
Opt-in Protokolltypen für
Effektsysteme in Haskell

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Hannes Siebenhandl, BSc
Matrikelnummer 01327006

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Inf. Dr.rer.nat. Jens Knoop

Wien, 1. Dezember 2023
Hannes Siebenhandl Jens Knoop

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Opt-in Protocol Types for Effect
Systems in Haskell

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering/Internet Computing

by

Hannes Siebenhandl, BSc
Registration Number 01327006

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Inf. Dr.rer.nat. Jens Knoop

Vienna, 1st December, 2023
Hannes Siebenhandl Jens Knoop

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Hannes Siebenhandl, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Dezember 2023
Hannes Siebenhandl

v

Acknowledgements

I am deeply thankful to my supervisor Univ.Prof. Jens Knoop for his valuable support
and thoughtful advice during this thesis. Special thanks to Jana Chadt and Samuel Pilz
for their repeated constructive criticism, insightful discussions and technical and moral
support. Finally, I thank my parents for their support throughout my studies.

vii

Kurzfassung

Algebraische Effektsysteme sind eine vielversprechende Alternative zu Monadentransfor-
matoren, indem Effektsysteme die Seiteneffekte von Prozeduren in der Typensignatur
feingranular dokumentieren. Obwohl existierende algebraische Effektsysteme es erlau-
ben Seiteneffekte detailliert mitzuverfolgen, gibt es derzeit keine Möglichkeit, komplexe
Vor- und Nachbedingungen automatisiert vom Übersetzer verifizieren zu lassen. Dieses
Problem addressieren wir in dieser Arbeit und stellen preff vor, das erste in Haskell
geschriebene algebraische Effektsystem, welches traditionelle algebraische Effekte mit
parameterisierten, algebraischen Effektsystemen vereint. Parameterisierte algebraische
Effektsysteme erlauben es zur Übersetzungszeit komplexe Vor- und Nachbedingungen
im Ausführungskontext des Effekts zu verifizieren. Diese Kombination ermöglicht es,
algebraische Effekte zu definieren und zu benutzen, aber auch die Mächtigkeit von pa-
rameterisierten Effekten zu nutzen, wenn es vorteilhaft ist. Um die Ausdrucksstärke
und Anwendbarkeit von preff zu demonstrieren, implementieren wir Sitzungstypen
in weniger als 120 Zeilen Quellcode und vergleichen in einer Reihe von Mikroexperi-
menten die Laufzeit mit fortgeschrittenen Effektsystemen in Haskell. Unsere Evaluation
zeigt, dass preff ausgezeichnet geeignet ist, um komplexe Programmkontrollflüsse zu
implementieren und die Laufzeit in der Praxis kompetitiv zu der aktueller Effektsysteme
ist.

ix

Abstract

Algebraic effect systems are a promising alternative to existing monad transformer ap-
proaches providing fine-grained tracking of side effects in the type signature of procedures.
Even though existing algebraic effect systems allow describing a contract for tracking
side effects, there is no way to capture more complex pre- and postconditions that can
be verified by the compiler rather than the programmer. To address this shortcoming,
we introduce preff, the first algebraic effect system library in Haskell that combines
traditional algebraic effects and parameterised algebraic effects which enforce pre- and
postconditions in the effectful code at compile-time. This allows developers to define
and use algebraic effects, while also opting into parameterised effects to great effect. To
demonstrate the expressiveness and real-world applicability, we use preff to implement
session types in less than 120 lines of code and compare the run-time performance to
state-of-the-art effect system libraries in a series of microbenchmarks. Our evaluation
shows that preff is capable of expressing complex control-flow patterns comparable to
related session type libraries and has competitive run-time performance showcasing its
applicability in practice.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Algebraic Effect Systems . 3
1.2 Related Work . 4
1.3 Contributions of this Thesis . 7
1.4 Structure of this Thesis . 7

