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Kurzfassung

Simulationen von Modellen in der Physik und Biologie können hinsichtlich Rechenzeit und
Rechenressourcen sehr kostspielig sein. Darüber hinaus bleibt die mathematische Sinnhaf-
tigkeit dieser Modelle, bezogen auf die Existenz von Lösungen oft ein offenes Problem.
Diese ist jedoch in vielen Fällen ein wichtiger Faktor zum Nachweis der Konvergenz der für
die Simulation verwendeten numerischen Algorithmen.
Ziel dieser Arbeit ist es nunmehr einen effizienten Algorithmus zur Simulation stochasti-
scher Vielteilchensysteme einschließlich numerischer Analyse für den Fall mehrerer Spezies
bereitzustellen und zweitens zwei spezifische Modelle aus der Biologie mathematisch zu
analysieren. Diese drehen sich um den Prozess der Blutgefäßbildung aus einem bereits be-
stehenden Netzwerk bzw. den Transport von Vesikeln innerhalb eines Neurit.
Der Algorithmus basiert auf der Idee des ”random batch”, bei dem Agenten bei jedem
Zeitschritt zufällig in Mengen (”batches”) aufgeteilt werden und ihnen nur erlaubt wird,
mit Agenten in der selben Menge zu interagieren. Dies führt zu einer Reduzierung der
berücksichtigten Interaktionen zwischen Agenten und damit zu einer Reduzierung der Re-
chenressourcen. Um den mit dieser Strategie eingeführten Fehler im Fall mehrerer Spezien
nachweislich klein zu halten, werden optimale Korrekturfaktoren eingeführt.
Die diskutierten biologischen Modelle bestehen aus Systemen partieller Differentialglei-
chungen, die entweder mit gewöhnlichen Differentialgleichungen oder einer Kombination
aus gewöhnlichen und stochastischen Differentialgleichungen gekoppelt sind. Fixpunktar-
gumente werden verwendet um die Existenz von Lösungen zu zeigen und im Falle des
Vesikeltransports wird die bekannte Entropiestruktur des Systems ausgenutzt.



Abstract

Simulations of models in physics and biology can be very costly in terms of computation
time and resources. Furthermore, the mathematical soundness of these models, in many
cases an important factor to prove convergence of numerical algorithms used for simulation,
is often left as an open problem.
The aim of this work is to firstly, give an algorithm for simulating stochastic many particle
systems complete with numerical analysis in the case of multiple species. Secondly, it is to
mathematically analyse two specific models from biology, revolving around the process of
blood vessel formation from a pre-existing network, respectively the transport of vesicles
inside neurites.
The algorithm is based on the idea of the random batch, separating agents randomly into
batches at each time step and only allowing them to interact with agents in the same
batch. This leads to a reduction of considered interactions between agents and hence to a
reduction in computational resources. Optimal correction factors are introduced to keep
the error introduced with this strategy in the multiple species case verifiable small.
The models discussed on the other hand consist of systems of partial differential equa-
tions coupled with either ordinary differential equations or a combination of ordinary- and
stochastic- differential equations. Fixed point arguments are used to show existence of so-
lutions and in the case of vesicle transport the well known entropy structure of the system
is exploited.
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auch bei meinen persönlichen Heldinnen bedanken - meinen Schwestern Bernadette und
Johanna, sowie ihren Partnern Christoph und Franz. Ihr begleitete mich durch emotionalle
Berg und Talfahrten, korregiertet mehr wie einen Beistrichfehler in meinen Arbeiten und
standet mir mit Rat und Tat zur Seite. Danke euch allen für die Schöne Zeit die ich mit
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1. Introduction

1.1. Overview

Modelling natural phenomena in physics and biology often give rise to diffusive multiple
species systems in the form of partial differential equations ([86], [40]) or processes driven
by Brownian motion ([8], [83]). The degree of certainty how well these models approximate
reality is obtained by simulations and subsequent comparison with data obtained by real
life experiments ([8], [48]). In terms of particle systems, these simulations, depending on
the number of agents used, can be very costly in terms of computation time and resources.
For a system comprised of N interacting particles, the number of interactions Nint would
be Nint = N(1 − N) = O(N2). All of which would have to be taken into account if one
wishes to run a thorough simulation. A linear increase in the number of particles would
henceforth lead to an approximately quadratic increase in necessary resources in the sim-
ulation. For systems encompassing a large number of agents interacting with each other,
considering the whole number Nint of interactions for the simulation might therefore not
be feasible. Hence, methods are needed for them to reduce the number of considered in-
teractions, while keeping the error made by adopting this methods small. Furthermore, as
these methods and simulations in general lead to solving a (discrete) approximation of the
considered continuous model, the question of convergence of the used numerical scheme is
a valid one. The numerical analysis employed often either proves the convergence of the
discrete scheme to a solution directly, doubling as existence result ([60], [28]), or uses the
assumption that existence of a suitable solution is already known ([93], [56]). Either way,
the models need to be analysed mathematically and demand suitable strategies for proving
the existence of solutions to this problems, answering also the question of mathematical
soundness of the model.
The aim of this work is twofold. In Part I, it is to address the problem of efficient sim-
ulation in the case of a stochastic many particle system comprised of multiple species of
particles governed by stochastic differential equations. Here we will give an algorithm which
reduces the computational cost by one order (O(N)) and prove a convergence result. Part
I is based on a collaboration with E. S. Daus (TU Wien) and A. Jüngel (TU Wien), which
was published in Journal of Computational Physics under the title Random-batch methods
for multi-species stochastic interacting particle systems [29].
In Part II, we will provide existence analysis for two select models from biology. The first
model revolves around the formation of new blood vessels from a pre-existing network, a
process also known as angiogenesis, treating cells as discrete entities whose movement is
governed by stochastic differential equations. The concentration of involved proteins are
given by the solutions of non-linear reaction diffusion equations, whereas the evolution of
the different components of the underlying matrix is given by ordinary differential equa-
tions. The second model deals with the transport of vesicles inside a neurite, an important
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1. Introduction

factor in the growth and polarization of a neuron. It consists of a cross diffusion system
describing the concentration of vesicles along the neurite, coupled via boundary conditions
with an ordinary differential equation which governs the vesicle concentration in pools at
the end of the neurite. For these models we will prove existence of suitable solutions.
Part II is based on two collaborations with A. Jüngel (TU Wien) which are submitted
for publication under the title A coupled stochastic differential reaction-diffusion system
for angiogenesis [35], respectively A cross-diffusion system for vesicle transport - existence
analysis of a cross-diffusion system with nonlinear Robin boundary conditions for vesicle
transport in neurites [36].

In the next sections, we give a short overview of the considered many particle system,
the biological models and a summary of the mathematical line of reasoning established in
Part I and Part II. We furthermore give a state of the art of the considered problems and
present the main results of this thesis, together with an outlook for possible future work.
A more detailed description of the models and the detailed proofs are found in Part I,
respectively Part II.

1.2. Main Results and State of the Art of Part I - Simulation of
Stochastic Many Particle Systems

Interacting particle systems can be used to model a variety of real-life phenomena. The
swarming of fish [89], the flocking of birds [83] or the process by which consensus of opinions
is formed [33], to name but a few. In Part I, we consider the following stochastic interacting
many particle system which takes into account multiple species: For d, n ∈ N and σi > 0
for i = 1, . . . , n, let

dXk
i = −∇Vi(X

k
i )dt+

n"
j=1

αij

Nj"
&=1

(i,k) 
=(j,&)

Kij(X
k
i −X&

j )dt+ σidB
k
i (t),

Xk
i (0) = X0,k

i for i = 1, . . . , n, k = 1, . . . , Ni.

(1.1)

Here αij =
1

Nj−δij
, Ni ∈ N, X0,k

i are independent identically distributed square integrable

Rd−valued random variables, Vi and Kij are twice differentiable Rd-valued bounded func-
tions with bounded derivatives on Rd and Bk

i are independent Brownian motions. Under
these assumptions, standard results guarantee the existence of a unique solution X to sys-
tem (1.1), see for instance [63]. Our main goal is to find a way to simulate system (1.1)
efficiently in the large population case N =

#n
i=1Ni >> 1. We start by looking at impor-

tant examples of algorithms for simulation in the literature.

1.2.1. State of the Art

This subsection is based on [29, Section 1]. The binary interaction between all particles
makes numerical simulations of (1.1) very demanding when many agents need to be mod-
elled, which explains the need for efficient algorithms. Averaged results can be obtained

2



1. Introduction

from the associated mean-field equations, see subsection 2.4, while the individual dynam-
ics is captured by direct simulations, using fast summation algorithms, like fast multipole
methods [44], wavelet transforms [6], or variants of Monte–Carlo methods [19]. Motivated
by mini-batch gradient descent in machine learning (see, e.g., [71]), the authors of [52]
suggested to use small random batches in interacting particle systems, which results in
the reduction of the computational cost per time step from O(N2) to O(N) (N being the
number of particles or agents). Compared to other efficient sampling methods, like the
Ewald summation or the fast multipole method, this random-batch method is easier to
implement and more flexible to apply in complex systems. The results of [52] are valid in
the single-species case and the ergodicity and long-time behaviour of this method has been
studied in [55]. A discrete version via the Euler-Maruyama scheme has been introduced and
analysed in [95]. Motivated by [52], random batch particle methods for the homogeneous
Landau equation were established and studied in [23].
In this thesis, we generalize the approach of [52] to multi-species systems. In particular,
we work out the dependence of the L2 error with respect to the batch sizes of the different
species and discuss the case of multiplicative noise. In [53], a similar algorithm was pro-
posed to handle, among others, the multi-species case. Although the rate of convergence
of the error cannot be improved in general with our method, compared to the results in
[52, 53], the introduction of certain adjustable parameters provides an additional control
over the error with respect to the simulation runtime. Moreover, we can still find physical
situations for which our method performs better than the one in [52, 53]. For instance,
when the total numbers of agents per species have the same order of magnitude, our nu-
merical results indicate that our algorithm performs slightly better than the single-species
method (i.e. ignoring species) in [52], in particular for larger time step sizes. This is due
to the key idea of our method, namely to conserve the ratio between the different species
via so-called super-batches and to use some carefully chosen correction factors, instead of
the purely random mixing obtained in the multi-species method of [53].
The novelty of this part of the thesis is the extension of the random-batch method and

its error analysis of [52] to the multi-species case by investigating different batch sizes of the
species (super-batches) and by allowing for stochastic particle systems with multiplicative
noise.
What follows is an explanation of the method and a presentation of the main result of Part
I, together with essential steps of its proof.

1.2.2. The Random Batch Method and Main Result

To reduce the number of interactions in (1.1), one can proceed according to the following
random batch algorithm (see section 2.2) similar to [52]:

i) Set m = 0 and choose τ > 0 and βij > 0 for i, j = 1 . . . n. For every species i, choose
the number of allowed interactions pi ∈ N, which satisfies pibi = Ni for some bi ∈ N.

ii) For every species i, create a random partition, also known as batches, Ci,r, r = 1, . . . bi,
of the index-set {1, . . . , Ni}, where every Ci,r contains exactly pi elements, i.e. |Ci,r| =
pi. To Cr := {(j, l) : l ∈ Cj,r} we also refer to as superbatch.

3



1. Introduction

iii) Let r(k) be the index satisfying k ∈ Ci,r. Solve (1.1) only using the allowed inter-
actions given by Cj,r(k) for X̃k

i , which correspond to the elements of the superbatch
Cr(k):

dX̃k
i = −∇Vi( $Xk

i )dt+

n"
j=1

βij
"

&∈Cj,r(k)
(i,k) 
=(j,&)

Kij( $Xk
i − $X&

j )dt+ σidB
k
i (t), t ∈ [0, τ ],

Xk
i (0) = X0,k

i for i = 1, . . . , n, k = 1, . . . , Ni.
(1.2)

iv) Setm = m+1. Repeat steps ii)–iii) withX0,k
i = $Xk

i (mτ) on the interval [(m−1)τ,mτ ]
for all i = 1, . . . , n and k = 1, . . . , Ni.

In step ii) the partitions, respectively the batches, are created randomly, giving the method
its name: random batch method. Given enough time, every particle will interact with every
other particle due to the mixing generated by the random creation of batches at each step.
Furthermore, the number of interactions per particle reduces to at least p =

#n
i=1 pi − 1,

leading to an computational cost of O(pN) = O(N) per iteration step. Compared to the
computational cost of taking all the interactions into account, i.e. O(N(N − 1)) = O(N2),
this leads to a reduction of the cost by one order. The main problem with this approach
is how to choose the constants βij to guarantee the convergence of $Xk

i → Xk
i for τ → 0.

Here they take the role of the constants αij , which are the reciprocal values of the number
of terms of the sum, i.e. the number of considered interactions per particle in (1.1). A
possible choice would therefore be

βij =
1

pj − δij
, i, j = 1, . . . , n.

This turns out to be a good pick if bi = bj for all i, j = 1, . . . , n, which is, for example,
automatically satisfied in the single species case discussed in [52]. On the other hand,
consider the case of bi "= bj , where we can assume without loss of generality bi > bj . Due
to the nature of the algorithm there exists some 1 ≤ k ≤ Ni such that for r(k), as defined
in step iii), there exists no corresponding set Cj,r(k). As bi > bj , the set Cj,bi is empty and

the particle associated with $Xk
i , for which r(k) = bi, is missing all interactions with the

particles associated with $X l
j , l = 1 . . . , Nj . To make up for the less frequent interactions

with particles of species j in such a case, one needs to scale up the interactions in a sense
such that the mean effect of the interactions stay the same, meaning

n"
j=1

αijE

�� Nj"
&=1

(i,k) 
=(j,&)

Kij(x
k
i − x&j)

�� =

n"
j=1

βijE

��� "
&∈Cj,r(k)
(i,k) 
=(j,&)

Kij(x
k
i − x&j)

��� ,

for all x = (x11, . . . x
Nn
n ) ∈ RdN1×...×dNn , i = 1, . . . , n and k = 1, . . . , Ni. Here the expec-

tation is in respect to the random process ξ used for the creation of the sets Cr
j . To this
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1. Introduction

result we will later refer as consistency of the algorithm and it leads to the choice

βij =
bi

(pj − δij)min{bi, bj} , i, j = 1, . . . , n,

(see also Proposition 2). For i = 1, . . . , n we assume the existence of qi > 0, such that

|∇Vi(x)|+ |D2Vi(x)| ≤ CV (1 + |x|qi), i = 1, . . . , n.

Under this assumption, one can show for some C1, C2 > 0 a stability result (i.e. Lemma 4)
of the form''E� $Xk

i (t)− $Xk
i ((m− 1)τ)

''Fm−1

�'' ≤ C2τ | $Xk
i ((m− 1)τ)|qi + C1τ, t ∈ [(m− 1)τ,mτ ],

where Fm−1 is the smallest σ−algabra for whom all the involved processes evaluated at
any t ∈ [0, (m − 1)τ ], are measurable. The consistency of the algorithm and the stability
result will be the key to prove the main result of Part I:

Main Result of Part I: (Chapter 2, Theorem 1) Under the Assumptions (A1)–(A4), made
in section 2.3, there exists a constant C > 0, which is independent of (bi, pi, Ni)i=1,...,n, m
and T , such that

sup
0<t<T

n"
i=1

E|(Xk
i − $Xk

i )(t)|2 ≤ C
√
τ

� n"
i=1

Γi

�1/2

+ Cτ(1 + θγ), t > 0, (1.3)

where

θ =
maxj=1,...,n bj
minj=1,...,n bj

, γ = 3
�
max{1, q1, . . . , qn}+ 1

�
,

Γi =
n"

j,j�=1
j,j� 
=i, j 
=j�

�
max{bi, bj , bj�}
max{bj , bj�} − 1

�
+

n"
j=1
j 
=i

�
bi −min{bi, bj}
min{bi, bj} − 2−max{bi, bj}

Nj

+
bi

pj min{bi, bj}
�
+

�
1

pi − 1
− 1

Ni − 1

�
≥ 0. i = 1, . . . , n.

From the definition of Γi and θ one can derive that as long as the ratios
bj
bi

for i, j = 1, . . . , n
are fixed, Γi and θ are bounded with respect to the overall particle number N . Hence,
increasing N , while keeping the ratios, does not lead to a significant change in the error
estimate (1.3) and hence the step size τ does not have to be decreased, which would mean
more iteration steps and increasing computational cost to achieve a similar error-bound.
This fact and the cost reduction of one order by the algorithm makes this method very
suitable for simulating systems with a big number of particles.

1.2.3. Outlook

The following considerations could act as starting points for future work regarding the
random batch method in conjunction with stochastic interacting many particle models:

5



1. Introduction

i) In section 3.4 system (1.1) together with multiplicative noise is considered, i.e. an
additional dependency of σi on Xk

i is added, meaning

dXk
i = −∇Vi(X

k
i )dt+

n"
j=1

αij

Nj"
&=1

(i,k) 
=(j,&)

Kij(X
k
i −X&

j )dt+ σi(X
k
i )dB

k
i (t).

In section 3.4, the strategy and ideas used for proving (1.3) also apply in this setting,
giving

sup
0<t<T

n"
i=1

�(Xk
i − $Xk

i )(t)� ≤ C
√
τ

�
1 +

n"
i=1

Γi

�1/2

+ Cτ(1 + θγ), (1.4)

see Theorem 7, where C > 0 is independent of (bi, pi)i=1,...,n, m, and T . To obtain
an estimate of the form (1.4) in the case of multiplicative noise with σi = σi(X),
i.e. depending on the positions of all particles X l

j , 1 ≤ j ≤ n, 1 ≤ l ≤ Nj is, to the
knowledge of the author, still an open problem. Other methods of creating random
batches or another strategy altogether might have to be considered here.

ii) In the case of interaction kernels Kij with short range, i.e. supp Kij ⊆ Br(0), with
r > 0, a non-negligible number of interactions might not contribute asKij(X

k
i −X l

j) =

0 for |Xk
i − X l

j | > r. A cost effective method of eliminating or sorting out such
interactions at every time step could lead to an significant increase in the performance
of random batch methods and simulation methods in general in this case. Examples
for such short range kernels can, among others, be found in biology. Cells, for instance,
detect chemical messenger molecules according to their extension into space, giving
them an interaction radius corresponding to their size.

1.3. Main Results and State of the Art of Part II - Cell Based
Models - Angiogenesis

Angiogenesis is the process governing the formation of new blood vessels from a pre-existing
network, which is an important factor in wound healing or tumour growth. We start by
giving a quick overview of the specific model for angiogenesis, which is based on the model
in [8] and undergoes mathematical analysis in Part II.
The innermost layer of blood vessels is made up of endothelial cells. Those endothelial cells
involved in the angiogenesis process can be divided into tip cells (cell-species 1) and stalk
cells (cell-species 2). Their movement is governed, among others, by the volume fractions
fi, i ∈ {B,E, F} via a process called durotaxis, which is driven by changes in stiffness
of the surrounding tissue, and the local change in concentration of certain proteins cj ,
j ∈ {V,D,M,U}. Here fB, fF and fE give the composition of the underlying matrix, i.e.
the different shares of its components - boundary membrane, fibrin matrix and extracellular
fluid - at each point of the considered bounded domain D ⊆ R3. Tip cells follow the
concentration-gradient ∇cV of the VEGF-protein (vascular endothelial growth factor) and
secret proteins (cM , cU ) to degrade the solid part of the tissue - boundary membrane and

6



1. Introduction

fibrin matrix - into extracellular fluid. They furthermore secret the protein (DLL4) to
attract stalk cells which follow its concentration gradient ∇cD. These cells can adhere
together via proteins on their surfaces and make up the inner wall of the new blood vessel.
For a more in-depth explanation of fi and cj , respectively the angiogenesis process, see
section 5.2.
Let Ni ∈ N for i = 1, 2 and (Ω,F , (Ft)t≥0,P) be a stochastic basis. The change in the
positions Xk

i , i = 1, 2, k ∈ {1, . . . , Ni} of the endothelial cells midpoints can then be
modelled via the following system of stochastic differential equations:

dXk
i (t) =gi[c, f ](X

k
i , t)dt+ σi(X

k
i )dB

k
i (t), Xk

i (0) = X0,k
i , t > 0, (1.5)

i =1, 2, k = 1, . . . , Ni,

where σi(ω, x, t) : Ω×D× [0,∞) → R3×3 is uniform Lipschitz continuous in x. The random

variables X0,k
i are independent and for each fixed i identically distributed. Here gi is of the

form

gi[c, f ](x, t) :=Mi(fS(x, t), x, t) + γ(fS(x, t))∇cj(i)(x, t) + λ(fS(x, t))∇fS(x, t), (1.6)

x ∈ D, t > 0, for suitable smooth functions Mi, γ and λ, where j(1) = V, j(2) = D,
fS := fB + fF and Bk

i are 3−dimensional independent Brownian motions relative to the
filtration (Ft)t≥0. The Brownian motions thereby simulate random interactions between
cells and their environment. For a possible choice of Mi, γ and λ see [8]. The volume
fractions fi, i ∈ {B,E, F} satisfy the ordinary differential equations

dfB
dt

= −sBcMfB, t > 0, fB(0) = f0
B,

dfF
dt

= −sF cUfF , t > 0, fF (0) = f0
F ,

dfE
dt

= sBcMfB + sF cUfF , t > 0, fE(0) = 1− f0
B − f0

F ,

(1.7)

with some constants sB, sF > 0 and bounded initial condition f0
i . Notice the concentrations

cU , cM of the proteins degrading the boundary membrane and the fibrin matrix. For the
concentrations cj of the various proteins we have the following reaction-diffusion equations:

∂tcV − div(DV (f)∇cV ) + αV (x, t)cV = 0 in D, t > 0,

∂tcD − div(DD(f)∇cD) + βD(x, t)cD = αD(x, t)cV in D, t > 0,

∂tcM − div(DM (f)∇cM ) + sMfBcM = αM (x, t)cV in D, t > 0,

∂tcU − div(DU (f)∇cU ) + sUfF cU = αU (x, t)cV in D, t > 0.

(1.8)

where sM , sU > 0 and

Dj(f) = DB
j fB +DE

j fE +DF
j fF , j = V,D,M,U,

for some positive constants Di
j , i ∈ {B,E, F}. Regarding the reaction rates αj , j ∈

{V,D,M,U} and βD, there exist smooth non-negative potentials V k
j : D → R such that

αj(x, t) =

N1"
k=1

V k
j (X

k
1 (t)− x), βD(x, t) =

N2"
k=1

V k
D(X

k
2 (t)− x). (1.9)

7



1. Introduction

Lastly, the equations (1.8) are complemented with the homogeneous Neumann- and initial-
boundary conditions

cj(0) = c0j in D, ∇cj · ν = 0 on ∂D, j = V,D,M,U. (1.10)

We aim to prove the existence of a solution of system (1.5)-(1.10). By (1.5), cells in this
model are treated as discrete entities who are allowed to move continuously, meaning not
on a grid from grid-point to grid-point, but in a continuum of space. The model above is
thereby an example of a cell based off-lattice model. This is not the only way to model
angiogenesis, which will be briefly discussed in the next subsection, which is based on [35,
Section 1.2].

1.3.1. State of the Art

There are several approaches in the literature to model angiogenesis, mostly in the context
of tumour growth. Cellular automata models divide the computational domain into a
discrete set of lattice points, and endothelial cells move in a discrete way. Such models are
quite flexible, and intra-cellular adherence can be easily implemented, but their numerical
solution is computationally expensive when the numbers of cells or molecules are large [43].
In individual-based off-lattice models, the cells are treated as discrete entities, and their
movement is not restricted to any lattice points [18]. Continuum-scale models consider cell
densities whose dynamics is described by partial differential equations; see, e.g., [13] for
wound healing and [37] for angiogenesis. Chemotaxis can be modelled in this approach by
Keller–Segel-type equations, which admit global weak solutions in two space dimensions
without blow-up [27]. A hybrid approach was investigated in [22], where the blood vessel
network is implemented on a lattice, tip cells are moving in a lattice-free way, and other cells
are modelled macroscopically as densities. An off-lattice cell-based approach was chosen in
[8], from where the model of angiogenesis discussed in this work originates. The novelty of
[8] is the distinction of tip and stalk cells and the inclusion of proteins segregated by the
tip cells.
In other models, stochastic effects have been included. In [87], the movement of the tip

cells is modelled by a SDE, with a deterministic part describing chemotaxis, and a stochastic
part modelling random motion. The mean-field limit in a stochastic many-particle system,
leading to reaction-diffusion equations, was performed in [20, 85]. We also refer to the
reviews [24, 81] on further modelling approaches of angiogenesis.
Numerical simulations of a coupled SDE-PDE model for the movement of the tip cells and

the dynamics of the tumour angiogenesis factor, fibronectin (a protein of the extracellular
matrix), and matrix degrading enzymes were presented in [21]. Other SDE-PDE models
in the literature are concerned with the proton dynamics in a tumour [64], acid-mediated
tumour invasion [47], and viscoelastic fluids [57]. However, only the works [47, 64] treat
a genuine coupling between SDEs and PDEs. While the model in [47] also includes a
cross-diffusion term in the equation for the cancer cells, we have simpler reaction-diffusion
equations but with nonlocal diffusivities. The model of [64] also includes nonlocal terms,
but they are different from ours. Up to our knowledge, the mathematical analysis of system
(1.5)–(1.10) is new.
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1. Introduction

What follows is a presentation of the mathematical line of reasoning used in Part II to
obtain an existence result for the discussed angiogenesis model.

1.3.2. Mathematical Challenges and Main Results

Through (1.9), the concentrations cj , j ∈ {V,D,M,U} and in turn fl, l ∈ {B,E, F},
depend on the paths Xk

i (t), i = 1, 2, 1 ≤ k ≤ Ni, making them stochastic processes.
Popular existence results found in the literature, see for instance [73], can hence no longer
be applied, as this results in an additional non-linear and especially non-local dependency
of the coefficients gi on Xk

i and the necessary measurability cannot be simply given by
assumption. Additionally, the coefficients gi and σi need to satisfy a Lipschitz- or weak
monotonicity- condition regarding the space-variable x, adding an additional requirement
on the regularity of ∇cV , ∇cD and ∇fS . Given such sufficiently measurable, bounded and

smooth processes σ, ∇c, f and ∇f who are not depending on X =
�
Xk

i

�1≤k≤Ni

i=1,2
such that

the assumptions of [73, Theorem 3.1.1] are satisfied, a unique solution to (1.5) exists. This

allows to set up a fixed point argument. By choosing a stochastic process $X =
� $Xk

i

�1≤k≤Ni

i=1,2

in a suitable Banach space Y , one can solve (1.7)-(1.10) for almost every fixed ω ∈ Ω to
obtain smooth concentrations c and volume fractions f , which can then be used to solve
(1.5). This defines an operator Φ:

$X → (c̃, f̃) → X =: Φ( $X).

Every fixed point of Φ is then a solution to (1.5)-(1.10). In order for this operator to be well
defined the Banach space Y has to be chosen in a way to guarantee the needed regularity
and measurability of c and f . Given smooth enough Hölder continuous coefficients, linear
uniformly parabolic partial differential equations give rise to classical Hölder continuous
solutions, [67]. Furthermore, the property of c and f to be measurable depends on the
measurability of $X (see Lemma 21). A probable choice for Y would therefore be a sub-
space of the space of adapted processes with almost surely Hölder continuous paths. More
precisely, we will set Y = YR(0, T ;D) for some R > 0, where

YR(0, T ;D) :=
�
X ∈ C1/2([0, T ];L4(Ω)) : �X�C1/2([0,T ];L4(Ω)) ≤ R,

X(t) is Ft-measurable, X(t) ∈ D a.s. for all t ∈ [0, T ]
	

and we equip it with the standard norm of C([0, T ], L4(Ω)). Assuming the volume filling
condition

f0
B + f0

F + f0
E ≡ 1, (1.11)

and further technical assumptions (B1)-(B5) (see section 6.1), we can show existence of a
unique classical solution to (1.7)-(1.10) for almost all ω ∈ Ω (see Theorem 17). Additionally,
by Lemma 15 , we obtain for such solutions c a constant C > 0 and the uniform estimate

�c�L∞(0,T ;W 2,∞(D)) ≤ C.

9



1. Introduction

This is a direct result from [72], from where we can conclude the required Lipschitz continu-
ity of ∇c. The measurability of c is then obtained by the adaptivity of $X. These properties
are inherited by fB and fF due to

fB(x, t) = f0
B(x) exp

�
− sB

� t

0
cM (x, s)ds

�
,

fF (x, t) = f0
F (x) exp

�
− sF

� t

0
cU (x, s)ds

�
.

Similarly they follow for fE as it satisfies fE = 1− fB − fF , which is a direct consequence
of the volume filling condition (1.11) and the last equation of (1.7). Hence, (1.5) has a
unique solution under the assumptions (B1)-(B5). By Kolmogorovs continuity criteria,
this solution has almost surly Hölder continuous paths and can be shown to be bounded
in Y . The operator Φ is thereby well defined. To show the existence of a unique fixed
point we firstly prove stability results for solutions Φ( $X) = X, Φ( $X �) = X � of (1.5) and
the respective solutions c, c� of (1.8)-(1.10). To be more precise, for some constant C > 0,
we prove in subsection 6.3.3 the estimates

E|X(t)−X �(t)|4 ≤Ct

� t

0
E�c(s)− c�(s)�4

C1(D)
ds,

�c− c��L4(0,T ;W 2,4(D)) ≤C
��α− α��L4(D×(0,T )) + �β − β��L4(D×(0,T ))

�
.

Here α and β, respectively α� and β�, are defined via (1.9) with respect to the paths of $X
and $X �. By the Sobolev embedding W 2,4(D) �→ C1(D), the two stability results can then
be combined to conclude Φ is a contraction. This lets us derive the main result of this
section of the thesis:

Main Result of Part II - Angiogenesis: (Chapter 6, Theorem 8) Let Assumptions
(B1)–(B5) made in section 6.1 hold. Then there exist a unique solution (f, c,X) to (1.5)–
(1.8), (1.10) and some constant R > 0 such that

• f = (fB, fE , fF ) solves (1.7) pathwise a.s., where fi ∈ C0([0, T ]; L2(D)) ∩ L∞(D ×
(0, T ));

• c = (cV , cD, cM , cU ) is a classical solution to (1.8) and (1.10) pathwise a.s.;

• c, ∇c, f and ∇f are measurable;

• Xk
i ∈ YR(0, T ;D) is a strong solution to (1.5) for i = 1, 2, k = 1, . . . , Ni.

For the exact notion of measurability used and the definition of a strong solution we refer
to section 6.1 or Definition 41 and Definition 42 in the Appendix A.2.2.

1.3.3. Outlook

The following considerations could act as starting points for future work on the topic of
analysing this or similar models for angiogenesis:

10



1. Introduction

i) Depending on the chemical environment, endothelial cells change from stalk cell to
tip cell and vice versa. In [8] the probability for this change at each point in time is
modelled by exponential distributions Exp(λ), where λ is a function of the concen-
trations cV and cD evaluated at the position Xk

i of the cells midpoint. The existence
analyis for the exact model of [8] has, up to the knowledge of the author, not been
done.

ii) As in reality endothelial cells are objects extending into three dimensions and are not
zero-dimensional points in space, they interact with chemical messenger molecules
(i.e. cV , cD) over the range given by their size. Therefore a case can be made
to replace ∇cV with ∇cV ∗ η, respectively ∇cD with ∇cD ∗ η, where η ∈ C∞(R3)
is a mollifier with supp η ⊆ B�(0), for some suitable ' > 0. This might lead to
lower requirements regarding the regularity of the initial data, as stability results and
estimates regarding the Lp-norm of c might suffice to proof a result akin to Theorem
8 (see Main Result of Part II - Angiogenesis), due to the regularity added by
the convolution.

1.4. Main Results and State of the Art for Part II - Cell Based
Models - Vesicle Transport

Projections from the cell body of an undifferentiated neuron are called neurites. For such a
neurite to grow, the necessary material is transported in the form of vesicles from the cell
body, also called the soma, to the tip of the neurite. Vice versa, if the neurite undergoes
a period of contraction, it is transported in the other direction. Here, vesicles travelling
towards the tip are refereed to as anterograde vesicles, respectively retrograde vesicles when
travelling away from it. As the diameter of a neurite is comparably small to its length L, in
the literature they are often modelled as one-dimensional [48]. Let a and r be the volume
fractions of anterograde- and retrograde- vesicles along the length (0, L) of a neurite and
u0 = 1 − a − r the unoccupied space. Furthermore, let Λs and Λn be the concentration
of vesicles in pools in the soma, situated at x = 0 and the growth cone at the tip of the
neurite at x = L. Due to the finite size of the pools, the maximum number of vesicles
inside them is bounded, giving upper limits Λmax

s and Λmax
n > 0 for Λs and Λn.

Starting from a cell based on-lattice model, where vesicles move from grid-point to grid-
point according to given transition rates, a 2-species system of ordinary differential equa-
tions was derived in [48] to describe the general evolution of Λs, Λn, a and r at the grid-
points of the lattice. The transition rates thereby depend among other factors on given
potentials Va and Vr, which determine the direction of the transport. The use of non-specific
potentials makes the model more generalized, allowing to describe 2-species systems, where
agents of the different species do not have to travel in opposite directions as it is the case
with anterograde and retrograde vesicles. Replacing a and r with ui, i = 1, 2 to indicate this
more general setting, from this model the following cross diffusion system can be derived
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in the diffusion limit (see section 5.3.2):

∂tu1 + ∂xJ1 = 0, J1 := −D1

�
u0∂xu1 − u1∂xu0 − u0u1∂xV1

�
, x ∈ (0, L), t > 0,

∂tu2 + ∂xJ2 = 0, J2 := −D2

�
u0∂xu2 − u2∂xu0 − u0u2∂xV2

�
, x ∈ (0, L), t > 0.

(1.12)
Corresponding to the in- and outflow fluxes of vesicles, these equations are complemented
with boundary conditions,

J1(0, t) = J0
1 [u](t) := α1

Λs(t)

Λmax
s

u0(0, t),

J1(L, t) = J1
1 [u](t) := β1

�
1− Λn(t)

Λmax
n

�
u0(L, t)u1(L, t),

J2(0, t) = J0
2 [u](t) := −β2

�
1− Λs(t)

Λmax
s

�
u0(0, t)u2(0, t),

J2(L, t) = J1
2 [u](t) := −α2

Λn(t)

Λmax
n

u0(L, t) for t > 0.

