
Citation: Glira, P.; Weidinger, C.;

Otepka-Schremmer, J.; Ressl, C.;

Pfeifer, N.; Haberler-Weber, M.

Nonrigid Point Cloud Registration

Using Piecewise Tricubic

Polynomials as Transformation

Model. Remote Sens. 2023, 15, 5348.

https://doi.org/10.3390/rs15225348

Academic Editor: Guoqing Zhou

Received: 10 October 2023

Revised: 5 November 2023

Accepted: 6 November 2023

Published: 13 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Nonrigid Point Cloud Registration Using Piecewise Tricubic
Polynomials as Transformation Model
Philipp Glira 1,* , Christoph Weidinger 1, Johannes Otepka-Schremmer 2, Camillo Ressl 2 , Norbert Pfeifer 2

and Michaela Haberler-Weber 3

1 AAS Assistive and Autonomous Systems, AIT Austrian Institute of Technology, 1210 Vienna, Austria;
christoph.weidinger@ait.ac.at

2 Photogrammetry Research Group, Vienna University of Technology, 1040 Vienna, Austria;
johannes.otepka@geo.tuwien.ac.at (J.O.-S.); camillo.ressl@geo.tuwien.ac.at (C.R.);
norbert.pfeifer@geo.tuwien.ac.at (N.P.)

3 ÖBB Austrian Federal Railways, 1020 Vienna, Austria
* Correspondence: philipp.glira@ait.ac.at

Abstract: Nonrigid registration presents a significant challenge in the domain of point cloud pro-
cessing. The general objective is to model complex nonrigid deformations between two or more
overlapping point clouds. Applications are diverse and span multiple research fields, including regis-
tration of topographic data, scene flow estimation, and dynamic shape reconstruction. To provide
context, the first part of the paper gives a general introduction to the topic of point cloud registration,
including a categorization of existing methods. Then, a general mathematical formulation for the
point cloud registration problem is introduced, which is then extended to address also nonrigid
registration methods. A detailed discussion and categorization of existing approaches to nonrigid
registration follows. In the second part of the paper, we propose a new method that uses piecewise
tricubic polynomials for modeling nonrigid deformations. Our method offers several advantages
over existing methods. These advantages include easy control of flexibility through a small number
of intuitive tuning parameters, a closed-form optimization solution, and an efficient transformation of
huge point clouds. We demonstrate our method through multiple examples that cover a broad range
of applications, with a focus on remote sensing applications—namely, the registration of airborne
laser scanning (ALS), mobile laser scanning (MLS), and terrestrial laser scanning (TLS) point clouds.
The implementation of our algorithms is open source and can be found our public repository.

Keywords: point cloud registration; iterative closest point; transformation; lidar

1. Introduction

The registration of point clouds, i.e., a set of 2D or 3D points in object space, is relevant
in many application domains, e.g., remote sensing, computer vision, robotics, autonomous
driving, or healthcare. The general objective is to minimize the distances between overlap-
ping point clouds. To achieve this, some kind of geometric transformation T is estimated
and applied individually to each nonfixed point cloud. The transformed point clouds can
be regarded as optimally registered if the residual distances are purely random, i.e., if
they are nonsystematic. In case a rigid-body transformation is not sufficient to model the
discrepancies between the point clouds, a nonrigid transformation is needed—an example
is shown in Figure 1.

Most point cloud registration methods are inspired indubitably by the works of Besl
and McKay [1] and Chen and Medioni [2], who introduced approximately at the same
time the iterative closest point (ICP) algorithm. It is used to improve the alignment of two
point clouds by minimizing iteratively the distances within the overlap area of these point
clouds. Nowadays, the term ICP does not necessarily refer to the algorithm presented in
these original publications, but rather to a group of point cloud registration algorithms that

Remote Sens. 2023, 15, 5348. https://doi.org/10.3390/rs15225348 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15225348
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7698-8479
https://orcid.org/0000-0002-3716-8961
https://orcid.org/0000-0002-2348-7929
https://doi.org/10.3390/rs15225348
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15225348?type=check_update&version=1

Remote Sens. 2023, 15, 5348 2 of 32

have in common the following aspects: (I) correspondences are established iteratively; (C)
the closest point, or more generally, the corresponding point, is used as correspondence;
and (P) correspondences are established on a point basis [3].

original state of
point clouds P and Q estimated motion field F motion magnitude

sunset
sunrise

original

transformed

Figure 1. Example for a nonrigid registration between two point clouds. Our method is used here
to estimate the motion of a maple tree between sunset and sunrise. The motion field F is scaled for
better visualization. Details can be found in Section 6.4. All units in meter.

A general taxonomy for ICP-based algorithms was introduced by Rusinkiewicz and
Levoy [4]—we follow this recommendation throughout this paper. Accordingly, a tradi-
tional point cloud registration pipeline can be roughly divided into five stages, cf. Figure 2.
For the registration of a fixed point cloud Q and a loose point cloud P , these stages are

1. Selection: A subset of points (instead of using each point) is selected within the
overlap area in one point cloud [3]. For this, the fixed point cloud Q is typically
chosen.

2. Matching: The points, which correspond to the selected subset, are determined in the
other point cloud, typically the loose point cloud P .

3. Rejection: False correspondences (outliers) are rejected on the basis of the compatibil-
ity of points. The result of these first three stages is a set of correspondences C with
an associated set of weightsWC .

4. Optimization: The transformation T for the loose point cloud is estimated by mini-
mizing the weighted and squared distances (e.g., the Euclidean distances) between
corresponding points.

5. Transformation: The estimated transformation T is applied to the loose point cloud:
T (P).
Finally, a suitable convergence criterion is tested. If it is not met, a new iteration

restarts from the matching stage using the transformed loose point cloud T (P). The it-
erative nature of the ICP algorithm results from the following basic assumption: in the
first iteration, correspondences are often imperfect due to a typically relatively large dis-
placement of the two point clouds. With each transformation of the loose point cloud P ,
however, the correspondence assignments get better. Thus, this process is repeated until the
correspondences become stable, i.e., until the variations become statistically insignificant.
In this case, convergence is assumed to be achieved and the algorithm ends.

Remote Sens. 2023, 15, 5348 3 of 32

loose point cloud Pfixed point cloud Q

selection matching

rejection

optimization

transformation

start

end

correspondences C
weights WC

transformation T

converged? no

yes

ne
w

it
er

at
io

n
w

it
h
T
(P

)

T (P)

Figure 2. ICP-based point cloud registration pipeline.

1.1. Variants of Point Cloud Registration Algorithms

For each of the five stages, multiple variations have been proposed in the past for
many different applications—literature surveys can be found in [5–8]. As a brief review,
point cloud registration algorithms can be roughly classified according to the following
properties

• Coarse registration vs. fine registration: Often the initial relative orientation of the
point clouds is unknown in advance, e.g., if an object or a scene is scanned from
multiple arbitrary view points. The problem of finding an initial transformation
between the point clouds in the global parameter space is often denoted as coarse
registration. Solutions to this problem are typically heavily based on matching of
orientation-invariant point descriptors [9]. The 3DMatch benchmark introduced
by [10] evaluates the performance of 2D and 3D descriptors for the coarse registration
problem. Once a coarse registration of the point clouds is found that lies in the
convergence basin of the global minima, a local optimization, typically some variant
of the ICP algorithm, can be applied for the fine registration. It is noted that in case of
multisensor setups, the coarse registration is often observed by means of other sensor
modalities. For instance, in case of dynamic laser scanning systems, e.g., airborne
laser scanning (ALS) or mobile laser scanning (MLS), the coarse registration between
overlapping point clouds is directly given through the GNSS/IMU trajectory of the
platform—in such cases, only a refinement of the point cloud registration is needed,
e.g., by strip adjustment or (visual-)lidar SLAM (see below).

• Rigid transformation vs. nonrigid transformation: Rigid methods apply a rigid-
body transformation to one of the two point clouds to improve their relative alignment.
A rigid-body transformation has 3/6 degrees of freedom (DoF) in 2D/3D and is usually
parameterized through a 2D/3D translation vector and 1/3 Euler angles. In contrast,
nonrigid methods have usually a much higher number of DoF in order to model more
complex transformations. Consequently, the estimation of a nonrigid transformation
field requires a much larger number of correspondences. Another challenging problem
is the choice of a proper representation of the transformation field: on the one hand, it
must be flexible enough to model systematic discrepancies between the point clouds,
and on the other hand, overfitting and excessive computational costs must be avoided.
We will discuss these and other aspects in Sections 1.2 and 3.

Remote Sens. 2023, 15, 5348 4 of 32

• Traditional vs. learning based: Traditional methods are based entirely on hand-
crafted, mostly geometric relationships. This may also include the design of hand-
crafted descriptive point features used in the matching step. Recent advances in
the field of point cloud registration, however, have been clearly dominated by deep-
learning-based methods—a recent survey is given by [11]. Such methods are especially
useful for finding a coarse initial transformation between the point clouds, i.e., to
solve the coarse registration problem. In such scenarios, deep-learning-based meth-
ods typically lead to a better estimate of the initial transformation by automatically
learning more robust and distinct point feature representations. This is particularly
useful in the presence of repetitive or symmetric scene elements, weak geometric
features, or low-overlap scenarios [6]. Recently, deep-learning-based methods have
also been published for the nonrigid registration problem, e.g., HPLFlowNet [12] or
FlowNet3D [13].

• Pairwise vs. multiview: The majority of registration algorithms can handle a single
pair of point clouds only. In practice, however, objects are typically observed from
multiple viewpoints. As a consequence, a single point cloud generally overlaps with
>1 other point clouds. In such cases, a global (or joint) optimization of all point
clouds is highly recommended. Such an optimization problem is often interpreted as
a graph where each node corresponds to an individual point cloud with associated
transformation and the edges are either the correspondences themselves (single-
step approach, e.g., [14]) or the pairwise transformations estimated individually in
a preprocessing step (two-step approach, e.g., [15–17]).

• Full overlap vs. partial overlap Many algorithms (particularly also in the context of
nonrigid transformations, e.g., [18,19]) assume that the two point clouds are fully over-
lapping. However, in practice, a single point cloud often corresponds only to a small
portion of the observed scene, e.g., when scanning an object from multiple viewpoints.
It is particularly difficult to find valid correspondences (under the assumption that the
point clouds are not roughly aligned) in low-overlap scenarios, e.g., point clouds with
an overlap below 30%. This challenge is addressed by [7] and the therein introduced
3DLoMatch benchmark, where the algorithm by [20] currently leads to the best results.

• Approximative vs. rigorous: Most registration algorithms are approximative in the
sense that they use the 2D or 3D point coordinates as inputs only and try to minimize
discrepancies across overlapping point clouds by applying a rather simple and general
(rigid or nonrigid) transformation model. Ref. [21] describes this group of algorithms
as rubber-sheeting coregistration solutions. In contrast, rigorous solutions try to model
the point cloud generation process as accurately as possible by going a step backwards
and using the sensor’s raw measurements. The main advantage of such methods is that
point cloud discrepancies are corrected at their source, e.g., by sensor self-calibration of
a miscalibrated lidar sensor [22]. Rigorous solutions are especially important in case of
point clouds captured from moving platforms, e.g., robots, vehicles, drones, airplanes,
helicopters, or satellites. In a minimal configuration, such methods simultaneously
register overlapping point clouds and estimate the trajectory of the platform. More
sophisticated methods additionally estimate intrinsic and extrinsic sensor calibration
parameters and/or consider ground truth data, e.g., ground control points (GCPs),
to improve the georeference of the point clouds. If point clouds need to be generated
online, e.g., in robotics, this type of problem is addressed by SLAM (simultaneous
localization and mapping), and especially lidar SLAM [23] and visual-lidar SLAM [24]
methods. For offline point cloud generation, however, methods are often summarized
under the term (rigorous) strip adjustment, as the continuous platform’s trajectory
is often divided into individual strips for easier data handling—an overview can be
found in [21,25].

