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Cascaded Model Predictive Control of Underactuated Bipedal Walking
with Impact and Friction Considerations

Sait Sovukluk1,3, Christian Ott1,2 and M. Mert Ankaralı3,4

Abstract— This study demonstrates a cascaded model predic-
tive control (C-MPC) method for input constrained control of
underactuated planar bipedal walking with any predefined sta-
bilizable trajectory. Our approach aims to increase the trajec-
tory tracking performance of the system and produce realistic
and applicable responses while respecting friction constraints
and considering impact dynamics. Primarily focusing on zero
dynamics with PD (ZD+PD) control, this proposed control
method constitutes a second layer controller on top of the
well-known trajectory tracking controllers for underactuated
bipedal walking systems. We successfully implement this model-
based controller and test against large modeling errors, noises,
and disturbances, where the conventional ZD+PD control fails
to maintain stability.

I. INTRODUCTION

The complexity of control of bipedal walkers with point
feet originates from their underactuated nature. The underac-
tuation requires an indirect control of unactuated degree of
freedom through high-bandwidth control of actuated joints.
The actuated joints follow a specially generated trajectory
such that the unactuated degree of freedom performs the
desired behavior based on the system dynamics. Combin-
ing underactuation with high-dimensional nonlinear hybrid
dynamics requires special treatment for their control. Due
to the high dimensionality of the system and several gait
characterization constraints, one usually needs to solve these
trajectory generation optimization problems offline for one
step. Some of these trajectory generation methods are Hybrid
Zero Dynamics (HZD) [1], Human-Inspired Control [2], and
direct trajectory optimization [3]. Online implementation of
the predefined optimized trajectory employs a calculated
feedback-linearization input with a local high-gain controller,
i.e., zero dynamics with PD (ZD+PD) control.

Locomotion with a predefined trajectory on unknown
stochastic terrains requires a combination of different gaits.
Depending on surface and stability conditions, the next foot
placement point may need to be adapted. The literature
employs previously calculated gait libraries with dedicated
switching methods to walk over randomly generated stepping
stones [4], reject velocity disturbances efficiently [5], walk
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over an uneven terrain [6] and parameterize bipedal robot
locomotion [7]. Even though optimization problems for
trajectory generation consider various gait restrictions, such
as step length, friction cone, stability conditions, and torque
limitations, the online implementation employed in these
studies uses a calculated feedback-linearization input with
a local high-gain PD (ZD+PD) controller, which is enough
to prove exponential stability in theory. Unless one tests the
trajectories against every possible source of disturbances and
uncertainties, these online implementation methods tend to
exceed the input limitations of the actual system or violate
friction constraints. Exceeding torque and friction limitations
of the system causes discrepancies between the system model
and the robot, errors in estimations, and instabilities or
slow convergence rates. Additionally, excessive torque input
usually causes a violation in the other gait restrictions, such
as friction cone, which also causes instabilities.

Studies addressing the input torque limitation problem in
the online implementation of walking gaits usually employ
model-based controllers using simplified or linearized dy-
namics. Additionally, they do not consider friction limitations
or impacts. The studies in [8], [9] solve this problem by
employing MPC around linearized output dynamics, [10]
employs Hybrid-Linear Inverted Pendulum (H-LIP) dynam-
ics for MPC implementation, [11] employs a simplified
model of the robot dynamics projected in swing foot space
for their control, [12] uses linear centroidal dynamics. The
problem with constant linear system assumptions is that
the accuracy of these models is valid only for a small
region of configuration variables. As the prediction horizon
increases, accuracy decreases even more. Additionally, even
input noises of the motors affect the correctness of linearized
closed-loop restriction dynamics whose correction depends
on a particular input. On unknown stochastic terrain, un-
avoidable sources of errors reduce the performance of these
online implementation methods. The objective and approach
of this study are similar to the study in [8]. This study
varies from [8] in the way it handles the problem. First,
we consider friction limitations and impact dynamics during
prediction. Also, instead of employing linearized output
dynamics to predict future errors, this study employs full-
body closed-loop dynamics to estimate future states and
calculate for errors. Additionally, in order to enhance the
prediction accuracy, this study employs MPC in a cascaded
form, such that the MPC takes effect only when the closed-
loop dynamics with zero dynamics control starts to diverge
from the desired trajectory, for example, due to modeling
errors and disturbances, or exceeds the input limitations.



