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Kurzfassung

Hochleistungscomputer bestehen heutzutage aus einer Vielzahl von Plattformen, die von
Multi-Core CPUs bis zu Many-Core GPUs reichen. Folglich möchten Entwickler eine
einzige Codebasis haben, die auf einer Vielzahl von Beschleunigern und Plattformen
läuft und die höchstmögliche Leistung erzielt. Leistungsportabilitäts-Frameworks wie
RAJA, Kokkos und SYCL ermöglichen dies den Entwicklern, allerdings mit dem Nachteil
abbhängig von einem nicht standardisierten Framework zu sein. Die parallele STL von
ISO C++ ermöglicht es Entwicklern, standardisierten C++ Code zu schreiben und
während der Kompilierung zu entscheiden, welcher Beschleuniger verwendet werden
soll. Diese Eigenschaft macht ISO C++ parallel STL zu einer potentielle Alternative
zu Leistungsportabilitäts-Frameworks. Derzeit gibt es einige Implementierungen für die
ISO C++ Parallel STL (auch als Backends bekannt). In dieser Arbeit haben wir die
Fähigkeiten von drei ISO C++ parallelen STL-Backends untersucht, nämlich GCC mit
oneTBB, NVC mit OpenMP und NVC mit CUDA. Um ihre Fähigkeiten zu bewerten,
haben wir eine Mikrobenchmark-Suite namens pSTL-Bench entwickelt. Sie ermöglicht
das Benchmarking von parallelen STL-Primitiven und bietet wertvolle Einblicke in die
Leistungs- und Skalierungseigenschaften der Backends. Mit Hilfe dieser Benchmarks
konnten wir erhebliche Unterschiede in Bezug auf Leistung und Skalierbarkeit zwischen
den Backends feststellen, die vielleicht nicht auf den ersten Blick erkennbar sind. Als
Nebenprodukt des umfangreichen Benchmarkings können wir die Leistungsportabilität
zwischen diesen Backends quantifizieren. Während bestimmte parallele Primitive eine
hohe Leistungsportabilität aufweisen, gibt es andere, bei denen ein einfacher Wechsel
des Backends zu einer erheblichen Leistungssteigerung führt, was zu einer niedrigen
Portabilitätsbewertung führt. Um zu zeigen, dass die ISO C++ Parallel STL tatsächlich
verschiedene Beschleuniger unterstützt, haben wir die Mikrobenchmark-Suite auf einen
Nvidia Tesla T4-Grafikprozessor ausgelagert und dabei das NVC mit CUDA-Backend
(auch bekannt als stdpar) verwendet. Obwohl viele der Benchmarks ohne zusätzliche
Änderungen auf dem Grafikprozessor ausgeführt werden können, gab es bei anderen
Benchmarks eine Reihe von Herausforderungen. Diese Herausforderungen spiegeln sich in
unserem abschließenden Urteil über die Fähigkeiten der ISO C++ parallel STL wider.
Obwohl die ISO C++ parallel STL einen guten Ausgangspunkt für das Schreiben von
leistungsfähigem ISO C++ Code bietet, gibt es noch viele Probleme, die in zukünftigen
Versionen behoben werden müssen.Die parallele STL von ISO C++ ist eine einfache
Schnittstelle zum Schreiben von portierbarem Hochleistungscode, aber es ist noch ein
weiter Weg bis zu echter Leistungsportabilität.
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Abstract

High-performance computers nowadays consist of a wide variety of architectures, ranging
from multi-core CPUs to many-core GPUs. As a result, developers want to have a single
code base that runs on a wide variety of accelerators and platforms and achieves the highest
possible performance. Performance portability frameworks such as RAJA, Kokkos, and
SYCL allow developers to do this, but at the cost of having a non-standardized third-party
dependency. ISO C++ parallel STL allows developers to write standardized C++ code
and decide at compile time what accelerator to target, posing as a potential alternative
to those frameworks. At the moment there are several implementations (also known as
Backends) for ISO C++ parallel STL. In this thesis, we evaluated the capabilities of three
ISO C++ parallel STL backends, namely GCC with oneTBB, NVC with OpenMP and
NVC with CUDA. To assess their capabilities, we developed a microbenchmark suite called
pSTL-Bench. It allows benchmarking of parallel STL primitives and provides valuable
insights into the performance and scaling characteristics of the backends. Through these
benchmarks, we discovered significant differences in terms of performance and scalability
among the backends, which might not be immediately apparent. As a side product of the
extensive benchmarking, we can quantify performance portability between those backends.
While certain parallel primitives exhibit high performance portability, there are others
where simply switching the backend yields a considerable performance boost, resulting in
a low-performance portability score. To demonstrate that ISO C++ parallel STL indeed
supports different accelerators, we offloaded the microbenchmark suite to an Nvidia Tesla
T4 GPU using the NVC with CUDA backend (also known as stdpar). Although many of
the benchmarks run without any additional changes on the GPU, there were a substantial
amount of challenges for other benchmarks. These challenges are reflected in our final
verdict about the capabilities of ISO C++ parallel STL. Although ISO C++ parallel
STL does provide a good starting point for writing performance portable ISO C++ code,
there are still many hiccups and problems that need to be addressed in future releases.
ISO C++ parallel STL is a simple interface for writing high-performance portable code,
but it still has a long way to go to enable true performance portability.
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CHAPTER 1
Introduction

Parallelization is a technique that enables programs to speedup expensive workloads.
Over the years, specialized accelerators for parallel computing, such as GPUs, have been
introduced, which can achieve even higher speedups. Many of the TOP500 supercomputers
nowadays consist of both multi-core CPUs and many-core GPUs [2], making it desirable
for high performance application to work with both targets.

The use of specialized accelerators resulted in having diverse programming models,
including OpenMP for multi-core systems and CUDA for Nvidia GPUs. As a consequence,
switching between accelerators or computation platforms requires rewriting the entire
program, as a different programming models is needed. Furthermore, certain programming
paradigms, such as CUDA, are exclusive to specific vendors, resulting in vendor lock-in,
which complicates changing computation platforms in the future [3].

Developers want to write code that can be compiled and executed across multiple platforms
while maintaining high performance. This concept is known as performance portability.
Although the term performance portability has been used in various research papers,
there is no concrete definition in the community [4]. From a developer’s perspective, the
primary objective of performance portability is to create a single program that can be
deployed on different platforms, architectures, and accelerators without requiring any
modifications. However, the program should still perform efficiently on each platform,
without the need to tailor it to specific targets. Essentially, developers want to write a
single codebase that can run efficiently on all platforms, without sacrificing performance.

From a conceptional point of view performance portability seems rather easy but due
to the major differences between platforms, accelerators and programming paradigms,
it is a rather hard problem. To overcome this problem, frameworks such as Raja [5],
Kokkos [6], SYCL [7], HIP [8], and HPX [9] were introduced. These frameworks promise
performance portability across various parallel architectures. However, the concepts and
ideas change from one framework to another. Hence, switching between frameworks is

1



1. Introduction

also not straightforward, and porting large codebases from one framework to another
can be a lot of work [2].

The ISO C++ parallel STL may be one possible alternative to the performance portability
frameworks presented above. C++17 introduced parallel algorithms as a standardized
interface for commonly used parallel primitives. Developers can write standard ISO
C++ code and can decide at compile time what parallel paradigm and accelerator to
use. Therefore, a developer can work with familiar ISO C++ code and easily change
between various parallel backends and platforms. The parallel backend developer has
the responsibility to handle programming paradigm-specific code and can optimize it to
enhance efficiency and performance, which is abstracted away from the user.

There exist several parallel backends, such as the one offered by GCC, that utilizes Intel’s
OneAPI or the parallel backend provided by Nvidia, which uses OpenMP or CUDA.

However, there are still open questions about parallel algorithms in C++, and the
backends responsible for creating the parallel implementation. These include how various
parallel algorithms (and their backends) scale on modern parallel architectures, whether
there is a difference between parallel backends in terms of performance (e.g., measuring
performance portability), whether leveraging newer C++ concepts improves performance,
and whether there are best practices when writing efficient parallel C++ code.

Being able to find answers, or even partial answers, to the questions surrounding parallel
algorithms not only helps developers to create high-performance applications more easily
and to achieve high performance on a given platform, but it also provides valuable
performance data to the developers of parallel backends such as stdlibc++ (used by
GCC) or Nvidia. This data can be used to improve the backends and make them even
more efficient, ultimately leading to better performance for developers who use them.

1.1 Research Questions
Due to the driving force behind performance portability and the recent introduction of
the ISO C++ parallel STL, we have identified several research questions that we aim to
address in this thesis:

1. How well do the C++ parallel standard library (parallel STL) implementations
scale on current parallel architectures?

2. Does a performance difference exist when C++ features exclusively available in
C++-20 are enabled as compared to previous versions?

3. Which primitives should be used to achieve high-performance for typical parallel
patterns? For example, when changing the contents of a vector, we could employ
the std::for_each or std::transform primitive. But which one is better in
which case? Can we provide simple performance guidelines?
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4. Since we generally need to decide at compilation time whether we want to compile
for multicore processors or for GPUs, the question becomes if we can determine the
sweet-spot between these two options in terms of performance, i.e., can we predict
(model) when the use of the GPU will be beneficial?

5. How can we compare the performance of parallel applications in ISO C++ on
different parallel machines, i.e., how can we quantify the performance portability
for these codes?

1.2 Structure of the Thesis
In Chapter 2, we provide a short overview of important background topics that have
to be first addressed in order to establish the context of this thesis. This is followed
by the related works in Chapter 3 where we present previous works of performance
portability and how it can be quantified. In Chapter 4, we give a high level overview of
ISO C++ parallel STL and the performance portability frameworks SYCL, Kokkos and
RAJA. In Chapter 5, we explain our approach and environment to answer the research
questions outlined in this thesis. We then introduce our novel benchmarking suite in
Chapter 6. In Chapter 7, we present our findings from the experimental evaluation
conducted with the benchmarking suite, and reflect on the key observations. Finally, in
Chapter 8, we attempt to quantify performance portability for two parallel backends and
discuss the current state of performance portability using the results gathered during
the experimental evaluation. Chapter 9 provides a summary of the findings and insights
gained throughout the study. We also present an outlook on future work, identifying
areas where further research could be conducted to expand on the findings.
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CHAPTER 2
Background

This chapter addresses several important topics that are relevant not only to the field of
High Performance Computing but also to the contents of this thesis. It should be noted
that the chapter is not meant to be exhaustive, as this would exceed the scope of the
thesis.

2.1 Parallel Machines
The term parallel machine is quite ambiguous. Already in early works [10], the term
parallel machine was used to describe machines with multiple processors, array-type
machines, or multiprogrammed machines. Although there are a lot of types of parallel
machines used in research, we limit the term parallel machine in this work to Multipro-
cessor systems and Graphics Processing Units (GPUs). In the following, we discuss those
two types of parallel machines in more detail.

2.1.1 Multiprocessor Systems
Although personal workstation computers used by humans on a daily basis are sufficient
for tasks such as writing documents or browsing the web, they are not suitable for high
performance applications [11]. High-performance applications require parallelism beyond
what traditional workloads have demanded in the past, making multiprocessor systems
preferable due to their high level of parallelism.

Shared-Memory Multiprocessor

The Shared-Memory Multiprocessor is the most prominent type of multiprocessing system.
In this system, the processing units all have direct hardware access to the whole memory
region and share a common address space [12, 13]. Shared-Memory Multiprocessor
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systems differ mainly by the point of how memory access is organized. In general, there
are two architectures which are Unified Memory Access and Non-Unified Memory Access.

Unified Memory Access Unified Memory Access (UMA) offers the significant ad-
vantage of providing identical memory access times to each processor within a computer
system, as stated in [12]. However, it is important to note that in UMA systems with
a single memory controller, there may be some variation in memory access times when
multiple processes attempt to access the same memory bank. Despite this limitation,
UMA’s unique characteristics make it an ideal memory architecture for small to medium
purpose machines, including personal computers and workstations [12].

Non-Uniform Memory Access Non-Uniform Memory Access (NUMA) is a technol-
ogy commonly utilized in high-performance computing due to its ability to offer faster
access times compared to Uniform Memory Access (UMA) [14]. NUMA divides memory
and processing cores into nodes, with each node consisting of a set of cores and associated
memory. Figure 2.1 depicts the NUMA topology of Nebula, a high-performance computer
with eight NUMA nodes, each containing eight cores. Accessing memory within a node,
also known as node-local memory access, is the fastest and is always the equal time [14, 15].
However, if a core needs to access memory from a remote NUMA node, the access time
significantly increases, which leads to performance degradation since it has to access the
system bus [14]. For instance, Core 0 in Nebula can access memory from NUMA node
P#0 with the fastest access time. However, if Core 0 attempts to access memory from
any other NUMA node, performance will suffer. This limitation is a significant drawback,
and programs running on NUMA hardware must be NUMA-aware by first minimizing
remote node access and by being mindful of data placement. It is worth noting that
NUMA awareness only affects program performance, not its correctness [15].

Massively Parallel Processors

Figure 2.2: Architecture of Massively Parallel Processors [12].

Multiprocessor systems have a limit to the number of processing units that can be placed
on a single board. Massively Parallel Processors provide a solution to this problem. They
consist of multiple smaller machines, which can be Multiprocessor Systems or not, called
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Figure 2.1: NUMA Node Topology of Nebula.

nodes. These nodes communicate with each other over a high-bandwidth network since
they do not share memory [12, 16], as shown in Figure 2.2. It is worth noting that we
only mention this here for completeness’ sake and will not consider this type of machine
in this thesis.

2.1.2 GPUs

Graphics Processing Units (GPUs) have revolutionized the High Performance Computing
landscape [17]. GPUs were originally used for gaming or computer graphics, but over
the years slowly emerged as a “versatile platform for running massively parallel computa-
tions” [18] and now have applications ranging from artificial intelligence (AI) to Internet
of Things (IoT) and Autonomous driving [17]. GPUs are beneficial for high performance
computing applications because of their high bandwidth, high computation throughput,
and excellent support for floating point arithmetic [18, 19]. In order to run code on
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GPUs, one is required to work with a programming paradigm that is understood by the
target GPU. There is a wide variety of options such as Nvidia CUDA or OpenCL. Those
programming paradigms allow full control over the GPU to get the most performance
out of it.

(a) Thread hierarchy [17] (b) Thread and Memory hierarchy [18]

Figure 2.3: Logical representation of GPUs.

The concrete architecture of GPUs rapidly evolved, therefore presenting a current ar-
chitecture of a real GPU will be outdated in short time. To still explain the concepts
and ideas behind the architecture of a GPU, Hijma et al. [17] presented a representative
architecture of a GPU shown in Figure 2.3a. As one can see the smallest processing
unit in a GPU is a thread. Threads are grouped into so-called thread blocks and finally
grouped into grids. Current GPUs contain hundreds of such independent execution
units [19].

The memory layout of GPUs reflect the processing unit hierarchy [18], as we can see
in Figure 2.3b. The global memory is shared across all the threads. Then there is the
shared memory, which, as the name suggests, is shared among the threads inside a block.
Finally, each thread has its own local memory and registers. It is important to mention
that the further away the memory the higher is the latency, meaning local memory is the
fastest and global memory the slowest [17, 18].

2.2 Comparing Parallel Benchmarks
When comparing parallel benchmarks, there are quite often certain metrics involved in
the discussion of the results. In this section, we highlight a selection of metrics and
terminologies important for this thesis and discuss them in a more detailed way. It is
important to acknowledge that the provided list is not intended to be exhaustive.

Strong Scaling is a scaling analysis where the input size of the problem stays the same
and only the number of processing units (e.g., threads) is increased. Strong scaling is a
reliable technique to find out how many processing elements can be efficiently utilized.
A perfect strong scaling behavior would be that by doubling the number of cores the
runtime decreases also by the same rate.

Weak Scaling The counterpart of strong scaling, is weak scaling. Here, the number
of threads and the problems size are proportionally increased [20]. Due to the fact that
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both sizes increase at the same rate, the workload per processor stays the same [21].

Speedup The speedup is a metric to measure the performance of a parallel implemen-
tation. It measures the ratio between the serial and the parallel implementation [22].
The formula for speedup is S(p) = T (1)

T (p) , where p is the number of processing units and T

the runtime using p processing units [16].

Efficiency The parallel efficiency is defined as the ratio between the speedup and
the number of processing units used. The formula to calculate the parallel efficiency
is E(p) = S(p)

p . Efficiency allows us to understand how well the processing units are
used [22]. Although efficiency is usually in the range (0, 1], it is possible to achieve an
efficiency greater than one. This is called super linear speedup. Reasons behind this
could be that the work performed by the sequential algorithm is greater than the parallel
or due to hardware features (e.g., data fits into the cache perfectly) [22].
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CHAPTER 3
Related Work

As the demand for high-performance computing (HPC) applications continues to grow,
researchers have been actively developing and exploring various solutions and proposals
to address the challenges of achieving performance portability across different hardware
architectures and platforms [4].

Code portability and performance portability are critical for HPC systems. Writing
code in multiple frameworks or paradigms for each new hardware platform can be time-
consuming and difficult to maintain [2]. The challenge is even greater when we must
manage multiple programs that accomplish the same goal but run on different hardware [4].
Additionally, the greater the heterogeneity of the architecture, the more undesirable it
is to have architecture-specific implementations, since the program’s lifespan becomes
constrained by the frameworks or paradigms lifespan [23].

In this chapter, we aim to provide a concise yet informative overview of the related
works in the field of performance portability in high-performance computing. We briefly
examine how researchers have evaluated performance portability and highlight the
shortcomings we have identified in current works. We start with, the main objective,
performance portability using C++ in Section 3.1, followed by performance portability
in other languages in Section 3.2. Finally, we present recent works covering performance
portability metrics in Section 3.3.

3.1 Performance Portability with C++
Dufek et al. [2] presented several programming models, including CUDA, HIP, SYCL, and
Kokkos, and developed a parallel-friendly implementation of the Milc-Dslash benchmark
to analyze performance portability across different GPU platforms (Nvidia, AMD, and
Intel). The Milc-Dslash benchmark, simulates the lattice quantum chromodynamics
theory. The computation found in this benchmark is, as highlighted by the authors,
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representative of typical applications that solve partial differential equations. Because the
goal is to highlight the performance portability of the frameworks Kokkos and SYCL the
parallel-friendly implementation is not tailored to a specific GPU architecture or vendor.
Instead, they followed commonly known best practices of GPU programming to achieve
the highest possible memory bandwidth, such as minimizing the global memory access and
increasing the number of Floating Point Operation (FLOPS). As performance metric, the
authors used the raw speed-up in respect to the sequential implementation. The results
showed that the performance portability between Kokkos and SYCL was satisfactory
on all platforms, with nearly identical performance to the reference implementations in
platform-specific code. The main contribution of this paper is to showcase that in fact
there is performance portability between different frameworks and how to measure it
explicitly for GPUs.

