xylariales 
(Dikarya, Ascomycota, Pezizomycotina, 
Sordariomycetes, Xylariomycetidae) and that it 

Fig. 3 Inferred rooted phylogenetic tree based on single-locus gene trees.  Phylogenetic inference 
applying 3041 single-locus gene trees, each based on a single copy orthologue, from the predicted 
proteomes of W. moseri CBS 164.80, W. moseri TUCIM 5827, W. moseri TUCIM 5799, P. fici, E. 
lata, Neopestalotiopsis clavispora, Truncatella angustata, Xylariales sp. AK1849, 
Pseudomassariella vexata, Khuskia oryzae, Apiospora montagnei, Phialemoniopsis curvata, 
Monosporascus cannonballus, Daldinia childiae, Hypoxylon sp. EC38, Xylaria flabelliformis, 
Rosellinia necatrix and Microdochium bolleyi (3). The species tree extrapolation was performed 
with STAG (Species Tree Inference from All Genes), which uses the fraction of species trees derived 
from single-locus gene trees supporting each bipartition as its degree of support for each node. The 
blue colored box indicates members of the family of Sporocadaceae, the yellow box the family of 
Pseudomassariaceae, the brown box the family of Apiosporaceae, the red colored box indicates the 
family of Xylariales incertae sedis, the green colored box the family of Diatrypaceae, the purple 
colored box the family of Hypoxylaceae, the orange box the members of the family of Xylariaceae 
and the turquoise box the family Microdochiaceae. 
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is not closely related to a yet described and 
sequenced genus in this clade. A recent preprint 
by Samarakoon et al. places W. moseri based on 
a multi locus ML tree (using ITS, LSU, rpb2, 
tub2 and tef1 genes) within the family 
Amphisphaeriaceae and next to Beltraniaceae 
(6). Based on our phylogenetic analysis, we 
propose to place Wardomyces moseri within the 
family Sporocadaceae.  

Genome Sequencing 
The total DNA of the strain W. moseri 

CBS 164.80, the strain W. moseri TUCIM 5827 
and the strain W. moseri TUCIM 5799 was 
extracted, and two libraries were created with a 
DNA fragment length of 1293 ± 6 bp and 1136 
± 7 bp, the average DNA concentrations were 
34.93 ± 0.25 ng/μl and 10.63 ± 0.23 ng/μl, 
resulting in a 40.899 nM and a 14.178 nM 
library respectively. Three sequencing runs on 
an Illumina MiSeq platform (two V3 Reagent 
Kit (600 cycles) and one V2 nano Reagent Kit 

(500 cycles)) resulted in a total of 67,670,936 
pe-reads. The raw data were deposited at the 
Sequence Read Archive (SRA) under the 
accession SRR13570309, SRR13747339 and 
SRR13747338. Next, the mitochondrial reads 
were removed from the raw reads and then the 
mitochondrial and the nuclear genomes 
assembled individually. 

Fig. 4 Circular visualization of the whole circularized mitochondrial genome of W. moseri CBS 
164.80. The purple boxes indicate coding sequences (CDS), the magenta boxes indicate tRNA genes, 
the mint boxes indicate rRNA genes and the orange boxes indicate D-loop control regions. The next 
inner circle represents a histogram of the GC content.  

W.
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The mitochondrial genome 
The extracted circularized 

mitochondrial genomes have a length of 42,769 
bp, 42,769 bp, and 43,978 bp with GC contents 
of 27.52%, 27.53%, and 27.52% for the strain 
CBS 164.80, TUCIM 5827, and TUCIM 5799, 
respectively (Fig. 4). The respective average 
sequencing coverages were at 364x, 464x, and 
8,939x. The mitochondrial genomes were 
deposited at GenBank with the accession no. 
MW554918, MW660809, and MW660808. 
Fungal mitochondrial genomes normally 
contain 14 protein-coding genes, i.e., three 
cytochrome c oxidase subunits (cox1, cox2, 
cox3), apocytochrome b (cob), seven NADH 
dehydrogenase subunits (nad1, nad2, nad3, 

nad4, nad5, nad6, nad4L), 3 ATP synthase F0 
subunits (atp6, atp8, atp9) and 1 ribosomal 
protein S3 gene (rps3) (30, 31). This is also the 
case for the W. moseri strains, with one 
exception. The atp8 gene (encoding for the ATP 
synthase F0 subunit 8) is missing in the 
mitochondrial genomes of the W. moseri 
strains. This gene was presumably transferred to 
the nuclear genome, as a single gene encoding 
for a putative ATP synthase subunit can be 
found in each genome of the three strains 
(JN550g13373 in W. moseri CBS 164.80; 
JX266g13823 in W. moseri TUCIM 5827; 
JX265g13592 in W. moseri TUCIM 5799).  

Table 2 Genome assembly characteristics and found Benchmarking Universal Single-Copy 
Orthologues (BUSCO) genes of the assembled W. moseri strains CBS 164.80, TUCIM 5827 and 
TUCIM 5799. 

Genome CBS 164.80 TUCIM 5827 TUCIM 5799 
Assembly size (bp) 43,702,215 46,154,457 44,394,130 
G+C content (%) 52.77 52.65 52.66 
Scaffolds (>= 0 bp) 230 2730 693 
Scaffolds (>= 1000 bp) 193 609 221 
Largest scaffold (bp) 2,337,669 1,719,970 2,329,648 
N50 (bp) 506,940 462,712 764,765 
L50 (scaffolds) 26 30 17 
N’s per 100 kbp 2.33 2.17 1.81 
Complete BUSCO (%) 100.00 100.00 100.00 
Partial BUSCO (%) 0.00 0.00 0.00 

Table 3 Masked repetitive elements found with RepeatMasker v4.0.9 and tRNA genes found by tRNAscan-SE v1.3.1, 
for the W. moseri strains CBS 164.80, TUCIM 5827 and TUCIM 5799 respectively. *Most repeats that were 
fragmented by insertions or deletions have been counted as one element.  
Masked element Number of elements* Length occupied in bp Percentage of sequence 
Strain CBS 5827 5799 CBS 5827 5799 CBS 5827 5799 
SINEs 35 33 35 2,289 2,231 2,404 0.01% - 0.01% 
LINEs 223 220 222 16,838 16,757 17,399 0.04% 0.04% 0.04% 
LTR elements 4 3 3 300 200 204 - - - 
DNA elements 50 55 49 3,751 4,260 3,598 0.01% 0.01% 0.01% 
Unclassified 1 1 1 142 72 142 - - - 
Small RNA 86 74 78 12,181 11,815 12,157 0.05% 0.05% 0.03% 
Simple repeats 7,572 7,532 7,432 306,538 297,695 294,925 0.70% 0.64% 0.66% 
Low complexity 652 652 600 30,991 30,995 27,670 0.06% 0.07% 0.06% 
tRNA 196 190 189 17,154 16,884 16,788 0.04% 0.04% 0.04% 
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Nuclear genome assembly and annotation 
The size of the nuclear genomes was 

between 43.7 Mbp and 46.1 Mbp and the 
average genome coverages were between 32x 
and 141x. The detailed results of the genomes 
and assembly characteristics (size, G+C content, 
characteristics for scaffold number and size, 
N50 and L50) are summarized in Table 2 and 
given in Additional files 2, 3, 4. To evaluate the 
completeness of the genome assembly, we 
performed a Benchmarking Universal Single-
Copy Orthologues (BUSCO) analysis with the 
eukaryote dataset (32). 100% complete 
BUSCOs without duplicates were found in all 
three assemblies (Table 2, Additional files 2, 3, 
4). Next, we masked the repetitive elements in 
the nuclear genome to reduce the number of 
false positives during the subsequent gene 
prediction. A total of 372,467 bp of the W. 
moseri strain CBS 164.80 genome was masked, 
this represents 0.85% of the total genome. 
Further 380,909 bp of the W. moseri strain 
TUCIM 5827 genome was masked and 375,287 
bp of the W. moseri strain TUCIM 5799, this 
represents 0.83% and 0.84% of the total 
genomes respectively. (Table 3, Additional files 
5, 6, 7). The used tool (RepeatMasker) predicts 
interspersed repeats, like short interspaced 
nuclear repeats (SINEs), transposable element 
like repeats, long interspaced nuclear repeats 
(LINEs) and long terminal repeats (LTR), small 
RNAs, simple repeats and low complexity 
repeats and also tRNA genes. 

To verify and potentially complement 
the tRNA predictions, we also performed an 
tRNA prediction with tRNAscan-SE v1.3.1 (33) 
using the unmasked genome, because fungal 
specific SINEs are associated with tRNAs (34) 
and might therefore influence their detection. 
tRNAscan-SE predicted a total of 196, 190 and 
189 tRNA genes, for each strain respectively 
(Additional files 8, 9, 10).  

For the gene prediction, we used 
Augustus v3.3.2 (35), because no transcriptome 
data was available. Augustus was trained with 
the gene set of P. fici, because this was the 
closest related fungus with a published genome 
with high quality gene predictions (1, 10). The 
predicted gene sets were evaluated and 
annotated by blasting them against the UniProt 
database (Table 4).  Further, we used the 
PANNZER2 web interface for a functional 
annotation of the W. moseri proteomes 
(Additional files 11, 12, 13). Genes that could 
not be annotated via the BLAST approach were 
primarily annotated through this approach.  

CAZymes 
A hallmark of fungal biology is their 

saprotrophic lifestyle. Fungi are thriving on 
plant biomass and other carbohydrate-rich 
materials by degrading complex and simple 
carbohydrates using so-called carbohydrate 
active enzymes (CAZymes) (36, 37). We used 
dbCAN2 (a meta-server for CAZyme 
annotation) and a HMMer (38) (Hidden Marcov 
model) search, a DIAMOND (39) search and a 
Hotpep (40) search to predict the CAZymes in 
the three W. moseri genomes (Fig. 5, Table 5). 
In total, 1,005, 1,018, and 1,011 CAZymes were 
predicted by all three methods in the CBS 
164.80, the TUCIM 5827 and the TUCIM 5799 
strains, respectively (Fig. 5, Additional files 14, 
15, 16). 455, 460 and 455 of all predicted 
CAZymes genes were predicted by all three 
methods (Fig. 5). 

Table 4 Gene predictions 
Strain Predicted putative genes genes without BLAST hits below E-5 
CBS 164.80 13,929 4,797 (34.4%) 
TUCIM 5827 14,595 5,352 (36.7%) 
TUCIM 5799 14,160 4,964 (35.0%) 
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The dbCAN2 server also predicts 
certain subclasses of CAZyme. 
Glycosyltransferases catalyze glycosidic bond 
formation and inversion and are part of the 
posttranslational modification steps in different 
compound formation processes (41, 42). 
Glycoside hydrolases is a large family of 
enzymes which hydrolyses glycosidic bonds. 
Carbohydrate esterases catalyze de-N or de-O-
acylation of ester bonds in saccharides like in 

pectin. Polysaccharide lyases cleave 
polysaccharide chains via β-elimination. Redox 
enzymes with auxiliary activities are involved 
in the breakdown processes of polysaccharides 
and lignin. The respective numbers of the 
predicted CAZymes subclasses are listed in 
Table 5.  We could identify a relative high 
number of all groups, which is in accordance 
with the assumed plant-associated lifestyle of 
W. moseri and comparable to the number of

Table 5 The carbohydrate active enzymes (CAZymes) found with dbCAN2 a meta-server for CAZyme 
annotation. Glycosyltransferases (GT); Glycoside Hydrolases (GH); carbohydrate esterases (CE); 
polysaccharide lyases (PL); Redox enzymes with auxiliary activities (AA). 

Strain Total GT GH CE PL AA 
CBS 164.80 1005 148 476 93 27 222 
TUCIM 5827 1018 151 476 95 27 231 
TUCIM 5799 1011 152 479 94 27 222 
P. fici (1) - 121 460 138 39 - 

Fig. 5 Venn-plot among different search algorithms to finding CAZymes. Venn-plot showing 
the intersections of CAZymes predicted by different search algorithms Diamond (light blue), 
HMMER (pink) and Hotpep (orchid) for the three sequenced W. moseri strains. 

W. W.

W.
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CAZymes previously reported for P. fici (1). 
Strikingly, W. moseri possess more 
glycosyltransferases than P. fici, but less 
carbohydrate esterases and polysaccharide 
lyases (Table 5). As a high amount of 
carbohydrate esterases and polysaccharide 
lyases have been suggested to play a role in 
pathogenicity (43) we speculate that W. moseri 
might have an overall lower plant pathogenicity 
potential than P. fici. Further the large arsenal of 
different CAZymes suggests W. moseri to 
exploit a diverse range of complex and simple 
carbon sources for growth (36) indicating a 
potential oligotrophic lifestyle (44) (Additional 
files 14, 15, 16). 

Ligninolytic potential 
In nature, plant biomass consists mainly 

of the two polysaccharide groups cellulose and 
different hemicelluloses and the polyaromatic 
lignin. While most fungi using the previous 
mentioned CAZymes can effectively degrade 
cellulose and the hemicelluloses, the 
depolymerization of liginin is only achieved by 
certain fungi. Enzymes with the potential to 
contribute to ligninolytic activities are lignin 
peroxidases (EC:1.11.1.14), manganese 
peroxidases (EC:1.11.1.13), specific laccases 
(EC:1.10.3.2) and versatile peroxidases 

(EC:1.11.1.16). A recent review by Kumar and 
Chandra indicates other enzymes such as aryl-
alcohol oxidases (EC:1.1.3.7), lipases 
(EC:3.1.1.3),  quinone reductases (EC:1.6.5.5), 
xylanase (EC:3.2.1.8), catechol 2,3-
dioxygenases (EC:1.13.11.2) and feruloyl 
esterases (EC:3.1.1.73) to be indirect 
facilitators for the ligninolytic enzyme process 
(45). We used KofamKOALA (46) to search for 
these enzymes in the predicted proteomes of the 
W. moseri strains and could only find a small
number of putative lignin-degrading enzymes
(see Table 6, Additional files 17, 18, 19).
Notably, no lignin peroxidases, specific
laccases, or versatile peroxidases were found.
These results strongly indicate that W. moseri
cannot degrade lignin.

Proteases, Chitinases, Cutinases, Lipases 
Next, we searched for putative 

proteases and peptidase inhibitors by aligning 
the predicted W. moseri proteomes against the 
MEROPS database (47) using blastp. Only 
genes with at least 20 hits aligned with an E-
value less than E-5 were considered. We 
identified 604, 616, and 604 putative protease 
encoding genes in the strains CBS 164.80, 
TUCIM 5827 and TUCIM 5799, respectively, 

Table 6 The enzymes potentially providing ligninolytic activities found using KofamKOALA. 
Lignin peroxidases (EC:1.11.1.14), manganese peroxidases (EC:1.11.1.13), specific laccases 
(EC:1.10.3.2), versatile peroxidases (EC:1.11.1.16), aryl-alcohol oxidases (EC:1.1.3.7), lipases 
(EC:3.1.1.3), quinone reductases (EC:1.6.5.5), xylanase (EC:3.2.1.8), catechol 2,3-dioxygenases 
(EC:1.13.11.2) and feruloyl esterases (EC:3.1.1.73). A thicker line separates the indirect facilitators 
from the four main enzymes (above the line) involved in the degradation of lignin. 

Enzymes CBS 164.80 TUCIM 5827 TUCIM 5799 
Lignin peroxidases 0 0 0 
manganese peroxidases 3 3 3 
laccases 0 0 0 
versatile peroxidases 0 0 0 
aryl-alcohol oxidases 0 0 0 
lipases 3 4 4 
quinone reductases 6 6 6 
xylanases 7 7 7 
Catechol 2,3-dioxygenases 0 0 0 
feruloyl esterases 12 12 12 
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and 14 peptidase inhibitors in each of the three 
strains. Interestingly, 202 of the putative 
protease-coding genes from each strain are 
shared with P. fici with an E-value of 0.0 
(Additional files 20, 21, 22), which indicates a 
high conservation of the proteases between the 
two genera. Furthermore, we found 11, 13 and 
11 putative cutinases, 21, 23 and 21 potential 
chitinases and one secretory lipase 
(GO:0004806; EC:3.1.1.3; JN550g6955, 
JX266g10648, JX265g12244) each, based on 
the functional annotation by PANNZER2 (48) 
in the genomes of the W. moseri strains CBS 
164.80, TUCIM 5827 and TUCIM 5799, 
respectively (Additional files 11, 12, 13).  

Small Secreted Cysteine Rich proteins 
Hydrophobins are small, secreted 

cysteine rich amphiphilic proteins self-
assembling into insoluble polymerized 
amphipathic monolayers exclusively found in 
fungi. They were associated with pathogenicity, 
plat cell wall degradation, different 
developmental stages and proposed as potential 
supporters in plastic degradation (49). We 
detected two trihydrophobin genes and one 
hydrophobin gene in the CBS 164.80 strain; 
furthermore, we found seven genes predicted to 
be small secreted proteins and one gene 
predicted to be a extracellular effector protein. 
We detected two trihydrophobin genes and one 

hydrophobin gene in the TUCIM 5827 and 
TUCIM 5799 strains respectively; furthermore, 
we found six genes predicted to be small, 
secreted proteins and one extracellular effector 
protein in both strains (Table 7, Additional files 
11, 12, 13). 

Transcription factors 
Transcription factors are essential for 

the regulation of gene expression at transcript 
level and are therefore of central importance for 
any biological system. We found 83 potential 
transcription factors in the predicted proteomes 
of the W. moseri strains, each. These 83 
transcription factors belonged to 56 different 
types, according to a KEGG analysis 
(Additional file 23). As indicated in a recent 
review by Leiter et al. (50) the orthologues of 
Schizosaccharomyces pombe Atf1 play a key 
role in the regulation of SM production as well 
as growth and development. We found the gene 
JN550g1888 in W. moseri CBS 164.80 to 
encode for an Aft1-like transcription factor. The 
gene was detected by a sequence similarity 
search with the S. pombe Atf1 protein sequence 
and using our annotation (Additional file 11). 
Further, we searched for a conserved global 
regulator veA or velvet gene by a sequence 
similarity search with the Fusarium 
verticillioides VE1 gene (51). Using this 
approach, we discovered the gene JN550g9662 

Table 7 The genes annotated as potential small, secreted cysteine rich proteins based on the 
PANNZER2 annotation. 

CBS 164.80 TUCIM 5827 TUCIM 5799 
Trihydrophobin JN550g3819; 

JN550g10131 
JX266g12290; 
JX266g13180 

JX265g4713; 
JX265g7211 

Hydrophobin JN550g12382 JX26612570 JX265g5813 
Small, secreted 
protein 

JN550g718; 
JN550g3349; 
JN550g5182; 
JN550g6140; 
JN550g7610: 
JN550g8062; 
JN550g10321 

JX266g3384; 
JX266g6643; 
JX266g9165; 
JX266g9719; 
JX266g10504; 
JX266g12338 

JX265g464; 
JX265g2970; 
JX265g5561; 
JX265g7101; 
JX265g7788; 
JX265g13552 

Extracellular 
effector protein 

JN550g5903 JX266g11925 JX265g12041 
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in W. moseri CBS 164.80 to be a veA-like 
developmental and SM regulator. Identifying 
these two global regulators of on the one hand 
secondary metabolism and on the other growth 
and fungal development, will ease future studies 
in W. moseri.  

Pathogenicity potential 
Since no information about the 

ecological role of W. moseri except its 
association with the phyllopshere are available, 
we wanted to get an estimation about the 
pathogenicity potential of this fungus. To this 
end, we assessed the pathogenic potential of the 
W. moseri strains by comparing Host-pathogen
protein–protein interactions (HPIs) that play an
essential role in initiating infection to those of
A. flavus, C. immitis, S. schenkii, P. fici and T.
reesei. Possible HPIs of these fungi were
predicted using the web version of Host
Pathogen Interaction Database (HPIDB 3.0)
(52). We found 470 putative gene products to

have a pathogen host interaction in the predicted 
proteome of W. moseri CBS 164.80. Out of 
these 470 proteins, 460 proteins were predicted 
to have interactions with animals, 26 were 
associated with animals or plants, and 10 were 
predicted to have interactions with a plant host 
(Fig. 6, Additional files 24), the two TUCIM 
strains displayed a similarly low pathogenic 
potential (Fig. 6, Additional files 25, 26). These 
numbers are very low in comparison to the 
known human pathogenic species C. immitis 
and S. schenckii, the opportunistic pathogenic 
fungus A. flavus, the plant pathogenic fungus P. 
fici and the safely used T. reesei (generally 
regarded as safe - GRAS status) as a non-
pathogenic strain (1, 53-56) (Fig. 6). Based on 
these comparative analyses we suggest a low 
overall pathogenic potential, if any, for the W. 
moseri strain CBS 164.80 and the two TUCIM 
strains. 

Interestingly, two of the potential plant 
pathogenicity factors (JN550g516 and 

Fig. 6 Estimation of the pathogen host interaction potential. The stacked boxplot represents the 
numbers of putative gene products predicted to have associations with an animal and/or plant hosts 
for the proteomes of W. moseri CBS 164.80, W. moseri TUCIM 5827, W. moseri TUCIM 5799, T. 
reesei, P. fici, S. schenkii, C. immitis and A. flavus. 
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JN550g9048) were annotated by PANNZER2 
as an endo-1,4-beta-xylanase B and an endo-
1,4-beta-xylanase G, respectively. They were 
predicted as part of the GH11 family by 
HMMER and Hotpep and to have a secretory 
signal according to a SignalP v5.0 prediction 
(57). A sequence similarity analysis using 
BLAST suggests that these two gene products 
might be undescribed xylanases since their 
sequence identity is in both cases below 67% for 
the best hit (JN550g516 66.66% with a xylanase 
from Alternaria sp. MG1 and JN550g9048 
63.93% with a xylanase from Verticillium 
dahliae).  

Further, we found a single potential 
TccC-type III insecticidal toxin in each strain 
(JN550g7831, JX266g13216, JX265g8960). 

Organic acid production potential 
To determine the potential for organic 

acid production in W. moseri, we searched for 
homologs of enzymes recognized to be 
involved in the organic acid production of 
filamentous fungi, especially in the organic acid 
producing Aspergillus spp. (58, 59). We were 
able to detect 27 of 31 enzyme types involved 
in organic acid production and three of six 
transporter types (Additional file 27). These 
enzymes are in theory sufficient for the 
production of fumaric acid, gluconic acid, 
succinic acid and malic acid (58, 59). We could 

not detect a glucokinase (EC:2.7.1.2), an 
oxaloacetase (EC:3.7.1.1), a trehalose 
phosphatase (EC:3.1.3.12), a β-
fructofuranosidase (EC:3.2.1.26), a aconitate 
decarboxylase (EC:4.1.1.6), a citrate/malate 
antiporter, a citrate transporter, or a fructose 
transporter, which are necessary for the 
production and/or the secretion of trehalose, 
itaconic acid, oxalic acid, and citric acid.  

Secondary Metabolism 
To assess the SM production potential 

of W. moseri, we mined the genomes of the 
strains with antiSMASH 6 (60) and predicted a 
total of 63, 65, and 63 SM BGCs, in CBS 164.80, 
TUCIM 5827, and TUCIM 5799, respectively 
(Table 8). For comparison, we mined the 
genomes of fungi with a high SM production 
profile, i.e. A. flavus, Penicillium chrysogenum, 
Tolypocladium inflatum, Fusarium oxysporum, 
and P. fici and the industrial workhorse T. reesei, 
which has a relative small secondary 
metabolism (Table 8).  

Most of the predicted BGCs of W. 
moseri did not have high similarities to 
previously described SM BGCs, with a few 
exceptions (Additional file 28). Region 4.3 of W. 
moseri CBS 164.80 (scaffold 4, 
JAFEVA010000004.1 317530 – 364110 nt; 
corresponding to TUCIM 5728 region 12.1, 
scaffold 12 JAFIMQ010000012.1 221463-

Fig. 7 The potential melanin cluster of W. moseri CBS 164.80.
Yellow arrows indicate predicted core biosynthetic genes (by manual comparison to 
previously described DHN-melanin BGCs and biosynthetic pathways). TF, transcription 
factor; PKS, polyketide synthase.  
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268043 nt; and to TUCIM 5799 region 8.1, 
scaffold 8 JAFIMR010000008.1 317552-
364132 nt) appears to be a potential 
dihydroxynaphthalene (DHN)-melanin BGC 
(Fig. 7, Additional file 28). Based on the 
knowledge about DHN-melanin biosynthesis in 
other fungi (61), we speculate that the first step 
in W. moseri is the formation of the 1,3,6,8‐
tetrahydroxynaphthalene by the non-reducing 
PKS (JN550g1914), followed by the formation 
of scytalone by  the dehydratase JN550g1911 
and the reduction by a tetrahydroxynaphthalene 
reductase (JN550g1916) to produce vermelone 
(62). This may be followed by a dehydration by 
the multicopper oxidase (JN550g1913) to 
produce 1,8-DHN the direct precursor of DHN-
melanin, similar to the biosynthesis in 
Aspergillus fumigatus (63). 1,8-DHN needs to 
be polymerized by a laccase to yield DHN-
melanin (61). There is no laccase present in 
direct proximity of the DHN-melanin BGC, but 
we found a laccase abr2-like enzyme 
(JN550g4679) elsewhere in the genome of W. 
moseri. Such partial or even total de-clustering 
of the enzymes involved in the biosynthesis of 
DHN-melanin is commonly occurring in fungi 
(61). The transcription factor JN550g1917 is 
similar to the melanin-specific transcriptional 

activator Cmr1 found in several fungi (64-66). 
The putative DHN-melanin cluster of W. moseri 
is highly likely to produce DHN-melanin and 
this could be responsible for the dark spore 
pigmentation (61), as  melanins are usually 
polymerized and found in the fungal cell wall 
(67, 68). Notably, DHN-melanins may also be 
secreted (62). The observed brownish 
coloration of the agar plates (Fig 1) might be 
derivates or intermediates of the assumed DHN-
melanin  

Region 17.2 of W. moseri CBS 164.80 
(scaffold 17 JAFEVA010000017.1 234418 – 
293543 nt; TUCIM 5728: region 6.1, scaffold 6 
JAFIMQ010000006.1 595090-654213 nt; 
TUCIM 5799: region 5.1, scaffold 5 
JAFIMR010000005.1 1645008-1704131 nt) 
contains all biosynthetic genes for the 
production of a fusaric acid-like compound (Fig. 
8). Nine of the 18 genes in this BGC share high 
homologies to the genes of the fusaric acid 
cluster of F. verticillioides strain 7600 (MIBiG: 
BGC0001190) (69). The two CYP P450 
enzymes (JN550g5522 and JN550g5530) that 
do not share any homologies with the fusaric 
acid cluster of F. verticillioides, might be 

Table 8 BGCs found with antiSMASH 6 in the genomes of the W. moseri strains and comparison 
genomes. Sid: Siderophore cluster; Ter: Terpene cluster; Ind: Indole cluster; Beta: Betalactone 
cluster; RiPP: fungal RiPP cluster 

Genome Nrps Nrps-
like 

T1pks T3pks Sid Ter Beta Ind mix RiPP 

W. moseri CBS
164.80

9 8 21 1 1 11 1 3 7 1 

W. moseri TUCIM
5827

10 8 21 1 1 11 1 4 7 1 

W. moseri TUCIM
5799

9 8 19 1 1 11 1 3 9 1 

P. fici 11 13 25 1 0 9 1 4 7 2 
A. flavus 10 10 8 1 1 7 1 3 5 1 
P. chrysogenum 8 10 15 0 0 3 2 0 4 0 
T. inflatum 9 6 15 0 0 3 1 0 11 0 
F. oxysporum 8 11 7 1 0 8 1 2 7 0 
T. reesei 6 5 9 0 0 8 0 0 4 0 
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involved in the detoxification of fusaric acid as 
indicated by Studt et al. (70) (Fig. 8).  

The antiSMASH 6 analysis detected a 
single putative RiPP cluster in all three strains 
(W. moseri CBS 164.80: scaffold 76, 
JAFEVA010000076.1 94224 – 141768 nt; W. 
moseri TUCIM 5827: scaffold 37, 
JAFIMQ010000037.1 156492 – 204007 nt; W. 
moseri TUCIM 5799: scaffold 44, 
JAFIMR010000044.1 3419 – 50968 nt). The 
same cluster was identified as a potential fungal 
RiPP cluster by our manual method (71). The 
predicted RiPP BGC did not display significant 
similarities to known clusters from other fungi, 
but they were similar in gene composition and 
cluster structure among the three strains. The 
putative fungal RiPP cluster from W. moseri 
CBS 164.80 (scaffold 76, 
JAFEVA010000076.1 94224 – 141768 nt) is 

depicted in figure 9. The cluster contains 14 
predicted genes, the gene JN550g12006 was 
predicted by our manual RiPP-precursor search 
as the only potential RiPP-precursor within the 
cluster (Additional file 28). The RiPP BGC 
prediction of antiSMASH 6.0 is based on a 
similarity to the ustiloxin BGC (60, 72). These 
BGCs normally contain at least one DUF3328 
domain protein, (e.g. ustYa, ustYb in (73)), and 
the RiPP-precursor contain a repetitive core 
peptide structure. Interestingly, in the putative 
RiPP BGC of W. moseri, no DUF3328 protein 
was detected and the potential RiPP-precursor 
peptide does not share the repetitive core 
peptide structure. These findings indicate that W. 
moseri produces a potential novel fungal RiPP 
class. 

We were able to show that our 
previously described method supports the 

Fig. 8 Comparison of the fusaric acid-like BGC of W. moseri CBS 164.80 with the fusaric acid 
BGC of Fusarium verticillioides. The grey boxes and links indicate homologies between the two 
compared BGCs. Grey arrows represent genes that are considered as gap genes. Within the W. 
moseri BGC, yellow arrows indicate predicted core biosynthetic genes (by antiSMASH), green 
arrows indicated genes whose homologs are essential for fusaric acid production in at least one 
Fusarium species, and blue arrows indicate genes whose homologs are not essential but still 
conserved within different fusaric acid BGCs. Within the F. verticillioides BGC, orange arrows 
indicate genes essential for fusaric acid production, and blue boxes indicate conserved genes, which 
are not essential but may be important for full fusaric acid yield, according to (2). CYP 450, 
Cytochrome P450 monooxygenase; PKS, polyketide synthase; NRPS, non-ribosomal peptide 
synthetase. 
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detection of the potential RiPP-precursor 
peptide within novel predicted fungal RiPP 
clusters (71). Further, the high potential for 
novel SM discovery in W. moseri is reflected in 
the low amount of shared classical BGCs with 
the known SM producers. Furthermore, the 
similarities to P. fici, a high potential SM 
producer (74), makes this strain a likely 
candidate for novel SM discovery (1). This 
confirms the suggested slumbering SM 
potential of historic fungal strain collections (22, 
75). 

DISCUSSION 
Plant-associated fungi are considered to 

be among the most prolific SM producers (22). 
Consequently, many new fungi have been 
isolated from the phyllosphere with the aim to 
find novel SM. In the recent years, the search 
area was broadened towards more extreme 
environments such as marine or arctic habitats 
(75). These efforts and the further sampling 
from host associated fungi have led to the 
discovery of manifold diverse species, which 
were described and classified, but remained 
understudied in respect of their secondary 
metabolism due to the sheer number of new 
isolates (22). W. moseri seems to be an example 
in this regard. Sandoval-Denis et al. showed 
that the ex-isotype culture of W. moseri 
clustered among the Xylariales and appeared to 
be related to members of the 
Amphisphaeriaceae and Clypeosphaeriaceae 
(5). A recent preprint by Samarakoon et al. 

places W. moseri based on a multi locus ML tree 
(using ITS, LSU, rpb2, tub2 and tef1 genes) 
within the family Amphisphaeriaceae and next 
to Beltraniaceae (6). Considering the limited 
number of available genomes from these 
phylogenetic families and based on our in depth 
phylogenetic analysis (3041 single-copy 
orthologues), we suggest placing this fungus in 
the family Sporocadaceae within the Xylariales. 
This topic will remain open for discussion. 

The analysis of the primary carbon 
metabolism, characterized by the usage of 
specialized carbohydrate active enzymes 
(CAZymes) revealed W. moseri to exploit a 
diverse range of complex and simple carbon 
sources for growth (36) suggesting a 
oligotrophic lifestyle (44). The presence of a 
potential TccC-type III insecticidal toxin, 
paired with the high number of proteases and 
secreted chitinases suggests a potential 
insecticidal ability of W. moseri (76-78). 

