
Projectverse: A web-based Virtual
Reality Platform for Visualizing

Research Projects

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Visual Computing

eingereicht von

Tom Lautenbach, BSc.
Matrikelnummer 12044805

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.nat. Dr.techn. Hannes Kaufmann
Mitwirkung: Dr.in. techn. Iana Podkosova, BSc. MSc.

Wien, 1. Dezember 2023
Tom Lautenbach Hannes Kaufmann

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Projectverse: A web-based
Virtual Reality Platform for

Visualizing Research Projects

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Visual Computing

by

Tom Lautenbach, BSc.
Registration Number 12044805

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Mag.rer.nat. Dr.techn. Hannes Kaufmann
Assistance: Dr.in. techn. Iana Podkosova, BSc. MSc.

Vienna, 1st December, 2023
Tom Lautenbach Hannes Kaufmann

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Tom Lautenbach, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Dezember 2023
Tom Lautenbach

v

Danksagung

Ich möchte meinen aufrichtigen Dank an alle aussprechen, die mich während des Entste-
hungsprozesses dieser Arbeit und auf dem Weg zu meinem Masterabschluss unterstützt
haben. Insbesondere schätze ich die fortwährende Hilfe und Unterstützung meiner Familie
und Freunde. Mein besonderer Dank gilt meiner Freundin, die mich stets ermutigt hat und
fest an meine Arbeit glaubt. Ohne meine herausragende Betreuerin, Iana Podkosova, wäre
diese Arbeit nicht annähernd so qualitätsvoll geworden. Sie hat nicht nur bei Projekten
während meines Studiums, sondern auch speziell bei dieser Masterarbeit stets das Beste
aus mir herausgeholt. Ihre regelmäßige Nachfrage nach meinen Fortschritten und ihre
Ermutigungen, mich nur mit dem Besten zufrieden zu geben haben maßgeblich zu meinem
Erfolg beigetragen. Abschließend möchte ich meine Dankbarkeit für die Möglichkeit,
Projectverse auf der Website der VR-Gruppe zu präsentieren, zum Ausdruck bringen.

vii

Acknowledgements

Thank you to all those supporting me in the creation and writing of this thesis and
achieving my master’s degree. I am especially thankful for the continuous help and
support provided by my family and friends. I am also grateful for my girlfriends
persistent encouragement and belief in my work and her providing comfort in the hard
times. Furthermore, this work would not have been half as good without my wonderful
supervisor, Iana Podkosova, who in projects as part of my studies as well as this master
thesis always brought out the best in me by regularly checking on my progress, encouraging
me to go the extra mile and not settling for any shortcuts. Lastly, I am grateful for the
opportunity to run Projectverse on the VR group website.

ix

Kurzfassung

Diese Arbeit befasst sich mit dem Entwurf, der Implementierung und der Evaluierung von
Projectverse, einer webbasierten Virtual Reality (VR)-Plattform. Projectverse wurde mit
der Absicht geschaffen, ein besseres Informationsmedium über die Arbeit der VR Group
der TU Wien anzubieten. Projectverse bietet eine Multi-User-Umgebung, in der die
Forschungsprojekte der VR Group als Sterne in Sternenkonstellationen am Nachthimmel
visualisiert werden. Die BenutzerInnen können mit diesen interagieren, indem sie sie
mit einer Laserpistole abschießen. Wurde auf einen Stern geschossen, so werden dem
Benutzer weitere Informationen über das Projekt, das dieser Stern repräsentiert, angezeigt.
Schließlich können die NutzerInnen in Projectverse in prototypische Anwendungen von
Forschungsprojekten wechseln und diese ausprobieren.

Projectverse nutzt die WebXR Device API für die Kommunikation mit VR-Geräten.
Die Plattform wurde in der Unity-Spiele-Engine entwickelt, daher wurde außerdem das
Unity WebXR-Plugin verwendet, mit dem WebXR-Daten in Unity nutzbar gemacht
werden. Außerdem wird der WebXR-Exporter, ein weiteres Unity-Plugin, verwendet,
um einen Software-Build zu erstellen, der in Webbrowsern ausgeführt werden kann.
Multiuser-Sitzungen und Netzwerkfunktionen wurden mit Photon PUN 2 und Photon
Voice 2 implementiert. Diese Frameworks wurden gewählt, da Photon einer der größten
Anbieter von Netzwerklösungen für Unity ist.

Projectverse erweiterbar in dem Sinne, dass Forscher ihre eigenen Forschungsanwendungen
an die Anforderungen der Plattform - vor allem an die Browsertauglichkeit - anpassen
und sie anschließend auf die Plattform hochladen können. Solche Erweiterungen der auf
Projectverse verfügbaren Projekte werden dadurch berücksichtigt, dass die Plattform
automatisch eine neue Visualisierung generiert, sobald sich die Projekte ändern.

Um die Anpassung von Projektanwendungen an die Anforderungen von Projectverse zu
vereinfachen und zu beschleunigen, wird ein Entwickler-Toolkit für Unity bereitgestellt.
Das Toolkit enthält grundlegende VR-Funktionen wie Grabbing, Fortbewegung und
UI-Interaktion sowie Prefabs, die für die Verwendung von VR-Geräten mit WebXR
notwendig sind.

Die Auswertung einer User Study zu Projectverse zeigt, dass die Plattform zwar nicht
unbedingt dazu beiträgt, dass man sich an spezifische Forschungsprojekte wie Forscherna-
men oder Forschungsbereiche einzelner Projekte besser erinnert, aber eine ansprechende,

xi

motivierende und unterhaltsame Ergänzung der Website der VR-Gruppe für diejenigen
darstellt, die sich über die Arbeit der Gruppe informieren wollen.

Abstract

This thesis addresses the design, implementation and evaluation of Projectverse, a web-
based Virtual Reality (VR) platform created with the intent to provide a better medium
for those who wish to inform themselves about the work of the TU Wien VR group.
Projectverse offers a multi-user environment in which research projects of the VR group
are visualized as stars in star constellations on a night sky. Users can interact with these
by shooting them using a laser gun. Upon shooting a star, further information about the
project it represents is shown to the user. Finally, users can transition into prototype
applications of research projects and gain first-hand experience with these applications
in Projectverse.

Projectverse makes use of the WebXR Device API for communicating with VR devices.
The platform was developed in the Unity game engine, therefore we also used the Unity
WebXR plugin, which allows us to use WebXR data in Unity. Furthermore, we use
WebXR exporter, another Unity plugin, to build Projectverse in a state that allows
it to be executed in web browsers. Multiuser sessions and networking features were
implemented using Photon PUN 2 and Photon Voice 2. We chose these frameworks due
to Photon being one of the largest providers of networking solutions for Unity.

Projectverse is extensible in the sense that researchers can adapt their own research
applications to the platform’s demands - most importantly: browser-readiness - and
subsequently deploy them to it. Such extensions to the projects available on Projectverse
are included by the platform automatically generating a new visualization once the
projects change.

To simplify and accelerate the adaptation of project applications to the demands of
Projectverse, we provide a developer toolkit for Unity that includes fundamental VR
functionality such as grabbing, locomotion and UI interaction as well as prefabs crucial
to using VR devices with WebXR.

Our evaluation shows that Projectverse provides an engaging, motivating and fun addition
to the VR group website to those who wish to gain a deeper impression of the research
conducted by the VR group.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 2
1.2 Aim of the Work . 2
1.3 Structure of the Thesis . 4

2 Related Work 5
2.1 Technology for web-based VR . 5
2.2 Related Resesarch . 10
2.3 Summary . 16

3 Design 17
3.1 Requirements . 17
3.2 Overview . 18
3.3 Projectverse . 20
3.4 Developer Toolkit . 34

4 Software Implementation 37
4.1 Projectverse Implementation . 37
4.2 Deployment to the Web Server and adding new Projects 59
4.3 Developer Toolkit . 60

5 Evaluation 67
5.1 Methodology . 67
5.2 Results . 72
5.3 Discussion . 80

6 Conclusion 83
6.1 Conclusion . 83

xv

6.2 Future Extensions . 84

List of Figures 85

List of Tables 87

List of Algorithms 89

Bibliography 91

Appendix 93
Appendix A . 94

CHAPTER 1
Introduction

With Virtual Reality (VR) devices becoming more affordable, and thus, more accessible
to the general audience, VR has become a novel method of presenting information
traditionally conveyed in the two dimensions of a screen. With VR devices, we can
create immersive experiences in virtual worlds. Interactions with these environments can
be made using the mouse and keyboard, classic gamepads, or specialized, tracked VR
controllers. Hand-tracking is a new approach to interacting that does not require any
devices to be used with the hands. To introduce the user into the virtual environment,
normally we make use of a head-mounted display (HMD). These devices present rendered
images from the 3D environment and either track their own position in space (inside-out
tracking) or are tracked using e.g. base stations (outside-in tracking).
VR is used largely in entertainment and gaming, as games profit from stronger immersion.
Furthermore, VR is used in non-gaming applications which include information platforms
and exergames: Exergames are video games that require human body movements for
interaction [14]. Information platforms, on the other hand, benefit from immersion and
presence by providing longer-lasting experiences that induce better memory of the content
conveyed. Finally, producing industries [4] as well as the health sector, make use of VR,
e.g. for the purpose of rehabilitation programs [7]. A lot of research is available on VR
and its applications. However, this research is published in papers, which are presented
online or in journals. Getting an actual impression of the applications created for the
purpose of research is difficult, whereas VR is a highly perception-focused medium -
descriptive reports and papers are hard to understand unless the readers can actually
experience the applications created themselves.
In this thesis, we present a novel approach for using VR in a web browser to provide
an information platform that allows the general public to gain first-hand experience
in applications that were developed in the course of research projects of the TU Wien
Virtual Reality Group. We develop the platform alongside a process aimed at adapting
and deploying research project applications to this platform. In addition, we develop a

1

1. Introduction

toolkit that simplifies this adaptation process. Finally, we evaluate our platform and
compare it to the traditional website that the VR group offers to provide information on
its work.

1.1 Motivation
Browser-based VR is an emerging field that promises an easier use of VR applications
as well as a broader audience to the topic, since even modern smart phones are capable
of providing a virtual reality experience with the help of e.g. cardboard “VR adapters”.
This trend offers the possibility of creating websites with immersive VR and AR content.
It resolves the requirement for installation before using an application and hereby lowers
entry barriers blocking access to this immersion.

The research of the Virtual Reality Group at TU Wien, which is conducted in all fields
of the extended reality (XR) spectrum, results in research prototype applications that
require a form of immersion. Many of these applications are developed using Unity
game engine, with the outcomes usually being standalone software packages. The target
display devices of most of these applications are VR systems such as Oculus Quest and
Rift, products from the HTC Vive family, or Valve Index. Interested parties such as
the general population, research personnel or students currently have no simple way of
accessing these applications, since there is no provision of software in any way, neither
web-based nor standalone.

Therefore, we need a platform that provides a space to manage, provide, deploy, and
experience the software originating from the VR Group’s research projects. Low barriers
of entry are a key requirement towards this platform, as is the demand for ease-of-
use in terms of deploying new applications to it as well as managing which of the
deployed applications should actually be accessible. As a result, the platform must
automatically recognize the software deployed to it and forward this information to the
user. Furthermore, the platform’s user interface toward the end user needs to mitigate
potential user errors in exploring applications, contributing to a seamless user experience.

In addition, the platform should provide a social space to those exploring the research
projects deployed to it, in which the users can communicate with each other and exchange
about the projects. It should also provide information on each application deployed to
the platform such as who participated in the project the application showcases, and what
this project is about. This social space will therefore serve as the entry point to the
platform and provide access to all research project software deployed to it.

1.2 Aim of the Work
This work aims to present research work in the field of Virtual Reality, produced by the
TU Wien Virtual Reality Group. The presentation of this work should be web based,

2

1.2. Aim of the Work

i.e. within the web browser. We identify three core functionalities this presentation of
research work needs to provide:

Presenting VR research prototypes in an engaging way. The presentation of VR research
prototypes demands for ease of use of the platform. This principle requires simple
visual metaphors and simplistic design. While experienced users might be part of the
application’s audience, we must assume users with little to no VR experience, since the
platform is intended to be hosted on the internet. The platform therefore must offer
either guidance for unexperienced users, or be constructed in a way that leaves very
little room for error. This includes the use of self-explanatory tools for interacting with
the platform. Visualizations should provide all information needed to understand the
contents of a research project.

Adaptation of applications to be deployed to the platform. To allow for a simple adaptation
of applications to our platform, we propose a toolkit that simplifies this process. This
toolkit should cover or at least simplify the basic steps to enable rendering to a VR
headset, and building a project in such a way that it can be deployed to the web browser,
and furthermore, the aforementioned platform. Additionally, the toolkit should provide
basic VR interactions such as locomotion, rotating the player character in the scene (i.e.,
looking around), grabbing and releasing objects, and performing simple user interface
interactions, e.g. clicking a button.

Flexible deployment of applications to the platform. This functionality demands easy
access and ease-of-use in interaction with the platform’s administration side. In order to
achieve a simple, streamlined process in application deployment to the platform, it needs
to automatically recognize new applications being deployed to it as well as automatically
extend itself as new software is deployed to it, in order to avoid as many manual steps as
possible. Thus, the platform should also automatically include newly added projects in
its presentation to the user.

Resulting from the demands of these three functionalities, as well as the requirements
discussed in Chapter 1, we propose the development of two main components in the
course of this thesis, namely:

1. A website landscape, the main page of which should serve as the social space and
entry point to the platform’s applications. The subpages of the main page, on the
other hand, should serve the research project applications deployed to the platform.

2. A developer toolkit, which enables researchers to adapt their applications to
the platform’s environment with as few manual steps as possible. This includes
functionality as provided by Unity’s XR Interaction Toolkit, as well as premade
structures in the sense of prefabs, that allow for quick adaption of premade scenes
to the web environment.

3

1. Introduction

1.3 Structure of the Thesis
Chapter 2 gives an overview of technologies available for web-based VR as well as research
related to this thesis. We discuss WebGL, A-Frame, and WebXR in combination with
the Unity game engine. In related research, we cover applications like exergames and
learning platforms that make use of web-based VR.

In Chapter 3, we establish the requirements of our platform, and how we plan to achieve
them. An outline of the design of our platform is drawn, including its components and
their interactions with each other.

Chapter 4 discusses how we implement our design. We explain how the lobby, star
visualizations and jumping into projects work. Finally, we explain the implementation of
our developer toolkit.

The evaluation of our platform is discussed in Chapter 5. We explain our methodology
as well the design of our evaluation and finally discuss the results.

4

CHAPTER 2
Related Work

This chapter provides an overview of the state of the art in technologies that allow web
browsers to execute VR experiences. Furthermore, we give a survey of current research
and applications that make use of these technologies. We first explain the technology used
in this thesis, as well as alternatives to it, then we provide an overview of applications
accessible online and research papers. Technologies explained include WebGL, A-Frame,
and the WebXR Device API in combination with Unity and the WebXR Integration
plugin. Research papers on applications utilizing WebXR are not too numerous, yet we
attempt to provide a good overview of the research landscape.

2.1 Technology for web-based VR
A range of tools and frameworks are available for bringing VR applications to the web
and executing them within the browser. An overview of how the presented technologies
interact in the toolstack is given in Figure 2.1. While the WebGL graphics API handles
communicating with the GPU to render images, the WebXR Device API is used to retrieve
tracking and input signals from VR devices when they are used in web applications. To
use these signals in Unity, the WebXR Unity Plugin is required, whereas A-Frame can
directly process information from WebXR. Finally, the game engine is responsible for the
gameplay logic, and eventually, sending draw calls to the graphics API.

5

2. Related Work

Figure 2.1: Technologies used for web-based VR.

2.1.1 WebGL
One of the lowest-level approaches to rendering 3D scenes in web browsers is WebGL,
a 3D graphics API developed by the KHRONOS group 1, based on OpenGL ES. The
technology extends the HTML5 canvas element and allows programming at the shader
level. Srivastava [16] points out frameworks that simplify WebGL development, namely:

• Three.js, a JavaScript library used to create 3D content. Low in complexity and
lightweight, Three.js is commonly used in web-based graphics programming.

• Scene.js, too, is based on JavaScript, but, in contrast to Three.js, focuses on high
performance when rendering a large number of objects. It therefore is especially
useful in the engineering and data visualization fields.

1https://www.khronos.org/api/webgl

6

;--~ , '
/ 1
1 1
1 1
1 1

:Game Engine

1

'

,
I
1
1

:Hardware
1

:communication

A-Frame Unity

'" --- - - ________ j ~------------) --- ~ "----------

Draw Calls WebXR Unity Plugin

A

---- , , --------------------------- ----------
r '

WebGL Graphics API WebXR Device API

-- '

1
1
1

1
1
1
1

1

.__ - r - t ----------_,,
Rendered Images Tracking Positions/

Rotations+ Inputs

VR HMD + Controllers

https://www.khronos.org/api/webgl

2.1. Technology for web-based VR

• GLGE wraps WebGL’s low-level instructions into more useful instructions and
also intends to simplify 3D development.

WebGL is widely supported by most web browsers, since Apple, Google, Microsoft, and
Mozilla are all members of the WebGL Working Group that develops the API2.

One of the newest additions to web-based graphics APIs is WebGPU. Currently in the
experimental state, the API supersedes WebGL, and allows for better compatibility with
modern GPUs, as well as “general-purpose GPU computations, faster operations and
access to more advanced GPU features”[9]. It is developed by the W3C group 3. However,
there are no notable approaches to implementing VR applications using the WebGPU
software yet; thus, the community around this topic is still very small.

2.1.2 A-Frame
A-Frame4 is a framework that allows the creation of VR applications. Based on HTML,
A-Frame presents an approach in which developers can implement applications purely
within an HTML file. An example for a very simple A-Frame scene can be observed in
listing 2.1.

1 <html>
2 <head>
3 <script src="https://aframe.io/releases/1.4.0/aframe.min.js

"></script>
4 </head>
5 <body>
6 <a-scene>
7 <a-box position="-1 0.5 -3" rotation="0 45 0" color="#4

CC3D9"></a-box>
8 <a-sphere position="0 1.25 -5" radius="1.25" color="#

EF2D5E"></a-sphere>
9 <a-cylinder position="1 0.75 -3" radius="0.5" height="1.5

" color="#FFC65D"></a-cylinder>
10 <a-plane position="0 0 -4" rotation="-90 0 0" width="4"

height="4" color="#7BC8A4"></a-plane>
11 <a-sky color="#ECECEC"></a-sky>
12 </a-scene>
13 </body>
14 </html>

Listing 2.1: A-Frame example.