• 2D or 3D: Finally, it should be noted that many early highly cited algorithms, especially
for the nonrigid registration problem, have originally been introduced for 2D point

Remote Sens. 2023, 15, 5348 5 of 32

clouds only, e.g., [18,26]. However, it is usually rather straightforward to extend these
methods to the third dimension.

Classification of our method: The features of our method are: fine registration, nonrigid
transformation, traditional, pairwise, partial and full overlap, approximative, 2D or 3D.
However, it is emphasized that the core of this contribution is the nonrigid transformation
framework. Within the entire point cloud registration pipeline, subcomponents can be rela-
tively easily replaced at different ICP stages, e.g., usage of learning-based correspondences
instead of using simply nearest neighbor correspondences or an extension from pairwise to
multiview alignment.

1.2. Motivation for Nonrigid Transformations

There are many cases where nonrigid transformation models can be helpful. Typical
use cases are dynamic shape reconstruction [27], registration of medical images or sur-
faces [19,28,29], estimation of scene flow [12,13], or registration of lidar point clouds of
dynamic environments, e.g., for change detection [6]. In the remainder of this subsection,
we would like to describe in more detail an important use case in the field of remote sensing,
namely, the registration of historical ALS data. However, we want to stress that due to the
general character of our method, it is applicable in many other areas, both 2D and 3D, cf.
Sections 6.2–6.6.

Many public and private archives containing historical ALS data exist. A quality control
procedure often reveals large discrepancies between the point clouds of overlapping strips,
observable, e.g., as large height differences [30]. Such discrepancies can, e.g., lead to sudden
jumps along the borders of the strips in a thereof derived digital terrain model (DTM) [17].
These strip discrepancies are typically minimized by means of strip adjustment [21]. Ideally,
a rigorous strip adjustment is performed (see our previous works: [3,14,31,32]). However,
the rigorous approach requires the ALS raw data as input, i.e., the original polar mea-
surements of the lidar sensor and the GNSS/IMU trajectory of the platform. In practice,
however, often only the already georeferenced strips (or, equivalently, tiled point clouds
with strip ID as point attribute) are available. Consequently, only an approximative strip
adjustment, i.e., a strip adjustment without raw data, can be performed.

Before discussing some prior work on the topic of approximative strip adjustments,
we would like to give a brief review of the major error sources in dynamic lidar systems,
e.g., ALS or MLS—an extensive discussion can be found, e.g., in [33] or [34]. Dynamic lidar
systems consist at least of a GNSS receiver, an IMU, and the lidar sensor itself. To generate
georeferenced point clouds, three data inputs must be combined (direct georeferencing):
(1.) the polar measurements of the lidar sensor, (2.) the GNSS/IMU trajectory, and
(3.) the mounting calibration of the lidar sensor, which defines the 6 DoF relative ori-
entation of the sensor to the trajectory. Each of these three inputs can be affected by
systematic errors, which in turn cause irregular displacement vectors of the lidar points.
This raises the question about the pattern of these point displacements and what could
be an appropriate transformation model to correct them, especially in the case of an ap-
proximate strip adjustment (i.e., without trajectory information). For this, we consider as
an example the following scenario, cf. Figure 3: A lidar strip of 100 m length is acquired
from a flying platform at a height of 50 m above ground level (AGL). Figure 3a shows the
error-free points with trajectory (top) and a single lidar scan line (bottom). Figure 3b shows
exemplarily the effect of an erroneous mounting calibration, specifically for a slight mis-
alignment of the lidar sensor and the IMU around a single axis. Figure 3c shows an often
observed effect of a miscalibrated lidar sensor, namely, the effect of a constant range offset,
which leads to a bending of the strips across the flight direction. Figure 3d shows the effect
of a trajectory error—here, it is important to stress that we found in [31] that trajectory
errors (drifts) are typically time dependent and continuous. Finally, Figure 3e shows the
point displacement caused by the sum of all errors from Figure 3b–d. The aim of a strip
adjustment is to correct for these errors. Looking at Figure 3e, one can observe that the
error pattern is smooth and continuous, and the magnitude is depending on the location.

Remote Sens. 2023, 15, 5348 6 of 32

(a) error-free points

+ + =

x

y

error-free point
displacement

+

error-free
erroneous

and
trajectory

error-free
erroneous

and
scan line

(e) sum of errorstrajectory error
(d) effect of

calibration error
(c) effect of sensor

calibration error
(b) effect of mounting

Figure 3. Typical systematic georeferencing errors (b–d) of an airborne laser scanning (ALS) point
cloud (a). The superposition of all errors corresponds to (e). Without access to the trajectory and lidar
data, such an error pattern can only be corrected by means of a nonrigid transformation.

Now, let us briefly summarize which transformation models have been proposed to
correct such an error pattern in prior works. Typically, an individual transformation T is
estimated and applied to each strip. Thereby, the number of independent transformation
parameters varies considerably. For example, Ref. [35] estimates a stripwise height transla-
tion only (1 DoF); Ref. [36] estimates a stripwise 3D translation (3 DoF); Ref. [37] estimates
a stripwise 3D translation, a roll angle, and an affine yaw parameter (5 DoF); Ref. [38]
estimates a stripwise similarity transformation (7 DoF); Ref. [39] estimates a 3D translation,
a spatial rotation, and a differential rotation change (9 DoF); and [17] estimates a stripwise
3D affine transformation (12 DoF), which, by the way, is the first-order approximation of
any nonrigid 3D transformation. In our view, all these methods are limited in two ways:
(a) they correct only a small portion of the systematic errors, namely, the linear part, and
(b) a fixed number of parameters are used for each strip, irrespective of whether a strip
has a length of 100 km or 1 km. To recover a larger portion of these errors, we propose in
this work a nonrigid transformation with a uniform resolution, i.e., a resolution that does
not depend on the strip length. We continue the discussion of the scenario in Figure 3 in
Section 6.1.

1.3. Main Contributions

This paper offers several key contributions to the field of point cloud registration.
Besides the already given general introduction to the registration problem, the paper also
introduces a general mathematical formulation for point cloud registration, extending it to
nonrigid registration. A novel method specifically for nonrigid registration of point clouds
is proposed, followed by a comprehensive evaluation across various applications, scales,
and domains. The method is made available to the community as open source.

1.4. Structure of the Paper

The remainder of the paper is organized as follows: Section 2 presents a general
mathematical formulation of the point cloud registration problem. This section is essential
for providing in Section 3 a more structured discussion of related works in the context of
nonrigid registration. Section 4 introduces our proposed method, and Section 5 provides

Remote Sens. 2023, 15, 5348 7 of 32

some details about its implementation in Matlab/C++. Section 6 presents experimental
results, featuring seven use cases. Section 7 concludes the paper and offers an outlook on
future work.

2. The Point Cloud Registration Problem

We introduced in Section 1 the five main stages of a point cloud registration framework
(cf. Figure 2). In the following, a formal description of the problem is given.

It is assumed that two sets of points are given in the Euclidean space R3: the loose
point cloud P = {p1, . . . , pnp} and the fixed point cloud Q = {q1, . . . , qnq}. Generally,
the aim of point cloud registration is to obtain a transformed point cloud P ′ by applying a
geometric transformation T to the original point cloud P :

P ′ = T (P). (1)

The transformation T is thereby obtained by minimizing an alignment error Ealign
between the two point clouds:

T = argmin{Ealign}. (2)

The alignment error Ealign is typically defined as the sum of squared distances between
corresponding points of the two point clouds. For this, let

C = match(P ,Q) = {(p, q) : p ∈ P , q ∈ Q} (3)

be the set of corresponding points between P and Q. In case of fine registration problems,
p is usually defined as the nearest neighbor of q. The alignment error can now be written as

Ealign = ∑
(p,q)∈C

(dist(T (p), q))2. (4)

Here, one can immediately see the least squares form of the optimization problem.
Often, an additional set of weights is associated with the correspondences:

WC = {wC(p, q) : ∀(p, q) ∈ C}. (5)

By multiplying the squared distances with these weights, the influence of individual
correspondences on the alignment error can be increased or decreased:

Ealign = ∑
(p,q)∈C

wC(p, q) (dist(T (p), q))2. (6)

This was proven to be useful in many cases, e.g., to reduce the influence of outliers
(reweighted least squares ([40], Chapter 4.7.4.1)) or to increase the influence of correspon-
dences in regions of high interest.

The two most commonly used distance functions (error metric) are (a) the point-to-
point distance and (b) the point-to-plane distance. The point-to-point distance corresponds
to the Euclidean distance between corresponding points and is defined as

dist(T (p), q) = ||T (p)− q||. (7)

The point-to-plane distance corresponds to the perpendicular (signed) distance of one
point to the tangent plane of the other point and is defined as

dist(T (p), q) = (T (p)− q)> · n, (8)

where n is the normal vector of q. It was shown in [4] that the registration problem
converges faster when using the point-to-plane distance function—the main reason is that

Remote Sens. 2023, 15, 5348 8 of 32

flat regions can slide along each other without costs, i.e., without increasing the value of
the alignment error Ealign, cf. Equation (2) [3]. Consequently, it is the standard in both rigid
and nonrigid registration pipelines [41].

Extension to Nonrigid Transformations

In this section, a short formal introduction to nonrigid transformations is given. We
start with the transformation T of a single point p, which is part of the loose point cloud P .
The transformation can be written according to Equation (1) as

p′ = T (p) = p + ∆p, T : R3 → R3, (9)

where ∆p is the translation vector to be added to the original point p in order to obtain
the transformed point p′. Thereby, the translation vector at the position p is defined by
a transformation field F (an example is visualized in Figure 4), sometimes also denoted as
deformation, distortion, or warp field:

∆p = F (p), F : R3 → R3. (10)

v1

F

v2

v3

p

Figure 4. Example of a 2D transformation field F with a graph-based control structure, linear
interpolation as a continuity model, and rigid-body transformation as a local transformation model.
The white area corresponds to the domain of F .

We can infer from the literature that such a transformation field F must fulfill
in general three basic requirements: (a) it must be continuous, (b) it must be smooth
(i.e., differentiable), and (c) its numerical solution must be relatively stable (ideally, the op-
timization problem has a closed-form solution). Additionally, it is often desirable that
local shapes are preserved (local rigidity or local conformity) , e.g., to prevent strong local
distortions of surfaces. These requirements are either enforced by the transformation
model itself or by introducing an additional regularization term in the optimization, cf.
Equation (15) below.

In order to better categorize previously published models, we define F as the compo-
sition of two individual functions f and g:

F (p) = g(f (p)), f : R3 → Rn, g : Rn → R3, (11)

where n is the number of independent transformation parameters. We denote the functions
f and g as continuity model and local transformation model, respectively.

The functions f and g can best be explained by means of a simple two-dimensional
example, which is visualized in Figure 4. Here, we choose exemplarily the linear interpo-
lation as continuity model f and the rigid-body transformation as local transformation model g.

Remote Sens. 2023, 15, 5348 9 of 32

Additionally, we assume a graph-based control structure for F . In the following, we will
explain these terms in more detail.

The control structure defines the data points of F and the relations between them
(topology)—in this example, a Delaunay triangulation consisting of nv vertices (nodes)
and edges is used as a graph-based control structure. The domain of F corresponds to the
convex hull of the triangulation. Consequently, one should be aware that the transformation
is undefined for points outside this domain (gray area).