CONCLUSION 
With this study, we present and discuss 

the high-quality genomes of three strains of 
Wardomyces moseri. This fungus had 
previously been isolated from Colombia and 
described as an unusual Wardomyces species (4). 
In this study, we could isolate two new strains 
from Brunei and demonstrate that the three 
strains are highly similar despite the temporal 
and geographical distances, indicating that W. 
moseri is a rare but cosmopolitan species. Based 

Fig. 9 A putative RiPP BGC in W. moseri CBS 164.80. Yellow arrows indicate predicted core 
biosynthetic genes (by antiSMASH). The putative RiPP precursor is indicated in orange. HET, 
Heterokaryon incompatibility protein; CYP 450, cytochrome P450; TF, transcription factor. 
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on a detailed phylogenetic analysis, we suggest 
placing this fungus in the family Sporocadaceae 
within the Xylariales. The comparative 
genomic analysis revealed a rather average 
fungal genome in respect to size and gene 
composition with two outstanding features. W. 
moseri appears to possess a very low 
pathogenicity potential, while simultaneously a 
large secondary metabolite potential. Out of the 
large number of putative SM BGCs only a small 
proportion were similar to already known and 
described BGCs; we found a DHN-melanin 
BGC and a fusaric acid-like BGC. These 
findings suggest a great potential for the 
discovery of novel SMs in W. moseri.  

METHODS 
Sampling and strain purification 

The epiphytic fungi TUCIM 5827 and 
TUCIM 5799 were isolated from the adaxial 
surface of the healthy leaf of Shorea johorensis 
(Dipterocarpaceae, Malvales; DNA BarCode 
maturase K (matK) deposited in NCBI 
GenBank MF993320.1, Laciny et al., 2008) 
sampled in the high canopy (40 – 60 m above 
ground) of the lowland tropical rain forest 
surrounding the Kuala Belalong Field Studies 
Center (KBFSC, 4°32'48.2"N 115°09'27.9"E) 
located in the Temburong District of Brunei 
Darussalam (Borneo). For this purpose, the 
adaxial surface of a freshly sampled leaf was 
scratched by the sterile electric toothbrush (2 
min) in 25 ml of sterile water supplemented 
with Tween-20 (0.01%) in large sterile Petri 
plate (20 cm in diameter). The resulting 
suspension was collected in 50 ml falcons and 
centrifuged at 4⁰C for 15 min at 14 000 rpm. The 
resulting pellet was resuspended in 4 ml of 
sterile water and used for serial dilution and 
plating on potato dextrose agar (PDA, Carl Roth) 
supplemented with 200 mg/l of 
chloramphenicol. Young single spore fungal 
colonies were detected with the use of a stereo 
microscope and aseptically transferred to fresh 
PDA plates and cultivated at 28°C in darkness. 
Agar plugs with pure mature cultures were 
preserved in 40% glycerol and stored at -80°C 
in TU Wien Collection of Industrial 
Microorganisms (TUCIM).  

The ITS1 5.8S ITS2 regions of the 
TUCIM isolates were amplified by PCR using 
the primer pair ITS1F (5’-> 3’; 
CTTGGTCATTTAGAGGAAGTAA) and ITS4 
(5’-> 3’; TCCTCCGCTTATTGATATGC) (79). 
The resulting ITS sequences from each strain 
were classified by performing a sequence 
similarity analysis using BLAST (non-
redundant nucleotide database) (80). 

To enable the growth on agar plates 
from spores as starting point, W. moseri CBS 
164.80, TUCIM 5827, and TUCIM 5799 were 
cultivated and maintained on agar plates 
containing 30g/l oatmeal (S-Budget, SPAR 
Österreichische Warendhandels-AG; shredded 
to an approximate granular size of 0.25 mm). 
Spores were harvested from these oatmeal agar 
plates. For morphological comparison of the 
three strains, 5 µl of spore solution with OD600 
3 were applied to the middle of agar plates 
containing 20g/l malt extract. The malt extract 
agar plates were incubated at 28 °C for 15 days, 
after which pictures were taken.  

The scanning electron microscopy 
(SEM) of the spores from W. moseri CBS 
164.80, TUCIM 5827, and TUCIM 5799, 
respectively, was performed using COXEM 
EM-30AX PLUS with a SPT-20 Sputter. For 
sample preparation, spores of the respective 
strain were softly scratched off an overgrown 
oatmeal-plate with a cotton swab. The spores 
were carefully distributed over a silver stripe, 
which was adhered to the stage of the device. 
Further proceedings were done according to the 
manufacturer’s instructions. The pictures taken 
with the SEM were processed using the 
software Nanostation 3.0.4.. 

DNA extraction and library preparation 
The type-strain W. moseri CBS 164.80 

was ordered from the CBS Westerdijk Fungal 
Biodiversity Institute. The type strain and both 
TUCIM strains were cultivated in 250 ml 
Erlenmeyer flasks with 75 ml liquid malt extract 
(MEX) at 28°C and shaken at 180 rpm for 10 
days in triplicates. The biomass was filtered 
through miracloth (EMD Millipore Corp., 
Burlington, MA, USA), pooled, placed in sterile 
50 ml Cellstar tubes (Greiner Bio-One, 
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Kremsmünster, Austria), frozen in liquid 
nitrogen, lyophilized and stored at -20°C. For 
the DNA extraction, first the lyophilized 
biomass was disrupted using a Fast-Prep-24 
(MP Biomedicals, Santa Ana/, CA, USA) with 
0.37 g of small glass beads (0.1 mm diameter), 
0.25 g of medium glass beads (1 mm diameter), 
and a single large glass bead (5 mm diameter) 
at 6 m/s for 30 sec. After the addition of 1 ml 
CTAB buffer (100 mM Tris.Cl, 20 mM EDTA, 
1.4 M NaCl, 2 % (w/v) CTAB, pH = 8.0) and 4 
µl β-mercaptoethanol, the samples were 
subjected to two further disruption treatments 
on the Fast-Prep-24 at 5 m/s for 30 sec and then 
incubated at 65°C for 20 min. The supernatant 
was extracted with phenol, chloroform, 
isoamylalcohol (25 : 24 : 1) followed by a 
chloroform extraction. The supernatant was 
treated with RNase A (Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) according to the 
manufacturer’s instructions. Finally, the DNA 
was precipitated with ethanol and dissolved in 
10 mM Tris.Cl (pH = 8.0) 

50𝜇𝜇 l of DNA, from each strain, were 
placed in 1.5ml TPX microtubes for Diagenode 
Bioruptor® Pico (Diagenode s.a., Liège, 
Belgium) and sonicated with the settings set to 
high and three cycles of 15 sec “on” and 60 sec 
“off”. The sheared DNA was purified using 
“PCR purification kit #k0701 #k0702” (Thermo 
Fisher Scientific, Inc., Waltham, MA, USA) and 
then double side size selected with “NEBNext 
UltraTM sample purification beads” (New 
England Biolabs, Ipswich, MA, USA) for 800 
bp fragments.  The library preparation was 
performed following the protocol of 
“NEBNext® UltraTM II DNA Library Kit with 
Purification Beads” and “NEBNext® Multiplex 
Oligos for Illumina (Index Primer Set1 and 
Set2)” (New England Biolabs, Ipswich, MA, 
USA). The average size in bp of the library was 
measured with the fragment analyzer from 
Advanced Analytical Technologies using the 
Agilent dsDNA 915 Reagent Kit (35-5000bp) 
and analyzed with the PRO size software 
(Agilent Technologies, Santa Clara, California, 
USA). The exact DNA concentrations were 
measured with an “invitrogenTM QubitTM 
fluorometer” in ng/𝜇𝜇l (Thermo Fisher Scientific, 

Inc., Waltham, MA, USA) using a “Quant-iTTM 
dsDNA BR Assay” kit (Thermo Fisher 
Scientific, Inc., Waltham, MA, USA). The 
libraries were diluted to the appropriate 4nM 
concentration for sequencing. The 4nM library 
was stored at -20°C.  

 
Sequencing 
 The sequencing of the W. moseri library 
was performed on a Illumina MiSeq using two 
V3 Reagent Kit (600 cycles) and one V2 Nano 
Reagent Kit (500cycles) following the standard 
protocol of Illumina sequencing protocol 
without adding PhiX control to the runs 
(Illumina, San Diego, California, USA). The 
quality profiles and all further figures, if not 
specified otherwise, were visualized in R (81). 
 
Extracting the mitochondrial genome and 
cleaning the raw reads 
 First a preliminary assembly was 
performed using SPAdes v3.13.1 (82) with 
default parameters for each strain separately. 
Mitochondrial sequences were identified in 
each strain by performing a sequence similarity 
analysis using BLAST (non-redundant 
nucleotide database) (80). Contigs ranging from 
500 to 1000 bp were then used as seed input for 
NOVOplasty v3.7 (83) to extract the whole 
circularized mitochondrial genome of W. moseri 
CBS 164.80, TUCIM 5827 and TUCIM 5799. 
This was performed in an iterative manner. The 
mitochondrial genomes were visualized with 
CGViewer (84). The mitochondrial genomes 
were annotated with the automated MITOS2 
web pipeline (85). 
 Using the mitochondrial genomes of the 
strains as input an index was built with bowtie 
v1.2.2 (86), respectively, and the mitochondrial 
flagged reads were extracted using --un option 
from each raw reads file. The clean raw reads 
were then re-paired with Fastq-pair (87) to use 
paired end read assemblers.  
 
Whole - genome assembly 
 For each strain respectively, the raw 
cleaned paired end reads were quality trimmed 
using Trimmomatic (88) in the command line 
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and specifying PE for paired end reads and 
ILLUMINACLIP:Adapter-
PE.fa:2:30:10:2:keepBothReads LEADING:3 
TRAILING:3 SLIDINGWINDOW:4:15 
MINLEN:36 to ensure high quality adapter-free 
reads. Then the cleaned raw reads were 
assembled using SPAdes v3.13.1 (82), for each 
strain separately. Furthermore, the high quality 
trimmed cleaned paired end reads were used for 
scaffolding with SSPACE-Standard v3.0 (89) in 
a iterative manner with following command line 
options -x 1 -m 50 -o 20 -k 8 -a 0.70 -n 30 -z 
150 –b and –k 6. Ns introduced during the 
assemblies and the scaffolding, so called gaps, 
were closed with GapFiller v1-10 (90) using 
following commands -m 30 -o 6 -r 0.7 -n 10 -d 
50 -t 10 -g 0 -i 5 -b.  

The assemblies were further improved 
by using Pilon v1.21 (91) iteratively. We first 
indexed the assemblies with bwa (92), 
SAMtools v1.7 (93) and picard (94). The high 
quality trimmed cleaned paired end reads were 
mapped to the matching indexed assemblies of 
the individual W. moseri strains with bwa. The 
reads were mapped and combined in one step. 
Next, we sorted and created bam files from the 
sam files using SAMtools. Together with the 
paired sequencing reads, these were used as 
input for Pilon to iteratively improve each 
genome. 

 
Gene prediction  

Transfer RNA genes were detected 
using tRNAscan-SE v1.3.1 (33). Augustus 
v3.3.2 (35) was trained with the genome of P. 
fici (assembly PFICI; BioSample accession: 
SAMN02369365) following the protocol by 
Hoff & Stanke (95). The genomes were masked 
using RepeatMasker v4.0.9 (96) to identify 
repetitive elements. 
 Augustus was run with the species 
option set to pestalotiopsis_fici on the masked 
genome assemblies. The genomes and the gene 
sets were evaluated using Quast v5.0.2 (97, 98). 
Quast v5.0.2 includes a benchmarking with 
Benchmarking Universal Single-Copy 
Orthologs (BUSCO) v3.0.2, this was performed 
with the eukaryote dataset of 303 BUSCOs 
from 100 species (32). We further evaluated the 

gene predictions by aligning the amino acid 
sequences using Blastp v2.9.0+ (80) against the 
UniProt database(99). 
 
DNA sequence-based phylogenetic placement 
 To get first indications of the potential 
phylogenetic placement of W. moseri, the 
complete genes of actin, calmodulin, the ITS1 
5.8S ITS2 region, the SSU, the LSU, the RPB2 
gene, tef1 gene and the beta tubulin gene were 
extracted from the assemblies of the three W. 
moseri strains using the blastdbcmd software (4, 
80, 100). To determine accurately the 
phylogenetic placement of W. moseri, we 
performed two high accuracy orthogroup 
inferences to provide phylogenetic inference 
using OrthoFinder (3) based on the predicted 
proteomes of type-strain W. moseri CBS 164.80, 
W. moseri TUCIM 5827, W. moseri TUCIM 
5799, T. reesei QM6a (assembly v2.0 
BioSample accession: SAMN02746107), C. 
immitis (assembly ASM14933v2, BioSample 
accession: SAMN02786853), A. flavus 
NRRL3357 (assembly JCVI-afl1-v2.0; 
BioSample accession: SAMN05591370), P. fici 
(assembly PFICI; BioSample accession: 
SAMN02369365), S. schenckii (assembly 
S_schenckii_v1; BioSample accession: 
SAMN07585147), E. lata URCEL1 (assembly 
URCEL1V03; BioSample accession: 
SAMN01906717), P. roqueforti LCP96 04111 
(assembly ASM1553377v1; BioSample 
accession: SAMN14669941) and F. fujikuroi 
IMI 58589 (assembly 
Fusarium_fujikuroi_IMI58289_V2; BioSample 
accession: SAMEA3724789) and 
Neopestalotiopsis clavispora (assembly 
ASM1462143v1; BioSample accession: 
SAMN14260619), Truncatella angustata 
(assembly Truan1; BioSample accession: 
SAMN08150287), Xylariales sp. AK1849 (JGI 
assembly Xylariales sp. AK1849 v1.0), 
Pseudomassariella vexata CBS 129021 
(assembly Pseve2; BioSample accession: 
SAMN05421895), Khuskia oryzae (JGI 
assembly Khuskia oryzae ATCC 28132 v1.0), 
Apiospora montagnei (JGI assembly Apiospora 
montagnei NRRL 25634 v1.0), 
Phialemoniopsis curvata (assembly 
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ASM435304v1; BioSample accession: 
SAMN11041535), Monosporascus 
cannonballus CBS 609.92 (assembly 
ASM415492v1; BioSample accession: 
SAMN09215312), Daldinia childiae (assembly 
Dalch_JS-1345; BioSample accession: 
SAMN12777271), Hypoxylon sp. EC38 
(assembly HypEC38 v3.0; BioSample 
accession: SAMN01163462), Xylaria 
flabelliformis G536 (assembly ASM718279v1; 
BioSample accession: SAMN11912834), 
Rosellinia necatrix W97 (assembly 
Rnecatrix_2.0; BioSample accession: 
SAMD00023353) and Microdochium bolleyi 
J235TASD1 (assembly Microdochium bolleyi 
v1.0; BioSample accession: SAMN0486150). 
We verified the inferred phylogenetic trees 
using OrthoFinder by comparing them to the 
phylogenetic tree provided by the JGI (28). We 
compared the three W. moseri strains and 
calculated their ANI with fastANI (101). 
 
Annotation  

The gene sets were first annotated using 
Blastp against the UniProt protein database. 
Protein ANNotation with Z-scoRE 
(PANNZER2) (48) was used to provide both 
GO and free text DE producing an accurate 
functional annotation. CAZymes were 
annotated using the dbCAN2 (102) meta server 
by applying a HMMer (38) (Hidden Marcov 
model) search, a DIAMOND (39) search and a 
Hotpep (40) search and combining the three 
outputs. The dbCAN2 (102) server also 
includes a SignalP v5.0 prediction. (57) We 
searched the web version of HPIDB 3.0 (52) 
with the whole predicted proteome of the 
genome assemblies. Furthermore we performed 
a sequence similarity search against the 
MEROPS (47) database with Blastp v2.9.0+ 
(80). We performed a KEGG annotation for the 
complete predicted proteomes of the W. moseri 
strains using KofamKOALA (46). 

 
Full genomes used for comparative analysis 
 The genomes of A. flavus NRRL3357 
(assembly JCVI-afl1-v2.0; BioSample 
accession: SAMN05591370), P. chrysogenum 

(assembly ASM71027v1; BioSample accession: 
SAMN02742620), T. inflatum (assembly 
ASM394556v1; BioSample accession: 
SAMN08824660), F. oxysporum (assembly 
ASM14995v2; BioSample accession: 
SAMN02953675), T. reesei QM6a (assembly 
v2.0 BioSample accession: SAMN02746107) 
and P. fici (assembly PFICI; BioSample 
accession: SAMN02369365) were downloaded 
from the NCBI database and mined for 
secondary metabolite BGCs to be compared to 
the W. moseri genomes. To enable a 
comparative analysis of the pathogenic 
potential of W. moseri the proteomes of A. 
flavus NRRL3357, P. fici, S. schenckii 
(assembly S_schenckii_v1; BioSample 
accession: SAMN07585147), T. reesei QM6a 
(assembly v2.0 BioSample accession: 
SAMN02746107) and C. immitis (assembly 
ASM14933v2, BioSample accession: 
SAMN02786853) were downloaded from the 
NCBI database and evaluated using the web 
version of HPIDB 3.0. Further the genomes of 
E. lata URCEL1 (assembly URCEL1V03; 
BioSample accession: SAMN01906717), P. 
roqueforti LCP96 04111(assembly 
ASM1553377v1; BioSample accession: 
SAMN14669941) and F. fujikuroi IMI 58589 
(assembly Fusarium_fujikuroi_IMI58289_V2; 
BioSample accession: SAMEA3724789) were 
downloaded to be included in the OrthoFinder 
analysis. 
 
Genome mining 
 The command line version of 
antiSMASH v4.3.0 (103) and antiSMASH 6.0.0 
web-version (60) (access 30.07.2021 and 
08.10.2021) was used for genome mining for 
secondary metabolite biosynthetic gene clusters 
(BGC) with following specifications for the 
command line version: the taxon was specified 
with the option --taxon to be of fungal origin, -
-clusterblast, --smcogs, --full-hmmer, --asf, --
subclusterblast and --knownclusterblast. 
Furthermore, the ClusterFinder algorithm was 
activated with the --inclusive option.  
 Further, we mined the genomes for 
putative ribosomally synthesized and post-
translationally modified peptide (RiPP) using 
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the amino acid sequences of the genes classified 
as “other genes” in the BGCs as described by 
Vignolle et al. (71). The putative RiPP precursor 
peptides were further manually inspected using 
the PANNZER2 (48) annotation for all analyzed 
genomes (Additional files 29, 30, 31). Further, 
we performed a BiG-SCAPE (104) analysis 
with all BGCs predicted in the three W. moseri 
strains and the BGCs predicted for P. fici.  

LIST OF ABBREVIATIONS 
AA - redox enzymes with auxiliary activities 
ANI – average nucleotide identity 
BGC – biosynthetic gene cluster 
CAZymes - Carbohydrate active enzymes 
CE - carbohydrate esterases 
CMA - cornmeal agar 
CTAB – cetyl trimethylammonium bromid 
DE - free text functional description 
GH - Glycoside Hydrolases 
GO - Gene ontology 
GT - Glycosyltransferases 
HPI - Host-pathogen protein–protein 
interaction 
HMMER - Hidden Marcov model 
LINE - long interspaced nuclear repeat 
LTR – long terminal repeat 
MEA - malt extract agar 
MEX – malt extract 
ML – maximum likelihood  
NNI - Nearest-Neighbor-Interchange 
NRPS – Non-ribosomal peptide synthetase 
OA - oatmeal agar 
PL - polysaccharide lyases 
RiPPs – Ribosomally synthesized and post-
translationally modified peptides 
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SINE - short interspaced nuclear repeat 
SM – secondary metabolite 
SSCRP - small secreted cysteine rich proteins 
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T3pks – Type III polyketide synthase 
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Additional File 1 

>ITS1_5.8S_ITS2_CBS
ATTATAGAGTTTATAAAACTCCCAAACCCATGTGAACTTACCATTGTTGCCTCGGCG
GAGCCTACCCTGTAGCTACCCTGTAAGGGCCTACCCTGTAGCGCACCCCGCCGGTGG
AATTTCAAACTCTTGTTATTTTTAAATGAATCTGAGCGTCTTATTTTAATAAGTCAAA
ACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGA
TAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCG
CCCATTAGTATTCTAGTGGGCATGCCTGTTCGAGCGTCATTTCAACCCTTAAGCCTAG
CTTAGTGTTGGGAATCTACTGTATTGTAGTTCCTGAAAAACAACGGCGGAACTATAG
TGTCCTCTGAGCGTAGTAATTTTTTATCTCGCTTTTGTCAGGTGCTGTAGCTCTTGCC
GCTAAACCCCCCAATTTTTAATGGTTGACCTCGGATCAGGTAGGAATACCCGCTGAA
CTTAAGCATATCAATAA
>ITS1_5.8S_ITS2_TUCIM_5799
ATTATAGAGTTTATAAAACTCCCAAACCCATGTGAACTTACCATTGTTGCCTCGGCG
GAGCCTACCCTGTAGCTACCCTGTAAGGGCCTACCCTGTAGCGCACCCCGCCGGTGG
AATTTCAAACTCTTGTTATTTTTAAATGAATCTGAGCGTCTTATTTTAATAAGTCAAA
ACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGA
TAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCG
CCCATTAGTATTCTAGTGGGCATGCCTGTTCGAGCGTCATTTCAACCCTTAAGCCTAG
CTTAGTGTTGGGAATCTACTGTATTGTAGTTCCTGAAAAACAACGGCGGAACTATAG
TGTCCTCTGAGCGTAGTAATTTTTTATCTCGCTTTTGTCAGGTGCTGTAGCTCTTGCC
GCTAAACCCCCAAATTTTTAATGGTTGACCTCGGATCAGGTAGGAATACCCGCTGAA
CTTAAGCATATCAATAAGCGGAGGAAA
>ITS1_5.8S_ITS2_TUCIM_5827
ATTATAGAGTTTATAAAACTCCCAAACCCATGTGAACTTACCATTGTTGCCTCGGCG
GAGCCTACCCTGTAGCTACCCTGTAAGGGCCTACCCNGTAGCGCACCCCGCCGGTGG
AATTTCAAACTCTTGTTATTTTTAAATGAATCTGAGCGTCTTATTTTAATAAGTCAAA
ACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGA
TAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCG
CCCATTAGTATTCTAGTGGGCATGCCTGTTCGAGCGTCATTTCAACCCTTAAGCCTAG
CTTAGTGTTGGGAATCTACTGTATTGTAGTTCCTGAAAAACAACGGCGGAACTATAG
TGTCCTCTGAGCGTAGTAATTTTTTATCTCGCTTTTGTCAGGTGCTGTAGCTCTTGCC
GCTAAACCCCCCAATTTTTAATGGTTGACCTCGGATCAGGTAGGAATACCCGCTGAA
CTTAAGCATATCAATAAGCGGAGGAAAA
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JAFEVA01

# contigs (>= 0 bp) 230

# contigs (>= 1000 bp) 193

# contigs (>= 5000 bp) 174

# contigs (>= 10000 bp) 163

# contigs (>= 25000 bp) 144

# contigs (>= 50000 bp) 125

Total length (>= 0 bp) 43702215

Total length (>= 1000 bp) 43679279

Total length (>= 5000 bp) 43620136

Total length (>= 10000 bp) 43544038

Total length (>= 25000 bp) 43211827

Total length (>= 50000 bp) 42524291

# contigs 217

Largest contig 2337669

Total length 43698072

GC (%) 52.77

N50 506940

N75 245284

L50 26

L75 55

# N's per 100 kbp 2.33

Complete BUSCO (%) 100.00

Partial BUSCO (%) 0.00

Report

All statistics are based on contigs of size >= 500 bp, unless otherwise noted 
(e.g., "# contigs (>= 0 bp)" and "Total length (>= 0 bp)" include all contigs).
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JAFIMQ01_validated

# contigs (>= 0 bp) 2730

# contigs (>= 1000 bp) 609

# contigs (>= 5000 bp) 312

# contigs (>= 10000 bp) 230

# contigs (>= 25000 bp) 150

# contigs (>= 50000 bp) 127

Total length (>= 0 bp) 46154457

Total length (>= 1000 bp) 45329533

Total length (>= 5000 bp) 44679931

Total length (>= 10000 bp) 44119280

Total length (>= 25000 bp) 42908652

Total length (>= 50000 bp) 42023056

# contigs 1030

Largest contig 1719970

Total length 45619856

GC (%) 52.65

N50 462712

N75 221357

L50 30

L75 65

# N's per 100 kbp 2.17

Complete BUSCO (%) 100.00

Partial BUSCO (%) 0.00

Report

All statistics are based on contigs of size >= 500 bp, unless otherwise noted 
(e.g., "# contigs (>= 0 bp)" and "Total length (>= 0 bp)" include all contigs).

0 20 40 60 80 100

x

0

400

800

1200

1600

C
o
n
ti

g
 l
e
n
g
th

 (
k
b
p
)

Nx

JAFIMQ01_validated

Additional File 3

164



0 200 400 600 800 1000

Contig index

0

10

20

30

40

50

C
u
m

u
la

ti
v
e
 l
e
n
g
th

 (
M

b
p
)

Cumulative length

JAFIMQ01_validated

0 20 40 60 80 100

GC (%)

0

5000

10000

15000

20000

25000

#
 w

in
d
o
w

s

GC content

JAFIMQ01_validated

165



0 20 40 60 80 100

GC (%)

0

100

200

300

400

500

#
 c

o
n
ti

g
s

JAFIMQ01_validated GC content

JAFIMQ01_validated

166



JAFIMR01_validated

# contigs (>= 0 bp) 693

# contigs (>= 1000 bp) 221

# contigs (>= 5000 bp) 123

# contigs (>= 10000 bp) 110

# contigs (>= 25000 bp) 103

# contigs (>= 50000 bp) 83

Total length (>= 0 bp) 44394130

Total length (>= 1000 bp) 44223375

Total length (>= 5000 bp) 44001800

Total length (>= 10000 bp) 43909600

Total length (>= 25000 bp) 43797689

Total length (>= 50000 bp) 43099379

# contigs 280

Largest contig 2329648

Total length 44265620

GC (%) 52.66

N50 764765

N75 459401

L50 17

L75 35

# N's per 100 kbp 1.81

Complete BUSCO (%) 100.00

Partial BUSCO (%) 0.00

Report

All statistics are based on contigs of size >= 500 bp, unless otherwise noted 
(e.g., "# contigs (>= 0 bp)" and "Total length (>= 0 bp)" include all contigs).
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Additional File 5 

================================================= 
file name: W. moseri CBS
sequences:           230 
total length:   43702215 bp  (43701207 bp excl N/X-runs) 
GC level:         52.77 % 
bases masked:     348341 bp ( 0.80 %) 
================================================== 

number of      length   percentage 
elements*    occupied  of sequence 

-------------------------------------------------- 
SINEs:               36         2416 bp    0.01 % 

  ALUs 0  0 bp    0.00 % 
      MIRs           10          640 bp    0.00 % 
LINEs: 221        16696 bp    0.04 % 
      LINE1          11          891 bp    0.00 % 
      LINE2          56         4199 bp    0.01 % 
      L3/CR1         61         4243 bp    0.01 % 
LTR elements:         5          336 bp    0.00 % 
      ERVL 0            0 bp    0.00 % 
      ERVL-MaLRs      0            0 bp    0.00 % 
      ERV_classI      4          258 bp    0.00 % 
      ERV_classII     0            0 bp    0.00 % 
DNA elements:        49         3664 bp    0.01 % 
     hAT-Charlie      1           54 bp    0.00 % 
     TcMar-Tigger     4          269 bp    0.00 % 
Unclassified:         1          142 bp    0.00 % 
Total interspersed repeats:    23254 bp    0.05 % 
Small RNA:           74        10136 bp    0.02 % 
Satellites:           0 0 bp    0.00 % 
Simple repeats:    7309       287466 bp    0.66 % 
Low complexity:     608        27917 bp    0.06 % 
================================================== 
* most repeats fragmented by insertions or deletions
have been counted as one element

RepeatMasker Combined Database: Dfam_3.0       
run with rmblastn version 2.9.0+ 
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Additional File 6 

================================================= 
file name: W. moseri TUCIM 5827
sequences:          2730 
total length:   46154645 bp  (46153577 bp excl N/X-runs) 
GC level:         52.63 % 
bases masked:     363606 bp ( 0.79 %) 
================================================== 

number of      length   percentage 
elements*    occupied  of sequence 

-------------------------------------------------- 
SINEs:               33         2231 bp    0.00 % 
      ALUs 0  0 bp    0.00 % 
      MIRs            9          651 bp    0.00 % 
LINEs: 220        16757 bp    0.04 % 
      LINE1          13         1058 bp    0.00 % 
      LINE2          54         4203 bp    0.01 % 
      L3/CR1         65         4473 bp    0.01 % 
LTR elements:         3          200 bp    0.00 % 
      ERVL 0            0 bp    0.00 % 
      ERVL-MaLRs      0            0 bp    0.00 % 
      ERV_classI      3          200 bp    0.00 % 

 ERV_classII     0            0 bp    0.00 % 
DNA elements:        55         4260 bp    0.01 % 
     hAT-Charlie      1           66 bp    0.00 % 
     TcMar-Tigger     5          410 bp    0.00 % 
Unclassified:         1           72 bp    0.00 % 
Total interspersed repeats:    23520 bp    0.05 % 
Small RNA:           74        11815 bp    0.03 % 
Satellites:           0 0 bp    0.00 % 
Simple repeats:    7532       297695 bp    0.64 % 
Low complexity:     652        30995 bp    0.07 % 
================================================== 
* most repeats fragmented by insertions or deletions
have been counted as one element

RepeatMasker Combined Database: Dfam_3.0       
run with rmblastn version 2.9.0+ 
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Additional File 7 

=================================================f
ile name: W. moseri TUCIM 5799          
sequences:           693 
total length:   44394166 bp  (44393399 bp excl N/X-runs) 
GC level:         52.65 % 
bases masked:     357820 bp ( 0.81 %) 
================================================== 

number of      length   percentage 
elements*    occupied  of sequence 

-------------------------------------------------- 
SINEs:               35         2404 bp    0.01 % 
      ALUs 0  0 bp    0.00 % 
      MIRs 8          525 bp    0.00 % 
LINEs: 222        17399 bp    0.04 % 
      LINE1          12          837 bp    0.00 % 
      LINE2          57         4623 bp    0.01 % 
      L3/CR1         69         5111 bp    0.01 % 
LTR elements:         3          204 bp    0.00 % 
      ERVL 0            0 bp    0.00 % 
      ERVL-MaLRs      0            0 bp    0.00 % 
      ERV_classI      3          204 bp    0.00 % 

 ERV_classII     0            0 bp    0.00 % 
DNA elements:        49         3598 bp    0.01 % 
     hAT-Charlie      1           66 bp    0.00 % 
     TcMar-Tigger     5          324 bp    0.00 % 
Unclassified:         1          142 bp    0.00 % 
Total interspersed repeats:    23747 bp    0.05 % 
Small RNA:           78        12157 bp    0.03 % 
Satellites:           0 0 bp    0.00 % 
Simple repeats:    7432       294925 bp    0.66 % 
Low complexity:     600        27670 bp    0.06 % 
================================================== 
* most repeats fragmented by insertions or deletions
have been counted as one element

RepeatMasker Combined Database: Dfam_3.0 
run with rmblastn version 2.9.0+ 
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Additional File 8 
 