2https://www.khronos.org/webgl/
3https://www.w3.org/community/gpu/
4https://aframe.io/

7

https://www.khronos.org/webgl/
https://www.w3.org/community/gpu/
https://aframe.io/

2. Related Work

This example produces the scene shown in Figure 2.2. This scene is already VR-enabled
and interactable in 2D, i.e. the camera can be rotated using the mouse.

Figure 2.2: A-Frame example scene.

A-Frame, like WebGL, is compatible with most modern browsers. The developers
specifically name Chrome, Microsoft Edge, and Opera to be supported.

2.1.3 WebXR Device API
Enabling developers to easily create simple scenes, A-Frame, however, requires more work
when creating complex environments and application logic. Especially the handling of
XR devices needs to be covered by either custom developments or the use of the WebXR
device API, the most frequently used technology for bringing VR to the web browser.
Being developed by the W3C group5, WebXR is a device API that provides methods
to receive input data from VR and AR devices such as pose (position and rotation)
information from a headset and controllers. The API also handles output to the respective
devices in the form of rendering to the devices’ displays. A wide range of frameworks are
supported, such as the aforementioned A-Frame, Needle Engine 6, or Unity 7. However,
the rendering part of an application using WebXR can also be developed in WebGL, thus
also enabling lower-level approaches. Major benefits developers gain from working with
WebXR include simplified access to tracking device positions, a standardized interface
between application logic and the XR hardware, as well as the aforementioned wide
variety of frameworks compatible with WebXR. In addition, WebXR’s standard is widely
implemented in web browsers. A (shortened) compatibility matrix can be observed in
Table 2.1. WebXR is the successor to WebVR8.

5https://immersiveweb.dev/
6https://needle.tools/
7https://unity.com/
8https://webvr.info/

8

https://immersiveweb.dev/
https://needle.tools/
https://unity.com/
https://webvr.info/

2.1. Technology for web-based VR

Feature
Name

Chrome Safari on
VisionOS

Samsung
Internet

Meta
Quest
Browser

Microsoft
Edge

Core Chrome 79 Behind a
feature flag

Samsung In-
ternet 12.0

7.0, Decem-
ber 2019

Edge 87 on
Windows
Desktop,
Edge 91 on
Hololens 2

AR Module Chrome for
Android, 81

Samsung In-
ternet 12.1

24.0, Octo-
ber 2022

Edge 91,
Hololens 2
only

Gamepads
Module

Chrome 79 Samsung In-
ternet 12.0

7.1, Decem-
ber 2019

Edge 87 on
Windows
Desktop,
Edge 91 on
Hololens 2

Hand Input Behind a
feature flag

15.1, April
2021

Edge 93,
Hololens 2
only

Table 2.1: Compatibility matrix for WebXR.

2.1.4 Unity and WebXR Integration Plugin
High-level approaches to developing web-based VR applications include the use of game
engines. Major benefits from using such technologies are ease-of-use and thus accelerated
development, a development environment that is fitted to the requirements of interactive
applications, and the render pipeline being abstracted away from the developer.

Unity9 is a popular choice in the field of developing VR applications. To use it for
web-based VR, Unity can be set up to produce a WebGL software build, which can be
exported to already include and make use of the WebXR device API. For this, the Unity
WebXR Export Package 10 can be used. Initially developed by Mozilla, the package is
now maintained by GitHub user “De-Panther”, and provides templates for the Unity
build process that already include the WebXR code required to query available XR
devices as well as start, maintain, and stop a WebXR session. WebXR sessions generally
cover the input and output from and to XR devices. These templates are written in
HTML, JavaScript and CSS. Additionally, the WebXR Export Package contains samples
as well as an interactions package, in which the use of the C# abstraction of the natively
JavaScript WebXR API is showcased. This abstraction allows developers to make use of
WebXR functions in Unity’s native programming language, C#.

9https://unity.com/
10https://github.com/De-Panther/unity-webxr-export

9

https://unity.com/
https://github.com/De-Panther/unity-webxr-export

2. Related Work

Since the majority of research prototype applications we want to provide in our platform
were developed in Unity, we choose this engine for the platform, together with the WebXR
Integration plugin. Although A-Frame would allow for a simpler structuring of scenes, it
cannot be done in a visual editor, but just in the form of code. Furthermore, scenes with
higher complexity are easier to implement in Unity.

2.2 Related Resesarch
Research works using WebXR, or web-based VR in general, are not too numerous. In
general, the approach is relatively new, with the current trend of making VR hardware
accessible to the general audience being fairly new as well. The oldest work on web-based
VR we could find dates from 1998 [5]. However, this technique has been worked on
more with the recent VR trend, with older works being very rare. Traditionally, VR
applications are developed in such a way that they require installation and local execution,
whereas with web-based VR, the aim is to deliver an experience that can be executed in
the web browser, without the need for installation. While being beneficial in terms of
accessibility, this approach however has its own drawbacks such as limitations on the
complexity of 3D models in terms of polygon counts and renderable materials. Standalone
and desktop VR have been developed to a higher level in these fields.

Learning casting in VR. Sun et al. [17] propose the use of WebGL in their Web3D
system ”VR-Casting“, a software solution that aims to educate users about the metal
casting industry. The authors present a system that builds upon a HTML5 canvas, onto
which the WebGL API renders images. An overview of the proposed architecture can be
observed in Figure 2.3.

Figure 2.3: Architecture as proposed by Sun et al. [17].

Key technologies used by Sun et al. include “accessing to system software through the
internet” while visiting the web site resulting from the “VR-Casting” software, and
WebGL as the chosen Web3D technology for rendering 3D scenes in the web browser.

10

Application Layer

Web Browser
-l HTML5 Canvas 1 Javascri pt H WebGLAP~ WebGL Context OpenGL ES API

Graphics Hardware Operating System
'

GPU - Graphics Driver

2.2. Related Resesarch

The authors choose the web browser environment, and with it a client-server architecture,
to make use of a centralized software core and advantages such as easier maintenance
and deployment.

To help with a high amount of high-resolution models, “VR-Casting” employs the level-
of-detail approach to limit the bandwidth use of the application and the rendering
performance required.

Sun et al. achieve the stereoscopic rendering required for immersive VR by using anaglyph
3D as well as the polarization method. Both these effects are supported by the ThreeJS
JavaScript library and used by the authors. Additionally, they offer screen 2D on mobile
and desktop devices. However, head or hand tracking is not provided by the application.
Instead, tapping and swiping gestures are used on mobile devices with touch screens.

Concluding their work, Sun et al. remark on the accessibility of their application, realized
through a web-based implementation. Furthermore, they point out the upgradeability
and maintainability, lightweight, cross-platform and portable properties of “VR-Casting”,
facilitated by its architecture.

Cognitive Training in VR. Chessa et al. [3] present an exergame approach for “training of
cognitive capabilities in elderly population”. Benzing and Schmidt [1] define exergames
as “digital games that require bodily movements to play, stimulating an active gaming
experience to function as a form of physical activity”, that is, applications that unify
gaming and exercise. The exergame by Chessa et al. is in light of the COVID-19
pandemic, which made applications necessary that “can be used remotely at the users’
homes”. Their key assessments are as follows:

1. “[T]he digital autonomy of a group of volunteers who tested the web-based exergame,
and”

2. “the potentiality of Unity WebGL build to create non-immersive Virtual Reality
environments.”

Chessa et al. propose a virtual supermarket environment in which users should take the
necessary steps to buy items. Users are presented with a shopping list which they need
to find in three shelves. Clicking on the correct item adds it to the shopping basket. In
the final step, users have “to pay the total due amount, by choosing the right banknotes
and coins”.

Importantly, this research project builds upon the Unity 3D game engine, using a WebGL
build. However, the authors do not further specify to what extent VR technologies are
used. Most likely, the application runs in screen 2D.

In their pilot study, Chessa et al. conclude that about 20% of the participants “encountered
problems, which did not allow them to complete the task”. They partially found this
in the chosen platform, WebGL not fully supporting mobile devices at the time. The
authors do not specify the devices the participants used in the experiment. Chessa et al.

11

2. Related Work

further remark that the Unity WebGL build allowed for an easy distribution to the user
and good upgradeability. In some cases, technical problems were observed, mostly due to
display resolution settings or old web browser versions. Finally, the graphics quality of
the WebGL build was assessed with the result that especially the quality of textures was
poor, possibly caused by WebGL’s rendering limits.

VR for students’ mental health. The WebXR device API is often used in web-based
VR projects, both commercially and in research. Hossain et al. [6] use WebXR in an
application aimed at aiding students’ well-being in an attempt to avoid anxiety. This
project is again in light of the COVID-19 pandemic. The authors seek to develop a
system that offers a self-assessment of anxiety symptoms and then provides support “in
a personalized and emotionally engaging manner”. In their experiments, Hossain et al.
compare three approaches, namely a conventional web site, “a VR immersive environment
with a single virtual human playing the role of a student life advisor; and an immersive
environment with more than one virtual humans interacting with the user aiming to
study which system engages and assist vulnerable students more effectively”. Their three
prototypes are developed as follows:

1. The conventional web site extends the university web page by a questionnaire.
2D video showing “a student life advisor taking students through the questionnaire”
accompanies this questionnaire.

2. The simple virtual environment uses WebXR and is built in Unity. The user
here enters their name and student ID. Then, a dialogue with the “virtual life
advisor” begins, in which the self-assessment questionnaire is used. Based on the
results, the participant is either provided with information and help offered by
the university, or “asks permission from the user to be contacted by the student
counselling team”, and, if granted, sends the participant’s details to that institution.

3. The multiple virtual humans environment, too, uses WebXR and is built
in Unity as well. However, upon entering the experience, participants receive
an explanation of the activity from an NPC. The participant can then freely go
and meet another NPC, the “virtual life advisor”, with whom they process the
questionnaire in a dialogue, again. After this process, two more life advisors are
introduced, “[t]he first virtual life advisor offers information about the university’s
services, while the other gives further knowledge about anxiety.”.

Since the study is a work in progress, there are no results included in the paper yet.

Educating about pit mining in VR. Pomykakala et al. [10] present another approach
that uses WebXR: They identify the pit mining industry as a field that could benefit
from training in a virtual environment, rather than on site. Therefore, they propose an
educational application that aims to inform users about the processes that contribute to
open-pit mining. The authors begin with a 3D-annotated 360 degree video that shows
“the complete transport cycle in the mining plant realized by rigid haul truck”. The

12

2.2. Related Resesarch

“characteristic points of the cycle”, e.g. maneuvering and loading of the truck, are shown
to the user and pointed out by the use of text annotations (see Figure 2.4).

Figure 2.4: Excerpts from videos used by Pomykakala et al. [10].

The Unity game engine is then used to build a terrain model based on geodata of a
pit mine and to implement an immersive experience that offers “first-person interactive
mockup view and 1:1 scale first-person navigation through the map”, as well as quizes
and “360 orbs” in which the user can watch the aforementioned documentative videos as
well as 360 degree imagery. These orbs are placed at the respective positions within the
pit mine terrain their contents correspond to.

The WebXR interface the authors use for their application is “WebXR JavaScript API

13

2. Related Work

integration to Unity WebGL”, as well as WebXR Export11 and WebXR Interactions12.
Since some functionalities are not included in this toolstack by default, Pomykakala et al.
also use GyroscopeAccelerometerWebGL 13, Video Player WebGL 14, and ScreenOrienta-
tionWebGL 15.

The authors conclude that the use of WebXR, allows for a “wide variety of end-users
devices” as well as an easy to use application and a responsive application design,
that adapts to client devices seamlessly. Especially in terms of graphics quality and
performance, automatic adjustments lead to a wide variety of possible end-user devices.
In addition, they point out that due to the use of WebXR, the application automatically
adapts to 3 DOF tracking of smartphones and 6 DOF tracking of VR headsets.

Overview of web-based VR applications. A general overview of the state of the art in the
field of immersive web experiences is presented by Sathe et al. [13]. According to the
authors, VR is “among one of the hottest topics in Computer Science”, yet “still in its
infancy”. Sathe et al. describe the life cycle of a web-based VR application utilizing the
WebVR API (WebXR’s predecessor) as follows:

1. “Request for VR Device”
Initially, a VR web page should request available VR hardware. On desktop devices,
this includes VR headsets, whereas with mobile devices, the device itself, paired
with additional equipment (e.g. cardboard VR), is the VR hardware.

2. “Detecting VR mode”
If VR-capable devices are detected, the user should be presented with a button that
toggles the VR mode. After enabling VR mode, the application needs to “check
whether the device can create a session or not”, that is, all sensors work and the
device is in functional state.

3. “Beginning VR session”
A VR session is then started. This session manages both the input and output to
the display of the VR device. It also provides information received from the device,
such as position and orientation.

4. “Listening to VR instruction”
This step includes providing tracking information, as well as matching the applica-
tion’s frame rate with that of the VR device.

11https://github.com/De-Panther/unity-webxr-export
12https://openupm.com/packages/com.de-panther.webxr-interactions/
13https://assetstore.unity.com/packages/tools/integration/

gyroscopeaccelerometerwebgl-176394
14https://assetstore.unity.com/packages/tools/video/video-player-webgl-192420
15https://assetstore.unity.com/packages/tools/camera/screenorientationwebgl-180981

14

https://github.com/De-Panther/unity-webxr-export
https://openupm.com/packages/com.de-panther.webxr-interactions/
https://assetstore.unity.com/packages/tools/integration/gyroscopeaccelerometerwebgl-176394
https://assetstore.unity.com/packages/tools/integration/gyroscopeaccelerometerwebgl-176394
https://assetstore.unity.com/packages/tools/video/video-player-webgl-192420
https://assetstore.unity.com/packages/tools/camera/screenorientationwebgl-180981

2.2. Related Resesarch

5. “End VR session”
Should the user terminate the application, the VR session also has to end.

Sathe et al. also propose a possible architecture and user-interaction model for an
immersive VR web site. For this, they use the example of a web shop, called “SHOP360”.
Such a web site should at least contain the following elements:

1. “Introduction page”
A standard, 2D web page should serve as the entry point to such an immersive
experience. It should provide information and guidelines to the user on how to use
the included VR mode. Users should be able to select whether they want to browse
items in VR or standard 2D.

2. “Entering in Virtual Reality mode”
The process of entering VR mode, according to Sathe et al., should start with the -
in this case - mobile device being inserted into a head mounted display contraption.
After this, the user should be presented with a selection of items. The user interface
here consists of ‘next’ and ‘previous’ buttons that allow switching pages to show
more items in the shop.

3. “Cursor”
Interaction with the virtual environment should be made possible by the use of a
cursor in the shape of a small ring (see Figure 2.5. All actions in the environment,
i.e. “pointing, hovering and clicking”, should be performed “using this cursor”.
The cursor follows the headset’s orientation, i.e. it is always in the center of the
user’s field of view. Moving it over an object is considered hovering, whereas the
application registers “[a] long, steady look over the object” as a click.

4. “Interaction with Objects”
Items in the web shop are represented by 3D objects, and each item “has a title above
it, which specifies” its name in 3D text. Hovering an item using the aforementioned
mechanic leads to it rotating, whereas each item is also accompanied by ‘Description’
and ‘Add to cart’ buttons that serve the respective functionalities and can be clicked.

5. “Description of product”
The aforementioned ‘Description’ buttons leads users to an item’s description page.
This information is in the form of text and non-interactable.

Sathe et al. conclude that VR “is one of the most up and coming research areas in the
field of Computer Science”. They assume VR web sites to “revolutionize how interactive
we user space can be”. In addition, the authors plan the creation of templates, “much
like those created by Squarespace”, in the form of a Software as a Service model.

15

2. Related Work

Figure 2.5: Proposed user interaction cursor by Sathe et al. [13].

2.3 Summary
All works presented in the previous section share the use of the WebXR or WebVR
Device APIs, or directly rendering using WebGL, to implement VR in the web browser.
The authors justify their decision for choosing web-based VR over standalone or desktop
VR by a number of reasons:

• Platform independence: Sun et al. [17] find platform independence and smart-
phone compatibility to be important factors when developing an educational plat-
form.

• Accessibility: Both Chessa et al. [3] and Hossain et al. [6] argue that, by using
a web-based approach, applications become more accessible. This was especially
important during lockdowns due to the COVID pandemic, which required remote
access to applications developed in these authors’ works.

• Democratization: Pomykakala et al. [10] reason their choice of the web environ-
ment by a democratization of the access and distribution of applications developed
in this manner.

• Simplification: Finally, multiple works argue that, using a web-based approach,
the process of accessing applications becomes simplified and unified, rather than
requiring installation and configuration.

All applications discussed in Section 2.2 have their use-cases in similar domains, namely
education, training or support. While web-based VR has its drawbacks, e.g. restrictions
on model sizes and polygon counts, and the absence of ready tools for developing common
techniques for selection, navigation and manipulation, this approach provides many
attributes beneficial to our platform. The related research reassures us in our choice of a
web-based approach. We aim to address and counteract some of the issues of web-based
VR specifically in this thesis.

16

CHAPTER 3
Design

In this chapter, we explain the main components of the application we want to create in
our goal to provide the general public access to demo prototypes created as part of research
projects by the TU Wien VR group. For this, we first establish a list of requirements
that our web-based VR platform should fulfill. Then, we discuss the means of fulfilling
these requirements in the components of the application. In summary, we propose
an automatically-expanding, web-based VR platform, which we named Projectverse,
that hosts demo VR applications brought forward by research projects. Accompanying
this platform, we propose the creation of a developer toolkit aimed at simplifying the
adaptation of applications to the demands of Projectverse.

3.1 Requirements
Our objective is to create an application landscape that explains, showcases and provides
information about research projects of the TU Wien VR Group. We choose to develop
Projectverse in the form of a website, allowing the general public easy access to the
information we provide. To achieve our goal of an easy to use and extend web platform,
Projectverse has to fulfill the following requirements:

Provide better information about the TU Wien VR Group (R1): The current
means of providing information about past and present research projects is in the form
of a 2D website. On this website, one cannot get a full impression of immersive projects,
since the website itself is not an immersive medium, as most of the project prototype
applications are developed in the XR domain, i.e., aimed at VR/AR devices. Projectverse
should improve the way users can access information about research projects.

