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Abstract—The automation of electronic waste disassembly
processes is very challenging due to the diversity and conditions
of the products, but also due to the heterogeneous disassembly
environments based on different hardware and software compo-
nents. All these resources and the subjacent information flows
should be coordinated and integrated to ensure an effective
disassembly process. In this paper, we present a developed
architecture for closed-loop planning and controlling dynamic
disassembly processes of robots. We extended the infrastructure
provided by the Robot Operating System (ROS) to integrate the
components of the robotic system with its vision system and the
software components for inference, replanning, and knowledge
transfer. The architecture was implemented for a real use case
of antenna amplifier disassembly. The implemented framework
is generalizable for other purposes implementing four automatic
configuration mechanisms to support domain-specific tailoring:
code generation, object serialization, object mapping, and object-
triple mapping.

Index Terms—disassembly, robot, vision system, ROS, ontol-
ogy, planning, PDDL, OWL, screw detection, artificial neural
networks

I. INTRODUCTION

Disassembly is a very complex and resource extensive pro-
cess, which focuses on extracting valuable components from
waste electrical or electronic equipment (WEEE). Despite the
potential for automation to enhance efficiency, it has yet to
reach its full potential due to various issues that restrain
the robotization of this process [19]. On the one hand, the
process is challenging with the variability and uncertainties
concerning the type and conditions of the product [11]. On
the other hand, the process integrates various operational
challenges such as the recognition of components, collision-
free manipulation, and tooling as well as collaboration issues
related to human-machine interaction. Moreover, in such a
heterogeneous environment, the involved resources operate
with various types of data that can also restrain the effective
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accomplishment of the disassembly process. In this context,
the seamless information flow and synchronization of all in-
volved subsystems is required to ensure robust robotic systems
function in such a collaborative and dynamic environment.

Several frameworks have been proposed for supporting
the development and operations of robotic systems such as
Microsoft’s Robotics Developer Studio, Open Robot Control
Software (OROCOS), Orca, or the Robot Operating System
(ROS) [1], [10]. ROS [14] is one of the most popular frame-
works for the development of robotics systems. It facilitates
the sharing of data between different components through a
network of nodes, which communicate by exchanging defined
messages using a publish/subscribe mechanism. Such kind
of architecture is easily extensible since new nodes can be
introduced without changing anything in the rest of the im-
plementation.

Besides, various tools and services are available for the
framework to support trajectory planning, robot control, per-
ception, simulation, etc. For instance, a ROS-based architec-
ture is used for supporting the collaboration between humans
and robots in a shared workspace scenario of electronic vehicle
battery quality checking [27] as well as in a virtual hybrid
assembly cell [25]. Moreover, ROS is also used for the sensor-
guided assembly of full-scale composite blade panels with
human-assisted path planning [18] as well as to implement
a visual inspection system in a robot work cell [13]. Nev-
ertheless, we haven’t found any implementation focused on
disassembly processes utilizing the advantages of the ROS-
provided infrastructure for interoperability coordination be-
tween the involved sub-systems. Various types of products
have been employed as use cases for robot-driven disassembly.
For instance, approaches for electric vehicle battery disassem-
bly were presented by Choux et al. [2] and Meng et al. [17].
Robotic systems for the automated dismantling of PCB waste
were introduced by Doroftei et al. [2] and for LCD screens
by Vongbunyong et al. [26] as well as Foo et al. [6].

In our work, we present a knowledge-driven robotic frame-
work focused on automatizing disassembly processes with
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antenna amplifiers as a use case. These types of amplifiers are
located on cell phone towers and are commonly replaced every
few years with the introduction of new mobile phone stan-
dards. The approach is based on our previous research, where
we focused on planning pick-and-place operations during the
assembly of PCBs [12]. The currently developed framework
integrates an ontology with the high-level decision-making
component, which should provide autonomy and flexibility for
robot actions. It also integrates a vision system that is used
for component identification as well as for searching specific
components (screws) during the planning process.

The rest of the paper is organized as follows: In Section
II, we present the architecture of the framework. Section III
describes the vision system and an evaluation of the approach.
Section IV is focused on the implementation and data flow.
Finally, Section V concludes the paper and presents an outlook
on future research.