Sequence             tRNA    Bounds  tRNA Anti Intron Bounds Cove 
Name                tRNA # Begin   End     Type Codon Begin End Score 
--------            ------ ----    ------  ---- ----- ----- ---- ------ 
JAFEVA010000001.1  1 447552  447623  Thr AGT 0 0 70.11 
JAFEVA010000001.1  2 630694  630784  Phe GAA 630731 630748 63.84 
JAFEVA010000001.1  3 1363498 1363568 Gly GCC 0 0 58.71 
JAFEVA010000001.1  4 1606701 1606787 Arg TCG 1606737 1606751 57.71 
JAFEVA010000001.1  5 2231639 2231541 Leu TAA 2231602 2231585 62.36 
JAFEVA010000001.1  6 1811481 1811410 Asp GTC 0 0 72.49 
JAFEVA010000001.1  7 1550966 1550893 Val AAC 0 0 75.41 
JAFEVA010000001.1  8 766004  765899  Ile AAT 765966 765935 61.75 
JAFEVA010000002.1  1 218283  218372  Arg ACG 218319 218336 53.20 
JAFEVA010000002.1  2 421939  422048  Asn GTT 421977 422012 54.65 
JAFEVA010000002.1  3 1207820 1207924 Leu AAG 1207859 1207878 61.86 
JAFEVA010000002.1  4 1929213 1929294 Ala AGC 1929249 1929258 66.20 
JAFEVA010000002.1  5 1655982 1655887 Arg CCT 1655946 1655923 60.41 
JAFEVA010000002.1  6 947292  947204  Gln CTG 947254 947239 59.00 
JAFEVA010000002.1  7 785583  785512  Glu CTC 0 0 66.10 
JAFEVA010000002.1  8 720018  719945  Val AAC 0 0 75.41 
JAFEVA010000002.1  9 233601  233531  Gly GCC 0 0 58.71 
JAFEVA010000003.1  1 46019   46092   Val AAC 0 0 78.00 
JAFEVA010000003.1  2 386314  386384  Gly GCC 0 0 58.71 
JAFEVA010000003.1  3 563470  563542  Arg CCG 0 0 64.28 
JAFEVA010000003.1  4 1123235 1123164 Thr AGT 0 0 68.37 
JAFEVA010000003.1  5 798217  798128  Pro AGG 798181 798164 67.69 
JAFEVA010000003.1  6 292665  292594  Gly TCC 0 0 66.41 
JAFEVA010000003.1  7 219083  219013  Gly GCC 0 0 58.71 
JAFEVA010000004.1  1 200317  200407  Arg TCG 200353 200371 54.51 
JAFEVA010000004.1  2 926291  926377  Met CAT 926327 926341 54.80 
JAFEVA010000004.1  3 1108082 1107983 Ser GCT 1108045 1108027 55.02 
JAFEVA010000005.1  1 566982  567138  Arg ACG 567018 567103 33.64 
JAFEVA010000005.1  2 722011  721919  Phe GAA 721974 721955 64.87 
JAFEVA010000005.1  3 703334  703236  Leu CAG 703296 703280 56.71 
JAFEVA010000006.1  1 994957  995063  Ser CGA 994995 995019 60.35 
JAFEVA010000006.1  2 1086488 1086592 Met CAT 1086526 1086556 76.54 
JAFEVA010000006.1  3 1086901 1086816 Ala TGC 1086865 1086852 53.44 
JAFEVA010000006.1  4 417761  417690  Thr AGT 0 0 68.37 
JAFEVA010000006.1  5 36183   36085   Arg TCT 36147 36121 65.58 
JAFEVA010000007.1  1 369312  369399  Gln CTG 369350 369364 60.27 
JAFEVA010000007.1  2 655182  655092  Phe GAA 655145 655128 64.47 
JAFEVA010000007.1  3 502833  502741  Asp GTC 502796 502776 64.71 
JAFEVA010000008.1  1 857894  857806  Gln TTG 857857 857841 59.11 
JAFEVA010000008.1  2 440374  440270  Leu AAG 440335 440316 61.86 
JAFEVA010000009.1  1 186888  186976  Arg CCG 186924 186940 48.51 
JAFEVA010000009.1  2 230211  230282  Glu TTC 0 0 63.63 
JAFEVA010000009.1  3 470562  470641  Pseudo ??? 0 0 22.51 
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JAFEVA010000009.1  4 738885  738957  Lys CTT 0 0 75.42 
JAFEVA010000009.1  5 801228  801311  Ala AGC 801264 801275 65.70 
JAFEVA010000009.1  6 865263  865178  Glu TTC 865225 865213 57.30 
JAFEVA010000009.1  7 635420  635321  Ile AAT 635382 635357 61.84 
JAFEVA010000009.1  8 397711  397639  Lys CTT 0 0 75.42 
JAFEVA010000009.1  9 326067  325954  Leu CAA 326029 325998 56.84 
JAFEVA010000009.1  10 128364  128266  Leu CAG 128326 128310 54.67 
JAFEVA010000010.1  1 646114  646035  His GTG 646077 646070 51.84 
JAFEVA010000010.1  2 99629   99543   Val TAC 99592 99579 63.97 
JAFEVA010000011.1  1 178640  178730  Asp GTC 178677 178695 66.08 
JAFEVA010000011.1  2 187248  187095  Leu CAG 187211 187136 24.85 
JAFEVA010000012.1  1 279052  279124  Lys CTT 0 0 75.42 
JAFEVA010000012.1  2 299262  299349  Arg TCG 299298 299313 61.22 
JAFEVA010000012.1  3 348269  348350  Glu CTC 348306 348315 60.65 
JAFEVA010000012.1  4 348716  348610  Met CAT 348678 348646 76.17 
JAFEVA010000013.1  1 501561  501662  Ala AGC 501597 501626 63.92 
JAFEVA010000013.1  2 616973  616883  Phe GAA 616936 616919 64.47 
JAFEVA010000013.1  3 302042  301964  His GTG 302005 301999 45.90 
JAFEVA010000014.1  1 196906  196999  Arg CCT 196943 196963 58.83 
JAFEVA010000014.1  2 234792  234873  Glu TTC 234829 234838 56.92 
JAFEVA010000015.1  1 95846   95919   Val AAC 0 0 78.00 
JAFEVA010000015.1  2 168499  168417  Gln TTG 168462 168452 57.55 
JAFEVA010000015.1  3 70398   70299   Ile AAT 70360 70335 64.38 
JAFEVA010000015.1  4 70003   69922   Ala AGC 69967 69958 66.20 
JAFEVA010000016.1  1 68287   68369   Glu CTC 68324 68334 60.28 
JAFEVA010000016.1  2 428802  428730  Lys CTT 0 0 75.42 
JAFEVA010000016.1  3 226155  226084  Gly TCC 0 0 66.41 
JAFEVA010000017.1  1 95600   95680   Asp GTC 95637 95645 65.66 
JAFEVA010000017.1  2 182295  182412  Ala TGC 182333 182376 59.43 
JAFEVA010000017.1  3 481039  480944  Pro CGG 481003 480980 51.00 
JAFEVA010000017.1  4 476617  476547  Gly GCC 0 0 58.71 
JAFEVA010000017.1  5 476195  476088  Ser AGA 476157 476132 57.38 
JAFEVA010000018.1  1 359015  359123  Ser AGA 359053 359079 67.02 
JAFEVA010000018.1  2 200499  200398  Ser GCT 200462 200442 62.68 
JAFEVA010000019.1  1 366350  366267  Ala AGC 366314 366303 67.37 
JAFEVA010000021.1  1 291634  291563  Thr AGT 0 0 70.11 
JAFEVA010000022.1  1 518727  518812  Thr CGT 518763 518776 70.51 
JAFEVA010000022.1  2 391570  391473  Ile AAT 391532 391509 63.36 
JAFEVA010000023.1  1 348009  348092  Ala AGC 348045 348056 66.46 
JAFEVA010000024.1  1 81189   81270   Gly CCC 81225 81235 55.52 
JAFEVA010000024.1  2 432370  432443  Val AAC 0 0 76.92 
JAFEVA010000024.1  3 432835  432916  Glu CTC 432872 432881 60.29 
JAFEVA010000024.1  4 465897  465998  Ser CGA 465934 465954 60.11 
JAFEVA010000025.1  1 63974   64127   Arg GCG 64010 64092 40.02 
JAFEVA010000026.1  1 177871  177943  Lys CTT 0 0 75.42 
JAFEVA010000026.1  2 387583  387666  Glu CTC 387620 387631 59.91 
JAFEVA010000026.1  3 161473  161371  Pro TGG 161437 161407 60.19 
JAFEVA010000027.1  1 146810  146706  Leu AAG 146771 146752 61.86 
JAFEVA010000028.1  1 92829   92684   Undet ??? 0 0 34.69 
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JAFEVA010000028.1  2 59263   59172   Ser AGA 59225 59216 69.74 
JAFEVA010000028.1  3 59164   59065   Ile AAT 59126 59101 64.53 
JAFEVA010000029.1  1 61896   61987   Ser AGA 61934 61943 69.13 
JAFEVA010000029.1  2 66721   66631   Asp GTC 66684 66666 66.22 
JAFEVA010000030.1  1 210343  210442  Ile AAT 210381 210406 64.39 
JAFEVA010000030.1  2 303501  303622  Ser CGA 303534 303587 20.93 
JAFEVA010000030.1  3 400893  401025  Undet ??? 0 0 22.80 
JAFEVA010000030.1  4 401206  401286  Asp GTC 401243 401251 63.74 
JAFEVA010000030.1  5 271469  271388  Glu CTC 271432 271423 59.87 
JAFEVA010000032.1  1 58723   58793   Gly GCC 0 0 58.71 
JAFEVA010000032.1  2 219070  219155  Trp CCA 219108 219119 49.28 
JAFEVA010000032.1  3 98174   98103   Met CAT 0 0 70.01 
JAFEVA010000033.1  1 143361  143277  Tyr GTA 143324 143313 63.18 
JAFEVA010000034.1  1 208435  208229  Pro CGG 208399 208262 32.57 
JAFEVA010000035.1  1 284117  284029  Trp CCA 284080 284065 61.35 
JAFEVA010000036.1  1 239442  239516  Asn GTT 0 0 70.83 
JAFEVA010000037.1  1 413607  413509  Arg TCT 413571 413545 63.55 
JAFEVA010000037.1  2 151109  151016  Ile TAT 151072 151052 59.25 
JAFEVA010000038.1  1 172705  172777  Lys CTT 0 0 75.42 
JAFEVA010000038.1  2 230143  230247  Met CAT 230181 230211 73.74 
JAFEVA010000038.1  3 203378  203278  Ser GCT 203341 203322 56.99 
JAFEVA010000038.1  4 79498   79409   Met CAT 79462 79445 56.34 
JAFEVA010000040.1  1 68991   69108   Ala TGC 69029 69072 56.81 
JAFEVA010000040.1  2 254427  254354  Val AAC 0 0 75.41 
JAFEVA010000043.1  1 305568  305646  Glu CTC 305605 305611 60.26 
JAFEVA010000046.1  1 77394   77468   Asn GTT 0 0 70.83 
JAFEVA010000046.1  2 228291  228369  His GTG 228328 228334 48.49 
JAFEVA010000046.1  3 246660  246588  Val CAC 0 0 76.81 
JAFEVA010000049.1  1 183447  183583  Ser CGA 183485 183548 30.51 
JAFEVA010000053.1  1 109009  109092  Trp CCA 109045 109056 50.62 
JAFEVA010000055.1  1 55575   55686   Leu CAA 55613 55642 58.72 
JAFEVA010000055.1  2 43639   43567   Lys CTT 0 0 75.42 
JAFEVA010000056.1  1 125513  125628  Lys TTT 125551 125592 61.14 
JAFEVA010000056.1  2 118073  117969  Leu AAG 118034 118015 61.86 
JAFEVA010000060.1  1 135115  135043  Val CAC 0 0 78.92 
JAFEVA010000062.1  1 138363  138449  Cys GCA 138399 138413 59.58 
JAFEVA010000063.1  1 177449  177364  Ala CGC 177413 177400 60.95 
JAFEVA010000063.1  2 40394   40324   Pro TGG 0 0 61.43 
JAFEVA010000064.1  1 110286  110399  Pseudo GTG 110327 110363 22.79 
JAFEVA010000064.1  2 191269  191371  Tyr GTA 191306 191335 60.09 
JAFEVA010000064.1  3 149197  149109  Arg ACG 149161 149145 51.78 
JAFEVA010000065.1  1 88474   88544   Asn GTT 0 0 58.07 
JAFEVA010000065.1  2 88565   88636   Lys TTT 0 0 41.28 
JAFEVA010000065.1  3 175966  176073  Leu TAG 176003 176031 49.38 
JAFEVA010000066.1  1 15101   15174   Val AAC 0 0 75.41 
JAFEVA010000066.1  2 15587   15500   Gln CTG 15549 15535 55.17 
JAFEVA010000068.1  1 176381  176297  Ala TGC 176345 176333 53.94 
JAFEVA010000069.1  1 57512   57657   Undet ??? 0 0 37.00 
JAFEVA010000069.1  2 104589  104486  Lys CTT 104552 104522 65.49 
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JAFEVA010000070.1  1 165514  165584  Gly GCC 0 0 58.71 
JAFEVA010000070.1  2 174857  174927  Gly GCC 0 0 58.71 
JAFEVA010000071.1  1 46591   46514   Leu CAA 0 0 25.79 
JAFEVA010000072.1  1 142942  142858  Ala CGC 142906 142894 61.12 
JAFEVA010000072.1  2 114562  114470  Ser CGA 114525 114514 62.73 
JAFEVA010000073.1  1 157017  156932  Met CAT 156980 156968 54.36 
JAFEVA010000073.1  2 11486   11333   Ser TGA 11449 11378 23.91 
JAFEVA010000078.1  1 162037  161955  Glu CTC 162000 161990 59.64 
JAFEVA010000079.1  1 132021  132119  Ile AAT 132059 132083 63.48 
JAFEVA010000079.1  2 52314   52244   Pro TGG 0 0 61.01 
JAFEVA010000080.1  1 128140  128218  His GTG 128177 128183 48.49 
JAFEVA010000082.1  1 137339  137422  Glu CTC 137376 137387 61.19 
JAFEVA010000083.1  1 47493   47563   Gly GCC 0 0 58.71 
JAFEVA010000084.1  1 31087   31000   Gln CTG 31049 31035 61.05 
JAFEVA010000087.1  1 19310   19397   Tyr GTA 19349 19361 65.81 
JAFEVA010000091.1  1 11730   11638   Gly CCC 11692 11674 62.21 
JAFEVA010000094.1  1 58551   58467   Tyr GTA 58514 58503 62.41 
JAFEVA010000094.1  2 42450   42379   Gly TCC 0 0 66.80 
JAFEVA010000095.1  1 342     413     Sup TTA 0 0 32.21 
JAFEVA010000096.1  1 81894   81976   Thr TGT 81930 81940 66.18 
JAFEVA010000100.1  1 61035   61126   Cys GCA 61071 61090 63.44 
JAFEVA010000102.1  1 4467    4396    Thr AGT 0 0 68.37 
JAFEVA010000107.1  1 6329    6413    Pro TGG 6366 6377 48.17 
JAFEVA010000127.1  1 23177   23283   Met CAT 23215 23247 75.74 
JAFEVA010000129.1  1 37068   36998   Asn GTT 0 0 58.07 
JAFEVA010000129.1  2 36977   36906   Lys TTT 0 0 41.28 
JAFEVA010000129.1  3 36674   36604   Gly TCC 0 0 39.50 
JAFEVA010000129.1  4 35408   35336   Pseudo GTC 0 0 37.80 
JAFEVA010000129.1  5 35202   35132   SeC TCA 0 0 49.80 
JAFEVA010000129.1  6 34913   34841   Pseudo TGG 0 0 33.17 
JAFEVA010000129.1  7 34820   34734   Pseudo TGA 0 0 33.86 
JAFEVA010000129.1  8 33722   33650   Val TAC 0 0 53.91 
JAFEVA010000129.1  9 31504   31433   Pseudo GAT 0 0 29.76 
JAFEVA010000129.1  10 26119   26049   Thr TGT 0 0 34.60 
JAFEVA010000129.1  11 25999   25928   Glu TTC 0 0 54.15 
JAFEVA010000129.1  12 25920   25849   Met CAT 0 0 37.19 
JAFEVA010000129.1  13 25779   25707   Pseudo CAT 0 0 37.21 
JAFEVA010000129.1  14 25678   25596   Pseudo TAA 0 0 28.30 
JAFEVA010000129.1  15 25521   25450   Ala TGC 0 0 54.84 
JAFEVA010000129.1  16 25426   25354   Phe GAA 0 0 50.51 
JAFEVA010000129.1  17 25268   25196   Pseudo TTG 0 0 34.85 
JAFEVA010000129.1  18 25052   24980   His GTG 0 0 40.19 
JAFEVA010000129.1  19 24909   24837   Pseudo CAT 0 0 39.25 
JAFEVA010000129.1  20 19850   19778   Val TAC 0 0 49.28 
JAFEVA010000129.1  21 13867   13797   Pseudo TCT 0 0 45.82 
JAFEVA010000129.1  22 10150   10080   Arg ACG 0 0 50.29 
JAFEVA010000129.1  23 3481    3411    Pseudo TCT 0 0 40.52 
JAFEVA010000135.1  1 2637    2746    Asn GTT 2675 2710 60.39 
JAFEVA010000138.1  1 29423   29511   Arg ACG 29459 29475 51.64 
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JAFEVA010000141.1  1 9996    10085   Arg ACG 10032 10049 50.14 
JAFEVA010000142.1  1 20571   20501   Gly GCC 0 0 58.71 
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Additional File 9 
 
Sequence             tRNA    Bounds  tRNA Anti Intron Bounds Cove 
Name                tRNA # Begin   End     Type Codon Begin End Score 
--------            ------ ----    ------  ---- ----- ----- ---- ------ 
JAFIMQ010000001.1  1 449008  449095  Gln CTG 449046 449060 59.64 
JAFIMQ010000001.1  2 1207273 1207356 Glu CTC 1207310 1207321 61.19 
JAFIMQ010000001.1  3 1222373 1222460 Glu TTC 1222411 1222425 57.05 
JAFIMQ010000001.1  4 1324126 1324216 Asp GTC 1324163 1324181 66.08 
JAFIMQ010000001.1  5 1332737 1332583 Leu CAA 1332700 1332624 26.18 
JAFIMQ010000001.1  6 734101  734011  Phe GAA 734064 734047 64.47 
JAFIMQ010000001.1  7 582433  582341  Asp GTC 582396 582376 63.93 
JAFIMQ010000002.1  1 143647  143731  Tyr GTA 143684 143695 62.41 
JAFIMQ010000002.1  2 159799  159870  Gly TCC 0 0 66.80 
JAFIMQ010000002.1  3 752826  752897  Thr AGT 0 0 70.11 
JAFIMQ010000002.1  4 935946  936036  Phe GAA 935983 936000 63.84 
JAFIMQ010000002.1  5 1071111 1071006 Ile AAT 1071073 1071042 61.75 
JAFIMQ010000003.1  1 200610  200702  Phe GAA 200647 200666 64.87 
JAFIMQ010000003.1  2 219275  219373  Leu CAG 219313 219329 56.71 
JAFIMQ010000003.1  3 839959  840048  Pro AGG 839995 840012 67.69 
JAFIMQ010000003.1  4 1074311 1074239 Arg CCG 0 0 64.28 
JAFIMQ010000003.1  5 352375  352219  Arg ACG 352339 352254 33.50 
JAFIMQ010000004.1  1 890365  890287  Glu CTC 890328 890322 60.26 
JAFIMQ010000004.1  2 853562  853481  Gly CCC 853526 853516 55.52 
JAFIMQ010000004.1  3 505047  504974  Val AAC 0 0 76.92 
JAFIMQ010000004.1  4 504582  504501  Glu CTC 504545 504536 60.29 
JAFIMQ010000004.1  5 471603  471502  Ser CGA 471566 471546 60.11 
JAFIMQ010000004.1  6 413370  413272  Arg TCT 413334 413308 62.78 
JAFIMQ010000004.1  7 150977  150884  Ile TAT 150940 150920 59.25 
JAFIMQ010000005.1  1 9360    9469    Asn GTT 9398 9433 54.65 
JAFIMQ010000005.1  2 804596  804700  Leu AAG 804635 804654 61.86 
JAFIMQ010000005.1  3 544304  544216  Gln CTG 544266 544251 59.00 
JAFIMQ010000005.1  4 382939  382868  Glu CTC 0 0 61.21 
JAFIMQ010000005.1  5 317018  316945  Val AAC 0 0 75.41 
JAFIMQ010000006.1  1 408007  408102  Pro CGG 408043 408066 51.00 
JAFIMQ010000006.1  2 412264  412334  Gly GCC 0 0 58.71 
JAFIMQ010000006.1  3 412682  412789  Ser AGA 412720 412745 56.74 
JAFIMQ010000006.1  4 790855  790775  Asp GTC 790818 790810 66.29 
JAFIMQ010000006.1  5 706624  706505  Ala TGC 706586 706541 59.19 
JAFIMQ010000006.1  6 141049  140942  Leu TAG 141012 140984 49.38 
JAFIMQ010000007.1  1 219244  219450  Pro CGG 219280 219417 33.07 
JAFIMQ010000007.1  2 404669  404904  Gly ACC 404706 404868 27.80 
JAFIMQ010000007.1  3 654904  654977  Val AAC 0 0 78.00 
JAFIMQ010000007.1  4 727518  727436  Gln TTG 727481 727471 57.55 
JAFIMQ010000007.1  5 629446  629347  Ile AAT 629408 629383 64.38 
JAFIMQ010000007.1  6 629027  628946  Ala AGC 628991 628982 66.20 
JAFIMQ010000008.1  1 574492  574399  Arg CCT 574455 574435 58.83 
JAFIMQ010000008.1  2 536612  536531  Glu TTC 536575 536566 56.92 
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JAFIMQ010000009.1  1 152503  152616  Pseudo GTG 152544 152580 22.79 
JAFIMQ010000009.1  2 233559  233661  Tyr GTA 233596 233625 60.09 
JAFIMQ010000009.1  3 191444  191356  Arg ACG 191408 191392 51.78 
JAFIMQ010000010.1  1 407341  407439  Leu TAA 407378 407395 62.36 
JAFIMQ010000010.1  2 827578  827649  Asp GTC 0 0 72.49 
JAFIMQ010000011.1  1 175249  175347  Ile AAT 175287 175311 63.34 
JAFIMQ010000011.1  2 256272  256342  Pro TGG 0 0 61.01 
JAFIMQ010000011.1  3 377571  377688  Ala TGC 377609 377652 56.81 
JAFIMQ010000011.1  4 524825  524909  Tyr GTA 524862 524873 63.18 
JAFIMQ010000012.1  1 384940  384850  Arg TCG 384904 384886 54.51 
JAFIMQ010000013.1  1 203065  203156  Ser AGA 203103 203112 69.13 
JAFIMQ010000013.1  2 694701  694780  His GTG 694738 694745 51.84 
JAFIMQ010000013.1  3 207869  207779  Asp GTC 207832 207814 66.22 
JAFIMQ010000014.1  1 144691  144761  Gly GCC 0 0 58.71 
JAFIMQ010000014.1  2 160006  159917  Arg ACG 159970 159953 53.20 
JAFIMQ010000015.1  1 449897  450003  Met CAT 449935 449967 76.17 
JAFIMQ010000015.1  2 520101  520029  Lys CTT 0 0 75.42 
JAFIMQ010000015.1  3 499895  499808  Arg TCG 499859 499844 60.59 
JAFIMQ010000015.1  4 450349  450268  Glu CTC 450312 450303 60.65 
JAFIMQ010000016.1  1 172234  172315  Ala AGC 172270 172279 66.20 
JAFIMQ010000016.1  2 406629  406715  Cys GCA 406665 406679 60.35 
JAFIMQ010000016.1  3 688097  688197  Ser GCT 688134 688153 56.99 
JAFIMQ010000016.1  4 661331  661227  Met CAT 661293 661263 73.74 
JAFIMQ010000017.1  1 423445  423530  Thr CGT 423481 423494 70.51 
JAFIMQ010000017.1  2 558618  558727  Asn GTT 558656 558691 60.39 
JAFIMQ010000017.1  3 494978  494887  Cys GCA 494942 494923 63.44 
JAFIMQ010000017.1  4 294215  294118  Ile AAT 294177 294154 63.36 
JAFIMQ010000018.1  1 92762   92617   Undet ??? 0 0 34.69 
JAFIMQ010000018.1  2 59245   59154   Ser AGA 59207 59198 69.74 
JAFIMQ010000018.1  3 59146   59047   Ile AAT 59108 59083 64.66 
JAFIMQ010000019.1  1 375643  375731  Trp CCA 375680 375695 61.35 
JAFIMQ010000019.1  2 193762  193678  Ala CGC 193726 193714 61.12 
JAFIMQ010000019.1  3 165392  165300  Ser CGA 165355 165344 62.09 
JAFIMQ010000020.1  1 566961  567033  Lys CTT 0 0 75.42 
JAFIMQ010000020.1  2 473837  473748  Met CAT 473801 473784 56.34 
JAFIMQ010000020.1  3 18522   18438   Pro TGG 18485 18474 48.17 
JAFIMQ010000021.1  1 3178    3277    Ser GCT 3215 3233 55.66 
JAFIMQ010000021.1  2 190077  189991  Met CAT 190041 190027 54.80 
JAFIMQ010000022.1  1 265272  265380  Ser AGA 265310 265336 66.38 
JAFIMQ010000022.1  2 107406  107305  Ser GCT 107369 107349 62.68 
JAFIMQ010000023.1  1 9980    10069   Arg ACG 10016 10033 50.14 
JAFIMQ010000023.1  2 380617  380534  Ala AGC 380581 380570 67.10 
JAFIMQ010000023.1  3 187840  187755  Met CAT 187803 187791 54.36 
JAFIMQ010000023.1  4 42616   42463   Ser TGA 42579 42508 23.91 
JAFIMQ010000024.1  1 372478  372580  Pro TGG 372514 372544 60.19 
JAFIMQ010000024.1  2 328781  328709  Lys CTT 0 0 75.42 
JAFIMQ010000024.1  3 119285  119202  Glu CTC 119248 119237 59.91 
JAFIMQ010000025.1  1 474516  474608  Gly CCC 474554 474572 61.57 
JAFIMQ010000026.1  1 143927  144010  Trp CCA 143963 143974 48.76 
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JAFIMQ010000027.1  1 89307   89236   Thr AGT 0 0 68.37 
JAFIMQ010000028.1  1 114417  114489  Lys CTT 0 0 75.42 
JAFIMQ010000028.1  2 186057  186170  Leu CAA 186095 186126 56.84 
JAFIMQ010000028.1  3 383171  383269  Leu CAG 383209 383225 54.67 
JAFIMQ010000028.1  4 324476  324388  Arg CCG 324440 324424 48.51 
JAFIMQ010000028.1  5 281818  281747  Glu TTC 0 0 63.63 
JAFIMQ010000028.1  6 39732   39653   Pseudo TGG 0 0 22.38 
JAFIMQ010000029.1  1 10480   10564   Ala TGC 10516 10528 53.94 
JAFIMQ010000030.1  1 434706  434602  Leu AAG 434667 434648 61.86 
JAFIMQ010000032.1  1 352149  352064  Ala CGC 352113 352100 60.95 
JAFIMQ010000032.1  2 214884  214814  Pro TGG 0 0 59.44 
JAFIMQ010000033.1  1 108562  108652  Phe GAA 108599 108616 63.84 
JAFIMQ010000033.1  2 424031  424109  His GTG 424068 424074 45.90 
JAFIMQ010000033.1  3 224351  224250  Ala AGC 224315 224286 63.29 
JAFIMQ010000034.1  1 22743   22831   Arg ACG 22779 22795 51.64 
JAFIMQ010000034.1  2 227118  227190  Lys CTT 0 0 75.42 
JAFIMQ010000034.1  3 323698  323768  Gly GCC 0 0 58.71 
JAFIMQ010000034.1  4 293646  293540  Met CAT 293608 293576 75.74 
JAFIMQ010000034.1  5 215181  215070  Leu CAA 215143 215114 58.72 
JAFIMQ010000035.1  1 308331  308236  Arg CCT 308295 308272 60.41 
JAFIMQ010000036.1  1 136612  136683  Thr AGT 0 0 70.11 
JAFIMQ010000038.1  1 110159  110258  Ile AAT 110197 110222 64.39 
JAFIMQ010000038.1  2 203337  203458  Ser CGA 203370 203423 21.56 
JAFIMQ010000038.1  3 171300  171219  Glu CTC 171263 171254 57.98 
JAFIMQ010000041.1  1 221283  221356  Val AAC 0 0 75.41 
JAFIMQ010000041.1  2 221769  221682  Gln CTG 221731 221717 55.17 
JAFIMQ010000041.1  3 160169  160096  Val AAC 0 0 78.00 
JAFIMQ010000044.1  1 223984  223899  Trp CCA 223946 223935 49.28 
JAFIMQ010000045.1  1 4063    3977    Val TAC 4026 4013 63.97 
JAFIMQ010000046.1  1 165321  165403  Glu CTC 165358 165368 59.64 
JAFIMQ010000050.1  1 121187  121259  Val CAC 0 0 78.92 
JAFIMQ010000051.1  1 146335  146258  Leu CAA 0 0 25.79 
JAFIMQ010000054.1  1 189987  190058  Gly TCC 0 0 66.41 
JAFIMQ010000054.1  2 263669  263739  Gly GCC 0 0 58.71 
JAFIMQ010000054.1  3 96340   96270   Gly GCC 0 0 58.71 
JAFIMQ010000055.1  1 181122  181049  Val AAC 0 0 75.41 
JAFIMQ010000058.1  1 215980  215876  Leu AAG 215941 215922 61.86 
JAFIMQ010000060.1  1 235591  235665  Asn GTT 0 0 70.83 
JAFIMQ010000061.1  1 138346  138259  Gln CTG 138308 138294 61.05 
JAFIMQ010000062.1  1 22499   22581   Glu CTC 22536 22546 60.92 
JAFIMQ010000062.1  2 157097  157026  Gly TCC 0 0 66.41 
JAFIMQ010000063.1  1 131564  131481  Ala AGC 131528 131517 66.59 
JAFIMQ010000064.1  1 8168    8241    Val AAC 0 0 75.41 
JAFIMQ010000064.1  2 203102  203032  Gly GCC 0 0 58.71 
JAFIMQ010000066.1  1 169270  169184  Arg TCG 169234 169220 57.71 
JAFIMQ010000068.1  1 105529  105632  Lys CTT 105566 105596 64.99 
JAFIMQ010000068.1  2 152781  152636  Undet ??? 0 0 37.29 
JAFIMQ010000069.1  1 19283   19370   Tyr GTA 19322 19334 65.81 
JAFIMQ010000070.1  1 82754   82826   Lys CTT 0 0 75.42 
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JAFIMQ010000071.1  1 185481  185559  His GTG 185518 185524 48.49 
JAFIMQ010000075.1  1 30678   30762   Ala TGC 30714 30726 53.94 
JAFIMQ010000075.1  2 122697  122591  Ser CGA 122659 122635 60.35 
JAFIMQ010000075.1  3 31090   30986   Met CAT 31052 31022 76.54 
JAFIMQ010000079.1  1 100339  100454  Lys TTT 100377 100418 61.28 
JAFIMQ010000079.1  2 92889   92785   Leu AAG 92850 92831 61.86 
JAFIMQ010000085.1  1 57487   57388   Ile AAT 57449 57424 61.84 
JAFIMQ010000092.1  1 101875  101805  Gly GCC 0 0 58.71 
JAFIMQ010000093.1  1 99677   99830   Arg GCG 99713 99795 40.02 
JAFIMQ010000094.1  1 44529   44661   Undet ??? 0 0 22.80 
JAFIMQ010000094.1  2 44837   44917   Asp GTC 44874 44882 63.74 
JAFIMQ010000100.1  1 70722   70648   Asn GTT 0 0 70.83 
JAFIMQ010000102.1  1 90725   90653   Lys CTT 0 0 75.42 
JAFIMQ010000102.1  2 28362   28279   Ala AGC 28326 28315 66.46 
JAFIMQ010000103.1  1 9139    9210    Met CAT 0 0 70.01 
JAFIMQ010000103.1  2 48504   48434   Gly GCC 0 0 58.71 
JAFIMQ010000105.1  1 2143    2045    Arg TCT 2107 2081 65.58 
JAFIMQ010000106.1  1 61188   61270   Thr TGT 61224 61234 66.18 
JAFIMQ010000108.1  1 66973   67043   Gly GCC 0 0 58.71 
JAFIMQ010000108.1  2 81266   81336   Gly GCC 0 0 58.71 
JAFIMQ010000113.1  1 52835   52747   Gln TTG 52798 52782 59.11 
JAFIMQ010000117.1  1 15042   15113   Thr AGT 0 0 68.37 
JAFIMQ010000118.1  1 3182    3254    Val CAC 0 0 76.81 
JAFIMQ010000118.1  2 21555   21477   His GTG 21518 21512 48.49 
JAFIMQ010000120.1  1 9317    9181    Ser CGA 9279 9216 31.15 
JAFIMQ010000133.1  1 3451    3521    Arg ACG 0 0 50.29 
JAFIMQ010000133.1  2 10120   10190   Pseudo TCT 0 0 45.82 
JAFIMQ010000133.1  3 19266   19336   Asn GTT 0 0 58.07 
JAFIMQ010000133.1  4 19357   19428   Lys TTT 0 0 41.28 
JAFIMQ010000133.1  5 19660   19730   Gly TCC 0 0 39.50 
JAFIMQ010000133.1  6 20925   20997   Pseudo GTC 0 0 37.80 
JAFIMQ010000133.1  7 21131   21201   SeC TCA 0 0 49.80 
JAFIMQ010000133.1  8 21420   21492   Pseudo TGG 0 0 33.17 
JAFIMQ010000133.1  9 21513   21599   Pseudo TGA 0 0 33.86 
JAFIMQ010000133.1  10 22616   22688   Val TAC 0 0 53.91 
JAFIMQ010000133.1  11 24834   24905   Pseudo GAT 0 0 29.76 
JAFIMQ010000133.1  12 30219   30289   Thr TGT 0 0 34.60 
JAFIMQ010000133.1  13 30339   30410   Glu TTC 0 0 54.15 
JAFIMQ010000133.1  14 30418   30489   Met CAT 0 0 37.19 
JAFIMQ010000133.1  15 30559   30631   Pseudo CAT 0 0 37.21 
JAFIMQ010000133.1  16 30660   30742   Pseudo TAA 0 0 28.30 
JAFIMQ010000133.1  17 30817   30888   Ala TGC 0 0 54.84 
JAFIMQ010000133.1  18 30912   30984   Phe GAA 0 0 50.51 
JAFIMQ010000133.1  19 31070   31142   Pseudo TTG 0 0 34.85 
JAFIMQ010000133.1  20 31286   31358   His GTG 0 0 40.19 
JAFIMQ010000133.1  21 31429   31501   Pseudo CAT 0 0 39.25 
JAFIMQ010000133.1  22 36487   36559   Val TAC 0 0 49.28 
JAFIMQ010000133.1  23 42472   42542   Pseudo TCT 0 0 45.82 
JAFIMQ010000180.1  1 14668   14739   Thr AGT 0 0 68.37 
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Additional File 10 
 