Provide easy access to information (R2): The current website satisfies the require-
ment of being available to a wide range of users. Projectverse should therefore stick to
the principle of information being publicly available on the internet. It should provide

17

3. Design

a starting point from which users can then decide to learn about research projects and
transition into the applications that demonstrate them.

Provide access to research project demo applications (R3): Projectverse should
allow users to experience the results of the VR group’s research work first hand. This
means providing applications to the user that are executed in the medium that they were
developed for - VR.

Keep maintenance efforts at a minimum (R4): This requirement mainly focuses on
the work required to deploy applications to Projectverse, rather than keeping Projectverse
running itself. The introduction of new demo applications to Projectverse should require
as few steps as possible, such that it can be populated with little effort, serving as a
motivator to researchers to deploy their work on it. As a result of this requirement,
Projectverse must automatically extend itself as new applications are introduced.

Visualize deployed applications in a proper way (R5): The underlying data of
research projects includes text data in the form of project descriptions, team members
working on a research project, and a categorization of projects, for example “XR” or
“VR”, together forming a network or graph. This data needs to be presented to the user
in a way that supports information-gathering as well as being visually attractive. The
presentation should also follow general data visualization principles.

Provide assistance to developers wanting to adapt their applications to Pro-
jectverse (R6): Since we choose a web-based approach, not all projects will inherently
be executable and deployable to Projectverse in their initial state. For example, older
applications, that were created without a web-based approach in mind might be built
as standalone, executable, applications. Therefore, we aim to provide developers with a
toolkit that makes it easy to adapt existing applications to the requirements of Project-
verse.

Allow users to interact with each other and exchange about Projectverse as
well as projects deployed to it (R7): We aim to create a social experience in which
users find themselves in a lobby environment, the Projectverse VR environment, which
they can use to talk to each other and discuss the VR group’s work. This includes the
implementation of multi-player and voice chat.

3.2 Overview
Projectverse Projectverse consists of two main components: The first component is
the Projectverse VR environment, which unites multiple components itself. This includes
an automatically expanding lobby environment (the Projectverse VR environment), the
multiplayer functionality with voice chat and the functionality behind it that provides
the user interface with information about research projects. In addition, Projectverse
provides means of selecting, and receiving information about research projects, as well as
transitioning into the applications resulting from them. We present an overview of our
architecture in Figure 3.1: The web server hosts the VR group website together with

18

3.2. Overview

Projectverse deployed to it, as well as the JSON file, which specifies the structuring of
applications deployed to Projectverse. The front-end, once loaded from the web server, is
executed in the browser, and first reads the JSON file and retrieves information about
research projects from the website. Next, we calculate the visualization of these projects
in the Projectverse VR environment and allow interaction with it. If a user decides to
transition into a research project application, it is loaded from the server and presented to
the user. Project prototype applications are managed on the server in a folder structure,
where each application is in a subfolder of the Projectverse root directory, whereas this
root directory contains the Projectverse application itself as well as the configuration
file, in which research projects are specified with their contents (main researcher, team,
summary) and locations in the root directory.

Figure 3.1: Schematic outline of the components of Projectverse.

Developer Toolkit The toolkit as our second main component aims to simplify the
adaptation of applications to Projectverse. Its scope includes basic VR functionality
such as hardware representation in the development software, standard interactions like
grabbing and locomotion techniques, and user interface interaction. The toolkit should
provide developers with all the tools required to make existing applications deployable to
Projectverse in - at least - a minimally executable state that allows users to explore the
environment. Specific applications that introduce e.g. new locomotion methods or highly
specific logic will, however, require more adaptation work, also outside of the toolkit’s
functionality, since the toolkit should cover only basic adaptation tools. An outline of
the contents of this toolkit can be seen in Figure 3.2

19

Web Server Front End

C
Project Data Gathering Projectverse VR Environment

Crawl Project §UWien Information from -
/' Research Project ' p HTML

e Applications

Visualization
[Developer Toolkit l r, JSON File Query Project -r Information from File (our

standard)

2 Network Functionality

2 User-to-User
Communication

WebGL
Builds of
Project

Applications

3. Design

Figure 3.2: Schematic outline of the developer toolkit’s contents.

3.3 Projectverse
The Projectverse VR environment serves as the starting point for users who wish to find
out about the VR group’s research projects. Therefore, it needs to be VR-capable and
either self-explanatory or guide users through the experience. A major challenge in the
creation of this page is the requirement of an automatically extending environment that
can visualize an arbitrary amount of research projects, with a visualization technique
allowing up to 50 projects to be visualized through metaphors at the same time.

3.3.1 Server Structure
Projectverse follows a distributed architecture, in which the server provides all information
required to construct the VR environment. This information is provided in the form of a
directory structure and a file. The file specifies project information, among which are
paths to directories on the server in which research project prototypes are stored. The
VR environment reads this file and interprets it in the form of a graph, constructing a
visualization based on the data in the file. The research project prototypes are part of
the server structure so that when transitioning between them, we can load them from
the server and present them to the user.

Project Information

We use a JSON file that holds information on all research projects deployed to Projectverse,
such as the title, category, summary, and team members. An outline of the data structure
used to represent research projects in Projectverse is shown in Figure 3.3. In addition to
the data that each project brings, we introduce the application location data item. This
specifies under which path the application of a project is located and allows Projectverse
to link between the Projectverse VR environment and project applications, that is, let

20

Fm1ctionalily 2 UI 1rn,,mctioo

locomotion

1

i
Teleport Thumbstick

Documenlalion

Guidel[nes lnslruclions

P refabricated Co mponen 1s

Headset
Represenlalion

Controller
Representalion

3.3. Projectverse

the player transition between them. Finally, we extend our data model by an info URL
attribute. This holds another link that specifies where the respective project’s web page
on the 2D website of the VR group is located. Projectverse then uses that link, and the
information stored under it, to replace or fill in the project summary and team members
data points should a person deploying an application not provide these. Projectverse
accesses this configuration and constructs the visualization based on it.

Figure 3.3: Schematic outline of the data scheme used for Projectverse.

3.3.2 VR Environment
We visualize the project graph in the shape of star constellations (R2, R5). This type of
visualization allows displaying large graphs on an imaginary sphere around the user, thus
reducing cluttering that a “real 3D” visualization technique would produce. We consider
our technique to not be “real 3D”, because all star constellations are arranged on this
imaginary sphere, rather than freely in space. Each research project is represented by
a star, whereas the edges connecting stars form groups, or constellations, where each
constellation forms a graph and represents a grouping of research projects by a shared
property, e.g. the aforementioned project leader. Each star constellation is labeled with
this shared property, whereas each star should also receive a label, denoting the title
of the project it corresponds to. A schematic example of our visualization technique
is shown in Figure 3.4. By employing this star constellation technique, we introduce a
clear layout that is well suitable for VR, since we use the full field of view that HMDs
provide us with. In addition, we completely avoid clutter and having to rearrange the
visualized graph based on user movements, as is the case e.g. in the work of Sorger et al.
[15], where the authors continuously recalculate node positions such that a “bubble” of
nodes is formed around the head of the user. Our visualization technique provides an
aesthetically pleasing, well-known from nature, view of a graph that makes it easy for
users new to VR to comprehend connections between projects and the idea behind their
arrangement. It is especially useful for our scenario by being highly scalable to a larger
amount of projects, since there is plenty of sky for more stars to be placed.

21

3. Design

Figure 3.4: Schematic example and realization (1st person game view) of our visualization
technique for project graphs.

Project Graph

We interpret project data in the form of a project graphs. At the top level, we have main
researchers, who each unite a group of research projects as their work, with each research
project having a prototype application and metadata about it. To bring this into the shape
of a graph, we assume each project to be represented by a node, and all projects from a
common main researcher to be connected by edges, i.e., for each researcher’s projects,
we construct an individual connected graph. These connected graphs are not connected
with each other and altogether form the project graph. This graph construction can also
be conducted for other attributes that projects share. Therefore, we also construct a
graph that is arranged by categories, instead of main researchers.

22

Researdier A

Pmjiec
C

Prnject

Researcher B

Pmjrect
B

3.3. Projectverse

Calculating Project Star Constellations

To create a visualization in the shape of star constellations based on the project graph,
we need to calculate layouts, because the project data we receive from the JSON file does
not contain a graph embedding, just meta data. Our data is annotated with a category
per entry (see Figure 3.1) as well as the main researcher. Since our aim is to incorporate
both these attributes into the visualization, we calculate two graph layouts: one for
groupings by responsible researcher and one for groupings by project category. We label
star constellations by their shared property. In the case of groupings of categories, the
constellation label represents the category.

The user should be able to switch between grouping options during runtime, therefore we
introduce a push-button with lighting. Pressing this button will change the arrangement
of the visualization, i.e. the grouping. The transition between two grouping states should
be fluid rather than instantaneous, therefore we propose continuous movement of all
project stars from their old positions to the new ones upon a push of the button. This
will help users understand the change they have introduced into the environment.

The calculation of both drawings is performed in coordinates, and we place all stars on an
imaginary sphere around the center of the scene, which lies at the middle of our balcony
play area. In short, we want to calculate a regular grid in the shape of degrees of latitude
and longitude on this sphere, and then place the stars that represent our projects on this
grid. A schematic of the grid is shown in Figure 3.5, where the areas valid for placing
stars are in green, and the exclusion zones are in red.

Figure 3.5: Schematic of our coordinate system for star placement calculation.

For the purpose of placing the stars, we first create a dictionary which contains all

23

3. Design

projects and either the main researcher or the category serves as the key for each list of
projects. We proceed by finding the longest list of projects in this dictionary to determine
the number of rows of our grid. The number of columns, on the other hand, is determined
by the number of keys in the dictionary, i.e., the number of categories of main researchers.
We proceed by determining the horizontal spacing, i.e., the distance between longitudinal
grid lines, which we define as

Cexternal = 360
ncexternal

.

Here, nCexternal
is the number of “columns” in the grid, i.e., number of categories or main

researchers. To properly separate our star constellations in the space, we increase the
number of longitudinal grid segments by three, thus

cexternal = 360
3ncexternal

,

such that a star constellation is only created on the first of each three grid segments,
whereas the other two remain empty to ensure proper spacing.

We then iterate over all keys in our dictionary of projects and determine the amount of
rows, or latitudinal grid segments for each star constellation. This, we define as

nrows = ⌈√
napps⌉.

napps denotes the number of one category’s, or main researcher’s, projects. We use this
formula because we aim for a square-shaped arrangement of the stars, hence the side
length of this square is given by the square root. We do not calculate an “exterior”
number of rows, because each column segment of our sphere should hold just one star
constellation. Furthermore, we define exclusion zones, in which no star should ever be
placed, because they are far outside the normal field of view. These exclusion zones
range from 45 to 90 degrees northern and southern latitude and are shown in Figure 3.5.
Integrating these zones into our calculation of the constellation-internal vertical spacing,
we get

rinternal = 180 − 90
nrows + 1 .

Furthermore, we define the number of grid columns within a star constellation as

ncinternal
= nr.

We then calculate the first grid location xstart and the internal column spacing cinternal

for the current star constellation as

24

3.3. Projectverse

xstart = ncinternal
cexternal

2
cinternal = cexternal/ncinternal

Finally, within the iteration of our dictionary, we iterate the list of projects, and determine
the position in space each one receives as a star. Here, the horizontal angle is given as

xapp = JCexternal − xstart + j ∗ cinternal

where J denotes the external column we are in, i.e., the positioning of the entire star
constellation on the grid. j, on the other hand, denotes the internal column we want to
occupy, i.e., the position of the star within the constellation’s grid. The vertical position
of a star is calculated similarly as

yapp = 45 + (i + 1)rinternal,

where i serves as the index for the row we are currently placing stars on.

Since star constellations in nature never come arranged in regular grids, we proceed by
shuffling the positions of our stars:

xshuffled = xapp + trinternal, t ∈ [−0.5, 0.5]
yshuffled = yapp + tcinternal, t ∈ [−0.5, 0.5]

Here, t is a random real number generated newly for each individual shuffling. The star
positioning algorithm is displayed in Algorithm 3.1.

With our star positions now calculated, we transform them from spherical to cartesian
coordinates and determine the connections between them.

For this, we arrange the project objects in a list that resembles their hierarchical order
in the JSON file, i.e., we generate a list of lists of projects, where each bottom-level
list holds one researcher’s project, and the top-level list holds all these lists. For each
bottom-level list, we employ Prim’s Algorithm [11] to find a minimum spanning tree.

The goal of this algorithm is to find a minimum spanning tree, and to then add another
edge to that spanning tree, over each star constellation. For this, we initially assume each
star constellation to be a fully connected graph, i.e., there is an edge between each two
stars in a star constellation, but no edges exist between any two stars of two different star
constellations. We begin by iterating over all star constellations. Within each iteration,
we then execute Prim’s algorithm, so we initiate three lists of projects, one holding all
visited vertices (or stars), one holding all unvisited vertices, and one holding the vertices
of the minimum spanning tree in order, i.e., we arrange vertices in pairs in this list, such

25

3. Design

Algorithm 3.1: Algorithm for the star placement.
Input : Dictionary SortedApps of strings to lists of projects
Output : List of lists of projects allApps

1 ncexternal
← Count of keys in SortedApps;

2 rows ← 0;
3 for each key-value pair in SortedApps do
4 if Count of values > rows then
5 rows ← Count of values;
6 end
7 end
8 Cext ← 360

columns ;
9 cext ← ncexternal

3 ;
10 J ← 0;
11 allApps ← Empty list of lists of projects;
12 for each key-value pair in SortedApps do
13 group ← Values in key-value pair;
14 nrows ← ⌈√

Countofgroup⌉;
15 rinternal ← 180−45−45

nrows+1 ;
16 ncinternal

← nr;
17 xstart ← ncexternal

·cinternal

2 ;
18 cinternal ← cexternal

ncinternal
;

19 appsList ← Empty list of projects;
20 i ← 0;
21 j ← 0;
22 for each app in group do
23 yapp ← 45 + (i + 1) · rinternal;
24 xapp ← J · Cexternal − xstart + j · cinternal;
25 yshuffled ← verticalAngle + Random.value · rinternal;
26 xshuffled ← horizontalAngle + Random.value · cinternal;
27 posstar ← transformCartesian(yshuffled, xshuffled);
28 app.Position ← star;
29 appsList.Add(app);
30 j ← j + 1;
31 if i mod J == 0 then
32 i ← i + 1;
33 j ← 0;
34 end
35 end
36 J ← J + 1;
37 allApps.Add(appsList);
38 end
39 return allApps;

26

3.3. Projectverse

that if ti, ti+1 ∈ T , where T is the spanning tree list, e(ti, ti+1 is an edge of the minimum
spanning tree. We start at the first star, i.e.

s = S0,

where S is the list of unvisited vertices. We add this star to the list of visited vertices, C
and remove it from S. Next, we iterate over all vertices in C, and within each iteration,
over all vertices in S. This iteration finishes when the minimum distance between two
stars, or vertices, si ∈ S and cj ∈ C is found. We now add both vertices we found to T
and remove si from S, the list of vertices remaining to be added to the spanning tree.

Next, we iterate over T and for each vertex tk ∈ T retrieve the position and write it into
a new list E of vectors to later serve a position for our edges. The important thing here
is that we don’t iterate over pairs of vertices, i.e., tk and tk+1, and increment k by 2 after
each iteration, but rather just make increments of 1. Since the order of vertices in T is of
such nature that every other edge e(tk, tk+1) is a loop, i.e., we have a list that looks like

E1 = {0, 1, 1, 3, 3, 4, 4, 2},

we mostly introduce self-loops in our graph through this method. However, in some
occasions, Prim’s algorithm generates us a list that might look like

E2 = {0, 3, 3, 4, 0, 2, 2, 1},

which, by our method of displaying edges, will result in a loop that, when rendered with
straight lines as edges, will very rarely cause intersections between these lines. This
is also explained in the way we position the stars in order. We therefore utilize this
property of our method to introduce loops into our star constellations to make them look
more natural compared to just tree-like visualizations. The drawings of both examples
for E are shown in Figure 3.6. The entire constellation generation functionality can be
observed in Algorithm 3.2.

To provide annotations for our visualization, we want to label each star and each star
constellation. In the case of a constellation label, we first find the centroid c(x, z) in
the x-z-plane of all stars in this constellation. Next, we calculate the vertical extent of
the constellation, i.e., the maximal y-value ymax among its stars. We then construct
a new point p(x, ymax, z) from these coordinates. Finally, we add minor vertical offset
to prevent the label from being placed exactly where the constellation’s highest star
is, and thus shift it a bit towards positive y. This calculation is performed for all star
constellations.

The label positions for the individual stars are calculated by simply adding a small
vertical offset to each star’s position, thus shifting the label towards negative y, and
preventing overlap.

27

3. Design

Algorithm 3.2: Algorithm for creating star constellations.
Data: StarConstellations, buildType
Result: E

1 E ← empty list of Vector3 arrays;
2 for starList in StarConstellations do
3 C ← empty list of projects;
4 S ← copy of starList;
5 s ← S0;
6 C.add(s);
7 S.remove(s);
8 T ← empty list of projects;
9 while S is not empty do

10 dmin ← +∞;
11 for c in C do
12 for s in S do
13 dsc ← ∥positionc − positions∥;
14 if dsc < dmin then
15 amin ← c;
16 bmin ← s;
17 dmin ← dsc;
18 end
19 end
20 end
21 if amin ̸= null and bmin ̸= null then
22 T.append(amin);
23 T.append(bmin);
24 C.append(bmin);
25 S.remove(bmin);
26 end
27 else
28 break;
29 end
30 end
31 for k ← 0 to T.length - 1 do
32 a ← positionT [i];
33 b ← positionT [i+1];
34 E.append(a, b);
35 end
36 end

28

3.3. Projectverse

(a) E1. (b) E2.

Figure 3.6: Examples for edge drawings. Self-loops are not shown.