II. ARCHITECTURE

The architecture of the system consists of four main com-
ponents, as visualized in Figure 1: the ontology, the Decision
Making, the vision system, and the robot hardware. The
ontology stores all explicit knowledge and derives new im-
plicit knowledge. The Decision Making Component is capable
of generating efficient plans based on the current ontology
information. The vision system detects specific objects and
reports them back to the ontology via the Decision Making
component. During plan execution, the robot hardware exe-
cutes planned actions and notifies the Decision Making about
execution feedback, so that in case of an execution failure a
replanning can be triggered.
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Fig. 1: The system architecture with its four main compo-
nents, their functions, and their interfaces.

A. Ontology

The implemented ontology contains relevant information
about the current state and the goal state of the system. This
includes data about physical objects, such as the robot and
its tools, as well as application-specific information, such
as screws and disassembly status information. The ontology
fulfills three tasks: persistency, classification and entailment as
well as consistency checking. The ontology persists all infor-
mation in triple statements which are assigned to a subdividing
graph. For this purpose, the information is stored using the

OWL1 standard which is based on RDF2. For planning, there
are two important graphs, one for storing the current state
and one for the goal state. This knowledge is either statically
implemented in the ontology or dynamic information from
external system components, such as the vision system and
the robot hardware (see Section IV).

RDF enables the use of semantic reasoning for classification
and consistency checking. Especially the manually entered
static knowledge can be checked for consistency using a
reasoner. For this purpose, our system relies on the Pellet
Reasoner [21]. It is also incorporated to automatically deduce
new knowledge within our ontology such as transitive relations
or to abstract the detailed knowledge to high-level information
for computational efficiency during planning.

B. Decision Making

The Decision Making is the central component for using
implicit and explicit ontology information to generate an
efficient plan to transition from the current state to the goal
state. In our case, the goal state is a disassembled object
with detached connections (e.g. loosened screws). For this
purpose, we employ the Planning Domain Definition Language
PDDL3 for modeling planning domains and problems, where
also multiple solvers exist.

In previous work, we implemented a planning engine on
top of PDDL to automate the plan generation, parsing, and
execution for single execution to execute robotic assembly
operations [12]. We also implemented a scheme to directly
map ontology triple statements with PDDL state information,
the so-called PDDL-predicates. The novelty of this work is
the adaption of this framework to cope with dynamic environ-
ments, such as in the disassembly domain, where replanning
is necessary for unexpected situations. The planning and
replanning procedure of the adapted framework is visualized
in Figure 2.

The input of the system is the PDDL planning domain
which is parsed in the first step. Most notably, it contains
a list of possible parametrizable actions and their state mod-
ifications. For example, the disassembly use case comprises
the unscrewing action, which modifies the connection status of
screws. For planning, besides the general PDDL domain which
contains the planning instance information, the PDDL problem
is needed. The default assumption of the Decision Making
classifies all predicates of the PDDL domain as relevant and
all triple statements using these predicates should be retrieved.
Therefore, it automatically uses the PDDL predicates to gener-
ate queries for these relevant statements. For example, because
of the listed unscrewing action within the PDDL-Domain,
only screw and screw status information is considered to be
relevant for the planning process, and only this information
is queried from the ontology and sent to the planner. These
RDF statements are subsequently mapped to PDDL. During
this process, all occurring instances are recorded to query the

1Web Ontology Language: https://www.w3.org/OWL/
2Resource Description Framework: https://www.w3.org/RDF/
3PDDL: https://planning.wiki/ref/pddl/domain



types of instances which are needed for the PDDL Planner,
for example, if a resource is of type screw.

Since the target language PDDL only supports single-
inheritance but the OWL-source multi-inheritance, only the
most specific types are computed using a matching procedure
of the deepest type within its hierarchy tree. Within the
disassembly domain, an object of type screw is also typed
as a connector, which is also typed as a physical object. For
planning, only the most concrete type, which is deepest within
the class hierarchy, is computed.

With the PDDL domain and the mapped PDDL problem,
the planner computes multiple solutions for the problem using
a specified optimization function. In many cases, just as in the
disassembly use case, the optimization function minimizes the
makespan, which is the execution time of all robot operations.
Using the optimal computed plan, its actions and parameter
resources are parsed to start the plan execution. As also shown
in Figure 7, the Plan Executor notifies the application logic
about the execution of each individual plan action with the
planned parameter resources. Before each action execution, the
application logic can query additional properties of resource
parameters. For example, the planner only computes an un-
screwing action for a named object without any properties. For
plan computation efficiency, the exact head type is neglected,
but for execution on the robot hardware, this information must
be queried beforehand.

If the plan action execution of the application logic suc-
ceeds, the new ontology state is automatically updated by the
plan executor using the integrated data from the PDDL domain
and the plan resource parameters. The application logic needs
to be implemented only for execution failure and unexpected
state updates.
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Fig. 2: The (re-)planning and execution procedure of the
Decision Making component (left column) with its interactions
with the ontology (right column).