Sequence             tRNA    Bounds  tRNA Anti Intron Bounds Cove 
Name                tRNA # Begin   End     Type Codon Begin End Score 
--------            ------ ----    ------  ---- ----- ----- ---- ------ 
JAFIMR010000001.1  1 100998  101093  Arg CCT 101034 101057 60.41 
JAFIMR010000001.1  2 802363  802451  Gln CTG 802401 802416 59.00 
JAFIMR010000001.1  3 1694027 1694098 Thr AGT 0 0 68.37 
JAFIMR010000001.1  4 2014143 2014232 Pro AGG 2014179 2014196 67.69 
JAFIMR010000001.1  5 2248615 2248543 Arg CCG 0 0 64.28 
JAFIMR010000001.1  6 1464658 1464560 Leu TAA 1464621 1464604 62.36 
JAFIMR010000001.1  7 1044381 1044310 Asp GTC 0 0 72.49 
JAFIMR010000001.1  8 541938  541834  Leu AAG 541899 541880 61.86 
JAFIMR010000002.1  1 402698  402800  Pro TGG 402734 402764 60.19 
JAFIMR010000002.1  2 655315  655405  Phe GAA 655352 655369 63.84 
JAFIMR010000002.1  3 970984  971062  His GTG 971021 971027 45.90 
JAFIMR010000002.1  4 2185597 2185676 His GTG 2185634 2185641 51.84 
JAFIMR010000002.1  5 1366990 1366845 Undet ??? 0 0 34.69 
JAFIMR010000002.1  6 1333418 1333327 Ser AGA 1333380 1333371 69.74 
JAFIMR010000002.1  7 1333319 1333220 Ile AAT 1333281 1333256 64.53 
JAFIMR010000002.1  8 771039  770938  Ala AGC 771003 770974 63.29 
JAFIMR010000002.1  9 386299  386227  Lys CTT 0 0 75.42 
JAFIMR010000002.1  10 171317  171234  Glu CTC 171280 171269 59.91 
JAFIMR010000003.1  1 794586  794668  Glu CTC 794623 794633 60.92 
JAFIMR010000003.1  2 1741276 1741384 Ser AGA 1741314 1741340 66.38 
JAFIMR010000003.1  3 2066453 2066523 Gly GCC 0 0 58.71 
JAFIMR010000003.1  4 1589902 1589801 Ser GCT 1589865 1589845 62.68 
JAFIMR010000003.1  5 1131358 1131286 Lys CTT 0 0 75.42 
JAFIMR010000003.1  6 929554  929483  Gly TCC 0 0 66.41 
JAFIMR010000003.1  7 324698  324612  Val TAC 324661 324648 63.97 
JAFIMR010000004.1  1 204776  204867  Ser AGA 204814 204823 69.13 
JAFIMR010000004.1  2 665097  665168  Thr AGT 0 0 70.11 
JAFIMR010000004.1  3 848439  848529  Phe GAA 848476 848493 63.84 
JAFIMR010000004.1  4 1593379 1593449 Gly GCC 0 0 58.71 
JAFIMR010000004.1  5 1844054 1844140 Arg TCG 1844090 1844104 57.71 
JAFIMR010000004.1  6 1788326 1788253 Val AAC 0 0 75.41 
JAFIMR010000004.1  7 983613  983508  Ile AAT 983575 983544 61.75 
JAFIMR010000004.1  8 209603  209513  Asp GTC 209566 209548 66.22 
JAFIMR010000005.1  1 1457984 1458079 Pro CGG 1458020 1458043 51.00 
JAFIMR010000005.1  2 1462423 1462493 Gly GCC 0 0 58.71 
JAFIMR010000005.1  3 1462844 1462951 Ser AGA 1462882 1462907 57.38 
JAFIMR010000005.1  4 1756388 1756271 Ala TGC 1756350 1756307 59.43 
JAFIMR010000005.1  5 1175002 1174895 Leu TAG 1174965 1174937 49.38 
JAFIMR010000005.1  6 563466  563382  Tyr GTA 563429 563418 63.18 
JAFIMR010000006.1  1 53987   54057   Gly GCC 0 0 58.71 
JAFIMR010000006.1  2 865675  865831  Arg ACG 865711 865796 33.50 
JAFIMR010000006.1  3 1017271 1017179 Phe GAA 1017234 1017215 64.87 
JAFIMR010000006.1  4 998611  998513  Leu CAG 998573 998557 56.71 
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JAFIMR010000006.1  5 69293   69204   Arg ACG 69257 69240 53.20 
JAFIMR010000007.1  1 297736  297814  Glu CTC 297773 297779 60.26 
JAFIMR010000007.1  2 334555  334636  Gly CCC 334591 334601 55.52 
JAFIMR010000007.1  3 685694  685767  Val AAC 0 0 76.92 
JAFIMR010000007.1  4 686159  686240  Glu CTC 686196 686205 60.29 
JAFIMR010000007.1  5 719191  719292  Ser CGA 719228 719248 60.11 
JAFIMR010000007.1  6 777839  777937  Arg TCT 777875 777901 62.78 
JAFIMR010000007.1  7 1040206 1040299 Ile TAT 1040243 1040263 59.25 
JAFIMR010000008.1  1 481010  480920  Arg TCG 480974 480956 54.51 
JAFIMR010000009.1  1 137397  137480  Glu CTC 137434 137445 61.19 
JAFIMR010000009.1  2 152527  152614  Glu TTC 152565 152579 57.05 
JAFIMR010000009.1  3 295842  295914  Lys CTT 0 0 75.42 
JAFIMR010000009.1  4 381734  381833  Ile AAT 381772 381797 61.84 
JAFIMR010000009.1  5 629040  629112  Lys CTT 0 0 75.42 
JAFIMR010000009.1  6 701206  701319  Leu CAA 701244 701275 60.03 
JAFIMR010000009.1  7 898461  898559  Leu CAG 898499 898515 54.67 
JAFIMR010000009.1  8 839827  839739  Arg CCG 839791 839775 48.51 
JAFIMR010000009.1  9 797150  797079  Glu TTC 0 0 63.63 
JAFIMR010000009.1  10 546701  546622  Pseudo ??? 0 0 22.51 
JAFIMR010000009.1  11 216553  216470  Ala AGC 216517 216506 66.46 
JAFIMR010000010.1  1 628930  629017  Gln CTG 628968 628982 61.05 
JAFIMR010000010.1  2 873331  873430  Ile AAT 873369 873394 64.39 
JAFIMR010000010.1  3 965954  966075  Ser CGA 965987 966040 21.56 
JAFIMR010000010.1  4 933908  933827  Glu CTC 933871 933862 59.87 
JAFIMR010000011.1  1 62882   62953   Thr AGT 0 0 70.11 
JAFIMR010000011.1  2 731082  730990  Gly CCC 731044 731026 61.57 
JAFIMR010000012.1  1 514382  514452  Gly GCC 0 0 58.71 
JAFIMR010000012.1  2 756141  756218  Leu CAA 0 0 25.79 
JAFIMR010000012.1  3 916390  916291  Ser GCT 916353 916335 55.02 
JAFIMR010000012.1  4 280908  280820  Trp CCA 280871 280856 61.35 
JAFIMR010000013.1  1 192885  192975  Asp GTC 192922 192940 66.08 
JAFIMR010000013.1  2 201493  201340  Leu CAA 201456 201381 25.56 
JAFIMR010000014.1  1 509104  509310  Pro CGG 509140 509277 32.57 
JAFIMR010000014.1  2 694520  694755  Gly ACC 694557 694719 21.33 
JAFIMR010000015.1  1 75782   75872   Phe GAA 75819 75836 64.47 
JAFIMR010000015.1  2 227543  227635  Asp GTC 227580 227600 63.93 
JAFIMR010000015.1  3 361022  360935  Gln CTG 360984 360970 59.64 
JAFIMR010000016.1  1 314270  314341  Thr AGT 0 0 68.37 
JAFIMR010000016.1  2 692026  692124  Arg TCT 692062 692088 65.58 
JAFIMR010000017.1  1 153200  153285  Trp CCA 153238 153249 49.28 
JAFIMR010000017.1  2 574078  574214  Glu CTC 574114 574181 28.36 
JAFIMR010000017.1  3 34611   34540   Met CAT 0 0 70.01 
JAFIMR010000018.1  1 65822   65920   Ile AAT 65860 65884 63.48 
JAFIMR010000018.1  2 146686  146756  Pro TGG 0 0 61.01 
JAFIMR010000018.1  3 267989  268106  Ala TGC 268027 268070 56.81 
JAFIMR010000018.1  4 489411  489338  Val AAC 0 0 75.41 
JAFIMR010000019.1  1 549104  549020  Tyr GTA 549067 549056 62.41 
JAFIMR010000019.1  2 533079  533008  Gly TCC 0 0 66.80 
JAFIMR010000020.1  1 448491  448387  Leu AAG 448452 448433 61.86 
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JAFIMR010000021.1  1 568711  568817  Met CAT 568749 568781 76.17 
JAFIMR010000021.1  2 638816  638744  Lys CTT 0 0 75.42 
JAFIMR010000021.1  3 618609  618522  Arg TCG 618573 618558 60.59 
JAFIMR010000021.1  4 569158  569077  Glu CTC 569121 569112 60.65 
JAFIMR010000022.1  1 182681  182774  Arg CCT 182718 182738 58.83 
JAFIMR010000022.1  2 220534  220615  Glu TTC 220571 220580 56.92 
JAFIMR010000023.1  1 134337  134424  Gln CTG 134375 134389 55.17 
JAFIMR010000023.1  2 196307  196380  Val AAC 0 0 78.00 
JAFIMR010000023.1  3 535980  536050  Gly GCC 0 0 58.71 
JAFIMR010000023.1  4 443174  443103  Gly TCC 0 0 66.41 
JAFIMR010000023.1  5 369552  369482  Gly GCC 0 0 58.71 
JAFIMR010000023.1  6 134823  134750  Val AAC 0 0 75.41 
JAFIMR010000024.1  1 164262  164348  Cys GCA 164298 164312 60.35 
JAFIMR010000024.1  2 416148  416257  Asn GTT 416186 416221 60.39 
JAFIMR010000024.1  3 352591  352500  Cys GCA 352555 352536 63.44 
JAFIMR010000025.1  1 111813  111902  Met CAT 111849 111866 56.34 
JAFIMR010000025.1  2 567263  567347  Pro TGG 567300 567311 48.17 
JAFIMR010000025.1  3 18618   18546   Lys CTT 0 0 75.42 
JAFIMR010000026.1  1 582435  582351  Ala TGC 582399 582387 54.58 
JAFIMR010000027.1  1 38323   38422   Arg ACG 38359 38386 48.30 
JAFIMR010000027.1  2 408324  408241  Ala AGC 408288 408277 67.10 
JAFIMR010000027.1  3 216138  216053  Met CAT 216101 216089 54.36 
JAFIMR010000027.1  4 70986   70833   Ser TGA 70949 70878 23.91 
JAFIMR010000029.1  1 538102  538194  Thr TGT 538138 538158 70.61 
JAFIMR010000030.1  1 462061  462139  His GTG 462098 462104 48.49 
JAFIMR010000030.1  2 150548  150476  Val CAC 0 0 78.92 
JAFIMR010000031.1  1 369316  369390  Asn GTT 0 0 70.83 
JAFIMR010000031.1  2 35301   35221   Asp GTC 35264 35256 65.66 
JAFIMR010000032.1  1 439504  439351  Arg GCG 439468 439386 40.02 
JAFIMR010000032.1  2 166224  166142  Glu CTC 166187 166177 59.64 
JAFIMR010000033.1  1 336882  336970  Gln TTG 336919 336935 57.59 
JAFIMR010000034.1  1 282184  282097  Tyr GTA 282145 282133 65.81 
JAFIMR010000035.1  1 350868  350783  Ala CGC 350832 350819 60.95 
JAFIMR010000035.1  2 214926  214856  Pro TGG 0 0 61.43 
JAFIMR010000036.1  1 146611  146507  Leu AAG 146572 146553 61.86 
JAFIMR010000037.1  1 117067  117171  Leu AAG 117106 117125 61.86 
JAFIMR010000037.1  2 109615  109500  Lys TTT 109577 109536 61.28 
JAFIMR010000039.1  1 105440  105513  Val AAC 0 0 78.00 
JAFIMR010000039.1  2 178086  178004  Gln TTG 178049 178039 57.55 
JAFIMR010000039.1  3 79975   79876   Ile AAT 79937 79912 64.38 
JAFIMR010000039.1  4 79580   79499   Ala AGC 79544 79535 66.20 
JAFIMR010000040.1  1 78605   78711   Met CAT 78643 78675 79.84 
JAFIMR010000040.1  2 156971  157082  Leu CAA 157009 157038 58.72 
JAFIMR010000040.1  3 145068  144996  Lys CTT 0 0 75.42 
JAFIMR010000040.1  4 45645   45575   Gly GCC 0 0 58.71 
JAFIMR010000042.1  1 326282  326211  Glu CTC 0 0 61.21 
JAFIMR010000042.1  2 260380  260307  Val AAC 0 0 75.41 
JAFIMR010000043.1  1 124030  124114  Ala CGC 124066 124078 60.49 
JAFIMR010000043.1  2 152374  152466  Ser CGA 152411 152422 62.09 
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JAFIMR010000045.1  1 244909  244995  Met CAT 244945 244959 54.80 
JAFIMR010000046.1  1 158898  158981  Trp CCA 158934 158945 50.62 
JAFIMR010000048.1  1 180379  180296  Ala AGC 180343 180332 67.23 
JAFIMR010000049.1  1 95880   95799   Ala AGC 95844 95835 66.20 
JAFIMR010000052.1  1 44749   44837   Arg ACG 44785 44801 51.78 
JAFIMR010000052.1  2 2688    2586    Tyr GTA 2651 2622 60.09 
JAFIMR010000055.1  1 4451    4380    Thr AGT 0 0 68.37 
JAFIMR010000056.1  1 41901   42046   Undet ??? 0 0 36.36 
JAFIMR010000056.1  2 89268   89165   Lys CTT 89231 89201 64.99 
JAFIMR010000057.1  1 202819  202919  Ser GCT 202856 202875 56.99 
JAFIMR010000057.1  2 176060  175956  Met CAT 176022 175992 73.74 
JAFIMR010000058.1  1 187281  187366  Thr CGT 187317 187330 70.51 
JAFIMR010000058.1  2 56475   56378   Ile AAT 56437 56414 63.36 
JAFIMR010000059.1  1 14479   14551   Val CAC 0 0 76.81 
JAFIMR010000059.1  2 178839  178765  Asn GTT 0 0 70.83 
JAFIMR010000059.1  3 32826   32748   His GTG 32789 32783 48.49 
JAFIMR010000061.1  1 134397  134506  Asn GTT 134435 134470 54.65 
JAFIMR010000064.1  1 45215   45347   Undet ??? 0 0 22.80 
JAFIMR010000064.1  2 45528   45608   Asp GTC 45565 45573 63.74 
JAFIMR010000064.1  3 151758  151688  Gly GCC 0 0 58.71 
JAFIMR010000069.1  1 62240   62170   Gly GCC 0 0 58.71 
JAFIMR010000073.1  1 3605    3517    Arg ACG 3569 3553 51.64 
JAFIMR010000075.1  1 38228   38332   Met CAT 38266 38296 75.90 
JAFIMR010000075.1  2 38640   38556   Ala TGC 38604 38592 53.94 
JAFIMR010000077.1  1 58672   58778   Ser CGA 58710 58734 60.35 
JAFIMR010000089.1  1 2858    2928    Thr TGT 0 0 34.60 
JAFIMR010000089.1  2 2978    3049    Glu TTC 0 0 54.15 
JAFIMR010000089.1  3 3057    3128    Met CAT 0 0 37.19 
JAFIMR010000089.1  4 3198    3270    Pseudo CAT 0 0 37.21 
JAFIMR010000089.1  5 3299    3381    Pseudo TAA 0 0 28.30 
JAFIMR010000089.1  6 3456    3527    Ala TGC 0 0 54.84 
JAFIMR010000089.1  7 3551    3623    Phe GAA 0 0 50.51 
JAFIMR010000089.1  8 3709    3781    Pseudo TTG 0 0 34.85 
JAFIMR010000089.1  9 3925    3997    His GTG 0 0 40.19 
JAFIMR010000089.1  10 4068    4140    Pseudo CAT 0 0 39.25 
JAFIMR010000089.1  11 9127    9199    Val TAC 0 0 49.28 
JAFIMR010000089.1  12 15113   15183   Pseudo TCT 0 0 45.82 
JAFIMR010000089.1  13 18910   18980   Arg ACG 0 0 50.29 
JAFIMR010000089.1  14 25581   25651   Pseudo TCT 0 0 45.82 
JAFIMR010000089.1  15 34727   34797   Asn GTT 0 0 58.07 
JAFIMR010000089.1  16 34818   34889   Lys TTT 0 0 41.28 
JAFIMR010000089.1  17 35121   35191   Gly TCC 0 0 39.50 
JAFIMR010000089.1  18 36386   36458   Pseudo GTC 0 0 37.80 
JAFIMR010000089.1  19 36592   36662   SeC TCA 0 0 49.80 
JAFIMR010000089.1  20 36881   36953   Pseudo TGG 0 0 33.17 
JAFIMR010000089.1  21 36974   37060   Pseudo TGA 0 0 33.86 
JAFIMR010000089.1  22 38077   38149   Val TAC 0 0 53.91 
JAFIMR010000089.1  23 40280   40351   Pseudo GAT 0 0 29.76 
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Additional File 23 

Gene ID K-number Type Domain Specific annotation 

JN550g4767.t1 K09464 Eukaryotic Basic leucine zipper (bZIP) AP-1(-like) components, Fungal regulators 

JN550g1939.t1 K09043 Eukaryotic Basic leucine zipper (bZIP) AP-1(-like) components, Fungal regulators 

JN550g4788.t1 K09043 Eukaryotic Basic leucine zipper (bZIP) AP-1(-like) components, Fungal regulators 

JN550g5010.t1 K09043 Eukaryotic Basic leucine zipper (bZIP) AP-1(-like) components, Fungal regulators 

JN550g5088.t1 K09043 Eukaryotic Basic leucine zipper (bZIP) AP-1(-like) components, Fungal regulators 

JN550g8375.t1 K09043 Eukaryotic Basic leucine zipper (bZIP) AP-1(-like) components, Fungal regulators 

JN550g10328.t1 K09043 Eukaryotic Basic leucine zipper (bZIP) AP-1(-like) components, Fungal regulators 

JN550g1888.t1 K09051 Eukaryotic Basic leucine zipper (bZIP) AP-1(-like) components, CRE-BP/ATF 

JN550g9961.t1 K16230 Eukaryotic Basic leucine zipper (bZIP) CREB 

JN550g11295.t1 K06648 Eukaryotic Basic leucine zipper (bZIP) ZIP only 

JN550g8404.t1 K21642 Eukaryotic Basic leucine zipper (bZIP) ZIP only 

JN550g1270.t1 K21451 Eukaryotic Basic leucine zipper (bZIP) ZIP only 

JN550g6036.t1 K21452 Eukaryotic Basic leucine zipper (bZIP) ZIP only 

JN550g4280.t1 K09102 Eukaryotic Basic helix-loop-helix (bHLH) INO 

JN550g12841.t1 K22484 Eukaryotic Basic helix-loop-helix (bHLH) HLH domain only 

JN550g8694.t1 K09175 Eukaryotic Other basic domains RF-X 

JN550g1239.t1 K09184 Eukaryotic Zinc finger Cys4 GATA-factors 

JN550g4890.t1 K09184 Eukaryotic Zinc finger Cys4 GATA-factors 

JN550g5136.t1 K09184 Eukaryotic Zinc finger Cys4 GATA-factors 

JN550g4563.t1 K09202 Eukaryotic Zinc finger Cys2His2 SP/KLF family and related proteins 

JN550g1037.t1 K09467 Eukaryotic Zinc finger Cys2His2 metabolic regulators in fungi 

JN550g126.t1 K09191 Eukaryotic Zinc finger Cys2His2 others 

JN550g8198.t1 K07466 Eukaryotic Zinc finger Cys2His2 others 

JN550g4159.t1 K19487  Eukaryotic Zinc finger Cys2His2 others 

JN550g6632.t1 K21455 Eukaryotic Zinc finger Cys2His2 others 

JN550g12709.t1 K21543 Eukaryotic Zinc finger Cys2His2 others 

JN550g10772.t1 K21544 Eukaryotic Zinc finger Cys2His2 others 

JN550g12722.t1 K21545 Eukaryotic Zinc finger Cys2His2 others 

JN550g10621.t1 K11304 Eukaryotic Zinc finger Cys2HisCys zinc factors 

JN550g7884.t1 K15263 Eukaryotic Zinc finger Cys2HisCys zinc factors 

JN550g3264.t1 K14960 Eukaryotic Zinc finger CXXC CpG-binding proteins 

JN550g1517.t1 K00558 Eukaryotic Zinc finger CXXC CpG-binding proteins 

JN550g4596.t1 K00558 Eukaryotic Zinc finger CXXC CpG-binding proteins 

JN550g12516.t1 K00558 Eukaryotic Zinc finger CXXC CpG-binding proteins 

JN550g2137.t1 K09241 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g3158.t1 K09241 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g11523.t1 K09241 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g398.t1 K09242 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g3944.t1 K09242 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 
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JN550g2127.t1 K09246 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g6953.t1 K09246 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g8555.t1 K09246 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g2495.t1  K09248 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g4358.t1  K09248 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g6959.t1  K09248 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g9109.t1  K09248 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g10141.t1  K09248 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g11041.t1  K09248 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g3802.t1 K21547 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g4246.t1 K21547 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g4702.t1 K21547 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g9396.t1 K21547 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g6689.t1 K21632 Eukaryotic Zinc finger Cys6 metabolic regulators in fungi 

JN550g1902.t1 K09250 Eukaryotic Zinc finger Other zinc fingers 

JN550g10162.t1 K09250 Eukaryotic Zinc finger Other zinc fingers 

JN550g13101.t1 K09250 Eukaryotic Zinc finger Other zinc fingers 

JN550g8735.t1 K09313 Eukaryotic Helix-turn-helix Homeo domain CUT 

JN550g231.t1 K09413 Eukaryotic Helix-turn-helix Fork head/winged helix other regulators 

JN550g12198.t1 K24664 Eukaryotic Helix-turn-helix Fork head/winged helix other regulators 

JN550g8881.t1 K09422 Eukaryotic Helix-turn-helix Tryptophan clusters Myb, Myb-factors 

JN550g8881.t1 K09425 Eukaryotic Helix-turn-helix Tryptophan clusters Myb, Myb-like factors 

JN550g10057.t1 K09448 Eukaryotic Helix-turn-helix TEA domain 

JN550g1588.t1 K12412 Eukaryotic 
beta-Scaffold factors with minor 
groove contacts 

MADS-box regulators of differentiation, Yeast 
regulators 

JN550g4838.t1 K09265 Eukaryotic 
beta-Scaffold factors with minor 
groove contacts 

MADS-box regulators of differentiation, Yeast 
regulators 

JN550g4141.t1 K03120 Eukaryotic 
beta-Scaffold factors with minor 
groove contacts TATA-binding proteins 

JN550g11055.t1 K09272 Eukaryotic 
beta-Scaffold factors with minor 
groove contacts HMG2-related 

JN550g4264.t1 K22483 Eukaryotic 
beta-Scaffold factors with minor 
groove contacts Other HMG box factors 

JN550g7759.t1 K09274 Eukaryotic 
beta-Scaffold factors with minor 
groove contacts Other HMG box factors 

JN550g10477.t1 K08064 Eukaryotic 
beta-Scaffold factors with minor 
groove contacts Heteromeric CCAAT factors 

JN550g7876.t1 K08065 Eukaryotic 
beta-Scaffold factors with minor 
groove contacts Heteromeric CCAAT factors 

JN550g6664.t1 K08066 Eukaryotic 
beta-Scaffold factors with minor 
groove contacts Heteromeric CCAAT factors 

JN550g4417.t1 K09275 Eukaryotic 
beta-Scaffold factors with minor 
groove contacts Grainyhead 

JN550g1032.t1 K12769 Eukaryotic 
beta-Scaffold factors with minor 
groove contacts MYRF 

JN550g4026.t1 K22758 Eukaryotic Other transcription factors Others 

JN550g11059.t1 K11215 Eukaryotic Other transcription factors Others 

JN550g604.t1 K21631 Eukaryotic Other transcription factors Others 

JN550g13866.t1 K21631 Eukaryotic Other transcription factors Others 

JN550g13957.t1 K21631 Eukaryotic Other transcription factors Others 
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JN550g3547.t1 K12763 Eukaryotic Other transcription factors Others 

JN550g8201.t1 K12763 Eukaryotic Other transcription factors Others 

JN550g9201.t1 K05527 Prokaryotic Other transcription factors Others 

JN550g6644.t1 K03707 Prokaryotic Other transcription factors Others 

JN550g2349.t1 K07734 Prokaryotic Other transcription factors Others 
 
 
 

Gene ID K-number Type Specific annotation 
JN550g7831.t1 K11021 Type III toxins: Intracellular toxins TccC-type insecticidal toxin 
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Additional File 27 

Protein Accession 
W. moseri CBS 
Gene ID

W. moseri 
TUCIM 5827 
Gene ID

W. moseri TUCIM 
5799 Gene ID

Hexokinase EC:2.7.1.1 

JN550g1159.t1, 
JN550g3215.t1, 
JN550g3392.t1, 
JN550g4061.t1, 
JN550g4763.t1, 
JN550g5430.t1 

JX266g2067.t1, 
JX266g7681.t1, 
JX266g7905.t1, 
JX266g10351.t1, 
JX266g10546.t1, 
JX266g12239.t1 

JX265g148.t1, 
JX265g988.t1, 
JX265g1828.t1, 
JX265g7829.t1, 
JX265g10550.t1, 
JX265g12577.t1 

Glucokinase EC:2.7.1.2 0 0 0 
Glucose-6-P isomerase EC:5.3.1.9 JN550g2462.t1 JX266g1113.t1 JX265g3719.t1 
6-Phosphofructokinase EC:2.7.1.11 JN550g1435.t1 JX266g8822.t1 JX265g8460.t1 

Fructose-bisP aldolase EC:4.1.2.13 

JN550g4314.t1, 
JN550g7570.t1, 
JN550g8229.t1, 
JN550g11550.t1 

JX266g538.t1, 
JX266g4192.t1, 
JX266g7191.t1, 
JX266g13488.t1 

JX265g2230.t1, 
JX265g4508.t1, 
JX265g6100.t1, 
JX265g9144.t1 

Triosephosphate isomerase EC:5.3.1.1 
JN550g5424.t1, 
JN550g7567.t1 

JX266g4189.t1, 
JX266g10345.t1 

JX265g1822.t1, 
JX265g2227.t1 

Glyceraldehyde-3-P DH EC:1.2.1.12 JN550g3126.t1 JX266g206.t1 JX265g6541.t1 
Phosphoglycerate kinase EC:2.7.2.3 JN550g11486.t1 JX266g7256.t1 JX265g9080.t1 
Phosphoglycerate mutase EC:5.4.2.12 JN550g11656.t1 JX266g13133.t1 JX265g852.t1 
PEP hydratase EC:4.2.1.11 JN550g10481.t1 JX266g9525.t1 JX265g10229.t1 
Pyruvate kinase EC:2.7.1.40 JN550g12018.t1 JX266g8377.t1 JX265g12477.t1 

Pyruvate DH complex EC:1.2.4.1 
JN550g10570.t1, 
JN550g739.t1 

JX266g8236.t1, 
JX266g13747.t1 

JX265g483.t1, 
JX265g11260.t1 

Citrate synthase EC:4.1.3.7 

JN550g4898.t1, 
JN550g6168.t1, 
JN550g11399.t1, 
JN550g12418.t1, 
JN550g12419.t1, 

JX266g2878.t1, 
JX266g8903.t1, 
JX266g9691.t1, 
JX266g10830.t1, 
JX266g10831.t1 

JX265g2942.t1, 
JX265g8211.t1, 
JX265g8378.t1, 
JX265g5149.t1, 
JX265g5150.t1 

Pyruvate carboxylase EC:6.4.1.1 JN550g6224.t1 JX266g8304.t1 1 
PEP carboxykinase EC:4.1.1.49 JN550g10785.t1 JX266g5390.t1 JX265g1280.t1 

Malate dehydrogenase EC:1.1.1.37 

JN550g2922.t1, 
JN550g7143.t1, 
JN550g8734.t1, 
JN550g11372.t1, 
JN550g12911.t1, 
JN550g13842.t1 

JX266g1531.t1, 
JX266g7948.t1, 
JX266g9018.t1, 
JX266g11793.t1, 
JX266g6408.t1, 
JX266g8876.t1 

JX265g4138.t1, 
JX265g9631.t1, 
JX265g13587.t1, 
JX265g13990.t1, 
JX265g788.t1, 
JX265g8406.t1 

Oxaloacetase EC:3.7.1.1 0 0 0 

Glucose oxidase EC:1.1.3.4 
JN550g13020.t1, 
JN550g13653.t1 

JX266g12607.t1, 
JX266g13506.t1 

JX265g737.t1, 
JX265g10203.t1 

Gluconolactonase EC:3.1.1.17 JN550g373.t1 JX266g1036.t1 JX265g2564.t1 

Trehalose P synthase EC:2.4.1.15 

JN550g10750.t1, 
JN550g3330.t1, 
JN550g11833.t1 JX266g8942.t1 JX265g9552.t1, 

Trehalose phosphatase EC:3.1.3.12 0 0 0 
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6-Phosphofructo-2-kinase EC:2.7.1.105 
JN550g9253.t1, 
JN550g7727.t1 

JX266g11121.t1, 
JX266g1690.t1 

JX265g5089.t1, 
JX265g3978.t1 

Aconitate hydratase EC:4.2.1.36 
JN550g2797.t1, 
JN550g11799.t1 

JX266g6213.t1, 
JX266g6963.t1 

JX265g9169.t1, 
JX265g6769.t1 

Aconitate decarboxylase EC:4.1.1.6 0 0 0 
b-Fructofuranosidase EC:3.2.1.26 0 0 0 

Mannitol-1P DH EC:1.1.1.17 

JN550g6958.t1, 
JN550g7916.t1, 
JN550g12515.t1, 
JN550g13023.t1 JX266g4385.t1 

JX265g9044.t1, 
JX265g9352.t1, 
JX265g12247.t1 

Isocitrate DH (NADP) EC:1.1.1.42 
JN550g1757.t1, 
JN550g11639.t1 JX266g12694.t1 

JX265g500.t1, 
JX265g2076.t1 

Oxoglutarate DH EC:1.2.4.2 JN550g12602.t1 JX266g8554.t1 JX265g5303.t1 
Succinate DH (NADP) EC:1.3.5.1 JN550g1305.t1 JX266g4798.t1 JX265g12209.t1 
Fumarate hydratase EC:4.2.1.2 JN550g1594.t1 JX266g1399.t1 JX265g665.t1 

Glc transporter 

JN550g1335.t1, 
JN550g1743.t1, 
JN550g1264.t1, 
JN550g2950.t1, 
JN550g7540.t1, 
JN550g9198.t1, 
JN550g9845.t1, 
JN550g10198.t1, 
JN550g11140.t1, 
JN550g11835.t1, 
JN550g12501.t1 

JX266g8176.t1, 
JX266g3546.t1, 
JX266g4161.t1, 
JX266g4828.t1, 
JX266g6249.t1, 
JX266g7807.t1, 
JX266g8739.t1, 
JX266g10324.t1, 
JX266g11640.t1, 
JX266g11766.t1, 
JX266g12217.t1, 
JX266g12708.t1 

JX265g42.t1, 
JX265g514.t1, 
JX265g1471.t1, 
JX265g2199.t1, 
JX265g2771.t1, 
JX265g4949.t1, 
JX265g9205.t1, 
JX265g7459.t1, 
JX265g9338.t1, 
JX265g10595.t1, 
JX265g10674.t1, 
JX265g12179.t1, 
JX265g13657.t1 

Citrate/malate antiporter 0 0 0 
succinate-fumarate transporter JN550g8827.t1 JX266g5799.t1 JX265g8779.t1 
Citrate transporter 0 0 0 

Sucrose transporter 

JN550g67.t1, 
JN550g6186.t1, 
JN550g6296.t1 

JX266g728.t1, 
JX266g8232.t1, 
JX266g8579.t1 

JX265g5408.t1, 
JX265g7551.t1, 
JX265g10522.t1 

Fructose transporter 0 0 0 

Alternative oxidase 

JN550g976.t1, 
JN550g6275.t1, 
JN550g3325.t1, 
JN550g9818.t1, 
JN550g12703.t1 

JX266g298.t1, 
JX266g6686.t1, 
JX266g13408.t1, 
JX266g1881.t1, 
JX266g8253.t1 

JX265g5518.t1, 
JX265g7765.t1, 
JX265g12910.t1, 
JX265g5319.t1, 
JX265g11504.t1 
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Appendix 
The appendix presents published interdisciplinary studies fruited from collaborations with 

different working groups. The supplementary files of these studies were not included, but can be 

viewed online and were deposited by their respective corresponding author with the publishing 

journal. 
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Genome sequencing of the neotype strain
CBS 554.65 reveals the MAT1–2 locus of
Aspergillus niger
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Abstract

Background: Aspergillus niger is a ubiquitous filamentous fungus widely employed as a cell factory thanks to its
abilities to produce a wide range of organic acids and enzymes. Its genome was one of the first Aspergillus
genomes to be sequenced in 2007, due to its economic importance and its role as model organism to study fungal
fermentation. Nowadays, the genome sequences of more than 20 A. niger strains are available. These, however, do
not include the neotype strain CBS 554.65.

