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1. Introduction

Due to its applicability for complex systems that are 
characterized by the involvement of multiple different entities 
and sequences of triggering events that determine the systems 
behavior over time, Discrete-Event Simulation (DES) has 
found a broad area of application in industrial process 
optimizations, especially in the areas of manufacturing line 
optimizations and intralogistics (e.g., [1, 2]), supply chain 
simulations (e.g., [3, 4]) and patient flow and layout 
optimizations in the healthcare sector (e.g., [5, 6]). Depending 

on given project goals and objective functions – like shortening 
cycle/lead times, maximization of throughput with restricted 
resources, elimination of bottlenecks within production 
systems, cost minimization, increase of equipment/worker 
utilization, and so forth [7] – setting up a representative and 
meaningful model can be time-consuming and therefore 
expensive [8]. Furthermore, additional model details usually 
increase the computational complexity and lead to a longer 
computation time for a simulation run [9]. Considering this
fundamental trade-off problem between effort invested in 
creating a model and the resulting model fidelity [10] and 
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computational efficiency, one of the main challenges is to find 
the adequate level of detail for the generated DES models to be 
representative and meaningful. In some cases, coarse models, 
built in a short amount of time, can be sufficient to accomplish 
the simulation project’s goals, while in other scenarios, a
detailed reflection of the real system and its behavior is 
necessary to achieve accurate simulation results.

Therefore, this paper utilizes an iterative modelling 
approach, starting with the development of a coarse low-detail 
model of the examined system, followed by incremental model 
refinement loops. The goal is to achieve the required simulation 
accuracy with a minimum of modelling effort invested. The
approach is applied in a research project conducted with a 
company partner from the automotive supply industry. The 
contribution of this work are the simulation accuracies for the
created models with different levels of detail during the 
refinement loops, obtained in the model validation process. The 
validation is done using actual production data from the 
physical system. Furthermore, the respective level of detail of 
each model is qualitatively characterized using 4 fidelity 
dimensions. The modelling was done utilizing the FlexSim 
DES environment (Version 20.2.3).

The remainder of this paper is structured as follows: In 
section 2, related research activities concerning fidelity of DES 
models are mentioned. Section 3 states the applied research 
method, followed by the description of the examined industrial 
use case in section 4. Section 5 describes the generated models 
and compares the different levels of detail and the resulting 
model fidelity qualitatively. In section 6, the results in form of 
the quantitative deviation of production throughput between 
the established models and the validation data gathered from 
the physical production system are stated. Furthermore, 
additional optimization experiments for a planned extension of 
the production system based on the chosen simulation model 
are described. Section 7 contains final conclusions, further 
research demand and a short outlook on future work in the 
ongoing research project.

2. Related Work

Because the overall model fidelity is dependent on different 
dimensions of the particular application domain and the 
defined simulation purpose, there is no universal approach of 
measuring model fidelity fitting all research and industrial use 
cases [10]. Regarding model fidelity for DES, several
frameworks for manufacturing and logistics applications that 
try to quantify the level of model fidelity have been developed. 
Kim et al. present a concept that compares the fidelity of DES 
models with a relative fidelity indicator [11]. Liu & Chen 
calculate the model fidelity for Discrete Event Logistics 
Systems (DELS) as a ratio between model feature indicators 
for the 4 fidelity dimensions “structural”, “correlational”, 
“temporal” and “sensorial” and use that ratio to compare the 
fidelity of 2 models built for an example system [12]. In this 
work, the 4 fidelity dimensions “workstations”, “material 
flow”, “(human) task execution” and “logic” have been used to 
assess the created models qualitatively, while a comparison of 
the throughput delivers a simple quantitative accuracy
measurement.

There are several works that are investigating the creation of 
multi-fidelity models for DES. The basic idea is usually to 
derive low-fidelity models from a high-fidelity model – ideally 
in an automated fashion – to achieve a higher simulation speed 
at the expense of accuracy [8][13][14]. The research presented 
in this paper approaches the level-of-detail question from the 
other direction. The starting point is a low-detail model, which 
is further refined iteratively, if the simulation results, tested in 
a validation cycle, are not accurate enough for the simulation 
purpose. In contrast to simplification of model aspects from a 
high-fidelity model, the addition of further details to an existing 
model to obtain a model with higher fidelity cannot be done in 
a fully automated manner and therefore is mainly a manual 
process.