This study proposes a cascaded MPC implementation
method with input torque and friction limitations on sampled
whole-body dynamics as an online trajectory tracking con-
troller. We also switch system dynamics in case of an impact
during horizon estimation. Instead of employing a constant
linearized system or output dynamics model, we sample
closed-loop system dynamics with ZD+PD control at each
time step and update model approximation in our controller
structure. As the closed-loop system with this conventional
controller starts to diverge from the desired trajectory due
to disturbances and modeling errors, our cascaded MPC
(C-MPC) implementation optimizes the input. It decreases
trajectory tracking errors while considering friction limita-
tions and impact. With this approach, we enhance the well-
known weaknesses of ZD+PD control, such as its sensitivity
against significant modeling errors, excessive input torque
usage under disturbances, exceeding input limitations, and
violating friction constraints. This control structure consider-
ably enlarges the basin of attraction of the closed-loop system
with ZD+PD control. We show the controller’s ability against
various aggressive disturbances where feedback lineariza-
tion input with high-gain PD (ZD+PD) trajectory tracking
controllers failed to maintain stability under input torque
saturation. We also show that this model-based controller
is robust to modeling errors and can navigate through unex-
pected inclinations, where the leg collision happens before
and after the expected state (see supplemental video).

II. BACKGROUND

This section summarizes the conventional Hybrid Zero
Dynamics approach for trajectory generation and control for
5-link underactuated walkers (see Fig. 1). Studies in [1], [13]
provide throughout definitions for this approach.

Fig. 1. Schematic of a 5-link bipedal walker with point feet, where
q1−4, q5, and θ represent body angles, absolute angle, and internal clock,
respectively. The internal clock is a strictly monotonic function, and a
combination of configuration variables constitutes it.

A. System Dynamics

General state-space representation of nonlinear robotic
stance dynamics with n − number configuration variables
q ∈ Q, where Q is the configuration space and an n −
dimentional manifold, is expressed as:

ẋ = f(x) + g(x)u (1)

where x(t) = (q(t); q̇(t)) ∈ TQ,

f(x) =

[
q̇

D−1(q)[−C(q, q̇)q̇ −G(q)]

]
g(x) =

[
0

D−1(q)B

]
.

(2)

Matrices D(q) = D(q)⊤ ∈ Rn×n > 0, C(q, q̇) ∈ Rn×n,
G(q) ∈ Rn and B ∈ Rn×m represent mass-inertia matrix,
Coriolis matrix, gravity vector and input matrix for m
number of actuation, respectively.

Walking is a combination of two consecutive events called
stance and impact. Stance dynamics (ẋ) is a nonlinear
whole-body Lagrangian system model. The impact (∆) is a
momentary event that happens when the swing leg collides
with the ground, causes jumps in velocities, and triggers
coordination changes, i.e., the swing leg becomes the stance
leg, and the stance leg becomes the swing leg. A widely
used impact model for kinematic chains with multiple contact
points [14] can be implemented for the bipedal walkers with
some assumptions [1]. Defining x− and x+ to represent
states just before and just after the impact, the overall system
dynamics leads to:

Σ :

{
ẋ = f(x) + g(x)u x ̸∈ S
x+ = ∆(x−) x− ∈ S

. (3)

Switching surface S captures the moment when the tip of
the swing leg hits the ground ahead of the stance leg:

S := {(q, q̇) ∈ TQ | pv2(q) = 0, ph2 (q) > 0}, (4)

where ph2 : Q → R and pv2 : Q → R represent the
coordinates of the tip of the swing leg in the horizontal and
vertical axis, respectively.

B. Trajectory Generation Using HZD

Hybrid Zero Dynamics (HZD) is a well-known trajectory
generation method for underactuated hybrid 5-link bipedal
walkers [1], [13]. The method ensures that for a certain
subset of the configuration variables q ∈ Q̃ ⊂ Q, there exists
a set of input such that the output:

y = h(q) := h0(q)− hd ◦ θ(q) (5)

is zero, where h0(q) specifies n − 1 independent quanti-
ties that are to be controlled and hd ◦ θ(q) specifies the
desired evolution of these quantities as a function of a scalar
quantity θ(q), which is called internal clock. The internal
clock is a monotonic one-to-one function that slaves the
desired states, and a combination of configuration variables
constitutes it, θ(q) = cq, where c ∈ R1×n (see Fig. 1).
Using HZD, one can fit a degree M Bézier polynomial,
bi : [0, 1] → R, for the desired state evolution hd ◦ θ(q).
The desired state evolution mimics walking behavior and
satisfies defined constraints, such as friction, input, and other
physical parameter constraints, during the HZD optimization.
The study in [13, Chapter 6] provides a more throughout
explanation of obtaining a stabilizable periodic trajectory for
such systems.