Each vertex vi of F (i ∈ 1, . . . , nv) has an associated individual set of transformation
parameters ui. The model to be used is thereby defined by the local transformation model
g, in this example, the rigid-body transformation. In the two-dimensional Euclidean space
(d = 2), the rigid-body transformation is defined by a rotation angle αi and a translation ti
(ti ∈ R2)—consequently, the number of independent parameters n equals 3 and ui ∈ R3.
With this, we can write the translation vector ∆pi at a specific vertex position vi as

∆pi = g(ui) = R(αi) vi + ti, ui = [αi, t>i], (12)

where R is the rotation matrix defined by αi. However, in general, a point p does not
coincide with the vertices of the control structure. The continuity model f defines how
the values of the transformation parameters u change between the data points of F , i.e.,
between the vertices vi. In our example, we chose the linear interpolation as a continuity
model. Considering that our control structure is a triangulation, the values of the parameter
vector u at a general position p is given by

u = f (p) = TBLI(p, v1, v2, v3, u1, u2, u3), (13)

where TBLI denotes a triangulation-based linear interpolation, which considers the vertices
v1, v2, v3 and the associated parameter vectors u1, u2, u3 of the triangle in which p lies, cf.
Figure 4. Given u, the translation vector ∆p can now be computed with

∆p = g(u) = R(α) p + t, u = [α, t>] (14)

and p can finally be transformed to p′ by Equation (9).
For the estimation of F , the alignment error Ealign (2) is usually combined with an

additional error term Ereg:

F = argmin{Ealign + Ereg}. (15)

Ereg is a regularization term that can serve multiple purposes. However, it is mostly
used to control the smoothness of F , to avoid the overfitting of F , and to ensure the
estimability of F (e.g., in case of data gaps, i.e., areas without correspondences). This is
typically accomplished by adding penalty terms for the unknown parameters.

3. Related Work in the Context of Nonrigid Point Cloud Registration

Over the last few decades, hundreds of different nonrigid transformation models have
been proposed in multiple research fields, especially computer vision, computer graphics,
medical imaging, and robotics. This huge number of different models can be explained
by the fact that the real physical model that led to the distortions to be compensated is
mostly unknown. Consequently, an alternative, approximative transformation model
must be chosen, a choice that in general can be considered somewhat arbitrary. Two
comprehensive surveys on nonrigid registration methods for 3D point clouds have been
published in [42,43]—the latter also covers learning-based methods. A review of spatial
transformation models for nonrigid 2D image registrations can be found in [44].

We discuss in the following some prior works with respect to the continuity model f ,
the local transformation model g, and the control structure of F . We cite for each category
a few works that are highly relevant for the aspects under discussion.

Remote Sens. 2023, 15, 5348 10 of 32

3.1. Continuity Model

The continuity model f defines the progression of the transformation parameter values
within the domain of F . Suitable models ensure that the transformation parameters change
smoothly so that neighboring points have similar transformations. Continuity models can
be grouped according to their theoretical basis [44]:

• Physically based models: These models use some kind of physical analogy to model
nonrigid distortions. They are typically defined by partial differential equations of
continuum mechanics. Specifically, they are mostly based on the theory of linear
elasticity (e.g., [45]), the theory of motion coherence (e.g., [18,27]), the theory of fluid flow
(e.g., [46]), or similarly, the theory of optical flow (e.g., [47]).

• Models based on interpolation and approximation theory: These models are purely
data driven and typically use basis function expansion to model the transformation
field F . For this, some sort of piecewise polynomial functions with a degree ≤ 3 are
widely used, e.g., radial basis functions, thin-plate splines (e.g., [26]), B-splines (e.g., [48]),
or wavelets. Other methods use simply a weighted mean interpolation (e.g., [41,49–51]),
penalize changes of the parameter vector u (e.g., [52]) or the translation vector ∆p
(e.g., [53–55]) with increasing distance, or try to preserve the length of neighboring
points (e.g., [56]).

3.2. Local Transformation Model

The local transformation g model defines which type of deformation is applied lo-
cally [49]. This concept is mainly used to enforce local shape preservation, most often local
rigidity. We briefly review the three most frequent approaches:

• Local translation (n = 3; linear model): This is the simplest and most intuitive model:
the transformation is defined at each position p by an individual translation vector t
(t ∈ R3). Accordingly, Equation (14) simplifies to the trivial form

∆p = g(u) = t, u = t (16)

and the transformation parameters u directly correspond to ∆p.
An example is the coherent point drift (CPD) algorithm, a rather popular solution intro-
duced by [18]. It is available in several programs, e.g., PDAL (http://pdal.io, accessed
on 10 October 2023) or Matlab (function pcregistercpd). The transformation model
is based on the motion coherence theory [57]. Accordingly, the translations applied to
the loose point cloud are modeled as a temporal motion process. The displacement
field is thereby estimated as a continuous velocity field, whereby a motion coherence
constraint ensures that points close to one another tend to move coherently. A modern
interpretation of the CPD algorithm with several enhancements was recently pub-
lished by [27]. Another widely used algorithm in this category was published by [26].
The transformation model is thereby based on the above-mentioned thin-plate splines
(TPS), a mechanical analogy referring to the bending of thin sheets of metal. In our
context of point cloud registration, the authors interpret the bending as the displace-
ment of the transformed points w.r.t. to their original position. The TPS transformation
model ensures the continuity of the transformation values. Large local oscillations of
these values are avoided by minimizing the bending energy, i.e., by penalizing the
second derivatives of the transformation surface (in 2D) or volume (in 3D).
The local translation model offers the highest level of flexibility as it does not couple the
transformation to any kind of geometrical constraint. However, this flexibility comes
also with the risk of un-natural local shape deformations due to overfitting, especially
in cases where the transformation field F has a very flexible control structure.

• Local rigid-body transformation (n = 6; nonlinear model): The transformation at
each point p is defined by an individual set of rigid-body transformation parameters

http://pdal.io

Remote Sens. 2023, 15, 5348 11 of 32

u. In the 3D case, u is composed of three rotation angles, α1, α2, and α3, and the
translation vector t (t ∈ R3), and the translation ∆p becomes

∆p = g(u) = R(α1, α2, α3) p + t, u = [α1, α2, α3, t>]. (17)

The open-source solution by [41] uses a graph-based transformation field, where
each node has an associated individual rigid-body transformation; the transformation
values between these nodes are determined by interpolation. A similar graph-based
approach used for motion reconstruction is described in [45,55]. The authors of [50]
first segment the point cloud into rigid clusters and then map an individual rigid-body
transformation to each of these segments.
Generally, the advantage of a rigid-body transformation field—especially in compar-
ison with the less restricted translation field—is that it implicitly guarantees local
shape preservation and needs less correspondences due to geometrical constraints
implicitly added by the transformation model. The main disadvantages, however, are
the nonlinearity of the model due to the involved rotations and the larger number of
unknown parameters in the optimization.

• Local affine transformation (n = 12; linear model): This is the most commonly used
model in the literature. The transformation at each point p is defined by an individual
set of affine transformation parameters u:

∆p = g(u) = Ap + t, u = [a>, t>], (18)

where u is composed of the vectors a (holding the elements of the affine matrix A) and
the translation vector t.
A popular early example of an affine-based transformation field is presented by [52].
Ref. [49] proposes a graph-based transformation field, where each node corresponds
to an individual affine transformation. To avoid un-natural local shearing, they
use additional regularization terms, which ensure that the transformation is locally
“as-rigid-as-possible”. Specifically, additional condition equations are added to the
optimization so that the matrix A is “as-orthogonal-as-possible”, i.e., so that it is
very close to an orthogonal rotation matrix. Ref. [53] additionally allows a local
scaling of the point cloud by constraining the local affine transformation to a similarity
transformation in an “as-conformal-as-possible” approach.
In terms of flexibility, the affine transformation lies between the local translation model
(more flexible) and the rigid-body transformation model (less flexible). An important
advantage compared with the rigid-body transformation is the linearity of the model.
However, the linearity often gets lost by the introduction of additional nonlinear
equations, e.g., for local rigidity or local conformity. This model leads in comparison
with the ones discussed above to the highest number of unknown parameters in
the optimization.

3.3. Control Structure

The control structure defines the data points of F together with their topology—by
that, it also defines the domain of F . The proper choice of a structure often involves a trade-
off between the flexibility (expressiveness) of F and computational costs. Additionally, it
must be considered that a higher flexibility, on the one hand, leads to a better alignment of
the point clouds, but, on the other hand, also increases the risk of overfitting, a problem that
can typically be recognized in the form of undesirable large local deformations of the trans-
formed point cloud [58]. The following control structures have been used predominately in
the past, cf. Figure 5:

• Graph-based: This is the most commonly used control structure. The graph for
a transformation field is typically constructed by selecting a subset of the observed
points as nodes, e.g., by using a random or uniform sampling approach [3]. Conse-
quently, the nodes lie directly on the scanned objects. Nodes are typically connected

Remote Sens. 2023, 15, 5348 12 of 32

by undirected edges, which indicate local object connectivities. The flexibility of the
transformation field can be adjusted by the density of the nodes.
In the context of nonrigid deformation of moving characters, a widely used and highly
efficient subsampling algorithm was introduced in [59]—it was also used in [49] to
obtain evenly distributed nodes over the entire object. Ref. [55] extended the concept
of graph-based structures to a double-layer graph, where the inner layer was used to
model the human skeleton and the outer layer was used to model the deformations of
the observed surface regions. Ref. [41] defined the nodes by subsampling the point
cloud with a voxel-based uniform sampling method.
Considering that graph-based control structures are tightly bound to the observed
objects (e.g., humans or animals), they can be regarded as best suited in cases where
transformations should model the movement (deformation) of these objects. On the
downside, this concept is difficult to adopt to large scenes that include multiple
heterogeneous objects and complex geometries (e.g., vegetation). For example, in lidar-
based remote sensing, point clouds of relatively large areas (of up to hundreds of
square kilometers) that include many very different objects (buildings, vegetation,
cars, persons, etc.) are acquired. In such cases, the proper definition of a graph-based
control structure is rather difficult.

• Segment based: Such methods split the point clouds in multiple segments and es-
timate an individual transformation (often a rigid-body transformation under the
assumption of local rigidity) for each segment. A frequent application is the matching
of human scans where individual segments correspond to, e.g., upper arms, forearms,
upper legs, and shanks.
Ref. [60] determines such segments under the assumption of an isometric (distance-
preserving) deformation and predetermined correspondences using the RANSAC
framework. Ref. [56] additionally blends the transformations between two adjacent
segments in the overlapping region to preserve the consistency of the shape. A similar
approach was presented in [50]; however, global consistency is achieved here by defin-
ing the final transformation of a point as a weighted sum of the individual segment
transformations, whereby the weights decrease with growing segment distances.
An advantage of this type of methods is a relatively low DoF, which lowers the risk of
overfitting and processing time. A major limitation, however, is that the point clouds
to be registered must be divisible into multiple rigid segments. In this sense, their
usability is also not very versatile.

• Grid based: These methods use regularly or irregularly spaced grids as a control
structure of F . The flexibility of the control structure can be easily influenced by the
grid spacing.
An early work using a hierarchical grid-based control structure that is based on
an octree is described in [48]—deformations are thereby modeled by volumetric B-
splines. Ref. [51] discretizes the object space in a regular 3D grid, i.e., a voxel grid.
A local rigid-body transformation is associated with each grid point. Transformation
parameter values between the grid points are obtained via trilinear interpolation.
Ref. [54] also used a voxel grid in combination with local rigid-body transformations;
however, the transformation values at the voxel resolution are obtained by interpo-
lating transformations of an underlying sparse graph-based structure—this way, the
number of unknown parameters can drastically be reduced, which in turn allows for
an efficient estimation of the transformation field.
A regularly spaced grid-based control structure is typically object independent;
i.e., the grid structure is not influenced by the type of objects that are in the scene.
In this sense, it is a much more general choice compared with the two control structures
discussed above, which are mostly tailored to specific use cases or specific measure-
ment setups. Consequently, a grid-based structure seems also to be a natural choice for
large, complex, multiobject scenes, e.g., for large lidar point clouds. Another relating

Remote Sens. 2023, 15, 5348 13 of 32

advantage is that it is easier to control the domain of F—for example, the domain can
be easily set to a precisely defined 3D bounding box of the observed scene.

graph-based segment-based grid-based

p pp

Figure 5. Types of control structures for transformation fields.

Classification of our method: Our method uses a local translation as a transformation
model g and models the transformation field F as a grid-based displacement field, whereby
the mathematics are based on interpolation theory.

4. Method

The registration problem of point clouds and its solution is already presented in
Section 2. In this section, we focus primarily on the main contribution of this paper,
namely, a new model for the nonrigid transformation of point clouds. The upcoming
Section 4.1 describes the definition and advantages of the transformation model, Section 4.2
its regularization, and Section 4.3 deepens the understanding through a simple 2D example.

