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Kurzfassung

Mit der stetig wachsenden Menge an verfigbarer Daten nimmt die Nachfrage nach
datenschutzerhaltenden Mafinahmen immer mehr zu. Die Verwendung synthetischer
Daten als Mafinahme zur Wahrung des Datenschutzes von Mikrodaten gewinnt immer
mehr an Popularitit, insbesondere aufgrund ihrer Fahigkeit, die Qualitdt der Daten, und
somit den Datennutzen zu erhalten. Gleichzeitig versucht man mit synthetischen Daten
Datenschutzrisiken, die durch die Veroffentlichung entstehen, zu reduzieren. Synthetische
Daten werden von einem Modell, welches mit realen Daten trainiert wurde, generiert.
Das bedeutet, dass die Beobachtungen in den synthetischen Daten nicht direkt einem
einzelnen Individuum im urspriinglichen Datensatz entsprechen. Dies sorgt dafiir, dass
synthetische Daten weniger anfillig fiir die Verkniipfung von Datensitzen oder die
Re-identifikation sind. Trotz dieses Vorteils haben jiingste Studien potenzielle Risiken
synthetischer Daten aufgedeckt. Diese Studien zeigen, dass synthetische Daten nicht
immun gegen sogenannte Membership Inference Attacks (MIA) sind. Diese Attacken, oder
auch Angriffe, versuchen zu ermitteln, ob ein bestimmtes Individuum zum Trainieren
eines Modells verwendet wurde. Der Fokus dieser Arbeit liegt darin, die Angreifbarkeit
von Modellen, die synthetische Daten generieren, zu evaluieren und besonders gefidhrdete
Individuen zu identifizieren. Wir erweitern bereits veroffentlichte Arbeiten, indem wir
das Risiko jedes Individuums quantifizieren und mithilfe statistischer Tests bewerten,
ob Ausreifler im Vergleich zu Nicht-Ausreiflern anfélliger fiir die Angriffe sind. Dariiber
hinaus schlagen wir vor, Individuen, die einem hohen Risiko fiir MIA ausgesetzt sind,
aus dem Trainingsdatensatz zu entfernen, um sich gegen die Angriffe zu verteidigen.
Wir analysieren die Effizienz dieser Angriffsverteidigung und evaluieren in wie fern diese
Verteidigung jeweils Datennutzen und Datenschutz, der durch die Verteidigung eingefiihrt
wird, beeinflusst.
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Abstract

As the volume of available data continues to surge, the demand for privacy-preserving
measures intensifies. The use of synthetic data as a privacy-preserving measure for
micro-data is gaining increasing popularity, especially due to its ability to maintain data
utility while aiming to reduce disclosure risks. Synthetic data is artificially generated
by a model that has been trained on real data. This means that the observations in
the synthetic data do not directly correspond to any individual in the original dataset,
making it less susceptible to record linkage or re-identification.

Despite this advantage, recent studies have revealed potential risks related to membership
disclosure, which can occur through membership inference attacks (MIA) that aim to
determine if a specific record was used to train a model when publishing synthetic
micro-level data. This thesis explores the potential of synthetic data as a solution to
privacy-preserving data publishing. We extend prior work by quantifying the risk of
each record’s membership being correctly inferred, and, using statistical tests, assessing
whether outliers are more vulnerable to the attack compared to inliers. Furthermore, we
propose to remove records that are at high risk for membership inference attacks from
the training set as a defense against the attacks and evaluate the defense performance
and quantify the utility-privacy trade-off introduced by the defense.
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CHAPTER

Introduction

In data publishing, preserving individuals’ privacy is crucial. This chapter describes
the motivation behind privacy-preserving data publishing and the problems that come
with it. We highlight the threat of membership inference attacks and define the research
questions that this thesis aims to answer.

1.1 Motivation

With an ever-growing amount of data available, the call for privacy-preserving data
measures increases. Extensive research has focused on making all kinds of data, such
as image, text, and tabular, private. This thesis addresses the challenges of preserving
privacy in micro-level tabular data, where each data row (also called record) represents
one individual. While researchers want to make the data they collected publicly available,
individuals represented in the data rely on staying anonymous. Previously, researchers and
data holders widely believed that it is sufficient to remove unique identifiers (attributes
that uniquely identify an individual, e.g. social security number) or alter quasi identifiers
(attributes that become a unique identifier when combined with other attributes, e.g.
name plus address) from the data to preserve its privacy. As Sweeney et al. [1] in 1997
showed, this does not suffice, as public data that was once believed to be anonymous has
been used to re-identify individuals with little to no background knowledge about the
individuals in the data. Re-identification is the process of identifying an individual in a
data set that was believed to be anonymous. This can be done by so-called record linkage,
where data from multiple sources that refer to the same individual, are found. Empirical
evidence on this issue has been published by [2] using mobility data, [3] with health
care data, [4] with movie watching and reviews, and [5] with credit card data. Ideally,
publicly available micro-data derived from individuals should be resistant to privacy
attacks, while keeping the data utility high. The authors of [6] state that "privacy" relates
to "the ability to learn about individuals", "utility" defines "the ability to learn aggregate
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statistics about large groups of individuals". Typically, when trying to make micro-data
private, e.g. sanitization, perturbation, or synthetization, we will face a privacy-utility
trade-off. Brickell et al. [7] measure this trade-off by quantifying the privacy as how
much an adversary can learn about individuals from the anonymized data, and the utility
as accuracy for data-mining algorithms applied to the same anonymized data. While
methods like aggregation (e.g. group means) make the data more private, the utility
suffers substantially.

1.2 Problem Statement

One promising approach to privacy-preserving data publishing is synthetic data. Synthetic
data is artificially generated by a model that has been trained on real data and tries
to mimic the properties of the real data. This means that the observations in the
synthetic data do not directly correspond to any individual in the original dataset,
making synthetic data less prone to record linkage or re-identification. Because of this,
data synthesizing models are widely used across various domains like healthcare, finance,
and research, where sharing or publishing sensitive data is essential for analysis, research,
or collaboration while protecting individual privacy. Although the risk of linking an
individual to a data record does not remain with synthetic data, membership disclosure
might still pose a threat when publishing synthetic micro-level data, as recent studies
show [8, 9, 10]. An individual’s membership can be disclosed by so-called membership
inference attacks (MIA). These are methods used to determine if a target record was
used to train a model, referred to as the target model, and make use of that machine
learning (ML) models leaking information about the records contained in the model’s
training set [11].

Membership inference attacks on supervised machine learning models were first introduced
by Shokri et al. [11] in 2017. Since then, most research on MIA has focused on supervised
machine learning models. Since the first work on MIA on generative models has been
published [12], most research on MIA on synthesis models has focused on synthetic image
data, using generative adversarial networks (GAN) as a synthesizer [13, 14, 12]. Only
recently, researchers started analyzing the attacks on synthetic tabular data [8, 9, 10, 15].
According to recent studies [8, 9], synthetic data might be more susceptible to membership
inference attacks than initially assumed. However, it is assumed that not all records
are equally vulnerable to the attacks: some researchers claim that outlier records are
particularly at a high risk for membership inference attacks [8, 16].

The goal of this thesis is to go beyond the work of [8] and quantify the risk of each
record being inferred correctly, in order to find out which records are at a higher risk
for MIA. While the authors of [8] test the hypothesis that outliers are more at risk for
membership disclosure for only a small number of outliers, this thesis will consider all
records and assess their risk for MIA. Outliers will be detected using different methods.
This way, we can conclude if there is a significant difference in disclosure risk for out-
versus inliers. Furthermore, we build on the unsupervised approach published by [9], and
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1.3. Research Questions

Target Machine

training data Learning Model Adversary

Figure 1.1: Basic Architecture of a Membership Inference Attack against a Machine
Learning Model: an adversary creates an attack model that is specifically designed to
find out whether individuals’ data records were used to train the target model. Blue
individuals represent members, while gray individuals represent non-members of the
training data. When the adversary attacks the target machine learning model, they label
the individuals according to whether they believe they were in- or outside the training
set.

design a concrete attack approach that includes finding a suitable parameter value used
to determine a record’s membership, as this process was disregarded in their presented
work.

As defense against membership inference attacks, we propose to identify and remove
records at risk from the original training data to find out if this makes an attack less
successful. For this, we also quantify and compare the data utility of synthetic data
generated by a model that has been trained on the original data containing all records
and a model that has had access to only records not at risk. This way, we can estimate
the utility-privacy trade-off introduced by the defense. Although removing outliers from
well-balanced data sets might not be a big issue, and could sometimes even be beneficial
to the outcome as the model might generalize better, this is likely not the case for anomaly
data sets, where the target classes are highly imbalanced. Outlier detection methods,
specifically Local Outlier Factor (LOF) [17] and Isolation Forest (iForest) [18], are used
to identify outliers and determine their risk for membership attacks.

1.3 Research Questions

We define three research questions, which this thesis will try to answer:

1. To what extent can we identify records at risk for membership inference
attacks by detecting outliers with algorithms like Local Outlier Factor
and Isolation Forest?
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[8] uses a supervised approach, where classifiers label records as members or non-
members. The prediction probability of these classifiers can be used to measure
the attack risk. The distance-based approach by [9] calculates the distance from a
target record to its closest synthetic record. Based on this distance, the risk for
a record to be inferred correctly can be estimated. We then analyse if the outlier
detection algorithms can predict the records most vulnerable against the attacks
by using evaluation metrics recall and precision.

a) By removing these records from the original training data as defense

against the attack, to what extent can the threat of the MIA on the
records at risk be decreased?
For this, we will repeat the attack after removing the records at risk, and
evaluate whether the MIA risk for the removed records decreases, by comparing
the attack accuracy before and after the defense over all records at risk.
Additionally, we compare the risk score distribution before and after the
defense.

b) To what extent are the remaining data records affected by removing
the records at risk?
As in research question la, we compare the overall attack accuracy of the
remaining records and the risk score distribution before and after the defense.

. To what extent does the data utility suffer when synthesis models learn

from the original data excluding the records at risk?

To measure utility loss, the accuracy, precision, recall, and Fl-measure will be
evaluated for each data set according to their original machine learning task similarly
to [19].

a) By how much does the utility for synthetic data learned from

imbalanced data sets decrease compared to synthetic data generated
from a balanced data set?
For highly imbalanced data, the evaluation metrics precision and recall are
especially important, as highly imbalanced data sets are particularly affected
by the precision-recall trade-off, and will therefore give a better understanding
of the quality of a model, compared to more general performance metrics like
accuracy.

b) To what extent does the utility on the minority class of the imbal-
anced data suffer compared to the majority class?
For this, we will compute evaluation scores per class and compare them. Here,
we expect the utility of the minority class to decrease substantially, compared
to the majority class.

. Which data synthesizing models generate synthetic data that is more

vulnerable to MIA?
For assessing the success of the membership attacks, the overall accuracy will be
computed and then compared for the different synthesising models.
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1.3. Research Questions

The rest of this thesis structured as follows: In Chapter 2, we explain theoretical concepts
for data anonymization, outlier detection and and data synthetisation methods, as well as
membership inference attacks. In Chapter 3, state-of-the-art approaches to membership
inference attacks on synthesizers are explained. Furthermore we describe our MIA
experiment settings including attack methods and assumptions. Chapter 4 contains
the analysis and evaluation of our experiment results. In Chapter 5, we summarize our
findings by answering the research question, list our main contributions and discuss
future work.
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CHAPTER

Background

This chapter contains the background relevant to the thesis. First, an introduction to
data anonymization followed by an overview of different anonymization techniques that
were proposed over time is given. We then provide an introduction to synthetic data and
its generation process. Furthermore, the concept of membership inference attacks and
different approaches for it are given. Lastly, we discuss outliers and methods to detect
them. For this literature review, the guidelines for systematic literature reviews proposed
by [20] will be followed.

2.1 Privacy and Inference Attacks

Public micro-data can fall victim to privacy attacks, which can lead to disclosure, where an
adversary infers hidden information about the subjects contained in the data. Disclosure
risks have been broadly grouped into three types: identity disclosure, attribute disclosure,
and inferential disclosure [21].

Identity disclosure happens when an adversary links a data record to an individual or
entity. This can be performed by linking a record to some externally available information.

Attribute disclosure is the process of finding out a characteristic, i.e. attribute value,
of an individual without having to rely on external data or record identification. This
could for example happen when all individuals sharing a characteristic for one attribute,
also share a characteristic for another attribute. Say all male patients aged 80 or older
suffer from high blood pressure, an adversary can then infer that a male patient above
80 they know to be in the data has high blood pressure.

Inferential disclosure happens when the published data enables an adversary to
determine an individual’s attribute value more accurately with the published data than
otherwise would have been possible. For example, the published data might show a high

7
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correlation between age and some disease. An adversary could use this information to
determine if someone suffers from this disease if their age is known to the adversary.

Closely related to the above privacy disclosures is membership disclosure, which
describes the process of an adversary inferring whether an individual was used to train
on a machine learning model, i.e. if the individual was present in the training data.

2.2 Data Anonymization

Many methods to mitigate privacy breaches by decreasing the disclosure risk have been
introduced. In the context of data anonymization, the classification of attributes into
unique and quasi identifiers is important. Unique identifiers are attributes that uniquely
identify an individual, e.g. a social security number. Quasi identifiers are attributes that
cannot themselves uniquely identify an individual but can become uniquely identifying
when combined with other quasi identifiers. This could be attributes like name and
address or name and date of birth. All remaining attributes that neither classify as
unique nor quasi identifiers are called non-identifying attributes. These are attributes
that cannot be used for re-identification. Besides this classification, attributes can also be
categorized according to their sensitivity. While sensitive attributes contain confidential
information that should be refrained from disclosing, e.g. income, medical records, or
religion, non-sensitive attributes do not contain any confidential information, e.g. gender
or race.

The first attempts at data anonymization included:

o Generalization [22]: Through generalization the level of detail in the data is
reduced by replacing specific values with more general or less precise values. For
example, the address can be replaced by the city an individual lives in.

o Perturbation [23]: Perturbation adds noise in different forms to the data. This
can be done by adding randomly generated values to the original values.

e Micro-Aggregation: Individual data records are combined into groups or clusters.
The aggregated data represents a summary or statistical information about the
group rather than individual records. The aggregation can involve calculating
summary statistics such as averages, counts, or percentages for a specific attribute
across a group of individuals.

o Suppression [24]: This is the simplest form of anonymization, done by removing
unique or quasi identifiers. If the original data contains attributes like name, address
or phone number, these would be removed entirely from the data.

However, the above listed methods do not guarantee privacy. The concept of k-anonymity,
first introduced by [25] and formally defined by [26], uses generalization, suppression and
micro-aggregation to provide a higher degree of privacy by mitigating the risk of identity
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2.2. Data Anonymization

disclosure. K-anonymity ensures that for any value combination of quasi identifiers,
there are at least k records sharing the same values, making a subject anonymous in the
specific group. Individuals sharing the same values for their quasi identifiers are often
referred to as equivalence class or k-group. K-anonymity prevents an individual from
being identified, by being, for example, the only record in an equivalence class.

Notably, k-anonymity does not guarantee to prevent attribute disclosure. Even if a data
set is k-anonymous, a sensitive attribute’s value can be inferred without re-identification: a
sensitive value can be inferred correctly if all individuals belonging to the same equivalence
class share the same value for this attribute. To counteract this problem, l-diversity [27]
was introduced. It ensures that in each equivalence class, there are at least [ different
records for every sensitive attribute. Still, this does not necessarily ensure a high degree
of privacy. For example, a 2-diverse data set, with an equivalence class consisting of 100
individuals where 99 people share the same value for the sensitive attribute will still pose
a threat, as adversary can infer their target records sensitive value with a high likelihood.
Another problem can occur if the sensitive attributes in the equivalence class are different,
but semantically similar. This could be an attribute containing individuals’ illnesses.
Even though the adversary cannot infer which illness the target record has, they can
still conclude that the target record suffers from some type of illness. This shows that
diversity within an equivalence class is not enough, the sensitive attribute’s distribution
within a class needs to approximately represent the attribute’s overall distribution. This
is addressed with t-closeness [28]. For data to achieve t-closeness, the distance between
the distribution of a sensitive attribute within an equivalence class and the entire data
cannot be larger than ¢. This way, an attacker cannot infer a sensitive attribute more
easily through the equivalence classes, than with the entire data set.