Fig. 3: Screw models for rendering 3D screw models used for
training dataset creation. The three screw categories (Phillips,
Slotted, Torx) are shown from top to bottom, whereas the 6
different variants (cone and dome, each with a normal, lifted,
and a wide version) are shown.

III. VISION SYSTEM

The purpose of the vision system is the detection and
6D pose estimation of the screws that fasten the top layer
of the antenna amplifier. RGB-D images are used as input.
RGB images are used for extracting sparse location priors
for the individual screw instances. Depth images are used for
3D translation estimation using the 3D-reprojection of the
detected screw locations, and for 3D rotation estimation by
fitting a plane on the antenna receiver using the depth image.
The primary challenge is to robustly handle the expected test
time variations. On the one hand, screw instances are unknown
during training time and potentially vary largely during test
time. On the other hand, the expected places of deployment
are very dynamic with respect to illumination and camera
viewpoints, and the antenna amplifiers have to be assumed
to be in various states of ageing and contamination with dirt.
In order to robustly handle these challenging conditions we
use domain randomization for diversifying object models and
image variations [24].

A. Data Creation

To robustly handle the expected test time variations we rely
on a heavily diversified rendered training dataset for training
object detectors which are Convolutional Neuronal Networks.
To handle unknown screw instances we create screw priors.
The expected screw categories are: Phillips, Slotted, and Torx.
For each, 6 different 3D models are created and randomized
with respect to head type, height and width, as shown in
Figure 3.

To handle different scene configurations, antenna amplifier
aging and contamination, rendering parameters such as screw
poses and texture, illumination, and background are random-
ized for training data creation with BlenderProc [4]. In order
to robustify the trained detectors against diverse antenna am-
plifier appearances, we utterly decouple training data creation
from the relevant object, i.e. the antenna amplifier, by using
the Cut-Paste strategy [5]. We randomly sample between 10
and 50 of the created 3D models per rendered image. Object



Fig. 4: Exemplary training image Randomized rendered
training image. The random aspects are screw location and
texture, camera location, light location and strength and back-
ground.

models are placed on a plane, with the screws’ locations, head
diameters, and textures randomized. Texture randomization is
applied to a) account for various degradation states of the
screw, e.g. rust, and b) to bias object detector training toward
geometry [7]. The scene is illuminated by two randomly placed
point lights facing the center of the scene. The strength of
each light is varied independently for each image. Images are
captured by a randomly place camera facing the scene’s center.
Figure 4 shows one of the 500 unique renderings.

For validation purpose we split the rendered dataset in 450
images for training and 50 for validating the training progress.
We additionally validate the best performing detector, FCOS,
trained on rendered data, on a real test dataset. This dataset
consist of 159 images, which are annotated with screw cate-
gory, 2D bounding box, per-instance mask, and 6D pose. For
annotation, 3D-DAT is used [22].

B. Screw Detection

The aforementioned rendered training set is used for training
and comparing different object detectors. Table I presents a
comparison of RCNN [20], Faster RCNN [8], and FCOS [23],
all fine-tuned with the created renderings, using mean average
precision (mAP) as metric. All detectors are used with the
loss functions presented in the respective publications, with
ResNet50 [9] backbone pre-trained on ImageNet [15], and are
fine-tuned for 12 epochs on the rendered test dataset using
the Adam optimizer with a learning rate of 0.01. During
training, images are augmented by randomly shifting channel
intensities in RGB and HSV space, and by randomly changing
brightness and contrast. The upper part of the table shows that
FCOS achieves the best results on the rendered validation set.
Comparing the performance of FCOS on the rendered and
the real data shows that no drop in bounding box estimation
accuracy occurs when validating on real data. This indicates
that the presented domain randomization scheme generalizes

Model Backbone Validation mAP
RCNN [20] ResNet50 Rendered 0.5
Faster-RCNN [8] ResNet50 Rendered 0.6
FCOS [23] ResNet50 Rendered 0.8
FCOS [23] ResNet50 Real 0.8

TABLE I: Screw detection evaluation Detection performance
in comparison, using mean average precision (mAP) for quan-
tification.

Fig. 5: Screw detection example Detections on a real val-
idation image using FCOS. The blue bounding boxes show
correctly detected and classified screws. Incorrect classifica-
tions are shown in red.

effectively to the real world test case. Figure 5 shows an
exemplary image of screw detections.