Results: The genome of CBS 554.65 was sequenced with PacBio. A high-quality nuclear genome sequence
consisting of 17 contigs with a N50 value of 4.07 Mbp was obtained. The assembly covered all the 8 centromeric
regions of the chromosomes. In addition, a complete circular mitochondrial DNA assembly was obtained.
Bioinformatic analyses revealed the presence of a MAT1-2-1 gene in this genome, contrary to the most commonly
used A. niger strains, such as ATCC 1015 and CBS 513.88, which contain a MAT1-1-1 gene. A nucleotide alignment
showed a different orientation of the MAT1–1 locus of ATCC 1015 compared to the MAT1–2 locus of CBS 554.65,
relative to conserved genes flanking the MAT locus. Within 24 newly sequenced isolates of A. niger half of them
had a MAT1–1 locus and the other half a MAT1–2 locus. The genomic organization of the MAT1–2 locus in CBS
554.65 is similar to other Aspergillus species. In contrast, the region comprising the MAT1–1 locus is flipped in all
sequenced strains of A. niger.

Conclusions: This study, besides providing a high-quality genome sequence of an important A. niger strain,
suggests the occurrence of genetic flipping or switching events at the MAT1–1 locus of A. niger. These results
provide new insights in the mating system of A. niger and could contribute to the investigation and potential
discovery of sexuality in this species long thought to be asexual.
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Background
Aspergillus niger is a filamentous fungus classified in the
section Nigri of the genus Aspergillus. Its versatile me-
tabolism allows it to grow in a wide variety of environ-
ments [1]. Since the early twentieth century it has
become a major industrial producer of organic acids,
such as citric and gluconic acid, and enzymes, including
amylases and phytases [2, 3]. The United States Food
and Drug Administration has given it GRAS (Generally
Regarded As Safe) status because of its long history of
industrial use [3].

First genome sequencing projects were focused on in-
dustrial relevant strains. In 2007, the genome sequence
of the enzyme-producing strain CBS 513.88 was pub-
lished [4], followed by the sequencing of the citric acid-
producing strain ATCC 1015 in 2011 [5]. At the mo-
ment, the genome sequences of 23 A. niger strains are
available in GenBank. Surprisingly, the A. niger strain
CBS 554.65 has not yet been sequenced although it is
the official neotype strain of this species [6]. This strain
was isolated from a tannic-gallic acid fermentation in
Connecticut (USA) and it is listed as the (neo-)type
strain by international strain collections, such as the
Westerdijk Institute (CBS 554.65), the American Type
Culture Collection (ATCC 16888) and the ARS Culture
Collection (NRRL 326). According to the International
Code of Nomenclature for algae, fungi and plants (Shen-
zhen Code) a neotype is “a specimen or illustration se-
lected to serve as nomenclatural type if no original
material exists, or as long as it is missing” [7]. The im-
portance of strain CBS 554.65 lies in its use as biological
model and reference strain for morphological observa-
tions and taxonomical studies. A. niger was previously
shown to be able to form sclerotia [8–11], which are an
important prerequisite for the sexual development in
closely related species. In 2016 the presence of a
MAT1–2 locus in the genome of CBS 554.65 was men-
tioned in a study [12], making this strain an interesting
candidate for investigating sexuality in A. niger.

The MAT loci are regions of the genome which con-
tain one or more open reading frames of which at least
one encodes a transcription factor [13, 14]. Convention-
ally, the MAT locus containing a transcription factor
with an α1 domain similar to the MATα1 of S. cerevisiae
is called MAT1–1, while the MAT locus containing a
transcription factor with a high mobility group (HMG)
domain is called MAT1–2 [13]. The corresponding
genes are usually called MAT1-1-1 and MAT1-2-1 [13].
The first number indicates that the two sequences are
found in the same locus. Due to their sequence dissimi-
larities they are not termed alleles but idiomorphs [15].
MAT1-1-1 and MAT1-2-1 are major players in the sex-
ual cycle of fungi. They contain DNA binding motifs
and were shown to control the expression of pheromone

and pheromone-receptor genes during the mating
process [16–18]. In heterothallic species, which are self-
incompatible, only one of the two MAT genes is found
and mating can occur only between strains of opposite
mating-type [13]. In homothallic species, which are self-
fertile, both MAT genes are present, either linked or un-
linked, in the same genome [19]. In the ascomycetes, the
sequences flanking the MAT loci are highly conserved
[13, 20, 21]. In the aspergilli, as well as in other fungi, in-
cluding yeasts, the MAT idiomorphs are usually flanked
by the genes slaB, encoding for a cytoskeleton assembly
control factor, and the DNA lyase apnB. An anaphase
promoting complex gene (apcE) is also sometimes
present [21].

Although present in previously sequenced genomes,
the second mating-type locus of A. niger has not been
described in detail. In this study, we present the full gen-
ome sequence of a MAT1–2 A. niger strain and compare
its MAT locus to the one of strain ATCC 1015 and
those of 24 de novo sequenced A. niger isolates contain-
ing both MAT1–1 and MAT1–2 loci.

Materials and methods
Strains
The genetic organization of the MAT locus present in
A. niger CBS 554.65 (ATCC 16888, NRRL 326) was ana-
lyzed and compared to the MAT locus of A. niger ATCC
1015 and 24 A. niger isolates obtained from the Wester-
dijk Fungal Biodiversity Institute (Uppsalalaan 8, Ut-
recht, the Netherlands). The isolates analyzed are listed
in Table S1 (Additional file 1).

Media
The morphology of strain CBS 554.65 was inspected on
minimal medium [22] and malt extract agar (30 g/L malt
extract (AppliChem, Darmstadt, Germany) and 5 g/L
peptone from casein (Merck KGaA, Darmstadt,
Germany)). The strain was 4-point inoculated and incu-
bated at 30 °C for one week.

Genome sequencing and annotation
The genome of the A. niger neotype strain CBS 554.65
was sequenced with the PacBio® technology using the
PacBio SEQUEL system (Sequencing Chemistry S/P2-
C2/5.0) by the Vienna Biocenter Core Facilities (VBCF).
The genome was assembled with the default HGAP4
pipeline in PacBio SMRTlink version 5.1.0.26412. The
mitochondrial DNA was assembled using CLC Genomic
Workbench 12.0 (QIAGEN). The genome annotation of
CBS 554.65 was performed with Augustus [23], by train-
ing the tool on the genome annotation of the strain
ATCC 1015 as reference.

PCRs were performed on the genomic DNA of CBS
554.65 to confirm sequencing and assembly results.
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Primer pairs chr5_left_fwd/chr5_left_rev and chr5_
right_fwd_1/chr5_right_rev_1 were used to amplify
1756 bp and 1638 bp respectively in the left and in the
right region of chr5_00008F. Primers B150 and B151
were used to amplify 1644 bp in the MAT1–1 locus of
ATCC 1015. Primers B151 and B152 were used to amp-
lify 2009 bp in the MAT1–2 locus of CBS 554.65. PCR
products were sequenced by Microsynth AG.

The MAT locus sequences of 24 A. niger isolates were
extracted from the complete genome sequences obtained
with the Illumina technology and assembled using
SPADes [24] (data not published). Homologues of the
MAT genes in these isolates were determined based on
local Blastn searches using genes obtained from CBS
554.65 and ATCC 1015 as query. In 18 out of the 24 A.
niger isolates the MAT locus was distributed over mul-
tiple scaffolds. In order to verify the location of the
MAT genes and their orientation in these strains, diag-
nostic PCRs and subsequent sequencing were performed
to fill in silico gaps within the MAT locus. Primers used
in this study are listed in Table S2 (Additional file 2).

Bioinformatic analyses
The genome and the gene set of CBS 554.65 were evalu-
ated using Quast v5.0.2 [25, 26], which includes a bench-
marking with Benchmarking Universal Single-Copy
Orthologs (BUSCO) v3.0.2. This was performed with the
fungal dataset of 290 BUSCOs from 85 fungal species
[27]. The genome was masked using RepeatMasker
v4.0.9 to identify repetitive elements [28]. Transfer RNA
genes were detected using tRNAscan-SE v1.3.1 [29].

The unprocessed reads were mapped to the assembly
with the Burrows-Wheeler Alignment Tool (bwa) [30,
31] and the mapping was sorted with SAMtools [32].
The average coverage based on the sorted mapping was
calculated in the R environment [33]. The mappings for
each individual scaffold were plotted in R and coverage
graphs for each scaffold obtained.

The proteomes of the strains CBS 554.65 and NRRL3
were aligned using DIAMOND blastp [34, 35] with an
E-value of e− 10. The output, consisting of the unique
proteins of CBS 554.65 compared to NRRL3, was filtered
with a blastx analysis to remove unannotated proteins
and analyzed with pannzer2 [36]. The same analysis was
performed on the complete proteome of strain CBS
554.65. A singular enrichment analysis (SEA) was per-
formed on the GO term set of unique proteins of CBS
554.65 referenced to the entire GO term set of CBS
554.65 with agriGO [37, 38].

The genome sequences of strains ATCC 1015, NRRL3
and CBS 513.88 were retrieved from JGI [39]. Analyses
of the position of the MAT genes within the MAT locus
for A. niger strains were performed either on BLAST, by
searching in the whole-genome shotgun contig database

(wgs) of A. niger, or on CLC Main Workbench 20.0.2
(QIAGEN). The same analysis was performed for A. wel-
witschiae strains on BLAST against the whole-genome
shotgun contig database (wgs) limited by organism (As-
pergillus niger) and with FungiDB for the other Aspergil-
lus species [40]. Sequence analyses and alignments were
performed with CLC Main Workbench 20.0.2 (QIAG
EN).

Results and discussion
Morphology of strain CBS 554.65
The strain CBS 554.65 is the A. niger neotype, a refer-
ence strain for morphological and taxonomical analyses.
The morphology of this strain grown on minimal
medium and malt extract agar can be observed in Fig. 1.
On both media CBS 554.65 forms abundant conidia,
black on minimal medium and dark brown on malt ex-
tract agar.

Genome sequence and analysis
The genome sequencing of the neotype strain CBS
554.65 yielded 5.3 Gbp in 287,000 subreads. The mean
length was 18.4 Kbp for the longest subreads and half of
the data was in reads longer than 29 Kbp. The assembly
consisted of 17 contigs with a total of 40.4 Mbp and a
127-fold coverage. Half of the size of the genome is
comprised in 4 scaffolds (L50) of which the smallest has
a length of 4.07 Mbp (N50). The GC content is 49.57%.
100% complete BUSCOs (Benchmarking Universal
Single-Copy Orthologs) with 2 duplicated and no frag-
mented BUSCOs were found. The repetitive regions
were identified with RepeatMasker v4.0.9 [28]. Using this
approach, we were able to recognize interspersed re-
peats, such as long interspaced nuclear repeats (LINEs)
and long terminal repeats (LTR), short interspaced nu-
clear repeats (SINEs), transposable element like repeats
as well as small RNAs, tRNA genes, simple repeats and
low complexity repeats. A total of 669,638 bp of the gen-
ome was flagged as repetitive, this represents 1.66% of
the total genome. In addition, a tRNA prediction with

Fig. 1 Morphology of the neotype strain CBS 554.65 on minimal
medium (MM) and malt extract agar (MEA)
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tRNAscan-SE v1.3.1 was performed using the unmasked
genome, because fungal specific SINEs were associated
with tRNAs. Complete genome characteristics are re-
ported in Tables S3 and S4 of Additional file 3.

The nuclear genome was annotated with Augustus,
using the genome of strain ATCC 1015 as reference.
Based on this automated annotation 12,240 protein cod-
ing genes were predicted. Table 1 shows some basic
characteristics of the CBS 554.65 nuclear genome, calcu-
lated with Quast, in comparison to the characteristics of
other three sequenced A. niger strains, CBS 513.88,
ATCC 1015 and NRRL3, obtained from JGI.

The CBS 554.65 genome assembly has an increased
quality compared to the assemblies of the other strains,
with a higher coverage, a higher N50 value and a lower
L50 value. CBS 554.65 has a larger genome, while the
GC content is similar in the 4 strains. For each of the 8
chromosomes, a putative centromeric region between 88
and 100 kb was identified, which is highlighted in Fig. 2
with vertical black lines. These regions have a GC con-
tent between 17.1 and 18.4%, significantly lower than the
GC content characterizing the total genome (49.57%)
and do not contain any predicted ORF. The only excep-
tion is a single ORF of 219 nucleotides in the centro-
mere of chromosome 1. This is found in a 7 kb region of
the centromere with a higher GC content compared to
the GC content of the entire centromere, suggesting the
presence of a mobile element. A conserved domain
search [43] on this sequence gave as hits CHROMO and
chromo shadow domains (accession: cd00024), ribo-
nuclease H-like superfamily domain (accession: cl14782),
integrase zinc binding domain (accession: pfam17921),
reverse transcriptase domain (accession: cd01647),
RNase H-like domain found in reverse transcriptase (ac-
cession: pfam17919) and a retropepsin-like domain (ac-
cession: cd00303). The presence of the last four domains
suggests that the analyzed sequence has a retroviral or a
retrotransposon origin. Similar sequences with domains
for reverse transcriptase were also found in the centro-
meres of chromosomes 5, 6 and 7. Transposons and ret-
rotransposons have been identified in the centromeres

of other eukaryotes, including fungi [44, 45]. Blast ana-
lyses of the single chromosomes of strain CBS 554.65
against the complete genome of strain NRRL3 and of
strains CBS 513.88 showed that the putative centromeres
are almost completely lacking from the genome assem-
bly of NRRL3 (Fig. 2, grey areas in the blast graph) and
CBS 513.88 (Fig. S1, Additional file 4). Although difficult
to identify, centromeric regions in filamentous fungi are
composed of complex and heterogeneous AT rich se-
quences which can stretch up to 450 kb [45, 46]. Due to
the likely presence of near-identical long repeats, centro-
meres are difficult to sequence and assemble [46] which
explains why they are lacking in strain NRRL3. The blast
analyses against NRRL3 and CBS 513.88 showed that
other large regions of the genome of CBS 554.65 do not
find homology in NRRL3 or in CBS 513.88. To confirm
that these unique regions are not artifacts, the sequen-
cing reads of CBS 554.65 were remapped to the genome.
298,301 reads (90.38% of the total reads) were remapped
to the nuclear genome yielding an average coverage cal-
culated on scaffold level of 127x. Figure S2 in the add-
itional file 5 shows the coverage plots for each of the 17
contigs constituting the nuclear genome sequence. Con-
tinous coverage was also obtained for the CBS 554.65 re-
gions not found in NRRL3 such as those present in
chromosome 2 (chr2_00000F), chromosome 4 (chr4_
000001F) and chromosome 5 (chr5_000008F) (Fig. S2,
Additional file 5). Moreover, two analytic PCR reactions
were successfully performed on the non-homologous re-
gion on chromosome 5 (chr5_000008F, Fig. 2). Sequen-
cing of the PCR products confirmed the sequence
obtained by genome assembly. The long reads and the
high coverage characterizing this genome project allow
to assemble sequences which are missing from previous
genome assemblies obtained with other sequencing tech-
nologies. The number of protein-coding genes in CBS
554.65 is in line with what was found in ATCC 1015
and NRRL3. The large difference in the protein-coding
genes in strain CBS 513.88 is likely caused by overpre-
dictions, as previously suggested [5]. A comparison of
the proteome of CBS 554.65 and NRRL3 by a blastp

Table 1 Comparison of the basic characteristics of the nuclear genomes of 4 different A. niger strains

CBS 554.65 (This study) CBS 513.88 [4, 5] ATCC 1015 [5] NRRL3 [41, 42]

Genome size (Mb) 40.42 33.98 34.85 35.25

Coverage 127x 7.5x 8.9x 10x

Number of contigs 17 471 24 15

Number of scaffolds 17 19 24 15

Scaffold N50 (Mbp) 4.07 2.53 1.94 2.81

Scaffold L50 4 6 6 5

GC content (%) 49.57 50.4 50.3 49.92

Protein-coding genes 12,240 14,097 11,910 11,846
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Fig. 2 (See legend on next page.)
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analysis showed that there are 694 unique protein se-
quences in the proteome of CBS 554.65 compared to
NRRL3 (additional file 6, Table S6) and 209 unique pro-
tein sequences in the proteome of NRRL3 compared to
CBS 554.65 (additional file 6, Table S7). GO terms were
assigned to proteins and a GO term enrichment analysis
was performed with agriGO [37, 38]. 39 GO terms were
significantly enriched in the set of unique CBS 554.65
GO terms when referenced to the entire CBS 554.65 GO
term set (additional file 6, Table S5, Figs. S3 and S4).
Interestingly, GO terms related to thiamine, cholesterol
metabolic processes as well as RNA processing are
enriched. Overall, this demonstrates that in this genome
sequence novel protein sequences were detected, which
are absent from previous reference genome projects and
might yield novel insights into the biology of this fungus.

Mitochondrial DNA
The mitochondrial DNA is often neglected in genome
projects, which tend to focus on the nuclear genome. In
A. niger only one mitochondrial DNA (mtDNA) assem-
bly was reported, for the strain N909 [48]. In this study,
the mtDNA of strain CBS 554.65 was de novo assembled

from PacBio reads as a circular DNA with a length of
31,363 bp. MtDNA is abundant in whole genome se-
quencing projects and the read coverage of the assembly
(average: 1220 x, min: 328 x, max: 1674 x) is thus higher
than that for the nuclear genome. In total 18 ORFs, 26
tRNA and 2 rRNA sequences were annotated (Fig. 3).
All 15 core mitochondrial genes reported for Aspergillus
species were identified with a similar gene organization
[49]. In addition, three accessory genes orf1L, orf3 and
endo1 were annotated. The gene endo1 is located in the
intron of cox1 and encodes a putative homing endo-
nuclease gene belonging to the LAGLIDADG family fre-
quently found in the cox1 intron of other filamentous
fungi [49]. The gene orf3 encodes a hypothetical protein
of 191 residues, which is also present in the mtDNA of
strain N909 but was not annotated there. Surprisingly
this unknown protein has a good hit against an un-
known protein of Staphylococcus aureus (99% identity,
WP_117225298.1), however not against other proteins of
Aspergillus species. In A. niger strain N909 two other
unknown proteins are encoded in orf1 and orf2. These
two open reading frames are connected to orf1L in A.
niger CBS 554.65 yielding a potential protein product

(See figure on previous page.)
Fig. 2 Assembly of the genome sequence of CBS 554.65 consisting of 17 contigs (in scale). For each contig (black horizontal lines) the annotated
ORFs (first row), the GC content (second row) and the conservation compared to NRRL3 (third row) are schematically represented. The annotation
was obtained with Augustus. The GC content was calculated using a window size of 25 bp. The upper and darker graph represents the maximum
GC content value observed in that region, the middle graph represents the mean GC value and the lower graph represents the minimum GC
value. The conservation graph (last row) was obtained by blasting each contig of CBS 554.65 against the whole genome of strain NRRL3. The
results shown here were additionally confirmed using Mauve [47] by performing progressive alignments of each CBS 554.65 scaffold with the
complete genome sequence of NRRL3 (data not shown). Green areas indicate genomic regions conserved between the two strains, grey areas
indicate regions only found in CBS 554.65 and not in NRRL3. Below the conservation graph lines representing the chromosomes of strain NRRL3
are reported, as a result of the blast analysis. Chr6_00005F, scaffold1_000010F, scaffold5_000015F and scaffold6_000016F contain the highly
repetitive ribosomal DNA (rDNA) gene unit, indicated with a dashed line on top of the scaffolds. Notably, for each of the 8 identified
chromosomes, a centromeric region of at least 80 kb could be identified where ORFs are not annotated (indicated with two parallel and vertical
lines; the first and the last nucleotide after and before the annotated ORFs, respectively, are indicated). These regions correspond to a decrease in
the GC content (as indicated in the GC graph) and are only partially present in the genome of strain NRRL3 (grey areas in the blast graph). Dots
on chr5_000008F and on chr7_000002F indicate the region where the PCRs were performed. The MAT locus analyzed in the following
paragraphs is indicated by a red box on chromosome 7. Fig. S1 in the additional file 4 reports the comparison of the CBS 554.65 genome to the
one of strain CBS 513.88. Additional information on the length of the contigs and the coordinates of the alignments are reported in Table S8
of Additional file 7

Fig. 3 Annotation of the 31 kbp circular mtDNA sequence (displayed in a linear projection): ORF (yellow), rRNA, tRNA (red)
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with 739 amino acid residues. This is similar to an open
reading frame located at the same position between
nad1 and nad4 in the mtDNA of A. flavus NRRL 3357
(AFLA_m0040), with a size of 667 amino acid residues.
In the N-terminal region of both putative proteins,
transmembrane spanning regions can be predicted sup-
posing a location in a mitochondrial membrane. How-
ever the C-terminal regions are not conserved between
A. niger and A. flavus proteins. We suggest to use the
mitochondrial assembly of CBS 554.65 as a reference se-
quence for A. niger mitochondria because it is known
that strain N909 is resistant to oligomycin [50]. This re-
sistance is typically linked to mutations in the mtDNA,
either in atp6 [51] or atp9 [52], and indeed two muta-
tions are found in atp6 of strain N909 (L26W and
S173L).

Discovery and sequencing of a MAT1–2 A. niger strain
The genome sequencing and analysis of strain CBS
554.65 allowed to determine the mating-type of this
strain. The sequence of the putative MAT1-2-1 gene
(g9041) was searched in the standard nucleotide collec-
tion database (nr/nt) using Blastn. This gave as hits the
mating-type HMG-box protein MAT1-2-1 of other as-
pergilli, including A. neoniger (with an identity of
93.25%) and A. tubingensis (with an identity of 93.07%).
As such, we consider gene g9041 to be homologous to
the MAT1-2-1 gene of other Aspergillus species.

This is in line with a previous study that showed the
presence of a MAT1-2-1 sequence in the CBS 554.65
strain through a PCR approach [12]. Here we report the
complete genome sequence of an A. niger strain having
a MAT1-2-1 gene. The availability of this genome se-
quence represents an important tool for further studies
investigating the sexual potential of A. niger. The

presence of both opposite mating-type genes in different
strains belonging to the same species represents a strong
hint of a sexual lifestyle [14].

MAT1–2 locus analysis and comparison to MAT1–1
The locus of strains CBS 554.65 containing the MAT1-
2-1 gene was compared in silico to the locus of strain
ATCC 1015 containing the MAT1-1-1 gene. This was
done to determine whether the genes flanking the
MAT1-1-1 gene are also present in the genome of the
MAT1–2 strain and vice versa. A region of 40,517 bp,
spanning from gene Aspni7|39467 (genomic position
2,504,615 in the v7 of the ATCC 1015 genome) to gene
Aspni7|1128148 (genomic position 2,545,131) was
aligned to the corresponding region of strain CBS 554.65
(Fig. 4). In CBS 554.65 the two genes homologous to
Aspni7|39467 (g9051) and Aspni7|1128148 (g9036) are
comprised in a sequence of 43,891 bp, almost 4 kb lon-
ger than in ATCC 1015. The identifiers of the genes in-
cluded in these regions are indicated in Fig. 4 and
additionally reported in Table 2, with their predicted
function retrieved from FungiDB or blast analysis. The
alignment shows that the MAT genes occupy the same
genomic location at chromosome 7. The genes com-
prised in the analyzed loci are mostly conserved between
the two strains, with the exception of genes
Aspni7|1178859 (MAT1-1-1), Aspni7|1128137 and
Aspni7|1160288, unique for ATCC 1015, and g9046,
g9041 (MAT1-2-1) and g9040–2 (MAT1-2-4), unique
for CBS 554.65. Aspni7|1128137 has predicted metal ion
transport activity and it is found in other Aspergillus
species, either heterothallic with a MAT1-1-1 or a
MAT1-2-1 gene or homothallic. It is not found near the
MAT gene, with the exception of A. brasiliensis and A.
ochraceoroseus. Aspni7|1160288 has a domain with

Fig. 4 Nucleotide alignment between the same genomic region of ATCC 1015 (MAT1–1) and CBS 554.65 (MAT1–2). Genes found in both strains
are indicated with a box of the same color, MAT genes are indicated with a circle and unmarked genes are unique in each strain. Below each
genomic region, green lines indicate regions homologous in the two strains and dotted lines regions unique for each strain. A red arrow
indicates the genomic region of ATCC 1015 which contains the MAT1-1-1 gene and appears flipped compared to the corresponding region in
CBS 554.65 (yellow arrow). Small arrows with numbers B150, B151 and B152 indicate primers used for PCRs. Orange triangles indicate the
presence of a 7 bp motif (5′-TTACACT)
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predicted role in proteolysis and its homolog in other as-
pergilli is present at another genomic locus, not in prox-
imity to the MAT gene. A homolog of gene g9046 was
found by Blastn search in Aspergillus vadensis, in a dif-
ferent location of the genome than the MAT locus.
These results suggest that these unique genes are un-
likely to be part of the “core” MAT locus. The gene
g9040–2 is a putative homolog of the MAT1-2-4 gene in
A. fumigatus, an additional mating-type gene required
for mating and cleistothecia formation [53]. Another dif-
ference between ATCC 1015 and CBS 554.65 is repre-
sented by the gene putatively encoding for a HAD-like
protein. While this gene is complete in CBS 554.65
(g9045), it appears disrupted in ATCC 1015 and, there-
fore, doubly annotated in this strain (Aspni7|1095364
and Aspni7|1128138). The other genes present in the se-
lected genomic region show a high level of conservation,
with a higher synteny further away from the MAT genes
(genes in the purple and blue boxes). Moreover, genes
encoding for the DNA lyase apnB, the cytoskeleton con-
trol assembly factor slaB and the anaphase promoting
complex apcE are present in both MAT loci. These

genes are normally found in the MAT loci of other
fungi, including yeast [21]. Their presence in the MAT
loci of A. niger further confirms the high level of conser-
vation characterizing this locus. In heterothallic ascomy-
cetes the MAT genes are commonly included between
the genes apnB and slaB [21]. From the alignment in
Fig. 4 the relative position of the MAT genes to apnB
and slaB can be analyzed. In CBS 554.65 the MAT1-2-1
gene (g9041) is flanked by apnB and slaB respectively
upstream and seven genes downstream. In contrast, in
the MAT1–1 locus of strain ATCC 1015 the MAT gene
is flanked downstream by apnB and upstream by a con-
served sequence including adeA, while slaB is found on
the same side of apnB. The entire genomic locus, con-
taining the MAT1-1-1 gene and eight other genes (23
kbp indicated by the red arrow in Fig. 4), shows a flipped
orientation compared to the corresponding locus in CBS
554.65 containing the MAT1-2-1 gene (indicated by an
orange arrow in Fig. 4). The ORF direction of the con-
served genes apnB, coxM and apcE additionally confirms
the different orientation of this locus in the two strains.
In addition, PCRs performed with primers B150, B151

Table 2 List of genes included in the genomic region comprising the MAT genes

ATCC 1015 CBS
554.65

Predicted function retrieved from FungiDB or blast

Aspni7|39467 g9051 Hypothetical protein

Aspni7|1167974 g9050 CIA30-domain containing protein – Ortholog(s) have role in mitochondrial respiratory chain complex I assembly

Aspni7|1225150 g9049 SAICAR synthetase (adeA)

Aspni7|1187920 g9048 Homolog in CBS 513.88 has domain(s) with predicted catalytic activity, metal ion binding, phosphoric diester hydrolase
activity

Aspni7|39471 g9040–1 Hypothetical protein

Aspni7|1178859 – Mating-type protein MAT1-1-1

Aspni7|1187921 g9042 DNA lyase Apn2|Hypothetical protein

Aspni7|1147272 g9043 Hypothetical cytochrome C oxidase|Mitochondrial cytochrome c oxidase subunit VIa

Aspni7|1187923 g9044 Ortholog(s) are anaphase-promoting complex proteins

Aspni7|1128137 – Homolog in CBS 513.88 has domain(s) with predicted metal ion transmembrane transporter activity, role in metal ion
transport, transmembrane transport and membrane localization

Aspni7|1095364 g9045 HAD-like protein; Homolog in CBS 513.88 has domain(s) with predicted hydrolase activity

Aspni7|1128138 g9045 HAD-like protein; Homolog in CBS 513.88 has domain(s) with predicted hydrolase activity

Aspni7|1187925 g9047 Glycosyltransferase Family 8 protein - Ortholog(s) have acetylglucosaminyltransferase activity, role in protein N-linked gly-
cosylation and Golgi medial cisterna localization

Aspni7|1160288 – Aspartic protease|Hypothetical aspartic protease

Aspni7|39480 g9040 WD40 repeat-like protein

Aspni7|1187926 g9039 Aldehyde dehydrogenase

Aspni7|53077 g9038 CoA-transferase family III

Aspni7|1187928 g9037 Salicylate hydroxylase

Aspni7|1128148 g9036 Cytoskeleton assembly control protein Sla2

– g9046 Hypothetical protein

– g9041 Mating-type HMG-box protein MAT1-2-1

– g9040–2 Hypothetical protein – Putative homologue of MAT1–2-4 of A. fumigatus
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and B152 (Fig. 4) yielded expected bands, confirming the
orientation of the MAT loci of both ATCC 1015 and
CBS 554.65. By sequence analysis, a repetitive 7 bp DNA
motif (5´-TTACACT) was found in the MAT1–1 locus
(orange triangles in Fig. 4), where the homology between
the MAT1–1 and MAT1–2 loci breaks (in proximity to
adeA and slaB). An additional site of this motif was
found in the gene encoding a HAD-like hydrolase
(Aspni7|1128138). This motif is present at similar posi-
tions in at least two other sequenced MAT1–1 strains of
A. niger (N402, CBS 513.88). Differently, the MAT1–2
strain presents this motif only at the site close to the
adeA gene and in the putative HAD-like hydrolase gene
(g9045), but not at the site close to the slaB gene.

Methods to identify the opposite mating-type in
strains isolated from natural sources often rely on the
use of primers designed to bind to apnB and slaB, since
these are the genes that commonly flank the MAT gene
itself [54, 55]. In both mating-type A. niger strains, slaB
is found more than 12 kbp away from the MAT gene. In
addition, the relative orientation of apnB to slaB is dif-
ferent in strains having opposite mating types. This
might explain why the MAT1–2 locus was only men-
tioned by one previous study [12] but never described in
detail so far.

Both the particular orientation of the MAT locus and
the presence of a repetitive motif in the MAT loci sug-
gest that a genetic switch or a flipping event might have
occurred or is still ongoing in A. niger, which might
affect the expression of the MAT genes. Genetic switch-
ing events at the MAT locus are known for other asco-
mycetes, particularly yeasts. For instance, in S. cerevisiae
a switching mechanism involving an endonuclease and
two inactive but intact copies of the MAT genes allows
to switch the MAT type of the cell [56]. Expression of
the MAT gene is instead regulated in the methylotrophic
yeasts Komagataella phaffii and Ogataea polymorpha via
a flip/flop mechanism [57, 58]. In these species, a 19 kbp
sequence including both mating type genes is flipped so
that a MAT gene will be close to the centromere (5 kbp
from the centromere) and, therefore, silenced while the
other will be transcribed. In CBS 554.65 the region com-
prising the MAT1-2-1 gene is present at around 280 kbp
downstream of the putative centromere, which is much
further away of what observed for K. phaffi and O. poly-
morpha. However, in certain basidiomycetes, such as
Microbotryum saponariae and Microbotryum lagerhei-
mii, the mating-type locus HD (containing the homeo-
domain genes) is around 150 kbp distant from the
centromere and linked to it [59]. It was proposed that
the proximity to the centromere in these species might
be enough to reduce recombination events [59]. The ef-
fect of the distance between the centromere and the
MAT genes in A. niger merits further attention,

especially in view of a potential sexual cycle characteriz-
ing this species.

Inversion at the MAT locus have been described for
certain homothallic filamentous fungi such as Sclerotinia
sclerotiorum and Sclerotinia minor [60, 61]. Field ana-
lysis of a large number of isolates showed that strains
belonging to these species can either present a non-
inverted or an inverted MAT locus. In the inverted
orientation two of the four MAT genes at the locus have
the opposite orientation and one gene is truncated. In
the case of S. sclerotiorum, differences in the gene ex-
pression were observed between inverted and non-
inverted strains. This inversion, induced by crossing-
over between two identical inverted repeat present in
the locus, likely happens during the sexual cycle before
meiosis [60]. The analysis of a larger number of A. niger
isolates is required to investigate whether opposite ori-
entations of both MAT loci exist for this species as well
and what the implications of such inversions might be.
Chromosomal inversions are considered to prevent re-
combination between sex determining genes in higher
eukaryotes, such as animals and plants [62]. Further
studies are required to investigate whether A. niger pos-
sesses a genetic switching mechanism controlling its sex-
ual development.