Lin et al. [24] compared C++17 parallel STL to other frameworks, including OpenMP,
Kokkos, and TBB. To compare each paradigm, they ported a set of benchmarks to
C++17 using parallel STL. The study examines three different mini-applications, which
are Babelstream, CloverLeaf, and miniBUDE. Babelstream and Cloverleaf are memory-
bound mini-applications, enabling them to benchmark typical memory-bound operations
found in HPC programs. The application miniBUDE is a computation-bound mini-
application, allowing the comparison of absolute runtime differences. The C++17 parallel
STL implementations are designed to be both data-centric and index-centric, since some
mini-applications used in their benchmarks require stencil operations which need indices.
Since C++17 does not provide an interface for index-centric traversal, they had to
implement their own iterator. The index-centric implementations are similar to the one
found in the works of Olsen et al. [25] where they ported the LULESH hydrodynamics
mini-app to C++ (using Nvidia’s C++ parallel STL backend). The benchmarks were
executed on a wide range of shared memory machines (including NUMA and UMA
systems) and GPUs. The performance metrics used for memory-bound benchmarks
were peak memory bandwidth, while for computational-bound benchmarks, the runtime
was reported. The results indicate that there is minimal overhead from C++ parallel
algorithms to their backends. Additionally, the performance between all compilers on
various machines was found to be comparable.

Mietzsch and Fuerlinger [1] implemented the NAS Parallel Benchmark kernels using
C++17 parallel algorithms and compared the results to OpenMP and TBB (now known as
oneTBB) implementations. Their implementation was based on a serial implementation
by Griebler et al. [26]. The NAS Parallel Benchmark [27] is a suite of benchmarks that
includes kernels which simulate typical workloads of computational fluid dynamics and
aero science applications. As seen in Table 3.1, the kernels rely heavily on the parallel
building block std::for_each, with only one of the kernels using a wider variety of
parallel algorithms. Furthermore, most of their benchmarks use an index-centric approach
where std::iota generates the indices. As performance metric, the authors used the
raw speed-up in respect to the sequential implementation. Mietzsch and Fuerlinger found
that for most of the kernels, the performance difference between native implementations
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Table 3.1: Time spent in each parallel algorithm adapted from [1].

EP MG CG FT IS
std::for_each 100% 99.69% 99.55% 100% 100%
std::transform_reduce 0% 0.31% 0.08% 0% 0%
std::transform 0% 0% 0.21% 0% 0%
std::copy 0% 0% 0.12% 0% 0%
std::fill 0% 0% 0.04% 0% 0%

(OpenMP and TBB) and C++17 parallel STL was small. However, for one kernel, special
techniques with OpenMP resulted in higher performance than what was achievable using
only C++17 parallel algorithms, due to the limitations of parallel STL.

Asahi et al. [23] conducted a comprehensive analysis of performance portability using the
Nvidia parallel algorithm implementation, stdpar, which supports both Nvidia GPUs
and multicore systems. They compared its performance with that of Thrust, Kokkos, and
OpenMP using a kinetic plasma simulation mini-app (heat-functor) as a benchmark suite.
The study aims to analyze not only performance, but also the other two key aspects that
developers seek, which are portability and productivity. To achieve this, they provided
a tailored overview of the implementation differences between stdpar and the other
frameworks used in the benchmark suite. The C++ parallel STL implementation uses
an index-centric approach similar to the ones found in the works of Lin et al. [24] and
Olsen et al [25]. Since the mini-app is rather memory intensive, the authors used peak
memory bandwidth as a performance metric. The results showed that the productivity
and portability were satisfactory, and the performance of stdpar was competitive with
the reference implementations in Kokkos, Thrust, and OpenMP.

The C++ parallel STL is a powerful tool for achieving higher performance of parallel
algorithms on a single machine. However, its potential is not limited to this use case.
Recent research by Drocco et al. [28] has demonstrated that it is possible to extend
the capabilities of the C++ parallel STL to enable the execution of distributed parallel
STL programs. By adding their own execution policy, Drocco et al. were able to create
a custom backend that adheres to the C++ parallel STL interface, but enables the
program to be executed across multiple machines. The user experience remains seamless,
as the backend operates in the same way as the standard C++ parallel STL. In addition
to the convenience of a familiar interface, the performance benefits of the distributed
parallel STL are significant. A quick benchmark of commonly used algorithms, such as
std::reduce, demonstrated linear scaling of the program across multiple machines.

To our knowledge, current research limits itself to evaluating performance portability
between C++ and other performance portability frameworks such as Kokkos and Friends.
There is no in-depth performance portability study on C++ parallel algorithms and
those backends that provide this functionality. Furthermore, current research focuses on
mini-apps and kernels, which still introduces a lot of noise, not allowing to benchmark the
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smallest building blocks, the parallel STL primitives. It has been observed that the existing
research in C++ parallel STL primarily focuses on the primitives std::for_each and
std::transform, leaving a wider range of parallel primitives unexplored. This gap in
research presents a challenge for analyzing the effectiveness of specific parallel algorithms
such as std::copy_if and whether it is more advantageous to implement the same
logic using alternative primitives like std::for_each. Furthermore, there is a need
to compare different strategies for index-based access on containers to identify the most
efficient approach, since every paper uses a different approach.

3.2 Performance Portability with Other Languages
As the demand for performance portability continues to grow, it is not limited to just
the C++ language. Kokkos, a widely used performance portability framework written in
C++, has been leveraged by Al Awar et al. [29] to create a Python framework that enables
Python developers to also write performance portable code. This allows developers who
prefer Python for its efficiency in rapid prototyping and research focus to still achieve
performance portability. Moreover, Al Awar et al, ported a set of Kokkos applications to
their new Python framework and found that the raw runtime had only a small overhead.
The limitation, however, is that the Python API only supports a subset of Kokkos
features, and it still requires Python developers to think like Kokkos developers.

C++ can be a challenging language to work with in production due to its undefined
behavior, as noted by Lin and McIntosh-Smith (2021) [30]. In recent years, Julia has
gained considerable popularity in the high-performance computing community. To
demonstrate the performance portability between Julia and C++, Lin and McIntosh-
Smith (2021) ported a set of mini-apps and compared the results with those achieved
using OpenMP, Kokkos, CUDA, OpenCL, and SYCL. The authors found that Julia’s
performance is either comparable to or slightly worse than the reference implementation.
To enable GPU offloading, the authors emphasized the need for third-party packages.
While the interface for CPU and GPU offloading differs, performance portability to
some extent exists for GPUs, with little or no code changes required. Thanks to Julia’s
API consistency, developers can rely on a shared interface for all major GPU offloading
packages [31].

3.3 Performance Portability Metrics
Pennycook et al. introduced a metric for performance portability in their earlier work [4]
and revised it in a later publication [32] in response to ongoing discussions in the research
community. The performance portability PP (Equation (3.1)) proposed is defined as
the harmonic mean of an application’s performance efficiency calculated for a set of
platforms. H denotes a set of platforms, a an application which solves the problem p,
and, ei(a, p) denotes the performance efficiency of an application a on platform i solving
the problem p.
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PP(a, p, H) =




|H|
i∈H

1
ei(a,p)

, if i is supported ∀i ∈ H,

0 , otherwise.
(3.1)

To our knowledge, there is no other performance portability metric currently proposed.
Furthermore, many different performance portability studies [23, 33, 34, 35] reference
or use this proposed metric. As previously highlighted in Section 3.1, the choice of the
metric ei(a, p) used to evaluate the performance portability of an application depends
on the context, the specific goals of the evaluation, and the nature of the benchmark or
workload under consideration. For instance, for memory-bound benchmarks, one may
opt to prioritize peak memory bandwidth over runtime.
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CHAPTER 4
High Level Overview of C++

Parallel STL and Competitors

As seen in Section 3.1, in the literature and the applied world, a wide range of frameworks
are used to achieve performance portability. In this chapter, we provide a high level
overview of SYCL, followed by RAJA and Kokkos. Finally, we present C++ parallel
STL and highlight how it compares to the likes of SYCL and competitors. It should be
noted that the list of performance portability frameworks provided is not intended to be
exhaustive. The primary motivation for selecting the frameworks outlined below is based
on their widespread adoption and popularity.

4.1 SYCL
SYCL [7] is an abstraction layer that enables modern ISO C++ code to be run on a
wide range of devices without considering lower-level design principles. The consistent
APIs for different accelerators allows developers to target CPUs, GPUs, FPGAs and
other devices in a single-source codebase [36]. To get the highest possible performance
out of a SYCL program, tuning for the best performance considering the platform is still
required [37]. SYCL relies on lower-level APIs, such as OpenCL or CUDA, to provide
the abstraction layer to its users [38]. As seen in Figure 4.1, there exists a wide range of
SYCL compilers and architectures each compiler supports.

The typical workflow when writing a SYCL program looks the following. First one has
to decide what kind of SYCL compiler to use. In recent years, the SYCL community
got a lot of traction, resulting in major hardware vendors, such as Intel, releasing their
own implementations [36]. After writing the application using the consistent SYCL API,
one uses the SYCL compiler to compile the program. At compile time it is required to
specify the compilation target (e.g., CUDA or CPU).
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Figure 4.1: SYCL Compilers and their targets adapted from [39]

For SYCL developers, the main task is to create what are called SYCL kernels. These
kernels are responsible for executing the desired logic on a device by being enqueued in a
SYCL device queue. SYCL allows developers to offload computation to a wide range
of devices during runtime. In other words, it is possible to write a device selector that
selects a specific device depending on various criteria (e.g., a self-defined cost function).
For instance, if a system has two NVIDIA GPUs, it is possible to use the first GPU for a
specific task and the other GPU for a different task. Once kernels are enqueued, they
are formed into a task graph. The task graph is built based on the data dependencies
between kernels. After the task graph has been constructed, the kernels can be executed
without any additional code required by the developer, ensuring data dependencies are
satisfied.

Kernels represent the raw logic that is desired to be executed on the device. They do not
typically contain any memory management logic. As Jin [40] documented, kernels are
written as either lambda or named function objects (struct). Kernels are the smallest
unit of a SYCL application’s three-level scope. The next level up from the kernel scope
is the command-group scope. This scope is responsible for specifying a unit of work
and managing memory. Finally, the highest level is the application scope, which covers
everything else in the SYCL application.
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SYCL supports two different memory management models between devices and the
host, which are Buffered and Unified Shared Memory (USM) [41]. When using Buffers,
memory access is done through the SYCL API, which means that the SYCL runtime
is responsible for managing, moving, and synchronizing data between the host and the
device. In contrast, USM uses raw pointers. Furthermore, USM distinguishes between
device-only memory and shared allocations. With device-only memory, the data is only
accessible on the device where it is allocated. In contrast, shared allocations enable access
from both the host and the device.

SYCL provides fine-grained control over how work is executed on a device. For example,
developers can use barriers to synchronize work items within kernels. Work items are
grouped into work groups, and the size of these work groups can significantly impact
performance, as demonstrated by Jin [40]. SYCL has a single parallel primitive, namely
parallel_for. However, depending on how a kernel is set up, this primitive can be
used to implement a wide variety of algorithms, such as sorting, reduction, and more.
When writing SYCL kernels, developers typically work with indices.

4.2 Kokkos
Kokkos [6] is a performance portability library written in modern C++, compared to
directive-based approaches like OpenACC. Applications written with Kokkos can be
executed on a wide variety of devices, such as CPUs and GPUs. Kokkos provides a simple
API for both high performance parallel computing and data management. Kokkos works
with various backends such as CUDA, HIP, SYCL, OpenMP and many more.

The main abstractions within Kokkos are Parallel Patterns, Execution Space, Execution
Policy, Views, Memory Space, Memory Layout and Memory Traits [42, 43]. Only a
subset of these abstractions has to be considered when writing Kokkos kernels, since
the remaining ones will default to the most optimal values for the selected device [42].
Similar to SYCL, Kokkos kernels represent the raw logic that is desired to be executed
on the device. They do not typically contain any memory management logic. Kernels
are written as either lambda or named function objects (struct).

One key feature of Kokkos is the way how memory is managed. Kokkos provides a
construct called Views which works similarly to a reference counter array data structure.
With the help of Views, developers can define in what memory space the data is placed.
The rest is dealt by Kokkos. Because views provide a fundamental building block,
developers started to build fully-fledged data structures around views. Since Kokkos 3,
the API provide a set of common data structures used by developers therefore it is not
required by developers to build their own data structure [43].

In contrast to SYCL, where only a single parallel primitive is available, Kokkos offers a
total of three distinct parallel primitives [44]:

• parallel_for: Can be used to implement a for loop with independent iterations;
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• parallel_reduce: Implements a reduction operator;

• parallel_scan: Implements a prefix scan operator.

These primitives can be tailored to specific needs by using a custom kernel provided as
lambda or named function object.

In Kokkos, the basic unit of work is referred to as a thread. Threads that are grouped
share a common cache, which can be particularly advantageous for certain types of nested
loops [43]. Similar to SYCL, Kokkos employs an index-centric approach to execute its
parallel operations.

4.3 RAJA
RAJA [5] is a “C++ library that allows developers to write single-source applications
that can target multiple hardware and programming model back-ends” [5]. RAJA has
backends for a wide variety of paradigms, such as CUDA, HIP, or OpenMP.

As with SYCL and Kokkos, the smallest building blocks in RAJA are the raw kernels
which represent the logic of the work to be done and can be provided as lambda or named
function objects (struct) [45]. To execute kernels, RAJA provides in total three different
kinds of primitives:

• RAJA::for_all: Simple, non-nested loops;

• RAJA::kernel: For nested loops and complex kernels;

• RAJA::launch: Creates a more sophisticated environment, allowing the execution
of nested loops with RAJA::for_each.

RAJA::kernel plays a critical role as certain backends encounter performance issues
or do not support nested RAJA::for_all. The utilization of RAJA::kernel of-
fers the potential for optimization while maintaining RAJA encapsulation. Moreover,
RAJA::launch provides the flexibility to select the device at runtime. Although there
are minor differences, the remaining features of RAJA::launch are similar to those of
RAJA::kernel.

RAJA does not provide a custom reduction primitive, instead, it provides a custom
execution policy and access objects. Developers can write their reduction code using the
three types of loops presented before. Additionally, RAJA has a custom primitive for
exclusive, inclusive scan and sort. For every parallel primitive developers can specify
an execution policy (CUDA, TBB, OpenMP, and many more). Changing the execution
policy does not require changing the kernel logic (e.g., the lambda body).
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RAJA offers an extensive selection of execution policies that enable developers to
have fine-grained control over the execution of the code using the corresponding back-
end [46]. For instance, when using OpenMP backends, developers can enforce the
use of specific directives [47], such as schedule(static, ChunkSize) nowait or
schedule(guided, ChunkSize). The extent and types of execution policies vary
from one backend to another, with some providing extensive configurations and others
offering only a handful. Moreover, RAJA even provides execution policies that dictate
where the memory should reside, such as on the CPU stack or CUDA shared memory.
Although memory management is done using execution policies, it is possible to define
inside kernels “Team shared memory”. Team shared memory is data that is shared across
grouped threads.

RAJA uses an index-centric approach for its kernels, meaning all kernels have as a
parameter only the index. What makes RAJA interesting is, it supports not only a
continuous index traversal, but it is also possible to traverse indices in stride or only a
subset of selected indices.

4.4 C++ Parallel STL
For a long time, C++ provided a set of algorithms that perform commonly used func-
tionality on containers. These algorithms include sorting or counting elements matching
a predicate. In C++17, the community added a new functionality to the algorithms,
allowing them to include execution policies. Execution policies allow developers to hint
to the compiler how the following algorithms should be executed. It is important to
highlight the compiler and backends implementing those algorithms are not forced to
use execution policies and always can fallback to the serial implementation. In C++17,
three different execution policies were introduced:

• std::execution::seq: Execute the algorithm sequentially. Same as not prov-
ing an execution policy.

• std::execution::par: Parallel execution of the algorithm.

• std::execution::par_unseq: Parallel and vectorized execution.

This new feature introduced in C++17 is also known as parallel algorithms or parallel
STL. Although since the release of C++17 some time has already passed, only a handful
of implementations (parallel backends) exist. At the time of writing this thesis, the
parallel STL is only supported by the compilers NVHPC, GCC, and MSVC. Depending
on the compilers, different paradigms are used. For example, NVHPC1 uses OpenMP for
CPU parallelism and CUDA for GPU offloading, whereas GCC uses oneTBB for CPUs
and provides no capability of GPU offloading.

1https://developer.nvidia.com/hpc-sdk
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The idea of parallel STL is that for the C++ developer the interface interacting with the
algorithms stays the same, no matter what kind of accelerator is used. The developers of
the parallel STL backends are responsible for writing the accelerator and paradigm-specific
code. This transparent interface is a key characteristic of parallel STL.

Since parallel STL is simply an extension to the already existing algorithm library [24],
there exists a wide range of parallel primitives [48]. A selection of those available are:

• std::for_each: allows developers to run for every element of a container a
specific operation defined in a kernel;

• std::transform: this primitive transforms each of the elements using a provided
kernel and stores the result in a different container. It is important to note that
due to the nature of the parallel STL the elements will be not inserted in the same
order as they are present in the input container;

• std::reduce: by providing a reduction operation as kernel, this primitive will
reduce all elements of a container to a single value;

• std::tranform_reduce: this primitive is a combination of std::reduce and
std::transform. First, the values are transformed in place and then reduce to
a single value.

• std::merge: this parallel primitive allows merging two containers into a result
container. Developers have to ensure that the result container has at least n + m
space, where n and m are the numbers of elements of each input container.

Some parallel STL primitives, such as std::for_each allow developers to define their
own kernels as lambda or named function objects (struct). For every parallel primitive, a
pre-condition and post-condition is defined. As long as the pre-condition is satisfied, the
post-condition is guaranteed, otherwise, undefined behavior will occur. The pre-condition
and post-condition for std::merge can be derived from the description text2 of the
parallel primitive std::merge seen below:

Merges two sorted ranges [first1, last1) and [first2, last2) into one sorted
range beginning at d_first.

Parallel STL is totally different to the likes of SYCL, RAJA, and Kokkos. First parallel
STL does not support selecting a specific target device during run time. Depending
on what backend is used, some non-standard compliant configuration options allow the
selection of the offloading target at compile time. Secondly, the configuration of the C++
backends is not as extensive as for SYCL, RAJA, and Kokkos. The only configuration
option provided by the ISO C++ standard during runtime is to hint how the algorithm

2https://en.cppreference.com/w/cpp/algorithm/merge
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should be executed (i.e., execution policies). There is no option to define where and
how to allocate memory. Parallel STL follows a black box approach, meaning that a
developer has no control over execution, but a contract of expected results, when certain
preconditions are met. Where parallel STL shines compared to the likes of SYCL, RAJA
and Kokkos, is that it has an extensive selection of predefined algorithms, ranging from
simple ones such as loops and sorting, to rather complex ones such as exclusive/inclusive
scan or partitioning. Although, there is an extensive selection of algorithms in parallel
STL, combining them is not as easy as for SYCL or Kokkos. C++17 utilizes a fork-join
model in which each parallel primitive triggers parallel execution and upon completion,
the next parallel primitive is executed. RAJA, Kokkos and SYCL all use an index-centric
approach for their kernels, meaning the kernel parameter is an index, whereas C++17
kernels follow a data-centric approach, meaning the kernels retrieve the actual value
stored in the container rather than an index.
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CHAPTER 5
Formulation and Categorization of
Performance Expectations for the

Parallel STL

This chapter outlines our approach to addressing the research questions introduced in
Section 1.1. To do so, we present a series of expectations. We aim to test these expectations
and use the insights gathered, to effectively answer our research questions. It is important
to highlight, that the expectations described in this chapter are implementation agnostic.
This allows other researchers and developers to use these expectations as a base for
implementing their custom benchmark suite as we did in Chapter 6.