4.1. The Nonrigid Transformation Model

A nonrigid transformation model can be described by a continuity model f and a local
transformation model g, c.f. Equation (11). We propose in this work the usage of piecewise
tricubic polynomials (PTCP) as the continuity model f

u = f (p) = PTCP(p), (19)

and the local translation as the local transformation model g

∆p = g(u) = t, u = t = [tx ty tz]
>. (20)

In the following, a formal description of this transformation model will be given.
Afterwards, we will motivate in detail the choice of this specific model.

The idea of using PTCP to model the transformation parameters is borrowed from
the tricubic interpolation (TCI)—the underlying mathematics were described in detail
by Lekien and Marsden [61]. TCI is the extension of the popular and highly efficient
bicubic interpolation (used, e.g., for image resampling) to the third dimension. It is a
three-dimensional interpolation method that uses piecewise polynomials to derive smooth
values from a given set of sparse and irregularly spaced data points. The core idea of this
paper is to use TCI to model the space-varying values of the transformation parameters.
TCI uses a grid-based 3D control structure, i.e., a voxel structure. The voxel size is the main
parameter to adjust the resolution of the transformation field F . The interpolated values
change continuously (C0 continuity) and smoothly (C1 continuity) across the entire voxel
structure, i.e., not only within a single voxel, but also across the voxel faces. The overall
model is composed of PTCP, and accordingly, the values in each voxel are defined by
a cubic polynomial with an individual set of 64 coefficients.

We use PTCP to model the space-varying values of the transformation parameters.
More specifically, the values of each transformation parameter are represented by an in-
dividual scalar field, cf. Figure 6. Accordingly, three scalar fields are used to model the
components of t, namely, for tx, ty, and tz. The transformation field F , i.e., the trans-
lations ∆p in form of a vector field (cf. Equation (10)), is obtained by combining these
three individual scalar fields.

Remote Sens. 2023, 15, 5348 14 of 32

c1

s

c3

c5

c7

c6

c8

c4

c2
v0

tx

ty

tz

p′

single voxel

ty

tz

TFCS

VCS

transformation parameter
scalar fields

VCS

p

∆p

tx

Figure 6. The nonrigid transformation is modeled by piecewise tricubic polynomials in a voxel
structure. The original point p is translated by the vector ∆p to the transformed point p′. The compo-
nents of the translation vector ∆p are tx, ty, and tz. TFCS = transformation field coordinate system
(e.g., UTM), VCS = voxel coordinate system.

In the following, we describe the definition of a single scalar field, namely, tx(p); the
scalar fields ty(p) and tz(p) are defined analogously. The translation tx is defined at the
position p by the cubic polynomial:

tx(p) =
3

∑
i=0

3

∑
j=0

3

∑
k=0

aijkxiyjzk (21)

where aijk are the 64 coefficients corresponding to the voxel in which the point p is located
and x, y, and z are the reduced and normalized point coordinates of p. These coordinates
are defined in a local voxel coordinate system (VCS) by

p = [x y z]> =
p− v0

s
, (22)

where v0 (v0 ∈ R3) is the local origin of the voxel and s is the voxel size.
In order to achieve global C0 and C1 continuity, the coefficients aijk of each voxel cannot

be estimated independently. Instead, one must ensure that the values and its derivatives are
continuous at the contact faces of neighboring voxels. Lekien and Marsden [61] presented
an elegant and efficient solution to this problem by relating the coefficients of a voxel to the
values and its derivatives at the 8 corners (c1, . . . , c8) of this voxel. For this, first, the tricubic
polynomial (21) is expressed as the scalar product

tx(p) = b>a. (23)

Thereby, the column vector a (a ∈ R64) contains the 64 coefficients aijk of the tricubic
polynomial (21)—the elements are defined as

a1+i+4j+16k = aijk, ∀i, j, k ∈ {0, 1, 2, 3}. (24)

Similarly, the column vector b (b ∈ R64) contains the products of the exponentiated
coordinates x, y, and z—the elements are defined as

b1+i+4j+16k = xiyjzk, ∀i, j, k ∈ {0, 1, 2, 3}. (25)

Remote Sens. 2023, 15, 5348 15 of 32

Now, a new column vector f (f ∈ R64) is introduced, which is composed of the values
and the first, second, and third derivatives of the scalar field tx at the 8 corners of the voxel:

fi =

tx(ci) ∀i ∈ {1, . . . , 8}
∂tx
∂x (ci−8) ∀i ∈ {9, . . . , 16}
∂tx
∂y (ci−16) ∀i ∈ {17, . . . , 24}
∂tx
∂z (ci−24) ∀i ∈ {25, . . . , 32}
∂tx

∂x∂y (ci−32) ∀i ∈ {33, . . . , 40}
∂tx

∂x∂z (ci−40) ∀i ∈ {41, . . . , 48}
∂tx

∂y∂z (ci−48) ∀i ∈ {49, . . . , 56}
∂tx

∂x∂y∂z (ci−56) ∀i ∈ {57, . . . , 64}.

(26)

The relationship between a and f can now be formulated using a matrix M (M ∈ R64×64) by

f = Ma, (27)

where the elements of M are defined by

Mij =
∂ fi
∂aj

, ∀i, j ∈ {1, . . . , 64}. (28)

The matrix M is rather sparse (46.9% sparsity), and its elements are integer numbers.
These numbers do not depend on the actual values of the coefficients a. Consequently,
M is a constant matrix whose elements are known in advance. The determinant of M
equals 1, and as a consequence, M is invertible. We provide the matrices M and M−1

in our public repository (https://github.com/AIT-Assistive-Autonomous-Systems/3D_
nonrigid_tricubic_pointcloud_registration, accessed on 10 October 2023). The inverse
matrix can be used to compute the coefficients a from f with

a = M−1f. (29)

With this, finally, the tricubic polynomial (23) can be written in the elegant form

tx(p) = b>M−1f. (30)

With this form, the scalar field can now be defined through the values of f (instead of
using the coefficients a), which means by 8 parameters at each voxel corner. Accordingly,
the elements of f for the entire voxel structure correspond to the unknown parameters to
be estimated in the optimization process (15). Notably, Lekien and Marsden [61] proved
that the continuity of f at the corners of neighboring voxels is sufficient to achieve global
C0 and C1 continuity of the scalar field. In other words, the continuity of the values and
derivatives at the voxel corners is sufficient to achieve also continuity at the contact faces of
the voxels.

There are three important advantages of form (30) over form (21). The first advantage
is that the scalar field can be defined by a significantly smaller number of parameters—we
would like to illustrate this with an example. For this, we assume to have 3 rather small
scalar fields with 5 × 4 × 2 = 40 voxels as the ones depicted in Figure 6. With form (21),
one would need for each voxel an individual set of 64 coefficients to represent a single
scalar field; this leads in sum to 40 × 64 × 3 = 7680 parameters for all three scalar fields.
Additionally, one must define 8 continuity constraints (for the values and the derivatives)
at the adjoining corners of the voxel structure; this leads in sum to 5520 additional con-
straints. In contrast, with form (30), a single scalar field is defined through the 8 values
and derivatives at the voxel corners; this leads in sum for all three scalar fields to only
6 × 5 × 3 × 8 × 3 = 2160 parameters, where 6 × 5 × 3 is the number of the voxel corners.

https://github.com/AIT-Assistive-Autonomous-Systems/3D_nonrigid_tricubic_pointcloud_registration
https://github.com/AIT-Assistive-Autonomous-Systems/3D_nonrigid_tricubic_pointcloud_registration

Remote Sens. 2023, 15, 5348 16 of 32

Additional constraints are not needed. In summary, with form (30), the number of parame-
ters can be reduced by approximately 72% in this case.

The second important advantage of form (30) is the efficient evaluation of the scalar
fields for a large amount of points. This is particularly important when applying an estimated
transformation to the entire point cloud, which potentially consist of hundreds of millions
of points. For this, we assume to have a set of points Pv = {p1, . . . , pnv} in a single voxel.
The scalar field can then be evaluated efficiently for all points at once with

tx(Pv) = BM−1f, (31)

where the matrix B (B ∈ Rnv×64) is defined as

B = [b1 . . . bnv]
>. (32)

The evaluation of the scalar field through Equation (31) is particularly advantageous
when used in interpreted programming languages like Python or Matlab. This is because
performing matrix multiplications (vectorized operation) for a large set of points is much
more efficient than transforming each point individually, i.e., looping over all points.

Finally, a third advantage of form (30) is that it is much easier and intuitive to ma-
nipulate the transformation field F by manipulating f instead of a. For example, one
can easily adjust the smoothness of the transformation field by directly manipulating the
derivatives of F at the voxel corners, e.g., by defining regularizing observations (see next
section), constraints, or upper limits for the corresponding parameters in f (26). Specifically,
such additional observations or constraints can be useful to mitigate large unmotivated
oscillations of the transformation values, e.g., in regions with only few correspondences.

In summary, the main motivations for the proposed nonrigid transformation model are

• Continuity: The transformation field F is C0 and C1 continuous; i.e., transformation
values change smoothly over the entire voxel structure.

• Flexibility: The domain of F corresponds to the extents of the voxel structure. Thus, it
can easily be defined by the user, e.g., to match exactly the extents of point cloud tiles.
Moreover, the resolution of F can easily be adjusted through the voxel size.

• Efficiency: The transformation field F can efficiently be estimated for two reasons.
First, the number of unknown parameters is relatively low. Second, the transformation
is a linear function of the parameters in f. In other words, the parameters of F can be
estimated through a closed-form solution that does not require an iterative solution
or initial values for the parameters. Moreover, the transformation of very large point
clouds can efficiently be implemented using Equation (31).

• Intuitivity: The parameters of the transformation field F can easily be interpreted
as they directly correspond to the translation values and the derivatives. Thus, it is
also rather easy to manipulate these parameters by introducing additional parameter
observations, constraints, or upper limits to the optimization.

4.2. Regularization

Regularization [40] (p. 82) is often used when estimating nonrigid transformations—we
discussed this briefly at the end of Section 2 and introduced thereby an additional error
term Ereg in Equation (15). In our context, regularization serves two purposes:

1. To solve an ill-posed or ill-conditioned problem. Our problem becomes ill posed (under-
determined) if the domain of F , i.e., the voxel structure, contains areas with too few
or even no correspondences. As a consequence, a subset of the unknown parameters
cannot be estimated. Relatedly, the problem can be ill conditioned (indicated by a
high condition number C of the equation system) if the correspondences have locally
an unfavorable geometrical constellation; for example, the scalar fields tx and ty can
hardly be estimated when matching two nearly horizontal planes. By regularization,

Remote Sens. 2023, 15, 5348 17 of 32

an ill-posed or ill-conditioned problem can be transformed into a well-posed and
well-conditioned problem.

2. To control the smoothness of the transformation field F and thereby also prevent
overfitting. The smoothness of F is controlled by directly manipulating the unknown
parameters, i.e., the function values and the derivatives at the voxel corners. Simulta-
neously, overfitting can also be avoided, i.e., the suppression of excessively fluctuating
values of the scalar fields tx, ty, and tz.

Specifically, we use a Tikhonov regularization, also known as ridge regression [62]. It can
be interpreted as the regularizing direct observation of u, i.e., of all unknown parameters
describing the transformation field F . Accordingly, the error term Ereg can be written—again
exemplary for the translation tx— as

Ereg =
nr

∑
i=1

(
wd0

((
tx(ci)

)2
)
+

wd1

((∂tx

∂x
(ci)

)2
+
(∂tx

∂y
(ci)

)2
+
(∂tx

∂z
(ci)

)2
)
+

wd2

((∂tx

∂x∂y
(ci)

)2
+
(∂tx

∂x∂z
(ci)

)2
+
(∂tx

∂y∂z
(ci)

)2
)
+

wd3

((∂tx

∂x∂y∂z
(ci)

)2
))

,

(33)

where ci (i ∈ 1, . . . , nr) corresponds to the corners of the entire voxel structure of F and
wd0 , wd1 , wd2 , and wd3 are the weights associated with the regularizing observations of the
scalar field values, as well as their first, second, and third derivatives, respectively. In other
words, these weights directly influence the values, the slope, the curvature, and the torsion
of the three scalar fields tx, ty, and tz.

