
Kollaborative Modellierung in
Echtzeit mit Eclipse GLSP

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Markus Hegedüs, BSc
Matrikelnummer 01526730

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dipl.-Wirtsch.Inf.Univ. Dr.rer.pol. Dominik Bork
Mitwirkung: Univ.Lektor Dipl.-Ing. Dr.techn. Philip Langer

Wien, 7. Dezember 2023
Markus Hegedüs Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Real-time Collaborative Modeling
with Eclipse GLSP

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Markus Hegedüs, BSc
Registration Number 01526730

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dipl.-Wirtsch.Inf.Univ. Dr.rer.pol. Dominik Bork
Assistance: Univ.Lektor Dipl.-Ing. Dr.techn. Philip Langer

Vienna, 7th December, 2023
Markus Hegedüs Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Markus Hegedüs, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 7. Dezember 2023
Markus Hegedüs

v

Danksagung

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mich während dem
Schaffen dieser Diplomarbeit unterstützt und motiviert haben.

Zuerst möchte ich meinen aufrichtigen Dank meinen Betreuern aussprechen: Ass. Prof.
Dipl.-Wirtsch.Inf.Univ. Dr.rer.pol. Dominik Bork und Univ.Lektor Dipl.-Ing. Dr.techn.
Philip Langer. Ihre engagierte Betreuung und fachkundige Begleitung während meiner Di-
plomarbeit haben einen entscheidenden Beitrag zum erfolgreichen Abschluss dieser Arbeit
geleistet. Für ihre hilfreichen Anregungen und die konstruktive Kritik, die maßgeblich
zur Verbesserung meiner Arbeit beigetragen haben, bin ich aufrichtig dankbar.

Ein besonderer Dank gebührt allen Teilnehmern und Teilnehmerinnen meiner Evaluie-
rungstests, ohne die, diese Arbeit nicht hätte entstehen können. Mein Dank gilt ihrer
Informationsbereitschaft und ihren interessanten Beiträgen und Antworten auf meine
Fragen.

Ebenfalls möchte ich mich bei meinen Kommilitonen Matthias Hofstätter, Marco We-
ber, Franz Kienegger und Philipp Fritz bedanken, mit denen ich gemeinsam fast alle
Lehrveranstaltungen während des Studiums erledigt habe. Ein großer Dank gilt meinen
Freunden, die mir das Studium erheblich erleichtert haben. Darüber hinaus möchte ich
meiner Freundin Emma für das Korrekturlesen meiner Diplomarbeit danken.

Zum Abschluss möchte ich meinen herzlichen Dank an meine Eltern, Großeltern und
Geschwister richten, die mir durch ihre Unterstützung mein Studium ermöglichten und
stets an meiner Seite waren.

Ich widme diese Diplomarbeit meinem Opa „Didi“ und meiner Oma „Baba“. Danke für
alles!

Markus Hegedüs

vii

Kurzfassung

Der PC ist aus unserem Arbeitsumfeld nicht mehr wegzudenken. Er unterstützt uns
während der Schul- und Studienzeit, beim Arbeiten, sowie auch in der Freizeit. Durch
die Corona Pandemie ist diese Abhängigkeit nochmal enorm gestiegen. Viele Unterrichts-
stunden wurden digital abgehalten, Freunde haben sich über Videotelefonie ausgetauscht,
und viele von uns haben gänzlich remote gearbeitet. Jedoch bringt die dezentralisierte
Verteilung einige Schwierigkeiten und Probleme mit sich, wie unter anderem die Gestal-
tung einer effizienten Zusammenarbeit mehrerer Personen. Hier kommt kollaboratives
Arbeiten ins Spiel.

Im Kontext der Informatik, bedeutet kollaboratives Arbeiten, dass mehrere Personen,
gleichzeitig an einem Dokument tätig sind. Dies gilt für textuelle, sowie für alle weiteren
Arten von Dokumenten. Die folgende Diplomarbeit konzentriert sich auf Diagramme,
sprich grafische Dokumente, welche mit GLSP (Graphical Language Server Platform)
interagieren. GLSP bietet eine Plattform, welche ein Protokoll bereitstellt, mit dem Tools
für die Modellierung von Diagrammen entwickelt werden können. Diese Arbeit soll das
GLSP Protokoll erweitern, so dass es möglich ist, kollaborativ in Echtzeit an Diagrammen
zu modellieren.

Das Untersuchen von existierenden kollaborativen Editoren, soll eine gute Grundlage
schaffen, mit der klare Anforderungen für die Lösung definiert werden können. Die
aufgestellten Fragen beschäftigen sich damit, wie GLSP erweitert werden muss, so dass es
für kollaborative Zwecke genutzt werden kann. Des weiteren soll die Untersuchung einen
Grundstein legen, um eine gute Benutzerfreundlichkeit innerhalb einer kollaborativen
Session zu formen. Ein Prototyp, auf Basis des Workflow-Tools, soll das ausgearbeitete
Konzept umsetzen und einen ersten Einblick in kollaboratives Modellieren mit GLSP
bieten. Ebenfalls soll eine Evaluierung zeigen, dass es möglich ist, die Lösung ganz einfach
auf andere Modellierungssprachen anzuwenden. Zum Schluss soll ein umfangreicher
Echtzeittest die Lösung auf Performance, Benutzerfreundlichkeit und Zuverlässigkeit
überprüfen.

ix

Abstract

The PC has become an integral part of our working environment. It supports us at
school and university, at work and in our free time. The coronavirus pandemic has
increased this dependency enormously. Many lessons have been held remotely, friends
have communicated via video calls and many of us have worked completely from home.
However, working from home also brings a number of difficulties and problems with it,
for example how several people can work together efficiently on the same thing. This is
where collaborative working starts.

In the context of IT, collaborative work means that several people are working on a
document at the same time. This applies to textual documents, as well as all other
kinds of documents. This diploma thesis is concentrating on diagrams, i.e. graphical
documents that interact with GLSP (Graphical Language Server Platform). GLSP offers
a platform, which provides a protocol, to develop modeling tools for diagrams. This
work is intended to extend the GLSP protocol, so it will provide collaborative real-time
modeling on diagrams.

Analyzing existing collaborative editors should provide a good base upon to define clear
requirements for the solution. The raised questions deal with how GLSP can be extended
in order to use it for collaborative purposes. Furthermore, the investigation should lay the
foundation for creating a good user experience within a collaborative session. A prototype
based on the Workflow tool aims to implement the developed concept and provide a first
insight into collaborative modeling with GLSP. An evaluation should also demonstrate
that it is easily possible to apply the prototype to other modeling languages. Finally, a
comprehensive real-time test will check the solution for performance, user-friendliness
and reliability.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation & Problem Statement . 1
1.2 Aim of the Work . 2
1.3 Methodology . 3
1.4 Structure . 4

2 Foundations 7
2.1 Visual Studio Code . 7
2.2 Collaborative Editing . 10
2.3 Visual Studio Live Share . 10
2.4 Language Server Protocol (LSP) . 13
2.5 Graphical Language Server Platform (GLSP) 17

3 Related Work 27
3.1 Textual collaborative document editing tools 27
3.2 Graphical collaborative document editing tools 35

4 Concept 45
4.1 Requirements . 45
4.2 Single vs. multi GLSP language server architecture 47
4.3 Challenges . 51

5 Prototype 63
5.1 Extend the GLSP protocol . 63
5.2 Extend the GLSP server . 64
5.3 Extend the GLSP VS Code integration 69
5.4 Extend the GLSP client . 80

xiii

6 Evaluation 89
6.1 Applying collaborative modeling to the BIGUML VS Code extension . 89
6.2 Real-time usability . 93

7 Conclusion 99
7.1 Summary . 99
7.2 Future Work . 101

List of Figures 103

List of Tables 105

List of Listings 108

Bibliography 109

CHAPTER 1
Introduction

This chapter gives an insight into the motivation and the problem statement of the thesis.
Furthermore, it defines the aim of the thesis. The research questions and the selected
methodological approach are also defined and explained at this point. At the end there
is an overview of all chapters of this diploma thesis.

1.1 Motivation & Problem Statement
The way we use our PC has changed a lot over the years. Thanks to modern technologies,
it is almost entirely possible (e.g. for people who work in information technology) to
perform their work remotely. The Corona pandemic has intensified this development
even more.

An important technology that is often used in the course of remote working is collaborative
working. A collaborative working environment deals with supporting eProfessionals to
work together. The term collaborative software or also called groupware was already
defined in 1991 by Ellis, Gibbs and Rhein: "computer-based systems that support groups
of people engaged in a common task (or goal) and that provide an interface to a shared
environment" [EGR91]. Instant messenger, software for video conferencing, application
sharing, collaborative editing, etc. help to accomplish this. Collaborative editing means
that several people can work on the same thing at the same time and changes are shown
to all other people immediately [TRA+12]. So it is possible to work together on a source
file, on a wiki entry, on a video edit, or whatever. This diploma thesis will deal specifically
with collaborative editing on diagrams. Therefore this research should give an insight on
how it is possible to extend existing modeling tools with collaborative functionality.

A study [MBWM23] has shown that working with tools improves the use of models and
modeling languages. It is important that these tools are easy to use, have no accidental
complexity and good usability. However, existing modeling tools often have the problem

1

1. Introduction

that users struggle remembering the context information and therefore they cannot
identify and fix errors and inconsistencies [PA18]. Tools should be as easy to use as
possible, because it is assumed that in the future end users will design and manage models
more and more themselves [SFB+14]. The support of modeling tools also increases the
productivity of modeling. Integration with information systems should enable users to
adapt the system structure and the behavior of the systems safely and conveniently
[FS09]. Furthermore, tools that support collaborative modeling also enhance productivity
[Rit10].

The Language Server Protocol (LSP) [lsp] was developed by Microsoft to make source
code editors and IDEs (integrated development environments) independent of program-
ming languages. The JSON-RPC based protocol is used for communication between
editors/IDEs and language servers. It supports various features like code completion,
syntax highlighting, refactoring, code navigation, etc.

However, LSP deals exclusively with textual languages. To make graphical modeling
tools also independent of the modeling language, the Graphical Language Server Protocol
(GLSP) was introduced by Eclipse Foundation. GLSP defines a language server protocol
for diagrams of all kinds. Eclipse GLSP is a framework used to create custom diagram
editors on the web or in the cloud. It is possible to integrate these editors into a web-
based IDE or to host them standalone. However, this protocol is not yet designed to be
integrated into a collaborative working environment. The general goal of this work is to
solve this problem and make GLSP collaborative friendly [gls].

1.2 Aim of the Work
The aim of this work is to extend the Eclipse GSLP protocol so that it can also be used
for collaborative purposes. Eclipse GLSP not only provides the protocol, it also provides
a complete core library. This consists of a GLSP server, GLSP client, and integration
projects in Eclipse Theia and Visual Studio Code. The server and client communicate
with each other using actions and operations, which either modify the model or control
the UI. GLSP server is a Java backend that holds the models, edits them, and then writes
the associated files to the file system. GLSP client is a Node.js backend that controls the
diagram editor. The two integration libraries for Eclipse Theia and Visual Studio Code
are extensions to the GLSP client to simplify integration with the respective IDEs.

All these libraries are to be extended with the respective functionality to enable collabo-
rative working. First and foremost, the goal will be to analyze the complete framework
to see which method is the best to accomplish the synchronization of the actions and the
model. First of all there is the possibility to implement the complete synchronization by
yourself. Furthermore there is the option in Visual Studio Code to use their Live Share
Server as support. This would solve some issues, such as sharing the workspace, out of
the box.

Based of the information gained from the analysis, a prototype should be created, which

2

1.3. Methodology

performs initial synchronizations between several users and also visually displays these
on the screen of the other users. An important goal of this diploma thesis will be to
display one user’s actions on the screen of other users in a clear and self-explanatory
way. Afterwards a complete implementation of the prototype should enable the most
important features of GLSP for collaborative work.

For evaluation purposes, the prototype will be applied to another modeling language.
This should show that it can simply be used in other modeling platforms. By having a
usability test with a number of test participants, the test should find out which strengths
and weaknesses the first collaborative features have. The usability, performance and
reliability of the prototype will be tested to gather information for further iterations of
the implementation.

The following three research questions will be developed in the course of this diploma
thesis and contribute to the validation of this work:

• RQ1: What is the best possibility of the already existing implemen-
tation of the Eclipse GLSP framework to equip it with collaborative
functionalities?

– This question is supposed to show different possibilities how it is feasible to
extend the existing GLSP framework with collaborative functionalities. It
should also determine which of these possibilities is the best for the prototype.

• RQ2: What is an appropriate means to achieve a reliable and conflict-free
synchronization of performed actions?

– To ensure collaborative working is feasible, it is essential that all performed
actions are processed in a reliable and conflict-free way.

• RQ3: Which representation of the performed actions shows them to the
other users in the best possible and self-explanatory way?

– An important part of this work is to find out how the prototype can present
performed actions to other users in such a way that they can understand and
comprehend them. Collaborative work is only possible efficiently if all users of
a collaborative session understand what is happening in it and where exactly
everyone is currently working.

1.3 Methodology
To implement a suitable solution and answer the research questions the Design Science
Research (DSR) [ARHR04] methodological approach with following methods will be
used:

1. Library & Framework Analysis

3

1. Introduction

– In order to understand how existing libraries and frameworks work, they must
be analysed in advance. To achieve this, it is primarily important that the
GLSP framework and the VS Live Share API are characterised and investigated
in detail. This is needed to answer RQ1.

2. Collaboration Literature & Requirements Engineering

– Collaboration functionality is already built into many existing tools. It is used
in both textual and graphical editors. This method will draw conclusions
from this and potentially integrate some already existing and well-established
functionalities. This helps to answer the research questions RQ2 and RQ3.
Based on the accumulated knowledge, the requirements for the artifact will
be determined.

3. Conceptualization

– Before the prototype, which represents the artifact, can actually be developed,
a concept needs to be created. This concept is designed based on the two
previous methods and should describe the prototype in an abstract way.

4. Prototyping

– In the next phase, a prototype is developed from the designed concept. This
prototype extends the GLSP framework to include collaborative functionality.
Developed functionality has to be evaluated and adapted in periodic cycles
with the authors of GLSP. This prototype represents the artifact of the process.

5. Evaluation

– The completed feature must finally be evaluated in two phases. First, it must
be tested whether it can also be applied to modeling languages other than the
one of the prototype, and it should also be tested with a group of test persons
to see if it meets the usability requirements.

1.4 Structure
The diploma thesis consists of the following chapters:

1. Introduction

– The current chapter gives an introduction to the thesis and describes research
questions and applied methods.

2. Foundations

4

1.4. Structure

– This chapter will explain the fundamentals necessary to understand the prob-
lem. A description of Visual Studio Code, Visual Studio Live Share, Collabo-
rative Editing, Language Server Protocol (LSP) and the Graphical Language
Server Platform (GLSP) is important for the whole thesis and the development
of the prototype.

3. Related Work

– An overview of existing collaborative editors provides a basis for determining
the requirements of the prototype. Textual as well as graphical editors will be
compared and analysed for different characteristics.

4. Concept

– In this chapter, a concept for the prototype will be designed based on the
requirements. This concept should define the protoype’s extension of the
GLSP protocol on an abstract level.

5. Prototype

– Here the current implementation of the prototype based on the previously
designed concept is presented. Code listings and screenshots of the current
solution are shown here.

6. Evaluation

– The implemented prototype will finally be evaluated. An important point is to
check if the prototype can also be implemented to other modeling languages.
This chapter also lists the results of two real-time usability tests.

7. Conclusion

– Finally, this chapter will summarize the whole work by presenting answers of
the research questions and provide an outlook for the future, where possible
improvements to the solution will be described.

5

CHAPTER 2
Foundations

The following chapter presents the foundations of this thesis. That includes an explanation
of Visual Studio Code (VS Code). This research explores especially on the GLSP
implementation in VS Code. Furthermore, this chapter covers collaborative editing,
which is essential for the rest of this thesis. This technique will be implemented in the
next section: Visual Studio Live Share (VS Live Share). Since the existing GLSP tool is
integrated into VS Code, VS Live Share is a perfect option as a collaborative framework.
Language Server Protocol (LSP) and Graphical Language Server Platform (GLSP), which
is based on LSP, are introduced at the end.

2.1 Visual Studio Code
Visual Studio Code is a source code editor that is available for various operating systems
such as Windows, macOS and Linux. Visual Studio Code, also referred to as VS Code,
was created by Microsoft. VS Code provides built-in support for programming languages
such as JavaScript, TypeScript, Node.js. VS Code provides features like debugging,
refactoring, syntax highlighting, code jumping out of the box. VS Code also offers the
possibility to add other programming languages like C++, C#, Java, Python, PHP, Go,
.NET via plugins, also called extensions. VS Code is largely an open source project and
provides regular updates to its users. VS Code also has one of the largest communities
on Github worldwide [vscb].

An important point of VS Code is the extensibility. The extension API offers the user
the possibility to customize VS Code almost completely. Here, from the user interface
to the editing can be customized pretty much everything. Furthermore, many main
functionalities of VS Code are actually extensions that have been developed via the
extension API [vscc].

Using the Extension API, a developer can customize the following areas:

7

2. Foundations

• Theming: By means of a color or file icon theme the look of VS Code can be
customized.

• Extending the Workbench: Custom components and views can be added in
the UI.

• Webview: A webview can be created to display custom webpages developed with
HTML, CSS and JavaScript.

• Language Extension: New programming languages can be added.

• Debugging: Add debugging functionality for a specific runtime.

2.1.1 Webview API
The Webview API [vscd] allows the developer to build a fully customizable webview
into VS Code. Also the already provided Markdown extension uses the Webview API
to display Markdown previews. The extension determines what is displayed in the
webview as an iframe. HTML elements are rendered in the webview and the webview
communicates with the extension via a message pipeline. There are three ways to build
webviews into VS Code:

• The easiest way to create a webview is to use the createWebviewPanel method.
Webview panels are displayed here as their own editors. So it is possible to display
and visualize own UI components.

• Another option is to use a custom editor over the Customer Editor API. By means
of a custom editor the developer can write own editors to edit every possible file in
the workspace.

• And it is also possible to include webview views in sidebars or panel areas.

2.1.2 Custom Editor API
A custom editor [vsca] allows the developer to replace the standard VS Code editor with
a custom editor for certain files. There are two parts of a custom editor. The first part is
the view with which the user interacts and the second part is a document model, which
is used by the extension to interact with the associated resource. The view part uses a
webview to render the UI. This allows it to design the user interface using HTML, CSS
and JavaScript. An important point is that the webview cannot access the VS Code API
directly, but has to communicate via messages to VS Code and back as well. It is also
possible that one custom editor opens multiple editor view instances for one document.
The document model describes how the extension understands the resource or the file
and how it has to work with it.

A distinction is made between customer text editors and custom editors. The biggest
difference is how the document model looks like. A CustomTextEditorProvider

8

2.1. Visual Studio Code

uses TextDocument as its data model. A CustomTextEditor can be used for all
text based file types and are easier to implement, because VS Code already provides
a lot of features to work with text based files. With a CustomEditorProvider the
extension defines the form of the document model itself. Binary file types can take
a CustomEditor to edit them. But of course this makes it more complex for the
extension, because it has to take care of much more and implement the features itself. A
CustomEditor can also be used in PreviewMode, which is then only used to display
binary file types. This reduces the complexity of course.

To activate a custom editor, there is a so-called contribution point, which is there to tell
VS Code about all custom editors. A contribution point can easily be inserted in the
package.json. There are several attributes like displayName of the custom editor,
or the filenamePattern. So VS Code can determine for which files which custom
editor should be called instead of the default editor.

An example of a contribution point to activate a custom editor could look like this:

1 {
2 ...
3 "contributes": {
4 "customEditors": [
5 {
6 "viewType": "catEdit.catScratch",
7 "displayName": "Cat Scratch",
8 "selector": [{
9 "filenamePattern": "*.cscratch"}

10],
11 "priority": "default"
12 }]
13 }
14 ...
15 }

Listing 2.1: Example of a conribution point for a custom editor in package.json file.

This example at Listing 2.1 shows how a custom editor in package.json file is registered.
For this purpose, one or more selectors are defined in line 8. The filenamePattern
is one way to define a selector. In this example in line 9 all files with the file type
.cscratch are opened with this CustomEditor. The viewType is a unique identifier
for this custom editor. The implementation of the custom editor must also provide this
unique type to create the mapping between contribution point and implementation. VS
Code uses the displayName defined in line 9 to display the custom editor on the screen
in various cases. VS Code uses the priority field to indicate which custom editor
should be opened if there are multiple registered custom editors for a given file.

9

2. Foundations

2.2 Collaborative Editing
The introduction of the mobile Internet has led to more and more people working together
on all sorts of things using collaborative tools [EG89]. With the help of collaborative
systems, groups of people spread all over the globe can communicate, work and exchange
information with each other. Collaborative editing is the process of several people working
on a document at the same time. There are different types of collaborative editing systems
like collaborative text editing, collaborative graphical editing system, and so on [GG96].

Real-time collaboration uses a common protocol to exchange data across multiple users
concurrently. To ensure a consistent view of the shared document, operational transform
is a technique which is applied to the document. With this technique, each user owns
their own copy of the document. When a user broadcasts changes to other users, these
users must transform these changes before executing them. This is to ensure that no
wrong changes are made to the document and that the own state is consistent with the
state of other users [SE98].

A collaborative real-time editor is a software that allows working collaboratively on a
document in an editor. The first collaborative real-time editor was demonstrated by
Douglas Engelbart in 1968 in "The mother of all demos". The first real concrete
tool that supported collaborative editing was Instant Update in 1991, developed by
ONTechnology for Mac OS. Within the tool, users could work together on a document
over LAN on a server [TMGS97].

2.3 Visual Studio Live Share
With Visual Studio Live Share [visa], it is possible for multiple developers to develop
software together and do collaborative editing. Developers can simultaneously edit and
debug a file in real-time, regardless of the programming language. It is easy to share the
current project, host a debugging session, share the terminal, share web applications,
communicate with each other via voice calls and much more.

The big advantage over classic pair programming is that developers can work with each
other using Visual Studio Live Share while keeping their personal editor preferences.
This includes the theme, keybindings, font size and so on. Furthermore, each participant
has an own cursor. Visual Studio Live Share also allows following other users while they
are working, as it shows all the cursors of all participants on the screen. Of course, in
a real-time collaboration session it is also possible to work alone on own parts of the
project. Visual Studio Live Share can be used in the Visual Studio IDE, as well as in
Visual Studio Code or directly in the browser.