In this chapter, we go through nine expectations that we test to answer our research
questions. For every expectation we highlight why it is important to include it and
what insights we expect from it, followed by an outline of what kind of tests have to
be performed. As a side product of testing these expectations, we receive a lot of data
that can be then used to evaluate and quantify performance portability between the
frameworks. It is important to highlight, that performance portability is discussed in its
own Chapter 8, as it should be analyzed separately.

5.1 Homogeneous Nested Parallelism

Some parallel backends exhibit better performance and scalability when handling
nested parallelism for homogeneous workloads
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Parallel STL

5.1.1 Importance
As seen in Section 4.3, the performance of a performance portability framework can
vary a lot depending on how nested parallel executions are implemented. Since the
C++ interface of parallel STL does not provide any configuration options on how nested
parallelism should be executed at all, there might be a significant difference between
parallel backends in terms of their performance and how they behave. Those differences
do not only impact the performance portability between parallel STL backends but also
are of interest to developers, who want to achieve the maximum possible performance.
This expectation will cover homogeneous workloads (i.e., every parallel execution unit
has the same amount of work).

5.1.2 Tests
For every parallel execution within the benchmarks that are associated with this expec-
tation, the same execution policy is used. To test this expectation we first perform a
strong scaling analysis and then also compare the raw runtimes using all possible threads.
The expectation will be true when there is a significant difference in runtime between
parallel backends and there is a visible difference in how the parallel backends scale.

5.2 Order of Parallelism

The performance is significantly impacted by the order in which parallelism is applied,
whether the outer loop is sequential and the inner loop is parallel, or the outer loop
is parallel and the inner loop is sequential.

5.2.1 Importance
Section 5.1 presents the first expectation, which focuses on homogeneous nested paral-
lelism. However, this expectation is limited in that it only employs a single execution
policy for all parallel executions. It is well-known that the order of parallelism can have
a significant impact on runtime. For instance, parallelizing the outer loop and keeping
the inner loop sequential is likely to be the faster choice. Nevertheless, the question
remains: how much faster is it? Also, it is worth investigating whether changing the
order of parallelism affects the behavior of parallel backends and how it compares to
other backends.

5.2.2 Tests
The benchmarks associated with this expectation are executed with two execution policies,
first with the outer loop parallel and the inner loop sequential and then the outer loop
sequential and the inner loop parallel. Both combinations are tested using a strong
scaling analysis followed by a comparison using the raw runtimes using all available
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threads. The expectation will be true when there is a significant difference in runtime
between the (par, seq) and (seq, par) approaches.

5.3 Heterogeneous Nested Parallelism

Some parallel backends exhibit better performance and scalability when handling
nested parallelism for heterogeneous workloads.

5.3.1 Importance
The first expectation presented in Section 5.1, highlights the importance of homogeneous
workloads in nested parallelism. In this expectation, we cover heterogeneous workloads.
The importance of heterogeneous workloads is justified by the fact that many algorithms,
such as a parallel implementation of Depth-First-Search, provide early exit opportunities.
Those early exist opportunities lead to the fact that the amount of work is not the same
for all the threads. Developers would consider a backend’s ability to handle heterogeneous
workloads as a significant factor in their decision-making process. If one backend performs
this task more effectively than another, it could strongly influence their choice.

5.3.2 Tests
For every parallel execution within the benchmarks that are associated with this expecta-
tion, the same execution policy is used. To test this expectation, we will first perform a
strong scaling analysis and then also compare the raw runtimes using all possible threads.
Secondly, we collect the Instructions per Second (IPS) for the parallel executions ranging
for all the input sizes. The expectation will be true when there is a significant difference
in runtime between parallel backends and there is a visible difference in how the parallel
backends compare.

5.4 Sequential Fallback

Different compilers/backends may fallback to sequential algorithms, leading to better
performance.

5.4.1 Importance
Parallelism introduces a lot of overhead and for certain kinds of workloads this additional
cost might not be feasible. There is a large number of algorithms inside the parallel STL
that have some cases where parallelism solely from a conceptual standpoint does not
make sense. Since the developer using the parallel STL algorithm only has an interface,
which follows a pre and post condition, there is no way to control or configure specific
behavior. Possible fallback mechanisms to sequential algorithms are solely in the control
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of the parallel STL backend developer. Because of this non-standardized behavior, users
might need to introduce custom fallback checks before calling parallel STL algorithms,
introducing potentially redundant work if the same checks are then performed again by
the parallel STL primitive. This hidden duplicated work can have a significant impact
on performance.

5.4.2 Tests

To test this expectation, we perform a strong scaling analysis and then also compare the
raw runtimes using all possible threads. Furthermore, we collect the bandwidth (MBytes
per second) for the parallel executions ranging for all the input sizes. The expectation
will be true when there is a noticeable bump in runtime or a loss in bandwidth when
changing input size or other parameters.

5.5 Specialized Parallelism Techniques

Parallel STL backends use special parallelism techniques for (linear) algorithms,
which have no clear reference implementation, leading to significant differences in
terms of performance and their strong scaling properties.

5.5.1 Importance

In C++, there is no definitive parallel reference implementation for several (linear)
algorithms. This implies that while adhering to the interface and producing accurate
results, these algorithms can utilize various optimization techniques to enhance speed
and efficiency. This allows parallel STL backend developers to optimize their code to
a level such that it uses the accelerators or programming paradigms’ highest possible
performance. Many of the (linear) algorithms can be parallelized through chunking or
other innovative approaches if the original operation permits it.

5.5.2 Tests

To test this expectation, we perform a strong scaling analysis and then also compare the
raw runtimes using all possible threads. The expectation will be true when there is a
significant difference in runtime between parallel backends and a visible difference in how
the parallel backends behave under strong scaling.
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5.6 Tailored Optimization for Parallel Scans

Parallel STL backends leverage specialized parallelism techniques for inclusive and
exclusive scans, resulting in significant variations in performance and strong scaling
properties.

5.6.1 Importance
As already highlighted in Section 5.5, parallel STL backend developers can use every
possible trick and performance optimization as long as they adhere to the interface
description. Because parallel scans play a major role in parallel programming and many
algorithms, such as sequence compaction or spare-matrix vector multiplication, used
them [49], we dedicate a whole expectation to inclusive and exclusive scan.

5.6.2 Tests
To test this expectation, we perform a strong scaling analysis and then also compare the
raw runtimes using all possible threads. The expectation will be true when there is a
significant difference in runtime between parallel backends and a visible difference in how
the parallel backends behave.

5.7 Specific vs. Custom Implementation

Employing specific parallel algorithms tends to yield superior performance/strong
scaling compared to utilizing custom implementations that rely on various other
parallel algorithm functions.

5.7.1 Importance
The semantics of certain parallel STL primitives can be achieved through the use of
alternative primitives, suggesting that one of the semantically equivalent implementations
may outperform or scale better than the others. This understanding can be highly
valuable when optimizing program performance. Additionally, it enables the development
of best practices for specific parallel primitives.

5.7.2 Tests
To test this expectation we, perform a strong scaling analysis and then also compare the
raw runtimes using all possible threads. Furthermore, we collect the bandwidth (MBytes
per second) for the parallel executions ranging for all the input sizes. The expectation
will be true when there is a significant difference in runtime between parallel primitives
that have the same semantics.
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5.8 Custom Index-based Iterations

Parallel STL does not inherently provide support for index-based iterations, thereby
requiring the developer to devise a custom sequence for indices. The manner in
which the index values are generated by the developer can significantly impact the
application’s performance and scalability.

5.8.1 Importance
The Parallel STL approach is data-centric, which means that the kernel parameter only
receives the actual data within the container used in the parallel primitive. However, this
approach can be disadvantageous when the desired algorithm requires indices. While
there are various techniques to shift to an index-centric approach, there is no universally
accepted “gold” standard. This means an approach that seems promising can have a
drastic impact on performance.

5.8.2 Tests
To test this expectation, we perform a strong scaling analysis and then also compare the
raw runtimes using all possible threads. The expectation will be true when there is a
significant different in runtime between the index strategies.

5.9 Scatter Mapping vs. Compact Mapping

The performance implications of utilizing scatter mapping of threads as opposed to
compact mapping can vary depending on the compiler and backend being used.

5.9.1 Importance
As highlighted in Section 2.1.1, shared memory system can be either UMA or NUMA.
NUMA tend to be favored in high performance systems due to the fact of faster memory
access. Since parallel STL does not provide any interface to control NUMA awareness, it
is in the hand of the parallel STL backend developers.

5.9.2 Tests
To test the expectation, we conduct a strong scaling analysis, followed by comparing
the raw runtimes utilizing all available threads. Additionally, we will implement thread
pinning using the configuration sparse and scattered, via tools such as numactl. During
runtime, we will also collect the bandwidth (MBytes per second). The expectation holds
when there is a significant difference in runtime between the index strategies.
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CHAPTER 6
Benchmark Suite: pSTL-Bench

In this chapter, we present the novel benchmark suite pSTL-Bench used in this thesis.
In Section 6.1, we present the concrete benchmarks we implemented in order to test the
expectations presented in Chapter 5. This is followed by an overview of the components
the benchmark suite pSTL-Bench consists of in Section 6.2.

Due to the large number of benchmarks, we present only code snippets for a small
subset. Furthermore, the code snippets presented will only include the code that will be
benchmarked and not any external needed setup. A full implementation example can be
seen in Listing 6.8.

6.1 Benchmarks
6.1.1 Homogeneous Nested Parallelism
For this expectation, we have created in total three different benchmarks. All of those
benchmarks rely on the std::for_each parallel primitive. In the following sections,
we will shortly explain what they do.

Homogeneous Linear

This benchmark has a time complexity of O(n). For every input element, the benchmark
has the homogeneous workload of first calculating the sinus and cosine and then taking
the minimum of both. In Listing 6.1, one can see the shortened code snippet for this
benchmark.

The function seen in the listing aims to wrap abstract the code away that will be
benchmarked. In order to be a flexible as possible the execution policy is not hard coded,
instead it is provided as a template as one can see on Lines 1 and 3. On Line 4, the input
data to the primitive is provided. Since the function call will be timed, we do not want
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Listing 6.1: Implementation of the homogeneous linear benchmark (shortened).
1 template<class ExecutionPolicy>
2 void homogeneous_linear(
3 ExecutionPolicy &policy,
4 const std::vector<int> &in) {
5
6 std::for_each(policy, in.begin(), in.end(), [](const auto &entry) {
7 std::min(std::sin(entry), std::tan(entry));
8 });
9

10 }

to create the input data inside the method. Hence, it has to be provided as reference.
Finally, the most important part of the method can be found in Line 6. There the parallel
primitive std::for_each is called. As kernel (i.e., lambda function), a rather simple
code block can be found. For every element minimum of the calculated sinus and cosine
is selected. The kernel has as parameter a single reference to an entry inside the input
container. Using a reference is advised such that no undesired copy occurs.

Homogeneous Quadratic

This is the first benchmark where nested parallelism is in use. As one can see in Listing 6.2,
the benchmark uses two parallel std::for_each to generate the cross join using the
elements of the input vector. For example, for a vector containing two elements [1, 2],
we will have the following (i, j)-pairings: [(1, 1), (1, 2), (2, 1), (2, 2)]. The program does
most of its work in the innermost part of the loops, where it calculates tan(i) + cos(j)
for every (i, j)-pairing. The final complexity is O(n2).

Listing 6.2: Implementation of the homogeneous quadratic benchmark (shortened).
1 template<class OuterPolicy, class InnerPolicy, typename T>
2 void
3 homogeneous_quadratic(OuterPolicy outer, InnerPolicy inner, const T &in) {
4
5 std::for_each(outer, in.begin(), in.end(), [&](const auto &e1) {
6 // nested parallel loop
7 std::for_each(inner, in.begin(), in.end(), [&e1](const auto &e2) {
8 auto value = std::tan(e1) + std::cos(e2);
9 });

10
11 });
12 }

In contrast to the code snippet shown for the benchmark Homogeneous Linear (in
Listing 6.1), the code shown in Listing 6.2 has three template values. The first and
second template (i.e., OuterPolicy and InnerPolicy) controls the execution policy
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of the inner and outer parallel primitive std::for_each. The last template value
allows users to provide as input value any type that can be traversed using the parallel
STL primitive.

Homogeneous Exponential

As nested parallelism can be applied to achieve different levels of complexity, we have
included a benchmark with a time complexity of O(2n). This benchmark takes a list
of indices starting from zero and going up to n as input. For each index, it generates
a Fibonacci tree using parallel execution. For instance, if the input vector has three
elements, the number of parallel calls for each of them can be seen in Figure 6.1. To add
computational complexity to the benchmark, every internal node computes the sum of
the tangents and cosines using its current index. This is followed by initiating a parallel
execution that spans its child nodes. For instance when the computation reaches the
red marked node 2 shown in Figure 6.1, it calculates the sum tan(2) + cos(2) and then
spawn the children 0 and 1 marked as green nodes.

1

-1 0

2

0 1

-1 0

3

1

-1 0

2

0 1

-1 0

Figure 6.1: Call Tree for exponential benchmark using vector of size three.

6.1.2 Order of Parallelism
For this expectation, we have a single benchmark. The benchmark is identical to the one
presented in Section 6.1.1. The only difference between those two benchmarks is in the
way how we call them. For this specific expectation, the inner and outer execution policy
used for the parallel primitive will not be the same. The benchmark code in Listing 6.2
is intentionally designed for easy reuse.

6.1.3 Heterogeneous Nested Parallelism
To test this expectation we will have in total two benchmarks. Both exhibit heterogeneous
workloads and use the parallel primitive std::for_each.

Mandelbrot Linear

To simulate heterogeneous workload this benchmark calculates for a one dimensional
vector the Mandelbrot set. The value inside the vector represents the X position of a
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pixel which Mandelbrot value should be calculated. Since we are only working with a
one-dimensional vector, the Y location of the pixel calculated is fixed to a constant for all
the pixels. It is important to highlight that only the loop over the one-dimensional vector
is parallelized, the maximum k iterations to find the Mandelbrot value is sequential. The
simplified Mandelbrot algorithm used for the benchmark has a time complexity of O(kn),
where n is the size of the array and k the maximum number of iterations to calculate the
Mandelbrot value. The code snippet for this benchmark can be seen in Listing 6.8.

Mandelbrot Quadratic

To simulate quadratic heterogeneous workload this benchmark calculates the Mandelbrot
set for a picture of size n. To get the position of the pixel, two nested parallel loops are
required. The loop of maximum k iterations to calculate the Mandelbrot value of a given
pixel is not parallelized. The simplified Mandelbrot algorithm used for the benchmark
has a time complexity of O(kn2) where n is the size of the array and k is the maximum
number of iterations to calculate the Mandelbrot value.

6.1.4 Sequential Fallback
For this expectation, we use in total four benchmarks, where each one uses a different
parallel primitive.

Merge Logic

This benchmark is rather straightforward as one can see in Listing 6.3. We simply call
the parallel primitive std::merge, with two, as required by the pre-condition, already
sorted vectors and no additional compare lambda. Providing an additional compare
lambda is not of interest since it will be only used to decide which of two elements is
the smaller. The implementation of this benchmark demonstrates the ease of use and
simplicity when working with the parallel STL well.

Listing 6.3: Implementation of the merge logic benchmark (shortened).
1 template<class ExecutionPolicy, typename T>
2 void b4_1_merge(ExecutionPolicy &&policy, const T &v1, const T &v2, T &res) {
3 std::merge(policy,
4 v1.begin(), v1.end(), // first input container
5 v2.begin(), v2.end(), // second input container
6 res.begin() // where to store the results
7 );
8 }

Stable Sorting

For this benchmark, we take a closer look at the parallel primitive std::stable_sort.
This primitive as the name suggests will stable sort the input vector. The parallel
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primitive will be called with three different input types, which are Ascending Sorted,
Descending Sorted, and Not Sorted. This wide variety of input data allows us to check if
different input has an effect or always the same amount of work is used.

Set Union Logic

This benchmark focuses on the parallel primitive std::set_union. The algorithm
will produce the union of two input vectors not including duplicates in the overlap. The
parallel primitive will be called with three different input types:

• One empty: One of both input vectors is empty. Leading to the fact that the
resulting union is a copy of the other non-empty input vector.

• One wholly greater : Every element of one input vector is greater than every element
of the other vector. This will lead to the problem of copying both inputs into the
result in a sorted manner.

• Front overhang: Both input vectors overlap in their values.

This wide variety of input data allows us to check if different input has an effect or always
the same amount of work is used.

Set Difference Logic

For this benchmark, we explore in detail the parallel primitive std::set_difference.
Given two sets R and S, the algorithms will produce R \ S. (In the following R will be
called “Left” and S will be called “Right”). The parallel primitive will be called with
four different input types:

• Left empty: This will allow the parallel backend to use an early exit, since the
result will be always empty.

• Right emtpy: This will lead to a copy of the left input vector.

• One wholly greater : Every element of one input vector is greater than every element
of the other vector. This will result in a copy of the left input vector.

• Intersected: Left and right intersect resulting in calculating the actual R \ S.

6.1.5 Specialized Parallelism Techniques
For this expectation, we use in total three benchmarks, where each one uses a different
parallel primitive.

35



6. Benchmark Suite: pSTL-Bench

Find Elements

For this benchmark, we take a closer look at the parallel primitive std::find. The
algorithm tries to find the first element in a container that matches a given predicate.
We will call this parallel primitive with three different predicates to exhibit different
behavior:

• Find first entry: the predicate provided will match the first element of the container.
This provides the parallel STL backends with an early exit opportunity;

• Find last entry: the predicate provided will match only the last element of the
container. Leading to the fact that every element might have to be touched;

• Find non existing entry: the predicate provided will match no element of the
container. This forces the algorithm to touch every element leading to O(n).

Vector Partition

This benchmark focuses on the parallel primitive std::partition. The algorithm
reorders the elements of the vector in such a way that there is a clear border between
elements that match the given predicate and those that do not. Since the goal of this
benchmark is to analyze the behavior of the parallel primitive, the predicate can be
arbitrary.

Unique Copy

For this benchmark, we take a closer look at the parallel primitive std::unique_copy.
As the name suggests the parallel primitive copies only the unique elements of a container
into the result container. The input data used for this benchmark is a vector containing
only the same element.

Min Max Elements

This benchmark focuses on the parallel primitive std::minmax_element. The algo-
rithm tries to find both the minimum and maximum elements inside a container. The
results are not a pair of values but rather a pair of pointers to the memory where the
minimum and maximum are located. The benchmark will be called once with a vector
only containing the same value (e.g., all the values in the container are 230) and once with
a vector with increasing values. This allows us to check whether the implementations use
different strategies for different kinds of data.
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6.1.6 Tailored Optimization for Parallel Scans
Inclusive Scan

The first benchmark focuses on std::inclusive_scan. As input, there will be a
randomly generated vector. As we can see in Listing 6.4, the benchmark code is rather
simple. This is due to the ease of use and simplicity of the parallel STL interface.