However, researchers across the board have shown that the above-mentioned simple
anonymization techniques are not as successful as initially hoped, as utility suffers and
the achieved privacy might not be sufficient. The authors of [29] shed light on the
ineffectiveness of simple techniques like suppression, generalization, and perturbation
without guaranteed k-anonymity, l-diversity, or t-closeness. They highlight how, with
an abundance of information available, re-identification of supposedly anonymous data
is often possible. Especially because there is no guarantee of what kind of data will
be released in the future, the risk for identity disclosure remains with sanitized and
perturbed data. The authors of [6] show that the privacy-utility trade-off for I-diversity
and t-closeness behaves similarly. Another study empirically showed that the utility of
2-diversity can be worse than 1000-anonymity [7]. Additionally, the utility of t-closeness
with ¢ = 0.4 is about as bad as 2-diversity. Any data guaranteeing t-closeness of ¢t < 0.3
obtained even worse utility results.

Another approach to data anonymization is differential privacy (DP) [30]. Differential
privacy ensures that the presence or absence of an individual’s data in a data set does
neither significantly impact the results of the data’s analysis, nor comprise the individual’s
privacy. A data set is said to be differentially private if it is not possible to determine
whether an individual is present in the data set based on any analysis or query output.
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This means that for any two data sets that only differ by one individual, the probability
distribution of the output should be very similar. To achieve DP, randomness is introduced
via algorithms that add controlled random noise or perturbations to the data. To quantify
the level of privacy, the parameter ¢ is used. Small values for € indicate a higher level of
privacy, which, however, results in noisier data with lower utility.

Additionally to the privacy-preserving approaches explained above, synthetic data has
been introduced as a privacy-preserving data publishing method; it has been shown to
preserve data utility to a high degree [19, 31, 32]. Synthetic data is artificially created
data that closely resembles real data while protecting the privacy of individuals in the
original dataset. It is less susceptible to identity [33] and attribute disclosure, since fully
synthetic records usually do not correspond to one specific individual of the original data
set unless the synthesis model is overfit. In that case, the synthesizer could produce
a synthetic record that matches a real individual perfectly, and hence pose a privacy
threat for that specific individual. To protect individuals from inferential disclosure, [34]
introduced a synthesizer that generates data lacking correlations between sensitive and
non-sensitive attributes, making models that try to infer the data less reliable. These
aspects make synthetic data a promising practice for privacy-preserving data publishing.

2.3 Synthetic data

Synthetic data as a measure for disclosure control was first introduced by [35] and [36].
Both ideas build on multiple imputation [37], a probabilistic approach originally used to
impute missing values. Instead of generating values for missing data, they used multiple
imputation to replace either all or only sensitive attributes in the data. While these initial
concepts only focused on numeric data, [38] introduced the first method for synthetization
of categorical attributes, using log-linear models. Other approaches using tree-based
models for categorical attribute synthetization followed [39]. In order to keep utility even
higher, approaches for generating partially synthetic data, where only some attributes
(sensitive values or key identifiers) [36, 40, 39], or some records [41] are replaced with
synthetic data, were introduced. Studies have shown that although partially synthetic
data has a utility advantage compared to fully synthetic data [42], the risk for identity
disclosure remains [43, 44, 45] since some of the attributes remain unchanged.

Generally, data synthesis models (also referred to as data synthesizers) learn from the
real training data and aim to generate artificial data carrying similar overall statistical
properties, e.g. mean, variances, or univariate distributions, as the original data. This
general idea is visualized in Figure 2.1. Additionally, synthetic data preserves the relations
between data attributes, such as correlation and joint distributions. Ideally, for a well-
trained synthesizer, the synthetic data it generates does not yield any, or only minor
utility loss [19, 31, 32, 46, 47].

There are various approaches to generating synthetic tabular data. It can be generated
using generative models, e.g. Generative Adversarial Networks (GAN) [48], Variational
Autoencoders (VAE) [49] or by using probabilistic approaches like Gaussian Copula
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Figure 2.1: Basic Architecture of a data synthesizer: the synthesizer uses real data to
train, and produces synthetic records with similar overall properties.

synthetic

data synthesizer

[50] and Bayesian Networks [51]. Another approach makes use of a tree-based method,
generating data by using decision trees [52].

In the following, we describe the most important methods to generate synthetic data.

Bayesian Networks are graphical models that describe joint probability distributions.
An example of such a network can be seen in Figure 2.2. A Bayesian network models
conditional dependencies as a directed acyclic graph (DAGs). In a Bayesian Network,
nodes represent attributes, while edges between nodes indicate conditional dependence.
The Markov property is a fundamental concept used in Bayesian networks. It states that
a node in a Bayesian Network is conditionally independent of its non-descendants, given
its parents. In other words, once we know the values of a node’s parents, the values of its
non-descendant nodes provide no additional information about the node. This property
is especially useful, as it allows simplifying computations in Bayesian Networks. Instead
of considering all possible combinations of variables, only the parents of a node need to
be considered to determine its conditional probability distribution. By exploiting this
conditional independence, complex dataset structures can be efficiently modeled. Because
of this, Bayesian Networks are often used in machine learning, e.g. for classification tasks.
A prediction is made based on the most probable class, given the values of the target
attributes values.

Data can then be generated from a Bayesian Network by first sampling values for the root
node that does not have any parents, followed by each remaining node in the network
based on its conditional probability distribution given the values of its parents [53]. This
process is often referred to as importance or forward sampling.

The Gaussian Copula approach connects marginal distributions of individual random
variables to their joint distribution. For every attribute, the univariate marginal distri-
bution is modeled. A Gaussian Copula is then used to model the dependence structure
between the attributes independently of the marginal distributions. The marginal dis-
tributions are transformed to be represented by a standard normal distribution, while
the copula is represented by a n x n correlation matrix, where n is the number of
attributes in the data set. This correlation matrix describes the pairwise correlations
between attributes. Once the marginals and the correlation matrix are defined, the
copula combines them using the multivariate Gaussian distribution to generate a joint
distribution that captures the dependence structure. According to [54], samples can

11
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P(A=a|B,C)

Figure 2.2: Example of a Bayesian Network: each attribute, represented by nodes, is
conditionally independent of its non-decedents given its parents.

then be generated from this joint distribution by sampling from the standard normal
marginals, multiplying them with the square root of the correlation matrix, obtained
via a Cholesky decomposition. The Cholesky decomposition states that every positive
definite matrix A € R™" can be factored as

A=1LL", (2.1)

where L is the lower triangular matrix with positive diagonal entries. The samples are
then transformed using the inverse transformation, which maps the values back to their
original distribution.

Generative adversarial networks (GANs) [55] consist of two main components: the
generator and the discriminator (see Figure 2.3), both of which are neural networks. The
generator generates synthetic samples. Both synthetic and real samples are fed into the
discriminator, which is a classifier that tries to label the samples as fake data sampled
from the generator, or real data. At the beginning of a GAN’s training process, the
generator produces random data that is clearly recognized as fake by the discriminator.
As training continues, the generator is able to produce fake samples that seem more
real, so the discriminator is unable to distinguish between real and fake records. During
training, the discriminator and generator parameters are updated according to the two
model’s losses, or errors. The discriminator loss serves as a penalty for misclassified
samples. If the discriminator loss is large, its parameters need to be updated, while the
generator parameters need little to no update. The generator loss penalizes the generator
for sampling unrealistic instances. The generator parameters, i.e. weights, need to be
updated for a large generator loss. Since training a GAN combines two neural networks,
the training process will alternate between training the discriminator and the generator.
Ideally, a GAN will stop training once the discriminator is unable to tell the difference
between fake and real samples, i.e. at an accuracy of 50%. Training should stop once
this point is reached, since the responses of the discriminator, and hence the signals sent
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to the generator, become meaningless. Once the generator is trained, synthetic data can
be sampled from it [55].

real data sample \
— (Generator — sample /

Figure 2.3: General Adversarial Network Architecture

Discriminator
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Discriminator

Generator
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random
input

As opposed to the original GAN architecture introduced by [55], conditional GANs
are able to generate data records conditioned on a specific attribute of the data. The
CTGAN by [56] uses this method with tabular data, to generate synthetic data with
higher utility than synthetic data generated from an original GAN. One challenge for
generating synthetic tabular data, especially for GANs, is dealing with mixed data types
[56]. Tabular data will often contain discrete and continuous attributes. This problem
does not exist for other data, like images or text. Furthermore, discrete attributes are
often highly imbalanced, which makes training a synthesizer harder, and minority classes
will not be able to be represented properly. To overcome these problems, [56] designed a
conditional generator. In order to incorporate the conditional aspect into a GAN, the
distribution is given by all samples conditioned on a discrete attribute having a specific
class value. Formally, using the notation of [56]: for a synthetic sample 7, and k* being
a value from the discrete column D;«, where ¢* describes the ¢*-th discrete attribute in
a data set, the distribution for # is given by: 7 ~ Pg(row|D;+ = k*), with G being the
synthesizer. This way, a CTGAN makes sure that all classes are represented fairly in the
synthetic data it generates.

Autoencoders (AE) [57] comprise of two main components: an encoder and a decoder
(see Figure 2.4). Input data x, with = € R™ is fed into the encoder, where it is encoded
to a new feature representation in a lower dimension. This is called the encoded or latent
space (R™, where m < n). The decoder tries to reverse this process and bring the data
into its initial space (R™). The loss of this process is defined by the difference between
the original input data x and the decoded data z. This difference is often defined by
the distance between an original and a decoded data point. For a given set of encoders
and decoders, the goal is to find the encoder-decoder-pair with minimal loss, i.e. the
pair that is able to retain the maximum information. Autoencoders are not regularized,
meaning that there exist areas in the latent space that do not represent any of the input

13
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data’s points. These regions produce unreliable output samples . To account for this,
Variational Autoencoders have been introduced.

X X

Encoder Decoder

latent vector

Figure 2.4: Autoencoder Architecture

Variational Autoencoders (VAE) [58] use regularization techniques during training
to avoid overfitting and provide a regularized latent space. Compared to an AE, where
data samples are encoded, the VAE encodes distributions (D). Hence, the VAE encoder
outputs distribution parameters (#) for each latent variable instead of a latent vector.
With these parameters, the latent vector z is sampled (Figure 2.5). Oftentimes, the
latent vector is sampled from a normal distribution with mean and standard deviation
output from the encoder. The loss is then defined as the difference between the original
input data x and the decoded data & plus the Kullback-Leibler divergence between the
standard normal and the latent space distribution. Again, like for the AE, the optimal
VAE consists of the encoder-decoder-pair with minimal loss. Synthetic data can then be
generated by sampling data points from the learned distribution of the latent space [58].

~

X X

Encoder 0 z~D(O)

latent
distribution
parameters

Decoder

latent vector N

Figure 2.5: Variational Autoencoder Architecture

The Tabular Variational Autoencoder modifies the VAE for the use of tabular data by
modifying the neural network to output a joint distribution of discrete and continuous
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columns of a data set [56].

A non-generative model approach for synthesizing data is to use decision trees. Decision
trees are supervised machine learning algorithms that can be used for both classification
and regression tasks. They are tree-like structures composed of nodes and edges. Each
internal node (also referred to as decision nodes) represents a decision based on an
attribute, while each leaf node represents a class label or a predicted value. The decision
nodes split the data into subsets based on different attribute values. This process is
repeated recursively, creating child nodes until no further improvement in prediction
accuracy is achieved or a stopping criterion is met. This criterion can be a maximum
depth limit, a minimum number of samples required to split a node, or other conditions
that prevent overfitting. To determine the most informative attribute for a decision
node, splitting criteria like Gini impurity or information gain are used. These provide
information about the impurity of each attribute. The next attribute to be split is the
attribute obtaining the highest purity after a possible split. The most common class
label (for classification) or the mean/median value (for regression) of the target values is
assigned to each leaf node. [52] generate data by carrying out the following steps: given
a data set with j attributes xo, ..., x;, starting with the first attribute zo, n samples
are drawn from its univariate distribution. The second attribute, x1, is generated by
building a decision tree using only the real values of xy as input (x1 ~ xy). For every
value in the n samples drawn from xg, this tree predicts the value for x1. Each of the n
samples now has two attributes: xy and x1. These samples can now be used to generate
the remaining attributes: for every attribute z;, i = 2,...,j, a decision tree is learned
only from the real values of the preceding attributes z; ~ xg, ..., z;_1. This tree is then
used to predict the value for x; from the preceding attributes. This step is repeated until
the last attribute can be predicted from all of the preceding attributes from a tree that
predicts x; ~ xq, ..., Tj_1.

2.4 Membership Inference Attacks

Membership inference attacks (MIA) [11] are attacks designed to perform membership
disclosure. An adversary wants to learn if a target record was used to train a target
model. For this, the adversary must have access to (at least some) information concerning
the target record. With this information, the adversary can infer, with some certainty,
whether the target individual was present in the training data. This can pose a threat
to any individual’s privacy included in the data set, especially if there is a certain
characteristic that applies to every individual in the data set. Some examples would be
medical data sets, containing only records of patients with a certain disease, a data set
listing information about high-earning employees, or a store’s data set containing all of its
customers. An adversary could then, through a MIA, infer that a target subject suffers
from a disease, has a high-paying job, or shops at some store. In general, membership
inference attacks rely on the fact that a model overfits to its training data, and records
used during the training will yield different response patterns than records that are new
to the model [59, 60]. When evaluating this kind of attack, previous work on membership
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inference attacks lacks a discussion of the semantic meaning of (mis-)classifying members
and non-members. Naturally, a member that is labeled as a non-member will not face
any negative consequences. An adversary will simply conclude that this person was not
included in the training data even though they were a member of it. Arguably, a member
being labeled as such is a higher privacy breach than a non-member being classified
correctly. Again, being labeled as a non-member will not violate anyone’s privacy. But
what about non-members who are incorrectly labeled as members? This can lead to
an adversary inferring incorrect and possibly harmful information about an individual.
This problem, however, is inevitable. Even if an adversary is able to infer membership
with high accuracy, they can most likely never be 100 percent certain their prediction is
correct.

The majority of research has focused on membership inference attacks on classification
(or generally supervised) models. There are several approaches on how to perform such
an attack. An attack can either be supervised or unsupervised. Supervised attacks
use a binary classifier as attack model that will then label input records as members or
non-members. [11], for example, uses so-called shadow models that try to mimic the
behavior of a target model. The data these shadow models are trained on, referred to
as shadow data, and membership for each record are known to the attacker — unlike the
inputs and associated labels that were used to train the actual target model. An attack
model can classify members and non-members of the training data set based on learning
the patterns from the prediction probability output by the shadow models. The idea
is that the shadow models will achieve higher prediction scores for records they have
been trained on, than for records that are new to the models — and that this learned
knowledge transfers to the target model.

Unsupervised attack methods use the prediction metrics output from the target model.
A simple unsupervised attack, based on prediction correctness [61, 62|, labels a record as
a member if the target model predicts it correctly. It builds on the assumption that the
target model is fit to the training data and does not generalize to new data. Another
approach uses prediction loss [59]: an adversary labels a record as a member if the
prediction loss is smaller than some predefined threshold 7. This approach is based on the
assumption that the target model is trained to minimize the prediction loss, and members
of the training set should therefore have a smaller loss than non-members. The authors
argue that the average training loss is often published with their respective architecture,
and can be used as threshold 7. Similarly, an attack based on prediction confidence
[59] assumes that this prediction confidence is higher for training than for test records.
Records with a prediction confidence greater than a preset threshold will thus be labeled
as members. The entropy-based attack [11, 63] assumes that the prediction entropy of
the training samples is smaller than the one of the test samples. Again, a threshold 7
is chosen, and only records having a prediction entropy lower than 7 will be labeled as
members. A modified entropy-based approach [63] combines a sample’s entropy with its
ground truth. The reasoning behind this is that a false positive prediction with a high
confidence score will have a low entropy. According to the entropy-based attack, this
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record would then be labeled as a member. However, it can be assumed that this record
was not a member, due to it being falsely labeled. The modified entropy-based attack
then labels a record as a member if its modified entropy is smaller than a threshold 7.

Membership Inference attacks on synthesizers are a relatively new concern compared to
attacks on supervised machine learning models. The basic scheme of such attacks on
synthesizers can be seen in Figure 2.6.

to
X

synthesizer
(target model)

synthetic data
ublicly available

Figure 2.6: Membership Inference Attack on a Synthesizer: the data owner uses their
data to train the synthesizer. The synthetic data generated from it is made publicly
available. An adversary attacks the synthesizer to find out whether an individual was
used to train the synthesizer.

Synthesizing models, unlike classification or regression models, lack prediction responses
from the target model, like prediction confidence, correctness, etc., which are often used
to train attack models against classifiers. However, some membership inference attacks
on synthesis models can still be derived from the approaches designed for supervised ML
tasks.

