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Abstract— Robots operating in the real world are expected
to detect, classify, segment, and estimate the pose of objects to
accomplish their task. Modern approaches using deep learning
not only require large volumes of data but also pixel-accurate
annotations in order to evaluate the performance and therefore
safety of these algorithms. At present, publicly available tools
for annotating data are scarce and those that are available rely
on depth sensors, which excludes their use for transparent,
metallic, and general non-Lambertian objects. To address this
issue, we present a novel method for creating valuable datasets
that can be used in these more difficult cases. Our key contribu-
tion is a purely RGB-based scene-level annotation approach that
uses a neural radiance field-based method to automatically align
objects. A set of user studies demonstrates the accuracy and
speed of our approach over a purely manual or depth sensor
assisted pipeline. We provide an open-source implementation of
each component and a ROS-based recorder for capturing data
with a eye-in-hand robot system. Code will be made available
at https://github.com/markus-suchi/3D-DAT.

I. INTRODUCTION

With the rise of machine learning methods in computer
vision comes the need for large annotated datasets. It is
crucial to gather accurately annotated data from the sensory
hardware used by the robot system to verify methods on
relevant data and thus guarantee the safety of the system.

Robot vision comprises a diverse set of tasks such as ob-
ject segmentation, classification, and pose estimation, which
are necessary for robotic capabilities like grasping, manip-
ulating, and placing objects. Despite the importance of the
vision system, the tools to gather fully annotated data for
direct and rapid evaluation are unfortunately scarce.

Although many publicly available datasets exist and have
significantly advanced the field [1]–[5] , there is still a
domain gap to overcome every time vision methods are
deployed on a real robot. Due to the requirement of large
annotated datasets for training modern deep learning ap-
proaches, researchers have turned to the generation of syn-
thetic data that is highly realistic or includes mechanisms to
overcome the synthetic-to-real domain gap. The Benchmark
for 6D Object Pose Estimation (BOP) [6] is the standard
for benchmarking object pose estimation and it provides
numerous synthetic training datasets to evaluate pose esti-
mators on real test data. Methods trained only with synthetic
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Fig. 1: 3D-DAT is a user-friendly semi-automatic annotation
toolkit, utilizing NeRF-based scene reconstruction to enable
efficient multi-view object pose and image labeling.

data achieve good performance on specific datasets but the
best results [7][8] still require refinement using real data.
Therefore, it is important to have access to annotations of
real-world data not only to robustly evaluate methods before
deployment but also to train them most effectively.

As such, annotating real data is unavoidable. Annotation
is time-consuming for all vision tasks but is particularly
difficult for the 6D object pose and there is a severe lack of
easy-to-use tools. Furthermore, most popular and available
tools [9][10] do not generalize to the case where objects
return poor depth readings due to transparent or metallic
surfaces [11][12] because they rely on 3D reconstructions
made using depth sensors. Thus, these tools are unusable for
a large variety of important real-world objects occurring in
industrial [2] or household settings [13]

To overcome the limitations of prior work, we present
3D-DAT, a novel method for exact object pose annotation
of RGB sequences. Our key innovation is the development
of an automated annotation process with a fast NeRF-based
(Neural Radiance Fields) alignment method that does not
require a depth sensor (see Figure 1). 3D-DAT is imple-
mented as a Blender[14] add-on, which enables a user to
estimate the object pose by manipulating 3D template models
to visually match them with their projection in recorded
RGB images. After this quick manual coarse initialization of
the object pose, it is refined automatically by applying the
Iterative Closest Point (ICP) [15] algorithm with a sampled
scene reconstruction and the 3D object model. In contrast
to existing work that use the depth sensors for reconstruc-
tion [9][10], we produce reconstructions from RGB images
only by employing NeRF [16] to generate depth images
as in [12]. Consequently, this enables annotating difficult
objects having transparent or shiny materials. Annotation is
performed at the scene level so changes made in a single
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view are immediately propagated to the whole sequence of
images and the user receives continuous visual feedback
about the state of the current pose overlap. Once an object is
aligned with the scene, pixel-wise segmentation annotation
or bounding boxes are trivially obtained by projecting the
object 3D models to the recorded views.

