
Querying Knowledge Graphs at
Web Scale

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Amr Azzam, MSc.
Registration Number 11911082

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.-Prof. Dr. Axel Polleres

The dissertation has been reviewed by:

Reviewer 1 Reviewer 2

Vienna, 10th May, 2023
Amr Azzam

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Amr Azzam, MSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. Mai 2023
Amr Azzam

iii

Acknowledgements

v

Abstract

While Linked Data (LD) provides standards for publishing (RDF) and (SPARQL)
querying Knowledge Graphs (KGs) on the Web, serving, accessing and processing such
open, decentralized KGs is often practically impossible, as query timeouts on publicly
available SPARQL endpoints show. To this end, Linked Data Fragments (LDF) have
introduced a foundational framework that has sparked research exploring a spectrum
of potential Web querying interfaces between server-side query processing via SPARQL
endpoints and client-side query processing of data dumps. Current proposals in between
typically suffer from an imbalanced load on either the client or the server. In this
thesis, we present a novel approach to share the load between servers and clients, while
significantly reducing data transfer volume, by combining server-side query processing
with shipping compressed KG partitions. Next, we present the first work that combines
both client-side and server-side query optimization techniques in a truly dynamic fashion
by employing a cost model that dynamically delegates the load between servers and
clients by combining client-side processing of shipped partitions with efficient server-
side processing of star-shaped sub-queries, based on current server workload and client
capabilities. Thereafter, we investigate alternative interfaces able to ship partitions of
KGs from the server to the client, aiming to reduce server-resource consumption. To this
end, we align formal definitions and notations of the original LDF framework to uniformly
present partition-based LDF approaches. Our thesis is a step forward towards a better-
balanced share of the query processing load between clients and servers by shipping graph
partitions driven by the structure of RDF graphs to group entities described with the
same sets of properties and classes. Throughout the thesis, we empirically evaluate our
approach against real-world and synthetic RDF KGs on both pre-existing benchmarks
for highly concurrent query execution as well as a novel query workload benchmark
inspired by query logs of existing SPARQL endpoints. Our experiments show that our
proposed work significantly outperforms state-of-the-art solutions in terms of average
total query execution time per client, while at the same time decreasing network traffic
and increasing server-side availability and outperforms state-of-the-art solutions and
increasing server-side availability towards more cost-effective and balanced hosting of
open and decentralized KGs.

vii

Contents

Abstract vii

Contents ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Challenges . 4
1.4 Hypotheses and Research Questions 4
1.5 Contributions . 6
1.6 Thesis Structure . 9
1.7 Impact . 10

2 Background 13
2.1 The Semantic Web . 13
2.2 The Resource Description Framework 14
2.3 From Linked Data to a network of interconnected KGs 18
2.4 Knowledge Graphs . 21
2.5 The SPARQL Query Language . 22
2.6 HDT . 33

3 A uniform characterization of existing Web querying interfaces 39
3.1 Linked Data Fragments framework . 39
3.2 Partition-based LDF . 47

4 Hybrid Shipping for SPARQL Querying on the Web 49
4.1 Family-Based Partitioning of RDF Graphs 50
4.2 SMART-KG: Design and Overview . 53
4.3 Proof of smart-KG Correctness . 64
4.4 smart-KG as an LDF interface (SKG) 71
4.5 Experimental Evaluation . 72
4.6 Summary and Limitations . 88

5 A Balanced Access to Web Knowledge Graphs 89

ix

5.1 Motivating Example . 90
5.2 WiseKG . 92
5.3 Query Processing . 96
5.4 Experimental Evaluation . 99
5.5 Summary and Limitations . 109

6 Smart-KG+: Further Optimizations of Family-partition-based LDF 113
6.1 Partition-based Linked Data Fragments: Typed-Family Partitioning . 114
6.2 SMART-KG+: Design and Overview 117
6.3 SMART-KG+ Extending Partition Generator 118
6.4 SMART-KG+: Query Processing . 119
6.5 Experimental Evaluation . 132
6.6 Lesson Learned . 160
6.7 Summary and Limitations . 161

7 Partition-based Linked Data Fragments: Alternatives 163
7.1 Vertical Partitioning (VP) . 163
7.2 Horizontal/Range/Sharding Partitioning 164
7.3 Hash Partitioning (HP) . 166
7.4 Workload-aware partitioning . 166
7.5 K-way Partitioning (KP) . 167

8 Reproducibility 169
8.1 Linked Data Fragments Implementation 170
8.2 Deploying Our Experiments . 176
8.3 Comunica Implementation . 180

9 Conclusion 183
9.1 Summary of Contributions . 183
9.2 Critical Assessment of Research Questions 186
9.3 Open Challenges and Future Research Directions 188

List of Figures 197

List of Tables 199

List of Algorithms 201

Bibliography 203

CHAPTER 1
Introduction

Share your knowledge. It is a way
to achieve immortality.

Dalai Lama

1.1 Motivation
The proliferation of the World Wide Web [BF00a] has greatly facilitated the dissemination
of knowledge [FLM98] by enabling individuals to publish and access a vast amount of
information on various subjects through human-readable HTML documents [LLWL08],
forming the "Web of Documents". In recent years, the content on the Web has evolved
from a network of linked documents to a more interactive platform containing various
forms of human-oriented content such as text, images, sounds, and videos.

Despite the abundance of resources, humans struggle with performing tasks that require
accurate and efficient searching, processing, and retrieving of a large amount of data. On
the other hand, machines can automate increasingly complex tasks such as processing
queries over data published on the Web. However, most Web content is somewhat
enigmatic to machines due to the human-centered nature of the Web. This has led to
the emerging vision of the "Web of Data", an evolution of the Web that includes a set of
practices and standards for publishing content on the Web in machine-readable formats
by which machines can collaborate on a wide range of tasks and exchange and process
data on the Web [BF00b].

Along the lines of this vision, Berners-Lee [BL98] introduced the Semantic Web [BLHL01],
which aims to create a Web that is more accessible to machines, enabling software agents

1

1. Introduction

to perform tasks without human intervention. In order to promote the adoption of
respective standards, the Semantic Web community [BHB09] has proposed the use of
Linked Data principles [BL06, HB11], which involve publishing and linking data in a
manner that allows the Web to be queried like "one giant database" [BF00b]. The
key technologies of Linked Data are the Resource Description Framework (RDF) and
SPARQL, the standard query language for RDF graphs. Driven by the Linked Open Data
Initiative (LOD), many openly accessible RDF graphs in various domains such as Life
Sciences, Media, Geography, and Linguistics have been published according to Linked Data
principles, forming interlinked open knowledge graphs (KGs) such as DBpedia[ABK+07]
and Wikidata [VK14], which jointly contribute to a Web of Data [BF00b].

SPARQL queries over open knowledge graphs on the Web are typically executed through
the use of clients (issuing SPARQL queries) and servers (exposing RDF graphs via a
SPARQL interface). Based on the terminology used in distributed database systems,
query workload distribution between clients and servers can be classified into three main
types of shipping strategies [FJK96]: (i) Query shipping in which query execution is
completed on the server and only the results are shipped back to the client; (ii) Data
shipping exploits the processing power of clients (in the extreme case, meaning to simply
serve dataset dumps for download) and thereby reduce the workload on servers, and (iii)
hybrid shipping in which queries are decomposed into subqueries and the processing load
is distributed between clients and servers.

Data publishers have so far primarily offered query and data shipping to consume RDF
knowledge graphs (KGs). Most open RDF KGs, such as DBpedia and Wikidata, are
accessible through a SPARQL endpoint, which is a server that can evaluate SPARQL
queries sent by clients over the network. While SPARQL endpoints can perform well for
single queries, they can be expensive to host and maintain when serving large KGs or
allowing concurrent execution of complex queries by multiple users [AHUV13, SHA+12].
As an alternative, data shipping allows data publishers to provide simple file access to the
entire RDF KG and enables clients to download and locally query full data dumps. While
data shipping has the advantage of reducing the workload on servers, it can be costly for
clients in terms of bandwidth and processing power; plus, it may not be suitable for fast
evolving/changing Knowledge Graphs due to the overhead of reshipping the entire graph.

In this context, this thesis aims to explore and optimize the use of hybrid shipping for
SPARQL query processing over open KGs on the Web: the main goal is to provide a
Web querying interface that can effectively balance the workload between clients and
servers while minimizing the overhead of communication and data transfer.

1.2 Problem Statement
The term Knowledge Graph refers to a scalable data management concept that represents
facts about entities and their relationships [BDPP18] in a graph structure. While the
term Knowledge Graph points to several technologies and standards as we will detail
in Section 2.4, in this work, we specifically focus on Open RDF Knowledge Graphs

2

1.2. Problem Statement

that are published on the web and adhere to Linked Data principles using the Resource
Description Framework (RDF) as the graph-based representation model and the SPARQL
query language to retrieve and manipulate these Knowledge Graphs. In this thesis, we
address query processing over such Knowledge Graphs, which refers to the process of
evaluating SPARQL queries over RDF graphs. Various architectures can be used for
evaluating SPARQL queries over RDF Knowledge Graphs, such as federated [APU14],
peer-to-peer [CF04], and client-server [VSH+16]. Herein, we focus on SPARQL query
processing1 over RDF graphs in a client-server architecture.

In a client-server environment, processing SPARQL queries using query or data shipping
strategies can be inefficient, particularly when handling high levels of concurrent querying
of large RDF graphs [GGvHS10] such as DBpedia. This has contributed to the problem of
servers availability [VSH+16]. According to SPARQLES [VUM+17], a service that moni-
tors 565 SPARQL endpoints, 64% of them were unavailable (as of December 2022). In an
effort to address this bottleneck, the Linked Data Fragments (LDF) framework [VSH+16]
has been proposed as a foundational framework to decentralize query processing tasks to
alleviate the burden on data providers hosting such servers. The LDF framework has
sparked research on hybrid shipping strategies, exploring a spectrum of potential Web
querying interfaces in between query shipping, i.e., a full server-side query processing via
SPARQL endpoints and data shipping, i.e., full client-side query processing via shipping
an entire RDF graph data dump with the aim of finding a balanced client-server load
distribution.

Triple Pattern Fragment (TPF) [VSH+16] is an early LDF implementation that enables
efficient SPARQL querying by limiting the capabilities of servers to simple triple pattern
lookups and transferring the processing of complex patterns to the client side. However,
this approach can lead to a decrease in query performance and an increase in network
traffic due to the transfer of intermediate results. Bindings-Restricted Triple Pattern
Fragments (brTPF) [HA16] attempts to improve the performance of TPF by distributing
the join operations between the client and the server. While this reduces the number
of HTTP requests and the amount of data received compared to TPF, the number
of requests remains relatively high, and intermediate results must still be transferred
verbatim. SaGe [MSM19] is a SPARQL query engine designed to address the issue of
simple queries being starved of resources due to the execution of long-running server-
side queries by introducing a preemptive execution model and scheduling mechanism
that allocates a fixed amount of time, called a quantum, for each query and improves
average workload completion time by suspending and resuming queries from different
clients. However, SaGe may still have issues with high numbers of requests, query context
switching, and client-side overhead.

In summary, many web interfaces proposed in the literature so far, including TPF [VSH+16],
brTPF [HA16], and SaGe [MSM19], still suffer from an imbalanced load on either the
client-side (dumps and TPF), the server-side (SPARQL endpoints and SaGe), or the

1Note that throughout this thesis, we interchangeably use the terms "query processing", "Web
querying", and "query evaluation" to describe the process of evaluating SPARQL queries over RDF graphs.

3

1. Introduction

network (TPF and brTPF). To address these issues, we propose a further exploration
of Web interfaces based on the LDF framework, which has the potential to provide
efficient Knowledge Graph querying on the Web while more evenly distributing the query
processing load between servers and clients.

1.3 Challenges
In this thesis, we focus on developing an efficient SPARQL Web querying interface over
RDF Knowledge Graphs in a client-server environment. The research problem at hand
presents several challenges:

• C1 Large-scale RDF knowledge graphs: Maintaining highly available query
services for large-scale RDF knowledge graphs on the web can be difficult, especially
for those with over a billion triples. Web interfaces such as TPF [VSH+16] and
brTPF [HA16] have been developed to enable low-cost hosting of knowledge graphs.
However, upon complex queries, serving large-scale knowledge graphs using these
interfaces can result in increased network traffic, leading to significant query
execution performance degradation [MSM19].

• C2 Skewed structure of RDF Graphs: The evaluation of SPARQL queries
on RDF graphs can be challenging due to the lack of explicit schema and the
skewed structure of many RDF graphs. Skewed graphs [FMPdlFRG18], i.e., graphs
with an unbalanced distribution of predicates, are characterized by the presence of
"dominant" predicates, which occur with significantly higher frequency compared
to other predicates in the graph. As we will discuss, these frequent predicates may
negatively impact the query performance of existing approaches.

• C3 Web environment Dynamicity: The design and implementation of an
efficient SPARQL query service in a web environment is a challenge due to the
unpredictable and variable nature of the real-world queries [SAH+15]. Client
requests for SPARQL queries can lead to fluctuations in server load, resulting in
variable availability of resources such as memory and CPU. These fluctuations, along
with the influence of hardware parameters, network delays, and the computational
resources of clients, can impact the performance of a query. To address these
challenges, it may be necessary to adapt the query execution plan during runtime
in order to optimize performance according to this dynamic environment.

1.4 Hypotheses and Research Questions
Our first hypothesis is based on the observation that centralized, clustered, and distributed
RDF query processing systems use graph partitioning to improve query performance,
system scalability, and query load balancing. We posit that using similar ideas by
serving compressed, queryable, and reusable KG partitions that can be shipped, cached,

4

1.4. Hypotheses and Research Questions

and locally queried without decompression time on the client-side, we can address the
challenge C1. By breaking down the knowledge graph into manageable partitions, the
partition-shipping based Linked Data Fragments (LDF) interface can efficiently handle
queries by fetching and combining relevant data only from the necessary partitions.
Consequently, this approach reduces the overall network traffic, thus contributing to
improved query execution performance for large-scale RDF knowledge graphs. In light
of the defined problem statement in 1.2 and the challenges outlined in Section 1.3, our
hypothesis is as follows:

Hypothesis 1. A partitioning technique that utilizes structural analysis of knowledge
graphs (KGs) can be used to develop a novel and effective partition-shipping based
LDF interface

The LDF framework suggests that when querying knowledge graphs on the web, it is
necessary to consider the trade-off between expressivity, server availability, and client-side
resource consumption. Therefore, we propose the creation of a hybrid LDF interface that
combines various LDF interfaces with varying expressivity in order to achieve a better
balance between server and client load. Our second hypothesis aims to address both
challenges C1 and C2.

Hypothesis 2. The combination of different Linked Data Fragments (LDF) in-
terfaces with partition shipping can improve server availability and enhance the
accumulated query performance of large knowledge graphs (KGs) under concurrent
query load with multiple clients.

By leveraging a combination of different Linked Data Fragments (LDF) interfaces with
partition shipping, we can effectively distribute and process specific segments of a query
through LDF interfaces that are better suited for the given query and the underlying
structure of the knowledge graph (KG). Finally, our second hypothesis aims to address
both challenges C3:

Hypothesis 3. Employing a cost model that dynamically picks the best-suited
interface per query while taking into account server resources, client capabilities,
network bandwidth, structural characteristics of KG, and the characteristics of the
query can be used to further optimize the query processing load between client and
server.

Hypothesis 3 directly tackles Challenge C3 as the dynamic nature of the cost model
allows for adaptive query execution planning at runtime, ensuring efficient utilization of
available resources while handling query fluctuations in the web environment. Starting
from the hypothesis above, we formulate the corresponding research question, as follows:

5

1. Introduction

RQ1 Which strategies leveraging partition shipping can achieve significant speedups to
existing Web querying approaches over Knowledge Graphs, and when/better should
these strategies be employed?
Here, specifically, we aim to investigate which partitioning technique is suitable
for serving complex queries, decomposable into subqueries that can be separately
served by such partitions, in a manner that shipping the respective compressed KG
partitions to be locally queried on the client-side, can be interleaved in a hybrid
strategy with existing Web interfaces.

RQ2 How can the combination of different LDF interfaces with partition shipping further
improve the query performance?
Here, we aim to investigate and compare different, concrete strategies to dynamically
combine our partition shipping technique from RQ1 with other LDF interfaces
to achieve optimal performance, considering different factors such as network
bandwidth, as well as server and client resources.

RQ3 How can we systematically enhance and optimize the partitioning technique to
improve performance and scalability in Knowledge Graph querying?
Here, we aim at exploring refinements of our approach, discussing first whether or
how other existing graph partitioning techniques from the literature could be used
in our approach, and then how to further engineering refinements could enhance
the overall performance of Web querying.

1.5 Contributions
The results of this thesis are contributions to the study and improvement of efficient
SPARQL Web querying over large-scale RDF Knowledge Graphs given a high concurrent
execution of queries from multiple users. In the following, we detail the contributions of
this thesis to the respective research questions RQ1-RQ3 and hypotheses H1-H3 :

Contribution 1. An LDF Web querying interface, named smart-KG [AFA+20],
efficiently queries Knowledge Graphs (KGs) on the Web by sharing the load between
servers and clients, while significantly reducing data transfer volume by combining
TPF with shipping compressed KG partitions.

The first contribution focuses on investigating both Hypotheses 1 and 2. In the following,
we breakdown the first contribution into the following sub-contributions:

• We design a KG partition technique named family partitioning designed for large
RDF KGs. The server-side maintains compressed and queryable KG partitions that
are shipped as intermediate results to be further queried locally on the client-side.

6

1.5. Contributions

• We combine the Triple Pattern Fragment (TPF) strategy with shipping compressed
graph partitions that can be locally queried to increase server availability while
achieving competitive performance.

• We introduce client-side query optimization and execution techniques that are able
to combine heterogeneous LDF APIs responses, ensuring a correct query evaluation.

• An empirical evaluation of smart-KG on synthetic and real-world KGs and queries,
significantly outperforming the state-of-the-art interfaces, providing an efficient
SPARQL query processing over large-scale Web KGs while maintaining a cost-
effective solution.

As a result of the conducted experiments, we gained insights to validate Hypothesis 1
and Hypothesis 2 and answers to RQ1.

Contribution 2. A novel querying interface, named WiseKGheuristic [AAM+21],
dynamically shifts the query processing load between client and server based on a
predefined heuristic.

We detail the second contribution which is a further investigation to validate Hypothesis 2,
as follows:

• WiseKGheuristic combines the strengths of two Linked Data Fragments APIs
(SPF [AKMH20] and smart-KG [AFA+20]) that enable server-side and client-side
processing of star-shaped sub-patterns and further advances them by finding a
novel balance between server and client load.

• WiseKGheuristic decides whether subqueries should be processed on the client or
on the server based on a predefined heuristic (e.g server CPU usage) to ensure the
server availability.

Our conducted experiment is directed to answer RQ2. The empirical results show that
WiseKG significantly outperforms state-of-the-art stand-alone LDF interfaces on highly
demanding workloads, with increasing numbers of concurrent clients, with increasing KG
sizes, and on different query shapes.

Contribution 3. A novel querying interface, named WiseKG [AAM+21], that
relies on a dynamic cost model to pick the best-suited API per sub-query based on
the current server load, client capabilities, and estimation of necessary data transfer
between client and server (for intermediate query results), and network bandwidth.

In the course of Hypothesis 3, we provide details of our third contribution as follows:

7

1. Introduction

• We study the factors that impact the performance of accessing KGs, including
server load, client computing resources, and the size of data transferred over the
network

• Based on this study, we replace the heuristic-based approach by employing a
dynamic cost model to minimize the total time consumed by client-side and server-
side components while considering the current load on the server and the client
capabilities.

• WiseKG’s cost model improves average query execution time while also reducing
resource consumption (including less CPU usage and network traffic) compared to
existing interfaces.

Our experimental study findings confirm the superior scalability of WiseKG compared to
state-of-the-art systems, answering our research question RQ2.

Contribution 4. A sequence of refinements is proposed to improve query execution
time and to reduce the shipped intermediate results including (i) improving family
partitioning, (ii) improving client-side query evaluation, and (iii) optimizing join
subqueries, (iv) Formal definitions and annotations are aligned with the original
Linked Data Fragments (LDF) specifications, and (v) The soundness and completeness
of our partition shipping-based query execution approach are rigorously verified.

The final contribution of this thesis further validates Hypothesis 1 and Hypothesis 2 where
we provide an improved partitioning technique, query planning, and query execution, as
follows:

• We align the formal definitions and annotations with LDF original specifications to
uniformly present different LDF APIs.

• We analyze existing partitioning techniques for RDF graphs, assessing their appli-
cability to serve as partitioning mechanisms for Web querying interfaces.

• We introduce partition-based LDF which generalizes LDF interfaces, and returns
compressed and queryable partitions that can be used to answer several triple
patterns in a single request.

• We implement a query planner that optimizes join ordering among subqueries of
an input query.

• We investigate the suitability of asynchronous iterators for a heterogeneous LDF
interface query execution.

• We verify the soundness and completeness of our partition shipping-based query
execution approach utilized in smart-KG [AFA+20] and WiseKG [AAM+21].

8

1.6. Thesis Structure

We present a formalization of existing KG partitioning techniques to answer. In addition,
we improve typed family-based partitioning based on query logs insights. Our experiments
show that our proposed shipping-based query planner and asynchronous join strategy
have improved the query performance, answering RQ3.

In summary, with the contributions of this thesis, we consider serious barriers to consuming
and using open RDF Knowledge Graphs published on the Web. Throughout this work,
we propose a series of interconnected contributions that collectively offer an efficient
solution to query Knowledge Graphs (KGs) on the Web balancing the load between
servers and clients. In addition, we empirically evaluate the proposed contributions using
demanding query workloads on real-world KGs and synthetic KGs up to 1 billion triples.

1.6 Thesis Structure
The remainder of this thesis is structured as follows:

• Chapter 2 (Background) provides an overview of the Semantic Web, Linked Data,
and Knowledge Graphs (KGs). We cover the RDF data model, SPARQL query
language, and HDT [FMG+13] (a compressed and queryable format for RDF
graphs). This background introduces the necessary core concepts and notations
used throughout the thesis.

• Chapter 3 (A uniform view of LDF interfaces) investigates state-of-the-art techniques
for querying RDF Knowledge Graphs on the Web. We present the Linked Data
Fragments (LDF) framework and analyze a variety of different interfaces using this
framework. We also align and extend the original LDF notations and definitions to
uniformly present these approaches. In addition, we present our novel approach
partition-based LDF that ships KG partitions hosted by the server to be locally
queried on the client-side to answer a submitted query.

• Chapter 4 (Hybrid Shipping for Web querying) investigates how shipping KG
partitions can be used to tackle the problem of availability [VSH+16] while achieving
significant speedups to query processing (RQ1). We introduce our partition
shipping strategy which provides a more balanced client-server load distribution
(Contribution 1).

• Chapter 5 (A balanced access to Web KGs) investigates strategies for dynamically
distributing the query processing load between clients and servers based on the
current workload (RQ2). We focus on combining the strengths of state-of-the-art
LDF interfaces to better balance the workload. We present two strategies for select-
ing the best-suited Web interface to execute a query: (i) a heuristic-based strategy
(Contribution 2); and (ii) a cost-based strategy to make efficient use of server
resources while maintaining high performance during high load (Contribution 3).

9

1. Introduction

• Chapter 6 (Refinements) presents a sequence of refinements and optimizations
(Contribution 4) to further enhance the performance of Web querying interfaces
as well as reduce the network traffic (RQ3).

• Chapter 7 (Partition-based LDF: Alternatives) investigates alternative possible
implementations of LDF interfaces based on existing partitioning mechanisms
(RQ3) that can potentially be utilized as a KG partitions shipping strategy from
servers to clients, with the aim to further reduce both server-resource consumption
and network traffic (Contribution 4).

• Chapter 8 (Reproducibility, Extensibility, and Comparability) discusses our strategy
for reproducible experiments in Web querying research. We also provide details on
the implementation of the family partitioning technique. To ensure the extensibility
and comparability of our work, we provide two implementations: (i) an extension
of the Java implementation of TPF [VSH+16]; and (ii) an additional client imple-
mentation using the Comunica platform [THSV18] to facilitate further research on
combining different Linked Data interfaces.

• Chapter 9 (Conclusion and future directions) summarises the thesis results and
critically reviews the research questions, hypotheses, and their corresponding
contributions. We conclude the thesis with a discussion of the current limitation of
our work and we outline promising future research directions.

1.7 Impact
The work presented in this thesis has been published in a number of peer-reviewed
international conferences and journals, which we will briefly mention in chronological
order.

• An initial research proposal, Enabling Web-Scale Knowledge Graphs Query-
ing: A Research Proposal by Amr Azzam, was presented at the European
Semantic Web Conference (ESWC) Doctoral Consortium in 2020 [Azz20].
In this work, we shape the aim of our research which is to develop a new generation
of smart clients and servers to balance the load between servers and clients, with
the best possible query execution performance, and at the same time reduce data
transfer volume, by combining different linked data interfaces. We define the
research problem, literature, hypotheses, contributions, and the evaluation plan
that we followed in our experiments.

• Guided by the insights of the research proposal, our paper SMART-KG: Hybrid
Shipping for SPARQL Querying on the Web by Amr Azzam, Javier D.
Fernández, Maribel Acosta, Martin Beno, and Axel Polleres was presented at the
Proceedings of the Web Conference 2020 [AFA+20]– The results are presented
in Chapter 4.

10

1.7. Impact

• We presented our initial vision of utilizing a server-side cost model to enable query
execution over a hybrid LDF interface in our poster paper, Towards Cost-Model-
Based Query Execution over Hybrid Linked Data Fragments Interfaces
by Amr Azzam, Ruben Taelman, and Axel Polleres., which was published at the
European Semantic Web Conference (ESWC) in 2020 [ATP20a]– this work
forms the lay out the high-level idea to the approach presented in Chapter 5.

• As a follow-up paper, we presented WiseKG: Balanced Access to Web Knowl-
edge Graphs by Amr Azzam, Christian Aebeloe, Gabriela Montoya, Ilkcan Keles,
Axel Polleres, and Katja Hose at the Proceedings of the Web Conference
2021 [AAM+21]– the results are presented in Chapter 5.

• More recently, the work presented in Chapter 6 has been submitted for review;
in particular, we have submitted a paper under the title smart-KG: Partition-
Based Linked Data Fragments for Querying Knowledge Graphs by Amr
Azzam, Axel Polleres, Javier D Fernández, and Maribel Acosta to the Journal of
Semantic Web.

Besides the above papers, the author of the presented thesis has also been involved in
other published research works which are partially related to this thesis, while not having
contributed directly to its content:

• A position paper, Towards making distributed RDF processing flinker by
Amr Azzam, Sabrina Kirrane, and Axel Polleres was presented at 4th Interna-
tional Conference on Big Data Innovations and Applications (Innovate-
Data 2018) [AKP18] which proposes to manage the RDF KGs based on Flink
stream processing framework 2. This approach to scalablility process KGs pre-date
the solution we then adopted in the presented thesis.
A workshop paper, The CitySPIN Platform: A CPSS Environment for
City-Wide Infrastructures by Amr Azzam, Peb Ruswono Aryan, Alessio Cec-
coni, Claudio Di Ciccio, Fajar J. Ekaputra, Javier David Fernandez Garcia, Sotiris
Karampatakis, Elmar Kiesling, Angelika Musil, Pujan Shadlau, Thomas Thurner,
and Reka Marta Sabou was presented at the 1st Workshop on Cyber-Physical
Social Systems (CPSS) 2019, co-located with the 9th International Confer-
ence on the Internet of Things [AAC+19]. This work introduces techniques
for using knowledge graph technologies to integrate heterogeneous data from semi-
structured and unstructured sources, including open data and social data. Our
approach was in its beginning developed as a part of this CitySPIN project and
with smart city applications in the domain of this applied project in mind.

2Flink:https://flink.apache.org/

11

CHAPTER 2
Background

2.1 The Semantic Web
The Semantic Web [BLHL01] is a framework for creating and using machine-readable
data on the World Wide Web (Web) in order to enable more intelligent and automated
access to information. It was proposed by Tim Berners-Lee, the inventor of the Web, in
2001 as a way to enhance knowledge dissemination on the traditional Web by publishing
information in a format that can be easily understood and processed by computers, as
opposed to only being presented in a human-readable format. This vision, known as the
"Web of Data," aims to empower software agents to discover, process, and use knowledge
automatically, allowing them to perform many tasks currently carried out manually by
humans.

To realize this vision, the Semantic Web community advocates for using standards and
technologies that make data more accessible and interconnected on the Web. One way in
which this is being achieved is through the use of the Resource Description Framework
(RDF), a graph-structured data model that was specifically designed to provide flexibility
and ease of integration for knowledge from various sources on the Web as we will detail
in Section 2.2. By using RDF, the Semantic Web aims to evolve into a single global
graph database comprising interconnected documents.

The World Wide Web Consortium (W3C) has proposed SPARQL1 as a standard querying
language for RDF data, which allows users to retrieve and manipulate data stored in
RDF format, which we will discuss in detail in Section 2.5. This language allows users to
retrieve and manipulate data stored in RDF format. In this thesis, we will focus on RDF
data model and SPARQL as key standards within the Semantic Web technology stack
that support the creation of a "Web of Data".

1SPARQL is a recursive acronym, which stands for SPARQL Protocol and RDF Query Language

13

2. Background

2.2 The Resource Description Framework
The Resource Description Framework (RDF) is a W3C-recommended standard for
describing and exchanging graph-based data on the Web. As outlined in [SR14], RDF is
a graph-based data model that is used to represent information about resources such
as documents, people, sensors, etc., and their relationships. The RDF data model
organizes this information using a tuple structure called an RDF triple. Each RDF triple
is composed of a subject, predicate, and object, which are represented in the form of
(Subject, Predicate, Object), as follows:

• Subject: represents the described resource.

• Predicate: describes a relationship or a property that associates the subject with
the object.

• Object: is a resource or a literal (i.e. a sequence of strings) that is related to the
subject.

As illustrated in Figure 2.1, RDF triples can be interpreted as a directed labeled graph
structure to represent the relationships between resources. In this representation, the
subject and object are depicted as nodes, and the predicate is represented as a directed
labeled edge.

The RDF data model provides specific terminology, known as RDF terms, to define the
different types of nodes that can be used in this graph structure, namely:

• Uniform Resource Identifier (URI): is a standard format to identify any
logical or physical resources. We note that RDF specification version 1.12 permits
Internationalized Resource Identifier (IRI) which is similar to URIs but with
expanding the set of permitted characters to include international character sets.

• Literals: are atomic data values that represent some piece of information. It can
be used to represent simple values3 such as strings, integers, and booleans, as well
as more complex data types such as dates, times, and geographical coordinates.
Literals may have an associated data type that specifies the type of value being
represented. In an RDF triple, a literal is typically used as the object of the
statement, while the subject and predicate are represented using resource identifiers
(URIs).

• Blank node: (also known as a bnode or anonymous node)4 is a placeholder used to
represent a "anonymous" resource nodes without a globally unique identifier. Blank

2https://www.w3.org/TR/rdf11-concepts/
3https://www.rfc-editor.org/rfc/bcp/bcp47.txt
4https://www.w3.org/wiki/BlankNodes

14

https://www.w3.org/TR/rdf11-concepts/
https://www.rfc-editor.org/rfc/bcp/bcp47.txt
https://www.w3.org/wiki/BlankNodes

2.2. The Resource Description Framework

nodes can be used as the subject or object of an RDF triple and are represented
using a special syntax (_:node). Blank nodes are useful for representing resources
when the identity of the resource is not relevant or when it is being used to represent
an intermediate step in a larger process.

We present the formal definition of RDF terms following the notation from Perez et al.
[PAG09] and the RDF specification [HPS14], as follows:

Definition 2.1. (RDF Terms) Let U , B, and L be infinite, mutually disjoint sets
of IRIs, blank nodes, and literals, respectively. The set of RDF terms is defined as
the union of the aforementioned three sets: U ∪ B ∪ L

We can construct RDF triples from RDF terms as follows: subjects are admissible to
include IRIs or blank nodes, predicates accept only IRIs, and objects can contain any of
the RDF terms (IRIs, blank nodes, or literals).

Definition 2.2. (RDF Triple) An RDF triple t = (s,p,o) ∈ (U ∪B)×U ×(U ∪B ∪L)
where we refer to the components of a single RDF triple as by subj(t) = s represents
the subject of a triple, pred(t) = p represents the predicate, and obj(t) = o represents
the object.

Example 1 presents an RDF triple describing Ross Geller who is a fictional character
from the TV series Friends where the subject is dbr:Ross_Geller, the predicate is
rdf:type, and the object is dbo:FictionalCharacter. In RDF, a class represents a
concept or category of things that can be described using RDF triples. Classes are used
to group together resources that share common characteristics or properties. The rdf:type
property, which is predefined in RDF, can be used to specify the class of a resource as
Example 1.

Example 1. (RDF Triple)

The following is an example of an RDF triple in a form of a tuple using DBpedia
ontology a:

(dbr:Ross_Geller, rdf:type, dbo:FictionalCharacter)

Subject: dbr:Ross_Geller is an IRI that represents the subject Ross Geller;

Predicate: rdf:type is a property that is used to specify the type or class of a
resource. In our example, it states that dbr:Ross_Geller resource is an instance
of the class dbo:FictionalCharacter;

15

2. Background

Object: dbo:FictionalCharacter is an IRI that represents a class, to which the
subject belongs in the DBpedia ontology.

aDBpedia Ontology (http://dbpedia.org/ontology/) is a vocabulary and ontology devel-
oped by the DBpedia community that describes entities and properties in the DBpedia dataset,
based on the RDF data model and is expressed using the Web Ontology Language (OWL) [SS04].

As shown in Example 1, prefixes can be used to provide a short form for URIs5. For
instance, we abbreviate the URI http://dbpedia.org/resource/Ross_Geller
to dbr:Ross_Geller where dbr corresponds to http://dbpedia.org/resource/

An RDF graph G is a finite set of RDF triples and is formally defined as follows:

Definition 2.3. (RDF Knowledge Graph (KG)) An RDF graph G is a subset of
(U ∪ B) × U × (U ∪ B ∪ L). That is, an RDF graph is a finite set of RDF triples,
where subj(G), pred(G), and obj(G) denote subjects, predicates, and objects in G

Example 2 demonstrates how RDF describes information referring to the fictional charac-
ter Ross Geller. The example presents 6 facts about the described character in 6 different
RDF triples forming an RDF Graph. In Figure 2.1, we show the graphical representation
for an RDF graph describing Ross Geller character, with IRIs depicted as ovals and
literals depicted as rectangles.

Example 2. (RDF Graph) The following RDF graph describes the resource Ross
Geller who is a fictional character from the sitcom Friends based on DBpedia graph:

Ross is a fictional character in the TV series Friends.
(dbr:Ross_Geller, rdf:type, dbo:FictionalCharacter)

Ross Geller’s character is portrayed by the actor David Schwimmer.
(dbr:Ross_Geller, dbo:portrayer, dbr:David_Schwimmer)

Ross Geller’s name is "Ross Geller" in English.
(dbr:Ross_Geller, rdfs:label, "Ross Geller"@en)

Ross Geller was born on 1969-10-18.
(dbr:Ross_Geller, dbo:birthDate, "1969-10-18"^^xsd:date)

5In Example 1 and Example 2, we make use of the following prefixes:
dbr:http://dbpedia.org/resource/resource
dbo:http://dbpedia.org/resource/ontology
dbp:http://dbpedia.org/resource/property
rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs:http://www.w3.org/2000/01/rdf-schema#

16

http://dbpedia.org/ontology/
http://dbpedia.org/resource/Ross_Geller
http://dbpedia.org/resource/

2.2. The Resource Description Framework

Ross Geller is a Paleontologist.
(dbr:Ross_Geller, dbo:occupation, dbr:Paleontology).

Ross Geller holds a PhD in Paleontology.
(dbr:Ross_Geller, dbp:title, dbr:Doctor_of_Philosophy).

Ross Geller is married to Rachel Green.
(dbr:Ross_Geller, dbp:spouse, dbr:Rachel_Green).

In practice, RDF graphs can be stored and exchanged using various serialization for-
mats such as RDF/XML [DMvH+00], Notation3 (N3)[BCK+08], JSON-LD[LG12], and
Turtle [BB08]. Among these serialization formats, Turtle is notable for its compact and
human-readable textual form, making it easy to understand and interpret RDF graphs.
Additionally, Turtle includes conventions for representing common patterns of usage,
such as abbreviating long URIs, which can reduce the verbosity of the serialization, and
representing common data types, such as strings, integers, and floating point numbers.
In the following, we serialize the RDF graph that describes Ross Geller using Turtle
format [BB08]:

Example 3. This example demonstrates the Turtle serialization of the RDF graph
in Example 2:

@prefix dbr: <http://dbpedia.org/resource/>.
@prefix dbo: <http://dbpedia.org/ontology/>.
@prefix dbp: <http://dbpedia.org/property/>.
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

dbr:Ross_Geller a dbo:FictionalCharacter;
dbo:portrayer dbr:David_Schwimmer;
rdfs:label "Ross Geller"@en;
dbo:birthDate "1969-10-18";
dbo:occupation dbr:Paleontology;
dbp:title dbr:Doctor_of_Philosophy;
dbp:spouse dbr:Rachel_Green.

In Example 3, we use the following three features of the Turtle language:

• Prefixed names6: These are used to shorten the representations of IRIs by linking
a prefix label to the full IRI. In our example, dbo:portrayer is a shortened form of
the full IRI http://dbpedia.org/ontology/portrayer.

• Predicate lists7: This feature allows for multiple triples that share the same
6http://www.w3.org/TR/turtle/#iri-a
7http://www.w3.org/TR/turtle/#predicate-lists

17

http://dbpedia.org/ontology/portrayer
http://www.w3.org/TR/turtle/#iri-a
http://www.w3.org/TR/turtle/#predicate-lists

2. Background

Figure 2.1: A graphical representation of an RDF graph from Examples 2 and 3. The nodes
represent subjects and objects and the directed labeled edges represent the predicates.

subject to be grouped together using the ’;’ symbol. In our example, Ross_Geller
is referenced by 7 triples;

• Token ’a’: This is used in the predicate position as a shorthand representation of
the IRI http://www.w3.org/1999/02/22-rdf-syntax-ns#type which is
commonly used in RDF data.

2.3 From Linked Data to a network of interconnected KGs
The Semantic Web, through its standards, languages, and protocols, aims to provide a
framework for publishing and querying information in a machine-readable format on the
Web. However, the challenge of linking and integrating data from diverse Web sources in
a coherent and consistent manner remains. To address this issue, in 2006 Tim Berners-Lee
introduced the concept of "Linked Data" [BL06, HB11], which outlines a set of principles
for publishing and linking data on the Web based on the Semantic Web standards. These
principles serve as a conceptual blueprint for creating a Web of Data, where data from
various sources is interlinked and accessible through a single global graph.

18

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

2.3. From Linked Data to a network of interconnected KGs

The design principles for Linked Data, as proposed by Tim Berners-Lee, aim to establish
a Web of Data by using Uniform Resource Identifiers (URI) or Internationalized Resource
Identifiers (IRI) to identify real-world entities or abstract concepts, and linking those
descriptions to other related entities on the Web. An example of how Linked Data can
be applied can be demonstrated by "Friends" series, which is identified by its IRI on
Wikidata: https://www.wikidata.org/wiki/Q79784. Assume that information
about Friends is available on various Web sources, each source providing different
facts about the show. Through the use of Linked Data principles, a unique identifier,
such as an IRI, is assigned to the "Friends" resource, allowing for other Web sources
to link to this resource, such as http://dbpedia.org/resource/Friends. By
dereferencing this IRI via the Hypertext Transfer Protocol (HTTP), we can access
structured descriptions of the Friends entities using RDF data model. For instance,
the IRI https://www.wikidata.org/wiki/Q79784 provides information about
awards and nominations received by the show, by including links to other related entities
such as the Primetime Emmy Awards on the web. The core concept of these principles is
to use HTTP-dereferenceable IRIs in the RDF data published on the Web to ease the
process of discovering and retrieving more information about related IRIs upon lookup.

In the following, we refer to the Linked Data principles as introduced by Berners-Lee:

• LDP1 use IRIs as names to refer to real world things;

• LDP2 Use HTTP IRIs so that software agents and people can look up those names
(i.e dereferencing the IRIs);

• LDP3 retrieve useful information upon dereferencing those IRIs using RDF data
model and SPARQL query language;

• LDP4 include links to other externally dereferenceable so that the user could
discover more related things.

Linked Data principles delineate how to deploy Semantic Web standards to form a Web of
Data. In particular, Linked Data aims at improving the interoperability of data published
on the Web with the goal of interlinking this data in such a fashion that the Web can be
queried as if it were one "Giant Global Graph" 8.

To put the Linked Data vision into action, the World Wide Web Consortium (W3C) has
launched a project called "Linking Open Data" (LOD)9 to motivate Open Data publishers
to create, publish, and interlink their data according to Linked Data principles in the
form of open RDF Knowledge Graphs (KGs). Driven by the LOD [BHB09] initiative, the
amount of open Knowledge Graphs published on the Web has seen continuous growth

8https://web.archive.org/web/20160713021037/http://dig.csail.mit.edu/
breadcrumbs/node/215

9https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/
LinkingOpenData

19

https://www.wikidata.org/wiki/Q79784
http://dbpedia.org/resource/Friends
https://www.wikidata.org/wiki/Q79784
https://web.archive.org/web/20160713021037/http://dig.csail.mit.edu/breadcrumbs/node/215
https://web.archive.org/web/20160713021037/http://dig.csail.mit.edu/breadcrumbs/node/215
https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

2. Background

over the past decade, constructing thousands of interconnected KGs connected as Linked
Data, many of which comprise billions of edges [BDPP18]. Examples of such openly
available interlinked KGs include DBpedia [LIJ+15, ABK+07], Freebase10 [BEP+08],
Yago [SKW07], and Wikidata [VK14].

However, while publishing open data on the Web according to Linked Data principles
has not brought about the full realization of the one single giant graph, the continuous
publishing of RDF graphs has rather led to forming a global dataspace of a network of
(partially) interconnected open RDF KGs named LOD cloud11 from diverse knowledge
domains including governments (e.g., data.gov12, Vienna History Wiki13), media (e.g
BBC14 [KSR+09], New York Times15), life science (e.g., DrugBank16[WKG+08], Pub-
Chem17[KCC+21]), social networking (e.g, SocialLink18[NCG18]), and academia (e.g.,
DBLP19, UniProt20). Figure 2.2 illustrates the most recent version of the LOD cloud
where each node represents an RDF graph and each edge is a link between two different
graphs. As of October 2022, the LOD cloud contains 1,255 datasets21.

These open KGs are typically queryable via SPARQL Web querying interface, down-
loadable data dumps which involve shipping massive data over the network, or by just
“following your nose”, i.e., gathering data about entities via their URIs dereferenceable as
HTTP links [Har13]. We detail the various techniques of Web querying of open KGs in
Chapter 3

Despite a decade of research on Linked Data, there are still significant barriers to providing
stable and responsive query services for open KGs published in RDF. One main issue is
the service availability of public SPARQL query interfaces [VSH+16], i.e the capability
to handle requests in an efficient and timely manner. This service availability issue has a
direct impact on achieving the vision of seamless live querying of KGs as the constitutes
of the Web of Data which is the main focus of this thesis.

10In Fact, freebase, after being one of the first openly available KGs, has been discontinued and
commercially been acquired and subsumed in Google’s KG, cf. https://developers.google.com/
freebase, last accessed 23/04/2021

11https://lod-cloud.net/
12https://data.gov/
13https://www.geschichtewiki.wien.gv.at/RDF
14https://www.bbc.co.uk/ontologies
15https://developer.nytimes.com/
16https://go.drugbank.com/
17https://pubchem.ncbi.nlm.nih.gov/
18http://sociallink.futuro.media/
19https://dblp.org/rdf/
20https://www.ebi.ac.uk/rdf/
21The RDF datasets are connected through 16,174 dataset pairs that have one or more links between

their members. For a more detailed analysis of the links between knowledge graphs on the web, refer
to [HFKP20]

20

https://developers.google.com/freebase
https://developers.google.com/freebase
https://lod-cloud.net/
https://data.gov/
https://www.geschichtewiki.wien.gv.at/RDF
https://www.bbc.co.uk/ontologies
https://developer.nytimes.com/
https://go.drugbank.com/
https://pubchem.ncbi.nlm.nih.gov/
http://sociallink.futuro.media/
https://dblp.org/rdf/
https://www.ebi.ac.uk/rdf/

2.4. Knowledge Graphs

Figure 2.2: The LOD cloud diagram, as of October 2022

2.4 Knowledge Graphs
Independent of the Semantic Web and Linked Data alone, Knowledge Graphs (KGs)
have emerged as a promising data management foundation to provide scalable knowledge
models that represent a collection of interlinked, diverse, and heterogeneous facts about
entities and the relations among these diverse entities [BDPP18].

The concept of Knowledge Graphs, which utilizes a wide range of technologies such as
RDF and often graph data platforms, has gained significant attention in recent years. In
2012, Google introduced its own Knowledge Graph to enhance the results of its search

21

2. Background

engine service. Both Google’s Knowledge Graph and RDF-based knowledge graphs use a
combination of entities (such as people, places, and things) and the relationships between
them to organize and present information. It is worth noting that Google Knowledge
Graph API generates responses presented in JSON-LD and compatible with schema.org
schemas, which is derived from RDF schema.

The KG concept has since been adopted by a variety of companies to create new value
in terms of commercial applications, such as Google Search22, Amazon Alexa23, and
Bloomberg [ZMBR20]. Additionally, various graph data platforms, such as Neo4j24,
Redis25, and GraphQL26, have also been implemented to support the development and
deployment of Knowledge Graphs, independent and orthogonal to standard RDF and
SPARQL technologies.

In addition to these efforts, specific domains have recognized the potential of Knowl-
edge Graphs for scalable data integration through the provision and interlinking of
diverse datasets in fields such as cancer research [HRW+20, Kam19], and drug discov-
ery [HKH+14]. For instance, biomedical research attempts to construct and interlink
medical KGs [ESW15, MPS+17] by harvesting heterogeneous data sources such as re-
search papers, patents, clinical trials, and patient records. This forms newly inferred
relationships between biological entities such as genes, symptoms, and diseases assessing
the drug discovery process [HKH+14, KFP+19].

The concept of Knowledge Graphs can be connected to the Web of data by considering
open Knowledge Graphs like DBpedia as examples of the Web of data. Meanwhile,
Enterprise Knowledge Graphs are typically designed for internal use in organizations and
are not publicly accessible, but can still be viewed as valuable external resources for the
Web of Data. In a broader sense, the Web of Data can be visualized as a collection of
loosely connected Knowledge Graphs.

While, in practice, there are several notations and technologies that adopt the Knowledge
Graph concept, in this thesis, we focus on open RDF Knowledge Graphs.

2.5 The SPARQL Query Language
The SPARQL Protocol and RDF Query Language (SPARQL) is W3C’s recommended
language to retrieve and manipulate RDF data. SPARQL is a declarative language where
queries are constructed following graph-based templates that are matched against the
RDF graph, following an approach known as graph pattern matching. By means of
examples, we introduce the core features supported by the language required throughout
this thesis.

22https://cloud.google.com/enterprise-knowledge-graph/docs
23https://www.aboutamazon.com/news/devices/how-alexa-keeps-getting-smarter
24https://neo4j.com/
25https://redis.com/
26https://graphql.org/

22

https://cloud.google.com/enterprise-knowledge-graph/docs
https://www.aboutamazon.com/news/devices/how-alexa-keeps-getting-smarter
https://neo4j.com/
https://redis.com/
https://graphql.org/

2.5. The SPARQL Query Language

The core query atom of SPARQL is a triple pattern. Triple patterns extend RDF triple,
where apart from RDF terms variables are also permitted in subject, predicate, object
positions. Variables can substitute any RDF term to serve as placeholders that are
bounded to an RDF term in the query solution.

The definition of a triple pattern 27 is as follows:

Definition 2.4. (Triple Pattern) Let V be the set of variables, disjoint from the
set of RDF terms such that V ∩ (U ∪ B ∪ L) = ϕ. A triple pattern tp is defined as
(U ∪ V) × (U ∪ V) × (U ∪ L ∪ V), where the components subject, predicate, and object
can represent an RDF term or a variable.

Example 4. (Triple Pattern)

Variables are distinguished from RDF terms with the ’?’ prefix and can be used in
triple patterns as placeholders for RDF termsa. For example, the triple pattern:

?character dbo:portrayer dbr:David_Schwimmer.

can be used to query an RDF graph to retrieve the IRIs of the characters that
David Schwimmer has portrayed. Given an RDF graph, this triple pattern would
match any triples in the graph with a predicate of dbo:portrayer and an object
of dbr:David_Schwimmer, and bind the subject to the variable ?character. For
example, given the RDF graph in Example 2, the variable ?character can be mapped
to dbr:Ross_Geller.

aThe syntax of a SPARQL query is inspired by Turtle syntax in permitting the definition of
prefixes and base IRI.

Basic Graph Patterns (BGP) are sets of triple patterns, that can also be understood as
conjunctive queries over an RDF graph. The definition of a basic graph pattern is as
follows:

Definition 2.5. (Basic Graph Pattern)

Let tp1, tp2, . . . , tpn be triple patterns. A basic graph pattern is a set of triple patterns
and is often represented as a conjunctive of triple patterns where · represents the
logical conjunction operator.

27Note that Without loss of generality we do not consider blank nodes in triple patterns, as these
We do not consider blank nodes in patterns as these can be semantically equivalently replaced by
variables [dBFT05]

23

2. Background

Q = {tp1, tp2, . . . , tpn}

Triple patterns can be combined using various expressions, such as filtering (Filter),
conjunction (.), disjunction (Union), and optional patterns (Opt), to form more complex
graph patterns known as SPARQL expressions. The SPARQL specification also defines
different query forms:

• Ask: returns a Boolean indicating whether a given SPARQL graph pattern can be
matched (True) or not matched (False) to a graph;

• Construct: retrieves an RDF graph that is formed by combining triples generated
from replacing variables of a graph pattern by their solutions;

• Select: retrieves the solutions to the variables in a given SPARQL graph pattern.

According to SPARQL [GHMP11], a SPARQL graph pattern is defined as follows:

Definition 2.6. (SPARQL Graph Pattern) A SPARQL graph pattern is recursively
defined

• a triple pattern tp is a SPARQL graph pattern;

• if Q1 and Q2 are graph patterns,
then Q1 . Q2 (conjunctive expression),
Q1 Opt Q2 (optional expression), and
Q1 Union Q2 (union expression) are graph patterns;

• if Q1 is a graph pattern and R is a Filter condition, then Q1 Filter R is a
graph pattern (filter expression).

In this thesis, our main focus is on the SPARQL Select query type which returns a set
of bound variables which we define as follows:

Definition 2.7. (Select Query) Let Q be a graph pattern and we denote by
S ⊆ var(Q) is a finite set of the projected variables of Q. A SPARQL Select query
is a graph pattern of the form SelectS(Q)

In the following, we provide an example of a full SPARQL query to retrieve the results
of the triple pattern example 4:

24

2.5. The SPARQL Query Language

Example 5. (Simple Triple Pattern Query) The following SPARQL query is of the
type Select query which retrieves the character resources that David Schwimmer
has portrayed. The SPARQL query consists of a Select clause identifying a single
variable ?character, which will be bounded to a value that matches the triple pattern
defined in the Where clause:

@prefix dbr: <http://dbpedia.org/resource/>.
@prefix dbo: <http://dbpedia.org/ontology/>.

Select ?character
Where
{
?character dbo:portrayer dbr:David_Schwimmer.
}

The result of this query based on the RDF Graph in Example 2

?character
http://dbpedia.org/resource/Ross_Geller

In the case of Select queries, SPARQL graph patterns are declared within the Where
clause to be matched with the RDF graph. The conjunction of graph patterns (And) is
written as a period (·). Example 6 describes how a basic graph pattern can be utilized to
match a subgraph:

Example 6. (Basic Graph Pattern) The following SPARQL query consists of a basic
graph pattern (BGP) of three triple patterns. The BGP retrieves all the variables
included in the query using the operator (*). The query basically retrieves information
about the character who is the spouse of Rachel_Green, his job, and the actor who
portrayed it.

@prefix dbr: <http://dbpedia.org/resource/>.
@prefix dbo: <http://dbpedia.org/ontology/>.
@prefix dbp: http://dbpedia.org/property/>.

Select *
Where
{
?character dbo:portrayer ?actor.
?character dbo:occupation ?job.

25

2. Background

dbr:Rachel_Green dbp:spouse ?character.
}

The result of this query based on the RDF Graph in Example 2

?character ?job ?actor
dbr:Ross_Geller dbr:Paleontology dbr:David_Schwimmer

The evaluation of SPARQL queries on RDF graphs involves the use of mappings, which
instantiate variables in a SPARQL graph pattern with RDF terms. Each solution mapping
represents an answer for a given SPARQL graph pattern.

Definition 2.8. (SPARQL Solution Mappings) For any a BGP Q, we denote
by var(Q) its variables. The solutions of a (query) pattern Q over a graph G,
denoted Q G, are given as a set Ω of bindings, i.e. mappings of the form, ω :
var(Q) → (U ∪ B ∪ L), such that G |= ω(Q), i.e. ω(Q) forms a (sub)graph entailed
by G. Two mappings ω1, ω2 are called compatible, denoted as ω1∥ω2 if for any
v ∈ dom(ω1) ∩ dom(ω2), ω1(v) = ω2(v) where the domain of a mapping ω, dom(ω),
is the subset of V for which ω is defined.

The solution of a SPARQL graph pattern or SPARQL query can be defined by the
following algebra:

Definition 2.9. (SPARQL Algebra) Let Ω, Ω1, Ω2 be SPARQL bindings sets, R is
a filter condition, and S denotes a finite set of variables where S ⊂ V . We define
the SPARQL algebra operators (join (▷◁), union(σ), minus (\), left outer join (▷◁),
projection (π), and selection (σ)), as follows:

Ω1 ▷◁ Ω2 := {ω1 ∪ ω2 | ω1 ∈ Ω1, ω2 ∈ Ω2 : ω1 ∥ ω2}
Ω1 ∪ Ω2 := {ω1 | ω1 ∈ Ω1 ∨ ω1 ∈ Ω2}
Ω1 \ Ω2 := {ω1 ∈ Ω1 | ∀ω2 ∈ Ω2 : ω1 ✁✁∥ ω2}
ω1 ▷◁ Ω2 := {Ω1 ▷◁ Ω2} ∪ {Ω1 \ Ω2}
πS(Ω) := {ω1|∃ω2 : ω1 ∪ ω2 ∈ Ω ∧ dom(ω2) ⊆ S ∧ dom(ω2) ∩ S = ϕ}
σR(Ω) := {ω ∈ Ω | ω |= R}, where |= tests if a mapping ω satisfies the applied filter
condition R.

The evaluation of any SPARQL query Q over an RDF Knowledge Graph G requires
a function that defines the evaluation semantics of the SPARQL query and its graph
patterns. Following Perez et al. [PAG09] and Schmidt et al. [SML10], we denote the

26

2.5. The SPARQL Query Language

evaluation function as · G, which maps SPARQL patterns from Definition 2.6 into
SPARQL set Algebra, as follows:

Definition 2.10. (SPARQL Set Semantics) Let G be an RDF graph, tp a triple
pattern, Q, Q1, Q2 SPARQL graph patterns, a filter condition R, and S ⊆ V a finite
set of variables. The evaluation of the SPARQL graph pattern over G can be defined
recursively following SPARQL set semantics:

tp G := {ω | dom(ω) = vars(tp) and ω(tp) ∈ G}
Q1 . Q2 G := Ω1 G ▷◁ Ω2

Q1 Opt Q2 G := Ω1 G ▷◁ Ω2 G

Q1 Union Q2 G := Ω1 G ∪ Ω2 G

Q1 Filter Q2 G := σR(Q G)

SelectS(Q) G := πS(Q G)

2.5.1 Query Processing and Optimization
In this section, we have presented the semantics of SPARQL. Here, we summarize the
query optimization concepts required in this thesis.

The query optimization problem can be formally defined as a search problem [Ioa96] in
which the objective is to identify an optimal evaluation plan from the space of possible
plans that results in efficient query execution. The optimization process involves traversing
the search space of plans by comparing equivalent plans, defined as plans that produce
the same results. The space of possible plans is generated based on: (i) the algebraic set
of rules that preserve plan equivalence [Ioa96, Cha98], such as join commutativity and
associativity, and (ii) the method-structure space [Cha98], which includes the available
implementations of logical operations, such as Nested Loop for the join operator. In
the context of SPARQL, a nested loop join is an algorithm that combines two sets of
bindings using two nested loops, by iterating through one set (the outer loop) and for
each triple in that set, iterating through the other set (the inner loop) to find matches.
The optimizer utilizes cardinality estimation techniques and a join reordering algorithm
to determine the most promising join order while traversing the search space.