4.3. A Synthetic 2D Example

In this section, we will discuss various aspects of the proposed nonrigid transformation
model on the basis of an example. It is emphasized that the optimization problem is solved
according to the solution described in Section 2. Specifically, the transformation field F is
estimated according to the least squares objective function (15), whereby Ealign and Ereg are
defined by Equations (4) and (33), respectively.

In order to better visualize scalar and vector fields, the example takes place in the
two-dimensional Euclidean space R2. The main differences to the previously described
transformation in R3 are the bicubic polynomial has only 16 coefficients (instead of the
64 coefficients of the tricubic polynomial), the transformation field F is obtained by com-
bining the scalar fields tx and ty (instead of combining tx, ty, tz), and the control structure
is composed of two-dimensional cells (instead of voxels).

The two point clouds to be registered are visualized in the upper left image of Figure 7.
The fixed point cloud Q is synthetically generated and consists of two axially parallel lines,
four simple geometric forms, and a dense point raster. The transformed point cloud P
is generated from Q by applying two consecutive transformations. First, a rigid-body
transformation with tx = −1.5, ty = 3.0, and α = −3.0◦ is applied. Then, an additional
sinusoidal translation (amplitude = 2, period = 15) is added in the y direction. The goal of
this example is to estimate the combination of these two transformations using the nonrigid
transformation model presented in the previous sections.

Remote Sens. 2023, 15, 5348 18 of 32

adjusted state of point clouds T (P) and Qoriginal state of point clouds P and Q

estimated groundtruth difference = gt - est

sc
al

ar
fie

ld
t x

sc
al

ar
fie

ld
t y

Figure 7. Example of nonrigid registration of two synthetic point clouds. Red: loose point cloud
P . Green: fixed point cloud Q. Correspondences between P and Q are visualized as lines in the
upper-left image. The transformation field F is visualized as a vector field in the upper-right image.

For this, 632 correspondences (It is noted that these correspondences are error-free in
this example as, for each point in P , the original partner in Q is known. When working
with real data, however, correspondences are typically established by matching each point
inQ to the nearest neighbor in P , cf. Section 6) between the point clouds P andQ are used.
The point-to-point distance (8) is minimized between these correspondences. The control
structure of F consists of 17 × 24 = 408 cells with a cell size of 5. Considering that f has
4 elements in R2 (e.g., for the scalar field tx: tx, ∂tx

∂x , ∂tx
∂y , ∂tx

∂x∂y , c.f. Equation (26)), the number
of unknown parameters for both scalar fields tx and ty equals 18× 25× 4× 2 = 3600. These
parameters are estimated by solving an overdetermined linear equation system according
to the least squares principle. The equation system consists of 4232 condition equations:
632 point-to-point distance observations and 3600 regularizing observations. Consequently,
the redundancy of the equation system is 632. The weights of the regularizing observations
wd0 , wd1 , and wd2 are set to 0.02, 0.01, and 0.01, respectively.

In the upper-right image of Figure 7, the adjusted state of the point clouds is visual-
ized. One can see that the two point clouds match very well after adding the estimated
transformation field F to P—the mean and standard deviation of the distance residuals
are 0.000± 0.002. The vector field shows the estimated translations ∆p at selected points
in scaled form. The lower part of Figure 7 shows a comparison between the estimated
scalar fields tx and ty and their ground truth values. Additionally, Figures 8 and 9 show
the effects on the estimated scalar fields tx and ty when varying the weights wd0 and wd1
and the cell size—the main results from Figure 7 are thereby located in the middle of each
parameter variation. For each variant, the condition number C of the normal matrix and
the goodness of fit (GoF), defined as the sum of squared distance residuals, is specified.

Remote Sens. 2023, 15, 5348 19 of 32

w
d 0

=
0.

10

wd1 = 0.005 wd1 = 0.010 wd1 = 0.020

w
d 0

=
0.

20
w

d 0
=

0.
40

w
d 0

=
0.

10

wd1 = 0.005 wd1 = 0.010 wd1 = 0.020

w
d 0

=
0.

20
w

d 0
=

0.
40

GoF = 0.002, C = 9.5 × 105 GoF = 0.005, C = 2.4 × 105 GoF = 0.016, C = 1.8 × 105

GoF = 0.006, C = 8.0 × 105 GoF = 0.007, C = 2.5 × 105 GoF = 0.016, C = 1.9 × 105

GoF = 0.023, C = 7.8 × 105 GoF = 0.019, C = 2.5 × 105 GoF = 0.024, C = 1.9 × 105

scalar field tx

scalar field ty

GoF = 0.002, C = 9.5 × 105 GoF = 0.005, C = 2.4 × 105 GoF = 0.016, C = 1.8 × 105

GoF = 0.006, C = 8.0 × 105 GoF = 0.007, C = 2.5 × 105 GoF = 0.016, C = 1.9 × 105

GoF = 0.023, C = 7.8 × 105 GoF = 0.019, C = 2.5 × 105 GoF = 0.024, C = 1.9 × 105

Figure 8. Effect of varying the weights wd0 and wd1
of the regularizing observations on the estimated

scalar fields tx and ty; GoF = goodness of fit, C = condition number.

Remote Sens. 2023, 15, 5348 20 of 32

cell size = 5

GoF = 0.007, C = 2.5 × 105

cell size = 2.5 cell size = 7.5

GoF = 0.001, C = 1.0 × 105 GoF = 0.303, C = 2.8 × 105

GoF = 0.007, C = 2.5 × 105GoF = 0.001, C = 1.0 × 105 GoF = 0.303, C = 2.8 × 105

sc
al

ar
fie

ld
t y

sc
al

ar
fie

ld
t x

Figure 9. Effect of different cell sizes on the estimated scalar fields tx and ty; GoF = goodness of fit,
C = condition number.

These results lead us to the subsequent observations:

• In areas with dense correspondences, the transformation can be well estimated;
i.e., the differences between the estimated scalar fields and their ground truth fields
are nearly zero in these areas. In correspondence-free areas the transformation tends
towards zero due to a lack of information.

• The locality of the transformation depends mainly on the cell size. Minor adjustments
of the locality can be made by modifying the weight wd1 . The cell size needs to be
adjusted to the variability of the transformation to be modeled.

• The scalar fields tend to oscillate if the ratio wd0 /wd1 is large—in such cases, the scalar
fields have relatively steep slopes at the cell corners.

• The GoF is better for lower weights and smaller cell sizes. However, in case of
correspondences with even small random errors, a small cell size also increases the
risk of overfitting.

• The condition number C decreases with higher weights; i.e., the stability and efficiency
of the parameter estimation increase.

5. Implementation Details

We have implemented the proposed method in two variants:

• Matlab (2D): This is an open-source prototype implementation for two-dimensional
point clouds (Figure 10). It can be downloaded here: https://github.com/AIT-
Assistive-Autonomous-Systems/2D_nonrigid_tricubic_pointcloud_registration (ac-
cessed on 10 October 2023). Parameters can easily be modified through a graphical
user interface (GUI). The least squares problem is defined using the problem-based
optimization setup from the Optimization Toolbox; thereby, all matrix and vector opera-
tions are vectorized for efficiency reasons. The problem is solved using the linear least
squares solver lsqlin. In addition to the Optimization Toolbox, the Statistics and Machine
Learning Toolbox is required to run the code. As a reference, solving the optimization
for the example depicted in Figure 10 takes approximately 0.4 s on a regular PC (CPU
Intel Core i7-10850H).

• C++/Python (3D): This is a highly efficient implementation of our method for large
(e.g., lidar-based) three-dimensional point clouds. It can be downloaded here: https://
github.com/AIT-Assistive-Autonomous-Systems/3D_nonrigid_tricubic_pointcloud_

https://github.com/AIT-Assistive-Autonomous-Systems/2D_nonrigid_tricubic_pointcloud_registration
https://github.com/AIT-Assistive-Autonomous-Systems/2D_nonrigid_tricubic_pointcloud_registration
https://github.com/AIT-Assistive-Autonomous-Systems/3D_nonrigid_tricubic_pointcloud_registration
https://github.com/AIT-Assistive-Autonomous-Systems/3D_nonrigid_tricubic_pointcloud_registration
https://github.com/AIT-Assistive-Autonomous-Systems/3D_nonrigid_tricubic_pointcloud_registration

Remote Sens. 2023, 15, 5348 21 of 32

registration (accessed on 10 October 2023). The full processing pipeline is managed
by a Python script and consists of three main steps. In the first step, the loose point
cloud P and the fixed point cloud Q are preprocessed using PDAL (https://pdal.io,
accessed on 10 October 2023); the preprocessing includes mainly a filtering of the
point clouds and the normal vector estimation. In the second step, a C++ imple-
mentation of the registration pipeline depicted in Figure 2 is used to estimate the
transformation field F by matching the preprocessed point clouds. Thereby, the main
C++ dependencies are Eigen (https://eigen.tuxfamily.org, accessed on 10 October
2023) and nanoflann (https://github.com/jlblancoc/nanoflann, accessed on 10 October
2023). Eigen is used for all linear algebra operations and for setting up and solving the
optimization problem. A benchmark has shown that the biconjugate gradient stabilized
solver (BiCGSTAB) is the most efficient solver for our type of problem. Finally, in the
third step, the estimated transformation F is applied to the original point cloud P .
As a reference, the estimation of the transformation field F for the point clouds in
Section 6.4 takes approximately 10 s, again on the regular PC mentioned above.

Figure 10. Open-source implementation of our method for two-dimensional point clouds—it can be
downloaded here: https://github.com/AIT-Assistive-Autonomous-Systems/2D_nonrigid_tricubic_
pointcloud_registration (accessed on 10 October 2023). The depicted example corresponds to the
right column in Figure 9.

6. Experimental Results

The method introduced in this study can be used as a versatile and broadly applicable
tool for the nonrigid alignment of point clouds. To showcase its flexibility, we perform a
series of experiments that span a diverse range of scales and applications. Within the 3D
domain, we align point clouds obtained from airborne laser scanning (ALS), mobile laser
scanning (MLS), and terrestrial laser scanning (TLS). Within the 2D domain, the method
is applied to estimate a dense optical flow in image space and to align two popular 2D
nonrigid registration datasets. In contrast with the piecewise tricubic polynomials used in
3D, in the 2D domain, the transformation field is composed of piecewise bicubic polynomials,
cf. Section 4.3. An overview of these experiments is provided in Table 1.

https://github.com/AIT-Assistive-Autonomous-Systems/3D_nonrigid_tricubic_pointcloud_registration
https://github.com/AIT-Assistive-Autonomous-Systems/3D_nonrigid_tricubic_pointcloud_registration
https://pdal.io
https://eigen.tuxfamily.org
https://github.com/jlblancoc/nanoflann
https://github.com/AIT-Assistive-Autonomous-Systems/2D_nonrigid_tricubic_pointcloud_registration
https://github.com/AIT-Assistive-Autonomous-Systems/2D_nonrigid_tricubic_pointcloud_registration

Remote Sens. 2023, 15, 5348 22 of 32

Table 1. Overview of the datasets used in the experiments and the corresponding tuning parameter
values (#corresp. = number of correspondences, #it. = number of iterations).