2 Motivating Algebraic Effect Systems 9

3 Relevant Haskell Concepts 21
3.1 Monad - Type Class Hierarchy . 21
3.2 Parameterised Monad - Type Class Hierarchy 21
3.3 Free and Freer Monad . 23
3.4 Open Union . 24

4 The Effect System preff 27
4.1 The Effect Monad PrEff . 27
4.2 Algebraic Effects Handlers in preff 32
4.3 Scoped-Parameterised Effect Handlers in preff 36

5 A Tour of preff 45
5.1 Algebraic Effects and Handlers . 45
5.2 Scoped-Parameterised Effects and Handlers 51
5.3 Show Case: Session Types in preff 62

6 Evaluation 69
6.1 Expressivity . 69
6.2 Performance . 73

xiii

7 Conclusion 83
7.1 Future Work . 84

List of Figures 87

List of Tables 89

List of Listings 91

Acronyms 95

Bibliography 97

Appendix 103

CHAPTER 1
Introduction

Development and maintenance of software within time and budget constraints is among
the greatest challenges in software engineering. However, the need for producing software
quickly is at odds with producing maintainable software, and developers often find
themselves trying to balance between writing code quickly and writing it in a maintainable
way. Maintainable components use separation of concerns and can be tested with less effort
as a result, which in turn helps to maintain the quality of written software. Having a good
overview of the control flow of a program is important to developers for understanding
the causality of computations and, consequentially, maintaining the code quality when
extending existing functionality. Therefore, the available control flow primitives can help
developers to continuously improve and maintain software. At last, tracking side effects
explicitly in the signature of procedures makes it easier for developers, and reviewers, to
understand the purpose of components, and how to use them.
Algebraic effect systems promise a way of structuring programs that is easy to use, easy
to understand and extensible. In the last decades, algebraic effect systems have been
intensely studied and introduced into many programming languages including Haskell.
Haskell is a purely functional programming language (Marlow et al., 2010), powered
by the de facto standard compiler Glasgow Haskell Compiler (GHC) (Peyton Jones
et al., 1993). It allows developers to implement algebraic effect systems without requiring
special language support for algebraic effect systems, contrary to languages such as Effekt
(Brachthäuser et al., 2020) and Koka (Leijen, 2014) that support user-defined algebraic
effects as a native language feature.
In purely functional languages like Haskell, there is no concept of a “procedure” since
everything is a function, meaning, given the same input parameters it will produce the
same output. However, there are functions that must have side effects, since they affect
the outside world or examine external sources. For example, reading the system clock
twice with a second delay in between has to yield two different results. In Haskell, it
is impossible to have a function of the type () -> Time, which produces a different

1

1. Introduction

functions

pure impure

(functional)
procedures

(monadic)
actions

(monadic)
computations

Figure 1.1: Terminology overview of pure/impure functions.

result on each invocation. How can a Haskell program then have any meaningful impact
on the world, if we cannot produce results based on external sources? Essentially, by
computing and hiding side effects inside monads, giving the illusion of functions that
produce different results even though their input parameters remain unchanged. We give
the name impure to such functions since they seem to no longer be defined solely by their
input parameters, while functions are pure, if the output value is fully determined by its
input parameters. A monad in Haskell allows writing seemingly procedural code, just
like in most mainstream imperative programming languages, using the do-notation. The
best-known monad is the IO monad. In the IO monad, we use functions that have side
effects, such as writing to a file, reading the system clock or interacting with a database.

We refer to impure functions which use monads via do-notation as functional procedures
or simply procedures. Functions are pure when the type signature indicates that there are
no unobservable side effects. Our separation between pure and impure is conceptual and
not sharp: the main purpose is to express expectations about the code. For readability
of this thesis, we further split functional procedures into monadic actions, and monadic
computations. We refer to code that serves a specific purpose in an application as
monadic actions. Such code serves often the implementation of business logic, i.e. logic
to accommodate for the needs and usage in businesses. It is not expected that business
logic is reused in other applications. For example, a functional procedure that requires
the existence of a database with a specific table layout is business logic, as such we may
refer to it as a monadic action. A monadic computation is meant to be reusable in
many different contexts, especially in other applications or libraries. Like the separation
of pure and impure functions, the distinction between monadic actions and monadic
computations is conceptual and not sharp. As a rule of thumb, monadic code that can be
factored into its own logical unit for reuse is a (monadic) computation, and a concrete
example or procedure that implements business logic is a (monadic) action. In Figure 1.1,
we show a schematic hierarchy of the terminology used throughout this thesis.