(1.13)

Here the parameters Di, αi and βi, i = 1, 2 are positive constants. For the concentrations
Λs, Λn we accordingly have the ordinary differential equations

∂tΛn = J1
1 [u] + J1

2 [u], ∂tΛs = −(J0
1 [u] + J0

2 [u]) , t > 0. (1.14)

For a more detailed description of the model and interpretation of terms see section 5.3. Our
main result in this section of the thesis is to find a solution of (1.12)-(1.14), supplemented
with an appropriate initial value condition

u1(·, 0) = u01, u2(·, 0) = u02 in (0, L), Λs(0) = Λ0
s, Λn(0) = Λ0

n. (1.15)

As volume fractions are non-negative and bounded (by one), we assume 0 ≤ u0i ≤ 1 almost
everywhere for i = 1, 2. This holds similarly for the starting vesicle concentrations in the
pools, giving 0 ≤ Λs ≤ Λmax

s and 0 ≤ Λn ≤ Λmax
n .

Besides (1.12)-(1.15) and the on-lattice model in [48], additional approaches to model vesicle
transport can be found in the literature, which will be discussed in the following subsection
taken from [36, Section 1].

1.4.1. State of the Art

For the case of single-species vesicles, a Fokker–Planck equation with in- and outflow bound-
ary conditions was analysed in [16]. The work [11] models a limited transport capacity in-
side the neurites by taking into account size exclusion effects for a single motor-cargo com-
plex with and without vesicles. Advection-diffusion equations for the bidirectional vesicular
transport were derived in [12] and dynamically varying neurite lengths are allowed in [75],
leading to drift-diffusion-reaction equations. A lattice model for the probability that a
receptor travelling with a vesicle is located at a given cell was analysed in [9]. This model
was then generalized in [10] by allowing motor-complexes to carry an arbitrary number of
vesicles, which leads to Becker–Döring equations for aggregation-fragmentation processes.
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The size of the cargo vesicles, which strongly influences the speed of retrograde transport,
was taken into account in [82], and a free-boundary problem for the radius of the vesicle
has been formulated. We also mention the paper [4] for a related cross-diffusion system
with free boundary and non-vanishing flux boundary conditions.
Equations (1.12) are similar to the ion-transport model in [38]. The analysis of this

system was based on the boundedness-by-entropy method [15, 58] and a version of the
Aubin–Lions compactness lemma which takes into account the degeneracy at u0 = 0 [96].
Compared to previous works like [58], where no-flux boundary conditions are imposed,
the novelties are the non-linear Robin boundary conditions and the coupling to ordinary
differential equations. The main difficulty here is the treatment of the boundary conditions.
Linear Robin boundary conditions were considered in [17] but for stationary drift-diffusion
equation for one species only.
What follows is a presentation of the mathematical line of reasoning used in Part II to obtain
a weak-existence result for the discussed model (1.12)–(1.15) regarding vesicle transport
inside neurites.

1.4.2. Mathematical Challenges and Main Result

Without loss of generality we set L = 1 and D = (0, 1). Let T > 0, u = (u1, u2),
V = (V1, V2) and φ = (φ1, φ2) ∈ (L2(0, T ;H1(D)))2. We consider the following weak
formulation of (1.12)-(1.13):� T

0
	∂tu, φ
dt+

� T

0

�
D
∂xφ(A(u)∂xu)dxdt−

� T

0

�
D

2"
i=1

u0ui∂xVi∂φidxdt

+
2"

i=1

� T

0

�
Ji(x, t)φ(x, t)


x=1

x=0
dt = 0,

(1.16)

where 	·, ·
 denotes the dual product of H1(D) and H1(D)�. Here the diffusion matrix A is
given by

A(u) =

�
D1(1− u2) D1u1

D2u2 D2(1− u1)

�
. (1.17)

Standard methods for systems of parabolic partial differential equations use the ellipticity
of the corresponding bilinear form given by the respective diffusion matrix to find uniform
L2-bounds of ∂u. This uniform bound is crucial to ensure weak convergence of a series
of solutions of approximative problems whose limit can be shown to be a solution. As
A is not guaranteed to be strictly positive definite, much less its corresponding bilinear
form elliptic, this strategy is not feasible as is. To find a solution to (1.16), we therefore
build on top of the methods used in [58], extending them to incorporate (1.14) and the
boundary conditions (1.13). The idea is to transform u into a entropy variable w = h�(u)
via a suitable entropy density h and to discretise in time to obtain a new system where
standard methods can be applied. The solutions of this time-independent problems are then
arranged and interpreted as step functions on [0, T ] with values in the space H1(D,R2).
Letting the discretisation parameter go to zero, the original problem is recovered and the
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step functions converge weakly to a solution. For this purpose, we use

h(u) =

2"
i=1

ui(log ui − 1) + u0(log u0 − 1)

as entropy-density. See section 5.3 for more details on the choice of h. Let ', τ > 0 be the
regularity and time-discretisation parameters, tk = τk, k ∈ N the time steps, w0 = h�(u0),
and u(w) = h�(u)−1. Setting B = A(u)h��(u)−1, discretising (1.16) in time and adding a
regularization term, we obtain for the unknowns wk the equations

1

τ

�
D
(u(wk)− uk−1) · φdx+

�
D
∂xφ ·B(wk)∂xw

kdx−
�
D

2"
i=1

u0(w
k)ui(w

k)∂xVi∂xφidx

+
2"

i=1

�
J1
i [u(w

k)](tk)φi(1)− J0
i [u(w

k)](tk)φi(0)
�
+ ε

�
D
(∂xw

k · ∂xφ+ wk · φ)dx = 0,

(1.18)

for all φi ∈ H1(D), i = 1, 2, where we notice B(u)∂xw = A(u)∂xu. We define uτ (x, t) :=
uk(x) for t ∈ (tk−1, tk], w

τ = h�(uτ ) and the shift operator σ via its action (στu
(τ))(·, t) =

uk−1 for t ∈ (tk−1, tk]. For (1.18) we solve (1.14) regarding σuτ , where we set Λn = Λ
(τ)
n

meaning

Λ(τ)
n = Λn(0) + β1

� t

0
(1− Λ(τ)

n (r))στ (u
(τ)
0 u

(τ)
1 )(1, r)dr − α2

� t

0
Λ(τ)
n (r)στu

(τ)
0 (1, r)dr,

(1.19)

with a similar equation for Λ
(τ)
s . In (1.18) Λn and Λs are evaluated at tk, where we point

out that Λ
(τ)
n (tk) and Λ

(τ)
s (tk) do not depend on wk or uk. By integrating (1.18) over t, we

get an approximate system for (1.16) in the parameters (', τ).

1

τ

� T

0

�
D
(u(τ) − στu

(τ))φdxdt+ ε

� T

0

�
D
(∂xw

(τ)∂xφ+ w(τ)φ)dxdt (1.20)

+
2"

i=1

Di

� T

0

�
D
(u

(τ)
0 ∂xu

(τ)
i − u

(τ)
i ∂xu

(τ)
0 − u

(τ)
0 u

(τ)
i ∂xVi)∂xφidxdt

+

2"
i=1

� T

0

�
J1
i [u

(τ)](t)φi(1, t)− J0
i [u

(τ)](t)φi(0, t)
�
dt = 0.

A short calculation shows B(w) satisfies the following non-negativity property for some
c > 0 (see lemma 28):

∂xw ·B∂xw = (∂xu) · h��(u)A(u)(∂xu) ≥ c
2"

i=1

u0(∂x
√
ui)

2 + c(∂x
√
u0)

2. (1.21)
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From this property and the assumption Vi ∈ H1(D), a uniform bound can be derived�
D
h(uk)− h(uk−1)dx+

cτ

2

�
D
∂xw

k ·B(wk)∂xw
kdx+ ετ

�
D
(|∂xwk|2 + |wk|2)dx ≤ Cτ,

(1.22)

where the positive constant C does not depend on the parameters ' and τ . Linearising by
replacing B(wk) with B(y) and ui(w

k) with ui(y), i = 0, 1, 2, where y ∈ C0(D;R2), the
lemma of Lax-Milgram can be applied to find an unique solution w = wk in H1(D). It
is common to use the space L∞(D,R2), see [58], but by using C0(D;R2) the continuity
of y guarantees that there exists a well defined boundary. By the compact (Sobolev) em-
bedding H1(D,R2) �→ C0(D,R2) and Leray-Schauders fixed point theorem, (1.18) has a
solution wk, given uk−1 ∈ L∞(D;R2). This last constraint follows from u0 ∈ L∞(D;R2)
and h� : R2 → [0, 1]2. This is the statement of Lemma 30. From (1.22), we obtain uniform
bounds of u(τ) in subsection 7.2.3 and due to the uniformity there exist weakly converging

subsequences of (u
(τ)
0 )1/2u(τ), u

(τ)
0 u(τ) and u

(τ)
0 in L2(0, T ;H1(D)). Additionally, of ∂tu

(τ)

in L2(0, T ;H1(D)�). As 0 ≤ ui ≤ 1, i = 0, 1, 2, the integrand in (1.19) is bounded and

the family Λ
(τ)
n therefore equicontinuous and uniformly bounded. The theorem of Arzelà

-Ascoli therefore guarantees a uniformly converging subsequence. The same holds true for

Λ
(τ)
s . Going over to the limits of this sequences, we obtain the main result of this part of

the thesis:

Main Result Part II - Vesicle Transport in Neurites: (Chapter 7, Theorem 27)
Under the assumptions made above, there exists a weak solution (u1, u2,Λn,Λs) to (1.12)–
(1.15) satisfying the weak formulation (1.16) and u1, u2 ≥ 0, u1 + u2 ≤ 1 in D × (0, T ).
Additionally,

√
u0ui,

√
u0 ∈ L2(0, T ;H1(D)), ∂tui ∈ L2(0, T ;H1(D)�), i = 1, 2 (1.23)

and the initial conditions (1.15) are fulfilled in the sense of H1(D)�, and the equations
(1.14) hold almost everywhere.

1.4.3. Outlook

The following considerations could act as starting points for future work on the topic of
analysing this or similar models for vesicle transport inside neurites:

i) Following the derivation of the on-lattice model for vesicle transport in [48], which
also is the basis for the model (1.12)-(1.15), the boundary terms (1.13) take a slightly
different form,

J1(L, t) = J1
1 [u](t) := β1

�
1− Λn(t)

Λmax
n

�
u1(L, t),

J2(0, t) = J0
2 [u](t) := −β2

�
1− Λs(t)

Λmax
s

�
u2(0, t),

(1.24)

where the ordinary differential equations (1.14) change accordingly. The dependency
on u0 has been dropped in this cases, which due to H1((0, 1)) �→ C([0, 1]) and es-
timate (1.23) guaranteed the well posedness of the boundary terms (1.13). Up to
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1. Introduction

the knowledge of the author, the existence of a weak solution of (1.12), (1.14)-(1.15)
coupled with the boundary conditions (1.24) is an open problem.

ii) Vesicles transport the building blocks of neurites and their creation and elimination
goes along with growth or contraction of the neurite. Hence, it seems reasonable to
consider the length of the neurite L to change in time according to the change in u,
Λs and Λn, meaning L = L(t, u,Λn,Λs). The exact dependency of L on u, Λs and Λn

thereby would need to be established according to the relevant biological processes.
This introduces an additional unknown L and a changing domain (0, L) on where
(1.12) would have to be considered, which adds another layer of complexity to the
model.

1.5. Structure of the Thesis

This thesis is divided into 2 parts.
In Part I, including chapter 2-4, a random batch method for the stochastic many particle
system (1.1) is studied. It is based on [29]. In chapter 2, a deeper explanation of the
method, a link to related problems, additional assumptions to the model (1.1) and the
main result are given. The numerical analysis to prove the main result is done in chapter
3 and numerical experiments are presented in chapter 4.
Part II is based on [35] and [36]. It ranges from chapter 5-8 and entails the mathematical
analysis of the two biological models: The angiogensis model (1.5)-(1.8),(1.10) and model
(1.12)-(1.15) for vesicle transport inside neurites. The models are explained in depth in
chapter 5, where a formal derivation of the model for vesicle transport is given as well. In
chapter 6 and chapter 7, the main existence results together with necessary assumptions
are stated and the main results are proven. Numerical experiments and simulations for the
two models can be found in chapter 8.
Auxiliary results known from the literature are gathered in Appendix A, which in part
consists of the appendixes at the end of [29] and [35].
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Part I.

Simulation of Stochastic Many
Particle Systems
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Part I is constructed from the contents of the following article:

[29] E. S. Daus, M. Fellner and Ansgar Jüngel. Random-batch methods for multi-species
stochastic interacting particle systems. Journal of Computational Physics. Volume
463 (2022), 111220.
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2. Introduction to Random Batch Algorithm
for Stochastic Many Particle Systems

The collective behaviour of particles or agents of multiple species can be described by
interacting particle systems, which are an important tool for modelling complex real-world
phenomena with applications in physics, biology, and social sciences. In this chapter,
we discuss the stochastic interacting many particle model (1.1) introduced in section 1.2
and the random batch method in more detail and present the main result of Part I. We
furthermore give a quick overview over the strategy of the proof and show a link to related
problems.

2.1. Setting

The dynamics of the multi-species system is described by

dXk
i = −∇Vi(X

k
i )dt+

n"
j=1

αij

Nj"
&=1

(i,k) 
=(j,&)

Kij(X
k
i −X&

j )dt+ σidB
k
i (t), (2.1)

Xk
i (0) = X0,k

i for i = 1, . . . , n, k = 1, . . . , Ni, (2.2)

where

αij =
1

Nj − δij
, i, j = 1, . . . , n, (2.3)

and δij is the Kronecker delta. The stochastic process Xk
i (t) ∈ Rd (d ≥ 1) represents

the position of the kth particle (or the features of the kth agent) of species i in a system
of N =

#n
i=1Ni particles. The function ∇Vi describes some (given) external force, Kii

and Kij are the interaction kernels between particles of the same and of different species,
respectively, σi > 0 are diffusion coefficients, and Bk

i are N independent standard Brownian
motions. The initial data X1

0,i, . . . , X
Ni
0,i are assumed to be independent and identically

distributed. We also consider the case of multiplicative noise, where the diffusion σi(X
k
i )

depends on the position of the particle Xk
i ; see section 3.4.

Equations (2.1) can be used to model the information flow through social networks [2], the
dynamics of opinions [33], the herding of sheep by dogs [88], or the segregation behaviour
of populations [25]. Furthermore, stochastic gradient descent can be interpreted as the
evolution of interacting particle systems governed by a potential related to the objective
function used to train neural networks [84].
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2. Introduction to Random Batch Algorithm for Stochastic Many Particle Systems

2.2. Random-batch method

The random-batch method is defined as follows. Let the number of particles Ni ∈ N of the
ith species be an even number, where i = 1, . . . , n. We introduce the time steps tm = mτ
with the time step size τ > 0 and m = 1, . . . ,M := �T/τ�, and T > 0 is the end time. For a
given m ∈ {1, . . . ,M}, we divide the set {1, . . . , Ni} randomly into bi batches Ci,1, . . . , Ci,bi
of size pi. This means that we choose pi ≥ 2 and bi ≥ 1 such that Ni = bipi, and we
consider not all interactions but only those in the same batch. Furthermore, we introduce
the super-batches Cr = {(i, k) : k ∈ Ci,r} for 1 ≤ r ≤ max{b1, . . . , bn} (see Figure 2.1). For
any particle Xk

i , there exists exactly one super-batch such that (i, k) ∈ Cr for some r ≥ 0.

C 1,1 C 1,2 C 1,3 C 1,4

C 2,1 C 2,2 C 2,3 C 2,4 C 2,5

p  = 3
1

p  = 2
2

Figure 2.1.: Batches Ci,r for a two-species system with N = 22 particles, four batches of
size p1 = 3, and five batches of size p2 = 2. The particles in the super-batch
C1 are marked in grey color.

We solve the particle system in the time interval (tm−1, tm] with initial datum $Xk
i (tm−1).

The random-batch process $Xk
i is defined for tm−1 < t ≤ tm as the solution to

d $Xk
i = −∇Vi( $Xk

i )dt+
n"

j=1

βij
"
&∈Cj,r

(i,k) 
=(j,&)

Kij( $Xk
i − $X&

j )dt+ σidB
k
i , (2.4)

where

βij =
bi

(pj − δij)min{bi, bj} , i, j = 1, . . . , n. (2.5)

Instead of summing over all interactions, the sum in (2.4) only accounts for the interactions
in each small batch. Observe that we use the same Brownian motions as in (2.1). The sum
over all 5 ∈ Cj,r means that we sum over all (j, 5) which are in the same super-batch as
(i, k). The factor bi/min{bi, bj} in (2.5) does not appear in [52]; it is necessary to achieve
consistency and convergence of the scheme. The scaling results from the different number
of non-trivial batches Ci,r of the different species. Indeed, let bi < bj . Only bi batches of
the first bj super-batches contain a batch of both species i and j, while any super-batch Cr
with r > bi does not contain neither of them. So, only the share bi/bj of particles of the
ith species can interact with those of the jth species. In other words, each particle of the
ith species interacts with particles of the jth species with probability bi/bj . This yields the
correction factor bi/bj . The random-batch algorithm is summarized in Algorithm 2.2.
When we allow for pairwise interactions between all particles, the computational cost at

each time step is of order O(N2). Since we have M time steps, the total cost of this naive
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2. Introduction to Random Batch Algorithm for Stochastic Many Particle Systems

Algorithm 1 (Pseudo-code for the multi-species random-batch algorithm)

1: for k = m, . . . ,M do
2: for i = 1, . . . , n do
3: Divide {1, . . . , Ni} randomly into bi batches Ci,1, . . . , Ci,bi with size pi each.
4: for r = 1, . . . , bi do
5: For every (i, k) ∈ Cr, update $Xk

i by solving (2.4) in the interval (tm−1, tm] with

initial datum $Xk
i (tm−1).

6: end for
7: end for
8: end for

algorithm is O(MN2). In the random-batch method, each particle ends up in exactly one
super-batch Cr for some r ≥ 1 and is chosen only once (i.e. without replacement). Then
the total computational cost becomes O(pMN), where p =

#n
i=1 pi. As p is typically a

small number (often pi = 2), the total cost has been reduced by approximately one order
of magnitude. We show in this part of the thesis that, under suitable conditions on the
external potentials and the kernel functions, the L2 error of the error process $Xk

i (t)−Xk
i (t)

converges to zero as τ → 0 uniformly in time, and the convergence is, as expected, of order
O(

√
τ). The idea of the method is the fact that in time average, the random force is

consistent with the full interaction (see Proposition 2), and the convergence is like in the
law of large numbers, but in time.

2.3. Assumptions and main result

We start by introducing notation and giving some definitions. Let (Ω,F ,F,P) be a filtered
probability space, let ξm−1,i denote the random division of batches of species i at tm−1,
and set ξm−1 = (ξm−1,1, . . . , ξm−1,n). We define the filtrations (Fm)m≥0 and (Gm)m≥0 by

Fm−1 = σ
�
X0,k

i , Bk
i (t), ξj,i : t ≤ tm−1, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1

�
,

Gm−1 = σ
�
X0,k

i , Bk
i (t), ξj,i : t ≤ tm−1, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 2

�
.

The set Fm−1 contains the information how the batches are constructed for t ∈ [tk−1, tk).
Denoting by σ(ξm−1,i) the σ-algebra generated by ξm−1,i, it holds that Fm−1 = σ(Gm−1 ∪
σ(ξm−1,1) ∪ · · · ∪ σ(ξm−1,n)). We write � · �p = (E| · |p)1/p to denote the Lp(Ω) norm for
1 ≤ p < ∞ and set � · � = � · �2. In the whole chapter, C > 0, Ci > 0 denote generic

constants whose values change from line to line in the proofs. We set X = (Xk
i )

k=1,...,Ni
i=1,...,n

and $X = ( $Xk
i )

k=1,...,Ni
i=1,...,n . We impose the following assumptions:

(A1) Kernel functions: Kij ∈ C2(Rd) is bounded, Lipschitz continuous with Lipschitz
constant Lij > 0, and has a bounded second derivative.

(A2) Potential functions: Vi ∈ C2(Rd), and there exist CV > 0, qi > 0 such that for all
x ∈ Rd,

|∇Vi(x)|+ |D2Vi(x)| ≤ CV (1 + |x|qi), i = 1, . . . , n.
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2. Introduction to Random Batch Algorithm for Stochastic Many Particle Systems

(A3) Strong convexity: The function x �→ Vi(x) − ri|x|2/2 is convex, where ri > 2
#n

j=1

max{Lij , Lji} and i = 1, . . . , n.

(A4) Synchronous coupling: Xk
i (0) =

$Xk
i (0) = X0,k

i for i = 1, . . . , n, k = 1, . . . , Ni, where

X1
0,i, . . . , X

Ni
0,i are independent and identically distributed, and X0,k

i is F0-measurable

with E|X0,k
i |2max{1,qi} < ∞.

Under these assumptions (in particular, the Lipschitz continuity), standard results for
stochastic differential equations [63] guarantee that (2.1) and (2.4) have (up to
P-distinguishability) unique strong solutions. The polynomial growth conditions on ∇Vi

and D2Vi are needed to prove the stability; see Lemma 4. The smallness condition on
the Lipschitz constants of the kernel functions ensures that the evolution group of the
deterministic part of (2.1) is a contraction, thus yielding error bounds uniformly in time.
Our main result reads as follows.

Theorem 1 (Error estimate). Let Assumptions (A1)–(A4) hold. Then there exists a con-
stant C > 0, which is independent of (bi, pi, Ni)i=1,...,n, m, and T , such that

sup
0<t<T

n"
i=1

�(Xk
i − $Xk

i )(t)� ≤ C
√
τ

� n"
i=1

Γi

�1/2

+ Cτ(1 + θγ), t > 0,

where

θ =
maxj=1,...,n bj
minj=1,...,n bj

, γ = 3
�
max{1, q1, . . . , qn}+ 1

�
, (2.6)

Γi =
n"

j,j�=1
j,j� 
=i, j 
=j�

�
max{bi, bj , bj�}
max{bj , bj�} − 1

�
+

n"
j=1
j 
=i

�
bi −min{bi, bj}
min{bi, bj} − 2−max{bi, bj}

Nj
(2.7)

+
bi

pj min{bi, bj}
�
+

�
1

pi − 1
− 1

Ni − 1

�
≥ 0. i = 1, . . . , n,

and qi is introduced in Assumption (A2).

When the potentials vanish, Vi ≡ 0, Assumption (A3) is not satisfied and the error
estimate of Theorem 1 on a finite time interval [0,T] changes to

sup
0<t<T

n"
i=1

�Xk
i − $Xk

i � ≤ CT

√
τ

�
τ(1 + θ)6 +

n"
i=1

Γi

�1/2

,

where CT > 0 is independent of (bi, pi, Ni)i=1,...,m but possibly depending on T . It is
possible to prove a time-uniform estimate without Assumption (A3) but supposing a bi-
Lipschitz property near the origin for Kij ; see [65, Theorem 5.1].

Theorem 1 can be generalized to include multiplicative noise. Indeed, if the diffusion
σi is Lipschitz continuous and the strong convexity condition on Vi is strengthened (see
Assumption (B2) at the beginning of section 3.4), then the statement of Theorem 1 still
holds. We refer to section 3.4 for details.
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2. Introduction to Random Batch Algorithm for Stochastic Many Particle Systems

The theorem generalizes [52, Theorem 3.1] to the multi-species case. Indeed, if n =
1, Γ1 reduces to 1/(p1 − 1) − 1/(N1 − 1) and θ = 1. Then the error bound becomes
C
!
τ/(p1 − 1) + Cτ , which corresponds to (3.9) in [52]. Compared to the result in [52],

Theorem 1 shows the influence of the different batch sizes bi of the species. Indeed, if the
batch sizes are very different, θ is much larger than one, which increases the constant in the
error estimate. This behaviour is also observed in the numerical simulations; see section
4.1.2.
The proof of Theorem 1 is based on estimates for the error process Zk

i := $Xk
i −Xk

i . Since
the noise terms are the same, Zk

i solves

dZk
i (t) = −(∇Vi( $Xk

i )−∇Vi(X
k
i ))dt+

n"
j=1

αij

"
&=1

(j,k) 
=(j,&)

ΔK&
ijdt+ χk

i (
$X)dt

for tm−1 < t ≤ tm, where ΔK&
ij := Kij( $Xk

i − $X&
j )−Kij(X

k
i −X&

j ) and χk
i (

$X) is a remainder
term (defined in (3.2) below). An important ingredient of the proof is the computation of
the variance of χk

i , which is more involved than in [52], since the multi-species case requires
to distinguish several cases in the choice of indices (i, k) and (j, 5).
A straightforward computation, detailed in section 3.3, shows that the error process

satisfies

1

2

d

dt
E|Zk

i (t)|2 ≤ −
�
ri − 2

n"
j=1

max{Lij , Lji}
�
E|Zk

j (t)|2 + E
�
χk
i (

$X(t)) · Zk
i (t)

�
.

The main difficulty is the estimate of the last term. The idea is to write it in terms of
differences Zk

i (t) − Zk
i (tm−1), χ

k
i (

$X(t)) − χk
i (

$X(tm−1)), and χk
i (

$X(t)) − χk
i (X(t)). These

differences are estimated from the integral formulations of the differential equations satisfied
by the corresponding processes, using Assumptions (A1)–(A4) and the stability results for
Xk

i ,
$Xk
i , and Zk

i . After some computations, we arrive at the differential inequality

du

dt
≤ − min

i=1,...,n

�
ri − 2

n"
j=1

max{Lij , Lji}
�
u+ C �(θ)τ(u1/2 + τ) + C ��τ

n"
i=1

Γi,

where u =
#n

i=1 �Zk
i �2 and the constants C �(θ) > 0 and C �� > 0 do not depend on

(bi, pi)i=1,...,n, m, or T . In view of Assumption (A2), the first term on the right-hand side is
non-positive. The dependence of C �(θ) on θ arises from the terms involving bi/min{bi, bj};
see (2.5). It follows that u(t) is bounded from above by C(θ)τ + C

!
τ
#n

i=1 Γi for some
other constants C(θ) > 0 and C > 0.

2.4. Link to related problems

The random-batch scheme can be interpreted as a Monte–Carlo method to solve the mean-
field equations associated to (2.1). In the mean-field limit N → ∞, system (2.1) converges
to

dXi = −∇Vi(Xi)dt+

n"
j=1

(Kij ∗ uj)(Xi)dt+ σidBi, i = 1, . . . , n,
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where ui is the probability density of Xi and solves the mean-field system

∂tui = div(ui∇Vi(x))− div

� n"
j=1

ui(Kij ∗ uj)
�
+

σ2
i

2
Δui in Rd, i = 1, . . . , n;

see, e.g., the review [49]. If Kij = ∇kij , it holds that Kij ∗ uj = kij ∗ ∇uj , and the density
ui solves a non-local cross-diffusion system. Moreover, if kij = kηij approximates the delta
distribution δ according to kηij → aijδ in D� as η → 0 for some numbers aij ≥ 0, it was
shown in [25] that the limit N → ∞ and η → 0 (in a certain sense) leads to the local
cross-diffusion system

∂tui = div(ui∇Vi(x))− div

� n"
j=1

aijui∇uj

�
in Rd, i = 1, . . . , n.

The mean-field limit of the random-batch method was investigated in [50]. The authors
showed that the (single-species) N -particle system is reduced to a p-particle system. This
mean-field limit does not depend on the law of large numbers, and it is different from
the standard mean-field limit, since the chaos is imposed at every time step, while in the
standard limit, the chaos is propagated to later times.
The idea of choosing particles in a random way has been exploited in kinetic theory.

For instance, subsampling was used in Monte–Carlo simulations [45] and for the symmetric
Nabu algorithm, which relates to the random-batch method for pi = 2 [1].
Random-batch methods can also be applied to second-order particle systems [54], many-

particle Schrödinger equations [42], and kinetic equations [70]. They have been used to
sample complicated or unknown probability distributions [69, 94], and they have been
combined with model predictive control strategies to control the guiding problem for a
herd of evaders [66]. In molecular dynamics, the interaction kernel is generally singular
and given by, e.g., the Coulomb or Lennard–Jones potential. This situation is excluded
in this work because of Assumption (A1). However, one may split the kernel function
into (singular) short-range and (smooth) long-range parts and apply the random-batch
method only to the long-range part. This yields similar convergence results as above but
with constants depending on the end time [54]. We refer to the review [51] for further
applications and references.
Theorem 1 provides the strong convergence with rate O(

√
τ) of the error process. In

[53], the weak convergence with rate O(τ) is proved for the single-species case. The proof
makes use of the backward Kolmogorov equation and the contraction of the associated
semigroup in L∞(Rd). In the multi-species situation, we obtain a system of equations for
which contraction properties can be expected under Assumption (A2), but possibly in a
weaker topology. A possible way out is to use estimates in the space Hs(Rd) ⊂ L∞(Rd) for
s > d/2, derived for the mean-field limit [25]. We leave the details to future work.
Theorem 1 can be generalized to particle systems with multiplicative noise when the

diffusion coefficients are Lipschitz continuous. We can only prove stability for particle
systems with interacting diffusion coefficients like in [26], which lead in a mean-field-type
limit to the Shigesada–Kawasaki–Teramoto population model. For details, we refer to
section 3.4.
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2. Introduction to Random Batch Algorithm for Stochastic Many Particle Systems

The part of this thesis concerning the random batch method for stochastic many par-
ticle systems is distributed as follows. The consistency of the scheme and stability of the
stochastic processes Xk

i and $Xk
i are proved in section 3.1. Section 3.2 is concerned with the

control of the error process Zk
i = $Xk

i −Xk
i and corresponding uniform estimates. Theorem

1 is proved in section 3.3. We comment on the error estimate for particle systems with
multiplicative noise in section 3.4. Some numerical simulations, illustrating the conver-
gence behaviour and the influence of the batch sizes, are presented in chapter 4. Finally,
we collect some known results about the conditional expectation used in this part of the
thesis in Appendix A.1.2.
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3. Numerical Analysis

The main goal of this chapter is to provide the numerical analysis of the random batch
algorithm given in subsection 2.2, which cumulates to the proof of Theorem 1 - the main
result of Part 1. This algorithm provides an approximation of the stochastic many particle
system 2.1 we are interested in. We prove consistency and stability results, which will then
lead to convergence of the scheme to solutions of the system 2.1. At the end of this chap-
ter, we apply the techniques discussed here to a special particle system with multiplicative
noise, broadening the use-case of our algorithm, giving a result akin to Theorem 1 also in
this instance.

3.1. Consistency and stability

We assume that Assumptions (A1)–(A4) of chapter 2 hold. Let i ∈ {1, . . . , n}, k ∈
{1, . . . , Ni} and let $Xk

i with k ∈ Ci,r be a solution to (2.4). Then $Xk
i solves

d $Xk
i = −∇Vi( $Xk

i )dt+

n"
j=1

αij

Nj"
&=1

(i,k) 
=(j,&)

Kij( $Xk
i − $X&

j )dt+ σidB
k
i + χk

i ( $X)dt, (3.1)

where the remainder χk
i is defined for x = (x11, . . . , x

Nn
n ) ∈ RdN1×···×dNn by

χk
i (x) =

n"
j=1

βij
"
&∈Cj,r

(i,k) 
=(j,&)

Kij(x
k
i − x&j)−

n"
j=1

αij

Nj"
&=1

(i,k) 
=(j,&)

Kij(x
k
i − x&j) (3.2)

=: fk
i (x)− gki (x).

The following proposition shows that the scheme is consistent.

Proposition 2 (Consistency). Let pi ≥ 2 for i = 1, . . . , n and x = (x11, . . . , x
Nn
n ) ∈

RdN1×···×dNn. Then the expectation and variance of χk
i , defined in (3.2), are E(χk

i (x)) = 0
and

Var(χk
i (x)) =

n"
j,j�=1

j,j� 
=i, j 
=j�

�
max{bi, bj , bj�}
max{bi, bj�} − 1

�
Ajj�

i (x)

+

n"
j=1
j 
=i

�
bi −min{bi, bj}
min{bi, bj} − 1

Nj
+

bi
pj min{bi, bj}

�
Aj

i (x) +
max{bi, bj} − 1

Nj
Aj

i,1(x) (3.3)
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3. Numerical Analysis

+

�
1

pi − 1
− 1

Ni − 1

�
Ai(x),

where i = 1, . . . , n, k = 1, . . . , Ni, and

Ajj�
i (x) =

1

NjNj�

Nj"
&=1

Nj�"
&�=1

Kij(x
k
i − x&j) ·Kij�(x

k
i − x&

�
j�),

Aj
i (x) =

1

Nj(Nj − 1)

Nj"
&,&�=1, & 
=&�

Kij(x
k
i − x&j) ·Kij(x

k
i − x&

�
j ),

Aj
i,1(x) =

1

Nj

Nj"
&=1

''Kij(x
k
i − x&j)

''2,
Ai(x) =

1

Ni − 2

Ni"
&=1, & 
=k

''''Kii(x
k
i − x&i)−

1

Ni − 1

Ni"
&�=1, &� 
=k

Kii(x
k
i − x&

�
i )

''''2.
Proof. The proof is similar to [52, Lemma 3.1], but since we have multiple species, the
computations are more involved. Let i ∈ {1, . . . , n} and k ∈ {1, . . . , Ni} be arbitrary but
fixed. We write Iki (j, 5) = 1 if (i, k) and (j, 5) are in the same super-batch, i.e., if there
exists r ≥ 1 such that (i, k), (j, 5) ∈ Cr. Otherwise, we set Iki (j, 5) = 0. With this notation,
we can write fk

i = fk
i (x), defined in (3.2), as

fk
i =

n"
j=1

βij

Nj"
&=1

Kij(x
k
i − x&j)I

k
i (j, 5).

Step 1: Computation of the expection. We claim that

EIki (j, 5) =

�
pi−1
Ni−1 if i = j,
min{bi,bj}

bibj
if i "= j.

(3.4)

The case i = j is proved in [52, Lemma 3.1]. For i "= j, we define a(i, k) as the index of the
super-batch Cr that contains (i, k), i.e. a(i, k) = r if and only if (i, k) ∈ Cr or, equivalently,
k ∈ Ci,r. We have

P(Iki (j, 5) = 1) = P((j, 5) ∈ Ca(i,k)) =
min{bi,bj}"

r=1

P((j, 5) ∈ Cr|a(i, k) = r)P(a(i, k) = r)

=

min{bi,bj}"
r=1

P((j, 5) ∈ Cr)P(a(i, k) = r).