2.3.1 Concepts & Features
In a Visual Studio Live Share collaboration session, there is a single collaboration session
host and one or more guests. The host starts the collaboration session and shares the

10

2.3. Visual Studio Live Share

share link with other people. They use this link to join a collaboration session. By
joining the session, these participants automatically become guests. Guests join this
session via an end-to-end encrypted peer-to-peer-connection and obtain access to the
virtual filesystem. A collaboration session host can use all of its tools and services during
the session. A guest, however, has only a selected set of things to do during the session.
These allowed things are enabled by the host. Pretty much all shared content stays on
the host machine and is not shared to the cloud or anywhere else. This increases security
and results in shared content being shared when a guest enters the session. Once the
host ends the session, all shared content is no longer accessible outside the host machine.
Additionally, Visual Studio Live Share also deletes all temporary files created by the
IDE/Editor during a session as soon as the host ends the session. Sharing means that the
host shares the contents of a project or folder with guests. They can access the shared
content via an invitation link. Also not only files are shared, also the debugging can be
shared. In turn, joining means that a guest uses the invitation link to join a collaboration
session. With joining the session, the guest gets access to all shared content unlocked by
the host.

This subsection will also describe the features that come out of the box with Visual
Studio Live Share.

Figure 2.1: Co-editing with multiple participants in a Visual Studio Live Share collabo-
ration session.
Source: https://learn.microsoft.com/en-us/visualstudio/liveshare/
use/coedit-follow-focus-visual-studio-code (Accessed: 2023-05-20)

Co-editing

Co-editing means that a participant of a collaboration session sees all other participants
who are currently in this document when opening a document. The participant also sees
the cursors of all other participants. In this way, the participant also sees selections or
where other participants are currently located in the document. Furthermore, Visual
Studio Live Share visually displays changes made by other participants. Figure 2.1 shows

11

https://learn.microsoft.com/en-us/visualstudio/liveshare/use/coedit-follow-focus-visual-studio-code
https://learn.microsoft.com/en-us/visualstudio/liveshare/use/coedit-follow-focus-visual-studio-code

2. Foundations

three participants in a collaboration session co-editing a document with each other. In
line 9, the cursor of PJ Meyer gets highlighted in purple. From line 13 to line 16, the
selection of participant Amanda Silver gets highlighted in yellow.

Following and focusing

If a participant wants to see what another participant is doing, it is possible to follow
other participants. This means that jumps in the code, between files and so on are
immediately followed. The participant who follows, also sees all the changes of the
participant in focus. It is also possible that all participants follow a single participant
and that this participant transmits all the steps live.

Co-debugging

Sometimes it is very useful if another participant helps debugging an issue. For this
purpose it is quite easy to do collaborative debugging in Visual Studio Live Share. Here
the debugging session is shared with all other guests.

Share server / Share port

The host of the debugging session can also share parts of its application to all guests.
So it is possible that the host shares a port of its web application across the whole
collaboration session. Not only a web application can be shared, but also local databases
or REST endpoints. With this feature a local port of the host machine is shared with all
guests. They can easily access this port on their local machine and communicate with
the application/database/etc. of the host machine via Visual Studio Live Share.

Share terminals

As a host it is also possible to share the terminal with other guests. The terminal can be
shared with other participants in read mode or read-write mode. This means that guests
can also execute commands and read the output of the commands.

Other features

The host can grant or share access to special files or folders to selected guests. There
are also two connection modes: direct and relay. In direct mode, guests connect to the
host without going over the Internet. In relay mode, guests connected to a completely
different network can communicate with the host over the Internet. In auto mode, a
connection attempt is first made via direct mode, and if this fails, Visual Studio Live
Share attempts to make the connection via relay mode. This auto mode is selected by
default by Visual Studio.

12

2.4. Language Server Protocol (LSP)

2.3.2 VS Live Share Extension API
With the VS Live Share Extension API [visb] it is possible to include the features of Live
Share in a Visual Studio extension. For this purpose, it is possible that the own extension
establishes a collaboration session via Visual Studio Live Share and this extension can
use the connection to send messages between participants. Also here, a host shares the
collaboration session and afterwards one or more guests join this collaboration session.

Messaging

Messages are sent across RPC services. This service is shared by the host. The host can
send notifications to all guests using this service. Guests can send notifications to the
host via a proxy or they can also send requests to the host. When a request is sent, the
host responds synchronously with a reply. Notifications do not have a response.

• shareService(): Provides an RPC service to all guests. The named service is
shared by the host and creates a SharedService with the following methods:

– onRequest(): When a request is sent to the service, the callback is executed
and a response is sent back to the requester.

– onNotify(): This callback is called when a notification is sent to this service.
– notify(): This method sends a notification to all listeners.

• getSharedService(): Provides an RPC service to a guest which was provided
by a host. This method returns a SharedServiceProxy with the following
picked methods:

– request(): Sends a request to the service and waits for a response.
– onNotify(): This callback is called when a notification is sent from the

service.
– notify(): This method sends a notification to the service.

URI conversion

Guests can access the host’s workspace via the URI schema vsls:. The path to
a file is then relative to the root workspace. The convertLocalUriToShared or
convertSharedUriToLocal method can be used to convert the URI from one format
to another.

2.4 Language Server Protocol (LSP)
This section describes the Language Server Protocol [Bün19]. Year after year, new
programming languages come onto the market. Furthermore, the number of integrated
development environments is increasing. Many of these IDEs support a large number

13

2. Foundations

of programming languages. Language providers are also interested in supporting as
many IDEs as possible. Concluding this means that if each IDE wants to support each
programming language, the complexity increases to m-times-n (m*n).

To counteract this, the Language Server Protocol (LSP) was designed. The Language
Server Protocol solves those problems by separating language-specific parts from the
integrated development environment.

The Language Server Protocol was driven forward with the development of VS Code
and is one of the reasons for the success of VS Code. LSP benefited a lot from its large
community through its usage at this open-source editor [BL23].

This leads to the fact that programming language specific features like code completion,
Goto definition, refactoring, syntax highlighting are no longer computed in the IDE itself.
Instead, a language-specific server process, which can be developed in any programming
language, takes over these calculations. The server process communicates with a client
via the standardized Language Server Protocol. This client is then integrated into the
IDE, e.g. via an extension. Decoupling the language implementation from the IDE the
complexity leads to the fact that the complexity falls on m-plus-n (m+n). Since the
launch in 2016, already more than 50 programming languages have been developed with
the Language Server Protocol, including Java, TypeScript and COBOL. Also there are
already client integrations for more than 10 IDEs. There are integrations for e.g. IntelliJ,
Eclipse, VS Code.

2.4.1 Architecture of the Language Server Protocol
The protocol is sent in both directions in a server-client architecture. Communication
is performed using the Language Server protocol, which is based on the stateless and
lightweight JSON-RPC. Most implementations run on two different processes on the same
machine. JSON-RPC is designed in such a way that server and client do not necessarily
have to be on different machines.

JSON-RPC is a protocol that defines how a request, response or notification sent between
server and client should look like [jso]:

• Request: A request can be sent by both the client and the server. A request
always expects a response from the other instance. For this purpose, each request
must have a method (string to define which function should be called) and can
have parameters, which can be defined differently depending on the method. An
ID must be included. It is then used so that the caller can map a response message
back to the initial request message.

• Notification: A notification is a special request that does not contain an ID and
therefore does not expect a response. This can also be sent by both client and
server. Of course, the calling instance does not expect a response, but is simply
processed by the other instance.

14

2.4. Language Server Protocol (LSP)

• Response: A response is sent in response to a request and contains the ID that
is sent in the request. It also contains a result if the request was successful or an
error object if the request failed.

Figure 2.2: Communication between language server and client with LSP.
Source: https://www.eclipse.org/community/eclipse_newsletter/
2017/may/article1.php) (Accessed: 2023-11-28)

Figure 2.2 shows two instances communicating with each other. On the left side it displays
the client, which is integrated into the IDE and on the right side it displays the server,
which acts as a language server. Between these two actors either requests, responses or no-
tifications are sent back and forth. In this example, which is shown here, the user opens a
document and thus a textDocument/didOpen notification with parameter document
is sent to the server. Furthermore, the user also edits the document and a textDocu-
ment/didChange notification is sent with parameters: documentURI and changes.
These notifications are then processed by the server. Next, the server sends a notification
with all errors and warnings (textDocument/publishDiagnostics). The user now
wants to execute a Goto definition, sends a request (textDocument/definition)
and receives the location of the request as a response. The client uses this location to
perform a Goto definition in the IDE. Finally the user closes the document and sends a
textDocument/didClose notification with parameter documentURI. So the server
knows that the client has not opened this document anymore.

15

https://www.eclipse.org/community/eclipse_newsletter/2017/may/article1.php)
https://www.eclipse.org/community/eclipse_newsletter/2017/may/article1.php)

2. Foundations

2.4.2 Features of the Language Server Protocol

The Language Server Protocol supports more than 40 different message types in five
operational categories. These categories are general, window, client, workspace and
document. However, not every language and not every editor supports all features of
the Language Server Protocol. Language and editor, use the Capabilities to check
which features are supported. Therefore the initialize request tells the language server the
Capabilities. This subsection will show features that are covered by the Language
Server Protocol.

Code Completion

A code completion request sends the current position of the cursor and the respective
document to the server. The server calculates all possible completion items and sends
them back to the client. If the user then selects a completion from the list, another
request is sent to the server to complete the completion.

Hover

A hover request sent to the server calculates information which should be displayed in a
hover menu. The position is sent to the server and the server returns information like
object information, text formatting, line-breaks, lists or indentations. Figure 2.3, at line
13, shows how a hovering at Person class over Address symbol would look like for
TypeScript language. The hover menu shows all information like definition and attributes
with their types about referencing Address class.

Goto Definitions

With the "Goto Definition Request" the server sends the position of the definition of a
symbol within a document back to the client. Furthermore there is the type "Goto Type
Request" which returns the position where a certain type has been defined. The "Goto
Implementation Request" returns the position of the implementation of a certain symbol.

Find-References

The Find-References request returns a list of all occurrences of a given symbol within
the selected project. This is also calculated using the current cursor position.

Diagnostics

Another important functionality covered by the Language Server Protocol are diagnostics.
Errors and warning messages are calculated on the server and sent to the client. The
task of the client is quite simple, because it is only responsible for displaying them.

16

2.5. Graphical Language Server Platform (GLSP)

Figure 2.3: Hovering over line 13 in Person class to show additional information about
Address class.

2.5 Graphical Language Server Platform (GLSP)

The Graphical Language Server Platform (GLSP) [gls] is an open-source framework
that enables developers to create web-based diagram editors. GLSP is developed by the
Eclipse Foundations. GLSP is built on a client-server architecture and uses a protocol
based on the Language Server Protocol to send data in both directions. The Language
Server Protocol has been adapted to fit graphical modeling and diagram editors. All
important functionalities like loading the model, interpreting, and editing the diagram are
outsourced to a server. This means that editors do not have to worry about these issues.
Furthermore, it is possible that GLSP can be easily integrated into various web-based
editors. GLSP supports platforms like VS Code, Eclipse Theia, Eclipse RCP, standalone
or also web apps.

17

2. Foundations

A GLSP server works as a separate process and can host multiple sessions. It contains all
language-specific content and editing capabilities. In addition, there is always a GLSP
client that communicates with the GLSP server via a JSON-RPC protocol. Furthermore,
a GLSP client can also have multiple sessions, which then interact with the integrated
development environment.

The flexibility of GLSP also allows the deployment of the server to be flexible. In the
standard case, the server and client are deployed on the identical machine. Alternatively,
it is also possible for the server to be hosted on a different machine or, in the case of
multiple servers, for these to be distributed across several machines. Then there is also
the possibility that no server is required and the client has all required knowledge [BLO].

The GLSP server fetches the source model via a JSON file, EMF model or database and
converts it into a graphical model. The graphical model can be serialized and is then
sent to the GLSP client. The GLSP client renders this model in a webview. The client
queries the server to find out which operations can be applied to the diagram. These can
then be applied by the user in the webview to edit the diagram. Examples are adding
new nodes and edges, moving elements, editing labels, etc. When the user performs an
operation a message is sent to the server, which then adjusts the graphical model and
sends an update back to the client. This client then renders the obtained graphical model
in its webview.

2.5.1 Server
A GLSP server can be developed in any programming language, as long as it is possible to
communicate with the client using the JSON-RPC protocol. Eclipse GLSP provides two
frameworks that can be used to develop GLSP servers. These two have been developed
in Java and in TypeScript. Both frameworks are very similar in structure and work
with dependency injection (DI) to initialize all providers, services and handlers. For
this purpose, the default implementations can be used or custom implementations that
override the default variant.

The Java GLSP framework uses Google Guice 1 as dependency injection framework. In
turn, the Typescript GLSP framework, which runs in a Node container, uses inversify.js 2

as its dependency injection framework. In both cases, an abstract DiagramModule class
is provided. This must be overridden by the developer to be able to implement a concrete
GLSP server. There are some abstract methods which have to be implemented. But
there are also some already implemented methods which can be overridden to customize
the functionality of the GLSP server. Mandatory are methods which determine where the
source model is stored and a factory which should build the graphical model. Voluntarily
editing operations and model validation can be overridden as well.

There are two dependency injection containers in the GLSP server framework:
1https://github.com/google/guice
2https://inversify.io/

18

https://github.com/google/guice
https://inversify.io/

2.5. Graphical Language Server Platform (GLSP)

• Server DI Container: All components and services that are not assigned to a
session are configured in the Server DI container. These are also components and
services that are used in parallel across all sessions.

• Diagram Session DI Containers: There is a plurality of session containers,
because each client session gets assigned its own container. In this container
handlers, states, etc. are initialized. Each session also gets its own diagram
language and diagram module, which is responsible for this diagram language.

2.5.2 Architecture

Since the GLSP client is based on Sprotty, many concepts and also the model are largely
adopted from Sprotty. Also the architecture was already conceptualized in Sprotty and
will only be extended in GLSP. The architecture of Sprotty and GLSP is based on the
Flux pattern and is also used by many other reactive web frameworks. The main point
is the unidirectional event flow which is already used in several Flux frameworks. In
contrast to the classic Model-View-Controller pattern, the data flow in the Flux pattern
is clearly regulated.

The components in the Sprotty architecture [spr], displayed in Figure 2.4, show how the
event flow is unidirectional. The main data flow is marked by the red arrows.

Starting from the view, an action is dispatched. These actions indicate a certain operation
which is executed on the graphical model. Since they are also JSON objects they can
be easily serialized and used as a protocol between client and server for exchange.
Model elements are referenced by their ID in actions. The ActionDispatcher gets
an action directly from the ModelSource or from the Viewer. It uses registered
ActionHandlers which listen for actions to create commands. These commands are
sent to the CommandStack. All operations run through the ActionDispatcher. This
leads to the fact that CommandStack and also Viewer are never directly addressed. The
ActionHandler listens for actions and converts them to commands.

Commands are the actual behavior of an action on the graphical model. A command has
the methods execute(), undo(), redo(). Where all three methods get the current
graphical model, modify it and return it. The CommandStack executes all commands
it receives from the ActionHandler via the ActionDispatcher. It also holds the
state of all changes executed via the execute() method. Additionally it stores the
undo and redo stack. As soon as the new graphical model is calculated it is sent to the
Viewer.

The Viewer works with the graphical model and creates a virtual DOM (Document
Object Model). The Viewer also takes care of event listeners and listens for mouse
events, for example. To create the virtual DOM the Viewer uses various Views. These
describe how a virtual DOM is created from a graphical model. For this the Viewer
looks up in the ViewRegistry which View is intended for which element type.

19

2. Foundations

Figure 2.4: Event flow of the Flux pattern implemented in Sprotty Framework.
Source: https://github.com/eclipse-sprotty/sprotty/wiki/
Architectural-Overview (Accessed: 2023-05-24)

2.5.3 Source Model
GLSP can handle any source model format or source model framework, since the loading
of the source model and the transformation into a format understandable for the diagram
has to be done by the developer herself. However, there are some default implementations
for certain source model frameworks like EMF models 3, EMF.cloud model server 4 or
could be simply transferred from JSON files.

To implement a concrete GLSP server a developer must provide the following three things
for the source model:

• Source model storage: The developer must define how the source model is loaded
and stored.

3https://github.com/eclipse-glsp/glsp-server/tree/master/plugins/org.
eclipse.glsp.server.emf

4https://github.com/eclipse-emfcloud/modelserver-glsp-integration

20

https://github.com/eclipse-sprotty/sprotty/wiki/Architectural-Overview
https://github.com/eclipse-sprotty/sprotty/wiki/Architectural-Overview
https://github.com/eclipse-glsp/glsp-server/tree/master/plugins/org.eclipse.glsp.server.emf
https://github.com/eclipse-glsp/glsp-server/tree/master/plugins/org.eclipse.glsp.server.emf
https://github.com/eclipse-emfcloud/modelserver-glsp-integration

2.5. Graphical Language Server Platform (GLSP)

• Graphical model factory: Those are responsible for defining how to create a
graphical model from a source model.

• Edit operation handlers: These handlers edit the source model if the user
performs actions on the diagram.

To load a source model and display it as a diagram, the client sends a RequestMod-
elAction with a URI or other arguments to define the source model. Next, the server
loads the source model via the source model storage. For this it uses the URI or other
arguments given by the sent action. In the next step the server executes the graphical
model factory to create a graphical model from this source model. Then as a response
to the sent action a SetModelAction or UpdateModelAction is sent, which sends
the graphical model from the server to the client. This client then renders the graphical
model in the webview.

2.5.4 Graphical Model and Rendering
The graphical model is a serializable model that is transferred between the server and
the client to render it on the client. This graphical model is created on the GLSP
server from a source model via a factory. On the GLSP server all model elements
typically have the prefix G. Each graphical model has a GModelRoot element which
can have children. These can be either GShapeElement elemenst or GEdge elements.
GShapeElements have a position and a size. This makes it possible for the webview to
visualize the element later. There are different GShapeElements like GNode, GPort,
GLabel, GCompoarment. GEdge in turn has no position and size. They have a source
element and a target element which should be connected to each other. Normally GNode
or GPort elements are then connected via GEdge elements.

At the GLSP client Sprotty 5 is used to render the diagram. Sprotty is a diagramming
framework that uses SVG to render its model in a webview. Sprotty uses the SModel
where all elements are marked with the prefix S. The GLSP model is based on the Sprotty
model and therefore both models are compatible with each other. The Sprotty model
has a SNode element in contrast to the GNode element in the GLSP model. For the
GEdge element there is the SEdge element in Sprotty.

Of course, it is also possible to extend the graphical model with own elements. This is
possible on the GLSP server as well as on the GLSP client. This work will also introduce
new graphical elements to display the interactions of all users in the webview. The new
element type has to be configured on the GLSP client.

1 export class WeightedEdge extends SEdge {
2 override type = ’edge:weighted’;
3 probability: string;

5https://github.com/eclipse-sprotty/sprotty

21

https://github.com/eclipse-sprotty/sprotty

2. Foundations

4 }
5
6 const workflowDiagramModule = new ContainerModule((bind, unbind, isBound,

rebind) => {
7 ...
8 configureModelElement(context, ’edge:weighted’, WeightedEdge,
9 WeightedEdgeView);

10 ...
11 }
12
13 @injectable()
14 export class WeightedEdgeView extends EdgeView {
15 render(
16 edge: WeightedEdge,
17 context: RenderingContext
18): VNode | undefined {
19 const propabilitySVG = <text class-weighted-edge={true}>{edge.propability

}</text>;
20 const edgeSVG = super.render(edge, context);
21
22 return (
23 <g>
24 {propabilitySVG}
25 {edgeSVG}
26 </g>
27);
28 }
29 }

Listing 2.2: Example of how to create a new SModel element and then configure it in the
container.

The Listing 2.2 shows how to define a new Sprotty element WeightedEdge, which
inherits from SEdge. It overrides type so it has a new element type. Additionally it has
another attribute probability of type string. This WeightedEdge element is then
defined at line 8 using the configureModelElement function in the new container.
The first parameter is the context, the second is an element type to identify the element
(edge:weighted), the third parameter is the class of the model WeightedEdge, and
the fourth and last parameter is the class of the view WeightedEdgeView, which
then returns an SVG and renders the element. Starting from line 13, an example
of a Sprotty view implementation is demonstrated. Overriding the render(edge,
context) method provides an SVG out of the graphical model. In this example, a
new SVG element from type text is created, which visualizes the probability. With
class-weighted-edge an CSS-class to the referred element is set. Additionally it
renders the edge from the inherited class EdgeView. Last but not least the method
returns a g element, which is a container and can combine multiple SVG elements. This
example combines the probability as a text and the edge.

22

2.5. Graphical Language Server Platform (GLSP)

2.5.5 GLSP protocol & Action types
This part summarizes some of the action types referred to the GLSP protocol.

Server-Client Lifecycle

The sequence in which the client and server communicate is actually always the same.
To initialize the server, the client sends an InitializeServer request at startup.
The server responds with an InitializeResult and until then all communication
is blocked. A client identifies itself over an applicationId and sends with which
protocolVersion is used. The InitializeResult also provides information about
all action kinds which are supported.

When the client is initialized at the server and the user then opens or creates a diagram,
the client sends an InitializeClientSession request to the server. For each opened
diagram a new session is created again at the server. The server also creates a DI session
container for this diagram and this client. As parameters a clientSessionId and a
diagramType is sent.

When closing a diagram a DisposeClientSession request is sent to the server. This
also disposes the DI session container at the server. As parameter the previously created
clientSessionId is used as identification. When the client switches off, it can send a
notification to the server so that it can clean up all remaining resources.

Between the initialization and the dispose of the client session, the server and the client
communicate exclusively via ActionMessages.

If the GLSP client wants to stop communicating with the GLSP server, another Shut-
downServer message is sent to the server.

Model Data

The RequestModelAction is normally the very first action sent from the client to
the server. With this request the client gets back a SetModelAction or UpdateMod-
elAction. These both return the graphical model and are rendered at the client. With
the UpdateModelAction a transition of the graphical model from the old to the new
model can also be animated.

Model Saving

A SaveModelAction stores the graphical model back to the source model. A fileUri
can be passed as an attribute, which would save the model to another location. The server
sends a SetDirtyStateAction if the current model state differs from the persisted
model state of the source model. This is used at the client to indicate to the user that
the document is not saved. An ExportSvgAction takes the sent SVG and saves it to
the defined file system.

23

2. Foundations

Model Layout

GLSP takes over the calculation of all bounds of all elements. Calculating the correct
bounds is not so simple and depends partly on client properties. To handle this the
server sends a RequestBoundsAction to the client. The client gets a model, renders
it invisibly and sends back a ComputedBoundsAction with the elements and the
corresponding bounds.

Model Edit Mode

In GLSP it is possible to edit the model in various ways. For this there are different
modes which are set by the client to the server by a SetEditModeAction. The server
can then react differently to operations.

Client Notifications

In GLSP there are also actions which are executed specifically on the client. These
client-side actions can be initiated by the client as well as by the server. Viewport actions
change the viewport to improve the usability of the diagram. For notifications, the
client distinguishes between a status and a message. Both can be displayed differently.
For example, in Theia integration, status updates are displayed directly in the diagram
and messages are displayed as popups. Furthermore, there is a SelectAction or a
SelectAllAction, which changes the state of the selected elements. With this state
the client can mark elements as selected.