Experimental Results

Use Case Sec. 2D/3D Cell Size Regularization Weights #corresp. #it.
wd0 wd1 wd2 wd3

1 ALS 1 Section 6.1 3D 125.0 m 2.00 2.00 2.00 2.00 20,000 3
2 ALS 2 Section 6.2 3D 100.0 m 1.00 1.00 1.00 0.10 20,000 3
3 MLS Section 6.3 3D 5.0 m 0.10 0.10 0.10 0.10 10,000 3
4 TLS Section 6.4 3D 2.0 m 0.01 0.01 0.01 0.01 10,000 5
5 Opt. flow Section 6.5 2D 15.0 px 0.20 0.10 0.10 – 6713 1
6 Fish Section 6.6 2D 7.5 0.10 0.10 0.10 – 91 1
7 Hand Section 6.6 2D 15.0 0.05 0.05 0.10 – 36 1

6.1. Use Case 1: Airborne Laser Scanning (ALS)—Alignment of Historical Data

The city of Vienna, Austria, maintains a public archive of geospatial data. This archive
includes digital surface models (DSMs) derived from ALS point clouds of the entire urban
area, segmented into tiles. When comparing the DSMs from different years, discrepancies
in x, y, and z are observed. These discrepancies are not solely attributable to real changes,
such as construction activities, changes in vegetation, or the presence of dynamic objects
like cars or persons. One of the main causes for these discrepancies is georeferencing errors
of the original lidar point clouds as discussed in Section 1.2. In this use case, we aim to
correct these errors using the method proposed here.

Figure 11 displays a single tile of the dimensions 1000 × 1250 m. The two DSMs stem
from the years 2007 and 2015, respectively. The height differences between the two original
DSMs show significant and systematic discrepancies, in the order of several decimeters.
Thereby, only smooth areas (streets, roofs, etc.) and areas where the magnitude of height
differences is less than 30 cm were considered (the assumption is that differences above
30 cm are not due to georeferencing errors but are a result of natural changes).

For the nonrigid registration, these two DSMs were converted to the 3D point clouds
P and Q. The more recent DSM from 2015, presumably more accurate in terms of georefer-
ence, is thereby considered to be fixed, while the older DSM from 2007 is considered to be
loose and thus subject to transformation. The estimated scalar fields of the transformation
field F , evaluated at the surface of P , are shown in the right column of Figure 11. The trans-
formation field F was estimated using a cell size of 125 m and 20,000 corresponding points,
cf. Table 1. The point-to-plane error metric was minimized between these correspondences.
It is immediately evident that the scalar field tz largely follows the pattern of the original
height differences. The estimated shifts in x and y are relatively small in comparison. This is
primarily because the scene mainly consists of horizontal surfaces. Vertical surfaces, such as
building facades, are scarcely present due to the origin of the data as 2.5D rasters. However,
there are a few isolated instances of sloped roof surfaces that support the estimation of
translations in the x and y directions. One such example is found at the coordinates x ≈ 300
and y ≈ 600. Here, the original height differences clearly indicate a shift in the y direction,
which is evident from the different signs of the height differences of the two roof surfaces.
Consequently, the translation in the y direction can be accurately estimated at this point,
as clearly shown at the corresponding location in the scalar field ty.

The height differences in the adjusted state indicate that systematic discrepancies
between the two DSMs can be largely eliminated. Larger residual discrepancies result
from imperfect masking, such as the roof extensions between 2007 and 2015 at x ≈ 250
and y ≈ 750. In summary, we have demonstrated in this example how our method can be
used to transform on a tile-by-tile basis older historical datasets to the georeference of more
recent datasets. This can be particularly useful for the analysis of long-term changes.

Remote Sens. 2023, 15, 5348 23 of 32

2015

2007

DSMs (shaded) of tiles P and Q scalar field tx

original state: height differences scalar field ty

adjusted state: height differences scalar field tz

Figure 11. Improvement of the alignment between two DSMs from 2007 and 2015. The height
differences show the errors before (original state) and after (adjusted state) the application of our
method. The three images on the right show the estimated shifts in the x, y, and z directions for the
point cloud P . All units in meter.

6.2. Use Case 2: Airborne Laser Scanning (ALS)—Post-Strip-Adjustment Refinement

In general, registration errors between overlapping strips cannot be completely cor-
rected by ALS strip adjustment [31]. The most common reasons are limitations of the
optimizations’ geometrical and physical model or the lack of correspondences in some
areas. Residual errors can best be identified by means of strip differences [30]. Typically, one
can find in these strip differences a few areas where the errors amount to a few centimeters.
This might seem a minor issue, but it can lead to major difficulties while postprocessing the
lidar data, e.g., in case of very thin structures (powerlines, poles, etc.), which appear dupli-
cated in the fusioned point cloud. With the method proposed in this work, the registration
errors within such areas can be further reduced in a post-strip-adjustment refinement step.

This use case is demonstrated on the basis of two ALS strips, cf. Figure 12. The survey
area is located to the south of Innsbruck, Austria. The data were acquired from a manned

Remote Sens. 2023, 15, 5348 24 of 32

aircraft equipped with a Riegl VQ-820-G laser scanning system. This system allows for
combined topographic and bathymetric surveying [63]. The aircraft’s trajectory loosely
followed the course of the Sill River. The flight experienced turbulence due to strong winds,
causing sudden and severe changes in the roll angle. These changes are evident at the
boundaries of the individual flight strips. The aircraft’s highly dynamic movements could
not be accurately estimated in the trajectory estimation step (Kalman filter), nor was it
possible to substantially improve the estimation by strip adjustment. Consequently, several
areas with major residual errors can still be identified in the strip difference after strip
adjustment, cf. Figure 12 (original state).

By applying our method, these errors can be reduced, as seen in Figure 12 (adjusted
state). Especially height differences that are continuous and widespread can be well
minimized. Noncontinuous errors, however, such as at x ≈ 2100, cannot be completely
corrected due to the smoothness of the estimated transformation field F . The improvement
of the distributions of the strip differences can be seen in the corresponding histograms: the
mean and standard deviation of the strip differences could be improved from 0.000 ± 0.017
to 0.000 ± 0.011 m. The estimated scalar fields in the x, y, and z directions are shown in
the lower three images of Figure 12. The cell size of the voxel structure was set to 100 m.
For the matching, 20,000 corresponding points and the point-to-plane error metric were
used. Since the laser scanner observes the scene from above, the largest magnitudes are
estimated in the z direction. We can also observe that corrections can only be estimated
within the overlapping area of the two strips. For example, at the right boundary of the
strip P , all three scalar fields smoothly decrease to zero.

6.3. Use Case 3: Low-Cost Mobile Laser Scanning (MLS)

In the research field of robotics, sensors are generally more cost-effective compared with
those used in surveying. Additionally, data must typically be processed in real time, making it
impossible to use computationally intensive methods. As a result, registration errors between
point clouds are typically larger than those in the previous examples. In this use case, we
demonstrate the applicability of our method to such low-cost sensors.

Figure 13 shows a section of an MLS recording, captured in an urban area in Vienna,
Austria. The car’s trajectory was estimated exclusively using low-frequency GNSS (1 Hz) and
lidar odometry (based on KISS-ICP [64], 10 Hz), i.e., without using any high-frequency IMU
data. The lidar sensor on this platform is an Ouster OS1-64, and the GNSS data stem from
a u-blox ZED-F9P module. Within the depicted area, two point clouds captured in opposite
directions overlap for a length of approximately 150 m.

In their original state, the point clouds deviate from each other by several decimeters.
As a consequence, the fusioned point cloud can hardly be used for further processing.
The signed distances between the two point clouds were calculated using the method
described in [65]. For this, only smooth surfaces were considered, mainly roads and facades
in this scene. An area is considered to be smooth if the points’ roughness attribute is smaller
than 0.03 m—the roughness attribute was thereby calculated from the points’ neighborhood
using the method described in (Section 4) of [3].

Using a standard ICP method with 6 degrees of freedom (corresponding to a rigid-
body transformation) improves the registration globally, but leaves relatively large local
errors due to its limited flexibility. By applying our method to the original state of the
point clouds, the distances between the two point clouds can be strongly minimized in the
entire overlapping area. For this scene, we have chosen a transformation field F with a cell
size of 5 m and used 10,000 corresponding points (with the point-to-plane error metric) for
matching the two point clouds. The histograms of the residual distances clearly show the
benefit of our method: the mean and standard deviation of the distances improve from
−0.004 ± 0.105 (original state) to 0.015 ± 0.048 (original state transformed by 6DoF-ICP),
and finally, to 0.000 ± 0.025 m (original state transformed by our method).

Remote Sens. 2023, 15, 5348 25 of 32

DSMs (shaded) derived from point clouds P and Q

original state: height differences between DSMs

adjusted state: height differences between DSMs

scalar field tx

scalar field ty

scalar field tz

Figure 12. Improvement of the alignment of two ALS strips. As in the previous example, the height
differences show the errors before (original state) and after (adjusted state) the application of our
method. The lower three images show the estimated shifts in the x, y, and z directions for the point
cloud P . All units in meter.

Remote Sens. 2023, 15, 5348 26 of 32

6.4. Use Case 4: Terrestrial Laser Scanning (TLS)

In previous studies [66,67], terrestrial laser scanning was used to investigate the short-
term plant structural dynamics of trees, particularly with respect to their circadian rhythm,
i.e., their periodic movement with a 24-h cycle. This use case is based on terrestrial lidar
point clouds measured from a Norway maple Acer platanoides in Finland between the time
of sunset and sunrise in August 2016. The data were collected with three separate terrestrial
laser scanners. We employed our method to estimate the tree’s motion between sunset
and sunrise. The resulting motion field F is depicted in Figure 1; a corresponding video is
available here (https://youtube.com/watch?v=JNK9PtjtBlY, accessed on 10 October 2023).
Our results suggest a plausible increase in movement as the distance from the trunk grows,
with the farthest points having a motion magnitude of approximately 10 cm. Comparable
results were also found in [68], where the tool PlantMove was used to estimate the motion
field of a birch tree over the course of one night.

strip trajectories of point clouds P and Q
signed pointcloud-to-pointcloud distances

. . . in the original state

. . . after matching with our methodpoint cloud P (colored by roughness)

. . . after 6DoF-ICP matchingpoint cloud Q (colored by roughness)

sm
oo

th
sm

oo
th

Figure 13. Improvement of alignment of two MLS strips. Only smooth areas like roads and facades
are considered during the registration process. The images on the right show the alignment error
between the two point clouds in their original state (top), after adjustment with a 6DoF-ICP (middle)
and after our method (bottom). All units in meter.

https://youtube.com/watch?v=JNK9PtjtBlY

Remote Sens. 2023, 15, 5348 27 of 32

6.5. Use Case 5: Dense Optical Flow

This example demonstrates a possible application of our method in the two-dimensional
domain. We estimate the dense optical flow between two images based on given image
correspondences. The results are presented in Figure 14. The image correspondences were
found using AKAZE point descriptors [69] and brute force matching. The cell size of the
estimated optical flow field F was set to 15 pixel. It is noted that the given correspondences
also included some incorrect matchings. However, the results indicate that, due to the
continuity and smoothness of F , these have only a minimal impact. A limitation of our
method is that discontinuities in the optical flow cannot be modeled, e.g., at occlusion
boundaries. Instead, the optical flow is smoothly interpolated across these boundaries.

image matches between an image pair optical flow F from image matches

Figure 14. Estimation of a dense optical flow between two images.

6.6. Use Case 6: Popular Datasets

In the interest of completeness, we have also applied our method on two popular
datasets commonly used in the literature as benchmarks for nonrigid registration tech-
niques. In both cases, point-to-point correspondences between the two point clouds are
given. Accordingly, the point-to-point error metric (8) was minimized in the optimiza-
tion. The first pair of point clouds depicting two fishes originates from [18]. The results
visualized in Figure 15 indicate that our method can accurately estimate the nonrigid defor-
mations between these point clouds. The second dataset consisting of two hand-shaped
point clouds stems from MathWorks and is presented in Figure 16. In this case as well, our
method successfully registers the two point clouds.

adjusted state of point clouds T (P) and Qoriginal state of point clouds P and Q

Figure 15. Nonrigid registration of two point clouds from [18]. The values are unitless.

Remote Sens. 2023, 15, 5348 28 of 32

adjusted state of point clouds T (P) and Qoriginal state of point clouds P and Q

Figure 16. Nonrigid registration of two hand-shaped point clouds. The values are unitless.

7. Conclusions

In this research, we looked at the complex area of point cloud registration, focusing
on the special challenges of nonrigid registration. The paper serves multiple functions:
it provides a thorough introduction to the point cloud registration problem, categorizes
existing methods in the field, and introduces a mathematical framework that extends
to the nonrigid registration problem. Most notably, we introduce a new method for
nonrigid registration that uses a grid-based transformation model based on piecewise
tricubic polynomials.