The distribution of a particle of a certain species is uniform with respect to the species’
batch in which it ends up, i.e. P(5 ∈ Cj,r) = P(5 ∈ Cj,s) for all r, s = 1, . . . , bj . Consequently,
we have P(5 ∈ Cj,r) = 1/bj for all r = 1, . . . , bj and P(5 ∈ Cj,r) = 0 otherwise, since Cj,r = ∅
if r > bj . This leads for i "= j to

EIki (j, 5) = 1 · P(Iki (j, 5) = 1) = min{bi, bj} 1

bj

1

bi
.
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3. Numerical Analysis

We infer from the definitions of αij and βij in (2.3) and (2.5), respectively, and from (3.4)
that

E(fk
i ) =

n"
j=1

βij

Nj"
&=1

Kij(x
k
i − x&j)EIki (j, 5)

=
1

Ni − 1

Ni"
&=1, & 
=k

Kii(x
k
i − x&i) +

n"
j=1, j 
=i

1

Nj

Nj"
&=1

Kij(x
k
i − x&j)

=
n"

j=1

αij

"
&=1

(i,k) 
=(j,&)

Kij(x
k
i − x&j) = gki .

This shows that E(χk
i (x)) = E(fk

i )− gki = 0.
Step 2: Preparation for the computation of the variance. We introduce the notation

G&
j := Kij(x

k
i − x&j)I

k
i (j, 5) if (i, k) "= (j, 5) and G&

j = 0 if (i, k) = (j, 5). Then

E(fk
i )

2 =

n"
j,j�=1

βijβij�

Nj"
&=1

Nj�"
&�=1

E(G&
jG

&�
j�).

The expectation of G&
jG

&�
j� can be written as

E(G&
jG

&�
j�) = Kij(x

k
i − x&j)Kij�(x

k
i − x&

�
j�)E(I

k
i (j, 5)I

k
i (j

�, 5�))

= Kij(x
k
i − x&j)Kij�(x

k
i − x&

�
j�)P(I

k
i (j, 5)I

k
i (j

�, 5�) = 1).

Thus, we need to calculate P(Iki (j, 5)Iki (j�, 5�) = 1). For this, we distinguish several cases.
Case 1: j, j� "= i and j "= j�. We compute, using the definition of the super-batches,

{Iki (j, 5)Iki (j�, 5�) = 1} =
�
(j, 5) ∈ Ca(i,k), (j�, 5�) ∈ Ca(i,k)

	
=

�
5 ∈ Cj,a(i,k), 5� ∈ Cj�,a(i,k)

	
=

%
r∈N

�
5 ∈ Cj,a(i,k), 5� ∈ Cj�,a(i,k), r = a(i, k)

	
.

The random division ξm.1 of the batch Ci,r at time tm−1 is independent of the random
division of the batches Cj,r and Cj�,r. Thus, we can write

P(Iki (j, 5)Iki (j�, 5�) = 1) =

min{bi,bj ,bj�}"
r=1

P(k ∈ Ci,r)P(5 ∈ Cj,r)P(5� ∈ Cj�,r)

= min{bi, bj , bj�} 1
bi

1

bj

1

bj�
.

Case 2: j, j� "= i, j = j� and 5 "= 5�. In this case, both 5 and 5� are in the same batch
such that

{Iki (j, 5)Iki (j, 5�) = 1} =
%
r∈N

�
5, 5� ∈ Cj,r, r = a(i, k)

	
(3.5)
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3. Numerical Analysis

=
%
r∈N

{Ikj (j, 5�) = 1} ∩ {5 ∈ Cj,r} ∩ {k ∈ Ci,r}.

Because of the uniformity of the random division (as in Case 1), we have

P(I&j (j, 5�) = 1, 5 ∈ Cj,r) = P(I&j (j, 5�) = 1, 5 ∈ Cj,s) for all 1 ≤ r, s ≤ bj .

Since, by (3.4), P(I&j (j, 5�) = 1) = (pj − 1)/(Nj − 1), we deduce from (3.5) that

P(Iki (j, 5)Iki (j�, 5�) = 1) =

min{bi,bj}"
r=1

P(I&j (j, 5�) = 1, 5 ∈ Cj,r)P(k ∈ Ci,r)

=
1

bibj

min{bi,bj}"
r=1

P(I&j (j, 5�) = 1) =
min{bi, bj}(pj − 1)

bibj(Nj − 1)
.

Case 3: j "= i, j� = i. If 5 = k, it follows from the definition of G&
j that G&�

i = Gk
i = 0. If

5 "= k, the definition of G&
j gives

E(G&
jG

&�
j�) = Kij(x

k
i − x&j)Kii(x

k
i − x&

�
i )E(Iki (j, 5)Iki (i, 5�)),

and it remains the compute the expectation on the right-hand side. Proceeding as in the
previous cases, we find that

P(Iki (j, 5)Iki (i, 5�) = 1) =

min{bi,bj}"
r=1

P(Iki (i, 5�) = 1, k ∈ Ci,r)P(5 ∈ Cj,r)

=
1

bibj

min{bi,bj}"
r=1

P(Iki (i, 5�) = 1) =
min{bi, bj}(pi − 1)

bibj(Ni − 1)
.

Case 4: j, j� = i, 5 "= 5� "= k. We need to compute the probability of Iki (i, 5)I
k
i (i, 5

�) = 1.
This case happens exactly when the indices 5, 5�, and k are in the same batch Ci,a(i,k).
Similar arguments as for P(Iki (i, 5) = 1) in the proof of Lemma 3.1 in [52] yield

P(Iki (i, 5)Iki (i, 5�) = 1) =
(pi − 1)(pi − 2)

(Ni − 1)(Ni − 2)
.

Case 5: j, j� = i, 5 = 5�, 5 "= k. We only need E(Iki (i, 5)), which we already computed:

P(Iki (i, 5) = 1) =
pi − 1

Ni − 1
.

Summarizing these five cases, we obtain E(fk
i )

2 = J1 + · · · + J5, where the term Jj
corresponds to case j and

J1 =

n"
j,j�=1

j,j� 
=i, j 
=j�

min{bi, bj , bj�}bi
NjNj� min{bi, bj}min{bi, bj�}

Nj ,Nj�"
&,&�=1

Kij(x
k
i − x&j)Kij�(x

k
i − x&

�
j�),
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J2 =
n"

j=1
j 
=i

(pj − 1)bi
(Nj − 1)Nj min{bi, bj}pj

Nj"
&,&�=1, & 
=&�

Kij(x
k
i − x&j)Kij(x

k
i − x&

�
j ),

J �
2 =

n"
j=1
j 
=i

bi
Nj min{bi, bj}pj

Nj"
&=1

Kij(x
k
i − x&j)

2,

J3 = 2

n"
j=1
j 
=i

1

(Ni − 1)Nj

Nj ,Ni"
&,&�=1
&� 
=k

Kij(x
k
i − x&j)Kii(x

k
i − x&

�
i ),

J4 =
pi − 2

(pi − 1)(Ni − 1)(Ni − 2)

Ni"
&,&�=1
&
=&�

Kii(x
k
i − x&i)Kii(x

k
i − x&

�
i ),

J5 =
1

(pi − 1)(Ni − 1)

Ni"
&=1

Kii(x
k
i − x&i)

2.

For the term (E(fk
i ))

2 = (E(gki ))2, we expand the square:

(E(fk
i ))

2 =

� n"
j=1

αij

"
&=1

(i,k) 
=(j,&)

Kij(x
k
i − x&j)

n"
j�=1

αij�
"
&�=1

(i,k) 
=(j�,&�)

Kij�(x
k
i − x&

�
j�)

�2

= �J1 + · · ·+ �J5, where

�J1 = n"
j,j�=1

j,j� 
=i, j 
=j�

1

NjNj�

Nj ,Nj�"
&,&�=1

Kij(x
k
i − x&j)Kij�(x

k
i − x&

�
j�),

�J2 = n"
j=1, j 
=i

1

N2
j

Nj"
&,&�=1

Kij(x
k
i − x&j)Kij(x

k
i − x&

�
j ),

�J3 = 2
n"

j=1, j 
=i

1

(Ni − 1)Nj

Nj"
&=1

Ni"
&�=1
&� 
=k

Kij(x
k
i − x&j)Kii(x

k
i − x&

�
i ),

�J4 = 1

(Ni − 1)2)

Ni"
&,&�=1
&
=&�

Ki,i(x
k
i − x&i)Kii(x

k
i − x&

�
i ),

�J5 = 1

(Ni − 1)2

Ni"
&=1

Kii(x
k
i − x&i)

2.

The variance of fk
i is the difference (J1 + · · · + J5) − ( �J1 + · · · + �J5). We observe that

30
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J3 − �J3 = 0 and that

min{bi, bj , bj�}bi
min{bi, bj}min{bi, bj�} =

max{bi, bj , bj�}
max{bj , bj�} ,

A tedious but straightforward computation yields for the other terms:

Var(fk
i ) = E(fk

i )
2 − (Efk

i )
2 = (J1 − �J1) + (J2 + J �

2 − �J2) + (J4 + J5 − �J4 − �J5)
=

n"
j,j�=1

j,j� 
=i, j 
=j�

�
max{bi, bj , bj�}
max{bj , bj�} − 1

�
1

NjNj�

Nj"
&=1

Nj�"
&�=1

Kij(x
k
i − x&j)Kij�(x

k
i − x&

�
j�)

+
n"

j=1, j 
=i

�
bi −min{bi, bj}
min{bi, bj} − 1

Nj
+

bi
min{bi, bj}pj

�
1

Nj(Nj − 1)

×
Nj"

&,&�=1, & 
=&�
Kij(x

k
i − x&j)Kij(x

k
i − x&

�
j )

+
n"

j=1, j 
=i

�
max{bi, bj} − 1

Nj

�
1

Nj

Nj"
&=1

Kij(x
k
i − x&j)

2

+

�
1

pi − 1
− 1

Ni − 1

�
1

Ni − 2

Ni"
&=1
k 
=&

�
Kii(x

k
i − x&j)−

1

Ni − 1

Ni"
&�=1
&� 
=k

Kii(x
k
i − x&

�
j )

�2

.

The right-hand side equals (3.3), which finishes the proof.

Using definition (2.7), we can estimate the variance of χk
i (x) from above according to

Var(χk
i (x)) ≤ 8 max

i,j=1,...,n
�Kij�2∞

n"
k=1

Γk.

As expected, for larger batch sizes pi, the variance is smaller and the noise level is lower.
In the single-species case, we recover [52, Lemma 3.1] since

Var(χk
i (x)) =

�
1

pi − 1
− 1

Ni − 1

�
Ai(x).

If the species numbers and batch sizes are the same, i.e. Ni = N and bi = b for all
i = 1, . . . , n, it follows that

Var(χk
i (x)) =

�
1

p
− 1

N

� n"
j=1, j 
=i

�
Aj

i (x) +Aj
i,1(x)

�
+

�
1

p− 1
− 1

N − 1

�
Ai(x).

We observe that the first term on the right-hand side of (3.3) vanishes. This means that, in
case of different species numbers or batch sizes, the noise level is larger than in the uniform
case, i.e., the case for which p is chosen such that bi = bj for all i, j and consequently,
θ = 1.

For later use, we prove the following auxiliary result, which generalizes Lemma 3.2 in
[52] to the multi-species case.
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Lemma 3. Let i ∈ {1, . . . , n}, k ∈ {1, . . . , Ni}, and (i, k) ∈ Ci,r for some r = a(i, k) ≤ bi.
Let S&

j ∈ Rd with j, 5 ∈ N be random variables which are independent of the partitioning
random variable ξm. Then it holds&&&& 1

pj

"
&∈Cj,r

S&
j

&&&& = max
&=1,...,Nj

�S&
j� if i "= j,

&&&& 1

pj − 1

"
&∈Ci,r, & 
=k

S&
i

&&&& = max
&=1,...,Ni

�S&
i � if i = j,

recalling that � · � = (E(·)2)1/2.
Proof. The proof is similar to that one of [52, Lemma 3.2]. We present it for completeness.
Let i "= j and set Iki (j, 5) = 1 if (i, k) and (j, 5) are in same batch and Iki (j, 5) = 0 otherwise.
Due to the independency of S&

j and ξm, we have&&&& 1

pj

"
&∈Cj,r

S&
j

&&&&2 = 1

p2j
E
� Nj"

&=1

Iki (j, 5)S
&
j

�2

=
1

p2j

Nj"
&,&�=1

E
�
Iki (j, 5)I

k
i (j, 5

�)S&
jS

&�
j

�

=
1

p2j

Nj"
&,&�=1

E(Iki (j, 5)Iki (j, 5�))E(S&
jS

&�
j ).

We know from (3.4) that E(Iki (j, 5)Iki (j, 5�)) ≤ 1/bj in the case of 5 = 5� and from Case 2
of Proposition 2 that E(Iki (j, 5)Iki (j, 5�)) ≤ (pj − 1)/(bj(Nj − 1)), if 5 "= 5�. Therefore, using
the Cauchy–Schwarz inequality and the fact that Nj = bjpj ,&&&& 1

pj

"
&∈Cj,r

S&
j

&&&&2 ≤ 1

p2j

� Nj"
&,&�=1, & 
=&�

pj − 1

bj(Nj − 1)
�S&

j� �S&�
j �+

Nj"
&=1

1

bj
�S&

j�2
�

≤ max
&=1,...,Nj

�S&
j�2

�
(pj − 1)(Nj − 1)Nj

pjNj(Nj − 1)
+

1

pj

�
≤ max

&=1,...,Nj

�S&
j�2.

The case i = j is shown in a similar way.

The next result is concerned with the stability of Xk
i and $Xk

i .

Lemma 4 (Stability). Let q ≥ 2, and X0,k
i ∈ Lq(Ω), where i ∈ {1, . . . , n} and k ∈

{1, . . . , Ni}. Then there exist constants C(q), C1 > 0, independent of (pi, bi)i=1,...,n, m,
and T , such that

sup
t>0

E|Xk
i (t)|q ≤ C(q), sup

t>0
E| $Xk

i (t)|q ≤ C(q)(1 + θq), (3.6)

sup
tm−1<t<tm

E
�| $Xk

i (t)|q
''Fm−1

� ≤ | $Xk
i (tm−1)|q + C(q)(1 + θq), (3.7)

where θ is defined in (2.6). Furthermore, it holds that''E� $Xk
i (t)− $Xk

i (tm−1)
''Fm−1

�'' ≤ CV τ | $Xk
i (tm−1)|�qi + C1τ(1 + θ�qi), (3.8)

where $qi = max{2, qi} and CV > 0 is introduced in Assumption (A2).
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Proof. Let i ∈ {1, . . . , n} and k ∈ {1, . . . , Ni} be arbitrary but fixed. The proof is similar
to [52, Lemma 3.3] with the exception that we work out the dependence on the number of
batches bi in terms of the quotient θ.

Step 1: Stability for Xk
i (t). Let d ≥ 2. We use Itô’s calculus for the process |Xk

i |q and
apply the expectation as in [52, Lemma 3.3], which yields

d

dt
E|Xk

i (t)|q = −qE
�|Xk

i (t)|q−2Xk
i (t) · ∇Vi(X

k
i (t))

�
+

q

Ni − 1
E
�
|Xk

i (t)|q−2Xk
i (t) ·

Ni"
&=1, & 
=k

Kii(X
k
i (s)−X&

i (s))

�

+

n"
j=1, j 
=i

q

Nj
E
�
|Xk

i (t)|q−2Xk
i (t) ·

Nj"
&=1

Kij(X
k
i (s)−X&

j (s))

�

+
σ2
i

2
q(q + d− 2)E|Xk

i (t)|q−2.

The mean-value theorem with intermediate value ζ ∈ Rd and the convexity of x �→ Vi(x)−
ri|x|2/2 (Assumption (A2)) imply that for all x ∈ Rd,

x · ∇Vi(x) = xTD2Vi(ζ)x+ x · ∇Vi(0) ≥ ri|x|2 + x · ∇Vi(0).

Together with Fubini’s theorem, the boundedness of the kernels Kij (Assumption (A1)),
and Young’s inequality, it follows that

d

dt
E|Xk

i (t)|q ≤ −qriE|Xk
i (t)|q + q

�
|∇Vi(0)|+

n"
j=1

�Kij�∞
�
E|Xk

i (t)|q−1

+
σ2
i

2
q(q + d− 2)E|Xk

i (t)|q−2 ≤ −qri
2
E|Xk

i (t)|q + C2,

where C2 > 0 depends on ∇Vi, Kij , σi, d, and q. Grönwall’s lemma implies that E|Xk
i (t)|q

is bounded by a constant depending on q (and not depending on T ).
Step 2: Stability for $Xk

i . Let t ∈ (tm−1, tm] and let (i, k) ∈ Cr for some r ∈ N. Similarly
as in the previous step, we use Itô’s calculus and apply the conditional expectation with
respect to Fm−1, observing that | $Xk

i (tm−1)|q is Fm−1-measurable. Then, applying Lemmas
45 and 46 in the appendix,

d

dt
E
�| $Xk

i (t)|q
''Fm−1

�
= −qE

�| $Xk
i (t)|q−2 $Xk

i · ∇Vi( $Xk
i (t))

''Fm−1

�
+

q

pi − 1

"
&∈Ci,r, & 
=k

E
�| $Xk

i (t)|q−2 $Xk
i (t) ·Kii( $Xk

i − $X&
i )
''Fm−1

�
+

n"
j=1, j 
=i

qbi
pj min{bi, bj}

"
&∈Cj,r

E
�| $Xk

i (t)|q−2 $Xk
i (t) ·Kij( $Xk

i (t)− $X&
j (t))

''Fm−1

�
+

σ2
i

2
q(q + d− 2)E

�| $Xk
i (t)|q−2

''Fm−1

�
.
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Proceeding as in the previous step and using bi/min{bi, bj} ≤ θ, we infer that

d

dt
E
�| $Xk

i (t)|q
''Fm−1

� ≤ −qri
2
E
�| $Xk

i (t)|q
''Fm−1

�
+ C3(1 + θ)q,

and Grönwall’s lemma on (tm−1, tm] implies (3.7). Finally, the second estimate in (3.6) is
proved in a similar way, using the Grönwall lemma on [0, t] and taking into account that

E|X0,k
i |q is bounded by assumption.

Step 3: Proof of estimate (3.8). We apply Itô’s lemma, take the conditional expectation
of $Xk

i (t)− $Xk
i (tm−1), and use the polynomial growth condition for ∇Vi in Assumption (A2)

as well as the boundedness of Kij :

E
� $Xk

i (t)− $Xk
i (tm−1)

''Fm−1

�
= −

� t

tm−1

E
�∇Vi( $Xk

i (s))
''Fm−1

�
ds

+
1

pi − 1

� t

tm−1

E
� "

&∈Ci,r, & 
=k

Kii( $Xk
i (s)− $X&

i (s))
''Fm−1

�
ds

+
"

j=1, j 
=i

bi
pj min{bi, bj}

� t

tm−1

E
� "

&∈Cj,r
Kij( $Xk

i (s)− $X&
j (s))

''Fm−1

�
ds

≤ CV τ + CV

� t

tm−1

E
�| $Xk

i (s)|qi
''Fm−1

�
ds+ τ

n"
j=1

�Kij�∞bi
min{bi, bj} .

It follows from (3.7) with q = $qi := max{2, qi} that

E
� $Xk

i (t)− $Xk
i (tm−1)

''Fm−1

�
≤ CV τ | $Xk

i (tm−1)|�qi + τ

�
CV + CV C($qi)(1 + θ�qi) + n"

j=1

�Kij�∞bi
min{bi, bj}

�
≤ CV τ | $Xk

i (tm−1)|�qi + C4($qi)(1 + θ�qi).
This completes the proof.

3.2. Control of the error process

We prove first a bound for the difference $Xk
i (t)− $Xk

i (tm−1).

Lemma 5. Let t ∈ (tm−1, tm], let $X be the stochastic process defined in (2.4), and let
i ∈ {1, . . . , n}. Set q�i = 2max{1, qi}, where qi is defined in Assumption (A2). Then, for

any (i, k) ∈ Cr for some r ≤ bi such that X0,k
i ∈ Lq�i(Ω), there exists a constant C > 0,

independent of (pi, bi)i=1,...,n, and ξm, such that

E
�| $Xk

i (t)− $Xk
i (tm−1)|2

''Fm−1

� ≤ Cτ(1 + θq
�
i/2+1)

�
1 + | $Xk

i (tm−1)|q�i/2+1
�
.

Proof. Again, the proof is similar to [52, Lemma 3.3] and based on Itô’s calculus. Let
t ∈ (tm−1, tm] and (i, k) ∈ Cr for some r ≤ bi, satisfying the assumptions of the lemma. Set
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S(t) := $Xk
i (t)− $Xk

i (tm−1). We apply Itô’s lemma to |S(t)|2 and the conditional expectation
and use Lemmas 45 and 46:

E(|S(t)|2|Fm−1) ≤ 2

� t

tm−1

''E�S(s) · ∇Vi( $Xk
i (s))

''Fm−1

�''ds+ d

� t

tm−1

σ2
i ds (3.9)

+
2

pi − 1

� t

tm−1

''''E� "
&∈Ci,r, & 
=k

Kii( $Xk
i (s)− $X&

i (t)) · S(s)
''''Fm−1

�''''ds
+

"
j=1, j 
=i

2bi
pj min{bi, bj}

� t

tm−1

''''E� "
&∈Ci,r, & 
=k

Kij( $Xk
i (s)− $X&

j (t)) · S(s)
''''Fm−1

�''''ds
=: J6 + · · ·+ J9.

By the Cauchy–Schwarz inequality, the polynomial growth condition on ∇Vi (Assumption
(A2)), and stability estimate (3.6) with q = q�i, we have

J6 ≤ 2C
1/2
V

� t

tm−1

�
E(|S(s)|2''Fm−1)

�1/2�E(1 + | $Xk
i (s)|2qi

''Fm−1)
�1/2

ds

≤ 2C
1/2
V

�
1 + C(q)(1 + θq) + | $Xk

i (tm−1)|q
�1/2 � t

tm−1

�
E(|S(s)|2''Fm−1)

�1/2
ds.

Next, using the boundedness of Kii, Lemma 44, and Hölder’s inequality,

J8 ≤ C�Kii�∞
� t

tm−1

�
E(|S(s)|2''Fm−1)

�1/2
ds,

J9 ≤ C

n"
j=1, j 
=i

bi
min{bi, bj}�Kii�∞

� t

tm−1

�
E(|S(s)|2''Fm−1)

�1/2
ds

≤ Cθ

� t

tm−1

�
E(|S(s)|2''Fm−1)

�1/2
ds.

Hence, we infer from (3.9) that

E(|S(t)|2|Fm−1) ≤ C5

� t

tm−1

�
E(|S(s)|2|Fm−1)

�1/2
ds+ dσ2

i (t− tm−1), (3.10)

where C5 := 2C
1/2
V (1+C(q)(1+θq)+ | $Xk

i (tm−1)|q)1/2+Cθ. We deduce from estimate (3.6)
that the integrand on the right-hand side can be estimated according to

E(|S(s)|2|Fm−1) ≤ 1

2
E
�| $Xk

i (s)|2
''Fm−1

�
+

1

2
| $Xk

i (tm−1)|2

≤ C(2)

2
(1 + θ2) +

1

2
| $Xk

i (tm−1)|2.

Inserting this estimate into (3.10), we conclude that

E(|S(t)|2|Fm−1) ≤ C6τ(1 + θq/2+1)
�
1 + | $Xk

i (tm−1)|q/2+1
�
,

where C6 > 0 does not depend on bi, pi, or ξm.
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We define the error process Zk
i (t) :=

$Xk
i (t)−Xk

i (t) and prove some estimates for Zk
i (t),

generalizing [52, Lemma 3.4].

Lemma 6 (Control of the error process). Let i ∈ {1, . . . , n}, k ∈ {1, . . . , Ni}, and X0,k
i ∈

Lq�i(Ω), where q�i = 2max{1, qi} and qi is introduced in Assumption (A2). Then there
exists a constant C > 0, which is independent of (bi, pi)i=1,...,n, and m such that for all
t ∈ (tm−1, tm],

�Zk
i (t)− Zk

i (tm−1)� ≤ Cτ(1 + θq
�
i/2), |Zk

i (t)| ≤ Cτθ + |Zk
i (tm−1)|, (3.11)''E�(Zk

i (t)− Zk
i (tm−1))χ

k
i (X(t))

�'' (3.12)

≤ Cτ

�
(1 + θ3q

�
i/2)τ + (1 + θq

�
i)�Zk

i (t)�+
n"

j=1

�Z1
j (t)�

�
+ 8τ max

j=1,...,n
�Kij�2∞Γi,

where Γi and χk
i are defined in (2.7) and (3.2), respectively.

Proof. Since the Brownian motions are the same for Xk
i and $Xk

i , the process Zk
i (t) solves

for t ∈ (tm−1, tm] the deterministic equation

dZk
i (t) = −�∇Vi( $Xk

i (t))−∇Vi(X
k
i (t))

�
dt+

n"
j=1

βij
"

&∈Cj,r, (i,k) 
=(j,&)

Kij( $Xk
i − $X&

j )dt (3.13)

−
n"

j=1

αij

Nj"
&=1, (i,k) 
=(j,&)

Kij(X
k
i −X&

j )dt.

Step 1: Proof of (3.11). Let (i, k) ∈ Ci,r for some r ≤ bi. We take the expectation
of the difference of the equations (3.13) solved by Zk

i (t) and Zk
i (tm−1), respectively, and

distinguish the cases j = i and j "= i, leading to

�Zk
i (t)− Zk

i (tm−1)� ≤ J10 + · · ·+ J14, where (3.14)

J10 =

&&&& � t

tm−1

�∇Vi( $Xk
i (s))−∇Vi(X

k
i (s))

�
ds

&&&&,
J11 =

1

pi − 1

&&&& � t

tm−1

"
&∈Cj,r, (i,k) 
=(j,&)

Kii( $Xk
i (s)− $X&

i (s))ds

&&&&,
J12 =

n"
j=1, j 
=i

bi
pj min{bi, bj}

&&&& � t

tm−1

"
&∈Cj,r

Kij( $Xk
i (s)− $X&

j (s))ds

&&&&,
J13 =

1

Ni − 1

Nj"
&=1, & 
=k

&&&& � t

tm−1

Kii(X
k
i (s)−X&

i (s))ds

&&&&,
J14 =

n"
j=1, j 
=i

1

Nj

Nj"
&=1

&&&& � t

tm−1

Kij(X
k
i (s)−X&

j (s))ds

&&&&.
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For the first term, we use the Cauchy–Schwarz inequality, the growth condition of ∇Vi,
and stability estimate (3.6) with q = q�i:

J10 ≤
√
τ

�
E
� t

tm−1

''∇Vi( $Xk
i (s))−∇Vi(X

k
i (s))

''2ds�1/2

≤ CV

√
τ

�
E
� t

tm−1

�
1 + E| $Xk

i (s)|q + E|Xk
i (s)|q

�
ds

�1/2

≤ Cτ(1 + θq/2).

For the remaining terms, we exploit the boundedness of Kij , yielding

J11 + · · ·+ J14 ≤ Cτ
n"

j=1

�
1 +

bi
min{bi, bj}

�
�Kij�∞ ≤ Cτ(1 + θ).

Thus, we deduce from (3.14) that

�Zk
i (t)− Zk

i (tm−1)� ≤ Cτ(1 + θ + θq/2),

which proves the first inequality in (3.11).
We estimate similarly as in the proof of Lemma 4, using the strong convexity of Vi and

the boundedness of Kij :

d

dt
|Zk

i (t)|2 ≤ −ri|Zk
i (t)|2 +

n"
j=1

bi�Kij�∞
min{bi, bj}|Z

k
i (t)| ≤ Cθ|Zk

i (t)|.

This implies after integration with respect to time that |Zk
i (t)| ≤ Cθτ+|Zk

i (tm−1)|, showing
the second inequality in (3.11).
Step 2: Proof of (3.12). Set ΔK&

ij := Kij( $Xk
i − $X&

j )−Kij(X
k
i −X&

j ). Using the formulation

(3.1) for $Xk
i , we find that''E�(Zk

i (t)− Zk
i (tm−1))χ

k
i (X(t))

�'' ≤ J15 + · · ·+ J18, where (3.15)

J15 = E
�� t

tm−1

''∇Vi( $Xk
i (s))−∇Vi(X

k
i (s))

''ds|χk
i (X(t))|

�
,

J16 = E
�

1

pi − 1

� t

tm−1

"
&∈Ci,r, & 
=k

|ΔK&
ii(s)|ds|χk

i (X(t))|
�
,

J17 = E
� n"

j=1, j 
=i

bi
pj min{bi, bj}

� t

tm−1

"
&∈Cj,r

|ΔK&
ij(s)|ds|χk

i (X(t))|
�
,

J18 = E
'''' � t

tm−1

χk
i (X(s))ds · χk

i (X(t))

''''.
For the term J15, we use the mean-value theorem and the growth condition for D2Vi

(Assumption (A2)):

''∇Vi( $Xk
i −∇Vi(X

k
i )
'' ≤ | $Xk

i −Xk
i |
� 1

0
|D2Vi( $Xk

i − η( $Xk
i −Xk

i ))|dη
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≤ CV |Zk
i |
� 1

0

�
1 + | $Xk

i − η( $Xk
i −Xk

i )|qi
�
dη ≤ C|Zk

i |(1 + | $Xk
i |qi + |Xk

i |qi).

Since |χk
i | ≤ 2

#n
j=1 �Kij�∞, the Cauchy–Schwarz inequality and stability estimate (3.6)

lead to

J15 ≤ C
n"

j=1

�Kij�∞
� t

tm−1

E
�|Zk

i (s)|(1 + | $Xk
i (s)|qi + |Xk

i (s)|qi)
�
ds

≤ C
n"

j=1

�Kij�∞
� t

tm−1

�Zk
i (s)��1 + | $Xk

i (s)|qi + |Xk
i (s)|qi�ds

≤ C(q)τ(1 + θqi)
�
τ(1 + θqi/2) + �Zk

i (t)�
�
.

The last inequality follows from

�Zk
i (s)� ≤ �Zk

i (s)− Zk
i (tm−1)�+ �Zk

i (tm−1)− Zk
i (t)�+ �Zk

i (t)� (3.16)

≤ 2Cτ(1 + θqi/2) + �Zk
i (t)�,

which in turn is a consequence of estimate (3.11). We conclude that

J15 ≤ Cτ2(1 + θ3qi/2) + Cτ(1 + θqi)�Zk
i (t)�.

We use the Lipschitz continuity of Kij (Assumption (A1)) to obtain

J16 ≤ 2

pi − 1

n"
j=1

�Kij�∞
� t

tm−1

E
"

&∈Ci,r, & 
=k

|ΔK&
ij(s)|ds

≤ CLii

pi − 1

� t

tm−1

E
"

&∈Ci,r, & 
=k

�| $Xk
i (s)−Xk

i (s)|+ |X&
i (s)− $X&

i (s)|
�
ds

≤ CLii

pi − 1

� t

tm−1

�&&&& "
&∈Ci,r, & 
=k

Zk
i (s)

&&&&+

&&&& "
&∈Ci,r, & 
=k

Z&
i (s)

&&&&�ds.
It follows from the second estimate in (3.11), i.e. |Zk

i (t)| ≤ Cτθ + |Zk
i (tm−1)|, that

J16 ≤ CLii

pi − 1

� t

tm−1

�
(pi − 1)Cτθ + (pi − 1)�Zk

i (s)�+
&&&& "
&∈Ci,r, & 
=k

Z&
i (tm−1)

&&&&�ds.
The variable Z&

i (s) is Gm−1-measurable for all tm−1 < s < t and hence it is independent of
ξm−1. Therefore, we can apply Lemma 3 to the last term of the integrand to find that

J16 ≤ CLii

� t

tm−1

�
Cτθ + �Zk

i (s)�+ �Zk
i (tm−1)�

�
ds. (3.17)

Here, we have taken into account the fact that �Zk
i (t)� = �Z&

i (t)� for every k, 5 = 1, . . . , Ni.
The last two terms of the integrand can be estimated, by estimate (3.11), according to (3.16)
and

�Zk
i (tm−1)� ≤ �Zk

i (tm−1)− Zk
i (t)�+ �Zk

i (t)� ≤ Cτ(1 + θqi/2) + �Zk
i (t)�.
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Hence, we conclude from (3.17) that

J16 ≤ Cτ
�
τ(1 + θq/2) + �Zk

i (t)�
�
,

where C > 0 does not depend on bi, pi, or m and recalling that we have chosen q =
2max{1, qi}. Similar arguments lead to

J17 ≤ 2τ
n"

j=1, j 
=i

�Kij�∞
�
τ(1 + θq/2) + �Zk

i (t)�+ �Z1
j (t)�

�
≤ Cτ

�
τ(1 + θq/2) + �Zk

i (t)�+
n"

j=1, j 
=i

�Z1
j (t)�

�
.

Finally, we estimate the remaining term. By the Cauchy–Schwarz inequality,

J18 =

� t

tm−1

E
''χk

i (X(s)) · χk
i (X(t))

''ds ≤ � t

tm−1

�χk
i (X(s))� �χk

i (X(t))�ds. (3.18)

By Lemma 44 in the appendix,

�χk
i (X(s))�2 = E|χk

i (X(s))|2 = E
�
E
�|χk

i (X(s))|2''σ(X(s))
�

,

where σ(X(s)) is the σ-algebra generated byX(s). Proposition 2 states that Eχk
i (X(s)) = 0

and Var(χk
i (X(s))) ≤ 8maxj=1,...,n �Kij�2∞Γi. Therefore,

�χk
i (X(s))�2 = Varσ(X(s))(χ

k
i (X(s))) ≤ 8 max

j=1,...,n
�Kij�2∞Γi.

Inserting this estimate into (3.18) leads to

J18 ≤ 8τ max
j=1,...,n

�Kij�2∞Γi.

Summarizing, we obtain from (3.15)''E�(Zk
i (t)− Zk

i (tm−1))χ
k
i (X(t))

�''
≤ C(q)τ

�
τ(1 + θ3q/2) + (1 + θq)�Zk

i (t)�+
n"

j=1

�Z1
j (t)�

�
+ 8 max

j=1,...,n
�Kij�2∞Γi,

which finishes the proof.