Element Hover

As soon as the user hovers over an element a RequestPopupModelAction is sent to
the server. The server sends a SetPopupModelAction to the client with new elements
which are rendered in a popup by the client.

Element Validation

As in many modeling languages, it is also possible to validate elements with GLSP. For
this purpose, the client requests Markers for elementsIDs sent along using Request-
MarkersAction. A Marker contains the validation result for an element. The server
then sends Marker to the client using a SetMarkersAction. A DeleteMarkersAc-
tion removes all markers on an element.

Element Navigation

In GLSP there are different types of navigations. There are default variants which are
used by the client and server to implement concrete navigation types. The client can
request navigation targets from the server by means of an action for a certain navigation
type. The NavigationTarget describes an object to which the client should navigate.

24

2.5. Graphical Language Server Platform (GLSP)

Element Type Hints

Element Type Hints are used to determine which modifications are allowed on differ-
ent element types. ShapeTypeHints are for elements of type GShapeElement and
EdgeTypeHint for elements of type GEdge. The client sends a RequestTypeHints-
Action and gets as response a SetTypeHintsAction with all allowed modifications
for requested element types.

Element Creation and Deletion

To process the model, the client sends so-called operations to the server. Operations
edit the graphical model and as a response the server sends an UpdateModelAction
to the client. New elements are added either by the CreateNodeOperation for nodes
or CreateEdgeOperation for edges. This is done by sending either the coordinates
for nodes or source and target element for edges as attributes. To delete elements the
client sends the DeleteElementOperation.

Node Modification

A ChangeBoundsOperation changes the position or size of a node. The client sends
this to the server when a node element is modified. A ChangeContainerOperation
places a node into a new container.

Edge Modification

To modify an edge, the client can send a ReconnectEdgeOperation to the server.
This operation connects an edge to a new node. Likewise, a ChangeRoutingPointsOp-
eration can edit the routing points of an edge.

Element Text Editing

In GLSP, textual inputs from a user are checked in advance by a validation. For example,
if a user edits the label of a node, the client sends a RequestEditValidationAction.
In response the server sends a SetEditValidationResultAction which contains a
ValidationStatus. To execute the changes to a label performed by an user the client
sends an ApplyLabelEditOperation to the server.

Clipboard

In GLSP clipboards are handled directly on the client. However, the conversion of a
selection into a clipboard readable format, as default application/json, is handled
by the server. For this there is the RequestClipboardDataAction which gets a
SetClipboardDataAction as response. Additionally there is a CutOperation
which deletes the selected element and copies it to the elements in the clipboard. The
PasteOperation loads the clipboard data into the graphical model back.

25

2. Foundations

Undo / Redo

The server stores the command stack of all executed commands on a graphical model
in its state. The UndoAction performs an undo of the last executed command. A
RedoAction executes a redo of the last undone command.

Contexts

Within a context the client can execute special actions of a contextId. There are the
following contexts: Context Menu with id context-menu, Command Palette with id
command-palette, Tool Palette with id tool-palette.

2.5.6 Platform Integrations
It is also possible to integrate GLSP based editors into any web application. Most IDEs
offer the possibility to build extensions or plugins that offer a webview in which the
GLSP editor can be integrated. There are already modules for the integration in Eclipse
Theia 6, VS Code 7 or Eclipse IDE 8. Furthermore, it is also possible to implement a
standalone web editor, which is built on plain JavaScript.

6https://github.com/eclipse-glsp/glsp-theia-integration
7https://github.com/eclipse-glsp/glsp-vscode-integration
8https://github.com/eclipse-glsp/glsp-eclipse-integration

26

https://github.com/eclipse-glsp/glsp-theia-integration
https://github.com/eclipse-glsp/glsp-vscode-integration
https://github.com/eclipse-glsp/glsp-eclipse-integration

CHAPTER 3
Related Work

This chapter describes already existing collaborative editing tools and also talks about
the advantages and disadvantages of these tools. Textual and graphical collaborative
tools will be demonstrated in this part. Finally, a comparison of all the tools is presented
in a table to define requirements for the prototype.

3.1 Textual collaborative document editing tools
This section focuses on textual collaborative editing tools. These tools are checked for
defined criteria. Google Docs Editors and Etherpad, an open source alternative to Google
Docs, will be introduced. And it will also give a look into Jetbrains’ Code With Me, an
alternative to VS Code’s Live Share.

3.1.1 Google Docs Editors
Google Docs Editors [goo] is a set of document collaboration tools which are used not
only in companies but also by individuals and students. Google Docs Editors is an office
suite released by Google in 2006. All tools are provided as part of the Google Drive
service. This office suite consists of following applications:

• Google Docs is an online word processor.

• Google Sheets is a spreadsheet application.

• Google Slides is a presentation software.

• Google Drawings is a vector drawing program.

• Google Forms is used for online forms and surveys.

27

3. Related Work

• Google Sites is a graphical website editor.

• Google Keep is an application for taking notes.

• Google Fusion Table was a data table management tool (until 2019).

Features

All these tools build on the collaborative functionality that allows multiple users to
work on them simultaneously. At the forefront, Google Docs Editors can be used as a
web-based browser application, as a mobile app on Android and iOS, or as a desktop
application for Google’s ChromeOS. With Google Docs, it is possible for multiple people
to work on a document in real-time. All changes are immediately visible for all other
participants. Also cursor positions and selections of other users are shown in a special
color to other users like in Figure 3.1.

Figure 3.1: Example on how Google Docs displays selections in assigned colors.

It is also possible to add comments and proposals for modifications at various places
in the document and distribute them to other users. Figure 3.2 shows how this works.
This example demonstrates how a comment to word comment is added and it shows a
proposal for a modification to add word here at the end of the line.

A permission system regulates the permissions a user has. For example, users can share
or lock parts of the document with other users. By means of the revision history it is
possible to track all changes. Thus, participants can see what other participants have
changed, when and where. Also with the revision history the color, which is assigned to
a participant, is used to show changes of other participants visually. If a user does not
like changes made by other users, edits can still be reverted afterwards.

If a user does not like changes made by other users, edits can still be reverted afterwards.
All changes are stored on Google’s server. Simultaneous changes from different users are
processed via the Jupiter algorithm and an operational transformation. All changes of the
corresponding document are saved and applied, as well the document gets autosaved per
change. The document is stored in the creator’s Google Drive space by default. However,
it is also possible for the creator to create or move the document to collaborative Google
Drive spaces.

28

3.1. Textual collaborative document editing tools

Figure 3.2: Example on how Google Docs displays comments and proposals for modifica-
tions.

There is also a Google Chrome extension 1 which allows the user to use Google Docs offline.
With the mobile app for Android and IOS it is possible to use the application offline
out-of-the-box. Various file types are supported for importing and also for exporting.
This includes Open Document, Microsoft Office, HTML, Rich text format.

Pricing & Source Code availability

All these main features are also available for all other Google Docs Editors like Google
Sheets, Google Slides, etc. Google Docs Editors is free for private use, but for use in
professional environments a Google Workspace plan has to be bought. This also includes
other collaboration tools such as Google Meet. Although the use of Google Docs Editors
is free, the code is not freely available and thus the whole project is closed source.

3.1.2 Etherpad
Etherpad [etha] is an open source alternative to Google Docs. Etherpad is a web-based
text editor which can be used for collaborative editing. Several participants can work
together on a document in real-time. Etherpad was released in 2008 and was bought
by Google in 2009 and then released to the public as open source code. Etherpad has
been implemented in Java, JavaScript and Scala. Etherpad Lite has been implemented
entirely in JavaScript. The constant update logic is implmenet via Ajax [ethb].

1https://chrome.google.com/webstore/detail/docs/aohghmighlieiainnegkcijnfilokake?
hl=de

29

https://chrome.google.com/webstore/detail/docs/aohghmighlieiainnegkcijnfilokake?hl=de
https://chrome.google.com/webstore/detail/docs/aohghmighlieiainnegkcijnfilokake?hl=de

3. Related Work

Features

Etherpad can be downloaded as open source code and installed on an own server. Thus,
all data remains stored on the own server and is not necessarily sent through the Internet.
However, there are public servers on which Etherpad is installed and which can also
be used freely by all people. However, the development still lies with the Etherpad
foundation. As a slimmer alternative to Etherpad, Etherpad Lite was developed, which
is faster and more modern. In addition to Etherpad, which is purely a word processor,
there is EtherCalc, which is a collaborative spreadsheet program.

To create a new document, a URL is generated which is unique and which the creator
can share with other users. A document is named as "pad". It is also possible that the
creator assigns a password for the document. Also here the document gets autosaved and
simultaneous changes by multiple users are merged by means of operational transform.

Just like Google Docs, Etherpad assigns different colors to different users. The assigned
colors make it possible to display written text sections in the colors of the user who wrote
this section. In the example at Figure 3.3, User1 wrote the first line and User2 wrote the
second line. The first line is highlighted in the color of User1, namely brown, and the
second line in the color of User2, namely blue.

Figure 3.3: Example on how Etherpad displays two lines written by two different
participants.

All changes are saved and can be reviewed in a history view by all participants. For this
purpose, Etherpad provides a timeline that can be used by any participant. It is possible
to track the complete change history of the document. It is also possible to see which
authors have contributed to the document. The user can either manually operate the
timeline and jump forward or backward or press the autoplay button to automatically
display all changes from the start to the end. Figure 3.4 demonstrates how Etherpad
displays the timeline functionality to the user. Two authors, namely Alex and Markus,
have worked on this document, and Version 82 from the document is currently shown.

It is also possible to write own plugins 2 for EtherpadLite and install them on an
2https://github.com/ether/etherpad-lite/wiki/Available-Plugins

30

https://github.com/ether/etherpad-lite/wiki/Available-Plugins

3.1. Textual collaborative document editing tools

Figure 3.4: Example on how Etherpad displays timeline functionality to go back and
forward in time through all changes.

own server. Etherpad also provides its own registry with public plugins, which can be
downloaded and used on a server 3.

Pricing & Source Code availability

Because Etherpad is open source, it is possible to host an Etherpad server on an own
server. However, there are also free online servers which provide Etherpad services such
as yopad.eu 4.

3.1.3 Jetbrains Code With Me
Visual Studio Live Share has already been introduced in more detail in Chapter 2, since
the prototype will base on Visual Studio Live Share. In this section another collaboration
IDE will be introduced. It will focus on Jetbrains’ Code With Me [cod] feature, which is
built into most Jetbrain IDEs by default. So Code With Me is already built in by default
for IntelliJ IDEA, PyCharm, WebStorm, PhpStorm, CLion, GoLand, RubyMine. It is
available for Ultimate and also Community Edition. For Android Studio there is a plugin
in the JetBrains Marketplace 5 which can be downloaded and installed. For Rider it will
be added in the near future.

Features

The main idea of Code With Me is that co-workers in a team can work together on a
project in real-time from a wide variety of locations around the world. Participants can
examine and edit the code of a project completely independent of location. Developers
can do this with their own screen and keyboard. With this option, developers can copy
their session link and send it to their colleagues. They can then simply click on the link
to join the session.

One of the main features of Code With Me is that users can work on and edit a file
simultaneously. All changes are applied in real-time to all participants. Other users’
cursors and selections are displayed in their own colors, as in other collaborative real-time
editors. This means that changes are clearly traceable and multiple developers do not
get in each other’s way so quickly.

3https://static.etherpad.org/index.html
4https://yopad.eu
5https://plugins.jetbrains.com/plugin/14896-code-with-me

31

https://static.etherpad.org/index.html
https://yopad.eu
https://plugins.jetbrains.com/plugin/14896-code-with-me

3. Related Work

A big and important part of Code With Me is the following feature. With this feature
a user can follow the cursor of another user or force all participants to follow the own
cursor. With Run and Debug it is possible for a single user to start the application to be
developed locally and for several developers to access this application. The whole team
can then also debug together and thus find existing bugs together.

Code With Me allows each participant to keep their own settings and interface. Also
keymaps are kept and developers can use them as if they were not in a collaborative
session. Since Code With Me is also asynchronous there is no delay time as is common
from other remote desktop solutions. Features like code autocompletion, navigation, code
insights are not lost and can be used natively.

Files are not stored on the hard disk of the guest machines. The host can set which files
it wants to share with guests. The host can also set permissions for certain guests in a
session and thus manage sharing differently depending on the guest. Using Code With
Me Enterprise, it is possible for sessions to run on their own private network. Thus, no
traffic is sent outside the private network.

Figure 3.5: Example on how Jetbrains’ Code With Me allows Host to set permissions for
guests when starting a session.

In Figure 3.5, a depiction illustrates how a host can start a collaboration session. The
host can share the project on three different modes. These are Read-Only, Edit files

32

3.1. Textual collaborative document editing tools

and Full access. In Full access mode, guests have full access to the project and can, for
example, create new files. In Custom mode, the host can decide for herself how she wants
to choose the permissions for files, terminal, run/debug and other tool windows. It is
also possible to open an audio and video call immediately at the start of the session.

Another special feature, which is also available in VS Code Live Share, is port-forwarding,
which allows users to release their ports to other participants. This allows local applica-
tions and resources to be shared with all participants. Not only ports, also application
windows can be released to other participants. Classic screensharing is known from many
remote desktop applications and is also supported here. Audio, video calls and chats are
possible within the IDE and do not have to be externalized to other applications.

Pricing & Source Code availability

Code With Me offers free versions for Community Editions of IntelliJ IDEA and PyCharm.
In this free version, up to three guests can work together simultaneously for 30 minutes
in a session. The community version of IntelliJ IDEA is also open source. To enjoy
unlimited session length and support multiple guests per session, an upgrade to the
Premium or Enterprise version 6 is needed.

3.1.4 Comparison
Finally, this subsection compares all three presented textual collaborative document
editing tools in Table 3.1. In addition to the three editors from this chapter, the table
will also compare Visual Studio Live Share for text editors, which was already introduced
in the last chapter and is essential for this work.

For this purpose, various criteria are used for comparison: On which platforms does the
client platform run, is this application still maintained, is the code open or closed source,
does cut/copy/paste operation work, does undo/redo operation work, what functionality
does the application offer to avoid conflicts already during the collaboration process,
what architecture is behind the collaboration functionality, and is the application easy to
use from a collaboration perspective.

6https://www.jetbrains.com/code-with-me/buy/

33

https://www.jetbrains.com/code-with-me/buy/

3. Related Work

Google Docs Etherpad Jetbrains
Code With
Me

Visual Studio
Live Share

Client
platforms

Available as a
browser
application,
chrome
extension,
desktop
application for
Google’s
ChromeOS and
mobile app for
Android and
iOS.

Browser
application

IntelliJ IEDA,
PyCharm,
WebStorm,
PhpStorm,
CLion, GoLand,
RubyMine,
Android Studio

Visual Studio
and Visual
Studio Code

Maintained Yes Yes Yes Yes
Open /
Closed source

Closed source Open source Community
version open
source,
premium and
enterprise
version are
closed source.

Server is closed
source, client is
open source.

Cut / Copy /
Paste

Yes Yes Yes Yes

Undo / Redo Yes Yes Yes Yes
Conflict
reduction
during
collaboration
process

Every user gets
an own color
assigned. Color
is used for
selection and
cursor position
of other
participants.
There is a chat
and comment
functionality.

Every user gets
an own color
assigned.
Etherpad shows
written words
highlighted in
their author’s
color. Timeline
functionality
can display
every change of
every user.

Every users
gets an own
color assigned.
Color is used
for cursor
position and
selection
highlighting.
Chat
functionality.
Extra: Video
and Audio calls
possible.

Every user gets
an own color
assigned. Color
is used for
cursor position
and selection
highlighting.
Chat
functionality.

34

3.2. Graphical collaborative document editing tools

Collaboration
architecture

Google’s
collaboration
server used.

Own Etherpad
server needed.

Jetbrains
provides
collaboration
server.

VS Live Share
provides
collaboration
server.

Easy to use
from
collaboration
perspective

Yes, since every
user is aware of
where other
users are
currently
working. Chat
and comment
functionality is
also good for
collaborative
working.
Version history
also very
helpful.

Good
open-source
alternative for
Google Docs.
Author’s word
highlighting
and timeline
very useful for
collaborative
working.

Very powerful
collaboration
developing tool
with basic
functionality
(cursor position,
selection
highlighting)
and extra stuff.
Port forwarding
and
collaborative
debugging also
possible. Audio
and video calls
good for
collaboration
sessions.

Easy to use.
Cursor position
and selection
highlighting
basic
functionality
for textual
collaborative
editors. Port
forwarding and
collaborative
debugging also
possible.

Table 3.1: Comparison of all three textual collaborative document editing tools and
Visual Studio Live Share.

3.2 Graphical collaborative document editing tools
This section will describe graphical collaborative document editing tools. In contrast
to textual editors, graphical editing tools usually work with graphical files consisting of
diagrams. The final application will also work with diagram files. For this, tools like
MetaEdit+, Graphity, Google Drawings and VS Code TURN are compared.

3.2.1 MetaEdit+
MetaEdit+ [met] is a collaborative modeling tool that is successfully used in the industry.
MetaEdit+ is built on a multi-user client-server architecture where user, clients, server and
repository can be located in geographically different places. Participants have the ability
to access data via local applications, a remote desktop application or via the browser.
MetaEdit+ supports a variety of modeling languages and different ways of presenting
the model such as metrics, tables, text and of course diagrams. MetaEdit+ relies on
automatic fine-granularity locking for high concurrency to avoid conflicts [KLR96] and
works with a version control integration [Kel17].

35

3. Related Work

Features

MetaEdit+ also has a collaborative functionality [KT21] that allows users to work on
a model simultaneously. This also works via the graphical diagram modeling interface.
MetaEdit+ works with transactions, which means that any change to the model must
first be committed before it is written to the model. Only when the user has edited and
committed the focused element is it saved in the model and thus transferred to the server.
Other users get the change by also committing their transaction and thus fetching the
latest status on the server. This means that a user is not interrupted in her work during
a transaction and latest updates are displayed only when a new transaction starts and
this happens after a commit.
To avoid conflicts, MetaEdit+ has a real-time locking system. If a user edits an element,
it is locked for all other users in real-time. This also happens during a transaction,
i.e. MetaEdit+ tries to keep a collaboration unit as small and granular as possible.
In this way, the server tries to lock as few elements as possible for other participants.
Furthermore, locking works automatically, which means that the user does not have to
explicitly lock and unlock an element, but MetaEdit+ takes over these activities when
an element is edited or the edited element is committed. This leads to the fact that no
conflicts can occur in the diagram and thus also no conflict resolution or merging must
be operated.

Figure 3.6: Example on how MetaEdit+ locks Elements when two Users are trying to
work on the same Element.
Source: https://www.youtube.com/watch?v=JQzt4cd8ppc&t=145s&ab_
channel=MetaEdit (Accessed: 2023-09-11)

In Figure 3.6, a diagram is shown that is supposed to represent the running of a clock.
In this example, Jim and Mark are trying to edit the Stopped element at the same time.

36

https://www.youtube.com/watch?v=JQzt4cd8ppc&t=145s&ab_channel=MetaEdit
https://www.youtube.com/watch?v=JQzt4cd8ppc&t=145s&ab_channel=MetaEdit

3.2. Graphical collaborative document editing tools

Jim has opened the element first, Mark second. In Jim’s dialog box the OK button is
active, whereas in Mark’s dialog box the OK button is disabled. The element is visible to
Mark, but not editable. Once Jim edits the element and commits the transaction, Mark
can edit the element again.

Pricing & Source Code availability

MetaEdit+ as a whole with server, repository and clients has a 31-day trial version,
but is not free to use beyond this time. The application is therefore also closed source.
However, there are plugins, for example for Eclipse 7 and Visual Studio 8, which are open
source and free and thus allow integration into IDEs.

3.2.2 Graphity
Graphity [grab] is a collaborative diagram editor designed for Atlassian Confluence 9 and
developed by yWorks. Unlike MetaEdit+, Graphity offers real-time collaborative editing.
Which means that changes are immediately presented to all other participants.

Features

Graphity [graa] is an extension for Atlassian’s Confluence, which allows to embed diagrams
directly into Confluence pages. Graphity supports multiple diagram types and modeling
languages out of the box, such as Flowacharts or BPMNs. Graphity also allows storing
diagrams not only on an own server but also in the cloud. To use Graphity on produciton,
a collaboration server must be hosted on its own infrastructure. Graphity itself offers a
test server, but that should only be used for testing.

As already mentioned, Graphity offers real-time collaboration. This means that all
changes are displayed to all other users immediately after execution. Graphity also does
not perform conflict resolution or merging as well. This means that changes are always
made to the current model, even if this does not correspond to the local model. However,
Graphity offers a locking system, which locks currently used elements. The locking is
only active if an element for example is moved, transformed or maybe also if the title of
the element is changed. Not only the element, but also all directly dependent nodes and
labels are also locked. After editing, the element is immediately unlocked for all other
participants. With this algorithm the graph model is always consistent. In the example
at Figure 3.7, User 2 on the right side of the image performs an operation on Element 1.
This scales the element and makes it bigger. At the same time, User 1 locks this element,
namely Element 1, and cannot select or edit it.

Undo/redo operations are possible with Graphity. However, there is only one global
command stack for the whole diagram. This means that when an undo operation is

7https://github.com/MetaCase/metaedit-plugin-for-eclipse
8https://github.com/MetaCase/metaedit-extension-for-visual-studio
9https://www.atlassian.com/software/confluence

37

https://github.com/MetaCase/metaedit-plugin-for-eclipse
https://github.com/MetaCase/metaedit-extension-for-visual-studio
https://www.atlassian.com/software/confluence

3. Related Work

Figure 3.7: Example on how Graphity locks Elements when a user performs an operation.
Source: https://www.graphity.com/collaborative-editing (Accessed:
2023-09-13)

performed, the operation is globally undone regardless of the user who performed the
operation. However, if a non-own operation is to be undone, a confirmation dialog
is displayed to make sure that this operation really should be undone. In Figure 3.8
Graphity asks the user if she still wants to do the undo operation even this operation
was initially performed by another user.

Figure 3.8: Example on how Graphity shows a confirmation dialog if a user wants do
undo another user’s operation.

Another special characteristic is that the number of users and documents is not limited.
However, it depends on the performance of the server how many users can work on a
document at the same time. The current position of all users as cursors are displayed on
the screens at all other users. In Figure 3.9, the positions of Test User 1, Test User 2

38

https://www.graphity.com/collaborative-editing

3.2. Graphical collaborative document editing tools

and Test User 3 are displayed instantaneously.

Figure 3.9: Example on how Graphity shows current mouse pointers position of all other
users.