Cardinality Estimation is the process of determining the number of (intermediate) results
produced by a query or a sub-query, or even an operator. The number of results is
an essential factor in determining the cost of executing a query plan. For instance,
estimating the intermediate results, or cardinality, of an operator, such as join, is a
critical step in determining the overall cost of executing a query plan, as it has a direct
impact on the required time and space resources. As a result, an accurate cardinality
estimation [NM11, GN14] is essential for query optimizers to provide efficient query plans.

27

2. Background

Figure 2.3: A left-linear execution plan based on Nested Loop Join based on a greedy
heuristic

Join Reordering refers to the process of rearranging the order of the joins in a query
in order to improve the efficiency of the query execution. The optimization process
explores the space of possible join reordering plans by implementing a search strategy.
The optimizer evaluates the plans generated with the search strategy based on:

• Greedy Heuristics: This approach uses heuristics, or rules of thumb, to guide the
search for the optimal join order. For example, one heuristic might be to always
join the smallest possible number of triples first.

• Cost Model: This approach computes a numerical value for each plan based on
statistics about the data and the query to estimate the cost of different join orders,
and then chooses the order with the lowest estimated cost.

with the objective of identifying the most favorable or, in some cases, optimal plans28.

Typically, join reordering plans are represented as a binary tree named join trees with
join operators as inner nodes and triple patterns as leaf nodes. The joins trees can be of
different shapes (left-deep tree, right-deep tree, and bushy tree) and the first three can
be referred to as linear trees.

We utilize the query processing and optimization approach for Web querying proposed
by Verborgh et al. in [VSH+16] to construct a left-linear deep plan utilizing Nested Loop
Joins29. As illustrated in Figure 2.3, we demonstrate an execution plan based on this
approach to the query examples provided in Example 6 and Example 7 using a greedy
heuristic where triple patterns with the least cardinality are joined first. The leaves of
the plan represent individual triple patterns and the inner nodes represent Nested Loop

28Ibaraki and Kameda [IK84] have formally shown that determining the optimal reordering is an
NP-complete problem

29This approach differs from the adaptive Web query processing approach proposed by Acosta and
Vidal in [AV15], which utilizes bushy trees and Symmetric Hash Join. However, for the purpose of this
thesis, we have chosen to adopt the original implementation from Verborgh et al. in our proposed systems
and will investigate the approach proposed by Acosta and Vidal in future work.

28

2.5. The SPARQL Query Language

SELECT ∗ WHERE {
?tvprogram dbo: starring ? actress . # tp1 544,110 matches
?tvprogram dbo:releaseDate ?releaseDate . # tp2 155,199 matches
? actress dbo:wikiPageExternalLink ? link . # tp3 9,643,439 matches
? actress dbo:birthPlace ? city . # tp4 1,469,160 matches
? actress dbp:occupation "Actress"@en. # tp5 18,861 matches
? city dbo:country ?country. # tp 789,261 matches

}

(a) Select all actresses, their TV programs, and birthplace information

(b) A left-linear plan of the query

(c) Another query plan of the SPARQL query

Figure 2.4: Examples of different query plans of a given SPARQL query

join operators, with the number of matching triples and intermediate results indicated in
parentheses.

In Figure 2.4, we present different possible query plans of a more complex query example
that we will use in the following chapters. The first query plan is presented in Figure 2.4b
which is a left-deep query plan simlar to the query plan divised in Figure 2.3. Figure 2.4c

29

2. Background

shows the second query plan and the numbers representing the intermediate results
cardinality estimates which we will explain in detail in the rest of the thesis.

In the following, we demonstrate the evaluation of the simple SPARQL query from
Example 6 over an extension of the graph described in the Turtle Example 3.

Example 7. We evaluate the query from Example 6 over the following RDF graph
detailed in Turtle format:
@prefix dbr: <http://dbpedia.org/resource/>.
@prefix dbo: <http://dbpedia.org/ontology/>.
@prefix dbp: <http://dbpedia.org/property/>.
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

dbr:Ross_Geller a dbo:FictionalCharacter;
dbo:portrayer dbr:David_Schwimmer;
rdfs:label "Ross Geller"@en;
dbo:birthDate "1969-10-18";
dbo:occupation dbr:Paleontology;
dbp:title dbr:Doctor_of_Philosophy;
dbp:spouse dbr:Rachel_Green;
dbp:religion dbr:Cultural_Judaism;
dbp:children dbr:Ben_Geller.

dbr:Rachel_Green a dbo:FictionalCharacter;
dbo:portrayer dbr:Jennifer_Aniston;
rdfs:label "Rachel Green"@en;
dbo:occupation dbr:Louis_Vuitton.

dbr:Monica_Geller a dbo:FictionalCharacter;
dbo:portrayer dbr:Courteney_Cox;
rdfs:label "Monica Geller"@en;
dbo:occupation dbr:Chef;
dbp:spouse dbr:Chandler_Bing;
dbo:alias "Monica Geller-Bing"@en;
dbp:religion dbr:Cultural_Judaism;
dbp:children "Jack and Erica Bing"@en.

dbr:Chandler_Bing a dbo:FictionalCharacter;
dbo:portrayer dbr:Matthew_Perry;
rdfs:label "Chandler Bing"@en;
dbo:occupation dbr:Statistical_inference.
dbp:religion dbr:Agnosticism;
dbp:family "Charles Bing@̈en;
dbp:family "Nora Tyler Bing"@en;
dbp:children "Jack and Erica Bing"@en;
dbp:gender "Male"@en.

dbr:Joey_Tribbiani a dbo:FictionalCharacter;
dbo:portrayer dbr:dbr:Matt_LeBlanc;
rdfs:label "Joey_Tribbiani"@en;
dbo:occupation "Actor"@en;
dbo:alias "Ken Adams"@en;
dbp:religion dbr:Catholic_Church;
dbp:nationality dbr:Italian_Americans;
dbp:affiliation dbr:Screen_Actors_Guild.

30

2.5. The SPARQL Query Language

dbr:Phoebe_Buffay a dbo:FictionalCharacter;
dbo:portrayer dbr:Lisa_Kudrow;
rdfs:label "Phoebe Buffay"@en;
dbo:occupation dbr:Massage;
dbo:occupation dbr:Musician;
dbp:family "Frank Buffay, Jr."@en;
dbp:gender "Female"@en;
dbp:nationality dbr:United_States.

dbr:David_Schwimmer a dbo:Person;
rdfs:label "David Schwimmer"@en;
dbo:birthDate "1966-11-02";
dbo:occupation "Actor"@en;
dbp:spouse dbr:Zoe_Buckman;
dbo:education dbr:Northwestern_University.

dbr:Jennifer_Aniston a dbo:Person;
rdfs:label "Jennifer Aniston"@en;
dbo:birthDate "1969-02-11";
dbo:occupation "Actress"@en;
dbp:spouse dbr:Brad_Pitt;
dbo:education dbr:Fiorello_H._LaGuardia_High_School.

dbr:Courteney_Cox a dbo:Person;
rdfs:label "Courteney Cox"@en;
dbo:birthDate "1964-06-15";
dbo:occupation "Actress"@en;
dbp:spouse dbr:David_Arquette;
dbo:education dbr:Mount_Vernon_Seminary_and_College.

dbr:Matthew_Perry a dbo:Person;
rdfs:label "Matthew Perry"@en;
dbo:birthDate "1969-08-19";
dbo:occupation "Actor"@en;

dbr:Matt_LeBlanc a dbo:Person;
rdfs:label "Matt LeBlanc"@en;
dbo:birthDate "1967-07-25";
dbo:occupation "Actor"@en;
dbp:spouse "Melissa McKnight"@en;

dbr:Lisa_Kudrow a dbo:Person;
rdfs:label "Lisa Kudrow"@en;
dbo:birthDate "1963-07-30";
dbo:occupation "Actress"@en;
dbp:spouse "Michel Stern"@en;
dbo:almaMater dbr:Vassar_College;

The SPARQL query evaluation starts with the SPARQL graph pattern in the Where
clause. The graph pattern is a BGP of three triple patterns, can be described as
Q = (tp1, tp2, tp3), where

tp1 = (?character dbo:portrayer ?actor)
tp2 = (?character dbo:occupation ?job)
tp3 = (dbr:Rachel_Green dbp:spouse ?character)

According to Definition 2.10, we evaluate the query Q over the given RDF graph
denoted as G as follows:

Q G = (tp3 G ▷◁ tp1 G ▷◁ tp2 G)

To evaluate the input query Q, first, we evaluate each individual triple pattern over

31

2. Background

the graph G, generating solution mappings for each tp as follows:

Ω1 = {ω1 = {character → dbr:Ross_Geller, actor → dbr:David_Schwimmer},
ω2 = {character → dbr:Rachel_Green, actor → dbr:Jennifer_Aniston},
ω3 = {character → dbr:Monica_Geller, actor → dbr:Courteney_Cox},
ω4 = {character → dbr:Chandler_Bing, actor → dbr:Matthew_Perry},
ω5 = {character → dbr:Joey_Tribbiani, actor → dbr:Matt_LeBlanc},
ω6 = {character → dbr:Phoebe_Buffay, actor → dbr:Lisa_Kudrow}}
Ω2 = {ω7 = {character → dbr:Ross_Geller, job → dbr:Paleontology},
ω8 = {character → dbr:Rachel_Green, job → dbr:Senior_management},
ω9 = {character → dbr:Monica_Geller, job → dbr:Chef},
ω10 = {character → dbr:Chandler_Bing, job → dbr:Statistical_inference},
ω11 = {character → dbr:Joey_Tribbiani, job → ”Actor”@en},
ω12 = {character → dbr:Phoebe_Buffay, job → dbr:Massage},
ω13 = {character → dbr:David_Schwimmer, job → ”Actor”@en},
ω14 = {character → dbr:Jennifer_Aniston, job → ”Actress”@en},
ω15 = {character → dbr:Courteney_Cox, job → ”Actress”@en},
ω16 = {character → dbr:Courteney_Cox, job → ”Actress”@en},
ω17 = {character → dbr:Matthew_Perry, job → ”Actor”@en},
ω18 = {character → dbr:Matt_LeBlanc, job → ”Actor”@en},
ω19 = {character → dbr:Lisa_Kudrow, job → ”Actor”@en}}
Ω3 = {ω20 = {character → dbr:Ross_Geller}
The second step in the process of computing the solution mappings of the BGP is to
apply the ▷◁ operator on the computed sets of solutions mappings from the individual
triple patterns. To execute a join operator ▷◁, we join the compatible mappings based
on a left-linear plan as shown in Figure 2.3. For instance, we begin with joining
Ω1 ▷◁ Ω3, the solution mappings ω20 ∈ Ω3 and ω1 ∈ Ω1 are compatible ω13∥ω1 since
dom(ω20) ∩ dom(ω1) = actor, and ω13(actor) = ω1(actor) = dbr : Ross_Geller. On
the other hand, the rest of the combinations are incompatible, failing to perform the
join operator.

Similarly, we join the output solution mapping of (Ω4 = Ω1 ▷◁ Ω3 = {ω14 =
{character → dbr : Ross_Geller, actor → dbr : David_Schwimmer}}) with the
solution mappings of the second triple pattern Ω2 to compute the final solution
mappings, as follows: Ω5 = ((Ω1 ▷◁ Ω3) ▷◁ Ω2 resulting in:

Ω5 = {ω15 = {character → dbr:Ross_Geller, actor → dbr:David_Schwimmer,
job → dbr:Paleontology}}
The final step is to project all variables in the BGP to retrieve the answers of the
SPARQL query, as follows:

Select∗(Ω5) = {{character → dbr:Ross_Geller,
actor → dbr:David_Schwimmer, job → dbr:Paleontology}}}

32

2.6. HDT

2.6 HDT
Traditional RDF serializations (e.g. RDF/XML [DMvH+00], Notation3 (N3) [BCK+08],
JSON-LD [LG12], and Turtle [BB08]) have several limitations in terms of publishing and
exchanging RDF graphs: traditional RDF representations (i) rely on textual representa-
tion which is quite a verbose and space-inefficient format, leading to large data transfer
over the network; (ii) lack standardized metadata to give a brief summary (e.g.statistical
and editorial information) to describe the represented RDF graph; (iii) demand in the
worst case an expensive full scan on the entire RDF graph to perform triple lookup
operations such as triple pattern matching.

In the following, we present HDT [FMG+13] which is a compact efficient representa-
tion that addresses the aforementioned limitations. It is worthwhile to mention that
HDT [FMG+13] binary compression format for RDF graphs is the “under the hood”
RDF format in currently existing Web querying interfaces, namely TPF [VSH+16],
(br)TPF [HA16], SaGe [MSM19], SPF [AKMH20] which we will review comprehensively
in Chapter 3. We also rely on HDT in our own approaches smart-KG [AFA+20] and
WiseKG [AAM+21] which we present in Chapter 4 and Chapter 5, respectively.

What is HDT? HDT [FMG+13] is a compressed format for RDF graphs, which permits
efficient triple pattern retrieval over the compressed data. HDT offers search and retrieval
over the compressed RDF graphs without the need for decompression, and HDT provides
query-relevant statistics in its metadata. It is designed to be a compact and efficient
representation of RDF data that can be used for the storage, transmission, and processing
of large-scale RDF datasets. HDT offers an RDF serialization format with the following
advantages over the conventional RDF formats:

• HDT provides a compact format, thereby saving disk space, reducing network
traffic, and downsizing the RDF graph data transfer volume.

• HDT incorporates standard metadata about the represented RDF graph in the
header of the HDT file offering efficient and modular access to a detailed summary
of the RDF graph, including query-relevant statistics such as number of triples,
number of predicates, and number of distinct Subjects and Objects.

• HDT delivers a set of basic search operations such as fast lookups and retrieval
which are essential for efficient triple pattern join operations, granting efficient
querying capabilities on compressed RDF graphs.

HDT Components. HDT consists of three main components: (H)eader, (D)ictionary,
and (T)riples, as follows:

• A Header component, which provides descriptive metadata (publishing informa-
tion, basic statistics, etc.) about the RDF graph;

33

2. Background

• A Dictionary component, which maps RDF terms to a compact representation
of unique IDs. The main motive for this mapping is to compress the RDF triples
by substituting long and repeated textual representations of the RDF terms with
short and compact IDs;

• A Triples component, which encodes the resulting ID-graph (i.e. a graph of
ID-triples after replacing RDF terms by their corresponding dictionary IDs) as a
bitmap-encoded set of adjacency lists, one per different subject in the graph.

HDT Utilities. HDT dictionary and triples are self-indexed to support efficient retrieval
operations. The dictionary implements prefix-based Front-Coding compression [MBC+16],
which allows for high compression ratios and efficient string-to-id and id-to-string opera-
tions. The main compression idea relies on ordering triples by subject-predicate-object
(SPO) and grouping repetitive RDF terms. An HDT file could be viewed as a compressed
and directly queryable SPO-ordered bitmap-based index [FMG+13].

HDT compressed graphs are typically enriched with a companion HDT index file [MGF12]
which is a compressed binary utility index built upon loading time. This additional
file includes two inverted indexes on the ID-triples (in OPS and PSO order) to achieve
high performance for resolving all SPARQL triple patterns. In addition, RDF graphs
compressed with HDT can be queried and loaded in memory or mapped from disk without
prior decompression [ÁBFM11]. HDT exhibits competitive performance for scan queries
as well as triple pattern execution when the subject is provided.

The HDT library30 offers a wide range of functionality for working with HDT data,
including generating HDT files from RDF datasets, loading and saving HDT files,
and performing various operations on the data contained within HDT files. HDT and
HDTManager are central components of the HDT Library where they provide a convenient
interface for working with HDT files and allow developers to easily incorporate HDT
functionality into their applications. In this thesis, we utilize a variety of operations from
the HDT library in our implementations:

• HDTManager.generateHDT(): generates an HDT file from an input RDF dataset
file.

• HDTManager.mapHDT(): maps an entire HDT file to the memory to provide
efficient data access. However, this method can be memory-intensive and may not
be suitable in the case of large HDT files.

• HDTManager.mapIndexedHDT(): maps an HDT file into memory by only loading
the index structures of the HDT file to provide fast access to specific triples based on
the subject, predicate, and object elements. This method is more memory-efficient
than HDTManager.mapHDT(), as it does not load the entire HDT file into memory.

30https://www.rdfhdt.org/development/

34

2.6. HDT

However, it may not be as fast as HDTManager.mapHDT() for certain types of
queries since it requires accessing the disk.

• HDTManager.loadHDT(): loads an HDT file into memory. It takes the path to an
HDT file as input and returns an HDT object. The HDT object is used to perform
operations such as triple pattern matching.

• saveToHDT(): saves an HDT object to a specified file on the hard disk.

• HDT.search(): performs triple pattern matching on an HDT file and returns a
stream of triples that match the input pattern.

• HDT.iterate(): iterates through all the triples in an HDT file and returns them one
by one.

• HDT.size(): returns the number of triples in an HDT file.

In the following, we detail an example of each component of Friends RDF graph from
Example 7 in HDT format:

Example 8. We first demonstrate the header component of Friends graph, as follows:
<http://purl.org/HDT/hdt#HDTv1>
ntriples length=1795
<file:///friends.ttl> <http://purl.org/HDT/hdt#Dataset> .
<file:///friends.ttl> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://rdfs.org/ns/void#Dataset> .
<file:///friends.ttl> <http://rdfs.org/ns/void#triples> "79" .
<file:///friends.ttl> <http://rdfs.org/ns/void#properties> "17" .
<file:///friends.ttl> <http://rdfs.org/ns/void#distinctSubjects> "12" .
<file:///friends.ttl> <http://rdfs.org/ns/void#distinctObjects> "60" .
<file:///friends.ttl> <http://purl.org/HDT/hdt#statisticalInformation>_:statistics.
<file:///friends.ttl> <http://purl.org/HDT/hdt#publicationInformation> _:publica-
tionInformation.
<file:///friends.ttl> <http://purl.org/HDT/hdt#formatInformation> _:format .

_:format <http://purl.org/HDT/hdt#dictionary> _:dictionary .
_:format <http://purl.org/HDT/hdt#triples> _:triples .

_:dictionary <http://purl.org/dc/terms/format>
<http://purl.org/HDT/hdt#dictionaryFour> .
<http://purl.org/HDT/hdt#dictionarynumSharedSubjectObject> "8" .
<http://purl.org/HDT/hdt#dictionarymapping> "1" .
<http://purl.org/HDT/hdt#dictionarysizeStrings> "2047" .
<http://purl.org/HDT/hdt#dictionaryblockSize> "16" .

35

2. Background

_:triples <http://purl.org/dc/terms/format>
<http://purl.org/HDT/hdt#triplesBitmap> .
_:triples <http://purl.org/HDT/hdt#triplesnumTriples> "79" .
_:triples <http://purl.org/HDT/hdt#triplesOrder> "SPO" .

_:statistics <http://purl.org/HDT/hdt#originalSize> "4041" .
_:statistics <http://purl.org/HDT/hdt#hdtSize> "2438" .

_:publicationInformation <http://purl.org/dc/terms/issued> "2022-09-15T13:07:18".

As shown in Example 8, the header component is described in turtle format. HDT
extends VoiD [ACHZ09], the standard vocabulary for describing metadata about RDF
datasets. In particular, HDT uses the namespace http://purl.org/HDT/hdt#hdt
to describe the properties of RDF HDT datasets. In the following, we describe the header
structure of the Friends graph:

• VoiD: the header use Void properties [ACHZ09] to add provenance to the dataset
in a standard way. For instance, HDT captures basic statistical metadata about
the dataset using the following properties #triples, #properties, #distinctSubjects,
#distinctObjects.

• #publicationInformation: groups information about the HDT file. Our example
shows the issue date of the dataset.

• #statistical metadata: includes basic statistical information to give an overview
of the materialized dataset. In our example, it states the original graph size,
#originalSize ≈ 4KB, and the hdt graph size, #originalSize ≈ 2.5KB.

• #formatInformation: groups concrete information about the dictionary and the
triples component. This metadata is utilized during the retrieval operations. In
our example, hdt:dictionary contains four elements to describe the concrete im-
plementation of the dictionary, for example, #dictionarynumSharedSubjectObject
which describes the number of entities in the graph that appear in both subject and
object positions. In addition, hdt:triples contains three elements to characterize
the triples representation. For our Friends graph 7, #triplesBitmap describes that
the triples are physically materialized in a bitmap format.

To conclude, several Web querying interfaces rely on HDT as a backend data structure as
we will explain in Chapter 3. TPF [VSH+16] and SPF [AKMH20] rely on an HDT of the
whole graph G to evaluate triple patterns on the server with a low computation footprint,

36

http://purl.org/HDT/hdt#hdt

2.6. HDT

whereas smart-KG [AFA+20] and WiseKG [AAM+21] profit from the compression and
also lowering the network footprint.

37

CHAPTER 3
A uniform characterization of

existing Web querying interfaces

The client-server query processing model [FJK96] typically distributes query workload
between the service provider (i.e a powerful centralized server) and service requester
(i.e. clients). In the context of SPARQL Web querying, workload distribution among
clients and servers is typically constituted by query processing shipping strategies which
dictate the processing location of the query graph patterns. Neither query nor data
shipping strategies enable reliable, efficient, and low-cost query execution [VSH+16]. To
address this, the Linked Data fragments (LDF) framework has been proposed to provide a
uniform view of potential SPARQL Web interfaces which distribute query evaluation load
among clients and servers using hybrid shipping strategies. In this chapter, we explore the
existing hybrid shipping-based interfaces following the LDF framework characterization,
with the aim of offering live SPARQL querying evaluation over large-scale knowledge
graphs while efficiently sharing the computation cost among clients and servers.

3.1 Linked Data Fragments framework
In the following, we define query interfaces for KGs following the principles set by the
Linked Data Fragments framework (LDF) [VSH+16]. We borrow from the original
specification [VSH+16] and align formal definitions and notations to uniformly present
different APIs. The introduced formalization enables us to establish the possibility of
returning fragments either as a single graph or as one subgraph for each solution, a
scenario not permissible under the existing LDF characterization. Additionally, the LDF
characterization places emphasis on metadata and hypermedia controls, whereas our
approach disregards these specifics and instead concentrates on devising a comprehensive,
uniform definition for diverse partitioning techniques to be employed as fragments.

39

3. A uniform characterization of existing Web querying interfaces

Definition 3.1 (LDF API, adapted from [VSH+16]). An LDF API of a KG G
accessible at an endpoint URI u a is a tuple f = ⟨s, Φ⟩ with

• a selector function s(G, Q, Ω) that given a query pattern Q and (a potential
entry) set of bindings Ω, it returns a fragment Γ ⊆ G, or alternatively a set of
fragmentsb Γ∗ ⊆ 2G,

• a paging mechanism Φ(n, l, o) parameterized by n, l, o ∈ N0 denoting maximum
page size, limit, and offset.

aVia this base URI the API can be accessed and queried as well as additional controls can be
submitted.

bWe note that this is a generalization from the original LDF proposal, which – technically –
could be realized, for instance, by returning RDF datasets in the sense of SPARQL (consisting of a
default graph and optionally a set of (named) graphs), or resp. a set of quads instead of triples.

In essence, LDF characterizes APIs that allow access to fragments of a KG G through
(specific to a particular instantiation of LDF) a limited range of allowed query patterns
that a client can submit to the server; often with the goal to limit server-side computation
cost and to enable effective HTTP caching while leaving evaluations of more complex
patterns to the client. Variations of LDF also offer additional controls to ship intermediate
bindings alongside queries or to control the “chunk size” of results by specifying page
sizes into which the results should be batched.

The selector function s has as parameters an RDF graph G, a SPARQL pattern Q, and
a set of bindings Ω,1 where we define two variants, s(·) and s∗(·), which differ essentially
in terms of returning either a single graph containing the union of all triples relevant to
any solution or one subgraph per solution ω ∈ Q G:

Definition 3.2 (Function s). s(G, Q, Ω) = {t ∈ ω(Q) | ω ∈ Q G : G |= ω(Q) ∧
(∃ω′ ∈ Ω : ω′||ω)}

Definition 3.3 (Function s∗). s∗(G, Q, Ω) = {ω(Q) | ω ∈ Q G : G |= ω(Q) ∧ (∃ω′ ∈
Ω : ω′||ω)}

All LDF APIs, we present in the following, can be expressed in terms of one of these two
default selector functions. Note that, whenever the set of bindings Ω is not considered
(i.e. only empty binding sets Ω = ∅ are expected) in a particular selector function, we
will conveniently also just write short σ(G, Q) (or s(G, Q), s∗(G, Q), resp.) instead of
σ(G, Q, Ω) (or s(G, Q, Ω), s∗(G, Q, Ω), resp.) in the following. As we will see, all existing

1We note that this strict definition of allowed parameters for s is not made in [VSH+16], but we will
rather use those here to describe the considered APIs uniformly.

40

3.1. Linked Data Fragments framework

LDF APIs considered in this paper and summarised in Table 3.1 can be expressed in
terms of one of the two standard selector functions s(·) and s∗(·), whereas we will extend
and modify those – in terms of partition-based LDF – in the following.

The general paging mechanism Φ we use in this thesis enables the ability to retrieve
the result in batches e.g., for the cases where Γ (or, resp., Γ∗) is overly large; only
partial results are required or to enable incremental result. Hence, we assume that
Φ(n, l, o) simply defines a mechanism to divide Γ into a set of partitions (or pages)
Γ∗ = {Γ0, . . . , Γk−1}, where for each page Γi it is guaranteed that |Γi| < n (i.e., Γi does
not contain more than n triples), and l and o, resp. would allow requesting the pages
from Γo to Γo+l−1

2. We assume l to default to l = 1, o to default to o = 0, and finally
n = ∞ signifying that whole graph G or Γ = G (or, Γ∗ = {G}) should be returned. As
such l, o should be viewed analogous to the SPARQL LIMIT and OFFSET modifiers
but applied to pages instead of individual solution mapping.

Herein, we provide a characterization of SPARQL Web querying interfaces from the
literature within the spectrum of the LDF framework. We summarize their respective
characterizations in Table 3.1 and describe the existing implementations of LDF in the
following subsections.

3.1.1 Data Dump
A Data Dump may be considered a full client-side LDF interface where the data publisher
offers RDF data dump in a downloadable form and the full query processing is done
offline on the client-side.

Definition 3.4. (Data Dumps)

Data dumps can be characterized in terms of LDF, as follows:

• the selector function s(·) as defined in Definition 3.2,

• the only admissible form of Q and Ω are Q = {(?s, ?p, ?o)} and Ω = ∅, i.e.,
s(G, Q, Ω) boils down to the identity function,

• Φ: the only admissible parameter for Φ(n, l, o) is Φ(∞, 1, 1) = {Γ1} = {Γ}.

To perform a SPARQL query, clients request an entire KG from the server and deploy a
SPARQL engine to locally process their queries. A use case where data dumps can be a
very valuable solution is when clients have powerful processing resources while demanding
resource-hungry query workload tasks. However, in general, the data dump solution puts
the processing cost on the clients, plus incurs potentially high network traffic on both
client and server sides in the case of frequently evolving KGs.

2As such l,o should be viewed synonymously with SPARQL’s LIMIT and OFFSET modifiers.

41

3. A uniform characterization of existing Web querying interfaces

Table 3.1: Aligned formal definitions and notations with LDF original specifications to
uniformly present different existing LDF APIs

LDF Interface Definition

Data Dump
The selector function is s(·)
The only admissible form of Q and Ω are Q = {(?s, ?p, ?o)} and Ω = ∅
The only admissible parameter for Φ(n, l, o) is Φ(∞, 1, 0) = {Γ1} = {Γ}

TPF
The selector function is s(·)
The only admissible form of Q are triple patterns and Ω = ∅
Φ(n, l, o) allows results to be “batched” into chunks of n triples, i.e., in TPF the publisher
can set n as a parameter, whereas limit l = 1 as it is possible to only retrieve one page at
a time, and offset o is the page number requested by the client

brTPF

The selector function is s(·)
The only admissible form of Q are triple patterns
Ω can be arbitrary
Φ(n, l, o) as defined in TPF

SPF
The selection s∗(G, Q, Ω), i.e., s∗(·) is used to return results per pattern solution
the only admissible form of Q are star-shaped BGPs
Ω can be any set of bindings
Φ(n, l, o): as solutions are returned per pattern solution, n is fixed to the star pattern of
size k but SPF also allows to paginate over solutions, i.e., retrieving results in chunks of
l (iterating over increasing offsets o := o + l)

SPARQL Endpoints

A variant of s∗(·) by returning subgraphs of the form ω(Q). In practice, SPARQL
endpoints return solution mappings, yet, it is possible to devise a correspondence between
these and s∗(·)
Any pattern Q is admissible
Ω = ∅, unless VALUES patterns are considered. In this case, Ω is encoded in the VALUES
clause of Q
Φ: the standard LIMIT and OFFSET operators for BPGs could be considered as LIMIT
l and OFFSET o such that n = 1

SAGE

A variant of s∗(·) by returning subgraphs of the form ω(Q), analogous to SPARQL
endpoints.
Any pattern Q is admissible
Ω = ∅, unless VALUES patterns are considered. In this case, Ω is encoded in the VALUES
clause of Q
Φ(1, ∞, o): Assuming that Q does not include the keywords LIMIT and OFFSET. o is
used to indicate that {Γ1, . . . , Γo−1} has been received by the client. In practice, the
SAGE client sends the last solution mapping ω that has been produced in Γo−1. Still, it
is possible to devise a correspondence between ω and o.
Φ(1, l, o + o′): Assuming that Q does include the keywords LIMIT l and OFFSET o′. o is
defined as in the previous case

3.1.2 SPARQL endpoint

A SPARQL endpoint is a server-side solution that minimizes the query processing load on
the client-side which only receives the final results of the submitted query. RDF KGs are
traditionally exposed via SPARQL endpoints, i.e., APIs that serve full SPARQL queries
over the HTTP protocol [FWCT13]. We can also understand any SPARQL endpoint as
an LDF interface in our introduced terminology.

42

3.1. Linked Data Fragments framework

Definition 3.5. (SPARQL endpoint)

SPARQL endpoints can be characterized in terms of LDF as follows:

• while SPARQL endpoints usually directly return sets of bindings, they can also
be viewed as a variant of s∗(·) by returning subgraphs of the form ω(Q)a,

• any pattern Q is admissible;

• Ω = ∅, unless VALUES patterns are considered, which could be viewed as
equivalent to binding restrictions a la LDF,

• Φ: while some SPARQL endpoints support other forms of paging, the standard
LIMIT and OFFSET operators for BPGs could be considered as LIMIT l and
OFFSET o such that n = |Q|; however, note that subsequent calls of SPARQL
queries with consecutive OFFSETs are in general not guaranteed to behave
deterministically.

aDeriving ω is straightforward since, given Q, ω and ω(Q) are in a trivial 1-to-1 correspondence.
We prefer this interpretation of the LDF metaphor to SPARQL endpoints over – as suggested
in a side note in [VSH+16] – relying on encoding result sets as RDF triples (such as using e.g.
the informal RDF SPARQL result format from the SPARQL1.1 Test Case Structure, cf. https:
//www.w3.org/2009/sparql/docs/tests/README.html) since the latter would not return
subgraph(s) of G.

Public SPARQL endpoints for various KGs such as DBpedia, YaGo [SKW07], and
Bio2RDF [DCC+14] often run on top of RDF triples stores such as Virtuoso [EM09] and
Blazegraph 3. Virtuoso runs DBpedia, YaGo, and Bio2RDF endpoints, while Blazegraph
runs the Wikidata [VK14] endpoint. These SPARQL endpoints provide high performance
under low loads. However, with concurrent clients and query complexity, endpoints face
overloads and large delays that lead to well-known problems of low availability [AHUV13]
and poor performance [VSH+16]. Thus, most SPARQL endpoints turn into resource-
hungry services, too costly to host and maintain for data providers. Latest studies on
public SPARQL endpoints [AHUV13, PKF+20] confirm these issues and show that at
least half of the endpoints do not answer at all, while others impose significant restrictions
such as refusing complex queries or limiting result sizes [APU14]. In practice, public
SPARQL endpoints often impose limitations on the execution of SPARQL queries in order
to to ensure a balanced distribution of server resources among clients. These limitations
may include restrictions on the execution time of queries, the number of results returned
per query, and the rate of queries per IP address. For instance, the DBpedia SPARQL
endpoint 4 allows queries to run for a maximum of 120 seconds and returns no more than
10000 results. It also limits the number of parallel connections to 50 and the number of

3https://blazegraph.com/
4http://wiki.dbpedia.org/public-sparql-endpoint

43

https://www.w3.org/2009/sparql/docs/tests/README.html
https://www.w3.org/2009/sparql/docs/tests/README.html
https://blazegraph.com/
http://wiki.dbpedia.org/public-sparql-endpoint

3. A uniform characterization of existing Web querying interfaces

HTTP requests per second per IP address to 100. The Wikidata SPARQL endpoint 5

has even stricter limitations, setting the maximum execution time for SPARQL queries
at 60 seconds.

3.1.2.1 SaGe

SaGe [MSM19] is a SPARQL query engine tailored to address the undesirable starvation
of simple queries waiting for long-running queries to release the server resources. To this
aim, SaGe proposes a preemptive Web server. SaGe may be viewed as an extension of
SPARQL endpoints which introduces a round-robin scheduling mechanism that allocates
a fixed time quantum per query: once a query is executed for that given quota, the query
is suspended and resumed upon client request. Then, SaGe server proceeds with the
next waiting query. To resume queries, SaGe ships to the client the state of the query
execution.

SaGe [MSM19] may be considered a variant of general SPARQL endpoints that supports
Web preemption in order to guarantee a more fair distribution of server resources amongst
concurrent clients. Under Web preemption, the server suspends a running query Q after
a predefined time quantum τ and returns partial results {Γ1, . . . , Γo−1} to the client. A
SPARQL query Q is resumed based on the client’s request; this process is repeated until
all results are produced. This ability enables SaGe to prevent long-running queries from
exploiting the server resources, especially under high concurrent load [MSM19]. The
client can then (with additional hypermedia controls) deterministically continue exactly
at offset o in a subsequent call.

Definition 3.6. (SaGe)

SaGe can be characterized in terms of LDF, as follows:

• a variant of s∗(·) by returning subgraphs of the form ω(Q).

• any pattern Q is admissible.

• Ω = ∅, unless VALUES patterns are considered. In this case, Ω is encoded in
the VALUES clause of Q.

• Φ(1, ∞, o): Assuming that Q does not include the keywords LIMIT and OFFSET.
o is used to indicate that {Γ1, . . . , Γo−1} has been received by the clientİn
practice, the SAGE client sends the last solution mapping ω that has been
produced in Γo−1. Still, it is possible to devise a correspondence between ω and
o.

5https://www.mediawiki.org/wiki/Wikidata_Query_Service/User_Manual#Query_
limits

44

https://www.mediawiki.org/wiki/Wikidata_Query_Service/User_Manual#Query_limits
https://www.mediawiki.org/wiki/Wikidata_Query_Service/User_Manual#Query_limits

3.1. Linked Data Fragments framework

• Φ(1, l, o+o′): Assuming that Q does include the keywords LIMIT l and OFFSET
o′. o is defined as in the previous case.

The experimental evaluation [MSM19] demonstrates that SaGe improves the average time
required to receive the first result and the average workload completion time per client
compared to traditional SPARQL endpoints under concurrent query load. In general,
SaGe has impressive performance for most of the query shapes. However, SaGe suffers
from excessive delays and a high number of requests in the case of high concurrent clients
with complex queries due to frequent query context switching.

3.1.3 Triple Pattern Fragment (TPF)
TPF [VSH+16] is an interface to enable reliable querying over KGs by limiting the server
functionality to only answer single triple patterns and delegating the processing of the
resource-demanding more complex patterns – and particularly joins – to the client-side.

Definition 3.7. (TPF)

In terms of the generic LDF framework, TPF is the most straightforward “incarna-
tion”, defined as in

• the selector function is s(·) as defined above,

• the only admissible form of P are triple patterns and Ω = {∅},

• Φ(n, l, o): allows results to be “batched” into chunks of n triples, whereas limit
l and offset o cannot be set explicitly in TPF.

TPF clients receive paginated intermediate results of each triple pattern in the query
and incrementally combine the intermediate results to compute the complete results
on the client. While experimental results [HAMS18, VSH+16] show that TPF achieves
higher server availability than traditional server-centric SPARQL endpoints, this typically
comes at the expense of a significant increase in the network traffic due to considerable
overheads from HTTP requests and data transfers. In particular, non-selective queries
((i.e. queries with high cardinality triple patterns) can be penalized by a high number of
irrelevant intermediate results transferred (i.e. transferred data that does not contribute
to the final query answer) and costly client-side join operations.

3.1.4 Binding-Restricted Triple Pattern Fragment
Bindings-Restricted Triple Pattern Fragments [HA16] (brTPF) gives a slight boost to
the performance of TPF by attaching intermediate results to triple pattern requests
along with distributing the join between the client and the server using the bind join
strategy [HKWY97]. In essence, brTPF [HA16] is an extension of TPF that additionally

45

3. A uniform characterization of existing Web querying interfaces

permits arbitrary Ω ̸= ∅. The attached solution mappings Ω from the previously evaluated
triple patterns potentially reduce the number of HTTP requests and data received with
respect to the original TPF solution [HA16]. However, the number of requests is still
relatively high, combined with the need to transfer these intermediate results verbatim.

Experiments [HA16] show that brTPF provides an overall better query performance
than TPF. As we will see, though, brTPF still potentially encounters serious delays with
increasing the number of concurrent clients or with queries that require shipping a large
number of intermediate results.

Definition 3.8. (brTPF)

brTPF can be characterized in terms of LDF, as follows:

• The selector function is s(·)
• The only admissible form of Q are triple patterns

• Ω can be arbitrary

• Φ(n, l, o) as defined in TPF

3.1.5 Star Pattern Fragments (SPF)

SPF [AKMH20] proposes to generalize brTPF from single triples to handling star-shaped
subqueries on the server. SPF splits BGPs of a given query into star-shaped sub-queries
where each subquery consists of triple patterns that share the same subject. Similar to
TPF, more complex queries involving joins over stars or single triples are processed on
the client. Still, evaluating star-shaped subqueries directly on the server may drastically
reduce the number of requests made during query processing while still maintaining a
relatively low server load since star patterns can be answered relatively efficiently by the
server [PAG09]. For processing joins efficiently, analogously to brTPF, bindings can be
shipped along with each star-shaped subquery. SPF, as an instance of LDF, differs from
brTPF with respect to the restriction of the selector function and allowed patterns:

Definition 3.9. (SPF)

SPF can be characterized in terms of LDF as follows:

• sSP F (G, P, Ω) = s∗(G, P, Ω), i.e., s∗(·) is used to return results per pattern
solution,

• the only admissible form of P are star-shaped BGPs,

46

3.2. Partition-based LDF

• Ω can be any set of bindings,

• Φ(n, l, o): as solutions are returned per pattern solution, n is fixed to the star
pattern of size k but SPF also allows paginating over solutions, i.e., retrieving
results in chunks of l (iterating over increasing offsets o := o + l).

Experiments [AKMH20] show that SPF (compared to brTPF) decreases the average
network load. However, as we will see, SPF suffers from relatively high server CPU usage.

3.2 Partition-based LDF
Unlike the previous LDF approaches, which – given a particular admissible query Q –
would return a graph or partition that exactly contains the query results, in this paper,
we will focus on an alternative approach that rather will ship an overestimate from a set
of hosted partitions that potentially can be used to answer the query, which we will call
partition-based LDF approaches: partition-based LDF can be seen as a generalization of
the aforementioned, existing LDF interfaces, which - instead of the exact triples matching
a particular admissible query pattern Q, rather returns a subset of partitions from a
pre-computed partitioning G = {G1, . . . , Gn} of G, such that G = G1 ∪ G2 ∪ · · · ∪ Gm,
where ∀i ̸= j Gi ∩ Gj = ∅. I.e,. G is a cover of G.

That is, the idea here is that a partition-based LDF server serves G such that upon an
LDF API call with a query pattern Q the selector function σ(G, Q) ⊆ G returns a subset
of matching partitions that contain all query answers for Q. That is, it is ensured that

Q G ≡ Q
Gi∈σ(Q,G) Gi

(3.1)

hence, the client can therefore compute the complete result of the actual query Q from
just calling and retrieving σ(G, Q) from the server.

As we will see, different partitioning techniques lend themselves to this overall idea better
or worse: the tricky part is to find a partitioning G such that (1) σ(G, Q) can be easily
computed from Q, and (2) σ(G, Q) provides a "close estimate" minimizing the number
of partitions to be shipped and where the union of these partitions does contain all
necessary, but not too many unnecessary triples for computing the actual query Q, and
finally (3) all possible partitions for any admissible queries Q in the range of σ(Q, G) can
be efficiently served (and, ideally, pre-computed) on and LDF-server.

In this context, we note that shipping a full Data Dump could be considered as a
"trivial" partitioning-shipping technique, where

• G = {G}

• any query Q is admissible

47

3. A uniform characterization of existing Web querying interfaces

• σ(G, Q) = {s(G, {?s, ?p, ?o})} = G

As such, non-trivial partition-based LDF methods could be considered as shipping only a
“necessary subset of partial dumps per query”. Further, for partition-based LDF interfaces,
in general, we herein will assume

• Ω = ∅ is the only admissible binding set, i.e., we do not consider binding restrictions,

• Φ: only n = ∞ is admissible, i.e., no paging is supported since the union of all
relevant partitions will be typically needed to compute the query results.

Our proposed partition-based LDF approach will be extensively elaborated and evaluated
in the forthcoming three chapters.

48

CHAPTER 4
Hybrid Shipping for SPARQL

Querying on the Web

In the preceding chapter, we presented an overview of Linked Data framework and several
approaches that adopt this framework, including Triple Pattern Fragments (TPF) and
brTPF. While these approaches enhanced the server availability compared to SPARQL
endpoints, they have limitations that make it challenging to maintain a live public
SPARQL querying service for web-scale KG as they may suffer from a significant decline
in the performance of SPARQL queries and unnecessary transfer of irrelevant data on
complex queries with large intermediate results.

In this chapter, we introduce smart-KG, a hybrid shipping interface designed to enhance
the server availability of Web querying interfaces while maintaining a high performance by
distributing query workloads between servers and clients. Rather than solely relying on
shipping intermediate results, as previous solutions such as TPF do, smart-KG combines
TPF with the shipping of modular, query-relevant KG partitions that can be directly
queried by clients locally. To achieve this, smart-KG server maintains compressed and
queryable graph partitions, that is, KG “slices” can be shipped, cached, and locally
queried by smart-KG clients. We propose a graph partitioning technique based on
Characteristic Sets [GN14, NM11], which leverages the structure of RDF graphs to group
entities described with the same sets of predicates. In addition, smart clients implement
a query executor that combines KG partitions and intermediate results of triple patterns
received from the server to evaluate SPARQL queries. Our evaluations demonstrate that
smart-KG outperforms state-of-the-art solutions in terms of performance and significantly
reduces data transfer volume while improving server-side availability compared to the
state-of-the-art interfaces.

Chapter Organization. The remainder of this chapter is organized as follows:

49

4. Hybrid Shipping for SPARQL Querying on the Web

• In Section 4.1, we introduce KG partition technique named family-partitioning
which is designed for graphs with skewed predicate distributions to trade-off the
number of partitions to be maintained and transferred. We then use HDT [FMG+13]
to represent and distribute such partitions in a compressed and queryable way.

• In Section 4.2, we present a novel paradigm, smart-KG, to distribute the evalua-
tion of SPARQL queries among clients and servers by leveraging the transfer of
compressed KG partitions in Section.

• In Section 4.5, we provide an empirical evaluation of smart-KG on synthetic and
real-world KGs and queries, significantly outperforming the state-of-the-art server-
and client-side SPARQL query processing.

• In Section 4.6, we summarize and outline the approach limitations.

4.1 Family-Based Partitioning of RDF Graphs
RDF is a semi-structured data model which typically does not prescribe a fixed schema.
In theory, this can lead to RDF graphs, where the set of predicates used to describe
subjects and their relationships may vary greatly. However, in real-world RDF graphs,
there typically is an inherent structure as there exist repetitions whenever subjects of the
same kind are described in the same way. For instance, predicates describing Films (e.g.,
director, starring, launchDate, language, etc.) are different than those describing Persons
(e.g., birthday, nationality, etc.) in DBpedia. In the literature, so-called characteristic
sets [NM11, GN14] have been defined to capture these latent structures that eventually
construct a "soft schema" from the entities that are semantically similar in a graph.

Neumann and Moerkotte [NM11, GN14] capture these structures with the notion of
characteristic sets, also called predicate families [FMPdlFRG18] (or just families here-
inafter). In this paper, we propose a concrete method that employs the concept of
predicate families for partition-based Linked Data Fragment (LDF) interfaces, named
Family-Based Partitioning. Let G be an RDF graph, and subj(G), pred(G), obj(G) be
the sets of subjects, predicates, and objects in G respectively. We define the (predicate)
family, of a subject s, F (s) as the set of predicates related to the subject s, that is:

Definition 4.1. (Predicate Family of a Subject Term s) [NM11]

F (s) = {p | ∃o ∈ obj(G) : (s, p, o) ∈ G}

Analogously, we denote as F (G) or just F , to the set of all different predicate families
occurring in G, as follows:

50

4.1. Family-Based Partitioning of RDF Graphs

Definition 4.2. (A set of Predicate Families) [NM11]

F (G) = {F (x) | x ∈ subj(G)}

For simplicity, we name the different families in G as F1, F2, ..., Fm, where m = |F (G)|.
In this thesis, we use families as a means to define a graph partitioning technique, i.e.,
we consider – as the basis for our approach – a disjoint set of partitions that is a cover1

G = {G1, G2, · · · , Gm} of G based on its families, where predicate families imply a
partitioning

G = {GFi | Fi ∈ F (G)} (4.1)

usable for partition-based LDF as defined above, where each partition GFi is defined by
a corresponding respective predicate familiy Fi ∈ F (G) as follows:

Definition 4.3. (Family Partition)

GFi = {(s, p, o) ∈ G | F (s) = Fi}

We will refer to this partitioning as family-partitioning; slightly abusing notation we
will simply write Gi for GFi in the following. Next, the admissible queries for family-
partitioning are star-shaped query patterns, i.e., BGPs composed of k triple patterns
form Q = {(s, pi, oi) | 1 ≤ i ≤ k, s ∈ V ∪U, pi ∈ U, oi ∈ V ∪U ∪L} with a single common
subject s, where

σ(G, Q) = {Gi ∈ G | pred(Q) ⊆ Fi} (4.2)

Obviously, for any star-shaped query, σ(G, Q) contains all relevant triples from G to
compute the answers.

To illustrate the previous definitions consider the KG G shown in Fig. 4.1, and the
predicate families shown in Fig. 4.2. Following the definition of predicate family in
Eq. (4.1), the subjects s1 and s2 belong to the same family F1, as they have the same
predicates. The subject s2 belongs to family F2. For the KG G, there are two families
denoted F (G), i.e., F1 and F2. Lastly, each of these families induces a partition over G.
For example, GF2 contains all the triples of subjects that belong to family F2, which in
this case is triples t8 and t9. Lastly, the set of partitions computed for G, denoted G are
GF1 and GF2 .

Families provide structure-based means of partitioning an RDF graph used for the
following:

1i.e, G = G1 ∪ G2 ∪ · · · ∪ Gm, where ∀i, j Gi ∩ Gj = ∅

51

4. Hybrid Shipping for SPARQL Querying on the Web

:s1 rdf:type :Film . #t1

:s1 rdf:type :Work . #t2

:s1 :starring :o1 . #t3

:s1 :director :o2 . #t4

:s2 rdf:type :Work . #t5

:s2 :starring :o1 . #t6

:s2 :director :o3 . #t7

:s3 rdf:type :Work . #t8

:s3 :director :o4 . #t9

Figure 4.1: KG example

Predicate Families
F (:s1) = {rdf:type, director, starring}

= F1
F (:s2) = {rdf:type, director, starring}

= F1
F (:s3) = {rdf:type, director}

= F2

Predicate Families in G

F (G) = {F1, F2}

Partitions induced by each family

GF1 = {t1, t2, t3, t4, t5, t6, t7}

GF2 = {t8, t9}

Partitioning G = {GF1 , GF2 }

Figure 4.2: Predicate families for the KG shown in Fig. 4.1

52

4.2. SMART-KG: Design and Overview

Query
Results

Server Response

Client Request
Query Parser

SMART-KG Client

Query Decomposer

Query Planner & Optimizer

Query Executor

Result Serializer

Server OperatorsStorage Module

Family Catalog

SMART-KG Server

Family Generator

HDT Converter

Family Grouping
Family Pruning

Partition Generator
RDF KG 𝐺KG Partitions

𝐺 𝐺 … 𝐺

Cache Module

Family Catalog

KG Partitions

𝐺 𝐺

SPARQL
Query

Figure 4.3: Overall architecture for the smart-KG client and server.

• Join and cardinality estimation [GN14, NM11] for SPARQL optimization,

• RDF compression [HMF15],

• Building indexes2 to speed up SPARQL queries [MPMA17].

To the best of our knowledge, our work presented in [AFA+20] is the first to utilize
families as a shipping strategy.

4.2 SMART-KG: Design and Overview
smart-KG (cf. Fig. 4.3) defines client and server operations to combine the shipping of
partitions based on RDF families with the shipping of the results of evaluating triple
patterns to reduce query runtime.

The smart-KG servers generate families and corresponding partitions of a given knowl-
edge graph (KG). The resulting KG partitions are materialized (in HDT) in the storage
module along with a family catalog that contains metadata about the structure of the
partitions. In addition, smart-KG servers also support operators to execute triple
pattern queries and transfer partitions to smart-KG clients.

The smart-KG clients are able to execute SPARQL queries by devising query plans that
combine the shipping of triple pattern results and partitions. The query decomposition,
planning, and optimization techniques implemented by the smart-KG client exploit
the structure of KG partitions to reduce query execution time. In addition, smart-KG
client partitions can be discovered, retrieved, cached, and (locally) queried by smart-KG
clients.

4.2.1 SMART-KG Server
The smart-KG server, upon loading an RDF graph, supports access to graph partitions
and the evaluation of triple patterns using TPF. To this end, the server implements a

2Meimaris et al. [MPMA17] extended the notion of characteristic sets also to object nodes

53

4. Hybrid Shipping for SPARQL Querying on the Web

partition generator taking into consideration the families from the graph plus retrieval
operations.

4.2.1.1 Partition Generator

The smart-KG server, upon loading a graph G, decomposes it into partitions G1, . . . Gm

per family, as described in Eq. (4.3) and converts those partitions to HDT. In practice,
however, the number of partitions can be relatively large for real-world RDF graphs.
Thus, we introduce the concept of predicate-restricted families, where some particular
predicates are not considered for the creation of families.

Definition 4.4. (Predicate-restricted Family)

Let us consider a restricted set of predicates, P ′
G ⊆ PG. The predicate-restricted

family of a subject s w.r.t. P ′
G, denoted F ′(s), is defined as follows:

F ′(s) = {p′ ∈ P ′
G | ∃o ∈ obj(G) : (s, p′, o) ∈ G}

Analogously, we denote as F ′(G) = {F ′
1, F ′

2, · · · , F ′
m}, or just F ′, to the set of

different predicate-restricted families for G w.r.t. PG, where m′ = |F ′(G)|.

These families correspond to a set G′ = {G′
1, G′

2, . . . , G′
m′} of partitions of a subgraph of

G based on the P ′
G-restricted families, with

Definition 4.5. (Predicate-restricted Partition)

G′
i = {(s, p, o) ∈ G | F ′(s) = F ′

i }

Note that, however G′ is no longer a complete cover of G, but the graph G′ = G′
i only

contains the “projection” of G to P ′
G.

Serving predicate-restricted families allows a smart-KG publisher to select P ′
G depending

on the following:

• The cardinality of the predicates (i.e. the number of occurrences in the graph).

• The importance of predicates (and combinations) in actual query workloads.

We will describe a concrete method to pick P ′
G based on the cardinality of predicates in

Section 4.2.1.3.

54

4.2. SMART-KG: Design and Overview

4.2.1.2 Family Grouping

Although the use of restricted families can control the number of generated families
and avoid generating rarely used families to some extent, the number and volume of
partitions are still determined further by other distribution features of the data. In
practice, many RDF graphs are skewed in the sense that there exist “dominant” families
with large corresponding partitions, as opposed to several small, very similar families of
much smaller sizes. This phenomenon arises due to the semi-structured nature of RDF,
where predicates may vary across entities of the same type.

Thus, besides using predicate-restricted families, as a second measure, our partition
shipping strategy further uses merging (i.e. grouping) similar families into a single family.
For instance, all disjoint families contain a certain set of predicates. An example is as
follows:

F1={foaf:name, dbp:birthdate, dbp:title} and F2={foaf:name,
dbp:birthdate, dbp:occupation} can be merged into a single family which is
F{1,2}={foaf:name, dbp:birthdate}.

The intuition behind merging such families covering overlapping predicates is that these
overlapping predicate subsets may also occur as predicate families in query patterns more
commonly. Therefore, instead of shipping the union of partitions contributing to a query,
only the partition corresponding to the smallest merged families needs to be shipped.

Note that, in order to define the notion of a merge of families and respective (predicate-
restricted) partitions we refer to particular families in F ′(G) = {F ′

1, F ′
2, · · · , F ′

m′}, by
their index {1, . . . , m′}. Using this notation, formally, for an index set I ∈ 2{1,··· ,m′}, we
define the merge F ′

I of the set of families {F ′
j | j ∈ I} as follows3:

F ′
I =

i∈I
F ′

i (4.3)

Analogously, the corresponding merged partition G′
I ⊆ i∈I G′

i can also be defined as:

G′
I = {(s, p, o) ∈ G | F (I) ⊆ F (s)} (4.4)

if G′
1 and G′

2 are merged into G′
{1,2}, then to evaluate a query pattern that involves

the predicates foaf:name and dbo:birthPlace, we only transfer G′
{1,2} rather than

G′
1 ∪ G′

2. Note that the most important consideration is that all the subjects are a
matching result for those queries only involving the predicates in G′

1,2.

Following similar premises, Gubichev and Neumann [GN14] establish a hierarchy of
characteristic sets, in each step removing one element of the set and keeping only the one
that minimizes the query costs (i.e. cost can be understood as cardinality, in this context).
For instance, in the previous example, the approach by Gubichev and Neumann will
inspect all combinations of two predicates, F 1

{1,2}={foaf:name, dbp:birthdate},
3Note that we consider the identity merge, i.e., F ′

{j} = F ′
j

55

4. Hybrid Shipping for SPARQL Querying on the Web

F 2
{1,2}={foaf:name, dbp:title}, etc., to select the one with smallest cardinality,

e.g. F 2
{1,2}, for query planning. We use a similar idea, but the main differences with the

previous work are that (i) we do not compute all predicate subsets of a given family (this
was used to estimate join costs [GN14]) but only those subsets that represent merges,
corresponding to non-empty intersections with other families, and (ii) we keep all these
intersections in a map, irrespective of their cardinality.

To create this merged families map for all potentially non-empty intersections of sub-
families, we start from F ′(G) = {F ′

1, . . . F ′
m}, and iteratively construct a partial map

µ such that, given a set of predicates f , µ(f) returns (whenever f corresponds to a
non-empty intersection) a set of indexes of all original families that contain subjects
contributing to f , as shown in Alg. 4.1. We initialize µ with F ′(G) (lines 2–4), and then,
iteratively, until µ does not change anymore (lines 5–19), create mappings (corresponding
to a merged family) collecting all indexes, for each non-empty intersection of families
(lines 10–15). If there already is a (merged) family corresponding to the intersection
found, i.e., f ∩g appears already in the domain of µ (line 10), then also the corresponding
index(es) are considered (line 10) and the mapping is updated, otherwise, a new mapping
is created (line 14). Note that, as opposed to this pseudo-code, our actual implementation
is using a hashmap for the (merged) families and avoids revisiting the same intersections
repeatedly.

Then, µ(·) is used to compute the partitions served by the smart-KG server, denoted
Gserv, where G′ is replaced with a set of partitions obtained from the merged families:

Gserv = {G′
µ(f) | f ∈ dom(µ)} (4.5)

Note that the elements in Gserv are no longer non-overlapping, i.e., formally, they are not
partitions anymore but fragments of the graph G. However, for the sake of readability,
we abuse notation and refer to these fragments as merged partitions (or simply partitions).
The advantage of serving these merged partitions is that the client can determine a
unique minimal matching partition among Gserv to answer a query using the mapping µ
as we will show in our full example in Section 4.3.1.