3.3. Proof of Theorem 1

Let i ∈ {1, . . . , n} and k ∈ {1, . . . , Ni} be such that (i, k) ∈ Ci,r for some r ≤ bi. As in the

last section, we set ΔK&
ij := Kij( $Xk

i − $X&
j )−Kij(X

k
i −X&

j ). The process Zk
i satisfies

dZk
i (t) = −(∇Vi( $Xk

i (t))−∇Vi(X
k
i (t)))dt+

1

Ni − 1

Ni"
&=1, & 
=k

ΔK&
ii(t)dt
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+
n"

j=1, j 
=i

1

Nj

Nj"
&=1

ΔK&
ij(t)dt+ χk

i ( $X(t))dt.

In particular, Zk
i is pathwise a.e. differentiable in time.

Step 1: Differential inequality for |Zk
i |2. Together with the strong convexity of Vi (As-

sumption (A2)) and the Lipschitz continuity of Kij (Assumption (A1)), we find that

1

2

d

dt
|Zk

i |2 = −(∇Vi( $Xk
i )−∇Vi(X

k
i )) · Zk

i +
1

Ni − 1

Ni"
&=1, & 
=k

ΔK&
ii · Zk

i

+

n"
j=1, j 
=i

1

Nj

Nj"
&=1

ΔK&
ij · Zk

i + χk
i (

$X) · Zk
i

≤ −ri|Zk
i |2 +

Lii

Ni − 1

Ni"
&=1, & 
=k

(|Zk
i |+ |Z&

i |)|Zk
i |

+
n"

j=1, j 
=i

Lij

Nj

Nj"
&=1

(|Zk
i |+ |Z&

j |)|Zk
i |+ χk

i ( $X) · Zk
i .

By taking the expectation and using Young’s inequality, it follows after a standard compu-
tation that

1

2

d

dt
E|Zk

i |2 ≤ −riE|Zk
i |2 +

3

2

n"
j=1

LijE|Zk
i |2 +

1

2

n"
j=1

Lij |Zk
j |2 + E(χk

i (
$X) · Zk

i ).

Without loss of generality, we may take k = 1 (since the distributions coincide). A sum-
mation over i = 1, . . . , n and exchanging the summation indices in the third term of the
right-hand side leads to

1

2

d

dt

n"
i=1

E|Z1
i |2 ≤ −

n"
i=1

riE|Z1
i |2 +

3

2

n"
i,j=1

LijE|Z1
i |2 +

1

2

n"
i,j=1

LjiE|Z1
i |2 (3.19)

+

n"
i=1

E(χ1
i (

$X) · Z1
i )

≤ − min
i=1,...,n

�
ri − 2

n"
j=1

max{Lij , Lji}
� n"

i=1

�Z1
i �2 + E(χ1

i (
$X) · Z1

i ).

It remains to estimate the last term E(χ( $X) · Z1
i ). To this end, we write

E(χ( $X(t)) · Z1
i (t)) = J19 + · · ·+ J22, where (3.20)

J19 = E
�
Z1
i (tm−1) · χ1

i (
$X(tm−1))

�
,

J20 = E
�
(Z1

i (t)− Z1
i (tm−1)) · χ1

i (X(t))
�
,

J21 = E
�
Z1
i (tm−1) · (χ1

i ( $X(t))− χ1
i ( $X(tm−1)))

�
,
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J22 = E
�
(Z1

i (t)− Z1
i (tm−1)) · (χ1

i (
$X(t))− χ1

i (X(t)))
�
.

Step 2: Estimate of J19 and J20. Since ξm,i is independent of Gm−1 and Z1
i (tm−1) is

Gm−1-measurable, we obtain from Lemma 44 in the appendix that

E
�
Z1
i (tm−1)

''Gm−1

�
= Z1

i (tm−1),

E
�
Z1
i (tm−1) · χ( $X(tm−1))

''Gm−1

�
= Z1

i (tm−1) · E
�
χ( $X(tm−1))

''Gm−1

�
.

This shows that, using Proposition 2,

J19 = E
�
E
�
Z1
i (tm−1) · χ( $X(tm−1))

''Gm−1

�

= E

�
Z1
i (tm−1) · E

�
χ( $X(tm−1))

''Gm−1

�

= 0.

The term J20 can be directly estimated from (3.12):

J20 ≤ Cτ

�
(1 + θ3q

�
i/2)τ + (1 + θq

�
i)�Z1

i (t)�+
n"

j=1

�Z1
j (t)�

�
+ 8τ max

j=1,...,n
�Kij�2∞Γi.

Step 3: Estimate of J21. We observe that Z1
i (tm−1) is Fm−1-measurable. By the law of

total expectation (Lemma 44) and the Cauchy–Schwarz inequality,

J21 = E
�
Z1
i (tm−1)E

�
χ1
i ( $X1

i (t))− χ1
i ( $X(tm−1))

''Fm−1

�

(3.21)

≤ �Z1
i (tm−1)�

&&E�χ1
i (

$X1
i (t))− χ1

i (
$X(tm−1))

''Fm−1

�&&.
We deduce from (3.16) that the first factor on the right-hand side is bounded from above
by

�Z1
i (tm−1)� ≤ Cτ(1 + θq

�
i/2) + �Zk

i (t)�. (3.22)

For the second factor, we introduce the notation

Δ $K&
ij := Kij( $X1

i (t)− $X&
j (t))−Kij( $X1

i (tm−1)− $X&
j (tm−1)),

Δ $X&
ij := ( $X1

i (t)− $X&
j (t))− ( $X1

i (tm−1)− $X&
j (tm−1)).

Since ξm is Fm−1-measurable, we can write the second factor on the right-hand side of
(3.21) as follows:

E
�
χ1
i ( $X(t))− χ1

i ( $X(tm−1))
''Fm−1

�
(3.23)

=
1

pi − 1

"
&∈Ci,r, & 
=1

E(Δ $K&
ii|Fm−1)− 1

Ni − 1

Ni"
&=1, & 
=i

E(Δ $K&
ii|Fm−1)

+
n"

j=1, j 
=i

bi
pj min{bi, bj}

"
&∈Cj,r

E(Δ $K&
ij |Fm−1)−

"
j=1, j 
=i

1

Nj

Nj"
&=1

E(Δ $K&
ij |Fm−1).

We perform a Taylor expansion of Kij at $X1
i (tm−1)− $X&

j (tm−1) and use the fact that Kij

is Lipschitz continuous with constant Lij , such that DKij can be bounded from above by
Lij : ''E(Δ $K&

ii|Fm−1)
'' ≤ Lij

''E(Δ $X&
ij |Fm−1)

''+ d

2
�D2Kij�∞E

�|Δ $X&
ij |2

''Fm−1

�
.
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Inserting
Δ $X&

ij =
� $X1

i (t)− $X1
i (tm−1)

�
+
� $X&

j (t)− $X&
j (tm−1)

�
into the previous estimate and taking into account the stability estimates of Lemmas 4 and
5, we infer that&&E(Δ $K&

ii|Fm−1)
&& ≤ CτLij

�
1 + θ�qi + θ�qj�

+ Cτ�D2Kij�∞(1 + θq
�
i/2+1)

�
1 + �| $X1

i (tm−1)|q�i/2+1��
≤ Cτ

�
1 + θq

�
i+2),

where the constant C > 0 does not depend on bi, pi, or m. We use this estimate in (3.23)
and observe that bi/min{bi, bj} ≤ θ, yielding&&E�χ1

i ( $X1
i (t))− χ1

i ( $X(tm−1))
''Fm−1

�&& ≤ Cτ
�
1 + θq

�
i+3). (3.24)

Finally, we combine estimates (3.22) and (3.24) to conclude from (3.21) that

J21 ≤ Cτ(1 + θq
�
i+3)�Z1

i (t)�+ Cτ2(1 + θ3q
�
i/2+3).

Step 4: Estimate of J22. Set ΔK&
ij := Kij( $X1

i (t)− $X&
j (t))−Kij(X

1
i (t)−X&

j (t)). We use
the Cauchy–Schwarz inequality and (3.11) to obtain

J22 ≤ �Z1
i (t)− Z1

i (tm−1)� �χ1
i ( $X(t))− χ1

i (X(t))� (3.25)

≤ Cτ(1 + θq
�
i/2)�χ1

i ( $X(t))− χ1
i (X(t))�

≤ Cτ(1 + θq
�
i/2)

�
1

pi − 1

&&&& "
&∈Ci,r, & 
=k

ΔK&
ii

&&&&+
1

Ni − 1

Ni"
&=1, & 
=k

�ΔK&
ii�

+
n"

j=1, j 
=i

bi
pj min{bi, bj}

&&&& "
&∈Cj,r

ΔK&
ij

&&&&+
n"

j=1, j 
=i

1

Nj

Nj"
&=1

�ΔK&
ij�

�
.

The difference ΔK&
ij can be estimated according to (see the second inequality in (3.11))

|ΔK&
ij | ≤ Lij

�|Z1
i (t)|+ |Z&

j (t)|
� ≤ C

�
τθ + |Z1

i (tm−1)|+ |Z&
j (tm−1)|

�
.

Then, with the help of the auxiliary Lemma 3,

1

pi − 1

&&&& "
&∈Ci,r, & 
=k

ΔK&
ii

&&&& ≤ C

pi − 1

&&&& "
&∈Ci,r, & 
=k

�
τθ + |Z1

i (tm−1)|+ |Z&
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�&&&&
≤ Cτθ + C�Z1
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�
i/2) + C�Z1

i (t)�,
1
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&&&& "
&∈Cj,r, & 
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ΔK&
ij

&&&& ≤ Cτ(1 + θγ/2) + C�Z1
i (t)�+ C�Z1

j (t)�,

where γ = maxj=1,...,n q
�
j . Therefore, because of bi/min{bi, bj} ≤ θ, (3.25) becomes

J22 ≤ Cτ(1 + θq
�
i/2)(1 + θ)

�
τ(1 + θγ/2) +

n"
j=1

�Z1
j (t)�

�
.
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We deduce from (3.20) and the previous estimates for J19, . . . , J22 that

n"
i=1

E
�
χ1
i ( $X(t)) · Z1

i

� ≤ Cτ2(1 + θ3γ/2+3) + Cτ(1 + θγ+3)
n"

i=1

�Z1
i (t)�+ Cτ

n"
i=1

Γi (3.26)

≤ C7(θ)τ
2 + C8(θ)τ

� n"
i=1

�Z1
i (t)�2

�1/2

+ C9τ
n"

i=1

Γi.

Step 5: End of the proof. Let

u(t) =
n"

i=1

�Z1
i (t)�2, r = min

i=1,...,n

�
ri − 2

n"
j=1

max{Lij , Lji}
�

> 0.

We infer from (3.19) and (3.26) that

du

dt
≤ −ru+ C7τ

2 + C8τu
1/2 + C9τ

n"
i=1

Γi.

The positive solution z+ of the quadratic equation −rz2 +C7τ
2 +C8τz+C9τ

#n
i=1 Γi = 0

gives us an upper bound for u(t)1/2, since du/dt ≤ 0 otherwise. Consequently,

u(t)1/2 ≤ z+ =
C9

2r
τ +

√
τ

2r

�
C2
8τ + 4C7rτ + 4C9r

n"
i=1

Γi

�1/2

≤ Cτ(1 + θ3γ/2+3) + C
√
τ

� n"
i=1

Γi

�1/2

.

This ends the proof of Theorem 1.

3.4. Particle systems with multiplicative noise

The technique of the proof of Theorem 1 can be applied to particle systems with multi-
plicative noise,

dXk
i = −∇Vi(X

k
i )dt+

n"
j=1

αij

Nj"
&=1

(i,k) 
=(j,&)

Kij(X
k
i −X&

j )dt+ σi(X
k
i )dB

k
i (t), (3.27)

with initial conditions (2.2), and αij = 1/(Nj − δij), i, j = 1, . . . , n, k = 1, . . . , Ni. The

random-batch process $Xk
i is defined as in (2.4) but with σi( $Xk

i ) instead of σi. In addition
to Assumptions (A1)–(A4), we suppose the following conditions:

(A1�) Diffusion: σi ∈ C0(Rd) is bounded and Lipschitz continuous with Lipschitz constant
Li > 0.

(A2�) Strong convexity: The function x �→ Vi(x) − ri|x|2/2 is convex, where ri > 2
#n

j=1

max{Lij , Lji}+ L2
i d and ri > 2L2

i (2max{1, qi}+ d− 2), i = 1, . . . , n.
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Theorem 7. Let Assumptions (A1)–(A2), (A4), (A1�)–(A2�) hold. Then there exists a
constant C > 0, which is independent of (bi, pi)i=1,...,n, m, and T , such that

sup
0<t<T

n"
i=1

�(Xk
i − $Xk

i )(t)� ≤ C
√
τ

�
1 +

n"
i=1

Γi

�1/2

+ Cτ(1 + θγ),

and θ, γ, Γi are defined in (2.6)–(2.7).

Sketch of the proof. The proof is similar to that one for Theorem 1 except for some ad-
ditional estimates for the multiplicative noise term. In particular, Proposition 2 keeps
unchanged since it is concerned with the shuffling process only. For the stability (Lemma
4), we need the condition 2 ≤ q ≤ q�i = 2max{1, qi}. The proof is essentially the same,
except for the estimate of the term 1

2q(q + d− 2)E(σ2
i |Xk

i |q−2). Here, we use the Lipschitz
continuity of σi and the stricter condition on ri in Assumption (B2). In the estimate for$Xk

i (t) − $Xk
i (tm−1) (Lemma 5), the diffusion σi is controlled by the Lipschitz continuity,

σi( $Xk
i )

2 ≤ 2L2
i | $Xk

i |2 + 2σi(0)
2, and Lemma 4. Finally, for the control of the error process

(Lemma 6), estimates (3.11)–(3.12) need to be changed to

�Zk
i (t)− Zk

i (tm−1)� ≤ Cτ(1 + θq
�
i/2) + C

√
θ, (3.28)''E�(Zk

i (t)− Zk
i (tm−1))χ

k
i ( $X(tm−1))

�'' ≤ Cτ2(1 + θ3q
�
i/2) + 8τ max
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�Kij�2∞Γi (3.29)

+
√
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√
τ)(1 + θq

�
i)�Zk

i (t)�+
√
τ(1 +

√
τ)

n"
j=1

�Z1
j (t)�

�
.

For the proof of estimate (3.28), the right-hand side of (3.14) contains the additional
term $J14 = &&&& � t

tm−1

(σi( $Xk
i )− σi(X

k
i ))dB

k
i

&&&&.
The square of $J14 is estimated by using the Itô isometry and the Lipschitz continuity of σi.
Integrating and taking the square root then leads to the additional C

√
τ term.

The proof of (3.29) is very similar to (3.12), except that we need the inequality&&&& 1

pi − 1

"
&∈Ci,r, & 
=k

|Zk
i |
&&&& ≤ Cθ(τ + �Z1

i (tm−1)�).

The square of the left-hand side is formulated as&&&& 1

pi − 1

"
&∈Ci,r, & 
=k
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&&&&2 = E

�
E
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.

Since ξm−1 is Fm−1 measurable, the inner expectation becomes

E
�� "

&∈Ci,r, & 
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i |
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�
=
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E
�|Z&

i | |Z&�
i |
''Fm−1

�

44



3. Numerical Analysis

≤
"

&,&�∈Ci,r, &,&� 
=k

 
E(|Z&

i |2|Fm−1)
 
E(|Z&�

i |2|Fm−1),

using the Cauchy–Schwarz inequality for the conditional expectation. A straightforward
computation leads to

E(|Z&
i |2|Fm−1) ≤ Cθ2(τ + |Zk

i (tm−1)|)2,

from which we infer that

E
�� "

&∈Ci,r, & 
=k

|Zk
i |
�2

|Fm−1

�
≤ Cθ2

� "
&∈Ci,r, & 
=k

(τ + |Zk
i (tm−1)|)

�2

.

As Z&
i (tm−1) is independent of ξm−1, the proof finishes after applying Lemma 3.

A more complicated particle system with multiplicative noise was considered in [26],
which leads in a mean-field-type limit to the Shigesada–Kawasaki–Teramoto population
model:

dXk
i = −∇Vi(X

k
i )dt+

�
σ2
i +

n"
j=1

f

�
αij

Nj"
&=1

(i,k) 
=(j,&)

Kij(X
k
i −X&

j )

��1/2

dBk
i (t),

with initial conditions (2.2), i = 1, . . . , n, k = 1, . . . , Ni, and the function f is globally
Lipschitz continuous. Again, the random-batch process $Xk

i is similar to (2.4). For this
system, we have been not able to prove an error estimate of order

√
τ , but only a stability

estimate of the form

n"
i=1

�(Xk
i − $Xk

i )(t)� ≤ C(t)
√
t

�√
τh(t, τ, θ) +

n"
i=1

Γi

�
, t > 0,

where h(t, τ, θ) is a smooth function. Compared to the error estimates of Theorems 1 and
7, the bound

#n
i=1 Γi for the variance of the remainder (3.2) is not multiplied by

√
τ .

Numerical simulations (not shown) reveal a saturation effect when τ becomes very small,
indicating that the previous estimate cannot be improved.
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In this chapter, we present numerical results for a test example, a population system, and
a opinion-formation model. We end with a conclusion based on this experiments.

4.1. Numerical simulations

In the subsequent numerical simulations, the algorithm is implemented in Matlab. The
random shuffling is realized using the command randperm, and the stochastic differential
equations are discretised by the standard Euler–Maruyama scheme. We often choose the
number pi of particles per batch bi in such a way that the ratio of the total numbers of
agents per species is conserved,

pi
pj

=
Ni

Nj
=

pi
pj

bi
bj

for 1 ≤ i, j ≤ n.

This choice automatically leads to bi = bj and hence to θ = 1, which is the best case
scenario in terms of the error estimate.

4.1.1. Discrete L2 error for a test example

We generalize the test example of [52, Section 4.1]. For this, we consider system (2.1) with
n = 3 species in d = 2 dimensions and specify the functions

∇Vi(x) = ri(x−m(i)), Kij(x) =
QiQjx

1 + |x|2 , x ∈ R2, i, j = 1, 2, 3,

where the model parameters are (Q1, Q2, Q3) = (−1, 2,−2), (r1, r2, r3) = (1, 4, 2), and
m(1) = (1, 0)T , m(2) = −(1, 1)T , m(3) = (1, 1)T . This choice incorporates different repul-
sive and attracting effects. The initial data are centered Gaussian distributions with the
variances (v1, v2, v3) = (2, 2, 1), where the index signifies the number of the species.
For the first experiment, we choose the diffusion coefficients σi = 0.5 for i = 1, 2, 3 and the

time step sizes τ = 2−2, . . . , 2−6. The end time is T = 1, the batch sizes are pi = 2 for i =
1, 2, 3, and the numbers Ni of particles of the ith species are (N1, N2, N3) = (100, 100, 200),
(1000, 1000, 2000), or (2500, 2500, 5000). Thus the total number of particles is N = 400,
4000, or 10000. We compare the random-batch solution with a reference solution, obtained
by solving the fully coupled system using the time step size 2−4, . . . , 2−8. Figure 4.1 (left)
shows the discrete L2(Ω) error for the different time step sizes, defined by

E =

� n"
i=1

1

Ni

Ni"
k=1

| $Xk
i (T )−Xk

i (T )|2
�1/2

.
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Figure 4.1.: Left: Discrete L2(Ω) error E versus time step size τ for various total particle
numbers N . Right: Discrete L2(Ω) error versus number of FLOPs for various
random-batch simulations (RBM) and the corresponding reference solutions
(ref).

The reference line has the slope 1/2. The results clearly show that the convergence rate is
of order O(

√
τ) as predicted by Theorem 1.

Figure 4.1 (right) illustrates the L2(Ω) error as a function of the computational time,
represented by the number of FLOPs (floating-point operations). We choose σi = 0 for
all i = 1, . . . , n to allow for the comparison of the random-batch solution with a reference
solution that is calculated beforehand. The parameters for the random-batch algorithm
are T = 1, n = 2, d = 2, (p1, p2) = (2, 2), τ = 2−3, . . . , 2−7, and (N1, N2) = (1250, 1250)
(RBM1, full 1), (2500, 2500) (RBM2, full 2), or (5000, 5000) (RBM3, full 3). The reference
solution is calculated from an explicit Euler scheme with the time step size τ = 2−1, . . . , 2−5.
The number of FLOPs needed for the Matlab-internal functions are determined by the light-
speed toolbox of Tom Minka (https://github.com/tminka/lightspeed). The total numbers
of FLOPs are then calculated by adding all needed operations manually.
Figure 4.1 (right) shows that the random-batch algorithm needs almost three orders of

magnitude less FLOPs than the reference algorithm. As expected, the discrete L2(Ω) error
of the random-batch scheme is larger than that one of the reference scheme for a given time
step. However, for a given error, the number of FLOPs of the random-batch algorithm is
still much smaller compared to the reference algorithm, namely by about two orders of
magnitude.

4.1.2. L2 error comparison for a test example

We compare the output of our algorithm with the results obtained from the single-batch
method of [53], applied to the example from section 4.1.1. The model parameters Qi are
chosen randomly according to a uniform distribution on the interval [−1, 1]. To ensure that
our assumptions on Vi are met, we use ri = 1 for every species. The initial distribution is
given by a centred Gaussian distribution with the variance Var = 2.
We choose N = [100, 200, 400] for our particle numbers per species. Our analytical and
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numerical results show (see section 4.1.1) that an increase of the number of particles does
not lead to significant changes in the error (estimate), which justifies our choice of using a
relatively low total particle number. We simulate the above system with final time T = 1
and step sizes τ = 2−k, k = 3, . . . , 7, using our RBM algorithm and the RBM algorithm
from [53]. Regarding the batches of our RBM algorithm, three different choices are tested:
p(1) = [2, 2, 2], p(2) = [2, 4, 4], p(3) = [2, 4, 8], giving θ(1) = 4, θ(2) = 2, θ(3) = 1, respectively.
For the batches of the algorithm in [53], we take q(1) = 4, q(2) = 10, and q(3) = 14, which
guarantees a comparable computational cost for the simulations. The reference solution is
calculated from an Euler–Maruyama scheme with time step size 2−k−2. For each step size
τ and choice of p, we repeat the simulation 103 times and collect the error in the (error-)

vectors errk,jθ and errk,jq , where j is the index representing the choice of θ or q.

Figure 4.2.: Left: Mean error Ek,j
i for different choices of θ (our method) and q (method of

[53]) versus the time step size τ . Right: Error quotient Rk,j = Ek,j
θ /Ek,j

q for
different choices of θ and q versus τ .

The reference error Ek,j
i = �errk,ji � in the 52 norm and the error quotient Rk,j = Ek,j

θ /Ek,j
q

for i = θ, q, j = 1, 2, 3 are plotted in Figure 4.2. We see that our RBM algorithm leads to
slightly smaller errors compared to the single-species RBM scheme of [53]. Interestingly,
even suboptimal super-batches (in terms of the error estimate) can still lead to better
results; see the outcomes for θ = 4, q = 4. This may be possibly explained by the fact
that the step size is not sufficiently small to guarantee a good mixing in terms of the
composition of the batches for the algorithm of [53], while our method, based on super-
batches and (multiplicative) correction terms, leads to (slightly) smaller errors.

4.1.3. The Poisson–Boltzmann problem

We apply our algorithm to the stochastic particle model for the Poisson–Nernst–Planck sys-
tem introduced in [70] and compare it with the numerical results obtained by the algorithm
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from [53]. We consider the following (dimensionless) Poisson–Boltzmann problem:

− ∂2φ

∂x2
= ρ∞(e−φ − eφ) + f(x) in R,

φ(x) → 0 as |x| → ∞,

(4.1)

where φ is an electrostatic potential, ρ∞ > 0 is the far-field density, and f(x) is some given
background charge. This problem is the thermal equilibrium of the Poisson–Nernst–Planck
system

∂ρ±
∂t

=
∂

∂x

�
∂ρ±
∂x

+ z±ρ±
∂φ

∂x

�
, −∂2φ

∂x2
= ρ+ − ρ− in R, (4.2)

ρ±(x, t) → ρ∞, φ(x, t) → 0 as |x| → ∞,

assuming electro-neutrality in the far field, where ρ± are the densities and z± the associated
charges. In thermal equilibrium, the fluxes vanish and we find that ρ± = ρ∞ exp(∓φ). The
solution to the first equation in (4.2) can be interpreted as the probability density associated
to the stochastic differential equation

dX± = − ∂

∂x
(z±φ)dt+

√
2dB±(t),

which in turns is the mean-field limit of the particle system

dXk
i = f ∗ F (Xk

i )dt+
"
j=±

Nj"
&=1, (j,&) 
=(i,k)

zizjqF (Xk
i −X&

j )dt+
√
2dBk

i (t) (4.3)

for i ∈ {+,−}, k = 1, . . . , Ni, where q = Q/N , Q is the charge for both positively and
negatively particles, N is the number of particles, and F (x) = sgn(x)/2 is the repulsive
Coulomb force in one space dimension. It is shown in [52] that (4.1) can be approximated
by the equation on the interval (−L,L) for sufficiently large L > 0:

− ∂2φ

∂x2
= ρ∞(e−φ − eφ) + f(x) in (−L,L),

∂φ

∂x
= 0 for x = ±L. (4.4)

We compute approximations of solutions to (4.4), respectively (4.1), by simulating the
particle system (4.3) for large times. The authors of [70] already showed that random-
batch algorithms can be meaningfully applied to such problems.
As the simulation domain in (4.4) is bounded, we need a strategy for the particles close

to domain boundary. The idea is to implement, as in [52], reflecting boundary conditions,
i.e., particles arriving at x = ±L are reflected back into the interval (−L,L).
For the simulations, we choose the parameters L = 10, N = [105, 105], Q = 1, τ = 10−2,

T = 40, and the background charge

f(x) =

�
3x2 −R2 for |x| ≤ R,
0 else,

where R = 3/2. Equation (4.4) is solved for reference by a finite-difference (FD) scheme,
together with a Newton method, where ρ∞ = 0.048 was obtained from a previous simulation
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of (4.3) and the identities ρ± = ρ∞ exp(∓φ). They are also used to compute the charge
densities from the potential φ as the solution to the finite-difference scheme. Figure 4.3
(left) illustrates the densities ρ± obtained from the RBM and the FD schemes, which both
agree very well. As expected, the background density is repulsive with respect to ρ− and
attractive with respect to ρ+.

Figure 4.3 shows a comparison of our method with that one of [53]. With the same
notation and setup as in section 4.1.2, we choose N = [500, 500], p = [2, 2] for the super-
batches and q = 4 as the batch size for the algorithm of [52]. The figure shows that our
method performs slightly better than that one of [52], but the difference becomes arbitrarily
small when τ → 0.

Figure 4.3.: Left: Different approximations of the charge densities ρ± obtained from the

RBM algorithm and the finite-difference (FD) scheme. Right: Mean error Ek,j
i

versus time step size τ for Example 4.1.3.

4.1.4. A population system

We consider the population system derived in [25] without external potentials using the
following parameters: n = 3, d = 1, T = 2, Ni = 5000 for i = 1, 2, 3, and (σ1, σ2, σ3) =
(1, 2, 3). The interaction kernels are given by Kij = ∇Bη

ij , where Bη
ij(x) = η−1Bij(x/η),

Bij(x) = Dij exp(1− 1/(1− |x|2))1{|x|<1}(x) for x ∈ R, η = 2, and

(Dij) =

 0 355 355
25 0 25
355 0 0

 .

The initial data are Gaussian normal distributions with means (m1,m2,m3) = (−1, 2, 3)
and variances (v1, v2, v3) = (2, 2, 2).
Figure 4.4 (left) illustrates the approximate probability densities at time T = 2 obtained

by simulating the particle system 1000 times with the batch sizes pi = 20 for i = 1, 2, 3
and the time step size τ = 10−2. We observe that the species segregate and avoid each
other. Each of the simulation requires about 2 · 1010 FLOPs, which needs to be compared
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to about 5 · 1012 FLOPs required when using full interactions. This is a reduction of the
numerical effort of more than two orders of magnitude.
Clearly, the reduction of computational cost comes at the price of an increased error.

Figure 4.4 (right) presents the discrete L2(Ω) error versus the number of FLOPs for various
configurations of the batch sizes and various time step sizes. The end time is T = 1, and
we used batch sizes pi = 2, 10, 100, 1000 and time step sizes τ = 2−1, . . . , 2−7. The different
points per line correspond to different values of τ . The reference solution is computed from
the Euler–Maruyama scheme with the step size τ = 2−9; this simulation needed about 1013

FLOPs. We see that the error decreases with the time step size and larger batch sizes. The
red dot in the figure indicates the number of FLOPs needed to compute a numerical solution
with full interactions and step size τ = 10−2, to give a more practical point of reference.
This simulation required about 2.5 · 1012 FLOPs, while the random-batch algorithm with
τ = 2−7 was about four times faster.

Figure 4.4.: Left: Histogram of the population model derived in [25] for three species at
time T = 2. Right: Discrete L2(Ω) error versus number of FLOPs for various
batch sizes p and time step sizes τ .

4.1.5. Opinion dynamics model

We model a company whose internal hierarchy regulates the communication between three
different types of agents: workers (species 1), managers (species 2), and CEOs (species 3).
The agents obey the following rules:

• CEOs can be only influenced by other CEOs. They influence managers (but not vice
versa) and they do not interact with workers.

• Managers can influence workers but not other managers or CEOs.

• Workers can only influence each other.
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The dynamics of opinions is described by the system

dXk
i (t) =

3"
j=1

1

Ni − δij

Nj"
&=1, (i,k) 
=(j,&)

Kij(X
k
i (t)−X&

j (t))dt+ σdt,

Xk
i (0) = X0,k

i , i, j = 1, 2, 3, k = 1, . . . , Ni, 0 < t ≤ T,

which is a generalization of a model discussed in [77]. Although this model does not feature
any external potentials, our algorithm can be applied meaningfully to this situation. The
interaction is modelled by Kij(x) = −Dijφ(x/Rj)x for x ∈ R, where φ(x) = exp(1−1/(1−
|x|10))1(−1,1) is a smooth approximation of the characteristic function 1(−1,1). The value
Dij is a measure of the influence that an agent of species j has over an agent of species i.
According to the above-mentioned interaction rules, the matrixD = (Dij) has the structure

D =

D11 D12 0
0 0 D23

0 0 D33

 .

As the only way for CEOs to communicate with the workers happens indirectly via the
managers, we wish to explore the influence of the managers to achieve a consensus. In
particular, we consider managers that are very submissive to authority (D23 � 1) or that
are less obedient (D23 ≤ 1). For the simulations, we use 5000 workers, 10 managers and
2 CEOs. The parameters are σ = 0.1, T = 5, τ = 10−5, and (p1, p2, p3) = (20, 2, 2).
The initial conditions are drawn from a uniform distribution on the interval [0, 10]. The
interaction radii are (R1, R2, R3) = (1, 2.5, 5). In the first case (submissive managers), we
choose the influence values

D11 = 5, D12 = 10, D23 = 25, D33 = 0.1.

Figure 4.5 (left) shows one simulation of the particle system. We observe that the managers
are very eager to find a compromise between the opinions of the two CEOs. This change of
the opinion occurs too fast for the workers with more extreme opinions, as they are not as
susceptible as the managers (since D12 < D23). Therefore, they leave quickly the range of
interaction of the managers and form their own clusters. Only those workers who have an
opinion already close to that one of the CEOs, agree with the company policy and change
their opinion accordingly.
In the second case (less obedient managers), we choose the same values of Dij as before

except D23 = 1. This means that the influence of the CEOs over the managers is rather
small. Figure 4.5 (right) shows that the managers change their opinion slowly enough for the
workers to adapt their opinion, as they stay within their range of interaction. Eventually,
this leads to a consensus of opinion.

The simulations suggest that small changes over time are more likely to lead in an
adjustment of the opinion and eventually to a consensus. In this picture, managers should
not impose their opinion too quickly, but they should introduce the changes sufficiently
slowly such that the workers can adjust in time.

Finally, we explore the influence of the batch size on the running time and the error.
We consider 10000 workers, 100 managers, and 10 CEOs and choose the parameters τ =
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Figure 4.5.: Opinion versus time of the CEOs and managers in the case of very submissive
(left) or less obedient (right) managers.

2−3, . . . , 2−7, T = 4, and σ = 0.1. The batch sizes are (p1, p2, p3) = (2, 2, 2), (20, 5, 2),
(200, 20, 2), and (2000, 20, 2). Figure 4.6 shows that the discrete L2(Ω) error decreases
with larger batch sizes (since this involves more interactions), smaller time step sizes, or θ
closer to one, which is consistent with our error estimate. Clearly, the number of FLOPs
increases with larger batch sizes.

Figure 4.6.: L2(Ω) error versus number of FLOPs for different batch sizes and time step
sizes τ = 2−3, . . . , 2−7.

4.2. Conclusion

In this section we give our conclusion based on the numerical experiments presented in this
chapter.
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Our random-batch algorithm extends the scheme developed in [52] to the multi-species
case, allowing for multiplicative noise. Although it does not improve the convergence rate
compared to the algorithm in [53], numerical experiments suggest that our algorithm has
a slightly better error performance for particle systems for which the particle numbers of
each species are of the same order of magnitude. This is useful, for instance, when one is
interested in the mean-field limit of a system, since this limit is formally obtained by per-
forming the many-particle limit, and consequently small differences between the numbers
of particles of different species become negligible in the limit.
Our numerical examples suggest that our algorithm can be used for an even larger class

of systems than (2.1) and (3.27). However, the algorithm – and to our best knowledge,
random batch methods in general – fail to approximate the population system presented
in [26]. Furthermore, we are not aware of any method that allows for a priori estimates for
the error level and the computational efficiency of random-batch methods before running
the simulation. A possible way is to perform a simulation with small particle numbers to
estimate roughly the error level and the computational efficiency, since the constants C
and Γi in Theorem 1 are independent of Ni. Our numerical results in section 4.1.1 support
this idea, since they show some stability of the error level with respect to changes of the
particle numbers.
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Part II is constructed from the contents of the following works which are submitted for
publication:

[35] M. Fellner and Ansgar Jüngel. A coupled stochastic differential reaction-diffusion
system for angiogenesis, 2022. arXiv:2206.11510.