Pricing & Source Code availability

Graphity is closed source and can be purchased in the Atlassian Marketplace and is
available for a fee. However, there is also a trial version, as well as academic and
community versions for selected organizations. The collaboration server code can be
downloaded and hosted on a local instance.

3.2.3 Google Drawings
Google Drawings [dra] is an application of Google Docs editors and was first launched in
2010. Google Drawings was developed in JavaScript and can be used via the browser or
as a desktop application for Google’s ChromeOS. Google Drawings, like all other Google
Docs editors, has a collaboration functionality.

Features

With Google Drawings users can create diagrams of all kinds. Thus, flowcharts, org
charts, mind maps and many other types of diagrams can be created and edited. Using a
share link, guests can open and edit the same document. Not only shapes, arrows and
text but also images can be imported and edited.

Other users can enter via the share link and see the document on their screen. As with
other Google Docs editors, there is the option of a chat function and comments can also
be created by users. Unlike many collaborative diagramming tools, Google Drawings
does not lock elements, even if they are being edited, moved or scaled. Different from
Graphity, Google Drawings has its own operations stack per user. This means that
undo/redo operations can be performed per user.

Google Drawings also uses colors and names to make the location of other users visible.
So Google Drawings shows selections of elements in the color of the respective user. Each

39

3. Related Work

Figure 3.10: Example on how Google Drawings shows selections of other users with a
specific color an label.

user is assigned a unique color. In addition, a label with the name of the user in the
same color is displayed next to it. In Figure 3.10 another user, which is marked with the
color green, is currently selecting Element 1.

Pricing & Source Code availability

The same principle applies here as for Google Docs. Private use is free, only for commercial
use a Google Workspace plan has to be purchased. Google Drawings is also a closed
source code.

3.2.4 VS Code TURN

VS Code TURN is a Visual Studio Code plugin that uses a language server in the
background. This plugin works with the TGRL language server and provides full support
for their language (Textual Goal-oriented Requirement Language). Unlike GLSP, the
model is not created graphically, but by code, and then later generated and displayed
visually. VSCode TURN was built as a collaborative editor. Also VSCode TURN uses
Visual Studio Live Share to synchronize their actions via their Visual Studio Live Share

40

3.2. Graphical collaborative document editing tools

server. The biggest problem is resolving the conflicts created by undo operations and the
synchronization in a multi-tenancy view [SM21].

Processing via VS Code Teletype CRDT was considered in a theoretical concept. VS Code
Teletype CRDT also supports other IDEs like Atom 10 and Eclipse Theia 11. However,
this is not yet as mature as Visual Studio Live Share [vsce].

Features

VS Code TURN extension uses the functionality of Visual Studio Live Share to enable
collaborative work. Since VS Code TURN uses only a textual language to model a
diagram, it is easy to use Live Share functionality to enable collaborative modeling. To
do this, Live Share must be enabled during modeling and each user must control their
own language server. Since modeling is purely textual, Visual Studio Live Share can
inherently push all changes to all other users. The user then accesses their own language
server with the updated model and creates a new graphical model.

Figure 3.11: Example on how VS Code TURN uses Visual Studio Live Share to enable
collaborative modeling.
Source: https://www.youtube.com/watch?v=3fqXI3tiQjw&ab_channel=
RijulSaini (Accessed: 2023-09-13)

Visual Studio Live Share ensures that a conflict-free execution is achieved. Undo/redo
operations are performed at user level. By the implementation of Visual Studio Live
Share the undo/redo operations also work conflict free. The participants’ cursors are
also displayed in their own color, as is usual with Live Share. This also reduces the
potential for conflict, since each user knows where other users are currently working. In

10https://github.com/atom/atom
11https://theia-ide.org/

41

https://www.youtube.com/watch?v=3fqXI3tiQjw&ab_channel=RijulSaini
https://www.youtube.com/watch?v=3fqXI3tiQjw&ab_channel=RijulSaini
https://github.com/atom/atom
https://theia-ide.org/

3. Related Work

the example in Figure 3.11, two modelers work on one document. Each modeler has the
textual editor on the left and the visualized diagram on the right. Visual Studio Live
Share is showing the cursor of Modeler 2 on the left side of Modeler 1’s text editor in
green and with a label.

Pricing & Source Code availability

VS Code TURN is open source and available on Github 12. It is also free to install and
use.

3.2.5 Comparison
Here all four presented graphical collaborative document editing tools are compared in
Table 3.2. In addition to the criteria already used in the last chapter, two more criteria
are introduced: which modeling languages or diagram types are supported and which
methods are used to resolve modeling conflicts.

MetaEdit+ Graphity Google
Drawings

VS Code
TURN

Modeling
languages /
Diagram
types

Uses own
modeling
languages,
which can be
designed with
MetaEdit+
Workbench.

BPMN,
Flowchart,
Network
diagrams,
Organization
charts, etc.

No real
modeling
languages
supported.
User can work
with generic
elements like
forms and
arrows. There
are templates
for specific
diagram types.

TGRL (Textual
Goal-oriented
Requirement
Language)

Client
platforms

Desktop
application for
Windows,
Linux and Mac
OS X.
Integration for
Eclipse and
Visual Studio.

Available as
plugin for
Atlassian
Confluence and
thus via the
browser.

Available as a
browser
application and
desktop
application for
Google’s
ChromeOS.

Plugin for
Visual Studio
Code

Maintained Yes Yes Yes Last change
2021.

12https://github.com/sainirijul/vscode-turn

42

https://github.com/sainirijul/vscode-turn

3.2. Graphical collaborative document editing tools

Open /
Closed source

Closed source,
only plugins for
IDEs are open
source.

Closed source Closed source Open source

Cut / Copy /
Paste

Yes Yes Yes Yes

Undo / Redo Yes Yes, but only
on global level.

Yes Yes

Conflict
reduction
during
collaborating
process

No visible
widgets. User
can see if
element is
actually locked
when editing
this element.

User can see if
other users are
working on
elements since
they get locked
then. And user
can see other
users’ mouse
pointers.

User can see
selections of
other users in
their assigned
colors with
labels. Users
have the
possibility to
chat and
comment stuff.

Uses VS Live
Share
collaboration
functionality to
e.g. show
current cursor
in other user’s
color. Chat
available.

Resolving
modeling
conflicts upon
operations

Locking
elements and
unlocking them
when
committing
transaction. No
conflict
resolution.

Elements and
dependencies
get locked while
editing. No
conflict
resolution.

No locking and
no conflict
resolution.
Latest
operation wins.

Done by VS
Live Share
collaboration
functionality
for text editors.

Collaboration
architecture

Clients are
working with
one server,
which is
responsible for
handling
transactions
and
collaboration.

Own
collaboration
server needed.

Google’s
collaboration
server used.

Uses VS Live
Share server.

43

3. Related Work

Easy to use
from
collaboration
perspective

Not easy to use,
since it’s not a
real-time
collaboration
functionality.
Participants
don’t event
know what
actually is
edited by other
users. Elements
get locked until
whole
transaction is
finished.

Yes, since it can
lock elements in
real-time
without clicking
on them. Undo
/ redo
operations on
global level are
not perfect.
Mouse pointers
for participant
visibility is
good.

Yes, since every
user can see
other user’s
selections and
there is a
possibility to
chat with other
participants
and create
comments to
different
elements.

In the end only
a textual
modeling
language which
shows diagram
in a read-only
window.
Working with
elements on
graphical level
is not possible.

Table 3.2: Comparison of all graphical collaborative document editing tools.

44

CHAPTER 4
Concept

With this implementation a prototype to adapt the GLSP protocol to a multi-user
architecture is created. It is clear that the prototype will use Visual Studio Live Share
and its collaborative server to share data between multiple users. Also clear is that the
solution should only extend the GLSP protocol and not completely rebuild it. Eclipse’
graphical language server protocol is constantly maintained and state of the art. This
modern technology stack provides everything which is needed to implement the prototype.
The definition of the rest of the architecture is elaborated in this chapter.

In order to meet the requirements, these must be worked out and defined. Another
question to be answered is whether a single or multi language server architecture is better
suited to the requirements. The first and most important step of the prototype is to
modify the GLSP protocol so that it is suitable for collaborative purposes. Furthermore
it has to be clarified how to create a conflict-free handling of all operations. The Visual
Studio Live Share API is used to exchange data. Here it is possible to share data
synchronously or asynchronously. Since GLSP is implemented not only on the client, but
also on the language server, changes will also have to be made to the server. As soon as
the GLSP client and GLSP server have been implemented collaboratively, the concept
will address the second important issue of the prototype. It must be ensured that conflict
potential is kept as low as possible already during collaboration. Users need to know
where in the diagram and on which element other users are working currently.

4.1 Requirements
This section discusses how to build requirements from the analyzing work about tools,
introduced at Chapter 3. The prototype is given as a precondition that it must use
the GLSP protocol and that it must run over Visual Studio Live Share. Although, the
application should be extended to allow easy migration to a different collaborative server
and architecture (instead of Visual Studio Live Share).

45

4. Concept

Following requirements will be covered within the prototype:

• Modeling languages / Diagram types: It should be possible to handle all
modeling languages and diagram types supported by GLSP collaboratively. This
prototype will focus on the Workflow sample and implement it. In the further
consequence also the BIGUML 1 extension should be realised.

• Client platforms: For the first prototype, this should be executable at client level
only as a plugin for Visual Studio Code.

• Maintained: GLSP is maintained, so this is not a real criteria for the prototype.

• Open / Closed source: Since GLSP is open source, the prototype will also be
open source.

• Cut / Copy / Paste: Since GLSP supports cut, copy and paste operations, the
collaborative version of GLSP should continue to support these operations.

• Undo / Redo: GLSP also supports undo and redo operations. The collaborative
version should continue to support these two operations. In contrast to Graphity
these are to function however on user level. This means that each user must have
its own command stack.

• Conflict reduction during collaborating process: Since the prototype uses
the VS Live Share extension, it can use collaborative functionalities like chat out-
of-the-box. Also VS Live Share assigns each user an own color, as it is common
from other collaborative editors. Graphity uses mouse pointers of other users
and displays them live at their current position. The prototype should also have
this functionality. Like Graphity, the name of the user should be displayed in a
label next to the mouse pointer. Both the mouse pointer and the label should be
displayed in the assigned color of VS Live Share. Another functionality is that
sections of other users should be highlighted. Google Drawings will outline the
selected element in the assigned color and also add a label with the name of the
user in this color. However, since this is not optimal for multiple selections from the
same element, the prototype will display icons in a special form next to the element.
This icon should also have the assigned color of the user. When multiple elements
are selected, icons will be positioned at multiple elements. This also makes it easy
for multiple users to select the same element and still have it displayed clearly.
There was no displaying of the viewport of other users in any of the presented tools,
which should be implemented in the prototype. For this purpose, a rectangle is to
be displayed in the color of the user. This rectangle should show the exact viewport
in real-time of other users. However, users do not always want to see all other
activities such as the current mouse pointer, selections and viewport. Therefore it
should be possible that a user can hide and show these features.

1https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.
umldiagram

46

https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram

4.2. Single vs. multi GLSP language server architecture

• Resolving modeling conflicts upon operations: The prototype should not have
any locking. As already seen in Google Drawings, the most current operation on an
element should win. The prototype should take much value on visual representation
of activities of other users and therefore a locking system should not be needed.
And thus no conflict resolution is necessary as well.

• Collaboration architecture: Since the extension is based on the VS Live Share
extension, the VS Live Share Server is also used as collaboration server.

• Easy to use from collaboration perspective: As already mentioned, much
emphasis should be placed on this feature. Mouse pointers, selections and viewports
of other users should help. Since also no elements are locked, a simple use of the
tool should be possible. The chat function also serves for better collaborative work.

4.2 Single vs. multi GLSP language server architecture
The first step is to answer a fundamental question. Besides the collaboration server of
Live Share, the GLSP language server is used to make modeling possible at all. In a
non-collaborative architecture, a GLSP client (e.g. Visual Studio Code extension) has an
associated GLSP server which usually runs locally on its own computer. The Workflow
extension starts e.g. the GLSP server when loading the extension. Just like the BIGUML
extension, but this one also starts a ModelServer. However, it is not in the scope of
this thesis to implement this ModelServer collaboratively.

4.2.1 Single GLSP language server architecture

In the single GLSP language server architecture, there is one GLSP server per collaboration
session. This GLSP server is placed on the local instance of the host. This server takes
care of all the important things that are language specific, like code completion, syntax
highlighting, code navigation, etc. This GLSP server also holds the model state, which
contains all information about the diagram. This model state is the only one during the
whole collaboration session. All guests work with this one GLSP server and this one
model state. Because there is only one model state for all users, no merge algorithm is
necessary.

The biggest challenge of a single server architecture is that guest actions and operations
are not executed on their own server, but are first sent from their client over VS Live
Share to the host client, which forwards them to the host server. The subsequent response
from the host server must then be distributed to the correct guest on the host client
again over VS Live Share.

Another problem of a single server architecture is that in the current GLSP server
implementation there is only one command stack. But because the application shall
support undo/redo commands on user level, i.e. per user, this GLSP server has to be

47

4. Concept

modified in a way that each participant of a collaboration session on the host server has
an own command stack.

Figure 4.1: Data flow for a model operation within a collaboration session in a single
server architecture.

The Figure 4.1 shows the data flow of a model operation within a collaboration session
in a single server architecture. This example illustrates a host and two guests, where
each user has a GLSP client, but only the host has its own GLSP server. The host
owns the only model state of the collaboration session, and as explained before, one
command stack per collaboration user. Additionally there is the VS Live Share which is
responsible for the communication between the users. In the first step (1st), the user
makes a change to the diagram, such as creating a new node. The host client creates a
CreateNodeOperation from this action and sends it to the host server (2nd). The
host server executes this operation on the existing model state. The new model state is
stored on the server and the operation is stored on the command stack of the executing
user. The host server sends the corresponding response as an UpdateModelAction back
to the host client (3rd). The host client recognizes that it is an UpdateModelAction
and broadcasts (4th) it to the VS Live Share server. This server distributes this message
to all other clients (5th). In the end, each client transfers the new model into a graphical
representation of the diagram and displays it to all users on the screen (6th).

48

4.2. Single vs. multi GLSP language server architecture

4.2.2 Multi GLSP language server architecture

In the multi GLSP language server architecture, each participant in a collaborative session
owns its own GLSP server. This GLSP server holds the model state, which contains all
information about the diagram. In a multi server variant, this would mean that each
participant in the collaboration session has its own model state and own command stack.
The main difficulty would be to maintain this model state so that there would be no
deviations among all these model states. This would require a merge algorithm such as
operational transformation to keep all model states at the same value.

Another challenge of a multi server architecture is to load the model state into all the
guest servers. Since the diagram files are usually stored locally on the host, these files
would first have to be sent via VS Live Share to all guest clients and from there to all
guest servers. With this file the guest server can initiate its own model state. However,
this only works if all information is contained in the diagram file. In some modeling
languages it is common that the GLSP server fetches further information about the
diagram from a ModelServer. This ModelServer may be installed locally on the
host and therefore it is difficult for the guest to reach this server. But not only loading
the model state, but also writing it back to the diagram file or to the ModelServer
is a challenge. Another possibility would be that not the diagram file, but the model
state already initiated on the host server is sent to all guests via VS Live Share. This
would have the advantage that the guest server does not have to access the diagram file
or the ModelServer directly. Also each GLSP server has its own command stack. The
command stack per user is necessary for example to execute undo/redo operations on
user level.

The Figure 4.2 shows how a data flow would look like for a model operation within a
collaboration session in a multi server architecture. This example shows also one host and
two guests. Each user has a GLSP client and its own GLSP server. So each GLSP server
also has its own model state and command stack. There is also the VS Live Share for
communicating between users. The same example like for the single server architecture is
used here. In the first step (1st), the user creates a new node. The host client converts
this action into a CreateNodeOperation and sends a message to the VS Live Share
server (2nd) that an operation has been performed. The VS Live Share server broadcasts
(3rd) this message to all guest clients. At the same time, but independently, all clients
send a message to the server (4th) that a CreateNodeOperation has taken place on
the model. Each GLSP server now performs this operation on the model and transforms
the model. The new model gets stored into every model state. Besides that this command
gets placed on every command stack. After the transformation, the host (5th) sends an
UpdateModelAction with the updated model back to the respective clients. Finally,
each client converts the new updated model into a graphical representation of the diagram
and displays it to all users (6th).

49

4. Concept

Figure 4.2: Data flow for a model operation within a collaboration session in a multi
server architecture.

4.2.3 Decision
For the prototype, the variant with the single server architecture was chosen. This
has the reason that:

• no merge algorithm is necessary to keep the model state consistent,

• and no logic is needed to load the model state at guest servers and as well no logic
is needed to write the state back to the source.

However, in this solution it will be necessary that:

• the host client will take care of forwarding user-addressed responses from the server
back to the initiator client,

• and that the host server stores command stacks per user to allow undo/redo
operations at user level.

50

4.3. Challenges

4.3 Challenges

This section discusses all possible challenges and problems to be solved in the course of
the prototype implementation. This includes challenges that arise from working with
GLSP messages over a GLSP server in a collaborative session. How to enable command
stacks to be stored at user level, will be defined next and finally it has to be defined how
the prototype can achieve conflict reduction already during the collaborating process.

4.3.1 Working with GLSP messages through one single GLSP server

This subsection deals with the challenges and problems of sending messages through a
single GLSP server. This discussion tries to find solutions how to solve these problems.
This GLSP server is placed on the host instance and has to receive all messages, like
initialization/dispose messages, actions and operations, of all users of the collaboration
session, process them and send them back to the host client. All guest clients are
connected to the host client via the VS Live Share server. The goal is to build the
collaboration module in a way that it is independent from VS Live Share and works with
other collaborative servers as well. As a prerequisite, the solution will have a collaboration
server communicating with one host client and multiple guest clients, since VS Live Share
is also built on this architecture. The host client has a special role in this architecture,
as it takes care of accepting and forwarding messages to the guest clients through the
collaboration server. In order to understand the problem it needs to take a closer look at
the different messages between GLSP client and GLSP server.

InitializeServer & ShutdownServer

InitializeServer is the first message a GLSP client sends to a GLSP server in
the lifecycle of an instance. This message tells the server that a new GLSP client is
present and wants to communicate with the server. In the case of the VS Code extension,
this message is sent immediately after the extension is initialized. In response to the
IntializeServer request the GLSP server sends back an IntializeResult which
tells the client which protocol version and which possible actions the server supports. In
contrast, ShutdownServer is the very last message that the GLSP client sends to the
GLSP server at the end of an instance’s life cycle. With this message the GLSP client
informs the GLSP server that the client will terminate its communication with the server.
With the ShutdownServer message there is no response from the server.

Since the GLSP client sends the InitializeServer message when the extension is
started, and before the collaboration session is started, this message type is not relevant
for the collaboration implementation and therefore does not need to be modified. Likewise,
the client sends the ShutdownServer message after the collaboration session has ended,
and is therefore also not relevant and does not need to be modified as well.

51

4. Concept

InitializeClientSession & DisposeClientSession

The GLSP client sends an InitializeClientSession to the GLSP server the first
time a diagram file is loaded. The GLSP server then creates a new session in the
dependency injection container. This happens once per diagram file per GLSP client. In
a collaborative session, this message should also be sent only once per file for the entire
session. The server does not send a response for the InitializeClientSession, it
just creates a new session. Since only the host client communicates with the server, and
it may also be possible for a guest client to open this file first, this initialization can also
be sent from the guest client to the server via the host client. The communication takes
place via the VS Live Share. Thus, the host initializes this file on behalf of the guest.
So that each user can be identified in the collaborative session, each user is assigned
a subclientId. The host gets a special ID, namely an ’H’. All guests are assigned a
sequential number as ID. This important subclientId is sent with every message.

Furthermore, each client assigns a unique ID for this session, which is used as mapping
for further messages to this diagram. However, this clientSessionId is only unique
per client. This means that different clients can be assigned different IDs for the same
document. But in order to allow a unique mapping between message and file, each client
must send the file name or the relative path to the collaborative workspace. But in order
to enable a unique allocation between message and file, each client must send the file
name (or the relative path) to the collaborative workspace within every message. A
relativeDocumentUri is inserted for this purpose.

Whether the file (or the diagram) has already been initialized must be stored by the host
client. The host client remembers which file has already been initialized by which client.
If a file is initialized for the very first time, then a message is also sent to the server.

As already mentioned the server needs a clientSessionId to be able to allocate the
diagram. Since this is only unique within a client and the server logic should not be
changed that it uses relativeDocumentUri on the server (instead of clientSes-
sionId), a temporary global clientSessionId is added at the host client, which
should be used for any communication with the server for this diagram, no matter from
which client. To be clear which temporary global clientSessionId to use when
calling the server, the host client also stores which temporary global clientSessionId
belongs to which relativeDocumentUri.

Figure 4.3 shows an example of what it looks like when Guest 1 sends an Initial-
izeClientSession, and this diagram has not yet been initialized by the host or
another guest. To do this, the user first opens a file (1st). The guest client creates
an InitializeClientSession request from it. This request contains the local
clientSessionId, which is used locally on the client to display the diagram, the
relativeDocumentUri, which should identify the file in the collaborative workspace
and the subclientId, which should identify the client/user. The request is sent to the
VS Live Share server instead to its own server (2nd). This server forwards the request to
the host client (3rd). The host client now checks if this file has already been initialized

52

4.3. Challenges

Figure 4.3: Data flow for an InitializeClientSession message initiated by Guest 1.

or not. If yes, then it stores only the subclientId to the relativeDocumentUri. If
not, then the host client creates a new temporary global clientSessionId and stores
this also to the relativeDocumentUri. Then the host client sends the request to the
host server (4th). The host server processes the request and sends an empty response
back to the host client (5th). Finally, the host client sends the empty response back to
the guest client via VS Live Share (6th/7th).

In contrast to the InitializeClientSession, the DisposeClientSession re-
quest is sent from the host client to the GLSP server when closing a diagram file. Here
the GLSP server clears all data related to the client session. Also here the request
contains the information like local clientSessionId, relativeDocumentUri and
subclientId. At the host client it works exactly like the initialization, except that
the request is only sent when each client closes this file. Thus, the request is sent when
the last client closes the diagram. In addition, the host client removes the information
that the sending client has opened the document. When all clients have closed the file,
the host client also removes the temporary global clientSessionId because it is no
longer needed. Finally, in case of a request from a guest, the empty response is sent to
the guest client via VS Live Share.

53

4. Concept

ActionMessage sent from the client

As with all ActionMessages sent from the client, the host client replaces the local
clientSessionId with the temporary global clientSessionid. This allows the
server to assign the message to a session. The host client gets the temporary global
clientSessionId from the relativeDocumentUri sent with the message.