We demonstrate data collection using a robot arm with a
mounted camera and use its kinematic chain to obtain the
camera pose after calibration. This provides highly accurate
camera poses similar to other works [4][17][18]. If data is
available as ROS topics, our ROS recorder is employed to
save the relevant data (i.e., RGB images, depth images, point
clouds, camera poses). The resulting recordings are then
immediately ready for processing with the annotation tools.

We perform user studies to demonstrate the accuracy and
speed of the 3D-DAT annotation method. The studies include
annotating synthetic scenes to provide accurate results using
exact ground truth data. For real data, no ground truth exists,
thus we calculate the deviation from the mean pose of all
annotations to measure the similarity between them which
is similar to the approach used by commercial products for
bounding box detection annotation [19].

To summarize, our contributions are:
1) A GUI for manual annotation of multi-view image

sequences using only RGB images.
2) A purely RGB-based semi-automatic alignment method

using Neural Radiance Fields to refine coarse aligned
objects to speed up the manual annotation process.

3) A set of user studies to evaluate the accuracy and speed
of our annotation tool.

4) The implementation of the annotation approach as a set
of open-source tools.

We demonstrate that our NeRF-based approach on real data
results in an annotators’ agreement level comparable to that
obtained with the manual annotation of synthetic scenes with
perfect camera poses and parameters. The results of our
experiments also show that using NeRF outperforms using
depth sensor readings for auto-aligning objects and has a
significant positive impact on annotation speed.

II. RELATED WORK

The availability of datasets and tools for creating labeled
data has drastically improved many tasks in computer and
robot vision. Object segmentation, classification and de-
tection datasets such as COCO [20], PASCAL [21], and
ImageNet [22] play a significant role in developing and
benchmarking state-of-the-art algorithms. For annotating sin-
gle images, tools like LabelMe [23], COCO-FiftyOne [24] ,
DEXTR [25] and PolygonRCNN [26] are freely available.

In robotics, 3D annotated data and especially annotation
of 6D object poses are highly valuable to evaluate tasks
involving grasping and manipulation. The OCRTOC [27]
benchmark for robot grasping and manipulation provides
labeled data for RGBD images for their cloud challenge
contests. DEXYCB [28] provides annotations for objects and
hands using a fixed camera setup and manual labeling of
keypoints. The YCB-video dataset [5] provides annotated

RGB and depth video sequences of scenes with YCB [29]
objects. The pose of each object is manually annotated in the
first depth frame, refined using the Signed Distance Function
then tracked and propagated throughout the recording.

Monica et al. [30] develop an interactive editor for 3D
point cloud labeling. SemanticPaint [31] enables a user to
physically annotate 3D reconstructions through virtual real-
ity. Our previous work, EasyLabel [32], uses depth differenc-
ing to retrieve object labels from point clouds. The downside
of these methods is the lack of object pose annotation and
the dependency on the quality of depth information.

SALT [33] uses 2D bounding boxes placed by the user
to identify objects in a video stream. The boxes are prop-
agated and 3D bounding boxes are derived from the man-
ual input. Foreground and background are separated semi-
automatically using Gaussian Mixture Models. Pixel-wise
masks are refined using GrabCut [34], requiring additional
manual annotations in the form of scribbles. LabelFusion [9]
uses ElasticFusion [35] for camera pose estimation and
reconstruction. The user manually annotates corresponding
keypoints on 3D models and the reconstruction to retrieve an
initial model alignment. ICP is then used to refine the align-
ment and object masks can be retrieved by back projecting
the model to the RGB images. RapidPoseLabels [10] builds
on the same reconstruction algorithm but uses 2D keypoint
annotations that are tracked and propagated to all views.

Transparent and reflective object materials are notoriously
difficult to annotate since most methods using depth data
are unsuitable. The TOD [17] dataset of transparent objects
addresses the shortcoming of depth-based methods by using
only RGB images. It requires a stereo camera, the presence
of fiducial markers for camera pose estimation, and manually
provided keypoints to retrieve object poses. The StereOBJ-
1M [36] approach is similar but uses a mix of fixed monoc-
ular cameras and a hand-held stereo camera.