C. Local Control with Feedback Linearization

The second derivative of output definition (5) yields to:

d2y

dt2
= L2

fh(q, q̇) + LgLfh(q)u, (6)

where L2
fh and LgLfh are second order Lie derivatives

and LgLfh is called decoupling matrix. For a subset of the
configuration variables q ∈ Q̃ ⊂ Q, where the decoupling
matrix is invertible, selecting the input u to be:

u(x) = (LgLfh(q))
−1(v − L2

fh(q, q̇)), (7)

yields to the following output dynamics:

d2y

dt2
= v. (8)

As a result, selecting v to be:

v = −KDẏ −KP y, (9)

results in exponentially stable output dynamics as long as
KD and KP are m×m positive definite matrices. Through-
out the study, the feedback linearization control input (7) is
named zero dynamics with PD (ZD+PD) control.

III. PROPOSED CONTROL METHOD

A. Cascaded MPC Formulation
To solve for an input, MPC requires a combination of

present states and their consecutive finite-time future es-
timations in a discrete manner. The performance of this
controller depends on how accurate the estimation is. As the
system dynamics are nonlinear, an exact estimation of future
states is not possible. We employ a cascaded structure to
reduce estimation errors such that the MPC is placed on top
of ZD+PD control. The motivation behind this approach is
that ZD+PD control input can be calculated using present
state information, and it already tries to converge to the
desired trajectory. Besides its tendency to exceed the input
limitations and violate friction constraints, when there is no
limitation, this controller tracks the desired trajectory, under
ideal conditions, quite well [13, Chapter 5]. Knowing the
input that comes from ZD+PD control allows us to make
a partial state prediction for the future more accurately than
not knowing anything about future inputs of the system. This
structure employs MPC only if the closed-loop dynamics
with ZD+PD control diverge from the desired trajectory or
exceed the input or friction limits. Otherwise, the total input
from MPC is zero.

Using second-order discretization, the evolution of con-
figuration variables q(t) can be approximately represented
as:

qk+1 ≈ qk + T q̇k + (T 2/2)q̈k, (10)

where qk = q(kT ), T ∈ R is sampling time, and k ∈ N is
time step. Consequently, the system model (1) yields to:

xk+1 ≈ xk + (fk + gkũk)T, k = 0, . . . , N − 1 , (11)

where ũ is the input to be solved,

fk =

[
I T/2
0 I

]
f + gku, gk =

[
D−1BT/2
D−1B

]
, (12)

and u comes from (7) and represents input from ZD+PD
control. Using (11), the general representation of the system
becomes as:

xN = x0 +

N−1∑
j=0

fjT +

N−1∑
j=0

gj ũjT . (13)

For a predefined orbit, i.e., for a known desired state xd,
error dynamics is a basic manipulation of (13):

eN = xN − xd
N . (14)

As a result of (14), general error representation can be shown
as:

e0
e1
e2
...
eN


︸ ︷︷ ︸

E

=




x0

x0

x0

...
x0

+


0
f0

f0 + f1
...∑N−1

j=0 fj

T −


xd
0

xd
1

xd
2
...

xd
N




︸ ︷︷ ︸

F

+


0 0 . . . 0

Tg0 0 . . . 0
Tg0 Tg1 . . . 0

...
...

. . .
...