For an ActionMessage which isn’t a RequestAction no requestId is sent, since
no response is expected from the client. For an ActionMessage with response the
requestId is added at the client and is an indicator in the GLSP protocol that a response
message is expected from the server. Here the GLSP server takes the requestId and sets
it as responseId in the response message. So the client can assign the response to the
request. The initiator’s subclientId is added, so the server maps the possible response
to the correct subclient. If this is a RequestAction again as for the requestId the
subclientId is also mapped to the ResponseAction initiated later on from the
server.

However, as for all ActionMessages, two cases must be considered: (a) the host client
sends this message or (b) a guest client sends this message. If, as in (a), the host client
sends the message to the server, it goes directly to the host server and the task is done. If
as in case (b) the guest sends this message, then it is first sent to the host client via the
VS Live Share server, which then sends it to the host server. Thus the task is also done.

There is a special case, namely at a RequestModelAction in the context of a collabo-
rative session, a flag disableReload must be given at the host client, which tells the
server that it should not reload this diagram if it has already been loaded. Namely this
would then overwrite the model on the server with each new subclient. Additionally,
in case a guest client sends this message, the sourceUri on the host client must be
replaced. This is because a guest client does not set the correct sourceUri. The guest
client has only one URI modified by VS Live Share for the collaborative session.

ActionMessage sent from the server

An ActionMessage sent from the host server is processed at the host client. If it
is a ReponseAction, a subclientId and a requestId are set. This allows the
host client to forward it to the correct client via VS Code Live Share. The appropriate
host client then processes the message further. If the special subclientId ’H’ is
set in the message, then the message is processed at the host client itself. If it is a
SetModelAction or UpdateModelAction, which the server sends in the course of
an operation on the model, then this message is broadcast to all guests and also executed
on the host itself. If it is not a ResponseAction at all, because no subclientId and
requestId is set, it will also be broadcast to all guests and also executed on its own
host client.

54

4.3. Challenges

Data flow

Figure 4.4: Data flow for an InitializeClientSession, Action and DisposeClientSession
message in a collaborative session.

55

4. Concept

The data flow diagram in Figure 4.4 represents the three main message types of the
GLSP protocol as they would behave in a collaborative session between a guest, host
and host server.

In the first part, the host starts the collaboration session and the host joins it. Then the
file is opened and an InitializeClientSession is initiated. The guest sends this
to the host, and the host updates the subclient state. If this file has not been initiated
yet, the message is sent to the server. In case the guest has initiated the message, the
guest is told that the work is done now.

In the second part an Action is sent to the server. If the guest initiates it, it is sent
to the host server via the host. If the message was initiated by the guest, the response
is forwarded to the guest. The host or the guest then process the response via their
ActionHandlers.

In the last part a file is closed and thus a DisposeClientSession message is initiated.
Also here the subclient state is updated on the host. If all subclients have closed this file,
the host sends the message to the server. If the message is initiated by the guest, the
guest is again told that the work is done. When the file disposed, the guest can leave the
collaboration session and the host can close it.

4.3.2 Enable command stacks on user level through one single GLSP
server

Command stacks are unique per session in the current implementation of the GLSP
server. However, since multiple users are working on a file within a session, a solution
must be found that keeps multiple command stacks within a session. To implement
command stacks on user level a CommandStackManager as an intermediate layer is
introduced.

At all points where the GLSP server accesses the session-wide command stack via
dependency injection, this command stack is accessed via a CommandStackManager.
The CommandStackManager works with a subclientId, which is passed to the server
with every access. The CommandStackManager stores the respective command stack
for each subclientId in a Map. It is important that the client sends a subclientId
with all messages. If no subclientId is sent, a fallback subclientId is used, which
holds all operations that cannot be assigned to a subclient.

4.3.3 Conflict reduction during collaboration process

An important part of a collaborative editor is to be able to avoid possible conflicts already
during the session. This can be achieved in many different ways. One way is to provide
a chat functionality that allows participants of a session to communicate with each other
in real-time. VS Live Share includes this functionality out of the box. VS Live Share
also assigns each user an exact color, which makes it possible to recognize and associate

56

4.3. Challenges

activities of other users. The prototype will incorporate in additional ways that allow
participants to collaborate efficiently and conflict-free.

CollaborationAction

To make this work a new action type called CollaborationAction is added. These ac-
tions are only sent between the subclients via VS Live Share and are not sent to the server.
CollaborationActions have no response and are broadcast to all other subclients.
Again, a distinction must be made whether the CollaborationAction is initiated by
the host or by a guest. In the case that the host initiates this message, it is broadcast
to all guests and processed there by their ActionHandler. If the guest initiates a
CollaborationAction, it is first sent to the host via VS Live Share and then to all
other guests. The host and all other guests then process this CollaborationAction
via their ActionHandler. To include all necessary information about the initiator
of the CollaborationAction, this information is enhanced to the message. This
includes the subclientId of the initiator, the name of the user and the assigned color
of the user. This information is stored in an attribute called initialSubclientInfo.

Figure 4.5: Data flow for a CollaborationAction initiated by Guest 1.

The Figure 4.5 shows how the data flow of a CollaborationAction initiated by Guest

57

4. Concept

1 looks like. In the first step (1st) a CollaborationAction is initiated by Guest 1.
This can be, for example, moving the mouse cursor. The guest client sends this action
with the initialSubclientInfo via VS Live Share to the host client (2nd/3rd).
Once there, the information is broadcast to all other guests via VS Live Share (4th/5th).
Finally, the ActionHandlers of the respective clients execute this action (6th). This
message is not executed at the own client, because it is only relevant for other subclients.
This can be for example the display of the initiator’s mouse pointer on the screen.

Mouse pointer

As mentioned before displaying the mouse pointers of other participants in a collaborative
session is a way for conflict reduction. For this the initator host sends a MouseMove-
Action which is a CollaborationAction. This contains the absolute position
of the initiating user represented as a Point (x and y position). Furthermore this
action has the initialSubclientInfo like all CollaborationActions. With the
position, the name and the color of the initiator it is possible to display a mouse
pointer in the desired color with the name of the user as a label on the actual position
for all other hosts.

Figure 4.6: Mock-up of participant’s cursor representation in a collaboration session.

The Figure 4.6 represents a mock-up of what a collaboration session with four participants

58

4.3. Challenges

would look like. It illustrates a simple example with four nodes and five edges. The
example shows the own cursor, which is displayed normally by the operating system. All
other cursors are displayed in the assigned color and a label with the name of the user.
The position of the cursor is always shown in real-time.

Viewport

The prototype will also display viewports of other participants in a collaborative session.
To do this, the initiating subclient sends a ViewportBoundsChangeAction, which
is also a CollaborationAction. With the info of the initiator this action holds
the bounds of the viewport. Bounds consist of a Point (x and y position) and a
Dimension (width and height of the viewport). With the information of the color
and the bounds the prototype will display other viewports, as a dashed transparent
rectangle, in real-time.

Figure 4.7: Mock-up of participant’s viewport representation in a collaboration session.

The example in Figure 4.7 is the same one which was used for mouse pointer. However,
this mock-up shows the viewports of all other participants in the assigned color. The
own viewport is only used for the example, and will not be included in the prototype.

Selections

A third functionality which is included in the prototype, to do conflict reduction during
collaboration time, is displaying selections of other users’ elements. For this purpose,
the initiating subclient sends a SelectionChangeAction, which also inherits from

59

4. Concept

the CollaborationAction. This new action has an array with the ID of all selected
elements. Since a multi-selection is possible, several elements can be selected. To
efficiently display selections of other participants filled selection icons, as rectangles and
circles, in the color of the initiating user are used. The prototype displays them at the
upper left edge for nodes and directly at the start for edges.

Figure 4.8: Mock-up of participant’s selections representation in a collaboration session.

The Figure 4.8 shows a mock-up of how the prototype will represent selections as
rectangles and circles. The custom selection is shown here in bold. However, it will be
displayed by the diagram tool as before. Selections of other users are displayed by means
of a rectangle for nodes and circle for edges filled in the color of the user. In this example,
User 1 (red) selects Element 3 and Element 4, User 2 (yellow) selects Element 4 and
User 3 (blue) selects Element 2 and the edge between Element 2 and Element 3. If one
element is selected by more than one user multiple selection icons are displayed, e.g. for
Element 4.

DisposeSubclientAction

To remove displayed elements like mouse pointers, viewports and selections of other
participants in case of closing the document, an additional action is introduced to inform
about this. A DisposeSubclientAction contains only the initialSubclientId
of the participant which is closing some document. Just like CollaborationActions,
the DisposeSubclientAction is broadcast to all other participants via VS Live
Share server. However, this action does not inherit from the CollaborationAction

60

4.3. Challenges

because it is a special case that does not require a name and color. Also, this action
does not have a response and is only considered as a notification, which is not sent to
the server. All other subclients then use this action to remove inserted elements of the
initiating user.

However, there may also be cases where a user who leaves a collaborative session does
not send a DisposeSubclientAction to all other participants. This can happen, for
example, if the internet connection fails or the program terminates abruptly. However,
the solution can add a listener for VS Live Share that emits when participants of a
collaborative session change. If a participant is no longer in the session, but this participant
has not yet been properly disposed, the host sends a DisposeSubclientAction to
all other guests. The host and all guests then execute this action to remove any elements
still displaying from the missing user.

61

CHAPTER 5
Prototype

This chapter discusses the implementation of the prototype. For this purpose, necessary
changes to the GLSP protocol will be presented. The implementation of the prototype
will be performed on top of the Workflow example. For this purpose, necessary changes
and extensions to the existing GLSP server and GLSP client implementation will be
presented by using code listings and descriptions. Furthermore, the following part will
show screenshots of the Workflow VS Code example within a collaborative session.

5.1 Extend the GLSP protocol
This section demonstrates what is necessary to extend the GLSP protocol in general to
make it work for collaborative purposes. Further specific changes for certain specifications
will be outlined in the next chapters.

5.1.1 Initialize- & DisposeClientSessionParameters

The Initialize- and DisposeClientSessionParamters are used to send data
from the host client to GLSP server during the initialization and disposition of a client
session. Always a clientSessionId and additionally a diagramType is sent during
initialization process. Additionally there is another field called args which can be used
to send additional custom arguments. This field is of type Args and consists of a simple
object containing key-value pairs. Since the prototype’s extension will send the same
information for both methods between two GLSP clients, namely when a guest subclient
sends its initialization or disposition to the host subclient, the GLSP client will use the
args attribute to communicate the subclientId and the relativeDocumentUri.
The subclientId tells which guest subclient sent the information to the host subclient
and the relativeDocumenUri tells which document or file is addressed.

63

5. Prototype

5.1.2 ActionMessage
An ActionMessage is used to send an action between a GLSP server and host client.
This can be used in both directions. This type of message is also used to communicate
between the host subclient and the guest subclient. An ActionMessage has the
clientId (clientSessionId) to associate the action with a client session and
the action itself. To identify the message later, certain information must be sent
along. For this purpose an args attribute of type Args is introduced to send the
relativeDocumentUri with the message. The subclientId is not sent in the
ActionMessage, but directly in the action. This provides an advantage that the server
can map it back to the ResponseAction more easily.

5.1.3 Action
The implementation extends the Action class with a property subclientId. This
is used so that the host client can forward responses from the server to actions sent
to the intended subclient. For this it is necessary that the GLSP server maps the
sent subclientId to all outgoing server actions, as the GLSP server does with the
requestId.

5.1.4 CollaborationAction
As already described in the previous chapter, a new type of action is introduced: Collab-
orationAction. These are not sent to the GLSP server, but only between subclients
to display visual elements such as mouse pointers, viewports and selections of other
collaboration participants. A CollaborationAction has a collaboration flag, which
identifies it as such and therefore it is not sent to the GLSP server. It also has an ini-
tialSubclientInfo, which contains a subclientId, a name and a color. These
are used to visually display the initiator of the CollaborationAction. A visible
flag left determines whether this element should be displayed or hidden, in the case that
the function is switched off by the user.

The following three actions inherit from the CollaborationAction: MouseMoveAc-
tion with position as an attribute, ViewportBoundsChangeAction with bounds
as an attribute and SelectionChangeAction with selectedElements as an at-
tribute.

The prototype adds the DisposeSubclientAction, which has the initialSubcli-
entId as an attribute. This is used if a subclient closes a document. All visual elements
of the initiator are then removed from all other subclients.

5.2 Extend the GLSP server
This section shows all the necessary customizations to the GLSP server to make it suitable
for collaborative requirements. This includes changes to the ModelState, the mapping

64

5.2. Extend the GLSP server

of the subclientId and the implementation of a CommandStack on user (subclient)
level.

5.2.1 ModelState
Since the solution with a single GLSP server only needs one ModelState for all subclients
per client session, no major adjustments to the GLSP server are necessary. One client
session means one document/file for the entire collaborative session.

There is now a problem with multiple subclients sending a RequestModelAction to
the same client session and the action reloads the SourceModel into the ModelState
each time. This causes the GLSP server to overwrite saved changes. To prevent this
an additional configuration named DISABLE_RELOAD is added to the key-value pair
attribute called options of the RequestModelAction. This field is of type Boolean
and tells the GLSP server whether the ModelState should be reloaded for an already
loaded state or not. By default this flag is false and that means that in this case the
state would be reloaded.

The customized RequestModelActionHandler checks if this flag is set to false or the
ModelState has not been loaded yet. If that is the case, the ModelState is loaded
from the SourceModel. If this is not the case, this part is simply skipped and the
already loaded model is submitted.

5.2.2 SubclientId mapping
As defined in the previous Section 5.1, all subclients send a subclientId to the host
client and thus further to the host server with each action. If this action results in another
action that is sent from the server back to the client, then the host client must forward
this to the correct subclient.

To make this happen a new static function addSubclientId(initialAction, ex-
tendedAction) (Listing 5.1) is added to the Action class, which takes the subcli-
entId of an initialAction and maps it to an extendedAction. Server-created
actions, in the course of a client action, pass through the DefaultActionDispatcher
to map, for example, the incoming requestId to the ResponseAction. With this
extension, the subclientId is also mapped to the incoming action at this point using
the Action.addSubclientId(initialAction, extendedAction) function.

1 public abstract class Action {
2 ...
3 public static Action addSubclientId(
4 final Action initialAction,
5 final Action extendedAction
6) {
7 if (initialAction.getSubclientId() != null) {
8 extendedAction.subclientId = initialAction.subclientId;
9 }

65

5. Prototype

10 return extendedAction;
11 }
12 ...
13 }

Listing 5.1: Function addSubClientId which addes subclientId from initial to extended
action.

Also in other places this function is called to map the subclientId to outgoing actions.
For example, the GModelCreateNodeOperationHandler creates a SelectAction
in the flow of a CreateNodeOperation. This handler is running when a new node is
created in the diagram and creates an action which should automatically select the new
node.

1 actionDispatcher.dispatchAfterNextUpdate(
2 Action.addSubclientId(
3 operation,
4 new SelectAction()
5),
6 Action.addSubclientId(
7 operation,
8 new SelectAction(List.of(element.getId()))
9)

10);

Listing 5.2: Function-call of Action.addSubclientId to map subclientId from
CreateNodeOperation to SelectAction

Listing 5.2 illustrates how the GModelCreateNodeOperationHandler first creates
a new empty SelectAction to deselect all elements and also a new SelectAction
with the ID of the new node. In both cases the subclientId sent by a CreateNode-
Operation (variable operation) is mapped to the newly created action.

5.2.3 CommandStack on user level
To implement CommandStacks at user (subclient) level, the access to the Command-
Stack at the GLSP server has to be adapted. In the non-collaborative implementation
of GLSP server, a single CommandStack is held directly in the ModelState implemen-
tation. The implementation extends the GLSP server with a CommandStackManager
that stores all CommandStacks per subclientId in a Map-object.

To do this, an interface CommandStackManager with following functions is created:

• The function getOrCreateCommandStack(subclientId), which returns a
CommandStack for a subclientId. If no CommandStack is found, a new one
is created first and then returned.

66

5.2. Extend the GLSP server

• The function getAllCommandStacks() returns all CommandStacks.

• The function setCommandStack(commandStack, subclientId) allows to
store a CommandStack for a subclientId in the Map-object.

In addition to the interface, a default implementation that fulfills this logic is created.
Listing 5.3 shows how the DefaultCommandStackManager class implements this
interface. In case null was passed as subclientId because the command cannot be
assigned to a subclient, a FALLBACK_SUBCLIENT_ID is used.

Also noticeable is that this class injects a CommandStackFactory, which is an in-
terface that contains a function createCommandStack() that should create a Com-
mandStack. The default implementation of this factory pattern is implemented in the
DefaultCommandStackFactory class.

1 public class DefaultCommandStackManager implements CommandStackManager {
2
3 @Inject
4 CommandStackFactory factory;
5
6 protected Map<String, CommandStack> commandStackMap = new HashMap<>();
7
8 @Override
9 public CommandStack getOrCreateCommandStack(final String subclientId) {

10 String subclientIdOrFallback = getSubclientIdOrFallback(subclientId);
11 if (commandStackMap.containsKey(subclientIdOrFallback)) {
12 return commandStackMap.get(getSubclientIdOrFallback(

subclientIdOrFallback));
13 }
14
15 CommandStack commandStack = factory.createCommandStack();
16 commandStackMap.put(subclientIdOrFallback, commandStack);
17 return commandStack;
18 }
19
20 @Override
21 public List<CommandStack> getAllCommandStacks() {
22 return new ArrayList<>(commandStackMap.values());
23 }
24
25 @Override
26 public void setCommandStack(final CommandStack commandStack, final String

subclientId) {
27 String subclientIdOrFallback = getSubclientIdOrFallback(subclientId);
28 if (commandStackMap.containsKey(subclientIdOrFallback)) {
29 commandStackMap.get(subclientIdOrFallback).flush();
30 }
31 commandStackMap.put(subclientIdOrFallback, commandStack);
32 }
33

67

5. Prototype

34 private String getSubclientIdOrFallback(final String subclientId) {
35 if (subclientId != null) {
36 return subclientId;
37 }
38 return CollaborationUtil.FALLBACK_SUBCLIENT_ID;
39 }
40 }

Listing 5.3: Default implementation of CommandStackManager interface.

Previously, ModelState implementations accessed the CommandStack directly. In the
new implementation, the CommandStackManager is injected and the chosen Command-
Stack is accessed via the subclientId. Through this extension it is now possible that
each user has its own CommandStack and undo/redo operations thus work at user level.

1 public abstract class DiagramModule extends GLSPModule {
2 ...
3 @Override
4 protected void configureBase() {
5 ...
6 bind(CommandStackFactory.class)
7 .to(bindCommandStackFactory()).in(Singleton.class);
8 bind(CommandStackManager.class)
9 .to(bindCommandStackManager()).in(Singleton.class);

10 }
11
12 protected Class<? extends CommandStackFactory> bindCommandStackFactory()

{
13 return GModelCommandStackFactory.class;
14 }
15
16 protected Class<? extends CommandStackManager> bindCommandStackManager() {
17 return DefaultCommandStackManager.class;
18 }
19 ...
20 }

Listing 5.4: Configure CommandStackFactory and CommandStackManager for
dependency injection.

Listing 5.4 displays how the dependency injection container gets extended to bind
the default implementations of both, namely CommandStackFactory and Command-
StackManager interfaces, to their corresponding interfaces at the DiagramModule.
So it is possible to inject the CommandStackManager at all places within a client
session. Furthermore, it is possible to simply overwrite the default implementation.

68

5.3. Extend the GLSP VS Code integration

5.3 Extend the GLSP VS Code integration
The biggest customization to enable collaborative work using GLSP, takes place at GLSP
VS Code integration. This is because VS Live Share shares data between subclients and
VS Live Share is clearly best located in the GLSP VS Code integration layer.

5.3.1 CollaborationGlspClient
In the default implementation, the GLSP client uses a JSON-RPC implementation of
GLSPClient to communicate with the GLSP server. GLSPClient should not be con-
fused with the term GLSP client. GLSPClient is an interface used for communication
between the GLSP client and GLSP server. GLSP client is the name for the client
part of the server-client architecture. To realize the prototype, the point where the
GLSP client would normally send messages to the GLSP server, namely the JSON-RPC
GLSPClient implementation, will be adapted. Here for, a new GLSPClient, named
CollaborationGlspClient, is introduced. This new class communicates via VS Live
Share with other subclients and in the case of the host subclient also with the GLSP
server. Since this class is the main component of this customization, this subsection
presents and describes code excerpts in detail.

1 export class CollaborationGlspClient implements GLSPClient {
2 protected readonly BROADCAST_ACTION_TYPES = [SetModelAction.KIND,

UpdateModelAction.KIND];
3
4 readonly id: string;
5
6 protected commonProvider: CommonCollaborationGlspClientProvider;
7 protected hostProvider: HostCollaborationGlspClientProvider;
8 protected guestProvider: GuestCollaborationGlspClientProvider;
9

10 protected registeredSubclientMap = new Map<string, Map<string, string>>()
;

11
12 protected serverClientIdMap = new Map<string, string>();
13
14 protected actionMessageHandlers: ActionMessageHandler[] = [];
15
16 constructor(
17 protected glspClient: GLSPClient,
18 config: CollaborativeGlspClientConfig
19) {
20 ...

Listing 5.5: Member variables and constructor of CollaborationGlspClient.

The CollaborationGlspClient class implements the GLSPClient interface (List-
ing 5.5). Another GLSPClient is passed in the constructor, which is then responsible
for communication with the GLSP server. Furthermore, config CollaborativeGlsp-

69

5. Prototype

ClientConfig is passed, which takes over the three providers for communication with
other subclients. The architecture requires that there is exactly one host subclient and
any number of guest subclients. If the subclient acts as a host, the hostProvider is
used; if the subclient acts as a guest, the guestProvider is used. Methods that are
used by both host and guest are implemented in the commonProvider.

The registeredSubclientMap stores a further Map with all subclientIds for
all documents (identified by the realtiveDocumentUri) for their local clientSes-
sionIds. In addition, another state that holds the global clientSessionIds for each
relativeDocumentUri is needed. The prototype uses the serverClientIdMap to
store this information. It also needs a list of all ActionMessageHandlers that are
triggered at certain points.

1 async initializeClientSession(params: InitializeClientSessionParameters):
Promise<void> {

2 if (!params.args?.subclientId) {
3 params.args = {
4 ...params.args,
5 subclientId: this.commonProvider.getSubclientIdFromSession()
6 };
7 }
8
9 if (!this.commonProvider.isInCollaborationMode() || this.commonProvider.

isHost()) {
10 const relativeDocumentUri = this.getRelativeDocumentUriByArgs(params.

args);
11
12 const subclientId = params.args?.subclientId as string;
13 const subclientMap = this.registeredSubclientMap.get(

relativeDocumentUri) || new Map<string, string>();
14
15 const initialized = subclientMap.size > 0;
16 subclientMap.set(subclientId, params.clientSessionId);
17 this.registeredSubclientMap.set(relativeDocumentUri, subclientMap);
18 if (initialized) {
19 return;
20 }
21 params.clientSessionId += ‘_${subclientId}‘;
22 this.serverClientIdMap.set(relativeDocumentUri, params.

clientSessionId);
23
24 return this.glspClient.initializeClientSession(params);
25 } else if (this.commonProvider.isGuest()) {
26 return this.guestProvider.initializeClientSessionForGuest(params);
27 }
28 }

Listing 5.6: Method initializeClientSession of CollaborationGlspClient.