3. Research Method

DES processes usually follow the core steps “Problem & 
Scope Definition”, “Data Collection”, “Simulation Model 
Building”, “Model Validation”, conducting “Experiments” and 
“Outcome Analysis”. Depending on how detailed the process 
is depicted, there are additional steps and adaptions like 
verification loops in conjunction with the model generation and 
data collection activities, additional planning aspects, 
documentation activities, results implementation and feedback 
loops in the DES method descriptions stated by a variety of 
authors (e.g., [15, 16, 17]).

Fig. 1. Iterative DES model development process.

The approach used for this work is illustrated in Fig. 1. In 
addition to the mentioned basic steps, the explicitly depicted 
model refinement loop emphasizes the iterative process of 
increasing model granularity. In this special case, the model 
refinement process does not lead to a more detailed version of 
the same model with every iteration, but rather results in a 
derived independent model to be able to compare the levels of 
detail of the created models. Each loop includes the collection 
of additional parametrization data and the implementation (and 
verification) of more detailed model elements and concepts. 
Subsequently, each newly derived model is validated with 
actual data from the real production system and compared to 
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the predecessor models. If the fidelity of the newly created 
model is not sufficient to achieve the given simulation 
objectives, another refinement cycle is induced. After a model 
with adequate model fidelity is developed, the remaining steps
– experimentation and analysis – are conducted to perform
several optimization activities.

4. Use Case Description

The iterative modelling approach has been applied to create 
a DES model of the CNC machining area in a manufacturing 
site for vehicle cast parts of the industrial partner Nemak. The 
goal of the simulation process is to provide a virtual 
representation of the CNC area that allows to identify material 
flow bottlenecks, caused by insufficient resource availability, 
and reveal imbalances in the workload distributions for human 
operators. In a first step, the current state of the CNC machining 
area (“As-Is scenario”) – as schematically depicted in Fig. 2 
and described below – has been modelled with FlexSim and 
validated with actual data from the physical production system. 
In a second step, a planned “To-Be” scenario for the CNC area 
has been simulated and optimized to maximize the production 
throughput.

The CNC area consists of 4 CNC machining centers (CNC 
1 – CNC 4), each able to machine one part at a time. Parts from 
the upstream grinding process are buffered in an intermediate 
storage space within charge carriers called “racks”. The batch 
size of the racks depends on the respective part type. When the 
predecessor rack on the Input Rack Position (IRP) – a 
predefined location in front of a CNC machine for racks with 
unmachined parts – is empty, a new full rack with unmachined 
parts from the intermediate storage is transported to the 
respective CNC IRP (①). At an IRP, the parts are manually 
taken out of the rack and inserted into the CNC machining 
center (②). After the manual setup operations (③), the
automatic machining process is started. When the machining is 
finished, the parts are removed from the CNC machine (④)
and cleaned at the associated cleaning desk (⑤) by the
machine operator. Afterwards, the cleaned part is put to a rack 
at the Output Rack Position (ORP) in front of the CNC machine
(⑥). Full racks with machined parts are transferred from the 
CNC ORPs to the Rack Position (RP) of the Cavity Inspection 
Desk (⑦). There, the parts are taken out of the rack again (⑧) 

and each one is tested individually for shrinkage defects in the 
casting (⑨). Afterwards, the parts are put back into a rack
(⑩). The part handling and setup activities are again done 
manually by a human operator, while the cavity inspection 
process itself runs automatically. Racks with inspected parts 
are forwarded to the Assembly area for the next process steps
(⑪). In addition to the movements of loaded racks (red lines 
in Fig. 2), empty racks have to be maneuvered from IRPs to the 
empty-racks storage (⑫) and from there to the ORPs (red-
rimmed lines, ⑬). All rack movements are performed 
manually by human operators with the aid of discontinuous 
conveying devices like forklifts or pallet trucks. The single 
piece movements (blue lines) can be done without any further 
technical device assistance.

Currently, 2 human operators (green dots in Fig. 2) perform 
all the described tasks in the CNC machining area – each one 
is responsible for 1 module with 2 CNC machines. The single 
cavity inspection desk is used by both operators in an 
alternating manner.