Listing 6.4: Implementation of the inclusive scan benchmark (shortened).
1 template<class Policy, typename T>
2 void b6_1_inclusive_scan(Policy &&policy, const T &in, T &res) {
3 std::inclusive_scan(policy, in.begin(), in.end(), res.begin());
4 }

Exclusive Scan

The first benchmark focuses on std::exclusive_scan. As input, there will be a
randomly generated vector. The code for this benchmark is similar to the one presented in
Listing 6.4. The only difference is that the parallel primitive is std::exclusive_scan
instead of std::inclusive_scan.

6.1.7 Specific vs. Custom Implementation
The benchmarks used for this expectation are split into six groups. Each group tackles a
different operation that can be replicated by alternative parallel primitives.

Group 1 - Copy logic

The first group covers how to copy the values from one container to another. There
is a vast variety of possible parallel STL primitives that can be used to achieve these
semantics, but we limited ourselves to two primitives a developer will most probably
think of. As input, we will use a simple vector with random values.

Specific Copy Primitive This benchmark uses the parallel primitive std::copy to
copy all the elements from one vector to another. In Listing 6.5, it becomes evident that
the benchmarks’ simplicity shines through as it requires only a single method call to the
parallel STL to implement the copy logic.

Listing 6.5: Implementation of the Specific copy with for_each benchmark (shortened).
1 template<class Policy, typename T>
2 void specific_copy(Policy &&policy, const T &input, T &res) {
3 std::copy(policy, input.begin(), input.end(), res.begin());
4 }
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Custom copy with for_each To replicate the semantics of the parallel primitive
std::copy, the primitive std::for_each with an index-centric solution is used.
Meaning instead of using the contents of the input vector as a kernel parameter, an index
will be provided. Hence, every execution of the kernel will copy exactly one element. As
one can see in Listing 6.6, in order to copy the elements from the input container input
to the result container res, a lambda reference caption is required (marked as [&] in
Line 2). As one can see the complexity of this implementation is already rather high in
contrast to the one using the specific primitive.

Listing 6.6: Implementation of the Custom copy with for_each benchmark (shortened).
1 template<class Policy, typename T, typename Indices>
2 void custom_copy(Policy policy, const T &input, const Indices &ind, T &res) {
3
4 std::for_each(policy, ind.begin(), ind.end(), [&](const auto &index) {
5 res[index] = input[index];
6 });
7
8 }

Group 2 - All of logic

This group covers the semantics of checking whether all the elements of a container satisfy
a given predicate. For this group, we use three different predicates. The first predicate is
valid for every element, the second predicate is valid for every element except the first
one and the last predicate is not valid for any element at all.

Specific All_of Primitive This benchmark uses the parallel primitive std::all_of,
to check whether a given predicate is true for every element of the container or not.

Custom All_of with transform_reduce To replicate the semantics of the specific
parallel primitive std::all_of, the primitive std::transform_reduce is used. In
order to replicate the semantics, the same predicate provided to std::all_of can be
used. The challenging part of this implementation is to select the correct reduction
operator and initial value. As reduction method the logical and-operator and as initial
value true is used. Since the predicate provided to the parallel primitive will return a
boolean value the logical conjunction of all those boolean values will indicate whether all
the elements in the container satisfy the predicate or not. This works because the logical
and-operator is commutative and associative.

Group 3 - Count if logic

This group covers the semantics of counting the number of elements in a container, that
satisfy a given predicate. There are many ways to achieve this semantic using parallel
STL, but we limit ourselves to two approaches which are most probably the easiest to
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think of. Both strategies will be called with three different predicates. The first predicate
satisfies all the elements, the second satisfies only half of the elements and the number of
elements that satisfy the third predicate is defined by the function max(size− cutoff

quantity , 0).

Specific Count_if Primitive This benchmark uses the logic-specific parallel primitive
std::count_if, to count all the elements that satisfy the given predicate.

Custom Count_if with transform_reduce To replicate the semantics of the
parallel primitive std::count_if, the parallel primitive std::transform_reduce
can be used. It is pretty much similar to the approach shown in Section 6.1.7, but instead
of using the logic and-operator as reduction, this time we use the plus operator. The
reason why the plus operator works is that the result type of the predicate is a Boolean.
Booleans are represented in C++ as 0 for false and 1 for true. Meaning for every element,
we want to count the predicate will return 1, and for every element we do not want to
count (since the predicate evaluates to false), the predicate will return 0. The sum of
those 1’s and 0’s is the number of elements satisfying the predicate.

Listing 6.7: Implementation of the custom count_if with transform_reduce benchmark
(shortened).

1 template<class Policy, typename Container,
2 typename Diff_Type = typename Container::difference_type,
3 typename Reference_Type = typename Container::reference,
4 typename Pred = typename std::function<bool>(Reference_Type)
5 >
6 Diff_Type
7 custom_count_if(Policy &&policy, const Container &in, Pred &&pred) {
8 // the trick is that false = 0 and true = 1
9 return std::transform_reduce(policy,

10 in.begin(), in.end(), // input values
11 0, std::plus(), // initial value and reduce operator
12 pred // predicate provided by the user
13 );
14 }

Although the idea behind the replication logic is rather complex, due to the simple
interface of the parallel STL the implementation is rather simple as one can see in
Listing 6.7.

Group 4 - Stencil transform logic

Many parallel algorithms require the use of stencil operations, such as the one developed
by Brandvik and Pullan [50]. In their work, they designed a partial differential equation
solver that heavily relied on these computations. Since in parallel STL stencil transform
operations can be done with various primitives, we will compare two of them in this
group. The stencil operation used for this group is not as complex as the one used
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by Brandvik and Pullan. Instead, we will calculate the standard deviation of three
neighboring elements in a container. For both implementations, we use an index-centric
approach.

Stencil with transform This benchmark uses the parallel primitive std::transform,
to calculate the standard deviation of 3 neighboring elements.

Stencil with for_each This benchmark uses the parallel primitive std::for_each,
to calculate the standard deviation of three neighboring elements. In contrast to the
implementation using the parallel primitive std::transform, where the results are
written into the result container implicitly, here writing the results has to be done
explicitly.

Group 5 - Scalar transform logic

Scalar transformation can be achieved with a vast majority of different parallel primitives.
In Group 4 we saw a transformation using indices. In this group, we perform a scalar
transformation but this time not using indices.

Scalar with transform This benchmark uses the parallel primitive std::transform,
to multiply the container values by a scalar.

Scalar with for_each This benchmark will use the parallel primitive std::for_each,
to multiply the container values by a scalar. In contrast to std::transform, where
the results are written into the result container implicitly, here writing the results has to
be done explicitly.

Group 6 - Serial vs direct call

Parallel STL offers two essential functions, namely std::transform and std::reduce.
Although, for several use cases, it is common to first transform the data and then
reduce it to a single value, the parallel STL also offers a combined function called
std::transform_reduce. However, it is worth noting that even though the parallel
primitive std::transform_reduce exists, one can still implement the same logic by
utilizing the other two functions sequentially in a serial manner.

Serial This benchmark uses the specific parallel primitive std::transform_reduce,
to sum up the RGB-Values of all the pixels inside a container.

Direct To copy the semantics, we call the parallel primitive std::transform, to
sum up the RGB-Values of a single pixel. Then we sum up all the single values produced
by the previous step to a single value using std::reduce.
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6.1.8 Custom Index-based Iterations
In this benchmark, we cover in total five different ways to perform a simple transform
operation. One of those five uses the data-centric approach and the other four will
use an index-centric approach. All the benchmarks use the same parallel primitive
std::transform.

Data-Centric

This benchmark follows a data-centric approach. This means that the elements of the
container are directly provided as a parameter to the kernel, allowing developers to
directly consume their values without the need to use an index access operation on a
container.

Index-Centric with iota

For this benchmark, we utilize std::iota to generate a vector of indices. These indices
will then be used in the parallel primitive to simulate an index-centric approach, similar
to the strategy used by Mietzsch and Fuerlinger [1].

Index-Centric with views::iota

In C++20, a new concept of range views was introduced. This new concept allows
creating a range of numbers without actually creating the numbers and storing them in
memory. This benchmark will use this new concept i.e., std::views::iota.

Index-Centric with Custom Iterator

In various research papers [24, 23], the authors implement their own range iterator to
perform index-centric traversal. All of those implementations seem to follow the same
strategy. Therefore, we selected the implementation from Lin et al. [24] in this benchmark.

Index-Centric with Boost

The boost library is widely sought-after in the C++ ecosystems. Many of the new C++
standard features were influenced by back then boost exclusive features. Boost plays still
a significant role in C++ and also provides a counting iterator that can be used for an
index-centric approach. Although Boost is not part of the ISO C++ standard, we still
decided to include a benchmark using Boost, due to Boosts importance in C++. This
benchmark will use Boosts counting_iterator to create the indices. In case users of
the pSTL-Bench are not interested in the results of Boost it is possible to exclude this
benchmark using the compile time flag SKIP_BOOST.

6.1.9 Scatter Mapping vs. Compact Mapping
In total, we use three different benchmarks to test this expectation.
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Specific Copy Primitive

This is exactly the same benchmark as used in Specific vs. Custom Implementation
Group 1, which can be seen in Section 6.1.7.

Inclusive Scan

This is the same benchmark as used in Tailored Optimization for Parallel Scans, which
can be seen in Section 6.1.6.

Scalar with transform

This is the same benchmark as used in Specific vs. Custom Implementation Group 5,
which can be seen in Section 6.1.7.

6.2 Implementation Details
The benchmark suite consists of four components, that play nicely together to achieve
the common goal of providing a deep insight into the parallel STL. In the upcoming
sections, we will provide an independent explanation of each component and its role in
the bigger picture. Additionally, we will share insights into the design decisions we made,
during the development.

6.2.1 CORE Component

The main goal of the benchmark suite was to decouple the execution and data collection
from the actual primitive that one wants to benchmark. Hence, we introduced an
independent component called CORE that contains all the code snippets that can be
benchmarked. The main objectives for CORE is to hold all the benchmarks, register
them with the execution engine that is within the component and expose them via a
command line interface to potential users. For us, it was of utter importance that the
benchmarks collected in CORE still can be executed independently without the need for
other pSTL-Bench components. For instance, for testing or fast prototyping purposes.
Furthermore, the code inside CORE should be backend and compiler agnostic.

Before we started with the development of CORE , we reflected on the requirements
stated above and the expectations presented in Chapter 5. Reflecting is a critical part of
this process, since designing a benchmark suite without considering what benchmarks
one wants to run at a later point simply will not work. After reflecting we concluded that
besides runtime other critical information (such as bandwidth or performance counters)
has to be collected, ideally configurable and transparent such that the developer of the
benchmark does not have to deal with it and users can decide at runtime what to include
and what not.
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With all those requirements we started by building our prototype using the industry
standard build automation tool CMake [51] and Google Benchmark1. The main mo-
tivation behind utilizing Google Benchmark is multi-faced. Firstly, it offers a robust
foundation for our benchmark suite, which eliminates the need for us to create one from
scratch. Secondly, it enables us and of course, other developers in the future to obtain
vital statistics such as bandwidth and performance counters, without writing complex
code. This simple benchmarking code allows developers to concentrate on the benchmark
code rather than on external factors, such as collecting metrics. Finally, this project has
a large user base and has served as a benchmarking tool for numerous microbenchmarks
in the community, including Chandler Carruth’s CPPCon talk [52].

Because Google Benchmark gives us the possibility to configure the benchmarks during
runtime, we had to decide what parameters should be configured at runtime and which
at compile time. In the end, we decided that only a handful of properties should be
provided at compile time and the rest can be configured during runtime. The reason for
selecting the following configuration properties for compile time is twofold. Firstly, these
properties are specific to the backend and should not change during runtime. Therefore,
it is essential to establish them during compilation. Secondly, these properties need to
remain consistent across all executions and should not be modified at runtime for the
sake of consistency. Hence, it is necessary to fix them during compilation.

The following compile-time configuration can be applied using CMake:

• BENCHMARK_PREFIX: this allows adding a prefix to every benchmark name. This
can be used to for example add the backend name at compile time in front of every
benchmark, so one can later easily distinguish them.

• CXX_COMPILER: allows specifying what compiler to use.

• CXX_FLAGS: allows specifying further compile time flags needed by the backend or
the select compiler.

• USE_PARALLEL_ALLOCATOR: allows specifying whether to use our custom memory
allocator or not.

• SKIP_BOOST: include benchmarks using the third-party library BOOST.

• MAX_INPUT_SIZE: allows one to specify the maximum container size (i.e., number
of elements) benchmarks should support.

During runtime, a wide variety of configurations can be applied. We will only present a
selection of those, which seem to be the most important ones we identified while working
on this thesis.

1https://github.com/google/benchmark
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• --benchmark_filter: This feature allows users to choose which benchmarks
to execute based on their name using a regular expression. It is particularly useful
for benchmark suites with many tests, as it simplifies the selection of specific tests.
For example, users can select benchmark A with an input size of 220.

• --benchmark_repetitions: allows specifying how often a benchmark should
be executed.

• --benchmark_format: allows to specify the output format. This can be plain
text, CSV or JSON.

• --benchmark_perf_counters: allows specifying what performance counters
should be collected during runtime. The system supports a maximum of four
different performance counters.

An important concept to highlight is how Google benchmark works. As shown above
there is a configuration option called benchmark_repetitons. In Google benchmark,
there are iterations and repetitions. Every benchmark registered by Google benchmark
will be executed multiple times. This number of executions is called iterations. By
default, the number of iterations per benchmark is determined dynamically. Meaning
that faster benchmarks will have more iterations than slower ones. To ensure that the
collected results are statistically stable, the system will first run the benchmark multiple
times measures how much time each run took and calculates the number of iterations
needed for this benchmark. Repetitions in contrast defines how often the benchmark
with its iterations should be repeated. For example, benchmark A has 100 iterations. If
we define ten repetitions, benchmark A will be executed ten times, each time with 100
iterations.

Since CORE uses under the hood Google benchmark, we have the option to collect
hardware and software performance counters (using libpfm2) during runtime without
requiring developers to interact with third-party libraries such as PAPI [53, 54]. Although
if a benchmark requires the use of tools such as PAPI this is easily extendable through
custom user counters.

Creating a new benchmark and including it into pSTL-Bench is rather straightforward.
In Listing 6.8, we can see for example the implementation of the linear Mandelbrot
benchmark for the expectation Heterogeneous Nest Parallelism shown in Section 6.1.3.

The inclusion of a benchmark in the CORE framework can be divided into three parts.
The first part involves the creation of the code to be benchmarked. For instance, in the case
of the linear Mandelbrot benchmark discussed in Section 6.1.3, this entails implementing
a function that receives a vector of pixel indices and calling, using the parallel primitive
std:for_each, the function responsible for calculating the Mandelbrot value. This
operation occurs on Line 10. It is advisable to employ namespaces to prevent naming

2https://man7.org/linux/man-pages/man3/libpfm.3.html
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Listing 6.8: Implementation of the linear Mandelbrot benchmark (shortened).
1 namespace B1 {
2
3 int calculate_mandelbrot(const auto &entry) {
4 // logic to calculate mandelbrot value
5 // ...
6 }
7
8 template<class ExecutionPolicy,
9 typename BASE_POLICY = suite::base_type<ExecutionPolicy>>

10 void b1_1_for_each_linear_mandelbrot(
11 ExecutionPolicy &policy, const suite::int_vec<BASE_POLICY> &pixel) {
12
13 std::for_each(policy, pixel.begin(), pixel.end(), [&](const auto &entry) {
14 int val = calculate_mandelbrot(entry);
15 benchmark::DoNotOptimize(val);
16 });
17 }
18
19 }
20
21 template<class Policy>
22 static void mandelbrot_wrapper(benchmark::State &state) {
23 constexpr auto execution_policy = Policy{};
24
25 const auto size = state.range(0);
26 const auto x = suite::generate_increment(execution_policy, size, 1);
27
28 for (auto _: state) {
29 WRAP_TIMING(B1::b1_1_for_each_linear_mandelbrot(execution_policy, x);)
30 }
31 }
32
33 BENCHMARK_TEMPLATE1(mandelbrot_wrapper,std::execution::parallel_policy)
34 ->Name(BENCHMARK_NAME("b1_1_for_each_linear_mandelbrot_par"))
35 ->RangeMultiplier(2)
36 ->Range(1 << 5, MAX_INPUT_SIZE);

conflicts. It is crucial that the benchmark code does not define the execution policy
to be used. As shown in Line 8, templates are utilized to make the code as general as
possible. This approach enables the code being benchmarked to remain as execution
policy-agnostic as possible. The second stage involves the creation of a wrapper around
the code to be benchmarked. This wrapper is responsible for setting up all the necessary
inputs and utilizing the Google benchmark environment. This entire process occurs
within the method shown in Line 22. For instance, in the present example, an input vector
containing ascending numbers from 1 until size is generated, where the value of size is
determined by the Google benchmark environment, which can be externally controlled.
Lastly, in Line 29, the code to be benchmarked is invoked within the WRAP_TIMING
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macro, which measures the execution time and reports it to Google benchmark. As
demonstrated in Line 21, C++ templates are once again employed to ensure the wrapper
remains execution policy-agnostic.

The third and final phase of benchmark creation involves registering the benchmark
with Google benchmark. This action occurs on Line 33. As our benchmark wrapper
necessitates a template, we must define the execution policy to be used. In this scenario,
we intend to utilize the parallel execution policy. This is followed by the name we wish
to give to this specific benchmark. The last two lines of code are particularly noteworthy,
as they establish the minimum and maximum number of pixels for which the benchmark
may be executed. In our case, the minimum number is 25, and the maximum size is
determined by the runtime configuration parameter MAX_INPUT_SIZE. It is important
to note that while the minimum is 25 and the maximum is MAX_INPUT_SIZE, Line 35
restricts the selection of numbers to those that are powers of two.

After the registration is completed the benchmark will be executed with every input size
by default when executing the binary, as seen in Figure 6.2. Since the default value for
MAX_INPUT_SIZE is 226 it will run until this size is reached.

Figure 6.2: Execution of Benchmark Mandelbrot Linear.

Due to the design decisions made at the beginning of the project, there will be for every
compiler and parallel backend combination an executable of CORE . Each binary is by
default built using the compiler flags -03 and -march=native, to ensure maximum
performance.

6.2.2 Data Collector Component
All the benchmarks required to test the expectations presented in Chapter 5 are collected
in CORE . As mentioned above the code inside CORE is compiler and parallel backend
agnostic meaning that only at compile-time developers have to decide what backend
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and what compiler to use. Additionally, to ensure that our benchmarks are executed in
isolation, we need to create a unique job file for each benchmark and configuration that
we wish to run, and manually submit it to SLURM. For example, if we want to collect
data from ten different compiler-backend-pairing, we have to manually build the ten
binaries, then create all the job files calling those benchmarks in different environments
(e.g., only running with 4 Threads) and then submit this manually to SLURM. This
is quite tedious, hence an automation tool is required to do this. This is where Data
Collector plays a significant part in this benchmark suite.