Genetic comparison of MAT loci in different aspergilli and
additional A. niger strains
This study revealed a particular configuration for the
MAT1–1 locus of strain ATCC 1015. For this reason,
the orientation of the MAT locus of additional Aspergil-
lus species for which a genome sequence is available was
analyzed. Firstly, the genes adeA and slaB were retrieved
as they are conserved and often found at the right and
left flank of the MAT gene, respectively (Fig. 4). Subse-
quently, the position of the MAT gene was compared to
the three conserved genes apnB, coxM and apcE. The
MAT gene could be either included between adeA and
apnB, like in ATCC 1015 (flipped position), or between
apnB and slaB, like in CBS 554.65 (conserved position).
The results of this analysis are reported in Table 3. A
complete table with the identifiers of all genes analyzed
is reported in the Additional file 8.

Table 4 MAT genes which are found between apnB
and slaB are considered to have a “conserved” position,
while MAT genes identified between adeA and apnB are
considered as “flipped”. Aspergillus species are grouped
in sections based on the most updated classification
[71]. For each species it is indicated if a sexual cycle has
been reported in the literature.

In the analyzed Aspergillus sequences the MAT gene
(either MAT1-1-1 or MAT1-2-1) was mostly found be-
tween the genes apnB and slaB, such as in CBS 554.65
(conserved). The only exceptions, showing a
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configuration similar to the MAT1–1 locus of ATCC
1015, were the MAT1-1-1 gene of A. welwitschiae and
the MAT1-2-1 gene of A. brasiliensis. This analysis
could not be performed on the MAT1–2 locus of A. wel-
witschiae nor on the MAT1–1 locus of A. brasiliensis,
due to the unavailability of sequences for strains of the
opposite mating type. Seven of the analyzed species, in-
cluding the closely related A. tubingensis, were reported
to have a sexual cycle. A conserved position of the MAT
gene was observed for all of these species with the ex-
ception for A. glaucus, whose conserved genes were not
found in the vicinity of the MAT gene. These

observations suggest that the position of the MAT gene
and the orientation of the locus might have an impact
on the sexual development of the respective fungus.

Since the orientation observed for the MAT1–1 locus
of ATCC 1015 might be peculiar for this A. niger strain
only, additional genome sequences were analyzed to de-
termine the orientation of the MAT locus of other se-
quenced strains of A. niger (Table 4). 18 out of 23 A.
niger strain sequences deposited in GenBank contain a
MAT1-1-1 gene and they all show the same orientation
of the MAT locus as observed in ATCC 1015. The other
5 strains contain a MAT1–2 locus and they all show the

Table 3 MAT gene identifiers of the analyzed Aspergillus strains and their position in the MAT locus

Section Species Strain Mating-type gene -
MAT

Mating-
type

MAT
position

Sexual cycle described for the
species

Nigri A. welwitschiae CBS 139.54 172,181 MAT1–1 flipped No

A. kawachii (A.
luchuensis)

IFO 4308 AKAW_03832 MAT1–2 conserved No

A. luchuensis 106.47 ASPFODRAFT_180958 MAT1–1 conserved No

A. tubingensis G131 Not annotated MAT1–2 conserved Yes [63]

CBS 134.48 ASPTUDRAFT_124452 MAT1–1 conserved

A. niger CBS 554.65 g9041 MAT1–2 conserved No

ATCC 1015 ASPNIDRAFT2_1178859 MAT1–1 flipped

A. brasiliensis CBS
101740

ASPBRDRAFT_167991 MAT1–2 flipped No

A. carbonarius ITEM 5010 ASPCADRAFT_1991 MAT1–2 conserved No

A. aculeatus ATCC
16872

ASPACDRAFT_1867751 MAT1–2 conserved No

Nidulantes A. versicolor CBS 583.65 ASPVEDRAFT_82222 MAT1–2 conserved No

A. sydowii CBS 593.65 ASPSYDRAFT_87884 MAT1–2 conserved No

Ochraceorosei A. ochraceoroseus IBT 24754 P175DRAFT_0477739 MAT1–1 conserved No

Flavi A. flavus NRRL 3357 AFLA_103210 MAT1–1 conserved Yes [64]

A. oryzae BCC7051 OAory_01101300 MAT1–2 conserved No

RIB40 AO090020000089 MAT1–1 conserved

Circumdati A. steynii IBT 23096 P170DRAFT_349471 MAT1–2 conserved No

Candidi A. campestris IBT 28561 P168DRAFT_313902 MAT1–1 conserved No

P168DRAFT_285957 MAT1–2 conserved

Terrei A. terreus NIH2624 ATEG_08812 MAT1–1 conserved Yes [65]

Fumigati A. novofumigatus IBT 16806 P174DRAFT_462167 MAT1–2 conserved No

A. fischeri NRRL 181 NFIA_071100 MAT1–1 conserved Yes [66]

NFIA_024390 MAT1–2 conserved

A. fumigatus Af293 Afu3g06170 MAT1–2 conserved Yes [67]

A1163 AFUB_042900 MAT1–1 conserved

AFUB_042890 MAT1–2 conserved

Clavati A. clavatus NRRL1 ACLA_034110 MAT1–1 conserved Yes [68]

ACLA_034120 MAT1–2 conserved

Aspergillus A. glaucus CBS 516.65 ASPGLDRAFT_89185 MAT1–1 n.a.1 Yes [69, 70]

Cremei A. wentii DTO 134E9 ASPWEDRAFT_184745 MAT1–2 conserved No
1 Conserved genes not in the MAT locus
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same conserved orientation as observed in the strain
CBS 554.65. The orientation could not be determined
for one MAT1–2 strain, MOD1FUNGI2, since the dif-
ferent analyzed genes are present in different scaffolds in
the available genome sequence. Overall, 80% of the se-
quenced strains contain a MAT1–1 locus. The selection
procedure of strains for whole-genome sequencing
might be biased by their industrial relevance and might
not resemble the mating-type distribution in the envir-
onment. Therefore, 24 randomly picked isolates of A.
niger were sequenced and the MAT loci analyzed: 12
contain the MAT1–1 locus and 12 the MAT1–2 locus
(Table 4).

The MAT locus configuration of these strains is simi-
lar to the configuration of strain ATCC 1015, in the case
of the MAT1–1 strains, and to CBS 554.65, in the case
of at least 10 out of 12 MAT1–2 strains. In the two
remaining MAT1–2 strains (CBS 118.52 and CBS
147482) a gap between two genomic scaffolds could not
be closed by PCR. This is likely due to the presence of a
region with multiple G repeats. However, when the two
separate scaffolds of these isolates were aligned to the
MAT1–2 locus of CBS 554.65, they appeared to have
the same locus configuration as the other 10 MAT1–2
isolates. Similarly to what was observed for ATCC 1015
and CBS 554.65, the HAD-like protein encoding gene
appears disrupted in all the MAT1–1 isolates and
complete in all the MAT1–2 isolates. Further studies are
required to investigate whether the disruption of this
gene in the MAT1–1 strains plays a role in the context
of fungal development. Overall, the MAT1–1 configur-
ation described in Fig. 4 is a peculiar feature of A. niger
and its close relative A. welwitschiae. Despite the un-
usual orientation, the presence of a 50:50 ratio of
MAT1–1:MAT1–2 among 24 randomly selected A. niger
isolates is remarkable and suggests that sexual
reproduction is occurring in this species. Interestingly,
MAT1–1 occurs at higher frequency in commonly used
industrial and laboratory strains. This could be pure co-
incidence, but it could also indicate a phenotypic differ-
ence between strains with opposite matingtypes.

Conclusions
The A. niger neotype strain CBS 554.65 has now a high
quality genome sequence, which covers all the 8 centro-
meres and includes a complete mtDNA sequence. This
sequence represents an important tool for further stud-
ies. The analysis of this genome revealed the presence of
a second mating-type locus (MAT1–2) in this strain,
making it a suitable reference strain to investigate fungal
development in A. niger. The position and the orienta-
tion of the MAT1-2-1 gene of all the 15 MAT1–2 A.
niger strains analyzed was found to be similar to that of
other aspergilli, with the MAT gene included between

the genes apnB and slaB. The unusual orientation of the
MAT1-1-1 locus found in the already sequenced A. niger
strains and in other 12 newly sequenced isolates indi-
cates that flipping or switching events have occurred at
the MAT locus. Further research is required to investi-
gate whether this difference in the position of the MAT
genes in the opposite mating-type strains could have an
effect on the expression of the genes included in this
genomic region. These flipping events might have a dir-
ect impact on the sexual development in A. niger.
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A B S T R A C T

Cheap and renewable feedstocks such as the one-carbon substrate formate are emerging for sustainable pro-
duction in a growing chemical industry. We investigated the acetogen Acetobacterium woodii as a potential host 
for bioproduction from formate alone and together with autotrophic and heterotrophic co-substrates by quan-
titatively analyzing physiology, transcriptome, and proteome in chemostat cultivations in combination with 
computational analyses. Continuous cultivations with a specific growth rate of 0.05 h−1 on formate showed high 
specific substrate uptake rates (47 mmol g−1 h−1). Co-utilization of formate with H2, CO, CO2 or fructose was 
achieved without catabolite repression and with acetate as the sole metabolic product. A transcriptomic com-
parison of all growth conditions revealed a distinct adaptation of A. woodii to growth on formate as 570 genes 
were changed in their transcript level. Transcriptome and proteome showed higher expression of the Wood- 
Ljungdahl pathway during growth on formate and gaseous substrates, underlining its function during utiliza-
tion of one-carbon substrates. Flux balance analysis showed varying flux levels for the WLP (0.7–16.4 mmol g−1 

h−1) and major differences in redox and energy metabolism. Growth on formate, H2/CO2, and formate + H2/CO2 
resulted in low energy availability (0.20–0.22 ATP/acetate) which was increased during co-utilization with CO 
or fructose (0.31 ATP/acetate for formate + H2/CO/CO2, 0.75 ATP/acetate for formate + fructose). Unitrophic 
and mixotrophic conversion of all substrates was further characterized by high energetic efficiencies. In silico 
analysis of bioproduction of ethanol and lactate from formate and autotrophic and heterotrophic co-substrates 
showed promising energetic efficiencies (70–92%). Collectively, our findings reveal A. woodii as a promising 
host for flexible and simultaneous bioconversion of multiple substrates, underline the potential of substrate co- 
utilization to improve the energy availability of acetogens and encourage metabolic engineering of acetogenic 
bacteria for the efficient synthesis of bulk chemicals and fuels from sustainable one carbon substrates.   

1. Introduction

En route to a circular bioeconomy, industrial biotechnology becomes
a key technology to achieve the United Nations sustainable development 
goals (Arora and Mishra, 2019) and reduce human-made CO2 emissions 
(Köpke and Simpson, 2020). However, to meet the rising global demand 
for chemicals and fuels (Panich et al., 2021), cheap and sustainable 
feedstocks are needed for industrial bioproduction. 

One-carbon substrates and H2 are emerging as promising alternatives 
to traditional, agro-based biotechnological feedstocks. Currently, 
gaseous carbon and energy sources (CO2, CO, H2) are available from 
large point sources (e.g. steel mills) (Köpke and Simpson, 2020; Novak 
et al., 2021) and can be obtained via gasification of solid municipal 
waste or residual biomass (Liew et al., 2016). Moreover, bioproduction 
of ethanol from CO via gas fermentation has already been commer-
cialized (Vees et al., 2020). 
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In the future, circular carbon economies are anticipated to be based
on feedstocks obtained from renewable energy (e.g. wind, solar) and 
CO2 as abundantly available carbon source (Claassens et al, 2018, 2019; 
Cotton et al., 2020; Yishai et al., 2016). At this point, CO2 might be 
directly captured and concentrated from air (Chatterjee and Huang, 
2020; Fasihi et al., 2019; Realmonte et al., 2019). 

CO, H2 and formate have been described as suitable microbial elec-
tron donors and are therefore promising mediators between chemical 
feedstock production and utilization for bioproduction (Boone et al., 
1989; Diender et al., 2015). The small one-carbon compound formate is 
particularly interesting in this context as it can be efficiently produced 
from CO2 via electrochemical reduction, hydrogenation and photore-
duction (Yishai et al., 2016). Consequently, formate may serve as a 
chemical energy storage system for excess electricity in the future. While 
CO and H2 can also be produced electrochemically or via water hydro-
lysis with promising efficiencies (Haas et al., 2018; Hardt et al., 2021), 
formate has several advantages as a substrate compared to the direct 
utilization of gaseous feedstocks. In contrast to gas fermentations which 
are typically limited by the gas-liquid mass transfer (Van Hecke et al., 
2019), formate is completely miscible with water and can be directly 
added to the cultivation medium. In addition, the transport and storage 
of gaseous substrates such as H2 and CO is challenging due to their high 
reactivity and toxicity (Cotton et al., 2020; Karmann et al., 2017). 
Interestingly, the interconversion of H2, CO and CO2 to formate by 
acetogenic bacteria could additionally provide a solution for storage of 
H2 (Müller, 2019; Schuchmann and Müller, 2013; Schwarz et al., 2020; 
Schwarz and Müller, 2020). In the future, formate may be produced in 
Power-to-X (P2X) approaches. Therefore, formate supply and prices may 
correlate with the availability of electricity (Li et al., 2012; Yishai et al., 
2016). 

Currently, several natural and metabolically engineered for-
matotrophs are investigated for their applicability in formate-based 
bioproduction. An important criterion for potential microbial hosts is 
the amount of energy of the substrate that is retained in the product (i.e. 
energy efficiency) (Claassens et al., 2019). Natural formatotrophs such 
as Pseudomonas species and Cupriavidus necator suffer from low energy 
efficiency on formate, which in turn limits product yields (Claassens 
et al., 2020; Goldberg et al., 1976). Hence, the metabolic engineering of 
Escherichia coli and Saccharomyces cerevisiae for growth on formate 
focused on efficient assimilation routes such as the reductive glycine 
pathway (rGLY) (Gonzalez de la Cruz et al., 2019; Kim et al., 2020). Out 
of all engineered and natural formatotrophs, acetogens show the highest 
energy efficiency for formate assimilation (Cotton et al., 2020). Ace-
togens are strictly anaerobic bacteria that utilize the Wood-Ljungdahl 
Pathway (WLP) and an interlinked redox balancing system for the 
growth on a variety of one-carbon substrates (Schuchmann and Müller, 
2014). The model acetogen Acetobacterium woodii utilizes the four 
one-carbon sources CO, CO2, formate and methanol (Balch et al., 1977; 
Bertsch and Müller, 2015a; Kremp et al., 2018; Moon et al., 2021) and is 
considered for industrial production of the platform chemical acetate 
from gaseous substrates (Demler and Weuster-Botz, 2011; Kantzow 
et al., 2015; Novak et al., 2021). Its suitable substrate spectrum and 
energy-efficient metabolism make A. woodii a promising microbial 
platform organism for sustainable bioprocesses. 

In the future, formate may either serve as the main carbon source or 
as a supplementary substrate in flexible bioprocesses. The co-utilization 
of formate with other carbon and energy sources such as carbohydrates 
might offer advantages compared to the use of one-carbon substrates. In 
addition to higher carbon conversion efficiencies, mixotrophic substrate 
utilization might be used as a strategy to improve bioenergetics in 
acetogens single substrates (Jones et al., 2016; Maru et al., 2018; Molitor 
et al., 2017). Notably, mixotrophic utilization of carbohydrates and 
gaseous substrates is easily achieved by some acetogens such as 
A. woodii (Braun and Gottschalk, 1981). In addition, the future bio-
economy needs to react flexibly to fluctuating energy and substrate
availabilities (Blank et al., 2020; Liew et al., 2016; Wendisch et al.,

2016; Yishai et al., 2016). Therefore, co-utilization of substrates and 
robust process performance with varying substrate supply are desirable. 

In this study, we aimed to obtain a quantitative understanding of 
unitrophic and mixotrophic formate utilization by A. woodii to evaluate 
its potential for formate-based bioproduction. To that end, chemostat 
cultivations were used to study single substrate (formate, H2/CO2 and 
fructose) utilization on a physiological, transcriptomic and proteomic 
level. Additionally, we tested whether A. woodii can co-utilize formate 
with gaseous (H2/CO2 and H2/CO/CO2) and heterotrophic (fructose) 
substrates. Transcriptome and proteome data together with metabolic 
modelling revealed a high flexibility and robustness of A. woodii to 
utilize multiple substrates simultaneously. Metabolic modelling further 
highlighted how intracellular energy availability can be controlled by 
substrate co-utilization. Finally, we discuss the energetic efficiency and 
strategies for formate-based bioproduction of novel products with 
A. woodii.

2. Material and methods

2.1. Bacterial strain

Acetobacterium woodii DSM1030 was used in all experiments. For 
cryo-preservation, cell suspensions supplemented with a final sucrose 
concentration of 125 g L−1 were stored at −80 ◦C. 

2.2. Growth medium 

For shaken cultivation in serum bottles, cells were grown on a 
phosphate-buffered medium as previously described (Novak et al., 
2021). The medium contained per liter: 1 g NH4Cl, 2 g yeast extract, 
3.47 g NaCl, 0.1 g MgSO4⋅7 H2O, 1.76 g KH2PO4, 8.44 g K2HPO4, 0.5 g 
cysteine-HCl⋅H2O, 0.25 mL sodium resazurin (0.2% w/v), 20 mL 
adapted trace element solution DSMZ141 and 10 mL vitamin solution 
DSMZ 141. The vitamin solution from medium recipe DSMZ 141 con-
tained per liter: 2 mg Biotin, 2 mg folic acid, 10 mg pyridoxine-HCl, 5 mg 
thiamine-HCl, 5 mg riboflavin, 5 mg nicotinic acid, 5 mg D-Ca-pa-
nthothenate, 0.1 mg vitamin B12, 5 mg p-Aminobenzoic acid and 5 mg 
Lipoic acid. The adapted trace element solution based on DSMZ141 
contained per liter: 1.5 g nitrilotriacetic acid, 3 g MgSO4⋅7 H2O, 0.5 g 
MnSO4⋅ H2O, 1 g NaCl, 0.1 g FeSO4⋅7 H2O, 0.152 g Co(II)Cl2⋅6 H2O, 0.1 
g CaCl2⋅2 H2O, 0.18 g ZnSO4⋅7 H2O, 0.01 g CuSO4⋅5 H2O, 0.02 g KAl 
(SO4)2⋅12 H2O, 0.01 g boric acid, 0.01 g Na2MoO4⋅2 H2O, 0.033 g Ni(II) 
SO4⋅6 H2O, 0.3 mg Na2SeO3⋅5 H2O and 0.4 mg Na2WO4⋅2 H2O. Formate 
or fructose were added from anaerobic stocks with concentrations of 
230 g L−1 or 250 g L−1, respectively. The pH of the medium for serum 
bottle cultivation was adjusted to 7.2 with 5 M KOH unless stated 
otherwise. The medium composition was adapted for bioreactor culti-
vations: There, the amount of vitamin and trace element solution were 
doubled, Ca-pantothenate was added to a final concentration of 1 mg 
L−1 (Godley et al., 1990) and FeSO4⋅7 H2O to a final concentration of 
26.9 mg L−1 (Demler and Weuster-Botz, 2011). The phosphate salt 
concentrations were reduced to 0.33 g L−1 KH2PO4 and 0.45 g L−1 

K2HPO4 and the pH of the medium was adjusted to 7.0 with 5 M KOH. 
Antifoam Struktol SB2020 (Schill und Seilacher, Hamburg, Germany) 
was added to the medium in a ratio of 1:5,000 (v/v). 

2.3. Growth conditions 

For growth of pre-cultures and small-scale batch cultivations, cells 
were grown in 125 mL serum bottles using 50 mL medium. All serum 
bottle cultures were incubated at 30 ◦C and 200 rpm in a rotary shaker 
(Infors AG, Bottmingen, Switzerland). The headspace of the serum 
bottles was flushed for 1 min with the same gas mixture also used for the 
respective cultivation. For growth of pre-cultures, 28 mM fructose was 
used as the carbon source with a N2 atmosphere in the serum bottle. For 
autotrophic and mixotrophic experiments, a pre-mixed gas mixture of 
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80/20% (v/v) H2/CO2 (Air Liquide Austria GmbH, Schwechat, Austria) 
was used at a total pressure of 2.5 bar. The headspace was replaced daily 
with H2/CO2. During serum bottle cultivations, 2 mL samples were 
routinely withdrawn for OD600 determination and HPLC analysis. 

Continuous cultivations were conducted either in a DASbox® Mini 
Bioreactor system (Eppendorf AG, Jülich, Germany) or in a DASGIP® 
Multibioreactor system (Eppendorf AG, Jülich, Germany). A filling 
volume of 200 mL and an agitation rate of 500 rpm were used for 
DASbox® cultivations and a filling volume of 1000 mL and an agitation 
rate of 400 rpm were used for cultivations with the DASGIP® system. 
For all cultivations, a temperature of 30 ◦C was used. The reaction 
volume was maintained at a constant volume using a dip tube and a 
peristaltic pump (Ismatec SA, Glattburg, Germany). An aeration rate of 
0.25 vvm was applied. For the growth conditions H2/CO2, formate +
H2/CO2 and formate + H2/CO/CO2, pre-mixed gas mixtures with CO 
(60:9.5:10.6:19% H2/CO/CO2/N2) and without CO (60:9.5:29.6% H2/ 
CO2/N2) (Air Liquide Austria GmbH, Schwechat, Austria) were used. For 
growth on formate + fructose, nitrogen gas (purity in % >99.999) 
(Messer Austria GmbH, Gumpoldskirchen, Austria) was utilized. For 
growth on fructose alone, nitrogen and carbon dioxide (purity in % 
>99.995) (Air Liquide Austria GmbH, Schwechat, Austria) were mixed
in a ratio of 80:20% N2/CO2 by the DASGIP® MX4/1 Gas Mixing Module
(Eppendorf AG, Jülich, Germany).

The pH was maintained at 7.0 using 5 M KOH and 2 M phosphoric 
acid. The medium was sparged continuously with the indicated gases at 
a rate of 0.25 vvm. Offgas from the DASbox® Mini Bioreactor system 
was analyzed continuously with a gas chromatograph (Trace GC Ultra, 
Thermo Fisher Scientific, Waltham/MA, USA). Offgas from the DASGIP 
Multibioreactor system was analyzed continuously with a DASGIP® GA 
Exhaust Analyzing Module (Eppendorf AG, Jülich, Germany). 

2.4. Biomass concentration determination 

The cell dry weight was determined at steady state conditions as 
follows: 5 mL of freshly sampled culture broth were transferred into 
dried and pre-weighed glass tubes. The tubes were centrifuged for 10 
min at 4 ◦C and 4,800 rpm (2,396 g), washed with 2.5 mL distilled water 
and centrifuged again. The samples were dried at 105 ◦C for 24 h, 
subsequently cooled in a desiccator for at least 1 h and finally weighed. 
For cultures grown on formate, a sample volume of 25 mL and a washing 
volume of 10 mL were used instead. Biomass determination was per-
formed in triplicates. A correlation coefficient between OD600 and cell 
dry weight (biomass = 0.38*OD600) was determined and used to esti-
mate the biomass concentrations at all other points. 

2.5. Bioreactor off-gas analysis 

A Trace GC Ultra gas chromatograph (Thermo Fisher Scientific, 
Waltham/MA, USA) was used to analyze the reactor off-gas for H2, CO, 
CO2 and N2. The gas chromatograph was equipped with a ShinCarbon ST 
100/120 packed column (Restek Corporation, Bellefonte/PA, USA) and 
a thermal conductivity detector operated in constant temperature mode 
with 200 ◦C transfer temperature, 240 ◦C block temperature and 370 ◦C 
filament temperature. Argon 5.0 (Messer Austria GmbH, Gumpold-
skirchen, Austria) was used as the carrier gas at a constant flow rate of 
2.0 mL/min. Samples with a volume of 100 μL were injected with a split 
ratio of 20. After the injection, the oven temperature was kept constant 
at 30 ◦C for 6.5 min, then increased to a temperature of 250 ◦C with a 
16 ◦C/min ramp and finally kept at 250 ◦C for 0.75 min. An electrical 
valve system allowed the automatic off-gas analysis of each of the four 
bioreactors of the DASbox system in 2 h intervals. The chromatograms 
were recorded and evaluated using Chromeleon 7.2.10 Chromatography 
Data System (Thermo Scientific, Waltham/MA, USA). Calibration was 
performed with premixed defined gas mixtures containing H2, CO, CO2 
and N2. 

Off-gas analysis with the DASGIP® GA Exhaust Analyzing Module 

(Eppendorf AG, Jülich, Germany) was performed after calibrating the 
module with pressurized air and premixed calibration gas. The module 
was used to analyze the exhaust gas for CO2. 

2.6. Organic acid, sugar, and amino acid analysis 

All organic acid, sugar and amino acid analysis were carried out with 
an Ultimate 3000 High Performance Liquid Chromatograph (HPLC) 
(Thermo Scientific, Waltham/MA, USA). Control, monitoring and eval-
uation of the analysis was performed with Chromeleon 7.2.6 Chroma-
tography Data System (Thermo Fisher Scientific, Waltham/MA, USA). 

Fructose, formate, and acetate quantification in sample supernatants 
were achieved with an Aminex HPX-87H column (300 × 7.8 mm, Bio 
Rad, Hercules/CA, USA). The mobile phase was 4 mM H2SO4, and the 
column was operated at a velocity of 0.6 mL/min, 60 ◦C for 30 min. 
Detection was performed with a refractive index (Refractomax 520, 
Thermo Fisher Scientific, Waltham/MA, USA) and a diode array detector 
(Ultimate 3000, Thermo Fisher Scientific, Waltham/MA, USA). Prior to 
analysis, 450 μL of culture supernatant were mixed with 50 μL of 40 mM 
H2SO4 and centrifuged for 5 min at 14,000 rpm (21,913 g) and 4 ◦C. 10 
μL of this samples was injected for analysis (Erian et al., 2018). Stan-
dards at defined concentrations of fructose, formate, acetate, and 
ethanol were treated the same way. 

Amino acids were analyzed with a reversed phase column (Agilent 
Eclipse AAA, 3 × 150 mm, 3.5 μm) with a guard column (Agilent Eclipse 
AAA, 4.6 × 12.5 mm, 5 μm) and a gradient of eluent (A) 40 mM 
NaH2PO4 monohydrate pH 7.8 and eluent (B) MeOH/ACN/MQ (45/45/ 
10 (v/v/v)). At a flowrate of 1.2 mL/min and a column temperature of 
40 ◦C, samples were analyzed with an injection volume of 10 μL. In- 
needle derivatization was performed with ortho-phtaldialdehyde 
(OPA) containing 1% 3-MPA and 9-Fluormethylencarbonylchlorid 
(FMOC). Samples and standards were spiked with norvaline and sarco-
sine as internal standards. Detection was carried out with a fluorescence 
detector (FLD-3400RS), detecting secondary amines and sarcosine at Ex 
266 nm/Em 305 nm and primary amines and norvaline at Ex 340 nm/ 
Em 450 nm (Hofer et al., 2018). 

2.7. Rate calculations and elemental balancing 

For determination of the volumetric acetate formation rate (race) and 
biomass formation rate (rX), the dilution rate D was multiplied with the 
average acetate and biomass concentration from at least two data points 
from steady state conditions. Volumetric fructose and formate con-
sumption rates were calculated by multiplying the feed concentration 
with the dilution rate. 

The calculation of volumetric gas uptake rates XUR [mmol L-1 h-1] 
from GC data was performed as follows: the molar fraction of N2, CO, 
CO2 and H2 were determined in the reactor exhaust gas. Mass balances 
were established assuming that no N2 is consumed (NTR = 0). The 
reactor gas inflow rate was measured and balancing of N2 allowed 
calculation of the reactor exhaust gas flow. All gas transfer rates [mmol 
L−1 h−1] were calculated from the volumetric gas inflow rate qin [L h−1], 
the molar fraction of the respective gas in the inlet gas (yx,in) and exhaust 
gas (yx,out) and the calculated volumetric exhaust gas flow qout [L h−1] as 
follows: 

XUR= qin⋅yx,in − qout⋅yx,out

Vmolar⋅Vreactor

where Vmolar [L mol−1] is the molar gas volume at 20 ◦C and 1.013 bar, 
and Vreactor [L] is the filling volume of the bioreactor. No corrections for 
the dissolved gas in the harvest flow or the CO2/HCO3− equilibrium 
were applied. 

To perform elemental balancing, a carbon content of 45% (w/w) was 
used for A. woodii biomass (Godley et al., 1990). A degree of reduction 
(DoR) of 4.15 mol electrons per mol of carbon was assumed for biomass 
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(Rittmann et al., 2012). Yeast extract was neglected for the calculation 
of the C- and DoR-balance. 

2.8. Transcriptome and proteome analysis 

2.8.1. Sampling 
After a culture reached steady state conditions, a 5 mL sample was 

withdrawn, divided into 1 mL aliquots, and centrifuged for 1 min at 
11,000 g and −4 ◦C. After removing the supernatant, the pellet was 
snap-frozen in liquid nitrogen. The samples were stored at −80 ◦C until 
further processing. 

2.8.2. RNA extraction and RNAseq 
Cell pellets were resuspended in 1 ml Invitrogen TRIzol Reagent 

(ThermoFisher Scientific, Waltham/MA, USA) and lyzed using a Fast- 
Prep-24 (MP Biomedicals, Santa Ana/CA, USA) with 0.37 g of glass 
beads (0.1 mm diameter) at 6 m/s for 40 s. Samples were incubated at 
room temperature for 5 min and then centrifuged at 12,000 g for 5 min. 
750 μl of the supernatant were mixed with 750 μl ethanol and RNA 
isolated using the Direct-zol RNA Miniprep Kit (Zymo Research, Irvine/ 
CA, USA) according to the manufacturer’s instructions. This Kit includes 
a DNAse treatment step. Integrity, Quality, and Quantity of the isolated 
RNA was checked on a 5200 Fragment Analyzer System (Agilent, Santa 
Clara/CA, USA) and a NanoDrop One UV–Vis Spectrophotometer 
(ThemoFisher Scientific, Waltham/, MA, USA). 

Preparation of RNA libraries and Sequencing on an Illumina Next-
Seq, v2.5, 1 × 75bp with a target of 5 million reads per sample was 
performed by Microsynth (Microsynth AG, Balgach, Switzerland). 
Transcriptomic data were uploaded to the SRA database (accession 
number PRJNA737050). 

2.8.3. Transcriptome analysis 
The obtained reads were inspected using FastQC v0.11.5, analyzed 

and quality trimmed using Trimmomatic (Bolger et al., 2014). A refer-
ence transcriptome was extracted from the reference genome of 
A. woodii DSM 1030 (Poehlein et al., 2012) and the corresponding gff file
using gffread v0.12.7 (Pertea and Pertea, 2020). A salmon index was
created by using salmon 1.4.0 (Patro et al., 2017) on the reference
transcriptome and the samples were quantified, including the –gcBias
flag to account for the effects of sample specific biases such as
fragment-level GC bias. The quantification results were imported into
the R environment and analyzed with the DESeq2 (Love et al., 2014)
package and the packages tximport, ggplo2, vsn, pheatmap, RColor-
Brewer and limma (R Core Team, 2013; Soneson et al., 2016; Zhu et al.,
2019).

2.8.4. Sample preparation for proteome analysis 
For the proteomics analysis, samples were lysed in 100 μl of the lysis 

buffer (100 mM Tris pH 8.6, 1% sodium dodecyl-sulphate (SDS), 40 mM 
chloroacetamide and 10 mM (tris(2-carboxyethyl)phosphine) (TCEP)) 
followed by three cycles of sonication (15 s per cycle, 20% amplitude). 
Lysates were then spun down for 5 min at 14,000 g and 100 μg of protein 
(after protein estimation) were precipitated overnight using acetone. 
The following day, protein pellets were re-solubilized in 50 μl of 25% 
trifluoroethanol (TFE) in 100 mM Tris (pH = 8.6), after which solution 
was diluted to 10% TFE with 100 mM ammonium-bicarbonate and 
subjected to overnight digestion with trypsin (1:67 ratio protein to 
trypsin). Resulting peptide mixture was offline desalted, then chro-
matographically separated using an Ultimate 3000 RCS Nano Dionex 
system equipped with an Ionopticks Aurora Series UHPLC C18 column 
(250 mm × 75 μm, 1.6 μm) (Ionopticks, Australia). Solvent A was 0.1% 
formic acid in water and solvent B acetonitrile containing 0.1% formic 
acid. Total run per sample was 136.5 min with the following gradient: 
0–5.5 min: 2% B; 5.5–65.5 min: 2–17% B; 65.5–95.5 min: 25–37% B, 
105.5–115.5 min: 37–95% B, 115.5–125.5 min: 95% B; 125.5–126.5 
min: 95-2% B; 126.5–136.5 min: 2% B at a flow rate of 400 nl/min and 

50 ◦C. Peptides were measured on the timsTOF mass spectrometer 
(Bruker Daltonics, Germany) that was operated in positive mode with 
enabled trapped Ion Mobility Spectrometry (TIMS) at 100% duty cycle 
(100 ms cycle time). Scan mode was set to parallel accumulation–serial 
fragmentation (PASEF) for the scan range of 100–1700 m/z. Source 
capillary voltage was set to 1500 V and dry gas flow to 3 L/min at 
180 ◦C. 