Play Area

With the star constellations arranged on a spherical sky, we place the users in the center of
this sphere. By providing a room scale, balcony-type platform with transparent handrails
and floor, we ensure both that users do not feel “lost” in the large environment and
have good visibility in the star constellations. In the center of the platform, there is a
table-like structure with a button, from which the visualization can be controlled, i.e.
changes in the arrangement of star constellations can be made. Also, this table displays
written information about how to use Projectverse.

29

3. Design

Networking and User Avatars

Figure 3.7: Another user’s avatar (in green) as seen from a user’s point of view.

Since the VR environment of Projectverse should also serve as a social interaction and
exchange platform, we provide user avatars. According to the science fiction art style
of Projectverse, these avatars should also resemble star constellations. We enable this
by representing each user’s hands with two small spheres (stars) and the head with
another larger sphere. These are then connected to form a constellation. Additionally, we
implement proximity voice chat, enabling users standing close together to communicate
their thoughts about projects, etc. (R7). Our avatar model is shown in Figure 3.7.

Whenever the player count in our VR environment increases from 0 to 1, i.e., a new game
session begins, Projectverse reads the configuration files and constructs the project graph.
Furthermore, at this point, Projectverse calculates the graph embedding, i.e., the star
constellations. We refer to the first player to join the VR environment as master player.
Whenever a new player joins the master player, the project graph is not recalculated but
automatically loaded such that the star constellations are already present without any
calculations. This is because we instantiate all objects part of the graph visualization in
such a way that they are automatically synchronized for the entire session. The flow of
actions in networking is shown in Figure 3.8.

30

3.3. Projectverse

Figure 3.8: Flowchart of the graph calculation and distribution process.

User Interactions

(a) Side. (b) Back.

Figure 3.9: The laser gun interaction tool as seen in the editor view.

Interaction with the environment should be enabled using a well-known tool that suits
the art style of Projectverse. We therefore choose to employ a laser gun, fitted with a

31

3. Design

screen, with which users can shoot research project stars. Information about the project
that was shot is then displayed on the gun’s screen. This should include both a short
summary of the project’s contents (as given in the data as Project Summary, Figure
3.3) and information about the researchers who participated in the project (as given in
the data as Team Members, Figure 3.3. The information panel can be scrolled using
the controller. Finally, by pressing a specific button while holding this laser gun, users
can transition into the research project they just shot.The laser gun can be observed in
Figure 3.9. The green flashing light on the gun should indicate that Projectverse is ready
to transition to a project application. This flashing occurs after selecting, i.e. shooting, a
project star. The transition process to the demo application of a research project should
be transparent and noticeable to the user. Therefore, we use both sound and visual
effects to convey this to the user. The visual effects include an “interstellar jump-like”
animation, as shown in Figure 3.10.

Figure 3.10: Still image of the transition visual effect.

Transitioning into Project Applications

Transitioning into Projects After the push of a button on the controller and,
subsequently, the transition animation, users are brought “into” the application whose
star they shot with the laser gun. They are then able to at least use a simplified, if not
complete, version of the application. For applications that were developed for WebXR in
full, complete functionality is available without any adaptations to gameplay, whereas
applications that were built initially for Windows require adaptations to make them
suitable for the web-environment. Therefore, these applications might not cover the full
functionality as intended, depending on the amount of work put into their adaptation.

32

3.3. Projectverse

A minimal subset of functionality for all project prototype applications should include
moving around in them in order to explore what the respective projects are about. Aside
from applications developed in Unity, Projectverse can host and connect to all other
VR-ready types of applications that can be executed in the browser, e.g. applications
that were developed in A-Frame.

While in a project application, users leave the networked Projectverse VR environment.
Therefore, their avatar gets deleted from the scene and they are no longer able to
communicate with other players in the main application.

Coming back Having experienced a project for long enough, users are given a way
of navigating back to the entry page, using a combination of controller buttons that is
equal among all project applications they experience (R3). Upon pressing these buttons,
the user leaves the project application and transitions back to the main VR environment
of Projectverse, where they again join a networked sessions with others, if one is present.
Otherwise, a new session is created again.

Web Interface

Since we want Projectverse to be available to a broad audience (R2), as well as stick to
the current means of communicating the VR group’s work (R1), which is via the Internet,
we propose the creation of a web page that serves as the interface to Projectverse for the
user. This web page should provide the following functionalities:

• User Manual: In order to accomplish good user experience, the web page should
provide information about how to use Projectverse, its purpose, and ways of
interaction. Furthermore, the page should contain schematics of commonly used
VR controllers labeled with the actions triggered by pressing the controls on them.

• Entry Point to Projectverse: The VR environment of Projectverse should be a
central part of the web page. Along with information about it, Projectverse should
be playable on the page.

• Means of returning to the Entry Page: Once a users transitions into a project
application, they are able to return to the entry page via a combination of VR
controller buttons. Alongside this method, we propose to also provide a means of
returning to the classical 2D interface of the web page. This should be realised in
the form of a button on the page.

• Provide legal information: Since some of the assets used in the creation of
Projectverse are protected by copyright, we present licensing information here.

The page itself should be part of the VR group’s website, such that users who wish to
inform themselves easily find it alongside the two-dimensional web site.

33

3. Design

3.4 Developer Toolkit
As described in R6, we want to provide assistance to developers in adapting their research
project applications to Projectverse. This requirement aims to increase attractiveness
of Projectverse for researchers to deploy projects on it, i.e., increase the amount of
content hosted. Besides that, since the steps required to adapt an application to the
web environment are highly similar among many projects available for the VR Group -
as they are developed in Unity and built for the Windows platform - this work can be
partially automated relatively easy.

Therefore, we propose the development of a developer toolkit that comes with Projectverse
and provides functionality common to the XR spectrum as well as documentation that
discusses the steps necessary to make an application executable and compatible with
Projectverse. Here, we distinguish between two groups of developers, i.e., two different
types of application states from which we start the adaptation. Both starting points
assume a Unity application, for which not only the built version but also the project files
are available.

• Application developed for the Windows platform: In this case, the applica-
tion was previously targeted to run on Windows machines and needs significant
changes so it can be executed in the web browser. This includes changing the XR
device API used as well as the possibility of library or plugins incompatibility.

• Application developed for the Web environment: In case of an application
that can already be executed in the web browser, only minor adjustments are
necessary. We assume that WebXR is already in use for communication with XR
devices, and that no incompatibilities are present. Therefore, only the functionality
for users to navigate back out of the application and into the Projectverse VR
environment needs to be added here in order to implement full compatibility with
Projectverse.

As discussed and depicted in Section 3.2 and Figure 3.2, we aim to provide a range of
tools, functionality and assets with the developer toolkit. Among these are the following:

3.4.1 Assets
Assets we provide should include prefabricated components (prefabs) for representing
the VR headset and controllers in an application. In order to work with WebXR, these
components need to communicate using this driver, i.e., WebXR should propagate the
user’s movement of the respective devices to the prefab components. Additionally, inputs,
e.g. from buttons, should also be mapped and propagated. Finally, the prefabs also need
to visually represent the devices. This means, that the controllers should be visualized
e.g. through spheres or controller models, whereas the headset should represented by a
further sphere or a VR headset model.

34

3.4. Developer Toolkit

3.4.2 Functionality
The functionality provided by the toolkit should enable developers to easily recreate
the gameplay logic of their application. This is especially important with applications
developed for the Windows platform: Due to incompatibilities, the entire XR device
representation and functionality might have to be removed and replaced as part of the
adaptation process. We therefore aim to provide standard XR user interactions, which
include logic for grabbing and releasing objects, interacting with UI elements by pressing
UI buttons and scrolling UI elements as well as providing means of transportation, or
locomotion.

The standard locomotion types we want to support are thumbstick movement and
teleportation. Here, thumbstick movement means moving the player continuously as
commanded by the push of e.g. the Oculus Touch thumbstick or inputs on the HTC
Vive Controller touchpad, whereas teleportation involves the selection of a teleportation
target by a user input, and subsequently, moving the player to the selected location in a
discrete step. All functionality we want to provide should be as configurable as possible.
This requirement implies configurability of button mappings and parameters inherent to
the respective functionality, e.g. whether grabbed objects should be dropped or thrown
on release etc.. Finally, our functionality must include a way of bringing the user back
from a project application to the Projectverse VR environment.

3.4.3 Documentation
Our documentation should include comprehensive instructions on all steps required to
adapt both application types discussed above. This includes information on additional
software installations required for the web environment as well as the removal of compo-
nents that might be incompatible with the web browser. In addition, we want to cover
how the functionality and assets described above are intended to be used and how they
could be adapted and extended. The documentation also needs to cover how to eventu-
ally build for the web environment. Aside from this, we want to provide development
guidelines that allow for applications to follow the controls layout of the Projectverse
VR environment, so that users do not have to learn a special control layout for each
application, resulting in better usability of Projectverse. Finally, the documentation
needs to include information on how to deploy an adapted application to Projectverse as
well as troubleshooting hints.

35

CHAPTER 4
Software Implementation

This chapter explains how Projectverse is implemented. We begin by covering the server
structure and the configuration file, then we discuss the implementation of the VR
platform of Projectverse. Finally, we explain how the components of our developer toolkit
are created.

We implement Projectverse in Unity. Furthermore, we use the WebXR device API to
communicate with VR hardware together with the WebXR Unity Plugin which allows us
to use data from the WebXR Device API within the game engine. For the networking
implementation, we use functionality provided by Photon for Unity. To make Projectverse
executable in the browser, we build it to WebGL.

The application is part of the VR Group website, which is a wordpress site hosted on a
Linux Server that runs Apache. For the Configuration file, we make use of the JSON
standard. The skybox we use in Projectverse is a free asset from the Unity Asset Store1,
whereas the sounds we use when the star constellations are rearranged2 and when a
transition takes place 3 come from the freesound website.

4.1 Projectverse Implementation
This section covers the implementation of the entire Projectverse platform. From the
web server and projects hosted on it together with the configuration file, to how the VR
environment generates star constellation and establishes networked sessions, we explain
in detail how the platform is realized.

1https://assetstore.unity.com/packages/2d/textures-materials/
milky-way-skybox-94001

2https://freesound.org/people/komit.wav/sounds/402295/
3https://freesound.org/people/kaboose102/sounds/340256/

37

https://assetstore.unity.com/packages/2d/textures-materials/milky-way-skybox-94001
https://assetstore.unity.com/packages/2d/textures-materials/milky-way-skybox-94001
https://freesound.org/people/komit.wav/sounds/402295/
https://freesound.org/people/kaboose102/sounds/340256/

4. Software Implementation

4.1.1 Server Structure
The server structure of Projectverse consists of a system of directories and files, all placed
on a web server. In the root directory, we host the VR environment application as well
as our configuration file. The subdirectories contain the builds of project prototype
applications.

Configuration File

We formulate research project data in a JSON file that holds all information displayed in
Figure 4.13. An overview of our data standard for this file can be observed in Listing
4.1. With this standard, we map all data relevant to a research project to the respective
parameters in Projectverse’s main JSON configuration file. Here, we introduce project
groups. Each group is “owned” by a researcher responsible for it. This should be the
main researcher, or leader, of the respective research project. One researcher can have
multiple projects they are “responsible” for. Further attributes we include in this file
are the project’s name, its category and a short summary of its contents as well as an
array of team members. Furthermore, we introduce the attribute Location: This is
read by scripts of Projectverse and interpreted as a URL. The project’s application build
should be uploaded at the web page it represents. Projectverse will then be able to allow
players to transition and experience that application. Another parameter relevant to the
functionality or Projectverse is GetDataFromJson: It determines whether the project
summary and team members data should be read from the JSON file or retrieved from
the VR group’s website. If it is set to true, the respective attributes also need to be
present in the file. In case of false, the InfoUrl parameter must be present. This is
again interpreted as a URL and should link to the web page that contains information
about the respective research project. Projectverse then automatically retrieves team
members and project summary information from there.

Retrieving Project Information from the VR Group Website

In the case of an application that has the GetDataFromJson attribute set to false
in our configuration file, we retrieve the project summary and the name of the research
team members from the website of the VR group. This must happen before we write the
information to the star annotations. Therefore, we introduce the LoadHtml function,
which requests the HTML page from the VR group’s web server that is located at the
URL contained in the application’s InfoUrl field in the JSON configuration file. We
use a simple UnityWebRequest for this process and proceed by parsing the retrieved
HTML file using functionality provided by the HtmlAgilityPack library.

38

4.1. Projectverse Implementation

1 {
2 "Groups": [
3 {
4 "Responsible": "Researcher A",
5 "Applications": [
6 {
7 "Name": "Research Project X",
8 "Location": "./research-project-x",
9 "Category": "Student Projects",

10 "GetDataFromJson": true,
11 "ProjectSummary": "Project Summary",
12 "TeamMembers": [
13 "Jane Doe",
14 "Jon Doe"
15]
16 }
17]
18 },
19 {
20 "Responsible": "Researcher B",
21 "Applications": [
22 {
23 "Name": "Research Project Y",
24 "Location": "./research-project-y",
25 "Category": "VR Projects",
26 "InfoUrl": "../projects/project-y",
27 "GetDataFromJson": false
28 }
29]
30 }
31]
32 }

Listing 4.1: Data standard for our JSON configuration file.

39

4. Software Implementation

Figure 4.1: A research project info web page.

Since all project web pages on the VR group website have a very similar structure
(see an example in Figure 4.1), we can simply query for the text we are looking for
- project summary and team members - using the SelectSingleNode function of
HtmlAgilityPack to first find the header of the project summary, which is always a
<h2> element containing “Abstract”:

1 HtmlNode aboutHeader = htmlDoc.DocumentNode.SelectSingleNode("
//h2[contains(text(), ’Abstract’)]");

We then select the HTML nodes, in this case, <p> elements, following our header, in
which the project summary is written:

1 HtmlNodeCollection paragraphElements = aboutHeader.SelectNodes(
".//following-sibling::node()");

Finally, we iterate over all found <p> elements and join the text they hold together.
Since Unity’s text renderer cannot display non-breaking spaces correctly, we also filter
these out.

Similarly, to retrieve information about the project team members, we query a <section>
element that holds the id "people":

1 HtmlNode peopleSection = htmlDoc.DocumentNode.SelectSingleNode(
"//section[@id=’people’]");

Having found this element, we select all nodes within the section that have the class
"name". These elements contain the names of the project team’s members that we need:

40

4.1. Projectverse Implementation

1 HtmlNodeCollection nameElements = peopleSection.SelectNodes("
.//p[@class=’name’]");

Again, we finish by joining all found text together.

Having retrieved all the information relevant to a project, we save it to use once the star
constellations have been generated.

4.1.2 VR Platform
The VR environment serves as the starting point of Projectverse. It provides the
star constellation visualization of research project applications, information on research
projects, and means of interacting with the environment. The components of the VR
environment are divided into static and dynamic elements. The static elements include a
simple, balcony-like structure that serves as the play area, and a small table, on which
we display information about how to use Projectverse, as well as a button that provides
functionality to configure the visualization as discussed below. Furthermore, we include
a skybox that shows the stars of the milky way to match the art style dictated by our
visualization technique, the star constellations. Together, these elements form the play
area. The balcony and table structures can be observed in Figures 4.2 and 4.3. All player
movements are restricted to this platform.

Figure 4.2: The balcony play area. Editor view.

41

4. Software Implementation

Figure 4.3: The information panel on the table with the button to configure the visual-
ization. Editor view.

The dynamic elements of the Projectverse VR environment include the VR device
representation and all means of interacting with the environment, i.e., the laser gun
that each player receives and the button to rearrange the visualization. The device
representation consists of a prefab that holds tracked pose drivers to communicate
WebXR device data to the Unity application. Furthermore, we use spheres to represent
their own hands to the player. Finally, a small, wrist watch-like screen with information
about the control layout of Projectverse is added to the sphere representing the left hand,
at about wrist height. This can be observed in Figure 4.4. On the functionality side, we
include scripts for grabbing and teleportation with this prefab. These are discussed in
Section 4.3.1. The laser gun and push button are explained later in this section.

42

4.1. Projectverse Implementation

Figure 4.4: Sphere for hand representation with controls information tablet. Editor view.

Networking and Avatars

Since we want the VR environment to be multiplayer-capable, we use the Photon Unity
Networking 2 (PUN) package4 available in the Unity Asset store. In order to use the
functionality it includes, we create an empty “Network Manager” GameObject and attach
to it a network manager script that handles the creation of the multiplayer server and its
rooms when players join the VR environment. An outline of the server join functionality
can be observed in Figure 4.5, excerpts from the network manager script are shown
in Listing 4.2. When Projectverse is launched, this script automatically attempts to
connect to the Photon multiplayer server. If this connection is successful, we request
information on whether a multiplayer room is already present, or whether one needs to
be created. Rooms are virtual spaces that PUN uses to separate player groups among
the same application, i.e. only players in the same room can interact with each other in
an application. Projectverse uses just one room, since we do not expect player counts
to exceed five at a time. We provide enough space in the play area for this number of
players.

4https://www.photonengine.com/pun

43

https://www.photonengine.com/pun

4. Software Implementation

Figure 4.5: Flowchart of actions performed when launching Projectverse.

We distinguish between the master player and all other players. The absence of a room
upon server connection implies the absence of other players at the moment a player joins

44

4.1. Projectverse Implementation

1 public class ServerManager : MonoBehaviourPunCallbacks
2 {
3 public bool AutoConnect = true;
4
5 void Start()
6 {
7 if (AutoConnect)
8 {
9 ConnectNow();

10 }
11 }
12
13 public void ConnectNow()
14 {
15 PhotonNetwork.ConnectUsingSettings();
16 }
17
18 public override void OnConnectedToMaster()
19 {
20 RoomOptions roomOptions = new RoomOptions();
21 roomOptions.MaxPlayers = 5;
22
23 PhotonNetwork.JoinOrCreateRoom("mainRoom", roomOptions,

TypedLobby.Default);
24 }
25
26 public override void OnCreatedRoom()
27 {
28 CreateScene()
29 }
30
31 public override void OnJoinedRoom()
32 {
33 GameObject avatar = PhotonNetwork.Instantiate("

avatarPrefab", new Vector3(0f, 0f, 0f), Quaternion.
identity, 0, new object[] {

34 PhotonNetwork.LocalPlayer.ActorNumber
35 });
36 }
37 }

Listing 4.2: The network manager script.