Based on a configuration file, the Data Collector will first build the correct binaries
for every compiler-backend pairing. This is followed by generating the correct job files
based on the benchmarks that were selected in the configuration file. This allows users
to specify they want to run a specific benchmark (e.g., b7_1_copy) with two, eight and
sixteen threads on compiler-backend-pairing A and B.

Listing B.1 provides an example configuration file. At the top of this JSON file, we
specify the location to store the data collector artefacts. In Line 3, we can specify the
number of repetitions to use. To conduct our experiments, we utilized a repetition count
of ten. This decision was made after observing that increasing the number of repetitions
did not lead to a significant change in the results. However, it substantially increased
the runtime of the benchmarking tool. The most critical part of this file is the compiler
and benchmark section. In the compilers section, developers can choose and name the
compiler-backend pairings to use for running the benchmarks. In the benchmark section,
developers can specify which benchmarks to run using a regular expression. Additionally,
we can specify the environment to run these benchmarks. For example, in Line 30,
we define a benchmark where only one thread is used. The data collected from this
benchmark could be used, for example, to generate strong scaling plots.

Using a configuration file such as demonstrated in Listing B.1 allows the Data Collector
to be a one-click solution for building the binaries and creating all the job files needed to
submit to SLURM.

It is worth noting that the generation of job files based on the benchmarks defined in
the configuration files is highly customizable. Therefore, if one plans to run benchmarks
in a different environment, such as using numactl, there is no need to rewrite the Data
Collector. Instead, one can simply extend an interface within the Data Collector, to
customize the job file generation process. This feature makes it easy to modify the Data
Collector to suit specific needs without the hassle of completely reworking the entire
system.

6.2.3 SBatch-Trigger
Given that the Data Collector generates a broad range of SLURM job files depending on
the configuration used, we developed a small and agile Python script to submit all jobs
present in a provided folder and its subdirectories. For instance, on our Nebula machine,
we had approximately 1030 job files distributed across three subfolders. Manually
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submitting that many job files using the command line would have been extremely
tedious and time-consuming. Therefore, our script proved invaluable in saving us time
and effort.

6.2.4 Visualization
In Chapter 5, we presented in total nine different expectations that we want to test. As
one might expect to test all these expectations a large amount of data will be generated.
Inside those data points, there is a lot of implicit knowledge that needs to be made explicit
and easily digestible. Hence, there is a clear need for visually appealing visualizations.
Although there are automation tools to visualize the results of CSV files, we realized
that due to the format and distribution of the CSV files, it is still unpractical to use
such tools. Hence, we had to manually analyze the data collected from the benchmarks.
To do so we utilized Jupyter notebooks with industry-standard data science tools for
Python such as pandas [55] and matplotlib [56].
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CHAPTER 7
Experimental Evaluation

In this chapter, we present the results we got from our experiments (i.e., benchmarks) for
the machines Nebula and Hydra demonstrated in Section 7.1.1. We present the results
measured from our benchmarks, followed by a set of crucial details we discovered while
collecting results.

7.1 Experimental Setup
As highlighted in Section 6.2.2, we used ten repetitions to make sure our results were not
skewed. We utilize the minimum time measured (referred to as the fastest runtime) for
visualization purposes, while for the Bytes processed, we consider the maximum value
(known as the peak).

Due to the large number of graphs, we decided to only show the Nebula plots in this
chapter. For completeness, one can find the Hydra plots in Appendix D. In general, both
machines follow the same trends for the backends, there are only small differences that
will be discussed in Section 7.11.

7.1.1 Hardware Setup

We utilize a total of three machines to execute all of our benchmarks. Two of these
machines use multicore CPUs, while the third employs a GPU. All three machines are
managed and owned by the Parallel Computing Research Group at TU Wien. Table 7.1
provides detailed information regarding the CPU machines. The GPU machine, Tesla,
features a 16GB Nvidia Tesla T4 GPU. All machines operate on Debian Linux.

In Appendix A, the results of the command lscpu for both Nebula and Hydra can be
seen.
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Table 7.1: Hardware setup of the CPU Nodes.

Name Cores
per

Socket

Sockets Processor L3
Cache

Numa
Nodes

RAM

Hydra 16 2 Intel Xeon Gold 6130F 44 MiB 2 96 GiB
Nebula 32 2 AMD EPYC 7551 8192K 8 256 GiB

7.1.2 Software Setup
To execute our benchmarks, we employ a total of three distinct parallel backends and
two different compilers. Table 7.2 provides an overview of the parallel backends and
compilers utilized. The Nvidia compiler, nvc++, employs OpenMP as a parallel backend
for multicore systems and CUDA for Nvidia GPUs. The GNU C++ compiler, g++,
employs oneTBB as a parallel backend for multicore systems. However, it currently does
not support GPUs.

Table 7.2: Compilers and parallel backends used.

Machine Compiler Backend Target Compiler Version Backend Version

Nebula nvc++ OMP Multi-Core 22.5-0 4.5
g++ oneTBB Multi-Core 12.1.0 2021.7.0

Hydra nvc++ OMP Multi-Core 22.5-0 4.5
g++ oneTBB Multi-Core 12.1.0 2021.7.0

Tesla nvc++ CUDA GPU 22.11-0 11.8

All the machines that were used to run the benchmarks use SLURM [57] as a resource
management tool.

In the following plots, the compiler-backend pairing Nvidia with OpenMP will be ab-
breviated with NVC (OMP) and the compiler-backend-pairing GCC with oneTBB with
GCC (TBB). The data used to generate the plots labeled with “runtime” was obtained
without imposing any limitations on the number of threads. This granted full autonomy
to the backends, allowing them to exercise complete control over resource allocation
decisions.

7.2 Homogeneous Nested Parallelism
In this section, we present the results of the benchmarks we performed to test Homogeneous
Nested Parallelism. As each of the benchmarks reveals specific characteristics, we discuss
each of them separately. As a short recap all benchmarks involved use the parallel primitive
std::for_each and have homogeneous workload. The only difference between those
benchmarks is the time complexity (e.g., O(n), O(n2), and O(2n)).
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7.2.1 Homogeneous Linear

Figure 7.1: Runtime & speedup results for “Homogeneous Linear”; Nebula.

In Figure 7.1, one can see in total three different graphs. Each graph compares two
implementations of parallel STL. One is GCC (TBB) and the other is NVC (OMP).
On the left, we can see the absolute runtime in nanoseconds for input scaling. For
instance, the runtime of GCC (TBB) for a vector containing 65536 doubles is around 102

microseconds (i.e., 100µs). The number of threads when collecting the runtimes for the
input scaling was not restricted, meaning the parallel STL backend had full control over
how many threads were used. The middle plot shows strong scaling characteristics. To
calculate the speedup for strong scaling, we use the formula presented in Section 2.2.
For T (1), we use the best achieved time of both serial implementations. For instance, if
GCC (TBB) has a serial execution time for 67 million doubles of 300ns and NVC (OMP)
has a serial execution time of 900ns, we take the 300ns as the base. The strong scaling
plot also has a red dotted line. This red dotted line marks the point where the parallel
implementation achieves speedup over the base (i.e., the best serial implementation).
The right plot shows the efficiency for the same input size used for the strong scaling
plot. The efficiency is calculated by dividing the speedup of the strong scaling plot by
the number of threads. For instance, at 64 threads we can see in the strong scaling plot
that the speedup value for NVC (OMP) is at around 62. Diving 62 by the number of
threads (i.e., 64 threads), we get an parallel efficiency of 0.97. In this plot, we again see
a red dotted line, indicating the ideal speedup.

As one can see in Figure 7.1, NVC (OMP) achieves faster runtimes than GCC (TBB)
over all the input sizes when the number of threads is not constrained. Furthermore,
NVC (OMP) tends to work especially better with smaller input sizes. The superiority of
NVC (OMP) becomes even more clear when looking at the strong scaling plot. Although
both compiler-backend-pairings do achieve a significant speedup over the sequential
implementation, NVC (OMP) nearly does achieve linear speedup, whereas GCC (TBB)
lacks behind at around 50% of NVC (OMP) efficiency. The efficiency of NVC (OMP)
only slightly degrades insignificantly at higher thread counts.
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7.2.2 Homogeneous Quadratic

Figure 7.2: Runtime & speedup results for “Homogeneous Quadratic”; Nebula.

Although this benchmark has a quadratic time complexity, the results seen in Fig-
ure 7.2 follow the same trend we identified in Section 7.2.1. NVC (OMP) is superior to
GCC (TBB). What is interesting to see is that there is a significant loss in efficiency going
from 16 to 32 threads using NVC (OMP), whereas GCC (TBB) stays constant.

7.2.3 Homogeneous Exponential

Figure 7.3: Runtime & speedup results for “Homogeneous Exponential”; Nebula.

The results gathered for this benchmark, visualized in Figure 7.3, do not follow the same
trend we see in the results for the linear and quadratic time complexity results. For a small
number of spawns, NVC (OMP) has significantly faster runtimes than GCC (TBB), but
as soon as the number of spawns increases the trend switches and GCC (TBB) becomes
tremendously faster. NVC (OMP) struggles when the number of spawns increased, leading
to the point where the parallel implementation does not even provide any speedup. In
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comparison, GCC (TBB) does provide a minimal, but still noticeable speedup with a
higher number of threads utilized.

7.2.4 Discussion
As we can see from the plots above, NVC (OMP) tends to work better on homogeneous
workloads, where the time complexity is not exponential. We tried to analyze why we
see this kind of behavior, and it seems that OpenMP works fantastic with simple nested
loops.

As we can see from above various parallel backends exhibit different performance and
scalability characteristics on homogeneous workloads. Hence, the expectation holds that
some parallel backends exhibit better performance and scalability when handling nested
parallelism for homogeneous workloads.

7.3 Order of Parallelism
In order to test the given expectation, we only use a single benchmark as highlighted in
Section 5.2. As a short recap, the benchmark uses two nested std::for_each with a
homogeneous workload. Only the order of the execution policies is changed.

7.3.1 Homogeneous Quadratic

Figure 7.4: Runtime & speedup results for Homogeneous Quadratic execution order;
Nebula.

As seen in Figure 7.4, there is a difference in runtime between the order of execution
policies. Important to highlight is that already for small input sizes the relative difference
between par_seq and seq_par for GCC (TBB) is significantly larger than for NVC (OMP).
Although all the compiler-backend-pairing achieves a speedup for every execution order,
NVC (OMP) does dominate in raw runtime and speedup. Even the fastest execution order
of GCC (TBB), is not always faster than the slowest execution order of NVC (OMP).
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The efficiency graph shown in Figure 7.4 shows that the execution order par_seq for
both compiler-backend-pairings keep a constant speedup, whereas the execution order
seq_par starts to stagnate early on.

7.3.2 Discussion
As we expected, the execution policy order does make a significant performance difference
and has an impact on how the parallel backends scale. Hence, the expectation holds that
the performance is significantly impacted by the order in which parallelism is applied.

7.4 Heterogeneous Nested Parallelism
In this section, we present the results of the benchmarks we performed in order to test
Heterogeneous Nested Parallelism presented in Section 5.3. During the analysis of the
data gathered from the benchmarks, we identified that all the results showed common
characteristics, hence we will not discuss all the results independently. Instead, we will
discuss the results on a single representative benchmark namely Mandelbrot Linear. As a
recap, the benchmark computes the Mandelbrot values for a single row of pixels. The
remaining plots can be seen in the Appendix C.

7.4.1 Mandelbrot Linear

Figure 7.5: Runtime & speedup results for “Mandelbrot Linear”; Nebula.

In Figure 7.5, a comparison between GCC (TBB) and NVC (OMP) reveals distinct
performance characteristics based on input size and scalability. For larger input sizes,
GCC (TBB) demonstrates faster runtimes than NVC (OMP). However, for smaller input
sizes where less heterogeneous work is required, NVC (OMP) has superior performance.

When it comes to scalability, GCC (TBB) proves to have better strong scaling character-
istics than NVC (OMP), with nearly linear speedup. In contrast, NVC (OMP)’s efficiency
tends to degrade quickly as more threads are added, reaching a point where the benefit of
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adding additional threads is minimal and not worth the cost. In contrast, the efficiency
of GCC (TBB) remains consistent over a wide range of thread counts.

7.4.2 Discussion
We examined why GCC (TBB) does lack performance when having smaller input sizes.
Hence, we looked at the Instructions per second (IPS). As one can see in Figure 7.6,
although NVC (OMP) has a high number of instructions processed for smaller input sizes,
GCC (TBB)’s number is flat until the same point (65536 doubles) where GCC (TBB)
becomes faster than NVC (OMP). This insight tells us that until a certain amount of
work is reached the parallel overhead of GCC (TBB) is the dominant factor.

Figure 7.6: MIPS for benchmark “Mandelbrot Linear”; Nebula.

Another interesting point we investigated is that there is a clear difference between the
performance and the scaling characteristics of the two backends. While GCC (TBB)
massively benefits from more threads NVC (OMP) does not. After consolidating the
documentation of oneTBB1, we identified that by default oneTBB implements work
stealing. In contrast, from the data collected, we see that the NVC (OMP) does not
implement any kind of work-stealing that would benefit heterogeneous workloads.

Because there is a significant difference in runtime and scaling between the parallel STL
backends, the expectation holds that some parallel backends exhibit better performance
and scalability when handling nested parallelism for heterogeneous workloads.

7.5 Sequential Fallback
In this section, we present the results of the benchmarks we performed in order to test
Sequential Fallback presented in Section 5.4. During the analysis of the data gathered
from the benchmarks, we identified that all the results showed common characteristics,
hence we will not discuss all the results independently. Instead, we discuss the results

1https://oneapi-src.github.io/oneTBB/main/tbb_userguide/How_Task_Scheduler_Works.html
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of two representative benchmarks namely Merge Logic and Stable Sorting. As a recap,
the benchmark Merge Logic merges two sorted containers using the parallel primitive
std::merge, whereas Stable Sorting stable sorts the elements of a container using the
parallel primitive std::stablesort. The remaining plots can be seen in Appendix C.

7.5.1 Merge Logic

(a) Runtime, Strong Scaling and Efficiency

(b) MBytes/s

Figure 7.7: Runtime, speedup & throughput results for “Merge Logic”; Nebula.

As one can see in Figure 7.7a, for small input sizes the two backends behave differently.
NVC (OMP) has a lot of parallelization overhead, which dominates the runtime until the
input size of 4096 integers is reached. In comparison, the runtimes of GCC (TBB) for
small input sizes look rather reasonable. At the input size of 1024, we can see a clear
bump in the runtimes for GCC (TBB). Because of this observation, we also looked at the
bandwidth, shown in Figure 7.7b, for both compiler-backend-pairings and can see that
the bandwidth for GCC (TBB) is rising linearly until the point of 1024 integers where it
suddenly takes a significant hit. Next, we consider the strong scaling behaviors of the
two compiler-backend-pairings. GCC (TBB) achieves a significant, although far away
from perfect linear, speedup, whereas NVC (OMP) struggles to first achieve speedup and
then does not improve at all while increasing the number of threads.
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7.5.2 Stable Sorting

(a) Runtime

(b) Strong Scaling

(c) MBytes/s

Figure 7.8: Runtime, speedup & throughput results for “Stable Sorting”; Nebula.
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In Figure 7.8a, we can see the same trend as we saw in Section 7.5.1 for the benchmark
Merge Logic. GCC (TBB) has great runtimes until the input size of 256 integers and
then at the input size of 512 integers we can see a rather significant jump in the runtime.
For Stable Sorting, this happens across all the different input styles we tested for this
benchmark and is also visible in the bandwidth shown in Figure 7.8c. Interesting to see
in Figure 7.8a, the runtimes stay the same for every input style we tested, indicating
that neither GCC (TBB) nor NVC (OMP) have special case treatments in their parallel
implementations for std::stabel_sort.

Figure 7.8b demonstrates that GCC (TBB) has better scaling characteristics compared
to NVC (OMP), which we already have seen for Merge Logic in Section 7.5.1. What
makes the strong scaling behavior noteworthy, is that GCC (TBB) achieves a super-linear
speedup, suggesting that its parallel STL implementation employs specific parallelization
techniques. Especially increasing the number of threads benefits GCC (TBB).

7.5.3 Discussion
In all the benchmarks we can see there is indeed a rather significant jump in runtime when-
ever a certain threshold is reached. This affects only GCC (TBB) and not NVC (OMP).
Hence, we looked into the source code of GCC (TBB) [58] to understand why we see this
strange behavior. Unfortunately, because NVC (OMP) is closed source we could not read
into it.

Throughout the parallel STL implementation in GCC (TBB), we have identified three
thresholds that determine the points at which parallelization is employed. Below you can
see each of the thresholds, when for what kind of operations they are used and in which
file they can be found:

1. #define _PSTL_MERGE_CUT_OFF 2000 : Used for various merge operations.
Found in file parallel_backend_tbb.h on line 415;

2. #define _PSTL_STABLE_SORT_CUT_OFF 500 : Used for the stable sort im-
plementation. Found in file parallel_backend_tbb.h on line 1116;

3. constexpr auto __set_algo_cut_off = 1000 : Used for all the set oper-
ations. Found in file parallel_backend_tbb.h on line 3046.

It is important to highlight that the thresholds we found are not always used. For
example, the threshold we found for set operations (i.e., __set_algo_cut_off) is only
used, as we can see in Figure C.8, when the two sets are intersected.

With the insights we gathered from the benchmarks and from reading the source code
of GCC (TBB) we can say the expectation holds that different compilers/backends may
fallback to sequential algorithms, leading to better performance.
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7.6 Specialized Parallelism Techniques
In this section, we present the results of the benchmarks we performed in order to test
Specialized Parallelism Techniques presented in Section 5.5. During the analysis of the
data gathered from the benchmarks, we identified that all the results showed common
characteristics, hence we will not discuss all the results independently. Instead, we discuss
the results of two representative benchmarks namely Find Elements and Vector Partition.
The first benchmark Find Elements uses the parallel primitive std::find to find a
specific element in a container. The second benchmark Vector Partition, splits the input
vector into two parts where in the first part every element matches the predicate and in
the second part not. The remaining plots can be seen in Appendix C.

7.6.1 Find Elements

In Figure 7.9 one can see, that both parallel backends behave differently on different
input types and sizes. In Figure 7.9a, we can see that the runtime for NVC (OMP) can
be grouped into two blocks. The first block ranges from 4 to 65536, and the second
block ranges from 131072 to 67108864. In contrast, the runtimes of GCC (TBB) start
to increase and then stabilize at around 45000 ns. Since we know that the first element
satisfies the predicate, we expected that a reasonable parallel implementation should be
able to detect this early exit opportunity and therefore we would see a constant runtime
for every input size. What is interesting to see although is that the runtimes are quite
different. We assume this comes down to the fact of how the parallel backend handles
scheduling.

The behavior of the two other input types, shown in Figures 7.9b and 7.9c, is similar.
This is interesting to see since searching for a non-existing element requires touching every
element, whereas depending on the implementation of the parallel primitive std::find,
this should not be the case for finding the last element.