Our method is similar to ProgressLabeller [37], which
uses RGB images and manual multiview silhouette matching.
Their results show that a purely RGB-based method is
capable of handling transparent objects and provides better
training data for training pose estimators than LabelFusion,
which is based on depth sensor data. Our work also uses
a projection-based manual annotation approach but addition-
ally provides active support with automatic object alignment,
resulting in both faster and more accurate annotation.

Recent advances in synthetic image creation based on
NeRF [16] have been included in semantic scene annota-
tion [38]. DexNeRF [12] showed that NeRF can be used
to capture geometric information from transparent objects
but optimization takes a significant amount of time. Instant-
ngp [39] demonstrated that NeRF can be optimized in an
efficient manner. Leveraging these ideas, 3D-DAT combines
a quick manual annotation process with an efficient NeRF-
based reconstruction method to automatically align manually
placed objects using only RGB images. The user matches
3D template models to sequences of images with the help
of a GUI and after a coarse alignment of an object, an auto-
alignment function refines the initialization to complete the



process. The resulting precise 6D pose annotation is used to
create pixel-wise annotation of images by the projection of
3D models to all camera views of a recording.

III. 3D-DAT ALIGNMENT METHOD

In this section, we describe the data annotation process
shown in Figure 2. We introduce our manual multi-view
alignment approach, which is supported by an auto-align
procedure to increase annotation speed and accuracy.

A. Multiview Projection-Based Manual Alignment

We create a digital replica of a recorded scene and enable
the user to manually align object models to images in order
to create an overlap between the 2D projection of the model
with the real object in the captured images. The object pose is
retrieved by manually changing the position of the object and
visually verifying the current state of the overlap between
the object in recorded views and the projected mask, or
silhouette, of the object in the annotated pose using different
camera views.

The camera views of a scene provide a set of camera
images Ii ∈ I with associated camera intrinsic:

Cparam =

fx 0 cx 0
0 fx cy 0
0 0 1 0

 (1)

with focal lengths fx, fy and principal points cx, cy .
For the current camera pose and object model pose

Cworld, Oworld ∈ SE(3) the 2D projection to the current
camera view is defined as:x′

y
′

z
′

 = Cparam · C−1
world ·Oworld

xy
z

 (2)

The object pixels in a single image Ii[u, v] are calculated
with u = x

′

z′ and v = y
′

z′ .
All changes in one view propagate to all the other views,

thus it is not necessary to annotate every image. However,
varying viewing angles of the recorded scene is required for
exact alignment and to resolve perspective ambiguities (e.g.
scale vs. position). The manual alignment method is used for
coarse alignment of objects before initiating the auto-align
method, or for final adjustments if necessary.

B. Auto-Alignment with NeRF Generated Depth Maps

The initial coarse pose that is manually supplied by
the user is automatically refined to make it more precise.
This auto-alignment method relies on creating a surface
reconstruction using depth maps of each view, which are
fused using Truncated Signed Distance Function (TSDF) [40]
volume integration followed by the Marching Cube [41]
algorithm to retrieve the final mesh of a scene. In preparation
for the alignment, point clouds are generated from both the
reconstructed scene mesh and from the 3D object model by
sampling points on their surfaces. With these generated point
clouds, the multi-scale Iterative Closest Point (ICP) [42]
algorithm is applied to minimize the distance between the

two point clouds of the object and the scene yielding a
transformation that improves the initial object pose.

Since depth sensor readings are not reliable for certain
materials (e.g. shiny, metal, transparent), we use depth maps
generated by NeRF [16]. NeRF learns an implicit scene
representation that takes as input a 5D coordinate of a spatial
location (x, y, z) and a viewing direction (θ, φ) and outputs
for a set of samples along a camera ray the volume density
σi and RGB color ci. For training the NeRF’s multi-layer
perceptron (MLP), multi-view RGB images of a static scene
with camera extrinsic and intrinsic parameters are required.
The approach uses volume rendering [43] to calculate the
expected color C(r) of the camera ray r = o+ td between
the near tn and far tf scene bounds, where o is the camera
center, d is the viewing direction, and t ∈ [tn, tf ], according
to:

C(r) =

N∑
i=1

wici (3)

where wi = Ti(1 − exp(−σiδi)), Ti = exp(−
∑i−1

j=1 σjδj)
and δi = ti+1 − ti is the distance between adjacent samples
on ray r. During training, it minimizes the error between the
input image RGB color and rendered colors.