2.4.1 Supervised Attack Approaches

In the work of Stadler et al. [8], the authors rely on shadow modeling, a supervised
approach introduced by [11], where a synthesizer is learned from a reference data set,
coming from the same population as the original training data'. This reference set is
used to train a synthesizer and generate several data sets from it. This process is done
twice, once including and once excluding a target record in the reference data set. The
generated data sets are then labeled zero or one, depending on whether the target record
was used to train the synthesizer or not. Each data set is then flattened to be represented
by a one-dimensional vector. This way, a classifier can learn and predict the membership

'Population in this context describes the entirety of individuals from which the samples in a data

come from. All students from one school, for example, are the population of students from that group.

Ten randomly chosen students of this population would then be a sample

17
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of the target record. A visualization of the attack can be seen in Figure 3.1. To assess
the privacy risk, the authors of [8] define the so-called privacy gain (PG), which measures
the privacy gain when publishing synthetic instead of the original data. A record with
PG = 0 can be inferred correctly by the adversary and does not gain any privacy through
synthetic data publishing. A record having PG = 1 on the other hand, supposedly
protects the records against the attack. The results published in the empirical study
show PG values for ten selected records in total. The majority of these records show
PG values of around 1. Only some outliers have a privacy gain of about 0.5. One outlier
shows PG = 1.

The authors of [16] use the approach proposed by Stadler et al. [8] and show that there is
no overall privacy risk for all data records by selecting ten random records. Their attack
model was not able to distinguish between members and non-members on these randomly
selected records. Combined with the results found by Stadler et al. [8], we hence conclude
that the shadow model attack is not a serious privacy threat for the entirety of records
contained in the original data set, but rather only for single, more vulnerable records. In
[16], "vulnerable records" are defined as records with a larger distance to their neighbors,
i.e. records that are not similar to other records. To identify these records, they define a
vulnerability score Vi, that is, in comparison to our proposed risk scores as defined in
Section 3.4.6, computed using the original data only. Using the notation from [16], for
any dataset D, a record x; € D, and a distance d, the vulnerability score V}, is defined as:

V(i) = d(@i, zi;) (2.2)

e

j=1

where x;,, vy Ly, ATE the records ordered according to their distance to z;. The
distance d is computed by first splitting the attributes into subsets of categorical (Fu)
and continuous (Fon¢) attributes. Every categorical attribute x; r, f € Fiqr in D is then
converted into a one-hot-encoded vector h(z; f).

After getting one one-hot-encoded vector for each categorical attribute, they are all
concatenated into one single vector.

The continuous attributes x; r, f € Feont are scaled using min-max-scaling:

zip —minj_y __p|(T;f)

n(%f) . man:l,...,|D\(CUj,f) - minj:l,...,\m(l’j,f) 23)
Again, the attributes are concatenated into a single vector:
c(i) := (n(Tif) feFeont (2.4)
As presented in [16], the distance between two records x; and z; is then given by:
d(zs, ;) =1 — | Feat| h(z;) - h(z;) | Feont| c(zi) - c(;) (2.5)

F o lh@@)ll2 * [Ia(z)ll - F le(@i)]lz * [Je(zi)ll2
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Here, * denotes scalar multiplications, - denotes the dot product between two vectors, and
||y||2 denotes the Euclidean norm of a vector y. The values for d(x;, 2;) can range between
0 and 1. Records that are less similar to other records will have larger values, and only
identical records will have a distance of zero. The authors show that this vulnerability
score effectively identifies records at risk. Their experimental set-up, however, only
considers a subset of ten vulnerable records to show the MIA performance.

2.4.2 Unsupervised Attack Approaches

The idea of using a distance approach to infer membership was originally introduced
by [13] for MIA on image data, and later used by [9] on synthetic tabular data. In
this unsupervised approach, it is assumed that the distance from a target record to its
closest synthetic data record is smaller for members of the training set than it is for
non-members. This way, target records will be classified as members, if the distance to
the closest synthetic record is smaller than some threshold €. Different values for € are
used to compute the receiver operating characteristic - area under the curve (ROC-AUC)
value, and to compare the attack performance. The authors found that if the adversary
has access to the synthesizer and can generate synthetic data from it, this approach
works well to infer membership on target records.

2.4.3 Attack Settings

In general, membership inference attacks (against discriminative and generative models)
can be classified according to the adversary’s knowledge: we distinguish white- and
black-, and no-box attacks as defined in [64]. For the white-box attack, the adversary
has access to the target model. This means that they can feed their own data into the
model and collect its responses. These responses can be prediction properties when
supervised models are attacked, or synthetic data, for attacks against synthesizers, similar
to the work in [65]. Furthermore, information on the architecture of the model and its
learned parameters, as well as how the target model is trained, can be accessed. The
black-box-setting on the other hand assumes that an adversary only has access to the
model in- and output, i.e. input data and model response. If the target model is a
classifier, this means that it can be queried by feeding a record into the model and
collecting its response, e.g. prediction. Sometimes the type of model used, e.g. which
classifier, is also known. The no-box attack is the most restrictive attack setting. It
assumes that an adversary does not have access to the model, but rather only to its
output. For attacks against classifiers, this output can be a labeled data set, or a data set
containing the prediction confidence for each label. For synthesizers, the adversary would
only have access to the synthetic data set. Previous research suggests that white-box
attacks are more successful than black-box attacks for generative models [9, 13]. For
attacks against classification models, however, both scenarios seem to be equally effective
[66].
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2.5 Outlier Detection

Outliers are data points that significantly deviate from the majority of the data in a
dataset. They are often unusual, rare, or extreme observations that don’t conform to the
typical patterns or distribution of the data. They are often referred to as anomalies or
extreme values. [67] defines outliers as “an observation which deviates so much from the
other observations as to arouse suspicions that it was generated by a different mechanism”.
Outliers can be observed in various types of data, including numerical, categorical, and
multivariate data, and they can arise for different reasons:

Natural Variation: Outliers occur naturally due to the inherent variability in
a dataset. These outliers represent genuine, albeit rare, observations that are an
essential part of the data distribution.

Measurement Errors: Outliers can result from errors during data collection or
measurement. These errors can include sensor malfunctions or human mistakes
when collecting data. Such outliers are often considered as noise and may need to
be corrected or removed.

Data Entry Errors: Human errors in data entry can introduce outliers into a
dataset.

Novel Events: Outliers may indicate significant, unexpected, new events or
changes in the data-generating process.

Outliers can occur in either one or more variables [68]. We distinguish the following:

e Univariate Outliers: Outliers in a single variable.

e Multivariate Outliers: Outliers that occur in multiple variables simultaneously.

Furthermore, outliers can be grouped with respect to their surrounding data points [69]:

Global Outliers: Outliers that are unusual across the entire dataset.

e Local Outliers: Outliers that are unusual within a specific subset or cluster of

data.

Another classification for outliers [70] (or anomalies) distinguishes between the following:

¢ Point Anomaly: A single data point behaves differently than the rest of the data.

e Collective Anomaly: A group of data points shows deviating patterns from the

rest of the data.
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2.5. Outlier Detection

¢ Contextual Anomaly: A data point that is anomalous only in a specific context.
For example, while a high level of traffic might be normal at 5 p.m., high levels of
traffic at 3 a.m. might be considered anomalous. Point or collective anomalies can
simultaneously be contextual anomalies.

Outlier detection describes the process of detecting outlying data points within a popula-
tion. Various statistical, graphical, and machine-learning techniques are used to detect
outliers.

Outlier detection methods can be grouped into supervised, semi-supervised, and unsu-
pervised mechanisms, depending on the availability of labels [71]. Supervised methods
require pre-labeled data, classified as out- or inlier. This makes the outlier detection a
supervised classification task. Unsupervised outlier detection lacks these labels. This is
essentially analogous to an unsupervised clustering problem, where data is grouped into
out- and inliers based on the unlabeled data. For semi-supervised detection, only class
labels for the inlying records are available. A model trains only on these inlying records
and aims to recognize data that differs from the inliers as outliers.

Some outlier detection methods only look at each attribute individually. One method
defines outliers for continuous attributes to be records that are three inter-quartile ranges
below the first quartile or above the third quantile [72], where the inter-quartile range
is the distance from the first to the third quartile. A classical approach for normally
distributed data uses standard deviation (SD). All points outside the = k SD, where
is the mean and k a preset value for the number of standard deviations, are considered
outliers. Another widely used method for normally distributed data is the Z-score. It is
defined as

Ty — X

S
Now, Z follows a standard normal distribution and all values larger than three would be
considered outliers. Alternatively, uni- and bivariate outliers can easily be detected using
a graphical approach: Plotting each data point will allow detection of outlying points
visually.

Zi = , Ly ~ N(,u, 0'2). (26)

Other algorithms, like Local Outlier Factor [17] and Isolation Forest [18], consider all
data attributes to divide the population into two groups: outliers and inliers.

[17] defines the "Local Outlier Factor" (LOF) to be the degree of a record being an outlier.
The degree depends on how isolated a record is in regard to its neighborhood. The
local density is detected by finding the mean distance from a data point to its k-nearest
neighbours. Points that have a higher local density than their neighbours are assumed to
be part of a cluster. If a point’s local density is lower than its neighboring point’s density,
it is considered an outlier.

Isolation Forests [18] use tree-based models to isolate data points. The idea is that when
building a binary tree and isolating every data point, i.e. building the tree until every
leaf node contains a single data point, outliers will be closer to the root than regular
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points. These trees are called isolation trees. Several isolation trees are used to form the
isolation forest. Outliers are assumed to have a short average path from the root to the
isolated point. Figure 2.7 visualizes this idea.

Isolation Treeq Isolation Trees Isolation Treep,

Figure 2.7: Isolation Forest: each isolation tree finds the distance from each point (leaf
node) to the tree root. This distance is on average smaller for outliers (red nodes). The
average distance is calculated over all n isolation trees that make up the isolation forest.

2.6 Summary

In this chapter, we summarized different attempts at data anonymization and described
their (dis)advantages. Furthermore, we described the concept of synthetic data as
a method for privacy-preserving data publishing and explained the synthesis models
Bayesian Networks, Gaussian Copula, Generative Adversarial Networks, Autoencoders,
Variational Autoencoders, and decision trees in detail. We gave an introduction to
membership inference attacks and presented attack approaches on classification models.
We then highlighted the differences for MIA on synthesis models as opposed to classifiers
and explained two recently proposed approaches. Lastly, we gave an overview of outliers,
and how they can be classified and detected. Additionally, we illustrated the two main
outlier detection algorithms used in this thesis: Local Outlier Factor and Isolation Forest.
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CHAPTER

Experiment Design

In this chapter, we present our approach and experiment design. We list and explain the
steps necessary to be able to answer our research questions.

We choose to evaluate the MIA and risk identification empirically on publicly available
data. For conducting the experiments and gathering insights, we will follow the Cross
Industry Standard Process for Data Mining (CRISP-DM) [73]. The following sections
list the six phases of the CRISP-DM methodology and describe how they are applied in
the thesis.

3.1 Business Understanding

The importance of data privacy, its current shortcomings, and measures against it are
discussed in Chapter 1. The goal of this thesis is to identify the most vulnerable records
for MIA, and, as defense against the attack, remove them from the training data. The
defense can be considered a success if i) the MIA performs worse overall, on records at
risk and on records not at risk, and ii) the data utility does not suffer from the defense.

3.2 Data Understanding

For the experiments, exclusively data sets with an associated classification task are chosen.
We conduct our experiments on four different data sets, varying in size and target class
distributions. The exact dimensions and distributions are listed in Table 3.1. All data
sets are obtained from the UCI Machine Learning repository. The Caesarian' data set
contains information about 80 women with variables related to medical attributes, like
heart problems or blood pressure, concerning pregnancy. The binary target attribute
denotes if a woman gave birth via a Caesarian section.

"https://archive.ics.uci.edu/ml/datasets/Caesarian+-Section+Classification+Dataset
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The heart disease? data set contains data of 303 patients and 14 health-related variables
with the target being a binary attribute denoting whether a patient was diagnosed with
a heart disease or not. The breast cancer Wisconsin® data set has 699 rows and describes
patients with either benign or malignant breast tumors, which represents the moderately
imbalanced target variable. The fourth data set used in our experiments, the thyroid*
data set, also contains patient and health-related data. In contrast to the other data
we use, this is a highly imbalanced data set. The target attribute consists of three
groups, two of which express a thyroid dysfunction. These two classes make up five and
two percent of the population respectively. We specifically chose the thyroid data to
investigate the effects of removing outliers on the data utility, especially for the minority
classes.

Table 3.1: Dataset characteristics

Dataset # Instances # Attributes target variable split
Caesarian 80 6 58/42%

Heart 303 14 54/45%

Breast Cancer 699 10 65/35%

Thyroid 3428 22 93/5/2%

3.3 Data Preparation

Besides data cleaning, this step includes transforming the data according to the input
data needed for the different attack approaches. Furthermore, outliers will be detected
during this phase.

The only data set with missing values is the Breast Cancer data, with 16 rows containing
missing values. As the number of rows containing missing values is relatively small, we
delete these rows and end up with 683 instances.

We split each of the four data sets given in Table 3.1 into two equally sized data sets. We
use one of these data sets as real training data and the other as a reference data set as
done in [15]. The authors of [11] propose that the reference data could also be generated
from the target model directly. For this, the assumption that the target model is available
to the attacker has to hold. This approach has recently been studied on synthesizers [65].
Additionally, drawing the reference data from each attribute’s marginal distribution, if
they are known, was proposed [11]. Another approach samples the reference and real
training data from the entire data set [8]. This will then allow for the reference and real
data to overlap. The detailed description of the reference data set, and how it is used is
given in the respective approach descriptions of the shadow modeling (Section 3.4.4) and
distance-based approach (Section 3.4.5).

http:/ /archive.ics.uci.edu/dataset /45 /heart+disease
Shttp://archive.ics.uci.edu/dataset,/15/breast+cancer+wisconsin-+original
“http://archive.ics.uci.edu/dataset/102/thyroid+disease


http://archive.ics.uci.edu/dataset/45/heart+disease
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3.4. Modeling

3.3.1 Outlier Detection

For our experiments, we test the relationship between records at risk and outliers. To
detect outliers, we use the algorithms Isolation Forest and Local Outlier Factor, which
we described in Section 2.5. For the LOF, we use k£ = {10,15,20}, where k is the
number of nearest neighbors to calculate the mean distance from. For the iForest, we
use n__estimators = 100 for the number of trees that make up the forest. Furthermore,
to compare our results with the ones found in [8], we further use the outlier definition
proposed in their paper where outliers are defined as "records that either have rare
categorical attribute values or numerical values outside the attribute’s 95% quantile". As
the authors of [8] do not further define how they identify "rare categorical attributes', we
define them as those attribute values that occur in only five or less percent of records. In
our analysis, we refer to this outlier detection approach as Quantile approach.

3.4 Modeling

During this phase, we will implement the membership inference attack models. Two
different approaches for Membership Inference Attacks, motivated by [8] as well as [9],
are implemented. To generate synthetic data, we use four different synthesis models.

3.4.1 Synthesis Models

The following synthesizers are used for our experiments:

 Bayesian Networks® (DataSynthesizer)
 Gaussian Copula® (SDV)

o CT-GAN" (SDV)

TVAE® (SDV)

We specifically use these synthesizers as they are widely used, effective, and implementa-
tions are readily available. We decide to use these four synthesizers specifically, as they
are commonly used in related work [9, 8]. By using different synthesis models, we can
i) explore the overall MIA success across synthesizers and ii) compare the data utility
between synthetic data generated by the synthesizers.

The python package "DataSynthesizer" [74] uses Bayesian Networks [75] in combination
with a greedy algorithm introduced by [76] for building these networks. For our analysis,
we try different values for the parameter p, i.e. the maximum number of parents for each
node. We expect less utility loss, but less private data for networks with high values for p.

Shttps://github.com/DataResponsibly /DataSynthesizer

Shttps://docs.sdv.dev/sdv /single-table-data/modeling /synthesizers /gaussiancopulasynthesizer
"https://docs.sdv.dev/sdv /single-table-data,/modeling /synthesizers/ctgansynthesizer
Shttps://docs.sdv.dev/sdv /single-table-data/modeling/synthesizers/tvaesynthesizer
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The Synthetic Data Vault? (SDV) published several data synthesizers generating synthetic
data, including Gaussian copulas [50], Conditional Tabular Generative Adversarial
Networks (CTGAN) [56, 77], which are based on Generative Adversarial Networks
(GAN) [55] and Tabular Variational Auto-Encoders (TVAE) [56] based on standard
Variational Auto-Encoder(VAE) [58].