7.6.2 Vector Partition

In Figure 7.10, we can see that the two parallel STL backends scale and behave differently.
By analysing the runtime graph, one can see that NVC (OMP) has quadratic runtime,
meaning by doubling the input size we also double the runtime. In contrast, GCC (TBB)
works well on large input sizes but has a lot of parallelisation overhead for smaller
input sizes. The superiority of GCC (TBB) continues when looking at the strong scaling
characteristics. While GCC (TBB) achieve a significant speedup with increasing the
number of threads, NVC (OMP) does not at all have any speedup. The strong scaling
behaviour we identified for NVC (OMP) made us a bit suspicious therefore we looked at
the efficiency and checked the data again. We collected the number of cycles run on every
core using performance counters and visualized the results. As we can see in Figure 7.11,
the parallel primitive std::partition uses only a single thread. Indicating that
NVC (OMP) does not use any parallelization at all.
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(a) Find first entry

(b) Find last entry

(c) Find non existing entry

Figure 7.9: Runtime & speedup results for “Find Elements”; Nebula.

7.6.3 Discussion
Although some parallel primitives use special techniques to achieve significant speedup
over their sequential implementations, not all of the backends we tested exhibit this
behavior. Specifically, we found that GCC (TBB) is superior for the parallel primitives
we tested and the input types. It is noteworthy that the parallel backends make use
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Figure 7.10: Runtime & speedup results for “Vector Partition”; Nebula.

Figure 7.11: Active cores when running Vector Partition using NVC (OMP). Dark spots
indicate which Core is active.

of early exit opportunities, as exemplified by Find Elements. However, it is surprising
that the parallel primitive std::partition does not employ any parallelization in
NVC (OMP).

Based on our observations, we cannot conclusively state whether the expectation, that
backends use special parallelism techniques for (linear) algorithms leading to significant
differences in terms of performance and their strong scaling properties, holds or not.
While it holds for one of the parallel backends, it is not valid for the other.

7.7 Tailored Optimization for Parallel Scans
In this section, we present the results of the benchmarks we performed to test Tailored
Optimization for Parallel Scans presented in Section 5.6. Because the results gathered
from b6_1_inclusive_scan and b6_2_exclusive_scan show the same character-
istics, we will not discuss both results independently. Instead, we will discuss only the
results of Inclusive Scan. As a short recap, the benchmark uses the parallel primitive
std::inclusive_scan to calculate the inclusive scan of the input container. The
remaining plots can be seen in Appendix C.
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7.7.1 Inclusive Scan

Figure 7.12: Runtime & speedup results for “Inclusive Scan”; Nebula.

As we can see in Figure 7.12, for small input sizes NVC (OMP) dominates the run-
times of GCC (TBB). At around 262144 elements this trend turns and the runtimes for
GCC (TBB) start to significantly improve. What is interesting to see is that the runtimes
of NVC (OMP) are similar to the ones we saw for Vector Partition in Figure 7.10. The
superiority of GCC (TBB) continues when looking at the strong scaling and efficiency
plots. While GCC (TBB) achieves a significant speedup, NVC (OMP) barely achieve
speedup at all.

7.7.2 Discussion
As mentioned above, the characteristics we identified for both benchmarks using NVC (OMP)
looked quite similar to what was found in Section 7.6.2. Hence, we took a closer look at
the raw data points and checked whether we had a mistake in the benchmarking code
or in the calculations. After running again our tests for NVC (OMP) with performance
counters we identified that also std::inclusive_scan and std::exclusive_scan
do not use parallelization.

With that observation, we can say that there is indeed a rather significant difference
between parallel STL implementation for those two parallel primitives. Although we do
not see unusual high speedup numbers or efficiency for the GCC (TBB) implementation,
there is still a significant variation in performance and strong scaling properties. Hence,
the expectation holds.

7.8 Specific vs. Custom Implementation
In this section, we present the results of the benchmarks we performed in order to test
whether the usage of logic-specific parallel primitives is superior to custom implementa-
tions. During the analysis of the data gathered from the benchmarks, we identified that
all the results showed common characteristics, hence we will not discuss all the results
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independently. Instead, we will discuss the results of four representative benchmarks
namely Copy Logic, All_of Logic, Stencil Logic and Serial vs Direct Call. The remaining
plots can be seen in Appendix C.

7.8.1 Copy Logic

Figure 7.13: Runtime & speedup results for “Copy Logic”; Nebula.

Figure 7.14: Throughput results for “Copy Logic”; Nebula.

In Figure 7.13, we can see that NVC (OMP) works well with small input sizes, whereas
GCC (TBB) starts to shine with larger input sizes. Due to this observation, we looked
at the bytes processed by second, shown in Figure 7.14 and saw that NVC (OMP) can
utilize the bandwidth way better for both parallel primitives compared to its GCC (TBB)
counterparts. By looking at the strong scaling and efficiency plots, we can see that the
speedup of NVC (OMP) increases constantly when increasing the number of threads. In
comparison, GCC (TBB) starts to achieve a speedup rather early (at four threads) and
starts to stagnate at around 32 threads.

Interesting to see is that both parallel backends show the same characteristics when
comparing the two parallel primitives. For small input sizes, there is no significant
difference in runtime between std::copy and std::for_each. For larger input sizes,
std::copy dominates std::for_each.
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7.8.2 All_of Logic

(a) All elements true

(b) First element false

(c) All elements false

Figure 7.15: Runtime & speedup results for “All_of Logic”; Nebula.
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In Figure 7.15, we observe that the performance of std::all_of and std::transform
varies depending on the input type. When an early exit opportunity is present, as demon-
strated in Figure 7.15b, GCC (TBB)’s std::all_of outperforms std::transform,
and this is also true for NVC (OMP).

Interestingly, NVC (OMP)’s std::transform performs well with input types where
all elements may need to be accessed, as shown in Figure 7.15c, in comparison to
std::all_of. Our analysis of the bandwidth data depicted in Figure 7.16 suggests
that NVC (OMP)’s std::transform can utilize the bandwidth more effectively than
std::all_of.

The trend we see for GCC (TBB) is not replicated in the trends of NVC (OMP).

(a) All elements true (b) First elements false

(c) All elements false

Figure 7.16: Throughput results for “All_of Logic”; Nebula.

7.8.3 Stencil Logic
Figure 7.17 shows that for small input sizes, the performance difference between the par-
allel primitives std::transform and std::for_each is negligible on both backends.
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Figure 7.17: Runtime & speedup results for “Stencil Logic”; Nebula.

However, for larger input sizes, a significant difference between the two NVC (OMP)
primitives can be observed.

It is interesting to note that both primitives scale quite well, achieving significant speedup.
It is worth mentioning that, again, there is no significant difference in speedup between
the GCC (TBB) primitives, while a rather significant difference can be observed between
std::for_each and std::transform for NVC (OMP). Additionally, all primitives
except NVC (OMP)’s std::for_each experience a significant efficiency drop when
utilizing 64 threads. If this didn’t occur, NVC (OMP)’s std::transform would have
achieved nearly perfect super-linear speedup.

Figure 7.18: Throughput results for “Stencil Logic”; Nebula.

As we observed in Section 7.8.2 with std::all_of, NVC (OMP)’s std::transform
outperforms its counterpart. Additionally, Figure 7.18 reveals that for large input sizes,
NVC (OMP)’s std::transform utilizes bandwidth more efficiently than the parallel
primitive std::for_each.
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7.8.4 Serial vs Direct Call

Figure 7.19: Runtime & speedup results for “Serial vs Direct Call”; Nebula.

Figure 7.19 reveals that both NVC (OMP) and GCC (TBB) exhibit similar characteristics
in runtime and strong scaling. In both cases, the serial implementations are dominated
by the parallel primitive std::transform_reduce. Even for small input sizes, the
serial implementation is unable to compete with the other parallel primitive. This
dominance becomes more evident when analyzing the strong scaling and efficiency plot.
std::transform_reduce achieves a significant speedup for both parallel backends
and appears to plateau at around 32 threads, whereas the serial implementation does
not achieve a speedup over the sequential implementation.

Figure 7.20: Throughput results for “Serial vs Direct Call”; Nebula.

It is noteworthy that NVC (OMP)’s std::transform_reduce achieves significantly
higher speedup and lower runtimes compared to its GCC (TBB) counterpart. This
prompted us to examine the bandwidth of the parallel primitives, and it is apparent
that NVC (OMP) utilizes the bandwidth for large input sizes much more efficiently than
GCC (TBB).
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7.8.5 Discussion
We can see from the benchmarks above, that for some semantics the specific parallel
primitive performs and scales better than the custom implementation (for example in
Section 7.8.1). But this is not always the case, sometimes implementing the same logic
using different parallel primitives leads to significantly better performance. This is
especially true for NVC (OMP) where most of the time implementing the same semantics
with std::transform leads to a significant performance boost. From our analysis,
we assume this is related to the fact that NVC (OMP)’s std::transform utilized the
bandwidth better.

Hence, we neither can say the expectation, that employing specific parallel algorithms
tends to yield superior performance/strong scaling compared to utilizing custom imple-
mentations, holds or not, since it heavily depends on the backend and input type.

7.9 Custom Index-based Iterations
In this section, we present the results of the benchmarks we performed in order to test
various index-based iteration strategies presented in Section 5.8. During the analysis of
the data gathered from the benchmarks, we identified that all the results showed common
characteristics, hence we will not discuss all the results independently. Instead, we will
directly discuss the results in this section. The detailed plots of all the index strategies
can be seen in Appendix C. As a recap, the goal of these tests is to see whether specific
index-based iteration strategies are superior to others.

Figure 7.21: Runtime & speedup results for various index strategies; Nebula.

As depicted in Figure 7.21, the performance characteristics and strong scaling can vary
drastically depending on the index strategy employed. Surprisingly, the data-centric
approach, represented by the orange line in the graph, appears to be almost as efficient
as the fastest index-centric approaches, indicating that switching between strategies
does not yield a significant performance boost. Notably, creating an index array using
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std::iota has a substantial impact on performance. When comparing the strong
scaling plots of NVC (OMP) and GCC (TBB), we observe that GCC (TBB) achieves a
speedup over the sequential implementation early on and stabilizes at around 16 threads,
while NVC (OMP) takes longer to achieve speedup but does so at a consistent rate.

Furthermore, we noticed that using std::views::iota does not result in any speedup
for GCC (TBB), whereas it does for NVC (OMP). Upon further investigation, we found
that this is a common problem that most developers are not aware of. The views
implementation in C++ is not compatible with the requirements specified by the parallel
STL interface. As a result, depending on how the parallel STL implementation checks
if the provided iterator is allowed or not, either the parallel implementation is used or
not. In the case of GCC (TBB), the implementation strictly follows the standard, so the
implementation using std::views::iota does not use parallelization. NVC (OMP)
does not implement this type of check, hence parallelization is used. This issue has
already been highlighted in a proposal by David Olsen [59].

With all the insights presented above, we can say the expectations, that how the
index values are generated by the developer can significantly impact the application’s
performance and scalability, holds.

7.10 Scatter Mapping vs. Compact Mapping

Although the mapping strategy, as presented in Section 5.9, is a crucial characteristic to
test in a NUMA-aware system, we have determined that it does not make practical sense to
test given the current configuration of the environment. As previously mentioned, parallel
STL lacks any interface for controlling NUMA awareness, which lies solely in the hands
of the parallel STL backend developers. During the development of the benchmarking
suite, pSTL-Bench, we observed unusual results, as explained in Section 7.11.1. To
mitigate these anomalies, certain steps were taken, rendering the testing of this irrelevant.
Although thread pinning will affect the results, our benchmarking would not evaluate
parallel STL’s functionality but rather the effectiveness of the solution proposed in
Section 7.11.1. Nonetheless, we believe the expectation remains significant and have
retained it so that other benchmark suites following our proposed framework in Section 5
can incorporate it when using more appropriate NUMA solutions.

7.11 Crucial Factors for Performance

In this section, we discuss a set of crucial details we identified over the course of our
experimental evaluation, that are important to highlight. First, we reflect on all the
problems we experienced with the NUMA architecture on both Nebula and Hydra and
how we dealt with these problems. Secondly, this is followed by how we managed to
control the number of threads for both parallel STL backends. Finally, we will touch on
the problem of thread pinning.
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7.11.1 NUMA Aware Allocator
Both shared memory machines used for our experimental evaluation use NUMA. As we
can see in Section 7.1.1, Nebula has in total eight NUMA nodes and Hydra two NUMA
nodes. Furthermore, both systems run Linux, where the default memory allocation policy
is the first touch policy [60]. The first touch policy has the effect that memory is allocated
only when it is first touched [61]. On NUMA hardware, this implies that the allocation
happens on the memory bank near the core that performed the first touch [60, 61]. This
behavior can have a significant impact on performance when not considered while writing
high-performance code. For example, if one thread located at NUMA node 0 allocates
the memory and then another thread positioned at a different NUMA node wants to
access it, the access latency will be quite high.

The prototype of CORE assumed that NUMA awareness will be handled by default in
C++ when using parallel STL backends, but this is not the case. As one can see in
Figure 7.22, both parallel backends do not scale at all and barely achieve a speedup.

(a) Benchmark Copy Logic.

(b) Benchmark Scalar Transform Logic.

Figure 7.22: Non NUMA-aware results on Nebula.
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This made us suspicious, hence we took a step back to examine the implementation
details of std::vector. By default, the implementation of std::vector initializes
every element in the container. This means if no special allocator is provided to the
container, at creation time the main thread will first touch every element of the vector.
In NUMA systems, this implies that all the memory will be allocated at the memory
bank of the main thread.

Modern parallelization frameworks such as HPX [9], provide custom NUMA aware
allocators, but unfortunately, ISO C++ parallel STL does not provide such a feature
to our knowledge. Hence, we created our own simplified NUMA aware allocator using
HPX’s numa_allocator as a reference.

The goal of our NUMA allocator is to not rely on any other third party and only use
features provided by ISO C++ parallel STL. In Listing 7.1, our shortened custom NUMA
Allocator can be seen. The crucial part of this code snippet lies in Line 21, where the
execution policy defined earlier is used to touch the first byte of every element. This has
the effect that not every element is first touched by a single thread.

(a) Without custom NUMA Allocator (b) With custom NUMA Allocator

Figure 7.23: Comparing throughput results of allocator for “Copy Logic”; Nebula.

(a) Without custom NUMA Allocator (b) With custom NUMA Allocator

Figure 7.24: Comparing throughput results of allocator for “Scalar Transform Logic”;
Nebula.
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Listing 7.1: Implementation of the NUMA Allocator (shortened)
1 template<typename T, typename Policy>
2 class numa_allocator {
3 // ...
4
5 // memory allocation
6 pointer allocate(size_type cnt, void const * = nullptr) {
7 // allocate memory
8 auto p = static_cast<pointer>(::operator new(cnt * sizeof(T)));
9

10 // early exit when we use std::execution::seq
11 // because it would be waste of time to seq touch it
12 // this already happens by default since vector gets 0 initialized
13 if constexpr (IS_SEQ::value) {
14 return p;
15 }
16
17 pointer begin = p;
18 pointer end = begin + cnt;
19
20 // touch first byte of every object using the given strategy
21 std::for_each(execution_policy, begin, end, [](T &val) {
22 *reinterpret_cast<char *>(&val) = 0;
23 });
24
25 // return the overall memory block
26 return p;
27 }
28
29 // ...
30 };

Figures 7.23 and 7.24 demonstrate the significant impact of the new custom allocator. It
notably enhances the bandwidth utilized by parallel STL primitives, thereby leading to a
drastic improvement. For instance, the bandwidth of NVC (OMP) for 64 threads for the
benchmark Copy Logic increases by nearly a factor of 8. As a result of this substantial
enhancement, all benchmarks used for testing were executed with the custom NUMA
aware allocator.

7.11.2 Effects of Thread Pinning

Although the custom NUMA allocator we presented in Section 7.11.1 does improve the
performance of the benchmarks, there is still a problem that might not be obvious at
first. As we mentioned above, the custom NUMA allocator uses the execution policy
defined by the user. This means if the user selects to use parallelism the first touch will
be performed using the parallel STL primitive std:for_each. The ISO C++ parallel
STL lacks fine-grained control over which cores threads should be pinned to. As a result,
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if two parallel primitives are launched in sequence, the first primitive may run on a
different set of cores than the second. This can create a non-obvious problem when
the first primitive allocates memory, as the memory will be allocated on the memory
banks of the NUMA nodes those threads are running on, due to the first-touch policy. If
the second primitive runs on different threads, which may potentially be on a different
NUMA node, communication between the NUMA nodes will be required, resulting in
a performance hit. This issue is more likely to be problematic on systems with a high
number of NUMA nodes and is particularly noticeable when using a smaller number of
threads.

This effect can be seen in Figures 7.24 and 7.23, where the number of threads is increased
from one to two, although the bandwidth does not increase at all. These effects are more
noticeable in the results of Nebula but are also present in Hydra.

There is a quite straightforward solution to this problem and many of the frameworks
used in the parallel STL backends provide means to control this. The problem although
is that there is no ISO C++ interface for this, meaning users have to hope for the parallel
STL backend developer to use those options correctly behind the scenes or provide a
non-standardized option for users to control it.

For example, oneTBB the framework used in the parallel STL backend in GCC (TBB),
has in total three different ways of controlling this thread affinity:

1. affinity_partitioner: provides the scheduler with placement hints,

2. static_partitioner: manually defining where to place threads,

3. Using NUMA aware task arenas.

To our knowledge, none of these three options listed above is used by the parallel STL
backend of GCC (TBB). Furthermore, there are no options to control this externally. The
lack of this implementation or control option can be seen in Figures 7.25. By utilizing
hardware counters, we gathered data on the number of cycles executed by each core
during the benchmark. This information provided valuable insights into the activity
status of individual cores throughout the execution. It is crucial to acknowledge that the
displayed placement represents just one of the potential configurations. As one can see,
the placement of the threads for 4, 8, 16 and 32 threads is not optimal. The darker the
spot the more cycles were executed on this core.

Fortunately, since NVC (OMP) uses OpenMP as its parallelization framework, we have
the option to control its behavior with non-standard environment variables. As we can
see in Figure 7.26, the environment variables do have an effect on the placement leading
to minimal better performance.

Because we wanted to stay conform with the parallel STL interfaces and did not want to
use non-standardized interfaces as little as possible, we executed the benchmarks without
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Figure 7.25: One possible GCC(TBB) Default Thread Pinning for Scalar Transform
Logic on Nebula.

(a) No Thread Pinning (b) With Thread Pinning

Figure 7.26: NVC(OMP) Thread Pinning for Scalar Transform Logic on Nebula.

interfering with thread pinning at all. Furthermore, it is still important to highlight that
we still encounter major differences in strong scaling behavior between memory-bound
benchmarks on Hydra and Nebula which we, unfortunately, could not explain to ourselves.

7.11.3 Controlling Number of Threads

As already mentioned in Section 7.11.2, the ISO C++ interface of parallel STL does not
provide any means to control threading. Since a major part of our analysis is strong
scaling, we were forced to find a way to control the number of threads used. NVC (OMP)
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provides a non-standardized way of controlling the number of threads used by using the
environment variable OMP_NUM_THREADS. Unfortunately GCC (TBB) does not provide
such an environment variable, meaning we had to alter our code. Luckily, oneTBB
provides an interface tbb::global_control to control rudimentary configurations.