Our method has several benefits. The flexibility of the transformation model can be
adjusted by a small and intuitive set of tuning parameters (cf. Table 1), the optimization
has a closed-form solution, and the method can be used to efficiently transform huge point
clouds, e.g., airborne laser scanning data. We have validated our method across a wide
range of applications and scales, with a particular focus on remote sensing tasks, such as
the registration of ALS, MLS, and TLS point clouds. We also open-sourced our work, so
others can use it and build on it.

Despite its strengths, our method also has some limitations. Like other nonrigid
registration techniques, it faces challenges in modeling discontinuities due to the inherent
smoothness and continuity of the transformation field. Additionally, the transformation
field can only be reliably estimated when there are densely sampled correspondences
within the entire overlapping area of the point clouds.

As for future work, we plan to integrate our method into established point cloud
processing frameworks, such as OPALS or PDAL. This will not only make our method
more accessible but also offer a platform for ongoing improvements and evaluations.
Afterwards, we plan to extend our method to the multiview case, where >2 overlapping
point clouds are registered simultaneously.

Author Contributions: Data curation, project administration, supervision, visualization, and writing
(original draft): P.G.; conceptualization and methodology: P.G., C.R. and N.P.; formal analysis and
validation: P.G. and C.R.; funding acquisition: P.G. and N.P.; investigation: P.G., C.W. and C.R.;
resources: P.G. and M.H.-W.; software: P.G., C.W. and J.O.-S.; writing (review and editing): P.G., C.W.,
J.O.-S., C.R., N.P. and M.H.-W. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was supported by the Austrian Research Promotion Agency (FFG) under the
project OPTRALS (orientation and processing of terrestrial, railborne, and airborne laser scanning
data), part of the Verkehrsinfrastrukturforschung 2019 (VIF 2019) program.

Data Availability Statement: Data used in Section 6 can partly be found in the source code reposito-
ries here (https://github.com/AIT-Assistive-Autonomous-Systems/3D_nonrigid_tricubic_pointcloud_
registration, accessed on 10 October 2023) and here (https://github.com/AIT-Assistive-Autonomous-
Systems/2D_nonrigid_tricubic_pointcloud_registration accessed on 10 October 2023).

https://github.com/AIT-Assistive-Autonomous-Systems/3D_nonrigid_tricubic_pointcloud_registration
https://github.com/AIT-Assistive-Autonomous-Systems/3D_nonrigid_tricubic_pointcloud_registration
https://github.com/AIT-Assistive-Autonomous-Systems/2D_nonrigid_tricubic_pointcloud_registration
https://github.com/AIT-Assistive-Autonomous-Systems/2D_nonrigid_tricubic_pointcloud_registration

Remote Sens. 2023, 15, 5348 29 of 32

Acknowledgments: The source of the data used in Section 6.1 is “Stadt Wien—data.wien.gv.at”
(accessed on 10 October 2023). The data used in Section 6.2 were collected within the Austrian
Research Promotion Agency (FFG) COMET-K project Airborne Alpine Hydro Mapping—From Research
to Practice (AAHM-R2P). The data used in Section 6.4 were originally collected for research and
funded by Academy of Finland grant nos. 265949 and 272195. We thank Eetu Puttonen for providing
the data.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Scalars will be denoted in italic font x, vectors in bold font x, and matrices in sans serif
font X. All vectors are defined as column vectors.

Notation

Symbol(s) Description Type Dim.

Point cloud registration

P ,Q loose and fixed set of points (point clouds), resp. set np, nq
p, q individual point of point cloud P and Q, resp. vector R3

T (P), T (p) transformation of point cloud P and point p, resp. func. R3 → R3

P ′ transformed point cloud P set np
p′ transformed point p vector R3

∆p translation vector vector R3

n normal vector vector R3

C set of correspondences between P and Q set nc
WC set of weights associated with C set nc
wC individual weight ofWC scalar R
F transformation field func. R3 → R3

f continuity model func. R3 → Rn

g local transformation model func. Rn → R3

u vector containing transformation parameters vector Rn

Optimization

nu overall number of unknown parameters scalar R
E error term of objective function scalar R
C condition number of equation system scalar R
Piecewise tricubic polynomials

p reduced and normalized coordinates of point p vector R3

a vector containing coefficients of single voxel vector R64

f vector containing function values and derivatives of single
voxel

vector R64

M matrix for mapping between a and f matrix R64×64

b vector containing products of p vector R64

B matrix containing products of p for nv points matrix Rnv×64

v0 voxel origin vector R3

s voxel size scalar R

References
1. Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Robotics-DL Tentative; International Society for Optics and

Photonics: Bellingham, WA, USA, 1992; pp. 586–606.
2. Chen, Y.; Medioni, G. Object modelling by registration of multiple range images. Image Vis. Comput. 1992, 10, 145–155. [CrossRef]
3. Glira, P.; Pfeifer, N.; Briese, C.; Ressl, C. A Correspondence Framework for ALS Strip Adjustments based on Variants of the ICP

Algorithm. PFG Photogramm. Fernerkund. Geoinf. 2015, 2015, 275–289. [CrossRef]
4. Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International Conference on 3-D

Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June 2001; pp. 145–152.
5. Pomerleau, F.; Colas, F.; Siegwart, R. A review of point cloud registration algorithms for mobile robotics. Found. Trends Robot.

2015, 4, 1–104. [CrossRef]
6. Dong, Z.; Liang, F.; Yang, B.; Xu, Y.; Zang, Y.; Li, J.; Wang, Y.; Dai, W.; Fan, H.; Hyyppä, J.; et al. Registration of large-scale

terrestrial laser scanner point clouds: A review and benchmark. ISPRS J. Photogramm. Remote. Sens. 2020, 163, 327–342. [CrossRef]

data.wien.gv.at
http://doi.org/10.1016/0262-8856(92)90066-C
http://dx.doi.org/10.1127/pfg/2015/0270
http://dx.doi.org/10.1561/2300000035
http://dx.doi.org/10.1016/j.isprsjprs.2020.03.013

Remote Sens. 2023, 15, 5348 30 of 32

7. Huang, S.; Gojcic, Z.; Usvyatsov, M.; Wieser, A.; Schindler, K. Predator: Registration of 3D point clouds with low overlap. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 4267–4276.

8. Li, L.; Wang, R.; Zhang, X. A tutorial review on point cloud registrations: Principle, classification, comparison, and technology
challenges. Math. Probl. Eng. 2021, 2021, 9953910. [CrossRef]

9. Yang, J.; Li, H.; Campbell, D.; Jia, Y. Go-ICP: A globally optimal solution to 3D ICP point-set registration. IEEE Trans. Pattern
Anal. Mach. Intell. 2015, 38, 2241–2254. [CrossRef] [PubMed]

10. Zeng, A.; Song, S.; Nießner, M.; Fisher, M.; Xiao, J.; Funkhouser, T. 3DMatch: Learning Local Geometric Descriptors from RGB-D
Reconstructions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017.

11. Zhang, Z.; Dai, Y.; Sun, J. Deep learning based point cloud registration: An overview. Virtual Real. Intell. Hardw. 2020, 2, 222–246.
[CrossRef]

12. Gu, X.; Wang, Y.; Wu, C.; Lee, Y.J.; Wang, P. HPLFlowNet: Hierarchical Permutohedral Lattice FlowNet for Scene Flow Estimation
on Large-scale Point Clouds. In Proceedings of the 2019 IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

13. Liu, X.; Qi, C.R.; Guibas, L.J. FlowNet3D: Learning Scene Flow in 3D Point Clouds. In Proceedings of the 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 529–537. [CrossRef]

14. Glira, P.; Pfeifer, N.; Briese, C.; Ressl, C. Rigorous Strip Adjustment of Airborne Laserscanning Data Based on the ICP Algorithm.
ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2015, II-3/W5, 73–80. [CrossRef]

15. Theiler, P.W.; Wegner, J.D.; Schindler, K. Globally consistent registration of terrestrial laser scans via graph optimization. ISPRS J.
Photogramm. Remote. Sens. 2015, 109, 126–138. [CrossRef]

16. Brown, B.; Rusinkiewicz, S. Global Non-Rigid Alignment of 3-D Scans. ACM Trans. Graph. 2007, 26, 1–9. [CrossRef]
17. Ressl, C.; Pfeifer, N.; Mandlburger, G. Applying 3D affine transformation and least squares matching for airborne laser scanning

strips adjustment without GNSS/IMU trajectory data. In Proceedings of the ISPRS Workshop Laser Scanning 2011, Calgary,
Canada, 29–31 August 2011.

18. Myronenko, A.; Song, X.; Carreira-Perpinan, M. Non-rigid point set registration: Coherent point drift. Adv. Neural Inf.
Process. Syst. 2006, 19, 1009–1016.

19. Liang, L.; Wei, M.; Szymczak, A.; Petrella, A.; Xie, H.; Qin, J.; Wang, J.; Wang, F.L. Nonrigid iterative closest points for registration
of 3D biomedical surfaces. Opt. Lasers Eng. 2018, 100, 141–154. [CrossRef]

20. Qin, Z.; Yu, H.; Wang, C.; Guo, Y.; Peng, Y.; Xu, K. Geometric Transformer for Fast and Robust Point Cloud Registration.
arXiv 2022. [CrossRef]

21. Toth, C.K. Strip Adjustment and Registration. In Topographic Laser Ranging and Scanning-Principles and Processing; Shan, J.,
Toth, C.K., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 235–268.

22. Lichti, D.D. Error modelling, calibration and analysis of an AM–CW terrestrial laser scanner system. ISPRS J. Photogramm.
Remote. Sens. 2007, 61, 307–324. [CrossRef]

23. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE
International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278.

24. Zhang, J.; Singh, S. Visual-lidar odometry and mapping: Low-drift, robust, and fast. In Proceedings of the 2015 IEEE International
Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2174–2181.

25. Glira, P. Hybrid Orientation of LiDAR Point Clouds and Aerial Images. PhD Thesis, TU Wien, Vienna, Austria, 2018.
26. Chui, H.; Rangarajan, A. A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 2003, 89, 114–141.

[CrossRef]
27. Fan, A.; Ma, J.; Tian, X.; Mei, X.; Liu, W. Coherent Point Drift Revisited for Non-Rigid Shape Matching and Registration.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
18–24 June 2022; pp. 1424–1434.

28. Keszei, A.P.; Berkels, B.; Deserno, T.M. Survey of non-rigid registration tools in medicine. J. Digit. Imaging 2017, 30, 102–116.
[CrossRef] [PubMed]

29. Dai, M.; Xiao, G.; Fiondella, L.; Shao, M.; Zhang, Y.S. Deep Learning-Enabled Resolution-Enhancement in Mini- and Regular
Microscopy for Biomedical Imaging. Sens. Actuators A Phys. 2021, 331, 112928. [CrossRef] [PubMed]

30. Ressl, C.; Kager, H.; Mandlburger, G. Quality Checking of ALS Projects using Statistics of Strip Differences. In Proceedings of the
International Society for Photogrammetry and Remote Sensing 21st Congress, Beijing, China, 3–7 July 2008; Volume XXXVII.
Part B3b, pp. 253–260.