2

1.1. Algebraic Effect Systems

1.1 Algebraic Effect Systems
Algebraic effect systems enable fine-granular tracking of side effects and control flows,
whereas monads permit a binary view between pure and impure computations. Each
procedure is annotated with a set of effects called the effect signature, or sometimes the
effect list of a procedure. The effect signature of a procedure is the set of effects that
can be executed in said procedure. Further, a procedure ‘A’ can invoke another effectful
procedure ‘B’ if the effect signature of ‘A’ is a superset of the effect signature of ‘B’. This
composes well in practice, and allows each procedure to depend exclusively on the effects
it requires for its implementation.

Algebraic effect systems can intuitively be viewed as a client-server architecture, where
the client sends a request to the server, whereupon the server processes the request and
responds accordingly. However, contrary to usual client-server architectures, in effect
systems there is not one definite server, but multiple so-called algebraic effect handlers, in
short effect handlers or simply handlers, that respond to one effect only and, composed
together, form the server. An algebraic effect represents one or more actions that can be
performed in a code block and produce results, but contains no details regarding how to
perform the action, or how to produce the final result. This is left to the algebraic effect
handler which interprets the actions of the respective effect. For each effect, there may
be more than one interpretation, i.e. algebraic effect handler.

In Kiselyov et al. (2013), the authors show that effect systems enhance the composability
of software and allow for local reasoning. Due to the composability promises, effect
systems provide a suitable means to decoupling the implementation from a developer’s
intent, allowing to specify procedures service-agnostically and declaratively. Additionally,
they promote code reuse and simplify testing, since they enable developers to create unit
tests for procedures by specifying effect handlers that do not rely on external services.
Effect systems are capable of expressing complex control flow patterns, such as coroutines
or exceptions, without requiring built-in programming language support.

A parameterised effect is like an ordinary effect but is enriched with additional type
details, a so-called pre- and postcondition. The precondition is a type-level term which
describes a prerequisite that needs to hold before the effect can be executed. Accordingly,
the postcondition is a type-level term that holds after effect execution. This allows
parameterised effects to express complex type-level proofs and enables developers to omit
certain run-time validations. Punchihewa and Wu (2021) use parameterised effects to
ensure compile-time correctness of parallel sorting algorithms.

Scoped effects, also referred to as higher-order effects, are effects that scope over a
monadic region. For example, consider the “error” effect which defines exceptional values
that can be thrown by a procedure. When an exception is thrown, normal program
execution is interrupted and terminated. A scoped “error” effect can then avoid program
termination by catching exceptions that are thrown in a specific code block, also called
a monadic region. In other words, a scoped effect captures or scopes over a monadic
region in which the behaviour of the effect can be altered. While scoped effects increase

3

1. Introduction

the flexibility of an algebraic effect system library, they also incur difficulties for effect
handlers of other effects. Effect handlers need to handle effects within monadic regions
that have been scoped over by a scoped effect, but the structure of a scoped effect is
opaque to the effect handler. Thus, the effect handler needs to be weaved through the
scoped regions of the scoped effect. Without it, intermediate results would be lost,
hampering the usefulness of scoped effects. The state-of-the-art solution is to define
a weave function that each scoped effect implements individually to weave execution
context through the scoped region it captures. Scoped effects and weave are described
in detail by Wu et al. (2014) and formalised by Piróg et al. (2018).