5. Model Fidelity

In total, 3 models with different levels of detail have been 
created and validated. The model refinement – starting at the 
initially created low-detail model – led to a medium-detail 
model and finally to a model with sufficient fidelity compared 
to the real production system – referred to as the high-detail 
model. The 3 models are described below, followed by a 
fidelity comparison.
Low-detail Model

The low-detail model is just a coarse representation of the 
material flow in the CNC machining area without the 
consideration of human operators. Therefore, all workstations
(CNC machining centers, cleaning desks and the cavity 
inspection desk) are modelled as fully automated processing 
units with cumulated setup and processing times. The transport 
of the parts between the stations and buffer locations 
(intermediate and empty-racks storage as well as the Cavity 
Inspection RP) is abstracted as automated single-piece flow.
The transport times for each part are added proportionally to 
the setup times of the receiving stations. A Bernoulli 
distribution function is used to reject scrap parts at the cavity 
inspection desk – the reject rates at the other stations are 

Fig. 2. As-Is Validation scenario “CNC Machining”.
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negligibly small. The assignment of the correct part types to the 
CNC machines is realized by a simple pull-logic at the CNC 
machining centers. All other part flows follow a “First In, First 
Out” (FIFO) push strategy. Production periods and machine 
downtimes are configured via timetables on a weekly basis.

The simulation of the low-detail model is able to give a best-
case throughput estimation, based on the average transport and 
processing times of the fixed resources, without any restrictions 
of operator availability. While the material flow in the real 
system is performed with non-continuous conveying systems
in defined batches, the assumption of single-piece part flows 
causes some inaccuracies. Obviously, the coarse low-detail 
model cannot be used for examining intralogistics resource 
bottlenecks or workload balancing.
Medium-detail Model 

In contrast to the low-detail model, the part flow between 
the stations in the medium-detail model is more realistically 
modelled as batch flow. Therefore, each workstation has
defined positions for incoming and outgoing racks. All single 
piece flows between the RPs and the CNC machines 
respectively cleaning/inspection desks remain unchanged.
Transport times are still modeled as addition to the setup 
durations at the receiving RPs, but now more accurately as 
duration per rack movement. Contrary to the abstraction in the 
low-detail model, where all process steps are executed 
automatically, the dimension of tasks that must be performed 
by human workers is added to the medium-detail model. The 
manual tasks within the CNC machining area include the
intralogistics tasks (movement of loaded and empty racks), the 
setup tasks for the CNC machining centers and the cavity 
inspection desk, and the part cleaning operations at the cleaning 
desks. The creation of these tasks has been implemented using 
the standard task templates provided by FlexSim. As defined in 
the use case, all these tasks are executed by 2 human operators. 
The sequence of execution is determined by a simple priority 
value. The logic for part distribution and rejection of scrap parts 
remains the same as in the low-detail model.

While the implemented batch transport of parts gets a lot 
closer to the real situation in the physical production system, 
and the addition of the operators allows a rough evaluation of 
the workload distribution of the human workers, there are still 

some shortcomings in the model concerning the defined 
simulation objectives. Because the average transport times are 
simply added to the setup time of the receiving stations, the 
transport times cannot be analysed separately. A workaround 
would be to add further model elements to represent the 
transport processes, but this solution leads to a more confusing
visual representation of the model. Another problem is the task 
sequencing for the operators. The standard FlexSim task 
templates with simple sequencing priorities deliver non-
satisfying results because some tasks should be performed 
consecutively without interruptions, even if the interrupting 
task is of higher priority. Furthermore, the medium-detail 
model does not include changeover logic for switching 
between part types during a simulation run. The necessary logic 
has to consider a number of restrictions – e.g., when are 
changeovers allowed, what happens with remaining parts at the 
rack positions, etc. – and therefore is not easily implemented 
without additional custom-code.
High-detail Model 

The high-detail model addresses the shortcomings of the 
medium-detail model with the implementation of additional 
functionalities for the realization of realistic changeover 
behavior and improved control over task sequences. Instead of 
using the standard task templates of FlexSim, a customized task 
creation and allocation system has been developed. Each 
station creates specific human operator task sequences, derived 
from customized task sequence templates, that are necessary to 
run the station. E.g., if the automatic processing of a part is 
finished at a CNC machining center, a task sequence for part 
removal and transport to the associated cleaning desk, is 
created as a single, uninterruptable sequence. The generated 
task sequences are added to a pool of available operator tasks, 
where they are assigned and subsequently executed by the pre-
determined operators with regard to the task sequence priority. 
The task priorities are still simple priority values but can be 
flexibly adjusted by the source station considering various 
environmental conditions (e.g., content of buffers, blocked 
machines, etc.).