The authors of DexNeRF [12] observed that NeRF can be
used to render depth of transparent objects. To obtain the
depth map used in the reconstruction, rays are shot for each
pixel. Instead of using the weighted sum, we render depth as
in DexNeRF by searching for the first sample along the ray
for which the density σi > m where m is a fixed threshold
value. The depth is set to the distance of that sample σi.

We use Instant-ngp [39] to benefit from fast training times
and add the depth render strategy as described above. This
enables the alignment method to work with RGB images
only, even for shiny, metallic, and transparent objects.

IV. 3D-DAT SYSTEM COMPONENTS

In this section, we describe the full system for data collec-
tion and annotation by introducing the tools from 3D-DAT
(see Figure2). The minimum requirement is the availability
of RGB image data together with the corresponding camera
poses and camera parameters. In our work, this is made
available by a robotic system. We provide an example of
how to use a robotic arm for data gathering in Section V-A.
Additionally, 3D object models are required.

3D-DAT separates the steps needed for data preparation
and annotation in such a way that the first stage is processed
unattended for all recorded data:

1. Train a NeRF using scene images, camera poses, and
intrinsics.

2. Use the trained Nerf to render synthetic depth maps.
3. Create and sample a TSDF-surface reconstruction from

the depth maps.
Training NeRF for a scene with 100 images with 4000
iterations needs 96 secs using an NVIDIA RTX3090 GPU.
Additionally, rendering takes 90 secs and reconstruction
takes 20 secs.



Fig. 2: Workflow of the annotation process: Recorded RGB images, camera poses and intrinsics are used to train NeRF,
which is used to generate a pointcloud of each recorded scene. The result together with the images and camera information
of a scene are imported to the Blender GUI. After coarse manual alignment, the auto-align method uses ICP to improve the
object pose. In addition to the annotated pose, masks and bounding boxes can be generated.

After the necessary data is generated, the user annotation
workflow starts:

1. Import images, camera poses, camera intrinsics, 3D
object models, and scene pointclouds from the data
preparation step.

2. Use the GUI for coarse alignment of object models.
3. Initiate the auto-alignment of the current object using

ICP and preprocessed data.
4. Refine the result manually if necessary (repeat 2 and 3).
We create the user interface for our annotation tool as a

Blender add-on. The move and rotation widgets offered by
Blender are used to place and align objects. The user can
quickly navigate and browse the imported camera views and
has permanent visual feedback from the back projection of
the 3D model. The user can adapt the transparency of the
3D model to make adjustments more easily visible by using,
for example, only the silhouette of the object.

A dataset-API building upon Open3D [44] framework
encapsulates necessary core functions such as importing data,
saving poses, interacting with the recorded data, and creating
the necessary data for the auto-align method, mask creation,
and visualization.

The ROS recorder makes data published on ROS topics
persistent. It can be configured to record Image, Pointcloud,
and Pose topics. Configurations need to be set up only once
for the recording system and can then be reused. To make
a recording, a triggering mechanism initiates the recorder to
save a snapshot of the configuration to the file system. The
recordings are ready to be used with our annotation tools.
Note that the depth and pointcloud data is not necessary for
annotation but it is interesting for evaluating methods that
use those modalities (e.g., [5]).

V. EXPERIMENTS & USER STUDIES

To evaluate the capability of pose annotation we conduct
two user studies. In the first study, we examine pure manual

(a) 1: mustard (b) 2: mug (c) 3: spam-can (d) 4: scissors

(e) 5: drill (f) 6: mustard (g) 7: bleach (h) 8: mug

Fig. 3: Scenes (scene number: object) used for the user
studies. Figures (a)-(d) show synthetic rendered scenes, (e)-
(h) are real scenes captured from cameras.

annotation on a set of synthetic and recorded scenes shown
in Figure 3. In the second study, we evaluate the different
auto-align methods on the set of recorded scenes.

A. Experimental Setup

To create synthetic scenes, we use the annotation tool to
import a prerecorded empty scene. We manually place object
models into the scene and use Blender’s cycle engine to
render all objects overlayed on the imported camera images.