3.4.2 TImplementation of Membership Inference Attacks (MIA)

For this thesis, two different MIA approaches on synthesis models will be implemented.
One of them, the shadow model approach from [8], is a supervised attack, while the
distance-based approach from [9] is an unsupervised attack. For each record in the
training data set, we define a risk score, which gives information on the likelihood of the
record’s membership being inferred correctly. A record that is always labeled correctly
receives a high risk score. Records that are rarely or never inferred correctly have a low
risk score. Therefore, the risk of a record is determined by executing an attack. The
mathematical definition of our risk score depends on the attack approach and is given in
Section 3.4.6.

3.4.3 Threat Model

Whenever a MIA is simulated, certain assumptions about the adversary’s and defender’s
motivation, goals, and knowledge need to be made. The threat model provides these
assumptions, which can then be used to implement the attack and defense strategies. In
our experimental setup, we define the adversary’s and defender’s profiles similar to the
categorization of Biggio and Rolli [78], as follows:

e Adversary’s motivation: An adversary wants to find out if a target record is a
member of a training data set. With this knowledge, they can draw conclusions
about the target individual.

e Defender’s motivation: In the scenario of MIA, the defender plays the role of
the data holder, who wants to publish the data they collected without neglecting
the privacy of individuals present in the data. As collecting data is often costly
and time-consuming, sharing it benefits others who might want to acquire the data
for their own use.

e Adversary’s goal: The adversary strives to build a model that is able to correctly
classify members and non-members.

e Defender’s goal: The defender aims to publish data with a high utility and
privacy guarantee. Their goal is to successfully implement a strategy that both
preserves privacy and maintains data utility.

“https://docs.sdv.dev/sdv/
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o Adversary’s knowledge: For our experiments, we imitate a "no-box" attack and
evaluate the risk of synthetic data sharing, meaning an adversary only has access
to the synthetic data generated. We do however assume that the adversary has
some additional prior knowledge about the environment that the synthetic data
was created in, similar to [8, 11]. First, we assume the adversary to have knowledge
about the type of model used to generate the synthetic data and if applicable,
its parameter settings. Second, the adversary is assumed to know the size of the
original training and the synthetic data set. This knowledge might benefit the
adversary, as they can then adapt the size of the reference data set — an attack
model that was trained on 100 samples might not be able to capture the behavior
of a target model that has been trained on 10.000 samples. Lastly, we assume
that the adversary has access to a reference data set that stems from the same
population as the original training data. This could for example be data containing
information about the same individuals as the original data, collected in a different
year. Or similar: data collected at the same time, but from people living in two
different cities. Note, however, that the assumption that the reference data and
the original training data do not overlap, holds.

o Defender’s knowledge: The defender has access to the entire training data and
is aware that if they publish the data, it might fall victim to ill-intentioned attacks.

3.4.4 Shadow Model Approach

Stadler et. al [8] use shadow modeling to infer memberships. The attack design can
be seen in Figure 3.1. The adversary has access to the reference data set D,.r, coming
from the same population P as the original training data set D,q,. In our setting, we
randomly split each data set listed in Section 3.2 to use as original data (D) and
reference data (D,.r). Furthermore, we have a publicly available synthetic data set S,
which was generated using D;.q,, as input. We assume that S and D, are the same size,
which is known to the adversary. The size of D, is assumed to affect the data quality
of S. If the size of S and D, is known to the adversary, they can use them for their
generation process during the attack to better mimic the behavior of the target model.

To evaluate the influence of a single data record on the synthesizer and the resulting
synthetic data, we carry out the following steps:

1. Select the target record t* € P.

2. Two synthesizers M are trained. One on D, including ¢* (M ™) and one excluding
t* (M™).

3. Multiple data sets that are the same size as D,q,, are generated by M ™ and labeled
1, and by M~ and labeled 0, respectively.

4. All generated data sets are flattened (as detailed in section 3.4.4) to be represented
by a one-dimensional array and merged into one data set, the attack training set.
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population

synthetic data (S)

predict

 Attack Model

attack training set
_

Figure 3.1: Shadow Model Approach

flatten

5. A binary classifier is used as attack model A, which has the task to label each
synthetic data set in the attack training set according to the membership of t*.

6. The public synthetic data S gets flattened in the same way as the shadow data sets.

7. The attack model A can now predict the membership of t* in D,4,, and returns 1
if the model concludes that t* was in D4, or 0 otherwise.

8. A risk score can be obtained by using the prediction confidence of the attack model.

The authors of [8] play out the attack on five outliers and five randomly chosen records only.
For our analysis, each record is selected to be the target record once. This way records at
risk can be identified. Additionally, we use five different classifiers acting as attack model
A: Random Forest, Naive Bayes, Logistic Regression, Support Vector Machine, and
k-Nearest-Neighbor classifier, where we use the scikit-learn implementations'?. Earlier
work used Random Forest, Logistic Regression and k-Nearest-Neighbor [8], as well as
Neural Networks [11, 79]. The final membership prediction will be made according to
the mean confidence score of all five classifiers: If the mean confidence is greater than
0.5, the membership prediction will be 1, and 0 otherwise.

Ohttps://scikit-learn.org/stable/supervised_ learning.html
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Flattening Methods

As the attack model is a classifier that can only take a one-dimensional vector as input,
the shadow data sets need to be transformed to be represented by such vectors. We use
three different methods to do so:

e Naive: This method uses simple summary statistics: Numerical attributes are
represented by their mean, median, and variance. For each categorical attribute we
take the most and least frequent value, as well as the total number of classes per
attribute, like it was done in [8].

e Correlation: For this, we dummy-encode categorical attributes as a pre-processing
step. When dummy-encoding categorical attributes with j possible attribute values,
the values are mapped to binary attributes. The j possible values are represented
by j — 1 attributes. A record having value zero for all j — 1 dummy variables
belongs to the category that is not represented by its own column. After dummy
encoding, we compute the pairwise correlations.

o Principal Components (PC): This method computes the principle components
and only uses the first PC to represent the data set. Principal components are a way
of reducing data’s dimensionality, by transforming a large set of attributes into a
lower-dimensional space, all while preserving as much information as possible. The
principal components are linear combinations of the original attributes in the data,
and orthogonal to each other. The first principal component captures the most

variance in the data, the second component explains the second most variance, etc.

To find the principal components, the data has to be standardized, i.e. a mean of
zero and a standard variance of one. Then the covariance matrix for all attributes
in the data is computed. The eigenvalues and eigenvectors for the covariance matrix
are calculated. The eigenvector corresponding to the highest eigenvalue is then the
first principal component. This is the vector used to represent the entire data set
in our analysis.

3.4.5 Distance-Based Approach

[13] originally introduced a distance-based approach for membership inference attacks on
generative adversarial networks for synthetic image data. Later, [9] used this approach
to conduct attacks on tabular data. While Hyeong et al. conduct the attacks on GANs
and VAEs exclusively, we consider GANs and VAEs as well as Bayesian Networks and
Copulas for the synthesizing process. By including additional synthesis models in our
analysis, we can show differences in MIA performance that might occur when generating
the data with different models. The basic idea is based on the assumption that the
distance from a target record to its closest synthetic data record is smaller for members
of the training set than for non-members (Figure 3.2). This way, target records will be
labeled as members if the distance to the closest synthetic record is smaller than some
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threshold . However, the method presented in [9] does not present a way to find a
suitable value for e, but rather provides the ROC-AUC value for varying ¢ values.

» t2€Dray

’
’
’
’

Y R(to|M)

Figure 3.2: Distance-based Approach Idea: the approach builds on the idea that the
distance from a record t¢;, with ¢ = {1,2} to their closest synthetic data record R(t;|M)
generated by synthesizer M is smaller for records that were used to train M.

Adapting the notation used by [13] to our notation, an adversary wants to infer member-
ship on a target record t* by computing the probability P(tx € Dy |t*, M), where D,qy,
is the original training data and M is the target model, a synthesizer. The assumption
is that this probability is proportional to the probability of a target model generating
the target record ¢x. It is assumed that this assumption is valid since the synthesizer
(M) is designed to approximate the distribution P of the training data D)4, meaning
Pp,... = Py. Formally we get

P(t* € Dyault*, M) o Py(t|M) (3.1)

This probability can then be approximated using the Parzen window density estimation
[80]. The Parzen Window estimates the density function of a continuous random variable.
The probability density of any given point can be estimated by placing a window around
that point and calculating the density within this window. We then get

Bl

21 (EM) ~ %z p(=lt = M(z0)l[); 2 ~ P (32)

with k being the number of synthetic records generated by M. The so-called reconstructed
copy of record t is then given by

R(t|M) = argmin ||t — || (3.3)
fe{M()i}i,

where {M(.);}%_, are all synthetic records collected from M. The adversary will then
label the membershlp of the target record my~ as 1 (i.e. member) of D4, if the distance
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L(t*, R(t*|M)) between t* and R(t*|M) is smaller than the threshold . Formally,

My = 1L, R(t*|M)) < €] (3.4)

The challenge for an adversary is finding a suitable value for €, which can correctly
label as many records as possible. Both [13] and [9] try different values for e and
evaluate the attack success. However, they disregard the process of an adversary finding
this threshold and assume the adversary somehow knows a well-performing value for
e. The two empirical studies [13, 9] also lack any further testing on how the threshold
€ generalizes to other data sets. We define a possible scenario in which an adversary
can learn the threshold value beforehand, and use it to infer memberships later; this
process is visualized in Figure 3.3. We assume an adversary to have access to a reference
data set D,.r. We obtain this reference data set by doing the same process as for the
Shadow Model approach described in Section 3.4.4. Both D,q,, and D,.f are then split
again into training and test sets. The training set of the original data (Dyquw,,.,,;,) Will be
used to train the synthesizer that generates a synthetic data set S that the data owner
wishes to publish (membership=1). The testing data D;ay,.., with membership=0 is
needed to evaluate the threshold’s performance on D;qy. With Diey, ... and Dy, .,
(membership = 1 and 0 resp.) an adversary can find a suitable threshold to distinguish
between membership classes 1 and 0, which can be used to classify the memberships of
records contained in D;q,,. This is done by calculating the distances d for all data points
x; € Dyey. These distances are then scaled to range between 0 and 1, using min-max
scaling. The optimal distance threshold ¢ can then be found by looking at the true
positive (TPR) and false positive rates (FPR) and choosing the threshold that maximizes
TPR — FPR. Hence the optimal threshold £* can be defined as:

e* = argmax ('PR — FPR) (3.5)
g
This threshold can then be used to classify the records in D,.qy,.

3.4.6 Risk Score

The method to identify records at risk is different, depending on which of the attack
approaches that were described in Section 3.4.4 and Section 3.4.5 is used. For every
record that was used in the training set, we will compute a risk score A, which gives
information on how much at risk for MIA each record is.

For the shadow model approach, the risk score for correctly labeled records is defined as
the prediction confidence (PC') of the attack model A. The prediction confidence (or
class probability) ranges between 0 and 1, and quantifies how confident the classifier’s
prediction is. Usually, a confidence of 0.5 or more for the positive class will be labeled
positive by the classifier. If a prediction’s confidence for the positive class is less than
0.5, it will be assigned a negative label by the classifier. We assume that records that
can be predicted correctly with high confidence are somehow influential to the synthesis
model and therefore an easy target for an adversary. For incorrectly labeled records, the
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........................

synthetic data

Figure 3.3: Distance-based Approach: the population, one of the data sets described in
Section 3.2, gets split in half, one half represents the private data only available to the
data owner, the other half is available to the adversary. The adversary splits their data
into member and non-members and uses this to learn the threshold €* as described in
Section 3.4.5. The target t* and the public synthetic data published by the data owner
are available to the adversary. With this, the adversary computes the distance from ¢*
to its closest synthetic record produced by the synthesizer M (L(t*|R(¢t*|M))). If this
distance is smaller than the threshold £*, the adversary labels the target record as a
member of the private raw data.

risk score is defined as A =1 — PC. As an example, if a record with membership 1 was
labeled as such with a confidence score of 0.7, the record’s risk score will be 0.7. However,
if a record that was a member of the training data was classified as a non-member with
confidence 0.7, the risk score will be A =1 — 0.7 = 0.3. This means that members who
were misclassified are scored at a lower risk than members who were correctly labeled.

For the distance-based approach, we define the risk score A as the following: for every
record t* € Dypqin we will use the scaled distance d from t* to its nearest synthetic record
and define the risk score A =1 — d. Records with A close to 1 are considered to be more
at risk than records with A close to 0. A record with L = 0.1 for example is far from
its closest synthetic record, and was therefore likely not used in the training process; it
is hence not considered to be at risk. For a record with a very small distance, hence a
large risk, e.g. A = 0.95, we assume that the record was used during training and is very
similar to an existing record in the original training data.

3.5 Evaluation

3.5.1 Attack Evaluation

To evaluate the MIA success we compare the predicted memberships to the actual
memberships. We call a true positive (TP) prediction a sample with a positive label being
predicted as such. True negative (TN) predictions occur when a negatively labeled sample
is correctly predicted as such. False positives (FP) describe data instances belonging to
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the negative class but are labeled as positives. False negatives (FN) are samples that are
labeled as negative although they belong to the positive class. For our evaluation, we use
the following evaluation metrics:

Accuracy describes the percentage of correctly classified samples:

TP+TN
TP+ FP+TN+FN

Accuracy = (3.6)

Precision gives the proportion of correctly positively classified samples over all
positively labeled instances, i.e.
TP

Precision = ———— 7
recision = mp s (3.7)

Recall, or True Positive Rate (TPR) or sensitivity, gives the probability of a
positive observation being labeled as such and is calculated by

TP

PR = ——F——
R TP+ FN

(3.8)

False Positive Rate (FPR) is the rate of negative samples classified as positive,
over the total number of negative samples, i.e.

FP
FPR= 557N (3:9)

F1l-score: gives the harmonic mean of recall and precision and is calculated by

5. precision - recall (3.10)

precision + recall

Area Under the Receiver Operating Characteristic Curve (ROC-AUC) is
calculated as the area under the ROC curve, which plots the TPR (recall) against
the FPR while the discrimination threshold is varied. Models achieving an ROC-
AUC score of 1 classify every sample correctly, while an ROC-AUC score of 0.5
corresponds to a model that is randomly guessing.

We use the accuracy, precision, recall, F1-score, and ROC-AUC to compare the overall
MIA success on models trained on the entire data set and models trained on the subset
that excludes records at risk. The ROC-AUC measures a model’s ability to distinguish
between classes for different thresholds. This is why it is especially important for the
MIA evaluation, as it shows to what degree the attack model can distinguish between
members and non-members.
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3.5.2 Evaluating Trends for Records at Risk

Once the risk score is computed for each data record, we evaluate trends concerning these
specific records. We investigate whether outliers, which are detected by the algorithms
described in Section 3.3.1, are more at risk than inliers.

3.5.3 MIA Defense

As a defense against membership inference, we propose to remove the records at risk
from the training data. Figure 3.4 shows the scenario of attack and defense. We use
different cutoff values « for risk scores and remove records with risk scores higher than
A =1{0.8,0.85,0.9,0.95} (« ={0.2,0.15,0.1,0.05} resp.) for the distance approach. We
chose these four values to evaluate the effect of the cutoff value on the defense performance
and the utility. We assume that removing over 20%, i.e. a > 0.2, results in substantial
utility loss, and therefore we will only consider cutoff values of @ < 0.2. For the shadow
model approach we chose A = 0.65 (a« = 0.35 resp.). Due to the lengthy run-time of
the shadow data approach (around three weeks for the largest data set), and limited
computational resources, we restrict our analysis to only one cutoff value.

t

Attacker

to

t
ox

t4 synthesizer

(target model)

| synthetic data

Figure 3.4: Defense: after identifying the records at risk from the training data, the
data owner removes them, and thus publishes synthetic data that was generated by a
synthesizer trained only on the records that are not at risk.