Furthermore, the required changeover logic is added for the 
CNC machining centers and the cavity inspection desk. In case 

Fig. 3. 3D representation of the high-detail model in FlexSim.
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of the CNC machining centers, changeover events are defined 
by the corresponding machine-specific timetable but are 
initiated only after all relevant conditions are fulfilled (e.g., 
minimum time span between changeovers, all remaining parts 
at the IRP must be processed before starting the changeover 
process, etc.). For the cavity inspection desk, a changeover is 
initiated based on the amount of queued parts for each part type 
at the cavity inspection RP and a maximum changeover 
frequency. Again, the initiation of a changeover leads to the 
creation of specific task sequences that are added to the task 
pool.
Table 1. Qualitative comparison of the 3 models using 4 fidelity dimensions.

Dimension
Aspect

Low-detail 
model

Medium-detail 
model

High-detail 
model

Workstations
(Un-)Loading
Positions No Yes Yes

Setup Time Yes Yes Yes

Process Time Yes Yes Yes

Material Flow

Transport Type Single-piece 
flow

Batch 
Transport

Batch
Transport

Manual Loading/
Unloading No Yes Yes

Distinct Transport
Time Parameters No No Yes

Task Execution
Human Operators No Yes Yes

Task Sequence
Definition -

OOTB 
FlexSim Task 

Sequences

Customized
Task

Sequences

Task Allocation -
OOTB 

FlexSim 
Mechanism

Customized 
Allocation 

System

Task Monitoring - Task Sequence 
Level

Single 
Operation 

Level

Logic

Part Distribution
Logic

Pull Logic 
(CNC) + FIFO 

Push

Pull Logic 
(CNC) + FIFO 

Push

CNC 
Production
Program 

controlled

Changeover logic No No Yes

Production
Rejects

Yes
(Bernoulli 

Distribution)

Yes
(Bernoulli 

Distribution)

Yes
(Bernoulli 

Distribution)

The task sequence creation system gives all possibilities 
needed to recreate realistic human operator behavior for tasks 
related to the production process. Since the custom task 
sequences are easier to access than the Out-Of-The-Box 
(OOTB) task system provided by FlexSim, detailed workload 
analyses for operators are much easier and possible even on 
single operation level. The implemented changeover 
mechanism allows to simulate production program changes by 
simply editing a CNC machine’s timetable – all necessary 
changeover activities are handled automatically by the model 
logic. Since most of the logic for changeovers and task 
initiation is implemented in a station itself to form a modular 

unit, and in conjunction with the task sequence creation system, 
the high-detail model provides easy extensibility with 
additional workstations of the same type – additional stations 
just create more task sequences enlarging the task pool for any 
number of operators.

While the low- and medium-detail models have been built 
only with FlexSim Standard 3D modelling elements, the high-
detail model includes process flow control constructs and 
custom-code functions for implementing the additional logic.
Fig. 3 shows a screenshot of the 3D representation of the high-
detail model during simulation in FlexSim. Some additional 
abbreviations for the cavity inspection desk (CID) and the 
cleaning desks (CD) are used in the simulation environment. 
Furthermore, the figure shows a “PartCreation” section for 
instantiating flow items in the model as well as additional 
buffer queues (“CDX_Buffer”) for the cleaning desks and a 
scrap part location at the CID area (“CID_Scrap”). All the other 
depicted model elements correspond with the schematic 
illustration in Fig. 2. Table 1 summarizes the differences of the 
created models using the 4 defined fidelity dimensions and 
their subordinated aspects.