[36] M. Fellner and Ansgar Jüngel. A cross-diffusion system for vesicle transport - exis-
tence analysis of a cross-diffusion system with nonlinear Robin boundary conditions
for vesicle transport in neurites. 2023. arXiv:2305.15281.

56
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In this chapter we give a short overview of two important types of models used in com-
putational biology: Cell-based and continuum-based models. We introduce models for
angiogenesis and for vesicle transport in neurites in this context and furthermore give a
formal derivation of the latter.

5.1. Cell-Based and Continuum-Based Models

In computational biology a variety of mathematical models are used for the simulation
of single cells and populations of cells [76], [5]. The choice of model thereby depends,
among other factors, on the quantities of interest together with the size of the popula-
tion and available computational resources [74]. They can be separated into cell-based
and continuum-based models. Whereas in cell-based models, or more general agent-based
models, cells are treated as discrete entities and individual statistics of the single cells are
tracked, in continuum-based models averaged quantities are used. In both cases this mod-
els can be coupled with further systems. This includes, among others, systems of ordinary
differential equations for intra cellular dynamics, see for instance (5.17)-(5.18), or partial
differential equations in the form of reaction-diffusion equations describing the transport
of involved chemical signalling molecules, (5.5). Instead of cells also the behaviour of other
biological structures, like vesicles [48], can be described using this type of models. See [76]
for more information and examples from cancer biology and [5] for modelling approaches
regarding cell mechanics.

5.1.1. Cell-Based Models: On- and Off- Lattice

Due to the individual treatment of cells, effects on the population level can be tracked back
to the collective behaviour of individuals in cell based models, for instance collective motion
[78]. The two main representatives of cell based models are off- and on- lattice models.
In off-lattice models, cells are allowed to move freely in space and the positions of cells

are tracked via the center of mass or volume of the cell or via vertexes along its boundary.
In center-based methods, cells are often assumed to be spherical [8] or ellipsoid [46] and
the update of the position follows according to the forces acting on the cell centers. Often
the underlying dynamics are therefore given by equations of motion which take the form of
Langevin equations [8], [78]. We give an example for an off-lattice model for angiogenesis
in section 5.2. For vertex based methods, cells are modelled as polygons and for the update
of the positions the forces acting on the vertices are considered. They are for instance
applicable to describe tissue deformation [3].
In on-lattice models, cells move between averaged discrete units of space aligned on a grid.

At every time step the positions of the cells are updated, where they jump from a lattice
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site or unit of space to a neighbouring lattice site or unit according to given jump-rates
or probabilities, see subsection 5.3.2, or [48] for an example regarding vesicle transport.
These models are simpler and fast to implement, but cannot incorporate the mechanical
interactions between cells in such detail then their off-lattice counterpart. In both cases,
off- and on- lattice, the computational cost for simulations increases with the number of
individual cells, which can be prohibitive to simulate larger populations depending on the
exact model. In large population settings, to reduce this costs, continuous models which
do not scale with the number of cells can often be derived from these discrete models [74].

5.1.2. Continuum-Based Models

Continuum-based models are based on continuum mechanics, for instance to describe cell
mechanics [5], and consider quantities averaged over the single units of the considered
cell-like organisms or structures. They often often adhere to physical principles like con-
servation of mass and consist of partial differential equations describing the evolution of
the concentration or density of the respective biological objects, for instance vesicles in
neurites, see section 5.3, or biofilms [41]. As they are not dependent on the number of indi-
viduals, they tend to be less computational expensive to simulate then cell based models.
But in contrast to the latter, only average behaviour on the population-level can be studied
using such models, as the exact behaviour of individual agents can not be captured. They
sometimes can be seen as the limit of a series of on-lattice models with mesh sizes and time
steps becoming exceedingly smaller. See section 5.3 for an example. Another approach
to obtain continuum-based models is to interpret a corresponding lattice model as a finite
-volume or finite-difference approximation of a suitable partial differential equation [74].

5.2. Off-Lattice Cell Based Model - A Coupled Stochastic
Differential System for Angiogenesis

Angiogenesis is the process of expanding existing blood vessel networks by sprouting and
branching. Its mathematical modelling is important to understand, for instance, wound
healing, inflammation, and tumour growth. In this part of the thesis, we introduce a
variant of the off-lattice cell-based model suggested in [8] that is used to simulate the early
stages of angiogenesis. The model takes into account the dynamics of the tip (leading)
endothelial cells by solving stochastic differential equations, the influence of various proteins
triggering the cell dynamics by solving reaction-diffusion equations, and the change of
some components of the extracellular matrix into extracellular fluid by solving ordinary
differential equations. Up to our knowledge, this is the first analysis of the model of [8].
Angiogenesis is mainly triggered by local tissue hypoxia (low oxygen level in the tissue),

which activates the production of the signal protein vascular endothelial growth factor
(VEGF). Endothelial cells, which form a barrier between vessels and tissues, reached by
the VEGF signal initiate the angiogenic program. These cells break out of the vessel wall,
degrade the basement membrane (a thin sheet-like structure separating the endothelial cells
from the underlying tissue), proliferate, and invade the surrounding tissue while still con-
nected with the vessel network. The angiogenic program specifies the activated endothelial

58



5. Introduction to the Biological Models

cells into tip cells (cells at the front of the vascular sprouts) and stalk cells (highly prolif-
erating cells). The tip cells lead the sprout towards the source of VEGF, while the stalk
cells proliferate to follow the tip cells supporting sprout elongation; see Figure 5.1.

blood vessel

stalk cell

tip cell

extracellular 
fluid  fE

VEGF cV
makes the tip cell move

DLL4 cD
makes the stalk cells 
follow the tip cell

MMP cM
breaks down basement
membrane

uPA cU
breaks down  
fibrin matrix

basement 
membrane fB

fibrin matrix fF

Figure 5.1.: Schematic model of sprout formation in a blood vessel corresponding to an
in-vitro experiment described in [8]. Tip cells are activated by VEGF and
they secrete the proteins DLL4, MMP, and uPA. The vessels are embedded in
the fibrin matrix, which acts as a substrate and is surrounded by extracellular
fluid. The basement membrane is the top layer of the matrix and separates it
from the extracellular fluid.

Following [8], the tip cells secrete the proteins delta-like ligand 4 (DLL4), matrix met-
alloproteinase (MMP), and urokinase plasminogen activator (uPA). The chemokine DLL4
makes the stalk cells follow the tip cells, MMP breaks down the basement membrane, and
uPA degrades the fibrin matrix such that cells can move into the matrix. There are many
other molecular mechanisms and mediators in the angiogenesis process; see, e.g., [7, 91] for
details.

5.2.1. Model equations

The unknowns are

• the positions Xk
1 (t) of the kth tip cell and Xk

2 (t) of the kth stalk cell;

• the volume fractions of the basement membrane fB(x, t), the extracellular fluid
fE(x, t), and the fibrin matrix fF (x, t);

• the concentrations of the proteins VEGF cV (x, t), DLL4 cD(x, t), MMP cM (x, t), and
uPA cU (x, t),

59



5. Introduction to the Biological Models

where t ≥ 0 is the time and x ∈ D ⊂ R3 the spatial variable. All unknowns depend
additionally on the stochastic variable ω ∈ Ω, where Ω is the set of events. We assume that
the mixture of basement membrane, extracellular fluid, and fibrine matrix is saturated,
i.e., the volume fractions fB, fE , and fF sum up to one. We introduce the vectors Xi =
(Xk

i )k=1,...,Ni
for i = 1, 2, f = (fB, fE , fF ), and c = (cV , cD, cM , cU ).

Stochastic differential equations

The tip cells move according to chemotaxis force, driven by the gradient of the VEGF
concentration, the durotaxis force, driven by the gradient of the solid fraction fS := fB+fF ,
and random motion modelling uncertainties. The dynamics of Xk

i (t) is assumed to be
governed by the stochastic differential equations (SDEs), understood in the Itô sense,

dXk
i (t) = gi[c, f ](X

k
i , t)dt+ σi(X

k
i )dB

k
i (t), t > 0, Xk

i (0) = X0,k
i , (5.1)

where i = 1, 2, k = 1, . . . , Ni for Ni ∈ N, Bk
i (t) are Brownian motions, and the drift terms

g1[c, f ](X1, t) := α0M1(fS(X1), X1)z1 + γ(fS(X1))∇cV (X1) + λ(fS(X1))∇fS(X1),

g2[c, f ](X2, t) := α0M2(fS(X2), X2)z2 + γ(fS(X2))∇cD(X2) + λ(fS(X2))∇fS(X2),
(5.2)

(we omitted the argument t for fS and Xi on the right-hand side) include a constant α0 > 0,
the strain energy Mi, the direction of movement determined by the strain energy density
zi, the chemotaxis force ∇cV in the direction of VEGF (tip cells) and ∇cD in the direction
of DLL4 (stalk cells), and the migration as a result of the durotaxis force ∇fS . We refer
to [8] for a motivation of the specific choice (5.2). Here, we allow for general drift terms
by imposing suitable Lipschitz continuity conditions; see Assumption (A4) below. In the
numerical experiments, we choose the functions Mi, γ, and λ as in Appendix 8.1.1.

Ordinary differential equations

The proteins MMP and uPA degrade the basement membrane and fibrin matrix, respec-
tively, while enhancing the extracellular fluid component. Therefore, the volume fractions
fB, fE , and fF are determined by the ordinary differential equations (ODEs)

dfB
dt

= −sBcMfB, t > 0, fB(0) = f0
B,

dfF
dt

= −sF cUfF , t > 0, fF (0) = f0
F ,

dfE
dt

= sBcMfB + sF cUfF , t > 0, fE(0) = 1− f0
B − f0

F ,

(5.3)

where sB, sF > 0 are some rate constants. Note that the last differential equation is
redundant because of the volume-filling condition fB + fE + fF = 1. Clearly, equations
(5.3) can be solved explicitly, giving for (x, t) ∈ D× (0, T ) and pathwise in Ω (we omit the
argument ω),

fB(x, t) = f0
B(x) exp

�
− sB

� t

0
cM (x, s)ds

�
,

fF (x, t) = f0
F (x) exp

�
− sF

� t

0
cU (x, s)ds

�
.

(5.4)
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Reaction-diffusion equations

The mass concentrations are modelled by reaction-diffusion equations, describing the con-
sumption and production of the proteins:

∂tcV − div(DV (f)∇cV ) + αV (x, t)cV = 0 in D, t > 0,

∂tcD − div(DD(f)∇cD) + βD(x, t)cD = αD(x, t)cV in D, t > 0,

∂tcM − div(DM (f)∇cM ) + sMfBcM = αM (x, t)cV in D, t > 0,

∂tcU − div(DU (f)∇cU ) + sUfF cU = αU (x, t)cV in D, t > 0,

(5.5)

with initial and no-flux boundary conditions

cj(0) = c0j in D, ∇cj · ν = 0 on ∂D, j = V,D,M,U, (5.6)

where the rate terms are given by αV = sV $αV , αj = rj$αj for j = D,M,U , βD = sD $βD,
and

$αj(x, t) =

N1"
k=1

V k
j (X

k
1 (t)− x), $βD(x, t) = N2"

k=1

V k
D(X

k
2 (t)− x), (5.7)

for j = V,D,M,U and V k
j : R3 → R are non-negative smooth potentials approximating the

delta distribution. The parameters rj and sj are positive. In [8], the rate terms are given by
delta distributions instead of smooth potentials. We assume smooth potentials because of
regularity issues, but they can be given by delta-like functions as long as they are smooth.
Indeed, we need C1+δ(D) solutions cj to solve the SDEs (5.1), and this regularity is not
possible when the source terms of (5.5) include delta distributions. As the number of the
proteins is typically much larger than the number of tip cells, the stochastic fluctuations
in the concentrations are expected to be much smaller than those associated with the tip
cells, which justifies the macroscopic approach using reaction-diffusion equations for the
concentrations.

In equation (5.5) for cV , the term αV cV models the consumption of VEGF along the
trajectory of the tip cells. The protein DLL4 is regenerated from conversion of VEGF,
modelled by αDcV along the trajectories of the tip cells, and consumed by the stalk cells,
modelled by βDcD along the trajectories of the stalk cells. In equation (5.5) for cM , the
term sMfBcM describes the decay of the MMP concentration with rate sB > 0 as a result of
the breakdown of the basement membrane, and αMcV models the production of MMP due
to conversion from VEGF. Similarly, sUfF cU describes the decay of the uPA concentration,
which breaks down the fibrin matrix, and the protein uPA is regenerated, leading to the
term αUcV .

The diffusivities are given by the mixing rule

Dj(f) = DB
j fB +DE

j fE +DF
j fF , j = V,D,M,U,

where Di
j > 0 for i = B,E, F . Then

0 < min{DB
j , D

E
j , D

F
j } ≤ Dj(f) ≤ max{DB

j , D
E
j , D

F
j }, (5.8)
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and equations (5.5) are uniformly parabolic. Note, however, that equations (5.5) are non-
local and quasilinear, since the diffusivities are determined by the time integrals of cM or
cU ; see (5.4).
Various biological phenomena are not modelled by our equations. For instance, we do not

include the initiation of sprouting from pre-existing parental vessels, the branching from a
tip cell, and anastomosis (interconnection between blood vessels). Moreover, in contrast to
[8], we do not allow for the transition between the phenotypes “tip cell” and “stalk cell” to
simplify the presentation. On the other hand, we may include further angiogenesis-related
proteins, if the associated reaction-diffusion equations are of the structure (5.5).
The mathematical analysis of our model for angiogenesis, cumulating to the existence result
Theorem 8, is done in chapter 6. A numerical experiment based on this model can be found
in chapter 8.

5.3. Continuum Based Model - A Cross Diffusion System for
Vesicle Transport in Neurites derived from an On-Lattice
Approach

Neurite growth is a fundamental process to generate axons and dendritic trees that con-
nect to other neurons. During their development, neurites show periods of extension and
retraction until neuron polarity is established. Then one of the neurites becomes the axon,
while the other neurites do not grow further. The process of elongation and retraction
depends, besides many other mechanisms [80], on the motor-driven transport of vesicles
inside the neurites. Vesicles are biological structures consisting of liquid or cytoplasm and
are enclosed by a lipid membrane. They are produced in the cell body (soma) and trans-
port material to the tip of a neurite (the so-called growth cone). Vesicles that fuse with the
plasma membrane of the growth cone deliver their membrane lipids to the tip, causing the
neurite shaft to grow. Vesicles moving to the growth cone are called anterograde vesicles.
Retrograde vesicles are generated via endocytosis at the growth cone plasma membrane
and move back in the direction of the soma.

5.3.1. Model equations

We model anterograde and retrograde vesicles as two different particle species as in [48].
Because of the finite size of the vesicles, we take into account size exclusion effects. In the
diffusion limit of a deterministic lattice model, the authors of [48] derived formally mass
balance equations with fluxes that depend on the gradients of both the concentrations of
the anterograde and retrograde vesicles, leading to cross-diffusion equations. The dynamics
of the vesicle concentrations in the neurite pools at the soma and growth cone are governed
by ordinary differential equations, which are linked to the cross-diffusion equations through
non-linear Robin boundary conditions.
The dynamics of the concentrations (or volume fractions) of the anterograde vesicles

u1(x, t) and the retrograde vesicles u2(x, t) along the one-dimensional neurite is governed
by

∂tu1 + ∂xJ1 = 0, J1 = −D1

�
u0∂xu1 − u1∂xu0 − u0u1∂xV1

�
, (5.9)
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∂tu2 + ∂xJ2 = 0, J2 = −D2

�
u0∂xu2 − u2∂xu0 − u0u2∂xV2

�
, (5.10)

solved in the bounded interval D = (0, 1) with the soma at x = 0 and the growth cone at
x = 1 for times t > 0, supplemented with the initial conditions

u1(·, 0) = u01, u2(·, 0) = u02 in D. (5.11)

Here, u0 = 1− u1 − u2 describes the void volume fraction, Ji are the corresponding fluxes,
Di the diffusion coefficients, and Vi given potentials. Equations (5.9)–(5.10) form a cross-
diffusion system with a non-symmetric and generally not positive definite diffusion matrix,
given by

A(u) =

�
D1(1− u2) D1u1

D2u2 D2(1− u1)

�
. (5.12)

Moreover, if u0 = 0, the equations are of degenerate type; see (7.13).
Let Λn(t)/Λ

max
n and Λs(t)/Λ

max
s be the percentage of currently occupied space in the

soma and the growth cone, respectively. Anterograde vesicles leave the soma and enter
the neurite at x = 0 if there is enough space with rate α1(Λs/Λ

max
s )u0(0, ·), and they

enter the growth cone with rate β1(1− Λn/Λ
max
n )u0(1, ·)u1(·, 1). Retrograde vesicles enter

the soma with rate β1(1 − Λs/Λ
max
s )u0(1, ·)u2(·, 0) and leave the growth cone with rate

α2(Λn/Λ
max
n )u0(1, ·), where αi, βi > 0 for i = 1, 2 are some constants. Thus, the fluxes at

x = 0 and x = 1 are given by the non-linear Robin boundary conditions

J1(0, t) = J0
1 [u](t) := α1

Λs(t)

Λmax
s

u0(0, t), (5.13)

J1(1, t) = J1
1 [u](t) := β1

�
1− Λn(t)

Λmax
n

�
u0(1, t)u1(1, t), (5.14)

J2(0, t) = J0
2 [u](t) := −β2

�
1− Λs(t)

Λmax
s

�
u0(0, t)u2(0, t), (5.15)

J2(1, t) = J1
2 [u](t) := −α2

Λn(t)

Λmax
n

u0(1, t) for t > 0, (5.16)

where u = (u1, u2). Compared to [48], the boundary conditions (5.14) and (5.15) depend
on u0 to account for the resistance of entering the growth cone and soma, respectively, for
instance due to viscosity. There is also a mathematical reason for this choice, which is
explained in section 7.1.

Finally, the change of vesicle numbers in the soma and growth cone is determined by the
corresponding in- and outflow fluxes,

∂tΛn = J1
1 [u] + J1

2 [u], t > 0, Λn(0) = Λ0
n, (5.17)

∂tΛs = −(J0
1 [u] + J0

2 [u]) t > 0, Λs(0) = Λ0
2. (5.18)

Inserting (5.13)–(5.16) into these equations, they become linear ordinary differential equa-
tions in Λn and Λn, coupled to equations (5.9)–(5.10).
Next, we give a formal derivation of this model for vesicle transport. The mathematical
analysis together with the proof of the corresponding existence result, Theorem 27, is done
in chapter 7. Numerical experiments can be found in chapter 8.
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5.3.2. Formal derivation of the model

Equations (5.9)-(5.16) can be formally derived from discrete dynamics on a lattice, which
takes into account the in- and outflow of vesicles into the respective lattice cell. The
derivation is similar to the presentation in [48]; we repeat it for the convenience of the
reader and to highlight the main difference to [48]. We divide the domain D = (0, 1) into
m cells Kj of length h > 0 and midpoint xj = hj, where j = 0, . . . ,m − 1. The cell Kj

is occupied by anterograde vesicles with volume fraction u1,j(t) = u1(xj , t) and retrograde
vesicles with volume fraction u2,j(t) = u2(xj , t).
The transition rate of a vesicle to jump from cell j to a neighbouring cell j ± 1 equals

ui,ju0,j±1 exp[−ηi(Vi(xj±1) + Vi(xj))], i = 1, 2,

where ηi > 0 is some constant and Vi,j = Vi(xj , ·), taking into account that a jump is
possible only if the cell j is not empty (ui,j > 0) and the cell j ± 1 is not fully occupied
(u0,j±1 > 0). The dynamics of ui,j is then given by

γih
2∂tui,j = −ui,ju0,j−1e

−ηi(Vi,j−Vi,j−1) + ui,j−1u0,je
−ηi(Vi,j−1−Vi,j) (5.19)

− ui,ju0,j+1e
−ηi(Vi,j−Vi,j+1) + ui,j+1u0,je

−ηi(Vi,j+1−Vi,j),

where γi > 0. The factor h2 on the left-hand side corresponds to a diffusion scaling. By
Taylor expansion, we have e−ηiz = 1−ηiz+η2i z

2/2+O(z3) and Vi,j−Vi,j−1 = h∂xVi,j−1/2+
O(h3), where Vi,j±1/2 = Vi((j ± 1/2)h, ·). Then

e−ηi(Vi,j−Vi,j−1) = 1− ηih∂xVi,j−1/2 + η2i h
2(∂xVi,j−1/2)

2 +O(h3),

e−ηi(Vi,j−1−Vi,j) = 1 + ηih∂xVi,j−1/2 + η2i h
2(∂xVi,j−1/2)

2 +O(h3).

In a similar way, we expand ui,j±1 = ui,j ± h∂xui,j + (h2/2)∂2
xui,j +O(h3). Inserting these

expansions into (5.19), we find after a computation that

γih
2∂tui,j = (u0,j∂

2
xui,j − ui,j∂

2
xu0,j)h

2 − 2ηiui,ju0,j(∂xVi,j+1/2 − ∂xVi,j−1/2)h

− ηi(u0,j∂xui,j + ui,j∂xu0,j)(∂xVi,j+1/2 + ∂xVi,j−1/2)h
2 +O(h3)

= (u0,j∂
2
xui,j − ui,j∂

2
xu0,j)h

2 − 2ηiui,ju0,j∂
2
xVi,jh

2

− 2ηi(u0,j∂xui,j + ui,j∂xu0,j)∂xVi,jh
2 +O(h3),

where we expanded h∂xVi,j±1/2 = h∂xVi,j ± (h2/2)∂2
xVi,j +O(h3). We divide this equation

by h2, and pass to the formal limit h → 0:

γi∂tui = (u0∂
2
xui − ui∂

2
xu0)− 2ηiuiu0∂

2
xVi − 2ηi(u0∂xui + ui∂xu0)∂xV

= ∂x
�
u0∂xui − ui∂xu0 − 2ηiu0ui∂xV ).

Setting ηi = 1/2 and Di = 1/γi, we obtain (5.9)–(5.10).
At the points x = 0 and x = 1, there are reservoirs with concentrations Λs at x = 0 and

Λn at x = 1. The in- and outflow rates are given by

Ai(Λ&) = aiu0,0
Λ&

Λmax
&

, Bi(Λ&) = biu0,m

�
1− Λ&

Λmax
&

�
, 5 = n, s,
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where ai, bi > 0. We have multiplied these rates by the factor u0,j with j = 0 and j = m,
respectively, which models the resistance of entering the first and last cell. This is the main
difference to the derivation in [48]. Taken into account the inflow and outflow of vesicles
at x = 0, the change of the fraction of the anterograde vesicles is given by

h2∂tu1,0 = −u1,0(t)u0,1(t)e
−η1(V1(x1)−V1(x0))

+ u1,1(t)u0,0(t)e
−η1(V1(x0)−V1(x1)) + a1

Λs(t)

Λmax
s

u0,0(t)h,

An expansion similarly as before, up to O(h2) instead of O(h3), leads to

h2∂tu1,0 = −u1,0(u0,0 + h∂xu0,0)(1 + η1h∂xV1,0)

+ (u1,0 + h∂xu1,0)u0,0(1− η1h∂xV1,0) +O(h2)

= h(u0,0∂xu1,0 + u1,0∂xu0,0)− 2ηihu0,0u1,0∂xV1,0 + aih
Λs

Λmax
s

u0,0 +O(h2).

We divide the previous equation by h and perform the limit h → 0:

0 = (u0,0∂xu1,0 + u1,0∂xu0,0)− 2ηiu0,0u1,0∂xV1,0 + ai
Λs

Λmax
s

u0,0.

We set ηi = 1/2 and αi = aiDi and multiply the equation by Di:

J1(0, ·) = −Di

�
(u0,0∂xu1,0 + u1,0∂xu0,0 − u0,0u1,0∂xV1,0

�
= αi

Λs

Λmax
s

u0(0, ·),

which equals (5.13). The boundary conditions (5.14)–(5.16) are shown in a similar way.
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6. Analysis of a Model for Angiogenesis

The goal of this chapter is the analysis of the model (5.4)–(5.7), (5.1) and to proof Theorem
8. We start by clarifying notation and present the main existence result, Theorem 8,
together with necessary assumptions.

6.1. Assumptions and Main Result

Let (Ω,F ,P) be a complete probability space and (Ω,F , (Ft)t≥0,P) be a stochastic basis
with a complete and right-continuous filtration. Furthermore, let (Bk

i (t))t≥0 for i = 1, 2,
k = 1, . . . , Ni be independent standard Brownian motions on R3 relative to (Ft)t≥0. We
write Lp(Ω,F ;B) for the set of all F-measurable random variables with values in a Banach
space B, for which the Lp norm is finite. Furthermore, let D ⊂ R3 be a bounded domain
with boundary ∂D ∈ C3 (needed to obtain parabolic regularity; see Theorem 51). We set
QT = D × (0, T ).
We write Ck+δ(D) with k ∈ N0, δ ∈ (0, 1) for the space of Ck functions u such that the kth

derivative Dku is Hölder continuous of index δ. The space of Lipschitz continuous functions
on D is denoted by C0,1(D). For notational convenience, we do not distinguish between
the spaces Ck+δ(D;Rn) and Ck+δ(D). Furthermore, we usually drop the dependence on
the variable ω ∈ Ω in the ODEs and PDEs, which hold pathwise P-a.s. Accordingly, we
write c instead of c(ω, ·, ·) and c(t) instead of c(ω, ·, t). Finally, we write “a.s.” instead of
“P-a.s.”.
As we deal with stochastic processes depending also on the space variable x, we use

the following definition of a progressively measurable process: We call a stochastic process
X : Ω×D× [0, T ] → R progressively measurable with respect to a filtration (Ft)t≥0, if X is
an Ft × B(D)× B([0, t])-measurable random variable for all t ∈ [0, T ]. Here, B(G) denotes
the Borel-σ algebra of the corresponding topological space G.
We impose the following assumptions:

(B1) Initial data: X0,k
i ∈ L4(Ω,F0) are identically distributed and independent for fixed

i, satisfy X0,k
i ∈ D a.s. (i = 1, 2, 1 ≤ k ≤ Ni), c

0 ∈ L∞(Ω,F0; C
2+δ0(D)), f0 ∈

L∞(Ω,F0;C
1+δ0(D)) for some 0 < δ0 < 1; c0j ≥ 0 (j = V,D,M,U), f0

i ≥ 0 (i =

B,E, F ), and f0
B + f0

E + f0
F = 1 in D a.s.; ∇c0j · ν = 0 on ∂D a.s.

(B2) Diffusion: σi : Ω × D × [0, T ] → R (i = 1, 2) is progressively measurable, satisfies
σi = 0 on ∂D a.s., and there exists a constant L > 0 such that for all x, y ∈ D,
t ∈ [0, T ], and ω ∈ Ω,''σi(ω, x, t)− σi(ω, y, t)

'' ≤ L
''x− y

'', ''σi(ω, x, t)'' ≤ L
�
1 +

''x''�.
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6. Analysis of a Model for Angiogenesis

(B3) Drift: gi(x, y, p, q) : R× R× R3 × R3 → R3 is measurable and gi(c, f,∇c,∇f)=0 for
x ∈ ∂D, t ∈ [0, T ] if (c, f) is a solution to (5.4)-(5.6). We write gi[c, f ] instead of
gi(c, f,∇c,∇f) to shorten the notation.

(B4) Lipschitz continuity for gi: For c, c�, f, f � ∈ C1(D × [0, T ]), there exists L1 > 0 such
that for (x, t) ∈ D × [0, T ] and i = 1, 2,''gi[c, f ](x, t)− gi[c

�, f �](x, t)
'' ≤ L1

�
1 + �c�L∞(0,t;C1(D)) + �f�L∞(0,t;C1(D))

�
× ��c(t)− c�(t)�C1(D) + �f(t)− f �(t)�C1(D)

�
.

Furthermore, for c, f ∈ L∞(0, T ;W 2,∞(D)), there exists L2 > 0 such that for (x, t),
(x�, t) ∈ D × [0, T ] and i = 1, 2,''gi[c, f ](x, t)− gi[c, f ](x

�, t)
'' ≤ L2

�
1 + �c�L∞(0,T ;W 2,∞(D)) + �f�L∞(0,T ;W 2,∞(D))

�
× |x− x�|.

(B5) Potentials: V k
j ∈ C0,1(R3) for j = V,D,M,U , k = 1, . . . , Ni are non-negative func-

tions.

Let us discuss these assumptions. Since we need C1+δ solutions (c, f) to obtain Hölder
continuous coefficients of the SDEs (which ensures their solvability), we need some regu-
larity conditions on the initial data in Assumption (B1). Accordingly, ∇c0j · ν = 0 on ∂D
is a compatibility condition needed for such a regularity result. In Assumption (B1), we
impose the volume-filling condition initially, f0

B + f0
E + f0

F = 1 in D. Equations (5.3) then
show that this condition is satisfied for all time. The conditions σi = 0 and gi[c, f ] = 0
on ∂D in Assumptions (B2) and (B3), respectively, guarantee that the tip and stalk cells
do not leave the domain D. The conditions on σi in Assumption (B2) and the Lipschitz
continuity of gi[c, f ] in Assumption (B4) are standard hypotheses to apply existence results
for (5.1). Note that gi[c, f ] in example (5.2) satisfies Assumption (B4). As gi is assumed
to be measurable by Assumption (B3), gi[c, f ] is progressively measurable if c and f are.
Assumption (B5) is a simplification to ensure the parabolic regularity results needed, in
turn, for the solvability of (5.1).
Under these assumptions, the solution to (5.1) will turn out to be an element of the

following metric space for some R > 0:

YR(0, T ;D) :=
�
X ∈ C1/2([0, T ];L4(Ω)) : �X�C1/2([0,T ];L4(Ω)) ≤ R, (6.1)

X(t) is Ft-measurable, X(t) ∈ D a.s. for all t ∈ [0, T ]
	
,

equipped with the standard norm of C0([0, T ];L4(Ω)).

Theorem 8 (Global existence and uniqueness). Let Assumptions (B1)–(B5) hold. Then
there exist a unique solution (f, c,X) to (5.4)–(5.7), (5.1) and some constant R > 0 such
that

• f = (fB, fE , fF ) solves (5.3) pathwise a.s. in the sense of (5.4), where fi ∈ C0([0, T ];
L2(D)) ∩ L∞(QT );
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6. Analysis of a Model for Angiogenesis

• c = (cV , cD, cM , cU ) is a classical solution to (5.5)–(5.6) pathwise a.s.;

• c, ∇c, f and ∇f are progressive measurably;

• Xk
i ∈ YR(0, T ;D) is a strong solution to (5.1) for i = 1, 2, k = 1, . . . , Ni.

A strong solution (X1, X2) to (5.1) means that (Xk
i (t))t≥0 is an a.s. continuous (Ft)-

adapted process such that for all t ∈ [0, T ],

Xk
i (t) = X0,k

i +

� t

0
gi[c, f ](X

k
i (s), s)ds+

� t

0
σi(X

k
i (s))dB

k
i (s) a.s. (6.2)

6.1.1. Strategy of the proof

The proof of Theorem 8 is based on a variant of Banach’s fixed-point theorem [68, Theorem
2.4] yielding global solutions. Let $X be a stochastic process with a.s. Hölder continuous
paths and values in D a.s. More precisely, $Xk

i ∈ YR(0, T ;D), defined in (6.1). Then αj and

βj are Hölder continuous in D× [0, T ] a.s. as a function of $X. As a first step, we prove some
uniform regularity results and a priori estimates for solutions to the linearised problem of
(5.5), which are independent of the path t �→ X(ω, t). Moser’s iteration method shows that
the weak solution is in fact bounded, and a general regularity result for evolution equations
yields ∂tc ∈ L2(QT ). Then, interpreting (the linearised) equations of the form (5.5) as
elliptic equations with right-hand side ∂tc ∈ L2(QT ), we conclude the Hölder continuity
of c(t) for any fixed t ∈ (0, T ). Thus, the diffusivities are Hölder continuous, and we
infer C1+δ(D) and W 2,∞(D) solutions c via a bootstrap-type argument for solutions to the
original non-linear problem (5.5). Second, we show the existence of a classical solution
to (5.5) by an application of the fixed-point theorem of Schauder and the existence and
regularity results of Ladyženskaya et al. [67].
In the third step, we solve the SDEs (5.1). The functions (c, f) have Hölder continuous

gradients, and we show that (c, f) and (∇c,∇f) are progressively measurable. Therefore,
together with Assumption (A4), the conditions of the existence theorem of [73, Theorem
3.1.1] are satisfied, and we obtain a solution X to (5.1) in the sense (6.2).
Fourth, we define fixed-point operator Φ : $X �→ X on YR(0, T ;D), which can be written

as the concatenation
Φ : $X �→ (α, βD) �→ (c, f) �→ X,

where α = (αV , αD, αM , αU ). It remains to show that Φ is a self-mapping and a contraction,
which is possible for a sufficiently large R > 0. In fact, we show that for any n ∈ N,

sup
0<s<t

�
E|Φn(X(t))− Φn(X �(t))|4�1/4 ≤ cn sup

0<s<t

�
E|X(t)−X �(t)|4�1/4

for all X, X � ∈ YR(0, T ;D), where cn → 0 as n → ∞. It follows from the variant of
Banach’s fixed-point theorem in [68, Theorem 2.4] that Φ has a unique fixed point, which
gives a unique solution (X, c, f) to (5.1), (5.3)–(5.7).
This part of the thesis is organized as follows. In section 6.2 a special case of ordinary

differential equation in a Bochner space is studied and in section 6.3, the existence of a
unique classical solution to the reaction-diffusion equations (5.5)–(5.6) and some stability
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6. Analysis of a Model for Angiogenesis

results are proved. The progressive measurability of the solutions to (5.3) and (5.5) as
well as the solvability of the SDEs (5.1) is verified in section 6.4. Based on these results,
Theorem 8 is proved in section 6.5. Some numerical experiments are illustrated in section
8.1, showing stalk cells following the tip cells and forming a premature sprout. Appendix
A.2.2 summarizes some regularity results for elliptic and parabolic equations used in this
work.

6.2. Solution of ODEs in Bochner spaces

We prove a result for ODEs in some Bochner space, which is needed for the solution of
(5.3) when the concentrations cj are only L2(D) functions.