45

4. Software Implementation

1 void Update()
2 {
3 Vector3 headPosition = Head.position;
4 Vector3 handLeftPosition = HandLeft.position;
5 Vector3 handRightPosition = HandRight.position;
6
7 BodyLine.SetPosition(0, headPosition);
8
9 Vector3 centerPosition = new Vector3(headPosition.x,

headPosition.y - 0.20f, headPosition.z);
10 BodyLine.SetPosition(1, centerPosition);
11
12 HandLeftLine.SetPosition(0, handLeftPosition);
13 HandLeftLine.SetPosition(1, centerPosition);
14
15 HandRightLine.SetPosition(0, handRightPosition);
16 HandRightLine.SetPosition(1, centerPosition);
17 }

Listing 4.3: Controlling the lines of the avatars.

the server. PUN therefore dedicates this player the master player. Since no room is yet
present, we create one through the master player, and automatically join it. At this
point, we also make use of the master player property - because it is unique among a
room - and let the master player’s client initiate the calculation of the project graph.
In case a room is already present and thus other players are already on the server, the
script joins this room.

Finally, after all room join functionality has been completed, an avatar model is instan-
tiated for each player who joins the room. This model represents the hands and head
of each player to all others. Therefore, the client-local movements of the controllers
and the VR headset are propagated through these assets to the server, and thus, all
other players. Since our avatars should match the overall art style of Projectverse and,
therefore, resemble star constellations, we choose spheres for the controllers and head
representations, and add a light-emissive material to these. In addition, we connect
these spheres to form a connected graph, where the lines represent the arms and the
neck, respectively. We move these lines based on the movements of the hands and head,
respectively. The intersection where the arms and head lines meet is fixed to a position
20 centimeters below the head. The function that controls these positions is shown in
Listing 4.3.

The coloring of the avatars is picked from a range of four colors by the order of server
joins, i.e. the master player is always player 1, and receives blue, whereas the second
player to join receives green as their avatar color etc.. An overview of the multiplayer

46

4.1. Projectverse Implementation

avatar in different colorings is given in Figure 4.6. The laser gun used for interacting
with the environment is instantiated along with the avatar.

Figure 4.6: The multiplayer avatar used in Projectverse. From left to right: Players 1-4
etc.. Editor view.

Parsing JSON into the Project Graph

The JSON configuration file and the Projectverse application build are eventually placed
on a web server. Therefore, we use a UnityWebRequest to request the transfer of the
configuration file to Projectverse. Since we want to use the contents of the file in C#, in
an object-oriented context, we also utilize the FromJson function provided by Unity’s
JSONSerializeModule. To use this function, we create a hierarchy of classes that
resembles the data structure of our JSON file. The code of these classes is shown in
Listing 4.4.

We construct the project graph from the objects created while parsing the configuration
file. In total, we generate two drawings of the data we parsed, one where each star
constellation holds the stars one researcher is responsible for, i.e., a sorting by researcher,
and one, where the constellations represent the categories given in the JSON file.

Project Graph to Visualization

Utilizing the algorithms described in Section 3.3.2, we calculate the embeddings of the
project graph in a C# script that iterates over lists of objects from the class structure in
Listing 4.4.

With all the required positions calculated and the constellation drawings finished for
both layout types, that is, by category and by main researcher, we begin instantiating the
visual representations of our visualization. The default layout of the visualization shall

47

4. Software Implementation

1 [System.Serializable]
2 public class WebXRAppsData
3 {
4 public WebXRAppGroup[] Groups;
5 }
6
7 [System.Serializable]
8 public class WebXRAppGroup
9 {

10 public string Responsible;
11 public WebXRApp[] Applications;
12 }
13
14 [System.Serializable]
15 public class WebXRApp
16 {
17 public string Name;
18 public string Location;
19 public string InfoUrl;
20 public string Category;
21 public bool GetDataFromJson;
22 public string ProjectSummary;
23 public string[] TeamMembers;
24 public Vector3 ByNamePosition;
25 public Vector3 ByCategoryPosition;
26 }

Listing 4.4: C# Classes mapped to the attributes of the JSON configuration file.

be the arrangement by main researcher. First, we instantiate all stars. We use a simple
spherical model for these and use a light-emitting material to properly represent a star’s
shine. Here, each constellation receives one of six possible colors, whereas the coloring
choice works similarly to coloring the player avatars. This material is also applied to the
labels of the individual stars and the constellation label, which we instantiate next. An
overview of the color choices for the stars, applied to the star model, is shown in Figure
4.7.

48

4.1. Projectverse Implementation

Figure 4.7: Color palette for the star constellations. Editor view.

For all instantiations, we use PUN’s PhotonNetwork.InstantiateRoomObject
function to ensure consistency along the multiplayer session. The final step of building
the scene is the instantiation of Unity LineRenderers that connect the stars into
constellations. These lines are also colored accordingly, and their Positions attributes
are continuously synchronized with the multiplayer session using the functionality provided
by IPunObservable. An overview of the scene with complete star constellations is
shown in Figure 4.8.

49

4. Software Implementation

Figure 4.8: A scene of star constellations arranged by main researcher. First person game
view.

Annotating Stars in Constellations

With our star constellations complete, we need to annotate the labels in it with the proper
information. The star labels themselves are prefabs that consist of a canvas and a Unity
TextMeshPro Text component placed on it. Furthermore, we use a script on the label
prefab that controls the display of information on the label, that is, the text written on the
TextMeshPro component. Photon’s OnPhotonInstantiate callback function pro-
vides the point in time at which we want to write text to the label. We therefore pass the
respective text for each label to the PhotonNetwork.InstantiateRoomObject func-
tion in its data property and read it from the info parameter of the
OnPhotonInstantiate function. We then write this text to the TextMeshPro
component.

Aside from the correct text being written in this function, we also apply the correct
material and rotate the label, such that it faces the scene’s origin point. The code for
this function is provided in Listing 4.5.

Similarly, on each star prefab, we use a script to hold information on all the data of the
project it represents, i.e., the project title, summary, location of the build on the server,
and the team members. All these fields are also set using OnPhotonInstantiate,
which ensures that they have the same values for all players in the multiplayer session.

50

4.1. Projectverse Implementation

1 public void OnPhotonInstantiate(PhotonMessageInfo info)
2 {
3 materialIndex = (int)info.photonView.InstantiationData[0];
4 appName = JsonUtility.FromJson<WebXRApp>((string)info.

photonView.InstantiationData[1]).Name;
5
6 LabelText.text = appName;
7
8 transform.LookAt(Vector3.zero);
9

10 LabelText.fontMaterial = LabelMaterials[materialIndex %
LabelMaterials.Length];

11 }

Listing 4.5: The OnPhotonInstantiate function used on the star label prefabs.

User Interactions

Laser Gun We use a tool in the shape of a laser gun to let users interact with the
environment. The functionality of this gun includes shooting stars in order to select
them for information display, displaying said information to the user, and initiating the
transition into a project application. We again use light-emitting materials for the laser
gun to match the art style of Projectverse. The laser gun has a screen on top, and
otherwise resembles laser blasters seen in science fiction movies like Star Trek. It is shown
in Figure 3.9

The laser gun is a grabbable object in the scene, i.e., it can be grabbed using the grab
button of the right hand VR controller and will then follow the controller’s position. The
implementation of this grabbing feature is discussed in Section 4.3.1.

To provide the functionality of the laser gun, we use a script that controls the shooting,
writing of text to the gun’s screen, and the transition to a project application. For
shooting the gun, we use a line renderer that represents the laser emitted from the gun’s
tip, as well as particle systems that resemble sparks coming from the tip of the gun as
well as the impact point of the laser. If the laser hits a star, the shooting stops and we
then query the star’s script for information on the project it represents. This information
is then written to the screen on the gun. The shooting laser gun can be observed in
Figure 4.9.

51

4. Software Implementation

Figure 4.9: Shooting the laser gun. First person game view.

For the screen, we again use Unity TextMeshPro text components to which we write
the respective information. This information includes the project title, summary and
team members. We write all this information to the screen in a typewriter animation as
used e.g. for displaying subtitles in video game dialogues. If the information is too long
to fit into the display entirely, the screen becomes scrollable by pushing the thumbstick
or touchpad, depending on the controller type used. Finally, we also enable the small
green light on the back side of the gun’s grip and show an info text on how to transition
to the selected project application. This indicates to the user that the gun is ready to
execute the transition to this application. The laser gun in the transition-ready state is
shown in Figure 4.10.

52

4.1. Projectverse Implementation

Figure 4.10: Laser gun with project information displayed, ready for transition. First
person game view.

Each player receives one laser gun tool, which only they can grab and use. It is spawned
at the time the player joins the multiplayer session and removed together with the player’s
avatar once they leave the session. To provide ease-of-use with the laser gun, we introduce
a tool belt, which moves together with the player’s head and is situated at about hip
height, resembling the position of a holster. The belt is represented by a semi-transparent
sphere object, which utilizes a snap-on mechanic to receive the gun when the player
places it at the sphere’s position. By grabbing the gun when it is stored in this belt, the
player can remove it from the belt slot.

Changing the Layout of Constellations We enable users to change the layout of
the star constellations visualization such that they can use a push button located on
the table in the center of the play area to switch between two layouts, one where each
star constellation represents the projects of one main researcher, and one where the star
constellations represent the categories of the research projects, i.e. all projects of one
category are visualized using the stars of one constellation.

The button we use for this is of mechanical nature, i.e. no further inputs than just
moving the controller on top of the button, and then downwards, are required to push it.

We register pushes of the button using a script. Here, we initially disable the button for
the duration of the star shifting animation. Next, we invoke a remote procedure call
using functionality provided by PUN. This procedure is executed only on the master
player’s client since this is the client that has the right to move all objects part of the
visualization within the multiplayer session, i.e., the owner of these objects’ transforms.

53

4. Software Implementation

The remote procedure first cleans up all line renderers of the present star constellations
to “dissolve” them:

1 foreach (GameObject line in GameObject.FindGameObjectsWithTag("
StarLine"))

2 {
3 StartCoroutine(WaitForOwnershipAndDestroy(line));
4 }

In the next step, we also remove all star constellation labels, i.e., the labels that name
the main researcher or category per star constellation, for them to be later replaced by
the new labels of the changed visualization layout:

1 foreach (GameObject label in GameObject.FindGameObjectsWithTag(
"StarLabel"))

2 {
3 StartCoroutine(WaitForOwnershipAndDestroy(label));
4 }

We then move each star separately to its new position in the chosen visualization layout.
Both possible layouts, and positions for all stars within these, were already calculated at
the start of Projectverse (see Section 4.1.1) and only need to be retrieved at this point.
This rearrangement is done in a coroutine that animates each star’s movement. The
speed of a star during the movement should be slow at first, then faster, and finally slow
down again before arriving at the destination. Therefore, this speed is given as

v = 1
2(1 − cos(tπ)),

where t denotes the normalized time change since start of the animation and is defined as

t = tnow − tstart

T
.

Here, tnow denotes the current time, whereas tstart denotes the time of the start of the
animation. T represents the chosen duration the animation should take overall. The
animation uses the calculated speed value to move each star in discrete steps - once each
frame - between its old and new positions.

All stars are moved at the same time and for the same duration. Once this movement
finishes, we relabel each constellation by the aspect dictated by the layout, i.e., category
or main researcher, and recolor the stars: Since stars of previously different constellations
may now be part of the same constellation, this step is necessary. We also instantiate
new line renderers as defined in our calculation of the constellations at application launch.
Finally, the push button is reactivated.

54

4.1. Projectverse Implementation

Transitioning into a Project

With a research project selected using the laser gun, the player can press the respective
button to initiate the transition to this project’s application. For Oculus Touch controllers,
this is the “A”-Button on the right hand controller, on HTC Vive controllers, we use the
left controller’s grab button, with the gun being held in the right hand. The transition
to an application works as follows:

1. Countdown on the Laser Gun: A countdown is shown on the gun’s display,
starting at five seconds and counting down to zero, indicating that the transition is
about to take place.

2. Information on the Laser Gun: Since with WebXR’s current state, we cannot
persist an ongoing VR session among multiple web pages, we show a short informa-
tion text to the user, requiring them to restart the VR session once the transition
is complete. Since every project application is hosted on a different subpage of the
web page of the Projectverse VR environment, we need to move to a different web
page for the transition.

3. Particle System: As proposed in Section 3.3 and shown in Figure 3.10, we show
the user a particle system that resembles “interstellar jump” animations known from
science fiction movies like Star Wars or Star Trek. This particle system originates
from the star and its particles move quickly towards the player, increasing their
count over the duration of the countdown. In addition, we play a teleport-like
sound to accompany this animation.

4. Transition: Once the countdown ends, we move to the selected application’s page,
where the respective program is automatically launched. The user now needs to
start the VR session on the screen or the virtual desktop, in order to play the
application on their VR headset.

A still image of the transition animation is shown in Figure 4.11.

55

4. Software Implementation

Figure 4.11: Laser gun and selected star during the transition animation. First person
game view.

To initiate the countdown, we once again write to the TextMeshPro text component on
the gun’s screen and then launch two coroutines, which overwrite the countdown number
and animate the particle system for the visual effect, respectively. We also start playing
the particle system and sound effect at this point:

1 ProjectNameTMP.fontSize = 2;
2 ProjectNameTMP.text =
3 "\n\nLaunching Experience in\n\n\n" +
4 CountDownDuration +
5 "\n\nRESTART VR ON SCREEN AFTER JUMP";
6
7 StartCoroutine(Countdown(CountDownDuration));
8 StartCoroutine(PositionAndUpdateJumpParticles());
9 JumpParticleSystem.GetComponent<ParticleSystem>().Play();

10 JumpParticleSystem.GetComponent<AudioSource>().Play();

The coroutine for animating the particle system is executed in a terminal state of the
Projectverse VR environment, i.e., shortly before it quits due to the transition. We
therefore use an endless loop here which is executed once per frame. In this loop, we find
the direction from the VR headset to the selected star and place the particle system’s
origin five meters away from the headset in that direction. In addition, depending on
the time change since the start of the coroutine, we increase the particle count using its
EmissionModule property:

56

4.1. Projectverse Implementation

1 private IEnumerator PositionAndUpdateJumpParticles()
2 {
3 float t = 0;
4
5 while (true)
6 {
7 t += Time.deltaTime;
8
9 Vector3 cameraPosition = MainCamera.transform.position;

10 Vector3 DirectionToStar = lastHitStar.transform.
position - cameraPosition;

11 DirectionToStar.Normalize();
12
13 JumpParticleSystem.transform.position = cameraPosition

+ DirectionToStar * 5;
14 JumpParticleSystem.transform.LookAt(cameraPosition);
15
16 ParticleSystem.EmissionModule emissionModule =

JumpParticleSystem.GetComponent<ParticleSystem>().
emission;

17 ParticleSystem.MinMaxCurve minMaxCurve = emissionModule
.rateOverTime;

18 minMaxCurve.constant = 10 * t + 50;
19 emissionModule.rateOverTime = minMaxCurve;
20
21 yield return null;
22 }
23 }

The coroutine that animates the countdown on the gun’s screen, on the other hand, we
replace the previous countdown number on the screen in a loop that is executed once per
second and terminates as we reach zero. After the termination, the transition is executed
from this coroutine, utilizing the PageSwitcher.CallOpenURL function:

57

4. Software Implementation

1 private IEnumerator Countdown(int startValue)
2 {
3 int i = startValue + 1;
4 while (i > 0)
5 {
6 i--;
7
8 ProjectNameTMP.text = ProjectNameTMP.text.Replace((i +

1).ToString(), i.ToString());
9 yield return new WaitForSeconds(1);

10 }
11
12 if (Application.platform == RuntimePlatform.WebGLPlayer)
13 PageSwitcher.CallOpenURL(lastHitStar.GetComponent<

InfoGrabber>().Location);
14 }

The PageSwitcher.CallOpenURL function’s only purpose is to call an external func-
tion named PageSwitcher.OpenUrl. This external function utilizes Unity’s framework
for interacting with browser scripting 5 and is defined in JavaScript. It is passed a URL
as a parameter, which it then redirects the browser window to:

1 mergeInto(LibraryManager.library, {
2 OpenURL: function (url) {
3 window.open(Pointer_stringify(url), ’_self’);
4 },
5 });

When transitioning to an application, we call this function with the URL saved in the
Location attribute of the JSON configuration file (see Listing label=lst:config-json).
Since the WebXR Device API does not yet support sessions that persist when switching
pages, the VR session quits at this point and needs to be reactivated using a button on
the screen. Users can circumvent having to take of the HMD by using virtual desktop
within VR to click said button.

4.1.3 Enabling Projectverse for the Web Environment
Since Projectverse should be hosted on a web page, we use WebXR exporter 6 in Unity’s
build process. We build the program using the Unity WebGL build target and subsequently
deploy it to the VR group’s web server by placing it in the respective directory. This
directory serves as Projectverse’s root, and all research project applications that are

5https://docs.unity3d.com/Manual/webgl-interactingwithbrowserscripting.
html

6https://github.com/De-Panther/unity-webxr-export

58

https://docs.unity3d.com/Manual/webgl-interactingwithbrowserscripting.html
https://docs.unity3d.com/Manual/webgl-interactingwithbrowserscripting.html
https://github.com/De-Panther/unity-webxr-export

4.2. Deployment to the Web Server and adding new Projects

deployed to the it are placed in its subfolders, which allows us to use relative URLs in
the JSON configuration file. An overview of Projectverse’s web server folder structure is
shown in Figure 4.12.

Figure 4.12: Folder structure on the web server.

4.2 Deployment to the Web Server and adding new
Projects

The process of deploying project applications to Projectverse should be as follows:

1. Adapting applications to the web environment. Some applications are
already in a state that enables them to be executed in the web browser, e.g.
projects created with the A-Frame framework. However, most of the VR group’s
applications were developed in Unity and built for the Windows platform. This
means that at least re-building these applications to the WebGL target is necessary.
In most cases, additional steps are required, such as importing and enabling WebXR
to communicate with and use VR devices within the browser.

2. Building the Project. After all necessary adaptations are made, the application
needs to be built. Since we want Projectverse to run in the web, applications hosted,
or deployed, on it, need to also be web-capable. In the case of Unity applications,
this means building to WebGL.

3. Uploading to the web server. With the application build complete, the
application needs to be uploaded to the web server on which Projectverse is hosted.