The intializeClientSession(params) method is called when a new document

70

5.3. Extend the GLSP VS Code integration

is initialized. Both subclientId and relativeDocumentUri are defined in the
params parameter. If no subclientId is stored, the commonProvider is called to
set the subclientId in the params pararmeter.

In line 9 in Listing 5.6 the method checks whether the GLSP client is currently not in a
collaborative session OR whether it is currently the host of the collaborative session. In
this case, it stores this subclient with the local clientSessionId in the registered-
SubclientMap of the respective document. If this document has already been initialized
on the server, the function terminates. If not, a global clientSessionId is set in line
21, which is a combination of the local clientSessionId and subclientId. With
the adjusted params, a request is sent to the GLSP server and the result is returned.
The reason why this information is also stored in non-collaborative mode is that the
information will be needed if one user later on subsequently switches to a collaborative
session and this GLSP client would become the host of this session.

In case this GLSP client is the guest of a collaborative session, an intializeClientSes-
sion request is sent via the guestProvider to the host subclient. How the providers
use VS Live Share to implement the data transfer between subclients will be shown later.
Technically any library could be used, instead of VS Live Share, to implement providers
for data exchange. The host then executes this request, sent by the provider, as a proxy
on its environment as described above in the previous paragraph.

1 async disposeClientSession(params: DisposeClientSessionParameters): Promise<
void> {

2 if (!params.args?.subclientId) {
3 params.args = {
4 ...params.args,
5 subclientId: this.commonProvider.getSubclientIdFromSession()
6 };
7 }
8
9 if (this.commonProvider.isInCollaborationMode() && this.commonProvider.

isHost()) {
10 this.handleDisposeSubclientMessage(params);
11 }
12
13 if (!this.commonProvider.isInCollaborationMode() || this.commonProvider.

isHost()) {
14 const relativeDocumentUri = this.getRelativeDocumentUriByArgs(params.

args);
15
16 const subclientId = params.args?.subclientId as string;
17 const subclientMap = this.registeredSubclientMap.get(

relativeDocumentUri) || new Map<string, string>();
18
19 subclientMap.delete(subclientId);
20 this.registeredSubclientMap.set(relativeDocumentUri, subclientMap);
21 if (subclientMap.size > 0) {
22 return;

71

5. Prototype

23 }
24 this.serverClientIdMap.delete(relativeDocumentUri);
25 return this.glspClient.disposeClientSession(params);
26 } else if (this.commonProvider.isGuest()) {
27 return this.guestProvider.disposeClientSessionForGuest(params);
28 }
29 }

Listing 5.7: Method disposeClientSession of CollaborationGlspClient.

The disposeClientSession(params) method (Listing 5.7) is called when a GLSP
client closes a document.
As with the initializeClientSession method, relativeDocumentUri and
subclientId are set in the params. If the subclientId is not set, it is set at
the start of the method via the commonProvider.
First, line 9 checks whether this GLSP client is in a collaborative session AND is the host of
the session. If that is the case, the implementation broadcasts a DisposeSubclientAc-
tion to all subclients via the private method handleDisposeSubclientMessage
and executes it on their ActionHandlers. The ActionHandlers of the host also
execute this action. This is done so that all subclients know as soon as a subclient closes
a document or leaves a session.
Then in line 13 it is checked again whether this GLSP client is not in a collaborative
session OR the host of the session. If that is the case, the entry of the calling subclient
for this document is deleted from the registeredSubclientMap. If all entries for a
document have been deleted, this means that the document can also be disposed from
the GLSP server. To do this, the entry in the serverClientIdMap is first deleted and
then a request is sent to the GLSP server in line 24.
If the method is called by a guest subclient, a request is again sent in line 27 via the
guestProvider to the host subclient, which then processes the request as a proxy.

1 sendActionMessage(message: ActionMessage): void {
2 if (!message.action.subclientId) {
3 message.action.subclientId = this.commonProvider.

getSubclientIdFromSession();
4 }
5
6 if (CollaborationAction.is(message.action)) {
7 this.handleCollaborationAction(message as ActionMessage<

CollaborationAction>);
8 } else if (!this.commonProvider.isInCollaborationMode() || this.

commonProvider.isHost()) {
9 const relativeDocumentUri = this.getRelativeDocumentUriByArgs(message

.args);
10
11 message.clientId = this.serverClientIdMap.get(relativeDocumentUri) ||

’’;

72

5.3. Extend the GLSP VS Code integration

12
13 if (message.action.kind === RequestModelAction.KIND) {
14 const requestModelAction = message.action as RequestModelAction;
15 requestModelAction.options = {
16 ...requestModelAction.options,
17 disableReload: true
18 };
19 if (message.action.subclientId !== SUBCLIENT_HOST_ID) {
20 requestModelAction.options = {
21 ...requestModelAction.options,
22 sourceUri: getFullDocumentUri(relativeDocumentUri)
23 };
24 }
25 }
26 this.glspClient.sendActionMessage(message);
27 } else if (this.commonProvider.isGuest()) {
28 this.guestProvider.sendActionMessageForGuest(message);
29 }
30 }

Listing 5.8: Method sendActionMessage of CollaborationGlspClient.

The sendActionMessage(message) method (Listing 5.8) gets called by the GLSP
client when it sends an ActionMessage to the GLSP server. Only the host subclient
sends a message to its GLSP server. In contrast, guest subclients send their message to
the host subclient, which then forwards this message to the GLSP server.

As in the other two methods, the system first checks whether the subclientId is set.
If this is not the case, it is set.

Line 6 checks whether a CollaborationAction is transmitted. Messages of this type
are not sent to the GLSP server, but are only executed by the host subclient itself and
broadcast to all guest subclients.

Line 8 checks whether the GLSP client is not in a collaborative session OR the host
subclient is. If that is the case, the global clientSessionId is attached to the
message through the relativeDocumentUri and the serverClientIdMap. If it
is a RequestModelAction, the function sets the disableReload flag to true, so
that the sourceModel is not reloaded each time. And if the message originates from
a guest subclient, the sourceUri is replaced with the full URI, as the guest subclient
only knows the relativeDocumentUri inside the collaborative workspace. Finally,
the GLSP client sends the message to the GLSP server

If the method is called by a guest subclient, it is sent via the guestProvider to the
host subclient, which then processes it further and sends it to the GLSP server.

73

5. Prototype

1 this.glspClient.onActionMessage((message: ActionMessage) => {
2 const relativeDocumentUri = this.getRelativeDocumentUriByServerClientId(

message.clientId);
3 const subclientMap = this.registeredSubclientMap.get(relativeDocumentUri)

;
4 if (!subclientMap) {
5 return;
6 }
7 if (!this.commonProvider.isInCollaborationMode()) {
8 const localClientId = subclientMap.get(SUBCLIENT_HOST_ID) || ’’;
9 this.handleMessage(SUBCLIENT_HOST_ID, message, localClientId);

10 } else if (this.commonProvider.isHost()) {
11 const subclientId = message.action.subclientId;
12 if (subclientId == null || this.BROADCAST_ACTION_TYPES.includes(

message.action.kind)) {
13 this.handleMultipleMessages(subclientMap, message);
14 } else {
15 const localClientId = subclientMap.get(subclientId) || ’’;
16 this.handleMessage(subclientId, message, localClientId);
17 }
18 }
19 });

Listing 5.9: Method onActionMessage of CollaborationGlspClient.

If the GLSP server sends a message to the GLSP client, this message is handled in the
callback implementation of the onActionMessage(callback) method (Listing 5.9).

First, the registered subclients for this relativeDocumentUri are loaded in line 3. If
the GLSP client is not in a collaborative session, the ActionMessage is simply executed
by the local ActionMessageHandler as in the default GLSPClient implementation.

In a collaborative session, only a host subclient can receive messages from a GLSP server
(line 10). If no subclientId is set in the incoming message OR the type of action is
within the list of BROADCAST_ACTION_TYPES, then this message is executed by the local
ActionMessageHandler and broadcast to all other guest subclients. This is done in the
handleMultipleMessage(subclientMap, message) method. BROADCAST_AC-
TION_TYPES contains the SetModelAction and UpdateModelAciton, which are
sent by the GLSP server during an operation on the model.

If a subclientId is set AND this message is not broadcast, it is either executed
itself or sent to the initial sender of the initiator message, all done at the handleMes-
sage(subclientid, message, localClientId) method . Before this, the local
clientSessionId is loaded from the subclientMap, which is needed on the local
GLSP client to execute the message.

74

5.3. Extend the GLSP VS Code integration

5.3.2 CollaborationGlspClientProviders

To ensure that the CollaborationGlspClient runs, a CollaborativeGlspClient-
Config must be passed. This contains an implementation of the following three interfaces:
CommonCollaborationGlspClientProvider, HostCollaborationGlspClient-
Provider and GuestCollaborationGlspClientProvider. It is also possible for
all three interfaces to be implemented in just one so-called CollaborationGlsp-
ClientProvider. This subsection shows all methods that are implemented to enable
collaborative working with GLSP. In the default implementation, which is presented
later, VS Live Share is used to send data between subclients. However, it is possible to
use any other form of data exchange to implement these providers. The only important
thing is that the architecture remains the same and that there is only a maximum of one
host subclient that handles the communication with the GLSP server. The number of
guest subclients is not limited.

1 export interface CommonCollaborationGlspClientProvider {
2 initialize(config: CollaborationGlspClientProviderInitializeConfig):

Promise<void>;
3 isInCollaborationMode(): boolean;
4 isHost(): boolean;
5 isGuest(): boolean;
6 getSubclientIdFromSession(): string;
7 getSubclientInfoFromSession(): SubclientInfo;
8 }

Listing 5.10: Interface with methodes of CommonCollaobrationGlspClientProvider.

The CommonCollaborationGlspClientProvider implements methods that must
be supported by both a host and a guest subclient (Listing 5.10). The initial-
ize(config) method is executed when the CollaborativeGlspClient is started
and it waits until the method is terminated. As it returns a Promise<void>, the method
can also execute asynchronous calls. The isInCollaborationMode() method re-
turns a Boolean value as to whether this subclient is currently in a collaborative session.
The isHost() and isGuest() methods return a Boolean value with the information
as to whether the subclient is currently acting as host or guest. The getSubcli-
entIdFromSession() function returns the subclientId of the subclient and the
getSubclientInfoFromSession() function returns a SubclientInfo of the sub-
client. A SubclientInfo contains the subclientId, a human-readable name that
is displayed on the screen for this subclient and a color that is assigned to the subclient.
This can also be displayed on the screen to characterize users.

75

5. Prototype

1 export interface HostCollaborationGlspClientProvider {
2 handleActionMessageForHost(message: ActionMessage): void;
3 handleMultipleActionMessagesForHost(messages: ActionMessage[]): void;
4 onGuestsChangeForHost(handler: GuestsChangeHandler): void;
5 }

Listing 5.11: Interface with methodes of HostCollaobrationGlspClientProvider.

The HostCollaborationGlspClientProvider only needs to be implemented by
a host subclient (Listing 5.11). The postfix "ForHost" and later also "ForGuest" are used
in all these methods, as it is possible for both interfaces to be implemented by just one
provider. The handleActionMessageForHost(message) method is called by the
host subclient when an ActionMessage arrives from the GLSP server and this is sent to
all guest subclients. The handleMultipleActionMessagesForHost(messages)
does more or less the same, but only for an array of messages. Last but not least, the
method onGuestsChangeForHost(handler) registers a GuestsChangeHandler,
which is called when the number of guest subclients changes. A GuestsChangeHandler
returns all current subclientIds.

1 export interface GuestCollaborationGlspClientProvider {
2 initializeClientSessionForGuest(params: InitializeClientSessionParameters

): Promise<void>;
3
4 disposeClientSessionForGuest(params: DisposeClientSessionParameters):

Promise<void>;
5
6 sendActionMessageForGuest(message: ActionMessage): void;
7 }

Listing 5.12: Interface with methodes of GuestCollaobrationGlspClientProvider.

In contrast, the GuestCollaborationGlspClientProvider only needs to be im-
plemented by guest subclients (Listing 5.12). Here, the "ForGuest" postfix is shown again.
The initializeClientSessionForGuest(params) is called when the Collab-
orationGlspClient handles an IntializeClientSession request from a guest
subclient. The implementation of this function is intended to send this request to the
host subclient, which afterwards can process it further and send it to the GLSP server.
The disposeClientSessionForGuest(params) method does the same for the
DisposeClientSession request. The sendActionMessageForGuest(message)
method is called when a guest subclient wants to send an ActionMessage to the server.
This is also forwarded to the host subclient, which then sends the information to the
GLSP server.

76

5.3. Extend the GLSP VS Code integration

5.3.3 LiveshareGlspClientProvider
The LiveshareGlspClientProvider is a default implementation of the Collabo-
rationGlspClientProvider, as part of the prototype. This is where VS Live Share
comes into play for the first time, as VS Live Share supports in exchanging data between
subclients. In general, VS Live Share, or any other library for exchanging data, only
needs to be used in this class. This makes it very easy to switch the collaboration library.

VS Live Share offers the possibility to:

• send an asynchronous notification without a response, used from the host to all
guests - notify(name, args)

• send a synchronous request with response, used from the guest to the host -
request(name, args)

The name parameter identifies a unique name that is used to assign the request or
notification on the receiving side. On this side there are the methods onNotify(name,
handler) for guest subclients and onRequest(name, handler) or for the host
subclient to receive the arguments (parameter args) in the handler callback and
process them further. This part briefly presents all four methods and how they are
implemented for the prototype.

1 handleActionMessageForHost(message: ActionMessage): void {
2 this.hostService.notify(ON_ACTION_MESSAGE, message);
3 }
4
5 async initializeSession(session: Session): Promise<void> {
6 ...
7 else if (session.role === Role.Guest) {
8 this.service.onNotify(ON_ACTION_MESSAGE, (message: any) => {
9 this.checkActionMessageAndSendToClient(message);

10 });
11 }
12 ...
13 }
14
15 checkActionMessageAndSendToClient(message: ActionMessage): void {
16 const subclientId = message.action.subclientId;
17 if (this.getSubclientIdFromSession() === subclientId) {
18 this.collaborationGlspClient.handleActionOnAllLocalHandlers(message);
19 }
20 }

Listing 5.13: Asynchronous notification over notify(name, args) and onNotify(name,
handler) at LiveshareGlspClient.

77

5. Prototype

Listing 5.13 shows how an asynchronous notification is transferred between a host sub-
client and guest subclient. The handleActionMessageForHost(message) method,
implemented from the HostCollaborationGlspClientProvider, is called by the
CollaborationGlspClient when a message comes from the GLSP server and is to
be forwarded to a guest subclient. The notify(ON_ACTION_MESSAGE, message)
method is called here. ON_ACTION_MESSAGE is a unique name which is used in the on-
Notify(ON_ACTION_MESSAGE, message=>void) method to map the notification
correctly. The callback function is defined once per session, if it is a guest subclient, in
the initializeSession(session). As the message is sent to all guest subclients, a
check in the checkActionMessageAndSendToClient(message) method is needed
to ensure the subclientId of the session matches the one of the message. If that is
the case, the method can execute the received message on all local ActionHandlers.

1 sendActionMessageForGuest(message: ActionMessage): void {
2 this.guestService.request(SEND_ACTION_MESSAGE, [message]);
3 }
4
5 async initializeSession(session: Session): Promise<void> {
6 ...
7 if (session.role === Role.Host) {
8 this.service.onRequest(SEND_ACTION_MESSAGE, async params => {
9 const message = params[1] as ActionMessage;

10 this.collaborationGlspClient.sendActionMessage(message);
11 });
12 }
13 ...
14 }

Listing 5.14: Synchronous notification over request(name, args) and onRequest(name,
handler) at LiveshareGlspClient.

The other direction using a synchronous message is shown in Listing 5.14. For that pur-
pose the sendActionMessageForGuest(message) method, implemented from the
GuestCollaborationGlspClientProvider, is called by the CollaborationGlsp-
Client when the guest subclient sends an ActionMessage to the GLSP server. To do
this, it is first sent to the host subclient using the request(SEND_ACTION_MESSAGE,
[message]) method. The callback function at onRequest(SEND_ACTION_MES-
SAGE, params=>any) is defined in the initializeSession(session) method
once per session for the host subclient and accepts all messages of the type SEND_AC-
TION_MESSAGE. The CollaborationGlspClient is called in the callback function
to send a message to the GLSP server.

5.3.4 ToggleFeatureTreeDataProvider & CollaborationFeatureStore
Another feature is the ability to hide and show collaborative elements such as mouse point-
ers, viewports and selections of other participants. VS Live Share offers the possibility to

78

5.3. Extend the GLSP VS Code integration

extend the tree view with own elements. The registerTreeDataProvider(viewId,
treeDataProvider) method can be used to pass a provider that provides new ele-
ments.

For this purpose, the ToggleFeatureTreeDataProvider class was invented, which
implements the TreeDataProvider interface. This implementation creates a TreeItem
for each of the three collaborative features mentioned above, which contains a name,
tooltip and command. Also an EventEmitter is implemented, which is fired when
one of the elements is clicked.

Figure 5.1: VS Live Share tree view with toggle elements for collaborative features.

In addition to this provider, an extra class CollaborationFeatureStore is intro-
duced, which implements the interface ICollaborationFeatureStore. This stores
for each of the three collaborative actions whether it is currently enabled or disabled for
its own GLSP client.

Finally, the created commands of the TreeItems are registered to VS Code within the
introduced configureCollaborationCommands(context) function. Each com-
mand has a unique name with which that command is identified. If a command is
performed, the client sends a ToggleCollaborationFeatureAction to all Aci-
tonHandlers, which show and hide the visual element in the diagram view. Toggle
elements are displayed in Figure 5.1, which make it possible to enable or disable mouse
pointers, viewports and selections. Clicking on one of these toggle buttons executes the
command which sends the action for showing or hiding features to the GLSP client.

79

5. Prototype

5.4 Extend the GLSP client
Finally, the GLSP client has to be extended. The GLSP client is displayed in a webview
using Sprotty 1 and receives data such as Actions via the GLSP server. Furthermore,
Actions can be sent to the GLSP server via the GLSP VS Code integration. Not all
Actions are sent outside the webview, some are only used to transfer data within the
GLSP client. In context of this thesis they get called WebviewActions, because there is
no certain naming convention in the code for them. The GLSP client gets extended with
three main features: visually displaying mouse moves, viewport changes and selection
changes of other subclients. This is to counteract the important point of conflict reduction
during the collaboration process.

The implementation adds a dependency injection ContainerModule called collabo-
rationModule, which can be easily integrated. This contains a Tool, a Provider,
Commands, WebviewActions, ModelElements and a View for each of the three main
features. A Tool is a service class that can do several things at the same time, e.g.
contain a state, register listeners (like a MouseListener) or act as an ActionHan-
dler itself. Providers are also ActionHandlers that listen for certain Actions
(mostly from the server or CollaborationActions) and dispatch WebviewActions.
A Command defines the behavior of a WebviewAction. In that case it adds or deletes
ModelElements of a certain type to or from the graphical model. A View specifies
exactly how a ModelElement is rendered at the DOM (Document Object Model).

As each feature is basically structured in the same way, this thesis will introduce one of
them in more detail in this section and point out the differences between those features.
This section will focus on the mouse move feature.

5.4.1 Tools
First, this subsection takes a look at the created tools, which capture various user
actions such as mouse moves, viewport changes or selection changes and ensure that
CollaborationActions are dispatched, which are then sent via the Collabora-
tionGlspClient to other subclients and transferred to their webview.

1 @injectable()
2 export class MouseMoveTool extends BaseGLSPTool implements IActionHandler {
3 ...
4 protected mouseListener: MouseMoveListener;
5
6 handle(action: Action): void {
7 if (SetViewportAction.is(action)) {
8 this.lastViewport = action.newViewport;
9 }

10 }
11

1https://github.com/eclipse-sprotty/sprotty

80

https://github.com/eclipse-sprotty/sprotty

5.4. Extend the GLSP client

12 enable(): void {
13 this.mouseListener = new MouseMoveListener(this);
14 this.mouseTool.register(this.mouseListener);
15 }
16
17 disable(): void {
18 this.mouseTool.deregister(this.mouseListener);
19 }
20 }
21
22 export class MouseMoveListener extends MouseListener {
23 constructor(protected tool: MouseMoveTool) {
24 super();
25 }
26
27 override mouseMove(target: SModelElement, event: MouseEvent): Action[] {
28 const lastViewport = this.tool.lastViewport;
29 const x = lastViewport.scroll.x + (event.pageX / lastViewport.zoom);
30 const y = lastViewport.scroll.y + (event.pageY / lastViewport.zoom);
31
32 return [MouseMoveAction.create({ position: { x, y }})];
33 }
34 }

Listing 5.15: Implementation of MouseMoveTool and MouseMoveListener dispatching
MouseMoveActions.

The MouseMoveTool (Listing 5.15) inherits from BaseGLSPTool and implements IAc-
tionHandler. The implemented handle(action) method listens to a SetView-
portAction and the passed lastViewport is stored in an own state variable. In
addition, a MouseMoveListener is registered in the enable() method, which listens
for mouse moves and dispatches a MouseMoveAction (is a CollaborationAction).
The absolute position is calculated using the lastViewport and the relative position
of the MouseEvent. By returning the MouseMoveAction in line 32, this action is
dispatched automatically.

The ViewportBoundsChangeTool listens also for SetViewportAction to store
the lastViewport. It also listens for an InitializeCanvasBoundsAction, which
is dispatched when the window is resized. It contains the height and width of the
webview. These two entries are used to dispatch a ViewportBoundsChangeAction
(CollaborationAction).

The SelectionChangeTool implements a SelectionListener, which calls the se-
lectionChanged(root, selectedElements) when the selections of elements are
changed. By calling this the tool dispatches a SelectionChangeAction (CollaborationAction).

81

5. Prototype

5.4.2 Providers

Providers catch CollaborationActions (already sent through VS Live Share to
other subclients) and use them to dispatch WebviewActions. All providers imple-
ment the IActionHandler interface and inject a feedbackActionDispatcher. A
FeedbackActionDispatcher ensures that these actions are executed again after an
UpdateModelAction, which leads to a re-rendering of the graphical model. If no
FeedbackActionDispatcher would be used, all displayed visual elements would be
removed after an UpdateModelAction.