To conclude, algebraic effect systems in Haskell define an effect monad that is used to
define and run programs. The effect monad is the glue that allows tracking of side effects,
execution of effects and implementation of effect handlers. As such, the implementation
of the effect monad is of paramount importance, affecting the usability, performance
and supported features of the algebraic effect system library. Multiple implementations
have been explored in literature, such as the so-called free (Kiselyov et al., 2013) and
freer monad (Kiselyov and Ishii, 2015), evidence translation (Xie and Leijen, 2020) and
delimited continuations (Kammar et al., 2013).

1.2 Related Work
Effect systems are a vibrant research area, meant to tackle conflicting goals, such as ease
of use, expressiveness and high performance. Therefore, there exist many state-of-the-art
effect system libraries in Haskell. Many of them have different trade-offs in terms of
usability, performance and features. We briefly introduce the effect system libraries this
thesis took the most inspiration from, as well as other notable effect system libraries. As
Kiselyov et al. (2013) were among the first to introduce a working effect system library
in Haskell, most presented effect system libraries are based on their contributions.

freer-simple

The algebraic effect system library freer-simple is based on the contributions by
Kiselyov and Ishii (2015). It is less complex than other state-of-the-art effect system
libraries and does not support scoped effects as first-class concepts. The implementation of
the effect monad Eff uses a freer monad encoding. Further, it employs many optimisation
techniques to improve the complexity of the monadic sequencing operations (Voigtländer,
2008) and focuses on developer usability.

fused-effects

Wu and Schrijvers (2015), Schrijvers et al. (2019), and Wu et al. (2014) provide the
foundations of the algebraic effect system library fused-effects. It supports scoped
effects and provides powerful effect handler strategies to enable developers to define and
use effects with minimal overhead. For example, the representation of the effect monad

4

1.2. Related Work

can be fine-tuned according to performance and ease-of-use requirements. Furthermore,
it introduces a sophisticated fusion framework, that allows multiple effect handlers to
be fused into one. Effect handlers essentially need to traverse the full abstract syntax
tree (AST) of a program to replace an effect operation with the corresponding monadic
computation. Since programs in real-world applications tend to grow, traversing the AST
can be costly. Fusing multiple effect handlers reduces the cost of traversing the AST and
promises a significant performance speed-up.

polysemy

Similar to fused-effects, the algebraic effect system library polysemy is based
on the contributions by Wu et al. (2014). The library polysemy focuses on the user
experience and ease of use. It differentiates between scoped effects and “simple” effects,
with the goal of guiding users to prefer a simpler interface. Additionally, it adds many
custom type errors that contextualise type errors to simplify the usage. To increase
adoption of algebraic effect system libraries, polysemy is the first library to provide
the GHC type checker plugin polysemy-plugin1. It enables the compiler to infer the
types of effect operations in more cases, avoiding additional type hints from the developer.
Such type checker plugins have become a common practice for algebraic effect system
libraries in Haskell. To improve the asymptotic complexity of the monadic sequencing
operation, polysemy uses a final encoding of the freer monad (Carette et al., 2007).

safe-mutations

The algebraic effect system library safe-mutations2 supports parameterised effects
and is implemented by Punchihewa and Wu (2021), based on the contributions of Piróg
et al. (2018). A parameterised effect enables developers to encode type-level proofs in
the effect monad of safe-mutations. Whereas user-defined algebraic parameterised
effects can be implemented, only a single effect can be used in safe-mutations.

effectful

The algebraic effect system library effectful3 focuses on real-world applications. It
uses the so-called ReaderT design pattern as its effect monad implementation, to create
a high-performance algebraic effect system library. GHC optimises the resulting code
more reliably and efficiently. However, this entails that many effects, such as State or
Error, have to be implemented using side effects. These effects rely on other primitives
of GHC such as IORef and exceptions. Additionally, some effects can be interpreted
in only one way, making them statically dispatched effects. Whereas this improves the
performance for built-in effects, it also renders them less flexible.