2.8.5. Statistical analysis of proteome data 
Raw data processing was carried out using MaxQuant (v1.6.17.0) 

(Cox and Mann, 2008; Tyanova et al., 2016a). Database matching was 
performed against a genome predicted publicly available A. woodii 
protein database (GCF_000247605.1_ASM24760v1; downloaded on 
February 24, 2021, 3546 entries). For peptide as well as protein 
matching, false discovery rate was set to 1%, minimum peptide length 
was set to six and up to two mis-cleavages were allowed. Oxidation of 
methionine was set as variable and carbamidomethylation as fixed 
modification. Match between run feature was enabled for the match 
window of 1 min and alignment window of 20 min. 

Resulting table of protein “Intensities” was then imported to Perseus 
(v 1.6.14.0) (Tyanova et al., 2016b), where data was transformed, 
normalized (mean subtraction per column) and grouped. Matrix was 
then filtered to keep only those proteins with reported values in at least 
three replicates in at least one of the groups. Missing values were 
consequently imputed from normal distribution (downshift 1.8, width 3) 
and pairwise Student’s t-tests were carried out between the groups with 
multi-testinging correction (permutation-based FDR <5%). All the raw 
proteomics data including the search parameters, database used as well 
as results output was deposited to the ProteomeXchange Consortium via 
the PRIDE partner repository (Perez-Riverol et al., 2019) with the 
dataset identifier PXD026569. 

2.9. Metabolic modelling and FBA 

A previously published A. woodii core model (Koch et al., 2019) with 
118 reactions was used to perform flux balance analysis (FBA) and 
model intracellular fluxes. Energy conservation and redox balancing 
were considered by the model as previously described for A. woodii 
(Schuchmann and Müller, 2014). A biomass composition similar to 
Clostridium autoethanogenum was assumed (Valgepea et al., 2017). The 
CellNetAnalyzer toolbox (Klamt et al., 2007; von Kamp et al., 2017) was 
used for flux balance analysis (FBA). The experimentally determined 
specific rates for biomass formation, substrate uptake (formate, fructose, 
CO, CO2, H2) and metabolite formation were used to constrain the 
model. The determined rates beared redundancies with respect to car-
bon and redox balances in the metabolic model. Consequently, fluxes 
were corrected prior to the FBA calculations to obtain a consistent sys-
tem. This was achieved by minimizing the relative changes in the 
measured rates needed to yield a consistent flux scenario (“Check 
feasibility” function in CellNetAnalyzer). The growth rate was kept 
constant under all conditions. As the objective function, the pseudo re-
action that quantifies the non-growth associated ATP maintenance 
(NGAM) demand was maximized. Thereby, intracellular flux distribu-
tions and an upper bound of ATP available for NGAM processes could be 
described. To estimate variations in fluxes, flux variability analysis was 
performed with and without NGAM as the constraint. 

3. Results and discussion

3.1. Chemostat cultivations to investigate physiology and systems level 
response of A. woodii 

Even though formate has previously been used as a growth substrate 
for A. woodii, there is no quantitative data set describing the physio-
logical behavior during growth on this one-carbon compound. There-
fore, steady state cultivation data were obtained by establishing 
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chemostat cultivations of A. woodii at a dilution rate of 0.05 h−1. This 
growth rate previously proved to be the half-maximum growth rate of 
A. woodii for the substrate conditions investigated here (Novak et al.,
2021). A total of six different conditions were tested, including formate,
H2/CO2, fructose, formate + H2/CO2, formate + H2/CO2/CO and
formate + fructose (Table 1). For each steady state condition, the
physiological behavior was investigated and complemented by tran-
scriptomics (RNAseq) and proteomics analyses.

3.1.1. A. woodii efficiently utilizes formate for growth and acetate 
production in chemostat cultures 

In a first step, we evaluated whether chemostat cultivations of 
A. woodii with formate as the sole carbon and energy source can be
established. To that end, batch cultures were transferred to continuous
mode by supplying a feed containing 100 mM formate at a rate of 0.05
h−1. Indeed, cells completely consumed formate and stable steady state
formation of biomass and acetate production was observed. However,
carbon-limited cultures under these conditions showed extremely low
biomass concentrations of 0.14 g L−1 (see Table 1). To evaluate whether
the biomass concentration and the volumetric formate turnover could be
boosted, the formate concentration in the feed was increased to 200 mM.
As a result, the volumetric formate uptake rate roughly increased by 2-
fold (Table 2) and formate was fully consumed. Although the formate
concentration was doubled, steady state concentrations for biomass and
acetate only increased by 57 and 71% to 0.22 g L−1 and 3.17 g L−1,
respectively (Table 1). A possible explanation is the yeast extract that
was used in the same concentration for all cultivations. Yeast extract has
been shown to increase biomass and acetate yields of A. woodii cultures
(Tschech and Pfennig, 1984), thus leading to an overestimation of ace-
tate yields on formate.

During growth on formate, 4 mol formate are required to form 1 mol 
acetate (Bertsch and Müller, 2015a). The remaining carbon is oxidized 
to 2 mol CO2 to provide enough reduction power for carbon fixation in 
the WLP (Fig. 4). The reaction stoichiometry therefore shows a carbon 
efficiency of only 50%. Moreover, the ATP yield for stoichiometric 
formate conversion is only 0.3 ATP per mol acetate (Müller, 2019). 
Using 200 mM formate, near stoichiometric conversion of formate to 
acetate and CO2 was observed. The yields for acetate and CO2 were 0.26 
mol mol−1 and 0.47 mol mol−1, respectively. As the carbon and DoE 
balance were closed (Table 1), the influence of yeast extract seemed 

negligible for growth on 200 mM formate. The high amount of carbon 
liberated as CO2 combined with a low ATP yield make formate a chal-
lenging anaerobic substrate and provide a possible explanation for the 
low biomass yields observed during growth of A. woodii on formate 
(Table 2). 

Generally, specific rates can be used to extract information on the 
physiological behavior and boundaries of a microbial cell factory uti-
lizing a given substrate. Additionally, sound physiological data are 
crucial to obtain useful results from metabolic modelling (section 3.3). 
Therefore, we next analyzed cell specific formate uptake and acetate 
formation rates of A. woodii during growth on formate. Despite the low 
biomass yields, a specific formate uptake rate of 47 mmol g−1 h−1 cor-
responding to ~1 g g−1 h−1 was observed for the 200 mM chemostat. 
Moreover, the specific production rate for acetate was ~12 mmol g−1 

h−1. Combined with the favorable acetate yields, these values indicate 
that A. woodii can convert formate to acetate at high rates and efficiency. 
A. woodii could therefore be an interesting organism for anaerobic
formate-based bioproduction. Additionally, the data obtained here
provide a reference data set under well-defined conditions which can be
used for comparison of A. woodii physiology during formate utilization
to other substrates.

3.1.2. Quantitative comparison shows similarities of formate and 
autotrophic H2/CO2 utilization but not with heterotrophic fructose 
utilization 

To obtain a picture of the physiological behavior of A. woodii during 
growth on formate, H2/CO2 and fructose were studied as reference 
substrates for autotrophic and heterotrophic fermentation. Fermenta-
tion data for H2/CO2 (Kantzow et al., 2015; Novak et al., 2021) and 
fructose (Godley et al., 1990) have already been reported. However, to 
ensure comparability and to obtain samples for the transcriptomic and 
proteomic analyses we decided to generate the reference data for both 
substrates using the same cultivation conditions and media as for the 
formate cultivations. Changing only the respective carbon and energy 
sources, chemostat cultivations for both substrates were successfully 
established. Gas-limited cultures on H2/CO2 with a gas containing 60% 
H2 and 9.5% CO2 showed 4-fold higher biomass concentrations 
compared to the 200 mM formate culture (Table 1). This increase is also 
reflected in the biomass yield which was ~50% higher for H2/CO2 
compared to formate (g mol−1 basis, Table 1). A higher biomass yield is 

Table 1 
Yield coefficients for biomass formation and acetate production during growth of A. woodii on single and mixed substrates. Mean values and standard deviations were 
calculated from biological triplicates.  

Growth condition Product concentration 
[g L−1] 

Acetate yields [mol mol−1 substrate] Biomass yields [g mol−1 substrate] Balances [%] 

Acetate Biomass YAce/For YAce/ 
Fru 

YAce/CO2 YAce/H2 YAce/ 
sumC 

YX/For YX/Fru YX/CO2 YX/H2 YX/ 
sumC 

C DoR 

Formate (102 mM) 1.85 ±
0.07 

0.135 ±
0.011 

0.312 ±
0.011 

– – – 0.312 ±
0.011 

1.32 
± 0.11 

– – – 1.32 
± 0.11 

128 
± 7 

154 
± 7 

Formate (200 mM) 3.17 ±
0.05 

0.22 ±
0.01 

0.263 ±
0.005 

– – – 0.263 ±
0.005 

1.09 
± 0.03 

– – – 1.09 
± 0.03 

104 
± 1 

113 
± 2 

H2:CO2 (60:9.5) 15.3 ±
1.0 

0.93 ±
0.10 

– – 0.449 ±
0.021 

0.228 ±
0.012 

0.449 ±
0.021 

– – 1.62 
± 0.14 

0.82 
± 0.08 

1.62 
± 0.14 

96 ±
5 

99 ±
5 

Fructose (34.1 ±
0.5 mM) 

4.77 ±
0.09 

1.76 ±
0.07 

– 2.33 
± 0.01 

– – 2.33 ±
0.01 

– 51.5 
± 0.9 

– – 51.5 
± 0.9 

108 
± 4 

111 
± 2 

Formate (100 mM) 
H2:CO2 (60:9.5) 

16.3 ±
1.1 

0.98 ±
0.06 

2.71 ±
0.18 

– 0.529 ±
0.015 

0.244 ±
0.012 

0.442 ±
0.011 

9.8 ±
0.6 

– 1.92 
± 0.12 

0.89 
± 0.03 

1.59 
± 0.07 

94 ±
3 

98 ±
1 

Formate (100 mM) 
H2:CO2:CO 

(60:9.5:10.6) 

16.2 ±
1.2 

1.28 ±
0.01 

2.70 ±
0.20 

– 0.676 ±
0.003 

0.285 ±
0.003 

0.445 ±
0.001 

12.8 
± 0.1 

– 3.21 
± 0.24 

1.35 
± 0.08 

2.11 
± 0.15 

97 ±
1 

102 
± 1 

Formate (202 ± 2 
mM) 

Fructose (35.3 ±
1.1 mML) 

7.88 ±
0.16 

1.94 ±
0.03 

0.649 ±
0.008 

3.72 
± 0.04 

– – 0.553 ±
0.005 

9.60 
± 0.05 

55.0 
± 1.0 

– – 8.17 
± 0.02 

106 
± 1 

108 
± 1 

H2:CO2:CO 
(60:9.5:10.6) a 

17.8 ±
1.5 

1.54 ±
0.12 

– – 0.43 ±
0.01 

0.23 ±
0.01 

– – – – – – 93 ±
1 

87 ±
1  

a Data from (Novak et al., 2021). 
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consistent with the higher carbon efficiency observed during growth on 
H2/CO2. Analogously to biomass, the acetate titer and yield were 
4.8-fold and 70% higher for H2/CO2. However, the specific acetate 
productivity on formate was almost equal to the value of H2/CO2 (qAce 
80% for formate compared to H2/CO2). Likewise, the specific uptake 
rates for all three carbon and energy sources were within the same range 
i.e., ~47 mmol g−1 h−1 for formate compared to ~34 mmol g−1 h−1 and
67 mmol g−1 h−1 for CO2 and H2, respectively. Hence, despite the drastic
differences in titers and volumetric rates for the two conditions, a
comparable physiological behavior could be observed. Regardless of the
distinct differences to autotrophic growth, formate utilization of
A. woodii via the WLP shares significant similarities with H2/CO2 
utilization.

Next, fructose-grown chemostat cultures were compared to growth 
on formate. To ensure comparability, an equimolar amount of carbon 
(33.3 mM fructose) was used. Because fructose contains significantly 
more energy than formate (combustion energies of 2,930 kJ/mol and 
245 kJ/mol, respectively), heterotrophic cultures have significantly 
higher ATP gains compared to formate cultures (see also 3.3.2). 
Consequently, the steady state biomass concentration of the fructose 
fermentation was 8-fold higher than for formate. As a result, the molar 
(g mol−1) and C-molar (g C-mol−1) biomass yields increased 50- and 8- 
fold, respectively. In contrast, the acetate titer was only increased by 
50% (Table 1). The observed acetate yield of 2.33 mol mol−1 is in good 
agreement with previously reported values but it is only 78% of the 
theoretical maximum for homoacetogenic acetate production (Beck 
et al., 2019; Braun and Gottschalk, 1981; Wiechmann et al., 2020). 
Theoretically, acetogens could convert 1 mol of a hexose into 3 mol 
acetate by using CO2 and reduction equivalents produced during sugar 
catabolism in the WLP for carbon fixation. However, the theoretical 
value does not consider that growth requires significant portions of 
cellular resources. As previously observed, heterotrophic cultures 
required CO2 to fully consume fructose (Godley et al., 1990). The reason 
for this behavior is rooted in the function of the WLP as an electron sink. 
In the absence of sufficient amounts of CO2, A. woodii cannot re-oxidize 
electron carriers. 

A comparison of the specific rates showed that due to the high 
biomass concentrations of the heterotrophic cultures, substrate uptake 
rates for formate were ~50-fold higher compared to fructose. Similarly, 
the biomass specific acetate formation rate was 5.6-fold higher for 

formate. Combined, these observations could indicate that cells use high 
specific substrate turnover of low energy substrates to provide enough 
ATP for growth and maintenance of biomass, especially under anaerobic 
conditions (Rintala et al., 2008). 

In conclusion, the physiological behavior of A. woodii during growth 
on formate and fructose differed significantly. These observations are in 
line with the different properties of the two substrates and the metabolic 
pathways involved in their utilization. 

3.1.3. Metabolic flexibility and robustness of A. woodii is revealed by 
efficient co-utilization formate with gaseous or heterotrophic substrates 

In a future bioeconomy, flexible substrate co-utilization is antici-
pated to become an important feature of microbial production hosts. 
Consequently, we investigated the ability of A. woodii to utilize formate 
together with H2/CO2 or fructose. Furthermore, a gas containing addi-
tional CO was tested for co-utilization with formate. 

For gaseous co-substrates, the same gas-limited conditions as for the 
H2/CO2 condition described above were used to establish steady state 
continuous cultures. The liquid feed was supplied at D = 0.05 h−1 and 
initially contained formate (100 mM). Both conditions, formate + H2/ 
CO2 and formate + H2/CO2/CO could successfully be established in 
carbon-limited chemostats. Generally, a stabilizing effect of formate on 
fermentation of gaseous substrates was noticed. In our previous study, 
autotrophic cultures were sensitive to perturbations (e.g. antifoam 
pump failure) that caused product titers and gas uptake rates to fluctuate 
and prohibited cultures to maintain steady state conditions (Novak 
et al., 2021). 

A comparison to the 100 mM formate and the H2/CO2 culture 
showed that for formate + H2/CO2 the steady state acetate concentra-
tion was only 5% lower compared to the sum of acetate for the indi-
vidual substrates (16.3 and 17.2 g L−1, respectively) (Table 1). Similarly, 
the volumetric acetate productivity for formate + H2/CO2 was compa-
rable to the sum of the induvial substrates. The biomass concentration 
for formate + H2/CO2 increased 5% compared to H2/CO2 but was 10% 
lower compared to the sum of the individual substrates. Compared to 
H2/CO2, formate addition to cultures did not affect the acetate yield 
(0.44 mol mol−1 for formate + H2/CO2, Table 1). This observation, 
however, might be a result of the relatively small contribution of 
formate to the final acetate titer as underlined by the specific substrate 
utilization rates. Although both cultures (formate and formate + H2/ 

Table 2 
Volumetric and specific substrate uptake and acetate formation rates from A. woodii chemostat cultivations on single and mixed substrates. Mean values and standard 
deviations were calculated from biological triplicates. Specific rates are uptake rates (negative values for qCO2 indicate production) for formate, fructose and H2, CO2 
and CO, and production rates for acetate. Volumetricc rates are uptake rates (negative values for CO2UR indicate production) for formate, fructose and H2, CO2 and CO, 
and production rates for acetate.  

Growth condition Dilution 
rate [h−1] 

Specific rates [mmol g−1 h−1] Volumetric rates [mmol L−1 h−1] 
qAce qFor qFru qCO2 qH2 qCO rAce rFru rFor CO2UR HUR COUR 

Formate (102 mM) 0.052 ±
0.002 

11.89 ±
1.34 

39.4 ±
4.8 

– −28.5 
± 1.3 

−9.0 
± 2.7 

– 1.59 ±
0.09 

– 5.28 ±
0.21 

−3.33 ±
0.26 

−1.21 ±
0.38 

– 

Formate (200 mM) 0.051 ±
0.001 

12.2 ±
0.3 

47.0 ±
1.2 

– −22.5 
± 0.7 

– – 2.67 ±
0.06 

– 10.3 ±
0.1 

−4.92 ±
0.03 

– – 

H2:CO2 (60:9.5) 0.054 ±
0.002 

15.1 ±
1.1 

– – 33.8 ±
3.2 

66.9 ±
7.5 

– 14.0 ±
0.7 

– – 30.9 ±
0.9 

60.9 ±
4.6 

– 

Fructose (34.1 ±
0.5 mM) 

0.049 ±
0.001 

2.20 ±
0.04 

– 0.95 ±
0.02 

0.07 ±
0.22 

– – 3.87 ±
0.06 

1.66 ±
0.02 

– 0.13 ±
0.40 

– – 

Formate (100 mM) 
H2:CO2 (60:9.5) 

0.055 ±
0.002 

15.1 ±
0.3 

5.6 ± 0.5 – 33.8 ±
3.2 

66.9 ±
7.5 

– 15.0 ±
0.9 

– 5.47 ±
0.16 

30.9 ±
0.9 

60.8 ±
4.5 

– 

Formate (100 mM) 
H2:CO2:CO 

(60:9.5:10.6) 

0.054 ±
0.002 

11.6 ±
0.4 

4.3 ± 0.2 – 17.2 ±
0.7 

40.9 ±
2.0 

4.6 ±
0.4 

15.2 ±
0.6 

– 5.51 ±
0.20 

22.0 ±
1.0 

52.3 ±
1.5 

5.9 ±
0.6 

Formate (202 ± 2 
mM) 

Fructose (35.3 ±
1.1 mM) 

0.050 ±
0.001 

3.40 ±
0.04 

5.24.0 ±
0.01 

0.92 ±
0.02 

−2.7 ±
0.1 

– – 6.60 ±
0.17 

1.77 ±
0.06 

10.2 ±
0.2 

−5.17 ±
0.15 

– – 

H2:CO2:CO 
(60:9.5:10.6) a 

0.05 10.8 ±
0.4 

– – 17.1 ±
1.2 

46.6 ±
2.2 

8.7 ±
0.2 

16.6 ±
0.7 

– – 26.2 ±
0.2 

71.6 ±
2.3 

13.4 ±
1.4  

a Data from (Novak et al., 2021). 
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CO2) were provided with the same volumetric formate feeding rate, the 
higher biomass concentration for formate + H2/CO2 decreased the 
specific formate uptake rate to only 14% of the value observed for 
unitrophic formate utilization (Table 2). Moreover, the presence of 
formate reduced the specific uptake rates for H2 and CO2 by 7 and 16%, 
respectively. These shifts in utilization of gaseous substrates indicate 
that formate partially replaced H2 and CO2 as energy and carbon sources 
under limiting chemostat conditions. Despite substrate co-utilization, 
the total specific acetate productivity for formate + H2/CO2 did not 
change compared to the H2/CO2 culture. This physiological behavior is 
in line with the observation that qAce was comparable when formate and 
H2/CO2 were used individually. Overall, the flexible adjustments of 
substrate utilization are quite remarkable given that co-utilization of 
formate and H2/CO2 requires the hydrogen-dependent CO2 reductase 
(HDCR) of A. woodii to react to changing concentrations of educts and 
products of the reaction. For serum bottle cultures grown on increasing 
concentrations of formate and a H2/CO2 gas phase an initial lag phase 
was found. The length of the lag phase depended on the initial formate 
concentration (Fig. S1), indicating kinetic and thermodynamic regula-
tion as the key determinant of flow at the HDCR. Regardless of potential 
initial inhibitions, all batch cultures eventually fully consumed formate 
and H2/CO2 from the gas phase and produced biomass and acetate. 

Next, we expanded the investigation of co-utilization of formate and 
gaseous substrates to a gas stream which contained CO in addition to 
H2/CO2. In our previous study, we had shown that batch cultures con-
taining formate + H2/CO2/CO first co-utilized formate and CO, and 
upon limitation of CO in the liquid culture, also H2/CO2 and CO. 
However, no information on the ability of A. woodii to co-utilize all four 
carbon and energy sources was gained. Chemostat cultures using 100 
mM formate and H2/CO2/CO in the gas stream showed a 30% higher 
biomass concentration compared to formate + H2/CO2 (Table 1). CO is 
an intermediate of the WLP obtained by reducing CO2 with the low 
potential reduction equivalent ferredoxin. When supplying limiting 
amounts of CO with CO2/H2, less ferredoxin is oxidized for CO2 reduc-
tion (Novak et al., 2021). Hence, more ferredoxin can be allocated to the 
energy conserving reaction of the Rnf complex (section 3.3.2) 
(Schuchmann and Müller, 2014), improving overall bioenergetics, 
hence enabling an increase in biomass concentration (Bertsch and 
Müller, 2015a, 2015b; Novak et al., 2021). 

In contrast to the biomass concentration, acetate titer, productivity 
and yield did not change for formate + H2/CO2/CO compared to 
formate + H2/CO2. Consequently, qAce decreased by 23% because of the 
higher biomass concentration (Table 2). A similar decrease was 
observed for the specific uptake rates for formate, H2 and CO2. For qH2 
and qCO2, the decrease was 34% and 40%, respectively. These changes 
indicate that in addition to the higher biomass concentration, cell spe-
cific rates were decreased by the presence of CO. Analogous to formate 
addition to H2/CO2 cultures, CO replaced H2 and CO2 as carbon and 
energy sources in the formate + H2/CO2/CO culture (see section 3.3 
below for details on intracellular flux distributions). Collectively, 
A. woodii proved to be extremely flexible in utilizing up to four different
carbon and energy sources simultaneously, including three gaseous
substrates. Future work towards bioprocess development could further
explore this important metabolic feature by varying formate and gas
utilization and by expanding the system to other gas compositions.
Combined, these measures will allow controlling specific uptake rates
for individual substrates, which can be used as a strategy to control
metabolism and intracellular fluxes (section 3.3.2 and 3.4).

Another substrate that could help to improve bioenergetics is the 
utilization of hexose sugars in combination with formate. A. woodii is 
known to efficiently utilize H2/CO2 and fructose but utilization together 
with formate has so far not been described. To that end, we aimed to 
establish continuous cultures fed with equimolar amounts of carbon 
from formate (200 mM = 200 mM carbon) and fructose (33.3 mM = 200 
mM carbon). Carbon-limited steady states could be achieved which 
showed biomass and acetate concentrations of 1.9 and 7.9 g L−1, 

respectively. These values are in both cases close to the sum of the 
cultures for formate and fructose utilization alone (Table 1). As formate 
was completely consumed, carbon catabolite repression (CCR) could not 
be observed even with the relatively high fructose concentrations. CCR 
was previously found to prevent co-consumption of methanol and 
glucose in Eubacterium limosum (Loubiere et al., 1992) and to cause poor 
H2/CO2 consumption by Clostridium aceticum (Braun and Gottschalk, 
1981) and Moorella thermoacetica (Huang et al., 2012) in the presence of 
fructose or glucose, respectively. In contrast, in other acetogens 
including Clostridium ljungdahlii, gas consumption was not inhibited by 
fructose (Jones et al., 2016). 

Furthermore, formate was able to replace the need for CO2 to 
establish fructose-limited steady state conditions. As expected for 
formate utilization, co-utilization with fructose resulted in CO2 pro-
duction from formate (Table 2), indicating that formate served both as 
carbon and energy source in addition to fructose. The cell-specific 
fructose uptake rate was comparable for formate + fructose to fruc-
tose alone but due to the higher biomass concentration qFor was only 
11% of the value for unitrophic formate utilization. Nevertheless, the 
presence of formate increased qAce by 50% compared to fructose utili-
zation alone. This observation shows how co-utilization of a high and 
low energy substrate can improve physiological performance data 
beyond what is possible for unitrophic substrate utilization. While 
formate utilization improved cell-specific acetate productivity, fructose 
improved the overall bioenergetics. Consequently, addition of fructose 
or glucose could be used to improve the bioenergetics of formate- 
utilizing A. woodii in the future and enable shifting carbon flux away 
from acetate in metabolically engineered strains (section 3.4). In sum-
mary, the physiological data presented here demonstrate A. woodii as a 
robust host for formate-based bioconversion which can efficiently co- 
utilize autotrophic and heterotrophic carbon and energy sources in 
combination with formate. 

3.2. A transcriptomic and proteomic analysis highlights substrate-specific 
regulation of pathways 

The physiological study highlighted the ability of A. woodii to utilize 
different carbon and energy sources simultaneously. The individual 
substrates investigated are assimilated via separate pathways, provide 
different amounts of energy, and donate electrons with different po-
tentials. However, biomass and acetate were the only products detected 
in the culture broth. The question arises how the cell flexibly adapts to 
various substrates while maintaining the same product spectrum. 

Both formate and fructose were supplied to the culture by a liquid 
feed, possibly requiring the expression of genes for the uptake of these 
carbon sources from the medium. On the other hand, the one-carbon 
substrates formate, CO2, and CO are all assimilated via the WLP, sug-
gesting a similar overall metabolism and gene expression for autotrophic 
and formatotrophic growth. As formate is an intermediate of the methyl- 
branch of the WLP, simultaneous oxidation of formate to CO2 and H2 
and activation of formate to formyl-THF might require fine-tuning of 
enzyme expression in the WLP. On top of that, co-utilization of formate 
with other substrates might require the activation of additional gene 
clusters e.g., for CO oxidation or fructose uptake. To thoroughly un-
derstand the utilization of different substrates and to examine the 
adaptation of the gene expression of A. woodii, we analyzed the tran-
scriptome and proteome under different growth conditions. 

RNA-seq allowed the detection of 3662 transcripts, covering the 
whole 3546 protein-coding ORF of the genome of A. woodii. Addition-
ally, our investigation of the proteome is the first published LC-MS/MS- 
based proteome study for A. woodii and enabled the detection and 
quantification of 1881 polypeptides from all samples altogether. We 
performed a differential expression analysis of all six growth conditions 
using formate as reference condition (Fig. 1). The transcriptome of 
different growth conditions was investigated for similarities by identi-
fying changes in the transcription of common genes. 
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456 genes were down-regulated and 114 genes were upregulated on 
a transcription level on all other growth conditions compared to 
formate, indicating an adaptation of the cell to the utilization of formate 
with high specific rates (47 mmol g−1 h−1, section 3.1.1). For the other 
three growth conditions on one-carbon substrates (H2/CO2, formate +
H2/CO2 and formate + H2/CO/CO2), 240 common genes were up- 
regulated and 598 common genes down-regulated as compared to 
growth on only formate. Under all three conditions, gaseous substrates 
were utilized and elevated acetate concentrations of ~15–17 g L−1 were 
reached (Table 1) which might trigger changes in the expression of 
common genes. With 264 and 329 exclusive changes in transcript levels, 
respectively, the growth conditions formate + H2/CO/CO2 and fructose 
indicated the most distinct adaptation to the respective substrates. In 
contrast, the growth on formate + fructose revealed only 275 up- 
regulated genes and 749 down-regulated genes as compared to growth 
on formate, indicating a similar transcriptome for these conditions. 

This first differential analysis of the transcriptome suggests that 
A. woodii adapts to the supply of different substrates on a global level. In
a previous proteome analysis of A. woodii, enzymes linked to glycolysis
and the WLP were found to be expressed differently on fructose and H2/
CO2 (Poehlein et al., 2012). In contrast, previous -omics studies of the
acetogens Clostridium ljungdahlii and Clostridium autoethanogenum sug-
gested a stable expression of genes under various substrate uptake and
product formation rates, indicating a robust expression as the basis for
metabolic flexibility of acetogens (Richter et al., 2016; Valgepea et al.,
2017).

We next aimed to understand central adaptations in the expression of 
genes and proteins that are involved in acetate and biomass formation. 
To that end, we focused on the two central pathways that lead to acetyl- 

CoA synthesis (WLP, glycolysis + pyruvate decarboxylation), on en-
zymes involved in the supply of reduced reduction equivalents (electron 
bifurcating hydrogenase HydABCD, HDCR, Rnf complex) and on pro-
teins that catalyze the conservation of energy (ATPase, Pyruvate kinase, 
Phosphoglycerate kinase). 

3.2.1. The WLP is highly expressed during growth on one-carbon substrates 
The WLP is responsible for the assimilation of the one-carbon sub-

strates formate, CO2, and CO. All one-carbon substrates were found to be 
taken up by A. woodii with high specific rates (section 3.1.2), indicating 
a highly active WLP. 

Indeed, gene clusters of the methyl-branch of the WLP and the car-
bon monoxide dehydrogenase/acetyl-CoA synthetase (CODH/ACS) 
(Poehlein et al., 2012) were among the 20 genes that showed the highest 
intermediate normalized mean read count across all growth conditions 
(Fig. S2). A third highly transcribed gene cluster is the 
electron-bifurcating hydrogenase which is responsible for the oxidation 
of H2 and supplying the WLP with reduced ferredoxin (Fd2−) and NADH. 
To compare the expression of the WLP between growth conditions and 
to highlight up- and downregulation, differential transcriptome and 
proteome analyses were performed (Fig. 2). 

Comparing the gene expression during growth on formate and H2/ 
CO2 revealed comparable levels of expression for most genes of the WLP. 
However, the monofunctional CODH CooS and the neighboring iron- 
sulfur protein (Awo_c19060) and the CODH/Acetyl-CoA synthase β 
subunit AcsB2 were upregulated under autotrophic growth, both on a 
transcriptome and proteome level. This upregulation of genes of the 
WLP may be linked to the higher specific acetate formation rate (25% 
increased) during autotrophic growth compared to formatotrophic 

Fig. 1. Differential gene transcription analysis of A. woodii for growth on the six different substrate conditions tested. Figures indicate the number of differentially 
expressed genes as compared to growth on formate. (A) Number of upregulated genes; (B) number of downregulated genes. 
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growth (Table 2). A comparison of the proteome also revealed 2- to 4- 
fold higher levels for the ATPase subunits C and G, the electron trans-
port complex protein RnfC1 and the Hydrogenase associated proteins B 
and E for autotrophic growth. 

Heterotrophic growth on fructose showed several adaptations of the 

expression of genes of the WLP compared to growth on formate: tran-
script and protein levels of genes involved in the methyl-branch and 
genes of the CODH/Acetyl-CoA synthase were found in significantly 
lower levels (3- to 7-fold lower transcript levels, 3- to 5-fold lower 
protein levels) (Fig. 2). Transcriptome analysis additionally revealed 2- 

Fig. 2. Differential transcriptomic and proteomic analysis for growth of A. woodii on single and mixed substrates. Formate was chosen as the reference growth 
condition. SU = subunit, DH = dehydrogenase, PFL = pyruvate formate lyase. 
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to 5-fold lower transcript levels of several ATPase, Rnf complex and 
Hydrogenase subunit genes. The low specific acetate formation during 
growth on fructose requires only a small contribution of the WLP to 
acetate formation (section 3.3). As the WLP genes are among the highest 
transcribed genes in A. woodii, cutting back their expression potentially 
allows the cell to save energy. In contrast, the HDCR was not regulated 
on a transcript and protein level. H2 serves as a substrate of the HDCR 
and needs to be provided via oxidation of NADH and Fd2− during growth 
on fructose (Wiechmann et al., 2020). Providing a high HDCR activity 
might therefore be necessary to capture intracellular H2 and funnel it 
towards the WLP. 