Tg0 Tg1 . . . T gN−1


︸ ︷︷ ︸

G


ũ0

ũ1

ũ2

...
ũN−1


︸ ︷︷ ︸

U

(15)

where E ∈ R2n(N+1), F ∈ R2n(N+1), G ∈ R2n(N+1)×Nm,
and lastly U ∈ RNm. During calculating rows of partial
prediction matrix F , in case of an impact, i.e., x− ∈ S,
one should switch the system dynamics using (3) such that
trajectory estimation continues with the next step inside
the horizon. The impact detection depends not on fixed
time but on partially predicted states’ evolution. In (15), a
linear dependency is assumed between the additional MPC
input and the system dynamics. More comments on this
assumption will follow. The general error representation (15)
enables us to write a cost function for error in a quadratic
form,

J = e⊤NQfeN +

N−1∑
k=0

(e⊤k Qek + ũ⊤
k Rũk)

= E⊤

Q 0
. . .

0 Qf


︸ ︷︷ ︸

Q

E + U⊤

R 0
. . .

0 R


︸ ︷︷ ︸

R

U
(16)

in terms of input, where N ∈ Z+, Q = Q⊤ ∈ R2n×2n ≥ 0,
Qf = Q⊤

f ∈ R2n×2n ≥ 0, R = R⊤ ∈ Rm×m > 0 represent
horizon, error weight, final error weight and input weight,
respectively. Substituting (15) into the general representation
of the cost function (16) yields the cost function in terms of
input:

J(U) = U⊤(G⊤QG+R︸ ︷︷ ︸
M

)U + 2F⊤QG︸ ︷︷ ︸
α⊤

U + F⊤QF︸ ︷︷ ︸
β

.

(17)

B. Friction Constraint

Calculation of the tangential and normal component of
contact force Fc = [FT

c ;FN
c ] requires unpinned (n +

2) − DoF model of the system. Assume Jc ∈ R2×(n+2)

represents contact Jacobian for the unpinned model and (·)e
subscript represent the unpinned system model. Combination



of the task acceleration of the contact point J̇cq̇e+Jcq̈e = 0
with the unpinned system dynamics yields the contact force:

Fc = (JcD
−1
e J⊤

c )−1(JcD
−1
e (−BUt + Ceq̇e +Ge)− J̇cq̇e).

(18)
Since the MPC is a second layer controller, the resulting
input also includes the input of ZD+PD control (see Fig. 2).
As a result, the total input Ut that should be supplied to the
system becomes:

Ut = (u+ U). (19)

In order to imply friction limitations in input limits, we
substitute (19) into (18) and separate the effect of two
controllers on contact forces. With this approach, MPC will
act as a correction layer again, and if ZD+PD control violates
the friction cone, MPC will correct it by changing the input
profile. Labeling the fixed portion of the contact force that
comes from system dynamics and ZD+PD control effects as
Ff , the identical Fc representation becomes as

Fc = Ff − (JcD
−1
e J⊤

c )−1JcD
−1
e B︸ ︷︷ ︸

SMPC

U. (20)

Limiting friction to be
∣∣FT

c /FN
c

∣∣ ≤ µ, one can write input
constraint for friction limitations as∣∣∣FT

f − ST
MPCU

∣∣∣∣∣∣FN
f − SN

MPCU
∣∣∣ ≤ µ (21)

where (·)T and (·)N represent first and second rows, respec-
tively.

C. Optimization Problem

The resultant optimization problem, with modified input
constraints considering the input u that comes from ZD+PD
control (7), takes the following form:

min
U

{U⊤MU+2α⊤U} s.t.


xk+1 = xk + (fk + gkũk)T

Umin − u ≤ U ≤ Umax − u

friction constraint (21)
(22)

Since the MPC is the second layer controller, the resulting
input optimization should be combined with the input of
ZD+PD control. As a result, the total input Ut that should
be supplied to the system becomes

Ut = (u+ U). (23)

Block diagram representation of the proposed control method
is shown in Fig. 2. The control system first uses sampled state
of the walker as an initial condition and simulates the closed-
loop system with ZD+PD control up to horizon N . Then, the
controller constructs a cost function using resultant partial
predicted errors. Since the prediction is made with some part
of the input, i.e., only using input from ZD+PD control, the
partial prediction term is used here. The MPC considers the
amount of input that comes from the ZD+PD controller and
finds an additional input that minimizes the overall error of
the closed-loop system while considering impact dynamics

and limiting total input and friction constant. Finally, the
resultant total input is discretely fed into the system via a
zero-order hold.

Fig. 2. Block diagram representation of the proposed control model. In the
figure xpp and epp represent state and error partial prediction, respectively.