Lemma 9. Let u ∈ L∞(0, T ;L2(D)) and g0 ∈ L∞(D) be non-negative functions. Then

dg

dt
= −ug, t > 0, g(0) = g0 a.e. in D, (6.3)

has a unique solution g ∈ C0([0, T ];L2(D))∩L∞(QT ) satisfying 0 ≤ g ≤ �g0�L∞(D) a.e. in
QT .

Proof. Set [u]k := max{k, u} = u(t) − (u(t) − k)+ for k ≥ 0, where z+ = max{0, z}. We
claim that [u]k ∈ L∞(QT ) has the properties [u(t)]k → u(t) strongly in L2(D) as k → ∞
for a.e. t ∈ [0, T ] and

�[u(t)]k − [u(t)]j�L2(D) ≤ �[u(t)]j − u(t)�L2(D) ≤ C a.e. in [0, T ] (6.4)

for 0 ≤ j ≤ k, where C > 0 does not depend on k or j. Indeed, the first inequality follows
from

�[u(t)]k − [u(t)]j�2L2(D) =

�
D

�
(u(t)− k)+ − (u(t)− j)+

�2
dx

=

�
{u(t)≥k}

�
(u(t)− k)+ − (u(t)− j)+

�2
dx+

�
{j≤u(t)≤k}

[(u(t)− j)+]2dx

=

�
{u(t)≥k}

(k − j)2dx+

�
{j≤u(t)≤k}

(u(t)− j)2dx

≤
�
{u(t)≥k}

(u(t)− j)2dx+

�
{j≤u(t)≤k}

(u(t)− j)2dx

=

�
D
[(u(t)− j)+]2dx = �[u(t)]j − u(t)�2L2(D).

Furthermore, we have

�[u(t)]j − u(t)�2L2(D) =

�
D
[(u(t)− j)+]2dx ≤ �u�2L∞(0,T ;L2(D)) ≤ C.

The function u(t)2 is an integrable upper bound for (u(t) − k)+. Furthermore, [u(t)]k −
u(t) = −(u(t) − k)+ converges to zero a.e. in D as k → ∞. Therefore, we conclude from
dominated convergence that [u(t)]k − u(t) → 0 strongly in L2(D). This proves the claim.
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Next, we consider the differential equation

dgk
dt

= −[u]kgk, t > 0, gk(0) = g0 a.e. in D. (6.5)

Since [u]k is bounded, there exists a unique solution gk ∈ C0([0, T ];L∞(D)), given by

gk(t) = g0 exp

�
−
� t

0
[u(s)]kds

�
, 0 < t < T.

Clearly, we have 0 < gk(t) ≤ K := �g0�L∞(D). We want to prove that (gk) converges as
k → ∞ to a solution of the original equation. It follows that

1

2

d

dt
�gk − gj�2L2(D) = −

�
D
([u]kgk − [u]jgj)(gk − gj)dx

= −
�
D
[u]k(gk − gj)

2dx−
�
D
([u]k − [u]j)gj(gk − gj)dx

≤ K

2
�[u]k − [u]j�2L2(D) +

K

2
�gk − gj�2L2(D).

We conclude from Gronwall’s lemma and (6.4) that

�gk(t)− gj(t)�2L2(D) ≤
� t

0
eK(t−s)�[u(s)]k − [u(s)]j�2L2(D)ds

≤ eKt

� t

0
�[u(s)]j − u(s)�2L2(D)ds.

Because of �[u(s)]j − u(s)�2L2(D) → 0 as j → ∞ and the uniform upper bound for [u(s)]j −
u(s), the dominated convergence theorem implies that, for any t ∈ [0, T ],

�gk(t)− gj(t)�2L2(D) ≤ eKT

� T

0
�[u(s)]j − u(s)�2L2(D)ds → 0 as j, k → ∞.

Thus, (gk(t)) is a Cauchy sequence for every t ∈ [0, T ] and we infer that gk(t) → g(t) in
L2(D). Because of the L∞(0, T ;L2(D)) bound for (gk) and dominated convergence again,
gk → g in L2(QT ), where g ∈ L∞(0, T ;L2(D)). There exists a subsequence, which is not
relabelled, such that gk(t) → g(t) a.e. in D, for any t ∈ [0, T ]. We deduce from gk(t) ≤ K
that g(t) ≤ K for all t ∈ [0, T ]. This shows that g ∈ L∞(QT ). Writing (6.5) as an integral
equation and performing the limit k → ∞, the previous convergence results show that g
solves (6.3).

We also need the following stability result, which relates the difference f1−f2 of solutions
to (5.3) with the difference c1 − c2 of solutions to (5.5).

Lemma 10. Let u1, u2 ∈ L∞(0, T ;W k,∞(D)) with k ∈ N0, g
0
1, g

0
2 ∈ W k,∞(D), and let g1,

g2 ∈ C0([0, T ];W k,∞(D)) be the unique solutions to

dgi
dt

= −uigi, 0 < t < T, gi(0) = g0i a.e. in D, i = 1, 2.
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Then there exists C > 0, only depending on T , the L∞(0, T ;W k,∞(D)) norm of ui, and the
W k,∞(D) norm of g0i , such that for p > 1,

�g1 − g2�Wk,p(D) ≤ C
��g01 − g02�Wk,p(D) + �u1 − u2�L1(0,T ;Wk,p(D))

�
.

Proof. The regularity of gi follows from the explicit formula and the regularity for g0i and
ui. Furthermore, taking the W k,p(D) norm of

g1(t)− g2(t) = g01 − g02 −
� t

0

�
u1(g1 − g2) + (u1 − u2)g2

�
dx,

the result follows from the regularity u1 ∈ L∞(0, T ;W k,∞(D)) and g2 ∈ W k,∞(D).

6.3. Solution of the reaction-diffusion equations

We show first some a priori estimates, prove then the existence of classical solutions to
(5.5)–(5.6) and finally the uniqueness of solutions.

6.3.1. A priori estimates

The existence theory for SDEs requires some regularity for the solution c to (5.5), and in
particular uniform estimates are needed. We consider first the linear system

∂tcV − div(DV ( �f)∇cV ) + αV (x, t)cV = 0,

∂tcD − div(DD( �f)∇cD) + βD(x, t)cD = αD(x, t)cV ,

∂tcM − div(DM ( �f)∇cM ) + sM �fBcM = αM (x, t)cV ,

∂tcU − div(DU ( �f)∇cU ) + sU �fF cU = αU (x, t)cV ,

(6.6)

where �f is calculated from (5.4), given some a.e. non-negative function �c ∈ L2(0, T ;Cδ(D)),
and it fulfils the volume-filling condition �fB + �fF + �fE = 1. Note that the bounds in (5.8)
still hold and that 0 ≤ �f ≤ 1 a.e. Therefore, the following Lemmas 11 and 12 do not depend
on the choice of �c and δ. We will hence omit the dependency of the diffusion coefficients
Dj on �f in this case.

We prove L∞ bounds for the solution c to (6.6). We suppose that Assumptions (A1)–(A5)
hold throughout this section.

Lemma 11. Let c be a weak solution to (5.6), (6.6). Then c ∈ L∞(QT ), it holds for all
0 < t < T that �cV (t)�L∞(D) ≤ �c0V �L∞(D),

�cj(t)�L∞(D) ≤ et
��c0j�L∞(D) + �αj�L∞(0,T ;L∞(D))�c0V �L∞(D)

�
, j = D,M,U,

and cj(t) ≥ 0 a.e. for t > 0 and j ∈ {V,D,M,U}.
Proof. First, we use (cV −K)+ := max{0, cV −K} with K := �c0V �L∞(D) as a test function
in the weak formulation of equation (5.5) for cV :

1

2

d

dt

�
D
[(cV −K)+]2dx+

�
D
DV |∇(cV −K)+|2dx = −

�
D
αV cV (cV −K)+dx ≤ 0.
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We conclude that cV (t) ≤ K in D for t > 0.
Second, we show that cD is bounded. For this, set M(t) = M0e

t, where
M0 = �c0D�L∞(D) + �αD�L∞(0,T ;L∞(D))�c0V �L∞(D). Then (cD(0) −M)+ = 0 and, choosing
(cD −M)+ as a test function in the weak formulation of equation (5.5) for cD,

1

2

d

dt

�
D
[(cD −M)+]2dx+

�
D
DD|∇(cD −M)+|2dx

= −
�
D
∂tM(cD −M)+dx+

�
D
(αDcV − βDcD)(cD −M)+dx

≤
�
D

�−M0 + �αD�L∞(0,T ;L∞(D))�c0V �L∞(D)

�
(cD −M)+dx ≤ 0,

where we used βD ≥ 0, and the last inequality follows from the choice of M0. This shows
that cD(t) ≤ M0e

t in D, t > 0. The bounds for cM and cU are shown in an analogous way.
The non-negativity of cD and then of cj , j ∈ {D,M,U} follows by using c−j := min{0, cj}

as a test function in the weak formulation of (6.6) and using the non-negativity of the
coefficients αj and βD.

Next, we prove that the solution c(t) is Hölder continuous.

Lemma 12. Let c be a weak solution to (5.6), (6.6). We suppose that there exists Λ > 0
such that for a.e. 0 < t < T ,

�αj(t)�L∞(D) + �βD(t)�L∞(D) ≤ Λ, j = V,D,M,U. (6.7)

Then there exists δ > 0 such that for 0 < t < T ,

�∂tc�L2(QT ) ≤ C2, �c(t)�C0+δ(D) ≤ Cδ

��c(t)�L2(D) + �∂tc(t)�L2(D)

�
, (6.8)

where C2 > 0 depends on the L2(D) norm of c0, the L∞(D) norm of f0, and Λ, and δ, Cδ

depend on the lower and upper bounds (5.8) for Dj and Λ.

Proof. The L2(QT ) bound for ∂tc follows immediately from Theorem 48 and the Hölder
estimate follows from Proposition 47 in Appendix A.2.2. Indeed, we interpret equation
(5.5) for cV ,

div(DV ∇cV ) + αV cV = −∂tcV ∈ L2(D) for t ∈ (0, T )

as an elliptic equation with bounded diffusion coefficient DV and right-hand side in Lp(D)
with p > d/2. By Proposition 47, there exists δ > 0 such that cV (t) ∈ C0+δ(D) and

�cV (t)�C0+δ(D) ≤ C
��cV �L2(D) + �∂tcV �Lp(D)

�
.

The result follows by observing that d ≤ 3 implies that p < 2. The dependency of δ and
Cδ on the data follows from [39, Theorem 8.24], which is the essential result needed in the
proof of Proposition 47. The regularity for the other concentrations is proved in a similar
way.
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Lemma 13. Let �c(t) ∈ L2(0, T ;Cδ(D)) with δ > 0 as in Lemma 12, satisfying estimate
(6.8), and let c be a weak solution to (5.6), (6.6). Furthermore, let c0j ∈ C1+δ(D) be such

that ∇c0j · ν = 0 on ∂D, αj, βj ∈ C0(D × [0, T ]) satisfying (6.7), and f0
j ∈ C0+δ(D) for

j = V,D,M,U , where δ > 0 is as in Lemma 12 or smaller. Then c ∈ C1+δ,(1+δ)/2(D×[0, T ])
and there exists C1+δ > 0 such that

�c�C1+δ,(1+δ)/2(D×[0,T ]) ≤ C1+δ,

where C1+δ > 0 depends only on T , Λ, Cδ, �f0�Cδ(D), �c0�C1+δ(D), the L∞ bound proven
in Lemma 11, and the lower and upper bounds (5.8) for Dj.

The space C1+δ,(1+δ)/2(D × [0, T ]) consists of all functions being C1+δ in space and
C(1+δ)/2 in time; see Appendix A.2.2 for a precise definition.

Proof. We know from Lemma 12 that c(t) is Hölder continuous in D for a.e. t ∈ (0, T ). We
claim that �f is Hölder continuous in D × [0, T ]. Let x, y ∈ D and τ, t ∈ [0, T ]. We assume
without loss of generality that τ < t. The Lipschitz continuity of z �→ exp(−z) implies,
using the explicit formula for fB, that

| �fB(x, t)− �fB(y, t)| ≤ |f0
B(x)− f0

B(y)|+ sB

� t

0
|�cM (x, s)− �cM (y, s)|ds,

≤ �f0
B�C0+δ(D)|x− y|δ + sBCδ

���cM�L1(0,t;L2(D)) + �∂t�cM�L1(0,t;L2(D))

�|x− y|δ,

| �fB(x, t)− �fB(x, τ)| ≤ |f0
B(x)|sB

� t

τ
|�cM (x, s)|ds

≤ �f0
B�C0+δ(D)sB��cM�L∞(QT )T

1−δ/2|t− τ |δ/2,

where we also used Lemma 12. Similar estimates hold for �fE and �fF . Thus, the assumptions
of Theorem 49 in Appendix A.2.2 are fulfilled, yielding the statement.

The next lemma will be needed to show ∇c is Lipschitz for solutions c to (5.5).

Lemma 14. Let d ∈ N, D� ⊂ Rd be an open set and let f ∈ Cδ(D�) for every 0 < δ < 1.
If the Hölder norm of f can be bounded uniformly, i.e., there exists a C∗ > 0 such that
�f�Cδ(D�) ≤ C∗ for all 0 < δ < 1, then f is a Lipschitz continuous function on D�.

Proof. Let x, y ∈ D� with x "= y. Then there exists 0 < δ < 1 such that |x − y|1−δ ≥ 1/2.
With this choice of δ, we compute

|f(x)− f(y)|
|x− y| =

|f(x)− f(y)|
|x− y|δ

1

|x− y|1−δ
≤ 2C∗.

As C∗ does not depend on δ and x, y ∈ D� are arbitrary, we infer that f is Lipschitz
continuous with Lipschitz constant L ≤ 2C∗.

As solutions to (5.5)–(5.6) are also solutions to (5.6), (6.6) with the choice �c = c, we can
use the previous lemmas to prove the following unform bound in L∞(0, T ;W 2,∞(D)) for
solutions c to (5.5).

73



6. Analysis of a Model for Angiogenesis

Lemma 15. Let the assumptions of Lemma 13 hold and let additionally c0 ∈ W 2,∞(D)
and αj , βD ≥ 0, j ∈ {V,D,M,U}. Then every weak solution c to (5.5)–(5.6), with f given
by (5.4), is an element of L∞(0, T ;W 2,∞(D)), and there exists a constant C > 0 such that

�c�L∞(0,T ;W 2,∞(D)) ≤ C,

where C depends on �f0�W 1,∞(D), �c0�W 2,∞(D), and has otherwise the same dependencies
as C1+δ in Lemma 13.

Proof. We deduce from Lemma 12 that c ∈ L2(0, T ;Cδ(D)) and c satisfies (6.8). Then
Lemma 13 implies that c ∈ C1+δ,(1+δ)/2(D × [0, T ]) with �c�C1+δ,(1+δ)/2(D×[0,T ]) ≤ C1+δ.

Taking into account the explicit representation (5.4) of f , the regularity of c carries over to
f . Let now V ⊂ R3 be a fixed bounded and open set satisfying D � V . We can extend c to
a function $c ∈ W 1,∞(R3) with compact support in V such that [32, Section 5.4, Theorem
1]

�$c�W 1,∞(R3) ≤ C(V )�c�W 1,∞(D) ≤ C(V )C1+δ, (6.9)

where C(V ) only depends on the choice of V . By [32, Section 5.8, Theorem 4], c is Lipschitz
continuous, and due to (6.9), the Lipschitz coefficient is bounded by C(V )C1+δ (see the
first part of the proof of [32, Section 5.8, Theorem 4]). We conclude that, for x, y ∈ D and
0 < ζ < 1,

|c(x)− c(y)|
|x− y|ζ = |x− y|1−ζ |c(x)− c(y)|

|x− y| ≤ max
�
1, sup

x�,y�∈D
|x� − y�|

�
C(V )C1+δ.

The map c is hence Hölder continuous of index ζ and its Hölder norm can be bounded
independently of ζ. Repeating the proof of Lemma 13, we can show the existence of a
constant K(C1+δ,Λ, V ) such that

�c�C1+ζ,(1+ζ)/2(D×[0,T ]) ≤ K(C1+δ,Λ, V ),

where K(C1+δ,Λ, V ) is again independent of ζ, see [72, Theorem 1.2]. Applying Lemma
14 for f = ∂c/∂xi together with Rademacher’s theorem completes the proof.

Remark 16. All the results proven in Lemmas 11–15 may depend on the L∞ bound of the
processes α, β, but they do not depend on the Hölder norm of index δ and therefore not on
the process (X1, X2) itself as long as Xi(ω, t) ∈ D for i = 1, 2 a.s.

6.3.2. Existence

We show the existence of solutions to the reaction-diffusion and ordinary differential equa-
tions.

Theorem 17 (Existence). Let c0j ∈ C2+δ(D) be such that ∇c0j · ν = 0 on ∂D, let αj,

βj ∈ Cδ,δ/2(D × [0, T ]) be non-negative and satisfy (6.7), and let f0
j ∈ C1+δ(D) for j =

V,D,M,U , where δ > 0 is as in Lemma 13 or smaller. Then there exists a pair (c, f) such
that c ∈ C2+δ,1+δ/2(D× [0, T ]) is a classical solution to (5.5)–(5.6) and f is given by (5.4).
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Proof. Let �c ∈ C1+δ�,(1+δ�)/2(D × [0, T ]) ∩ H1(0, T ;L2(D)) for some 0 < δ� < δ and let �c
satisfy (6.8). Furthermore, let ( �fB, �fF ) be given by (5.4) with cj replaced by �c, and �fE is

defined by the volume-filling condition �fB + �fE + �fF = 1. By Theorem 51 in Appendix
A.2.2, the linear system (6.6), together with (5.6), has a classical solution c which satisfies
the estimate

�c�C2+δ�,(2+δ�)/2(D×[0,T ]) ≤ K0( �f, α, β)��c0�C2+δ�,(2+δ�)/2(D×[0,T ]) (6.10)

+ �cV �C2+δ�,(2+δ�)/2(D×[0,T ])

�
≤ K( �f, α, β)�c0�C2+δ�,(2+δ�)/2(D×[0,T ]).

We deduce from Lemma 13 that �c�C1+δ,(1+δ)/2(D×[0,T ]) ≤ C1+δ, where C1+δ is independent

of �f and the choice of �c.
We define now the fixed-point operator. Let

�c ∈ W :=
�
u ∈ C1+δ,(1+δ)/2(D × [0, T ]) ∩H1(0, T ;L2(D)) :

�u�C1+δ,(1+δ)/2(D×[0,T ]) ≤ C1+δ, usatisfies (6.8)
	
.

Then the operator Γ : W → W , mapping �c to the solution c to (5.5)–5.6 is well-defined.
Furthermore, by estimate (6.10), it holds that

�Γ(�c)�C2+δ�,(2+δ�)/2(D̄×[0,T ]) ≤ K1(α, β)�c0�C2+δ�,(2+δ�)/2(D̄×[0,T ]), (6.11)

where the constant K1 does not depend on �f thanks to the uniform bound C1+δ in W .
Given two elements �c1, �c2 ∈ W , we set Γ(�ci) = ci and define u := c1,V − c2,V . Then u
satisfies

∂tu− div(DV ( �f1)∇u) + αV u = div
�
(D( �f1)−D( �f2))∇c2

�
, in D × (0, T ],

u(0) = 0 in D, ∇u · ν = 0 in ∂D × [0, T ],

where �fi is the corresponding solution to (5.3) associated with �ci. By Theorem 51 and
estimate (6.11), u = c1,V − c2,V satisfies the inequality

�c1,V − c2,V �C2+δ�,(2+δ�)/2(D×[0,T ])

≤ K2( �f1, α)�c2�C2+δ�,(2+δ�)/2(D×[0,T ])� �f1 − �f2�C1+δ�,(1+δ�)/2(D×[0,T ])

≤ K2( �f1, α)K3(α, β, c
0)��c1 − �c2�C1+δ�,(1+δ�)/2(D×[0,T ]),

where we also used (5.4). We obtain similar estimates for the other components c1,i − c2,i,
i = D,M,U . From these inequalities, we directly infer the continuity of Γ in the norm
� ·�C1+δ�,(1+δ�)/2(D×[0,T ]). Since W is compactly embedded in C1+δ�,(1+δ�)/2(D× [0, T ]), using

δ� < δ, we conclude from Schauder’s fixed-point theorem that there exists a fixed point c
for Γ and hence a solution to (5.5)–(5.6).
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6.3.3. Stability and uniqueness

The stability results are used for the solution of the SDEs; they also imply the uniqueness
of solutions. We start with a stability estimate in the norms of L∞(0, T ;L2(D)) and
L2(0, T ;H1(D)). Let Assumptions (A1)–(A5) hold.

Lemma 18. Let ci for i = 1, 2 be weak solutions to (5.5)–(5.6) with the same initial data
(c0, f0) but possibly different coefficients αi and βi. Then there exists C > 0, which is
independent of ci, such that for all t ∈ [0, T ],

�(c1 − c2)(t)�L2(D) + �c1 − c2�L2(0,t;H1(D)) ≤ h(t), where

h(t) := C
��α1 − α2�L2(QT ) + �β1 − β2�L2(QT )

�
.

Proof. We first consider cV . We take the difference of the equations satisfied by c1,V − c2,V
and take the test function c1,V − c2,V in its weak formulation. This leads to

1

2

d

dt

�
D
(c1,V − c2,V )

2dx+

�
D
DV (f1)|∇(c1,V − c2,V )|2dx+

�
D
α1,V (c1,V − c2,V )

2dx

=

�
D
(DV (f1)−DV (f2))∇c2,V · ∇(c1,V − c2,V )dx

+

�
D
(α1,V − α2,V )c2,V (c1,V − c2,V )dx.

Let ε := min{Di
j : j = V,D,M,U, i = B,E, F} > 0. Using Young’s inequality and the

estimate �(f1 − f2)(t)�L2(D) ≤ C�c1 − c2�L1(0,T ;L2(D)) from Lemma 10, we find that

d

dt
�c1,V − c2,V �2L2(D) +

ε

2
�∇(c1,V − c2,V )�2L2(D)

≤ C(ε)�∇c2,V �2L∞(QT )�DV (f1)−DV (f2)�2L2(D)

+ �c2,V �2L∞(QT )�α1,V − α2,V �2L2(D) + �c1,V − c2,V �2L2(D)

≤ C�c1 − c2�2L2(D) + C�α1,V − α2,V �2L2(D).

The estimates for c1,j − c2,j with j = D,M, V are similar. This gives

d

dt
�c1 − c2�2L2(D) +

ε

2
�∇(c1 − c2)�2L2(D) ≤ Ch(t)2 + C�c1 − c2�2L2(D).

An application of Gronwall’s lemma finishes the proof.

A stability estimate can also be proved with respect to the H2(D) norm.

Lemma 19. Let ci for i = 1, 2 be weak solutions to (5.5)–(5.6) with the same initial data
(c0, f0) but possibly different coefficients αi and βi. Then there exists C > 0 such that for
all t ∈ [0, T ],

�∂t(c1 − c2)�L2(QT ) + �c1 − c2�L∞(0,T ;H1(D)) + �c1 − c2�L2(0,T ;H2(D))

≤ C
��α1 − α2�L2(QT ) + �β1 − β2�L2(QT )

�
,

where C > 0 depends on �c1�L∞(0,T ;W 2,∞(D)).
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Proof. The difference u := c1,V − c2,V is the solution to the linear problem

∂tu− div(DV (f1)∇u) = g(x, t) in D, t > 0,

∇u · ν = 0 on ∂D, u(0) = 0 in D,
(6.12)

where, by Lemma 15, the right-hand side

g := − div
�
(DV (f1)−DV (f2))∇c2,V

�
+ α1,V (c1,V − c2,V ) + (α1,V − α2,V )c2,V (6.13)

is an element of L2(QT ). Since the diffusion coefficient is bounded, we can apply Theorem
48 in Appendix A.2.2 to conclude that

�u�L∞(0,T ;H1(D)) + �∂tu�L2(QT ) ≤ C�g�L2(QT ).

For the estimate of the right-hand side, we recall from Lemma 10 that

�∇(f1 − f2)�L2(QT ) ≤ C�c1 − c2�L1(0,T ;H1(D)).

Then, using the linearity of DV and the estimate for c2,V from Lemma 15, we infer that

�g�L2(QT ) ≤ C�∇(f1 − f2)�L2(QT )�∇c2,V �L∞(QT ) + C�f1 − f2�L2(QT )�Δc2,V �L∞(QT )

+ �α1,V �L∞(QT )�u�L2(QT ) + �α1,V − α2,V �L2(QT )�c2,V �L∞(QT )

≤ C
��c1 − c2�L2(0,T ;H1(D)) + �α1,V − α2,V �L2(QT )

�
.

The difference c1 − c2 in the L2(0, T ;H1(D)) norm can be estimated according to Lemma
18. Therefore,

�u�L∞(0,T ;H1(D)) + �∂tu�L2(QT ) ≤ C
��α1 − α2�L2(QT ) + �β1 − β2�L2(QT )

�
. (6.14)

Similar estimates can be derived for the differences c1,j − c2,j (j = D,M,U).
To estimate u in the L2(0, T ;H2(D)) norm, we use the inequality

�u�H2(D) ≤ C
��Δu�L2(D) + �u�L2(D)

�
.

Thus, it remains to consider Δu. We deduce from

DV (f1)Δu = div
�
DV (f1)∇c1,V −DV (f2)∇c2,V

�−∇(DV (f1)−DV (f2)) · ∇c2,V

− (DV (f1)−DV (f2))Δc2,V −∇DV (f1) · ∇(c1,V − c2,V )

= ∂tu− α1,V u− (α1,V − α2,V )c2,V −∇(DV (f1)−DV (f2)) · ∇c2,V

− (DV (f1)−DV (f2))Δc2,V −∇DV (f1) · ∇u

and �∇(DV (f1)−DV (f2))�L2(QT ) ≤ C�c1 − c2�L2(0,T ;H1(D)) (see Lemma 10) that

�Δu�L2(QT ) ≤ C
��α1 − α2�L2(QT ) + �β1 − β2�L2(QT ) + �u�L2(0,T ;H1(D))

�
.

We infer from (6.14) and related inequalities for c1,j − c2,j that

�Δ(c1 − c2)�L2(QT ) ≤ C
��α1 − α2�L2(QT ) + �β1 − β2�L2(QT )

�
,

which concludes the proof.
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Lemma 20. Let ci for i = 1, 2 be weak solutions to (5.5)–(5.6) with the same initial data
(f0, c0) but possibly different coefficients αi and βi. Then there exists C > 0 such that for
all t ∈ [0, T ],

�c1 − c2�L4(0,T ;W 2,4(D)) ≤ C
��α1 − α2�L4(QT ) + �β1 − β2�L4(QT )

�
.

Proof. Let u = c1,V −c2,V be the solution to (6.12). Since g ∈ L4(QT ) by Lemma 15 (recall
definition (6.13) of g), Theorem 50 in Appendix A.2.2 shows that u ∈ L4(0, T ;W 2,4(D)) ∩
H1(0, T ;L4(D)) and, because of ∇c2,V ∈ L∞(0, T ;W 1,∞(D)),

�c1,V − c2,V �L4(0,T ;W 2,4(D)) ≤ C�g�L4(QT )

≤ C
��c1 − c2�L1(0,T ;W 1,4(D)) + �c1,V − c2,V �L4(QT ) + �α1,V − α2,V �L4(QT )

�
.

The first and second terms on the right-hand side can be estimated by using the embedding
H2(D) �→ W 1,4(D) and Lemma 19:

�c1 − c2�L1(0,T ;W 1,4(D)) ≤ C�c1 − c2�L2(0,T ;H2(D))

≤ C
��α1 − α2�L2(QT ) + �β1 − β2�L2(QT )

�
,

�c1,V − c2,V �L4(QT ) ≤ C�c1,V − c2,V �L4(0,T ;H1(D))

≤ C
��α1 − α2�L2(QT ) + �β1 − β2�L2(QT )

�
.

This gives

�c1,V − c2,V �L4(0,T ;W 2,4(D)) ≤ C
��α1 − α2�L4(QT ) + �β1 − β2�L2(QT )

�
.

The estimates for c1,j − c2,j (j = D,M,U) are similar.

6.4. Solution of the stochastic differential equations

Let α, β be given by (5.7). We first study the measurability of (c, f).

Lemma 21. Let f0 ∈ L∞(Ω;C1+δ(D)) and c0 ∈ L∞(Ω;W 2,∞(D)) be such that ∇c0j ·ν = 0
on ∂D, j = V,D,M,U . Furthermore, let (c, f) be a pathwise solution to (5.3), (5.5)–
(5.6) and let (X1, X2) in (5.7) be adapted stochastic processes with Hölder continuous paths
(with Hölder index δ) almost surely. Then f , ∇f are measurable as maps from (Ω × D ×
[0, t],Ft × B(D) × B([0, t])) to B(R3)/B(R3×3), and c, ∇c are measurable as maps from
(Ω × D × [0, t],Ft × B(D) × B([0, t])) to B(R4)/B(R4×3) for all t ∈ [0, T ]. In particular,
these functions are progressively measurable.

Proof. Since fj can be represented as a function depending on the time integral of c, it
is sufficient to show the measurability of cj . The continuity of the potentials defining αj

and βj in (5.7) shows that αj and βj are processes with càdlàg paths almost surely. By
approximating the initial data c0, f0 and the processes αj , βj by suitable simple processes,
which are adapted to the filtration by construction, we can obtain the Ft-measurability of
cj(t) : Ω → C1(D) for t ∈ [0, T ]. We conclude from Lemma 18 and the compactness of
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W 2,∞(D) ⊂ C1+δ(D) in C1(D) the measurability of cj as the limit of measurable functions.
For details of this construction, we refer to [47, Section 3.3].
It is known that càdlàg processes Yt : Ω× [0, T ] → H with H = Rn, which are adapted to

the filtration, are progressively measurable [62, Prop. 1.13]. A straightforward modification
of the proof of [62, Prop. 1.13], utilizing [31, Theorem 4.2.2], shows that this holds for
arbitrary Banach spaces H. The estimate �cj(t) − cj(s)�C1(D) ≤ C|t − s|δ, which follows

from Lemma 13, implies that cj(t) has almost surely continuous paths and consequently,
cj(t) is progressively measurable. To be precise, this yields the measurability of cj as a
function from (Ω× [0, t],Ft × B([0, t])) to (C1(D),B(C1(D))) for every t ∈ [0, T ].
The function (c, x) �→ c(x), C1(D)×D → R4, is continuous and hence, it is measurable

as a mapping from (C1(D) × D,B(C1(D)) × B(D)) to (R4,B(R4)). Now, we can write
c(ω, x, t) as the concatenation

(ω, x, t) �→ (c(ω, ·, t), x) �→ c(ω, x, t), Ω×D × [0, T ] → C1(D)×D → R4,

of measurable functions, which yields the measurability of c. In a similar way, we can
prove the measurability of ∂cj/∂xi for i = 1, 2, 3 by considering the continuous mapping
(c, x) �→ (∂c/∂xi)(x).

Remark 22. As (X1, X2) only almost surely have Hölder continuous paths, c and f are
also defined only almost surely. So to be more precise Lemma 21 shows the existence of
progressive measurable processes c̃ and f̃ (by defining c and f on the null set where they are
not defined, for example by setting them zero) whose paths coincide almost surely with those
of c and f . All such suitable progressive measurable processes c̃ (and f̃) are indistinguishable
from each other and are equivalent in this manner. We hence identify all these processes
with c and f , dropping the use of a specific progressively measurable representative.

Lemma 23. Let Assumptions (B1)–(B5) and the assumptions of Lemma 21 hold. Then
there exists a unique, progressively measurable solution (Xk

i ) to (5.1) such that Xk
i (t) ∈ D

a.s. for every t ∈ [0, T ], i = 1, 2.

Proof. We extend the coefficients gi and σi by setting them to zero outside of D. The
extended coefficients are still uniformly Lipschitz continuous. We infer from Lemma 21
that gi is progressively measurable. Thus, by [73, Theorem 3.1.1], also see Theorem 43,
there exists a strong solution to (5.1).
It remains to show that Xk

i (t) ∈ D a.s. Let φ be a smooth test function satisfying
suppφ ⊂ Dc. We obtain from Itô’s lemma that

dφ(Xk
i ) = ∇φ(Xk

i ) · gi[c, f ](Xk
i , t)dt+

1

2
σi(X

k
i )

2Δφ(Xk
i )dt+∇φ(Xk

i ) · σi(Xk
i )dB

k
i . (6.15)

If Xk
i (t) ∈ D, we have φ(Xk

i ) = 0. If Xk
i (t) ∈ Dc then gi[c, f ](X

k
i (t), t) = 0 by Assumption

(B3) and σi(X
k
i (t)) = 0 by Assumption (B2). Equation (6.15) then shows that φ(Xk

i (t)) =

φ(X0,k
i ) = 0 and Xk

i (t) ∈ (suppφ)c a.s. Since φ with suppφ ⊂ Dc was arbitrary, we
conclude that Xk

i (t) ∈ D a.s. for t ∈ (0, T ).
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6.5. Proof of Theorem 8

The fixed-point operator is defined as a function that maps $X �→ (α, βD) �→ (c, f) �→ X,
where (α, βD) is defined in (5.7) with X replaced by $X. To define its domain, we need
some preparations.

Lemma 24. The space YR(0, T ;D), defined in (6.1), is complete. Furthermore, any
X ∈ YR(0, T ;D) has a progressively measurable modification with almost surely Hölder
continuous paths.

Proof. Let (Xn) be a Cauchy sequence in YR(0, T ;D) and let ε > 0. Then there exists
N ∈ N such that for all n,m ≥ N ,

�Xn(t)−Xm(t)�L4(Ω) ≤ �Xn −Xm�C0([0,T ];L4(Ω)) < ε.

For any t ∈ [0, T ], (Xn(t)) is a Cauchy sequence in L4(Ω). Consequently, Xn(t) → X(t)
in L4(Ω), where X(t) ∈ L4(Ω) is Ft-measurable. Furthermore, there exists a subsequence
of (Xn(t)) (not relabelled) that converges pointwise to X(t) a.s., proving that X(t) ∈ D
a.s. The definition of the Hölder norm implies that �Xn(t) − Xn(s)�L4(Ω) ≤ R|t − s|1/2
for all s, t ∈ [0, T ]. This gives in the limit n → ∞ that �X(t) −X(s)�L4(Ω) ≤ R|t − s|1/2
and consequently X ∈ C1/2(0, T ;L4(D)). We conclude that X ∈ YR(0, T ;D). By the
Kolmogorov continuity criterion, (a modification of)X has almost surely Hölder continuous
paths. As X(t) is an adapted process with respect to the filtration Ft, X is progressively
measurable.