To record real scenes, we use a KUKA lwr iiwa 14
robot arm with intel-realsense d415/d435 camera mounted
on the end-effector as shown in Figure 1. Extrinsic camera
calibration is performed using a marker-based optimization
approach [45]. After the end-effector calibration, the markers
are no longer needed. We use two trajectories, one sampled
on a half-sphere with the center located along the z-axis of
the scene, and another with random views facing toward the
scene. We use our ROS-recorder to capture all the scenes.

The image resolution for both synthetic and real images



is 1280×720px. Cropped sample images of each scene used
in the experiments can be seen in Figure 3. For each scene,
61 views are available.

The scenes are designed to increase the difficulty of the
annotation process. The synthetic scenes (Figure 3a-3d) are
easier than the real scenes because the camera pose errors
are non-existent and object models are perfect. The synthetic
scenes are made more difficult by introducing clutter and
touching objects. For the scissors in scene 4, the difficulty
is increased further because of a slight misalignment of the
local coordinate system from its intuitive symmetry axes.
The real scenes (Figure 3e-3h) start with the best calibrated
robotic setup and a non-occluded object. The object model
used in this scene is of high resolution (manually scanned
using the Artec Eva scanner), yielding the best 3D model
of all real objects. We use the same camera poses as in the
synthetic scenes (arranged in a half-sphere), which provide
the best views of the object. For the remaining three objects
we use available models from the BOP challenge [6] of the
YCB-video dataset [5]. For the last two scenes, we further
increase the difficulty by switching to random views.

B. Metrics

Annotation accuracy is evaluated by calculating the trans-
lation error as:

terr = ‖a− g‖2, (4)

where a, g ∈ R3 correspond to the (x, y, z) coordinates
of the object centers for the annotation and ground truth,
respectively. The rotation error is measured as the angle
between two rotation matrices as follows:

θerr = arccos

(
trAG−1 − 1

2

)
, (5)

where A and G ∈ SO(3) are rotation matrices of the
annotation and the ground truth.

For the real scene, the ground truth poses are not avail-
able, thus we instead calculate an average pose over all
annotations and substitute the ground truth variables in
Equations (4) and (5) accordingly. The mean center of a
pose is retrieved by averaging the (x, y, z) coordinates. The
mean rotation is calculated using chordal-L2-means1 over all
rotations. From this, we derive a notion of agreement of the
pose annotation for a specific scene conducted by different
users. Low values indicate high consistency among users on
a common annotation pose, thus a greater agreement on the
pose is achieved. High variance indicates an inconsistency
in the pose of objects. In the case of the synthetic scenes,
however, ground truth poses are available and can be directly
compared to the manual pose annotations.

C. User Studies

The first user study evaluates the accuracy of manual
annotation of synthetic and real scenes. We conduct the
study by inviting 12 participants. The participants have some
experience using 3D software (e.g., CAD software). One

1using the implementation from scipy https://scipy.org/

participant is experienced (>30h), and two users have minor
experience (<10h) with our tool. The remaining users are
new to the tool. After a 20 minute tutorial, including a
guided hands-on annotation session, the participants annotate
different objects in all eight scenes without assistance.

To evaluate the auto-alignment function we invite the
participants a second time, where 9 people from the original
group participate again. The second trial is scheduled with
a sufficient time gap (>60 days) from the first session
to minimize a possible memory effect. The participants
are requested to annotate the recorded scenes twice, using
the alignment function with data from a depth sensor and
rendered depth maps using NeRF. To avoid bias toward a
specific method, we switch the order of methods between
each user session.

D. Results

The results are shown in Figure 4. For the synthetic
scenes, a translation error average of 0.55mm is observed
and 10 out of 12 participants stay below 1.0mm error. The
average rotation error is 0.77◦ and 8 out of 12 participants
stay below 1.5◦. Figure 4a clearly shows the negative effect
of the misaligned axes for the object (scissors) of scene
4; participants score worst in finding the correct rotation.
Overall, the results on the synthetic scenes show that highly
accurate annotation of 6D poses is possible using manual
annotation when conditions are optimal.