After generating new synthetic data from a model that was trained on data excluding
records at risk, we perform the attack again. This way, we can investigate if i) the
defense worked and the overall MIA success is smaller, and/or ii) there are new records
at risk, and iii) if these new outliers coincide with the records that had the highest risk
score of the records remaining after the removal. We will evaluate any changes in attack
performance, with a focus on records previously labeled to be at risk. For this, the
risk score can be computed and compared for both scenarios. Additionally, we want to
reevaluate the attack risk for the remaining data records previously identified as records
not at risk.
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3.6. Deployment

3.5.4 Data Utility

Data utility refers to data’s ability to obtain meaningful insights, conduct analyses, and
make accurate predictions. We call utility loss of synthetic data the situation when
synthetic data is not able to maintain this standard compared to the original data. We
measure utility by using evaluation metrics on data labels derived from five different
classifiers: Random Forest, Naive Bayes, Logistic Regression, Support Vector Machine,
and k-Nearest-Neighbor classifier. Data with evaluation scores similar to the original
one is considered to have high utility. Consequently, the utility loss is defined by how
much the prediction accuracy decreases for a target attribute of classifiers trained on
synthetic data instead of the original training data. Synthetic data with high utility
will yield no or only minimal prediction loss for the data’s initial classification task. To
evaluate the data utility and assess the utility loss, we use accuracy, precision, recall,
and Fl-score. Although accuracy is probably the most intuitive evaluation metric, we
need precision, recall, and F1-score to account for unbalanced target classes. For highly
imbalanced data, a model that always predicts the majority class might achieve a high
accuracy simply because most records belong to the majority class. Low precision values
imply that the model tends to classify negative labels as positive. A model that tends to
label the positive class as negative will lead to a low recall. High values for recall and
precision are desired, hence a model should be trained to achieve a high Fl-score, which
is the harmonic mean of precision and recall.

In addition to computing the overall evaluation metrics, we also investigate and evaluate
per-class predictions. This is especially relevant for imbalanced thyroid data set.

After removing the records at risk from the training data and generating synthetic data
from it, we compare the utility not only to the original data, but also to the synthetic
data that was generated by a model trained on the entire original data set. We repeat this
five times using different seeds and present the average over all seeds to get more robust
estimates. In our analysis, we also look at the differences in utility between the different
synthesizers listed in Section 3.4.1 and evaluate their relation to attack successes.

3.6 Deployment

In this phase, we summarized and visualized all results. These are presented in Chapter 4.

3.7 Summary

In this chapter, we presented the experimental set-up, following the CRISP-DM [73]
guidelines. We highlighted the importance of privacy-preserving data measures and
data understanding. We further presented the data sets used for our experiments and
analysis, as well as the data preparation process. We then introduced the outlier detection
algorithms used in our analysis, and the parameter settings used for them. We listed the
synthesizers used for our experiments and defined our threat model. Additionally, we
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3. EXPERIMENT DESIGN
explained the two attack approaches used and defined their corresponding risk scores.
We then described the attack evaluation process and proposed a defense for the attacks.
Lastly, we described the process of measuring and quantifying data utility.
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CHAPTER

Experimental Analysis and
Results

In this section, we present, discuss, and analyze the results obtained from our experiments.
We first present the results for the shadow model approach, and then for the distance-
based approach. For each approach, we summarize the overall attack scores, i.e. how
well each attack approach is able to infer membership for every data set-synthesizer
combination. After that, we look at the relationship between outliers and records at risk
and try to determine if outliers are more vulnerable to MIA. After applying the defense,
we subsequently reassess the MIA performance. We first reassess this for all data points,
and then separately for records at risk and records not at risk only. Finally, we analyze
the data utility and compare it for the original data to the synthetic data sets before and
after the defense. We highlight the per-class utility for the imbalanced Thyroid data set,
to showcase possible effects on the utility caused by the defense. In the last section of
this chapter, we will compare the two approaches and analyze their performance based on
membership status. For our experiments and analysis, we use Python version 3.9.17. For
the utility experiments, we use the scikit-learn default parameter settings, as we simply
want to detect the differences in utility, and do not strive surpass the state-of-the-art
models’ performances. The evaluation metrics are also computed using their scikit-learn

implementations’.

4.1 Shadow Model Approach

For this supervised approach, we split the data into raw and reference data. Each record of
the raw data set is going to be chosen as the target record, and for each, two synthesizers
are trained: one including and one excluding the target record (thus, the synthesizers

Thttps://scikit-learn.org/stable/modules/model _evaluation.html
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we train amount to twice the number of data samples). For all the experiments using
Bayesian Networks as a synthesizer, we use a fixed number of maximum parents per
node of three, meaning a node can either have one, two, or three parents. During our
research, we found that this preserves the utility at a high level while keeping the run
times reasonably low. The overall attack evaluation (Section 4.1.1) is computed by
considering members and non-members. The risk identification (section 4.1.2), however,
is only done for members of the training set.

4.1.1 Overall Attack evaluation

We analyze the overall membership inference attack performance by computing the
accuracy, precision, recall, F1-score, and ROC-AUC for each synthesizer and data set.
Figure 4.1 shows these results, where the data sets are ordered ascending according
to the number of records. The accuracy gives the proportion of records that were
correctly labeled according to their membership. With accuracies around 0.5, the attack
is practically as reliable as random guessing. Related studies have already shown that
MIAs are no threat to the entirety of records contained in a data set, but rather single
records that are especially vulnerable to the attack. The privacy gain (PG), which we
described in more detail in Section 2.4, defined by Stadler et al. [8] for five randomly
selected records, is around one for all of these five records. Records with PG = 1 were
not able to be correctly labeled by an adversary. This seems to be in line with our results,
showing that overall, there is no serious privacy risk for the data. However, while our
results show low accuracies, for some scenarios, e.g. Heart or Thyroid data generated by a
Copula, the recall scores are above 0.9. This means that for these two cases, over 90% of
members were identified as such by the attack. TVAE seems to be more vulnerable with
the smaller data sets. In contrast, Bayesian Networks seem to be more vulnerable when
used with larger data sets. We also observe that data generated with the CTGAN is the
least vulnerable to the attack, with accuracy and ROC-AUC values ranging between 0.47
and 0.53. Overall, the ROC-AUC values range from 0.47 (CTGAN) to 0.91 (Copula). A
related study measured the ROC-AUC for Bayesian Networks with 10 random records
[16]. The resulting values range from around 0.47 to 0.8. Our results lie within this range,
with the lowest ROC-AUC value for Bayesian Networks at 0.61 (Breast Cancer data) and
the highest value being at 0.8 (Thyroid data). The reason this attack performs poorly
overall is that most data records will not influence the training of a model to the point
where the model produces noticeably different synthetic data when in- and excluding the
target record. We observe that only a small amount of records are influential enough
to change the characteristics of the generated data and enable an attacker to recognize
these differences.

To show the difference in accuracies between members and non-members, the accuracy
for each of the two groups is computed and the results are listed in Table 4.1. The highest
value in each row is colored red. Note that the values for members are equivalent to the
recall values in Figure 4.1. For 12 out of 16 data sets, the members were predicted more
accurately than the non-members. For some settings, e.g. Thyroid and Heart data with
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4.1. Shadow Model Approach

Copula, or Breast Cancer and Cesarean data with TVAE, members were predicted with
much higher accuracy than non-members. Here, the Heart data and Copula show the
highest difference, with members obtaining a 0.81 higher accuracy than non-members.
For other cases, like Bayesian Networks with Caesarian or Heart data, the accuracies
for members and non-members do not differ a lot and both stay around 0.5. Only for
the Caesarian data and Copula, as well as Thyroid data with TVAE, the non-members
obtain a considerably higher accuracy than members (+0.18 and 0.22 resp).

Table 4.1: Accuracy of correctly labeled records by membership (shadow model approach)

member non-member

Caesarian 0.44 0.50
Bayes Heart 0.45 0.57
Breast Cancer 0.56 0.47
Thyroid 0.68 0.33
Caesarian 0.69 0.25
Heart 0.45 0.57
CTGAN Breast Cancer 0.57 0.41
Thyroid 0.62 0.42
Caesarian 0.75 0.38
Heart 0.69 0.33
TVAE Breast Cancer 0.78 0.21
Thyroid 0.39 0.61
Caesarian 0.38 0.56
Copula Heart 0.92 0.11
Breast Cancer 0.64 0.49
Thyroid 0.94 0.27

4.1.2 Risk Identification

We compute the risk score for each record in the raw data set according to the definition

described in Section 3.4.6. First, we want to test whether the prediction confidence, i.e.

the risk score, is higher for outliers detected by the algorithms. In the plots and tables
within this section, LOF10, LOF15 and LOF20 denote outliers detected using the Local
Outlier Factor with k& = {10, 15,20} respectively, where k describes the number of nearest
neighbors of a data point used to calculate the mean distance from. Quant describes the
outlier definition by Stadler et al. [8], where records with attribute values outside the
95% quantile are classified as outliers.

First, we analyze whether the risk score is higher for outliers. For this, we formulate
a t-test to test if the outlier risk (r) is higher for outliers than inliers. The hypotheses
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Figure 4.1: Overall MIA scores for the shadow model approach: accuracy, Fl-score,
precision, recall, and ROC-AUC for each data set and synthesizer combination.
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4.1. Shadow Model Approach

are defined as the following:

HOS,I : /"Lrout S /‘I’rin (41)
HlS,l : /’LTout > :u‘Tin7 (42)

where Hog, denotes the Null-Hypothesis of the first test of the supervised attack (S, 1),
and Hig, denotes the respective alternative hypothesis. The remaining hypothesis tests
will follow this syntax. The resulting p-values for this test can be seen in Table 4.2. Tests
that are significant on a significance level of 0.05 are highlighted in red. In total, only
four tests, all for the Thyroid data with CTGAN, returned a significant difference. For
the reversed test:

HOS,Q C Mrous 2 /‘Lrin (43)
HlS,Q : Mrout < /"I’Tin7
which tests if outliers have smaller risk scores than inliers, two tests (Heart with Bayesian
Networks and TVAE) indicate significance. In Table 4.2 these are the p-values that are

greater than 0.95. We, therefore, conclude that although outliers have, in some cases,
higher risk scores than inliers, this difference is mostly not statistically significant.

Table 4.2: P-values for the test Hig, : fir,,, > ftr;,, (shadow model approach)

LOF10 LOF15 LOF20 iForest q outs

Bayes 0.424 0.424 0.424  0.769 0.136
Caesarian CTGAN 0.871 0.871 0.871 0.871 0.870
TVAE 0.594 0.242 0.242 0.204 0.254
Copula 0.899 0.899 0.899 0.899 0.925
Bayes 0.676 0.655 0.652 0.958 0.425
Heart CTGAN 0.528 0.338 0.338 0.602 0.871
TVAE 0.909 0.731 0.711 0.845 0.972
Copula 0.293 0.245 0.133 0.145 0.321
Bayes 0.297 0.063 0.056 0.703 0.693

CTGAN 0.641 0.613 0.533 0.525 0.402
Breast Cancer

TVAE 0.744 0.599 0.880  0.423 0.353

Copula 0.165 0.474 0.474  0.898 0.129

Bayes 0.402 0.425 0.275  0.461 0.290

. CTGAN 0.022 0.024 0.004  0.334 0.042
Thyroid

TVAE 0.278 0.520 0.690  0.338 0.100

Copula 0.884 0.949 0.942 0.888 0.710

We now want to analyze whether the attack accuracy is higher for outliers than
for inliers. To do this, we compute the accuracy for all outlying and inlying records
found by the detection algorithms separately and compare them. Figure 4.2 shows the
obtained results averaged over all four data sets. The plot shows that on average outliers
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4. EXPERIMENTAL ANALYSIS AND RESULTS
do have higher accuracy than inliers for data generated with Bayesian Networks, Copula,
and CTGAN. For TVAEs the opposite seems to be true: inliers have higher accuracy
values than outliers. To further look into this relation, we define a t-test where we test if
the mean outlier accuracy (ge,,,) is significantly larger than the inliers’ (i, ) with the
following hypothesis:
Hog 3 ¢ Pegr < Hey, (4.5)
Hls,3 S leour = Heyy,
We conduct this test for every combination of data set, synthesizer, and outlier detection
algorithm and present the resulting p-values in Table 4.3. The significant p-values for a
significance level of 0.05 are colored in red. For these cases, we conclude that outliers are
significantly more at risk for MIA than inliers.
Table 4.3: P-values for the test Hig, : fcy,, > Hey, (shadow model approach)
LOF10 LOF15 LOF20 iForest Quant
Bayes 0.338 0.338 0.338 0.252 0.578
Claesarian CTGAN 0.303 0.303 0.303 0.466 0.158
TVAE 0.791 0.791 0.791 0.890 0.890
Copula 0.209 0.209 0.209 0.366 0.718
Bayes 0.314 0.155 0.109 0.060 0.062
Heart CTGAN 0.786 0.451 0.368 0.095 0.300
TVAE 0.589 0.790 0.790 0.740 0.203
Copula 0.000 0.000 0.000 0.000 0.294
Bayes 0.209 0.610 0.842 0.341 0.928
Breast Cancer CTGAN 0.898 0.657 0.826 0.507 0.139
TVAE 0.853 0.739 0.786 0.433 0.751
Copula 0.930 0.930 0.955 0.477 0.894
Bayes 0.199 0.039 0.004 0.245 0.096
. CTGAN 0.658 0.686 0.347 0.191 0.280
Thyroid
TVAE 0.262 0.054 0.083 0.234 0.930
Copula 0.140 0.268 0.325 0.325 0.492
Only 6 out of 80 tests are significant: The heart data generated with a Copula and
outlier detection algorithm LOF10, LOF15, LOF20, and iForest, as well as Thyroid
data generated with a Bayesian Network using LOF15 and LOF20 as outlier detection.
Note that the p-values for the Caesarian data and LOF10, LOF15, and LOF20 are the
same for each synthesizer. This is because these three parameter settings all identify the
same outliers. Generally, small p-values suggest that outliers could be predicted more
accurately than inliers.
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The significant tests for the reversed hypothesis:

HOS,2 : Iu’Cout Z Iu’cin (47)
HIS,Z : lu’Cout < lu’cin7 (48)

are then the settings with p-values greater than 0.95. As none of the p-values in Table 4.3
is greater than 0.95, we conclude that the accuracy of the outliers is never significantly
smaller than the accuracy of inliers.

The aggregated accuracies over all data sets by in- and outliers can be seen in Figure 4.2.
We observe that the outliers can be predicted with a slightly higher accuracy for all
settings except Copula with outliers detected using the quantile method (-0.07), and all
settings using TVAE, with an average difference in accuracy of 0.16. For the Bayesian
Networks, the outliers detected with LOF could be predicted with 0.24 higher accuracy
than the inliers. On the attacks on data generated with the CTGAN, outliers obtain, on
average, a 0.12 higher accuracy than inliers. The accuracies for the Copula differ only
slightly for in- and outliers. For all LOF outliers, the accuracy for the two groups is the
same. The outliers detected using iForest obtain an accuracy that is 0.05 higher than
the inliers’ accuracy. For the quantile method, the outliers’ accuracy is 0.06 lower than
the inliers’. With these results, we conclude that whether outliers can be predicted more
accurately highly depends on the synthesis model. Here, we find that the TVAE is the
only synthesizer where outliers were predicted less accurately than inliers.

Bayes CTGAN TVAE Copula

AAARY nkkh

LOF10LOF15LOF20iForestQuant  LOF10LOF15LOF20iForestQuant  LOF10LOF15LOF20iForestQuant  LOF10LOF15LOF20iForestQuant
wen outlier  wem inlier

Accuracy
o o o
N £ (=]

o
=]

Figure 4.2: Accuracy for outliers vs. inliers for shadow model approach for members.

Accuracy for every synthesizer and algorithm combination. Turquoise bars show the
accuracies for outliers, and orange bars those of inlying records.

Additionally, we compare the accuracies for in- and outliers for non-members only. The
results can be seen in Figure 4.3. Like for the members only, as seen in Figure 4.2,
we observe that on average outliers are predicted with slightly higher accuracy for all
synthesizers except the TVAE. On average, the outliers’ accuracies are 0.02 higher than
the inliers. Concerning the outlier detection algorithms, outliers identified using iForest
show the highest difference in accuracy to inliers with 0.04 higher accuracy for outliers

on average. The lowest difference of 0.012 is obtained for outliers detected using LOF20.