4.2.1.3 Family Pruning

Note that, in practice, it might be still too expensive to materialize partitions for all
potential merges (intersections) of all families in G. For instance, as we will show in our
evaluation, in the DBpedia graph, a naive merge would create +600k partially very large
families, which are unfeasible to serve.

To this end, we present a family pruning strategy for further restricting the number of
materialized partitions, where we (i) restrict considered predicates in P ′

G based on their
cardinality, (ii) avoid the creation of small families that deviate only slightly from other
overlapping, “core” families, and (iii) avoid materialization of families over a certain size.

56

4.2. SMART-KG: Design and Overview

Algorithm 4.1: Family Grouping
Input : F ′(G) = {F ′

1, . . . F ′
m}, the set of different (restricted) families.

Output : µ(·) a partial mapping from sets of predicates to index sets I ∈ 2{1,··· ,m}

1 Initialize µ with the original families:
2 foreach f ∈ F ′(G) do
3 µ(F ′

i) ← {i}
4 end
5 repeat
6 µ′(·) ← µ(·)
7 foreach f ∈ dom(µ) do
8 foreach g ∈ dom(µ) do
9 if g ∩ f ̸= ∅ then

10 if g ∩ f ∈ dom(µ) then
11 µ(g ∩ f) ← µ(g ∩ f) ∪ µ(g) ∪ µ(f)
12 end
13 else
14 µ(g ∩ f) ← µ(g) ∪ µ(f)
15 end
16 end
17 end
18 end
19 until µ ̸= µ′;
20 return µ

(i) Restrict predicates based on cardinality. The cardinality of predicates is a key
factor in determining the number and size of shipped partitions. Therefore we distinguish
between infrequent and frequent predicates in the KG.

Infrequent predicates are those that occur rarely in the KG compared to the most
commonly occurring predicates. Infrequent predicates may be scattered across various
subjects in the KG, leading to the creation of multiple small families. In this case, a
TPF/brTPF call efficiently evaluates a single triple pattern with an infrequent predicate
without the need to transfer large intermediate results (i.e. unnecessary materialization
of small family partitions).

Frequent predicates can be part of almost all families such as dbo:wikiPageExternal-
Link in DBpedia leading to an undesirable increase in the size of each family, especially
if they are rarely mentioned in queries.4

Note specifically that although rdf:type is a typically frequent predicate, we do not
4For example, dbo:wikiPageExternalLink appears merely 59 times in the LSQ query log, or

when they remain entirely unqueried, as dbo:wikiPageLength, which is not mentioned in the LSQ
query log.

57

4. Hybrid Shipping for SPARQL Querying on the Web

exclude it at this point, as we will tackle this issue separately in (ii), in the handling of
typed partitions.

To control predicates cardinalities, we use thresholds τplow
, τphigh

with 0 ≤ τplow
< τphigh

≤
1, to delimit the minimum and maximum percentage of triples per predicate, and define
P ′

G accordingly based on these two thresholds:

P ′
G = {p′ ∈ pred(G) | τplow

≤ |(s, p′, o) ∈ G|
|G| ≤ τphigh

} (4.6)

Note that publishers might still consider including particular heavy hitters (e.g. rdf:type)
which can be frequent in queries as we present in Chapter 6.

(ii) Avoid the creation of small families. In order to address issue (ii), we aim at
considering only “core” families for the partition merging process, i.e., we select predicate
combinations (i.e, families) that are used by a proportionally large number of subjects,
above a threshold αs. That is, we define these core families as

F ′
core = {F ′

i ∈ F ′ | |subj(G′
i)|

|subj(G)| ≥ αs} (4.7)

with the respective index set Icore = {i | F ′
i ∈ F ′

core} and predicate set P ′
core = {p ∈ F ′

i |
F ′

i ∈ F ′
core}.

Intuitively, these core families represent the structured parts of the graph, i.e., star-shaped
sub-graphs where entities are described with the same attributes.

(iii) Avoid the creation of large families. Finally, we avoid the materialization of
overly large (e.g. hundreds of millions of triples in DBpedia) merged partitions GI with
size GI above a threshold αt, which limits the size of the materialized merged partitions.

In order to only take core families into account for the creation of partitions, and limit
merged families to sizes below αt, it is sufficient to modify Eq. (4.5) as follows:

Gserv =

G′

µ(f)

f ∈ dom(µ) ∧
µ(f) ∩ Icore ̸= ∅ ∧

i∈µ(f)

|G′
i| ≤ αt

 ∪ {G{i}|F ′

i ∈ F ′} (4.8)

In Eq.(4.8), line 2 addresses issue (ii)5 and line 3 addresses issue (iii)6. The last part
ensures that, despite pruning, the non-merged partitions of families in F ′ remain being
served.

5since subj(G′
i) ∩ subj(G′

j) = ∅ for all base families F ′
i , F ′

j ∈ F ′, by construction it holds that
|subj(G′

I)| = sumi∈I |subj(G′
I)|

6since |G′
I | =

i∈I
|G′

i|

58

4.2. SMART-KG: Design and Overview

Due to these pruning steps, no longer all the partitions corresponding to families in
dom(µ) will be materialized in Gserv. Therefore, in practice, we define another mapping
function, µG, that allows us to directly map families from dom(µ) to “minimal” sets of
matching partitions in Gserv. In practice, we compute the partitions Gserv along with
µG in one go. That is, we build a mapping µG : dom(µ) → 22{1,....,m} that maps a
family f to a set of index sets {I1, . . . Ik} representing (lists of) materialized matching
partitions, i.e., where µG(f) = {I | G′

I ∈ G≺
serv(f)}. For G′

µ(f) ∈ Gserv, i.e., if the
respective partition is materialized, then µG(f) = {µ(f)}. In this case, G≺

serv(f) is
defined as: let Gserv(f) = {G′

I ∈ Gserv | f ⊆ µ−1(I)} be all materialized partitions
matching a family f , then G≺

serv(f) is the ≺-minimal subset of Gserv(f) with ≺ defined as:
G′

I1 ≺ G′
I2 iff µ−1(I1) ⊂ µ−1(I2). That is, as the partition merging can result in no longer

disjoint partitions in Gserv, the intuition is to pick, at query time, the partitions that are
“subset-minimal with respect to their corresponding families”. In practice, smart-KG
materializes the partitions in Gserv as HDT files.

4.2.1.4 Server Operators

The smart-KG server materializes all partitions in Gserv into HDT files and provides
operators to ship partitions and their metadata based on µG, or to respond to TPF
requests. Overall, the following operations7 are provided:

• TPF(tp) to retrieve the answer for a triple pattern tp, i.e., the smart-KG server
returns the triples from G that match tp.

• TPFcard(tp) to retrieve the resulting cardinality of a triple pattern (this is a
standard TPF API function).

• retrievePartition(id) to retrieve a partition by id (we use ids corresponding to
partitions in Gserv).

• retrieveIDs(f) to retrieve the IDs of ≺-minimal partitions matching a given family
f (i.e., µG(f)), plus metadata with descriptive statistics per ID (e.g, number of
triples).

• getPartitionMetadata() to retrieve the pruning parameters used by the server (i.e.,
P ′

core, τl, τh, αs, and αt).

As for the retrieveIDs(f) operation, it essentially scans dom(µG) to determine the
single (cardinality-wise) smallest f ′ ⊇ f in dom(µG) and retrieves IDs corresponding
to the index-sets µG(f ′). Note that f ′ is uniquely determined, which can be proven by
contradiction: i.e. assume two cardinality-wise smallest f ′

1, f ′
2 ∈ dom(µG) with f ′

1 ≠ f ′
2

and f ⊂ f ′
1, f ⊂ f ′

2; then, also f ⊂ f ′
1 ∩ f ′

2, where (by assumption f ′
1 ̸= f ′

2) it holds that
7We assume that the server handles a single graph. For multiple graphs, the id of the graph can be

added as a parameter.

59

4. Hybrid Shipping for SPARQL Querying on the Web

|f ′
1 ∩ f ′

2| < |f ′
1| or |f ′

1 ∩ f ′
2| < |f ′

2|. However, by construction of µG, this also implies that
f ′

1 ∩ f ′
2 ∈ dom(µG), which contradicts the assumption.

4.2.2 SMART-KG Client

The smart-KG client (cf. Fig. 4.3) implements partition and triple pattern shipping to
efficiently execute SPARQL queries over the smart-KG server. The smart-KG client
maintains a catalog with metadata about the families available at a smart-KG server
obtained with the server operation getPartitionMetadata(). The input of the client is
a SPARQL query, which the query parser translates into the corresponding SPARQL
algebra expressions. Then, the query decomposer splits the BGPs within the query into
star-shaped sub-queries around the same subject. Based on this decomposition, the query
optimizer implements heuristics to determine the order of stars and triple patterns within
the stars, and the shipping strategies to evaluate them. The query executor evaluates the
plan and combines the results locally by joining the data retrieved from the server. The
results produced by the engine are translated by the results serializer into the format
specified by the user. The partitions downloaded from the smart-KG server during
query evaluation can be stored in the family cache and reused for subsequent query
evaluations. In the following, we will describe the main smart-KG client components:
query decomposer, optimizer, and executor.

4.2.2.1 Query Decomposer

First, smart-KG splits parsed Basic Graph Patterns (BGPs) into stars as follows: given
a BGP Q, with subjects subj(Q), a decomposition Q = {Qs | s ∈ subj(Q)} of Q is a set
of star-shaped BGPs Qs such that Q = s∈subj(Q) Qs and:

Qs = {tp ∈ Q | tp = (s, p, o)} (4.9)

Analogous to graphs, we can also associate a family to each Qs:

F (Qs) = {p | ∃o : (s, p, o) ∈ Qs, p ∈ U} (4.10)

Given the SPARQL query in Fig. 4.4a, the BGP is decomposed into Q = {Q?tvprogram,
Q?actress, Q?city} around the three subjects (cf. Fig. 4.4b). Each of the star families
F (Qs) that can be mapped to existing predicate families in dom(µG) on the server
has a non-empty answer. For example, Q?tvprogram = {(?tvprogram, dbo:starring,
?actress), (?tvprogram, dbo:releaseDate, ?releaseDate)} has F (Q?tvprogram) =
{dbo:starring, dbo:releaseDate};

based on the decomposition Q, the smart-KG client’s shipping-based query optimizer
next has to devise a query plan.

60

4.2. SMART-KG: Design and Overview

SELECT ∗ WHERE {
?tvprogram dbo: starring ? actress . # tp1 544,110 matches
?tvprogram dbo:releaseDate ?releaseDate . # tp2 155,199 matches
? actress dbo:wikiPageExternalLink ? link . # tp3 9,643,439 matches
? actress dbo:birthPlace ? city . # tp4 1,469,160 matches
? actress dbp:occupation "Actress"@en. # tp5 18,861 matches
? city dbo:country ?country. # tp 789,261 matches

}

(a) Select all actresses, their TV programs, and birthplace information

(b) Star-shaped query decomposition

tp5 tp4

tp3 tp1 tp2

tp6

Smart KG Server

Triple Pattern Evaluation

KG
Partition 𝐺
KG
Partition 𝐺

(c) Shipping plan based on the decomposition

Figure 4.4: Example of processing a SPARQL query with the smart-KG client.

61

4. Hybrid Shipping for SPARQL Querying on the Web

4.2.2.2 Shipping-based Query Planner & Optimizer

The smart-KG client query planner devises plans where both triple pattern results (using
TPF) and partitions in Gserv are transferred from the server to resolve the sub-queries
in Q. To decide whether and for which sub-queries to use triple pattern or partition
shipping, and in which order to execute them, the optimizer implements heuristics based
on the sub-queries in Q and the server’s partition metadata.

The resolution of each sub-query can be then performed in two ways in smart-KG: (i)
locating the appropriate family(ies) on the smart-KG server, shipping the corresponding
HDT partition, and performing the sub-query locally in the client, or (ii) resolving the
sub-query using TPF and shipping sub-query results, doing all join operations locally.

Partition Shipping (P-S). Shipping relevant partitions to evaluate a star Qs ∈ Q needs
to take into consideration the materialized partitions at the server. Since graph partitions
are generated based on the core families (cf. Section 4.2.1), only stars with F (Qs) ⊆ P ′

core

can be fully evaluated by served partitions. Therefore, the optimizer first partitions each
Qs ∈ Q into the disjoint sets Q′

s and Q′′
s , where Q′

s = {(s, p, o) ∈ Qs | p ∈ P ′
core}, i.e., the

part of the star that can be evaluated over the served partitions, whereas the remaining
triple patterns in Q′′

s = Qs \ Q′
s are delegated to TPF requests.8

Then, the optimizer implements the following additional heuristics: partition shipping
is only followed if |Q′

s| > 1, as in practice, the transfer of graph partitions to resolve a
single triple pattern usually takes longer than delegating to a TPF request directly.

Triple Pattern Shipping (TP-S). Triple patterns tp delegated to TPF will be evaluated
using a TPF(tp) request to the server. This involves the triples patterns in Q′′

s and Q′
s

with |Q′
s| = 1 in addition to triple patterns with variables in the predicate position, as

these cannot be associated with family a partition directly.

The query optimizer, given Q and P ′
G as input, devises a query plan ΠQ, based on the

described sub-decomposition into P-S and TP-S patterns. It accordingly proceeds in
two phases, first iterating over each star Qs ∈ Q to perform the partitioning into Q′

s

and Q′′
s , additionally collecting the cardinality for each triple pattern tpi ∈ Qs using

TPFcard() server requests. Then, the optimizer devises sub-plans, for Q′
s and Q′′

s that
can be efficiently executed, by join ordering based on these cardinalities, using the
construct Plan, that comprises a pair of a left-linearly ordered query plan, along with a
shipping strategy. Join order is determined by the cardinality of triple patterns, where
smaller triple patterns are evaluated first. For each sub-query Qs, the optimizer creates
a shipping-based sub-plan Πs which is added to the set of current subplans.

Fig. 4.4c shows the shipping strategies for each sub-plan from our example. For the sub-
query Q?actress, the optimizer created Plan((tp5 ⋊⋉ tp4), P-S). Yet, the triple pattern
tp6 in S?actress is evaluated using triple pattern shipping as the optimizer determined
that the predicate dbo:wikiPageExternalLink is not in P ′

G.
8Note that Q′′

s also includes triple patterns with predicate variables, i.e., p ∈ V .

62

4.2. SMART-KG: Design and Overview

Algorithm 4.2: Query Executor: evalP lan
Input: Query plan Π
Output: Ω the result set of executing Π

1 if Π = P lan(Πs, P-S) then
2 Qs is the sub-query associated with Πs

3 G∗ = {getP artition(id) | id ∈ retrieveIds(F (Qs))}
4 Ω ← {ω∅}
5 for tpi ∈ Ps do
6 Ω ← Ω ⋊⋉

Gj ∈G∗ tpi Gj

7 end
8 end
9 else if Π = P lan(Πs, TP-S) then

10 Ω ← TPF(Πs)
11 end
12 else
13 Π is (Πl ⋊⋉ Πr)
14 Ω ← evalP lan(Πl) ⋊⋉ evalP lan(Πr)
15 end
16 return Ω

In the second phase, the optimizer combines the sub-plans that share variables to build
the final plan ΠQ. Again, the optimizer uses a heuristic to determine the join order based
on selecting the sub-plan Πi containing the overall smallest (i.e., assumed most selective)
triple pattern from subplans first, and so on, iteratively joining sub-plans to ΠQ. The
resulting query plan ΠQ comprises sub-plans annotated with the corresponding shipping
strategy, and join operators to be evaluated locally by the client.

4.2.2.3 Query Executor

The function evalP lan evaluates the plan ΠQ by traversing the tree of sub-plans (cf.
Alg. 4.2). The shipping strategies are implemented by calling the respective smart-KG
server operators (cf. Sec. 4.2.1.4). Depending on the structure of the sub-plans, the query
executor distinguishes the following cases.

Case: (P-S) Sub-plans. P-S sub-plans are evaluated (cf. Alg. 4.2, lines 1–6) by
determining relevant served partition IDs for Q′

s, through calling retrieveIds(F (Q′
s)),

and retrieving each ID from the server (line 3). The query executor evaluates the triple
patterns tpi against each such partition and merges the results using the SPARQL algebra
union operator (line 4). The intermediate results of each triple pattern are joined in
following the plan Πs (lines 5–6).

Case: (TP-S) Sub-plans. TP-S sub-plans are composed of single triple patterns,
executable by calling the TPF(tp) smart-KG server operator (cf. Alg. 4.2, lines 7–8).

General Case. Joins the results of two recursively evaluated sub-plans Πl and Πr (cf.
Alg. 4.2, lines 9–11).

The outcome of the query executor is the result set Ω of evaluating the query Q. In
practice, the executor implements an iterator model to push intermediate results of

63

4. Hybrid Shipping for SPARQL Querying on the Web

evaluating one subplan to the next operator in the plan. This allows the smart-KG
client for streaming results incrementally as the data arrives from the server.

Proposition 1. The result of evaluating a BGP Q over an RDF graph G with smart-KG,
denoted smart-eval(Q, G), is correct w.r.t. the semantics of the SPARQL language, i.e.,
smart-eval(Q, G) = Q G.9

4.3 Proof of smart-KG Correctness
Proof. For this proof, we assume that the server operators are implemented correctly. By
contradiction, let us assume that smart-eval(Q, G) ̸= Q G. We distinguish three cases
based on the shipping strategy used for evaluating Q.

(i) Q is evaluated with P-S. For this case, we assume the correct implementation
of the join operator, therefore, it is sufficient to prove this case when Q is composed
of a single triple pattern with free-variable-predicate p. With P-S, the evaluation of Q
is carried out against the set of corresponding partitions. By definition of the server
operators, the ids of the relevant partitions for the predicate family of Q is equivalent
to µG(F (Q)). Furthermore, after applying the server operators, we obtain that the set
of relevant partitions G∗ for Q is G∗ = {Gj ∈ Gserv | j ∈ µ(F (Q))}. Next, we consider
two sub-cases. In the first sub-case, we have that smart-eval(Q, G) ⊂ Q G, i.e., there
exists an RDF triple t ∈ G with predicate p such that t /∈ Gj∈G∗ Gj . Therefore, the
partitions in Gserv are created incorrectly, which contradicts Equation 4.8. The sub-case
Q G ⊂ smart-eval(Q, G) does not occur as, by definition of partitions, every Gj ∈ G∗ is

a set of RDF triples with predicate p.

(ii) Q is evaluated with TP-S. For this case, the evaluation of Q is carried out as
TPF(Q) and Q corresponds to a single triple pattern (which is ensured by the query
optimizer). By hypothesis, TPF(Q) does not produce Q G, which contradicts the
definition of the TPF server operator.

(iii) Q is evaluated following a Hybrid Shipping Strategy with TP-S and P-S.
This case follows immediately from cases (i) and (ii) because any hybrid strategy involving
TP-S and P-S would still be affected by the contradictions presented in cases (i) and
(ii).

4.3.1 Detailed Example:
In this section, we demonstrate a full example to explain the evaluation of the SPARQL
query based on our introduced approach smart-KG. In this example, we elaborate family-
based partitioning and SPARQL query evaluation on our RDF graph from Example 7
inspired Friends series:

9 Experiments and the proof are available online https://ai.wu.ac.at/smartkg

64

https://ai.wu.ac.at/smartkg

4.3. Proof of smart-KG Correctness

Creation of Family-based partitioning for Friends RDF graph. In this example,
we materialize family-based partitions based on three different settings, as follows:

• Setting 1: we materialize all families as well as all possible merges of families (i.e.
the pruning step is not applied). In our example, it is feasible to materialize all
partitions given the fact that our example graph is small of size |G| = 79 triples
and |PG| = 16 predicates. For this purpose, we fix the pruning parameters as
follows: we set τl = 0 and τh = 1.0 so that we include all predicates including both
infrequent and heavy hitters. Likewise, we set αs = 0 to include all families in the
grouping step and αt = 1.0 to materialize all possible family merges.
This setting will generate |Gserv| = 18 materialized partitions based on the following
set of families:

– F1={dbo:portrayer, dbp:children, dbp:family,
dbp:gender, dbp:occupation, dbp:religion, rdf:type,
rdfs:label} which is an original family that generates a partition G1 where
|G1| = 9 triples with a set of subjects subj(G1) of size |subj(G1)| = 1 subjects.
This subject represents the fictional Chandler since she is the only member of
the graph that have the combination of predicates in F1.

– F2={dbo:birthDate, dbo:education, dbp:occupation,
dbp:spouse, rdf:type, rdfs:label} which is an original family that
generates a partition G2 where |G2| = 18 triples with a set of subjects
subj(G2) of size |subj(G2)| = 3 subjects. These subjects represent two ac-
tresses Courteney Cox and Jennifer Aniston and one actor David Schwimmer
as they share the set of predicates in F2.

– F3={dbo:almaMater, dbo:birthDate, dbp:occupation,
dbo:spouse, rdf:type, rdfs:label} which is an original family that
generates a partition G3 where |G3| = 6 triples with a set of subj(G3) of size
|subj(G3)| = 1 subject. This subject represents the actress Lisa Kudrow.

– F4={dbo:birthDate, dbp:occupation, dbp:spouse,
rdf:type, rdfs:label} which is a grouped family that generates a parti-
tion G4 where |G4| = 30 triples with a set of subj(G4) of size |subj(G4)| = 7
subjects. These subjects represent the two actors Matt LeBlanc and David
Schwimmer as well as three actresses Courteney Cox, Jennifer Aniston, and
Lisa Kudrow in addition to the fictional character Ross Geller as they share
the set of predicates in F4.

– F5={dbo:birthDate, dbp:occupation, rdf:type, rdfs:label}
which is a grouped family that generates a partition G5 where |G5| = 28 triples
with a set of subj(G5) of size |subj(G5)| = 7 subjects. These subjects represent
the two actors Matthew Perry and David Schwimmer as well as three actresses
Courteney Cox, Jennifer Aniston, and Lisa Kudrow in addition to the fictional
character Ross Geller as they share the set of predicates in F5.

65

4. Hybrid Shipping for SPARQL Querying on the Web

– F6={dbo:portrayer, dbp:occupation, rdf:type, rdfs:label}
which is a grouped family that generates a partition G6 where |G6| = 25
triples with a set of subj(G6) of size |subj(G6)| = 6 subjects. These subjects
actually represent the 6 fictional characters of the show including Ross, Monica,
Chandler, Joey, Phoebe, and Rachel as they share the set of predicates in F6.

– F7={dbo:alias, dbo:portrayer, dbo:affiliation,
dbp:nationality, dbp:occupation, dbp:religion,
rdf:type, rdfs:label} which is an original family that generates a
partition G7 where |G7| = 8 triples with a set of subj(G7) of size |subj(G7)| = 1
subject. This subject represents the fictional character Joey Tribbiani.

– F8={dbo:alias, dbo:portrayer, dbp:children,
dbp:occupation, dbp:religion, dbp:spouse, rdf:type,
rdfs:label} which is an original family that generates a partition G8 where
|G8| = 8 triples with a set of subj(G8) of size |subj(G8)| = 1 subject. This
subject represents the fictional character Monica Geller.

– F9={dbo:portrayer, dbp:family, dbp:gender,
rdf:type, dbp:nationality, dbp:occupation, rdfs:label}
which is an original family that generates a partition G9 where |G9| = 8 triples
with a set of subj(G9) of size |subj(G9)| = 1 subject. This subject represents
the fictional character Phoebe Buffay.

– F10={dbo:birthDate, dbo:portrayer, dbp:children,
dbp:occupation, dbp:religion, dbp:spouse, dbp:title,
rdf:type, rdfs:label} which is an original family that generates a parti-
tion G10 where |G10| = 9 triples with a set of subj(G10) of size |subj(G10)| = 1
subject. This subject represents the fictional character Ross Geller.

– F11={dbp:occupation, rdf:type, rdfs:label} which is a grouped
family that generates a partition G11 where |G11| = 37 triples with a set of
subj(G11) of size |subj(G11)| = 6 subject. These are all unique subjects in the
Friends graph as all actors, actresses, and fictional characters have the set of
predicates in F11.

– F12={dbo:portrayer, dbp:occupation, dbp:religion,
rdf:type, rdfs:label} which is a grouped family that generates a parti-
tion G12 where |G12| = 20 triples with a set of subj(G12) of size |subj(G12)| = 4
subjects. These subjects actually represent the 4 fictional characters of the
show including Ross, Monica, Chandler, and Joey as they share the set of
predicates in F12.

– F13={dbo:portrayer, dbp:children, dbp:religion,
dbp:occupation, rdf:type, rdfs:label} which is a grouped family
that generates a partition G13 where |G13| = 18 triples with a set of subj(G13)
of size |subj(G13)| = 3 subjects. These subjects actually represent the 3
fictional characters of the show including Ross, Monica, and Chandler as they
share the set of predicates in F13.

66

4.3. Proof of smart-KG Correctness

– F14={dbo:portrayer, dbp:family, dbp:gender,
dbp:occupation, rdf:type, rdfs:label}
which is a grouped family that generates a partition G1 where |G14| = 14
triples with a set of subj(G14) of size |subj(G14)| = 2 subjects. These subjects
actually represent the 2 fictional characters Chandler and Phoebe as they
share the set of predicates in F14.

– F15={dbp:occupation, dbp:spouse, rdf:type, rdfs:label}
which is a grouped family that generates a partition G15 where |G15| = 28
triples with a set of subj(G15) of size |subj(G15)| = 7 subjects. These subjects
represent the two actors Matt LeBlanc and David Schwimmer as well as three
actresses Courteney Cox, Jennifer Aniston, and Lisa Kudrow in addition to
the fictional character Ross Geller as they share the set of predicates in F15.

– F16={dbo:alias, dbo:portrayer, dbp:occupation,
dbp:religion, rdf:type, rdfs:label} which is a grouped family
that generates a partition G16 where |G16| = 12 triples with a set of subj(G16)
of size |subj(G16)| = 2 subjects. These subjects represent the two fictional
characters Joey and Monica.

– F17={dbo:portrayer, dbp:nationality, dbp:occupation,
rdf:type, rdfs:label} which is a grouped family that generates a parti-
tion G17 where |G17| = 10 triples with a set of subj(G17) of size |subj(G17)| = 2
subjects. These subjects represent the two fictional characters Joey and
Phoebe.

– F18={dbo:portrayer, dbp:children, dbp:occupation,
dbp:religion, dbp:spouse, rdf:type, rdfs:label} which is a
grouped family that generates a partition G18 where |G18| = 14 triples with a
set of subj(G18) of size |subj(G18)| = 2 subjects. These subjects represent the
two fictional characters Monica and Ross.

In Setting 1, we materialize all possible partitions Gserv = {G1, ..., G18}.

• Setting 2: we materialize family-based partitions based on our introduced fam-
ily pruning strategy. We fix τl = 3/100 and τh = 20/100 which allow |P ′

G| =
13 predicates and prune the following infrequent predicates = {dbp:title,
dbo:almaMater, dbp:affiliation}. We set αt = 0.05 and αs = 0. These
settings restrict the generated families to the following:

– F1={dbo:portrayer, dbp:children, dbp:family,
dbp:gender, dbp:occupation, dbp:religion, rdf:type,
rdfs:label}
which is an original family that generates a partition G1 where |G1| = 9 triples
with a set of subjects subj(G1) of size |subj(G1)| = 1 subjects. This subject
represents the fictional Chandler since she is the only member of the graph
that have the combination of predicates in F1.

67

4. Hybrid Shipping for SPARQL Querying on the Web

– F2={dbo:birthDate, dbo:education, dbp:occupation,
dbp:spouse, rdf:type, rdfs:label}
which is an original family that generates a partition G2 where |G2| = 18
triples with a set of subjects subj(G2) of size |subj(G2)| = 3 subjects. These
subjects represent two actresses Courteney Cox and Jennifer Aniston and one
actor David Schwimmer as they share the set of predicates in F2.

– F3+410={dbo:birthDate, dbp:occupation, dbp:spouse,
rdf:type, rdfs:label}
which is an original family that generates a partition G3+4 where |G3+4| = 110
triples with a set of subj(G3+4) of size |subj(G3+4)| = 2 subjects. These
subjects represent the actors Lisa Kudrow and Matt LeBlanc. On pruning
the predicate dbo:almaMater, both Lisa and Matt have identical predicates
which generates F3+4. However, we did not materialize the grouped version of
the family (similar to F4 in Setting 1 since it exceeds the threshold αt = 0.05
that we adopt here in Setting 2.

– F5={dbo:birthDate, dbp:occupation, rdf:type, rdfs:label}
which is an original family that generates a partition G5 where |G5| = 4 triples
with a set of subj(G5) of size |subj(G5)| = 1 subjects. This single subject
represents Matthew Perry which is the only subject with this set of predicates.

– F6={dbo:portrayer, dbp:occupation, rdf:type, rdfs:label}
which is an original family that generates a partition G6 where |G6| = 4 triples
with a set of subj(G6) of size |subj(G6)| = 1 subjects. This single subject
represents Rachel Green which is the only subject with this set of predicates.

– F7={dbo:alias, dbo:portrayer, dbp:nationality,
dbp:occupation, dbp:religion, rdf:type, rdfs:label}
which is an original family that generates a partition G7 where |G7| = 7 triples
with a set of subj(G7) of size |subj(G7)| = 1 subject. This subject represents
the fictional character Joey Tribbiani.

– F8={dbo:alias, dbo:portrayer, dbp:children,
dbp:occupation, dbp:religion, dbp:spouse, rdf:type,
rdfs:label}
which is an original family that generates a partition G8 where |G8| = 8 triples
with a set of subj(G8) of size |subj(G8)| = 1 subject. This subject represents
the fictional character Monica Geller.

– F9={dbo:portrayer, dbp:family, dbp:gender,
dbp:nationality, dbp:occupation, rdf:type, rdfs:label}
which is an original family that generates a partition G9 where |G9| = 8 triples
with a set of subj(G9) of size |subj(G9)| = 1 subject. This subject represents
the fictional character Phoebe Buffay.

10For illustration purposes, the naming convention F3+4 is employed to maintain consistency with the
identifiers of the family in other settings, facilitating ease of comprehension for the reader.

68

4.3. Proof of smart-KG Correctness

– F10={dbo:birthDate, dbo:portrayer, dbp:children,
dbp:occupation, dbp:religion, dbp:spouse, rdf:type,
rdfs:label}
which is an original family that generates a partition G10 where |G10| = 8
triples with a set of subj(G10) of size |subj(G10)| = 1 subject. This subject
represents the fictional character Ross Geller.

In Setting 2, Gserv = {G1, ..., G9} with materialized partitions from original families,
excluding infrequent predicates. In this setting, merged families have not been
materialized due to partitions size exceeding our predetermined threshold αt = 0.05
of the graph size which limits the size of the materialized merged families.

• Setting 3: we slightly relax the threshold of αt = 0.05 to materialize more grouped
families as we set αt = 0.30. Similar to Setting 2, we fix τl = 3/100, τh = 20/100,
and αs = 0 which allow |P ′

G| = 13 predicates and prune the following infrequent
predicates = {dbp:title, dbo:almaMater, dbp:affiliation}. These
settings restrict the generated families to the following:

– Original Families: we materialize the following original families including F1,
F2, F3+4, F5, F6, F7, F8, and F9, F10 similar to Setting 2.

– Grouped Families: we materialize the following grouped families including
F12, F13, F14, F16, F17, and F18.

In Setting 3, Gserv = {G1, G2, F3+4, ...G9, G11, ..., G14, G16, ..., G18}. We prune the
partitions that can be generated from the following merged families F4, F11, F15
(see Setting 1) as these partitions exceed the predetermined threshold αt = 0.30 of
the graph size.

SPARQL Query Evaluations on Friends RDF graph. In the following, we show
the evaluation of SPARQL query examples using the materialized partitions according to
the aforementioned settings:

Query 1: retrieve the list of characters featured in TV shows, including their respective
occupations and information regarding the actors who portray them. Specifically, retrieve
the birthdate and actual educational background of the actors in real life. This query Q
can be written, as follows:

SELECT ∗ WHERE {
?character dbo:portrayer ?portrayer.
?character dbo:occupation ?occupation.
?character rdf :type ?type.
?portrayer dbo:birthDate ?date.
?portrayer dbo:education ?education.

}

69

4. Hybrid Shipping for SPARQL Querying on the Web

First, the query decomposer splits the BGP into two star-shaped sub-queries as follows:
Q = {Q?character, Q?portrayer}. Second, smart-KG query planner devises a plan where
both of the decomposed stars can be fully evaluated by the served partitions since
F (Q?character) ⊆ P ′

core and F (Q?portrayer) ⊆ P ′
core in all of the aforementioned partitioning

settings. This left-linear plan is written as the following:

Π = {Plan(Π?portrayer, P-S), P lan(Π?character, P-S)}.

In the following, we detail the evaluation of the query plan Π using the query executor(cf.
Algo. 4.2), while considering the different partitioning settings:

• Case Setting 1: the query executor starts with evaluating Plan(Π?portrayer, P-S)
by shipping the partition G2 based on the original family F2. Note that F2
is only family that contains the set of predicates of Q?portrayer in Gserv. The
size of the intermediate results of evaluating Q?portrayer triple patterns on G2 is
|Ω?portrayer| = 18. Then, The query executor evaluates Plan(Π?character, P-S) by
determining the relevant served partition for Π?character (line 3) which is a single
partition G6 based on the grouped family F6 to resolve the star query Q?character.
The query executor evaluates each triple pattern tpi in Q?character on G6 (line 6)
generating the following intermediate results Ω?character that is of a size equal to
|Ω?character| = |G6| = 25. Note that F1, F6, F7, F8, F9, F10, F12, F13, F14, F17,
and F18 include all the predicates from Q?character. The families F1, F7, F8, F9,
and F10 are original families, while F6, F12, F13, F14, G17, and F18 are grouped
families and we ship, if exists, a grouped family. To ensure that the complete
solution is contained within the shipped partition(s), we select the subset-minimal
(grouped) family which is in this case F6. Finally, we join the solution mappings
of the two star sub-queries to compute the final solution mapping (line 14), as
ΩQ = Ω?portrayer ▷◁ Ω?character and the result is in the following:
Select∗(ΩQ) = {{character → dbr:Rachel_Green,
portrayer → dbr:Jennifer_Aniston, occupation → dbr:Louis_Vuitton,
type → dbo:FictionalCharacter, date → ”1969 − 02 − 11”,
education → dbr:Fiorello_H._LaGuardia_High_School},
{character → dbr:Monica_Geller, portrayer → dbr:Courteney_Cox,
occupation → dbr:Chef, type → dbo:FictionalCharacter,
date → ”1964−06−15”, education → dbr:Mount_Vernon_Seminary_and_College},
{character → dbr:Ross:Geller, portrayer → dbr:David_Schwimmer,
occupation → dbr:Chef, type → dbo:FictionalCharacter,
date → ”1966 − 11 − 02”, education → dbr:Northwestern_University}}.

• Case Setting 2: The query executor starts with evaluating Plan(Π?portrayer, P-S) by
shipping the partition G2 created from the original families G2 covering F (Qportrayer).
The size of the intermediate results of evaluating Q?portrayer triple patterns on G2
is |Ω?portrayer| = 18. Then, the query executor evaluates Plan(Π?character, P-S) by
requesting the relevant partitions G1, G6, G7, G8, G9, and G10 generated based

70

4.4. smart-KG as an LDF interface (SKG)

the original families F1, F6, F7, F8, F9, and F10 as the minimal subset of partitions
required to resolve Q?character as in the case of not materializing grouped partitions,
we ship the original families that cover F (Q?character). This subset of partitions are
locally queried on the client-side to retrieve the solution mappings of Q?character.
The size of the intermediate results is |Ω?character| = 24. The example demonstrates
the trade-off between materializing grouped families on a hard disk and shipping
original families with additional data transfer and join operations. In Setting 1, the
resolution of the query Q?character required the shipment of 24 triples, whereas in
Setting 2, 36 triples were shipped. This highlights the impact of grouping strategy
on the total number of shipped triples. Finally, the final solution mappings are
computed similar to Case Setting 1.

• Case Setting 3: Similar to the previous case of Setting 2, we serve G2 to resolve
Q?portrayer. Additionally, we resolve the Q?portrayer by serving the partitions G1,
G6, G7, G8, G9, and G10 that are materialized from original families. It is worth
noting that partitions from grouped families such as F12, F14, and F17 are not
shipped, despite containing of the necessary predicates since the generation of a
minimal subset is not possible and this will cause shipping repeated triples that
belong to multiple groups would result in added cost for shipping and client-side
filtering. In this case, if we decided to ship F12, F14, and F17, we will have repeated
triples representing Joey and Chandler and Phoebe while we are missing the triples
representing Rachel.

4.4 smart-KG as an LDF interface (SKG)
We will give an abbreviated name to smart-KG as SKG [AFA+20] for simplicity. The
server holds (compressed and queryable) partitions per common predicate families of G.
As we discussed, SKG uses families as a basis for inducing a graph partitioning of G,
with one partition Gf per f ∈ F (G) [AFA+20].

We can interpret SKG as an LDF interface as follows:

• admissible patterns are defined by submitting a predicate family f ′ = {p1, . . . pk},
which may be interpreted as a pattern k

i=1{(?S, pi, ?Pi)}, or resp., in SPARQL
syntax, as {?S p1 ?P1; p2 ?P2; ...; pk ?Pk.},

• Ω = {∅} is the only admissible binding set, i.e., SKG does not consider binding
restrictions,

• the selector function may be viewed as a variation of s(·) as follows: while the SKG
server API returns a graph Gf per family f ∈ F (G) matching P , the union of all
these graphs is defined as

sSKG(G, P, Ω) = {t ∈ G | ∃t′ ∈ s(G, P, Ω) : subj(t) = subj(t′)}

71

4. Hybrid Shipping for SPARQL Querying on the Web

That is, while strictly speaking, indeed rather several partitions Gf are returned,
sSKG(G, P, Ω) = f⊇f ′ Gf defines the union of all these partitions Gf ⊆ G such
that f ′ ⊆ f which are sent to the client,

• Φ: only n = ∞ is admissible, i.e., no paging is supported since the union of all
relevant partitions is returned – unlike SPF an over-estimation representing all
subgraphs relevant to a star-shaped subquery

An SKG client hence decomposes BGPs into families f ′ of star-shaped subqueries – on
an abstract level, discarding variables or concrete bindings – and fetches via this API
the subgraphs Gf (that are available in compressed form on the server) matching f ′;
single non-star triples in the BGP are retrieved via TPF and joins between star-shaped
subqueries, and single triple queries are then computed on the client-side. As for Φ, note
that it would not make sense to decompose family-based partitions into chunks since
chunking up the HDT-compressed partitions would require decompression.

4.5 Experimental Evaluation
We compare the performance of smart-KG with state-of-the-art SPARQL engines. All
datasets, queries, and results of our experiments using different workloads are available
online.9

Knowledge Graphs. We use four RDF graphs (cf. Table 4.1): three synthetic datasets
from the Waterloo SPARQL Diversity Benchmark (WatDiv) [AHÖD14], with sizes of
10M, 100M, and 1000M triples; plus, we use the real-world DBpedia [LIJ+15] dataset
(v.2015A).

Table 4.1: Characteristics of the evaluated knowledge graphs
RDF Graph G #Trip. |G| #Subj. |SG| #Pred. |PG| #Obj. |OG| |P ′

G| |P ′
core| |F ′

core| |Gserv | C.Time (h)
WatDiv-10M 10,916,457 521,585 86 1,005,832 59 59 10,106 21,210 1
WatDiv-100M 108,997,714 5,212,385 86 9,753,266 59 59 22,855 37,392 7
WatDiv-1B 1,092,155,948 52,120,385 86 92,220,397 59 59 39,046 52,885 12
DBpedia 837,257,959 113,986,155 60,264 221,623,898 218 84 35 29,965 23

Queries and Workloads. For WatDiv, we consider 80 workloads (one per client), each
of them with 154 SPARQL queries that were selected uniformly at random from the
WatDiv stress test queries [AHÖD14].

The queries contain up to 10 joins with varying selectivity and shapes (star, path, and
snowflake). All workloads follow nearly the same distribution of query selectivities and
shapes. For DBpedia, we use queries from the real-world LSQ query log [SAH+15]; here,
we are interested in highly-demanding queries, hence, we randomly selected 12 BGP
queries (out of 259) with runtime higher than 1s. We report the average measures of
three independent executions.

Compared Systems. We evaluate the following systems:

72

4.5. Experimental Evaluation

Figure 4.5: The query plan of Example 4.4a according to TPF implementation that we
have followed in our Experiments

- smart-KG: We implement both client and server in Java9, extending the TPF imple-
mentations11. HDT indexes and data are stored on the server’s disk, with no client-side
family caching. In this experimental evaluation, we have employed a query planner
identical to that utilized in the Triple Pattern Fragments (TPF) implementation, which
adheres to a left-linear plan at the level of triple patterns, as depicted in Figure 4.5.
This plan, as illustrated in Figure 4.5, differs from the plan utilized throughout the
remainder of the thesis, as we sought to ensure fair comparability with TPF and
eliminate any potential performance gains derived from the query planning. It should
be noted that both query plan 4.4c and 4.5 have their advantages depending on the
input query. In Section 6.5, we provide a detailed evaluation of both query planners to
evaluate their performance and analyze their behavior under different scenarios.

- Triple Pattern Fragments (TPF): We use the node.js TPF client, recommended
by the authors, plus the Java TPF server 12, as the smart-KG TPF handler is also
implemented in Java.

- Virtuoso: We run Virtuoso [EM09] (v7.2.5), without quotas or limits.

- SaGe: We use the Python SaGe server and the Java SaGe client with recommended
configurations13.

We configured Virtuoso and SaGe to run with 4 workers [MSM19]. We omit the compar-
ison with brTPF [HA16], as existing evaluations report that the performance lie between
TPF and SaGe [MSM19], and our tests show scalability problems of the brTPF server
implementation [HA16] for the WatDiv-100M and Watdiv-1000M graphs.

11http://linkeddatafragments.org/software/
12https://linkeddatafragments.org/software/
13https://github.com/sage-org/

73

http://linkeddatafragments.org/software/
https://linkeddatafragments.org/software/
https://github.com/sage-org/

4. Hybrid Shipping for SPARQL Querying on the Web

Hardware Setup. We use the following technical infrastructure.

- Client specifications: Clients ran on 1, 20 10, 40, and 80 physical machines, each
with identical hardware specifications: Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz,
32GB of DDR4 RAM, 512GB M.2 NVMe SSD, running Fedora 29 (Linux Kernel v
5.0.14).

- Server specifications: The servers run on a VM hosted on a machine running
QEMU+ KVM hypervisor with Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz, 384
GB of DDR3 RAM, running Centos 7 (Linux Kernel v3.10.0). Compared server systems
were running on VMs configured with 4 CPUs and 32 GB RAM.

- Network configuration: For emulating realistic internet connection bandwidth from
consumer internet service providers, we limited the network speed of each client to 20
MBit, using tc [A+99].

Metrics. Our evaluation considers the following metrics:

- Number of Timeouts: Number of queries that time out. We set a timeout of 5
min. for WatDiv and 30 min. for DBpedia queries.

- Execution Time: Elapsed time spent by a client executing a workload, measured
with the time command of Linux.

- Resource Consumption: We report on CPU usage per core, RAM usage, and
network traffic. The clients and the servers were monitored using psutil14, a Python
library for retrieving information on running processes and system utilization.

4.5.1 Creation of Family-based Partitions
For each graph G, Table 4.2 shows the number of restricted and core predicates (|P ′

G|,
|P ′

core|), core families, |F ′
core|, and the materialized partitions after grouping/pruning,

|Gserv|, as well as the total computation time (including family computation, pruning
and partition generation). These numbers are obtained by fixing τl = 0.01/100 for all
G, while we set τh = 0.1/100 for DBpedia, as we empirically tested that the resultant
predicate set filters out both infrequent and heavy hitters. Likewise, we empirically set
αt = 0.05 for both datasets, αs = 0 for WatDiv, and αs = 0.01/100 for DBpedia. Fig.
4.6 shows an ablation study in DBpedia to determine the number of generated families
with different values of such parameters15.

Table 4.2 also shows that |F ′
core|, |Gserv|, and the computation time are sub-linearly

increasing with the graph sizes. In WatDiv, F ′
core = F ′(G), whereas in DBpedia, the

14https://psutil.readthedocs.io/en/latest/
15We omit αt as this study analyzes the size of families in the graph, while the extremely large families

pruned by αt tend to be generated when merging families.

74

https://psutil.readthedocs.io/en/latest/

4.5. Experimental Evaluation

Figure 4.6: Ablation study in DBpedia to select the parameters in partitioning algorithm

initial number of P ′
G-restricted16 families |F ′(G)| is >600K: the family pruning strategy

allows smart-KG to identify |F ′
core| = 35 core families, which are merged into ∼30K

materialised partitions.

4.5.2 Overall Query Performance
We report on performance for the WatDiv query workload, at increasing number of
clients and dataset size. The performance of smart-KG always considers the family
grouping/pruning strategies mentioned in Section 4.2.1.3; we also tested smart-KG
without grouping/merging, which however did not scale, due to requiring shipping large
numbers of small partitions with many redundant triples.

Increasing Number of Clients. In this part of the study, we focus on the graph
WatDiv-100M as this is in line with the size of open KGs published in the LOD Cloud17,
with an average of 183M RDF triples. Fig. 4.7 shows the results of executing the WatDiv-
100M workload on the query performance at a different number of concurrent clients (1,
10, 20, 40, and 80) in terms of (a) the number of timeouts, and (b) average workload
execution time per client.

Fig. 4.7a shows that smart-KG produces no timeouts at such relative modest but state-
of-the-art graph sizes. That is, even with 80 concurrent clients, our approach is able to
successfully finish all queries in the workload for all concurrent clients. In contrast, TPF
was not able to answer all queries within a 5 minutes timeout, even in the single client
configuration. The percentage of timeouts escalates with increasing number of clients,

16The 218 restricted DBpedia predicates cover over 40% of the predicates occurring in highly-demanding
BGPs (>1s of execution time) in the real-world LSQ query log [SAH+15].

17https://lod-cloud.net

75

https://lod-cloud.net

4. Hybrid Shipping for SPARQL Querying on the Web

(a) Number of timeouts

(b) Average execution time
Figure 4.7: Performance on the WatDiv-100M workload

from 10% in 1-client workload to an average of 28% with 80 concurrent clients. These
results confirm the scalability limitations of the system.

On WatDiv-100M, SaGe times out in fewer queries than TPF, but timeouts increase
significantly with the number of clients, reaching a non-negligible 15% of the queries for
80 concurrent clients.

The average workload execution time per client, in Fig. 4.7b, shows superior performance
and scalability of our approach, where performance remains constant irrespective of the
number of clients, as smart-KG limits the server load and joins are mostly performed
on clients over shipped KG partitions. For less than 20 concurrent clients, SaGe starts
slightly ahead of smart-KG. From this point and on, SaGe suffers from excessive delays,
and overall performance is degrading, e.g., smart-KG is up to 3.5 times faster with 80
clients. This is because SaGe executes SPARQL queries using a round robin policy to
avoid the convoy effect but, with an increasing number of clients, the increased waiting

76

4.5. Experimental Evaluation

(a) Number of Timeouts

(b) Average Workload Execution Time
Figure 4.8: Performance on the workloads (80 clients) at increasing KG sizes

time and server usage lead to degrading average completion time for queries.

In turn, TPF is significantly worse – up to three times slower – than the other systems
due to the enormous number of requests and the excessive data transfer. As we will show
in the next section, traffic is substantially higher with larger datasets because clients
need to ask for several server responses to evaluate a single query.

To complete the comparison, we also evaluate the performance of query shipping strategies
using a Virtuoso SPARQL endpoint. As shown in Fig. 4.7, Virtuoso behaves very similar
to SaGe with the difference that i) it shows no timeout and similar performance for
10 clients, but ii) its execution time is slightly degrading with 80 clients. Given these
results and in line with previous studies [MSM19], in the following sections, we focus on
comparing the performance of smart-KG with the shipping strategies of TPF and SaGe
only.

77

4. Hybrid Shipping for SPARQL Querying on the Web

Figure 4.9: Average execution time (80 clients) with DBpedia high-demanding queries

Increasing KG Size. Fig. 4.8 shows the performance of the evaluated systems at
increasing KG sizes, fixing the scenario to 80 concurrent clients. We execute the WatDiv
workloads over 10M to 1000M triples, which constitutes, to the best of our knowledge,
the largest experiment on client-side SPARQL query approaches to date.

Fig. 4.8a shows again the number of query timeouts. As expected, timeouts of TPF and
SaGe significantly increase with the size of the graph. TPF is not able to scale for the
WatDiv-1000M dataset, failing to answer 75% of the queries. Although SaGe is slightly
better than TPF, it fails to answer 68% of the queries with 80 concurrent clients. In
contrast, smart-KG reports the best results at scale, timing out only in the largest graph
for 10% of the queries.

Fig. 4.8b presents the average workload execution time for all systems and different sizes,
with 80 concurrent clients. As expected, average workload completion time increases
with the larger KGs, while smart-KG remains the fastest in all scenarios. TPF has
the longest execution time (and significantly longer in Watdiv-1000M) while SaGe is
on average 1.5 times slower than smart-KG in Watdiv-1000M. Note also that average
execution times include timeouts: since we have shown already that we do better in the
number of timeouts, we may assume that full execution times with unlimited runtimes
would be even more significantly in our favor.

DBpedia Queries. We evaluate the performance on DBpedia to consider real-world
data and high-demanding queries. Fig. 4.9 shows the performance results on 80 clients
for 12 representative queries of the LSQ log, omitting Q11 and Q12 which time out (>30
minutes) in all systems. The results are in line with our previous analysis: TPF is the
slowest (except Q1, Q2) and smart-KG is 2-3 levels of magnitude faster than SaGe in
all queries except for Q2, Q6, and Q10. These are the cases where SmartKG depends
heavily on TPF shipping, while SaGE can delegate to the SPARQL server.

78

4.5. Experimental Evaluation

4.5.3 Performance evaluation on different query shapes
While in the previous analysis, a workload consisted of queries with mixed characteristics,
we have performed a separate performance analysis on two specific query categories
predefined by the WatDiv Basic Testing [AHÖD14]: linear (L), which represents simple
path queries, and Complex queries workload, with more challenging queries including
combinations of low-selective star and path queries. WatDiv provides L-query templates
and we randomly generate 3 queries for each subtype (L1-L5) per client. The benchmark
has only three C queries (not templates), hence, we extend it by selecting 50 complex
queries (based on low selectivity patterns and high execution time) from the initial
intensive workload, for each client.

Fig. 4.10 shows the performance in the simplest L-queries of the different systems on
WatDiv-100M. Similar to our previous results, smart-KG reports a stable query execution
time, which ranges between 5-7 seconds.

SaGe has the best performance in the L3 and L4 workloads, with average execution
times of less than 2 seconds per query. However, the SaGe execution time is affected
by the number of clients for L1, L2, and L5. SaGe provides better execution time than
smart-KG with up to 20 concurrent clients, while smart-KG is more competitive for
the larger number of clients. Finally, TPF is the slowest approach in L2, L4, and L5
queries, while it excels in L1 and L3 up to 40 clients. TPF could not scale to 80 clients.

79

4. Hybrid Shipping for SPARQL Querying on the Web

(a) L1 (b) L2

(c) L3 (d) L4

(e) L5

Figure 4.10: Avg. execution time per client on the standard WatDiv-100M for L queries

80

4.5. Experimental Evaluation

(a) S1 (b) S2

(c) S3 (d) S4

(e) S5 (f) S6

(g) S7

Figure 4.11: Avg. execution time per client on the standard WatDiv-100M for S queries

81

4. Hybrid Shipping for SPARQL Querying on the Web

(a) F1 (b) F2

(c) F3 (d) F4

(e) F5

Figure 4.12: Avg. execution time per client on the standard WatDiv-100M for F queries

82

4.5. Experimental Evaluation

(a) C1 (b) C2

(c) C3

Figure 4.13: Avg. execution time per client on the standard WatDiv-100M for C queries

Figure 4.14: Complex Queries Workload

83

4. Hybrid Shipping for SPARQL Querying on the Web

4.5.4 Resource Consumption
Server Network Load. Fig. 4.15a shows the average network traffic per client (in GB)
on the intensive workload. We report the average per client, with 80 clients running in
parallel on WatDiv-100M.

TPF incurs the highest communication costs due to the number of requests and the ship-
ping of extensive intermediate results, which leads to poor query execution performance,
as shown before.

In contrast, SaGe produces the least data transfer among all the systems, as it works as a
SPARQL endpoint with a preemption model and no intermediate results are transferred.
The only additional data transfer overheads in SaGe are the saved plans when queries
are resumed, a relatively small cost depending on the number of calls required to finish
each query. This factor depends on the complexity of the queries and the number of
concurrent clients.

As expected, smart-KG requires more data transfer than SaGe, but up to 10× less
data than TPF. Most of the data transferred is due to partition shipping (cf. Fig. 4.15a
smart-KG-parts). Yet, the retrieved partitions can be reused for queries that require
the same partitions. Caching the partitions will execute streak queries with minimal
communication to the server. A streak is a concept defined in [BMT17] as sequence of
queries that appear as subsequent modifications of a seed query.

Server CPU, RAM, and Disk Usage. Fig. 4.15b shows that TPF and SaGe
extensively use the server CPU. In particular, SaGe and TPF respectively consume 80%
and 60% of the CPU to execute 10 clients in parallel, and both rapidly increase to 100%
for 40 and 80 clients. In practice, this reduces query throughput as most CPU time is
allocated to query processing while new requests are queued. In contrast, smart-KG
only uses 60% of the CPU to handle the workload on 80 parallel clients, which still gives
room for serving additional clients in the current hardware configuration. smart-KG
server consumes limited CPU thanks to its mixed triple pattern and partition shipping,
which hardly requires server CPU usage.

Fig. 4.15c shows that TPF has the overall highest server memory usage, while SaGe’s
consumption remains constant and low, thanks to its preemption model. smart-KG uses
the least memory consumption up to 20 clients and then slightly increases at 40 and 80
clients to 0.5 GB more than SaGe (due to TPF triple evaluation on the server).

We additionally compare to the resource consumption of Virtuoso, which shows relatively
constant CPU (∼40%) and increasing RAM consumption, exceeding TPF for 80 clients.
These values are in line with the significant timeouts reported previously (see Fig. 4.7).

Table 4.2 shows the raw data sizes (in N-Triples) of the graphs and storage requirements
for the evaluated systems. As expected, TPF and SaGe require a single HDT file, which
highly compacts storage needs. In contrast, the high number of HDT partitions managed
by smart-KG results in additional costs in disk space, doubling the raw size of the
WatDiv graphs (DBpedia uses less space given its more restricted pruning). Given that

84

4.5. Experimental Evaluation

Table 4.2: Comparison of storage requirements (in MB) for systems with HDT backend
vs original graph size (raw)

Dataset Raw SmartKG TPF/SaGe
WatDiv-10M 1,471 2,783 112
WatDiv-100M 14,876 29,711 1,186
WatDiv-1000M 151,862 310,574 12,793
DBpedia 158,197 122,440 17,904
Virtuoso takes ∼ 3 times the space of TPF/SaGe.

disk space is relatively affordable for servers, smart-KG provides a reasonable trade-off
for faster and more balanced, SPARQL query execution.

Client CPU and RAM usage. As for client-side resources, as expected, Virtuoso
excels with 80 clients in the WatDiv-100M workload (fully in the server, hence the clients
run with 8% RAM size). SaGe also shows reasonable (average 15%) usage of the client
CPUs, as it performs only two main operations on the client side: first, resuming query
execution through received saved plans from the server; second, a subset of SPARQL
operators such as filter, order by, and aggregations are offered. TPF performs joins of
triple pattern results all locally on the client-side which is costly, leading to higher (55%)
client average CPU usage. smart-KG finally also depends on the client to execute query
stars as well as TPF Join processing, so that client average CPU usage is higher, with
70% yet visible for most of the current client systems.

These percentages decrease with higher numbers of clients because network waiting time
dominates in the case of TPF and smart-KG and the long waiting queues in the case of
SaGe. Client memory consumption remains fairly constant and low for both SaGe and
TPF. smart-KG consumes more client memory, however still reasonable. For instance,
smart-KG utilizes up to 3 GB RAM.

85

4. Hybrid Shipping for SPARQL Querying on the Web

(a) Network traffic per client (in GB) on the intensive workload at increasing KG sizes

(b) Avg. Server CPU Usage (in %) at increasing number of clients (WatDiv-100M)

(c) Avg. Server RAM Usage (in GB) at increasing number of clients (WatDiv-100M)

Figure 4.15: Server-resources consumption on the intensive workload.