D. Implementation and Comments

The biggest assumption in this study is fixing the partial
prediction matrix in (15). It is assumed that the additional
input from MPC does not affect the system’s dynamics and
is formulated independently as input U is implemented via
fixed matrices at each time step. This assumption holds
when the error, hence the additional input, is not too
big. Otherwise, the effect of the additional input on the
system dynamics may not be negligible, and the accuracy
of the system model decreases. On the other hand, since
the additional MPC input is included only for regulation
purposes, it appears only in case of a violation or disturbance,
and the system dynamics is mostly driven by the feedback
linearization input. In the following sections, we show that
the input from MPC is zero when there is no disturbance
or violation. In case of an aggressive disturbance, we again
show that input from MPC is considerably less than the
feedback linearization input, and it vanishes quickly as the
error decreases. These results conclude that our cascaded
MPC formulation allows us to assume linearity between the
system dynamics and additional regulatory inputs.

For each time step, the required operations to apply the
controller can be listed as:

• Employing (7) inside fk, using (11) and (12), for ũ = 0
and switching the system dynamics in case of an impact
where x+ = ∆(x−), simulate ahead up to horizon N
and store fk and gk matrices,

• Using (15), (16) and (17), generate G and F , then obtain
M , α⊤ and β,

• Using (21) calculate the additional input constraints for
friction limitations,

• Using (22), solve for input and combine the solution
with ZD+PD control using (23).



E. Controller Parameter Selection

ZD+PD control requires eight controller parameter se-
lections (9). We chose the parameters by observing the
eigenvalues and eigenvectors of Poincaré return map estima-
tions, which are calculated numerically around the predefined
periodic orbit. We employ a basic search algorithm to select
the parameters that seeks small eigenvalue combinations
in magnitude around the predetermined trajectory. Imple-
mentation details of this search algorithm can be found in
[15, Chapter 3.6.1]. The resultant parameter sets are KP =
diag(60, 90, 90, 50) and KD = diag(10, 20, 20, 10).

MPC control, on the other hand, requires twelve pa-
rameters to choose for error and input weight matrices,
as shown in (16). After setting the input cost to be an
identity matrix, i.e., R = I4×4, preserving the same ratios
between parameters as in KP and KD matrices, we scale
these values by their discretization rates (see (11) and (12))
such that Q = diag(2KP /T

2,KD/T ). Additionally, to
increase the importance of future states, we scale Q by
diag(I2m×2m, . . . , N2m×2m) such that in case of an aggres-
sive disturbance, the controller behaves flexibly in terms of
errors in near future to converge nicely back to the trajectory
in further future. This approach also helps the system adjust
for future impacts, which is the primary source of instability
in case of errors.

Horizon selection is another control parameter that affects
both performance and solution time. Thanks to the cascaded
structure of the overall control system and since the feed-
back linearization input mostly drives the system dynamics,
sampling the system dynamics only with the feedback lin-
earization input is accurate enough to predict multiple steps.
Starting from N = 2000, we decreased the horizon until the
solution time was small and performance was well enough.
By observation, we selected N = 100 mostly to match with
the control frequency. Still, also we observed that there were
not any drastic changes in control performance against the
disturbances we applied to the system.

IV. SIMULATION RESULTS

In order to test the proposed control method on a 5-link
planar underactuated bipedal walking, we utilize a simulation
environment. While obtaining the system dynamics, we used
RABBIT’s dimension and inertia information [16] as a basis
with 5Nms and 10Nms damping at the knee and hip
joints, respectively. Then we followed [13, Chapter 6.6.2.1]
to obtain a periodic orbit using HZD. Table I collects the
resultant parameters of fitted trajectory into degree M = 6
Bézier polynomials, hd,i(θ, α), for initial condition x−

0 =
[2.92, 3.54, −0.15, −0.36, 0.015, −0.21, −0.16, −0.25,
0.23, −0.85]⊤. We illustrate the posture of the walker around
the optimized trajectory in Fig. 3. Hip and knee torques are
limited to 75Nm and 50Nm inside the simulation envi-
ronment. Any input torque higher than these in magnitude
saturates, i.e., stays constant at the limit. Finally, considering
the system’s nonlinearity, the sampling time is T = 0.001. In
order to present the tendency of ZD+PD control to exceed the
input torque limitations, we first simulate the system with this