The comparison of gene expression for growth on formate and 
formate + H2/CO2 revealed changes similar to the comparison of gene 
expression for growth on formate and autotrophic growth on H2/CO2. In 
detail, the same genes of the WLP showed higher transcript and protein 
levels (Fig. 2). The similar specific H2 uptake rates for autotrophic 
growth and growth on formate + H2/CO2 (Table 2) may dictate the 
regulation of the WLP. Moreover, the co-utilization of formate + H2/ 
CO/CO2 revealed similar transcriptional changes of the WLP genes as 
observed for the other growth conditions with gaseous substrates with a 
few notable exceptions. Compared to growth on H2/CO2 and formate +
H2/CO2, formate + H2/CO/CO2 showed a weaker up-regulation of the 
monofunctional CODH CooS, a lower transcript number of the CODH 
accessory protein Cooc2 and a higher transcript level of the CODH/ACS 
β subunit AcsB2. These findings indicate an adaptation to the external 
supply of CO. By reducing the level of transcripts for CODH functions, an 
unnecessary assignment of Fd2− for the reduction of CO2 to CO might be 
avoided (section 3.3.1). 

Compared to growth on formate, higher transcript and protein levels 
of the formyl-THF-synthetase Fhs2 and the putative formate transporter 
FdhC were found for H2/CO2 and formate + H2/CO2 but not for formate 
+ H2/CO/CO2. In addition to a similar expression of Fhs2 and FdhC, the
conditions formate and formate + H2/CO/CO2 share a specific acetate
formation rate of ~12 mmol g−1 h−1 which is 20% lower than for growth
on H2/CO2 and formate + H2/CO2 (Table 2). Potentially, a faster for-
mation of acetate causes the intracellular pH to drop. A lowered intra-
cellular pH at a constant external pH impairs the diffusive uptake of
formic acid from the medium which is supposedly facilitated by FdhC
(Moon et al., 2021). At low intracellular pH values, stronger expression
of FdhC might therefore enable faster equilibration of internal and
external formate pools. In contrast, stronger expression of Fhs2 might
allow faster formate activation to keep the intracellular formate pool
low and to avoid formate efflux into the medium.

A. woodii grown on formate + fructose showed almost no adaptations
of the expression of the WLP compared to formate-grown cultures. This 
finding agrees well with the observation that there were few overall 
changes in the transcriptome between the two growth conditions 
(Fig. 1). A high level of WLP enzymes might be required to fully convert 
the additionally supplied formate. 

The expression of the WLP adapts to the supplied carbon sources 
despite carrying the strongest transcribed genes throughout all growth 
conditions on single carbon sources. Surprisingly, lower transcript and 
protein levels of AcsB2 and CooS were found for growth on formate 
compared to growth on gaseous substrates, indicating a potentially 
lower activity of the acetyl-CoA generating step of the WLP. However, 
the expression of genes of the methyl-branch was not changed during 
growth on formate. The methyl-branch of the WLP can also fuel the 
reductive glycine pathway (rGLY), another carbon fixation pathway 
recently described in the acetogen Clostridium drakei (Song et al., 2020). 
Therefore, we next examined the expression level of genes of the rGLY. 

3.2.2. The glycine cleavage system is upregulated during growth on formate 
Compared to cultures grown under all other conditions, formate- 

grown cultures showed a strong expression of the genes GcvPA, 
GcvPB, GcvT and GcvH3 with an 11- to 32-fold increase on a transcript 
level and a 7- to 55-fold increase on a protein level. These genes are 

neighboring in the genome of A. woodii (see Fig. 3) and are part of the 
glycine cleavage system (GCS) that allows both glycine synthesis from 
one-carbon substrates and the degradation of glycine. The GCS forms a 
functional subunit of the reductive glycine pathway (rGLY) (Bar-Even 
et al., 2013). 

An upregulation of the GCS could indicate a potential flux of one 
carbon metabolites to glycine. Nevertheless, the remaining genes of the 
rGLY that allow pyruvate synthesis from glycine via serine (Fig. 3) were 
not upregulated during growth on formate (Fig. 2). It is therefore hard to 
estimate the actual activity of the rGLY. To investigate the function of 
the GCS, we examined if glycine was accumulating in the medium or 
taken up. During growth on formate and fructose the small amounts of 
glycine that were provided with the feed (via yeast extract) were almost 
completely consumed (Table 3). The highest specific uptake rate was 
determined for growth on formate, being 8-fold higher than for growth 
on fructose. The transcript changes observed for the GCS genes gcvPA, 
gcvPB, gcvT and gcvH3 were drastically higher than in a recent study that 
compared the transcriptome of A. woodii batch cultivations on formate, 
fructose and H2/CO2 (Moon et al., 2021). Our carbon-limited continuous 
cultivation on formate with a high ratio of glycine to biomass potentially 
triggered the increased expression of the GCS to enable the uptake of 
glycine as an additional carbon and energy source. For growth on 
fructose, a bigger share of glycine might have been directly incorporated 
into biomass, rendering an upregulation of the GCS obsolete. 

Despite the role of the GCS in glycine degradation, A. woodii could 
theoretically use the rGLY for assimilation of single carbon sources. The 
acetogen C. drakei was shown to possess all genes of the rGLY as well. 
For C. drakei, metabolic modelling suggested an almost negligible flux 
through the rGLY and CO2 fixation mainly via the WLP and the glycine 
synthase-reductase pathway (GSRP) (Song et al., 2020). A. woodii is 
lacking a glycine synthase-reductase and can therefore only fix CO2 via 
the rGLY and the WLP. To further analyze the importance of 
glycine-forming pathways in the one carbon assimilation of A. woodii 
and other acetogens, further investigations are necessary. 

3.2.3. Pyruvate synthesis is not regulated on a gene expression level 
During growth on one-carbon substrates such as formate, CO and 

CO2, the synthesis of pyruvate is based on the carboxylation of acetyl- 
CoA. Pyruvate is an important metabolite that links CO2 fixation to 
major biomass-forming reactions. The genome of A. woodii encodes two 
pyruvate:ferredoxin oxidoreductases (PFOR), three pyruvate formate 
lyases (PFL), and three pyruvate dehydrogenases (PDH) that could be 
responsible for the carboxylation of acetyl-CoA. The Fd2--consuming 
PFOR reaction is considered the active pyruvate synthesis route in 
acetogens (Furdui and Ragsdale, 2000). However, the PFL reaction 
would allow acetogens to synthesize pyruvate from formate, thereby 
saving valuable Fd2− for other reactions. To investigate the role of 
different pyruvate-forming enzymes under different growth conditions, 
we examined their expression level on a transcript and protein level. 

We calculated the transcript level for each gene by multipying the 
intermediate normalized mean read count with the read length (75 bp) 
and dividing it by the length of the respective gene. The PFOR gene nifJ 
was identified as the highest transcribed gene for pyruvate synthesis: the 
transcript level of 255 for nifJ was ~5-fold higher than the transcript 
levels of the highest transcribed PDH genes pdhC3, pdhB3 and pdhA3, 
~7-fold higher than the PFOR subunit genes porA and porB, and ~90- 
fold higher than the highest transcribed PFL gene pflB3. NifJ was also 
measured in all proteome samples and showed the highest intensity of 
all pyruvate-forming enzymes. 

A comparison of transcript and protein levels revealed stable 
expression of NifJ under all growth conditions. Stable and strong 
expression of nifJ indicates that pyruvate synthesis via acetyl-CoA might 
indeed rely on the PFOR reaction. To verify the importance of NifJ or 
other pathways for pyruvate synthesis in more detail, activities from 
PFOR, PDH and PFL enzymes in crude extracts could be analyzed for 
different conditions using in vitro assays. Additionally, the generation of 
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a nifJ deletion mutant might be interesting for future studies as it would 
enable pyruvate formation via the PFL reaction. The PFL route via 
formate and acetyl-CoA was already shown to be feasible in vivo in 
anaerobically-grown E. coli (Zelcbuch et al., 2016). 

3.2.4. Fructose supply activates uptake via the phosphotransferase system 
In contrast to growth on one-carbon substrates, the direct supply of 

fructose allows the synthesis of pyruvate via glycolysis. Fructose utili-
zation is initiated by substrate uptake via the phosphotransferase system 
(PTS). During growth on fructose and formate + fructose, a 2.5- to 4-fold 
increase in the transcript levels of fruA and fruK was noted compared to 
growth on formate (Fig. 2). Therefore, the expression of the fructose 
uptake system seems to be linked to the presence of fructose in the 
growth medium. 

3.2.5. Site product formation is regulated during growth on different carbon 
sources 

A. woodii is equipped with the genetic information to produce several
fermentation products including lactate and ethanol. The genes for 
lactate utilization and potential lactate formation are organized in the 
operon lctCDEF. In our study, the highest transcript levels of the lctCDEF 
operon were found in formate-grown cells with 13- to 20-fold higher 
transcription compared to growth on fructose (Fig. S3). A down- 
regulation of this operon was previously described for growth on fruc-
tose, H2/CO2, methanol, and ethylene glycol. The operon was shown to 
be activated by the presence of D- and L-lactate, leading to a ~300-fold 
increase in the transcription level (Schoelmerich et al., 2018). Hence, 
the operon was not fully activated for growth on formate and the low 
transcription underlines why no lactate was formed under any of the 

growth conditions. 
Ethanol formation from fructose has been described for phosphate- 

limited cultures of A. woodii (Buschhorn et al., 1989). Current studies 
highlighted the importance of the bi-functional alcohol dehydrogenase 
AdhE for ethanol formation and consumption of A. woodii (Trifunović 
et al., 2020). Interestingly, ~4-fold higher adhE transcript levels were 
found in fructose-grown cells as compared to formate-grown cells. The 
AdhE protein was detected in all analyzed fructose samples (Fig. S3). 
Ethanol formation from acetyl-CoA could serve as an alternative elec-
tron sink to the WLP. Interestingly, ethanol was neither detected in the 
culture supernatant of our study nor in studies where the re-oxidation of 
reduction equivalents via the WLP was blocked (Godley et al., 1990; 
Wiechmann et al., 2020). Further research is needed to understand the 
relevance of AdhE during growth of A. woodii on fructose. 

3.2.6. A single ferredoxin is dominantly expressed 
Ferredoxin serves as a carrier for electrons with a low reduction 

potential. Fd2− is critical for the reduction of CO2 in the carbonyl-branch 
of the WLP but also plays a crucial role in building up the sodium 
gradient at the Rnf complex which drives ATP synthesis. The genome of 
A. woodii encodes eleven potential ferredoxins. Among those,
Awo_c25230 is transcribed with the highest intermediate normalized
mean read count and without changes between different growth con-
ditions (Fig. 2). Awo_c25230 was also detected in all proteome mea-
surements, underlining the abundance and importance of this
ferredoxin.

3.3. Metabolic modelling highlights major differences of intracellular flux 
levels and directionality 

The data obtained from chemostat cultivations were used to perform 
flux balance analysis with the stoichiometric core model of A. woodii. 
Metabolic modelling enabled us to investigate which pathways are 
involved in the utilization and co-utilization of substrates, to highlight 
reactions that build the fundament for the high metabolic flexibility of 
A. woodii, and to access the turnover of reduction equivalents and the
available energy. Maximizing non-growth associated ATP maintenance
(NGAM) was used as an objective function. To check flux variations, flux
variability analysis (FVA) was additionally performed (File S2).

Modelling the growth of A. woodii on formate suggested a high flux of 

Fig. 3. Arrangement and function of the genes associated to the reductive glycine pathway of A. woodii. A: Genomic organization of rGLY genes. acoL1, acoL2, lpdA1, 
lpdA2 and pdhD: Dihydrolipoamide dehydrogenase; sdhB and sdhA: L-serine dehydratase subunits; gcvH1, gcvH2 and gcvH3: Glycine cleavage system H-Protein; 
glyA: Serine hydroxymethyltransferase; ilvA: Threonine dehydratase; gcvPB and gcvPA: Glycine dehydrogenase subunits; gcvT: Aminomethyltransferase; B: Meta-
bolic map of the rGLY. LP: Lipoprotein. 

Table 3 
Glycine uptake rates for A. woodii chemostat cultivations on single substrates. A 
glycine concentration of 307 ± 12 μM was determined for the feed. rGly, volu-
metric glycine uptake rate, gGly, specific glycine uptake rate. Dilution rates and 
biomass concentrations from Tables 1 and 2  

Condition Formate H2/CO2 Fructose 
rGly [μmol L−1 h−1] 14.1 4.0 14.7 
qGly [μmol g−1 h−1] 67 4.3 8.5 

Relative glycine consumption [%] 89 24 96  
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13 mmol L−1 h−1 through the WLP (Fig. 4). Formate was partly degraded 
by the HDCR to supply the cell with CO2 and H2. 94% of the acetyl-CoA 
formed was converted to acetate to gain ATP via substrate level phos-
phorylation. The remaining share of acetyl-CoA was fueling anabolic 
reactions of the cell. During growth on formate, the overall supply of 
electrons was insufficient to reduce all CO2 formed from formate 

degradation, leading to a net release of CO2. When the uptake of glycine 
from the medium was neglected, the flux from methylene-THF to glycine 
via the GCS was 100-fold smaller than the flux through the WLP, indi-
cating a minor role of the GCS as carbon fixation pathway under these 
conditions. Including a glycine uptake rate of 67 μmol g-1 h-1 (Table 3) as 
an additional constraint for FBA did not increase degradation of glycine 

Fig. 4. Metabolic flux map of A. woodii for growth on different substrates. Boxed values show flux levels in mmol g−1 h−1 for six different growth conditions. rGLY =
reductive glycine pathway, Rnf = Rnf complex, Hyd = electron-bifurcating hydrogenase, Stn = Sporomusa type Nfn (Kremp et al., 2020), HDCR = hydro-
gen-dependent carbon dioxide reductase, PFOR = pyruvate:ferredoxin oxidoreductase, PFL = Pyruvate formate lyase, F1P = fructose-1-phosphate, FBP = fructose 
bisphosphate, DHAP = dihydroxyacetone phosphate, G3P = glyceraldehyde-3-phosphate, BPG = bis-phosphoglycerate, 3 PG = 3-phosphoglycerate, 2 PG =
2-phosphoglycerate, PEP = phosphoenolpyruvate.
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via the GCS (data not shown), which is in stark contrast to the distinct 
upregulation of GCS gene expression (section 3.2.2). However, the 
glycine uptake rate was ~800-fold lower compared to the formate up-
take rate, providing a potential explanation for the negligible influence 
on intracellular flux distributions. 

Growth on H2/CO2 led to a 25% higher flux through the WLP as 
compared to growth on formate, agreeing well with the higher expres-
sion of WLP genes (section 3.2.1). Formate was formed from H2 and CO2 
by the HDCR instead of being lysed. Apart from the HDCR reaction, the 
metabolic fluxes were similar to formatotrophic growth. 

Heterotrophic growth on fructose varied significantly from the for-
matotrophic and autotrophic condition. The degradation of fructose via 
glycolysis provided energy via substrate level phosphorylation and 
central carbon metabolites for anabolic reactions, making costly gluco-
neogenesis obsolete. The direction of the hydrogenase reaction was 
inverted to form H2 from NADH and Fd2−. The flux through the WLP was 
only 66% of the initial fructose uptake rate, underlining the role of 
glycolysis as the central energy-providing pathway. Despite a lower 
expression of WLP gene clusters (section 3.2.1), the WLP allowed full re- 
oxidation of reduction equivalents obtained from fructose degradation. 

The growth on formate + H2/CO2 revealed flexible adaptation of 
fluxes to the available substrates. External formate fueled the internal 
metabolite pool and reduced the reaction rate of the HDCR by 33% 
compared to growth on H2/CO2. However, the overall flux to acetyl-CoA 
remained unchanged. For growth on formate + H2/CO/CO2, formate 
and CO fueled the carbonyl-branch and the methyl-branch of the WLP. 

Growth of A. woodii on formate + fructose represented a metabolic 
mixture of the growth on the isolated carbon sources. Fructose was 
degraded via glycolysis to provide energy and metabolites for the 
anabolism. Simultaneously, formate was used as a substrate of the WLP, 
providing additional energy. The flux through the WLP to acetyl-CoA 
was ~280% of the flux during growth on fructose, thereby contrib-
uting significantly to acetate production and energy generation. This 
increased flux was supported by a stronger expression of WLP genes as 
compared to growth on fructose (section 3.2.1). However, the activity of 

the WLP was still 6.5-fold lower than for growth on formate. When co- 
utilizing formate and fructose, 39% of formate was activated by the 
formyl-THF-synthetase while the remaining part was converted to CO2 
and H2. Hence, the reduction equivalents obtained from glycolysis 
allowed to utilize more formate in the methyl-branch as compared to 
growth on formate. Formate was shown before to serve as an electron 
acceptor in the methyl-branch of the WLP (Wolin et al., 2003; Wiech-
mann et al., 2020). However, the CO2 released from formate and fruc-
tose degradation equaled the amount that was released for growth on 
formate (section 3.1.3). 

Comparing modelling results for different growth conditions high-
lights reactions and pathway functionalities and explains the metabolic 
flexibility of A. woodii: the direction of the hydrogenase reaction is 
adapted to allow either oxidation of H2 for the supply of reduction 
equivalents or generation of H2 for formate synthesis via the HDCR. 
Excess formate is lysed by the HDCR to release H2 to provide additional 
reduction power. While the expression level of the HDCR is not adapted 
(section 3.2.1), the fluxes from H2/CO2 to formate vary greatly in di-
rection and overall level for the different growth conditions. The stable 
expression of the HDCR might enable complete and fast utilization of the 
electron donors formate and H2. 

3.3.1. A. woodii utilizes the WLP for energy conservation and as a redox 
sink 

Generally, the WLP serves as an electron sink (Schuchmann and 
Müller, 2014). In A. woodii, electrons are provided by oxidation of H2, 
fructose, CO or formate-derived H2. We investigated the provision and 
consumption of reduction equivalents by eight key reactions of the 
central carbon metabolism to underline differences in their fate and the 
contribution of the WLP to their reoxidation (Fig. 5). 

During growth on formate and H2/CO2, all Fd2− is supplied by the 
oxidation of H2 through the hydrogenase HydABCD. 75% of NADH is 
obtained by H2 oxidation and the remaining part by oxidation of Fd2−. 
Nearly all NADH and the remaining Fd2− are consumed in the WLP 
while the gluconeogenetic reactions (PFOR and G3P DH) and NADPH 

Fig. 5. Relative contribution of central redox reactions to the NADH and Fd2− pool under different substrate conditions. Negative rates indicate oxidation of the 
respective reduction equivalent, positive rates reduction. Reaction rates were normalized by the total rate of reduction of each reduction equivalent by all eight 
considered reactions. DH = dehydrogenase, R = reductase, G3P = 3-phosphoglycerate, PFOR = pyruvate:ferredoxin oxidoreductase, HydABCD = electron bifur-
cating hydrogenase, Rnf = Rnf complex, Stn = Sporomusa type Nfn. The rates for the generation and consumption of NADH and Fd2− were derived from the metabolic 
modelling results (Fig. 4). 
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forming reaction (Stn) contribute to a negligible amount. The overall 
contribution of reactions to the supply and oxidation of reduction 
equivalents is identical for formatotrophic growth and autotrophic 
growth on H2/CO2. 

In contrast, PFOR is the sole source of Fd2− during heterotrophic 
growth on fructose. The electron-bifurcating hydrogenase operates in 
reverse direction and consumes NADH and Fd2− to supply H2 for 
formate formation by the HDCR. Only 6% of NADH are generated from 
Fd2− via the Rnf complex, correlating with the lower expression of Rnf 
complex genes (section 3.2.1). Compared to growth on formate, a bigger 
share of NADH (19%) and Fd2− (25%) is consumed via Stn, guiding 
reduction power towards NADPH-consuming anabolic reactions (Kremp 
et al., 2020). Nevertheless, the WLP still functions as an electron sink 
during growth on fructose. Due to the minor contribution of the Rnf 
complex in redox balancing, the function of the WLP and Rnf complex in 
energy conservation becomes subordinate. 

Co-utilization of formate + H2/CO2 relies on the oxidation of H2 to 
provide electrons, similar to the respective unitrophic growth condi-
tions, resulting in an identical share of redox reactions in the conversion 
of reduction equivalents. When formate + H2/CO/CO2 are co-utilized, 
Fd2− is also exclusively generated from oxidation of H2. However, less 
Fd2− is consumed by the CODH and 48% of Fd2− is oxidized via the Rnf 
complex. 

During growth on formate + fructose, electrons are equally provided 
from formate-derived H2 and glycolytic redox reactions. Half of the Fd2−

is provided by the electron-bifurcating hydrogenase and the other half 
by the PFOR. 18% of NADH are generated by the reaction of the Rnf 
complex, indicating a stronger role of the WLP in energy conservation 
compared to growth on fructose. A notable share of electrons is trans-
ferred to NADPH via Stn to fuel anabolic reactions. 

A. woodii can flexibly adapt to the electrons supplied by substrate
oxidation. While re-oxidation of reduction equivalents by the WLP is 
crucial during heterotrophic growth, energy conservation via the Rnf 
complex was found to play only a minor role. All electrons and carbon 
sources are used to produce acetyl-CoA via the glycolysis and the WLP, 
yielding acetate as the only product in addition to biomass. 

Establishing A. woodii as a platform organism for formate-based 
bioproduction requires an extension of the product spectrum to indus-
trially relevant bulk and commodity chemicals. To understand the for-
mation of acetate as the sole product and to determine potential 
limitations for the synthesis of other products, we examined the ATP 
availability of A. woodii for growth on different substrates. 

3.3.2. Co-utilization of substrates allows modulation of ATP availability 
The synthesis of ATP from acetyl-CoA plays an important role in the 

energy household of A. woodii: during autotrophic and formatotrophic 
growth. During growth on fructose, acetate formation from pyruvate- 
derived acetyl-CoA enables synthesis of additional ATP. Acetyl-CoA is 
also an intermediary metabolite for the synthesis of industrially relevant 
products (Vees et al., 2020). However, withdrawing acetyl-CoA for the 
synthesis of metabolites other than acetate is only possible if net energy 
conservation of the cell is ensured. Consequently, product yields are 
constrained by ATP availability (Bertsch and Müller, 2015b). 

To investigate the available energy of A. woodii, the ATP gain per 
acetate was calculated (Table 4). The metabolic model of A. woodii 
allowed consideration of energetic costs for gluconeogenesis which are 

necessary to evaluate growth-coupled production of metabolites. A 
second approach to access the ATP availability of the cell is to determe 
the non-growth associated ATP maintenance (NGAM) which reflects the 
surplus ATP that cannot be associated to growth. 

During growth on formate, the lowest ATP/acetate ratio of 0.2 was 
determined, being 91% of the value for growth on H2/CO2 (Table 5). 
Both for formatotrophic and autotrophic growth, a high specific acetate 
formation rate was required to supply the cell with sufficient energy. 
Consequently, little energy could be invested in energy-negative pro-
duction pathways. The NGAM value for growth on formate was 56% 
lower than for autotrophic growth on H2/CO2. The lower ATP mainte-
nance costs might be linked to the low acetate concentration of 3.1 g L−1 

for the formatotrophic culture as compared to the high acetate con-
centration of 15.3 g L−1 for the autotrophic cultivation on H2/CO2. We 
found an inhibitory effect of high acetate concentrations on growth of 
A. woodii in our previous study (Novak et al., 2021) and a link between
ATP maintenance costs and acetate concentrations has already been 
postulated for other acetogens (Valgepea et al., 2017). Integrating 
glycine uptake into the FBA for growth on formate increased the NGAM 
value by ~5%, indicating that glycine uptake may have increased ATP 
availability when formate was the carbon source. 

Growth of A. woodii on fructose allowed the highest ATP generation 
per formed acetate, being 5.2-fold higher than for growth on formate. 
The NGAM value for growth on fructose was 2.5-fold higher than for 
growth on formate and was comparable to the value for autotrophic 
growth on H2/CO2 (Table 4). As the acetate concentration of 4.8 g L−1 

for heterotrophic growth was comparable to the concentration for 
growth on formate, product inhibition is unlikely to be responsible for 
the increased ATP maintenance costs. Analyzing samples from fructose- 
limited chemostat cultivations under the microscope showed A. woodii 
cells to be noticeably motile in contrast to cells from formatotrophic and 
autotrophic cultures. Thus, the higher ATP availability during growth on 
fructose might have enabled energy investment into inefficient cellular 
functions such as movement, thereby increasing maintenance costs. 

For co-utilization of formate + H2/CO2, the same ATP gain per ac-
etate was determined as for autotrophic growth on H2/CO2. The NGAM 
values for both conditions were also comparable. As the supply route of 
reduction equivalents is the same (section 3.3.1), assuming a similar 
energy state of the cell seems plausible. For growth on formate + H2/ 
CO2/CO, a 41% higher ATP gain was observed as compared to formate 
+ H2/CO2. Improved bioenergetics through supply of CO is in line with
previous reports for A. woodii and other acetogens (Hermann et al.,
2020; Novak et al., 2021). Supplying CO directly to the carbonyl-branch
of the WLP enabled lower specific flux through the WLP while main-
taining the same specific flux through the Rnf complex (section 3.3.1).

When growing on formate + fructose, a 3.8-fold higher ATP gain per 
acetate was observed compared to growth on formate. By providing 
fructose in a molar concentration six times lower compared to formate, 
the energetic availability of the cell could be drastically increased. The 
computed NGAM value was 2.9-fold higher than for growth on formate, 
indicating that the addition of fructose increased the amount of ATP 
wasted. Indeed, cells grown on formate + fructose were also motile 
when inspected under the microscope. 

In conclusion, the mixing of low energy substrates, e.g., formate and 
H2, with energy-rich substrates, e.g., CO and fructose, allows improving 
the bioenergetics of A. woodii. This additional energy could ultimately 

Table 4 
ATP yields per formed acetate and non-growth associated ATP maintenance (NGAM) for growth of A. woodii on different substrate mixtures. For calculation of the 
yields, the reactions of the following enzymes were considered: Formyl-THF synthetase, ATPase, acetate kinase, PTS fructose, 6-phosphofructokinase, phospho-
glycerate kinase, pyruvate kinase.  

Condition Formate H2/CO2 Fructose Formate + H2/CO2 Formate + H2/CO/CO2 Formate + Fructose 
ATP Yield (mol ATP/mol Acetate) 0.20 0.22 1.04 0.22 0.31 0.75 

Non-growth associated ATP maintenance (NGAM) 0.6473a 1.4549 1.6445 1.4460 1.6225 1.8528  
a The NGAM value was 0.681 mmol g−1 h−1 when a glycine uptake rate of 0.067 mmol g−1 h−1 was used as an additional constraint in FBA. 
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be used to synthesize relevant bulk chemicals from sustainable carbon 
and energy sources such as H2, formate, CO, and CO2. Genetic tools for 
the plasmid-based overexpression of pathways and for the deletion of 
genes in A. woodii are available (Beck et al., 2019; Hoffmeister et al., 
2016; Wiechmann et al., 2020), enabling to broaden the product spec-
trum in the future. As A. woodii naturally directs all excess carbon and 
reduction equivalents towards the formation of acetate, additional ge-
netic modifications might be needed to improve heterologous product 
synthesis. 

3.4. Formate-based bioproduction achieves excellent energy efficiencies 

One-carbon sources such as CO2, CO, formate and methanol are 
considered as promising platform feedstocks of the future bioeconomy 
(Bar-Even et al., 2013; Claassens et al., 2019; Cotton et al., 2020). 
Table 5 shows the energetic efficiencies obtained for A. woodii and 
different substrates used in this study and compares them to values re-
ported for acetogens and other common microbial hosts. Overall, ace-
togens show superior energetic efficiency on all substrates analyzed, 
with the highest values for one carbon substrates. Compared to gaseous 
substrates, formate as a miscible one carbon substrate showed even 
higher energetic efficiencies. The high efficiency make formate a 
promising substrate for bioproduction of chemicals and fuels. However, 
acetogens such as A. woodii and E. limosum (Litty and Müller, 2021) form 
acetate as the exclusive product during growth on formate. Metabolic 
engineering of A. woodii might allow to implement strategies for pro-
duction of other metabolites. Production of ethanol and lactate from the 
substrates considered in this study were analyzed using flux balance 
analysis (Table 6). To that end, NGAM values and specific substrate 
uptake rates from experimental results (Fig. 4 and Table 4) were used as 
model inputs together with a specific growth rate of 0.02 h−1 and 
maximizing the ethanol or lactate yield was used as objective function. 

Metabolic modelling showed that by smart co-feeding of substrates 
flexible production scenarios for formate upgrading with high energy 
efficiencies can be devised. Supplementation of relatively minor quan-
tities of CO and fructose increases the energy availability (section 3.3.2), 
and thus enables exclusive formation of ethanol or lactate without 
co-production of acetate. Co-utilization of H2 allows complete fixation of 
CO2, improving the carbon efficiency of the process or even facilitating 
net CO2 uptake. The superior energy efficiency and straight forward 
substrate co-utilization make A. woodii an excellent candidate for 
formate-based bioproduction. 

4. Conclusion

The quantitative physiological, transcriptomic, proteomic, and
computational analysis of this study revealed A. woodii metabolism to be 
highly flexible in terms of substrate co-utilization. The -omics analysis 
together with metabolic modelling provided insights into the adapta-
tions of acetogen metabolism to utilization of different substrates. Uti-
lization of formate, autotrophic and heterotrophic substrates was 
characterized by high energetic efficiencies, a crucial aspect for eco-
nomic viability of bioprocesses for chemicals and fuels production from 
one carbon substrates. In silico analysis underlined the potential of 
substrate co-utilization for improving the bioenergetics which could 
facilitate the implementation of metabolic engineering strategies for 
formate-based production of ethanol and lactate. Collectively, the re-
sults of this study highlight A. woodii as a promising host for bio-
processes rooted in sustainable substrates. 
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Table 5 
Comparison of the energetic efficiency of different acetogens and microorganisms during growth and product formation on one carbon substrates and sugar substrates. 
Energetic efficiency was calculated according to (Claassens et al., 2019). rGLY (eng.) refers to engineered, synthetic formatotrophy.  

Organism Substrate Active assimilation 
pathway 

Product(s) Energetic efficiency [%] Reference 

A. woodii Formate WLP Acetate 84.2 Tschech and Pfennig (1984) 
A. woodii DSM1030 WLP Acetate 93.7 This study 
A. woodii DSM1030 WLP Acetate 80.7 Moon et al. (2021) 

E. coli rGLY (eng.) Biomass 18.8 Kim et al. (2020) 
C. necator rGLY (eng.) Biomass 21.2 Claassens et al. (2020) 
C. necator Calvin cycle Biomass 23.7 Claassens et al. (2020) 

Pseudomonas 1 Serine cycle Biomass 52.2 Goldberg et al. (1976) 
Methylotroph strain M2 Serine cycle Biomass 60.4 Kelly et al. (1994) 

A. woodii DSM1030 Formate + H2/CO2 WLP Acetate 75.2 This study 
A. woodii DSM1030 Formate + H2/CO2/CO WLP Acetate 78.2 This study 
A. woodii DSM1030 H2/CO2 WLP Acetate 76.3 This study 

C. ljungdahlii WLP Acetate, Ethanol, 2,3BDO (check) 80.8 Hermann et al. (2020) 
C. autoethanogenum H2/CO/CO2 WLP Acetate, Ethanol, 2,3BDO 79.6 Valgepea et al. (2017) 

C. ljungdahlii WLP Acetate, Ethanol, 2,3BDO 76.3 Hermann et al. (2020) 
A. woodii DSM1030 WLP Acetate 75.1 Novak et al. (2021) 

C. ljungdahlii CO WLP Acetate, Ethanol, 2,3BDO (check) 72.1 Hermann et al. (2020) 
C. autoethanogenum WLP Acetate, Ethanol, 2,3BDO 69.6 Valgepea et al. (2018) 
P. pastoris PC4002 Methanol DHA cycle Biomass 36.1 Shay et al. (1987) 
P. pastoris CBS 704 DHA cycle Biomass 36.9 Hazeu and Donker (1983) 

Pseudomonas 1 Serine cycle Biomass 34.1 Goldberg et al. (1976) 
Pseudomonas C Serine cycle Biomass 48.7 Battat et al. (1974) 

B. methanolicus MGA3 RuMP cycle Biomass 43.3 Schendel et al. (1990) 
B. methanolicus MGA3 RuMP cycle Biomass 45.1 Pluschkell and Flickinger (2002) 

E. coli rGLY Biomass 11.8 Kim et al. (2020) 
A. woodii DSM1030+ WLP Acetate 82.7 Tschech and Pfennig (1984) 
Acetobacterium sp.+ WLP Acetate 87.0 Bainotti et al. (1998) 
Acetobacterium sp. Methanol + Formate WLP Biomass 74.4 Bainotti and Nishio (2000) 

C. acetobutylicum CAB1060 Glucose – Butanol, Ethanol 65.4 Nguyen et al. (2018) 
S. cerevisiae – Ethanol, Glycerol 81.6 Nissen et al. (1997) 

A. woodii DSM1030 Fructose WLP Acetate 65.0 Godley et al. (1990) 
A. woodii DSM1030 WLP Acetate 69.2 This study 
A. woodii DSM1030 Formate + Fructose WLP Acetate 74.3 This study  
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