86

4.5. Experimental Evaluation

(a) Average Client CPU Usage (in %)

(b) Average Client RAM Usage (in MB)

Figure 4.16: Client CPU and RAM usage on the intensive workload at increasing sizes

87

4. Hybrid Shipping for SPARQL Querying on the Web

4.6 Summary and Limitations
In this chapter, we have introduced smart-KG, a hybrid approach to efficiently query
Knowledge Graphs (KGs) on the Web, balancing the load between servers and clients.

We combine the Triple Pattern Fragment (TPF) strategy with shipping compressed
graph partitions that can be locally queried. On the server side, we consider a predicate
family-based partition that regards the set of predicates describing each family, and
we propose different heuristics to control the size of the partitions, as well as server
operations to serve partition data and metadata. The served partitions are based on
predicate families and different pruning parameters control the sizes and numbers of
the partitions. The smart-KG client implements a query decomposer, planner, and
executor tailored to trade off TPF and partition shipping. Our evaluation shows that
smart-KG significantly outperforms the state of the art, especially with an increasing
number of concurrent clients, and on challenging BGP queries. We also show that, at the
cost of reasonable client resources, smart-KG improves server availability, consuming
significantly less CPU and RAM than most of the evaluated systems, and reducing TPF’s
network traffic. However, we identify a number of shortcomings in our approach which
hint at possible future directions:

• The creation of family-based partitions could potentially require the data publishers
to have advanced skills in knowledge management in order to assign the best-fitting
values to the pruning parameters used by the server (i.e., P ′

core, τl, τh, αs, and αt).
As a future work, an extensive analysis to the real-world open KGs is required to
provide an automated parameter tuning according to the input KG [CW06].

• We argue (and have experimentally demonstrated) that our approach using family
partitioning provides a reasonable trade-off of shipping sizes; still comparing to other
partitioning strategies (e.g. predicate-wise, hash partitioning or a combination of
multiple strategies) is on our agenda. In Chapter 6, we provide a generalization from
the original LDF proposal to include (possible) implementation of Web querying
interfaces based on existing partitioning techniques.

• The creation of family-based partitions is quite an expensive task. Possible im-
provements are as follows: (i) a multi-thread partition generation will potentially
boost the generation performance, and (ii) Exploiting query logs of KGs served on
the web to prioritize the generation of user-centered partitions [BMT17].

One of our core findings is that smart-KG only utilizes 60% of the server CPU to execute
the workload on 80 parallel clients, which still gives room for further exploiting the server
resources. In Chapter 5, we dynamically delegate the load between servers and clients
for improved utilization of hardware resources.

88

CHAPTER 5
A Balanced Access to Web

Knowledge Graphs

The availability of Web querying interfaces has been improved by smart-KG, which
also demonstrates a competitive performance. However, current interfaces [VSH+16,
AKMH20, MSM19], including smart-KG, utilize fixed load distribution strategies that
may not be optimal in dynamic environments with varying workloads, network, and
client and server capabilities.

Enabling Web querying over Knowledge Graphs is still impractical due to the imbalanced
distribution of the query execution load between clients and servers. In this chapter, we
present two possible strategies to dynamically distribute the query workload (i) an initial
proposal that combines the strengths of various existing Linked Data Fragments (LDFs)
based on a predefined heuristic, as well as (ii) WiseKG is a system that employs a cost
model to dynamically delegate the load between servers and clients by combining client-
side processing of shipped partitions with efficient server-side processing of star-shaped
sub-queries, based on the current server workload and client capabilities.

By applying the cost model, servers can dynamically share the query processing tasks with
the clients, making better use of server resources and retaining high performance even
during high load. At the same time, they achieve significantly lower query processing times
and by processing subqueries locally on the server, avoid unnecessary data shipping during
periods with an overall low query processing load. WiseKG combines two approaches
that have recently been proposed to optimize SPARQL query processing: Star Pattern
Fragments (SPF), which exploits server-side evaluation of star-shaped subqueries, and
smart-KG, our work from the previous chapter, which exploits client-side evaluation of
star-shaped subqueries by retrieving compressed Knowledge Graph partitions from the
server. By dynamically switching between these strategies based on the current server
load and client capabilities.

89

5. A Balanced Access to Web Knowledge Graphs

Chapter Organization. The remainder of this chapter is organized as follows:

• In Section 5.1, we provide a motivating example.

• In Section 5.2, we give an overview of WiseKG, a novel system that dynamically
shifts the query processing load between client and server, followed by a presentation
of the server-side cost model. WiseKG employs the cost model to minimize the
total time consumed by client-side and server-side components while considering
the current load on the server and the client.

• In Section 5.3, we explain the collaboration between the WiseKG client and server
to process SPARQL queries.

• In Section 5.4, we present an empirical evaluation of WiseKG using demanding
query workloads on real-world KGs as well as synthetic KGs up to 1 billion triples
shows that WiseKG significantly outperforms the state of the art.

• In Section 5.5, we summarize and outline the approach limitations.

5.1 Motivating Example
All thus far described KG APIs alone suffer from an imbalanced load on either the
client-side (dumps, TPF, SKG) or server-side (SPARQL endpoints, SaGe, SPF). In
this thesis, we, therefore, advocate that, based on decomposing BGPs into star-shaped
subqueries and characteristics of these subqueries (e.g., selectivity and intermediate result
cardinality estimation), we can optimally distribute the query processing load between
client and server. Hence, given statistics as well as information about the current server
workload and the client’s capabilities, we can pick the best-suited KG API.

In particular, the factors that our cost model considers are server load, client computing
resources, and the number/size of intermediate results to be transferred over the network
(in combination with available bandwidth), since several sources [AKMH20, AFA+20,
HA20, MVC+12, MKH19] identified these as important dimensions when accessing KGs.

To elaborate, let us consider query Q given in Figure 5.1a. All triple patterns of Q have
quite large cardinalities, meaning that both single pattern interfaces (TPF, brTPF) would
need to send enormous numbers of requests to the server and ship large intermediate
results to the client when processing the query.

For both star-based interfaces (SPF and SKG), the query would be decomposed into
two stars and a single triple pattern: sp1 = {tp1, tp2, tp3}, sp2 = {tp4, tp5}, and tp6.
sp1 has 89,366 solution mappings, and sp2 has 600,349 solution mappings. Both SKG
and SPF would estimate the result sizes of star patterns and, in essence, order the
query execution plan accordingly to (sp1, sp2, tp6), i.e., starting with sp1. SKG ships a
partition containing 1,628,572 stars in total leading to excessive data transfer even though
the partition is HDT-compressed. SPF, on the other hand, only ships the 86,366 stars

90

5.1. Motivating Example

that actually match sp1, resulting in less network overhead and faster query processing.
However, in order to process the join between sp1 and sp2, SPF’s client join processor
would batch the 89,366 bindings into groups of 30 bindings each, sending one request
per batch, amounting to 2,979 requests. This overhead could be conveniently mitigated
by instead shipping the compressed partition for sp2 and joining on the client: this
example illustrates how a combination of SPF’s server-side star evaluation with SKGs
partition shipping could outperform either approach alone. Moreover, note that in case
of a high server workload, the additional network overhead for transferring the partition
for sp1 might still be affordable, compared to server-side SPF processing of sp1 using the
overloaded server.

select ∗ where {
?album dbo: artist ? artist . # tp1: 146,716 matches (sp1)
?album rdf:type dbo:Album . # tp2: 147,917 matches (sp1)
?album dbo:releaseDate ?date . # tp3: 212,290 matches (sp1)
? artist dbo:genre ?genre . # tp4: 576,000 matches (sp2)
? artist foaf :name ?name . # tp5: 4,146,579 matches (sp2)
?song dbo:writer ? artist . # tp6: 200,969 matches

}

(a) Show artists’ albums, genres, and the songs they have written

tp1 tp2

tp3
tp4 tp5

tp6

SP1

SP2

SKG
SPF

(b) Query execution plan for (spSP F
1 , spSKG

2 , tpSP F
6)

Figure 5.1: Example of processing a SPARQL query with WiseKG

91

5. A Balanced Access to Web Knowledge Graphs

5.2 WiseKG

In the spirit of the example presented in Section 5.1, WiseKG enables to leverage (i) the
characteristics of the star-shaped subqueries as well as (ii) information on the currently
available client and server resources, to estimate the cost of processing each star-shaped
subquery on the client (using SKG) or on the server (using SPF), – choosing the most
efficient execution strategy dynamically.

5.2.1 Overview
WiseKG employs a dynamic cost model to determine an annotated query plan: in order
to denote query execution plans with particular interfaces to be used per subquery,
we will use superscripts SPF and SKG, i.e., for our example the annotated plan
Π = (spSP F

1 , spSKG
2 , tpSP F

6). In the case of the example in Figure 5.1b this would mean
that sp1 is evaluated via SPF on the server, sp2 is executed using SKG on the client, and
the resulting bindings from joining both are given as input Ω to a call of tp6 executed
again using SPF on the server1.

Upon receiving a BGP P from the client, the WiseKG server will decompose it into
star-shaped subqueries, and use its cost-model to create an annotated query plan Π that
is returned to the client, along with a timestamp τ denoting plan expiry. The client
then, in the order specified by the server, executes Π using the APIs specified in the plan
annotations. In case the execution is not completed by τ , the client needs to request
a new annotated plan, which may look different – as mentioned before and illustrated
in the example, the choice of API per subquery taken by the server may depend on its
current load, as discussed in the following.

Formally, the WiseKG server API offers the following interface calls to access KG G:

• an SPF LDF API control SPF (P, Ω) returning sSP F (G, P, Ω) ,

• an SKG LDF API control SKG(P, Ω) returning sSKG(G, P, ∅)2,

• an execution plan interface Plan(P) returning a pair(ΠP , τ).

We will use the notation c(P, Ω) to denote that a (star-shaped) sub-pattern P is executed
by a control c ∈ {SPF, SKG} – in the spirit of LDF, we expect also other (hypermedia)
controls to be callable in addition to SPF and SKG in the future. Further, we assume
that the call to c(P, Ω) on the client side is converted to a set of bindings through a
function evalc(P, Ω) = Ω ▷◁ [[P]]G. Note that, depending on whether the underlying
selector function of c(P, Ω) is already accepting bindings, directly returning Ω ▷◁ [[P]]G
(such as for SPF) or only returning a graph of which [[P]]G can be computed and then

1Note that for triple patterns, SPF is equivalent to brTPF so we can use the SPF interface also for
single triple patterns.

2Note that SKG does not allow to ship bindings, cf. Section 4.2.2.

92

5.2. WiseKG

joined with Ω on the client (such as for SKG), evalc incurs more or less work on the
client side.

Plan(P) maps a BPG P to an annotated plan ΠP along with the expiry timestamp
τ = τC + ι, where τC corresponds to the current time, and ι is a fixed time quantum per
query3. ΠP is constructed from S(P) by (i) identifying the best join amongst stars based
on cardinality estimations and (ii) determining, based on factors such as the current
load on the server and the estimated network/processing cost, the best interface (SPF
or SKG) per subquery. Before we explain (server and client) query processing in more
detail (cf. Section 5.3), we first present the server cost model, which is used to make this
latter choice.

5.2.2 Server-Side Cost Model
In this section, we present WiseKG’s server cost model used to determine the choice
between client-side evaluation using SKG or server-side evaluation using SPF. The
cost model is inspired by the classic R∗ optimizer [ML86] from the field of distributed
databases [ML86, ZMG+20]. In the R∗ model, the total time is the sum of four-time
components (CPU processing, messaging, data transfer, and I/O) that can be estimated
for a query Q as:

cost(Q) = processing + Messaging + data transfer + I/O

Following the R* model, we consider, in our client-server architecture, the following
components to approximate the total time consumed by the client and server to process
a star subquery: the estimated number of CPU instructions (#CPU), the estimated
number of I/O operations (#IO), as well as two communication cost components – the
estimated number of requests (#M) and estimated number of transferred bytes (#BY T)
over the network per query. WiseKG’s cost model for a given star subquery is then
defined as

cost(sp) = WCP U × (#CPU)
Processing

+ WMSG × (#M)
Messaging

+ WBY T × (#BY T)
Data transfer

+ WIO × (#IO)
I/O

(5.1)

where the weights WCP U , WMSG, WBY T , and WIO help estimate the time required by
the client and server hardware configuration to perform a CPU instruction, the time
required to send an (HTTP) request message from a client to a server over the network,
the time required to transfer one byte from a server to a client over the network, as well
as the time required for a disk I/O operation. It is important to note that WiseKG’s
server optimizer is tailored to embed dynamic factors to reflect the current server load.
These weights are estimated as follows:

3Somewhat similar to/inspired by SAGE’s[MSM19] query suspension timeouts.

93

5. A Balanced Access to Web Knowledge Graphs

WCP U : We estimate time per CPU instruction as the inverse of the CPU’s IPS (Instruc-
tions per second) rate, damped by the current CPU load in percent4:

WCP U = 1
IPS × (100% − CPUusage)

WMSG: The average time to transmit an HTTP request from a client to the server. In
our experiments and network setup, similar to SaGe’s experiments [MSM19], we assume
a constant value of WMSG = 50ms for all clients. In a real-world scenario, we would
measure this delay based on an initial HTTP request per client.

WBY T : We estimate WBY T by the conservative minimum between the available server
bandwidth bwserv (which we estimate as the difference between the bandwidth of the
server network card reduced by the average data transfer over the network in the last
1 minute, again checking every second) and the client bandwidth bwclient, which we
estimate as 20Mb/sec in our setup, similar to [AFA+20]. This way, WBY T takes into
account the current network usage of concurrent clients. In our experiments,

WBY T = 1
Min(bwclient, bwserv)

WIO: We measure I/O in terms of loading chunks of 1MB from disk, i.e., we estimate
WIO as the time required to read 1MB to the memory. In WiseKG, the I/O times differ
per chosen API: for SPF, a single HDT file of the entire graph G is used and mapped
into memory while auxiliary bitmap indexes remain in memory to help localize potential
mapping solutions (using approx. 3% of the entire HDT file altogether [FMG+13]). Thus,
the I/O time accounts for transferring non-cached blocks that might contain the mapping
solutions to memory. In SKG, the I/O time is due to the server reading HDT partitions
from disk in order to ship those to the client; on the client side, we assume processing
continues in memory, thus not involving further I/O operations.

We note that our experiments have shown that in fact, I/O is a negligible factor in our
setup; for both SPF and SKG (we perform a respective experiment with a stress-testing
workload described in Section 5.4.1), we verified that the amount and difference in I/O
times in both approaches was dwarfed by the communication costs. Therefore, we leave
out this factor in our cost estimation model (WIO = 0).

The final time cost estimates of client-side SKG evaluation based on shipped partitions vs.
server-side SPF evaluation of star patterns are given in Definition 5.1 and Definition 5.2.
For a query BGP P , these costs are estimated for each star pattern sp ∈ S(P).

4We estimate this current CPU load as the average percentage of CP Uusage in the previous minute
(checking every 1sec). Note that for our experiments we only compute this CPU usage on the server
side, i.e. for WCP Userv , whereas for WCP Uclient we assume CP Uusage = 0, i.e., full availability of client
resources.

94

5.2. WiseKG

Definition 5.1 (Cost of SKG Star Pattern Evaluation). Given a star pattern sp ∈
S(P) and a plan ΠP , as well as the set of families Fsp = {f ∈ F (G) | f ⊇ pred(sp)}
relevant for sp in G, the cost in time of evaluating sp on using SKG is estimated as
follows:

costSKG(sp, Π) = WCP Uclient
× card(sp, Π) × it

#CPU

+WMSG × |Fsp|
#M

+

WBY T ×

f∈Fsp

size(f)

#BYT

+ WI/O ×

f∈Fsp

size(f)

#IO

Definition 5.2 (Cost of SPF Star Pattern Evaluation). Given sp, ΠP , and Fsp, the
cost in time of evaluating sp using SPF is estimated as follows:

costSP F (sp, Π) = WCP Userv × card(sp, Π) × it

#CPU

+

WMSG × card(sp, Π)
Φ(n)
#M

+

WBY T × card(sp, Π) × bt

#BYT

+WIO × size(G)
#IO

Definitions 5.1 and 5.2 use the following functions and variables:

• card(sp, Π) returns an estimated result cardinality for evaluating star pattern
sp using an estimation of the number of bindings for previously evaluated star
patterns in Π. This estimate (based on statistics about the sizes of subgraphs per
characteristic set) is described in [NM11].

• size(·) is either the size of an HDT file (plus index) for a partition corresponding to
a family f ∈ F (G) or, for size(G) the size of the HDT file for the entire graph G5.

• it is the number of CPU instructions needed to process each triple in the result
set. In general, we rely on HDT algorithmic costs which are sub-linear and close to
constant for most operations [FMG+13]; we only measured one millisecond (or at
most a few milliseconds) in our experiments. We therefore set this factor to it = 1.
Different IPS rates in the server and client are considered in the different weights:
WCP Userv and WCP Uclient

.
5Note that SPF relies on a single HDT for G whereas SKG only transfers the HDT files corresponding

to Fsp.

95

5. A Balanced Access to Web Knowledge Graphs

• bt is the average number of bytes per triple in the result; we estimate this factor by
averaging the size of the triples in each family partition.

5.3 Query Processing
In this section, we detail how the WiseKG server and client work together to process
SPARQL queries. In particular, we describe how the query processing is performed on
the server side and on the client side.

5.3.1 Server-Side Query Processing
Since the server-side processing of star-shaped subqueries in SPF and SKG APIs running
on the server are explained in detail in [AFA+20] and [AKMH20], we mainly focus on
the creation of the annotated execution plan in this section: when the WiseKG server
receives a Plan(P) request for a BGP P , it creates a query execution plan specific to P ,
which it returns along with the expiry timestamp τ to the client for execution; the resp.
algorithm to compute Plan(P) is shown in Alg. 5.1.

The first step is to decompose the query into star-shaped subqueries (line 2). To create
the execution plan, we find the star-subquery with the lowest cardinality estimation (line
5-8) and add it to the plan; when we find a query with an empty result (e.g. in case no
matching family partition exists [AFA+20]), we can stop since the final result will then
also be empty. The star pattern with the lowest cardinality estimation is selected first
(line 9), thus overall in the final plan, patterns are ordered by estimated cardinality.

Then, the estimated costs for SPF and SKG are compared in Line 10; depending on the
cost models from Section 5.2.2, each subquery is annotated with the resp. control for
evaluating the star pattern on the server, i.e., SPF (line 11) or the client SKG (line
13). Here, the append function just appends the annotated star pattern to the end of the
plan. When there are no more subqueries left in the star decomposition, the algorithm
returns the plan (line 16) after computing the expiry timestamp (line 15).

For the query Q shown in Figure 5.1a, this algorithm could compute the execution plan
in the join order visualized in Figure 4.4c (unless the server load is too high, in which
case SP1 could also potentially be suggested to be executed using SKG).

Finally, as a side note, we note that based on the fact that not all family partitions in
SKG are necessarily materialized on the server – SKG does not materialize HDT files
over a certain partition cardinality threshold (for details, cf. [AFA+20]); in such cases,
the concrete implementation of Alg. 5.1 defaults to SPF, i.e., server-side evaluation of
the resp. star pattern, independent of the cost.

5.3.2 Client-Side Query Processing
Processing queries on a WiseKG client relies on an approach similar to the one presented
in [AKMH20], which we adapt herein to accommodate for client-side processing of HDT

96

5.3. Query Processing

Algorithm 5.1: Create an annotated query execution plan
Input: P = {tp1, tp2, . . . , tpn} // a BGP
Output: (Πp, τ) // an annotated plan and its expiry time

1 Function Plan(P)
2 S ← S(P)
3 Πp ← ()
4 while S ̸= ∅ do
5 for sp ∈ S do
6 cntsp ← card(sp, Πp)
7 if cntsp = 0 then
8 return ()
9 end

10 end
11 spi ← sp where sp ∈ S and cntsp ≤ cntsp′ for all sp′ ∈ S
12 if costSP F (spi, ΠP) ≤ costSKG(spi, ΠP) then
13 ΠP ← append(ΠP , (spSP F

i))
14 end
15 else
16 ΠP ← append(ΠP , (spSKG

i))
17 end
18 S ← S \ {spi}
19 end
20 τ ← τC + ι
21 return (ΠP , τ)
22 end

shipped family partitions. In the following, we describe the basic ingredients that the
client needs to process full SPARQL queries: WiseKG is able to process full SPARQL
queries including operators such as UNION and OPTIONAL, FILTER, etc.,6 which are all
evaluated on the client-side. Herein, we only focus on the BGP evaluation part.

The general approach for processing BGPs P is as follows:

1. Retrieve the query execution plan and time quantum for P from the server by
calling Plan(P) = (ΠP , τ).

2. For each star pattern spc ∈ ΠP with control c ∈ {SPF, SKG} in ΠP and solution
mappings from previously evaluated operators Ω, iteratively do the following:

a) If τ < τC , i.e., the plan has expired, the client requests a new execution
plan/expiry based on the remainder of P that has not yet been processed.

6with the exception of GRAPH query patterns, since HDT does not support named graphs.

97

5. A Balanced Access to Web Knowledge Graphs

b) Otherwise we call the interface c(sp, Ω) and convert it to a set of bindings
using evalc(sp, Ω), which as mentioned above, in the case of c = SKG involved
client-side evaluation of the star-shaped pattern on the shipped HDT, whereas
SPF directly returns the result bindings.

The exact algorithm implementing these steps in a recursive manner is shown in Alg. 5.2.

Algorithm 5.2: Processing a Query Execution Plan
Input: Π = (spc1

1 , . . . , spcn
n) // an execution plan;

τ // expiry timestamp;
Ω′ // a set of bindings

Output: Ω //set of solution bindings
1 Function evalP lan(Π, τ, Ω)
2 if τ < τC then
3 (Π, τ) ← Plan(BGP (Π))
4 end
5 if Π = spc then
6 Ω ← evalc(sp, Ω′)
7 end
8 else
9 Ω ← evalP lan((spc1

1 , . . . , sp
cn−1
n−1), τ, Ω′)

10 Ω ← evalP lan(spcn
n , τ, Ω)

11 end
12 return Ω
13 end

Line 2 checks whether the plan has not yet expired; in that case, the algorithm calls
Plan(Π) to reevaluate the plan on the server (line 3)7. The way this is currently done can
be understood as follows: assuming the originally requested plan is (spc1

1 . . . spci
i . . . spcn

n)
and the client reaches τ at step i. Then the client will restart calling Plan({spi, . . . spn})
receiving a new plan Π{spi,...spn} upon which it continues; obviously this could change
the interface choices per star for the remaining plan, based on the current server load
situation. Continuing on Alg. 5.2, in case the plan is associated with a single star pattern
sp (line 4), we call the control c ∈ {SPF, SKG} to retrieve the output plan and obtain
the output solution mappings (line 5). Otherwise, the algorithm will make a recursive
call for the left subtree (line 8) the resulting bindings of which are handed over to the
call of the right subtree (line 9).

7Here, BGP (Π) denotes the corresponding (non-annotated) BGP for plan Π.

98

5.4. Experimental Evaluation

5.4 Experimental Evaluation
In this section, we compare the performance of WiseKG with the state-of-the-art SPARQL
query processing interfaces.

5.4.1 Experimental Setup
In this section, we describe the experimental setup, including the systems we compare
against, datasets, queries, and hardware and software configurations.

Implementation details. We implemented both WiseKG client and server in Java8

extending the TPF implementations9 so that we ensure comparability and compatibility
with the spectrum of Linked Data Fragment (LDF) approaches including TPF, SPF,
and smart-KG. The WiseKG server relies on SPF star pattern fragments for server-
side processing of star subqueries. Furthermore, the WiseKG server adopts the family
generator component from smart-KG [AFA+20] to generate, manage, and store the
HDT files of the family-based partitions. In our server-side cost model, we depend on a
cross-platform operating system and hardware information library for Java10 to retrieve
system information about clients and the server resources usage including network and
CPU usage. The WiseKG client implements a pipeline of nested iterators similar to
brTPF and SPF client implementations.

Configuration. To assess the performance of our system under different loads, we
perform experiments over eight configurations with 2i clients (0 ≤ i ≤ 7) issuing queries
concurrently for each configuration (up to 128 concurrent clients). Each concurrent client
executes one query at a time, i.e., at most 128 queries are executed at the same time.

Datasets. We use three different sizes of the Waterloo SPARQL Diversity Benchmark
(WatDiv) [AHÖD14] to test the scalability of our approach: 10M, 100M, and 1B triples.
In addition to these, we also use the real-world dataset DBpedia [LIJ+15] (v.2015A).
The characteristics of the evaluated RDF graphs are described in Table 4.1.

Queries. We consider three different query workloads for the WatDiv datasets: (i) a basic
testing workload named watdiv-btt that consists of queries obtained from WatDiv
basic testing templates11. Each client has a set of 20 queries including star queries (S),
linear queries (L), snowflake queries (F), and complex queries (C); and (ii) a diverse stress
testing workload named watdiv-sts that consists of queries obtained from the WatDiv
stress-testing suite[AHÖD14]. Each client has a set of 154 non-overlapping queries. In
addition to these workloads, we randomly selected 16 queries from a real-world LSQ
query log [SAH+15]; plus, we included 12 queries used to evaluate smart-KG [AFA+20].

Compared Systems. To test the effectiveness of dynamically shifting star-subquery
processing between client-side and server-side based on the status of server-side resources

8https://github.com/WiseKG/WiseKG-Java
9https://github.com/LinkedDataFragments/Server.java

10https://github.com/oshi/oshi
11https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

99

https://github.com/WiseKG/WiseKG-Java
https://github.com/LinkedDataFragments/Server.java
https://github.com/oshi/oshi
https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

5. A Balanced Access to Web Knowledge Graphs

disregarding the cost model defined in Section 5.2.2, we implemented a version of
WiseKG named WiseKGheuristic that relies on more straightforward heuristics. Initially,
WiseKGheuristic executes all star subqueries on the server side up to a predefined CPU
usage threshold σ. When the threshold is reached, WiseKGheuristic produces an execution
plan exclusively based on shipping family partitions. In addition, we evaluate WiseKGcost,
our main contribution, which is a version of WiseKG that relies on the cost model
described in Section 5.2.2. Note that we use the recommended versions of both server and
client for all the evaluated systems including Star Pattern Fragment (SPF) [AKMH20],
smart-KG [AFA+20], SaGe [MSM19], and Triple Pattern Fragments (TPF) [VSH+16].

Hardware configuration. We ran all 128 clients concurrently on a virtual machine
with 128 2.5GHz vCPU cores, 64KB L1 cache, 512KB L2 cache, 8192KB L3 cache, and
2TB main memory. To ensure an even distribution of the resources between the clients,
we limited each client (for all approaches) to run with a single vCPU core and 15GB
of main memory. WiseKG and all the compared system servers were run on the same
server with 32 3GHz vCPU cores, 64KB L1 cache, 4096KB L2 cache, 16384KB L3 cache,
and 128GB main memory. Clients and servers are located on the same 1 GBit network.
In order to emulate a more realistic bandwidth scenario, we limited the network speed of
each client to 20 MBit/sec.

Evaluation metrics.

• Timeouts: number of queries that exceed the timeout.

• Workload Completion Time: the total time required by a client to complete a
workload.

• Query Execution Time: the average execution time for takes to complete a
query.

• Server CPU load: the average percentage of server CPU usage during the
execution of a query workload.

• Number of Requests made to the Server: the number of requests a client
sends to the server.

• Number of Transferred Bytes: the number of bytes transferred between server
and client, i.e., the sum of both directions.

Software configuration. Following the experiments performed in [MSM19, AFA+20,
AKMH20], we used a timeout of 300 seconds, i.e., 5 minutes, for all approaches. That
is, after 5 minutes we suspend the query execution. The page size Φ(n) for TPF, SPF,
and WiseKG was set to n = 100 (as in [AKMH20, VSH+16]) and the maximum number
of bindings attached to a request for SPF and WiseKG was set to |Ω| = 30 as it was
in [AKMH20]. In order to assess our approach against the others using as similar as

100

5.4. Experimental Evaluation

possible configurations, we set the time quantum ι to the same value as the overall
timeout for all systems, i.e., 5 minutes.12

5.4.2 Experimental Results

All results, incl. additional experiments, details on the implementation and configurations
used in the experiments (datasets and queries) are available online13.

System Performance Evaluation. In this part of the evaluation, we focus on analyzing
the behavior of the compared systems in the scenario of increasing KG size with the
highest number of concurrent clients (128 clients) using the watdiv-sts workload. As
shown in Figure 5.2, WiseKGheuristic, the vanilla version of WiseKG, performs significantly
better than the state-of-the-art systems in terms of performance and scalability, not to
mention WiseKGcost (just WiseKG hereafter) has even surpassed WiseKGheuristic.

Figure 5.2a shows that WiseKG produces no timeouts over the watdiv10M and watdiv100M
datasets for 128 concurrent clients. Moreover, even in the case of watdiv1B, WiseKG
only incurs 2% timeouts of the total workload queries. In contrast, none of the compared
systems was able to process all queries with a 5-minute timeout, except SPF and SaGe
on the watdiv10M dataset. When queries are executed over the watdiv1B dataset,
the percentages of timeouts reach 13% and 21% for smart-KG and SPF, respectively.
For SaGe and TPF, the percentages of timeouts increase up to 55%. These results
confirm the superior scalability of WiseKG compared to state-of-the-art systems. These
experiments show that even for a high number of clients, WiseKG is able to handle large
scale KGs.

Figure 5.2b shows the average workload completion time including queries that timed out.
WiseKG is up to 4 times faster than SPF and smart-KG, and up to an order of magnitude
faster than SaGe and TPF over watdiv1B with a load of 128 concurrent clients. In
addition, Figure 5.2b also shows that SPF and smart-KG have comparable average
workload time. smart-KG performs slightly better for watdiv100M and watdiv1B
datasets. This is not surprising since they similarly rely on star decomposition; SPF
executes the star subqueries on the server side while smart-KG ships the relevant partitions
for the subqueries and executes them on the client.

Compared to SPF and smart-KG, WiseKG provides a significant performance improve-
ment as a result of the proposed cost model that optimizes query processing by leveraging
the subqueries’ cardinality estimation as well as available client and server resources to
determine an efficient execution plan.

12In our current setup and evaluation covering widely used benchmarks in the area, the expiry
timestamp was hardly reached. While we already significantly outperform all state-of-existing approaches,
we still deem the addition of a plan expiry needed both conceptually (as the system resources change
dynamically over time and our model needs to consider the current “promises” it made to clients) and
useful for future workloads on larger knowledge graph.

13https://github.com/WiseKG/WiseKG-Experiments

101

https://github.com/WiseKG/WiseKG-Experiments

5. A Balanced Access to Web Knowledge Graphs

(a) Number of Timeouts

(b) Avg. Workload Time

(c) Queries per minute

Figure 5.2: Number of timeouts, average workload time, and throughput for 128 clients
over watdiv10M, watdiv100M, and watdiv1B on watdiv-sts

To provide a comprehensive evaluation, we also include TPF and SaGe in our experiments.
As shown in Figure 5.2, our experiments confirm a previous study [AFA+20] that SaGe
performs far better than TPF for small datasets. However, when dataset size increases
and the number of concurrent clients is high, the difference between TPF and SaGe
becomes less visible. Note that we did not include a SPARQL endpoint (e.g Virtuoso) in

102

5.4. Experimental Evaluation

our experiments, since several previous studies [VSH+16, MSM19, AFA+20, AKMH20]
have already shown that SPARQL endpoints are not able to scale well with an increasing
number of clients.

We compare the performance of WiseKG to state-of-the-art interfaces considering real-
world queries on DBpedia. Figure 5.3 presents the execution times of these 28 queries for
all systems. The results confirm that WiseKG significantly outperforms the compared
systems for real-world queries. Figure 5.3 shows that TPF is the slowest or the second
to slowest in all queries. On the one hand, smart-KG suffers from excessive delays in
queries that require non-materialized partitions such as Q2, Q4, Q8, Q12, Q15, Q19,
Q21, and Q25 since, in this case, smart-KG depends on TPF in addition to queries with
high selectivity such as Q6, Q16, Q20, and Q26 as it is more resource-efficient to process
on the server-side. On the other hand, SPF has a robust performance in most of the
queries due to its efficient server-side star pattern execution, except the queries with low
selectivity such as Q24 and Q28 due to the excessive transfer of intermediate results.

Moreover, SaGe has worse performance than WiseKG for the less selective queries with
large intermediate results, such as Q7 and Q28, due to these queries putting more load
on the server and incurring more requests to the server. The queries where SaGe has
slightly better performance than WiseKG, such as Q2 and Q4, are generally queries
where the overhead of computing the execution plan for WiseKG is a considerable part
of the overall execution time (i.e, very simple queries). Finally, WiseKGheuristic is faster
than WiseKG for the queries with an execution time of less than 0.1 seconds. This is
because WiseKG has the overhead of computing the best query plan.

Performance evaluation on different query shapes. In this part of the evaluation,
we analyze the effect of the query shapes on the performance of the systems. We use
query workloads consisting of 4 shapes including linear (L), star (S), snowflake (F), and
complex (C) shapes. These queries are part of the watdiv-btt workload and executed
against watdiv100M. The queries of each workload were executed in a different (random)
per client, averaging in the results the overall execution times per workload across all
clients. Figure 5.4 shows the average query execution time for each shape.

In compliance with the system performance analysis, WiseKG outperforms all state-of-
the-art systems for all different query shapes. For the L-workload, all systems have a
similarly efficient performance since this workload includes the simplest queries with a
small diameter. As shown in Fig. 5.4b, SPF provides excellent performance for S-workload
– as expected since it is optimized for star queries with high selectivity. On the other hand,
smart-KG performs worse than SPF since it sends an entire partition with unnecessary
intermediate results for such queries. In general, SaGe has an outstanding performance
for all query shapes, especially for the F-workload as shown in Fig. 5.4c. This is due
to the fact that the watdiv-btt workload includes only 20 queries per client (i.e low
query arrival rate) and we use a medium-size watdiv-100M dataset for this experiment.

Fig. 5.4d shows that the behavior of the compared systems dramatically changes for the
C-workload. For instance, WiseKG significantly outperforms state-of-the-art interfaces,

103

5. A Balanced Access to Web Knowledge Graphs

Figure
5.3:

Execution
tim

e
(in

seconds)
for

28
diverse

queries
over

the
d
b
p
e
d
i
a

dataset.

104

5.4. Experimental Evaluation

(a
)

L1
-L

5
(b

)
S1

-S
7

(c
)

F1
-F

5

(d
)

C
1-

C
3

Fi
gu

re
5.

4:
Av

g.
ex

ec
ut

io
n

tim
e

pe
r

cl
ie

nt
ov

er
w
a
t
d
i
v
1
0
0
M

fo
r

th
e
w
a
t
d
i
v
-
b
t
t

wo
rk

lo
ad

.

105

5. A Balanced Access to Web Knowledge Graphs

(a) Avg. Workload Time (b) CPU Usage

(c) Avg. requests per query (d) Avg. data transfer per query

Figure 5.5: Impact of the cost model components on the performance and resources consumption
over watdiv100M

even SaGe in the single client configuration. SaGe starts ahead of smart-KG up to 16
clients, then smart-KG performs better with higher numbers of concurrent clients. SPF
suffers excessive delays in C1 since the query includes 3 stars that have intermediate
results with high cardinalities. For query C2, SaGe outperforms all the compared systems.
In contrast, smart-KG and TPF are significantly worse (both time out) than SPF due
to SPF’s better handling of triple patterns with large cardinalities by shipping bindings
along with star-shaped subquery requests. Interestingly, although WiseKGheuristic times
out in C2, WiseKG was able to efficiently perform the query with a slightly higher
average time compared to SaGe. This is due to the accurate estimations of the cost
model. Finally, for C3, though SPF and smart-KG are optimized for star queries, e.g.,
C3 is a single unbounded star, WiseKG is up to three times faster with 128 clients.

Impact of cost model components. We performed an experiment with several different
configurations of the cost model over watdiv100M on the watdiv-sts workload in
order to evaluate the impact of the cost model components on WiseKG query performance
and resource consumption. To measure the impact of the cost model components, we

106

5.4. Experimental Evaluation

configured three different versions of WiseKG including the data transfer component only
(CostD), data transfer and messaging components (CostMD), and finally, a version with
processing, messaging, and data transfer components (CostP MD). For this experiment,
we used WiseKGheuristic as a baseline. Figure 5.5a shows that for the configuration with
128 clients CostP MD improves the average workload completion time (14 min) compared
to CostD and CostMD (19min and 16min, respectively). In addition, Figures 5.5b and
5.5c show that CostP MD requires on average less CPU usage and number of requests than
CostD and CostMD. This is due to the fact that the CostP MD configuration includes
the processing component which significantly contributes to lowering the CPU load on
the server. Although CostD has the lowest transferred data compared to the rest of the
configurations, CostD is the slowest configuration. The reason for this behavior is that
it does not take into account the HTTP request latency, which is an important factor
to determine the incurred latency especially, in subqueries that require high numbers
of result pages. It is important to note that all the configurations remain faster than
WiseKGheuristic, and since WiseKGheuristic is faster than all the state-of-the-art systems
(Figure 5.2), so are all the configurations.

Moreover, to evaluate the impact of using characteristic set [NM11] as a cardinality
estimation method on the cost model components, we replaced the cardinality estimation
function in the WiseKG configurations described earlier with the true cardinality, creating
the configurations ExactD, ExactDC , and ExactP MD, respectively. Figures 5.5b, 5.5c,
and 5.5d show that ExactD and ExactDC provide faster performance and better resource
utilization compared to their peers with cardinality estimation CostD and CostP MD.
Figure 5.5a shows that the configurations with the true cardinality have a comparable
workload execution time (≈ 14min). This performance is similar to the performance of
CostP MD even though ExactP MD has a lower resource consumption.

Finally, our experimental results show that relying on characteristic sets as a cardinality
estimation method provides comparable performance to the configurations with the true
cardinality – demonstrating a very subtle impact of the cardinality miss-estimates on the
overall performance of WiseKG. We plan to investigate diverse cardinality estimators as
future work in order to explore the impact of different cardinality estimation techniques
on WiseKG query execution time [LGM+15, PKB+20].

Resource consumption. In this part of the evaluation, we focus on the server resource
usage including network and CPU consumption.

We report two main metrics to demonstrate the network traffic: the number of requests
sent to the server (NRS) and the number of transferred bytes between the client and
server (NTB). Figures 5.6a and 5.6b show the distribution of the number of requests to
the server per query as well as the distribution of the number of transferred bytes per
query, with 128 concurrent clients on increasing KG sizes (watdiv10M, watdiv100M,
and watdiv1B) for the watdiv-sts workload. As expected, TPF incurs the highest
number of requests and transferred data, leading to a substantial increase in network
load. Even though smart-KG relies on TPF to execute singular triple patterns and star

107

5. A Balanced Access to Web Knowledge Graphs

patterns with no materialized partition, smart-KG significantly reduces the number of
requests compared to TPF since it only sends a single request per star pattern.

(a) Number of requests to the server for 128
clients over watdiv10M, watdiv100M, and
watdiv1B (log).

(b) Number of transferred bytes for 128
clients over watdiv10M, watdiv100M, and
watdiv1B (log).

Figure 5.6: Number of requests to the server and number of transferred bytes for 128
clients over watdiv10M, watdiv100M, and watdiv1B, and CPU load for increasing
numbers of clients over watdiv1B on the watdiv-sts workload

Figure 5.7: Avg. Server CPU Usage (in %) for increasing numbers of clients over watdiv1B.

Figure 5.6a also demonstrates that WiseKG requires the lowest average number of
requests among all systems due to three main reasons: first, WiseKG potentially reduces
the number of requests required based on the communication component in the cost
model which can be observed in the difference between the number of requests CostD

and CostDC as shown in Figure 5.5c; second, WiseKG, in contrast to smart-KG, ships
bindings along with the triple pattern requests (as presented in brTPF [HA16] that

108

5.5. Summary and Limitations

requires fewer requests than TPF); third, WiseKG has an advantage over SPF to require
less requests in case of star patterns with low selectivity. Figure 5.6b shows that SaGe
incurs the least data transfer among all compared systems since SaGe is essentially a
SPARQL endpoint with a preemption model that only transfers the final results. As
expected, WiseKG incurs less data transfer than TPF, smart-KG, and SPF. To be precise,
WiseKG transfers on average 5.5MB per query while SPF and smart-KG transfer 7MB
and 13MB over watdiv100M dataset. WiseKG demands on average less intermediate
results than SPF and smart-KG thanks to the cardinality estimation aware cost model.

Figure 5.7 presents the average server CPU usage per system when the watdiv-sts
workload is executed over the watdiv100M dataset. SPF and SaGe consume more CPU
on the server side. This is expected since SPF processes star pattern queries on the server
side and SaGe utilizes a SPARQL endpoint that does all the work on the server side. As
one can see from Figure 5.7, the CPU usage of these two interfaces approach the CPU
processing capabilities when the concurrent number of clients is set to 128. In contrast,
CPU consumption of smart-KG and TPF remain almost constant and quite low; under
20% and 30%, respectively. This low consumption is inline with restricted capabilities of
these servers: partition shipping in case of smart-KG and triple pattern lookup in case of
TPF.

Figure 5.7 shows that WiseKG’s CPU usage is almost in the middle between SPF
and smart-KG, where it gradually increases up to 60% in the case of 128 concurrent
clients, which enables WiseKG to serve more queries given the current server capabilities
(Figure 5.2a).

5.5 Summary and Limitations
We introduced WiseKG, a querying interface to efficiently access Web Knowledge Graphs.
We propose an efficient query processing approach under high query loads by balancing
the SPARQL query execution load between servers and clients. To this end, we have
combined two Linked Data Fragments APIs (SPF and smart-KG) that enable server-side
and client-side processing of star-shaped sub-patterns. Our dynamic cost model picks
the best-suited API per sub-query based on the current server load, client capabilities,
estimation of necessary data transfer between client and server (for intermediate query
results), and network bandwidth.

Our experiments show that WiseKG significantly outperforms state-of-the-art stand-alone
LDF interfaces on highly demanding workloads, with increasing numbers of concurrent
clients, with increasing KG sizes, and on different query shapes. We show that WiseKG’s
cost model improves average workload completion (reducing the number of timeouts)
while also reducing resource consumption (including less CPU usage and network traffic)
compared to existing interfaces.

We do however identify some shortcomings of our approach and would deserve a more
dedicated analysis in future work:

109

5. A Balanced Access to Web Knowledge Graphs

• We did not perform experiments to inspect the influence of different hardware
setups and mixes of clients with differing computational resources. Our future
work agenda includes expanding our evaluations to a variation of hardware setups,
combining realistic mixes of clients with different resources.

• We also, respectively, plan to expand our query optimizer to consider further aspects,
such as additional hardware parameters, parallelism, network delays, etc. as well as
to provide optimization support for additional types of queries incl., for instance,
aggregation [IHPZ16] since in this work we do not model or investigate aggregation.

• We purposefully selected an established and widespread cost model [ML86] in order
to assess our idea of dynamically determining the approach to process subqueries
regardless of potentially complex cost models. Our proposed cost model is a kick-off
to promising future refinements: indeed we plan to explore the existing plethora of
different cost models from the database literature [MBK02, Gra95, GM93].

• In our cost model, we plan to look into additional parameters, for instance, to
estimate the current server load: while – as we could show in our experiments – the
cost model is very effective, it only observes server load as a momentary snapshot
(over the last minute). We could extend this by an estimation that also takes
into consideration commitments made to concurrent clients [ZSLF20] in terms
of “promised” plan executions, i.e., the response to the Plan(P) function to one
client could also take into consideration how many commitments have been made
in response to other not-yet-finished Plan(P) requests to other clients. We note,
however, that such an extension would also need protection against obvious DoS
attacks, e.g., by “bogus” clients requesting plans that are never committed. As
such, our current, inspired by R∗ optimizer, is relatively simple but has significantly
outperformed the state of the art.

• In addition, we note that our current considerations focus only on BGP queries.
While our implementation covers also full SPARQL patterns (incl. UNION, OP-
TIONAL, FILTER, etc.) computed on the client side, the current approach is not
dealing with multiple (named) graphs and GRAPH queries. Looking into extensions
of HDT towards handling quads [FMPR18] could address this current limitation.

• Assessing the impact of ι on performance and the optimal value for ι is part of our
future work. We plan to provide a detailed analysis with regard to the impact of the
time quantum ι on performance and an assessment of the optimal time quantum
for future work.

• The current cost model just takes the current server load as a constant factor into
account, whereas a more accurate model could be expected if the server was about
to take into consideration of commitments it has made to clients; however, in such
cases, the server would need to include expiry times for such commitments, upon
which expires.

110

5.5. Summary and Limitations

• As we mentioned earlier, in our experiments, the communication component domi-
nates the query execution time. Extensive experiments are required to verify this
phenomenon in various settings.

• We verify the cost model in disk-resident settings (i.e we query the HDT files from
the disk), it would be interesting to investigate the query performance in main-
memory and distributed databases, and cloud computing settings which provide
different challenges than our disk-resident settings.

• Our introduced cost model involves parameters that are subject to tuning by the
data publishers (eg. I/O, CPU, and communication parameters). In various settings,
the default values of the weight parameters could be sub-optimal [LGM+15]. In
the future, it would be interesting to investigate how can we automatically adapt
the cost variables according to the data publishers’ environment.

• It is worth noting that we did not investigate the quality of characteristic sets
cardinality estimates and how fair and accurate our cost model is in predicting the
query execution time. In the future, detailed experiments are required to avoid
significant misestimations that could potentially produce wrong plans.

111

CHAPTER 6
Smart-KG+: Further

Optimizations of
Family-partition-based LDF

Partition-based LDF generalizes LDF interfaces, which return compressed and queryable
partitions that can be used to answer several triple patterns in a single request. As a con-
crete implementation of partition-based LDF interfaces, we have introduced smart-KG
and WiseKG, which can transfer partitions of KGs from the server to the client, reducing
server resource consumption. In Chapter 4 and 5, we argue (and have experimen-
tally demonstrated) that our approaches using families provide a reasonable trade-off
of shipping sizes; still utilizing/combining other (existing) partitioning techniques could
potentially provide efficient partition-based interfaces.

According to our results in Chapter 4, shipping compressed and queryable family partitions
increases the server availability while achieving competitive query performance. However,
there is still room for reducing the shipped KG partitions by further developing the
partitioning technique. For instance, in practice, many star-shaped sub-queries include
at least some bounded objects for the rdf:type predicate. To verify this claim, we have
analyzed the real-world LSQ query log [SAH+15] and found that 90% of the queries
contain star-shaped patterns with at least one bounded type predicate to an object value
(i.e., to a class).

Motivated by the previous phenomenon, in this chapter, we propose and formalize, and
extend smart-KG+, where we additionally introduce a graph partitioning technique
named typed family-partitioning that benefits from this phenomenon by horizontally
partitioning the families based on the classes of the entities. In addition, we propose
a novel smart-KG+ server-side partition-aware query planner to create an optimized
query plan where the subqueries within a query are ordered based on the pre-computed

113

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

cardinality estimations (i.e characteristic sets). On the client-side, based on the received
query plan from the server, we perform the joins locally based on implementing an
asynchronous pipeline of iterators executing first the most selective iterator in order to
produce the join results in an incremental fashion.

Chapter Organization. The remainder of this chapter is structured as follows:

• In Section 6.1, we introduce a possible concrete implementation of partition-based
LDF interfaces based on extending family partitioning.

• In Section 6.2, We present a concrete implementation of partition-based LDF,
smart-KG+, that ships compressed, queryable KG partitions to distribute the
processing of SPARQL queries between clients and servers.

• In Section 6.3, we detail the KG partition creation process of (typed) family-
partitioning which extends the family partitioning technique introduced in [AFA+20]
to consider both predicates and classes specified in a query.

• In Section 6.4 we elaborate the query processing of smart-KG+ and the dynamicity
between clients and the server.

• In Section 6.5, we provide an empirical evaluation, and results are discussed.
In Section 6.7, we summarize and outline the approach limitations.

6.1 Partition-based Linked Data Fragments:
Typed-Family Partitioning

In Chapter 4, we have defined a predicate family of a subject F (s) as the set of predicates
related to the subject s (cf. Definition 4.1). We denote as F (G) or just F , to the set of
different predicate families in G (cf. Definition 4.2). Note that predicate families imply
a partitioning usable for partition-based LDF where a partition Gi is defined for each
occurring predicate family Fi (cf. Definition 4.3). We have referred to this partitioning
as family-partitioning.

Next, the admissible queries for family-partitioning are star-shaped query patterns, i.e.
BGPs composed of k triple patterns form Q = {(s, pi, oi) | 1 ≤ i ≤ k, s ∈ V ∪ U, pi ∈
U, oi ∈ V ∪ U ∪ L} with a single common subject s, where

s(G, Q) = {Gi ∈ G | pred(Q) ⊆ Fi}

Obviously, for any star-shaped query, s(G, Q) contains all relevant triples from G to
compute the answers.

While – as we will see – family-partitioning provides a solid basis for partition-based LDF,
unfortunately, family partition sizes can be significantly skewed for very popular classes

114

6.1. Partition-based Linked Data Fragments: Typed-Family Partitioning

(with a large number of instances), or, respectively, very large partitions could be further
subdivided by the different (sub-)classes occurring for subjects. For instance, assume
common attributes {title, hasDirector, year, rdf:type} for subjects of rdf:type Film, would
also occur for each of the subclasses of Film. Intuitively, you can further subdivide each
family partition "horizontally", by the different rdf:types per subject. Further, we note
that, based on observations of query logs for common public SPARQL query services,
a large majority of user queries use bound rdf:type predicates in their queries: to back
up this claim, we analyzed the real-world DBpedia LSQ [SAH+15] query log where we
found out that the percentage of queries with at least one star query with a bounded
rdf:type predicate is 88% (excluding single triple queries).

Based on these observations, we propose an extension of family-based partitioning, called
typed-family partitioning. Assuming (without loss of generality) that the set of class URIs
and predicate URIs are disjoint,1 we can then easily extend the concept of (predicate)
families to typed-families as follows:

F typed(s) = F (s) ∪ {c | (s, rdf:type, c) ∈ G} (6.1)

Analogously, we extend the other notions from above, i.e., the set of typed families for a
graph G:

F typed(G) = {F typed(x) | x ∈ subj(G)} (6.2)

and again the notion of typed partitions Gtyped
Fi

corresponding to a famlily Fi ∈ F typed(G)
implies a partioning of G as follows:

G = {Gtyped
Fi

| Fi ∈ F typed(G)} (6.3)

where Gtyped
Fi

can be defined for each typed family Fi ∈ F typed(G) as

Gtyped
Fi

= {(s, p, o) ∈ G | F typed(s) = Fi} (6.4)

Again, we simply write Gi for Gtyped
Fi

, and finally, analogously can define

σ(G, Q) = {Gi ∈ G | pred(Q) ∪ types(Q) ⊆ Fi} (6.5)

for again star-shaped admissible queries Q, where by types(Q) we denote all (non-variable)
objects of rdf:type triple patterns in Q.

To illustrate the previous definitions consider the KG G shown in Fig. 6.1, and the typed
families shown in Fig. 6.2 Following the definition of typed-family in Eq. (6.1), the subject
s1 belongs to family F typed

1 , the subject s2 belongs to family F typed
2 , and the subject s3

belongs to family F typed
3 . Note that in predicate families, the subjects s1 and s2 were in

1Of course this does not generally hold in RDF, but we make this assumption merely to simplify
notation.

115

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

:s1 rdf:type :Film . #t1

:s1 rdf:type :Work . #t2

:s1 :starring :o1 . #t3

:s1 :director :o2 . #t4

:s2 rdf:type :Work . #t5

:s2 :starring :o1 . #t6

:s2 :director :o3 . #t7

:s3 rdf:type :Work . #t8

:s3 :director :o4 . #t9

Figure 6.1: KG example

Predicate Families
F (:s1) = {rdf:type, director, starring}

= F1
F (:s2) = {rdf:type, director, starring}

= F1
F (:s3) = {rdf:type, director}

= F2

Predicate Families in G

F (G) = {F1, F2}

Partitions induced by each family

GF1 = {t1, t2, t3, t4, t5, t6, t7}

GF2 = {t8, t9}

Partitioning G = {GF1 , GF2 }

Typed Families
F typed(:s1) = {rdf:type, director, starring, Film, Work}

= F typed
1

F typed(:s2) = {rdf:type, director, starring, Work}
= F typed

2
F typed(:s3) = {rdf:type, director, Work}

= F typed
3

Predicate Families in G

F typed(G) = {F typed
1 , F typed

2 , F typed
3 }

Partitions induced by each family

Gtyped

F
typed
1

= {t1, t2, t3, t4}

Gtyped

F
typed
2

= {t5, t6, t7}

Gtyped

F
typed
3

= {t8, t9}
Partitioning G = {Gtyped

F1
, Gtyped

F2
, Gtyped

F3
}

Figure 6.2: Predicate families and typed families for the KG shown in Fig. 6.1

the same family; this is no longer the case, as their set of classes is different. For the
KG G, there are three typed families denoted F typed(G), i.e., F typed

1 , F typed
2 and F typed

3 .
Lastly, each of these families induces a partition over G. For example, F typed

2 contains
all the triples of the subject s2, which in this case is triples t8 and t9. Lastly, the set of
partitions computed for G, denoted G are Gtyped

F1
, Gtyped

F2
, and Gtyped

F3
.

116

6.2. SMART-KG+: Design and Overview

Figure 6.3: The overall architecture of the smart-KG+ client and server, wherein the
modified components are denoted in red, in contrast to the corresponding elements in
the original smart-KG architecture.

6.2 SMART-KG+: Design and Overview

smart-KG+ (cf. Fig. 6.3), which extends the original prototype presented in [AFA+20],
combines shipping HDT compressed family partitions with the shipping of intermediate
results from evaluating a given sub-(query) over the existing LDF interfaces. As such,
smart-KG+ relies on both shipping intermediate results from executing single-triple
patterns using a brTPF LDF interface on the server, as well as using a (typed) family-
partition-based LDF interface for star-shaped subqueries (which will be evaluated on the
client side, based on the shipped partition). The rest of SPARQL complex patterns other
than triple or star-patterns will be evaluated on the client side.

Initially, the smart-KG+ server constructs the family-based partitions (cf. Section 6.3)
for a given knowledge graph. The generated KG partitions are materialized as HDT files in
the storage module together with family catalog that summarizes metadata information
about the KG partitions including structural and statistical metadata. In addition,
smart-KG+ API offers access to the KG based on two operators: one to execute a single
triple pattern and the other to ship the requested partition to smart-KG+ client.

Upon receiving a BGP Q from smart-KG+ clients, the smart-KG+ server decomposes
the input query into a set of o star-shaped subqueries where the server query planner
devises an annotated query plan Π that decides for each pattern whether to be executed
using brTPF or partition shipping. The client then evaluates the annotated query plan
received from the server based on the specified subquery ordering.

As a side note, getting back to our original formalization of LDF and the fact that we
do not consider "paging" (Φ) in relation to partition-based LDF: note that it would not
make sense to decompose family-based partitions into chunks since chunking up the
HDT-compressed partitions would require decompression.

117

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

6.3 SMART-KG+ Extending Partition Generator
We detail how the smart-KG+ server, upon loading an RDF KG, processes it into
partitions per class per family, as described in Eq. (6.4) and stores those partitions as
HDT compact files format.

The prior definitions carry over to predicate-restricted typed-family partitions and typed-
partitions, i.e. F

′typed and G′
i,c can be defined analogously, where we additionally restrict

the classes by a set C ′
G.

Note that, however G′ is no longer a full cover of G, but the graph G′ = G′
i only

contains the “projection” of G to P ′
G, with the intention that predicates other than P ′

G

(or, resp. classes other than C ′
G) are delegated to brTPF.

Serving predicate restricted families allows a smart-KG+ publisher to select P ′
G (and

C ′
G) depending on (i) the cardinality of the predicates (i.e. the number of occurrences

in the graph) and (ii) the importance of predicates (and combinations) in actual query
workloads. We will describe a concrete method to pick P ′

G (and C ′
G) based on the

cardinality of predicates and classes in Section 6.3.1.

6.3.1 Family Pruning
As we discussed earlier, the cost of fully materializing the partitions generated from all
potential merges (intersections) of all families in G could prohibitive.