C. 6D Screw Pose Estimation

For 6D screw pose estimation we exploit the sparse location
priors generated by the object detector and the observed depth
image. The center point of the detected bounding box and
the observed depth image are used for retrieving the screw’s
depth. Using this depth and again the center point the 3D
screw location is retrieved using 3D-reprojection equation.

In order to retrieve the 3D screw rotations we use
RANSAC-based plane fitting for normal estimation. The esti-
mated antenna amplifier surface normal is used as 3D rotation
for each of the fastened screws. We use RANSAC with three
samples, an inlier threshold 0.01 meters, a expected probability
of 0.999, and 1000 iterations. Pose estimation results are
shown with the point cloud in Figure 6.

IV. IMPLEMENTATION

The proposed system architecture is modularly conceptu-
alized with a distinct separation between the domain-specific
application logic and the generalized framework. This way, the
system is adaptable for implementing new application logic for
different planning scenarios. For this purpose, the proposed
framework uses four automatic configuration mechanisms to
support this domain-specific implementation: code generation,



Fig. 6: Visualization of 6D poses 3D translations are derived
from the screw detections and the observed depth image. 3D
rotations are derived using plane fitting.

object serialization, object mapping, and object-triple map-
ping. Figure 7 gives an overview of these mechanisms and
their interactions within the system.

Using these configuration mechanisms, the application logic
only needs to implement two domain-specific data wrappers,
the transfer objects to communicate with other hardware
components, and persistency objects to store knowledge in the
ontology for persistency, reasoning, and automated planning.

The application logic interacts with the hardware compo-
nents via ROS [14] using either a synchronous request/re-
sponse modality (ROS services) or an asynchronous pub-
lish/subscribe mechanism (using ROS messages). ROS uses
a standardized interface definition language to specify ROS
messages and ROS services. Listing 1 shows the ROS message
for a screw with its pose (the position and rotation), and other
attributes, such as the head type and size. In our case, the
vision system publishes detected screws whereas the Graphical
User Interface (GUI) subscribes to the Application Logic to
inform and visualize current operations. On the other hand,
the robot hardware needs synchronization with the Decision
Making when a hardware operation is finished and its response
is awaited. Therefore each robot operation is implemented
using a ROS service. It defines a set of detected screws to
unscrew and replies with an individual status response code
for each screw. In case, a single screw is broken or too tight
for automated handling, these responses are replied to trigger
replanning.

These ROS message and service definitions are used as
input by the framework to automatically generate the transfer
classes for the application logic. Their instantiated transfer
object are automatically serialized and deserialized to ROS
messages which are transmitted to the ROS network using
ROS-Bridge [3]. We published this part of the framework into
a separate library for general usage4.

For persistency and planning, the application logic needs to
implement persistency objects which are automatically stored

4Kotlin ROS Bridge code generator and serializer: https://github.com/
thoebert/krosbridge

geometry msgs/Pose pose
s t r i n g h e a d t y p e # P h i l i p s , Torx , S l o t t e d
bool m a g n e t i c
f l o a t 3 2 h e a d s i z e
f l o a t 3 2 l e n g t h
f l o a t 3 2 d e t e c t i o n a c c u r a c y

Listing 1: Screw ROS-Message definition with a listing of
all attributes and their datatypes.

in the ontology using object-triple mapping [16]. In many
applications, the transfer objects need to be stored and used
for planning. For example, this applies to the screw transfer
classes, since they are received from the vision system and
need to be persisted in the ontology for further planning. In
this case, the persistency objects can be similarly implemented
and directly converted to the persistency objects using object-
object mapping.

V. CONCLUSION

In this paper, we described a developed architecture for
electronic waste disassembly with the use case of antenna
amplifier disassembly. The architecture integrates an ontology-
based decision-making component with a vision system and
its robot hardware. Linking the ontology with a vision system
provides interoperability in the dynamic and heterogeneous
disassembly environment and enables that the information of
a captured image can be understood and used for manipulation
planning of each disassembly task. The vision system, trained
using a generated synthetic dataset, can detect screw heads and
achieves an 80% mean average precision on a real-world vali-
dation dataset with antenna amplifier objects as use-case. The
whole system operates in a closed feedback loop to cope with
unforeseen disassembly exceptions by incorporating hardware
feedback into the ontology for replanning. The architecture
was implemented in ROS and facilitates four mechanisms to
be easily extended for additional hardware components as well
as other use cases. In future work, we aim to introduce humans
into the environment and enable a collaborative human-robot
disassembly process.
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