1 @injectable()
2 export class DrawMousePointerProvider implements IActionHandler {
3 @inject(TYPES.IFeedbackActionDispatcher)
4 protected feedbackActionDispatcher: IFeedbackActionDispatcher;
5
6 protected lastActions: Map<string, DrawMousePointerAction> = new Map();
7
8 protected lastViewport: Viewport = DEFAULT_VIEWPORT;
9

10 handle(action: Action): Action | void {
11 if (SetViewportAction.is(action)) {
12 this.lastViewport = action.newViewport;
13 Array.from(this.lastActions.values()).forEach(a => a.zoom = this.

lastViewport.zoom);
14 this.dispatchFeedback();
15 }
16
17 if (MouseMoveAction.is(action) && action.initialSubclientInfo != null

) {
18 const feedbackAction = DrawMousePointerAction.create({
19 position: action.position,
20 initialSubclientInfo: action.initialSubclientInfo,
21 zoom: this.lastViewport.zoom,
22 visible: action.visible
23 });
24 this.lastActions.set(feedbackAction.initialSubclientInfo.

subclientId, feedbackAction);
25 this.dispatchFeedback();
26 }
27
28 if (ToggleCollaborationFeatureAction.is(action) && action.actionKind

=== MouseMoveAction.KIND) {
29 Array.from(this.lastActions.values()).forEach(a => a.visible = !a

.visible);
30 this.dispatchFeedback();
31 }
32
33 if (DisposeSubclientAction.is(action) && action.initialSubclientId !=

null) {
34 this.lastActions.delete(action.initialSubclientId);
35 this.dispatchFeedback();

82

5.4. Extend the GLSP client

36 return RemoveMousePointerAction.create({
37 initialSubclientId: action.initialSubclientId
38 });
39 }
40 }
41 ...
42 }

Listing 5.16: Implementation of DrawMousePointerProvider dispatching
DrawMousePointerActions and RemoveMousePointerActions.

Listing 5.16 shows the DrawMousePointerProvider. This injects the Feedback-
ActionDispatcher in line 2. In addition, there are member variables for a list of
lastActions per subclientId and the lastViewport. This class saves the last
DrawMousePointerAction for each subclient, so it is possible to re-draw each mouse
pointer after re-rendering.

The handle(action) method listens for SetViewportActions so that it can save
the current zoom value and, in the case of a zoom change, re-render all mouse pointers
with new zoom value. This is necessary so that in the case of a zoom-in, the size of the
mouse pointer does not zoom-in as well.

Line 17 listens for MouseMoveAction with initialSubclientInfo is not null. If
this initialSubclientInfo is not null, this means that the MouseMoveAction
is not dispatched by this GLSP client and has already been sent to other subclients
via VS Live Share. A DrawMousePointerAction is created from this MouseMove-
Action, where the last zoom value is assigned. In line 24, this new action is added
to the lastActions and then all DrawMousePointerActions are dispatched using
the FeedbackActionDispatcher.

In line 28, this method listens for a ToggleCollaborationFeatureAction and
checks for type MouseMoveAction, which causes a inversion of the visible flag. De-
pending on this flag, mouse pointers are displayed or hidden.

DisposeSubclientActions are handled in line 33. A not-null-check for initial-
SubclientId is processed here as well. This actions deletes the DrawMousePoint-
erAction of the sending subclient from the lastActions Map and dispatches a
RemoveMousePointerAction, which removes the mouse pointer of the subclient.

The DrawViewportRectProvider works the same way, except that it dispatches a
DrawViewportRectAction and a RemoveViewportRectAction.

The SelectionIconProvider does not have a list of lastActions per subcli-
entId. Instead, it has an additional inner Map with lastActions per elementId
per subclientId. The reason for this is that a user can select not just one, but several
elements. The SelectionIconProvider dispatches DrawSelectionIconAction
and RemoveSelectionIconAction.

83

5. Prototype

5.4.3 WebviewActions & Commands

WebviewActions are actions that are only used within the webview or the GLSP client and
are not sent to the GLSP server or other subclients. Each WebviewAction has a command
that handles its execution. In that case, a command adds or removes ModelElements
from the graphical model.

1 export interface DrawMousePointerAction extends DrawCollaborationAction {
2 kind: typeof DrawMousePointerAction.KIND;
3 position: Point;
4 zoom: number;
5 }
6
7 @injectable()
8 export class DrawMousePointerCommand extends FeedbackCommand {
9 static readonly KIND = DrawMousePointerAction.KIND;

10
11 constructor(@inject(TYPES.Action) protected action:

DrawMousePointerAction) {
12 super();
13 }
14
15 execute(context: CommandExecutionContext): CommandReturn {
16 const id = mousePointerId(context.root, this.action.

initialSubclientInfo.subclientId);
17
18 removeElementFromParent(context.root, id);
19
20 const mousePointerSchema = {
21 id,
22 type: DefaultTypes.MOUSE_POINTER,
23 position: {
24 x: this.action.position.x,
25 y: this.action.position.y
26 },
27 color: this.action.initialSubclientInfo.color,
28 name: this.action.initialSubclientInfo.name,
29 zoom: this.action.zoom,
30 visible: this.action.visible
31 };
32
33 context.root.add(context.modelFactory.createElement(

mousePointerSchema));
34
35 return context.root;
36 }
37 }

Listing 5.17: Implementation of DrawMousePointerCommand and relating
DrawMousePointerAction creating ModelElements.

84

5.4. Extend the GLSP client

The DrawMousePointerAction showed in Listing 5.17, which is called WebviewAc-
tion within this thesis, has a position and a zoom value. The position specifies
the absolute position of the mouse pointer in the webview. The local zoom value is used
to ensure that the rendered mouse pointer is not scaled, but is always displayed in the
same size. The DrawMousePointerAction inherits from the DrawCollaboration-
Action. This contains the initialSubclientInfo and a visible flag.

The DrawMousePointerAction is used in the DrawMousePointerCommand to cre-
ate a MousePointer ModelElement in the execute(context) method and add
that to the root element. In line 16, the ID of the element is created using the root
element and the subclientId. This is used to remove the old element from the root
element. The schema with all attributes such as position, color, name, etc. is
then generated. A ModelElement is created from this schema via the modelFactory,
which is added to the root element at the end.

A RemoveMousePointerCommand handles a RemoveMousePointerAction, which
is dispatched when a subclient is disposed from the client session. This Command removes
the element completely from the graphical model.

Also there are the same two commands for the ModelElements ViewportRect and
SelectionIcon.

5.4.4 ModelElements & View
ModelElements are elements that are created using the modelFactory and a defined
schema. Each of these elements can be assigned to a view using an ID. This view is used
to render the ModelElement. The view is declared using JSX 2 and inherits from a
dedicated view class, which comes with a number of functionalities.

1 export class MousePointer extends CollaborationElement {
2 override type = DefaultTypes.MOUSE_POINTER;
3 name: string;
4 zoom: number;
5 }
6
7 @injectable()
8 export class MousePointerView extends ShapeView {
9 override render(mousePointer: MousePointer, _context: RenderingContext):

VNode | undefined {
10 if (!mousePointer.visible) {
11 return undefined;
12 }
13
14 const invertedZoom = 1 / mousePointer.zoom;
15 const pointerX = -8.3 / mousePointer.zoom;
16 const pointerY = -7.3 / mousePointer.zoom;

2https://facebook.github.io/jsx/

85

https://facebook.github.io/jsx/

5. Prototype

17 const textY = 30 / mousePointer.zoom;
18
19 const pointerTransform = ’translate(’ + pointerX + ’, ’ + pointerY +

’) scale(’ + invertedZoom + ’)’;
20 const textTransform = ’translate(0, ’ + textY + ’) scale(’ +

invertedZoom + ’)’;
21
22 const graph = (
23 <g>
24 <g transform={pointerTransform}>
25 <polygon fill="#FFFFFF" points="8.2,20.9 8.2,4.9

19.8,16.5 13,16.5 12.6,16.6 "/>
26 <polygon fill="#FFFFFF" points="17.3,21.6 13.7,23.1 9,12

12.7,10.5 "/>
27 <rect fill={mousePointer.color} x="12.5" y="13.6"

transform="matrix(0.9221 -0.3871 0.3871 0.9221 -5.7605 6.5909)" width="2"
height="8"/>

28 <polygon fill={mousePointer.color} points="9.2,7.3
9.2,18.5 12.2,15.6 12.6,15.5 17.4,15.5 "/>

29 </g>
30 <text class-mouse-pointer-text={true} style={{ fill:

mousePointer.color }} transform={textTransform}>{ mousePointer.name }</
text>

31 </g>
32);
33
34 return graph;
35 }
36 }

Listing 5.18: Implementation of MousePointerView using MousePointer to render for
webview.

In Listing 5.18 the ModelElement MousePointer gets defined. This defines the
type, which it inherits from the CollaborationElement class. In addition, the
class inherits the attributes for color and the visible flag. As its own attributes,
the class has a name, which is displayed below the mouse pointer, and the local zoom
value, which ensures that the element and the text are always displayed at the same size,
regardless of the current zoom level. The CollaborationElement class inherits from
the SShapeElement class, which contains a position and a size.

The MousePointerView class inherits from the abstract ShapeView class. The
abstract class ShapeView has an isVisible(model, context) method, which is
used to calculate whether the ModelElement is in the current webview. To do this, it
is important that the passed ModelElement inherits from the SShapeElement class
so that it has a position and a size, which is essential for the calculation.

Line 10 checks whether the ModelElement is visible; if not, the function is aborted.
In the next lines, the position of the mouse pointer and the text is calculated using the
zoom value. Starting with line 22 the graph is defined using JSX. A <rect> element

86

5.4. Extend the GLSP client

and a <polygon> element are used to render the mouse pointer in combination with
the color. A <text> element is used to display the name of the user.

The SelectionIcon element is rendered in the SelectionIconView class. The
ViewportRectView class takes care of the element of type ViewportRect.

Figure 5.2: Prototype implementation showing mouse pointer, viewport and selection
feature for a another user within a collaboration session.

Figure 5.2 displays the Workflow example with the collaboration implementation. This
simple example diagram has three elements and three edges. This example shows a
collaborative session with a host subclient and a guest subclient. The other participant
(User 1) gets the color yellow assigned. In this example, the mouse pointer of User 1 is
shown in the middle of the image with its name as a text label. Additionally, the current
viewport of User 1 is displayed using a dotted rectangle. User 1 selects element B. This
is represented by a small yellow square directly on the element.

87

CHAPTER 6
Evaluation

Chapter 6 shows the feasibility of using the generic implementation, which was developed
using the Workflow example, for arbitrary modeling languages realized with GLSP. The
VS Code extension BIGUML [MB] [big] is used for this purpose. BIGUML is an open-
source UML modeling tool using the Graphical Language Server Protocol and was leaned
on the concept of Eclipse Papyrus 1 [MB23]. It is implemented as a Visual Studio Code
extension. That extension works with Unified Modeling Language (UML) as a modeling
language. Two usability tests on the collaborative feature will be performed. This will
be done with a number of participants using BIGUML and the Workflow example.

6.1 Applying collaborative modeling to the BIGUML VS
Code extension

First, collaborative modeling will be applied to the BIGUML VS Code extension. Just
like the Workflow example, BIGUML was implemented on the basis of GLSP. The tool
uses a GLSP server in the background. In contrast to the Workflow example, BIGUML
also has a ModelServer, which is responsible for loading, saving and validating the
model. The ModelServer also runs locally on the own computer and accesses the local
file system. Since it was not part of this diploma thesis to make it collaborative, and
it accesses the local file system, it is not possible to create or delete files on a guest
subclient. Therefore the ModelServer for guest subclients are completely deactivated.
The BIGUML tool also uses the GLSP client and the GLSP VS Code integration to build
a fully-fledged VS Code extension. When starting the BIGUML VS Code extension, it
automatically starts a GLSP server and a ModelServer in the background.

The tool BIGUML supports various UML diagrams such as Activity diagram, Class
diagram, Communication diagram, etc. In this section the feasibility of adapting the

1https://projects.eclipse.org/projects/modeling.mdt.papyrus

89

https://projects.eclipse.org/projects/modeling.mdt.papyrus

6. Evaluation

collaborative feature to another modeling language will be evaluated. Since BIGUML
supports the GLSP protocol, it should be straightforward to extend BIGUML to support
real-time collaborative modeling.

6.1.1 Add VS Live Share to the VS Code extension

The first step is to add VS Live Share to the package.json of the VS Code extension.
In the case of BIGUML, this file has the path client/packages/uml-vscode-
integration/extension/package.json. It is very important that this is done in
the package.json of the extension and not in another package.json file.

1 {
2 ...
3 "dependencies": {
4 ...
5 "vsls": "^1.0.4753"
6 },
7 "extensionDependencies": [
8 "ms-vsliveshare.vsliveshare"
9]

10 ...
11 }

Listing 6.1: Add VS Live Share to the package.json of the extension.

At Listing 6.1, the npm package vsls 2 is added to the dependencies in line 5. In
addition, ms-liveshare.vsliveshare is configured as one of the extensionDe-
pendencies. This is all to add VS Live Share as a dependency for the VS Code
extension.

6.1.2 Grant permission to VS Live Share extension

VS Live Share by default does not allow any other extension to use it. One possibility
is to get an entry in the public registry of VS Live Share. Since this is not so easy, the
permissions have to be granted manually. A local file with the name .vs-liveshare-
settings.json is created in the user’s home directory, in which the public registry
for the local VS Live Share extension can be adapted.

2https://www.npmjs.com/package/vsls

90

https://www.npmjs.com/package/vsls

6.1. Applying collaborative modeling to the BIGUML VS Code extension

1 {
2 "extensionPermissions": {
3 "BIGModelingTools.*": "*"
4 }
5 }

Listing 6.2: Grant local permissions to publisher BIGModelingTools for VS Live Share
in .vs-liveshare-settings.json file.

Listing 6.2 shows how this file could look like. For this purpose, an entry with the publisher
BIGModelingTools of the extension is created under extensionPermissions. The
value "*" specifies that all permissions are granted. The publisher of the extension is
defined in the package.json file of the extension, same file like mentioned in Subsection
6.1.1.

Of course it is always possible to create this file manually. However, a helper function
writeExtensionPermissionsForLiveshare(publisher)has been developed. If
there is no .vs-liveshare-settings.json file, this function creates it and adds an
entry for the specified publisher. An entry is added under the extensionPermis-
sions attribute with granting all permissions. When the file is created and the entry is
added, a prompt is displayed asking the user to restart VS Code. This is necessary for
the changes to take effect.

This function gets called at the start of the VS Code extension, namely when invoking
the activate(context) method. VS Code calls this method automatically when a
VS Code extension is activated.

6.1.3 Configure CollaborationCommands
The prototype has implemented the CollaborationFeatureStore to enable the
user to switch collaborative features on and off, as shown in Subsection 5.3.4. For this
to be enabled, the collaboration commands must be configured when the extension is
activated. The helper function configureCollaborationCommands({context,
glspConnector}) was implemented for this purpose. Calling this function when
activating the extension configures the commands for VS Code.

1 async function activate(context: vscode.ExtensionContext): Promise<void> {
2
3 writeExtensionPermissionsForLiveshare(’BIGModelingTools’);
4
5 ...
6
7 const connector = diContainer.get<UVGlspConnector>(TYPES.Connector);
8
9 configureDefaultCommands({

10 extensionContext: context,
11 connector,

91

6. Evaluation

12 diagramPrefix: VSCodeSettings.commands.prefix
13 });
14
15 configureCollaborationCommands({
16 extensionContext: context,
17 connector
18 });
19 }

Listing 6.3: Configure collaboration commands in activate(context) method.

Listing 6.3 shows the activate(context) method, which is placed in the exten-
sion.ts file. In line 15, the helper method configureCollaborationCommands
({context, connector}) is called. The function also calls the method writeEx-
tensionPermissionsForLiveshare(’BIGModelingTools’) at the very begin-
ning in line 3.

6.1.4 Configure SocketGlspVscodeServer
There is an implementation of the SocketGlspVscodeServer in BIGUML. This is
realized in the class UVGlspServer. To make it collaborative-capable, a GlspClient-
Provider must be passed to the super constructor for the collaboration
attribute. It is possible to develop own providers, but it is also possible to use the
already developed LiveshareGlspClientProvider, which uses VS Live Share for
data exchange. The Listing 6.4 shows how the SocketGlspVscodeServer can be
configured using the LiveshareGlspClientProvider.

1 @injectable()
2 export class UVGlspServer extends SocketGlspVscodeServer {
3 constructor(...) {
4 super({
5 clientId: ’glsp.uml’,
6 clientName: ’uml’,
7 serverPort: glspServerConfig.port,
8 collaboration: new LiveshareGlspClientProvider()
9 });

10 }
11 ...
12 }

Listing 6.4: Configure SocketGlspVscodeServer using LiveshareGlspClientProvider.

6.1.5 Set relativeDocumentUri to GLSPClient parameters in
GlspVscodeConnector

As the CollaborationGLSPClient requires a relativeDocumentUri for trans-
mitting of messages to the GLSP server, this has to be set manually. The best way

92

6.2. Real-time usability

to do that is in the GlspVscodeConnector, as the associated file path of the calling
message can be read there. The absolute file path must be converted into a relative file
path. The helper function getRelativeDocumentUri(absolutePath) returns the
relative path.

Since the GlspVscodeConnector calls the CollaborationGlspClient through
the configuration, it requires a defined relativeDocumentUri when calling the func-
tions initializeClientSession(params), disposeClientSession(params),
sendActionMessage(message). The parameters of all three of these functions have
an args attribute, which can be freely extended. This args attribute should be extended
with the relativeDocumentUri property.

1 async registerClient(client: GlspVscodeClient){
2 const relativeDocumentUri = getRelativeDocumentUri(client.document.uri.

path);
3
4 initalizeParams.args = {
5 ...initalizeParams.args,
6 relativeDocumentUri
7 };
8
9 await glspClient.initializeClientSession(initializeParams);

10 }

Listing 6.5: Setting relativeDocumentUri to InitializeClientSessionParameters.

Listing 6.5 shows an example of how the relativeDocumentUri is calculated, then
set as a property on the args attribute, and finally these parameters are passed to the
initializeClientSession(params) function. The absolute path can be retrieved
from the client attribute, which is passed to the registerClient function. In the
BIGUML extension, the UVGlspConnector class overwrites the default implementation
of the GlspVscodeConnector. This class sets also the relativeDocumentUri.

6.2 Real-time usability
To test the usability of the collaborative feature as part of GLSP, two real-time usability
tests with human test participants were carried out. Both tests were run under pretty
much the same conditions, but for comparison the tests used firstly the BIGUML extension
and secondly the Workflow extension.

6.2.1 Preparation
In order to obtain a meaningful test result, good preparation and planning for the tests
is essential. A group of PhD students and BIG employees were invited to perform a
stress test on the two tools. To make it easy for the test participants to set up the

93

6. Evaluation

environment for themselves, a guide explains how to set up the tool so they can test it
on their own computer. This required the installation of VS Code, Java 11+, VS Live
Share and the specific VS Code extension. A new version of the VS Code extension with
the collaborative feature was built. Afterwards the resulting .vsix file was uploaded to
a public server from which it could be downloaded. The test participants were able to
install this .vsiv file on their VS Code version and try it out in advance.

The tests should show if and how it is possible for a different number of simultaneously
participating users to work collaboratively on the same diagram. The tests should also
show how the behavior changes when the number of elements in the diagram changes.
To make this as uncomplicated as possible, a small, medium and large diagram file was
created in beforehand. The small one had 25, the medium one 100 and the large one 500
elements.

It was also necessary to think about interview questions in advance, which were sent to
the test participants by email. Afterwards they were asked to send back textual feedback
on the questions by email so that it is possible to incorporate this into the work and
further iterations of this tools. The questions are:

• How did the BIGUML/Workflow extension perform for you in collaborative mode
for the small, medium and large diagram?

• Would you do collaborative modeling with other people in the future?

• Do you have any suggestions for the future how to improve the collaboration (e.g.
so that it is possible to have a conflict-free model synchronization)?

To help the test participants familiarize themselves with the tools, a short presentation
about the work and this tools was held during the first test. The first test was planned
to take two hours, the second one one hour. The next subsections presents how the tests
went and what the outcome of the tests was.

6.2.2 First test with BIGUML VS Code extension
In the first usability test, the test participants used BIGUML as a tool. The test started
with only two participants and the small diagram. The author hosted the session at the
beginning and shared the invitation link with the other participants via email. Joining of
a guest to a session worked seamlessly. The first test with only two participants and a
small diagram also worked well. There was also no long delay time between action and
feedback. Mouse pointer and viewport changes, as well as the selection of elements, were
transferred smoothly to the screens of other participants and displayed there.

After some time, more participants joined the session. Also the medium and large
diagrams were used. It became clear that the more participants joined the session, the
longer the waiting time between action and feedback became. However, it turned out
that this has less to do with the number of simultaneous participants in a session, but

94

6.2. Real-time usability

more with the number of actions. If there were many participants in a session, but only
one participant performed actions, the performance was increased again.

Another point that has also been shown is that actions performed on the host subclient
were displayed faster than on the guest subclient. The reason for this is that it has direct
access to the GLSP server located on its own computer and therefore does not have to
take the detour via VS Live Share to the host subclient, from there to the GLSP server,
and then back to itself again through the host subclient. Since all guest subclients have
a peer-to-peer connection with the host subclient, it is a great advantage if the host
subclient has a good internet connection. Due to the countryside location, the author’s
internet connection was not ideal for this. For this reason, a new live share session was
started with a host located in Vienna as part of the test. Since the new host had a better
internet connection, it quickly became obvious that this also made a difference to the
performance when working with many participants.

Figure 6.1: Collaboration session with eight participants working with BIGUML tool.

With a large number of actions by many participants, there were also "bouncing" elements.
For example, this means that a participant moves an element, but this jumps back to the
original point and then to the desired point again. This happens when an action B of
another user is sent before the user’s own action A, but the feedback from action B is not
received until after the sending of action A. Figure 6.1 shows how such a collaboration
session with eight participants would look like. Every user gets an own color assigned,
which are then used to show visual elements like mouse pointers, viewports and selection

95

6. Evaluation

markers to other users.

It also happened that some actions were lost entirely. The reason for this could be that
the ModelServer cannot cope with concurrent requests. It has also been shown that
the ModelServer throws error messages and timeouts, which of course leads to actions
not being completed and therefore they get lost.

What has also been shown, is that the size of the diagram says much less about the
performance than the number of actions performed and the number of simultaneous
participants. The performance and usability of the tool did not really degrade while
collaborating on the large diagram with a small number of participants.

6.2.3 Second test with Workflow VS Code extension

As the ModelServer did lead to some problems with performance and consistency, a
second usability test with the Workflow tool should bring more insight into the problems,
as this does not have a ModelServer in the background. The second test was planned
to be shorter, but had the same structure as the first one. Also in this test, three diagram
files were created in advance, ranging from small to medium to large (25 - 100 - 500
elements).

Figure 6.2: Collaboration session with three participants working with Workflow tool.