Not being able to control such rudimentary configuration options such as the maximum
number of threads is rather problematic and does limit the usability of ISO C++ parallel
STL a lot!
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CHAPTER 8
Performance Portability

In this chapter, we cover the topic of performance portability between the parallel backends
used during the experimental evaluation. Furthermore, we present how performance
portability using ISO C++ between different architectures can be achieved.

In Section 8.1, we present how we try to quantify performance portability between the
parallel backends. This is followed by Section 8.2 where we discuss how GPU offloading
can be done with standard ISO C++. Finally, we discuss performance portability in ISO
C++ with parallel STL in Section 8.3.

8.1 Quantifying Performance Portability
As already mentioned in Chapter 5, as a side product of testing all those expectations we
gather a lot of metrics that are useful to quantify performance portability between the
parallel STL backends NVC (OMP) and GCC (TBB). While creating concrete implemen-
tations to test our expectations, we focused on creating benchmarks that are tailored
to gather as much information as possible to later quantify performance portability.
Furthermore, we focused on writing as much ISO C++ code as possible without using
any third-party non-standardized parallelization framework interfaces. By writing C++
code as normally done, we can assure that our benchmarks were not tailored to a single
parallel STL backend.

While Pennycook et al.’s definition [4] is commendable, it is necessary for the purpose of
this thesis to differentiate between two distinct forms of performance portability. Hence,
we classify performance portability into the following two categories:

1. Inter-Backend Performance Portability: Quantifies performance portability of a
given application between parallel STL backends on the same architecture/platform
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(e.g., performance portability between a set of parallel STL Backends that target
the same shared memory machine);

2. Cross-Machine Performance Portability: Quantifies performance portability of a
given application across a wide range of architectures/platforms (e.g., performance
portability of a single backend that can target multiple GPU vendors).

In this thesis, we will only focus on Inter-Backend Performance Portability. Since at
the time of writing this thesis, there was only a single compiler-backend-pairing that
targeted Nvidia GPUs, we can only calculate Inter-Backend Performance Portability for
the two parallel backends that target shared memory machines (i.e., NVC (OMP) and
GCC (TBB)).

8.1.1 Metrics
As shown in Chapter 3, Pennycook et al. [4] contributed a significant method for quanti-
fying performance portability (Equation (3.1)). In this thesis, we use this exact method
to quantify performance portability between the two parallel backends, NVC (OMP) and
GCC (TBB), used in the experimental evaluation. Hence, it is only required to define the
metric ei(a, p).

In the literature, various metrics, such as speedup [1, 2, 24] or peak memory bandwidth
[23, 24], were used to quantify performance portability. This thesis uses three different
metrics presented below. It is important to highlight that our thesis followed a black
box testing approach, meaning we do not have in-depth knowledge of how the parallel
STL backends internally implement the parallel primitives logic. This black-box testing
approach had to be done since for the parallel STL backend NVC (OMP) the source code
was not available.

Since we are focusing on Inter-Backend Performance Portability, it is important to
highlight that for the following metrics, the set of platforms H consists only of the
parallel STL Backends NVC (OMP) and GCC (TBB), and not the machines Hydra and
Nebula. This means that for both Nebula and Hydra, we get independent performance
portability scores. Hence, when calculating the performance portability score for a specific
benchmark on a given machine X, the values, such as maximum speedup or minimum
recorded runtime, from the other machines are ignored. Getting independent results
allows us to cross-check whether our results are skewed or not. Important to note is
that when we talk about plattform in the context of this thesis, we always mean either
NVC (OMP) or GCC (TBB). A good way of thinking about the metrics is that there
only exists one machine (e.g., imagine that only Hydra exists and there is no Nebula,
and vice-versa).

Runtime (R) This metric evaluates the similarity between the runtime of the parallel
STL backend and the best-recorded runtime overall, using the largest input size (which
was also employed for strong scaling analysis) and without restricting the number of
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threads used by the backend. Hence, ei(a, p) = min_time(a)
ti(a,p) , where min_time(a) denotes

the minimum time across all the platforms for an application a, and ti(a, p) denotes the
fastest recorded time to solve problem p with application a on platform i.

Speedup (S) This metric measures the proximity between the maximum speedup
achieved using all available cores (and the biggest input size) and the highest speedup
achieved across all the backends on the machine we are quantifying on (i.e., either
Nebula or Hydra) with the same biggest input size. Hence, ei(a, p) = spi(a,p)

max_sp(a) , where
max_sp(a) denotes the maximum achieved speedup (using all available cores with the
biggest input size) across all the platforms for an application a and spi(a, p) denotes the
maximum speedup achieved to solve problem p with application a on platform i using all
available cores and the biggest input size.

Bytes processed per second (Bps) This metric evaluates the bandwidth achieved
by the parallel backend for the largest input size, which was also utilized for the strong
scaling analysis, without any restrictions on the number of threads, and compares it with
the highest recorded bandwidth across all the backends. Hence, ei(a, p) = bpsi(a,p)

max_bps(a) ,
where max_bps(a) denotes the highest recorded bandwidth across all platforms for an
application a, and bpsi(a, p) denotes the maximum bandwidth achieved to solve problem
p with application a on platform i.

Table 8.1 displays the metrics used by each benchmark, as well as the parallel primitives
utilized in the benchmark. As one can see the majority of benchmarks use the runtime
metric, whereas only a small selection uses Speedup and Bps. The reason behind this
is that the raw runtimes work well in a black-box approach. This metric is rather
straightforward to use and does not require in-depth knowledge of the parallel backends’
implementation. For a selection of benchmarks, we decided to use Bps. We selected this
metric because we had already gathered sufficient data for it during testing. In addition,
while testing, we observed significant variations in the values’ behavior across different
backends. For the remaining computation-bound benchmarks, we opted for Speedup
because we noticed that it was the most effective in capturing the varying strong scaling
behavior of the computation-bound benchmarks.

8.1.2 Example Calculation for “Homogeneous Linear”

To make it easier for the reader to follow how the performance portability scores were
calculated, we demonstrate the calculation for the benchmark “Homogeneous Linear” on
Nebula. As highlighted multiple times above we use Pennycook et al. [4] formula to
quantify performance portability (Equation (3.1)). As we can see in Table 8.1 we use
the metric Speedup for the benchmark “Homogeneous Linear”. For benchmarks using
the metrics Runtime (R) and Bytes processed per second (Bps) the calculation stays the
same, the only difference is how ei(a, p) will be calculated.
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Table 8.1: Benchmarks and metrics which were used to evaluate performance portability.

Metric Benchmark Parallel primitive

S

Homogeneous Linear std::for_each
Homogeneous Quadratic std::for_each
Homogeneous Exponential std::for_each
Mandelbrot Linear std::for_each
Mandelbrot Quadratic std::for_each

Bps

Merge Logic std::merge
Stable Sorting std::stable_sort
Set Union Logic std::set_union
Set Difference Logic std::set_difference

R

Find Elements std::find
Vector Partition std::partition
Unique Copy std::unique_copy
Min Max Elements std::minmax_element
Inclusive Scan std::inclusive_scan
Exclusive Scan std::exclusive_scan
Copy Logic std::copy, std::for_each
All_of Logic std::all_of, std::transform_reduce
Count_if Logic std::count_if, std::transform_reduce
Stencil transform Logic std::transform, std::for_each
Scalar transform Logic std::transform, std::for_each
Serial vs Direct call std::transform, std::reduce, std::transform_reduce
Data-Centric std::transform data centric
Index-Centric with iota std::transform with std::iota
Index-Centric with views::iota std::transform with std::views::iota
Index-Centric with Custom Iterator std::transform with custom iterator
Index-Centric with Boost std::transform with boost

The first step is to define the platforms for which we want to calculate the performance
portability PP(a, p, H). On Nebula we have two platforms NVC (OMP) and GCC (TBB),
implying H = {NV C, GCC} and |H| = 2.

The next step is to calculate ei(a, p) for each i ∈ H (i.e., envc(a, p) and egcc(a, p)).
For this we follow the definition of the metric Speedup (S) defined in Section 8.1.1:

envc(a, p) = spnvc(a, p)
max_sp(a) (8.1) , and egcc(a, p) = spgcc(a, p)

max_sp(a) . (8.2)

The values spnvc(a, p) and spgcc(a, p) can be read from Figure 7.1. As a reminder, spi(a, p)
is the speedup achieved on platform i using all cores for the biggest input size, thus

spnvc(a, p) = 61.98 (8.3) , and spgcc(a, p) = 29.88 . (8.4)

Using the values of spnvc(a, p) and spgcc(a, p), one can calculate the value of max_sp(a)
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the following:
max_sp(a) = max(spnvc(a, p), spgcc(a, p))

= max(61.98, 29.88)
= 61.98 .

(8.5)

The next step is to insert the values from Equations (8.5) and (8.3) into Equation (8.1)
(respectively Equation (8.4) for Equation (8.2)), resulting in

envc(a, p) = 61.98
61.98 = 1 (8.6) , and egcc(a, p) = 29.88

61.98 . (8.7)

The final step is to use the values envc(a, p) and egcc(a, p) to calculate the performance
portability score PP:

PP(a, p, H) = |H|
i∈H

1
ei(a,p)

= 2
1

envc(a,p) + 1
egcc(a,p)

= 2
1
1 + 1

29.88
61.98

= 0.65055519 ≈ 65% .

(8.8)

The performance portability score for the benchmark “Homogeneous Linear” on the
machine Nebula is 65%. The same value can be seen in Figure 8.1.

8.1.3 Results
In Figures 8.1, 8.2, and 8.3, we can see the results of calculating the performance
portability metrics for the benchmarks.

The findings from our experiments, as described in Sections 7.2 and 7.3, have been further
substantiated by the results presented in Figure 8.1. Specifically, we observed that simple
homogeneous workloads scale well on both parallel backends, while the scaling of complex
homogeneous workloads and heterogeneous workloads depends on the parallel backend.

Figure 8.2 illustrates that performance portability is heavily dependent on how effectively
the parallel backends utilize the underlying parallel architecture for memory-bound
operations. The observations visible in the figure align with the metrics presented in
Section 7.5.

The observations we described in the experimental evaluation in Chapter 7 are also
reflected in Figure 8.3. For instance, the low-performance portability score for Inclu-
sive Scan can be attributed to the fact that std::inclusive_scan does not use
parallelization in NVC (OMP). The same holds for Vector Partition.
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It is important to highlight that for some benchmarks, such as B4_2_decrement_sorted,
the performance portability is on one machine rather high and on another machine it is
significantly lower. We tried to investigate this problem and we believe that it is closely
linked to a scenario where one group of threads initially accesses the data, while another
group of threads subsequently processes it. The significance of this problem becomes
more pronounced with an increase in the number of NUMA nodes. We emphasized the
importance of this problem in Section 7.11.2. Unfortunately, we cannot provide a fully
satisfying explanation of why this problem occurs.

Figure 8.1: Performance Portability results for Speedup metric.

Figure 8.2: Performance Portability results for Bsp metric.
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Figure 8.3: Performance Portability results for Runtime metric.

8.2 GPU Offloading
One major advantage of ISO C++ parallel STL is that developers can write standard
C++ code and decide at compile time on which accelerator to execute. For instance, this
allows developers to write familiar C++ code and run it on GPUs. One such parallel
STL backend that does support GPU offloading is Nvidias stdpar. In the related work
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Chapter 3, we already highlighted that stdpar was used in the research community to
achieve performance portability for GPUs. In this section, we present the challenges we
faced during GPUS offloading and try to simply model for a selection of benchmarks
when it makes sense to offload to GPUs.

8.2.1 Challenges
During the modelling stage, it was discovered that working with the ISO C++ parallel
STL and the parallel backend stdpar presents numerous challenges that significantly
impact the way developers can use stdpar. In this section, we highlight some of the
challenges we encountered.

Nested Parallelism As of writing this thesis, stdpar, does not support nested par-
allelism. This means rather complex parallelism techniques such as those used in the
Mandelbrot benchmarks are not possible to implement. Although there are ways to
somehow bypass this restriction by manually unfolding nested parallelism calls into a
single parallel primitive, this is not a silver bullet. This restriction means that switching
from GCC (TBB) to stdpar is more than just changing the compile time configuration.

Unified Memory Stdpar relies on CUDA Unified Memory [25]. Furthermore, the
memory between the CPU and GPU is automatically managed by the environment,
meaning data is moved depending on usage. But there is a catch, only memory that
is allocated on the heap is managed, meaning any allocation happening on the GPU
or CPU stack is not accessible and vice versa. Since ISO C++ parallel STL does not
provide an interface to control memory management this means there is also no way to
manually resolve any problems related to memory management. At first, this might not
sound like a major problem, but this implies that everything has to be allocated on the
heap. When writing C++ code, a developer normally tries to allocate as little as possible
in the heap because this is rather expensive. Furthermore, a developer using stdpar has
to keep the architectural constraints in mind before switching parallel STL backends.
Meaning that switching parallel STL backends (e.g., from GCC (TBB) to stdpar) might
imply rewriting significant parts of the program. This defeats the point of parallel STL.

Iterators Although the C++ parallel STL only requires providing forwards iterator
(i.e., only the increment has to be implemented), stdpar does require random access
iterators. Not complying with this requirement leads to compile time errors. This stricter
requirement again may require developers to rewrite or adapt their existing code when
switching from a different parallel STL backend to stdpar. This again defeats the point
of parallel STL.

GPU vs CPU code Since stdpar allows code to be executed on GPUs the internals of
the parallel STL Backend have to distinguish between CPU and GPU Code. Although
from a developer’s perspective, all the code looks the same, the code that will be executed
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on the GPU will be compiled into the target GPUs machine code. This means that at
creation time developers have to be fully aware of which function and code sections will
be executed on which target platform. Olsen et al. [25], advise using function objects or
lambdas in parallel primitive, such that a clear separation is also visible in the code.

8.2.2 Modeling
In this section, we try to model when it would be beneficial to offload to GPUs using
the parallel STL backend stdpar. In the benchmark suite pSTL-Bench we can find a
wide variety of benchmarks, and it would not be feasible to model for every benchmark
independently when to offload or whether it makes sense. As already highlighted in
Section 8.2.1 many of the benchmarks within our suite cannot be offloaded because of
various previously mentioned constraints. For modeling, in total four different benchmarks
were selected which will be analyzed and discussed:

• Mandelbrot Linear : computes the Mandelbrot value for a single row of pixels;

• Merge Logic: merges two already sorted containers into a single result container;

• Inclusive Scan: computes the inclusive scan; and

• Specific Copy Primitive: copies every element of on container to another.

This collection of benchmarks includes both computation-bound and memory-bound
workloads. Furthermore, our understanding is that these benchmarks are well-suited for
GPUs from a theoretical standpoint, and are also common workloads that one might
expect to use in parallel STL. It is important to note that these benchmarks are not
indicative of typical GPU workloads, and are solely included to determine when it is
beneficial to switch to stdpar and to evaluate the process of offloading to GPUs.

Below, we present figures that utilize CPU time. This is the minimum runtime achieved
by both backends (NVC (OMP) and GCC (TBB)) on both Nebula and Hydra machines.
This approach ensures that we use the best possible time within the environment we are
working with.

Mandelbrot Linear

In Figure 8.4 we can see two plots. The plot on the left, shows the absolute runtimes of
the Tesla T4 GPU using stdpar and the best achieved runtime on a CPU (either Hydra or
Nebula). The right plot shows the speedup of the Tesla T4 GPU over the best achieved
runtime on a CPU. The red dotted line indicates the point where speedup is achieved
over the CPU (i.e., values above the line indicate there is a speedup and values below
the line indicate there is no speedup).

As one can see in Figure 8.4, GPU offloading is already feasible for small input sizes. For
this specific benchmark, at 4096 integers (representing 4096 pixels) the runtime of the
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Figure 8.4: GPU Offloading comparison for Mandelbrot Linear.

GPU outperforms the best-recorded CPU time. Especially for larger input sizes, the
speedup is rather significant and seems to flatten at around 70x over the best possible
CPU runtimes. This kind of heterogeneous workload seems to scale fairly well on the
GPU, hence similar workloads seem to be reasonable to offload at already small input
sizes.

Merge Logic

Figure 8.5: GPU Offloading comparison for Merge Logic

As presented in Figure 8.5, the performance of the GPU for smaller input sizes is rather
bad. To our knowledge, this is because stdpar does copy both input vectors that should
be merged from the CPU to the GPU. Only later at around 131072 integers per vector,
the amount of work to merge the two containers surpasses the amount of work to copy
the data around. Although the speedup is not as significant as the one we saw before for
the previous benchmark. The GPU does indeed provide a speedup for larger input sizes.
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Inclusive Scan

Figure 8.6: GPU Offloading comparison for Inclusive Scan.

In Figure 8.6, we can see the same trend as we saw in Merge Logic. For smaller input
sizes the amount of work to copy the data around dominates the runtime. Only at larger
input sizes, where the computation on the GPU dominates, offloading does strive.

Specific Copy Primitive

Figure 8.7: GPU Offloading comparison for Specific Copy Primitive.

The impact of the expensive operation of transferring data back and forth between the
CPU and GPU is shown in Figure 8.7. It might be tempting to assume that offloading
a basic parallel primitive, such as std::copy, could lead to a significant performance
boost, but this is not the case. In reality, the amount of work required to copy the input
and output data outweighs the workload executed by the GPU, making the offloading
infeasible for the std::copy primitive.

As we can see from all the results presented above it is not possible to model when it is
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feasible to offload to GPUs using stdpar. Although the offloading for some benchmarks
proves to be of tremendous advantage, this cannot be said in general. As of now, stdpar
has a major bottleneck when it comes to copying data around. This has to be considered
when working with stdpar. For workloads that only need to share a small portion of data
between the GPU and CPUs, offloading is advisable. As soon as the parallel primitive
used requires copying a large amount of data, offloading becomes rather expensive.

8.3 Discussion
Although the idea of the parallel STL interface is rather appealing to C++ developers
there are still a lot of things that need to be sorted out to be competitive with third-
party libraries such as Kokkos. Although some of our benchmarks did indeed result
in high-performance portability, there are still some primitives that diverge massively.
This discrepancy in the performance when switching parallel STL backends for the same
platform is rather disturbing. One might expect that the performance between parallel
backends targeting the same platform is almost the same only with minor details, but
this is not the case. The expectation of true performance portability that is not reflected
in reality, may trick C++ developers into switching from already established performance
portability frameworks to ISO C++ parallel STL and experience major setbacks.

From a sole code writing experience, ISO C++ parallel STL is fantastic. The parallel
STL interface is a rather simple interface that does indeed allow developers to work
with parallel hardware rather easily. The large collection of parallel primitives makes
it easy for developers to write performant code, but this large collection can be also
rather daunting. Using the wrong parallel primitive can have a major impact on the
performance and scaling behavior of the program. For high-performance applications
where one wants to tweak every little detail to get the most out of the hardware, the
C++ parallel STL interface is not the right choice.