1https://hackage.haskell.org/package/polysemy-plugin
2https://github.com/hashanp/safe-mutations
3https://hackage.haskell.org/package/effectful

5

https://hackage.haskell.org/package/polysemy-plugin
https://github.com/hashanp/safe-mutations
https://hackage.haskell.org/package/effectful

1. Introduction

cleff

The algebraic effect system library cleff4 is very similar to effectful. It also uses
the ReaderT transformer over the IO monads and implements many effects in terms of
existing features provided in GHC. However, it provides a more flexible interface and
does not support statically dispatched effects.

eff

The experimental algebraic effect system library eff5 is implemented on top of delimited
continuations. It promises a high-performance effect system library that fixes issues of
existing libraries, as shown by King (2020). However, it remains an experimental library
that requires support for delimited continuations from GHC6.

mtl - Monad Transformer Library

Monad transformers are one of the main approaches for expressing side effects in a
modular way. First introduced in functional programming languages by King and
Wadler (1993), they were popularised in Haskell by Liang et al. (1995), remaining a
foundational tool in Haskell software development until today. The Haskell packages mtl7

and transformers8 provide the most common monad transformer implementations,
and many other libraries are built on top of them to provide crucial features. Even
the implementation of GHC relies on monad transformers, and provides additional
performance optimisations for monad transformer primitives. Due to their maturity and
availability, many software developers utilise them to express side effects. According to
Kiselyov et al. (2013), algebraic effect systems are more flexible than monad transformers,
as they naturally enable adding effects to arbitrary monad structures. Further, they show
that some interleaving effects cannot be expressed in mtl at all.

The relation between monad transformers and algebraic effect systems has been studied
by Schrijvers et al. (2019). They identify a class of modular algebraic effects and effect
handlers that can be embedded into a monad transformer and vice versa. It remains
unclear whether this generalises to effects with scopes and their categorical formalisation
defined by Piróg et al. (2018). Further, Wu and Schrijvers (2015) observe another
close connection between effect system libraries based on free monad encodings and
monad transformers: monad transformers are fused forms of effect handlers. In other
words, monad transformer interpreters fuse naturally and have improved performance
characteristics over free monad encodings.

The state-of-the-art research addresses different combinations of tradeoffs of the conflicting
goals of algebraic effect systems. However, to the best of our knowledge, no algebraic effect

4https://hackage.haskell.org/package/cleff
5https://github.com/hasura/eff
6https://github.com/ghc-proposals/ghc-proposals/pull/313
7https://hackage.haskell.org/package/mtl
8https://hackage.haskell.org/package/transformers

6

https://hackage.haskell.org/package/cleff
https://github.com/hasura/eff
https://github.com/ghc-proposals/ghc-proposals/pull/313
https://hackage.haskell.org/package/mtl
https://hackage.haskell.org/package/transformers

1.3. Contributions of this Thesis

system allows to combine non-parameterised effects, as shown in traditional algebraic
effect systems such as polysemy, and scoped-parameterised effect systems as presented
by Punchihewa and Wu (2021). Additionally, Punchihewa and Wu provide no abstractions
that simplify implementations of parameterised algebraic effect handlers.

1.3 Contributions of this Thesis
In this thesis, we address this open problem and develop a new algebraic effect system
library in Haskell, called preff. It allows developers to define, use and interpret algebraic
effects. The algebraic effect system follows state-of-the-art research to provide a modern
interface and simple usage. In addition, preff is capable of combining algebraic effects
with scoped-parameterised effects.

We build on top of the freer monad encoding for the effect monad and extend it to
the parameterised freer monad encoding. This enables user-defined algebraic effects
and scoped effects. Additionally, preff supports scoped-parameterised effects. Scoped-
parameterised effects infuse scoped effects with the ability to add type-level proofs and
contracts. These proofs can be used to great advantage to significantly improve the
type safety of a procedure or computation. Moreover, it enables our algebraic effect
system library preff to implement complex control flow patterns, such as session types
(Takeuchi et al., 1994). In particular, we implement a novel session type encoding in
less than 120 lines of code. Finally, we provide an extension to weave specifically for
scoped-parameterised effects.