We extend the family pruning strategy introduced in Section 4.2.1.3 for restricting the
number of materialized partitions, where we (i) restrict considered predicates in P ′

G

based on their cardinality (cf. Eq. 4.6), (ii) avoid the creation of small families that
deviate only slightly from another overlapping, “core” families (cf. Eq. 4.7), and (iii)
avoid materialization of families over a certain size (cf. Eq. 4.8). In the following, we
extend the family pruning strategy where we (iv) restrict considered classes based on
their cardinality in generating typed-families,

(iv) Restrict classes cardinality based on cardinality to generate typed-families.
As discussed when introducing typed partitions, rdf:type is a natural horizontal par-
titioner for predicate families, which plays an essential role in reducing the size of the
shipped families; plus, as also mentioned above, rdf:type is a heavy hitter in real-world
queries, since it is a frequently used predicate in log queries as shown in Table 6.2.

Therefore, similar to issue (i), the cardinality of classes contributes to the number and
size of the shipped partitions: firstly, rare classes occurring as rdf:type objects in
triple patterns are by nature selective: such triple patterns are better handled through a
TPF/brTPF/SPF call without shipping a typed family; secondly, frequent classes can be
potentially present in many of the families (for instance owl:Thing) and, in practice,
are rarely used in queries.2

2For instance foaf:Document is a large class but mentioned in only 68 queries in LSQ query log

118

6.4. SMART-KG+: Query Processing

We address the aforementioned issues, similar to issue (i), by excluding these classes, and
maintaining minimum (τclasslow

) and maximum (τclasshigh
) thresholds for the percentage

of triples per class. We rely on these two thresholds to define the set of classes C ′
G for

restricting the created typed partitions:

C ′
G = {c ∈ types(G) | τclasslow

≤ |(s, rdf:type, c) ∈ G|
|G| ≤ τclasshigh

} (6.6)

Finally, we avoid the materialization of overly large (e.g. hundreds of millions of triples
in DBpedia) merged partitions GI with size GI above a threshold αt, which limits the
size of the materialized merged partitions.

In order to only take core families into account for the creation of partitions, and limit
merged families to sizes below αt, it is sufficient to modify Equation (4.8) as follows:

Gserv =

G′

µ(f)

f ∈ dom(µ) ∧
µ(f) ∩ Icore ̸= ∅ ∧

i∈µ(f)

|G′
i| ≤ αt

Merged partitions

∪ {G{i}|F ′
i ∈ F ′}

Non-merged partitions

∪ {Gi,class|class ∈ C ′
G, F ′

i ∪ {class} ∈ F typed}
Typed partitions

(6.7)

In Equation (6.7), line 2 addresses issue (ii)3 and line 3 addresses issue (iii)4. The second
part ensures that, despite pruning, the non-merged partitions of families in F ′ remain
being served. While the last part ensures serving the typed-families. In practice, the
smart-KG+ materializes the partitions in Gserv as HDT files.

6.4 SMART-KG+: Query Processing
In this section, we detail how the smart-KG+ server and client work together to process
SPARQL queries. In particular, we describe how the query processing is performed on
the server-side and on the client-side.

6.4.1 SMART-KG+ Server

In this section, we describe how smart-KG+ server query planner creates a query
execution plan for a submitted BGP. In addition, we detail how smart-KG+ server
enables the clients to access the partitions constructed by the partition generator described
in Section 6.3 and to evaluate single triple patterns using brTPF.

3since Subj(G′
i) ∩ Subj(G′

j) = ∅ for all base families F ′
i , F ′

j ∈ F ′, by construction it holds that
|Subj(G′

I)| =
i∈I

|Subj(G′
I)|

4since |G′
I | =

i∈I
|G′

i|

119

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

SELECT ∗ WHERE {
?tvprogram dbo: starring ? actress . # tp1 544,110 matches
?tvprogram dbo:releaseDate ?releaseDate . # tp2 155,199 matches
?tvprogram rdf:type dbo:TelevisionShow. # tp3 85,660 matches
? actress dbo:wikiPageExternalLink ? link . # tp4 9,643,439 matches
? actress dbo:birthPlace ? city . # tp5 1,469,160 matches
? actress dbp:occupation "Actress"@en. # tp6 18,861 matches
? city dbo:country ?country. # tp7 789,261 matches

}

(a) Select all actresses, their corresponding TV programs of the "Televisionshow" type, and their
birthplace information, with an additional triple pattern highlighted in red when compared to
the example query presented in Chapter 4.

(b) Star-shaped query decomposition.

(c) Server Query Plan

Figure 6.4: Example of processing a SPARQL query with the smart-KG+ client.

120

6.4. SMART-KG+: Query Processing

6.4.1.1 Query Decomposer

First, smart-KG+ splits parsed Basic Graph Patterns (BGPs) into stars as follows: given
a BGP Q, with subjects subj(Q), a decomposition Q = {Qs | s ∈ subj(Q)} of Q is a set
of star-shaped BGPs Qs such that Q = s∈subj(Q) Qs and:

Qs = {tp ∈ Q | tp = (s, p, o)} (6.8)

Analogous to graphs, we can also associate a family to each star query Qs:

F (Qs) = {p | ∃o : (s, p, o) ∈ Qs, p ∈ U} (6.9)

Given the SPARQL query in Fig. 6.4a, the BGP is decomposed into Q = {Q?tvprogram,
Q?actress, Q?city} around the three subjects (cf. Fig. 6.4b). Each of the star families
F (Qs) that can be mapped to existing predicate families in dom(µG) on the server
has a non-empty answer. For example, Q?tvprogram = {(?tvprogram, dbo:starring,
?actress), (?tvprogram, dbo:releaseDate, ?releaseDate), (?tvprogram, rdf:type,
dbo:TelevisionShow)} has F (Q?tvprogram) = {dbo:starring, dbo:releaseDate,
rdf:type}; based on the decomposition Q, smart-KG+ server query planner gen-
erates a query plan to the input query. Note that Q?tvprogram contains rdf:type which
will be distinguished by the query planner and optimizer while devising the query plan.

6.4.1.2 Shipping-based Query Planner & Optimizer

In smart-KG+, the query planner and the optimizer are executed at the server-side to
provide more efficient query plans based on pre-computed characteristic set cardinality
estimations and the server’s partition metadata. When the smart-KG+ server receives a
request Plan(Q) for a BGP Q from a client, the server query planner devises an annotated
query plan to specify which interfaces are used per subquery. The interfaces are denoted
with superscripts to represent triple pattern shipping using TPF and partition shipping
using SKG to describe the interfaces as Qinterface

s .

Given Q, P ′
G, and C ′

G as input, the query optimizer devises a query plan ΠQ where the
resp. algorithm to compute Plan(Q, P ′

G, C ′
G) is shown in Alg. 6.1. If the result is trivially

empty (lines 4-5), it returns an empty plan. Then, the optimizer finds the star-subquery
Qsi with the lowest cardinality estimation using the function card(Qs, ΠQ) (line 6); in
our running example, this would order Q?actress, followed by Q?films, and lastly the triple
pattern in Q?city.

Next, Qsi is annotated with the corresponding controls that represent the evaluation of
the subquery: SKG control and TPF control. Therefore, the optimizer characterizes
each Qsi to decide whether to use partition shipping or triple pattern (for parts) of Qsi ,
as follows:

Partition Shipping. Shipping relevant partitions to evaluate a star Qs ∈ Q requires
considering the materialized partitions at the server. Since graph partitions are generated

121

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

based on the pruned families (cf. Sec. 6.3), only stars with F (Qs) ⊆ P ′
G can be fully

evaluated by served partitions. Therefore, the optimizer partitions each Qsi ∈ Q into
the disjoint sets Q′

si
and Q′′

si
, where Q′

si
is the part of the star that can potentially be

evaluated over the served partitions (line 7), whereas the remaining triple patterns in
Q′′

si
are delegated to brTPF requests (line 8). Note that Q′′

si
also includes triple patterns

with predicate variables, i.e., p ∈ V . Then, the optimizer checks (lines 9–12) for each
triple pattern tp with rdf:type predicate whether the class o belongs to the restricted
set of classes C ′

G. Note that this also captures the case with o ∈ V . In the negative
case, there is no materialized typed-family partition to serve Qsi , therefore, this tp will
be pushed to Q′′

s to be evaluated using brTPF (line 11). Then, the optimizer considers
heuristics that partition shipping is only followed if |Q′

si
| > 1 where Q′

si
is annotated

with the respective control for partition shipping SKG (lines 15–16). As in practice, the
transfer of graph partitions to resolve a single triple pattern usually takes longer than
delegating to a brTPF request directly (line 18).

Triple Pattern Shipping. Qs with a single triple pattern, triple patterns with infrequent
predicates, and triple patterns with predicate variables will be annotated with TPF
control (lines 17). These subqueries will be eventually evaluated using a brTPF request
to the server.

Lastly, the optimizer reorders the triple patterns with the function reorder in the sub-
plans based on their cardinality estimations; this allows for an efficient evaluation at the
client side. Then, the optimizer attaches the sub-plans with the append function to build
the final plan ΠQ. The resulting query plan ΠQ comprises sub-plans annotated with the
corresponding shipping strategy.We describe a full annotated query plan as sequences of
patterns being interpreted as left-linear query plans, that is, we write query plans that
evaluate patterns as permutations of the decomposed stars in Q. For our example shown in
Fig. 4.4a, the annotated plan could be written as Π = (Q′SKG

?actress, Q
′′T P F
?actress, QSKG

?film, QT P F
?city),

describing an execution plan at the level of joining star patterns as follows: (((Q′
?actress ▷◁

Q′′
?actress) ▷◁ Q?film) ▷◁ Q?city). Fig. 4.4c shows the shipping strategies for each sub-plan

from our example. The query optimizer first starts with the subquery Q?actress which
is the most selective subquery. For Q?actress, the optimizer creates Q

′SKG
?actress ▷◁ Q

′′T P F
?actress,

as the triple pattern tp4 in Q?actress is evaluated using triple pattern shipping as the
optimizer determined that the predicate dbo:wikiPageExternalLink is not in P ′

G.
Next, the query optimizer evaluates Q?film via partition shipping on the client based on
a family-based partition. Finally, Q?city is added to be executed as a single triple pattern
using brTPF.

6.4.1.3 Server Operators

The smart-KG+ server provides operators to ship partitions and their metadata, or to
respond to brTPF requests. These operators are defined in the following interface calls
to access a KG G:

122

6.4. SMART-KG+: Query Processing

Algorithm 6.1: Query Optimizer and Planner: optimizeP lan

Input: Star-shaped query decomposition Q , P ′
G, C ′

G

Output: ΠQ an annotated query plan for Q
1 ΠQ ← ()
2 while Q ≠ ∅ do
3 for Qs ∈ Q do
4 if card(Qs, ΠQ) = 0 then
5 return ()
6 end
7 end
8 Qsi ← Qs ∈ Q such that card(Qs, ΠQ) ≤ card(Qsj , ΠQ) for all Qsj ∈ Q
9 Q′

si
← {(si, p, o) ∈ Qsi | p ∈ P ′

G}
10 Q′′

si
← Qsi \ Q′

si

// Check if there exists family-typed partitions for
classes in Q′

si

11 for tp = (si, rdf:type, o) ∈ Q′
si

do
12 if o /∈ C ′

G then
13 Q′′

si
← Q′′

si
∪ {tp}

14 Q′
si

← Q′
si

\ {tp}
15 end
16 end

// Re-order triple patterns within subqueries
17 Q′

si
← reorder(Q′

si
)

18 Q′′
si

← reorder(Q′′
si

)
// Annotate plan with interface

19 if |Q′
si

| > 1 then
20 ΠQ ← append(ΠQ, Q

′SKG
si

)// Evaluate plan using partitions
21 end
22 else
23 ΠQ ← append(ΠQ, Q

′T P F
si

)// Evaluate plan using TPF
24 end

// Evaluate tps with no materalized partitions using TPF

25 ΠQ ← append(ΠQ, Q
′′T P F
si

)
26 Q ← Q \ {Qsi}
27 end
28 return (ΠQ)

• A brTPF LDF API control TPF (Qs, Ω) returning σbrT P F (G, Qs, Ω) = s(G, Qs, Ω),
that retrieves the answers for a single triple pattern Qs while taking into considera-
tion the attached bindings Ω, i.e., the smart-KG+ server returns the triples from
G that match Qs based on brTPF requests.

123

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

• A SKG LDF API control SKG(Qs, ∅) that handles star-shaped queries Qs and
returns σSKG(G, Qs, ∅) = σ(G, Q), i.e., the set of typed-family partitions if exists,
otherwise the family partitions, of which Qs G can be computed and joined on
the client-side.

• Plan(Q) to create a query plan for the received BGP Q. Unlike the initial
smart-KG+ prototype [AFA+20], where the query plan was inaccurately cre-
ated on the client-side, we propose shifting the query execution planning from the
client to the server to compute better query plans as the server has access to more
accurate cardinality estimations to determine the order of stars and triple patterns.

6.4.2 SMART-KG+ Client
The primary focus of this work is on evaluating BGPs as the essential retrieval functionality
of the SPARQL query language. However, our introduced interface is able to process a full
SPARQL query including operators such as UNION and OPTIONAL, FILTER, etc., which
are all evaluated locally on the client-side. Herein, we introduce the general approach for
processing a SPARQL query, as follows:

1. Upon receiving a SPARQL query, the query parser translates the input query string
into the corresponding SPARQL algebra expressions.

2. Initially, the client sends a request Plan(Q) to retrieve from the server an optimized
query execution plan ΠQ for the extracted BGP Q.

3. The query executor evaluates the received plan and iteratively combines the results
using a dynamic pipeline of iterators, following brTPF [HA16], where each iterator
deals with a certain annotated subquery Qc

s that request a partition or performs a
brTPF request.

4. The results serializer translates the locally joined results into the specified format.
Note that the downloaded partitions from the smart-KG+ server during query
evaluation can be locally stored in the family cache to be reused in the upcoming
queries.

We describe in detail the algorithms that implement the query executor in a recursive
manner in Alg. 6.2 and Alg. 4.2. The function evalP lan recursively evaluates the received
plan Π by traversing the left-tree of sub-plans (cf. Alg. 6.2). The query executor
initially evaluates the first and most selective subquery Qc1

s1 (line 1). Then, the algorithm
traverses the rest of the plan (lines 2-6). The base case is when the plan is associated
with a single star pattern Qc

s (line 2). In this case, the executor evaluates the star using
evalc(Qc

s, Ω′) while considering the intermediate results from earlier subqueries Ω′ (for
details, cf. Alg. 6.3). Otherwise, the query executor will recursively call the evaluation of
the remaining subtree and join them with the set of bindings retrieved from the previous
calls (line 5). The final output of the query executor is the query result set Ω of a given

124

6.4. SMART-KG+: Query Processing

Algorithm 6.2: Query Executor: evalP lan

Input:
Π = (Qc1

s1 , . . . , Qcn
sn

) // an execution plan for a BGP query with stars
Qc1

s1 , . . . , Qcn
sn

;
Output: Ω // set of solution mappings

1 Ω ← evalc(Qc1
s1 , ∅)

2 if |(Qc2
s2 , . . . , Qcn

sn
)| = 1 then

3 Ω ← Ω ▷◁ evalc(Qcn
sn

, Ω)
4 end
5 else if |(Qc2

s2 , . . . , Qcn
sn

)| > 1 then
6 Ω ← Ω ▷◁ evalP lan(Qc2

s2 , . . . , Qcn
sn

)
7 end
8 return Ω

plan (line 6). In practice, the executor implements an iterator to push intermediate
results of evaluating one sub-plan to the next operator in the plan. This allows the
smart-KG+ client to incrementally stream query results once computed.

Alg. 6.3 presents the function evalc(Qc
s, Ω′), which calls the corresponding interface (i.e.

the respective smart-KG+ server operators for the shipping strategy determined by
the server query plan). The first case c = SKG is to evaluate a star pattern using a
shipped partition on the client-side. The second case c = TPF involves calling the brTPF
interface which directly returns the result bindings. In the following, we explain the two
cases in detail:

Case SKG. Each sub-plan QSKG
s is evaluated (cf. Alg. 6.3, lines 2–5) by retrieving HDT

partitions using the server operator for partition shipping SKG(Qs, ∅). This operation
returns a set of partitions G∗ which is either a set of family-based partitions or a set of
typed-family partitions (cf. Alg. 6.3, line 2). The query executor evaluates each triple
pattern tp of the star pattern QSKG

s (lines 4–5) over the partitions (using the SPARQL
algebra union operator when several partitions are retrieved). The results of each tp are
joined to produce the final results of the star pattern.

Case: TPF. Each sub-plan QT P F
s involves a single triple pattern which is executed by

calling the server operator TPF(tp, Ω′) which is a brTPF interface that directly returns
the result bindings (cf. Alg. 6.3, lines 6-7).

6.4.3 Detailed Example:

In this section, we demonstrate a full example to explain the evaluation of the SPARQL
query based on our introduced approach smart-KG. In this example, we elaborate family-
based partitioning and SPARQL query evaluation on our RDF graph from Example 7
inspired Friends series:

125

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

Algorithm 6.3: Query Executor: evalc
Input:
Qc

s // A decomposed pattern and it is annotated execution plan;
Ω′ // a set of binding if available
Output: Ω a set of solution mappings

1 if c = SKG then
2 G∗ = SKG(Qc

s, ∅)
3 Ω ← {ω∅}
4 for tp ∈ Qc

s do
5 Ω ← Ω ⋊⋉ Gj∈G∗ tp Gj

6 end
7 end
8 else if c = TPF then
9 Ω ← TPF (Qc

s, Ω′)
10 end
11 return Ω

Creation of Family-based partitioning for Friends RDF graph. In this example,
we materialize family-based partitions based on three different settings, as follows:

• Setting 1: we materialize all families as well as all possible merges of families (i.e.
the pruning step is not applied). In our example, it is feasible to materialize all
partitions given the fact that our example graph is small of size |G| = 79 triples
and |PG| = 16 predicates. For this purpose, we fix the pruning parameters as
follows: we set τl = 0 and τh = 1.0 so that we include all predicates including both
infrequent and heavy hitters. We set τclasslow

= 0 and τclasshigh
= 1.0 so that we

include all classes in the partitioning process. Likewise, we set αs = 0 to include all
families in the grouping step and αt = 1.0 to materialize all possible family merges.
This setting will generate |Gserv| = 21 materialized partitions based on the following
set of families:

– F1={dbo:portrayer, dbp:children, dbp:family, dbp:gender,
dbp:occupation, dbp:religion, rdf:type, rdfs:label} which
is an original family that generates a partition G1 where |G1| = 9 triples
with a set of subjects subj(G1) of size |subj(G1)| = 1 subjects. This subject
represents the fictional Chandler since she is the only member of the graph
that have the combination of predicates in F1. In this family, the only entity is
Chandler Bing, and he belongs to the type ’FictionalCharacter’, so the family
is not partitioned based on the type predicate.

– F2={dbo:birthDate, dbo:education, dbp:occupation,
dbp:spouse, rdf:type, rdfs:label} which is an original family that

126

6.4. SMART-KG+: Query Processing

generates a partition G2 where |G2| = 18 triples with a set of subjects
subj(G2) of size |subj(G2)| = 3 subjects. These subjects represent two ac-
tresses Courteney Cox and Jennifer Aniston and one actor David Schwimmer
as they share the set of predicates in F2. In this family, all entities belong
to a single type ’Person’ so the family is not partitioned based on the type
predicate.

– F3={dbo:almaMater, dbo:birthDate, dbp:occupation,
dbo:spouse, rdf:type, rdfs:label} which is an original family that
generates a partition G3 where |G3| = 6 triples with a set of subj(G3) of size
|subj(G3)| = 1 subject. This subject represents the actress Lisa Kudrow. In
this family, the only entity is Lisa Kudrow belongs to a single type ’Person’ so
the family is not partitioned based on the type predicate.

– F4={dbo:birthDate, dbp:occupation, dbp:spouse, rdf:type,
rdfs:label} which is a grouped family that generates a partition G4 where
|G4| = 30 triples with a set of subj(G4) of size |subj(G4)| = 7 subjects. These
subjects represent the two actors Matt LeBlanc and David Schwimmer as well
as three actresses Courteney Cox, Jennifer Aniston, and Lisa Kudrow in addi-
tion to the fictional character Ross Geller as they share the set of predicates
in F4. In this case, we will create two typed families, F typed

1 and F typed
2 , that

generate G4,F ictionalCharacter and G4,P erson, respectively, for entities of those
types.

– F5={dbo:birthDate, dbp:occupation, rdf:type, rdfs:label}
which is a grouped family that generates a partition G5 where |G5| = 28
triples with a set of subj(G5) of size |subj(G5)| = 7 subjects. These subjects
represent the two actors Matthew Perry and David Schwimmer as well as
three actresses Courteney Cox, Jennifer Aniston, and Lisa Kudrow in addition
to the fictional character Ross Geller as they share the set of predicates in
F5. In this case, we will create two typed families, F typed

3 and F typed
4 , that

generate G5,F ictionalCharacter and G5,P erson, respectively, for entities of those
types.

– F6={dbo:portrayer, dbp:occupation, rdf:type, rdfs:label}
which is a grouped family that generates a partition G6 where |G6| = 25 triples
with a set of subj(G6) of size |subj(G6)| = 6 subjects. These subjects represent
the 6 fictional characters of the show including Ross, Monica, Chandler, Joey,
Phoebe, and Rachel as they share the set of predicates in F6. In this family,
all entities belong to a single type ’FictionalCharacter’ so the family is not
partitioned based on the type predicate.

– F7={dbo:alias, dbo:portrayer, dbo:affiliation,
dbp:nationality, dbp:occupation, dbp:religion, rdf:type,
rdfs:label} which is an original family that generates a partition G7 where
|G7| = 8 triples with a set of subj(G7) of size |subj(G7)| = 1 subject. This
subject represents the fictional character Joey Tribbiani. In this family, there

127

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

is a single entity that belongs to a single type ’FictionalCharacter’ so the
family is not partitioned based on the type predicate.

– F8={dbo:alias, dbo:portrayer, dbp:children,
dbp:occupation, dbp:religion, dbp:spouse, rdf:type,
rdfs:label} which is an original family that generates a partition G8 where
|G8| = 8 triples with a set of subj(G8) of size |subj(G8)| = 1 subject. This
subject represents the fictional character Monica Geller. In this family, there
is a single entity that belongs to a single type ’FictionalCharacter’ so the
family is not partitioned based on the type predicate.

– F9={dbo:portrayer, dbp:family, dbp:gender,
dbp:nationality, dbp:occupation, rdf:type, rdfs:label}
which is an original family that generates a partition G9 where |G9| = 8
triples with a set of subj(G9) of size |subj(G9)| = 1 subject. This subject
represents the fictional character Phoebe Buffay. In this family, there is a
single entity that belongs to a single type ’FictionalCharacter’ so the family is
not partitioned based on the type predicate.

– F10={dbo:birthDate, dbo:portrayer, dbp:children,
dbp:occupation, dbp:religion, dbp:spouse, dbp:title,
rdf:type, rdfs:label}
which is an original family that generates a partition G10 where |G10| = 9
triples with a set of subj(G10) of size |subj(G10)| = 1 subject. This subject
represents the fictional character Ross Geller. In this family, there is a single
entity which belongs to a single type ’FictionalCharacter’ so the family is not
partitioned based on the type predicate.

– F11={dbp:occupation, rdf:type, rdfs:label} which is a grouped
family that generates a partition G11 where |G11| = 37 triples with a set of
subj(G11) of size |subj(G11)| = 6 subject. These are all unique subjects in
the Friends graph as all actors, actresses, and fictional characters have the set
of predicates in F11. In this case, we will create two typed families, F typed

5
and F typed

6 , that generate G11,F ictionalCharacter and G11,P erson, respectively, for
entities of those types.

– F12={dbo:portrayer, dbp:occupation, dbp:religion,
rdf:type, rdfs:label} which is a grouped family that generates a parti-
tion G12 where |G12| = 20 triples with a set of subj(G12) of size |subj(G12)| = 4
subjects. These subjects actually represent the 4 fictional characters of the
show including Ross, Monica, Chandler, and Joey as they share the set of
predicates in F12. In this family, there is a single entity which belongs to a
single type ’FictionalCharacter’ so the family is not partitioned based on the
type predicate.

– F13={dbo:portrayer, dbp:children, dbp:religion,
dbp:occupation, rdf:type, rdfs:label} which is a grouped family
that generates a partition G13 where |G13| = 18 triples with a set of subj(G13)

128

6.4. SMART-KG+: Query Processing

of size |subj(G13)| = 3 subjects. These subjects represent the 3 fictional
characters of the show including Ross, Monica, and Chandler as they share the
set of predicates in F13. In this family, there is a single entity which belongs
to a single type ’FictionalCharacter’ so the family is not partitioned based on
the type predicate.

– F14={dbo:portrayer, dbp:family, dbp:gender,
dbp:occupation, rdf:type, rdfs:label}
which is a grouped family that generates a partition G1 where |G14| = 14
triples with a set of subj(G14) of size |subj(G14)| = 2 subjects. These subjects
represent the 2 fictional characters Chandler and Phoebe as they share the
set of predicates in F14. In this family, there is a single entity that belongs to
a single type ’FictionalCharacter’ so the family is not partitioned based on
the type predicate.

– F15={dbp:occupation, dbp:spouse, rdf:type, rdfs:label}
which is a grouped family that generates a partition G15 where |G15| = 28
triples with a set of subj(G15) of size |subj(G15)| = 7 subjects. These subjects
represent the two actors Matt LeBlanc and David Schwimmer as well as three
actresses Courteney Cox, Jennifer Aniston, and Lisa Kudrow in addition
to the fictional character Ross Geller as they share the set of predicates
in F15. In this family, there is a single entity which belongs to a single
type ’FictionalCharacter’ so the family is not partitioned based on the type
predicate.

– F16={dbo:alias, dbo:portrayer, dbp:occupation,
dbp:religion, rdf:type, rdfs:label} which is a grouped family
that generates a partition G16 where |G16| = 12 triples with a set of subj(G16)
of size |subj(G16)| = 2 subjects. These subjects represent the two fictional
characters Joey and Monica. In this family, there is a single entity which
belongs to a single type ’FictionalCharacter’ so the family is not partitioned
based on the type predicate.

– F17={dbo:portrayer, dbp:nationality, dbp:occupation,
rdf:type, rdfs:label} which is a grouped family that generates a parti-
tion G17 where |G17| = 10 triples with a set of subj(G17) of size |subj(G17)| = 2
subjects. These subjects represent the two fictional characters Joey and
Phoebe. In this family, there is a single entity which belongs to a single
type ’FictionalCharacter’ so the family is not partitioned based on the type
predicate.

– F18={dbo:portrayer, dbp:children, dbp:occupation,
dbp:religion, dbp:spouse, rdf:type, rdfs:label} which is a
grouped family that generates a partition G18 where |G18| = 14 triples with
a set of subj(G18) of size |subj(G18)| = 2 subjects. These subjects represent
the two fictional characters, Monica and Ross. In this family, there is a single

129

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

entity that belongs to a single type ’FictionalCharacter’ so the family is not
partitioned based on the type predicate.

In Setting 1, we materialize all possible partitions Gserv = {G1,F ictionalCharacter, ...,
G4,F ictionalCharacter, G4,P erson, ..., G18,F ictionalCharacter}.

• Settings 2 and Settings 3: All entities in each of the materialized partitions belong to
exactly one of the two types, ’Person’ or ’FictionalCharacter’, so the result of family-
based partitioning is equivalent to typed-family partitioning (see Section 4.3.1).

SPARQL Query Evaluations on Friends RDF graph. In the following, we show
the evaluation of SPARQL query examples based on the materialized partitions according
to the aforementioned settings:

Query 1: retrieve the list of characters featured in TV shows, including their respective
occupations and information regarding the actors who portray them. Specifically, retrieve
the birthdate and actual educational background of the actors in real life. This query Q
can be written, as follows:

SELECT ∗ WHERE {
?character dbo: portrayer ? portrayer .
?character dbo:occupation ?occupation.
?character rdf :type dbo: FictionalCharacter .
? portrayer dbo:birthDate ?date.
? portrayer dbo:education ?education.

}

First, the query decomposer splits the BGP into two star-shaped sub-queries as fol-
lows: Q = {Q?character, Q?portrayer}. Second, smart-KG query planner devises a plan
where both of the decomposed stars can be fully evaluated by the served partitions since
F (Q?character) ⊆ P ′

core and F (Q?portrayer) ⊆ P ′
core in all of the aforementioned partitioning

settings. This left-linear plan is written as Π = {Plan(Π?portrayer, P-S), P lan(Π?character, P-S)}.

In the following, we detail the evaluation of the query plan Π using the query executor(cf.
Algo. 6.3), while considering the different partitioning settings:

• Case Setting 1: the query executor starts with evaluating Plan(Π?portrayer, P-S)
by shipping the partition G2 based on the original family F2. Note that F2 is
the only family that contains the set of predicates of Q?portrayer in Gserv. The
size of the intermediate results of evaluating Q?portrayer triple patterns on G2 is
|Ω?portrayer| = 18. Then, The query executor evaluates Plan(Π?character, P-S) by
determining the relevant served partition for Π?character (line 3) which is a single
partition G6 based on the grouped family F6 to resolve the star query Q?character.
The query executor evaluates each triple pattern tpi in Q?character on G6 (line 6)
generating the following intermediate results Ω?character that is of a size equal to
|Ω?character| = |G6| = 25. Note that the shipped partition contains only fictional

130

6.4. SMART-KG+: Query Processing

characters. However, if we modify our example query to include (?character rdf:type
dbo:Person) instead of (?character rdf:type dbo:FictionalCharacter), the query
optimizer will not need to ship any partition from the typed family partitioning,
as we can be certain that the result will be empty due to the known fact that
partition G1 contains only Fictional characters and no person entities. Finally,
we join the solution mappings of the two-star sub-queries to compute the final
solution mapping (line 14), as ΩQ = Ω?portrayer ▷◁ Ω?character and the result is in
the following:

Select∗(ΩQ) = {{character → dbr:Rachel_Green,
portrayer → dbr:Jennifer_Aniston,
occupation → dbr:Louis_Vuitton, date → ”1969 − 02 − 11”,
education → dbr:Fiorello_H._LaGuardia_High_School},
{character → dbr:Monica_Geller, portrayer → dbr:Courteney_Cox,
occupation → dbr:Chef, date → ”1964 − 06 − 15”,
education → dbr:Mount_Vernon_Seminary_and_College},
{character → dbr:Ross:Geller, portrayer → dbr:David_Schwimmer,
occupation → dbr:Chef, date → ”1966 − 11 − 02”,
education → dbr:Northwestern_University}}.

6.4.4 Proof of SMART-KG+ Correctness

The evaluation of SPARQL BGP queries with smart-KG+, as stated in the following
proposition.

Proposition 2. The result of evaluating a BGP Q over an RDF graph G with smart-KG+,
denoted smart-eval(Q, G), is correct w.r.t. the semantics of the SPARQL language, i.e.,
smart-eval(Q, G) = Q G.

The proof of the proposition is in the following:

Proof. For this proof, we first show that the smart-KG+ query decomposer and planner
are correct. By construction, the query decomposer is correct, as the combination of
the star-shaped queries Qs corresponds to the original Q (cf. Eq. 4.9). Furthermore,
the tasks of the query planner are two-fold. First, the optimizer devises an ordering of
the star-shaped queries Qi and the triple patterns within Qi (Alg. 6.1, lines 3–7). This
first task ensures that the plans are correct since the join operator is commutative and
associative in the SPARQL algebra [SML10]. The second task is to partition Qi into
subsets Q′

i and Qi
′′ to be evaluated using the TPF or the SKG APIs (Alg. 6.1, lines

8–13). In the second task, it is easy to see that Qi = Q′
i ∪ Qi

′′ and that Q′
i ∩ Qi

′′ = ∅,
i.e., all triple patterns of the star-shaped query Qi are evaluated once either using the
TPF or SKG APIs. Lastly, since all stars in the input decomposition Q are processed in
Alg. 6.1, the produced plans are correct.

131

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

Now we proceed to show that the execution of plans (cf. Alg. 6.3) is also correct. For this
proof, we assume that the server operators (i.e., the SKG API and the LDF API) are
implemented correctly. By contradiction, let us assume that smart-eval(Q, G) ̸= Q G.
We distinguish three cases based on the shipping strategy used for evaluating Q.

(i) Q is evaluated with Partition Shipping. For this case, we assume the correct
implementation of the join operator, therefore, it is sufficient to prove this case when Q
is composed of a pair of triple patterns with variable-free-predicate p and p ∈ P ′

G. With
partition shipping, the evaluation of Q is carried out against the set of corresponding
partitions obtained with SKG(Q, ∅). After applying the server operators, the query
executor obtains the set of relevant partitions G∗ ⊆ Gserv for Q (Alg. 6.3, line 2). Next, we
consider two sub-cases. In the first sub-case, we have that smart-eval(Q, G) ⊂ Q G, i.e.,
there exists an RDF triple t ∈ G with predicate p such that t /∈ Gj∈G∗ Gj . Therefore,
the partitions in Gserv are created incorrectly, which contradicts Equation 4.8. The
sub-case Q G ⊂ smart-eval(Q, G) does not occur even in the case that F (Q) is a subset
of the predicates covered by Gj , as the executor performs triple pattern matching over
each partition (Alg. 6.3, line 5) to get exact matches.

(ii) Q is evaluated with Triple Pattern Shipping. For this case, the evaluation
of Q is carried out as TPF(Q, Ω) and Q corresponds to a single triple pattern (which
is ensured by the query optimizer). Note that Ω can also be ∅ when there are no
other intermediate results). By hypothesis, TPF(Q, Ω) does not produce Q G, which
contradicts the definition of the TPF server operator.

(iii) Q is evaluated following a Hybrid Shipping. This proof follows from the
correctness of the query decomposer and optimizer, the cases (i) and (ii). Without loss
of generality, assume that Q is composed of two subqueries Q1 and Q2 evaluated using
the APIs, and Q2 is evaluated using the TPF API. From cases (i) or (ii), it follows
that smart-eval(Q1, G) is correct and produces the intermediate results Ω. Then, the
executor proceeds with the evaluation of Q2 with intermediate results Ω as TPF (Q2, Ω);
from case (ii), it follows that smart-eval(Q2, G) is correct. Therefore, we conclude that
smart-eval(Q, G) is also correct.

6.5 Experimental Evaluation
We report the performance of smart-KG+ in comparison to state-of-the-art SPARQL
engines over Linked Data Fragments. All datasets, queries, and results, including
additional experiments, details on the implementation and configurations used in the
experiments are available online5. We organize the conducted experiments as follows:
First, in Sect. 6.5.1, we present the details of our experimental setup. Next, in Sect. 6.5.2,
we present the results of the partition generation. We perform an ablation study to
assess the impact of each contribution in Sect. 6.5.3. Subsequently, in Sect. 6.5.4, we

5 https://github.com/smartkgplus/smartkgplus/tree/master

132

https://github.com/smartkgplus/smartkgplus/tree/master

6.5. Experimental Evaluation

conduct a performance evaluation of our approach, comparing it to the state of the art.
Further, we extend this evaluation in Sect. 4.5.3 to assess the query performance under
different query shapes. The resource consumption of our introduced interface is compared
to other existing interfaces in Sect. 4.5.4. In Sect. 6.5.7.1, we evaluate typed-family
partitioning using multiple datasets. In Sect. 6.6, we summarize the lesson learned from
the experimental evaluation.

6.5.1 Experimental Setup
In this section, we present the experimental setup, including the characteristics of the
compared systems, the benchmark KGs, the query workloads, the hardware and software
configurations, and the evaluation metrics.

6.5.1.1 Compared Systems

- smart-KG: We use the Java implementation of smart-KG [AFA+20], extending the
TPF implementations6. HDT indexes and data are stored on the server’s disk, with
no client-side family caching. This implementation includes:

• Query Planner: The smart-KG client-side query planner generates left-linear
plans. This planner relies on the server’s partition metadata to determine whether
to use the triple pattern or partition shipping. The metadata is transferred to
the client-side once before evaluating queries, requiring additional data transfer.

• Client-side Joining: We implement a joining strategy, following TPF implementa-
tion [VSH+16]. The join processing is performed on the client-side based on the
client-side query plan.

- smart-KG+: We implement both client and server in Java5, extending smart-KG,
which includes:

• Query Planner: We implement server-side query planner to re-order the star-
subqueries and triple patterns based cardinality estimations available at the server.
Details are presented in Sect. 6.4.1, Alg. 6.1.

• Client-side and Server-side Joining: We implement a joining strategy, following
the brTPF implementation [HA16]. We enable the clients to attach intermediate
results to brTPF requests.This enables a distributed join execution between the
client and server using the bind join strategy [HKWY97].

- Triple Pattern Fragments (TPF): We use the Java TPF client along with the TPF
server [VSH+16].

6Linked Data Fragments: http://linkeddatafragments.org/software/.

133

http://linkeddatafragments.org/software/.

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

Table 6.1: Characteristics of the evaluated knowledge graphs
RDF Graph G # triples |G| # subjects |SG| # predicates |PG| # objects |OG|
WatDiv-10M 10,916,457 521,585 86 1,005,832
WatDiv-100M 108,997,714 5,212,385 86 9,753,266
WatDiv-1B 1,092,155,948 52,120,385 86 92,220,397
DBpedia 837,257,959 113,986,155 60,264 221,623,898

- SaGe: We use the Java implementation of both the SaGe server and client. We follow
the recommended configurations [MSM19]. Specifically, we configure SaGe to operate
with 4 workers, as suggested by the authors.

- WiseKG: We utilize the WiseKG client and server Java implementation, extending the
TPF implementations. The WiseKG server employs Star Pattern Fragments (SPF) for
efficient server-side processing of star-subqueries and uses the family generator from
smart-KG to manage and store HDT files for family-based partitions. The WiseKG
client implements a bind join strategy similar to brTPF and SPF, smart-KG+ client
implementations.

In our experiments, we do not consider SPARQL endpoints, since several previous
studies [VSH+16, MSM19, AKMH20] including ours [AFA+20] have already shown that
endpoints suffer from scalability problems when increasing the number of clients.

6.5.1.2 Knowledge Graphs

We use various RDF graph datasets including synthetic and real-world datasets. We
construct three different dataset sizes including 10M, 100M, and 1B triples from the
synthetic dataset Waterloo SPARQL Diversity Benchmark (WatDiv) [AHÖD14]. We
design these KG sizes according to the size of open KGs on the LOD Cloud7, with an
average of 183M RDF triples. In addition, we evaluate the compared systems based on a
real-world dataset such as DBpedia (v.2015A) [LIJ+15]. We report the characteristics of
the evaluated RDF KGs in Table 6.1. In addition, we report statistics on computing family
partitioning over other real-world RDF KGs such as WordNet [Fel98], Yago2 [HSBW13],
DBLP [Ley02], Freebase [BEP+08]. However, these KGs are not used for assessing the
performance of the query engines, as there are no well-known benchmark queries for
these datasets.

6.5.1.3 Queries and Workloads

We consider two different query workloads for the synthetic WatDiv datasets:

- A basic testing workload denoted as watdiv-btt that includes a set of queries
extracted from WatDiv basic testing templates8. We generate for each client a set of

7The Linked Open Data Cloud. https://lod-cloud.net/
8https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

134

https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

6.5. Experimental Evaluation

20 queries with the following shapes: linear (L), which represents simple path queries;
star (S), which includes star queries with at least one instantiated object; snowflake
(F), which combines multiple star shapes connected with short paths; and complex (C),
which provides challenging queries composed of typically low-selective stars and path
queries. Various clients may exhibit query overlap among themselves, but within an
individual client, there are no instances of query repetition.

- A stress testing workload denoted as watdiv-sts comprises a collection of queries
sourced from the WatDiv stress-testing suite9. Each client workload encompasses a
total of 156 non-overlapping queries10. These queries were generated using the Waterloo
SPARQL Diversity Test Suite (WatDiv), which provides stress testing tools [AHÖD14],
allowing us to randomly select queries from the WatDiv stress test query workload in
a uniform manner. This workload offers a diverse range of structural and data-driven
features [AHÖD14].

In addition, we consider a DBpedia real-world query workload:

- A real-world testing workload, named DBpedia-lsq, consists of 30 SELECT queries
per client obtained from the FEASIBLE framework [SMN15]. These queries are derived
from real user interactions and were executed on the DBpedia 3.5.1 dataset. FEASIBLE
is a benchmark generation framework that receives a query log (LSQ [SAH+15] in
our case) and produces a representative set of queries from the log considering both
data-driven and structural query features. Since we are interested in highly-demanding
queries, we randomly selected 30 BGP queries (out of 259) from FEASIBLE with
runtime higher than 1s. We include the results of this workload in our online repository

In order to evaluate the proposed typed-family partitioning, as shown in details in
Table 6.2, we derive the following testing workloads from basic testing and stress testing
workloads on Watdiv dataset and a real-world testing workload extracted from LSQ
query logs based on FEASBLE benchmark framework:

- A basic typed-family partitioning testing workload, named as watdiv-btf, includes 8
queries derived for each client from watdiv-btt. Each query contains at least one
star-shaped subquery Qs with a triple pattern that has a rdf:type predicate. We
divide this workload into two workloads: the first workload named watdiv-btfbounded

includes 4 queries for each client where the object of the triple pattern with rdf:type

predicate is bounded to a value, the second workload, named watdiv-btfunbounded,
where the object of the triple pattern with the rdf:type predicate is unbounded (i.e.
variable).

9Waterloo SPARQL Diversity Benchmark. https://dsg.uwaterloo.ca/watdiv/
10brTPF: http://olafhartig.de/brTPF-ODBASE2016/

135

https://dsg.uwaterloo.ca/watdiv/
http://olafhartig.de/brTPF-ODBASE2016/

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

Table 6.2: Evaluation Workloads Statistics. We provide the total numbers for all the 128
clients

Query Workload Number of
queries

Number of
stars

Number of stars
with type predicate

Number of stars
with bounded type predicate

watdiv-sts 19968 35683 6283 3886
watdiv-btt 2560 5248 1152 512
watdiv-btf 1024 1664 1152 512

watdiv-btfbounded 512 640 640 512
watdiv-btfunbounded 512 1024 512 0

watdiv-stfbounded 2944 6144 2944 2944
watdiv-stfunbounded 1792 3072 1792 0

watdiv-stfboth 768 1792 1536 768
DBpedia-lsq 3840 5632 896 768

DBpedia-bttbounded 2432 4352 3200 3200
DBpedia-bttunbounded 768 768 0 0

- A stress typed-family partitioning testing workload derived from watdiv-sts named
watdiv-stf. We include a set of queries that contain at least one star-shaped
subquery Qs with the rdf:type predicate. We divide the obtained queries into
three different workloads. The first workload, named watdiv-stfbounded, includes
23 queries for each client where the object of the triple pattern with type predicate is
bounded. The second workload, watdiv-stfunbounded, includes 14 queries for each
client where the object of the triple pattern with rdf:type predicate is a variable.
The third workload, watdiv-stfboth, contains 6 queries per client, where one star-
subquery involves a bounded object in the triple pattern with the type predicate, while
another star-subquery includes an unbounded object in the triple pattern with the
type predicate.

- A real-world typed-family partitioning testing workload. We extract 25 real-users
SELECT queries for each client from FEASIBLE [SMN15] benchmark on the DBpedia
3.5.1 dataset. Note that we make sure that the queries are compatible with our DBpedia
dataset version, v.2015A. We selected queries that contain at least one-star pattern with
at least one triple pattern with the rdf:type predicate. We divide the selected queries
into two workloads. The first workload, named as DBpedia-bttbounded, consists of
19 queries with at least one-star query with a bounded type predicate. The second
workload, named as DBpedia-bttunbounded, consists of 6 queries for each client with
at least one-star query with an unbounded rdf:type predicate.

6.5.1.4 Hardware Setup

- Client specifications: We design experiments with an increasing number of clients
following eight configurations with 2i clients (0 ≤ i ≤ 7) issuing concurrent queries to
the server. Each client executes one query at a time, i.e., the server receives at most
128 queries simultaneously. We ran all eight configurations 1, 2, 4, 8, 16, 32, 64, and
128 clients concurrently on a virtual machine with 128 vCPU cores of 2.5GHz, 64KB

136

6.5. Experimental Evaluation

L1 cache, 512KB L2 cache, 8192KB L3 cache, and 2TB main memory. To ensure equal
resource allocation among the clients, we bound each client (for the compared systems)
to a single vCPU core and 15GB of main memory.

- Server specifications: The compared systems servers run on a virtual machine (VM)
hosted on a machine with 32 3GHz vCPU cores, 64KB L1 cache, 4096KB L2 cache,
16384KB L3 cache, and 128GB main memory. To ensure that enough resources are left
for the VM, it was made sure that the hypervisor was not over-committing resources.
Furthermore, KVM processor affinity was configured so that each VM would be only
using a set of explicitly defined CPU cores, ensuring that other VMs running on the
hyper-visor are not using the resources of the VM running the SPARQL servers.

- Network configuration: While clients and servers are connected over a 1 GBit
Ethernet network, we bound the network speed of each client to 20MBit/sec to emulate
a practical bandwidth offered by internet service providers.

6.5.1.5 Evaluation Metrics

- Throughput: Number of workload queries completed per minute.

- Timeouts (TO): Number of workload queries that exceed the timeout. We set timeout
thresholds of 5 and 30 minutes for WatDiv and DBpedia queries, respectively.

- Workload Completion Time: Total elapsed time required by a client to execute an
entire query workload.

- Query Execution Time (ET): Average elapsed time to execute a single query in a
query workload.

- First Result of a Query: Elapsed time to retrieve the first result of a query in a
query workload.

- Server CPU load: The average percentage of server CPU used during the execution
of a query workload.

- Number of Requests (Req): Total number of requests received by the server from
a client.

- Number of Transferred Bytes (DT): Total number of bytes transferred on the
network between the server and clients.

6.5.2 Creation of Family-based Partitions
Table 6.3 presents the thresholds used for creating the family-based partitions for each KG
G. Note that the configuration (αs, αt, τplow

, τphigh
, τclasslow

, τclasshigh
) = (0, |G|, 0, 1, 0, 1)

corresponds to full materialization of all families. For the smallest dataset WatDiv-10M,
we tested this configuration. Then, we assess the impact of the smart-KG+ family

137

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

Table 6.3: Family-based Partitions Parameter Settings

RDF Graph G αs αt τplow
τphigh

τclasslow
τclasshigh

|P ′
G| |P ′

core| |F ′
core| |Gserv| C

.T
im

e
(h

)

WatDiv-10M 0 |G| 0 1 0 1 85 85 13,002 38,400 2
WatDiv-10M 0 0.05|G| 0.01/100 1 0 1 59 59 10,106 21,210 1

WatDiv-100M 0 0.05|G| 0.01/100 1 0 1 59 59 22,855 37,392 7
WatDiv-1B 0 0.05|G| 0.01/100 1 0 1 59 59 39,046 52,885 12

DBpedia 0.01/100 0.05|G| 0.01/100 0.1/100 0.01/100 0.1/100 218 84 35 29,965 23

pruning strategies with the following set up. We empirically set αt = 0.05|G| for all
datasets, to avoid large families containing more than 5% of the triples in G. Then, we
use αs = 0 for WatDiv to allow all families (even small ones), but αs = 0.01/100 for
DBpedia to create families where the predicates appear in at least 0.01 of the subjects in
the graph. Likewise, we fixed τplow

= 0.01/100 for all G, while we set τphigh
= 0.1/100

for DBpedia, as we empirically tested that the resultant predicate set filters out both
infrequent and heavy hitters. We refer to [AFA+20] for a study on DBpedia on the
number of families with different values of our parameters. Lastly, for typed families, we
tested the parameters τclasslow

= 0.01/100 and τclasshigh
= 0.01/100 for DBpedia, applied

to 376 classes selected based on an empirical test that the resultant class set filters out
heavy hitter classes as well as infrequent classes.

For each graph G, Table 6.1 also shows the number of restricted and core predicates (|P ′
G|,

|P ′
core|), core families, |F ′

core|, and the materialized partitions after grouping/pruning,
|Gserv|, as well as the total computation time (including family computation, pruning,
and partition generation). Table 6.1 also shows that |F ′

core|, |Gserv|, and the computation
time are sub-linearly increasing with the graph sizes. In WatDiv, F ′

core = F ′(G), whereas
in DBpedia, the initial number of P ′

G-restricted11 families |F ′(G)| is >600K: the family
pruning strategy allows smart-KG+ to identify |F ′

core| = 35 core families, which are
merged into ∼30K materialized partitions. We provide an analysis of the impact/coverage
of different parameter values for the case of DBpedia in our online repository5. Lastly,
we present the results of family creation in further real-world KGs, i.e., Yago2, WordNet,
and DBLP. In Table 6.4, we present additional real-world Knowledge Graphs (KGs)
partitioned using family-based techniques. Freebase and Yago2 follow the parametrization
of DBpedia due to their similar characteristics (see Table 6.3). DBLP and WordNet use
the same setup as WatDiv due to their comparable characteristics.

6.5.3 Ablation Study: Assessing the Impact of the smart-KG+

Components
In this section, we conduct an ablation study to evaluate the performance of each
individual contribution made to smart-KG+. The goal is to gain insights into the

11The 218 restricted DBpedia predicates cover over 40% of the predicates occurring in highly-demanding
BGPs (>1s of execution time) in the real-world LSQ query log [SAH+15].

138

6.5. Experimental Evaluation

Table 6.4: Characteristics of additional real-world knowledge graphs
RDF Graph G # triples |G| # subjects |SG| # predicates |PG| # objects |OG| |P ′

G| |P ′
core| |F ′

core| |Gserv | C.Time (h)
Freebase 2,067,068,155 102,001,451 770,415 438,832,462 530 171 479 11979 18
Yago2 158,991,568 67,813,972 104 22,354,760 35 19 65 638 5
DBLP 88,150,324 5,125,936 27 36,413,780 27 27 270 990 3
WordNet 5,558,748 647,215 64 2,483,030 64 64 777 1156 0.5

Table 6.5: An ablation study to assess the performance of each individual contribution
over watdiv10M using watdiv-btt workload. (Req: Requests, DT: Data Transfer in
MB, ET: Execution Time in ms, TO: Timeouts). GM-T = Total Geometric mean for all
query classes

smartKG (brTPF +NP) smartKG (TPF +NP) smartKG (TPF +OP)
Query Req DT ET Req DT ET Req DT ET

L1 4 0.54 206 28 1.1 333 60 0.54 218
L2 3 0.34 175 3 0.34 188 2 0.34 51
L3 2 0.5 579 2 0.5 566 2 0.5 28
L4 2 0.5 188 2 0.5 169 2 0.48 69
L5 3 0.16 192 3 0.16 221 2 0.16 52
S1 3 0.13 221 3 0.13 206 2 0.12 66
S2 2 0.22 191 2 0.22 204 2 0.22 117
S3 2 0.59 209 2 0.59 181 2 0.55 61
S4 10 0.48 226 16 0.66 575 216 0.72 1476
S5 2 0.42 161 2 0.42 163 2 0.39 3863
S6 2 0.01 170 2 0.01 141 699 3.8 7508
S7 2 0.003 221 2 0.003 224 2 0.003 52
F1 4 0.9 240 4 0.98 228 15 2.95 452
F2 3 0.9 184 3 0.91 179 2 1.2 361
F3 5 1.5 311 1503 0.16 268 2541 1.4 298
F4 5 0.8 217 2029 30.56 31858 24000 0.81 76073
F5 5 5.8 247 5 5.8 282 3 5.8 2478
C1 4 6.9 372 4 6.9 384 6 7.4 683
C2 39218 52.1 300071 3181 52.1 171848 102441 3.1 208721
C3 2 0.8 21635 2 0.81 22200 2 0.8 28316

GM-T 4.9 0.5 407.7 8.76 0.57 539.03 18.82 0.64 605.12

significance of each change introduced w.r.t. the earlier version. For this purpose, we
developed three configurations of the interface:

• TPF+OP: This configuration represents the early version of smart-KG, combining
TPF with client-side query planning (OP).

• TPF+NP: This configuration is a variant of our smartKG interface that allows us
to observe the impact of the new server-side query planning (NP) while using TPF.

• brTPF+NP: This configuration represents our proposed solution smart-KG+,
which combines brTPF with server-side query planning (NP).

To assess the performance of these configurations, we conduct a performance evaluation
using watdiv-btt and watdiv-sts on watdiv10M; results are presented in Table 6.5
and Table 6.6.

139

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

Table 6.6: An ablation study to assess the performance of each individual contribution over
watdiv10M using watdiv-sts workload. (Req: Requests, DT: Data Transfer in MB, ET:
Execution Time in ms, TO: Timeouts). GM-T = Total Geometric mean for all query classes

Workload smartKG (brTPF + NP) smartKG (TPF + NP) smartKG (TPF + OP)
Req DT ET TO Req DT ET TO Req DT ET TO

watdiv-sts 554 203.41 24.405 6 24722 546.26 382.236 0 3768 387.953458 55.876 0

In Table 6.5, we observe that the smart-KG outperforms other approaches in handling
simple linear queries (L1 - L5) and highly selective star queries (S1 - S3). This perfor-
mance superiority is attributed to the comparatively lower average execution time of 82
milliseconds for these queries, while the query planning process in our proposed solution,
smart-KG+, requires an average of 70 milliseconds. However, it is essential to consider
that client-side query planning requires an initial data transfer of 1.75MB on average,
comprising metadata that represents the family partitioning of the queried knowledge
graph. This metadata is crucial for identifying the required partition for each query.
Shipping the metadata file demands an average of 700 milliseconds, but it can be cached
locally and subsequently utilized for multiple queries. It is important to note that the
performance results presented for smart-KG presume that the metadata file is already
stored on the client-side.

Table 6.5 also shows a significant improvement in performance, with up to a 50% reduction
in execution time observed, for both systems reliant on the server-side query planner
for F queries comprising 2-3 stars per query. This improvement can be attributed to
our server-side query planner’s utilization of star reordering based on characteristic sets,
which offers a better reordering compared to the one achieved by smart-KG in the case
of snowflake queries.

In the case of C queries, C1 demonstrates performance enhancement through the adoption
of the star-reordering technique provided by the query planner of smart-KG+. However,
for C2, brTPF+NP exhibits slightly lower performance compared to other systems.
This is attributed to the query execution strategy of smart-KG+, which always pushes
intermediate results to brTPF, instead of joining the intermediate results entirely at the
client-side. This lead to unnecessary requests in C2, resulting in a longer runtime. Still,
brTPF+NP provides the best total geometric mean for the number of requests, data
transfer, and execution time compared to the other two versions.

In Table 6.6, we present the performance analysis of three different configurations applied
to the stress workload watdiv-sts. The results demonstrate a significant improvement
in the performance of smart-KG+ (brTPF +NP) when compared to the other two
versions. We note that the smart-KG+ (brTPF +NP) version experienced 6 timeouts,
whereas the remaining versions did not encounter any timeouts. These timeouts results
from the following reasons. First, low selective queries may time out due to the strategy
of attaching large intermediate results back to the server. Second, the process of attaching
the intermediate results to the brTPF request incurs higher costs compared to a regular
TPF request. This increased cost further affects the overall performance and contributes

140

6.5. Experimental Evaluation

(a) Average Workload Completion Time of 128 concurrent clients over watdiv10M, watdiv100M,
and watdiv1B datasets on watdiv-sts workload

(b) Average Workload Completion Time for increasing numbers of clients over watdiv1B on
watdiv-sts workload

Figure 6.5: Workload completion time (lower is better)

to the occurrence of timeouts. Third, a mismatch in query planning can potentially lead
to longer execution times. This was observed in two queries in TPF+NP, which took more
than a minute to execute, as well as in the case of C2.

To conclude, the new query planner finds better query plans but with the cost of a server
request. In addition, our strategy to query brTPF achieves better performance in queries
that require shipping a small number of intermediate result, while querying TPF achieves
better performance for queries that require shipping many intermediate results.

141

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

(a) Number of timeouts of 128 concurrent clients over watdiv10M, watdiv100M, and watdiv1B
datasets on watdiv-sts workload

(b) Number of timeouts for increasing numbers of clients over watdiv1B on watdiv-sts
workload

Figure 6.6: Number of timeouts (lower is better)

6.5.4 System Performance Evaluation
In this section, we evaluate the performance on increasing number of concurrent clients
(up to 128 clients) on three different graph sizes including watdiv10M, watdiv100M,
and watdiv1B using watdiv-sts workload. For these experiments, and the ones
presented in Section 6.5.5 and Sect. 6.5.6, smart-KG+ does not use the typed-partitions.
This allows for measuring the impact of the new planning and pipelined join strategies
implemented, and comparing them to the previous techniques implemented in smart-KG.