We now investigate if outlier detection algorithms can predict the records at
risk. For this, we treat and evaluate the problem as a classification task where we set
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Figure 4.3: Accuracy for outliers vs. inliers for shadow model approach for non-members
only. Accuracy for every synthesizer and algorithm combination. Turquoise bars show
the accuracies for outliers, and orange bars those of inlying records.

the ground truth to be the variable at_risk. A record that was identified to be at risk
according to its risk score will be labeled 1 for the variable at_risk, 0 otherwise. The
outlier detection algorithms’ labels are set to be the predictions. The assumption here
is that the records that are at high risk for MIA are outliers, so we test if the outlier
detection algorithms are suitable to predict records at risk. We compute the precision,
i.e. the proportion of detected outliers that are at risk, and the recall, i.e. the proportion
of all records at risk that were also labeled as outliers (see Figure 4.4). The results can

at risk (ground truth)

1 0
Y

~ | | True Positive False Positive _. e Seh
(TP) (FP) TTRReSONS o

detected outlier
(prediction)

© | |False Negative True Negative
(FN) (TN)

Figure 4.4: Confusion Matrix for outlier detection algorithms predicting records at risk.

be seen in Figure 4.5. With values at almost 0.4 for CTGAN, Bayesian Networks, and
Copula, the precision scores show that up to around 40% of detected outliers were labeled
at risk, according to the risk score. Recall scores on the other side are on average lower
than the precision scores. For the Copula, however, they are between 30 to 40%. This
means that up to 40% of records at risk were outliers.
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Figure 4.5: Relation between outliers and records at risk for shadow model approach.

The plot displays how well outlier detection algorithms can predict records at risk with
precision and recall.

Summarizing our analysis of the correlation between outliers and records at risk, we
conclude that although outliers were predicted more accurately with the exception of
synthetic data generated by TVAE (Figure 4.2), the increased risk for outliers is not
substantial. The rather small values in Figure 4.5 and the p-values presented in Table 4.3
also suggest that outliers detected with LOF, iForest, or the Quantile method are not
significantly more at risk for MIA than inliers.

4.1.3 Defense Evaluation

Once the records at risk are identified, we remove them from the original training data
as part of the defense process. To evaluate this approach, after removal, the membership
inference attack is run again, and the attack accuracy and risk scores are recomputed by
running the attack for the remaining data samples. The overall attack accuracies are
shown in Figure 4.6, where the dashed grey lines show the attack accuracy before and
the bars after the defense. Note that these values differ from the values presented in
Figure 4.1, as we only compute the accuracies for members of the training data.

In most cases, the defense was successful, as the overall accuracy decreased after the
defense. In Figure 4.6, this is the case if the bar is below the dashed line. The exact
values for the attack accuracy differences before and after the attack can be found in
Table 4.4. Cases where the defense caused an increase in attack accuracy, and therefore
made data more vulnerable, are colored in red. The defense is unsuccessful for the
Caesarian data generated from a Copula (40.23 accuracy), for the heart data generated
with a Bayesian Network (40.05 accuracy), as well as for the Thyroid data with the
TVAE as a synthesizer (+0.11 accuracy). For all other scenarios, the defense results in a
decrease in MIA accuracy between -0.05 (Heart data with TVAE), and -0.45 (Thyroid
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data with Bayes). Here, the more the attack accuracy decreases, the more successful the
defense.

Table 4.4: Defense success measured by MIA accuracy (shadow model approach)

Caesarian Heart Breast Cancer Thyroid

Bayes -0.32 0.05 -0.14 -0.45
CTGAN -0.12 -0.14 -0.18 -0.12
TVAE -0.19  -0.05 -0.33 0.11
Copula 0.23 -0.31 -0.28 -0.27
Caesarian Heart Breast Cancer Thyroid

Accuracy after defense
o o o ©
N = =] (=]

o
=

Bayes CTGAN TVAE Copula Bayes CTGAN TVAE Copula Bayes CTGAN TVAE Copula Bayes CTGAN TVAE Copula

Figure 4.6: MIA accuracy before and after defense for shadow model approach: bars
indicate the attack accuracy after the defense, dashed gray lines show the accuracy before.

We then analyze the defense evaluation in two parts. At first, we only analyze records at
risk, followed by those not at risk. Figure 4.7 shows the accuracies for records at risk
only. As before, the bars indicate the accuracies for all records at risk after the defense.
The accuracy before the defense (gray dashed line) is always one in this case, as records
at risk are always predicted correctly by the MIA by definition. We see that for the
records at risk, the defense is highly effective, with the only exception being the Copula
on the Caesarian data set, where the accuracy stays at one even after the defense. On
average the defense led to a decrease in attack accuracy of 0.48 for CTGANSs, 0.38 for
Bayesian Networks, 0.35 for TVAEs, and 0.29 for Copula. However, the accuracies after
the defense vary highly with accuracy reduction between zero (Caesarian data) and 0.66
(Breast Cancer data). The defense success for Bayesian Networks and TVAEs varies less,
with a decrease in accuracy between 0.19 and 0.56, and 0.25 and 0.6 respectively. The
values for the CTGANSs are rather stable and range from 0.43 to 0.53. The defense is
highly beneficial to the Breast Cancer data, where the attack accuracy decreases by 0.52
on average. For the Thyroid data, there is an average decrease of 0.37. For both the
Caesarian and Heart data the accuracy decreases by 0.3. For most scenarios that show
an increase in accuracy, these values are still below 0.6. This means that even though
the attack caused the remaining data to be more vulnerable against the attack, there is
still no serious threat to these records.

Although the defense can also decrease the risk for records not at risk, the opposite
holds for the majority of the cases seen in Figure 4.8. Here, for 7 out of 14 scenarios, the
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Figure 4.7: MIA accuracy before and after defense for shadow model approach for records
at risk

defense causes an increase in attack accuracy. On average, the defense causes the attack
accuracy to increase by 0.05. This means that the defense exposes the remaining records
to a higher degree. For the Thyroid data using TVAE and Caesarian data using Copula,
for example, the defense introduces a major privacy risk for the remaining records with
an accuracy increase of 0.47 and 0.43 respectively. Furthermore, all four data sets in
combination with the CTGAN show increased accuracies between 0.13 and 0.23.

Caesarian Heart Breast Cancer Thyroid
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Figure 4.8: MIA accuracy before and after defense for shadow model approach for records
not at risk

Next, we look at the recomputed risk scores of the remaining data that was not removed
during the defense process and calculate the percentage of records newly exposed at
risk as a consequence by the defense (Figure 4.9). We find that by the defense, new
vulnerable records can be created. The percent of records at risk for the original data
before the defense is shown by the dashed line in Figure 4.9. Up to 19% and on average

7.8% of records previously not at risk can be turned to be at risk by the defense process.

However, only the defense on the Breast Cancer data generated by a Copula produces a
higher percentage of records at risk than before the defense. The percent of records at
risk for the Heart data decreased by 54% on average. For the Thyroid data, there are on
average 76% fewer records at risk after the defense. For the Caesarian and Breast Cancer
data, the average decrease in the amount of records at risk is 65% and 55% respectively.

Figure 4.10 shows the distributions of risk scores before and after the defense. Although
there are no major differences, some distributions change slightly. In combination with
Figure 4.6 and Figure 4.9 we can see the connection between defense success, new records
at risk, and risk score distribution. The defense for the Caesarian data generated with a
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Figure 4.9: Percent of new records at risk caused by defense for shadow model approach

Copula, for example, caused the overall accuracy of the attack to increase (see Table 4.4).
Although there are 1.6% fewer records at risk after the defense, the risk score increased.
This means that even though there are fewer records at risk, these records’ risk scores
are generally higher, which makes them more vulnerable to the attacks, and the overall
MIA accuracy increases. For the Breast Cancer data with Copula, we observe an increase
in risk score and records at risk, as well as attack performance after the defense. For
the cases where the defense caused the desired outcome and decreased the overall attack
accuracy, we generally observe a decline in the percent records at risk and similar or
slightly lower risk scores.

Lastly, we look at the new outliers detected for the remaining data after the defense and
compare the risk scores of these outliers to the inliers’ risk scores. In Figure 4.11 we
see that the risk scores for outliers and inliers do not differ much. Only for the outliers
detected using the Local Outlier Factor algorithm, we detect slightly higher risk scores for
outliers with Copula, TVAE, and Bayesian Networks. However, these differences are very
minimal. The outliers detected using iForest with synthetic data generated by CTGAN
and TVAE tend to have slightly lower risk scores. Although, again, this difference is not
significant.

4.1.4 Utility Assessment

For the utility assessment, we train five classifiers, namely Logistic Regression, Support
Vector Machine, k-Nearest-Neighbor, Random Forest, and Naive Bayes, on the original
data, the synthetic data, and the synthetic data generated by a synthesizer that was
trained only on records not at risk of each of the four data sets described in Section 3.2.
We then measure the data utility via the prediction accuracy of each classifier to compare
the original and the two synthetic data sets.

Figure 4.12 shows the accuracies for every synthesizer-data set pair. Here, synthetic
denotes the synthetic data that was sampled from a model trained on the entire training
data, while synthetic without RAR stands for the synthetic data where the synthesizer
was only trained on records not at risk. Although the utility, here measured via accuracy,
is lower for synthetic data than for the original, there is mostly no substantial difference
for the synthetic data generated with and without records at risk inside the training set.
Only when using a Copula as a synthesizer, did the synthetic data without RAR achieve
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notably lower accuracy scores than the synthetic data where the Copula was trained on
the entire training set. A Copula trained on the entire data set produces synthetic data
with a loss of accuracy between 0.02 and 0.16. This is in line with what the authors of
[81] show, where the decrease in accuracy for data sets with 1,500 records or less ranges
between 0.15 and 0.25. Other work shows a smaller loss of accuracy, ranging from 0.02
to 0.1 [19]. The data generated using the Bayesian Network suffers none to minimal
loss of utility of around 0.02, with the exception of the Heart data, where the accuracy
decreases by 0.07 for the synthetic data set and 0.06 for the synthetic data trained on a
Bayesian Network excluding records at risk. The empirical study conducted in [19] finds
a decrease in accuracy between zero and 0.03.

The synthetic data generated by a CTGAN shows a large decrease in accuracy for the
Caesarian data (-0.06), and an even bigger decrease for the Heart (-0.31) and the Breast
Cancer data (-0.41). This is also what the authors of [81] found, where the decrease in
accuracy for data sets of up to 2,200 records ranges between 0.15 and 0.9 when using
the CTGAN. The maximum loss of accuracy for the TVAE is 0.1, the minimum is 0.01.
This is also in line with the study done by [82], where the accuracy loss for VAEs ranges
from zero to around 0.2.

Even though we mostly could not observe any substantial utility loss when comparing
the two synthetic data sets (except Heart and Breast Cancer with Copula and Bayesian
Networks with Caesarian), we also need to look at the per-class utility for the imbalanced
Thyroid data set. For this data set, classes one and two are the minority classes, whereas
class three is the majority class with around 95% of records. When looking at Figure 4.13,
we see that the accuracy of the majority class, class three, seems quite stable over the
original as well as the two synthetic data sets. Classes one and two, however, suffer
substantial utility loss with most accuracy values of almost zero. Only the Bayesian
Network is able to maintain a high level of utility for class one, for class two this is not the
case. This is, again, mostly the case for both of the two synthetic data sets. Additionally,
the TVAE data seems to be less affected by the defense, as its generated data achieves
higher accuracy values for almost all synthetic data sets generated without RAR, than
synthetic data generated from a TVAE with all training samples available. Additionally,
the recall values for the minority classes are noticeably higher for TVAE than for other
synthesizers, with the exception of Bayesian Networks for class one. Overall, the TVAE
preserves the utility best for all three classes. The CTGAN and Copula are not able to
preserve the utility for any of the minority classes.

In Figure 4.14 we look at the target variable distribution of the entire data set and
compare it to the distributions of detected outliers. We find that the outliers’ distributions
are very similar to the original, especially for LOF15 and LOF20. Here the difference is
0.04 and 0.02 at largest, respectively. For the iForest and quantile method, Class 1 is a
lot larger than for the original, whereas Class 2 is a lot smaller.
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Figure 4.12: Utility comparison by synthesizer for shadow model approach
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4.2 Distance-based Approach

For the distance approach, we repeat the experiment five times, using five different seeds
and aggregating the results obtained from these repetitions. Note, however, that the
split of raw and reference data remains the same for each repetition, but we train a
new synthesizer, and generate data from it, in each repetition. We show the results as
averages of the evaluation metrics over the five experiment repetitions. All parameters
used for this approach, plus their description are given in Table 4.5. As MIA defense,
records with a distance d larger than the quantile ¢ = {0.8,0.85,0.9,0.95} are removed
from the training data.

4.2.1 Overall Attack evaluation

Table 4.5: Description of Parameters used for the Distance-Based Approach

Parameter Description

d Distance from a real record to its closest synthetic record

A Threshold value for risk identification

D Maximum number of parents for Bayesian Networks (Data Synthesizer)
o Cutoff for risk scores. As defense, records with risk scores

larger than the 1 — a = A\ quantile will be removed from the training set.

As the distance-based approach builds on the assumption that records in the training set
have smaller values for distance d than records outside the training set, we test if the
assumption holds. For this, we conduct a t-test, where under the null hypothesis (HO)
the mean distance for members (d;) is smaller than the mean distance of non-members

(dp), i.e.
HOU,1 S Hdy 2 Hdg (4.9)
HlU’l : )u’d1 < /‘Ldo (410)

Similarly to the shadow model approach, we here denote Hy,,, the Null-Hypothesis for
the first statistical test for this unsupervised approach. Hy,, denotes the alternative
hypothesis. We test this for every data set-synthesizer combination and find that, with a
significance level of 0.05, 71% of our experiments show significantly smaller distances d
for records used during training, which is the assumption the methods build on. None
of the tests can conclude the opposite, that records used for training have significantly
larger distances than records that are not in the training data. Figure 4.15 shows the
p-values by synthesizer. The generally small p-values hint that the assumption that
members have smaller distances to their nearest synthetic data record holds. We observe
that records used to train a Bayesian Network have significantly smaller distances than
records that were not used during training. This could imply a possible vulnerability for
Bayesian Networks.

Next, we evaluate the overall MITA by the metrics accuracy, precision, recall, F1, and
ROC-AUC. Figure 4.16 shows the corresponding results. The recall values for MIA are
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Figure 4.15: P-value-distribution for members vs. non-members: the box-plots show
the distribution of p-values for the hypothesis that the mean distance g4 is smaller for
records inside the training data (Equations (4.9) and (4.10)).

particularly important, as they describe the proportion of members that were labeled
as such. Although the threat is small for values around 0.5, some cases produce recall
values of 0.7 and higher. For synthetic data generated by a Copula trained on the heart
data, the MIA works notably well with a recall value of 0.82. This means that the
adversary is able to correctly infer membership on 82% of members of the training set. As
Bayesian Networks obtain, with the exception of recall for Heart data, the highest values
for every evaluation metric and data set, we conclude that these models are the most
vulnerable to MIA. Attacks on synthetic data generated by CTGAN or TVAE show very
low attack success for all metrics and are therefore little to no threat to the data. The
ROC-AUC values for CTGAN and TVAE range between 0.52 and 0.56, and 0.51 and 0.72
respectively. The authors of [9] show ROC-AUC scores of up to 0.7 with the CTGAN
and 0.77 with the TVAE. Especially for the CTGAN, their results are higher than ours.
However, their attack assumptions are more relaxed, as they assume an adversary to
have access to the target model, which they can use to generate synthetic data. For our
attack, we assume the adversary is more limited as we assume the adversary only has
access to the synthetic data set a data holder publishes. Additionally, we find that the
data set size seems to affect the attack: The bigger the data set, the less accurate the
attack’s membership predictions. N.b. that in Figure 4.16, the data sets are arranged
from smallest to largest.