TABLE I
BÉZIER POLYNOMIAL PARAMETERS FOR FITTED DESIRED TRAJECTORY

i α0 α1 α2 α3 α4 α5 α6

1 3.54 3.66 3.39 3.28 3.02 2.93 2.92
2 2.92 2.94 3.12 3.73 3.62 3.55 3.54
3 −0.36 −0.60 −0.28 −0.18 −0.03 −0.13 −0.15
4 −0.15 −0.18 −0.51 −0.81 −0.48 −0.38 −0.36

Fig. 3. The posture of the walker throughout the generated periodic
trajectory with 0.4 meters step length and 0.5 seconds step time.

controller without any input saturation. In Fig. 4, we compare
input behaviors of the ZD+PD and C-MPC controllers when
a forward force of 40N from the torso is applied during
the first step. The figure shows that the unsaturated ZD+PD
control uses much more input than the proposed control
method, even with the fine-tuned parameters. The system
with the ZD+PD controller failed to maintain stability under
saturation limits. Any force higher than 25N causes the
system with ZD+PD control to fall due to saturation.

Accordingly, Fig. 5 illustrates deviations of both closed-
loop systems from the desired trajectory when there is 25N
forward force from the torso of the walker throughout the
second step with saturation. Even though both controllers
reject the disturbance, since the C-MPC takes account of
input saturation, the deviation from the desired trajectory is
much smaller than that of the closed-loop system with only
ZD+PD control. Additionally, since the ZD+PD control is
a continuous-time controller, when implemented in discrete
time, the closed-loop system with this controller shows a
remaining error (see top row of Fig. 5). The proposed model
predictive controller compensates for this remaining error. As
a result, no remaining error is observed with this controller
(see bottom row of Fig. 5).

Finally, Fig. 6 illustrates ZD+PD and MPC input portions
of C-MPC control, again when a forward force of 25N is
applied to the torso throughout the second step. The figure
shows that when there is no disturbance at the beginning,
the input portion of MPC is almost zero. Under disturbance,
MPC takes effect to limit the total input and prevents large
deviation from the desired trajectory (see Fig. 5). After
convergence, the input that comes from MPC again reduces.

Even though HZD trajectory generation considers friction
limitations, it is highly likely to exceed these limitations in
case of disturbances. Two C-MPC simulations we present
in Fig. 7 show that in case of a disturbance, the friction



Fig. 4. Two-step response of the unsaturated ZD+PD controller (top) and
the proposed controller (bottom) against a forward force of 40N to the torso
throughout the first step of the robot.

Fig. 5. Error evolution of the systems with saturated ZD+PD control (top)
and C-MPC (bottom) against a forward force of 25N to the torso throughout
the second step with input saturation.

Fig. 6. ZD+PD and MPC input portion of C-MPC control when a forward
force of 25N is applied to the torso throughout the second step. These
inputs are summarized to the system (23).

exceeds the limitations when not limited during formulation.
On the other hand, as long as there is a possible solution, the
constraint we introduce inside the formulation (21) prevents
the controller from exceeding its maximum value.
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Fig. 7. Friction response of the system without (left) and with (right)
friction limitation in C-MPC formulation against a forward force of 50N
to the torso throughout the second step of the robot. The vertical axis is
limited to one.

V. PERFORMANCE OF THE CONTROLLERS

In order to comment on controllers’ performances, this
chapter compares the basin of attraction of each controller
along with their closed-loop Poincaré return map eigenvalue
estimations.

A. Basin of Attraction Analysis

To show the amount of disturbance each of these con-
trollers can reject, we calculate the basin of attraction of the
closed-loop systems with C-MPC and ZD+PD controllers for
torso position and a disturbance force applied horizontally
from the torso throughout the first step. The torso is selected
because it is the heaviest, the longest, and the unactuated
joint of the walker. During the analysis, we disturb q5 and
introduce disturbance force Fd throughout the first step. If
the walker does not fall, the simulation is terminated when
||x−∗ − x−|| < ϵ where x−∗ is the periodic state just before
the impact. The input torque of the ZD+PD controller is
also limited to 75Nm at the hips and 50Nm at the knees.
Any input torque exceeds this limit, saturates, i.e., stays
constant at the limit. Fig. 8 shows the basin of attraction for
both controllers. The figure shows that C-MPC considerably
enlarges the basin of attraction of ZD+PD control when
there is saturation. Since the high-speed forward disturbances
require high input torques, the C-MPC expands the basin
of attraction from the top, considering input saturation. As



shown in previous discussions, one should note that, even
though they all seem stable in some regions, each closed-
loop system with different controllers handles disturbances
differently (for example, see Fig.5). Input profiles and pos-
ture evolution under disturbance are distinct for each method.