59

root

LJ LJ ProjectA Project B LJ
index.html Assets Build

______ Main Application _____ _

LJ LJ LJ LJ
\index.html Assets Build index.html Assets Build

______________________ Project Applications ____________________ _

4. Software Implementation

4. Adding configuration entry. To allow the VR environment to generate a project
star for the newly added project, it must be added to the previously mentioned
configuration file (see Figure 4.13). Here, a data entry must be made that contains
at least the title of the application, the location of its build on the web server and
its category. In addition, information needs to be provided on whether the project
summary and team members should be scraped from the project’s web page. If
not, these data have to be entered as well.

Figure 4.13: Schematic outline of the configuration data specification used by Projectverse.

4.3 Developer Toolkit
We require applications resulting from research projects that should be deployed on
Projectverse to be adapted to the web environment. To fulfill this requirement, we
provide a toolkit to the developers of these applications that helps with the adaptation.
Since we develop the toolkit for Unity, the applications profiting from it also need to be
implemented in this game engine. Applications originating from other frameworks can
still be deployed to Projectverse, given that they run in the web browser.

Our toolkit relies heavily on functionality provided by WebXR Exporter7 and WebXR
Interactions8. These packages allow us to read data from the VR headset and controllers

7https://openupm.com/packages/com.de-panther.webxr/
8https://openupm.com/packages/com.de-panther.webxr-interactions/

60

https://openupm.com/packages/com.de-panther.webxr/
https://openupm.com/packages/com.de-panther.webxr-interactions/

4.3. Developer Toolkit

when used within a WebXR session, as is the case in the VR environment of Projectverse.
Project applications that were developed for the Windows environment, on the other
hand, do not natively support WebXR, but use OpenXR for Unity9 or the Unity Oculus
Integration10 to communicate with VR devices. Therefore, developers first need to
exchange these plugins for those that use WebXR when adapting their applications.

Since this exchange implicates the requirement for replacing the VR device representa-
tion in Unity, as well as parts of the gameplay logic that use this representation and
functionality provided by e.g. OpenXR, like grabbing objects or locomotion methods, we
provide the replacement functionality in our toolkit alongside a VR device representation
prefab.

4.3.1 Functionality
The functionality contained in our toolkit includes, as proposed in Section 3.4 and Figure
3.2, scripts for grabbing objects, interacting with UI elements, as well as teleporting and
moving with the controller’s thumbstick or touchpad as locomotion methods.

Grabbing We implement the grab mechanic in three different ways:

• Grab by Tag: This method allows developers to set one or multiple tags in Unity
which designate grabbable objects. These tags then need to be assigned to the
objects that should be grabbable.

• Grab by Script: With the grab logic being controlled from a script attached to
the VR controller, another, simple script is placed on the objects that should be
grabbable.

• Grab Interactable: For this method, we provide a separate script that controls
the grab logic from the grabbable objects’ side. We do not need a grab script on
the VR controller in this case, but one on each object that should be grabbable.

With all of these methods, we allow the user to choose the button that should be used to
grab an object. For the logic of the grab itself, we draw inspiration from Robinett and
Holloway[12], who require that for grabbing an object in a virtual world, this object’s
position relative to the hand must be constant during the grab, i.e., while being grabbed,
the object follows the controller. We implement this mechanic in two different ways,
namely:

9https://docs.unity3d.com/Packages/com.unity.xr.openxr@1.8/manual/index.
html

10https://assetstore.unity.com/packages/tools/integration/
oculus-integration-82022

61

https://docs.unity3d.com/Packages/com.unity.xr.openxr@1.8/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.openxr@1.8/manual/index.html
https://assetstore.unity.com/packages/tools/integration/oculus-integration-82022
https://assetstore.unity.com/packages/tools/integration/oculus-integration-82022

4. Software Implementation

• Transform Parenting: Transforms allow for parent-child relationships in Unity,
in which a child moves alongside its parent when the parent’s position changes.
We utilize this property for grabbing by making the grabbed object a child of the
controller’s transform.

• Joint: In cases where parent-child relationships in the scene should not be
changed for the use of grabbing objects, we provide the joint method, which
uses a FixedJoint component on the controller which connects to the grabbed
object for the duration of the grab, thus moving it together with the controller.

In addition to these features, we also let the developer decide the following options:

• Haptic Feedback: In case this option is used, we trigger vibrations when a
grabbable object is within grabbing range of the controller, moves out of this range,
or is grabbed or released.

• Controller Visibility: Some applications of grabbing require that the controller
model should be invisible while an object is grabbed, e.g. when very small objects
are grabbed, they might be occluded by the controller model. This option allows
developers to make the controller model invisible for the duration of a grab.

Locomotion For locomotion methods, we provide thumbstick/touchpad movement
and teleportation. Both are realized as scripts to be attached to the controller object
in Unity. With the thumbstick movement, we let the developer decide between three
approaches:

• Freeflight: The input from the thumbstick or touchpad is applied directly to
the player’s position. Depending on the movement speed factor selected by the
developer, we move the player through three-dimensional space.

• Floor locked: Before changing the player’s position, we project the movement
vector onto the x-z-plane, thus moving the player parallel to the ground and avoiding
movements in the y-axis.

Furthermore, we provide an option to allow only forward and backward movements, i.e.,
moving the player only along their local z-axis rather than both the x- and z-axes.

The teleportation method we provide is oriented on that proposed by Bozgeyikli et al.[2]
and its workflow can be described as follows:

1. Initiation: By making a controller input, e.g. pushing and holding a button or
the touchpad or joystick, the player initiates a teleport. A ray is emitted from the
controller in the direction the player’s hand points.

62

4.3. Developer Toolkit

2. Target Selection: By rotating the controller, the player can change the ray’s
direction and thus, the targeted teleport location. This location is verified and then
displayed as a marker in the shape of a circle at the point where the ray meets the
surface the player targets.

3. Verification: Depending on the developer’s choice of verification factors, the ray
is either drawn as a solid line for targets that the player is allowed to teleport to,
or a dashed line for targets to which teleportation is not allowed.

4. Execution: Upon release of the teleport input, and in case of possible target
verification, the player is transported to the target location instantly by modifying
their position. The line and the marker disappear.

For target validation methods, we offer the following options:

• Tag-based: All objects whose surfaces are valid teleportation targets receive the
same tag in Unity.

• Layer-based: All objects whose surfaces are valid teleportation targets receive
one of the layers the developer allows.

• Gradient-based: All surfaces whose gradients are less than a developer-defined
angle are valid teleportation targets.

Additionally, we provide functionality to ignore certain surfaces when targeting a teleport,
i.e., the targeting ray can penetrate these surfaces without verifying them at all. This
can be useful e.g. when teleporting through windows or other transparent surfaces should
be allowed. We implement this functionality on the basis of layers, i.e., the developer
can select a range of layers that should be ignored by the targeting ray.

Finally, our teleport locomotion implementation also provides what we refer to as
directional teleport: With this method, we use the thumbstick or touchpad as teleport
input and let the user hereby select their orientation after teleport execution. We
determine this orientation by the input position of the thumbstick or touchpad at the
moment of teleport execution. The future position is visualized to the player using a
tipped marker for the target selection, whose tip points in the selected direction. Both
marker types are shown in Figure 4.14.

UI Interaction For UI interaction, we provide functionality to press UI buttons and
scroll Unity ScrollRect elements. In both cases, the user interface at hand must be in
world scale mode. For interacting with it, we provide the user with a laser pointer, which
is implemented using a LineRenderer Component. The resulting line works similar
to a laser pointer and is enabled when the user points at a valid UI element. Valid UI
elements are determined by a selection of layers by the developer. In order to work with

63

4. Software Implementation

(a) Round marker. (b) Tipped marker.

Figure 4.14: Target markers used in our teleportation method.

our method, all UI elements need to have Collider components on them in order to
register a hit with the laser.

In case the user points the laser at a button, we then execute a push of this element
when the user pushes the input determined by the developer. Here, we offer all buttons
on the VR controllers, but not the joystick or touchpad. For scrolling a ScrollRect,
we monitor inputs from the touchpad or joystick when such an element is hovered, and
then scroll it according to the input.

4.3.2 Assets
To further simplify the adaptation process of project applications, we also provide assets
in the form of prefabs. The following prefabs are included in our toolkit:

• VR Device Representation: Since the removal of OpenXR or the Oculus
package also removes the VR device representation from an application, this
prefab’s purpose is to replace it. It contains sphere models for the controllers as
well as a GameObject with not mesh for the VR headset, such that all three
devices can be tracked and represented in the application. Here, the tracking source
is WebXR. We also provide functionality with this prefab that allows users to
transition back from to the Projectverse VR environment from a project application.
The script for this purpose is already attached to the prefab, so that developers
can easily include this functionality in their applications.

• Info Board: In order to provide information on control layouts as well as a short
summary of a project application to users, we provide an info board prefab. Along
with it, we provide images of controllers to be labeled with the control layout of
the application. The info board is shown in Figure 4.15.

64

4.3. Developer Toolkit

Figure 4.15: The info board prefab in use in a project application.

As mentioned above, to bring a player back from a project application, we use a script.
To keep the input required for this action consistend among applications, we hard-code it
and thus, require both grab buttons as well as both triggers to be pressed. These buttons
are used because they are present in all consumer VR headsets. To bring the user back
to the Projectverse VR environment when the required input is made, we again use the
PageSwitcher.CallOpenURL function as discussed in Section 4.1.2, however, we use
"../" as the target URL, since all project applications are situated on subpages of the
Projectverse VR Environment.

4.3.3 Documentation
Our toolkit’s final component is documentation we provide along with it. In it, we describe
in detail the steps required to adapt both applications that were initially developed for
the Windows platform as well as those already browser-ready, to Projectverse.

In the case of Windows applications, we require the following steps:

• Package Installation: To work with Projectverse, the WebXR Exporter and
WebXR Interactions packages need to be importet into the project. Besides that,
our developer toolkit also needs to be included in the application.

65

4. Software Implementation

• Removing old VR frameworks: As discussed above, developers need to remove
OpenXR or Oculus if they were used to communicate with VR devices.

• Recreation of Gameplay: In this step, we describe how to use our toolkit’s
components to recreate the gameplay logic of the application.

• Build: Due to the characteristics of the web environment, developers need to
specify certain build settings and application configurations in order to build an
application that can run in the browser.

Browser-ready applications, on the other hand, require only the installation of our
developer toolkit as well as attaching our script for transitioning back to the Projectverse
VR environment to the player GameObject and finally, compiling a new build.

To finally deploy an adapted and built application, it needs to be placed in a newly
created subfolder of the Projectverse root folder, as shown in Figure 4.12 as well as its
information entered into the JSON configuration file. Projectverse will then automatically
generate a star for it and either add this to an existing star constellation or create a new
one upon refreshing the web page.

66

CHAPTER 5
Evaluation

5.1 Methodology
The intention behind Projectverse is to provide deeper and broader knowledge of the VR
group’s work in combination with making it accessible in a suitable medium. Therefore,
we conducted a user study to evaluate the user friendliness, the extent of knowledge
acquisition, and overall user preference of Projectverse to analyze the benefits Projectverse
contributes when used alongside the VR group website. We invited single participants to
our study that was conducted in a mixed form between guided and unguided trial, i.e.,
during some parts of the evaluation, assistance was provided when a participants asked
for it.

We conducted a repeated-measures experiment. Participants first experienced the VR
group website, then our Projectverse. The order of conditions was not counter-balanced
since in our concepts, users would use Projectverse only after having browsed the website,
in order to get a deeper understanding of projects they read about on the website.
The evaluation was conducted in two parts. Participants first used the website, and
answered the questionnaire section about it, then used Projectverse and again, answered
the questionnaire section about it. After this, participants answered the questionnaire
section about preferences.

During the second part of the evaluation, participants were always accompanied by an
experimenter who would sit alongside the participant and initially explain the Projectverse
VR environment and how to use it. Furthermore, questions regarding e.g. the controls
layout of Projectverse were answered and help would be provided when problems with
Projectverse itself occurred.

67

5. Evaluation

5.1.1 Task and Virtual Environment
As discussed, our study consisted of two parts, the website and Projectverse. In the
website part, participants were asked to visit the VR group website and familiarize
themselves with research projects. We asked participants to “visit at least 5 project
pages”, and specifically requested them to include “BIM_Flexi”, “Conversational Agents”,
and “Haas VR”, since we were going to to ask questions about these projects. The
website content of BIM_Flexi as well as its application in Projectverse are shown in
Figures 5.1 and 5.2. In the Projectverse part, participants were asked to visit Projectverse
using an HMD and to again familiarize themselves with projects found on Projectverse.
Again, we requested at least 5 projects, and asked for “BIM_Flexi”, “Haas VR”, and
“Conversational Agents” to be among these. We also specifically instructed participants
to not only read the information on the gun display, but also jump into the project
applications to fully experience them. We gave instructions on how to use Oculus Home
with virtual desktop such that they would not have to reactivate the VR session on the
desktop when jumping. In both parts of the study, participants were instructed to close
the website or Projectverse after finishing their experience and only then answer the
questionnaire.

Figure 5.1: BIM_Flexi on the VR Group Website.

68

5.1. Methodology

Figure 5.2: BIM_Flexi in Projectverse.

To provide a comparable information basis, we configured Projectverse to provide applica-
tions of the three research projects named above, which are also described in detail on the
website alongside four applications resulting from student work. The sky in Projectverse
was populated with seven stars, arranged in three constellations when sorted by main
researcher, and five constellations when sorted by category. The multiplayer functionality
was also activated, but not used since participants experienced Projectverse one person
at a time.

The three projects we specifically asked participants to visit provide the following
gameplay:

• BIM_Flexi: This project focuses on designing industrial buildings in a collabora-
tive environment. The application we provide on Projectverse allows participants
to experience a building visualized through BIM_Flexi by moving through it using
teleport locomotion.

• Haas VR: This project aims to visualize large industrial environments, i.e., ma-
chinery and production chains. In the application we used for the user study,
participants could experience a wafer-making machine and change its configuration
using trigger-areas with which they could interact by moving the controllers into
them. This would change certain parts of the machine. Movement was enabled
through thumbstick/touchpad locomotion.

• Conversational Agents: This project aims to investigate the impact of conver-
sational embodied agents in VR, specifically in urban exploration scenarios. The

69

5. Evaluation

application version used for the study places participants in a first-responder sce-
nario in which they could free trapped car accident victims, fight fires or neutralize
toxic substances. Since the conversational agents of this application require re-
sources that are not available in the browser environment, we disabled them for the
study version. Movement was enabled through thumbstick/touchpad locomotion.

In all applications, we provided info boards that showed the project description together
with the control layout. An example is shown in Figure 4.15.

5.1.2 Metrics
Demographics Participants were asked to identify their gender and age, as well as
state their levels of experience with both VR headsets and video games between 1 and 5,
where 1 is the lowest and 5 the highest.

Questionnaire Our study questionnaire includes questions about user experience,
knowledge gains and retaining, and workload. The full questionnaire can be found
in Appendix A. Participants were asked to answer questions after experiencing each
condition, the website and Projectverse. In the final part, we asked participants to choose
between the website and Projectverse in multiple categories. We assessed knowledge
gained from both interfaces alongside ease-of-use and personal preferences as well as
comparing both mediums directly. Answers could be either on a 1 to 5 Likert scale or
in free text as well as binary yes/no answers, depending on the question. For yes/no
questions, we asked participants to explain their choice in a couple of sentences.

5.1.3 Materials
The evaluation was conducted with one Oculus Rift S VR headset and Oculus Touch
Controllers. The HMD was connected to a desktop computer, which was used both to
examine the website as well as use Projectverse. The experiments took place in a small
room, where the play area measured approximately 1,5x1,8m. We set the HMD’s virtual
play area limit to this area. Each participant was brought to this room alone such that
there would be no collisions with others.

5.1.4 Participants and Procedure
We had 11 participants, among them 7 men and 4 women. Each conducted the entire user
study, thus all 11 participants’ answers are included. Ages ranged between 20 and 26, with
the median at 24. The distribution of participant ages is shown in Figure 5.3. The levels
of experience with VR and video games are shown in Figure 5.4. The median experience
level for using VR headsets was at 2. All but one participants answered experience levels
1 or 2, whereas the remaining one answered 4. For video games experience, the median
was 4, with all options from the range present in the answers.

70

5.1. Methodology

Figure 5.4: Experience levels of participants in our user study.

Figure 5.3: Age distribution of our user study.

Upon arrival, participants were greeted and introduced to the play area and its limitations
as well as the HMD device and the controllers. The hardware and how to use it was
explained as well as the virtual play area limit and how to handle it.

After this, participants tested the website by themselves and were subsequently asked
to fill in the website part of the questionnaire. In the next step, with guidance from an
experimenter, participants put on the HMD and could again familiarize themselves with
the controls. Next, they could test Projectverse and ask questions about how to use it or
the controls. After testing, participants answered the second part of the questionnaire,
and finally, the third, in which they compared both media. The whole procedure lasted
between 45 and 75 minutes per participant.

71

What is your level of experience using VR Headsets? What is your level of experience with video games?
(1: lowest, 5: highest)

6

!'! 5
Q) ,:

4
"' 0
:;; 3
.0
E

2

1

0
1

(1: lowest, 5: highest)

2 3
Scores

4

3

2

1

0

4

20

5

21

4

!'!
3

U)
C "' 0
:;; 2
.0
E
:::, z

1

0
1

What is your Age?

22 23 24

2

25 26

3
Scores

4 5

5. Evaluation

ID Question
Q1 What were your initial impressions when using the application?

Q2
Did you get enough information to understand a project?
If not, what did you miss?
If yes, what was especially important for your understanding?

Q3 Which medium was easier in terms of navigation and interaction?
Why was this medium easier?

Q4 Which medium provided you with a better understanding of project contents?
Why did this medium provide you with a better understanding?

Q5 Which medium was more comfortable to use for an extended period?
Why was this medium more comfortable to use?

Q6
Which medium required more work from you to
find out information about the projects?
Why did this medium require more work?

Q7
Which medium would you recommend to others
who wish to find out about the VR Group’s work?
Why would you recommend this medium?

Q8 Which, if any, modifications would you like to see in the website?
Q9 Which, if any, modifications would you like to see in [the VR application]?