31. Glira, P.; Pfeifer, N.; Mandlburger, G. Rigorous Strip adjustment of UAV-based laserscanning data including time-dependent
correction of trajectory errors. Photogramm. Eng. Remote. Sens. 2016, 82, 945–954. [CrossRef]

32. Glira, P.; Pfeifer, N.; Mandlburger, G. Hybrid Orientation of Airborne Lidar Point Clouds and Aerial Images. ISPRS Ann.
Photogramm. Remote. Sens. Spat. Inf. Sci. 2019, 4, 567–574. [CrossRef]

33. Glennie, C. Rigorous 3D error analysis of kinematic scanning LIDAR systems. J. Appl. Geod. 2007, 1, 147–157. [CrossRef]
34. Habib, A.; Rens, J. Quality assurance and quality control of Lidar systems and derived data. In Proceedings of the Advanced

Lidar Workshop, University of Northern Iowa, Cedar Falls, IA, USA, 7–8 August 2007.

http://dx.doi.org/10.1155/2021/9953910
http://dx.doi.org/10.1109/TPAMI.2015.2513405
http://www.ncbi.nlm.nih.gov/pubmed/26731638
http://dx.doi.org/10.1016/j.vrih.2020.05.002
http://dx.doi.org/10.1109/CVPR.2019.00062
http://dx.doi.org/10.5194/isprsannals-II-3-W5-73-2015
http://dx.doi.org/10.1016/j.isprsjprs.2015.08.007
http://dx.doi.org/10.1145/1276377.1276404
http://dx.doi.org/10.1016/j.optlaseng.2017.08.005
http://dx.doi.org/10.48550/ARXIV.2202.06688
http://dx.doi.org/10.1016/j.isprsjprs.2006.10.004
http://dx.doi.org/10.1016/S1077-3142(03)00009-2
http://dx.doi.org/10.1007/s10278-016-9915-8
http://www.ncbi.nlm.nih.gov/pubmed/27730414
http://dx.doi.org/10.1016/j.sna.2021.112928
http://www.ncbi.nlm.nih.gov/pubmed/34393376
http://dx.doi.org/10.14358/PERS.82.12.945
http://dx.doi.org/10.5194/isprs-annals-IV-2-W5-567-2019
http://dx.doi.org/10.1515/jag.2007.017

Remote Sens. 2023, 15, 5348 31 of 32

35. Kager, H. Discrepancies between overlapping laser scanner strips–simultaneous fitting of aerial laser scanner strips. Int. Arch.
Photogramm. Remote. Sens. Spat. Inf. Sci. 2004, 35, 555–560.

36. Filin, S.; Vosselman, G. Adjustment of airborne laser altimetry strips. ISPRS Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2004,
XXXV, B3.

37. Ressl, C.; Mandlburger, G.; Pfeifer, N. Investigating adjustment of airborne laser scanning strips without usage of GNSS/IMU
trajectory data. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2009, 38, 195–200.

38. Csanyi, N.; Toth, C.K. Improvement of lidar data accuracy using lidar-specific ground targets. Photogramm. Eng. Remote. Sens.
2007, 73, 385–396. [CrossRef]

39. Vosselman, G.; Maas, H.G. Adjustment and Filtering of Raw Laser Altimetry Data. In Proceedings of the OEEPE Workshop on
Airborne Laserscanning and Interferometric SAR for Detailed Digital Terrain Models, Stockholm, Sweden, 1–3 March 2001.

40. Förstner, W.; Wrobel, B. Photogrammetric Computer Vision—Statistics, Geometry, Orientation and Reconstruction; Springer:
Berlin/Heidelberg, Germany, 2016. [CrossRef]

41. Zampogiannis, K.; Fermüller, C.; Aloimonos, Y. Topology-Aware Non-Rigid Point Cloud Registration. IEEE Trans. Pattern Anal.
Mach. Intell. 2021, 43, 1056–1069. [CrossRef] [PubMed]

42. Tam, G.K.; Cheng, Z.Q.; Lai, Y.K.; Langbein, F.C.; Liu, Y.; Marshall, D.; Martin, R.R.; Sun, X.F.; Rosin, P.L. Registration of 3D Point
Clouds and Meshes: A Survey from Rigid to Nonrigid. IEEE Trans. Vis. Comput. Graph. 2013, 19, 1199–1217. [CrossRef] [PubMed]

43. Deng, B.; Yao, Y.; Dyke, R.M.; Zhang, J. A Survey of Non-Rigid 3D Registration. Comput. Graph. Forum 2022, 41, 559–589.
[CrossRef]

44. Holden, M. A review of geometric transformations for nonrigid body registration. IEEE Trans. Med. Imaging 2007, 27, 111–128.
[CrossRef]

45. Li, W.; Zhao, S.; Xiao, X.; Hahn, J.K. Robust Template-Based Non-Rigid Motion Tracking Using Local Coordinate Regularization.
In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA,
1–5 March 2020; pp. 390–399.

46. Christensen, G.E.; Rabbitt, R.D.; Miller, M.I. 3D brain mapping using a deformable neuroanatomy. Phys. Med. Biol. 1994,
39, 609–618. [CrossRef]

47. Thirion, J.P. Image matching as a diffusion process: An analogy with Maxwell’s demons. Med. Image Anal. 1998, 2, 243–260.
[CrossRef]

48. Szeliski, R.; Lavallée, S. Matching 3-D anatomical surfaces with non-rigid deformations using octree-splines. Int. J. Comput. Vis.
1994, 18, 171–186. [CrossRef]

49. Sumner, R.W.; Schmid, J.; Pauly, M. Embedded deformation for shape manipulation. ACM Trans. Graph. 2007, 26, 80–88.
[CrossRef]

50. Huang, Q.X.; Adams, B.; Wicke, M.; Guibas, L.J. Non-Rigid Registration Under Isometric Deformations. Comput. Graph. Forum
2008, 27, 1449–1457. [CrossRef]

51. Innmann, M.; Zollhöfer, M.; Nießner, M.; Theobalt, C.; Stamminger, M. VolumeDeform: Real-Time Volumetric Non-rigid
Reconstruction. arXiv 2016, arXiv:1603.08161. https://doi.org/10.48550/arXiv.1603.08161.

52. Allen, B.; Curless, B.; Popovic, Z. The space of human body shapes: Reconstruction and parameterization from range scans.
ACM Trans. Graph. 2003, 22, 587–594. [CrossRef]

53. Yoshiyasu, Y.; Ma, W.C.; Yoshida, E.; Kanehiro, F. As-Conformal-As-Possible Surface Registration. Comput. Graph. Forum 2014, 33,
1–11. [CrossRef]

54. Newcombe, R.A.; Fox, D.; Seitz, S.M. DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time. In
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015;
pp. 343–352.

55. Yu, T.; Zheng, Z.; Guo, K.; Zhao, J.; Dai, Q.; Li, H.; Pons-Moll, G.; Liu, Y. DoubleFusion: Real-Time Capture of Human
Performances with Inner Body Shapes from a Single Depth Sensor. In Proceedings of the 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7287–7296.

56. Chang, W.; Zwicker, M. Automatic Registration for Articulated Shapes. Comput. Graph. Forum 2008, 27, 1459–1468. [CrossRef]
57. Yuille, A.; Grzywacz, N. The Motion Coherence Theory. In Proceedings of the 1988 Second International Conference on Computer

Vision, Tampa, FL, USA, 5–8 December 1988; pp. 344–353. [CrossRef]
58. Yamazaki, S.; Kagami, S.; Mochimaru, M. Non-rigid Shape Registration Using Similarity-Invariant Differential Coordinates. In

Proceedings of the 2013 International Conference on 3D Vision, Seattle, WA, USA, 29 June–1 July, 2013; pp. 191–198.
59. Mohr, A.; Gleicher, M. Building efficient, accurate character skins from examples. ACM Trans. Graph. 2003, 22, 562–568. [CrossRef]
60. Ge, X. Non-rigid registration of 3D point clouds under isometric deformation. ISPRS J. Photogramm. Remote. Sens. 2016,

121, 192–202. [CrossRef]
61. Lekien, F.; Marsden, J. Tricubic interpolation in three dimensions. Int. J. Numer. Methods Eng. 2005, 63, 455–471. [CrossRef]
62. Calvetti, D.; Reichel, L. Tikhonov regularization of large linear problems. BIT Numer. Math. 2003, 43, 263–283. [CrossRef]
63. Mandlburger, G.; Hauer, C.; Wieser, M.; Pfeifer, N. Topo-Bathymetric LiDAR for Monitoring River Morphodynamics and Instream

Habitats—A Case Study at the Pielach River. Remote. Sens. 2015, 7, 6160–6195. [CrossRef]
64. Vizzo, I.; Guadagnino, T.; Mersch, B.; Wiesmann, L.; Behley, J.; Stachniss, C. KISS-ICP: In Defense of Point-to-Point ICP—Simple,

Accurate, and Robust Registration If Done the Right Way. IEEE Robot. Autom. Lett. 2023, 8, 1029–1036. [CrossRef]

http://dx.doi.org/10.14358/PERS.73.4.385
http://dx.doi.org/10.1007/978-3-319-11550-4
http://dx.doi.org/10.1109/TPAMI.2019.2940655
http://www.ncbi.nlm.nih.gov/pubmed/31514126
http://dx.doi.org/10.1109/TVCG.2012.310
http://www.ncbi.nlm.nih.gov/pubmed/23661012
http://dx.doi.org/10.1111/cgf.14502
http://dx.doi.org/10.1109/TMI.2007.904691
http://dx.doi.org/10.1088/0031-9155/39/3/022
http://dx.doi.org/10.1016/S1361-8415(98)80022-4
http://dx.doi.org/10.1007/BF00055001
http://dx.doi.org/10.1145/1276377.1276478
http://dx.doi.org/10.1111/j.1467-8659.2008.01285.x
https://doi.org/10.48550/arXiv.1603.08161
http://dx.doi.org/10.1145/882262.882311
http://dx.doi.org/10.1111/cgf.12451
http://dx.doi.org/10.1111/j.1467-8659.2008.01286.x
http://dx.doi.org/10.1109/CCV.1988.590011
http://dx.doi.org/10.1145/882262.882308
http://dx.doi.org/10.1016/j.isprsjprs.2016.09.009
http://dx.doi.org/10.1002/nme.1296
http://dx.doi.org/10.1023/A:1026083619097
http://dx.doi.org/10.3390/rs70506160
http://dx.doi.org/10.1109/LRA.2023.3236571

Remote Sens. 2023, 15, 5348 32 of 32

65. Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the
Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote. Sens. 2013, 82, 10–26. [CrossRef]

66. Puttonen, E.; Lehtomäki, M.; Litkey, P.; Näsi, R.; Feng, Z.; Liang, X.; Wittke, S.; Pandžić, M.; Hakala, T.; Karjalainen, M.; et al.
A Clustering Framework for Monitoring Circadian Rhythm in Structural Dynamics in Plants From Terrestrial Laser Scanning
Time Series. Front. Plant Sci. 2019, 10, 486. [CrossRef] [PubMed]

67. Zlinszky, A.; Molnár, B.; Barfod, A.S. Not All Trees Sleep the Same—High Temporal Resolution Terrestrial Laser Scanning Shows
Differences in Nocturnal Plant Movement. Front. Plant Sci. 2017, 8, 1814. [CrossRef]

68. Wang, D.; Puttonen, E.; Casella, E. PlantMove: A tool for quantifying motion fields of plant movements from point cloud time
series. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102781. [CrossRef]

69. Alcantarilla, P.F.; Nuevo, J.; Bartoli, A. Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces. In Proceedings
of the British Machine Vision Conference, Bristol, UK, 9–13 September 2013.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.isprsjprs.2013.04.009
http://dx.doi.org/10.3389/fpls.2019.00486
http://www.ncbi.nlm.nih.gov/pubmed/31110511
http://dx.doi.org/10.3389/fpls.2017.01814
http://dx.doi.org/10.1016/j.jag.2022.102781

	Introduction
	Variants of Point Cloud Registration Algorithms
	Motivation for Nonrigid Transformations
	Main Contributions
	Structure of the Paper

	The Point Cloud Registration Problem
	Related Work in the Context of Nonrigid Point Cloud Registration
	Continuity Model
	Local Transformation Model
	Control Structure

	Method
	The Nonrigid Transformation Model
	Regularization
	A Synthetic 2D Example

	Implementation Details
	Experimental Results
	Use Case 1: Airborne Laser Scanning (ALS)—Alignment of Historical Data
	Use Case 2: Airborne Laser Scanning (ALS)—Post-Strip-Adjustment Refinement
	Use Case 3: Low-Cost Mobile Laser Scanning (MLS)
	Use Case 4: Terrestrial Laser Scanning (TLS)
	Use Case 5: Dense Optical Flow
	Use Case 6: Popular Datasets

	Conclusions
	References