We explicitly look at the results of the Bayesian Network synthesizer and the relation
between parameter p, the maximum number of parents, and the MIA outcome. The
results are presented in Figure 4.17, from which we can observe a distinct trend: for
larger p, the attack is more accurate. The two smallest data sets, Caesarian and Heart,
in combination with a high number of maximum parents, are especially vulnerable. The
Bayesian Network trained on the Caesarian data with p = 4, for example, obtains an
accuracy of 0.78. For the Heart data, this value is 0.75. With these values, the attacks
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4. EXPERIMENTAL ANALYSIS AND RESULTS
can pose a serious privacy threat.
In Table 4.6, we also analyze the differences in accuracies between members and non-
members, as we did for the shadow model approach in Table 4.1. In 12 out of 16
settings, the non-members were predicted more accurately — which is the exact opposite
of the outcome of the shadow model approach. Here, however, the differences between
members and non-members are smaller than for the shadow model approach. Notably,
for synthetic Thyroid data generated with a Copula, no member was predicted as such,
while all non-members were labeled correctly — this means that all records were labeled
as non-members.
Table 4.6: Proportion of correctly labeled records by membership (distance-based ap-
praoch)
member non-member
Caesarian 0.76 0.70
Baves Heart 0.67 0.72
Y Breast Cancer 0.57 0.66
Thyroid 0.56 0.60
Caesarian 0.60 0.50
Heart 0.49 0.60
CTGAN Breast Cancer 0.46 0.57
Thyroid 0.53 0.51
Caesarian 0.55 0.64
Heart 0.45 0.67
TVAE Breast Cancer 0.43 0.60
Thyroid 0.49 0.55
Caesarian 0.54 0.62
Copula Heart 0.82 0.24
P Breast Cancer 0.52 0.53
Thyroid 0.00 1.00
4.2.2 Risk Identification
We compute the risk score for each member of the original training data set as described
in Section 3.4.6.
First, we evaluate if the the attack risk is different for outlying versus inlying
records. As previously mentioned we use the distance d as the risk score for this attack
method. This is done similarly as in Equations (4.7) and (4.8), where we used the
confidence to compare the vulnerability for records in a shadow model attack. Unlike the
shadow model approach, no research on whether outliers are more at risk for this attack
than inliers has been published. This is why we first use a two-sided t-test to assess a
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Figure 4.16: Overall MIA evaluation for the distance-based approach: the evaluation
metrics accuracy, Fl-score, precision, recall, and ROC-AUC are visualized for each data
set and synthesizer.
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Figure 4.17: Overall MIA evaluation for Bayesian Networks with the distance approach:
the evaluation metrics accuracy, precision, recall, F1, and ROC-AUC are visualized for
different values for parameter p (maximum number of parents).

possible difference between the two groups. The hypotheses are defined as the following:

H0U72 : ll'[/dout = /"l’dln (4.11)
H1U72 : /’Ldout # :u‘dln (4.12)

Here pq,,, and pq,, describe the mean distances for out- and inliers respectively. The
distribution of the resulting p-values can be seen in Figure 4.18. We find that mostly
for outliers detected with the Local Outlier Factor algorithm the Ho,, : fd,,, = Hd;, 18
rejected, meaning that for those detected outliers, the distances differ from inliers. High
p-values, like for TVAE and LOF20, point to a test that accepts the null hypothesis and
hence conclude that there is no difference for mean distances for out- and inliers. The
tests show small p-values for outliers detected with LOF10 for all synthesizers and LOF15
with Bayesian Network and CTGAN. This implies that for these cases the distance d
is smaller for outliers than inliers. Overall, tests on data produced by CTGANs obtain
smaller p-values for all outlier detection algorithms. For Copula the opposite holds:
p-values are larger throughout all detection algorithms. P-values for tests using LOF20
and TVAE accumulate around 0.5, this signifies that there is no difference in distance d
for in- and outliers.

Since the two-sided t-tests only test whether the mean distances for the two groups are
equal or not, we now conduct one-sided t-tests. With this, we can gain insight into
whether the distance for outliers is significantly smaller or larger than the distance for
inliers. Recall that smaller distances present a greater risk of being correctly labeled as a
member. We thus use a t-test with the following hypotheses:

Hoy,y t Pdgue = Hdy, (4.13)
Hiyys © Bdowe < Hdy, (4.14)

If we reject the null hypothesis, we conclude that outliers have smaller distances d, and
are therefore more at risk for MIA. Overall, only 10% of these tests are significant on an
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Figure 4.18: P-value-distribution for outliers vs. inliers: the box-plots show the distribu-
tion of p-values for the two-sided t-test with the hypothesis that the mean distance g is
different for outlying and inlying records eqgs. (4.11) and (4.12).
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Figure 4.19: P-value-distribution under Hoy3 : pa,,, > Hd,,: the box-plots show the
distributions of p-values of a one-sided t-test, testing if the mean distance ug4 for outliers
is larger than for inliers Equations (4.13) and (4.14).

0.05 significance level. Each cell in Table 4.7 represents various tests for different cutoff
values and experiment repetitions. The values represent the percent of significant tests
for each synthesizer, data set, and outlier algorithm. Data sets for which no single test
returned significance are excluded from Table 4.7; specifically, for Heart and Thyroid, no
test returned significance, while for Caesarian, some tests for Bayesian Networks were
significant. For the Breast Cancer data, all synthesizers returned significant tests. Most
of the significant tests thus come from the Breast Cancer data. The results suggest
that outliers detected with the LOF algorithm in the Breast Cancer data set are more
at risk than inliers. The outliers detected with the quantile method and iForest have
significantly smaller values for d in combination with the Caesarian data. The p-value
distributions for these tests are shown in Figure 4.19.

On the other hand, for the opposite test with the hypotheses:

(4.15)
(4.16)

HOU,4 : /“Ldout < /’Ldzn
H]-UA : iu’dout Z lu’din7
high p-values in Figure 4.19 are significant, as these hypotheses are symmetric to

Equations (4.13) and (4.14). 29% of tests under this H; return significant p-values. This
indicates that inlying records are at higher risk for these cases. The percent of
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4. EXPERIMENTAL ANALYSIS AND RESULTS
Table 4.7: Percent of significant tests for Hiy, , : fia,,, < pd;,
LOF10 LOF15 LOF20 iForest Quant
Caesarian Bayes 0.0 0.0 0.0 37.5 12.5
Bayes 88.8 62.5 5.0 0.0 0.0
Breast Cancer CTGAN 100.0 100.0 93.3 0.0 0.0
TVAE 100.0 53.3 0.0 0.0 0.0
Copula 93.3 66.7 66.7 0.0 0.0
significant tests per data, synthesizer, and outlier detection algorithm combination can
be seen in Table 4.8. Especially for the Thyroid data, the hypothesis that the distance d
is larger for inliers seems to hold. The results also suggest that outliers detected using
iForest or the quantile method are at a lower risk than inliers.
Table 4.8: Percent of significant tests for Hy,, : piq,,, = tta,, for each data set, synthesizer
and outlier detection algorithm combination
LOF10 LOF15 LOF20 iForest Quant
Bayes 0.0 0.0 0.0 2.5 0.0
Caesarian CTGAN 0.0 0.0 0.0 3.3 6.7
TVAE 0.0 0.0 0.0 21.7 10.0
Copula 0.0 0.0 0.0 6.7 6.7
Bayes 0.0 0.0 0.0 28.8 36.2
CTGAN 0.0 0.0 0.0 70.9 43.6
Heart
TVAE 0.0 0.0 0.0 73.3 40.0
Copula 0.0 0.0 0.0 60.0 53.3
Bayes 0.0 0.0 1.2 80.0 0.0
Breast Cancer CTGAN 0.0 0.0 0.0 100.0 8.3
TVAE 0.0 0.0 0.0 100.0 0.0
Copula 0.0 0.0 0.0 100.0 0.0
Bayes 100.0 100.0 100.0 100.0  100.0
Thyroid CTGAN 100.0 100.0 100.0 100.0  100.0
TVAE 100.0 100.0 100.0 100.0  100.0
Copula 0.0 0.0 0.0 0.0 75.0
As the assumption of members having a smaller distance d holds (see Figure 4.15), the
smaller d for members, the higher their risk for the attacks. Non-members are more likely
to have larger values for d and are therefore more likely to be labeled as such. Next, we
look at the relation between outliers and records for which membership was
correctly predicted. As recent studies claim outliers are more at risk for MIA [8, 16],
we test if outliers’ memberships can be predicted more accurately. For this, we again
design a t-test that tests if the attack accuracy is higher for outliers than for inliers.
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4.2. Distance-based Approach

With pe,,, and p,, being the accuracy for out- and inliers respectively, the hypotheses
are defined as follows:

HOU,5 D Heout S He;p, (417)
HlU,S : /J/Cout > /j’Cin (418)

We find that under this hypothesis, less than 2% of tests turn out to be significant.

If we reverse the hypothesis and test whether the attack accuracy is significantly higher
for inliers, i.e.

HOU,G : /J’Cout Z /"I’Cin (419)
Hiyg t Heour < Heins (4.20)

over 32% of tests return p-values smaller than the significance level of 0.05. Figure 4.20
shows the p-value distribution per synthesizer and outlier detection algorithm. Our
results imply that for the distance-based approach, outliers seem to be harder to
predict membership for. The average accuracies over all outlier detection algorithms
for each synthesizer are visualized in Figure 4.21. We can see that inliers (orange bars)
are more likely to have their membership predicted correctly in all cases. Overall, the
maximum accuracy for outliers is 0.55, which is for outliers detected with the quantile
method and Bayesian Network as a synthesizer. The accuracies for LOF outliers with
Bayesian Networks are all around 0.4, iForest has an accuracy of 0.45. Especially for data

generated by a TVAE, the difference in accuracy between in- and outliers is substantial.
With accuracy values between 0.05 and 0.2, there is no real risk for the detected outliers.

The values for CTGAN range from 0.15 to 0.25, which is also way too low to make
reliable predictions.

Bayes Copula CTGAN

TVAE
—30.6 ' I 7
gm == % E
0.2
N | . ] HREm= el

LOF10 LOF15 LOF20 iForest Quant LOF10 LOF15 LOF20 iForest Quant LOF10 LOF15 LOF20 iForest Quant LOF10 LOF15 LOF20 iForest Quant

Figure 4.20: P-value-distribution for correctly predicted records: the box-plots visualize
the distribution of p-values for the hypothesis that the accuracy p. is smaller for outlying
than for inlying records (see Equations (4.19) and (4.20)).

We now look at the accuracies for out- and inliers for non-members only. Contrary to the
members only (Figure 4.21, the accuracies for outliers are higher than for inliers. The
only exception for this is the Copula with LOF10, where the outliers’ is minimally smaller
than the inliers’, by 0.002. All other synthesizer-algorithm combinations show higher
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Figure 4.21: Inlier vs. Outlier Accuracy for distance approach for members. For each
data set and synthesizer, we visualize the average accuracy for inliers and outliers.

accuracies, mostly with more than 0.1 increase, for outliers than inliers. This shows that
outliers that were not used in the training data are more likely to be correctly inferred
as non-members. Additionally, we conclude that inliers not included in the training data
are more likely to be incorrectly labeled as members. This conclusion can be drawn from
the low accuracy values in Figure 4.21. With this, and the results shown in Figure 4.21,
we now conclude that the distance approach is more likely to label inliers as members.

Bayes CTGAN TVAE Copula

Accuracy
o o o =
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Figure 4.22: Inlier vs. Outlier Accuracy for distance approach for non-members only. For
each data set and synthesizer, we visualize the average accuracy for inliers and outliers.

As we did for the shadow model approach in Section 4.1.2, we again test how well outlier
detection algorithms predict the records at risk by computing precision and
recall from the variable at_risk (ground truth) and detected outliers (prediction). In
Figure 4.23, we see that outlier detection algorithms are not able to identify the records
at risk. With the majority of recall values below 0.1, only a small number of records at
risk were identified as outliers. Precision values are even lower, meaning that only a few
detected outliers are also found to be at risk. For the TVAE, no outliers were predicted
correctly. The recall values for Copula are highest, with values from 0.03 to 0.32. The
precision values, however, are all at or below 0.062. For the Copula and LOF10, 32% of
correctly predicted records were outliers. However, only 2% percent of the outliers could
be predicted correctly. The outcome for Bayes and CTGAN is similar, with both recall
and precision values ranging between 0.004 and 0.1.
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Figure 4.23: Relation between outliers and records at risk for the distance approach: the
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plot shows how well outlier detection algorithms can predict records at risk.

With the above-presented results in Figure 4.21 and Figure 4.23, we conclude that for the
distance approach, there is no greater risk for outliers than for inliers. Outlier detection
algorithms are also not suitable to predict the records at risk for this attack — inliers
could be predicted with higher accuracy (see Figure 4.21). Recalling that this approach
labels target records that are close to synthetic records as members, this conclusion
makes sense. The distance from an inlier to its closest synthetic record is most likely

smaller than this distance for an outlier.
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4.2.3 Defense Evaluation

For the defense we follow the same process as for the shadow model approach: we remove
the records at risk from the data the synthesizers train on. We then repeat the attack
and reevaluate the MIA. Figure 4.24 shows the attack accuracy before and after the
defense. Turquoise bars below the dashed grey lines illustrate a smaller attack accuracy
after the defense. This is the desirable outcome. Bars larger than the dashed grey line
represent the cases where the attack defense did not work and made the data even more
vulnerable. Again, all values for the Thyroid data generated with a Copula are zero,
since the attack could not label any members correctly, hence there were no records at
risk found nor removed from the original training data. We observe a slight decrease for
most attacks. Some attacks, however, seem to be even more accurate after the defense,
causing the opposite of the intended result, e.g. Caesarian data with Copula. There
is no apparent trend on how the cutoff value « influences the defense outcome. We
observe that for synthetic data created with Bayesian Networks, the defense only causes
an average decrease in attack performance of 0.01. The defense works best with Thyroid
data and TVAE as well as the Breast Cancer data with CTGAN, where there is an
average decrease in accuracy of 0.12 and 0.1 respectively.

Table 4.9 shows the exact numbers displayed in Figure 4.24. Scenarios where the defense
caused an increase in accuracy, and therefore made the data more vulnerable, are
highlighted in red. It seems that for smaller data sets (Caesarian and Heart), as well
as for data using the TVAE as a synthesizer, the defense does not achieve the desired
outcome of decreasing the MIA performance. To further inspect this effect, we analyze
the attack accuracies separately for records at risk only (Figure 4.25) and accuracies for
records labeled not at risk (Figure 4.26). The two plots show that although the defense
works well for the records at risk, as they are less likely to be predicted correctly, it can
also slightly increase the risk for the remaining records in the original data.

To further explore the effect of the defense making the remaining records more vulnerable,
we compare the number of records that were incorrectly labeled before and correctly
labeled after the defense. The results can be seen in Figure 4.27. Recall that for this
approach, we use the risk score quantiles of 5, 10, 15, and 20 percent to define the records
at risk. Therefore, between 5% and 20% of the records are at risk. These values are
visualized by the gray dashed lines. We can see that there are up to 14% new records at
risk resulting from our defense. While smaller data sets, i.e. Caesarian and Heart, are
very affected with 6.7% and 7.7% new records at risk respectively, the Breast Cancer and
Thyroid data seem to be less affected by this, with 1.8% and 4.7% new records at risk.
Generally, the parameter «, i.e. the number of records removed, does not influence too
much how many new records at risk are a result of the defense. On average, for a = 5,
there are 4.5% new records at risk. For o = 10, 15, 20, there are 4.9, 5.1 and 5.2% new
records at risk respectively. We conclude that there is a slight upward trend, where for
larger «, the defense causes more vulnerable records.

The risk score distributions are shown in Figure 4.28. The distributions before and
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Figure 4.25: MIA Accuracy before and after defense for Records at risk: the gray line
indicates the accuracy before the defense. This value is always one for records at risk.
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Figure 4.26: MIA Accuracy before and after defense for records not at risk: the accuracy
before the defense is shown by the gray lines.
Table 4.9: Defense success measured by MIA accuracy (distance approach)

Breast Cancer Caesarian Heart Thyroid

«
0.05 0,00 0,0l -0,00 20,01
Bayes 01 0,03 0,01  -0,01 0,01
0.15 0,01 0,01 0,02 0,00
0.2 0,01 0,01  -0,03 0,01
0.05 0,12 0,14 0,00 20,02
0.1 0,04 0,02 0,07 0,03
CTGAN 4 15 0,12 0,02 0,07 0,04
0.2 -0,10 0,12 -0,05 0,11
0.05 0,01 0,0l 0,06 20,10
0.1 0,02 0,03 0,06 0,18
TVAE 15 0,01 0,05  -0,05 0,20
0.2 0,00 0,08 0,08 0,00
0.05 20,04 0,08 0,05 0,00
Copula U1 0,02 0,04 0,00 0,00
0.15 0,03 0,12 -0,01 0,00
0.2 0,04 0,08 -0,13 0,00
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Figure 4.27: Percent of new records at risk caused by defense for distance approach

after the defense are very similar. Small differences can be seen for the Caesarian data,
where the difference when using Copula is largest. The risk scores before and after the
attack are highly similar for the Breast Cancer and Heart data and show only minor
distributional differences. For the Thyroid data, the risk scores, both before and after
the defense, tend to accumulate around 0.2 for the Copula and around 0 for the rest of
the synthesizers.