6. Results and Discussion

For a quantitative evaluation, a maximum deviation of
±15% from the actual average throughput of the physical 
production system was predefined as the decisive indicator, if 
the throughput of a model is accurate enough for further
experimentation. The throughput of each model was measured 
for a 2-day (equals 6 shifts) simulation time during the model 
validation process. Subsequently, the average outcomes of 20 
simulation runs per model were compared to the average 
throughput of the physical CNC area production subsystem, 
measured over a 2-month period. The simulation duration and 
cycles could be kept low because at the time of those validation 
cycles no machine breakdown logic has been implemented, and 
therefore the variance of the outcomes was marginal. To 
guarantee comparability to the simulation data, production start 
periods and production intervals that included breakdown 
events have been excluded from the validation data as well. The 
validation runs were performed with 2 simultaneously 
machined part types (PT 1 on CNC 1 & 4, PT 2 on CNC 2 & 
3). The results are shown in Table 2.
Table 2. Average Deviation of the model throughputs from the average 
production volume (normalized, 20 simulation runs/model).

Part 
Type

Low-detail 
model

Medium-
detail model

High-detail 
model

Actual Average 
Production

PT 1 +26.71% +15.30% +12.61% 100%

PT 2 +26.38% +16.47% +11.51% 100%

Because of the various idealizations, all 3 models deliver 
higher throughputs than the real production system. The low-
detail model without any task executer restrictions delivers 
around +26.5% more throughput than the real production 
system, while the medium-detail model with implemented 
human task executers is with +15.30% and +16.47% much 
closer to reality and almost inside the tolerated deviation range.
Because of the improved and more realistic task sequencing 
provided by the customized task system, the accuracy of the 
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high-detail model improves to an average of +12.61% and 
+11.51% over the conducted simulation runs and therefore 
meets the accuracy requirement. One big factor for the 
remaining inaccuracy even in the high-detail model are short-
duration downtimes at the CNC machining centers, caused by 
a variety of unforeseeable events like delayed start of the CNC 
program due to safety alerts (e.g., doors not closed), necessary 
manual readjustments in the setup process, and others. This 
kind of interruptions are difficult to measure during daily 
business and therefore currently not captured in the models.

After all qualitative and quantitative requirements have been 
fulfilled by the high-detail model, no further model refinement 
cycles were needed. Based on the high-detail model, the 
simulation and optimization of a To-Be scenario with 6 CNC 
machining centers, 4 operators and a second cavity inspection 
desk, including a rearranged area layout, brought an increased
throughput of +29.6% compared to the conventionally, 
experience-based planning. The improvement was mainly 
achieved by

• re-allocation and -prioritization of the human operator 
tasks, so the workload distribution between all operators is 
quite even and on a high level, 

• detection of the cavity inspection as bottleneck station, and 
therefore shifting dedicated operator resources to optimize 
the cycle times of the cavity inspection desks, and

• optimized changeover frequencies of the CNC machining 
centers with consideration of the material flow 
requirements of the downstream processes.

7. Conclusion and Outlook 

In industrial optimization projects, usually it is not feasible 
to create multiple models with different levels of detail, 
because it is too time-consuming and/or too expensive. While
the presented comparison of models with varying levels of 
detail and fidelity compared to the physical system can be used 
as a rough guideline for future modelling activities with 
comparable objectives and boundary conditions, more 
simulation results gathered from similar use cases are
necessary to ensure the representativeness of the stated results.

Another interesting extension of the research would be 
further refinement loops to achieve even higher model fidelity
and accuracy, e.g. the consideration of transport devices, if they 
are bottleneck resources, or additional operator tasks, that may 
occur in the day-to-day business at the shop floor, and so forth. 
Such further detailing only makes sense, if there is enough 
input data available to parametrize the model accordingly, and 
the implemented details bring added value to the analyses for 
the defined purpose of the simulation model.

The use case described in this paper is part of a bigger 
ongoing research project with the objectives to generate 
coherent virtual representations of production and logistics 
systems to establish Digital Twins (DTs) with self-optimization 
capabilities. Currently, the use case described in this paper is 
extended to the upstream process steps to cover the whole 
production site. The generated production system model will 
be used as foundation for the virtual counterpart to the physical 

production system in the upcoming DT implementation.
Further details will be published in a follow-up paper.
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