Q10 Do you see any added benefit to exploring projects through ProjectVerse?
If so, what is this benefit?

Table 5.1: Questions used in the preference part of the qualitative evaluation.

5.2 Results
We analyzed the responses to our questionnaire in two main parts, one being the
qualitative evaluation, and one the quantitative evaluation. In the qualitative evaluation,
we compare the answers given in free text form from both the website and the VR
parts as well as the final, comparative part. In the quantitative evaluation, we evaluate
subjective scores of the questions presented on the 1-to-5 Likert scale [8] of Projectverse
in comparison to the website in e.g. knowledge gains or physical and mental demand of
both media.

5.2.1 Qualitative Evaluation
Preference In the qualitative evaluation, we analyzed and compared questionnaire
responses to each two corresponding questions from the website and the VR part. In
addition, we analyzed and summarized the responses given in the final comparative part.
In this first section, we evaluated answers to questions about preference. These questions
are shown in Table 5.1.

72

5.2. Results

Q1 Participants responded that, in general, they were satisfied with the navigation
options of the website and remarked a good, usable layout that provided good organisation
and overview. However, one participant also mentioned confusion with the overview
provided, whereas another commented the navigation to feel “clunky with weirdly placed
arrow buttons”. For initial thoughts on Projectverse, participants found the visualization
and overall art style “like a cool old computer game”, “quite entertaining”, “really liked
the galaxy design”, and “[were] amazed by the visualization”. On the other hand, we
received feedback on the controls and VR, in general, to be initially overwhelming, but
easy to get used to, and then also easy to use. It was also remarked that Projectverse
provides a “much clearer [picture] of the projects by experiencing them [personally]
instead of just reading about them”. The need to reactivate the VR session after a jump
was commented by one participant as “[introducing] a bit of friction”.

Q2 Participants answered on Q2 that they would on the one hand require more pictures,
whereas others remarked that the images provided on the website helped a “quicker
understanding of the project”. It was also mentioned that the core concepts of projects
were explained on the website, however, one could not imagine “how the project would
look like in the real world” from this representation of information. For Projectverse, one
participant also mentioned the lack of pictures which would have helped to understand
projects better. On the other hand, participants remarked at the large impact of the info
boards in the project applications as well as the use of VR environments and “being able
to navigate through the projects [themselves]” to understanding research projects. Two
participants commented on the font size of the gun display being too small to read quickly.
While participants remarked that on the website, they got an abstract understanding of
projects, Projectverse provided them with quicker understanding. Furthermore, it was
answered that “doing stuff [actively]” helped when using Projectverse.

Q3 Except for one participant, all found the website to be easier to use. This choice
was explained by being used to navigating websites, higher intuitiveness and experience
with them as well as an absence of motion sickness in this medium. Furthermore, the
website was described as less demanding and as following conventions which for VR
applications, “there aren’t clear cut [conventions]”, resulting in this participant having
to re-read the controls. However, Projectverse was described as motivating due to its
game-like design by one participant, whereas another found it easier to see something
right in front of them and being able to grab it as compared to just read about it.

Q4 The majority of participants (7) found Projectverse to provide better understanding,
while three participants answered the website here, and one did not have any preference.
Participants justified their decisions for Projectverse by the fact that this medium enabled
them to experience research projects first-hand, showing the “intentions and goals better”.
Furthermore, being “literally in the project” as well as being able to walk around in
and trying out a research project application “made it [easier] to remember afterwards”.
It was also remarked that, while the website required imagination of how the projects

73

5. Evaluation

looked like, Projectverse provided intuitive understanding and “conveyed things about
the projects that weren’t even in the text”. Participants that found the website to provide
them with a better understanding justified this by the “textual description” of projects
being more accurate, the website in general being less distracting, and being more used
to the medium. These participants found the website to be more detailed and to help
“generate a greater knowledge of the project”.

Q5 All but one participant named the website to be more comfortable to use, whereas
one chose Projectverse. This participant found Projectverse to be “more fun to use”.
Among the others, VR was found to be more physically demanding, overwhelming and
distracting. Furthermore, having to stand up and “wear a heavy device” along with being
used to websites and their navigation were other reasons for finding the website more
comfortable.

Q6 Here, six participants chose Projectverse, three the website, and two found no
difference. When asked about their reasons, participants that chose Projectverse found it
more challenging to use and get used to, requiring more interactions, work, concentration
and time, and being more difficult to navigate. One participant that chose the website
here justified this by the website leaving less of a mental imprint of project contents.
Another one reasoned that, while Projectverse provided a dynamic experience, having to
first read information on the website and then watch a video on it was more work-intense.
Participants that had no preference did not justify their decision.

Q7 A majority of nine chose Projectverse here, compared to one participants deciding
for the website and one having no preference. Reasons for choosing Projectverse were a
better fit to the projects, information being clearer, a more fun experience and really
getting to know the projects. Four participants specifically mentioned they had fun when
trying out Projectverse. Two remarked that the domain of the information being the
same as that of its conveying provided much better understanding. The participant
that chose the website here remarked that to simply inform oneself, it is easier to use.
Someone who wants to experience projects first hand should first read the website, then
use Projectverse. The participant that had no preference states they would recommend
both methods with one being purely theoretical, and the other offering a “hands-on”
experience.

Q8+Q9 According to the answers, the website should be extended by pictures and
references to Projectverse as well as changes to the navigation and structure. On the other
hand, modifications to Projectverse should include images in the project descriptions on
the gun display along with larger font sizes, sounds and voiceover, different locomotion
methods (unspecified which) and a lower railing on the central play area. Furthermore, the
controls should be unified among all project applications and described better, possibly
by the use of a step-by-step tutorial.

74

5.2. Results

ID Question

Q11 Which research areas/categories do you remember
[after exploring the projects]?

Q12 Who works on the [Conversational Agents (W) / BIM_Flexi (P)] project?

Q13 What is the [Conversational Agents (W) / BIM_Flexi (W + P)]
project about?

Q14 Which new things did you learn about [BIM_Flexi] using Projectverse? (P)

Q15 Which new things did you learn about [Conversation Agents]
using Projectverse? (P)

Q16 What can one see and do in the Haas VR project? (P)

Table 5.2: Questions used in the knowledge part of the qualitative evaluation.

Q10 Answers here mention higher motivation, a longer-lasting, more detailed memory
of projects as well as a hands-on experience and quicker learning when participants
informed themselves using Projectverse. Projectverse was also referred to as being more
engaging and showing directly what was previously just readable information. One
participant commented that VR projects “benefit tremendously from being able to try
[them] out”. The answers state that “The experience sticks with you for a longer period
of time”, while being more motivating than the website when it comes to reading about
projects, which was reasoned in the “nice design and functions” of Projectverse. One
participant remarked that Projectverse provided them with “a better imagination or gut
feeling about a project”, while also stating that the experience might stay longer in their
memory than the text they read on the website.

Learning For the qualitative evaluation of the learning performance in the website and
Projectverse, we analyzed questionnaire responses to the questions given in Table 5.2.
Again, we compared answers to questions about both Projectverse and the website and
summarized the responses. Some questions were asked only in regards to Projectverse,
these are marked with (P), whereas the question variations we asked about the website
are marked with (W).

Q11 Answers to this question were largely similar in both media. The number of
categories or areas mentioned ranged between 0 and 7 for the website and 0 and 5 for
Projectverse. Responses were generally short for both media, and there appears no major
difference between the answers.

Q12 For both media a range between 0 and 2 names were answered. Participants
answered the question similarly for both the website and Projectverse.

Q13 Participants reproduced the contents of the website well. Communication and text
to speech were answered as contents of the Conversational Agents project. Furthermore,
human-like conversations and urban VR visualisations were mentioned here, in addition to

75

5. Evaluation

ID Question
Q17 How easy was it for you to find information about projects?
Q18 How intuitive were the menu and navigation options?
Q19 How many projects did you explore?

Q20 How many researcher names do you remember after
using the [website/Projectverse]?

Q21 How mentally demanding was the task?
Q22 How physically demanding was the task?
Q23 How engaging was the task?

Table 5.3: Questions for which we performed the Wilcoxon Signed Rank Test.

the effect these improved conversations have to perception, immersion and presence. In the
Projectverse question, participants answered that BIM_Flexi is about the visualization
of industrial buildings and “the architecture and building process”. One participant
specifically named the miniature model of a building this project proposes, which can
only be learnt from using Projectverse, since this information is not included in the
website.

Q14 Participants answered that they learned how to use the teleport locomotion
technique, how to transition between projects and how BIM_Flexi “can be applied to
our (work) [lives]”. Furthermore, participants stated to have learned how BIM_Flexi “is
supposed to work” and that they could get “a good impression of how the actual buildings
will look like as well as a sense of scale”. One participant remarked that, although not
having learned something new about the project, they could “explore what it looks like
in VR”, which, they stated, would definitely stay in their memory.

Q15 While 2 participants stated they learned nothing new and 2 did not answer at
all, others answered that they learned that the project was “not only about language
and conversation but also [emergency] situations” as well as aiming to recreate a first
responder training scenario. One participant answered that they learned how the project
can be applied in real-life situations, whereas another stated that they learned about the
project being interactable and the experience providing them with “a much clearer, less
vague outlook of what is expected from this project”.

Q16 Answers include the visualization of an industrial projects, specifically, wafer
making in a factory, with the use of a machine. Furthermore, the moving production line
of this project was mentioned as well as the possibility to interact with parts of it.

5.2.2 Quantitative Evaluation
For the quantitative evaluation of our questionnaire, we used the questions in Table 5.3.
For all but Q19 and Q20, we asked participants to answer on the 1-to-5 Likert scale.

76

5.2. Results

We compared questionnaire responses in respect to differences between the two media.
For this, we used the Wilcoxon Signed Rank Test. The test details for those comparisons
are shown in Table 5.4. The scores for these questions are shown in Figure 5.5. Due to
our relatively small number of 11 participants, the results of these statistical tests should
be treated as exploratory and indicating some first tendencies that might be investigated
further in future research.

(a) Q17. (b) Q18.

(c) Q19. (d) Q20.

77

5

4

3

2

5

4

3

2

1

How easy was it for you to find information
about projects?

0

0

Website VR Appli cation

How many projects did you explore?

n.s.
0

'
0

0

Website VR Application

5

4

3

2

How intuitive were the menu and
navigation options?

n.s.

0

Website VR Appl ication

How many researcher names do you remember
after using the [website/Projectverse]?

5

4

3

2

1

0
Website VR Applicat ion

5. Evaluation

(e) Q21. (f) Q22.

(g) Q23.

Figure 5.5: Boxplots of the question scores for Q17-Q23, with median values, interquartile
ranges and outliers.

Q17+Q18 User friendliness and intuitiveness of the website was rated relatively high,
compared to fairly lower ratings for Projectverse. The medians were 5 for the website and
4 and 3 for Projectverse in questions regarding these. We found a statistically significant
effect for Q17, where participants rated the website easier to find information about
projects.

Q20 Participants could remember between 0 and 4 researcher names after using either
medium, with the median for the website at 1 and for Projectverse at 2. We found
no statistically significant effect of the medium here. Participants did sometimes not
reproduce names correctly, i.e., introduce spelling errors. Though, we still count misspelled

78

5

4

3

2

How mentally demanding was the task?

n.s.

0

1 ~--------------~
Website VR Application

How physically demanding was the task?

5

*
4

3

2 0

1
Website VR Application

How engaging was the task?

5

4

3

2

Website VR Application

5.2. Results

Question Test Statistic Standard Error Standardized
Test Statistic p-Value

Q17 36.000 6.364 -2.750 0.006
Q18 11.000 9.552 -1.727 0.084
Q19 9.000 6.964 -1.292 0.196
Q20 10.500 3.623 0.828 0.408
Q21 15.500 5.690 0.264 0.792
Q22 28.000 5.690 2.460 0.014
Q23 55.000 9.650 2.850 0.004

Table 5.4: Results of the Wilcoxon Signed Rank Test. Statistically significant differences
in bold.

names as correct answers. In any case, a slight increase in memory is expected after
seeing the names for the second time.

Q21+Q22 Projectverse was rated higher than the website in terms of physical demand.
The median was 3 for both media in mental demand and at 1 and 2 respectively, for
physical demand in the website and Projectverse. We did not find a statistically significant
effect of the medium on mental demand.

Q23 We found a statistically significant effect of the medium on how engaging the task
was perceived. Projectverse was rated higher in this question, with medians at 2 and 4
for the website and Projectverse, respectively.

5.2.3 Participant Remarks and Observations
While supervising the experiment and accompanying participants, the experimenters
took notes of verbal remarks as well as difficulties encountered by participants.

Questions about the control layout of the lobby and the project applications were frequent.
On the other hand, having to restart the VR session after transitioning into a project demo
was not an issue and carried out with ease by the participants. Also, some participants
encountered difficulties with the virtual environment of one project application. Some
remarked that the info panels with the controls within project applications were hard to
read from the spawn point, whereas the controls layout itself was found to be irritating
and causing motion sickness in one project application, where thumbstick movement was
used. The grabbing mechanic in the lobby seemed unintuitive to some participants.

The process of entering and exiting project applications was quickly learned and used
often and with ease. When a jump into the wrong application occurred, participants
quickly recognized this and swiftly jumped back to the lobby and into the intended
application. Participants seemed highly motivated to “play through” the environments
they experienced.

79

5. Evaluation

Aside from the three projects that we specifically asked the participants to explore, most
(8) also visited between one (2 participants) and two (6 participants) additional project
applications out of curiosity.

5.3 Discussion
Our evaluation showed that although being more physically demanding, Projectverse
provided a more engaging experience to participants when informing themselves about
the work of the VR group. In addition, they personally reported better understanding of
project contents due to the domain of Projectverse, which they perceived as the proper
environment for the information we were trying to convey. We take from this, that
Projectverse provides a better basis for learning about the work of the VR group. Despite
the website being more comfortable to use, participants reported that Projectverse
provided them with more information and a deeper understanding of projects, whereas
the amount of work required was perceived more in case of Projectverse. Specifically, it
seems that participants interpret “work” differently - as a combination of physical and
mental effort. Mental effort seems to include both the demands of learning something
new, e.g. how to use VR, as well as remembering information learned and encountering
passive moments of learning that might be boring or require more focus because of their
low-intensity nature.

To provide even better understanding of research projects, participants required pictures
on the website alongside references to Projectverse on project pages. In Projectverse,
improvements should be made to the UI, such that texts would be better readable.
Furthermore, Projectverse could benefit from more sounds and voiceover conveying
information, as well as changes to the play area resulting in less occlusion.

Most participants saw added benefit from Projectverse, reasons here ranged between
directly experiencing projects, being more engaged or experiencing instead of reading.
We conclude from this, that Projectverse is an adequate addition to the VR group website
that “fills in the gaps” that are left when learning about the work of the VR group from
just reading the website. The ability to experience research projects first hand, in an
immersive environment, leads to an engaging experience that stuck with participants
and - according to their answers - left a long-lasting memory of the content of research
projects.

Our motivation to create Projectverse was to provide information about the VR group
in an environment more suitable to the VR field than a traditional website. Judging
by the results of our evaluation, we assume this purpose to be fulfilled in the platform
we created. Motivation and engagement are essential factors to learning something new
- by establishing an environment that provides fun experiences in which users enjoy
spending time, we introduce these factors into the VR group website. As Pomykakala et
al. [10] state, WebXR makes our platform accessible and “effective for a wide audience”.
Furthermore, Projectverse is platform independent, which Sun et al. point out to be an
important feature in learning applications [17].

80

5.3. Discussion

Taken together, our results indicate that, while in some cases resulting in deeper knowledge
and understanding, Projectverse mostly increases motivation and engagement. We
consider this an important advantage over the website, since the aim of our work was to
provide information to the general public, whose members wish to inform themselves
about the VR group. Higher motivation leads to longer-lasting memory and - possibly -
to more usage of Projectverse.

81

CHAPTER 6
Conclusion

6.1 Conclusion
In this thesis, we presented Projectverse, our VR platform for providing access to research
project applications alongside a developer toolkit to extend it. To implement Projectverse,
we used the WebXR Device API within the Unity game engine to use VR hardware in
the web browser. Upon launching the application, users join a multiplayer session in
the lobby. Here, they can inform themselves about research projects by using the laser
gun tool to select stars that represent these projects and reading the information we
provide. Furthermore, user can interact with others in the form of voice chat, and see
other players represented by avatars. Having decided on a research project to explore
further, users can choose to jump into it by again using the laser gun tool. Within a
research project application, further information is provided via info boards. Project
applications provide their own logic and experience.

In order to simplify the adaptation process of these applications, we provide the developer
toolkit which includes basic VR functionality that utilizes the WebXR Device API
together with prefabs making use of said functionality. Together with the documentation
we provide, the developer toolkit allows researchers to suit their applications to the
platform.

Our project shows that the medium we choose to present the research work of the
VR group supports the information we aim to convey. The user study suggests that
participants were more motivated and engaged while using our application when compared
to the traditional approach of a website. We take from this that our work provides a
useful addition to the VR group website specifically, and to information platforms in
general. In uniting tried-and-tested technologies like Unity with new additions to the VR
field - WebXR - we implemented a long-lasting platform that has future potential: New,
yet to be released hardware will be usable with Projectverse, whereas the platform itself

83

6. Conclusion

can be adapted to any field or use case that could benefit from a hands-on, engaging,
experience. Future work of the VR group can easily be added to Projectverse, which
ensures frequent use and a rich environment.

6.2 Future Extensions
As the WebXR Device API at the time of the development of our platform does not
support VR sessions that persist over multiple web pages, we had to implement the switch
between application such that a reactivation of the VR sesstion was necessary whenevery
such a switch takes places, i.e., when jumping into a project and when jumping back
to the lobby. The “navigation” repository1 of immersive web, the group maintaining
WebXR, suggests that with navigation, a feature is planned that persists VR sessions
while navigating between pages. With this feature eventually implemented, our platform
can be extended to make use of it in order to avoid the reactivation of VR sessions upon
jumping.

Another future possibility of improvement is indicated by participant comments during
the user study, suggesting an adaptation of some features to improve user experience.
These include the placement of info boards within project applications in a standardized
way, as well as increasing font sizes on the laser gun as well as on the info boards.