Workload Completion Time Analysis. Fig. 6.5 shows the average workload comple-
tion time results of executing the watdiv-sts workload including the queries that have

142

6.5. Experimental Evaluation

Figure 6.7: Query throughput of 128 concurrent clients over watdiv10M, watdiv100M,
and watdiv1B datasets on watdiv-sts workload

Figure 6.8: Query throughput for increasing numbers of clients over watdiv1B on
watdiv-sts workload

Figure 6.9: Throughput (higher is better)

timed out. Fig. 6.5a shows the scenario of increasing KG size with the highest number of
concurrent clients (128 clients) on using watdiv-sts. smart-KG+ is up to 7, 2, and 1.3
times faster than smart-KG on watdiv10M, watdiv100M, and watdiv1B datasets,
respectively. This improvement in performance is due to performing query planning on
the server-side, which results in fewer intermediate results transferred over the network.

As shown in Fig. 6.5b, smart-KG+ provides a significant performance improvement
compared to all systems; smart-KG+ has an outstanding performance over watdiv1B

143

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

Figure 6.10: Average first result time for 128 clients over increasing sizes datasets on
watdiv-sts workload

Figure 6.11: Average first result time for increasing number of clients over watdiv1B
dataset on watdiv-sts workload

Figure 6.12: Average first result time (lower is better)

dataset from 1 up to 32 clients compared to smart-KG since smart-KG+ utilizes
brTPF which significantly reduces the number of HTTP requests. Note that smart-KG
performance slightly improves with an increasing number of concurrent clients since TPF
request sent by smart-KG clients has a higher potential for a cache hit than brTPF
request sent by smart-KG+ client since the HTTP caching is designed to serve the
identical requests to earlier ones without the need to access the server to recompute the
response over again.

Overall, smart-KG+ provides a faster workload completion time on using watdiv-sts
than TPF and SaGe in all experiment setups from 1 up to 128 clients over watdiv1B

144

6.5. Experimental Evaluation

dataset. smart-KG+ is up to 18 and 7 times faster in the case of 1 client workload, and
3 and 2.6 times with 128 concurrent client workloads than TPF and SaGe, respectively.
For less than 16 concurrent clients, SaGe provides a slightly faster workload completion
time than smart-KG. From this point forth, SaGe suffers from performance degradation
due to the excessive waiting queue time of the round-robin policy.

Timeout Analysis. Fig. 6.6a illustrates that smart-KG and smart-KG+ produces
relatively low timeouts compared to the state-of-the-art system TPF and SaGe. That is,
with 128 concurrent clients, smart-KG+ and smart-KG have approximately a percentage
of 9% and 13% of watdiv-sts workload queries timed out over watdiv1B dataset. In
contrast, as shown in Fig. 6.6b, on watdiv1B, the percentage of timeouts drastically
increases for TPF with an increasing number of clients, from 44% in 1-client workload to
56% with 128 clients. Similarly, the percentage of timeouts rises rapidly from 10% with 1
client up to 54% with 128 concurrent clients.

As expected, the number of timeouts of TPF and SaGe has excessively increased with
the size of the RDF KG size. On watdiv10M, SaGe produces no timeouts while TPF
has a percentage of 10% timeouts. In turn, SaGe timeouts increase substantially with
increasing KG sizes, with a trend similar to TPF over watdiv100M and watdiv1B.

Throughput Analysis. We consider throughput as a metric to explore the performance
of the systems under high load, i.e., an increasing number of concurrent clients and the
sizes of the KGs. We measure the throughput as the total number of queries executed
per minute from all concurrent clients. Note that we consider the queries that have
terminated successfully and provided complete results within the predetermined timeout
limit.

Fig. 6.7 shows that smart-KG+ achieves an higher throughput values than all the
compared systems over different KG sizes reaching 4132, 678, 109 query/min over
watdiv10M, watdiv100M and watdiv1B, respectively. In Fig. 6.8, we observe two
main findings. First, smart-KG+ scales better than all the compared systems since it has
a higher query throughput with an increasing number of clients. Second, all compared
systems are able to achieve higher throughput with an increasing number of clients, which
shows that the systems can scale well but at a different rate.

First Result of a Query Analysis. Fig. 6.10 shows that SaGe provides the best
response time to all systems over different sizes of KGs. This is not surprising since
SaGe is, in principle, a SPARQL endpoint that adopts a Web preemption technique to
avoid the convoy effect phenomenon caused by the long-running queries. smart-KG+

provides a comparable query response time to smart-KG and SaGe and even slightly
better than TPF on watdiv10M dataset. However, as the KG size increases, the average
response time also increases for watdiv100M and watdiv1B. This can be attributed to
two factors. First, the larger sizes of the shipped KG partitions result in longer download
times. Second, smart-KG+ relies on brTPF for handling single triple pattern fragments,
unlike the previous version smart-KG which used TPF. While brTPF potentially requires
fewer requests compared to TPF, it introduces additional time for attaching and parsing

145

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

(a) L1 (b) S1

(c) F1 (d) C1

Figure 6.13: Avg. execution time per client on WatDiv-100M, for the first query of each
category L, S, F, and C

solution mappings. Moreover, brTPF utilizes the binding join strategy to distribute the
workload between clients and the server. Consequently, with an increasing number of
clients, brTPF puts more load on the server compared to TPF, resulting in slightly slower
query response times as shown in Fig. 6.10.

In Fig. 6.11, we observe that TPF and SaGe have an almost constant curve (i.e. negligible
response time increase) with an increasing number of clients. In turn, smart-KG+ has
on average a longer response time between 2 seconds on 1 client workload and 17 seconds
on 128 clients workload. As a final noteworthy observation regarding the response time
metric, smart-KG response time is actually decreasing with an increasing number of
concurrent clients, as we discussed earlier, the likelihood of a cache hit for identical TPF
requests from different query execution is higher than brTPF requests. In other words,
with an increasing number of clients, TPF requests issued by smart-KG clients are
more frequently answered from an HTTP cache that acts as a proxy server than brTPF
requests issued by smart-KG+. This is consistent with the results reported by Hartig
and Buil-Aranda [HA16].

146

6.5. Experimental Evaluation

Table 6.7: Avg. execution time per client (in sec.) for 128 clients over watdiv100M
for the watdiv-btt workload. GM=Geometric Mean per query class. GM-T = Total
Geometric mean for all query classes.

Query L1 L2 L3 L4 L5 GM-L
TPF 0.39 268.7 0.16 35.9 117.18 9.3
SaGe 0.141 11.27 0.26 6.86 7.47 1.84

smart-KG 7.13 20.66 0.88 2.89 0.94 3.23
smart-KG+ 3.90 5.9 0.92 1.99 0.875 2.05

(a) L Queries
Query F1 F2 F3 F4 F5 GM-F
TPF 22.60 44.35 41.8 50.27 2.21 21.5
SaGe 1.21 0.93 1.67 2.33 0.37 1.1

smart-KG 23.58 7.19 28.19 7.17 7.83 12.18
smart-KG+ 1.8 1.832 3.34 2.75 2.27 2.39

(b) F Queries
Query S1 S2 S3 S4 S5 S6 S7 GM-S
TPF 3.36 59.2 38.063 36.91 92.39 9.58 0.034 9.75
SaGe 0.17 2.79 10.85 2.9 5.70 0.77 0.09 1.28

smart-KG 2.61 0.99 0.91 43.02 3.62 67.41 0.97 4.22
smart-KG+ 1.81 0.83 0.402 23.02 2.8 3.6 0.43 1.79

(c) S Queries
Query C1 C2 C3 GM-C GM-T
TPF 300.0 300.0 510.37 358.13 130.2
SaGe 77.74 74.18 480.10 140.41 55.12

smart-KG 39.85 300.0 363.35 163.16 68.19
smart-KG+ 14.85 48.61 260.11 57.26 29.37

(d) C Queries

6.5.5 Performance evaluation on different query shapes

In this section, we investigate the query performance of the compared systems on four
different query shapes previously introduced by the WatDiv Basic Testing [AHÖD14].
In the following, we provide an overview of the trend of the average execution time of
each category in Fig. 6.13.

In general, SaGe has an outstanding performance for all query shapes. This behavior can
be explained by the size of the workload; the watdiv-btt workload includes only 20
queries per client inducing a low query arrival rate to the SaGe server. In contrast, TPF
is significantly worse than most of the compared systems except in simple queries due to
shipping large intermediate results and a high number of requests. In turn, smart-KG
provides a relatively slow performance in L, S, and F queries since it ships partitions with
unnecessary intermediate results for such selective queries. Yet, smart-KG+ provides an
efficient query performance in F and C queries. Interestingly, although smart-KG+ still
has to ship the same partitions as smart-KG, smart-KG+ provides better performance
in most query shapes thanks to the more accurate query planner. As expected, the
performance of smart-KG+ enhances gradually from simple L queries reaching its best
performance in complex C queries.

147

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

Table 6.7 summarises the average execution time for all different query shapes over
watdiv100M with 128 clients. For the L-workload, smart-KG+ and SaGe offer com-
parable performance in L, with a better geometric in the simplest queries and highly
selective queries with a small diameter. For the F queries, SaGe provides the best perfor-
mance in the F-workload compared to all systems. In turn, smart-KG+ outperforms
all the compared systems in C queries, especially in C2, where both smart-KG and
TPF timeouts due to the large intermediate results. Finally, smart-KG+ achieves the
smallest total geometric mean among all the compared systems and all query shapes (cf.
Table 6.7, GM-T column).

Fig. 6.14 shows the performance in the simplest L-queries of the different systems
on WatDiv-100M. Similar to our previous results, smart-KG+ reports a stable query
execution time, which ranges between 1-5 seconds. smart-KG+ performs better than the
original smart-KG due to the asynchronous pipeline of iterators executing first the most
selective iterator. As expected, SaGe provides excellent performance in L queries (i.e.
simple queries), with the best performance in the L3 query with an average execution
time of less than 1 second. The main reason is that SaGe server in the case of L queries
acts as a SPARQL endpoint since it requires a single request to process L query. Finally,
TPF is the slowest approach in L2, L4, L5 queries, while it excels in L1 and L3 up to 40
clients since the queries are very selective and do not require pagination.

Fig. 6.15 shows the query execution time of S-queries. smart-KG+ provides a more
efficient performance than smart-KG, since in this case, smart-KG+ server query
planner generates far more accurate triple pattern ordering than smart-KG, relying on
pre-computed cardinality estimations (i.e. characteristics sets) stored on the server-side.
SaGe maintains a solid performance in S-queries (very selective) requiring less time on the
server. As shown in figure 6.16, SaGe provides the best execution time for F queries (i.e
snowflake queries). smart-KG has on average a slow query execution time in F queries
(i.e snowflake queries) since snowflake queries require a join operation between the shipped
stars which are typically connected with a non-selective single triple pattern evaluated by
a high number of TPF requests. However, smart-KG+ significantly outperforms TPF
and smart-KG thanks to the accurate server-side query planning. Finally, Fig. 6.17 shows
the overall execution times for the C-queries workload on (WatDiv-100M, 80 clients, 5min
timeout). TPF is again the slowest solution, while smart-KG+ significantly outperforms
all the compared systems. For instance, smart-KG timeouts at C2 since the query
includes 3 stars and 3 single triple patterns with high cardinalities causing a tremendous
number of TPF requests. smart-KG+ avoids the large intermediate results by better
subqueries reordering. For C3 (unbounded star query), smart-KG and smart-KG+

provide the best performance since they are optimized for star queries. In contrast, SaGe
suffers from additional delays in case of complex queries to maintain the fair resources
allocation policy.

148

6.5. Experimental Evaluation

(a) L2 (b) L3

(c) L4 (d) L5

Figure 6.14: Avg. execution time per client on the standard WatDiv-100M, for simplest
L queries

6.5.6 Resource Consumption

Network Load. We report two main metrics to describe the network load: the total
number of requests received by the server and the number of bytes transferred on the
network between clients and the server. The results reported in the following do not
account for queries that timed out.

Fig. 6.18a shows the distribution of the number of transferred bytes on increasing KG
sizes with 128 concurrent clients. SaGe transfers the least number of bytes over the
network compared to all state-of-the-art systems since SaGe acts as a full SPARQL
endpoint with a Web preemption as an additional feature to prevent query execution
starvation with no intermediate results. SaGe only consumes a small extra data transfer
overhead to send query plans of a long running-query in order to enable the clients to
resume query execution afterwards. In contrast, TPF incurs the highest data transfer
cost due to the enormous amount of shipped intermediate results leading to low query
execution performance as already shown in Fig. 6.5 and Fig. 6.6.

smart-KG+ requires less data transfer than smart-KG. This is expected for two main

149

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

(a) S2 (b) S3

(c) S4 (d) S5

(e) S6 (f) S7

Figure 6.15: Avg. execution time per client on the standard WatDiv-100M, for Star S
queries

reasons. First, smart-KG+ utilizes a star pattern reordering based on cardinality
estimation which eventually reduces the intermediate results transferred on the network.
Second, smart-KG+ employs brTPF to handle single non-star triple patterns which
reduces the data transfer compared to TPF. To be precise, smart-KG+ requires to
transfer on average 8.1MB and 86.8MB per query over watdiv100M and watdiv1B.

150

6.5. Experimental Evaluation

(a) F2 (b) F3

(c) F4 (d) F5

Figure 6.16: Avg. execution time per client on the standard WatDiv-100M, for Snowflake
F queries

(a) C2 (b) C3

Figure 6.17: Avg. execution time per client on the standard WatDiv-100M, for Complex
C queries

As expected, smart-KG+ transfers more data over the network than SaGe, but up to
87% and 40% less data than TPF and smart-KG per query over watdiv100M dataset.

151

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

Unlike SaGe, smart-KG+ can leverage the transferred partitions by reusing them in
future queries.

As shown in Fig. 6.18b, smart-KG+ significantly reduces the number of requests in
comparison to all of the compared systems. smart-KG+ requires on average 8, 17 and
178 requests over watdiv10M, watdiv100M, and watdiv1B. In contrast, TPF incurs
an enormous number of requests, reaching more than 10 − 30K requests per query
(on average) over the different WatDiv datasets. For SaGe, the number of requests
considerably increases as a consequence of the scheduling mechanism to allocate server
resources among the workload queries. In both versions of smart-KG, the implementation
of a caching mechanism would potentially yield a substantial performance improvement.
Two strategies can be employed: server-side caching of popular families in-memory
and client-side caching, where families are stored locally upon shipment, enabling their
reuse for subsequent queries involving the same families. Caching the partitions on the
client-side will execute streak queries with minimal communication to the server. A
streak [BMT17] is defined as a sequence of queries that appear as subsequent modifications
of a seed query.

Server CPU Usage. Fig. 6.18c shows that smart-KG, TPF, and smart-KG+ only
consume less than 30% of server CPU in order to process the watdiv-sts query
workload on all number of clients setups. This is because the aforementioned interfaces
limit the client to send certain query patterns (i.e less expressive queries) to the server
(e.g. single triple patterns and star patterns). This allows for distributing the query
execution computation cost between the client and the server. In contrast, SaGe offers a
more expressive server interface with few operators executed on the clients. Thus, SaGe
server is able to execute more complex queries which extensively use the server CPU
leading to a rapid surge of CPU usage. In particular, SaGe uses less than 30% CPU
usage for 1 up to 16 clients and then escalates up to 80 − 100% for 32 to 128 clients.

Server Disk Usage. Table 6.8 presents a comparison of the required disk storage for
all compared systems. We consider four KGs with diverse raw data sizes (in N-Triples).
In practice, TPF and SaGe rely on the compressed HDT file format that offers a highly
space-efficient representation. In turn, smart-KG and smart-KG+ rely on the family
partitioning mechanism that demands additional disk space to store HDT partitions,
specifically both systems mandate double the N-Triples format size of Watdiv KG. Note
that DBpedia requires less storage space since we apply the pruning parameters to reduce
the number of materialized HDT partitions. Considering that disk storage is the most
economical server resource, smart-KG+ supports an admissible trade-off to obtain better
query performance alongside less server CPU consumption.

Client CPU and RAM usage. The SaGe client locally performs two main tasks: first,
resuming the suspended query execution based on the saved plan received earlier from
the SaGe server; second, executing the non-preemptable SPARQL operators including
aggregation functions as well as OPTIONAL, ORDER BY, GROUP BY, DISTINCT,
etc. Given the aforementioned tasks, SaGe clients, nevertheless, demand a feasible (on

152

6.5. Experimental Evaluation

(a) Box plot summary for transferred data per query for the 128 clients over watdiv10M,
watdiv100M, watdiv1B on watdiv-sts workload (log scale)

(b) Box plot summary for the number of requests per query for the 128 clients over
watdiv10M, watdiv100M, watdiv1B on watdiv-sts workload (log scale)

(c) Avg. Server CPU Usage (in %) for increasing number of clients over watdiv1B dataset on
watdiv-sts workload

Figure 6.18: Server resource consumption with increasing number of clients and increasing
dataset sizes on watdiv-sts workload

153

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

Table 6.8: Comparison of storage requirements (in MB) for systems with HDT backend
vs original graph size (raw)

Dataset Raw family partitioning typed-family partitioning TPF/SaGe
WatDiv-10M 1,471 2,783 5,632 112
WatDiv-100M 14,876 29,711 58,265 1,186
WatDiv-1000M 151,862 310,574 624,253 12,793
DBpedia 158,197 122,440 150,528 17,904

average 15%) CPU usage and reasonable RAM size (∼ 2GB) for all workloads. In turn,
TPF requires a higher computation cost (on average 45%) on the client-side than SaGe
since TPF clients locally execute the expensive join operator. Similar to TPF, smart-KG
performs the join processing of single triple patterns and star patterns queries over the
shipped partitions, leading to a higher client CPU consumption (on average 70%) than
TPF and SaGe which could be expensive for light client systems. In turn, smart-KG+

demands (on average 55%) less client-side processing than smart-KG, as it processes
fewer intermediate results on the client due to the bind join strategy supported by brTPF
as well as the more efficient query plans devised by the server-side optimizer and planner.

Note that the aforementioned percentages de-escalate with an increasing number of clients
due to the bottleneck on the server-side since the clients are almost idle awaiting to receive
the server response. In other words, the network traffic dominates the query execution of
TPF, smart-KG, and smart-KG+ while context switching overhead and waiting queues
dominate in the case of SaGe. Upon comparing the two versions of smart-KG, as depicted
in Figure 6.18a, we observe that the smart-KG exhibits a higher data transfer and has
the potential to consume a greater amount of client RAM compared to smart-KG+.
Compared to SaGE and TPF, smart-KG+ needs a higher client RAM since it loads the
HDT partitions in client memory, however it still affordable. For instance, smart-KG+

requires up to 3 GB to execute the watdiv-sts workload over watdiv1B.

6.5.7 Typed-family Partitioning Evaluation
In this part of the evaluation, we focus on evaluating typed-family partitioning using
synthetic and real-world KGs on multiple KG sizes and on different query workloads.
Therefore, we compare the smart-KG+ implementation using only family partitioning
and the extended version that additionally uses typed-family partitioning.

6.5.7.1 Typed-family evaluation on the WatDiv dataset

Table 6.9 present a comparison between typed-family partitioning and family partitioning
on total transferred data on different sizes of the WatDiv dataset. Typed-family partition-
ing significantly decreases the number of transferred bytes (on average 27% and 32% over
10M and 100M datasets, respectively) shipped over the network compared to the original
family partitioning on watdiv-sts workload. As expected, typed-family partitioning
demands up to 41% and 46% less transferred data over watdiv10M and watdiv100M,
respectively on watdiv-stfbounded and watdiv-stfboth workloads since we only ship

154

6.5. Experimental Evaluation

Table 6.9: Workload Transferred Data per client over watdiv10M and
watdiv100M on watdiv-stfbounded, watdiv-stfunbounded and watdiv-stfboth

workloads
Query Workload Transferred Data (MB)

Workload 10M 100M
Original Typed % Original Typed %

watdiv-stfbounded 42.14 24.8 (-) 41% 401.97 216,71 (-) 46%
watdiv-stfunbounded 28.82 28.85 (+) 0.12 % 236.21 236.24 (+) 0.01%

watdiv-stfboth 6.02 2.29 (-) 62% 68.61 24.59 (-) 64%
Summary 76.99 55.95 (-) 27% 706.79 477.54 (-) 32%

Table 6.10: Workload Completion Time per client over watdiv10M and
watdiv100M on watdiv-stfbounded, watdiv-stfunbounded and watdiv-stfboth

workloads
Query Workload Completion Time (ms)

Workload 10M 100M
Original Typed % Original Typed %

watdiv-stfbounded 22956 12621 (-) 45% 47167 27479 (-) 42%
watdiv-stfunbounded 10538 11237 (+) 7% 12228 12691 (+) 3%

watdiv-stfboth 7668 3702 (-) 52% 15022 5941 (-) 60%
Summary 41162 27560 (-) 33% 74417 46111 (-) 38%

the family partitions that contains the exact solution bindings to the star-shaped sub-
query. We also show in Table 6.10 the impact of typed-family partitioning on the
watdiv-sts workload completion time. Typed-family partitioning has substantially
reduced (over 40%) the completion time for watdiv-stfbounded and watdiv-stfboth

on both watdiv10M and watdiv100M datasets.

In Fig. 6.19 and Fig. 6.20, we show at the query level the impact of typed-family
partitioning on the execution of different query shapes extracted from the WatDiv Basic
Testing query set. Fig. 6.19 shows that typed-family partitioning significantly decreases
the data transferred of watdiv-btfbounded workload queries. For instance, using typed-
family partitioning, query S3 requires only 3% and 1% of the transferred data required
over watdiv10M and watdiv100M, respectively, in comparison to using original family
partitioning. In addition, when using typed-family partitioning, queries F1 and S2
demand 97% - 99% less data transfer than when using family partitioning. Note that
typed-family partitioning has no influence on the queries of the watdiv-btfunbounded.

Fig. 6.20 shows the execution time of the workloads. For the watdiv-btfbounded

workload, the execution time of queries has been significantly reduced thanks to typed-
partitioning for downsizing the shipped partitions, e.g., with a percent of decrease between
-30% and -60 % in watdiv-100M dataset. Yet, typed-family partitioning has a positive
bearing on the query performance of the watdiv-btfbounded workload for several queries.
For the watdiv-btfunbounded workload, the runtime with typed-family partitioning has
a slight increase of 5-8 ms for unbounded queries. This increase is attributed to the query
planner needing to search through additional metadata associated with typed family
partitioning. Yet, this delay is an implementation detail that can be optimized further.

155

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

Figure 6.19: Data transferred per query (in bytes) over watdiv10M and watdiv100M
on watdiv-btfunbounded and watdiv-btfbounded workloads

6.5.7.2 Typed-family evaluation on the DBpedia dataset

In this section, we analyze the impact of typed-family partitioning compared to family
partitioning on the execution time of the DBpedia-bttbounded and workload. Note that
smart-KG relies on family partitioning where we do not materialize any partition that
contains the predicate rdf:type since rdf:type /∈ P ′

G.

In Fig. 6.21, we divide the queries in Dbpedia-bttbounded into four different categories
based on the number of star-shaped subqueries, subquery selectivity, and a star-shaped
query combined with single triple patterns. Fig. 6.21a shows the performance for highly
selective star queries. smart-KG+ with typed-family partitioning executes queries Q1 up
Q4 slightly slower than smart-KG+ with family partitioning. This is due to the fact that
family partitioning does not materialize any partitions that contain rdf:type predicate,
since the percentage of triples with this predicate is higher than the defined threshold

156

6.5. Experimental Evaluation

Figure 6.20: Execution time per query (in ms) over watdiv10M and watdiv100M on
watdiv-btfunbounded and watdiv-btfbounded workloads

τphigh
. In queries Q5 and Q6, smart-KG+ with typed-family partitioning achieves a

better performance since it ships a partition that resolves the query locally while brTPF
has a poor performance since some of the triple patterns are non-selective (even though
the entire star-query is highly selective).

Fig. 6.21b shows that relying on typed-family partitioning achieves better query processing
performance compared to family partitioning. This is because smart-KG+ ships a typed
partition that contains the solution mappings of the entire star query, while on using
family-based partitioning, smart-KG+ will utilize brTPF to resolve the triple pattern
with rdf:type, which require an enormous number of requests to join with a non-selective
star subquery.

Fig. 6.21c presents the execution time of queries that combine a star subquery with a
couple of single triple patterns in a BGP. In queries Q11 and Q12, smart-KG+ with

157

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

(a) Execution time for queries (in sec.) with a
high selective single star subquery in
DBpedia-bttbounded workload

(b) Execution time for queries (in sec.) with a
low selective single star subquery in
DBpedia-bttbounded workload

(c) Execution time for queries (in sec.) with a
single star and multiple triple patterns in

DBpedia-bttbounded workload

(d) Execution time for queries (in sec.) with
multiple stars in DBpedia-bttbounded

workload

Figure 6.21: Execution time per query (in sec) on DBpedia-bttbounded workload

family partitioning performs slightly better than with typed-family partitioning, since
these queries include highly selective triple patterns and do not require shipping an entire
partition to resolve the query. On the other hand, Q13, Q14, and Q15 show a significant
improvement when using typed-family partition since it reduces the amount of data
transferred.

Fig. 6.21d shows that smart-KG+ has a better performance in queries Q17, Q18, and
Q19 when relying on typed-family partitioning and better performance in query Q16
when using family partition. Note that the query performance highly depends on the
selectivity of the star typed subquery Qs (i.e the size of the shipped partition in case of
typed-family partitions) compared to the selectivity of Q′

s after decomposing the typed
star to Q′

s and Q′′
s . Finally, in queries with no bound types, the observed performance of

family partitions and typed-family partitions is almost identical. This is consistent with
the results on WatDiv watdiv-btfunbounded presented in Section 6.5.7.1.

158

6.5. Experimental Evaluation

Table 6.11: Impact of Typed-Family Partitioning on WiseKG’s Performance on
watdiv10M dataset (Req: Requests, DT: Data Transfer in MB, ET: Execution Time in
milliseconds, TO: Timeouts. ET is in milliseconds, DT is in MB

WiseKGF amily WiseKGT yped−F amily

Workload Req DT ET TO Req DT ET TO
watdiv-sts 2452 101.81 39610 6 2301 85.72 39093 6
watdiv-btf 179 2.73 23666 1 179 27.32 23680 1

watdiv-stfbounded 528 22.54 17097 0 377 10.20 12285 0
watdiv-stfunbounded 36 9.0 3286 0 36 9.0 3235 0

watdiv-stfboth 98 5.24 2787 0 98 1.49 1970 0

6.5.7.3 Assessing the impact of typed-family partitioning on WiseKG

WiseKG [AAM+21] is an LDF interface that dynamically shifts the query processing load
between client and server. WiseKG combines two LDF APIs (SPF and smart-KG) that
enable server-side and client-side processing of star-shaped sub-patterns. WiseKG decides
whether the star-subqueries should be processed on the client or on the server. For this,
WiseKG relies on a cost model that picks the best-suited API per sub-query based on the
current server load, client capabilities, estimation of necessary data transfer between client
and server, and network bandwidth. By leveraging this cost model, WiseKG dynamically
distributes query processing tasks between servers and clients, better-utilizing server
resources and maintaining high-performance levels even under conditions of heavy load.

Earlier experiments have demonstrated that WiseKG outperforms state-of-the-art stand-
alone LDF interfaces, especially under highly demanding workloads. Consequently, this
section evaluates the impact of our typed-family partitioning on WiseKG’s performance.
To do so, the following two versions of WiseKG are developed:

• WiseKGF amily: The original version of WiseKG relies on the family generator from
smart-KG.

• WiseKGT yped−F amily: An extension of the earlier version where we incorporate
typed-family partitioning proposed in smart-KG+.

The experimental results, as presented in Table 6.11, are based on watdiv10M dataset.
We observe that WiseKGT yped−F amily achieves significant reductions in data transfer
by 16%, 54%, and 71% for watdiv-sts, watdiv-stfbounded, and watdiv-stfboth,
respectively, when compared to WiseKGF amily. Additionally, WiseKGT yped−F amily re-
quires 7% fewer requests than WiseKGF amily for watdiv-sts and 28% fewer requests
for watdiv-stfbounded. This performance improvement is attributed to the adoption
of typed-family partitioning, which effectively reduces data transfer and the number
of requests for queries involving bounded star-typed patterns. It is worth noting that
WiseKG’s performance remains unaffected by typed-family partitioning in the case
of the watdiv-btfunbounded workload, consistent with the results presented in Sec-
tion 6.5.7.1. Moreover, the impact of typed-partitioning on WiseKG’s performance with

159

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

the watdiv-btf workload is minimal due to its relatively smaller size query workload,
and the cost model of WiseKG effectively executes most of the queries on the server-side
using the SPF API.

6.6 Lesson Learned
Concluding the evaluation of the experimental results for our proposed approach, we
provide a summary of our lessons learned in the following:

Ablation Study

• Server-side query planning (NP) enhances complex query performance:
The proposed solution (brTPF+NP) enhances the performance of complex queries
(C) by up to 50% through effective star reordering. However, our solution encounters
timeouts in some cases, mainly because of attaching large intermediate results back
to the server and query planning mismatches.

• Trade-off in query planning strategies: The new server-side query planner in
smart-KG+ achieves better query plans, but this improvement comes at the cost of
increased server requests. Additionally, the strategy to query brTPF achieves better
performance in queries requiring a small number of intermediate results, while
querying TPF is more efficient for queries involving many intermediate results.

System Performance Evaluation

• Improved throughput, resource consumption and scalability: smart-KG+

scales better, achieving higher query throughput with an increasing number of
clients over various graph sizes. Our solution requires fewer transferred data and
sends a lower number of requests per query compared to other systems. Additionally,
it performs efficiently on different graph sizes, outperforming TPF and SaGe in
workload completion time, achieving up to 18x and 7x faster performance with
increasing the number of concurrent clients. In summary, smart-KG+ demonstrates
efficient resource consumption and scalability.

• Query shape matters: smart-KG+ excels in complex queries (C), but it may
not be as efficient in simple queries (L) and moderately selective queries (F).

Typed-family Partitioning

• Typed-Family partitioning reduces data transfer: The evaluation shows that
typed-family partitioning significantly decreases the amount of data transferred
over the network compared to using only family partitioning. On average, using
typed-family partitioning results in a reduction of 27% and 32% in transferred

160

6.7. Summary and Limitations

bytes for 10M- and 100M-sized datasets, respectively, in the watdiv-sts work-
load. This reduction can be even higher (up to 46%) in certain cases, such as
watdiv-stfbounded workload.

• Query completion time improvement: Typed-family partitioning substantially
reduces the completion time for queries in the watdiv-stfbounded workload on
both 10M- and 100M-sized datasets. The improvement in completion time ranges
from 40% to 46% for these specific workloads.

• Minimal impact/overhead on unbounded queries: For queries without
bound types (unbounded queries), the observed performance of family partitions
and typed-family partitions is almost identical.

• Extension to WiseKG: The evaluation also extends the evaluation to WiseKG, an
LDF interface that dynamically shifts query processing load between clients and
servers. The results show that typed-family partitioning significantly reduces data
transfer and the number of requests of WiseKG.

6.7 Summary and Limitations
We introduced smart-KG+, a hybrid shipping approach to efficiently query Knowledge
Graphs (KGs) on the Web, while balancing the load between servers and clients. We
combine the Bindings-Restricted Triple Pattern Fragment (brTPF) strategy with shipping
compressed graph partitions that can be locally queried at the client. The served
partitions are based on predicate and typed-families benefiting from the special nature
of the rdf:type predicate. In smart-KG+, we implement a server-side query planner
to provide accurate plans tailored to consider the two execution shipping partition and
brTPF based on cardinality estimations.

Our evaluation shows that smart-KG+ performs on average 10 times faster, use 5 times
less network traffic, and sends 20 times fewer requests, with 5 times less server CPU,
outperforming the state-of-the-art approaches. We show an extensive experimental
study on synthetic and real datasets that, at the cost of reasonable server disk storage,
smart-KG+ improves the execution time of the query workloads and reduces network
cost.

Our proposed interface,smart-KG+, requires a request to the server-side query planner
with an average processing time of 70 milliseconds. However, client-side query planner
requires an initial data transfer of 1.75MB, including crucial metadata for identifying
the queried knowledge graph partition. Though the metadata file’s shipping time takes
around 700 milliseconds, caching it locally improves subsequent query processing. Notably,
our results assume the metadata is already available on the client-side.

In low-selective queries with large intermediate results, brTPF performs worse than TPF
due to higher intermediate results attachment costs. Our proposed server-side query

161

6. Smart-KG+: Further Optimizations of Family-partition-based LDF

planner mismatch may cause longer execution times, but the query planner generally
provides more efficient execution plans. On the other hand, brTPF outperforms TPF for
queries with a small number of intermediate results, while TPF is better for queries with
more intermediate results. Future work includes implementing a cost model to decide
between TPF, brTPF, or shipping a vertical partition for single triple pattern execution.
Finally, our new version of smart-KG+ provides better performance than smart-KG,
delivering a better total geometric mean for requests, data transfer, and execution time.

A recent study [RHSG14] shows that a tiny portion of the entire KG is actually accessed
by a typical DBpedia query workload. Thus, as future work, we plan to consider the
query workload during the KG partitioning to minimize the number of materialized
partitions and focus on the ones required for the query load [MAA18, HS13, GHS14]. In
addition, we plan to investigate an online family partitioning mechanism based on the
current query workload [AAK+16].

Our future work includes exploring other partitioning strategies to reduce the network
traffic since this is one of the main factors impacting the performance as shown in our exper-
iments. For this, we plan to generalize the cost model introduced in WiseKG [AAM+21]
to dynamically delegate the query processing load between servers and clients more
effectively. Note that, the typed-family partitions and the query planner presented in
this work can already be incorporated into WiseKG to enhance its performance when
evaluating typed star queries. We plan to introduce update strategies for the constructed
partitions to manage evolving KGs. Lastly, we plan to investigate the integration of
partition-based LDF interfaces in the landscape of heterogeneous KG federations [HA22].

162

CHAPTER 7
Partition-based Linked Data

Fragments: Alternatives

This chapter provides an analysis of partitioning techniques that have been employed
in both centralized and distributed RDF processing and their relevance in enabling
efficient Web querying and as a possible alternative for partition-based Linked Data
Fragments. To achieve this objective, we formalize existing RDF partitioning techniques,
such as horizontal and vertical partitioning, as possible shipping strategies for partition-
based LDF interfaces. Our analysis is based on surveys of relevant literature including
[KM15, AHKK17, ASY+21]. Additionally, we present a summary of graph partitioning
techniques and RDF systems used in the literature, which is presented in Table 7.1.

7.1 Vertical Partitioning (VP)
VP [AMMH07] creates a partition for each unique predicate in pred(G). i.e., in our
terms,

G = {Gp | p ∈ pred(G) ∧ Gp = {ω((?s, p, ?o)) | ω ∈ (?s, p, ?o) G}}

Next, admissible queries are any single triple pattern queries Q = {tp} where

σ(G, Q) = {Gp ∈ G | p = pred(Q) ∩ pred(G) ∨ pred(Q) is a variable} (7.1)

That is, for any triple pattern query Q, either a single predicate partition corresponding
to the query predicate, or all predicate partitions would be returned.

Many RDF processing systems (cf. Table 7.1) report achieving a high query performance
using vertical partitioning. Yet, as a base partitioning mechanism for partition-based

163

7. Partition-based Linked Data Fragments: Alternatives

Table 7.1: An overview of the exiting graph partitioning techniques utilized in RDF
engines

Partitioning Techniques RDF Systems

Vertical Partitioning

SW-Store [AMMH09], PRoST [CFL18], S2RDF [SPSL16],
PigSPARQL [SPL11], SPARQLGX [GJGL16], SANSA [LSB+17],
Sempala [SPNL14], SparkRDF [CCZZ14], Jena-HBase [McB01],
CliqueSquare [DGK+15], HadoopRDF [DWNY12]

Horizontal Partitioning AllegroGraph1, Blazegraph2, SHARD [RS10], DiS-
tRDF [WMPH19], Partout [GHS14], Akhter et. al [ANS18]

Hash Partitioning

YARS2 [HUHD07], TriAD [GSMT14], AdPart [AAK+16],
PigSPARQL [SPL11], CliqueSquare [DGK+15],
Koral [JST17], CumulusRDF [Har11a],
SHAPE [LL13], SHARD [RS10]

Workload-aware Partitioning
Partout [GHS14], chameleon-db [AÖDH13],
WARP [HS13], WORQ [MAA18].

K-way Partitioning Akhter et. al [ANS18], EAGRE [ZCTW13],
H-RDF-3X [HAR11b], TriAD-SG [GSMT14]

LDFs this approach only works well for triple pattern queries with bounded predicates,
whereas for any triple patterns with unbound predicates, all partitions would need to be
shipped. Along these lines, assuming all predicates in Q are bound, a strict lower bound
for the number of shipped partitions is |pred(Q) ∩ pred(G)|, because you only need to
ship partitions for predicates mentioned in the query, that also occur in G. As a second
drawback of using vertical partitioning in the context of partition-based LDF is that it
only supported single triple queries, any joins or more complex patterns would need to
be fully evaluated on the client side. Also, full vertical partition shipping has potential
downsides compared with TPF or brTPF, which solves any binding in triple patterns
directly on the server side. For all these reasons, we will in our proposed approach rather
use (br)TPF directly for single triple queries.

7.2 Horizontal/Range/Sharding Partitioning
In the context of distributed relational databases, horizontal partitioning involves splitting
a relation horizontally, i.e. row-wise, into sub-relations based on selections to enhance
the load balancing. Analogously, RDF management systems have adopted horizontal
partitioning strategies to distribute the triples of an RDF graph into multiple partitions
based on certain selection criteria. In these strategies, the selection is typically used to
generate horizontal subsets of the RDF triples for very common predicates (such as e.g.
rdf:type, which often does not lend itself well to vertical partitioning techniques), where
each subset consists of all the triples that satisfy a predetermined selection condition on

164

7.2. Horizontal/Range/Sharding Partitioning

the objects or subjects. Herein, we exemplify horizontal partitioning based on object
ranges; that is, if we assume partitions per n object ranges (e.g. from a histogram) into
a set of ordered values {v0, . . . , vn}. Given the RDF model, this is not an unreasonable
assumption, indeed, both literals and likewise URIs could be assumed to be ordered with
respect to their string representations, and – even if many real-world RDF graphs do not
contain blank nodes – also blank nodes could, while not ordered in the RDF model itself,
be canonicalised [Hog17] and ordered, respectively. Accordingly, we can define

G = {Gi | 1 ≤ i ≤ n∧Gi = {ω((?s, ?p, ?o)) | ω ∈ (?s, ?p, ?o) FILTER (vi−1 <?o∧?o ≤ vi) G}}
(7.2)

Object-based horizontal partitioning could be used for partition shipping, where any BGP
query Q is admissible that consists of triples with the same object, i.e., obj(Q) = {o}
(which of course includes single triple queries with bounded object), but, again, for
unbounded objects, the entire partitioning G would need to be shipped:

σ(G, Q) = {Gi ∈ G | (vi−1 < o ∧ o ≤ vi) ∨ o is a variable} (7.3)

Horizontal partitioning could be analogously defined for bound subjects, or be combined
with vertical partitioning (i.e. be used to further subdivide vertical partitions); in fact,
vertical partitioning as defined above could be viewed as a "special form" of horizontal
partitioning on the predicate position, with "predicate ranges" corresponding to the single
predicates in pred(G).

Variations of horizontal partitioning have been used successfully by several RDF systems,
especially in distributed environments (cf. Table 7.1), where partitions are allocated to
different nodes while minimizing the communication cost among the nodes (by placing
jointly queried data together) and balancing the node workload (by placing highly
requested partitions in different nodes). In general, horizontal partitioning supports
efficient querying for queries that require shipping a single partition based on the FILTER
condition that defines the shipped partitions. As such, there are similar (dis-)advantages
as for vertical partitioning: for our example of horizontal partitioning on the object,
whenever the object is unbound, all partitions would need to be retrieved. Likewise,
depending on the choice of ranges (v1 to vn) to "split" the partitions and data distribution,
the matching partitions could contain potentially large amounts of irrelevant data or
different horizontal partitions could contain a prohibitively large superset of the answers
of the query, e.g., by including further predicates which are not requested in the query.
The latter could be remedied by combining more sophisticated forms of vertical and
horizontal partitioning. For example, family-based partitioning techniques described
in Section 4.1 and Section 6.1 can be seen in a sense as vertical partitioning and a
combination of vertical and horizontal partitioning, respectively..

165

7. Partition-based Linked Data Fragments: Alternatives

7.3 Hash Partitioning (HP)
Hash-based partitioning is a common partitioning strategy among RDF distributed
systems. For instance, position-based hashing is a lightweight partitioning strategy that
applies a hash function to a particular position (e.g. subject-based hashing) in triples,
distributing the RDF triples according to their hash values into a fixed number of n
bins. Thus, all the triples with the same value in this position (e.g. same subject) are
allocated to one partition. Hash partitioning is computationally inexpensive plus the hash
operation can be efficiently computed in parallel. However, as usual with hashing, hash
collisions may cause skewed partition sizes. Hash-based partitioning could be defined
in a very similar manner as above, exemplified here for subject-based hashing with
n partitions. Assuming a suitable hash function h(·) and the modulo operator being
available in SPARQL:

G = {Gi | 1 ≤ i ≤ n ∧ Gi = {ω((?s, ?p, ?o)) | ω ∈ (?s, ?p, ?o) FILTER (h(?s) = i) G}}
(7.4)

For position-based hashing (analogously to position-based horizontal partitioning ex-
plained above), any basic graph patterns sharing the same value in the respective position,
e.g. subjects, would be admissible patterns. For such admissible queries σ(G, Q) could
again be analogously defined based on the hash function h(·) of the resp. position, that is
e.g. based on h(subj(Q)), as above, with the same problems of retrieving all G whenever
the subject is unbound. Likewise, these definitions can easily be extended to object,
predicate, or even triple-based hashing (based on a "ternary" hash function h(s, p, o)).

Position-based hashing can be extended by specific hash functions, e.g. prefix-hashing [JST17],
to ensure that subjects (or other position terms) with the same prefix end up in the
same partition, which can be exploited in range queries. Another extension is k-hop
hashing which could cater for certain path queries, by creating (potentially overlapping)
partitions that extend simple hash-based partitions with the k-hop neighborhoods of the
hashed triples [LL13].

7.4 Workload-aware partitioning
Workload-aware partitioning makes use of query workloads in order to partition RDF
graphs. Ideally, the query workload includes representative queries extracted from a
real-world or a synthetic/simulated query log.

Several RDF distributed systems rely on workload-aware partitioning such as Partout [GHS14],
chameleon-db [AÖDH13], WARP [HS13], and WORQ [MAA18]. Bonifati et. al [BMT17]
has conducted an analytical study of end users’ queries harvested from real-world query
logs of SPARQL endpoints. According to the analysis of the graph structure of queries,
tree-like shapes such as single triple patterns, chains, stars, trees, and forests are the most
observed shapes. We consider the aforementioned observation especially star queries in
family partitioning technique introduced in Sec. 4.1.

166

7.5. K-way Partitioning (KP)

In our context, workload-aware partitioning could be seen as a form of “caching”, where
subgraphs containing a superset of or exactly the results of particularly common sub-
queries could be stored as separate partitions. However, in order to make use of such
caching, complex queries would need to be analyzed whether they contain any of these
"cached" subqueries or respectively subqueries subsumed by the cached queries. Since
such a form of partitioning is rather related to index-learning from query logs, a concrete
formalization depends on formalizing/extractable common query patterns from such
query logs. we see various options here and consider them as somewhat complementary
and orthogonal to our current work. In the present paper, we restrict the scope to
partitioning definable by the (characteristics of the) graph only. We therefore leave a
concrete formalization/implementation of partition-based LDF following this idea to
future work.

7.5 K-way Partitioning (KP)
Similarly, K-way partitioning is not directly amenable to our framework: K-way parti-
tioning algorithms, such as [KK98] strive to partition the graph into roughly equal-sized
smaller graphs with the intention of minimizing the number of edges linking vertices from
different partitions and thus could be viewed rather as a “clustering” technique for RDF
graphs than partitioning based on/or specifically used for evaluating particular query
patterns. As such, we also leave it open for future work on how/whether such techniques
could be used for computing a partitioning G that allows deriving an easy-to-compute
selector function σ.

167

CHAPTER 8
Reproducibility

Reproducibility is a fundamental principle of scientific research [CK92, har12], as it
allows different research groups to verify and build upon the findings of previous studies.
Reproducible research means that the same results can be obtained by different researchers
using the same methods and data [GFI16]. However, reproducibility has become a
challenge in many fields of science, including life sciences [BE12], psychology [AAA+15],
and computational science [RRR22, CHI15].

In this chapter, we utilize Docker, one of the newest and fastest emerging DevOps tools,
to achieve better reproducibility for our research work [Boe15]. Docker1 is a tool that
enables software engineers, system admins, and researchers to deploy their software in
isolated environments (i.e. containers) that run directly on the host OS (i.e. Linux) rather
than virtual machines that run on a guest OS, requiring a substantial computational
cost. The primary utility of Docker [Ber14] is to package a software application with its
dependencies into a standardized self-contained component named containers. In essence,
Docker enables us to (i) document our client-server environment, and (ii) consistently
and uniformly distribute and execute our software across diverse infrastructures. This
approach can help to ensure the reproducibility of our research results and facilitate
collaboration with other researchers.

To this end, we provide reproducible experiments in the Web querying research field
through building a DevOp approach that facilitates: (i) providing all configuration
parameters for both our introduced systems and the compared state-of-the-art sys-
tems; (ii) reporting the operating systems, client, and server specifications, and network
configurations, and (iii) making all RDF KGs and their partitions, query workloads,
system monitoring tools, and source codes available to allow researchers to reproduce
our experiments.

1Docker: https://www.docker.com/

169

https://www.docker.com/

8. Reproducibility

8.1 Linked Data Fragments Implementation
The first instantiation of Linked Data fragments is the Triple Pattern Fragment (TPF),
where both client and server implementations for web SPARQL queries have been open-
sourced2. The TPF implementation has been employed to evaluate and implement various
extensions to the TPF interface [HVMdW15, FSMM15, TVCM16, SVH+15, HVV+15,
TSVM17, HA16]. For the TPF client, the Java framework Jena has been adapted, while
the server is implemented in Java servlets with HDT as the back-end. Like many other
successive Web interfaces such as brTPF and SPF, we have used this source code as the
core for our implementation for both smart-KG and WiseKG. The following describes
the major extensions that have been made to both the client and server implementations.

WiseKG Server Implementation: In the following, we will focus on the server im-
plementation of WiseKG, since it includes by design brTPF, SPF, and smart-KG. As
the basis for our WiseKG server, we used an existing Java servlet implementation of the
brTPF interface and extended it with two inherited servlets one for SPF interface, and
another smart-KG interface, plus a servlet to support the server query planner. The
result is that all interface implementations are inherited from the same Java servlet,
which selects which of them to invoke according to the HTTP GET request it receives:
(i) if the request requires a full query plan, the query planner servlet is used to generate a
query plan based on the cost model as the response; (ii) if the request contains the brTPF
selector, the brTPF implementation provides the response; (iii) if the request contains
the SPF selector, the SPF implementation is used to generate the response; or (iv) if
the HTTP request contains only a smart-KG selector, the smart-KG implementation
is used. Having all implementations in a single consolidated software component has
the advantage that: (i) frequently executed basic functions such as the query parser,
decomposer, executor, and RDF result serializer are reused, and (ii) experimental results
are therefore not affected by potential implementation variations in such basic functions.

The WiseKG server returns an HTTP response to the client containing either (i) a Gson
object describing the query plan of the requested query; (ii) RDF triples from evaluating
a triple pattern partitioned into pages based on the brTPF interface; (iii) RDF triples
from evaluating a star pattern partitioned into pages based on the SPF interface; or (iv)
HDT partitions from evaluating a star pattern based on the smart-KG interface.

WiseKG Client Implementation: We implement WiseKG client based on the Java im-
plementation of brTPF client. We adapt the query evaluation algorithm of brTPF [HA16]
in the WiseKG client implementation (see Alg. 5.2) to evaluate SPARQL BGPs. This
algorithm is based on a dynamic pipeline of iterators. The query results are evaluated
recursively by executing the pipelines where each pipeline is generated for a sub-query
resulting from the query decomposition of the initial BGP. Each iterator generates the
solution mappings of a sub-query and chunks it to the next iterator. The algorithm uses
the cost model estimates to dynamically determine the join order of the sub-queries,
where sub-queries with a lower cost estimate are executed first.

2https://github.com/LinkedDataFragments/

170

https://github.com/LinkedDataFragments/

8.1. Linked Data Fragments Implementation

To this end, by extending the original TPF framework, we ensure the comparability
in our experimental results and enable a fair comparison between the state-of-the-art
approaches including TPF, brTPF, and SPF. In this way, we have unified the storage
back-end (HDT), programming language, and basic query evaluation components with
the state-of-the-art approaches with one exception: SaGe, since it follows a completely
different stack.

In the following, we detail the commands required to install and execute WiseKG client
and server3:

Command 1. Both WiseKG client and server are written in Java 8. We can create
a JAR/WAR (we follow the same steps as the LDF framework for deployment) which
is as follows:

mvn install

The server can run with Jetty from a single jar as follows:

java -jar wisekg-server.jar [config.json]

[config.json] The config file describes the data sources that will be available on this
server. An example of the config file is available onlinea

To use the client, we use the following command:

java -jar [filename].jar false -f [Server] -q [Query File]

[Server]: This argument takes the server URL. [Query File] This argument receives
the input query to be executed.
Here is an example of executing a query on WiseKG:

java -jar wisekg.jar -f kg-server.ai.wu.ac.at:8084/sparql/dbpedia
-q sparqlExample.sparql

sparqlExample.sparql: the address to a file containing a single SPARQL query.
ahttps://github.com/LinkedDataFragments/Server.Java/blob/master/

config-example.json

8.1.1 Partition Generation
The first step to using smart-KG or WiseKG is to generate the KG partitions. This KG
partition generation tool can be used either by compiling and installing the source code

3WiseKG https://github.com/WiseKG

171

https://github.com/LinkedDataFragments/Server.Java/blob/master/config-example.json
https://github.com/LinkedDataFragments/Server.Java/blob/master/config-example.json
https://github.com/WiseKG

8. Reproducibility

or by using the provided Docker version4. All partitions generated in our experiments
have been made publicly available and can be accessed via this link5.

In the following, we detail the commands required to execute family-based partitioning
introduced in Equation 4.5 and Algorithm and 4.1 and typed family-partitioning intro-
duced in Equations 6.1 and 6.7 in order to generate the KG partitions required for both
smart-KG and WiseKG Web interfaces.

Command 2. We show basic statistics on the input dataset such as the total number
of triples, unique predicates, initial families, and merged families using the following
command:
On using the native version:

./hdt-cpp-molecules/libhdt/tools/getFamiliesEstimate [arguments] <hdtfile>

- Upon completion of the compilation and installation process, the partitioning tools are situated in
the directory "/hdt-cpp-molecules/libhdt/tools".

Or on using the docker version:

docker run -v /host/path/target:/file/path/within/container --rm
smartkg-creator getFamiliesEstimate [arguments] <hdtfile>

-v: This parameter enables the mounting of a volume driver onto the Docker image.
It requires a path to a directory containing the HDT file to be partitioned. The path
provided refers to the location of the files on the local machine, which is represented as
"/host/path/target". This is followed by a colon ":" and the path within the container
where the HDT files will be mounted, such as "/file/path/within/container".

As shown, the command accepts the input RDF dataset in HDT format. In the
following, we list possible arguments for getFamiliesEstimate:

• -S: This parameter enables the selection of only those families that have a
minimum percentage of subjects present in the dataset. This option is particu-
larly useful for unstructured datasets like Dbpedia. By default, the minimum
percentage is set to αs = 0.01. To modify this value, users need to invoke the
"-P" parameter.

• -P: This parameter allows users to set the minimum percentage of subjects
required for a family to be selected. This parameter can only be used in con-
junction with the "-S" parameter. If the "-S" parameter is enabled and "-P"

4Details of installation are provided in the README. https://github.com/smart-KG/
smartKG-creator-types

5DataPartitions:https://smartkg-data.cluster.ai.wu.ac.at/

172

https://github.com/smart-KG/smartKG-creator-types
https://github.com/smart-KG/smartKG-creator-types
Data Partitions: https://smartkg-data.cluster.ai.wu.ac.at/

8.1. Linked Data Fragments Implementation

is not specified, the default value of 0.01 is used. The value specified for this
parameter denotes αs in equation 4.7.

• -L <percentage>: This parameter allows users to specify the percentage of
infrequent predicates in terms of their occurrences within the dataset. Predicates
that have less than the specified percentage of occurrences (as a percentage of the
total number of triples) will be discarded and not considered in the families. The
default value of this parameter is 0.01%. The value specified for this parameter
corresponds to τl in equation 4.6.

• -H <percentage>: This parameter allows users to specify the percentage of
occurrences at which massive predicates are to be cut, expressed as a percentage
of the total number of triples. Predicates that have more than the specified
percentage of occurrences will be discarded. The default value of this parameter
is 0.1%. The value specified for this parameter corresponds to τh in equation 4.6.

• -m <Percentage>: This parameter enables users to specify the maximum size of
a new group in terms of a percentage of the total number of triples. For instance,
if the parameter is set to 5, a new group is created only if the estimated size is
less than 5% of the total number of triples. If "-m" is set to 100, then all groups
are allowed. The value of this parameter corresponds to αt in equation 4.8.

• -q: activate quick estimation (do not perform grouping)

Example 9. This example is to demonstrate the Command 2 based on RDF Friends
graph:

./hdt-cpp-molecules/libhdt/tools/getFamiliesEstimate friends2023.hdt

The output is as follows:

Total predicates: 16

Total triples: 79

tau_l min pred:0.01

tau_h max pred:1.0

Number of families:10

Original families: 10

Total potential families groups: 8

173

8. Reproducibility

Final number of families:18

Time total 2 ms 74 us

Command 3. We generate the family-based partitions of an input dataset using the
following command which is the implementation of Equation 4.5 and Algorithm 4.1
and also we generate the typed family-based partitions of the input dataset using the
following command which is the implementation of Equation 6.7 and Equation 6.6:
On using the native version:

./hdt-cpp-molecules/libhdt/tools/getFamilies [arguments] <hdtfile>

Or on using the docker version:

docker run -v /host/path/target:/file/path/within/container --rm
smartkg-creator getFamilies [arguments] <hdtfile>

Typed-family partitioning generation process accepts RDF dataset in HDT format.
In the following, we list possible arguments:

• we use the arguments (-S, -P, -L, -H, -m and -q) for the exact functions as
Command 2.

• -s <splitFilePrefix>: This argument allows users to partition triples based on
existing families that are described in the specified JSON file with the given
prefix.

• -e <exportFile>: This argument exports the metadata of families in <export-
File>.json and the groups in <exportFile>_group.json. This information can
be used by the query planner to locate the HDT partition containing the results
of a given query.

• -i: This argument includes infrequent predicates with occurrences less than the
user-defined threshold τl (default 0.01%), which may result in the creation of
more partitions. This argument is set to false by default.

• -C <classesFile>: this argument accepts a file containing a list of classes
separated by a new line. The typed-family partition is applied only to the
classes listed in this file. This argument is used only to perform typed-family
partitioning as defined in Section 6.3.

174

8.1. Linked Data Fragments Implementation

• -c: This argument cuts massive predicates, i.e., predicates with occurrences
greater than or equal to the user-defined threshold τh (default 0.1%), resulting
in the creation of fewer but larger partitions. This argument is set to false by
default and cuts the predicates according to Equation 4.6.

• -d: This argument dumps infrequent predicates into a dedicated JSON file with
the prefix "_infreqPreds". Infrequent predicates are defined by Equation 4.6.

• -u: ungroup – This argument performs family partitioning without the grouping
step, which generates partitions based solely on the original families defined in
Equations 4.2 and 4.3.

• -G: This argument exports each family into a separate JSON file.

• -v: This argument enables verbose mode, providing detailed results by printing
all triples during partitioning. We recommend using this argument only for
testing purposes.

• -h: This argument provides a verbose explanation of the available arguments.