Lemma 25. Let ( $X1, $X2) ∈ YR(0, T ;D) for some R > 0, and let (c, f) be a solution to
(5.3), (5.5)–(5.6), where α, β are given by (5.7) with X replaced by $X. Then, for fixed
initial datum (X0

1 , X
0
2 ), there exists R0 > 0 not depending on R such that the solution

(X1, X2) to (5.1) satisfies (X1, X2) ∈ YR0(0, T ;D).

Proof. According to Lemma 15, c is bounded in the L∞(0, T ;W 2,∞(D)) norm by a constant
that is independent of R. Then, by Lemma 23, there exists a unique solution (X1, X2) to
(5.1). Since Xk

i (t) ∈ D a.s., c, ∇c, f , ∇f are bounded uniformly in R, i.e., there exists
K = K(c0, f0) > 0, which is independent of R, such that |gi[c, f ](Xk

i (t), t)| ≤ K a.s. Thus,
for s, t ∈ [0, T ], using the Burkholder–Davis–Gundy inequality,

E|Xk
i (t)−Xk

i (s)|4 ≤ C(K)|t− s|4 + CE
�� t

s
σ(Xk

i (s))dB
k
i (s)

�4

≤ C(K)|t− s|4 + CE
�� t

s
σ(Xk

i (s))
2ds

�2

≤ C(K)
�|t− s|2 + �σ�4L∞(D)

�|t− s|2 ≤ C(K,T, σ,D)|t− s|2.

The lemma follows after choosing R0 := max{C(K,T, σ,D)1/4, (K
√
T +C�σ�L∞(D))

√
T +

�X0�L4(Ω)}.
The previous lemma shows that the fixed-point operator Φ : YR0(0, T ;D) → YR0(0, T ;D),$X �→ X, is well defined. We need to verify that Φ is a contraction. We first prove an

auxiliary result.
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Lemma 26. Let (c, f) and (c�, f �) be progressively measurable solutions to (5.3)–(5.6),
where α, β are given by (5.7) with X replaced by $X, $X � ∈ YR(0, T ;D) for some R > 0,
respectively. Then the associated solutions X and X � to (5.1) satisfy

E|X(t)−X �(t)|4 ≤ Ct

� t

0
E�c(s)− c�(s)�4

C1(D)
ds,

where the constant C > 0 does not depend on R, (c, f), or (c�, f �).

Proof. The Itô integral representation of X(t)−X �(t) gives

E|Xk
i (t)− (X �)ki (t)|4 ≤ CE

�� t

0

�
gi[c, f ](X

k
i (s), s)− gi[c

�, f �]((X �)ki (s), s)
�
ds

�4

(6.16)

+ CE
�� t

0

�
σ(Xk

i (s))− σ((X �)ki (s))
�
dBk

i (s)

�4

=: I1 + I2.

It follows from Assumption (A4) and the explicit representation (5.4) that

I1 ≤ CE
'''' � t

0

�
gi[c, f ](X

k
i (s), s)− gi[c

�, f �](Xk
i (s), s)

�
ds

''''4
+ E

'''' � t

0

�
gi[c

�, f �](Xk
i (s), s)− gi[c

�, f �]((X �)ki (s), s)
�
ds

''''4
≤ L4

1E
�
1 + �c�L∞(0,T ;C1(D))

�4�� t

0
�c(s)− c�(s)�C1(D)ds

�4

+ L4
2E

�
1 + �c��L∞(0,T ;W 2,∞(D))

�4�� t

0
|X(s)−X �(s)|ds

�4

.

Furthermore, by the Burkholder–Davis–Gundy inequality and the Lipschitz continuity of
σ,

I2 ≤ CE
�� t

0

�
(σ(Xk

i (s))− σ((X �)ki (s))
�2
ds

�2

≤ CE
�� t

0
|X(s)−X �(s)|2ds

�2

.

We insert these estimates into (6.16) and use Hölder’s inequality:

E|X(t)−X �(t)|4 ≤ Ct3E
� t

0
�c(s)− c�(s)�4

C1(D)
ds

+ Ct3E
� t

0
|X(s)−X �(s)|4ds+ CtE

� t

0
|X(s)−X �(s)|4ds.

Then Gronwall’s lemma concludes the proof.

We prove now that Φ : YR0(0, T ;D) → YR0(0, T ;D), $X �→ X, is a contraction. By
Lemmas 26 and 20, we have

E|Φ(X(t))− Φ(X �(t))|4 ≤ Ct

� t

0
E�c(s)− c�(s)�4

C1(D)
ds
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≤ CtE
��α− α��4L4(QT ) + �β − β��4L4(QT )

�
≤ CtE�X −X ��4L4(0,t,L4(D)) = Ct

� t

0
E|X(s)−X �(s)|4ds.

We iterate this inequality to find after n times that

E|Φn(X(t))− Φn(X �(t))|4 ≤ (Ct)n
� t

0

� s1

0
· · ·

� sn−1

0
E|X(sn)−X �(sn)|4dsn · · · ds1

≤ (Ct)n
tn

n!
sup
0<s<t

E|X(s)−X �(s)|4.

We conclude that

sup
0<s<T

�
E|Φn(X(t))− Φn(X �(t))|4�1/4 ≤ (CT 2)n/4

(n!)1/4
sup

0<s<T

�
E|X(s)−X �(s)|4�1/4.

The sequence (CT 2)n/4/(n!)1/4 converges to zero as n → ∞. Hence, there exists n ∈ N
such that Φn is a contraction. By the variant [68, Theorem 2.4] of Banach’s fixed-point
theorem, Φ has a fixed point, proving Theorem 8.
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7. Analysis of a Model for Vesicle Transport
in Neurites

The aim of this chapter is the analysis of the cross-diffusion systems (5.9)–(5.18), modeling
the intracellular transport of vesicles in neurites. We start by giving some key ideas and
the main existence result, Theorem 27, together with necessary assumptions.

7.1. Assumptions and Main Result

The key idea of our analysis is to work with the entropy (or, more precisely, free energy)

E(u) =

�
D
(h(u)− u1V1 − u2V2)dx, where

h(u) =

2"
i=1

ui(log ui − 1) + u0(log u0 − 1) and u0 = 1− u1 − u2. (7.1)

Introducing the electrochemical potentials µi = δE/δui = log(ui/u0) − Vi for i = 1, 2,
system (5.9)-(5.10) can be written as a formal gradient flow in the sense

∂tui = div
2"

j=1

Bij∇µj , where Bij = Diu0uiδij , i = 1, 2,

and δij is the Kronecker symbol. The advantage of this formulation is that the drift terms
are eliminated and that the new diffusion matrix (Bij) is (diagonal and) positive definite.
This formulation is the basis of the boundedness-by-entropy method [59, Chap. 4]. The
use of the electrochemical potentials has another benefit. Inverting the relation (u1, u2) �→
(µ1, µ2), we infer from

ui =
exp(µi + Vi)

1 + exp(µ1 + V1) + exp(µ2 + V2)
, i = 1, 2,

that
u = (u1, u2) ∈ D :=

�
u ∈ R2 : u1 > 0, u2 > 0, u1 + u2 < 1

	
, (7.2)

guaranteeing the physical bounds without the use of a maximum principle.
Furthermore, a formal computation (see the proof of (7.10)) shows that

dE

dt
(u) +

�
D

2"
i=1

Diu0ui

''''∇�
log

ui
u0

− Vi

�''''2dx = −
2"

i=1

�
Ji · ν

�
log

ui
u0

− Vi

��x=1

x=0

, (7.3)
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where ν(0) = −1 and ν(1) = 1. The most delicate terms are J1 ·ν(log(u1/u0)−V1)|x=0 and
J2 · ν(log(u2/u0) − V2)|x=1. To estimate these expressions, we exploit the fact that both
terms factorize u0. For instance,

−J1 · ν
�
log

ui
u0

− Vi

�''''
x=0

= α1
Λs

Λmax
s

u0(log u1 − log u0 − V1)|x=0

is bounded from above since Λs ≥ 0, −u0 log u0 is bounded, and u0 log u1 is non-positive
due to 0 < u1 < 1. Similarly, the other boundary terms are bounded, and we conclude
that the right-hand side of (7.3) is bounded from above. An estimation of the entropy
production term (the second term on the left-hand side of (7.3)) shows that (see, e.g., the
proof of Lemma 6 in [38])�

D

2"
i=1

Diu0ui

''''∇�
log

ui
u0

− Vi

�''''2dx (7.4)

≥ c

�
D

� 2"
i=1

u0|∇√
ui|2 + |∇√

u0|2
�
dx− C

�
D

2"
i=1

|∇Vi|2dx.

Together with the L∞(D) bounds for ui, this provides H1(D) bounds for u0 and u0ui for
i = 1, 2, which are needed to apply the “degenerate” Aubin–Lions lemma [58]. Moreover,
the bounds show that we can define the traces of u0ui and u0, which is needed to give a
meaning to the boundary conditions (5.13)–(5.16). At this point, we need the factor u0ui
in (5.14) and (5.15). Indeed, without the factor u0, we are not able to define u1 and u2 at
x = 0, 1. This is the mathematical reason to introduce this factor.
We note that our method also works for more than two species and in several space

dimensions. Thanks to the L∞(D) bounds, no restriction on the space dimension due to
Sobolev embeddings is needed. For more than two species, one may apply the techniques
elaborated in [38].

For our main result, we impose the following assumptions:

(C1) Domain: D = (0, 1), T > 0, DT := D × (0, T ).

(C2) Parameter: αi, βi, Di > 0, Vi ∈ H1(D) for i = 1, 2 and Λmax
n , Λmax

s > 0.

(C3) Initial data: u01, u
0
2 ∈ L1(D) satisfies (u01, u

0
2)(x) ∈ D for a.e. x ∈ D (see Definition 7.2

of D) and Λ0
n/Λ

max
n , Λ0

s/Λ
max
s ∈ [0, 1].

Theorem 27 (Global existence). Let Assumptions (C1)–(C3) hold. Then there exists a
weak solution (u1, u2,Λn,Λs) to (5.9)–(5.18) satisfying u1, u2 ≥ 0 and u1 + u2 ≤ 1 in DT ,

√
u0ui,

√
u0 ∈ L2(0, T ;H1(D)), ∂tui ∈ L2(0, T ;H1(D)�), i = 1, 2,

the weak formulation� T

0
	∂tui, φi
dt−

� T

0

�
D
Ji∂xφidxdt+

� T

0

�
Ji(x, t)φi(x, t)


x=1

x=0
dt = 0
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where 	·, ·
 is the dual product between H1(D)� and H1(D), the fluxes are defined as

Ji =
√
u0∂x(

√
u0ui)− 3

√
u0ui∂x

√
u0 − u0ui∂xVi ∈ L2(DT ), i = 1, 2,

the initial conditions (5.11) are satisfied in the sense of H1(D)�, and equations (5.17)–(5.18)
are fulfilled in the sense of L2(∂D).

As mentioned above, the regularity of u0 and ui for i = 1, 2 allows us to define the trace
of u0 and u0ui such that the boundary conditions and the differential equations for Λn

and Λs are well defined. The proof of Theorem 27 is based on the entropy identity (7.3),
a regularization of equations (5.9)–(5.10), the Leray–Schauder fixed-point theorem, and a
compactness argument using uniform gradient estimates coming from (7.4).

7.2. Proof of Theorem 27

After proving some auxiliary lemmas, we regularize system (5.9)–(5.10) in time and space
and prove the existence of a solution to this approximate problem by using the Leray–
Schauder fixed-point theorem. The compactness of the fixed-point operator follows from
the discrete entropy inequality analogous to (7.3). This inequality also provides a pri-
ori estimates uniform in the approximation parameters. The relative compactness of the
sequence of approximate solutions then follows from a “degenerate” Aubin–Lions-type re-
sult. Finally, we verify that the limit function is a solution to (5.10)–(5.16). To simplify
the notation, we set Λmax

n = 1 and Λmax
s = 1 in the analysis.

7.2.1. Auxiliary lemmas

The following lemma follows from a straightforward computation (also see [59, (4.61)]).

Lemma 28. Let h(u) be given by (7.1) and let A = (Aij(u)) ∈ R2×2 be defined by (5.12).
Then, for any u ∈ D and z ∈ R2,

z · h��(u)A(u)z = min{D1, D2}u0
�
z21
u1

+
z22
u2

�
+min{D1, D2}

�
1

u0
+ 1

�
(z1 + z2)

2

+ |D2 −D1|u2
u0

''''z1 − 1− u2
u2

z2

''''2.
Let w = h�(u), i.e. wi = ∂h/∂ui = log(ui/u0) for i = 1, 2, and recall that B =

A(u)h��(u)−1. Then, by Lemma 28, for some c > 0,

∂xw ·B∂xw = (∂xu) · h��(u)A(u)(∂xu) ≥ c

2"
i=1

u0(∂x
√
ui)

2 + c(∂x
√
u0)

2,

which provides gradient bounds; also see (7.12) below.

Lemma 29. Let fi, gi ∈ L2(0, T ) be such that fi, gi ≥ 0 for i = 1, 2. Then there exists a
unique solution to

∂tΛn = β1(1− Λn)f1(t)− α2Λng1(t), (7.5)
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∂tΛs = β2(1− Λs)f2(t)− α1Λsg2(t), t > 0, (7.6)

with the initial conditions Λn(0) = Λ0
n ∈ [0, 1] and Λs(0) = Λ0

s ∈ [0, 1] satisfying 0 ≤
Λn(t),Λs(t) ≤ 1 for t ≥ 0.

Proof. The existence of a unique absolutely continuous solution to the differential system
(7.5)–(7.6) follows from a standard application of Banach’s fixed-point theorem. We sketch
the argument for the convenience of the reader.
Let T � < T and

Γ[$Λ](t) := Λ0
n +

� t

0

�
β1(1− $Λ(s))f1(s)− α2

$Λ(s)g1(s)
ds, t ∈ [0, T �].

Exploiting the linearity with respect to $Λ, standard estimates show the Lipschitz continuity
of Γ : C0([0, T �]) → C0([0, T �]):

�Γ[$Λ1]− Γ[$Λ2]�L∞(0,T �) ≤ (α2�g1�L1(0,T �) + β1�f1�L1(0,T �))�$Λ1 − $Λ2�L∞(0,T �).

Due to

�f1�L1(0,T �) + �g1�L1(0,T �) ≤
√
T �(�f1�L2(0,T ) + �g1�L2(0,T )) → 0

as T � → 0, there exists some T0 < T such that

α2�g1�L1(0,T0) + β1�f1�L1(0,T0) <
!
T0(α2�g1�L2(0,T ) + β1�f1�L2(0,T )) < 1, (7.7)

i.e., Γ is a contraction on C0([0, T0]). Banach’s fixed-point theorem yields a unique solution
to (7.5) on [0, T0]. In view of (7.7), this procedure can be repeated on intervals [a, b],
satisfying 0 ≤ a < b ≤ T and b−a < T0. Hence, the solution can be progressively extended
to the whole interval [0, T ]. Similarly, one proceeds for (7.6).
Multiplying (7.5) by Λ−

n := max{0,Λn} yields

1

2

d

dt
(Λ−

n )
2 = β1f1(t)(1− Λn)Λ

−
n − α2g1(t)(Λ

−
n )

2 ≤ 0,

using f1 ≥ 0 and g1 ≥ 0. We conclude from Λ−
n (0) = 0 that Λn(t) ≥ 0 for t ≥ 0. In a

similar way, we infer after multiplication of (7.6) by (Λn − 1)+ := max{0,Λn − 1} that

1

2

d

dt
[(Λn − 1)+]2 = −β1f1(t)(Λn − 1)(Λn − 1)+ − α2g1(t)Λn(Λn − 1)+ ≤ 0,

which implies that Λn(t) ≤ 1 since Λn(0) ≤ 1. The proof of 0 ≤ Λs ≤ 1 is similar.

7.2.2. Solution of an approximate system

The approximate system is defined by an implicit Euler discretization and a regularization
in the entropy variable. Let T > 0, N ∈ N, τ = T/N , tk = kτ for k = 0, . . . , N ,
and ε > 0. Let k ≥ 1 and uk−1 ∈ L∞(D;R2) be given. We wish to find a solution
wk = (wk

1 , w
k
2) ∈ H1(D;R2) to

1

τ

�
D
(u(wk)− uk−1) · φdx+

�
D
∂xφ ·B(wk)∂xw

kdx−
�
D

2"
i=1

u0(w
k)ui(w

k)∂xVi∂xφidx
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+

2"
i=1

�
J1
i [u(w

k)](tk)φi(1)− J0
i [u(w

k)](tk)φi(0)
�
+ ε

�
D
(∂xw

k · ∂xφ+ wk · φ)dx = 0

(7.8)

for all φ ∈ H1(D;R2). The function ui(w
k) equals ui(w

k) = expBk
i /(1+ expwk

1 +expwk
2),

and the entries of the matrix B(wk) are Bij(w
k) = Diu0(w

k)ui(w
k)δij for i, j = 1, 2. We

set uk := u(wk) to simplify the notation.
The pool concentrations Λk

n and Λk
s at iteration step k are defined by Λk

j = Λj(t) for
(k − 1)τ < t ≤ kτ , where Λj for j = n, s are the solutions of the following fixed-point
problem

Λn(t) = Λ0
n +

k−2"
j=0

�
β1

� (j+1)τ

jτ
(1− Λn(r))u

j
0(1, r)u

j
1(1, r)dr − α2

� (1+j)τ

jτ
Λn(r)u

j
0(1, r)dr

�

+ β1

� t

(k−1)τ
(1− Λn(r))u

k−1
0 (1, r)uk−1

1 (1, r)dr − α2

� t

(k−1)τ
Λn(r)u

k−1
0 (1, r)dr,

(7.9)

Λs(s) = Λ0
s +

k−2"
j=0

�
β2

� (j+1)τ

jτ
(1− Λs(r))u

j
0(0, r)u

j
2(0, r)dr − α1

� (1+j)τ

jτ
Λs(r)u

j
0(0, r)dr

�

+ β2

� t

(k−1)τ
(1− Λn(r))u

k−1
0 (0, r)uk−1

2 (0, r)dr − α2

� t

(k−1)τ
Λn(r)u

k−1
0 (0, r)dr.

These equations can be interpreted as differential equations of the form

∂tΛn = β1(1− Λn)f1(t)− α2Λng1(t),

∂tΛs = β2(1− Λs)f2(t)− α1Λsg2(t), t > 0,

with suitable step functions fi, gi, i = 1, 2. It follows from |uk0|, |uki | ≤ 1 that fi, gi ∈
L2(0, T ), and Lemma 29 guarantees a unique solution to (7.9).
The variable Bk

i = log(ui(w
k)/u0(w

k)) can be interpreted as the chemical potential,
different from the electrochemical potential µi used in the introduction, which also includes
the electric potential Vi. The following analysis could also be carried out using µi instead
of wi.

Lemma 30. There exists a solution wk ∈ H1(D) to (7.8) satisfying the discrete entropy
inequality

H(uk)−H(uk−1) +
cτ

2

�
D
∂xw

k ·B(wk)∇xw
kdx+ ετ

�
D
(|∂xwk|2 + |wk|2)dx ≤ Cτ,

(7.10)

where c = min{D1, D2} and C > 0 only depends on αi, ηi, Di, and the L2(D) norm of
|∂xVi|2 for i = 1, 2.
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Proof. The proof is similar to that one of Lemma 5 in [38], and we highlight the differences
only. By the Lax–Milgram lemma, for any given y ∈ H1(D;R2) and σ ∈ [0, 1], there exists
a unique solution to the linear problem a(v, φ) = σF (φ) for all φ ∈ H1(D;R2), where

a(v, φ) =

�
D
∂xφ ·B(y)∂xvdx+ ε

�
D
(∂xw · ∂xφ+ w · φ)dx,

F (φ) = −1

τ

�
D
(u(y)− uk−1) · φdx+

�
D

2"
i=1

u0(y)ui(y)∂xVi∂xφidx

−
2"

i=1

�
J1
i [u(y)](tk)φi(1)− J0

i [u(y)](tk)φi(0)
�

for v, φ ∈ H1(D;R2).

This defines the fixed-point operator S : C0([0, T ];R2)× [0, 1] → C0([0, T ];R2), S(y, σ) = v,
where v lies in fact in the space H1(D;R2). Compared to [58], we work with the space
C0([0, T ];R2) instead of L∞(D;R2) to ensure that the evaluation on the boundary points is
well defined. By standard arguments (see, e.g., [58, Lemma 5]), S(y, 0) = 0, S is continuous
and compact, since the embedding H1(D) �→ C0([0, T ]) is compact. It remains to prove a
uniform bound for all fixed points of S(·, σ).
We choose φ = v in a(v, φ) = σF (φ) to find that

σ

τ

�
D
(u(v)− uk−1) · vdx+

�
D
∂xv ·B(v)∂xvdx+ ε

�
D
(|∂xv|2 + |v|2)dx

= σ

�
D

2"
i=1

u0(v)ui(v)∂xVi∂xvidx− σ

2"
i=1

�
J1
i [u(v)](tk)vi(1)− J0

i [u(v)](tk)vi(0)
�

(7.11)

=: I1 + I2.

The convexity of the entropy density h implies that

(u(v)− uk−1) · v = (u(v)− uk−1) · h�(u(v)) ≥ h(u(v))− h(uk−1).

We conclude from Lemma 28 that

∂xv ·B(v)∂xv = ∂xu(v) · h��(u(v))A(u(v))∂xu(v) (7.12)

≥ c

� 2"
i=1

u0(v)
|∂xui(v)|2

ui(v)
+

|∂xu0(v)|2
u0(v)

�
,

where c = min{D1, D2} > 0. For the first term on the right-hand side of (7.11), we
observe that the derivative of vi = log(ui/u0) equals ∂xvi = ∂xui(v)/ui(v)−∂xu0(v)/u0(v).
Therefore, for any δ > 0,

I1 ≤
�
D

2"
i=1

�
u0(v)|∂xui(v)|+ ui(v)|∂xu0(v)|

�|∂xVi|dx

≤ δ

�
D

2"
i=1

�
u0(v)

2|∂xui(v)|2 + ui(v)
2|∂xu0(v)|2

�
dx+ C(δ)

�
D

2"
i=1

|∂xVi|2dx
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≤ δ

�
D

� 2"
i=1

u0(v)
|∂xui(v)|2

ui(v)
+

|∂xu0(v)|2
u0(v)

�
dx+ C(δ),

where we used ui(v) ≤ 1, u0(v) ≤ 1, and the assumption Vi ∈ H1(D) in the last step.
Choosing δ = c/2, the first term on the right-hand side can be absorbed by the second
term on the left-hand side of (7.11), thanks to (7.12). Finally, using definitions (5.13)–(5.16)
and vi = log(ui(v)/u0(v)),

I2 = −σβ1(1− Λn)u0(v(1))u1(v(1)) log
u1(v(1))

u0(v(1))
+ σα1Λsu0(v(0)) log

u1(v(0))

u0(v(0))

+ σα2Λnu0(v(1)) log
u2(v(1))

u0(v(1))
− σβ2(1− Λs)u0(v(0))u2(v(0)) log

u2(v(0))

u0(v(0))
.

Since z �→ z log z is bounded for z ∈ [0, 1] and Λn ≤ 1, Λs ≤ 1 by Lemma 29, the first and
fourth terms on the right-hand side are bounded from above. Furthermore, we deduce from
the fact that log ui(v(x)) is non-positive for i = 1, 2 and x = 0, 1 that the second and third
terms are non-positive. This shows that I2 ≤ C for some constant C > 0 which depends
only on αi and βi.

Summarizing, (7.11) becomes

H(u(v))−H(uk−1) +
τ

2

�
D
∂xv ·B(v)∂xvdx+ ε

�
D
(|∂xv|2 + |v|2)dx ≤ Cτ,

and C > 0 only depends on αi, βi, Di, and the L2(D) norm of |∂xVi|2 for i = 1, 2. In view
of the positive semidefiniteness of B(v), this inequality provides a uniform bound for v in
H1(D;R2) (also being uniform in σ ∈ [0, 1], but not uniform in ε). Hence, we can apply
the fixed-point theorem of Leray and Schauder to conclude the existence of a fixed point of
S(·, 1), which is a solution to (7.8). Defining wk := v, this fixed point satisfies (7.10).

Summing the discrete entropy inequality (7.10) over k leads to the following result.

Lemma 31. There exists C > 0 independent of (ε, τ) (but depending on T ) such that

H(uj) + c

j"
k=1

τ

�
D

� 2"
i=1

uk0|∂x(uki )1/2|2 + |∂xuk0|2 + |∂x(uk0)1/2|2
�
dx (7.13)

+ εC

j"
k=1

τ
2"

i=1

�Bk
i �2H1(D) ≤ H(u0) + C.

Proof. We infer from (7.10) and Lemma 28 that

H(uk)−H(uk−1) + cτ

�
D

� 2"
i=1

uk0|∂x(uki )1/2|2 + |∂xuk0|2 + |∂x(uk0)1/2|2
�
dx

+ ετ
2"

i=1

�Bk
i �2H1(D) ≤ Cτ,

where c > 0 depends only on D1, D2 and C > 0 is independent of ε, τ and k. We sum this
inequality over k = 1, . . . , j and observe that τj ≤ T to conclude the proof.
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7.2.3. Uniform estimates

We introduce the piecewise constant in time functions u
(τ)
i (x, t) = uki and w

(τ)
i = Bk

i

for x ∈ D, t ∈ ((k − 1)τ, kτ ], i = 1, 2,. We set u(τ)(·, 0) = u0 and w(τ)(·, 0) = h�(u0)
at time t = 0. Furthermore, we introduce the shift operator (στu

(τ))(·, t) = uk−1 for
t ∈ ((k − 1)τ, kτ ]. Summing (7.8) over k = 1, . . . , N and using the definitions of B(w(τ))
and w(τ), we infer that the pair (u(τ), w(τ)) solves

1

τ

� T

0

�
D
(u

(τ)
i − στu

(τ)
i )φidxdt+ ε

� T

0

�
D
(∂xw

(τ)
i ∂xφi + w

(τ)
i φi)dxdt (7.14)

+Di

� T

0

�
D
(u

(τ)
0 ∂xu

(τ)
i − u

(τ)
i ∂xu

(τ)
0 − u

(τ)
0 u

(τ)
i ∂xVi)∂xφidxdt

+

� T

0

�
J1
i [u

(τ)](t)φi(1, t)− J0
i [u

(τ)](t)φi(0, t)
�
dt = 0,

where φi : (0, T ) → H1(D) is piecewise constant, i = 1, 2, and J j
i [u

(τ)](t) is evaluated at
the time points �t/τ�τ , which means, for instance,

J0
1 [u

(τ)](t) = α1Λs(kτ)u
(τ)
0 (1, t) for t ∈ ((k − 1)τ, kτ ].

The discrete entropy inequality gives the following uniform bounds.

Lemma 32 (Gradient bounds). There exists C > 0 independent of (ε, τ) such that

2"
i=1

&&(u(τ)0 )1/2u
(τ)
i

&&
L2(0,T ;H1(D))

+ �(u(τ)0 )1/2�L2(0,T ;H1(D)) ≤ C,

2"
i=1

�u(τ)0 u
(τ)
i �L2(0,T ;H1(D)) + �u(τ)0 �L2(0,T ;H1(D)) ≤ C.

Proof. The first estimate follows from the bound 0 ≤ u
(τ)
i ≤ 1 and (7.10) since''∂x�(u(τ)0 )1/2u

(τ)
i

�'' ≤ ''(u(τ)0 )1/2∂xu
(τ)
i

''+ ''u(τ)i

''''∂x(u(τ)0 )1/2
''.

We deduce from the first estimate and

|∂x(u(τ)0 u
(τ)
i )| ≤ ''(u(τ)0 )1/2∂x((u

(τ)
0 )1/2u

(τ)
i )

''+ ''(u(τ)0 )1/2u
(τ)
i ∂x(u

(τ)
0 )1/2

''
≤ ''∂x((u(τ)0 )1/2u

(τ)
i

''+ ''∂x(u(τ)0 )1/2
'',

the second estimate.

Lemma 33 (Discrete time bounds). There exists C > 0 independent of (ε, τ) such that

�u(τ)i − στu
(τ)
i �L2(0,T ;H1(D)�) ≤ Cτ, i = 1, 2.
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Proof. Let φi : (0, T ) → H1(D) be piecewise constant. Then, by (7.14) and the L∞(DT )

bound of u
(τ)
i ,

1

τ

'''' � T

0

�
D
(u

(τ)
i − στu

(τ)
i )φidxdt

'''' (7.15)

≤ Di

��(u(τ)0 )1/2∂xu
(τ)
i �L2(DT ) + �∂xu(τ)0 �L2(DT ) + �∂xVi�L2(DT )

��∂xφi�L2(DT )

+
1"

j=0

�J j
i [u

(τ)]�L2(0,T )�φi�L2(0,T ;H1(D)) + ε�w(τ)
i �L2(0,T ;H1(D))�φi�L2(0,T ;H1(D))

≤ C�φi�L2(0,T ;H1(D)).

The last step follows from the boundedness of J j
i [u

(τ)], since 0 ≤ u
(τ)
i (x, t) ≤ 1 for x ∈

[0, 1] and 0 ≤ Λn/s(t) ≤ 1. Inequality (7.15) holds for all piecewise constant functions
φi : (0, T ) → H1(D). By a density argument, we obtain

τ−1�u(τ)i − στu
(τ)
i �L2(0,T ;H1(D)�) ≤ C,

concluding the proof.

7.2.4. Limit (ε, τ) → 0

Lemmas 32 and 33 allow us to apply the Aubin–Lions lemma in the version of [30], giving
the existence of a subsequence, which is not relabelled, such that as (ε, τ) → 0,

u
(τ)
0 → u0 in L2(DT ),

and because of the uniform L∞(DT ) bound, this convergence holds in any Lp(DT ) for
p < ∞. Moreover, we conclude the following weak convergences (up to subsequences):

u
(τ)
i � ui weakly* in L∞(DT ),

τ−1(u
(τ)
i − στu

(τ)
i ) � ∂tui weakly in L2(0, T ;H1(D)),

εw
(τ)
i → 0 strongly in L2(0, T ;H1(D)).

Since both (u
(τ)
i ) and (∂xu

(τ)
0 ) are only weakly converging, we cannot obtain the conver-

gence of the product. However, the uniform bounds for ((u
(τ)
0 )1/2u

(τ)
i ) and ((u

(τ)
0 )1/2) in

L2(0, T ;H1(D)) allow us to apply the “degenerate” version of the Aubin–Lions lemma
[15, 58] so that (for a subsequence)

(u
(τ)
0 )1/2u

(τ)
i → √

u0ui strongly in Lp(DT ), p < ∞ as (ε, τ) → 0.

This shows that

u
(τ)
0 ∂xu

(τ)
i − u

(τ)
i ∂xu

(τ)
0 = (u

(τ)
0 )1/2∂x

�
(u

(τ)
0 )1/2u

(τ)
i

�− 3(u
(τ)
0 )1/2u

(τ)
i ∂x(u

(τ)
0 )1/2

�
√
u0∂x(

√
u0ui)− 3

√
u0ui∂x

√
u0
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weakly in L1(DT ), and since this sequence is bounded in L2(DT ), the convergence holds
true in that space.
It follows from the linearity and continuity of the trace operator H1(D) → L2(∂D) that

this operator is weakly continuous and therefore,

u
(τ)
0 (x, ·) → u0(x, ·), (u

(τ)
0 u

(τ)
i )(x, ·) � (u0ui)(x, ·) weakly in L2(0, T ), x = 0, 1.

In fact, these sequences are even bounded in L∞(0, T ) because of the embedding H1(D) �→
C0(D) �→ L∞(∂D). Let Λ

(τ)
j be the solution to (5.17) if j = n or (5.18) if j = s with u

replaced by u(τ). Then Λ
(τ)
n solves the integral equation

Λ(τ)
n = Λn(0) + β1

� t

0
(1− Λ(τ)

n (r))στ (u
(τ)
0 u

(τ)
1 )(1, r)dr − α2

� t

0
Λ(τ)
n (r)στu

(τ)
0 (1, r)dr.

Since the integrand is uniformly bounded, this gives |Λ(τ)
n (t) − Λ

(τ)
n (s)| ≤ C|t − s| for

s, t ∈ [0, T ]. Thus, (Λ
(τ)
n ) is uniformly bounded and uniformly equicontinuous. By the

Arzelà–Ascoli theorem, there exists a subsequence (not relabeled) such that Λ
(τ)
n → Λn

uniformly in [0, T ]. In a similar way, we prove that Λ
(τ)
s → Λs uniformly in [0, T ]. We need

to identify the limits Λn and Λs as the solutions to (5.17) and (5.18), respectively.

Set G(τ)(t) := Λ
(τ)
n (kτ) for t ∈ ((k − 1)τ, kτ ]. Then, for instance,

J1
1 [u

(τ)](t) = β1(1−G(τ)(t))u
(τ)
0 (1, t)u

(τ)
1 (1, t) for t ∈ ((k − 1)τ, kτ ].

It holds for s ∈ ((m− 1)τ,mτ ] and t ∈ ((k − 1)τ, kτ ] that

|G(τ)(t)−G(τ)(s)| ≤ C|mτ − kτ | ≤ C(|t− s|+ τ).

Therefore, since G(τ)(�t/τ�τ) = Λ
(τ)
n (�t/τ�τ),

|G(τ)(t)− Λn(t)| ≤ |G(τ)(t)−G(τ)(�t/τ�τ)|+ |Λ(τ)
n (�t/τ�τ)− Λ(τ)

n (t)|+ |Λ(τ)
n (t)− Λn(t)|

≤ C|t− �t/τ�τ |+ Cτ + �Λ(τ)
n (t)− Λn(t)�L∞(0,T ) → 0

as (ε, τ) → 0, and this convergence is uniform in [0, T ]. Hence, for instance,

J1
1 [u

(τ)] → β1(1− Λn)u0(1, ·)ui(1, ·) =: J1
1 [u] strongly in L2(0, T ).

To establish that Λn satisfies (5.17) it is sufficient to show that

στ (u
(τ)
0 u

(τ)
i )(x, ·) � (u0u1)(x, ·), στu

(τ)
0 (x, ·) � u0(x, ·) weakly in L2(0, T ) for x = 0, 1.