Finally, the adaptation process could be automated to at least some degree, e.g. by
removing old VR APIs and frameworks from projects automatically as well as importing
our toolkit and replacing the VR device representation.

Altogether, we envision a fully-functional VR environment that allows for uninterrupted
VR sessions on the VR group website. Research project applications in this environment
provide feature-complete functionality, such that the applications on Projectverse com-
pletely cover all user actions available in their - possibly Windows-built - counterparts.
Since multiplayer is already part of Projectverse, this feature could be expanded to allow
for multi-user sessions within project applications. With more and more research project
applications being deployed to it, the future sky of Projectverse will be full of stars and
provide a rich environment to learn, explore and enjoy together.

Projectverse is available at https://www.vr.tuwien.ac.at/projectverse/.

1https://github.com/immersive-web/navigation

84

https://www.vr.tuwien.ac.at/projectverse/

List of Figures

2.1 Technologies used for web-based VR. 6
2.2 A-Frame example scene. 8
2.3 Architecture as proposed by Sun et al. [17]. 10
2.4 Excerpts from videos used by Pomykakala et al. [10]. 13
2.5 Proposed user interaction cursor by Sathe et al. [13]. 16

3.1 Schematic outline of the components of Projectverse. 19
3.2 Schematic outline of the developer toolkit’s contents. 20
3.3 Schematic outline of the data scheme used for Projectverse. 21
3.4 Schematic example and realization (1st person game view) of our visualization

technique for project graphs. 22
3.5 Schematic of our coordinate system for star placement calculation. 23
3.6 Examples for edge drawings. Self-loops are not shown. 29
3.7 Another user’s avatar (in green) as seen from a user’s point of view. . . . 30
3.8 Flowchart of the graph calculation and distribution process. 31
3.9 The laser gun interaction tool as seen in the editor view. 31
3.10 Still image of the transition visual effect. 32

4.1 A research project info web page. 40
4.2 The balcony play area. Editor view. 41
4.3 The information panel on the table with the button to configure the visualiza-

tion. Editor view. 42
4.4 Sphere for hand representation with controls information tablet. Editor view. 43
4.5 Flowchart of actions performed when launching Projectverse. 44
4.6 The multiplayer avatar used in Projectverse. From left to right: Players 1-4

etc.. Editor view. 47
4.7 Color palette for the star constellations. Editor view. 49
4.8 A scene of star constellations arranged by main researcher. First person game

view. 50
4.9 Shooting the laser gun. First person game view. 52
4.10 Laser gun with project information displayed, ready for transition. First

person game view. 53
4.11 Laser gun and selected star during the transition animation. First person

game view. 56

85

4.12 Folder structure on the web server. 59
4.13 Schematic outline of the configuration data specification used by Projectverse. 60
4.14 Target markers used in our teleportation method. 64
4.15 The info board prefab in use in a project application. 65

5.1 BIM_Flexi on the VR Group Website. 68
5.2 BIM_Flexi in Projectverse. 69
5.4 Experience levels of participants in our user study. 71
5.3 Age distribution of our user study. 71
5.5 Boxplots of the question scores for Q17-Q23, with median values, interquartile

ranges and outliers. 78

86

List of Tables

2.1 Compatibility matrix for WebXR. 9

5.1 Questions used in the preference part of the qualitative evaluation. 72
5.2 Questions used in the knowledge part of the qualitative evaluation. 75
5.3 Questions for which we performed the Wilcoxon Signed Rank Test. 76
5.4 Results of the Wilcoxon Signed Rank Test. Statistically significant differences

in bold. 79

87

List of Algorithms

3.1 Algorithm for the star placement. 26

3.2 Algorithm for creating star constellations. 28

89

Bibliography

[1] Valentin Benzing and Mirko Schmidt. Exergaming for children and adolescents:
Strengths, weaknesses, opportunities and threats. Journal of clinical medicine, 7
(11), 2018. ISSN 2077-0383. doi: 10.3390/jcm7110422.

[2] Evren Bozgeyikli, Andrew Raij, Srinivas Katkoori, and Rajiv Dubey. Point & teleport
locomotion technique for virtual reality. In Anna Cox, Zachary O. Toups, Regan L.
Mandryk, and Paul Cairns, editors, Proceedings of the 2016 Annual Symposium on
Computer-Human Interaction in Play, pages 205–216, New York, NY, USA, 2016.
ACM. ISBN 9781450344562. doi: 10.1145/2967934.2968105.

[3] Manuela Chessa, Chiara Bassano, and Fabio Solari. A webgl virtual reality exergame
for assessing the cognitive capabilities of elderly people: A study about digital
autonomy for web-based applications. In Alberto Del Bimbo, Rita Cucchiara, Stan
Sclaroff, Giovanni Maria Farinella, Tao Mei, Marco Bertini, Hugo Jair Escalante,
and Roberto Vezzani, editors, Pattern Recognition. ICPR International Workshops
and Challenges, volume 12662 of Lecture Notes in Computer Science, pages 163–
170. Springer International Publishing, Cham, 2021. ISBN 978-3-030-68789-2. doi:
10.1007/978-3-030-68790-8{\textunderscore}14.

[4] Adrian Ciprian Firu, Alin Ion Tapîrdea, Anamaria Ioana Feier, and George Drăghici.
Virtual reality in the automotive field in industry 4.0. Materials Today: Proceedings,
45:4177–4182, 2021. ISSN 22147853. doi: 10.1016/j.matpr.2020.12.037.

[5] Nuha El-Khalili and Ken Brodlie. Architectural design issues for web-based virtual
reality training systems. 1998.

[6] Mhanaj Hossain, Daphne Economou, and Jeffrey Ferguson. Work-in-progress-webxr
to support student wellbeing and anxiety. In 2021 7th International Conference of
the Immersive Learning Research Network (iLRN), pages 1–3. IEEE, 2021. ISBN
978-1-7348995-2-8. doi: 10.23919/iLRN52045.2021.9459324.

[7] Kate E. Laver, Belinda Lange, Stacey George, Judith E. Deutsch, Gustavo Saposnik,
and Maria Crotty. Virtual reality for stroke rehabilitation. The Cochrane database of
systematic reviews, 11(11):CD008349, 2017. doi: 10.1002/14651858.CD008349.pub4.

91

[8] R. Likert. A Technique for the Measurement of Attitudes. A Technique for the
Measurement of Attitudes. Archives of Psychology, 1932. URL https://books.
google.at/books?id=9rotAAAAYAAJ.

[9] Mozilla Corporation. Webgpu api - web apis | mdn, 19.08.2023. URL https:
//developer.mozilla.org/en-US/docs/Web/API/WebGPU_API.

[10] Radoslaw Pomykakala, Artur Cybulski, Tadeusz Klatka, Michal Patyk, Julia
Bonieckal, Maciej Kedzierski, Mateusz Sikora, Jakub Juszczak, and Magdalena
Igras-Cybulska. “put your feet in open pit” - a webxr unity application for learning
about the technological processes in the open pit mine. In 2022 IEEE Confer-
ence on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW),
pages 493–496. IEEE, 3/12/2022 - 3/16/2022. ISBN 978-1-6654-8402-2. doi:
10.1109/VRW55335.2022.00110.

[11] R. C. Prim. Shortest connection networks and some generalizations. The Bell System
Technical Journal, 36(6):1389–1401, 1957. doi: 10.1002/j.1538-7305.1957.tb01515.x.

[12] Warren Robinett and Richard Holloway. Implementation of flying, scaling and
grabbing in virtual worlds. In Marc Levoy, Edwin E. Catmull, and David Zeltzer,
editors, Proceedings of the 1992 symposium on Interactive 3D graphics - SI3D ’92,
pages 189–192, New York, New York, USA, 1992. ACM Press. ISBN 0897914678.
doi: 10.1145/147156.147201.

[13] Vinit Sathe, Piyush Gupta, Karan Kaushik, Suvarna Bhat, and Sachin Deshpande.
Virtual reality websites(vr web). In 2017 International conference of Electronics,
Communication and Aerospace Technology (ICECA), pages 647–652. IEEE, 2017.
ISBN 978-1-5090-5685-9. doi: 10.1109/ICECA.2017.8203619.

[14] Hayeon Song, Wei Peng, and Kwan Min Lee. Promoting exercise self-efficacy
with an exergame. Journal of health communication, 16(2):148–162, 2011. doi:
10.1080/10810730.2010.535107.

[15] J. Sorger, A. Arleo, P. Kán, W. Knecht, and M. Waldner. Egocentric network
exploration for immersive analytics. Computer Graphics Forum, 40(7):241–252, 2021.
ISSN 0167-7055. doi: 10.1111/cgf.14417.

[16] Soumil Srivastava. Webgl: The new standard for 3d graphics on the web - ar/vr
journey: Augmented & virtual reality magazine. AR/VR Journey: Augmented
& Virtual Reality Magazine, 20.05.2020. URL https://arvrjourney.com/
webgl-the-new-standard-for-3d-graphics-on-the-web-2d8e206e7ef0.

[17] Fei Sun, Zhaochuang Zhang, Dunming Liao, Tao Chen, and Jianxin Zhou. A
lightweight and cross-platform web3d system for casting process based on virtual
reality technology using webgl. The International Journal of Advanced Manufacturing
Technology, 80(5-8):801–816, 2015. ISSN 0268-3768. doi: 10.1007/s00170-015-7050-1.

92

https://books.google.at/books?id=9rotAAAAYAAJ
https://books.google.at/books?id=9rotAAAAYAAJ
https://developer.mozilla.org/en-US/docs/Web/API/WebGPU_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGPU_API
https://arvrjourney.com/webgl-the-new-standard-for-3d-graphics-on-the-web-2d8e206e7ef0
https://arvrjourney.com/webgl-the-new-standard-for-3d-graphics-on-the-web-2d8e206e7ef0

Appendix

93

Appendix A

94

General Questions

1.

2.

Mark only one oval.

None

1 2 3 4 5

Frequent Use

3.

Mark only one oval.

None

1 2 3 4 5

Frequent Use

ProjectVerse XR - User Study
Welcome to the ProjectVerse XR User Study! This study is divided into three parts, in
which we will ask you to do the following things:

1. General Questions: You are already on the general questions page. Here, we ask
you to just answer some simple questions about yourself.

2. Website Version: You will be asked to navigate to a website here, on which you will
learn about the work of TU Wien's Virtual and Aurmented Reality Research Group.
After having visited the website, you will be asked to answer some questions about
it.

3. VR Version: You will be asked to use a VR application that runs in the web browser.
Here, you will also learn about the work of TU Wien's Virtual and Augmented Reality
Group by exploring immersive projects. You will answer questions about the
ProjectVerse website afterwards.

This user study will take approximately 45 minutes - 1 hour. Thank you for participating!

What is your Age?

What is your level of experience using Virtual Reality Headsets?

What is your level of experience with video games?

4.

Mark only one oval.

Other:

Female

Male

Website Version

In this section, you will use the website of Virtual and Augmented Reality Group to ¦nd out
about our current research projects, their contents and the researchers working on them.

Please visit Research Unit Virtual & Augmented Reality – TU Wien and familiarize yourself
with different projects that can be found in the "Projects" section in the ¦rst third of the
page.

Please visit at least 5 project pages but make sure that "BIM_Flexi", "Conversational
Agents" and "Haas VR" are among them. You will be asked questions about these projects.

Once you are done browsing the website, please close it, and only then answer the
following questions.

Website Version

In this section, you will use the website of Virtual and Augmented Reality Group to ¦nd out
about our current research projects, their contents and the researchers working on them.

Please visit Research Unit Virtual & Augmented Reality – TU Wien and familiarize yourself
with different projects that can be found in the "Projects" section in the ¦rst third of the
page.

Please visit at least 5 project pages but make sure that "BIM_Flexi", "Conversational
Agents" and "Haas VR" are among them. You will be asked questions about these projects.

Once you are done browsing the website, please close it, and only then answer the
following questions.

What is your gender?

5.

6.

Mark only one oval.

Very hard

1 2 3 4 5

Very easy

7.

Mark only one oval.

Very unintuitive

1 2 3 4 5

Very intuitive

8.

Mark only one oval.

Yes

No

9.

What were your initial impressions when using the application? (Please write at
least two sentences)

How easy was it for you to find information about projects?

How intuitive were the menu and navigation options?

Did you get enough information to understand a project?

If not, what did you miss? If yes, what was especially important for your
understanding? (Write at least one sentence)

Website - specific questions

In this section, you will be asked about some details that your learned from the projects
website.

10.

11.

12.

13.

How many projects did you explore?

How many researcher names do you remember after exploring the website?

Which research categories do you remember after exploring the projects?
(Please enter some keywords you connect to the projects)

Who works on the "Conversational Agents" project? Please add names of the
researchers that you remember.

14.

15.

16.

Website - workload questions

17.

Mark only one oval.

Very Low

1 2 3 4 5

Very High

What is the "Conversational Agents" project about? (Please write at least two
sentences)

What is the "BIM_Flexi" project about? (Please write at least two sentences)

What is the research area of "Haas VR"?

How mentally demanding was the task?

18.

Mark only one oval.

Very Low

1 2 3 4 5

Very High

19.

Mark only one oval.

Very Boring

1 2 3 4 5

Very Enganging

VR Version

In this section, you will use TU Wien's VR Group's ProjectVerse Browser Application to ¦nd
out about our current research projects, their contents and the researchers working on
them.

Please visit ProjectVerse XR – Research Unit Virtual & Augmented Reality
(tuwien.ac.at) and familiarize yourself with different projects that can be found on the
application. You will need to use Oculus Quest connected to your PC with the Link cable.

Please explore ("jump into") at least 5 projects but make sure to visit the "BIM_§exi", "Haas
VR" and "Conversational Agents" projects. You will be asked questions about these
projects. Also make sure to use the category switching button in the application.

Please also familiarize yourself with information about the usage of ProjectVerse on the
application website. Controls instructions are provided as well.

Use the application in VR mode and try jumping into projects. When in the Oculus Home
environment, click on the Destkop button to see your browser window in VR. This way
you can activate VR for each project demo directly from Oculus Home, without taking off
the VR glasses.

Once you are done using the application, please close it, and only then answer the
following questions.

How physically demanding was the task?

How engaging was the task?

VR Version

In this section, you will use TU Wien's VR Group's ProjectVerse Browser Application to ¦nd
out about our current research projects, their contents and the researchers working on
them.

Please visit ProjectVerse XR – Research Unit Virtual & Augmented Reality
(tuwien.ac.at) and familiarize yourself with different projects that can be found on the
application. You will need to use Oculus Quest connected to your PC with the Link cable.

Please explore ("jump into") at least 5 projects but make sure to visit the "BIM_§exi", "Haas
VR" and "Conversational Agents" projects. You will be asked questions about these
projects. Also make sure to use the category switching button in the application.

Please also familiarize yourself with information about the usage of ProjectVerse on the
application website. Controls instructions are provided as well. Use the application in VR
mode and try jumping into projects. When in the Oculus Home environment, click on the
Destkop button to see your browser window in VR. This way you can activate VR for each
project demo directly from Oculus Home, without taking off the VR glasses.

Once you are done using the application, please close it, and only then answer the
following questions.

20.

21.

Mark only one oval.

Very hard

1 2 3 4 5

Very easy

What were your initial impressions when using ProjectVerse? (Please write at
least two sentences)

How easy was it for you to find information about projects?

22.

Mark only one oval.

Very unintuitive

1 2 3 4 5

Very intuitive

23.

Mark only one oval.

Yes

No

24.

VR - specific questions

In this section, you will be asked to reproduce information gathered from the VR
application.

25.

26.

27.

How intuitive were the menu and navigation options?

Did you get enough information to understand a project?

If not, what did you miss? If yes, what was especially important for your
understanding? (Write at least one sentence)

How many projects did you explore?

How many researcher names cany you remember after visiting ProjectVerse?

Which research areas/categories do you remember?

28.

29.

30.

31.

Who works on the "BIM_Flexi" project?

What is the "BIM_Flexi" project about? (Please write at least two sentences)

Which new things did you learn about this project using ProjectVerse? (Please
write at least two sentences)

What is the "Conversational Agents" project about? (Please write at least two
sentences)

32.

33.

VR - workload questions

34.

Mark only one oval.

Very Low

1 2 3 4 5

Very High

35.

Mark only one oval.

Very Low

1 2 3 4 5

Very High

Which new things did you learn about this project using ProjectVerse? (Please
write at least two sentences)

What can one see and do in the "Haas VR" project? (Please write at least one
sentence)

How mentally demanding was the task?

How physically demanding was the task?

36.

Mark only one oval.

Very Boring

1 2 3 4 5

Very Enganging

Comparison

In this section, you will be asked questions about which platform better presents research
projects to the general audience.

37.

Mark only one oval.

Website

VR Application

No preference

38.

39.

Mark only one oval.

Website

VR Application

No preference

How engaging was the task?

Which medium was easier in terms of navigation and interaction?

Why was this medium easier? (Write at least two sentences)

Which medium provided you with a better understanding of project contents?

40.

41.

Mark only one oval.

Website

VR Application

No preference

42.

43.

Mark only one oval.

Website

VR Application

No preference

Why did this medium provide you with a better understanding? (Write at least
two sentences)

Which medium was more comfortable to use for an extended period?

Why was this medium more comfortable to use? (Write at least two sentences)

Which medium required more work from you to find out information about the
projects?

44.

45.

Mark only one oval.

Website

VR Application

No preference

46.

47.

Why did this medium require more work? (Write at least two sentences)

Which medium would you recommend to others who wish to find out about the
VR Group's work?

Why would you recommend this medium? (Write at least two sentences)

Which, if any, modifications would you like to see in the website? (Write at least
one sentence)

48.

49.

This content is neither created nor endorsed by Google.

Which, if any, modifications would you like to see in the ProjectVerse? (Write at
least one sentence)

Do you see any added benefit to exploring projects through ProjectVerse? If so,
what is this benefit?

 Forms

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Aim of the Work
	Structure of the Thesis

	Related Work
	Technology for web-based VR
	Related Resesarch
	Summary

	Design
	Requirements
	Overview
	Projectverse
	Developer Toolkit

	Software Implementation
	Projectverse Implementation
	Deployment to the Web Server and adding new Projects
	Developer Toolkit

	Evaluation
	Methodology
	Results
	Discussion

	Conclusion
	Conclusion
	Future Extensions

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Appendix
	Appendix A