In the following, we detail an example of generating the family-based partitions of the
Friends RDF graph from Example 7:

Example 10. (From RDF KG to family KG partitions)

The initial step involves converting the RDF file into HDT format, which can be exe-
cuted through libhdt library. This library, an integral part of the partition generation
tool, offers a range of functionalities provided by HDTa. This conversion step can be
performed using the following command:
On using the native version:

./hdt-cpp-molecules/libhdt/tools/rdf2hdt friends.ttl friends.hdt

Or on using the docker version:

docker run -v /host/path/target:/file/path/within/container --rm
rdf2hdt friends.ttl friends.hdt

Subsequently, the second step involves generating family-based partitions by utilizing
Command 3. To facilitate this process, we present a set of three distinct commands
that have been executed to produce the settings employed in Example 4.3.1 (see p. 64),
as follows:

Case Setting 1:
On using the native version:

175

8. Reproducibility

./hdt-cpp-molecules/libhdt/tools/getFamilies
-s part_friends-_ -m 100 -e friends friends.hdt

Or on using the docker version:

docker run -v /host/path/target:/file/path/within/container --rm
getFamilies -s part_friends-_ -m 100 -e friends friends.hdt

Case Setting 2:
On using the native version:

./hdt-cpp-molecules/libhdt/tools/getFamilies
-s part_friends_ -L 3 -H 20 -c -e friends friends.hdt

Or on using the docker version:

docker run -v /host/path/target:/file/path/within/container --rm
getFamilies -s part_friends_ -L 3 -H 20 -c -e friends friends.hdt

Case Setting 3:
On using the native version:

./hdt-cpp-molecules/libhdt/tools/getFamilies
-s part_friends_ -L 3 -H 20 -m 5 -c -e friends friends.hdt

Or on using the docker version:

docker run -v /host/path/target:/file/path/within/container --rm
getFamilies -s part_friends_ -L 3 -H 20 -m 5 -c -e friends friends.hdt

aMore details regarding these commands and functionalities can be found in the README
document available at https://github.com/smart-KG/smartKG-creator/tree/main/
hdt-cpp-molecules/libhdt

8.2 Deploying Our Experiments
In our experiment, we deployed and evaluated various web interfaces, including TPF,
brTPF, SPF, SaGe, smart-KG, and WiseKG, using Docker containers. However, man-
aging multiple containers manually can be a laborious task. To simplify this process, we
utilized docker-compose, a tool that enables us to manage multiple containers at once
through a YAML configuration file. With docker-compose, we were able to create and
launch specific or all web interfaces with a single command.

As illustrated in Figure 8.1, our experimental setup6 comprised of two virtual machines -
6More details regarding the experiments infrastructure including docker files, config files, scripts, and

176

https://github.com/smart-KG/smartKG-creator/tree/main/hdt-cpp-molecules/libhdt
https://github.com/smart-KG/smartKG-creator/tree/main/hdt-cpp-molecules/libhdt

8.2. Deploying Our Experiments

Figure 8.1: An illustration of our experiments infrastructure

one hosting the servers on the left-side and the other hosting the clients on the right-side.
On the left side of the figure, we used docker-compose to create six containers, each
corresponding to one of the compared systems’ servers. On the right side of the figure,
we demonstrated that by using Docker, we could instantiate one or multiple clients from

queries. https://github.com/AmrTAzzam/WebQuerying-Experiments/

177

https://github.com/AmrTAzzam/WebQuerying-Experiments/

8. Reproducibility

each system simultaneously. For instance, TPF-Client(s) can communicate with the TPF-
server container through the defined http://kg-server.ai.wu.ac.at:8080/.
We elaborate on how to build and deploy the docker image of our experiments in the
following:

Command 4. In the following, we write a command to start the docker decompose
to run one server in our experiment, as follows:

docker compose up [ContainerName]
docker compose up tpf-server

Here is the list of available containers: tpf-server, spf-server, brtpf-server, smartkg-
server, wisekg-server, sage-server

Command 5. We can also start all servers required for the experiments at once in
the background, as follows:

docker-compose up -d

Command 6. The following command can be used to start one or multiple clients
in the experiment setup by calling the docker container and assigning a single CPU
for each container:

docker run [arg] ldfclients [P] [filename].ext [S] [Q] [M] [O] [N] [ID] [D]

The docker image, ldfclients, contains all client implementations. The recommended
arguments when running a docker container image are:

where we recommend the following set of arguments [arg] on running a docker
container image [ldfclients] such as a java image:

• -rm: This flag automatically removes the container when it exits.

• -cpus=1: This flag specifies the number of CPUs allowed for each container to
utilize.

In addition, each client should accept the following arguments:

• [P] denotes the programming language required to execute the client which is
Java in our Docker version of the clients. For java we use java -jar.

178

http://kg-server.ai.wu.ac.at:8080/

8.2. Deploying Our Experiments

• [filename].ext: This argument denotes the executable file to run the client,
such as smartkg-client.jar.

• [S]: This argument denotes the server API address to invoke a web querying
interface, such as http://kg-server.ai.wu.ac.at:8083/.

• [Q]: This argument denotes the path of the directory to the query workload
repository.

• [M]: This argument denotes the current method that is being evaluated, such
as smart-KG.

• [O]: This argument denotes the output directory where the results of the
execution, including all the evaluation metrics used in the experiments, are
logged.

• [N]: This argument denotes the total number of concurrent clients in the
current configuration.

• [ID]: This argument denotes the unique ID of the current client, which is used
to access the correct query repository.

• [D]: This argument denotes the name of the dataset on which the experiment
is being performed.
The command is eventually called from the server using a shell script, which is
available at our repositorya

aShell Script to run instantiate the clients. https://github.com/AmrTAzzam/WebQuerying-
Experiments/blob/main/dockerclients/run_experiments.sh

Example 11. In the following, we detail an example of how to start an instance of
WiseKG client and server for experiments:

First, we begin with starting a WiseKG server using the following command:

docker compose up wisekg-server

This command will start a hosting URL for an RDF graph specified in the config
file of each server for example dbpedia as follows: kg-server.ai.wu.ac.at:
8084/sparql/dbpedia

Following, we instantiate the client(s) required for the experiments, as follows:

docker run --rm --cpus=1 ldfclients -w="file/path/within/container"
-v /host/path/target:/file/path/within/container

179

kg-server.ai.wu.ac.at:8084/sparql/dbpedia
kg-server.ai.wu.ac.at:8084/sparql/dbpedia

8. Reproducibility

openjdk:8 java -jar wisekg-client.jar
http://kg-server.ai.wu.ac.at:8890/sparql/dbpedia
/test/queries/ wisekg results_wisekg_ 4 4 dbpedia2015

This command will start 4 wisekg clients and will concurrently run on the queries
specified under the /test/queries.

8.3 Comunica Implementation
Apart from the above-described implementation, we also prototypically have developed
another implementation based on Comunica [THSV18], a flexible research query engine
for designing, developing, implementing, and evaluating both new and existing Web query
interfaces, which helps improve extensibility and comparability.

As emphasized in this thesis, there is no silver bullet for Web querying, i.e., no particular
interface works best in all settings, as there are tradeoffs inherent in each interface. We
have obtained the best performance with WiseKG, which combines the strengths of
several interfaces. This complicates, however, the client-side implementation, which, as
in the case of WiseKG, must combine query results from heterogeneous interfaces.

To this end, we use Comunica [THSV18], a highly flexible framework that enables the eval-
uation of SPARQL queries on heterogeneous Web querying interfaces, including SPARQL
endpoints, simple data dumps, TPF [VSH+16], brTPF [HA16], and smart-KG [AFA+20].
The main advantages of the Comunica meta query engine are the following:

• Modularity: Comunica provides an ideal research platform that allows customizing
the query engine by inserting different components such as join algorithms, query
planners and indexes, new or experimental SPARQL functions and to create new
web interfaces, without code customization as in the case of Linked Data fragments
implementation, but by integrating the needed modules through meta configuration.
Thereby, we will be able to investigate cost models for WiseKG [AAM+21] in our
future work.

• Heterogeneity: Comunica facilitates integration between heterogeneous Web
query interfaces [ATP20b], which will accelerate the research process of hybridizing
the multitude of existing LDF query interfaces; this is a result of relying on Mediator
Pattern, which reduces the coupling of software components and consequently
facilitates the exploration of a wide range of LDF approach combinations.

We have developed a Comunica package [ATP20a] for handling smart-KG. In the follow-
ing, we detail the commands required to use smart-KG package7 on top of Comunica:

7smart-KG package is built on Comunica 1.19. https://github.com/comunica/
comunica-feature-smartkg.

180

https://github.com/comunica/comunica-feature-smartkg
https://github.com/comunica/comunica-feature-smartkg

8.3. Comunica Implementation

Command 7. The smart-KG package can be used by firstly cloning and installing
Comunica which is requires requires Node.JS 8.0 or higher and the Yarn package
manager as follows:

git clone https://github.com/comunica/comunica.git

cd comunica

yarn install

Then, we install smart-KG package using the following command:

yarn add @comunica/actor-init-sparql-smartkg

To run a query on smart-KG, we can use this command:

comunica-sparql-smartkg [server] [query]

[server:] This argument is for the server URL.

[Query:] This argument takes a SPARQL query in a textual format.

In the following, we demonstrate the usage of smart-KG package in Comunica, as
follows:

Example 12. We provide an example that queries DBpedia endpoint to get the
portrayers in Friends series using smart-KG package in Comunica:

comunica-sparql-smartkg http://fragments.dbpedia.org/2015-10/en "SELECT DISTINCT * WHERE
dbo:friends dbo:starring ?portrayer."

Also, we can start a SPARQL endpoint by providing a URL for the KG hosting
server, for example:

comunica-sparql-smartkg-http http://fragments.dbpedia.org/2015-10/en

The endpoint is set to listen on port 3000 by default and can be accessed at

http://localhost:3000/sparql. Any client that supports the SPARQL pro-
tocol can send queries to this URL. The help command provides more details on the
command:

181

http://localhost:3000/sparql

8. Reproducibility

comunica-sparql-smartkg-http --help

As a future work, we plan to provide WiseKG package on top of Comunica v2.0.01 Our
vision is to leverage Comunica as a key element for evaluating hybrid Web interfaces
to guarantee the comparability and extensibility as well as the reproducibility of Web
querying research.

182

CHAPTER 9
Conclusion

The number of open Knowledge Graphs on the Web has been growing steadily. The
Linked Open Data community has been promoting the benefits of using RDF and
Semantic Web technologies to standardize and interlink these graphs. As a result, there
has been an increase in the amount of data published as Linked Open Data (LOD),
forming a Web of interconnected Knowledge Graphs (KGs). This poses new challenges
and research directions for scalable query processing on such RDF KGs published on the
Web: querying large-scale KGs on the Web is difficult and costly, as full SPARQL query
services are expensive to host and hard to maintain when dealing with complex and
unpredictable query workloads and concurrent clients’ requests. This precludes seamless
live SPARQL querying of open KGs, which is the motivating premise behind this thesis.

To this end, we have proposed Web querying approaches that efficiently distribute the
execution load of SPARQL queries between servers and clients. Our thesis presented
a novel approach, Partition-based Linked Data Fragments interfaces, that involves
combining existing LDF interfaces with shipping compressed graph partitions to the
client-side that can be locally queried locally. Through this approach, we achieved a
balance between server-side and client-side processing while improving the querying
performance and reducing the average network traffic.

In Section 9.1, we summarize the primary contributions of this thesis. In Section 9.2, we
critically assess our hypothesis and research questions. Finally, in Section 9.3, we provide
an outlook on future directions and open challenges arising from this thesis.

9.1 Summary of Contributions
We now summarize our primary contributions to this thesis demonstrated in Chapters
3-6

Characterizing and Analyzing Web querying interfaces based on LDF

183

9. Conclusion

In Chapter 3, we began by borrowing from the original specifications of Linked Data
Fragments to define, characterize, and analyze the existing LDF interfaces and our
proposed partition-based LDF interfaces in a uniform view as instantiations of LDF. In
this chapter, we align formal definitions and notations to uniformly present different
hybrid interfaces that share the query processing load between clients and servers.
Leveraging Shipping Compressed KG partitions: Sharing the processing load
In Chapter 4, we presented our initial approach, smart-KG, for addressing the problem
of SPARQL endpoints availability [VSH+16]. smart-KG shares the workload of query
processing between the server and the clients by combining TPF and shipping compressed
and queryable KG partitions that can be locally queried on the client-side.
We introduced a partitioning technique for RDF graphs called family-based partitioning,
which groups entities with the same sets of predicates (i.e., families) into compressed,
indexed, and queryable partitions. This approach is based on the observation that entities
in RDF graphs are described using the same set of predicates and are often queried
together.
In practice, the number of partitions generated by family-based partitioning can be large,
making it prohibitively expensive to materialize all partitions for real-world RDF graphs.
To address this issue, we introduced the concept of predicate-restricted families, which
restricts the set of predicates considered for the partition creation process based on the
predicates’ cardinality.
To further optimize our partitioning technique to be utilized as a shipping strategy, we
proposed a family merging strategy, which groups families with overlapping predicates
into a single partition (see Example 4.3.1). This can serve to minimize the matching
partition shipped to the client in response to a query. However, in practice, the number
and size of partitions generated by merging all possible families in a graph can be too
large to generate and ship over the network, especially for skewed RDF graphs. To
address this issue, we proposed a family pruning strategy that restricts the number and
size of materialized merged partitions.
To this end, smart-KG leverages these partitions to serve and ship only relevant partitions
upon a query to be locally evaluated on the client-side.
Our experiments show that smart-KG has significantly outperformed the existing Web
interfaces; in particular, (i) smart-KG only uses 60% of the CPU to handle the workload
on 80 concurrent clients, increasing the availability of the server, while SaGe, for instance,
exhausts the server CPU starting from 10 concurrent clients, (ii) smart-KG requires a
significantly lower number of HTTP requests compared to TPF, reducing the network
overhead, and (iii) finally, smart-KG reduces the overall shipped intermediate results
for intensive workloads compared to TPF.
Employing a cost model: Dynamically shifting and balancing the load
In view of the findings from the previous chapter, we have identified the potential benefit
of dynamically deciding whether a subquery should be performed on the client or the

184

9.1. Summary of Contributions

server. Our observations show that (i) shipping KG partitions has reduced the server
workload, but there is still room to better utilize server resources while maintaining
high performance, especially during high query processing load, (ii) the characteristics
of subqueries, such as selectivity and intermediate result cardinality estimation, have a
major influence on the execution location, and (iii) several parameters, including client
and server resource availability and estimated network time, determine where to process
a certain part of a query.

Based on these observations, in Chapter 5 we described our system WiseKG, which
dynamically delegates query processing based on the current server workload and client
capabilities. Leveraging two complementary interfaces, smart-KG, which executes star-
shaped subqueries on the client-side and SPF, which executes star-shaped subqueries on
the server-side in two different ways: (i) using a heuristic approach, where we perform all
queries on the server up to a certain threshold, and then switch to the client-side until
the CPU load falls back below the threshold, and (ii) using a cost model, which considers
parameters such as CPU load, estimated network transfer time, and currently available
resources at the client to dynamically pick the execution location.

In our extensive evaluation, we found that the heuristic version of WiseKG already
performed better than all state-of-the-art interfaces in terms of scalability and performance.
On top of that, The cost model version further outperformed the heuristic one. WiseKG
is up to four times faster than SPF and smart-KG, and up to an order of magnitude
faster than other existing LDF interfaces such as SaGe and TPF over watdiv1B with a
load of 128 concurrent clients. When queries were performed over the watdiv1B dataset
with a 5-minute timeout threshold, WiseKG only incurred 2% timeouts of the total
workload queries, compared to the percentages of timeouts that reached 13%, 21%, 55%,
and 56% for smart-KG, SPF, SaGe, and TPF, respectively.

Partition-Based Linked Data Fragments: refinements

In Chapter 6, we investigated possible concrete interfaces that can ship partitions of KGs
from the server to the client in order to reduce server-resource consumption. Motivated
by the previous findings, which showed the beneficial effects of family partitioning on the
scalability and performance of Web interfaces, we introduced the concept of Partition-
Based Linked Data Fragments. These approaches can be viewed as a generalization of
existing LDF interfaces, which ship compressed and queryable partitions that can answer
admissible query patterns (e.g. a star or a single triple pattern) on the client-side with
minimal server interactions, aiming to reduce data transfer, the number of requests and
increase server availability.

As part of our investigation, we presented a formalization of existing KG partitioning
techniques, such as horizontal, vertical, and others, in order to uniformly discuss their
applicability to serve as a partitioning shipping mechanism for partition-based interfaces
under the umbrella of the LDF framework.

Based on this generalization, we presented a concrete implementation of a partition-
based LDF approach, called smart-KG+. Our approach uses an extension of family

185

9. Conclusion

partitioning called typed family-partitioning, which exploits horizontal partitioning to
subdivide families based on the classes of the entities belonging to each family.

We have conducted an extensive evaluation of smart-KG+, which consists of two parts:
first, we evaluate a set of implementation refinements, including the use of asynchronous
join to produce results in an incremental fashion, and a server-side query planner. Second,
we evaluate the effectiveness of typed-family partitioning, which shows that it requires
up to 41% and 46% less transferred data over watdiv10M and watdiv100M on intensive
workloads. Moreover, when considering star queries with the "rdf:type predicate", a widely
prevalent pattern in query logs of current SPARQL endpoints, typed-family partitioning
requires fewer data transfers than family partitioning.

In Chapter 7, we reviewed and briefly discussed how or whether other graph partitioning
techniques from the literature could be used in our framework.

Finally, In Chapter 8, we present two openly available implementations that shall allow
other researchers to modularly represent and extend our results.

9.2 Critical Assessment of Research Questions
In light of what we have summarized thus far, we critically review our research questions
associated with the hypotheses originally introduced in Chapter 1,

RQ1 Can we achieve speedups to existing Web querying approaches over Knowledge
Graphs by leveraging partition shipping?
The answer is yes, we provided a detailed answer for this question in Chapter 4 where
we introduced smart-KG, a novel hybrid strategy for improving the performance
of Web querying over Knowledge Graphs by achieving a more balanced client-server
load distribution. smart-KG combines TPF with the shipping of compressed
KG partitions and differs from TPF in that it ships modular, query-relevant KG
partitions that can be directly queried by a client, rather than relying solely on
shipping intermediate results for a specific triple pattern.
Our empirical evaluation demonstrates that smart-KG improves server availability
while maintaining superior query performance compared to the state-of-the-art
approaches, particularly with an increasing number of clients and increasing KG
sizes, with the fastest average workload completion time per client and the least
number of query timeouts. This is achieved through partition shipping and triple
pattern lookup, which are low-CPU operations that reduce the overall CPU usage
of the server. As a result, the server can handle a higher number of requests without
becoming overloaded. In addition, smart-KG significantly reduces the average
number of requests sent to the server compared to other approaches and requires
fewer data transfers than TPF, even up to 10 times less, but more data transfer
than SaGe. These benefits are demonstrated in experiments and discussed in more
detail in Chapter 4.

186

9.2. Critical Assessment of Research Questions

In Chapter 4, we also demonstrate the feasibility of this family-based partitioning
as a shipping strategy through experiments using the synthetic WatDiv dataset and
real-world datasets such as DBpedia, dblp, WordNet, and Yago2. Our experiments
show that, for example, the 1-billion triple WatDiv graph took 12 hours and 300GB
of disk storage space to materialize 52,885 partitions, while DBpedia, with a size of
837M triples, took 23 hours and 122GB of disk storage space to generate 29,965
partitions. The retrieved partitions in smart-KG can be reused for queries that
require the same partitions, and we demonstrate that caching shipped partitions
can be useful for executing streak queries with minimal communication to the
server.

We argue that family-based partitioning offers a reasonable trade-off between query
execution time and scalability. Our experimental evaluation shows that it has
sub-linear computational time, with the graph size determining the time required
to generate the partitions. It also has a storage space cost that is estimated to be
about double the raw size of the WatDiv graphs (DBpedia uses even less space due
to more restricted pruning we apply). This cost is manageable given the availability
and affordability of disk space, and HDT partitions can be further compressed
using lossless techniques such as gzip1, and 7-Zip2. Overall, our results suggest
that family-based partitioning is an effective and scalable approach to support Web
querying large-scale RDF graphs. We even further improved these speedups with
the extensions of our approach presented in Chapters 5 and 6.

RQ2 How can the combination of different LDF interfaces impact the query performance?

To address research question RQ2, we present two possible strategies in Chapter 5
that combine the strengths of state-of-the-art interfaces such as brTPF, SPF, and
smart-KG. These strategies are: (i) a simple Heuristic Model, which is based on
a predefined CPU usage threshold to dynamically switch between server-side and
client-side star subquery evaluation, and (ii) a Cost Model, which is inspired by
the classic R∗ algorithm from distributed databases. We provide an extensive
evaluation of both strategies and found that combining smart-KG and SPF has
significantly enhanced the workload completion time.

In Chapter 5, we further provide more details on how to effectively and efficiently
combine different interfaces to improve query performance and server scalability.
Different interfaces have varying levels of expressivity, which affects the amount
of client and server processing and data transfer required for a given query. For
instance, smart-KG may require less server processing but more client processing,
while SPF may require more server processing but less client processing. By
combining both interfaces and selecting the most appropriate interface for a given
query based on its characteristics and the available resources on the client and
server. In conclusion, we improved the overall query performance while providing a

1https://www.gzip.org/
2https://www.7-zip.org/

187

https://www.gzip.org/
https://www.7-zip.org/

9. Conclusion

combined client-server Web querying interface. By additional optimizations and a
redesign of smart-KG component presented in Chapter 6, we could even further
improve the performance of the combined approach.

RQ3 How can we further refine and optimize the partitioning technique?
In Chapter 6, we provide further optimization to the shipping strategy introduced
in Chapter 4. First, we introduced smart-KG+ which utilizes typed-family parti-
tioning as a shipping strategy. In addition, smart-KG+ benefits from the accurate
plans generated by our server-side shipping-based query planner and optimizer.
Lastly, smart-KG+ can asynchronously join intermediate results from heteroge-
neous LDF interfaces to improve query performance. The improved version, called
smart-KG+, resulted in faster workload completion times, fewer timeouts, and
higher throughput compared to other systems, such as smart-KG, TPF, and SaGe,
when tested with the watdiv-sts workload on RDF knowledge graphs of various
sizes. The improvement in performance is due to server-side query planning and the
use of brTPF, which reduces the number of HTTP requests. smart-KG+ performs
particularly well with a high number of concurrent clients, with up to 18 and 7
times faster workload completion times than TPF and SaGe, respectively, for a
workload with a single client, and up to 3 and 2.6 times faster for a workload with
128 concurrent clients. smart-KG+ also had a lower percentage of timeouts than
TPF and SaGe, especially when the RDF knowledge graph size was large. In terms
of throughput, smart-KG+ had higher values than the other systems, reaching
up to 4132, 678, and 109 queries per minute for 1, 32, and 128 concurrent clients,
respectively, on the watdiv1B dataset.
In Chapter 7, we also analyze other existing graph partitioning techniques and
their potential use as a shipping strategy in the context of Web querying. We
focus on techniques such as vertical partitioning, hash partitioning, and horizontal
partitioning. Through our analysis, we conclude that some of these techniques
have the potential to serve as effective partitioning mechanisms for Web querying,
but further experimentation is needed to fully evaluate their performance and
effectiveness. We, therefore, leave the experimental evaluation of these techniques
as a topic for future work. In order to facilitate further investigation into shipping
strategies, in Chapter 8, we provide our software in a reproducible fashion through
two distinct implementations, one based on extending the implementation of the
Linked Data Fragment framework Comunica and the other based on Comunica
framework.

9.3 Open Challenges and Future Research Directions
In this thesis, we have demonstrated that efficient and scalable SPARQL querying is
feasible over large-scale Knowledge Graphs (KGs) on the Web in the order of a billion
triples up to hundreds of concurrent clients. We now focus on promising and worthwhile
future directions to explore - from our perspective - arising from the work presented in

188

9.3. Open Challenges and Future Research Directions

this thesis. In particular, we describe several open challenges that we plan to address in
our future work:

• C1 Querying of Evolving Knowledge Graphs: Our current partitioning
strategy does not provide efficient update strategies, which poses a significant
obstacle in serving dynamically evolving KGs in real-time. For instance, the
generation of the required partitions for large-scale KGs such as DBpedia can take
up to 23 hours, making it challenging to keep up with the dynamic evolution of the
data.

• C2 Cardinality Mis-Estimations: In our thesis, we propose a cost model which
leverages characteristic sets as a cardinality estimation to generate query execution
plans. However, characteristic sets rely on the assumption of independence between
star-subqueries in a given query. In cases where these subqueries are correlated,
this assumption may not hold and can result in a significant underestimation of
the selectivity of the query especially when the result size increases, leading to
inaccurate cardinality estimates [PKB+20].

• C3 Conflicting Optimization Objectives: So far, we have primarily adopted
a classical query optimizer which estimates the cost of a query plan as a scalar
cost value, representing the estimated total execution time of a given query. While
– as we have experimentally demonstrated – the cost model is very effective, it
overlooks the following issues: (i) it only focuses on only one objective which is
minimizing the query execution time, however, there are several scenarios in which
multiple other (often conflicting) objectives have to be jointly considered during
the query optimization process, and (ii) it observes the system parameters (e.g.
CPU usage, network, and disk bandwidth) as a momentary snapshot (over the
last minute). Strictly speaking, in our current cost model, the relevant values of
the system parameters are known at run time, not at the query plan compilation
time. Hence, our execution plan for a given query could potentially be sub-optimal
whenever the prior assumed system’s values at planning time mismatch the actual
values at run time.

• C4 Limited Resources of Client-Server Architecture: While our introduced
Web interfaces offer scalable and reliable Web querying to large KGs, LDF interfaces
still strictly follow client-server architecture which could potentially lead to network
congestion, downtimes, limited processing resources, and high costs to host the
servers. Besides, our proposed solutions give a fair bit of responsibility to data
providers to maintain access to the Web interfaces. For instance, as we earlier
discussed, our proposed family-based partitioning and cost model requires parameter
tuning to provide high-performance Web querying services, adding an extra burden
on data providers.

• C5 High Preprocessing Overhead Graph partitioning techniques have been
shown to enhance query performance in various querying environments. However,

189

9. Conclusion

the use of such techniques can result in significant preprocessing overhead, as they
may need to be applied to the entire dataset, or certain thresholds may need to be
set to regulate the number and size of partitions generated. In real-world scenarios,
it is typically the case that only a small proportion of the data is accessed. This has
been demonstrated in empirical studies such as [RHSG14], and likely also applies
to our pattitions.

• C6 Limited Real-world Web Querying Benchmarks At present, RDF data
management research mostly relies on synthetic benchmarking frameworks for
SPARQL querying performance evaluation, including Waterloo SPARQL Diversity
Test Suite (WatDiv) [AHÖD14], LargeRDFBench [SHN18], the Berlin SPARQL
Benchmark (BSBM) [BS09], SP2Bench [SHLP09] which are generated based on
uniform and structured schemas that are often less complex than organic and
community-driven ones such as Wikidata and DBpedia. Thus, we believe that such
benchmarks do not accurately simulate the skewed and semi-structured nature
of real-world RDF KGs, and results obtained using such synthetic RDF KGs in
terms of scalability and performance do not necessarily reflect those that would
be obtained in case of real-world KGs [DKSU11]. In this thesis, while we use
both synthetic and real-world KGs for our experimental evaluation, we use a small
number of hand-selected DBpedia queries from real-world query logs either extracted
from LSQ query log [SAH+15] or generated from FEASIBLE benchmark [SMN15].
In general, real-world benchmarks such as FEASIBLE [SMN15] and DBpedia
SPARQL Benchmark (DBSBM) [MLAN11] focus on generating query templates
with different characteristics. However, none of the currently existing real-world
benchmarks offer diversified stress testing query workloads which play a vital role
in the evaluation of Web querying interfaces.

In order to tackle the aforementioned challenges, we propose potential future directions
which can be complementary and interconnected, as follows:

• designing KG partitions update strategies to enable KG querying over continuously
evolving KGs;

• investigating cardinality estimations techniques from the literature to provide more
accurate cost estimations;

• investigating the server availability and the query performance trade-off as multi-
objective query optimization or multi-objective parametric query optimization prob-
lem, taking multiple query execution cost metrics into account;

• considering the migration of Web Querying to collaborative decentralized architecture
to lift the burden of managing the query service off the data providers;

• investigating workload-based partitioning to cover the most frequent queries in the
logs;

190

9.3. Open Challenges and Future Research Directions

• exploring machine learning approaches for Web querying optimization, leveraging
the ever-increasing query logs on the available SPARQL endpoints;

• providing an empirical evaluation for the other potential partition-based LDF
interfaces introduced in Chapter 7;

• designing and creating an evaluation framework for Web querying based on real-
world KGs.

Efficient partitions update strategies

In this thesis, we have demonstrated the feasibility of the family partitioning generation
process. However, we did not consider the scenario of data dynamicity: our partitioning
technique assumes that the input is a static snapshot of an RDF KG and will remain
static during the analysis time. To tackle challenge C1, we envisage proposing efficient
partitioning strategies whereby the updates are continuously stored on a separate data
storage offering live updated query results in combination with the existing partitions.
In the meantime, we locate the affected partitions with the updates and regenerate
them, preventing the full regeneration process. Still, we could imagine that many of
data consumer applications potentially demand Web querying for continuously evolving
KGs which is not attained by our current assumption of static KGs. However, we still
believe that our proposed solution is applicable and, for such a scenario, subject to further
research; for example, assuming that the majority of data publishers provide (almost)
static KGs, our Web querying interfaces could potentially rely on our partition generator
for the slow-evolving portions, and handle dynamic portions with HBase or PostgreSQL
similar to SaGe [MSM19]. Still, while the partition generation for a large-scale RDF
graph such as DBpedia requires half a day, the applicability of our work for more dynamic
evolving KGs as well as stream processing is an open research question.

Exploring the literature of cardinality estimation

Cardinality estimation is a crucial element of finding a balanced query processing for
the Web querying interfaces. We plan to investigate diverse cardinality estimators in
order to address challenge C2. As reported in [LGM+15], in the context of the relational
database, the cardinality misestimates dominate the query execution time compared to
the cost model errors.

There is a body of existing research work towards a better cardinality estimation of
result sizes of SPARQL queries based on sampling-based techniques such as IMPR [CL18]
and graph summarization-based techniques for instance characteristic sets [NM11] and
SumRDF [SMK18]. It would be an interesting research direction if we explore the
aforementioned techniques and adopt them in future Web querying systems.

G-CARE [PKB+20] is a novel framework that has recently investigated the perfor-
mance of several cardinality estimation techniques for subgraph matching including
techniques designed to estimate RDF data such as [CL18, SMK18, NM11] in addition

191

9. Conclusion

to techniques selected from the context of a relational database, for instance, Corre-
latedSampling [VMZC15] and WanderJoin [LWYZ19]. The experiments reported that
WanderJoin has outperformed the aforementioned techniques in q-error which is the
cardinality estimation accuracy measure. G-CARE has conducted an evaluation on
real-world datasets such as LUBM, YAGO, and DBpedia on different query topologies
such as chains, stars, trees, and cycles.

This thesis utilizes characteristic sets as the cardinality estimation function CE(.) in
WiseKG, as it is a pre-processing step in generating family partitions (i.e., family genera-
tor). This enables us to leverage the storage requirements and summary structure built
during family generation. However, to fully assess the effectiveness of using characteristic
sets as compared to alternative cardinality estimators on the overall performance of our
systems, further experimental evaluations are necessary.

Exploring multi-objective (parametric) query optimization

To address challenge C3, an interesting research direction would be to consider multi-
objective (parametric) query optimization inspired by the database literature. Multi-
objective query optimization [TK14, HLY93, KSTI11, BG04] includes creating a Pareto-
optimal query plan, providing the best possible compromise according to conflicting
objectives under multiple cost metrics. In our current Web querying optimization scenario,
with the aim to serve multiple users concurrently, multi-objective query optimization
could be a potential solution to optimize two conflicting objectives: minimizing the
server resources consumption (i.e. increasing server availability) while minimizing the
query execution time. Another scenario is that both data publishers and consumers have
conflicting objectives, namely minimizing the query execution time and minimizing the
monetary costs (i.e. the expense of local server computation, the charge of transferring
data or intermediate results to the clients for further querying).

Next, we believe that multi-objective parametric query optimization [BBD09, HS02,
Gan98, TK17] could be a promising research direction to address the issue (ii). In
essence, multi-objective parametric query optimization provides multiple candidate plans
for a given query, each plan is an optimal plan for a combination of parameter values
that are unknown in the compilation time. At run-time, the system invokes a query plan
that is optimal for the actual parameter values. At a prepossessing step, for each query
template, candidate query plans will be calculated and stored and eventually utilized
to provide an optimal query based on the actual values during the processing time. In
addition, parametric query optimization could potentially give the query consumer the
freedom of selecting a reasonable trade-off according to their needs.

Exploring collaborative decentralized architectures

Looking towards the future, we spot a great need for more decentralized architecture for
available, queryable, and up-to-date Web knowledge graphs. This envisioned requirement
is hard to achieve in reality by many data providers. Hence, we plan to explore decentral-
ized peer-to-peer architectures for publishing and querying KGs. We believe that each

192

9.3. Open Challenges and Future Research Directions

participating node could potentially provide client and server functionality with respect
to KG partitions generation, replication, and querying to address challenge C4.

Recent studies [KSR+07, KKK+10, CF04, AMH19b, AMH19a] have proposed decentral-
ized peer-to-peer architecture for efficient query processing over RDF KGs. However,
the current decentralized systems suffer from significant communication overhead, inac-
curate query planning, and imbalanced query processing load distribution leading to a
low querying performance. Therefore, we believe that our findings in this thesis could
potentially improve and further optimize collaborative decentralized query processing, as
follows (i) we plan to explore a replication and fragmentation technique for KGs between
the nodes based on family partitioning, (ii) we aim to not only decentralize the query
processing but also the partitioning generation process, contrast to the current proposal
where data publisher is fully responsible for the partition generation, (iii) we aspire to
devise query plans that are aware of data fragmentation and placements, network peer
capabilities, and the dynamic adjustment of the network.

To this end, we plan to explore the migration of Web querying from the resource
limitations of the client-server architecture to a collaborative decentralized architecture
managed, stored, and queried by the knowledge graph community users.

Investigating workload-aware partitioning

As a future direction, we propose to investigate the use of workload-based partition-
ing [ASY+21] for Web querying interfaces to tackle challenge C5. While this approach
has been applied to distributed and cloud RDF graph processing systems such as
WARP [HS13], Partout [GHS14], WORQ [MAA18], and AdPart [AAK+16], it has not
yet been studied in the context of Web querying.

To avoid overfitting, it is important to use a representative RDF query log that accurately
reflects the usage patterns of the data [HS13]. By applying workload-based partitioning to
Web querying interfaces, we aim to improve the performance and scalability of RDF Web
KG querying while minimizing preprocessing overhead and ensuring that the partitions
accurately match the access patterns of the data users. This will involve using query logs
to identify common joins and partition or replicate parts of the graph, and applying the
partitioning a priori or dynamically as queries are received [ASY+21]. We plan to utilize
query logs to create partitions that accurately match the access patterns of the specific
RDF graph, allowing for more accurate query planning and optimization.

Exploring machine learning approaches for Web querying optimization

Machine learning approaches have been widely used in relational database systems
to enhance their performance and scalability [WZC+16]. Our hypothesis is that the
utilization of machine learning techniques has the potential to address the challenges
C2-C5. For instance, we can leverage ML techniques to predict query execution times,
more accurate cardinality estimation, and predict query workloads which will enable us
to enhance the query performance by better utilizing the available resources.

193

9. Conclusion

By analyzing query logs and identifying common access patterns, these systems can
generate partitions [YYG19, KDZ+17], physical designs [PAA+17], join orderings [MP18,
KYG+18], cost estimations [SL19] and indexes [KBC+18, DMY+20] that match the
needs of the users, allowing for more efficient query processing and optimization [MP19b,
MNM+19]. Additionally, machine learning algorithms can be used to develop dynamic,
adaptable optimization strategies [TWW+21, OBGK18] that can continually update
and adjust to changing usage patterns [PAA+17, MP19a]. This can enable the sys-
tem to automatically adjust its performance and resource allocation [ZLZ+19, LZLG19]
based on changing concurrent workloads [DÇPU11, ZSLF20, WCHN13] and usage pat-
terns [MAH+18, YLCL21, LZLG19], resulting in improved efficiency and scalability.

Inspired by the role of machine learning in relational database systems, SPARQL Web
querying interfaces can potentially benefit from the application of machine learning
techniques. By analyzing past query performance data from query logs, a SPARQL
Web querying interface can learn which query execution plans are most effective for a
given dataset and hardware configuration, enabling the system to more efficiently identify
the optimal query execution plan [KYG+18], which can potentially improve overall
performance. For example, using machine learning to consider available indexes (such as
HDT indexes) and the RDF data distribution in the knowledge graph can help to improve
cost estimations. Additionally, machine learning can be used to automatically tune
system parameters, such as those used in a family partitioning mechanism, by suggesting
suitable parameters based on query logs simplifying the process of data management for
data publishers. By continuously learning from the SPARQL query logs, the system can
automatically adjust these parameters to ensure efficient query execution, especially for
large RDF knowledge graphs scenarios where choosing appropriate parameters can be
complex and time-consuming for the data publishers. Another potential benefit of using
machine learning for Web interfaces is improved reliability and uptime. Machine learning
algorithms can be used to monitor the health and performance of the Web interface, and
automatically take corrective action if any issues are detected during high concurrent
query workload (for example, by switching to a less expressive interface or pushing the
workload to the client-side [DÇPU11, ZSLF20]).

Overall, the use of machine learning in SPARQL web querying interfaces can help to
improve the performance and availability of these systems, making them more effective
at handling complex and large RDF KGs.

Empirical evaluation for other partition-based LDF interfaces

In Chapter 7, we proposed alternative partition-based LDF interfaces based on several
existing partitioning techniques. We plan to conduct an empirical evaluation of these
interfaces to assess their performance and effectiveness using real-world RDF knowledge
graphs and standardized metrics, similar to experiments done with family partitioning.
This empirical evaluation can identify potential data-transfer improvements and query
optimization opportunities, as well as potential partitioning techniques that can enhance
Web querying availability, based on particular structures and data distributions in KGs.

194

9.3. Open Challenges and Future Research Directions

Evaluation framework for Web querying

Looking towards the (near) future, we thus see a great need for designing and creating
stress-testing benchmarking frameworks in order to tackle challenge C6, based on real-
world KGs and queries, to generate diverse and intensive query workloads in order to
evaluate the scalability of Web querying interfaces under multiple concurrent clients such
as ours. Such frameworks will empower researchers to produce relevant and high-quality
research ready for real-world Web querying challenges based on a stress testing process
and also prevent the hustle of query sampling, manual query selection, and subjective
(non-standard) evaluation. More ambitiously, although very challenging, we believe that
a suitable stress testing framework over real-world KGs could potentially minimize the
dependence on synthetic benchmarks fulfilling the current requirements of Web-scale
querying interfaces.

195

List of Figures

2.1 A graphical representation of an RDF graph from Examples 2 and 3. The
nodes represent subjects and objects and the directed labeled edges represent
the predicates. 18

2.2 The LOD cloud diagram, as of October 2022 21
2.3 A left-linear execution plan based on Nested Loop Join based on a greedy

heuristic . 28
2.4 Examples of different query plans of a given SPARQL query 29

4.1 KG example . 52
4.2 Predicate families for the KG shown in Fig. 4.1 52
4.3 Overall architecture for the smart-KG client and server. 53
4.4 Example of processing a SPARQL query with the smart-KG client. . . . 61
4.5 The query plan of Example 4.4a according to TPF implementation that we

have followed in our Experiments . 73
4.6 Ablation study in DBpedia to select the parameters in partitioning algorithm 75
4.7 Performance on the WatDiv-100M workload 76
4.8 Performance on the workloads (80 clients) at increasing KG sizes 77
4.9 Average execution time (80 clients) with DBpedia high-demanding queries 78
4.10 Avg. execution time per client on the standard WatDiv-100M for L queries 80
4.11 Avg. execution time per client on the standard WatDiv-100M for S queries 81
4.12 Avg. execution time per client on the standard WatDiv-100M for F queries 82
4.13 Avg. execution time per client on the standard WatDiv-100M for C queries 83
4.14 Complex Queries Workload . 83
4.15 Server-resources consumption on the intensive workload. 86
4.16 Client CPU and RAM usage on the intensive workload at increasing sizes 87

5.1 Example of processing a SPARQL query with WiseKG 91
5.2 Number of timeouts, average workload time, and throughput for 128 clients

over watdiv10M, watdiv100M, and watdiv1B on watdiv-sts 102
5.3 Execution time (in seconds) for 28 diverse queries over the dbpedia dataset. 104
5.4 Avg. execution time per client over watdiv100M for the watdiv-btt

workload. 105
5.5 Impact of the cost model components on the performance and resources consumption

over watdiv100M . 106

197

5.6 Number of requests to the server and number of transferred bytes for 128
clients over watdiv10M, watdiv100M, and watdiv1B, and CPU load for
increasing numbers of clients over watdiv1B on the watdiv-sts workload 108

5.7 Avg. Server CPU Usage (in %) for increasing numbers of clients over watdiv1B. 108

6.1 KG example . 116
6.2 Predicate families and typed families for the KG shown in Fig. 6.1 116
6.3 The overall architecture of the smart-KG+ client and server, wherein the

modified components are denoted in red, in contrast to the corresponding
elements in the original smart-KG architecture. 117

6.4 Example of processing a SPARQL query with the smart-KG+ client. . . 120
6.5 Workload completion time (lower is better) 141
6.6 Number of timeouts (lower is better) . 142
6.7 Query throughput of 128 concurrent clients over watdiv10M, watdiv100M,

and watdiv1B datasets on watdiv-sts workload 143
6.8 Query throughput for increasing numbers of clients over watdiv1B on

watdiv-sts workload
. 143

6.9 Throughput (higher is better) . 143
6.10 Average first result time for 128 clients over increasing sizes datasets on

watdiv-sts workload . 144
6.11 Average first result time for increasing number of clients over watdiv1B

dataset on watdiv-sts workload . 144
6.12 Average first result time (lower is better) 144
6.13 Avg. execution time per client on WatDiv-100M, for the first query of each

category L, S, F, and C . 146
6.14 Avg. execution time per client on the standard WatDiv-100M, for simplest L

queries . 149
6.15 Avg. execution time per client on the standard WatDiv-100M, for Star S

queries . 150
6.16 Avg. execution time per client on the standard WatDiv-100M, for Snowflake

F queries . 151
6.17 Avg. execution time per client on the standard WatDiv-100M, for Complex C

queries . 151
6.18 Server resource consumption with increasing number of clients and increasing

dataset sizes on watdiv-sts workload 153
6.19 Data transferred per query (in bytes) over watdiv10M and watdiv100M on

watdiv-btfunbounded and watdiv-btfbounded workloads 156
6.20 Execution time per query (in ms) over watdiv10M and watdiv100M on

watdiv-btfunbounded and watdiv-btfbounded workloads 157
6.21 Execution time per query (in sec) on DBpedia-bttbounded workload . . . 158

8.1 An illustration of our experiments infrastructure 177

198

List of Tables

3.1 Aligned formal definitions and notations with LDF original specifications to
uniformly present different existing LDF APIs 42

4.1 Characteristics of the evaluated knowledge graphs 72
4.2 Comparison of storage requirements (in MB) for systems with HDT backend

vs original graph size (raw) . 85

6.1 Characteristics of the evaluated knowledge graphs 134
6.2 Evaluation Workloads Statistics. We provide the total numbers for all the

128 clients . 136
6.3 Family-based Partitions Parameter Settings 138
6.4 Characteristics of additional real-world knowledge graphs 139
6.5 An ablation study to assess the performance of each individual contribution

over watdiv10M using watdiv-btt workload. (Req: Requests, DT: Data
Transfer in MB, ET: Execution Time in ms, TO: Timeouts). GM-T = Total
Geometric mean for all query classes . 139

6.6 An ablation study to assess the performance of each individual contribution
over watdiv10M using watdiv-sts workload. (Req: Requests, DT: Data
Transfer in MB, ET: Execution Time in ms, TO: Timeouts). GM-T = Total
Geometric mean for all query classes . 140

6.7 Avg. execution time per client (in sec.) for 128 clients over watdiv100M for
the watdiv-btt workload. GM=Geometric Mean per query class. GM-T =
Total Geometric mean for all query classes. 147

6.8 Comparison of storage requirements (in MB) for systems with HDT backend
vs original graph size (raw) . 154

6.9 Workload Transferred Data per client over watdiv10M and watdiv100M
on watdiv-stfbounded, watdiv-stfunbounded and watdiv-stfboth work-
loads . 155

6.10 Workload Completion Time per client over watdiv10M and watdiv100M
on watdiv-stfbounded, watdiv-stfunbounded and watdiv-stfboth work-
loads . 155

6.11 Impact of Typed-Family Partitioning on WiseKG’s Performance on watdiv10M
dataset (Req: Requests, DT: Data Transfer in MB, ET: Execution Time in
milliseconds, TO: Timeouts. ET is in milliseconds, DT is in MB 159

199

7.1 An overview of the exiting graph partitioning techniques utilized in RDF
engines . 164

200

List of Algorithms

4.1 Family Grouping . 57

4.2 Query Executor: evalP lan . 63

5.1 Create an annotated query execution plan 97

5.2 Processing a Query Execution Plan . 98

6.1 Query Optimizer and Planner: optimizeP lan 123

6.2 Query Executor: evalP lan . 125

6.3 Query Executor: evalc . 126

201

Bibliography

[A+99] Werner Almesberger et al. Linux network traffic control implementation
overview, 1999.

[AAA+15] Alexander Aarts, Joanna Anderson, Christopher Anderson, Peter At-
tridge, Angela Attwood, Jordan Axt, Molly Babel, Štěpán Bahník, Erica
Baranski, Michael Barnett-Cowan, Elizabeth Bartmess, Jennifer Beer,
Raoul Bell, Heather Bentley, Leah Beyan, Grace Binion, Denny Bors-
boom, Annick Bosch, Frank Bosco, and Mike Penuliar. Estimating the
reproducibility of psychological science. Science, 349(6251):aac4716,
2015.

[AAC+19] Amr Azzam, Peb Ruswono Aryan, Alessio Cecconi, Claudio Di Ciccio,
Fajar J. Ekaputra, Javier D. Fernández, Sotiris Karampatakis, Elmar
Kiesling, Angelika Musil, Marta Sabou, Pujan Shadlau, and Thomas
Thurner. The cityspin platform: A CPSS environment for city-wide
infrastructures. In Antonella Longo, Maria Fazio, Rajiv Ranjan, and
Marco Zappatore, editors, Proceedings of the 1st Workshop on Cyber-
Physical Social Systems co-located with the 9th International Conference
on the Internet of Things (IoT 2019), Bilbao, Spain, October 22, 2019,
volume 2530 of CEUR Workshop Proceedings, pages 57–64. CEUR-
WS.org, 2019.

[AAK+16] Razen Al-Harbi, Ibrahim Abdelaziz, Panos Kalnis, Nikos Mamoulis,
Yasser Ebrahim, and Majed Sahli. Accelerating SPARQL queries by
exploiting hash-based locality and adaptive partitioning. VLDB J.,
25(3):355–380, 2016.

[AAM+21] Amr Azzam, Christian Aebeloe, Gabriela Montoya, Ilkcan Keles, Axel
Polleres, and Katja Hose. Wisekg: Balanced access to web knowledge
graphs. In Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang,
and Leila Zia, editors, WWW ’21: The Web Conference 2021, Virtual
Event / Ljubljana, Slovenia, April 19-23, 2021, pages 1422–1434. ACM
/ IW3C2, 2021.

203

[ÁBFM11] Sandra Álvarez-García, Nieves R. Brisaboa, Javier D. Fernández, and
Miguel A. Martínez-Prieto. Compressed k2-triples for full-in-memory
RDF engines. In Vallabh Sambamurthy and Mohan Tanniru, editors,
A Renaissance of Information Technology for Sustainability and Global
Competitiveness. 17th Americas Conference on Information Systems,
AMCIS 2011, Detroit, Michigan, USA, August 4-8 2011. Association
for Information Systems, 2011.

[ABK+07] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary G. Ives. Dbpedia: A nucleus for a web of open
data. In Karl Aberer, Key-Sun Choi, Natasha Fridman Noy, Dean
Allemang, Kyung-Il Lee, Lyndon J. B. Nixon, Jennifer Golbeck, Peter
Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe
Cudré-Mauroux, editors, The Semantic Web, 6th International Semantic
Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 +
ASWC 2007, Busan, Korea, November 11-15, 2007, volume 4825 of
Lecture Notes in Computer Science, pages 722–735. Springer, 2007.

[ACHZ09] Keith Alexander, Richard Cyganiak, Michael Hausenblas, and Jun
Zhao. Describing linked datasets. In Christian Bizer, Tom Heath, Tim
Berners-Lee, and Kingsley Idehen, editors, Proceedings of the WWW2009
Workshop on Linked Data on the Web, LDOW 2009, Madrid, Spain,
April 20, 2009, volume 538 of CEUR Workshop Proceedings. CEUR-
WS.org, 2009.

[AFA+20] Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and
Axel Polleres. SMART-KG: hybrid shipping for SPARQL querying on
the web. In Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van
Steen, editors, WWW ’20: The Web Conference 2020, Taipei, Taiwan,
April 20-24, 2020, pages 984–994. ACM / IW3C2, 2020.

[AHKK17] Ibrahim Abdelaziz, Razen Harbi, Zuhair Khayyat, and Panos Kalnis. A
survey and experimental comparison of distributed SPARQL engines for
very large RDF data. Proc. VLDB Endow., 10(13):2049–2060, 2017.

[AHÖD14] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee.
Diversified stress testing of RDF data management systems. In Peter
Mika, Tania Tudorache, Abraham Bernstein, Chris Welty, Craig A.
Knoblock, Denny Vrandecic, Paul Groth, Natasha F. Noy, Krzysztof
Janowicz, and Carole A. Goble, editors, The Semantic Web - ISWC
2014 - 13th International Semantic Web Conference, Riva del Garda,
Italy, October 19-23, 2014. Proceedings, Part I, volume 8796 of Lecture
Notes in Computer Science, pages 197–212. Springer, 2014.

[AHUV13] Carlos Buil Aranda, Aidan Hogan, Jürgen Umbrich, and Pierre-Yves
Vandenbussche. SPARQL web-querying infrastructure: Ready for action?

204

In Harith Alani, Lalana Kagal, Achille Fokoue, Paul Groth, Chris
Biemann, Josiane Xavier Parreira, Lora Aroyo, Natasha F. Noy, Chris
Welty, and Krzysztof Janowicz, editors, The Semantic Web - ISWC 2013
- 12th International Semantic Web Conference, Sydney, NSW, Australia,
October 21-25, 2013, Proceedings, Part II, volume 8219 of Lecture Notes
in Computer Science, pages 277–293. Springer, 2013.

[AKMH20] Christian Aebeloe, Ilkcan Keles, Gabriela Montoya, and Katja Hose. Star
pattern fragments: Accessing knowledge graphs through star patterns.
CoRR, abs/2002.09172, 2020.

[AKP18] Amr Azzam, Sabrina Kirrane, and Axel Polleres. Towards making
distributed RDF processing flinker. In 4th International Conference on
Big Data Innovations and Applications, Innovate-Data 2018, Barcelona,
Spain, August 6-8, 2018, pages 9–16. IEEE, 2018.

[AMH19a] Christian Aebeloe, Gabriela Montoya, and Katja Hose. A decentralized
architecture for sharing and querying semantic data. In Pascal Hitzler,
Miriam Fernández, Krzysztof Janowicz, Amrapali Zaveri, Alasdair J. G.
Gray, Vanessa López, Armin Haller, and Karl Hammar, editors, The
Semantic Web - 16th International Conference, ESWC 2019, Portorož,
Slovenia, June 2-6, 2019, Proceedings, volume 11503 of Lecture Notes in
Computer Science, pages 3–18. Springer, 2019.

[AMH19b] Christian Aebeloe, Gabriela Montoya, and Katja Hose. Decentralized
indexing over a network of RDF peers. In Chiara Ghidini, Olaf Hartig,
Maria Maleshkova, Vojtech Svátek, Isabel F. Cruz, Aidan Hogan, Jie
Song, Maxime Lefrançois, and Fabien Gandon, editors, The Semantic
Web - ISWC 2019 - 18th International Semantic Web Conference, Auck-
land, New Zealand, October 26-30, 2019, Proceedings, Part I, volume
11778 of Lecture Notes in Computer Science, pages 3–20. Springer, 2019.

[AMMH07] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Katherine J.
Hollenbach. Scalable semantic web data management using vertical
partitioning. In Christoph Koch, Johannes Gehrke, Minos N. Garofalakis,
Divesh Srivastava, Karl Aberer, Anand Deshpande, Daniela Florescu,
Chee Yong Chan, Venkatesh Ganti, Carl-Christian Kanne, Wolfgang
Klas, and Erich J. Neuhold, editors, Proceedings of the 33rd International
Conference on Very Large Data Bases, University of Vienna, Austria,
September 23-27, 2007, pages 411–422. ACM, 2007.

[AMMH09] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Kate Hollen-
bach. Sw-store: a vertically partitioned DBMS for semantic web data
management. VLDB J., 18(2):385–406, 2009.

205

[ANS18] Adnan Akhter, Axel-Cyrille Ngonga Ngomo, and Muhammad Saleem.
An empirical evaluation of RDF graph partitioning techniques. In
Catherine Faron-Zucker, Chiara Ghidini, Amedeo Napoli, and Yannick
Toussaint, editors, Knowledge Engineering and Knowledge Management
- 21st International Conference, EKAW 2018, Nancy, France, November
12-16, 2018, Proceedings, volume 11313 of Lecture Notes in Computer
Science, pages 3–18. Springer, 2018.

[AÖDH13] Günes Aluç, M. Tamer Özsu, Khuzaima S. Daudjee, and Olaf Hartig.
chameleon-db: a workload-aware robust rdf data management system.
2013.

[APU14] Carlos Buil Aranda, Axel Polleres, and Jürgen Umbrich. Strategies
for executing federated queries in SPARQL1.1. In Peter Mika, Tania
Tudorache, Abraham Bernstein, Chris Welty, Craig A. Knoblock, Denny
Vrandecic, Paul Groth, Natasha F. Noy, Krzysztof Janowicz, and Car-
ole A. Goble, editors, The Semantic Web - ISWC 2014 - 13th Interna-
tional Semantic Web Conference, Riva del Garda, Italy, October 19-23,
2014. Proceedings, Part II, volume 8797 of Lecture Notes in Computer
Science, pages 390–405. Springer, 2014.

[ASY+21] Waqas Ali, Muhammad Saleem, Bin Yao, Aidan Hogan, and Axel-
Cyrille Ngonga Ngomo. A survey of RDF stores & SPARQL engines for
querying knowledge graphs. VLDB, abs/2102.13027, 2021.

[ATP20a] Amr Azzam, Ruben Taelman, and Axel Polleres. Towards cost-model-
based query execution over hybrid linked data fragments interfaces. In
Andreas Harth, Valentina Presutti, Raphaël Troncy, Maribel Acosta,
Axel Polleres, Javier D. Fernández, Josiane Xavier Parreira, Olaf Hartig,
Katja Hose, and Michael Cochez, editors, The Semantic Web: ESWC
2020 Satellite Events - ESWC 2020 Satellite Events, Heraklion, Crete,
Greece, May 31 - June 4, 2020, Revised Selected Papers, volume 12124
of Lecture Notes in Computer Science, pages 9–12. Springer, 2020.

[ATP20b] Amr Azzam, Ruben Taelman, and Axel Polleres. Towards cost-model-
based query execution over hybrid linked data fragments interfaces. In
Andreas Harth, Valentina Presutti, Raphaël Troncy, Maribel Acosta,
Axel Polleres, Javier D. Fernández, Josiane Xavier Parreira, Olaf Hartig,
Katja Hose, and Michael Cochez, editors, The Semantic Web: ESWC
2020 Satellite Events - ESWC 2020 Satellite Events, Heraklion, Crete,
Greece, May 31 - June 4, 2020, Revised Selected Papers, volume 12124
of Lecture Notes in Computer Science, pages 9–12. Springer, 2020.

[AV15] Maribel Acosta and Maria-Esther Vidal. Networks of linked data eddies:
An adaptive web query processing engine for RDF data. In Marcelo
Arenas, Óscar Corcho, Elena Simperl, Markus Strohmaier, Mathieu

206

d’Aquin, Kavitha Srinivas, Paul Groth, Michel Dumontier, Jeff Heflin,
Krishnaprasad Thirunarayan, and Steffen Staab, editors, The Semantic
Web - ISWC 2015 - 14th International Semantic Web Conference, Beth-
lehem, PA, USA, October 11-15, 2015, Proceedings, Part I, volume 9366
of Lecture Notes in Computer Science, pages 111–127. Springer, 2015.