In fact, this result can be proved by straightforward arguments. Then the convergence of

u
(τ)
i (1, ·) in L2(0, T ) implies that Λn solves (5.17). In a similar way, we prove that Λ

(τ)
s → Λs

uniformly in [0, T ], and Λs solves (5.18).
The initial condition (5.11), understood in the sense of H1(D)�, follows from arguments

similar as at the end of the proof of Theorem 2 in [58]. This finishes the proof.

92



7. Analysis of a Model for Vesicle Transport in Neurites

7.3. Stationary states

In this section, we derive some properties of stationary solutions, i.e., solutions (u1, u2,
Λn,Λs) to (5.9)–(5.18), where ∂tu1 = ∂tu2 = 0 and ∂tΛn = ∂tΛs = 0. The former condition
implies that the fluxes J1 and J2 are constant, and we deduce from the latter condition
that the total flux vanishes, J1 + J2 = 0. Consequently, J := J1 = −J2. Moreover, if
u0(1) > 0 and u0(0) > 0, the stationary solution to (5.17)–(5.18) is given by

Λn =
β1u1(1)

β1u1(1) + α2
, Λs =

β2u2(0)

β2u2(0) + α1
, (7.16)

We assume that a stationary solution exists and that u1, u2 ∈ W 1,∞(D). Then

J = −D1

�
u0∂xu1 − u1∂xu0 − u0u1∂xV1

�
= D2

�
u0∂xu2 − u2∂xu0 − u0u2∂xV2

�
. (7.17)

The following situation is approximately satisfied in numerical experiment 1 for large
times.

Lemma 34. Let u0(1) > 0 and u0(0) > 0. Then Λn = 0 if and only Λs = 0, and u1(1) = 0
if and only of u2(0) = 0. In this situation, the flux vanishes, J = 0.

Proof. Let Λn = 0. Then, by (7.16), u1(1) = 0. We insert expressions (7.16) into the
boundary conditions (5.13)–(5.14):

J = J1(0) =
α1β2u2(0)

β2u2(0) + α1
u0(0) = J1(1) =

α2β1u1(1)

β1u1(1) + α2
u0(1) = 0. (7.18)

This shows that u2(0) = 0 and consequently, again by (7.16), Λs = 0. Moreover, we infer
from (7.18) that J = 0.

If the parameters are the same for both species, the solution is symmetric around x = 1/2,
as proved in the following lemma.

Lemma 35. Let α1 = α2, β1 = β2, Λ
max
n = Λmax

s , D1 = D2, and V2(x) = V1(1−x)+const.
for x ∈ D. Then (u1, u2,Λn,Λs) with u2(x) = u1(1 − x) for x ∈ D and Λn = Λs is a
stationary solution to (5.9)–(5.16).

Proof. Let u1 be a solution to (7.17) with u0 := 1−u1(x)−u1(1−x) and u2(x) := u1(1−x)
for x ∈ D. Taking into account that ∂xu2(x) = −∂xu1(1−x) and ∂xV2(x) = −∂xV1(1−x),
we deduce from u0(x) = u0(1− x) that

−J/D1 = u0(x)∂xu1(x)− u1(x)∂xu0(x)− u0(x)u1(x)∂xV1(x)

= −u0(1− x)∂xu2(1− x) + u2(1− x)∂xu0(1− x)

+ u0(1− x)u2(1− x)∂xV2(1− x).

Thus, (u1, u2) solves (7.17). We infer from u1(1) = u2(0) and (7.16) that Λn = Λs.
Furthermore, since u0(0) = u0(1), the boundary conditions (5.13)–(5.16) are satisfied.

This situation is illustrated in Figure 8.8, section 8.2.
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8. Numerical Experiments

In this chapter, we present numerical experiments based on the model (5.4)–(5.7), (5.1) for
angiogenesis and the model (5.9)–(5.18) for the transport of vesicles inside neurites.

8.1. Angiogenesis

We illustrate the dynamics of the tip and stalk cells in the two-dimensional ball D = BR(0)
around the origin with radius R = 500 (in units of µm) for one path t �→ X(ω, t). Let
h = 10 be the space step size and introduce the grid points xij = ((k− i)h, (k− j)h) ∈ R2,
where i, j = 0, . . . , 2k and k = R/h. The time step size equals τ = 1 (in units of seconds).
The stochastic differential equations (5.1) are discretised by using the Euler–Maruyama

scheme
( $Xk

i )
(n+1) = ( $Xk

i )
(n) + gi[c

n, fn]
�
( $Xk

i )
(n), t

�
τ + σi

�
( $Xk

i )
(n)

�√
τN ,

with initial datum ( $Xk
i )

(0) = (X0)
k
i , where N is standard normally distributed and cn, fn

are approximations of c, f obtained by linear interpolation of the values cnij (see below).
The non-linearity gi is chosen as in (5.2) with M , γ, and λ given below in subsection 8.1.1.
Furthermore, α0 and z are taken as in [92, formulas (10) and (14)]. Compared to [8],
we neglect the contribution of the Hertz contact mechanics regarding z to guarantee the
boundary condition gi[c, f ](·, t) = 0 on ∂D. We choose the continuous radially symmetric
stochastic diffusion

σ(x) =


0 for |x| ≥ R,

(1/R)
!

(R/10)2 − [R/10− (R− |x|)2] for 9R/10 < |x| < R,
1/10 for |x| ≤ 9R/10.

The solutions (5.4) to the ordinary differential equations (5.3) are written iteratively as

fB(x, (n+ 1)τ) = fB(x, nτ) exp

�
− sB

� τ

0
cM (x, s+ nτ)ds

�
, n ∈ N,

and similarly for fF . The integral is approximated by the trapezoid rule� τ

0
cM (x, s+ nτ)ds ≈ τ

2
(cnM,ij + cn+1

M,ij),

where cnM,ij approximates cM (xij , nτ). We set fn
ij := (fB, fE , fF )(xij , nτ).

Finally, we discretise the reaction-diffusion equations (5.5) using the forward Euler
method and the central finite-difference scheme

div(DV (f)∇cV ) ≈ 1

h

�
Ji+1/2,j − Ji−1/2,j + Ji,j+1/2 − Ji,j−1/2

�
,
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where

Ji+1/2,j =
1

2h
(DV (f

n
i+1,j) +DV (f

n
ij))(c

n+1
i+1,j − cn+1

ij ),

Ji,j+1/2 =
1

2h
(DV (f

n
i,j+1) +DV (f

n
ij))(c

n+1
i,j+1 − cn+1

ij ).

Notice that we obtain a semi-implicit scheme. The resulting linear system of equations is
implemented in the Python-based software environment SciPy using sparse matrices and
solved by using the spsolve function from the scipy.sparse.linalg package.
The potentials V k

j , used in (5.5), are given by

V k
j (x) =

1

IR2
m

exp

�
− R2

m

R2
m − |x|2

�
, x ∈ D, j = D,M,U, V,

where Rm = 12.5, and I > 0 is a normalization constant to ensure that
�
R2 V

k
j (x)dx = 1.

It remains to define the initial conditions. The initial positions of the endothelial cells
X0,k

i (i = 1, 2, k = 1, . . . , Ni) are given by

X0,k
i =

�
r sinφ
r cosφ

�
,

where (r, φ) is uniformly drawn from the set [0.65R, 0.75R]× [0, π/2] = [325, 375]× [0, π/2].
The initial volume fractions are

f0
F (x) =


0 for |x| ≥ Rf ,
0.4(1− cos( π

0.3Rf
(Rf − |x|)) for 0.7Rf < |x| < Rf ,

0.8 for |x| ≤ 0.7Rf ,

where Rf = 0.95R = 475, as well as f0
B = 0.2f0

F and f0
E = 1 − f0

B − f0
F . We choose the

initial VEGF concentration

c0V (x) = 0.1 exp

�
− Rc!

R2
c − |x|2

�
1BRc

(x),

which is concentrated at the origin, and assume that the concentrations of the remaining
proteins vanish, c0D = c0M = c0U = 0 in D, as they are segregated by the tip cells.

8.1.1. Model parameters and constants

The model parameters and constants are taken from [8]. For the convenience of the reader,
we collect here the expressions:

α0 =
biR

3
c

Fiµ
,

γ(x, t) =
0.1biFi(1− fE(x, t))

ρBfB(x, t) + ρF fF (x, t) + ρEfE(x, t)
,

λ(x, t) =
43biFi

$λ
30

(1− fE(x, t))

�
1

2
− fE(x, t)

�
fE(x, t),
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Mk
i (x, t) =

2"
j=1

Nj"
&=1

F 2
i

20π2R4
c

(1− fE(x, t)) exp

�−|Xk
i −X&

j |
Rc

�

− 2
√
2

π

�
max{0, Rc − 0.5|Xk

i −X&
j |}

Rc

�5/2

,

vki =
2"

j=1

Nj"
&=1

F 2
i

20π2R4
c

(1− fE(x, t)) exp

�−|Xk
i −X&

j |
Rc

�
,

zki =
vki
|vki |

.

The parameters are chosen as in the following table; see [8, Appendix].

Value Unit Value Unit Value Unit

bi 0.02 s−1 DE
V 10 µm2s−1 rD 10 µm3s−1

Fi 1000 nN DB
D 0.51 µm2s−1 rM 10 µm3s−1

µ 0.2 – DF
D 1.02 µm2s−1 rU 10 µm3s−1$λ 15 – DE
D 0.051 µm2s−1 sV 0.024 µm3s−1

Rc 11.25 µm DB
M 1.23 µm2s−1 sD 0.024 µm3s−1

ρB 1.06 · 10−3 ngµm−3 DF
M 2.46 µm2s−1 sM 0.024 s−1

ρF 1.06 · 10−3 ngµm−3 DE
M 0.123 µm2s−1 sU 0.024 s−1

ρE 0.9933 · 10−3 ngµm−3 DB
U 0.53 µm2s−1 sB 1.21 µm3ng−1s−1

DB
V 100 µm2s−1 DF

U 1.06 µm2s−1 sF 1.21 µm3ng−1s−1

DF
V 200 µm2s−1 DE

U 0.053 µm2s−1

8.1.2. Experiment

We choose N1 = 2 tip cells and N2 = 200 stalk cells. Figure 8.1 shows the positions of the
tip and stalk cells at different times for one trajectory. The tip cells segregate the DLL4
protein, and the stalk cells detect the local increase of the DLL4 concentration, such that
they follow the corresponding tip cell. This effect is slightly more pronounced for the tip
cell that starts in an environment with a dense stalk cell population. The position of this
tip cell is closer to the origin than the other tip cell with a higher VEGF concentration,
leading to a relatively high production of DLL4 proteins. The stalk cells, which do not
follow a tip cell, are primarily influenced by the stiffness gradient ∇(fB+fF ) and the strain
energy density M , which incorporates contact mechanics, resulting to a spreading of these
cells.
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Figure 8.1.: Positions of two tip cells (red crosses) and 200 stalk cells (blue dots) at times
T = 0 s, T = 400 s, and T = 1600 s.

The protein concentrations are shown in Figure 8.2 and Figure 8.3. As the diffusion coef-
ficient for VEGF is much larger than the reaction rate sV , the concentration of the VEGF
protein becomes uniform in the large-time limit. The DLL4, MMP, and uPA proteins are
produced by the tip cells and hence follow their paths. The corresponding concentrations
increase with the availability of VEGF and decrease due to consumption by the stalk cells
or by getting exhausted from breaking down the fibrin matrix or the boundary membrane.
Since the diffusion is slow, the changes in the concentration are local up to time T = 1600 s.

Figure 8.2.: Concentrations of the proteins VEGF (first row), DLL4 (second row) at times
T = 0 s (left column), T = 400 s (middle column), and T = 1600 s (right
column).
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Figure 8.3.: Concentrations of the proteins MMP (first row), and uPA (second row) at
times T = 0 s (left column), T = 400 s (middle column), and T = 1600 s (right
column).

We present the volume fractions of the basement membrane, fibrin matrix, and extracel-
lular fluid in Figure 8.4 and Figure 8.5. The membrane and fibrin matrix are degraded by
the MMP and uPA proteins, thus increasing the volume fraction of the extracellular fluid.
As both proteins are produced by the tip cells, the degradation follows their paths.

Figure 8.4.: Volume fractions of the basement membrane, at times T = 0 s (left column),
T = 400 s (middle column), and T = 1600 s (right column).
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Figure 8.5.: Volume fractions of the fibrin matrix (first row), and extracellular fluid (second
row) at times T = 0 s (left column), T = 400 s (middle column), and T = 1600 s
(right column).

Summarizing, we see that the model successfully describes the formation of premature
sprouts. The experiments from [8] for dermal endothelial cells show that the in vitro
angiogenesis sprouting qualitatively well agrees with the numerical tests. Clearly, the
proposed system of equations models only a very small number of biological processes,
chemical reactions, and signal proteins, and more realistic results can be only expected after
taking into account more biological modelling details. Still, the onset of vessel formation
is well illustrated by our simple model.

8.2. Vesicle Transport in Neurites

We discretise equations (5.9)–(5.10) by an implicit Euler finite-volume scheme. Let n,m ∈
N and set τ = T/n, h = 1/m. We divide D = (0, 1) into m cells (xj , xj+1) for j =
0, . . . ,m − 1, where xj = jh. (Note that the notation is different from section 5.3.2.) We
approximate h−1

� xj+1

xj
ui(x, kτ)dx by uki,j , which solves for k = 1, . . . , n,

uki,j = uk−1
i,j +

τ

h
(Jk

i,j+1/2 − Jk
i,j−1/2), i = 1, 2, j = 1, . . . ,m− 1,

Jk
i,j+1/2 = −Di

h

�
ūk0,j+1/2(u

k
i,j+1 − uki,j) + ūi,j+1/2(u

k
0,j+1 − uk0,j)

�
−Diū

k
0,j+1/2ū

k
i,j+1/2∂xVi(xj+1/2),

where ūki,j+1/2 := (uki,j+1+uki,j)/2 for i = 0, 1, 2. At the boundary points x = 0 and x = 1, we

replace Jk
i,1/2 and Jk

i,m−1/2 respectively, by the corresponding boundary condition, evaluated

at x0 = 0 or xm = 1 and at time kτ . For instance, Jk
1,0 = α1Λs(kτ)u

k
0,0. The differential

99



8. Numerical Experiments

equations (5.17)–(5.18) are discretised by the implicit Euler scheme, for instance,

Λk
s = Λk−1

s − τα1
Λk
s

Λmax
s

uk0,0 + τβ2

�
1− Λk

s

Λmax
s

�
uk0,0u

k
2,0.

The non-linear discrete system is solved by using a damped Newton method. More
precisely, let F : R3m+2 → R3m+2 be given by

Fj+m(i−1)(y) = uk−1
i,j +

τ

h
(Jk

i,j+1/2 − Jk
i,j−1/2)− yj+m(i−1), i = 1, 2,

Fj+2m(y) = yj+2m − yj+m − yj ,

Fj+2m+2(y) = Λk−1
s − τα1

y3m+2

Λmax
s

(1− y2m+1)

+ τβ2

�
1− y3m+2

Λmax
s

�
(1− y2m+1)ym+1 − y3m+2,

where y = (y1, . . . , y3m+2) ∈ R3m+2 and F3m+1(y) is defined similarly from the implicit
Euler scheme for Λk

n. The damped Newton method reads as

y(r+1) = y(r) +
1

(r + 1)3/4
�y(r+1)

��y(r+1)�∞
, r ∈ N,

where �y(r+1) solves F �(y(r))(�y(r+1) − y(r)) = −F (y(r)). The exponent 3/4 was determined
from numerical experiments. We stopped the Newton iterations when �F (y(r))�∞ < ε
with ε = 10−3 is reached. The numerical scheme is implemented in Python version 3.7.1.
We collect the values of the parameters, inspired from [48], in Table 8.1. If not otherwise
stated, we set h = 0.0025 and τ = 10−4.

α1 0.2666 Λmax
n 0.0029 D1 0.0004

α2 0.2666 Λ0
n 0.0015 D2 0.004

β1 3 Λmax
s 0.175 V1(x) 1.75x

β2 3 Λ0
s 0.12 V2(x) −1.5x

Table 8.1.: Numerical parameters.

8.2.1. Numerical experiment 1

We choose the initial data u01 = u02 = 0.1. Figure 8.6 presents the vesicle concentrations
at times t = 0, 1, 10 and the evolution of the number Λn(t) of vesicles in the growth cone.
The anterograde vesicles (species 1) are leaving the soma, leading to an increase of the
concentration near x = 0, while it is decreasing near the tip of the neurite at x = 1 because
of the small value of Λs. The retrograde vesicles (species 2) are leaving the growth cone at
x = 1, leading to an increase of the concentration, while it is decreasing near the soma. The
number Λs is decreasing over time, which can be explained by the difference of magnitude
of the parameters α1 and β2 governing the outflow rate.
The behaviour of the vesicles at t = 10 in our model and the model of [48] is similar; see

the middle row of Figure 8.6. The difference is largest near the growth cone at x = 1 (see
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the bottom left panel), which comes from the different boundary conditions at this point.
Since the boundary value J1

1 [u] contains the factor u0 < 1 in our model, the number Λn is
decreasing at a faster rate compared to the model of [48] (see the bottom right panel).

8.2.2. Numerical experiment 2

In this example, we choose piecewise constant initial data:

u01(x) =

�
0.9 for 0.1 < x < 0.4,
0 else,

u02(x) =

�
0.9 for 0.6 < x < 0.9,
0 else,

The numerical results at times t = 0, 1, 10, 100 are shown in Figure 8.7. We observe a
smoothing effect (due to diffusion) and a drift of the vesicles profiles towards the middle.
The drift of the anterograde vesicles is stronger compared to the retrograde vesicles because
of |∂xV1| > |∂xV2|. Since the boundary values of the vesicles are very small, the results of
our model are almost identical to those from the model of [48]; see Figure 8.7 bottom for
Λn and Λs up to t = 10.

8.2.3. Numerical experiment 3

We have chosen Λmax
n = Λmax

s = 0.175, Λ0
n = Λ0

s = 0.12, with potentials V1(x) = 1.5x,
V2(x) = −1.5x, and initial data u01 = u02 = 0.1. The left panel shows the concentrations
at T = 1000 using the parameters αi, βi, and Di as in Experiment 1. The solution is
approximately stationary (the modulus of the flux is less than 0.01). Since u2(0) = 0,
Lemma 34 shows that the stationary flux vanishes. In the right panel, we present a case
where the stationary flux does not vanish. Here, the solution is computed up to T = 100,
the parameters are αi = βi = Di = 1 for i = 1, 2, and the flux equals J = 0.118.

8.2.4. Convergence rates

We test our numerical scheme by computing the spatial and temporal convergence rates.
We choose the initial data u01 = u02 = 0.1 and the parameters from Table 8.1. Furthermore,
we set T = 1. We define the mean error as the discrete L2 norm �u− uref�2/

!
2(m+ 1),

where u = (u1, u2,Λn,Λs) and uref = (uref1 , uref2 ,Λref
n ,Λref

s ) is the reference solution.
Figure 8.9 (left) shows the discrete L2 error for time step sizes τ = 10−2 · 2−k for

k = 1, . . . , 7 with fixed h = 10−3. The reference solution is computed with h = 10−3

and τ = 10−5. The convergence is of first order for rather large values of τ , while it is
between first and second order when the time step size is closer to the step size of the
reference solution. The spatial convergence is illustrated in Figure 8.9 (right) for grid sizes
h = 10−2 · 2−k for k = 1, . . . , 7 with fixed τ = 10−3. The reference solution is calculated by
using the parameters h = 10−5 and τ = 10−3. The convergence is of first order (if τ is not
too large), which is expected for the two-point approximation finite-volume scheme.
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t = 0 t = 1

t = 10 t = 10, model of [48]

Figure 8.6.: Experiment 1: Concentrations of anterograde vesicles (species 1) and retro-
grade vesicles (species 2). Top row: t = 0, 1. Middle row: t = 10. Bottom left:
t = 10, only species 2. Bottom right: Evolution of Λn(t).
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t = 0 t = 1

t = 10 t = 100

Figure 8.7.: Experiment 2: Concentrations of anterograde vesicles (species 1) and retro-
grade vesicles (species 2). Top and middle rows: t = 0, 1, 10, 100. Bottom row:
evolution of Λs (left) and Λn (right).

103



8. Numerical Experiments

Figure 8.8.: Concentrations of anterograde and retrograde vesicles. Left: J = 0. Right:
J "= 0.

Figure 8.9.: Left: Discrete L2 error versus time step size τ for fixed h = 10−3. Right:
Discrete L2 error versus space step size h for fixed τ = 10−3.
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A. Auxiliary Results

For the convenience of the reader, we collect some auxiliary results used in Part I and Part
II of this work in this chapter. Its content is partly taken from [29, Appendix] and [35,
Appendix].

A.1. Fundamentals of Probability Theory

Let (Ω,F ,P) be a probability space and (Ft)t≥0 with Ft ⊆ F be a filtration. For a
topological space G we denote the corresponding Borel-σ algebra with B(G).

A.1.1. Stochastic Differential Equations

We recall some results and definitions from the literature regarding stochastic processes
and stochastic differential equations; see [73, Chapter 2-3].

Definition 36. We call (Ω,F ,P) complete if F contains all sets A ⊆ Ω for which there
exists B ∈ F such that A ⊆ B and P(B) = 0.

Definition 37. We call (Ω,F , (Ft)t≥0,P) a stochastic basis.

Definition 38. We call a filtration (Ft)t≥0 right continuous if Ft = ∩�>0Ft+�.

Definition 39. We call a filtration (Ft)t≥0 complete if F0 contains all sets A ⊆ Ω for
which there exists B ∈ F such that A ⊆ B and P(B) = 0.

Definition 40. A filtration (Ft)t≥0 which is right continuous and complete is called normal.

Definition 41. Let (Ω,F , (Ft)t≥0,P) be a stochastic basis, T > 0 and D ⊆ Rd, d ∈ N a
Borel set. We call a function Y : Ω×D× [0, T ] → Rd progressively measurable with respect
to (Ft)t≥0, if Y is an Ft × B(D)× B([0, t])-measurable function for all t ∈ [0, T ].

Let (Ω,F ,P) be a complete probability space, (Ft)t≥0 be a normal filtration and B(t)
a Brownian motion on Rd� , d� ∈ N with respect to (Ft)t≥0. Additionally let b(ω, x, t) :
Ω×Rd×[0, T ] → Rd and σ(ω, x, t) : Ω×Rd×[0, T ] → Rd×d� be progressive measurable maps
with respect to (Ω,F , (Ft)t≥0,P), which are continuous in x for each (ω, t) ∈ Ω × [0,∞).
Let them satisfy � T

0
sup
|x|≤R

��σ(ω, x, t)�2 + |b(ω, x, t)|� dt < ∞, (A.1)
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for all 0 ≤ T,R ≤ ∞ and ω ∈ Ω, where

�σ� =

 d"
i=1

d�"
j=1

|σij |2
1/2

.

Let T > 0. We are interested in solutions of the stochastic differential equation

dX(t) = b(ω,X(t), t)dt+ σ(ω,X(t), t)dB(t), X(0) = X0, t ∈ [0, T ]. (A.2)

Definition 42 (Strong Solution). Let X0 : Ω → Rd be F0 measurable and T > 0. Further-
more let σ, b and B(t) be as above, especially satisfying (A.1). We call an almost surely
continuous (Ft)-adapted stochastic process (X(t))t≥0 a strong solution of the stochastic
differential equation (A.2), if the following identity holds almost surely for all t ∈ [0, T ]:

X(t) = X0 +

� t

0
b(ω,X(s), s)ds+

� t

0
σ(ω,X(s), s)dB(s). (A.3)

Theorem 43 ([73], Theorem 3.1.1). Let X0 : Ω → Rd be F0 measurable, σ and b as in
definition 42 above. Furthermore let the following conditions hold for all for all (ω, t) ∈
Ω× [0,∞), x, y ∈ Rd with |x|, |y| ≤ R and R ∈ [0,∞):

2	x− y, b(ω, x, t)− b(ω, y, t)
+ �σ(ω, x, t)− σ(ω, y, t)�2 ≤K(ω,R, t)|x− y|2,
2	x, b(ω, x, t)
+ �σ(ω, x, t)�2 ≤ K(ω, 1, t)(1 + |x|2),

where K(ω,R, t) : Ω× [0,∞)2 → [0,∞) is an (Ft)t≥0 adapted process for arbitrary fixed R.
Additionally we assume � T

0
K(ω,R, t)dt < ∞,

for all (ω,R) ∈ Ω × [0,∞) and T ≥ 0. Then there exists a solution to (A.2) in the sense
of definition 42, which is unique up to P- indistinguishability and where (A.3) holds for all
t ≥ 0.

A.1.2. Conditional Expectation

We recall some results involving the conditional expectation; see [34, Chapter 5].

Lemma 44. Let H be a sub-σ-algebra of F and let X, Y : Ω → Rd be random variables
such that X is H-measurable. Then

E(X|H) = X, E(XY |H) = XE(Y |H).

In particular, the law of total expectation holds: E[E(X|H)] = E(X).

Lemma 45. Let G ⊂ F be a σ-algebra, and (X(t))t≥0 be an integrable stochastic process.
Then, for any t > 0,

E
�� t

0
X(s)ds

''''G� =

� t

0
E(X(s)|G)ds.
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The lemma is a consequence of Fubini’s theorem [14, Lemma 2.3].

Lemma 46. Let T > 0, (B(t))t≥0 be a d-dimensional Brownian motion, and Ft = σ(B(s),
s ≤ t) for t ≤ T . Furthermore, let X(t) ∈ Rd be a square integrable, progressively measur-
able process with respect to Ft. Then, for any 0 ≤ s1 ≤ s2 ≤ T ,

E
�� s2

s1

X(t)dB(t)

''''Fs1

�
= 0.

This lemma follows from the fact that S(t) :=
� t
0 X(s)dB(s) is a martingale and conse-

quently, E(S(s1)− S(s2)) = 0 a.s. for 0 ≤ s1 ≤ s2 ≤ T .

A.2. Existence and Regularity Results for Elliptic and Parabolic
Equations

We present some known regularity and existence results for the solutions of elliptic and
parabolic partial differential equations from the literature.
We assume D ⊂ Rd with d ∈ N, d ≥ 1, is a bounded domain and ν the outwards pointing
unit-normal on ∂D. Let α, β ∈ (0, 1]. The space Cα,β(D × [0, T ]) consists of all functions
u : D × [0, T ] → R such that there exists C > 0 such that for all (x, t), y, s) ∈ D × [0, T ],

|u(x, t)− u(y, s)| ≤ C(|x− y|α + |s− t|β) for all (x, t), (y, s) ∈ D × [0, T ].

The space Ck+β(D) is the space of all functions u ∈ Ck(D) such that Dku is Hölder
continuous with index β > 0. For k = 0 we also write Cβ(D).

A.2.1. Elliptic Equations

Let γ, aij , bj , cj and c0 be measurable and bounded functions on D for 1 ≤ i, j ≤ d. We
consider the problem

Lu = f0(x)−
d"

j=1

∂jfj(x), x ∈ D, (A.4)

where

Lu = −
d"

j=1

∂j

�
d"

i=1

aij(x)∂iu+ bj(x)u

�
+

n"
j=1

cj(x)∂ju+ c0(x)u, x ∈ D, (A.5)

supplemented with the boundary condition

d"
j=1

�
d"

i=1

aij(x)∂iu+ bj(x)u

�
νj + γ(x)u = g(x) +

d"
j=1

fj(x)νj , x ∈ ∂D. (A.6)

The operator L can also be written in divergence- form,

Lu = − div(a(x)∇u+ b(x)u) + c(x) · ∇u+ c0(x)u.
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Problem (A.4)-(A.6) has the following weak formulation for all φ ∈ C1(D̄):�
D
∇φ(x) · (a(x)∇u) + b(x) · ∇φ(x)udx+

�
D
cj(x)φ(x)∂ju+ c0(x)φ(x)udx

+

�
∂D

γ(x)φ(x)udσ =

�
∂D

g(x)φ(x)dσ +

�
D
f0(x)φ(x)dx+

�
D
f(x) · ∇φ(x)dx. (A.7)

From the literature we have the following regularity result referring to solutions u of
(A.7):

Proposition 47 ([79], Proposition 3.6). Let D ⊆ Rd be a bounded domain with Lipschitz
boundary and p > d. Furthermore let there exist κ > 0 such that

#d
i,j=1 aij(x)yiyj ≥ κ|y|2

holds for all y ∈ Rd and almost all x ∈ D. Then there exist constants C, β > 0 such that,
if f0 ∈ Lp/2(D), fj ∈ Lp(D) for 1 ≤ j ≤ d and g ∈ Lp−1(∂D), every solution of (A.7) is an
element of the Hölder space C0+β(D) and the following estimate holds:

�u�C0+β(D) ≤ C

�u�L2(D) + �f0�Lp/2(D) +

d"
j=1

�fj�Lp(D) + �g�Lp−1(∂D)

 .

A.2.2. Parabolic Equations

The following regularity results hold for the parabolic problem

∂tu− div(a(x, t)∇u) = f in D, t > 0,

a(x, t)∇u · ν = 0 on ∂D, u(0) = u0 in D.
(A.8)

Theorem 48 ([90], Section II.3, Theorem 3.3). Let a ∈ L∞(QT ) be such that a(x, t) ≥
a0 > 0 for all (x, t) ∈ D× [0, T ], f ∈ L2(QT ), and u0 ∈ H1(D). Then there exists a unique
weak solution to (A.8) such that u ∈ C0([0, T ];H1(D)), ∂tu ∈ L2(QT ), and there exists a
constant C > 0, not depending on a, u, u0, or f , such that

�u�L∞(0,T ;H1(D)) + �∂tu�L2(QT ) ≤ C
��f�L2(QT ) + �u0�H1(D)

�
.

Proof. The a priori estimate is a consequence of the proof of [90, Theorem 3.3].

Theorem 49 ([72], Theorem 1.2). Let β ∈ (0, 1), ∂D ∈ C1+β, a ∈ Cβ,β/2(D×[0, T ]) be such
that a(x, t) ≥ a0 > 0 for all (x, t) ∈ D× [0, T ], f ∈ L∞(0, T ;L∞(D)), and u0 ∈ C1+β(D) be
such that a(x, t)∇u0 ·ν = 0 on ∂D. Furthermore, let u ∈ C0([0, T ];L2(D))∩L2(0, T ;H1(D))
be a weak solution to (A.8). Then there exists a constant Cβ > 0, only depending on the
data, such that

�u�C1+β,(1+β)/2(D×[0,T ]) ≤ Cβ .

Theorem 50 ([67], Section IV.9, Theorem 9.1). Let ∂D ∈ C2, q > 3, T > 0, a ∈
C0(D × [0, T ]) be such that a(x, t) ≥ a0 > 0 for all (x, t) ∈ D × [0, T ], f ∈ Lq(0, T ;Lq(D)),
u0 ∈ W 2,q(D) be such that a(x, t)∇u0 · ν = 0 on ∂D. Then there exists a unique strong
solution u ∈ Lq(0, T ;W 2,q(D)) to (A.8) satisfying ∂tu ∈ Lq(0, T ;Lq(D)), and there exists
a constant C > 0, not depending on u, f , or u0, such that

�u�Lq(0,T ;W 2,q(D)) + �∂tu�Lq(0,T ;Lq(D)) ≤ C
��f�Lq(0,T ;Lq(D)) + �u0�W 2,q(D)

�
.
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Theorem 51 ([67], Section V.5, Theorem 5.4). Let β ∈ (0, 1), ∂D ∈ C2+β, T > 0, aij,
bi, c ∈ Cβ,β/2(D × [0, T ]) be such that aij(x, t) ≥ a0 > 0 for all (x, t) ∈ D × [0, T ] for
i, j = 1, . . . ,m, f ∈ Cβ,β/2(D× [0, T ]), and u0 ∈ C2+β(D) be such that ∇u0 · ν = 0 on ∂D.
Then there exists a unique classical solution u ∈ C2+β,1+β(D × [0, T ]) to

∂tu−
m"

i,j=1

aij(x, t)
∂2u

∂xi∂xj
+ b(x, t) · ∇u+ c(x, t)u = f in D, t > 0,

∇u · ν = 0 on ∂D, t > 0, u(0) = u0 in D,

and there exists a constant C > 0, not depending on u, f , or u0, such that

�u�C2+β,1+β(D×[0,T ]) ≤ C
��f�Cβ;β/2(D×[0,T ]) + �u0�C2+β(D)

�
.
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[48] I. Humpert, D. Di Meo, A. Püschel, and J.-F. Pietschmann. On the role of vesicle
transport in neurite growth: Modeling and experiments. Math. Biosci. 338 (2021),
108632, 15 pages.

[49] P.-E. Jabin and Z. Wang. Mean field limit for stochastic particle systems. In: Active
Particles, Vol. 1, 379–402. Springer, Boston, 2017.

[50] S. Jin and L. Li. On the mean field limit of the Random Batch Method for interacting
particle systems. Sci. China Math. 6 (2022), 169–202.

[51] S. Jin and L. Li. Random Batch Methods for classical and quantum interacting particle
systems and statistical samplings. To appear as a chapter in: N. Bellomo, J. A. Carrillo,
and E. Tadmor (eds.), Active Particles II, 2022. arXiv:2104.04337.

[52] S. Jin, L. Li, and J.-G. Liu. Random batch methods (RBM) for interacting particle
systems. J. Comput. Phys. 400 (2020), 108877, 30 pp.

[53] S. Jin, L. Li, and J.-G. Liu. Convergence of Random Batch Method for interacting
particles with disparate species and weights. SIAM J. Numer. Anal. 59 (2021), 746–
768.

[54] S. Jin, L. Li, and Y. Sun. On the Random Batch Method for second order interacting
particle systems. Submitted for publication, 2020. arXiv:2011.10778.

[55] S. Jin, L. Li, X. Ye and Z. Zhou. Ergodicity and long-time behaviour of the random
batch method for interacting particle systems. Math. Models Methods Appl. Sci. 33
(2023), 67–102.

[56] K. Jisheng, S. Shuyu and W. Yuanqing. Mixed finite element-based fully conservative
methods for simulating wormhole propagation. Comput. Methods Appl. Mech. Eng.
298 (2016), 279–302.
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