1.4 Structure of this Thesis
In Chapter 2 we motivate the use of algebraic effect system libraries in detail. We
showcase how they improve readability of code, improve maintainability and aid with
testing by simulating effects. In Chapter 3, we define important type classes and data
structures that are used pervasively in this thesis. Next, in Chapter 4, we discuss the
implementation of preff in detail, argue design decisions and explain the internals of the
effect system’s machinery. Afterwards, we present a full picture of how to use it in practice
in Chapter 5. We focus on the perspective of developers that solve real-world software
issues and provide illustrative examples on how to use algebraic effects and scoped effects.
Then we show how scoped-parameterised effects can be used to improve type safety and
provide a novel session type encoding for our effect system. Next, we evaluate preff
for its practical applicability in Chapter 6 by comparing the expressiveness of our novel
session type encoding to existing session type libraries in Haskell. Further, we compare
the run-time performance of preff with other state-of-the-art effect system libraries
and show that preff is applicable in real-world scenarios. Finally, we summarise and
discuss our most important findings in Chapter 7 and derive promising future research
aspects.

7

CHAPTER 2
Motivating Algebraic Effect

Systems

Algebraic effect systems can improve the readability, composability and maintainability of
a software project. In this chapter, we illustrate this using a small project on processing
customer data, which we extend and refine using a stepwise approach. This processing
task is most naturally performed by an imperative style procedure for handling side
effects.

Introducing the running example. In this example, we have to load customer data
from a file, process and transform the data, followed by storing the new data in a new file.
The locations for reading and storing data are known at compile-time, and we have to
track how much time the processing of data takes. We provide a simple implementation
of a procedure satisfying our requirements in Listing 2.1. The procedure uses the IO
monad, which gives it direct access to a plethora of capabilities such as reading from disk,
accessing the system clock, or even accessing the current network. We claim, the shown
code is a viable implementation for the requirements given above, but we demonstrate
the maintenance burden such an innocuous function can incur over time.

Discussing issues. The implementation from Listing 2.1 is short and concise. Nonethe-
less, we identify potential long-term issues.

• Having IO in the type signature makes it impossible to derive the possible side
effects of processCustomers. Network access and disk access are equally possible.
It increases the amount of code developers need to read and understand before the
impact of using it can be understood, especially when developers are unfamiliar
with the procedure.

9

2. Motivating Algebraic Effect Systems

1 processCustomers :: IO ()
2 processCustomers = do
3 customers <- readCustomersFromFile "customer.db"
4 (newCustomers, execTime) <- timeAction (processData customers)
5 putStrLn $ "Processing took: " ++ show execTime
6 writeCustomersToFile "newCustomers.db" newCustomers

Listing 2.1: Simple business logic for processing data

• Testing of processCustomers is cumbersome. It requires setting up a fitting test
infrastructure in which appropriate files exist, and removing generated artefacts
after test completion.

• Logging is a cross-cutting concern, and putStrLn has long-term impacts on
performance, readability and maintainability.

– Performance Logging large amounts of data via putStrLn is impractical
due to performance issues of String operations.

– Readability Logging adds to the cognitive overhead required for understand-
ing the given procedure, even though it has nothing to do with the task it
fulfils.

– Maintainability Writing logs to a fixed location makes it difficult to redirect
logs to other locations. Adding further details requires tedious and error-prone
updating.

• Last but not least, processCustomers cannot declare any preconditions or
postconditions that are understood by the type-system. For example, we cannot
communicate in the type signature of the procedure that the file "customer.db"

must exist before running the procedure.

Admittedly, for less than ten lines of code, these concerns are negligible, since changes
are trivial so far. However, the costs and concerns accumulate, the bigger the software
grows, especially in the face of shifting requirements.

Refinement of the running example. We extend our example by introducing a
new requirement: Callers of the procedure must be able to change the location of the
two databases at run-time. To implement this requirement, we extend the procedure by
two new input parameters, one for the input database, and one for the output database.
Listing 2.2 shows the result of the trivial refactoring.