[Azz20] Amr Azzam. Enabling web-scale knowledge graphs querying. In An-
dreas Harth, Valentina Presutti, Raphaël Troncy, Maribel Acosta, Axel
Polleres, Javier D. Fernández, Josiane Xavier Parreira, Olaf Hartig,
Katja Hose, and Michael Cochez, editors, The Semantic Web: ESWC
2020 Satellite Events - ESWC 2020 Satellite Events, Heraklion, Crete,
Greece, May 31 - June 4, 2020, Revised Selected Papers, volume 12124
of Lecture Notes in Computer Science, pages 229–239. Springer, 2020.

[BB08] Dave Beckett and Tim Berners-Lee. Turtle - terse
RDF triple language, W3C team submission, 2008. See:
http://www.w3.org/TeamSubmission/turtle/.

[BBD09] Pedro Bizarro, Nicolas Bruno, and David J. DeWitt. Progressive para-
metric query optimization. IEEE Trans. Knowl. Data Eng., 21(4):582–
594, 2009.

[BCK+08] Tim Berners-Lee, Dan Connolly, Lalana Kagal, Yosi Scharf, and Jim
Hendler. N3logic: A logical framework for the world wide web. Theory
Pract. Log. Program., 8(3):249–269, 2008.

[BDPP18] Piero Andrea Bonatti, Stefan Decker, Axel Polleres, and Valentina
Presutti. Knowledge graphs: New directions for knowledge representa-
tion on the semantic web (dagstuhl seminar 18371). Dagstuhl Reports,
8(9):29–111, 2018.

[BE12] C Glenn Begley and Lee M Ellis. Raise standards for preclinical cancer
research. Nature, 483(7391):531–533, 2012.

[BEP+08] Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh, Tim Sturge, and
Jamie Taylor. Freebase: a collaboratively created graph database for
structuring human knowledge. In Jason Tsong-Li Wang, editor, Proceed-
ings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008,
pages 1247–1250. ACM, 2008.

[Ber14] David Bernstein. Containers and cloud: From LXC to docker to kuber-
netes. IEEE Cloud Comput., 1(3):81–84, 2014.

[BF00a] Tim Berners-Lee and Mark Fischetti. Weaving the web - the original
design and ultimate destiny of the World Wide Web by its inventor.
HarperBusiness, 2000.

207

[BF00b] Tim Berners-Lee and Mark Fischetti. Weaving the web - the original
design and ultimate destiny of the World Wide Web by its inventor.
HarperBusiness, 2000.

[BG04] Wolf-Tilo Balke and Ulrich Güntzer. Multi-objective query processing
for database systems. In Mario A. Nascimento, M. Tamer Özsu, Donald
Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer,
editors, (e)Proceedings of the Thirtieth International Conference on
Very Large Data Bases, VLDB 2004, Toronto, Canada, August 31 -
September 3 2004, pages 936–947. Morgan Kaufmann, 2004.

[BHB09] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the
story so far. Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

[BL98] Tim Berners-Lee. Semantic Web Road map. Website, 1998.
http://www.w3.org/DesignIssues/Semantic.html.

[BL06] Tim Berners-Lee. Linked data - design issues. W3C, 2006.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web:
A new form of web content that is meaningful to computers will unleash
a revolution of new possibilities. Scientific American, 284:34–43, 2001.

[BMT17] Angela Bonifati, Wim Martens, and Thomas Timm. An analytical study
of large SPARQL query logs. Proc. VLDB Endow., 11(2):149–161, 2017.

[Boe15] Carl Boettiger. An introduction to docker for reproducible research.
ACM SIGOPS Oper. Syst. Rev., 49(1):71–79, 2015.

[BS09] Christian Bizer and Andreas Schultz. The berlin SPARQL benchmark.
Int. J. Semantic Web Inf. Syst., 5(2):1–24, 2009.

[CCZZ14] Xi Chen, Huajun Chen, Ningyu Zhang, and Songyang Zhang. Sparkrdf:
Elastic discreted RDF graph processing engine with distributed memory.
In Matthew Horridge, Marco Rospocher, and Jacco van Ossenbruggen,
editors, Proceedings of the ISWC 2014 Posters & Demonstrations Track
a track within the 13th International Semantic Web Conference, ISWC
2014, Riva del Garda, Italy, October 21, 2014, volume 1272 of CEUR
Workshop Proceedings, pages 261–264. CEUR-WS.org, 2014.

[CF04] Min Cai and Martin R. Frank. Rdfpeers: a scalable distributed RDF
repository based on a structured peer-to-peer network. In Stuart I.
Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills, editors,
Proceedings of the 13th international conference on World Wide Web,
WWW 2004, New York, NY, USA, May 17-20, 2004, pages 650–657.
ACM, 2004.

208

[CFL18] Matteo Cossu, Michael Färber, and Georg Lausen. Prost: Distributed
execution of SPARQL queries using mixed partitioning strategies. In
Michael H. Böhlen, Reinhard Pichler, Norman May, Erhard Rahm, Shan-
Hung Wu, and Katja Hose, editors, Proceedings of the 21st International
Conference on Extending Database Technology, EDBT 2018, Vienna,
Austria, March 26-29, 2018, pages 469–472. OpenProceedings.org, 2018.

[Cha98] Surajit Chaudhuri. An overview of query optimization in relational
systems. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, PODS ’98,
page 34–43, New York, NY, USA, 1998. Association for Computing
Machinery.

[CHI15] Tom Crick, Benjamin A. Hall, and Samin S. Ishtiaq. Reproducibility
in research: Systems, infrastructure, culture. Journal of Open Research
Software, 2015.

[CK92] Jon F Claerbout and Martin Karrenbach. Electronic documents give
reproducible research a new meaning. In SEG technical program expanded
abstracts 1992, pages 601–604. Society of Exploration Geophysicists,
1992.

[CL18] Xiaowei Chen and John C. S. Lui. Mining graphlet counts in online
social networks. ACM Trans. Knowl. Discov. Data, 12(4):41:1–41:38,
2018.

[CW06] Surajit Chaudhuri and Gerhard Weikum. Foundations of automated
database tuning. In Ling Liu, Andreas Reuter, Kyu-Young Whang, and
Jianjun Zhang, editors, Proceedings of the 22nd International Conference
on Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA,
page 104. IEEE Computer Society, 2006.

[dBFT05] Jos de Bruijn, Enrico Franconi, and Sergio Tessaris. Logical reconstruc-
tion of RDF and ontology languages. In François Fages and Sylvain
Soliman, editors, Principles and Practice of Semantic Web Reasoning,
Third International Workshop, PPSWR 2005, Dagstuhl Castle, Germany,
September 11-16, 2005, Proceedings, volume 3703 of Lecture Notes in
Computer Science, pages 65–71. Springer, 2005.

[DCC+14] Michel Dumontier, Alison Callahan, Jose Cruz-Toledo, Peter Ansell,
Vincent Emonet, François Belleau, and Arnaud Droit. Bio2rdf release
3: A larger, more connected network of linked data for the life sciences.
In Matthew Horridge, Marco Rospocher, and Jacco van Ossenbruggen,
editors, Proceedings of the ISWC 2014 Posters & Demonstrations Track
a track within the 13th International Semantic Web Conference, ISWC

209

2014, Riva del Garda, Italy, October 21, 2014, volume 1272 of CEUR
Workshop Proceedings, pages 401–404. CEUR-WS.org, 2014.

[DÇPU11] Jennie Duggan, Ugur Çetintemel, Olga Papaemmanouil, and Eli Up-
fal. Performance prediction for concurrent database workloads. In
Timos K. Sellis, Renée J. Miller, Anastasios Kementsietsidis, and Yannis
Velegrakis, editors, Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2011, Athens, Greece,
June 12-16, 2011, pages 337–348. ACM, 2011.

[DGK+15] Benjamin Djahandideh, François Goasdoué, Zoi Kaoudi, Ioana
Manolescu, Jorge-Arnulfo Quiané-Ruiz, and Stamatis Zampetakis.
Cliquesquare in action: Flat plans for massively parallel RDF queries.
In Johannes Gehrke, Wolfgang Lehner, Kyuseok Shim, Sang Kyun Cha,
and Guy M. Lohman, editors, 31st IEEE International Conference on
Data Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015,
pages 1432–1435. IEEE Computer Society, 2015.

[DKSU11] Songyun Duan, Anastasios Kementsietsidis, Kavitha Srinivas, and Oc-
tavian Udrea. Apples and oranges: a comparison of RDF benchmarks
and real RDF datasets. In Timos K. Sellis, Renée J. Miller, Anastasios
Kementsietsidis, and Yannis Velegrakis, editors, Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD
2011, Athens, Greece, June 12-16, 2011, pages 145–156. ACM, 2011.

[DMvH+00] Stefan Decker, Sergey Melnik, Frank van Harmelen, Dieter Fensel, Michel
C. A. Klein, Jeen Broekstra, Michael Erdmann, and Ian Horrocks. The
semantic web: The roles of XML and RDF. IEEE Internet Comput.,
4(5):63–74, 2000.

[DMY+20] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do,
Yinan Li, Hantian Zhang, Badrish Chandramouli, Johannes Gehrke,
Donald Kossmann, David B. Lomet, and Tim Kraska. ALEX: an updat-
able adaptive learned index. In David Maier, Rachel Pottinger, AnHai
Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo, edi-
tors, Proceedings of the 2020 International Conference on Management
of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020, pages 969–984. ACM, 2020.

[DWNY12] Jin-Hang Du, Haofen Wang, Yuan Ni, and Yong Yu. Hadooprdf: A
scalable semantic data analytical engine. In De-Shuang Huang, Jianhua
Ma, Kang-Hyun Jo, and M. Michael Gromiha, editors, Intelligent Com-
puting Theories and Applications - 8th International Conference, ICIC
2012, Huangshan, China, July 25-29, 2012. Proceedings, volume 7390 of
Lecture Notes in Computer Science, pages 633–641. Springer, 2012.

210

[EM09] Orri Erling and Ivan Mikhailov. RDF support in the virtuoso DBMS.
In Networked Knowledge - Networked Media - Integrating Knowledge
Management, New Media Technologies and Semantic Systems, volume
221 of Studies in Computational Intelligence, pages 7–24. 2009.

[ESW15] Patrick Ernst, Amy Siu, and Gerhard Weikum. Knowlife: a versatile ap-
proach for constructing a large knowledge graph for biomedical sciences.
BMC Bioinform., 16:157:1–157:13, 2015.

[Fel98] Christiane Fellbaum. WordNet: An Electronic Lexical Database. Brad-
ford Books, 1998.

[FJK96] Michael J. Franklin, Björn Þór Jónsson, and Donald Kossmann. Perfor-
mance tradeoffs for client-server query processing. In H. V. Jagadish and
Inderpal Singh Mumick, editors, Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, Montreal, Quebec,
Canada, June 4-6, 1996, pages 149–160. ACM Press, 1996.

[FLM98] Daniela Florescu, Alon Y. Levy, and Alberto O. Mendelzon. Database
techniques for the world-wide web: A survey. SIGMOD Rec., 27(3):59–74,
1998.

[FMG+13] Javier D. Fernández, Miguel A. Martínez-Prieto, Claudio Gutierrez, Axel
Polleres, and Mario Arias. Binary RDF representation for publication
and exchange (HDT). J. Web Semant., 19:22–41, 2013.

[FMPdlFRG18] Javier D Fernández, Miguel A Martínez-Prieto, Pablo de la Fuente Re-
dondo, and Claudio Gutiérrez. Characterising rdf data sets. J. Inf. Sci.,
44(2):203–229, apr 2018.

[FMPR18] Javier D. Fernández, Miguel A. Martínez-Prieto, Axel Polleres, and
Julian Reindorf. HDTQ: managing RDF datasets in compressed space.
In Aldo Gangemi, Roberto Navigli, Maria-Esther Vidal, Pascal Hitzler,
Raphaël Troncy, Laura Hollink, Anna Tordai, and Mehwish Alam,
editors, The Semantic Web - 15th International Conference, ESWC
2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings, volume
10843 of Lecture Notes in Computer Science, pages 191–208. Springer,
2018.

[FSMM15] Pauline Folz, Hala Skaf-Molli, and Pascal Molli. Cyclades: A decen-
tralized cache for linked data fragments. In Extended Semantic Web
Conference, 2015.

[FWCT13] Lee Feigenbaum, Gregory Todd Williams, Kendall Grant Clark, and
Elias Torres. SPARQL 1.1 protocol. Recommendation, W3C, March,
2013.

211

[Gan98] Sumit Ganguly. Design and analysis of parametric query optimization
algorithms. In Ashish Gupta, Oded Shmueli, and Jennifer Widom,
editors, VLDB’98, Proceedings of 24rd International Conference on
Very Large Data Bases, August 24-27, 1998, New York City, New York,
USA, pages 228–238. Morgan Kaufmann, 1998.

[GFI16] Steven N. Goodman, Daniele Fanelli, and John P. A. Ioannidis. What
does research reproducibility mean? Science Translational Medicine,
8:341ps12 – 341ps12, 2016.

[GGvHS10] Christophe Guéret, Paul Groth, Frank van Harmelen, and Stefan
Schlobach. Finding the achilles heel of the web of data: Using network
analysis for link-recommendation. In The Semantic Web - ISWC 2010
- 9th International Semantic Web Conference, ISWC 2010, Shanghai,
China, November 7-11, 2010, Revised Selected Papers, Part I, volume
6496 of Lecture Notes in Computer Science, pages 289–304. Springer,
2010.

[GHMP11] Claudio Gutierrez, Carlos A. Hurtado, Alberto O. Mendelzon, and Jorge
Pérez. Foundations of semantic web databases. J. Comput. Syst. Sci.,
77(3):520–541, 2011.

[GHS14] Luis Galárraga, Katja Hose, and Ralf Schenkel. Partout: a distributed
engine for efficient RDF processing. In Chin-Wan Chung, Andrei Z.
Broder, Kyuseok Shim, and Torsten Suel, editors, 23rd International
World Wide Web Conference, WWW ’14, Seoul, Republic of Korea, April
7-11, 2014, Companion Volume, pages 267–268. ACM, 2014.

[GJGL16] Damien Graux, Louis Jachiet, Pierre Genevès, and Nabil Layaïda. SPAR-
QLGX in action: Efficient distributed evaluation of SPARQL with
apache spark. In Takahiro Kawamura and Heiko Paulheim, editors, Pro-
ceedings of the ISWC 2016 Posters & Demonstrations Track co-located
with 15th International Semantic Web Conference (ISWC 2016), Kobe,
Japan, October 19, 2016, volume 1690 of CEUR Workshop Proceedings.
CEUR-WS.org, 2016.

[GM93] Goetz Graefe and William J. McKenna. The volcano optimizer generator:
Extensibility and efficient search. In Proceedings of the Ninth Inter-
national Conference on Data Engineering, April 19-23, 1993, Vienna,
Austria, pages 209–218. IEEE Computer Society, 1993.

[GN14] Andrey Gubichev and Thomas Neumann. Exploiting the query structure
for efficient join ordering in SPARQL queries. In Sihem Amer-Yahia,
Vassilis Christophides, Anastasios Kementsietsidis, Minos N. Garofalakis,
Stratos Idreos, and Vincent Leroy, editors, Proceedings of the 17th In-
ternational Conference on Extending Database Technology, EDBT 2014,

212

Athens, Greece, March 24-28, 2014, pages 439–450. OpenProceedings.org,
2014.

[Gra95] Goetz Graefe. The cascades framework for query optimization. IEEE
Data Eng. Bull., 18(3):19–29, 1995.

[GSMT14] Sairam Gurajada, Stephan Seufert, Iris Miliaraki, and Martin Theobald.
Triad: a distributed shared-nothing RDF engine based on asynchronous
message passing. In Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu,
editors, International Conference on Management of Data, SIGMOD
2014, Snowbird, UT, USA, June 22-27, 2014, pages 289–300. ACM,
2014.

[HA16] Olaf Hartig and Carlos Buil Aranda. Bindings-restricted triple pattern
fragments. In Christophe Debruyne, Hervé Panetto, Robert Meersman,
Tharam S. Dillon, Eva Kühn, Declan O’Sullivan, and Claudio Agostino
Ardagna, editors, On the Move to Meaningful Internet Systems: OTM
2016 Conferences - Confederated International Conferences: CoopIS,
C&TC, and ODBASE 2016, Rhodes, Greece, October 24-28, 2016, Pro-
ceedings, volume 10033 of Lecture Notes in Computer Science, pages
762–779, 2016.

[HA20] L. Heling and M. Acosta. Cost- and robustness-based query optimization
for linked data fragments. In ISWC 2020, pages 238–257, 2020.

[HA22] Lars Heling and Maribel Acosta. Federated SPARQL query process-
ing over heterogeneous linked data fragments. In Frédérique Laforest,
Raphaël Troncy, Elena Simperl, Deepak Agarwal, Aristides Gionis, Ivan
Herman, and Lionel Médini, editors, WWW ’22: The ACM Web Con-
ference 2022, Virtual Event, Lyon, France, April 25 - 29, 2022, pages
1047–1057. ACM, 2022.

[HAMS18] Lars Heling, Maribel Acosta, Maria Maleshkova, and York Sure-Vetter.
Querying large knowledge graphs over triple pattern fragments: An
empirical study. In Denny Vrandecic, Kalina Bontcheva, Mari Carmen
Suárez-Figueroa, Valentina Presutti, Irene Celino, Marta Sabou, Lucie-
Aimée Kaffee, and Elena Simperl, editors, The Semantic Web - ISWC
2018 - 17th International Semantic Web Conference, Monterey, CA,
USA, October 8-12, 2018, Proceedings, Part II, volume 11137 of Lecture
Notes in Computer Science, pages 86–102. Springer, 2018.

[Har11a] A. Harth. Cumulusrdf: Linked data management on nested key-value
stores. 2011.

[HAR11b] Jiewen Huang, Daniel J. Abadi, and Kun Ren. Scalable SPARQL
querying of large RDF graphs. Proc. VLDB Endow., 4(11):1123–1134,
2011.

213

[har12] Must try harder. Nature, 483(7391):509–509, Mar 2012.

[Har13] Olaf Hartig. SQUIN: a traversal based query execution system for the
web of linked data. In Kenneth A. Ross, Divesh Srivastava, and Dimitris
Papadias, editors, Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2013, New York, NY,
USA, June 22-27, 2013, pages 1081–1084. ACM, 2013.

[HB11] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a
Global Data Space. Synthesis Lectures on the Semantic Web. Morgan &
Claypool Publishers, 2011.

[HFKP20] Armin Haller, Javier D. Fernández, Maulik R. Kamdar, and Axel Polleres.
What are links in linked open data? a characterization and evaluation
of links between knowledge graphs on the web. J. Data and Information
Quality, 12(2), may 2020.

[HKH+14] Ali Hasnain, Maulik R. Kamdar, Panagiotis Hasapis, Dimitris Zeginis,
Claude N. Warren Jr., Helena F. Deus, Dimitrios Ntalaperas, Kon-
stantinos A. Tarabanis, Muntazir Mehdi, and Stefan Decker. Linked
biomedical dataspace: Lessons learned integrating data for drug discov-
ery. In The Semantic Web - ISWC 2014 - 13th International Semantic
Web Conference, Riva del Garda, Italy, October 19-23, 2014. Proceed-
ings, Part I, volume 8796 of Lecture Notes in Computer Science, pages
114–130. Springer, 2014.

[HKWY97] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun
Yang. Optimizing queries across diverse data sources. In Matthias Jarke,
Michael J. Carey, Klaus R. Dittrich, Frederick H. Lochovsky, Pericles
Loucopoulos, and Manfred A. Jeusfeld, editors, VLDB’97, Proceedings
of 23rd International Conference on Very Large Data Bases, August
25-29, 1997, Athens, Greece, pages 276–285. Morgan Kaufmann, 1997.

[HLY93] Kien A. Hua, Yu-lung Lo, and Honesty C. Young. Considering data
skew factor in multi-way join query optimization for parallel execution.
VLDB J., 2(3):303–330, 1993.

[HMF15] Antonio Hernández-Illera, Miguel A. Martínez-Prieto, and Javier D. Fer-
nández. Serializing RDF in compressed space. In Ali Bilgin, Michael W.
Marcellin, Joan Serra-Sagristà, and James A. Storer, editors, 2015 Data
Compression Conference, DCC 2015, Snowbird, UT, USA, April 7-9,
2015, pages 363–372. IEEE, 2015.

[Hog17] Aidan Hogan. Canonical forms for isomorphic and equivalent rdf graphs:
Algorithms for leaning and labelling blank nodes. ACM Trans. Web,
11(4), jul 2017.

214

[HPS14] P. Hayes and P. Patel-Schneider. RDF 1.1 semantics, 2014.
https://www.w3.org/TR/rdf11-mt/.

[HRW+20] S. M. Shamimul Hasan, Donna R. Rivera, Xiao-Cheng Wu, Eric B.
Durbin, James Blair Christian, and Georgia D. Tourassi. Knowledge
graph-enabled cancer data analytics. IEEE J. Biomed. Health Informat-
ics, 24(7):1952–1967, 2020.

[HS02] Arvind Hulgeri and S. Sudarshan. Parametric query optimization for
linear and piecewise linear cost functions. In Proceedings of 28th In-
ternational Conference on Very Large Data Bases, VLDB 2002, Hong
Kong, August 20-23, 2002, pages 167–178. Morgan Kaufmann, 2002.

[HS13] Katja Hose and Ralf Schenkel. WARP: workload-aware replication and
partitioning for RDF. In Chee Yong Chan, Jiaheng Lu, Kjetil Nørvåg,
and Egemen Tanin, editors, Workshops Proceedings of the 29th IEEE
International Conference on Data Engineering, ICDE 2013, Brisbane,
Australia, April 8-12, 2013, pages 1–6. IEEE Computer Society, 2013.

[HSBW13] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard
Weikum. YAGO2: A spatially and temporally enhanced knowledge base
from wikipedia. Artif. Intell., 194:28–61, 2013.

[HUHD07] Andreas Harth, Jürgen Umbrich, Aidan Hogan, and Stefan Decker.
YARS2: A federated repository for querying graph structured data
from the web. In Karl Aberer, Key-Sun Choi, Natasha Fridman Noy,
Dean Allemang, Kyung-Il Lee, Lyndon J. B. Nixon, Jennifer Golbeck,
Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and
Philippe Cudré-Mauroux, editors, The Semantic Web, 6th International
Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC
2007 + ASWC 2007, Busan, Korea, November 11-15, 2007, volume 4825
of Lecture Notes in Computer Science, pages 211–224. Springer, 2007.

[HVMdW15] Joachim Van Herwegen, Ruben Verborgh, Erik Mannens, and Rik Van
de Walle. Query execution optimization for clients of triple pattern
fragments. In Fabien Gandon, Marta Sabou, Harald Sack, Claudia
d’Amato, Philippe Cudré-Mauroux, and Antoine Zimmermann, editors,
The Semantic Web. Latest Advances and New Domains - 12th European
Semantic Web Conference, ESWC 2015, Portoroz, Slovenia, May 31 -
June 4, 2015. Proceedings, volume 9088 of Lecture Notes in Computer
Science, pages 302–318. Springer, 2015.

[HVV+15] Joachim Van Herwegen, Laurens De Vocht, Ruben Verborgh, Erik
Mannens, and Rik Van de Walle. Substring filtering for low-cost linked
data interfaces. In Marcelo Arenas, Óscar Corcho, Elena Simperl,
Markus Strohmaier, Mathieu d’Aquin, Kavitha Srinivas, Paul Groth,

215

Michel Dumontier, Jeff Heflin, Krishnaprasad Thirunarayan, and Steffen
Staab, editors, The Semantic Web - ISWC 2015 - 14th International
Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015,
Proceedings, Part I, volume 9366 of Lecture Notes in Computer Science,
pages 128–143. Springer, 2015.

[IHPZ16] Dilshod Ibragimov, Katja Hose, Torben Bach Pedersen, and Esteban
Zimányi. Optimizing aggregate SPARQL queries using materialized
RDF views. In Paul Groth, Elena Simperl, Alasdair J. G. Gray, Marta
Sabou, Markus Krötzsch, Freddy Lécué, Fabian Flöck, and Yolanda Gil,
editors, The Semantic Web - ISWC 2016 - 15th International Semantic
Web Conference, Kobe, Japan, October 17-21, 2016, Proceedings, Part
I, volume 9981 of Lecture Notes in Computer Science, pages 341–359,
2016.

[IK84] Toshihide Ibaraki and Tiko Kameda. On the optimal nesting order for
computing n-relational joins. ACM Trans. Database Syst., 9(3):482–502,
sep 1984.

[Ioa96] Yannis E. Ioannidis. Query optimization. ACM Comput. Surv.,
28(1):121–123, mar 1996.

[JST17] Daniel Janke, Steffen Staab, and Matthias Thimm. Koral: A glass box
profiling system for individual components of distributed RDF stores. In
Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Jin-Dong Kim, Key-Sun
Choi, Philipp Cimiano, Irini Fundulaki, and Anastasia Krithara, edi-
tors, Joint Proceedings of BLINK2017: 2nd International Workshop on
Benchmarking Linked Data and NLIWoD3: Natural Language Interfaces
for the Web of Data co-located with 16th International Semantic Web
Conference (ISWC 2017), Vienna, Austria, October 21st - to - 22nd,
2017, volume 1932 of CEUR Workshop Proceedings. CEUR-WS.org,
2017.

[Kam19] Maulik R Kamdar. A web-based integration framework over hetero-
geneous biomedical data and knowledge sources. Stanford University,
2019.

[KBC+18] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis.
The case for learned index structures. In Gautam Das, Christopher M.
Jermaine, and Philip A. Bernstein, editors, Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, pages 489–504. ACM, 2018.

[KCC+21] Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian
He, Qingliang Li, Benjamin A. Shoemaker, Paul A. Thiessen, Bo Yu,
Leonid Zaslavsky, Jian Zhang, and Evan Bolton. Pubchem in 2021:

216

new data content and improved web interfaces. Nucleic Acids Res.,
49(Database-Issue):D1388–D1395, 2021.

[KDZ+17] Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song.
Learning combinatorial optimization algorithms over graphs. In Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 6348–6358, 2017.

[KFP+19] Maulik R. Kamdar, Javier D. Fernández, Axel Polleres, Tania Tudorache,
and Mark A. Musen. Enabling web-scale data integration in biomedicine
through linked open data. npj Digital Medicine, 2(1):90, September
2019.

[KK98] George Karypis and Vipin Kumar. A fast and high quality multi-
level scheme for partitioning irregular graphs. SIAM J. Sci. Comput.,
20(1):359–392, 1998.

[KKK+10] Zoi Kaoudi, Manolis Koubarakis, Kostis Kyzirakos, Iris Miliaraki, Ma-
toula Magiridou, and Antonios Papadakis-Pesaresi. Atlas: Storing,
updating and querying RDF(S) data on top of dhts. J. Web Semant.,
8(4):271–277, 2010.

[KM15] Zoi Kaoudi and Ioana Manolescu. RDF in the clouds: a survey. VLDB
J., 24(1):67–91, 2015.

[KSR+07] Marcel Karnstedt, Kai-Uwe Sattler, Martin Richtarsky, Jessica Müller,
Manfred Hauswirth, Roman Schmidt, and Renault John. Unistore:
Querying a dht-based universal storage. In Rada Chirkova, Asuman
Dogac, M. Tamer Özsu, and Timos K. Sellis, editors, Proceedings of the
23rd International Conference on Data Engineering, ICDE 2007, The
Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages 1503–1504.
IEEE Computer Society, 2007.

[KSR+09] Georgi Kobilarov, Tom Scott, Yves Raimond, Silver Oliver, Chris Size-
more, Michael Smethurst, Christian Bizer, and Robert Lee. Media
meets semantic web - how the BBC uses dbpedia and linked data to
make connections. In Lora Aroyo, Paolo Traverso, Fabio Ciravegna,
Philipp Cimiano, Tom Heath, Eero Hyvönen, Riichiro Mizoguchi, Eyal
Oren, Marta Sabou, and Elena Paslaru Bontas Simperl, editors, The
Semantic Web: Research and Applications, 6th European Semantic Web
Conference, ESWC 2009, Heraklion, Crete, Greece, May 31-June 4,
2009, Proceedings, volume 5554 of Lecture Notes in Computer Science,
pages 723–737. Springer, 2009.

217

[KSTI11] Herald Kllapi, Eva Sitaridi, Manolis M. Tsangaris, and Yannis E. Ioan-
nidis. Schedule optimization for data processing flows on the cloud. In
Timos K. Sellis, Renée J. Miller, Anastasios Kementsietsidis, and Yannis
Velegrakis, editors, Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2011, Athens, Greece,
June 12-16, 2011, pages 289–300. ACM, 2011.

[KYG+18] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein,
and Ion Stoica. Learning to optimize join queries with deep reinforcement
learning. CoRR, abs/1808.03196, 2018.

[Ley02] Michael Ley. The DBLP computer science bibliography: Evolution,
research issues, perspectives. In Alberto H. F. Laender and Arlindo L.
Oliveira, editors, String Processing and Information Retrieval, 9th Inter-
national Symposium, SPIRE 2002, Lisbon, Portugal, September 11-13,
2002, Proceedings, volume 2476 of Lecture Notes in Computer Science,
pages 1–10. Springer, 2002.

[LG12] Markus Lanthaler and Christian Gütl. On using JSON-LD to create
evolvable restful services. In Rosa Alarcón, Cesare Pautasso, and Erik
Wilde, editors, Third International Workshop on RESTful Design, WS-
REST ’12, Lyon, France, April 16, 2012, pages 25–32. ACM, 2012.

[LGM+15] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons
Kemper, and Thomas Neumann. How good are query optimizers, really?
Proc. VLDB Endow., 9(3):204–215, 2015.

[LIJ+15] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kon-
tokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey,
Patrick van Kleef, Sören Auer, and Christian Bizer. Dbpedia - A large-
scale, multilingual knowledge base extracted from wikipedia. Semantic
Web, 6(2):167–195, 2015.

[LL13] Kisung Lee and Ling Liu. Scaling queries over big RDF graphs with
semantic hash partitioning. Proc. VLDB Endow., 6(14):1894–1905, 2013.

[LLWL08] Hsin-Tsang Lee, Derek Leonard, Xiaoming Wang, and Dmitri Loguinov.
Irlbot: scaling to 6 billion pages and beyond. In Jinpeng Huai, Robin
Chen, Hsiao-Wuen Hon, Yunhao Liu, Wei-Ying Ma, Andrew Tomkins,
and Xiaodong Zhang, editors, Proceedings of the 17th International
Conference on World Wide Web, WWW 2008, Beijing, China, April
21-25, 2008, pages 427–436. ACM, 2008.

[LSB+17] Jens Lehmann, Gezim Sejdiu, Lorenz Bühmann, Patrick Westphal, Claus
Stadler, Ivan Ermilov, Simon Bin, Nilesh Chakraborty, Muhammad
Saleem, Axel-Cyrille Ngonga Ngomo, and Hajira Jabeen. Distributed

218

semantic analytics using the SANSA stack. In Claudia d’Amato, Miriam
Fernández, Valentina A. M. Tamma, Freddy Lécué, Philippe Cudré-
Mauroux, Juan F. Sequeda, Christoph Lange, and Jeff Heflin, editors,
The Semantic Web - ISWC 2017 - 16th International Semantic Web
Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part
II, volume 10588 of Lecture Notes in Computer Science, pages 147–155.
Springer, 2017.

[LWYZ19] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander join and XDB:
online aggregation via random walks. ACM Trans. Database Syst.,
44(1):2:1–2:41, 2019.

[LZLG19] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. Qtune: A query-aware
database tuning system with deep reinforcement learning. Proc. VLDB
Endow., 12(12):2118–2130, 2019.

[MAA18] Amgad Madkour, Ahmed M. Aly, and Walid G. Aref. WORQ: workload-
driven RDF query processing. In Denny Vrandecic, Kalina Bontcheva,
Mari Carmen Suárez-Figueroa, Valentina Presutti, Irene Celino, Marta
Sabou, Lucie-Aimée Kaffee, and Elena Simperl, editors, The Semantic
Web - ISWC 2018 - 17th International Semantic Web Conference, Mon-
terey, CA, USA, October 8-12, 2018, Proceedings, Part I, volume 11136
of Lecture Notes in Computer Science, pages 583–599. Springer, 2018.

[MAH+18] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew
Pavlo, and Geoffrey J. Gordon. Query-based workload forecasting for self-
driving database management systems. In Gautam Das, Christopher M.
Jermaine, and Philip A. Bernstein, editors, Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, pages 631–645. ACM, 2018.

[MBC+16] Miguel A. Martínez-Prieto, Nieves R. Brisaboa, Rodrigo Cánovas, Fran-
cisco Claude, and Gonzalo Navarro. Practical compressed string dictio-
naries. Inf. Syst., 56:73–108, 2016.

[MBK02] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Generic
database cost models for hierarchical memory systems. In Proceedings of
28th International Conference on Very Large Data Bases, VLDB 2002,
Hong Kong, August 20-23, 2002, pages 191–202. Morgan Kaufmann,
2002.

[McB01] Brian McBride. Jena: Implementing the RDF model and syntax specifi-
cation. In Stefan Decker, Dieter A. Fensel, Amit P. Sheth, and Steffen
Staab, editors, Proceedings of the Second International Workshop on
the Semantic Web - SemWeb’2001, Hongkong, China, May 1, 2001,
volume 40 of CEUR Workshop Proceedings. CEUR-WS.org, 2001.

219

[MGF12] Miguel A. Martínez-Prieto, Mario Arias Gallego, and Javier D. Fernán-
dez. Exchange and consumption of huge RDF data. In Elena Simperl,
Philipp Cimiano, Axel Polleres, Óscar Corcho, and Valentina Presutti,
editors, The Semantic Web: Research and Applications - 9th Extended
Semantic Web Conference, ESWC 2012, Heraklion, Crete, Greece, May
27-31, 2012. Proceedings, volume 7295 of Lecture Notes in Computer
Science, pages 437–452. Springer, 2012.

[MKH19] Gabriela Montoya, Ilkcan Keles, and Katja Hose. Analysis of the effect
of query shapes on performance over LDF interfaces. In Muhammad
Saleem, Aidan Hogan, Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, and
Ruben Verborgh, editors, Proceedings of the QuWeDa 2019: 3rd Work-
shop on Querying and Benchmarking the Web of Data co-located with
18th International Semantic Web Conference (ISWC 2019), Auckland,
New Zealand, October 26-30, 2019, volume 2496 of CEUR Workshop
Proceedings, pages 51–66. CEUR-WS.org, 2019.

[ML86] Lothar F. Mackert and Guy M. Lohman. R* optimizer validation and
performance evaluation for distributed queries. In Wesley W. Chu,
Georges Gardarin, Setsuo Ohsuga, and Yahiko Kambayashi, editors,
VLDB’86 Twelfth International Conference on Very Large Data Bases,
August 25-28, 1986, Kyoto, Japan, Proceedings, pages 149–159. Morgan
Kaufmann, 1986.

[MLAN11] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga
Ngomo. Dbpedia SPARQL benchmark - performance assessment with
real queries on real data. In Lora Aroyo, Chris Welty, Harith Alani,
Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Fridman Noy,
and Eva Blomqvist, editors, The Semantic Web - ISWC 2011 - 10th
International Semantic Web Conference, Bonn, Germany, October 23-
27, 2011, Proceedings, Part I, volume 7031 of Lecture Notes in Computer
Science, pages 454–469. Springer, 2011.

[MNM+19] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad
Alizadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. Neo:
A learned query optimizer. Proc. VLDB Endow., 12(11):1705–1718,
2019.

[MP18] Ryan Marcus and Olga Papaemmanouil. Deep reinforcement learning for
join order enumeration. In Rajesh Bordawekar and Oded Shmueli, edi-
tors, Proceedings of the First International Workshop on Exploiting Ar-
tificial Intelligence Techniques for Data Management, aiDM@SIGMOD
2018, Houston, TX, USA, June 10, 2018, pages 3:1–3:4. ACM, 2018.

[MP19a] Ryan Marcus and Olga Papaemmanouil. Towards a hands-free query
optimizer through deep learning. In 9th Biennial Conference on Innova-

220

tive Data Systems Research, CIDR 2019, Asilomar, CA, USA, January
13-16, 2019, Online Proceedings. www.cidrdb.org, 2019.

[MP19b] Ryan C. Marcus and Olga Papaemmanouil. Plan-structured deep neural
network models for query performance prediction. Proc. VLDB Endow.,
12(11):1733–1746, 2019.

[MPMA17] Marios Meimaris, George Papastefanatos, Nikos Mamoulis, and Ioannis
Anagnostopoulos. Extended characteristic sets: Graph indexing for
SPARQL query optimization. In 33rd IEEE International Conference
on Data Engineering, ICDE 2017, San Diego, CA, USA, April 19-22,
2017, pages 497–508. IEEE Computer Society, 2017.

[MPS+17] Antonio Messina, Haikal Pribadi, Jo Stichbury, Michelangelo Bucci,
Szymon Klarman, and Alfonso Urso. Biograkn: A knowledge graph-
based semantic database for biomedical sciences. In Leonard Barolli
and Olivier Terzo, editors, Complex, Intelligent, and Software Intensive
Systems - Proceedings of the 11th International Conference on Complex,
Intelligent, and Software Intensive Systems (CISIS-2017), Torino, Italy,
July 10-12, 2017, volume 611 of Advances in Intelligent Systems and
Computing, pages 299–309. Springer, 2017.

[MSM19] Thomas Minier, Hala Skaf-Molli, and Pascal Molli. Sage: Web preemp-
tion for public SPARQL query services. In Ling Liu, Ryen W. White,
Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo Baeza-
Yates, and Leila Zia, editors, The World Wide Web Conference, WWW
2019, San Francisco, CA, USA, May 13-17, 2019, pages 1268–1278.
ACM, 2019.

[MVC+12] Gabriela Montoya, Maria-Esther Vidal, Óscar Corcho, Edna Ruckhaus,
and Carlos Buil Aranda. Benchmarking federated SPARQL query en-
gines: Are existing testbeds enough? In Philippe Cudré-Mauroux,
Jeff Heflin, Evren Sirin, Tania Tudorache, Jérôme Euzenat, Manfred
Hauswirth, Josiane Xavier Parreira, Jim Hendler, Guus Schreiber, Abra-
ham Bernstein, and Eva Blomqvist, editors, The Semantic Web - ISWC
2012 - 11th International Semantic Web Conference, Boston, MA, USA,
November 11-15, 2012, Proceedings, Part II, volume 7650 of Lecture
Notes in Computer Science, pages 313–324. Springer, 2012.

[NCG18] Yaroslav Nechaev, Francesco Corcoglioniti, and Claudio Giuliano. So-
ciallink: exploiting graph embeddings to link dbpedia entities to twitter
profiles. Prog. Artif. Intell., 7(4):251–272, 2018.

[NM11] Thomas Neumann and Guido Moerkotte. Characteristic sets: Accurate
cardinality estimation for RDF queries with multiple joins. In Serge
Abiteboul, Klemens Böhm, Christoph Koch, and Kian-Lee Tan, editors,

221

Proceedings of the 27th International Conference on Data Engineering,
ICDE 2011, April 11-16, 2011, Hannover, Germany, pages 984–994.
IEEE Computer Society, 2011.

[OBGK18] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya
Keerthi. Learning state representations for query optimization with
deep reinforcement learning. In Sebastian Schelter, Stephan Seufert,
and Arun Kumar, editors, Proceedings of the Second Workshop on Data
Management for End-To-End Machine Learning, DEEM@SIGMOD
2018, Houston, TX, USA, June 15, 2018, pages 4:1–4:4. ACM, 2018.

[PAA+17] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin
Ma, Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah,
Siddharth Santurkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi
Wang, Yingjun Wu, Ran Xian, and Tieying Zhang. Self-driving database
management systems. In 8th Biennial Conference on Innovative Data
Systems Research, CIDR 2017, Chaminade, CA, USA, January 8-11,
2017, Online Proceedings. www.cidrdb.org, 2017.

[PAG09] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and
complexity of SPARQL. ACM Trans. Database Syst., 34(3):16:1–16:45,
2009.

[PKB+20] Yeonsu Park, Seongyun Ko, Sourav S. Bhowmick, Kyoungmin Kim,
Kijae Hong, and Wook-Shin Han. G-CARE: A framework for perfor-
mance benchmarking of cardinality estimation techniques for subgraph
matching. In David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew
Tan, Abdussalam Alawini, and Hung Q. Ngo, editors, Proceedings of
the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19,
2020, pages 1099–1114. ACM, 2020.

[PKF+20] Axel Polleres, Maulik R. Kamdar, Javier D. Fernández, Tania Tudorache,
and Mark A. Musen. A more decentralized vision for linked data.
Semantic Web, 11(1):101–113, 2020.

[RHSG14] Laurens Rietveld, Rinke Hoekstra, Stefan Schlobach, and Christophe
Guéret. Structural properties as proxy for semantic relevance in RDF
graph sampling. In Peter Mika, Tania Tudorache, Abraham Bern-
stein, Chris Welty, Craig A. Knoblock, Denny Vrandecic, Paul Groth,
Natasha F. Noy, Krzysztof Janowicz, and Carole A. Goble, editors,
The Semantic Web - ISWC 2014 - 13th International Semantic Web
Conference, Riva del Garda, Italy, October 19-23, 2014. Proceedings,
Part II, volume 8797 of Lecture Notes in Computer Science, pages 81–96.
Springer, 2014.

222

[RRR22] Wullianallur Raghupathi, Viju Raghupathi, and Jie Ren. Reproducibility
in computing research: An empirical study. IEEE Access, 10:29207–
29223, 2022.

[RS10] Kurt Rohloff and Richard E. Schantz. High-performance, massively
scalable distributed systems using the mapreduce software framework:
the SHARD triple-store. In Eli Tilevich and Patrick Eugster, editors,
SPLASH Workshop on Programming Support Innovations for Emerg-
ing Distributed Applications (PSI EtA - Ψ 2010), October 17, 2010,
Reno/Tahoe, Nevada, USA, page 4. ACM, 2010.

[SAH+15] Muhammad Saleem, Muhammad Intizar Ali, Aidan Hogan, Qaiser
Mehmood, and Axel-Cyrille Ngonga Ngomo. LSQ: the linked SPARQL
queries dataset. In The Semantic Web - ISWC 2015 - 14th International
Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015,
Proceedings, Part II, volume 9367 of Lecture Notes in Computer Science,
pages 261–269. Springer, 2015.

[SHA+12] Manuel Salvadores, Matthew Horridge, Paul R. Alexander, Ray W. Fer-
gerson, Mark A. Musen, and Natalya Fridman Noy. Using SPARQL to
query bioportal ontologies and metadata. In Philippe Cudré-Mauroux,
Jeff Heflin, Evren Sirin, Tania Tudorache, Jérôme Euzenat, Manfred
Hauswirth, Josiane Xavier Parreira, Jim Hendler, Guus Schreiber, Abra-
ham Bernstein, and Eva Blomqvist, editors, The Semantic Web - ISWC
2012 - 11th International Semantic Web Conference, Boston, MA, USA,
November 11-15, 2012, Proceedings, Part II, volume 7650 of Lecture
Notes in Computer Science, pages 180–195. Springer, 2012.

[SHLP09] Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel.
Spˆ2bench: A SPARQL performance benchmark. In Yannis E. Ioannidis,
Dik Lun Lee, and Raymond T. Ng, editors, Proceedings of the 25th
International Conference on Data Engineering, ICDE 2009, March 29
2009 - April 2 2009, Shanghai, China, pages 222–233. IEEE Computer
Society, 2009.

[SHN18] Muhammad Saleem, Ali Hasnain, and Axel-Cyrille Ngonga Ngomo. Larg-
erdfbench: A billion triples benchmark for SPARQL endpoint federation.
J. Web Semant., 48:85–125, 2018.

[SKW07] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a
core of semantic knowledge. In Carey L. Williamson, Mary Ellen Zurko,
Peter F. Patel-Schneider, and Prashant J. Shenoy, editors, Proceedings
of the 16th International Conference on World Wide Web, WWW 2007,
Banff, Alberta, Canada, May 8-12, 2007, pages 697–706. ACM, 2007.

223

[SL19] Ji Sun and Guoliang Li. An end-to-end learning-based cost estimator.
Proc. VLDB Endow., 13(3):307–319, 2019.

[SMK18] Giorgio Stefanoni, Boris Motik, and Egor V. Kostylev. Estimating the
cardinality of conjunctive queries over RDF data using graph summari-
sation. In Pierre-Antoine Champin, Fabien Gandon, Mounia Lalmas,
and Panagiotis G. Ipeirotis, editors, Proceedings of the 2018 World Wide
Web Conference on World Wide Web, WWW 2018, Lyon, France, April
23-27, 2018, pages 1043–1052. ACM, 2018.

[SML10] Michael Schmidt, Michael Meier, and Georg Lausen. Foundations of
SPARQL query optimization. In Luc Segoufin, editor, Database Theory
- ICDT 2010, 13th International Conference, Lausanne, Switzerland,
March 23-25, 2010, Proceedings, ACM International Conference Pro-
ceeding Series, pages 4–33. ACM, 2010.

[SMN15] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo.
FEASIBLE: A feature-based SPARQL benchmark generation framework.
In Marcelo Arenas, Óscar Corcho, Elena Simperl, Markus Strohmaier,
Mathieu d’Aquin, Kavitha Srinivas, Paul Groth, Michel Dumontier,
Jeff Heflin, Krishnaprasad Thirunarayan, and Steffen Staab, editors,
The Semantic Web - ISWC 2015 - 14th International Semantic Web
Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings,
Part I, volume 9366 of Lecture Notes in Computer Science, pages 52–69.
Springer, 2015.

[SPL11] Alexander Schätzle, Martin Przyjaciel-Zablocki, and Georg Lausen.
Pigsparql: mapping SPARQL to pig latin. In Roberto De Virgilio, Fausto
Giunchiglia, and Letizia Tanca, editors, Proceedings of the International
Workshop on Semantic Web Information Management, SWIM 2011,
Athens, Greece, June 12, 2011, page 4. ACM, 2011.

[SPNL14] Alexander Schätzle, Martin Przyjaciel-Zablocki, Antony Neu, and Georg
Lausen. Sempala: Interactive SPARQL query processing on hadoop. In
Peter Mika, Tania Tudorache, Abraham Bernstein, Chris Welty, Craig A.
Knoblock, Denny Vrandecic, Paul Groth, Natasha F. Noy, Krzysztof
Janowicz, and Carole A. Goble, editors, The Semantic Web - ISWC
2014 - 13th International Semantic Web Conference, Riva del Garda,
Italy, October 19-23, 2014. Proceedings, Part I, volume 8796 of Lecture
Notes in Computer Science, pages 164–179. Springer, 2014.

[SPSL16] Alexander Schätzle, Martin Przyjaciel-Zablocki, Simon Skilevic, and
Georg Lausen. S2RDF: RDF querying with SPARQL on spark. Proc.
VLDB Endow., 9(10):804–815, 2016.

224

[SR14] G. Schreiber and Y. Raimond. RDF 1.1 Primer. W3C Working Group
Note, 2014. https://www.w3.org/TR/rdf11-primer/.

[SS04] Steffen Staab and Rudi Studer, editors. Handbook on Ontologies. Inter-
national Handbooks on Information Systems. Springer, 2004.

[SVH+15] Miel Vander Sande, Ruben Verborgh, Joachim Van Herwegen, Erik
Mannens, and Rik Van de Walle. Opportunistic linked data querying
through approximate membership metadata. In Marcelo Arenas, Óscar
Corcho, Elena Simperl, Markus Strohmaier, Mathieu d’Aquin, Kavitha
Srinivas, Paul Groth, Michel Dumontier, Jeff Heflin, Krishnaprasad
Thirunarayan, and Steffen Staab, editors, The Semantic Web - ISWC
2015 - 14th International Semantic Web Conference, Bethlehem, PA,
USA, October 11-15, 2015, Proceedings, Part I, volume 9366 of Lecture
Notes in Computer Science, pages 92–110. Springer, 2015.

[THSV18] Ruben Taelman, Joachim Van Herwegen, Miel Vander Sande, and Ruben
Verborgh. Comunica: A modular SPARQL query engine for the web.
In Denny Vrandecic, Kalina Bontcheva, Mari Carmen Suárez-Figueroa,
Valentina Presutti, Irene Celino, Marta Sabou, Lucie-Aimée Kaffee,
and Elena Simperl, editors, The Semantic Web - ISWC 2018 - 17th
International Semantic Web Conference, Monterey, CA, USA, October
8-12, 2018, Proceedings, Part II, volume 11137 of Lecture Notes in
Computer Science, pages 239–255. Springer, 2018.

[TK14] Immanuel Trummer and Christoph Koch. Approximation schemes for
many-objective query optimization. In Curtis E. Dyreson, Feifei Li, and
M. Tamer Özsu, editors, International Conference on Management of
Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages
1299–1310. ACM, 2014.

[TK17] Immanuel Trummer and Christoph Koch. Multi-objective parametric
query optimization. Commun. ACM, 60(10):81–89, 2017.

[TSVM17] Ruben Taelman, Miel Vander Sande, Ruben Verborgh, and Erik Man-
nens. Versioned triple pattern fragments: A low-cost linked data interface
feature for web archives. In Jeremy Debattista, Jürgen Umbrich, Javier D.
Fernández, Anisa Rula, Amrapali Zaveri, Anastasia Dimou, and Wouter
Beek, editors, Joint proceedings of the 3rd Workshop on Managing the
Evolution and Preservation of the Data Web (MEPDaW 2017) and the
4th Workshop on Linked Data Quality (LDQ 2017) co-located with 14th
European Semantic Web Conference (ESWC 2017), Portorož, Slovenia,
May 28th-29th, 2017, volume 1824 of CEUR Workshop Proceedings,
pages 1–11. CEUR-WS.org, 2017.

225

[TVCM16] Ruben Taelman, Ruben Verborgh, Pieter Colpaert, and Erik Mannens.
Continuous client-side query evaluation over dynamic linked data. In
Harald Sack, Giuseppe Rizzo, Nadine Steinmetz, Dunja Mladenic, Sören
Auer, and Christoph Lange, editors, The Semantic Web - ESWC 2016
Satellite Events, Heraklion, Crete, Greece, May 29 - June 2, 2016,
Revised Selected Papers, volume 9989 of Lecture Notes in Computer
Science, pages 273–289, 2016.

[TWW+21] Immanuel Trummer, Junxiong Wang, Ziyun Wei, Deepak Maram,
Samuel Moseley, Saehan Jo, Joseph Antonakakis, and Ankush Rayab-
hari. Skinnerdb: Regret-bounded query evaluation via reinforcement
learning. ACM Trans. Database Syst., 46(3):9:1–9:45, 2021.

[VK14] Denny Vrandecic and Markus Krötzsch. Wikidata: a free collaborative
knowledgebase. Commun. ACM, 57(10):78–85, 2014.

[VMZC15] David Vengerov, Andre Cavalheiro Menck, Mohamed Zaït, and Sunil
Chakkappen. Join size estimation subject to filter conditions. Proc.
VLDB Endow., 8(12):1530–1541, 2015.

[VSH+16] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Her-
wegen, Laurens De Vocht, Ben De Meester, Gerald Haesendonck, and
Pieter Colpaert. Triple pattern fragments: A low-cost knowledge graph
interface for the web. J. Web Semant., 37-38:184–206, 2016.

[VUM+17] Pierre-Yves Vandenbussche, Jürgen Umbrich, Luca Matteis, Aidan
Hogan, and Carlos Buil Aranda. SPARQLES: monitoring public
SPARQL endpoints. Semantic Web, 8(6):1049–1065, 2017.

[WCHN13] Wentao Wu, Yun Chi, Hakan Hacigümüs, and Jeffrey F. Naughton.
Towards predicting query execution time for concurrent and dynamic
database workloads. Proc. VLDB Endow., 6(10):925–936, 2013.

[WKG+08] David S. Wishart, Craig Knox, Anchi Guo, Dean Cheng, Savita Shrivas-
tava, Dan Tzur, Bijaya Gautam, and Murtaza Hassanali. Drugbank: a
knowledgebase for drugs, drug actions and drug targets. Nucleic Acids
Res., 36(Database-Issue):901–906, 2008.

[WMPH19] Randall T. Whitman, Bryan G. Marsh, Michael B. Park, and Erik G.
Hoel. Distributed spatial and spatio-temporal join on apache spark.
ACM Trans. Spatial Algorithms Syst., 5(1):6:1–6:28, 2019.

[WZC+16] Wei Wang, Meihui Zhang, Gang Chen, H. V. Jagadish, Beng Chin
Ooi, and Kian-Lee Tan. Database meets deep learning: Challenges and
opportunities. SIGMOD Rec., 45(2):17–22, 2016.

226

[YLCL21] Zhengtong Yan, Jiaheng Lu, Naresh Chainani, and Chunbin Lin.
Workload-aware performance tuning for autonomous dbmss. In 37th
IEEE International Conference on Data Engineering, ICDE 2021, Cha-
nia, Greece, April 19-22, 2021, pages 2365–2368. IEEE, 2021.

[YYG19] James Jian Qiao Yu, Wen Yu, and Jiatao Gu. Online vehicle routing
with neural combinatorial optimization and deep reinforcement learning.
IEEE Trans. Intell. Transp. Syst., 20(10):3806–3817, 2019.

[ZCTW13] Xiaofei Zhang, Lei Chen, Yongxin Tong, and Min Wang. EAGRE: to-
wards scalable I/O efficient SPARQL query evaluation on the cloud. In
Christian S. Jensen, Christopher M. Jermaine, and Xiaofang Zhou, edi-
tors, 29th IEEE International Conference on Data Engineering, ICDE
2013, Brisbane, Australia, April 8-12, 2013, pages 565–576. IEEE Com-
puter Society, 2013.

[ZLZ+19] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu
Xing, Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang
Li. An end-to-end automatic cloud database tuning system using deep
reinforcement learning. In Peter A. Boncz, Stefan Manegold, Anastasia
Ailamaki, Amol Deshpande, and Tim Kraska, editors, Proceedings of
the 2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019,
pages 415–432. ACM, 2019.

[ZMBR20] Shuo Zhang, Edgar Meij, Krisztian Balog, and Ridho Reinanda. Novel
entity discovery from web tables. In Yennun Huang, Irwin King, Tie-Yan
Liu, and Maarten van Steen, editors, WWW ’20: The Web Conference
2020, Taipei, Taiwan, April 20-24, 2020, pages 1298–1308. ACM /
IW3C2, 2020.

[ZMG+20] Ishaq Zouaghi, Amin Mesmoudi, Jorge Galicia, Ladjel Bellatreche, and
Taoufik Aguili. Query optimization for large scale clustered RDF data.
In Il-Yeol Song, Katja Hose, and Oscar Romero, editors, Proceedings of
the 22nd International Workshop on Design, Optimization, Languages
and Analytical Processing of Big Data co-located with EDBT/ICDT 2020
Joint Conference, DOLAP@EDBT/ICDT 2020, Copenhagen, Denmark,
March 30, 2020, volume 2572 of CEUR Workshop Proceedings, pages
56–65. CEUR-WS.org, 2020.

[ZSLF20] Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. Query perfor-
mance prediction for concurrent queries using graph embedding. Proc.
VLDB Endow., 13(9):1416–1428, 2020.

227

	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Challenges
	Hypotheses and Research Questions
	Contributions
	Thesis Structure
	Impact

	Background
	The Semantic Web
	The Resource Description Framework
	From Linked Data to a network of interconnected KGs
	Knowledge Graphs
	The SPARQL Query Language
	HDT

	A uniform characterization of existing Web querying interfaces
	Linked Data Fragments framework
	Partition-based LDF

	Hybrid Shipping for SPARQL Querying on the Web
	Family-Based Partitioning of RDF Graphs
	SMART-KG: Design and Overview
	Proof of smart-KG Correctness
	smart-KG as an LDF interface (SKG)
	Experimental Evaluation
	Summary and Limitations

	A Balanced Access to Web Knowledge Graphs
	Motivating Example
	WiseKG
	Query Processing
	Experimental Evaluation
	Summary and Limitations

	Smart-KG+: Further Optimizations of Family-partition-based LDF
	Partition-based Linked Data Fragments: Typed-Family Partitioning
	SMART-KG+: Design and Overview
	SMART-KG+ Extending Partition Generator
	SMART-KG+: Query Processing
	Experimental Evaluation
	Lesson Learned
	Summary blueand Limitations

	Partition-based Linked Data Fragments: Alternatives
	Vertical Partitioning (VP)
	Horizontal/Range/Sharding Partitioning
	Hash Partitioning (HP)
	Workload-aware partitioning
	K-way Partitioning (KP)

	Reproducibility
	Linked Data Fragments Implementation
	Deploying Our Experiments
	Comunica Implementation

	Conclusion
	Summary of Contributions
	Critical Assessment of Research Questions
	Open Challenges and Future Research Directions

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