The test started again with only two participants and the small diagram with only 25
elements. As with the first test, this worked very well without any delay times. It
also worked perfectly with three participants as shown in Figure 6.2. This time the
test switched to the medium and larger diagram before more participants were added.
Here, it was also noticed that the number of elements did not have a major impact on

96

6.2. Real-time usability

performance and usability. This shows that collaborative working with GLSP operates
well with a manageable number of participants.
At the end of the session, several participants joined. This showed that also with the
Workflow tool, a large number of participants or concurrent actions had some negative
impact on performance and usability. However, since there was no ModelServer in
the background, it also became clear that this did not have as much of an impact as
with the BIGUML tool. It also didn’t happen that some actions were not completed at
all. The Workflow tool also made it possible to create and delete diagram files for guest
subclients.

6.2.4 Conclusion & Feedback
The feedback from the test participants, sent by email, is very positive. The feedback
reveals that collaborative working with a small number of participants worked very well
and without much time latency. However, this is for the reason that more concurrent
actions are sent with more participants. What has also been shown is that the number
of elements does not affect usability and performance as much as the number of actions.
Participants who took part in both tests reported that they were more pleased with the
usability of the Workflow tool when collaborating with several participants. The reason
for this is that BIGUML has a ModelServer in the background which cannot handle
concurrent requests, as the ModelServer has not yet been adapted for collaborative
requests. The ModelServer also caused some actions to be lost completely, as it causes
timeouts and error messages if there are too many concurrent actions.
Some participants reported differences with low internet connections. Swapping the host
subclient over to a participant with a better connection resulted in better performance
over the entire collaboration session.
When the test participants were asked whether they could imagine collaborative modeling
in the future or not, the feedback was primarily positive. Most of them can imagine
using GLSP modeling in a collaborative session. One participant came up with idea to
rather use it in a reviewing session, where they only have to revise a few things and they
want to show these changes to other participants or discuss them with them.
The last question, namely whether there were any suggestions for improvement, also
received a number of responses. One suggestion was to show all participants who have just
opened the same file. At the moment, only users who are within the collaborative session
are displayed. The solution could display an info window with all active users within that
file placed inside the viewport. Another suggestion was to implement incremental updates
of the graph. This should speed up the execution time, as the queue of pending actions
is not as large and the delay would be less noticeable. Not updating the model until an
own action has been executed would also mean that the elements would not bounce so
much, as described in the first usability test. A final suggestion was to integrate some
progress reporting. For example, a spinner could be displayed to show the user that their
action is currently being processed.

97

6. Evaluation

To summarize, the tests were a success and the collaborative feature with GLSP, both
with BIGUML and the Workflow tool, was very well endorsed by the test participants.
Collaborative sessions with a small number of participants can also be used in productive
sessions. Suggestions from test participants can be incorporated into later iterations of
the feature to further improve usability and performance during a collaborative session.

98

CHAPTER 7
Conclusion

This chapter will list the answers to the research questions formulated in Section 1.2.
Finally, a look into the future will present and discuss possible improvements and
extensions to this solution.

7.1 Summary

This diploma thesis studied how GLSP can be extended with a collaborative functionality.
In particular, this work focused on accomplishing this in the context of Visual Studio
Code and its VS Live Share extension. First of all, it was necessary to gather background
information on collaborative editing, GLSP, Visual Studio Code and Visual Studio Code
Live Share. Afterwards, existing collaborative editors were analyzed. In this step, textual
and graphical document editors were examined for certain characteristics. The thesis
used the obtained information to set up and define requirements for the prototype. In
the next step, the concept for this prototype was declared in an abstract form. The
prototype was developed in the main part of the work. The first part of the prototype
consisted of turning GLSP into a collaborative platform. The second step consisted of
presenting performed actions by a user to other participants of the collaborative session
as self-explanatory as possible. In the last step of the work, the solution was evaluated in
two ways. The first one was to apply the solution to a different modeling language. The
thesis focused specifically on the Workflow example in the prototype. The evaluation
phase applied the solution to the BIGUML tool. In the second step of the evaluation
phase, the solution was validated in two usability tests with actual test participants. For
this purpose, the BIGUML as well as the Workflow tool were subjected to a usability
and stress test.

The following presents the answers to the research questions:

99

7. Conclusion

• RQ1: What is the best possibility of the already existing implemen-
tation of the Eclipse GLSP framework to equip it with collaborative
functionalities?

– The research investigated two possible ways how to solve this problem. The first
option was a single GLSP server architecture. Here, there is only one GLSP
server per collaborative session, which also only communicates with the host
subclient. Guest subclients have to send any messages to the GLSP server via
the host subclient, which acts as a proxy. To send messages between the host
and the guest subclients, a provider such as Visual Studio Live Share is used,
which exchanges messages between subclients via peer-to-peer connections.
This provides an advantage that there is only a single ModelState. The
second option is a multi GLSP server architecture, where each subclient has its
own GLSP server and ModelState. Again the messages between subclients
would be sent via a provider, such as VS Live Share.
The prototype has gone with a single GLSP server architecture because in
this case it needs only one ModelState and therefore it does not have to
worry about synchronizing several of them. In addition, the advantage is that
only the host has to take care of loading and saving the ModelState from
and to the source of the model.
VS Live Share handles the communication of all messages between subclients.
The extension has been implemented in such a way that it is very easy to
exchange this provider. This may be useful, if the solution wants to support
other GLSP implementations than the one used for Visual Studio Code.

• RQ2: What is an appropriate means to achieve a reliable and conflict-free
synchronization of performed actions?

– This question is actually fulfilled by the answer to RQ1. Since the prototype
uses a single GLSP server architecture and consequently only one Model-
State, no synchronization of the performed actions is necessary. Since each
user also has their own CommandStack, undo/redo operations are performed
on the global ModelState, as long as they are valid for the current state.

• RQ3: Which representation of the performed actions shows them to the
other users in the best possible and self-explanatory way?

– The second part of the solution dealt with the question of how it is possible
to present the performed actions of a user to other users in such a way that
all participants in the collaboration session understand what is happening
during that session and therefore no actions are overlooked. To realize this,
the solution shows permanently where exactly somebody is working on the
diagram.
The prototype uses three new action types, which were introduced to be only
sent between the subclients. The actions display a mouse pointer, a viewport

100

7.2. Future Work

and selections of an initiator in an assigned color to all other users. In this
way, all users know who is currently working on which objects and at which
position of the diagram. These measures also lead to conflict reduction during
the collaboration process.

7.2 Future Work
To conclude the work, this chapter discusses possible extensions for the future and present
them briefly. Some of these extensions have arisen in the process of developing the current
solution, other extensions have resulted out of the feedback given during the usability
tests.

One of the most important tasks for the future is to register the publisher of the VS
Code extension in the VS Live Share registry. This is necessary for VS Live Share to
accept the extension and grant permissions to it. In the current solution, when the VS
Code extension is started, a special function is called which creates a local file which
then grants the permissions for the local VS Code instance.

Since the solution was developed in such a way that it is not dependent on VS Live Share,
it is very easy to replace the collaboration provider and use another framework or library
that takes care of the data exchange between host and guest subclients. It would also be
possible to implement a custom solution for this.

This thesis has its focus on the GLSP server and the GLSP client. Extending the
ModelServer with collaborative functionality was not part of this thesis. As it was
displayed in the tests, this leads to timeouts and errors if there are too many concurrent
actions, which means that actions are lost and consequently not executed. With the
current implementation, it is also not possible for guest subclients to create and delete
files within a collaborative session.

Incremental updates to the graph would make the entire execution faster. This would
mean that the queue of pending actions would not grow as quickly and the delay would
therefore be less noticeable. A progress bar that indicates the waiting time of pending
actions would support users to enjoy better usability.

Due to VS Live Share it is possible to identify active users in the collaborative session.
VS Code provides an overview of all participants and the associated color. A further
improvement would be to display all active users in the current file. For instance, it
would be possible to display an info box with all users and their color in the current
viewport.

Finally, it is of course possible to introduce further CollaborationActions which
would lead to more usability. For example, it would be possible to add a "Follow my
cursor" functionality, allowing users to automatically follow the cursor of another user.

101

List of Figures

2.1 Co-editing with multiple participants in a Visual Studio Live Share collabora-
tion session. 11

2.2 Communication between language server and client with LSP. 15
2.3 Hovering over line 13 in Person class to show additional information about

Address class. 17
2.4 Event flow of the Flux pattern implemented in Sprotty Framework. 20

3.1 Example on how Google Docs displays selections in assigned colors. . . . 28
3.2 Example on how Google Docs displays comments and proposals for modifica-

tions. 29
3.3 Example on how Etherpad displays two lines written by two different partici-

pants. 30
3.4 Example on how Etherpad displays timeline functionality to go back and

forward in time through all changes. 31
3.5 Example on how Jetbrains’ Code With Me allows Host to set permissions for

guests when starting a session. 32
3.6 Example on how MetaEdit+ locks Elements when two Users are trying to

work on the same Element. 36
3.7 Example on how Graphity locks Elements when a user performs an operation. 38
3.8 Example on how Graphity shows a confirmation dialog if a user wants do

undo another user’s operation. 38
3.9 Example on how Graphity shows current mouse pointers position of all other

users. 39
3.10 Example on how Google Drawings shows selections of other users with a

specific color an label. 40
3.11 Example on how VS Code TURN uses Visual Studio Live Share to enable

collaborative modeling. 41

4.1 Data flow for a model operation within a collaboration session in a single
server architecture. 48

4.2 Data flow for a model operation within a collaboration session in a multi
server architecture. 50

4.3 Data flow for an InitializeClientSession message initiated by Guest 1. . . 53

103

4.4 Data flow for an InitializeClientSession, Action and DisposeClientSession
message in a collaborative session. 55

4.5 Data flow for a CollaborationAction initiated by Guest 1. 57
4.6 Mock-up of participant’s cursor representation in a collaboration session. 58
4.7 Mock-up of participant’s viewport representation in a collaboration session. 59
4.8 Mock-up of participant’s selections representation in a collaboration session. 60

5.1 VS Live Share tree view with toggle elements for collaborative features. . 79
5.2 Prototype implementation showing mouse pointer, viewport and selection

feature for a another user within a collaboration session. 87

6.1 Collaboration session with eight participants working with BIGUML tool. 95
6.2 Collaboration session with three participants working with Workflow tool. 96

104

List of Tables

3.1 Comparison of all three textual collaborative document editing tools and
Visual Studio Live Share. 35

3.2 Comparison of all graphical collaborative document editing tools. 44

105

List of Listings

2.1 Example of a conribution point for a custom editor in package.json file. 9
2.2 Example of how to create a new SModel element and then configure it in

the container. 21
5.1 Function addSubClientId which addes subclientId from initial to extended

action. 65
5.2 Function-call of Action.addSubclientId to map subclientId from CreateN-

odeOperation to SelectAction . 66
5.3 Default implementation of CommandStackManager interface. 67
5.4 Configure CommandStackFactory and CommandStackManager for depen-

dency injection. 68
5.5 Member variables and constructor of CollaborationGlspClient. 69
5.6 Method initializeClientSession of CollaborationGlspClient. 70
5.7 Method disposeClientSession of CollaborationGlspClient. 71
5.8 Method sendActionMessage of CollaborationGlspClient. 72
5.9 Method onActionMessage of CollaborationGlspClient. 74
5.10 Interface with methodes of CommonCollaobrationGlspClientProvider. 75
5.11 Interface with methodes of HostCollaobrationGlspClientProvider. . . . 76
5.12 Interface with methodes of GuestCollaobrationGlspClientProvider. . . 76
5.13 Asynchronous notification over notify(name, args) and onNotify(name,

handler) at LiveshareGlspClient. 77
5.14 Synchronous notification over request(name, args) and onRequest(name,

handler) at LiveshareGlspClient. 78
5.15 Implementation of MouseMoveTool and MouseMoveListener dispatching

MouseMoveActions. 80
5.16 Implementation of DrawMousePointerProvider dispatching DrawMouse-

PointerActions and RemoveMousePointerActions. 82
5.17 Implementation of DrawMousePointerCommand and relating DrawMouse-

PointerAction creating ModelElements. 84
5.18 Implementation of MousePointerView using MousePointer to render for

webview. 85
6.1 Add VS Live Share to the package.json of the extension. 90
6.2 Grant local permissions to publisher BIGModelingTools for VS Live Share

in .vs-liveshare-settings.json file. 91
6.3 Configure collaboration commands in activate(context) method. 91

107

6.4 Configure SocketGlspVscodeServer using LiveshareGlspClientProvider. 92
6.5 Setting relativeDocumentUri to InitializeClientSessionParameters. . . 93

108

Bibliography

[ARHR04] Jinsoo Park Alan R. Hevner, Salvatore T. March and Sudha Ram. Design
science in information systems research. Management Information Systems
Quarterly, 28:75–105, 03 2004.

[big] biguml github. https://github.com/borkdominik/bigUML. Ac-
cessed: 2023-11-17.

[BL23] Dominik Bork and Philip Langer. Language server protocol - an introduction
to the protocol, its use, and adoption for web modeling tools. Enterprise
Modelling and Information Systems Architectures - International Journal of
Conceptual Modeling, 18(9):1–16, 2023.

[BLO] Dominik Bork, Philip Langer, and Tobias Ortmayr. A vision for flexible
glsp-based web modeling tools. In 16th IFIP WG 8.1 Working Conference on
the Practice of Enterprise Modelling (PoEM’2023). Springer International
Publishing.

[Bün19] Hendrik Bünder. Decoupling language and editor - the impact of the language
server protocol on textual domain-specific languages. In International
Conference on Model-Driven Engineering and Software Development, 2019.

[cod] Jetbrains code with me. https://www.jetbrains.com/
code-with-me/. Accessed: 2023-09-11.

[dra] Google drawings. https://support.google.com/docs/answer/
179740?visit_id=638302244312377836-2388093958&hl=en&
rd=2. Accessed: 2023-09-13.

[EG89] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems.
In Proceedings of the 1989 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’89, page 399–407, New York, NY, USA,
1989. Association for Computing Machinery.

[EGR91] Clarence A. Ellis, Simon J. Gibbs, and Gail Rein. Groupware: Some issues
and experiences. Commun. ACM, 34(1):39–58, jan 1991.

109

https://github.com/borkdominik/bigUML
https://www.jetbrains.com/code-with-me/
https://www.jetbrains.com/code-with-me/
https://support.google.com/docs/answer/179740?visit_id=638302244312377836-2388093958&hl=en&rd=2
https://support.google.com/docs/answer/179740?visit_id=638302244312377836-2388093958&hl=en&rd=2
https://support.google.com/docs/answer/179740?visit_id=638302244312377836-2388093958&hl=en&rd=2

[etha] Etherpad. https://etherpad.org/#. Accessed: 2023-09-11.

[ethb] Etherpad lite github. https://github.com/ether/etherpad-lite.
Accessed: 2023-09-11.

[FS09] Ulrich Frank and Stefan Strecker. Beyond erp systems: An outline of
self-referential enterprise systems. requirements, conceptual foundation and
design options. ICB-Research Report 31, Essen, 2009.

[GG96] Carl Gutwin and Saul Greenberg. Workspace awareness for groupware.
pages 208–209, 01 1996.

[gls] Eclipse - graphical language server protocol. https://www.eclipse.
org/glsp/. Accessed: 2023-05-12.

[goo] Google docs editors. https://www.google.com/intl/de_at/docs/
about/. Accessed: 2023-09-11.

[graa] Collaborative editing with graphity - the diagram editor - youtube.
https://www.youtube.com/watch?v=2NFSs0Gpu2Y&ab_
channel=yWorks. Accessed: 2023-09-12.

[grab] Graphity. https://www.graphity.com/. Accessed: 2023-09-12.

[jso] Json-rpc specifications. https://web.archive.org/web/
20080517011921/http://json-rpc.org/wiki/specification.
Accessed: 2023-05-22.

[Kel17] Steven Kelly. Collaborative modelling with version control. In Federation
of International Conferences on Software Technologies: Applications and
Foundations, pages 20–29. Springer, 2017.

[KLR96] Steven Kelly, Kalle Lyytinen, and Matti Rossi. Metaedit+ a fully config-
urable multi-user and multi-tool case and came environment. In Advanced
Information Systems Engineering: 8th International Conference, CAiSE’96
Heraklion, Crete, Greece, May 20–24, 1996 Proceedings 8, pages 1–21.
Springer, 1996.

[KT21] Steven Kelly and Juha-Pekka Tolvanen. Collaborative modelling and meta-
modelling with metaedit+. In 2021 ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems Companion (MODELS-
C), pages 27–34. IEEE, 2021.

[lsp] Microsoft - language server protocol. https://microsoft.github.io/
language-server-protocol/. Accessed: 2023-05-12.

110

https://etherpad.org/#
https://github.com/ether/etherpad-lite
https://www.eclipse.org/glsp/
https://www.eclipse.org/glsp/
https://www.google.com/intl/de_at/docs/about/
https://www.google.com/intl/de_at/docs/about/
https://www.youtube.com/watch?v=2NFSs0Gpu2Y&ab_channel=yWorks
https://www.youtube.com/watch?v=2NFSs0Gpu2Y&ab_channel=yWorks
https://www.graphity.com/
https://web.archive.org/web/20080517011921/http://json-rpc.org/wiki/specification
https://web.archive.org/web/20080517011921/http://json-rpc.org/wiki/specification
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/

[MB] Haydar Metin and Dominik Bork. Introducing bigUML: A flexible open-
source glsp-based web modeling tool for uml. In Companion Proceedings of
the 26th International Conference on Model Driven Engineering Languages
and Systems, MODELS 2023. IEEE.

[MB23] Haydar Metin and Dominik Bork. On developing and operating glsp-based
web modeling tools: Lessons learned from bigUML. In Proceedings of the
26th International Conference on Model Driven Engineering Languages and
Systems, MODELS 2023. IEEE, 2023.

[MBWM23] Judith Michael, Dominik Bork, Manuel Wimmer, and Heinrich C. Mayr.
Quo vadis modeling? Software and Systems Modeling, Oct 2023.

[met] Metaedit+. https://www.metacase.com/mep/. Accessed: 2023-09-12.

[PA18] Parsa Pourali and Joanne M. Atlee. An empirical investigation to understand
the difficulties and challenges of software modellers when using modelling
tools. In Proceedings of the 21th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, MODELS ’18, page
224–234, New York, NY, USA, 2018. Association for Computing Machinery.

[Rit10] Peter Rittgen. Collaborative modeling: Roles, activities and team organiza-
tion. Int. J. Inf. Syst. Model. Des., 1(3):1–19, jul 2010.

[SE98] Chengzheng Sun and Clarence Ellis. Operational transformation in real-time
group editors: Issues, algorithms, and achievements. In Proceedings of the
1998 ACM Conference on Computer Supported Cooperative Work, CSCW
’98, page 59–68, New York, NY, USA, 1998. Association for Computing
Machinery.

[SFB+14] Stefan Strecker, Peter Fettke, Jan vom Brocke, Jörg Becker, and Elmar Sinz.
The research field “modeling business information systems”. Business &
Information Systems Engineering, 6, 02 2014.

[SM21] Rijul Saini and Gunter Mussbacher. Towards conflict-free collaborative
modelling using vs code extensions. In 2021 ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C), pages 35–44. IEEE, 2021.

[spr] Sprotty architercture. https://github.com/eclipse-sprotty/
sprotty/wiki/Architectural-Overview. Accessed: 2023-05-24.

[TMGS97] S.G. Tammaro, J.N. Mosier, N.C. Goodwinn, and G. Spitz. Collaborative
writing is hard to support: A field study of collaborative writing. pages
19–51, 03 1997.

111

https://www.metacase.com/mep/
https://github.com/eclipse-sprotty/sprotty/wiki/Architectural-Overview
https://github.com/eclipse-sprotty/sprotty/wiki/Architectural-Overview

[TRA+12] Bill Tomlinson, Joel Ross, Paul Andre, Eric Baumer, Donald Patterson,
Joseph Corneli, Martin Mahaux, Syavash Nobarany, Marco Lazzari, Birgit
Penzenstadler, Andrew Torrance, David Callele, Gary Olson, Six Silberman,
Marcus Stünder, Fabio Romancini Palamedi, Albert Ali Salah, Eric Morrill,
Xavier Franch, Florian Floyd Mueller, Joseph ’Jofish’ Kaye, Rebecca W.
Black, Marisa L. Cohn, Patrick C. Shih, Johanna Brewer, Nitesh Goyal,
Pirjo Näkki, Jeff Huang, Nilufar Baghaei, and Craig Saper. Massively
distributed authorship of academic papers. In CHI ’12 Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’12, page 11–20, New
York, NY, USA, 2012. Association for Computing Machinery.

[visa] Visual studio live share. https://learn.microsoft.com/en-us/
visualstudio/liveshare/. Accessed: 2023-05-27.

[visb] Vs live share extension api. https://www.npmjs.com/package/vsls.
Accessed: 2023-05-28.

[vsca] Visual studio code - custom editors api. https://code.visualstudio.
com/api/extension-guides/custom-editors. Accessed: 2023-05-
19.

[vscb] Visual studio code - docs. https://code.visualstudio.com/docs.
Accessed: 2023-05-19.

[vscc] Visual studio code - extension api. https://code.visualstudio.com/
api. Accessed: 2023-05-19.

[vscd] Visual studio code - webview api. https://code.visualstudio.com/
api/extension-guides/webview. Accessed: 2023-05-19.

[vsce] Vs code teletype. https://github.com/sainirijul/
vscode-teletype. Accessed: 2023-09-13.

112

https://learn.microsoft.com/en-us/visualstudio/liveshare/
https://learn.microsoft.com/en-us/visualstudio/liveshare/
https://www.npmjs.com/package/vsls
https://code.visualstudio.com/api/extension-guides/custom-editors
https://code.visualstudio.com/api/extension-guides/custom-editors
https://code.visualstudio.com/docs
https://code.visualstudio.com/api
https://code.visualstudio.com/api
https://code.visualstudio.com/api/extension-guides/webview
https://code.visualstudio.com/api/extension-guides/webview
https://github.com/sainirijul/vscode-teletype
https://github.com/sainirijul/vscode-teletype

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation & Problem Statement
	Aim of the Work
	Methodology
	Structure

	Foundations
	Visual Studio Code
	Collaborative Editing
	Visual Studio Live Share
	Language Server Protocol (LSP)
	Graphical Language Server Platform (GLSP)

	Related Work
	Textual collaborative document editing tools
	Graphical collaborative document editing tools

	Concept
	Requirements
	Single vs. multi GLSP language server architecture
	Challenges

	Prototype
	Extend the GLSP protocol
	Extend the GLSP server
	Extend the GLSP VS Code integration
	Extend the GLSP client

	Evaluation
	Applying collaborative modeling to the BIGUML VS Code extension
	Real-time usability

	Conclusion
	Summary
	Future Work

	List of Figures
	List of Tables
	List of Listings
	Bibliography