Fig. 8. Basin of attraction of the closed-loop systems with ZD+PD control
and C-MPC with respect to the amount of disturbance applied to the initial
position of the torso and a constant horizontal force again from the torso
throughout the first step. Positive forces indicate forward disturbance.

B. Poincaré Return Map Analysis

Gait stability can approximately be determined by analyz-
ing the eigenvalues of Poincaré return map of the system,
which is linearized about a fixed point [17]–[20]. Poincaré
return map transforms the problem of finding periodic orbit
into finding a fixed point of the map, which is a discrete-time
nonlinear system. If the Poincaré section is selected to be
the switching surface S, then the fixed point x∗ lies within
S ∩ Z and the resultant Poincaré map definition becomes
P : S ∩ Z → S ∩ Z . For P (xk) = xk+1 periodicity is
achieved only if P (x−) = x−. A periodic stable fixed point
satisfies that, in its neighborhood, all eigenvalues of the
Jacobian matrix

DP =
∂fcl
∂xk

(x∗) (24)

lie within a unit circle (|λ| < 1) [21], where fcl indicates
closed-loop system dynamics. An inspiring basic explanation
of Poincaré return map analysis for such systems can be
found in [13, Chapter B.3]. The numerical implementation
details we employed for this study are discussed in detail in
[15, Chapter 6.2].

The maximum magnitude eigenvalues of the undisturbed
closed-loop systems with ZD+PD control and C-MPC are
given in the first column of Table II, respectively. Since the
cascaded MPC is applied on top of the ZD+PD control,
the MPC part of the controller has no effect under ideal
conditions. As a result, the maximum magnitude eigenvalue
estimations for the undisturbed case are identical.

Generally, model-based controllers are vulnerable to mod-
eling errors. In order to check the robustness of the con-
trollers against modeling errors, we multiply the mass of
the torso by two inside the simulator. The maximum mag-
nitude eigenvalues of the disturbed closed-loop systems

with ZD+PD control and C-MPC are given in the second
column of Table II, respectively. Since the ZD+PD controller
mainly relies on direct torque computation using the system
dynamics (see (7)), any error introduced in the system model
reduces its robustness. We observe that the ZD+PD controller
cannot maintain stability, and the walker falls forward after
one step. The result is the same even if we disable the input
saturation. On the other hand, since the C-MPC determines
input by minimizing the cost function (16) and considers
future state evolution, it handles modeling errors better and
compensates for the weaknesses of ZD+PD control. As a
result, the resultant closed-loop system with C-MPC shows
stable behavior, with only a slight increase in the maximum
magnitude eigenvalue estimation.

TABLE II
MAXIMUM MAGNITUDE EIGENVALUES OF THE DISTURBED AND

UNDISTURBED CLOSED-LOOP SYSTEMS.

Undisturbed Doubled Torso Mass

ZD+PD Control 0.75 unstable
Cascaded MPC 0.75 0.78

VI. CONCLUSION

This study covers a cascaded model predictive control (C-
MPC) method for input-constrained control of underactu-
ated bipedal walking with any predefined trajectory. Unlike
known approaches, while constructing for the horizon of
MPC, we employ a full-order system model and implement
one more controller at the lower level to enhance future
state prediction accuracy. Additionally, this structure enables
us to account for friction limitations and hybrid dynamics
inside the horizon. Therefore, as a second layer controller, the
MPC compensates for the weaknesses of the ZD+PD control,
such as its sensitivity to modeling errors and exceeding
amount of input usage. We showed that C-MPC outperforms
the classical ZD+PD controller in terms of the size of
the basin of attraction, forward force disturbance rejection,
modeling error rejection, remaining error in discrete time
implementation, and input torque usage. Even though, in the
cases where systems with both controllers performed stable
behaviors under disturbances, we showed that deviation from
the desired trajectory is much less for the system that
employs C-MPC (see Fig. 5).
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