Although one might expect that switching paradigms or hardware accelerators when
using parallel STL is rather straightforward as promised, this is not the case as we saw
when using GPUs with stdpar. Although the parallel STL interface stays the same, a lot
of “hidden” changes are required. Those hidden changes impact the concept performance
portability a lot. The sole purpose of performance portability is to write code abstracted
away from paradigms and concepts and achieve the best possible performance. This
although is not the case with ISO C++ parallel STL for non CPU accelerators. When
using GPUs (with the stdpar parallel backend) one often has to rewrite the code. This
defeats the whole purpose of using ISO C++ parallel STL. Another burden when using
GPUs as a target is that developers are also required to write code with the mindset of
using a GPU, meaning one is nudged into writing GPU-aware code. This has the effect
that when switching platform or paradigm the code may be poorly performing or not
working at all.

Although there is a clearly defined interface for the parallel STL, the parallel backends
that implement this interface can do whatever they want as long as they follow the
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constraints given by the interface. This is desired, since it allows the parallel backends
to optimize and apply tricks to achieve the highest possible performance. Despite the
freedom, there is a caveat. Developers who write their code using a single parallel STL
backend may be inclined to optimize their code specifically for that backend. While
this may seem reasonable at first, it becomes problematic when switching to a different
backend, as each backend may employ different optimization techniques of which the
developer may be unaware, leading to poor performance. Therefore, instead of writing
performance-portable code with parallel STL, developers end up writing code that is
optimized for a specific backend, sacrificing the potential for performance portability.
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CHAPTER 9
Conclusion

Although ISO C++ parallel STL is a rather new addition to the ISO C++ standard,
the research community has already started to look into it. Furthermore, there are
already parallel STL backends that allow developers to offload C++ code to different
parallel hardware, such as Shared-Memory Multiprocessors and GPUs. One of the main
objectives of ISO C++ parallel STL is that it aims to provide performance portability.
Although performance portability is not something new, some frameworks and languages
support it, the research community is still rather active. To answer our research questions
and provide a final verdict on performance portability with ISO C++ parallel STL, we
crafted a set of expectations to test. For every expectation we provided an in-depth
explanation of why it is important to test and what benchmarks will be involved. The
proposed expectations are rather abstract and not implementation-specific, allowing third
parties to use those to develop their own benchmark suite. We implemented our own
benchmark suite pSTL-Bench using them. Our concrete benchmark implementations
to test those expectations cover a wide variety of parallel STL primitives. The main
objective of our benchmark suite is to be as parallel backend agnostic as possible. This
allowed us to be as flexible as possible, with what backends we want to include in our
experiments. We provided an in-depth explanation behind the reasoning that went into
the development of the benchmark suite. The development of the benchmark suite was
an iterative approach, since during the experimental evaluation we constantly identified
new challenges and problems with the parallel STL, such as NUMA awareness or the
effects of thread pinning.

Our experimental evaluation was done on two parallel machines Hydra and Nebula, and
the two parallel STL backends GCC (TBB) and NVC (OMP) were used. The experimental
evaluation allowed us to not only gain an in-depth insight into the parallel backends
but also provided us with a basis for quantifying performance portability and crafting
the best practices we identified while working with the two parallel STL backends. Our
experimental evaluation focused on two different parallel STL backends, which are GCC
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with oneTBB and Nvidia with OpenMP. Both of those backends target Shared-Memory
Multiprocessors.

9.1 Best Practices
Over the course of testing the expectations, we gather a lot of knowledge of the two
parallel STL Backends GCC (TBB) and NVC (OMP). Using these insights, we can come
up with best practices when working with the C++ parallel STL (especially for the
two backends). Of course, it is of utter importance to note that in a high-performance
computing setting, there is no one size fits all solution and one should always benchmark
various approaches and solutions before committing to one. Hence, we will present in
this section a set of best practices we identified while working with C++ parallel STL in
our specific environment.

Nested Parallelism Implementing nested parallelism correctly can be a challenging
task, and it is important to analyze whether the work within the nested parallelism
remains consistent or varies. This critical characteristic can have a significant impact on
the selection of the appropriate parallel backend to utilize.

Premature Optimizing Parallel primitives are known to optimize their code, which is
why it is advisable to check the source code of your parallel STL backend for pre-existing
optimizations targeting specific edge cases before implementing your own. If accessing
the code for the backend is not possible, benchmarking is a reliable alternative to verify
whether optimizations for particular edge cases are already present.

“Missing Implementations” Despite the C++ parallel STL interface offering a com-
prehensive selection of parallel primitives, it’s important to note that not all parallel STL
backends provide feature completeness. Although non-implemented “parallel" primitives
may offer minimal and insignificant speed-ups, they can deceive users into believing
that parallelization is being employed. Therefore, when in doubt, it is recommended
to benchmark the number of threads that are being utilized to confirm the extent of
parallelization.

Identify high performing primitives Through our data analysis, we have determined
that on our hardware, NVC (OMP) exhibits exceptional performance when paired with the
parallel primitive std::transform. This knowledge can be leveraged in a production
environment to attain the last bit of additional performance. As discussed in Section 5.7,
the logic behind many parallel primitives can be replicated with other primitives. Armed
with the understanding that a particular parallel primitive excels in performance, one
can utilize this information to develop a faster implementation with std::transform.
However, it should be noted that there are still scenarios where a more specific parallel
primitive may perform better. Thus, benchmarking remains crucial.
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Stick to data centric The C++ parallel STL adopts a data-centric approach, although
it is possible to follow an index-centric approach, it can be risky due to certain pitfalls
that may not be immediately apparent. Our thesis highlights one such pitfall, namely
that not all parallel STL backends are fully compliant with the C++ standard. This
means that while certain features may perform well on one backend, they may not scale
effectively on others.

9.2 Performance Portability with ISO C++ Parallel STL
To quantify performance portability we first proposed a set of metrics. Since we had
to work in a black-box testing approach, our set of metrics where rather simple, but
still effective. The results of quantifying performance portability reflected our results of
the experimental evaluation. For example, for some parallel primitives, the performance
portability is rather low because only one of the parallel STL backends provides a parallel
implementation. During our experimental evaluation and while quantifying performance
portability, we observed that the results obtained on one parallel machine did not always
match those obtained on a different parallel machine. We attempted to investigate
this issue, but unfortunately, we have not yet found a satisfactory answer. Further
investigation is needed in future work to resolve this discrepancy.

In addition, we examined the feasibility of offloading parallel STL primitives to GPUs
using stdpar and attempted to determine when it would make sense to do so. Our
analysis revealed that there is no general model for offloading to GPUs, as each parallel
primitive has unique characteristics. However, we did discover that due to the way stdpar
is implemented, parallel primitives that require a lot of data copying between the GPU
and CPU are not well-suited for GPU offloading, as the copy process is quite expensive.

In conclusion, we have examined the concept of performance portability with ISO C++
parallel STL. While the idea of performance portability is present, there is still a long
way to go. C++ parallel STL is still in its early stages of development and has significant
potential. In future versions of C++, the interface of parallel STL must be extended
to give developers greater control over finer details. Additionally, it should be possible
to have index-centric kernels such that developers do not have to implement their own
potentially badly performing workarounds.

Currently, there are limited options for parallel STL backends, with most only offering
offloading to multicore systems. To our knowledge, only one backend supports GPU
offloading. In future work, it would be interesting to explore the inclusion of additional
accelerators and propose new parallel STL backends that support them. Since our
evaluation only covered two parallel STL backends for CPUs and one for GPU, future
work should also consider including more parallel STL backends, such as Windows MSVC.
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APPENDIX A
Machine Info

Hydra

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 32
On-line CPU(s) list: 0-31
Thread(s) per core: 1
Core(s) per socket: 16
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 6130F CPU @ 2.10GHz
Stepping: 4
CPU MHz: 1661.964
CPU max MHz: 2100.0000
CPU min MHz: 1000.0000
BogoMIPS: 4200.00
L1d cache: 1 MiB
L1i cache: 1 MiB
L2 cache: 32 MiB
L3 cache: 44 MiB
NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30
NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31
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Nebula
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 43 bits physical, 48 bits virtual
CPU(s): 64
On-line CPU(s) list: 0-63
Thread(s) per core: 1
Core(s) per socket: 32
Socket(s): 2
NUMA node(s): 8
Vendor ID: AuthenticAMD
CPU family: 23
Model: 1
Model name: AMD EPYC 7551 32-Core Processor
Stepping: 2
CPU MHz: 2406.833
CPU max MHz: 2000.0000
CPU min MHz: 1200.0000
BogoMIPS: 3992.24
Virtualization: AMD-V
L1d cache: 32K
L1i cache: 64K
L2 cache: 512K
L3 cache: 8192K
NUMA node0 CPU(s): 0,8,16,24,32,40,48,56
NUMA node1 CPU(s): 2,10,18,26,34,42,50,58
NUMA node2 CPU(s): 4,12,20,28,36,44,52,60
NUMA node3 CPU(s): 6,14,22,30,38,46,54,62
NUMA node4 CPU(s): 1,9,17,25,33,41,49,57
NUMA node5 CPU(s): 3,11,19,27,35,43,51,59
NUMA node6 CPU(s): 5,13,21,29,37,45,53,61
NUMA node7 CPU(s): 7,15,23,31,39,47,55,63
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B. Code Snippet

Listing B.1: Example Data Collector configuration file.
1 {
2 "output_dir": "./output",
3 "benchmark_repetitions": 10,
4 "cmake_location": "/CORE/",
5 "build_artifacts_dir": "./build-artifacts",
6 "binary_target": "master_benchmarks",
7 "batch_file_location": "./job_files",
8 "sbatch": {
9 "partition": "q_thesis",

10 "time": "15:00"
11 },
12 "compiler": [
13 {
14 "name": "GCC_TBB",
15 "CXX_COMPILER": "g++",
16 "CXX_FLAGS": "-ltbb",
17 "build_location": "cmake-build-gcc",
18 "description": "Benchmarks with gcc and tbb"
19 },
20 {
21 "name": "NVHPC_Multicore",
22 "CXX_COMPILER": "nvc++",
23 "CXX_FLAGS": "-stdpar=multicore",
24 "build_location": "cmake-build-nvc_multicore",
25 "description": "Benchmarks with nvc++ with multicore"
26 }
27 ],
28 "benchmarks": [
29 {
30 "name": "b1_1_for_each_linear_par_67108864_T1",
31 "description": "Sample description 1",
32 "type": "THREADS",
33 "params": {
34 "threads": 1
35 },
36 "regex_filter": "b1_1_for_each_linear_par/67108864"
37 },
38 {
39 "name": "b1_1_for_each_linear_mandelbrot_seq__Default",
40 "description": "Sample description 1",
41 "type": "DEFAULT",
42 "regex_filter": "b1_1_for_each_linear_mandelbrot_seq/"
43 }
44 ]
45 }
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APPENDIX C
Nebula plots

Heterogeneous Nest Parallelism

Mandelbrot Quadratic

Figure C.1: Runtime & speedup results for “Mandelbrot Quadratic”; Nebula.
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C. Nebula plots

Figure C.2: MIPS for “Mandelbrot Quadratic”; Nebula.

Sequential Fallback

Stable Sorting

Figure C.3: Efficiency results for “Stable Sorting”; Nebula.
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Set Union Logic

Figure C.4: Runtime results for “Set Union Logic”; Nebula.

Figure C.5: Strong Scaling results for “Set Union Logic”; Nebula.

Figure C.6: Efficiency results for “Set Union Logic”; Nebula.
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C. Nebula plots

Figure C.7: Throughput results for “Set Union Logic”; Nebula.

Set Difference Logic

Figure C.8: Runtime results for “Set Difference Logic”; Nebula.
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Figure C.9: Strong Scaling results for “Set Difference Logic”; Nebula.

Figure C.10: Efficiency results for “Set Difference Logic”; Nebula.
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C. Nebula plots

Figure C.11: Throughput results for “Set Difference Logic”; Nebula.

Specialized Parallelism Techniques

Unique Copy

Figure C.12: Runtime & speedup results for “Unique Copy”; Nebula.
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Min Max Elements

Figure C.13: Runtime & speedup results for “Min Max Elements” all elements equal;
Nebula.

Figure C.14: Runtime & speedup results for “Min Max Elements” increasing elements;
Nebula.
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C. Nebula plots

Tailored Optimization for Parallel Scans

Exclusive Scan

Figure C.15: Runtime & speedup results for “Exclusive Scan”; Nebula.

Specific vs. Custom Implementation

Count_if Logic

Figure C.16: Runtime & speedup results for “Count_if Logic” all hit; Nebula.
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Figure C.17: Runtime & speedup results for “Count_if Logic” half hit; Nebula.

Figure C.18: Runtime & speedup results for “Count_if Logic” using structs; Nebula.
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C. Nebula plots

(a) All hit (b) Half hit

(c) Structs

Figure C.19: Throughput results for “Count_if Logic”; Nebula.

Scalar Transform Logic

Figure C.20: Runtime & speedup results for “Scalar Transform Logic”; Nebula.
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Figure C.21: Throughput results for “Scalar Transform Logic”; Nebula.

Custom Index-based Iterations

Figure C.22: Runtime & speedup results for “Data-Centric”; Nebula.

Figure C.23: Runtime & speedup results for “Index-Centric with iota”; Nebula.
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C. Nebula plots

Figure C.24: Runtime & speedup results for “Index-Centric with views::iota”; Nebula.

Figure C.25: Runtime & speedup results for “Index-Centric with Custom Iterator”;
Nebula.

Figure C.26: Runtime & speedup results for “Index-Centric with Boost”; Nebula.

116



APPENDIX D
Hydra Plots

Homogeneous Nested Parallelism

Homogeneous Linear

Figure D.1: Runtime & speedup results for “Homogeneous Linear”; Hydra.
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D. Hydra Plots

Homogeneous Quadratic

Figure D.2: Runtime & speedup results for “Homogeneous Quadratic”; Hydra.

Homogeneous Exponential

Figure D.3: Runtime & speedup results for “Homogeneous Exponential”; Hydra.
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Order of Parallelism

Homogeneous Quadratic

Figure D.4: Runtime & speedup results for Homogeneous Quadratic execution order;
Hydra.

Heterogeneous Nest Parallelism

Mandelbrot Linear

Figure D.5: Runtime & speedup results for “Mandelbrot Linear”; Hydra.
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D. Hydra Plots

Figure D.6: MIPS for benchmark “Mandelbrot Linear”; Hydra.

Mandelbrot Quadratic

Figure D.7: Runtime & speedup results for “Mandelbrot Quadratic”; Hydra.

Figure D.8: MIPS for “Mandelbrot Quadratic”; Hydra.
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Sequential Fallback

Merge Logic

(a) Runtime, Strong Scaling and Efficiency

(b) MBytes/s

Figure D.9: Runtime, speedup & throughput results for “Merge Logic”; Hydra.
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D. Hydra Plots

Stable Sorting

(a) Runtime.

(b) Strong Scaling.

(c) MBytes/s.

(d) Efficiency.

Figure D.10: Runtime, speedup & throughput results for “Stable Sorting”; Hydra.122



Set Union Logic

Figure D.11: Runtime results for “Set Union Logic”; Hydra.

Figure D.12: Strong Scaling results for “Set Union Logic”; Hydra.

Figure D.13: Efficiency results for “Set Union Logic”; Hydra.
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D. Hydra Plots

Figure D.14: Throughput results for “Set Union Logic”; Hydra.

Set Difference Logic

Figure D.15: Runtime results for “Set Difference Logic”; Hydra.
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Figure D.16: Strong Scaling results for “Set Difference Logic”; Hydra.

Figure D.17: Efficiency results for “Set Difference Logic”; Hydra.
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D. Hydra Plots

Figure D.18: Throughput results for “Set Difference Logic”; Hydra.
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Specialized Parallelism Techniques

Find Elements

(a) Find first entry

(b) Find last entry

(c) Find non existing entry

Figure D.19: Runtime & speedup results for “Find Elements”; Hydra.

127



D. Hydra Plots

Vector Partition

Figure D.20: Runtime & speedup results for “Vector Partition”; Hydra.

Unique Copy

Figure D.21: Runtime & speedup results for “Unique Copy”; Hydra.
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Min Max Elements

Figure D.22: Runtime & speedup results for “Min Max Elements” all elements equal;
Hydra.

Figure D.23: Runtime & speedup results for “Min Max Elements” increasing elements;
Hydra.
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D. Hydra Plots

Tailored Optimization for Parallel Scans

Inclusive Scan

Figure D.24: Runtime & speedup results for “Inclusive Scan”; Hydra.

Exclusive Scan

Figure D.25: Runtime & speedup results for “Exclusive Scan”; Hydra.
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Specific vs. Custom Implementation

Copy Logic

Figure D.26: Runtime & speedup results for “Copy Logic”; Hydra.

Figure D.27: Throughput results for “Copy Logic”; Hydra.
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D. Hydra Plots

All_of Logic

(a) All elements true

(b) First element false

(c) All elements false

Figure D.28: Runtime & speedup results for “All_of Logic”; Hydra.
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(a) All elements true (b) First elements false

(c) All elements false

Figure D.29: Throughput results for “All_of Logic”; Hydra.

Stencil Logic

Figure D.30: Runtime & speedup results for “Stencil Logic”; Hydra.
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D. Hydra Plots

Figure D.31: Throughput results for “Stencil Logic”; Hydra.

Serial vs Direct Call

Figure D.32: Runtime & speedup results for “Serial vs Direct Call”; Hydra.

Figure D.33: Throughput results for “Serial vs Direct Call”; Hydra.
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Count_if Logic

Figure D.34: Runtime & speedup results for “Count_if Logic” all hit; Hydra.

Figure D.35: Runtime & speedup results for “Count_if Logic” half hit; Hydra.

Figure D.36: Runtime & speedup results for “Count_if Logic” using structs; Hydra.
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D. Hydra Plots

(a) All hit. (b) Half hit.

(c) Structs.

Figure D.37: Throughput results for “Count_if Logic”; Hydra.

Scalar Transform Logic

Figure D.38: Runtime & speedup results for “Scalar Transform Logic”; Hydra.
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Figure D.39: Throughput results for “Scalar Transform Logic”; Hydra.

Custom Index-based Iterations

Figure D.40: Runtime & speedup results for various index strategies; Hydra.

Figure D.41: Runtime & speedup results for “Data-Centric”; Hydra.
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D. Hydra Plots

Figure D.42: Runtime & speedup results for “Index-Centric with iota”; Hydra.

Figure D.43: Runtime & speedup results for “Index-Centric with views::iota”; Hydra.

Figure D.44: Runtime & speedup results for “Index-Centric with Custom Iterator”;
Hydra.
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Figure D.45: Runtime & speedup results for “Index-Centric with Boost”; Hydra.
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APPENDIX E
Usage of ChatGPT

While writing this thesis we used the tool ChatGPT to edit and improve the quality
of our existing text. According to the “Frequently asked questions” of ACM [62] “it
is not necessary to disclose such usage of these tools in your Work”. Since we want
to be as transparent as possible and do not have the intention to deceive others, we
explicitly demonstrate how we used ChatGPT. In [63], one can see how we used the
prompt “Please write this better” followed by our own existing text to enhance the quality.
Since sometimes the results given by ChatGPT where not satisfactory, it was required to
rewrite the responses or mix and match the results from different prompts. The main
objective of using ChatGPT was to enhance the quality of the thesis, such that the
complex construct can be delivered in easy understandable English.
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