Lastly, we analyze the risk scores for new outliers for the remaining data. We therefore
repeat the outlier detection on the remaining data only and compare the risk score
distributions for out- and inliers. The results can be seen in Figure 4.29. We find that
for synthetic data generated with Bayesian Networks and CTGAN, the outliers obtained
higher risk scores for the attacks. For the Copula this is not the case, as risk scores
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are similarly distributed for in- and outliers. For the TVAE, the outliers detected using
LOF10 and LOF15 obtain higher risk scores than inliers.
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4.2.4 Utility Assessment

For the utility assessment, we follow the same procedure as in Section 4.1.4. Figure 4.30
shows the difference in accuracies by the synthesizer. We observe that although there is
a difference between synthetic and original data, the difference between the two synthetic
data sets seems to be minimal. The Thyroid data, which is the largest data set used in
our experiments, suffers substantial utility loss. However, only for the TVAE-generated
data, the synthetic data generated without RAR further drops significantly by 0.26. For
the TVAE the largest decrease in accuracy for the synthetic data where all records were
used during training, ranges between 0.07 and 0.13. This is also within the range of what
the authors of [82] found. Furthermore, the synthetic data generated by CTGAN suffers
a higher utility loss, with a decrease in accuracy ranging from 0.06 to 0.44. This is the
highest decrease in accuracy over all synthesizers. Previous work has already shown that
the CTGAN can exhibit substantial utility disadvantages [81]. The accuracy for Copula
drops between 0.1 and 0.35 for the synthetic data before the defense. This is also within
the range presented by [81]. The accuracy for Copula-generated data after the defense
changes only minimally from the synthetic data before the defense, with differences of
accuracy between zero and 0.03. For the Bayesian Networks, the accuracy drops by 0.16
at most (Thyroid data). For the Caesarian data, the accuracy stays the same for the
original, the synthetic, and the synthetic data without records at risk.

Still, the overall differences between synthetic data with and without RAR are minimal.

Next, we look at the effect of parameter « on the utility. As « describes the cutoff for risk
scores, a higher « results in more records being removed from the original data. Naturally,
one would expect less utility for a higher «, i.e. smaller training data. However, when
looking at the experiment results in Figure 4.31, we discover that this is not necessarily
the case. Generally, the utility does not seem to be affected much by the « value. One
possible explanation for this is that the defense removes data records that are similar to
other data points and therefore makes the data more general and keeps the synthesizer
from overfitting.

Although the synthetic data resulting from the defense seems to not cause more overall
utility loss than synthesizing data from the entire training data as seen in Figure 4.30,
we now want to look at the per-class-utility for the Thyroid data. We again look at this
data set, since its target variable is highly imbalanced. Class 3 is the majority class with
around 93% of records belonging to this class. Class 1 and 2 are the minority classes
(2% and 5% respectively). Figure 4.32 shows the accuracy, precision, and recall per class,
and highlights the extent of the utility loss for the minority classes: While the evaluation
metrics for class 3 are always around the same for the synthetic data sets and the original,
the values for the synthetic data sets are significantly smaller for the minority classes.
However, with the exception of TVAE, the synthetic data generated using the entire
training data and the synthetic data resulting from the defense still have comparable
evaluation measures.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

LWARL) Your knowledge hub

[ 3ibliothek,

4.2. Distance-based Approach
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Figure 4.30: Utility comparison by synthesizer: the utility difference between the original
and the two synthetic data sets is visualized using the prediction accuracy.
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4. EXPERIMENTAL ANALYSIS AND RESULTS
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Figure 4.31: Utility comparison for different av values: the plot visualizes the difference
in utility for synthetic and original data sets for every « value. The gray line shows
the average accuracy for the original data, the orange line represents the synthetic data
from a synthesizer trained on the entire original data and the turquoise line displays the
results for synthetic data where records at risk were excluded from the training data.
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Figure 4.32: Utility per class for Thyroid data: accuracy, precision, and recall are
displayed per class. Classes 1 and 2 are minority classes. Over 90% of records belong to
class 3.
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4.3. Comparison of the two approaches

4.3 Comparison of the two approaches

Lastly, we want to show the overall attack performance by visualizing the accuracy values
for the shadow model and distance approach side by side in Figure 4.33. These values
are the aggregated results from Figure 4.16 and Figure 4.1. For the distance approach,
for Bayesian Networks, we only consider the results with a maximum of three parents
per node, as this is also the maximum number of parents used for all Bayesian Networks
in the shadow model approach. Although the attack accuracies are quite similar for
both approaches, the distance approach achieves higher scores in most cases, the only
exception being Copula with Breast Cancer data, where the shadow model approach is
0.03 higher than the distance approach, as well as Copula and CTGAN with the Thyroid
data, where the shadow model approach is 0.07 and 0.005 higher than the distance
approach respectively. Especially for Bayesian Networks, the distance approach seems to
be able to infer membership a lot more accurately than the shadow model approach. On
average, the accuracy of the distance approach obtains accuracies larger by 0.07 than
the shadow model approach. Generally, the smaller data sets, Caesarian and Heart, are
seemingly more prone to MIA.

Figure 4.33 again highlights that the attack does not pose an overall privacy threat to the
dataset as a whole, with accuracies between 0.4 and 0.6, which is close to the results one
would obtain with random guessing. The only exception here is the distance approach
with Bayesian Networks, where the accuracies range from 0.63 to 0.75. However, as we
found in our analysis, some records are easier to predict membership on, and therefore
more at risk for such attacks. But, as these vulnerable records do not seem to follow a
certain trend, e.g. it is not only outliers, an adversary can never know if a target record
belongs to the group of records at risk. Therefore, the adversary can still not know if
their membership prediction is reliable.
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Figure 4.33: Comparison of the two approaches with MIA accuracy

In Figure 4.34 we compute the accuracies for the two approaches for members and non-
members separately. The top row shows the shadow model approach, and the bottom
row displays the results for the distance-based approach. The distance-based approach
predicts non-members more accurately than members in most scenarios. For the shadow
model approach, on the other hand, the opposite holds: For most scenarios, the members
are predicted more accurately than non-members. The reason for this could be that an
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influential record will have a greater effect on the generated data if it is included in the
training data, than when it is not.

Caesarian Heart Breast Cancer Thyroid

1.0 - E -
0.8 B E E I
9 3
® 06+ . - - 5
‘g =
Q . . . d 3
04 g
=X

0.2 E E E

00- E - -

Bayes CTGAN TVAE Copula  Bayes CTGAN TVAE Copula  Bayes CTGAN TVAE Copula  Bayes CTGAN TVAE Copula

1.0 E E E

0.8 b —
Fl o
® 06+ i ] S
3 QO
Q =
£ 04+ 4 i 2

024 E 4

Bayes CTGAN TVAE Copula  Bayes CTGAN TVAE Copula  Bayes CTGAN TVAE Copula  Bayes CTGAN TVAE Copula

mes member === non-member

Figure 4.34: Comparison of the two approaches with MIA accuracy by membership

Lastly, we look at the risk record identification for both approaches. In Table 4.10 we list
the percent of records that were labeled at risk and not at risk by both approaches. In
the following, we will call this percentage the agreement rate. We find that the agreement
rate of records labeled not at risk is substantially larger than the one for records at risk.
This makes sense, as a lot more records are labeled not at risk than at risk. The highest
agreement rate occurs for the Breast Cancer data with Bayesian Networks, with 84.5%.
Overall, mostly the Heart and Breast Cancer data show the highest agreement rates for
records not at risk. For the Copula, however, the Thyroid data has an agreement rate of
almost 10% for records at risk. Meanwhile, the agreement rate for records at risk is very
low for the Caesarian data, where only the CTGAN obtains a rate that is not zero, of
4%. All other rates for records at risk are below 4.5%.

This analysis indicates that the records’ risks vary across all attack approaches and need
to be considered for risk identification. We want to highlight that even when considering
most or all possible attack approaches for risk identification, we can never be certain
about possible attacks being developed in the future. A record that might not be at risk
for one attack might not be with another.

4.4 Summary

This chapter contained the experimental analysis and illustrations of the obtained results.
We presented the overall attack performances, risk identification, defense evaluation,
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Table 4.10: Agreement rates in percent for records at risk and records not at risk

records at risk

records not at risk

Caesarian 0.0 80.8
Bayes Heart 2.5 73.0
Breast Cancer 04 84.5
Thyroid 0.5 43.7
Caesarian 4.0 56.6
Heart 1.2 61.8
CTGAN Breast Cancer 2.5 73.4
Thyroid 1.1 82.7
Caesarian 0.0 72.7
Heart 4.3 61.8
TVAE Breast Cancer 0.8 57.2
Thyroid 0.5 73.1
Caesarian 0.0 72.7
Copula Heart 2.5 76.0
Breast Cancer 2.7 35.9
Thyroid 9.6 59.7

and utility assessment for the shadow model and distance-based approach. We found
that the risk for each record depends on the attack approach and cannot be generalized.
Furthermore, we found that the defense has a positive effect on the records at risk and
does not negatively affect the data utility of balanced data. For unbalanced data, the
defense can pose a problem to the minority classes’ utility. We finished our analysis with
a comparison of the two attack approaches and highlighted the differences in their results.
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CHAPTER

Conclusion

In the following, we present the main contributions of this work, as well as a summary of
the results obtained, by answering the research questions defined in Chapter 1.

5.1 Contributions

In our work we implement two approaches, shadow modeling and distance-based, to
conduct membership inference attacks on synthetic tabular data. We use four different
synthesizers (Bayesian Networks, CTGAN, TVAE, and Copula), to generate the synthetic
data. We analyze the overall power of the two attack approaches by computing evaluation
scores and comparing them.

[8] and [16] both claim that outliers are most at risk for MIA. They test their hypothesis
on five and ten outliers respectively, using the shadow model approach. In this thesis, we
consider all records in the training set and compute the risk by evaluating how accurately
each record’s membership can be inferred. In addition to the shadow model attack, we
also do this for the distance-based attack by [9].

As the work of Stadler et al. [8] showed, membership inference attacks with a shadow
model approach are no threat to the entirety data records, but rather affect single records.
This is also what our experiments show. However, they conclude that outliers are more
at risk than inliers. We we detected outliers using detection methods such as the Local
Outlier Factor, Isolation Forests, or through finding records with rare values, and analyze
the relationship between these outliers and the records at risk for membership inference
attacks, to find out if outliers are significantly more vulnerable to the attacks. We find
that there is no significant correlation between outliers and records at risk that can
be generalized for all data sets and synthesizers. Nonetheless, there are settings, e.g.
Heart data and Copula with outliers detected using LOF and iForest, where the outliers’
accuracies for the attack were significantly larger than the inliers.

7
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The distance-based approach for tabular data by Hayeong et al. [9] assumes that members
have smaller distances to their closest synthetic data record than non-members. We
test this assumption and conclude that, albeit not always statistically significant, this
assumption holds. In contrast to their work, we design the attack as a no-box attack
rather than black- and white-box attacks. Although our attacks using CTGAN and
TVAE obtain slightly lower overall ROC-AUC scores, this is to be expected due to our
restrictive model assumptions. We find that the no-box attack only seems to be a serious
threat to small data sets and for the Bayesian Network synthesizer. We extend the work
of [9] and design a method for finding the decision threshold necessary for conducting
the attack. With this, we conclude that the no-box, distance-based attack only poses a
possible threat to the data generated using Bayesian Networks, especially when training
on small data sets. We further extend the work of [9] by identifying the records at risk,
and, like for the shadow model approach, looking into the relationship between these
records at risk and outliers. For this distance approach, we find that, unlike recent work
suggests [8, 16], inliers can be predicted with much higher accuracy than outliers. This
seems to be especially true when using CTGAN or TVAE as a synthesizer.

As a simple baseline defense against membership inference attacks, we propose to remove
the records at risk from the training data and evaluate the defense’s influence on the
removed and remaining data records by recalculating each record’s risk. Furthermore,
we assess the data utility of the synthetic data before and after the defense as well as the
original data and compare them. We lay special focus on per-class utility for imbalanced
data in our evaluation.

5.2 Summary

We summarize our results and findings in regard to the Research Questions defined in
Section 1.3:

1. To what extent can we predict records at risk for membership inference

attacks by detecting outliers with algorithms like Local Outlier Factor
and Isolation Forest?
We find that the results are highly dependent on the MIA approach: While outliers
can be predicted more accurately with the shadow model attack, the opposite
holds for the distance-based attack. For the shadow model approach, up to 40% of
correctly inferred members are outliers. Additionally, 24% of outlying members are
labeled as members by the shadow model approach. Although the attack accuracy
is mostly higher for outliers, the statistical tests show that this is not significant in
most cases. Attacks using the distance approach show that outliers are, contrary
to recent assumptions, less likely to be inferred correctly than inliers.

a) By removing these records from the original training data, to what
extent does the overall success of the MIA on the records at risk
suffer? To what degree do the membership predictions change for
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5.2. Summary

the removed records?

By removing the records at risk as a defense measure, we show that although
the overall attack accuracy mostly decreases with the defense, an increase
in the overall attack accuracy is also possible. We were able to show that
consequently to the defense an attacker is less likely to predict them correctly,
which makes the attack model more unreliable.

b) To what extent are the remaining data records affected by removing
the records at risk?
For the shadow model approach, we observe that the risk for the remaining
records showed, on average, an increase of 0.05 attack accuracy. This however
seems highly dependent on the data set and synthesizer. When using the
distance-based attack, the attack accuracy increases by 0.015 on average.
Although this is a larger increase, the results are more stable across synthesizers
and data sets, compared to the shadow model results.

2. To what extent does the data utility suffer when synthesis models learn

from the original data excluding the records at risk?

We find that although there is a noticeable decrease in utility for synthetic data
compared to the original data, the utility of synthetic data generated from a
synthesizer that was only trained on records not at risk, and a synthesizer that
was trained on the entire training data, are mostly the same for well-balanced data
sets. Because of that, there is no apparent disadvantage to using the defense with
balanced data sets.

a) By how much does the utility for synthetic data learned from
imbalanced data sets decrease compared to synthetic data generated
from a balanced data set?

The defense does not seem to affect the overall accuracy of imbalanced data
sets, as it is around the same as the utility of synthetic data before the defense.
However, this is caused by the high accuracy on the majority class.

b) To what extent does the utility on the minority class of the imbal-
anced data suffer compared to the majority class?
While the majority classes suffer no to minimal utility loss, the minority classes
can suffer substantial utility loss. This, however, again concerns both the
synthetic data with and without records at risk. The only exception is the
TVAE which shows substantially smaller recall and precision values for the
data excluding records at risk compared to the synthetic data generated from
the entire training set.

3. Which data synthesizing models generate synthetic data that is more

vulnerable to MIA?

For the shadow model attack, TVAE and Copula turn out to be the most vulnerable
to MIA. When using the distance-based attack, Bayesian Networks generate data
that is a lot more susceptible to the attacks. With an increasing number of maximum
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parents for Bayesian Networks, the attack accuracy increases as well. Bayesian
Networks are, however, also the synthesizers that create synthetic data with the
least utility loss. This applies to both, the synthetic data before and after the
defense.

Summarizing our contributions, we have shown that different attack approaches identify
different records at risk. While outliers are more likely to be predicted for the shadow
model approach, the opposite holds for the distance approach. As data owners do not
know which attack approach an adversary might use, it is nearly impossible to identify
all records at risk in one data set. We find that the attacks do not perform well overall,
and only certain records are at higher risk. We therefore do not see a serious privacy
risk, as an adversary has no way to find out if their target record is at higher risk and
therefore able to be inferred with high confidence. Furthermore, we find that the attack
approaches perform differently on the various synthesizers. We discover that although
removing the records at risk from the data decreases the risk for these records, it will, in
most cases, create a new layer of records at risk in the remaining data.

5.3 Future Work

In this thesis, we have identified records at risk for membership inference attacks on
synthesizers, and their relation to outliers and analyzed the efficiency of removing
vulnerable records as a defense measure. However, several aspects for future research
that can extend our understanding of membership inference attacks against synthetic
data remain:

e As more MIA approaches on synthesizers are presented, they can be used for
identifying records at risk and their underlying patterns.

e We design the MIA as a no-box attack. Risk identification and defense success
have yet to be studied on white- and black-box attacks. Within these settings,
an adversary would have access to the synthesizer and would therefore be able to
collect an arbitrary amount of synthetic records. With this, the influence of the
synthetic data set’s size on the attack success can be studied.

e As our attack assumptions are quite strict, e.g. having access to a reference data
set and knowledge about the synthesizer used, the risk identification and attack
outcome in a setting with more relaxed assumptions has yet to be explored.

o Additionally, future work could include attack evaluation and risk identification on
differentially private synthetic data to compare the overall attack performance to
non-differential private data, plus the comparison of records at risk found.
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