The deviation from the mean translation and rotation for
both synthetic and real scenes is presented in Figure 4b-
4c. Comparing synthetic and real scenes shows that user
agreement on a common pose is best for synthetic data.
There is a significant loss in agreement for real scenes when
conducting manual and auto-align annotation using depth
sensors. The best result for the real scenes, and most similar
to synthetic scenes, is achieved when using auto-align with
NeRF. Translation distance from the mean is on average
0.47mm for synthetic scenes. For real scenes, the error is
1.25mm when using only manual annotation, 1.26mm when
including auto-alignment with depth sensors, and 0.9mm
when including auto-alignment with NeRF. Rotational error
from the mean is on average 0.63◦ for synthetic data. For real
scenes, the error is 1.29◦ when annotated manually, 1.24◦

when using auto-alignment with depth sensors, and 0.65◦ for
NeRF auto-aligned objects. Deviations are noticeably worse
on the more difficult scenes but overall the agreement of the
user annotations is still within a small range. Overall, using
NeRF data for auto-alignment is closest to the agreement on
a pose for synthetic scenes.

The results for annotation speed are presented in Table I.
Users spend on average 9.4 mins annotating a whole image
sequence for a scene without assistance. Including the auto-
alignment in the workflow reduces the time significantly
to 4.1 mins when using data from a depth sensor and 2.9
mins when data is generated by NeRF. The NeRF-generated
depth maps provide much better input data for the alignment
procedure, thus less manual work is required.

https://scipy.org/


(a) (b) (c)

Fig. 4: (a) Evaluation of the synthetic part of the user study showing deviations from ground truth poses. (b-c) Evaluation
showing deviations from the means of annotated object poses. (b) Comparison of manual methods for synthetic and
real scenes, and auto-align methods based on depth sensors or NeRF. (c) Detailed comparison for single scenes. (no
postfix=manual, d=depth sensor, n=NeRF.)

manual [sec] depth [sec] NeRF [sec]
scene avg std avg std avg std
5 drill 524 220 112 42 81 37
6 mustard 640 153 188 81 190 64
7 bleach 521 184 340 148 162 106
8 mug 581 176 340 172 256 167
all 567 184 245 154 172 119

TABLE I: Annotation times without (manual) and with
assisting auto-alignment using depth sensor data and NeRF.

VI. EXAMPLES

Annotation examples for a variety of different objects
are shown in Figure 5. The first row shows an example of
annotation for a subset of objects from the HOPE dataset [4]
with overlayed masks, bounding boxes, and class labels. The
second row depicts a scene with YCB objects [29] for the
user study showing a more complicated setup. This shows a
weakness of our approach due to the accuracy of 3D models.
For example, the pitcher has a slightly different handle in
the model. The last two rows show resulting masks retrieved
from a scene of transparent and industrial objects made of
plastic and metal, which produce noisy depth readings. The
reliance on depth data is a strong limitation for other 6D
pose annotation methods that we overcome with 3D-DAT,
allowing annotation of objects such as those displayed here.

VII. CONCLUSION

This work introduced 3D-DAT – a set of tools supporting
robotic researchers to create datasets for evaluation and
training of methods for robotic vision tasks using their
robotic setup at hand. It is an efficient toolset for retrieving
6D pose annotation and pixel-wise annotated RGB/RGBD
data at the object level. The 3D-DAT GUI is implemented as
a Blender add-on and uses multiple views to allow accurate
3D model alignment. It includes an auto-alignment function,
using NeRF combined with a reconstruction pipeline and
ICP, to improve the speed and precision of annotation.

Results from our user studies show similar accuracy to
manually labeled data but with improved annotation speed.

Fig. 5: Top row shows annotation examples from the HOPE
dataset, followed by YCB-objects, transparent, and industrial
objects in the last row.

Furthermore, using reconstructions created with NeRF results
in better and faster annotation compared to using raw depth
sensor data. 3D-DAT does not depend on depth sensors, thus
enabling annotating transparent and shiny metal objects.

Possible extensions to our method include camera pose
refinement using NeRF [46] and including physical con-
siderations into the auto-alignment procedure. Investigating
methods, e.g. single-shot pose estimators, to eliminate the
manual coarse object alignment is needed to achieve a fully
automated annotation pipeline.



REFERENCES

[1] S. Hinterstoißer, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab,
and V. Lepetit, “Multimodal templates for real-time detection of
texture-less objects in heavily cluttered scenes,” Proc. of IEEE ICCV,
pp. 858–865, 2011.
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