In the next version, we decide we need to be able to configure the procedure how we log the
execution time. This is a new type of change, instead of adding parameters for plain data,
such as database locations, it allows the caller to modify the behaviour of the procedure.

10

1 processCustomers ::
2 FilePath -> FilePath -> IO ()
3 processCustomers input output = do
4 customers <- readCustomersFromFile input
5 (newCustomers, execTime) <- timeAction (processData customers)
6 putStrLn $ "Processing took: " ++ show execTime
7 writeCustomersToFile output newCustomers

Listing 2.2: Customer processing where the database locations can be changed at run-time.

1 processCustomers ::
2 (String -> IO ()) -> FilePath -> FilePath -> IO ()
3 processCustomers logger input output = do
4 customers <- readCustomersFromFile input
5 (newCustomers, execTime) <- timeAction (processData customers)
6 logger $ "Processing took: " ++ show execTime
7 writeCustomersToFile output newCustomers

Listing 2.3: Customer processing with limited configurability.

We define the behaviour of a procedure as the sum of side effects it performs. For example,
saving customer data to the database is a side effect which is part of the behaviour of a
procedure. Further, a procedure is configurable if it allows callers to alter its behaviour.
One way to alter the behaviour, is by having function parameters that implement specific
side effects instead of hardcoding the side effectful monadic computation. We replace
putStrLn with a function parameter that takes a String parameter and produces a
monadic result. Thus, the logging behaviour of processCustomers is configurable.
We show the result in Listing 2.3. The new requirement is implemented by introducing a
function parameter to processCustomers.

The declaration communicates to callers of processCustomers that a logging function
is used and file paths are used in an unspecific way. This information is not enough
to know precisely what behaviour the procedure has, but it conveys more than before.
Introducing a function parameter increases the flexibility and simplifies code maintenance,
as the implementation can be changed without modifying processCustomers directly.
Modifying processCustomers directly is error-prone, since all call-sites need to be
reviewed on whether pre- and postconditions are still upheld. Further, the input parameter
simplifies testing of how the procedure utilises the logger function. Taking this approach
to the extreme, we can make every side effect configurable as a parameter. Then,
supposedly, the procedure is maximally configurable and easier to test. In Listing 2.4 we
show what this looks like.

11

2. Motivating Algebraic Effect Systems

1 processCustomers ::
2 (String -> IO ()) ->
3 (FilePath -> IO [Customer]) ->
4 (FilePath -> [Customer] -> IO ()) ->
5 ([Customer] -> IO [Customer]) ->
6 (IO a -> IO (a, Time)) ->
7 FilePath ->
8 FilePath ->
9 IO ()

10 processCustomers logger readCustomers writeCustomers process
11 timeAct input output = do
12 customers <- readCustomers input
13 (newCustomers, execTime) <- timeAct (process customers)
14 logger $ "Processing took: " ++ show execTime
15 writeCustomers output newCustomers

Listing 2.4: Allow configuration of every aspect of processCustomers.

1 processCustomers putStrLn readCustomersFromFile
2 writeCustomersToFile processData timeAction
3 "customer.db" "newCustomers.db"

Listing 2.5: Example invocation of the procedure processCustomers from Listing 2.4.

Each side effect of processCustomers is now configurable by supplying a functional
procedure at run-time. This gives us full control over the run-time behaviour of the
procedure and how the business logic is actually implemented. Every functionality can
be easily tested, and individual needs of callers can be tweaked without touching the
code of processCustomers. However, the type signature is longer than the actual
code. We also made it noticeably harder to invoke the procedure, since callers need to
insert the missing implementation bits every time it is used. For illustration, we show in
Listing 2.5 what calling the procedure in 2.4 could look like.

Discussing issues. Invoking processCustomers at each call site with all parameters
introduces a lot of overhead for readers. However, hard-coding certain parameters defeats
the initial purpose of allowing configuration of each functionality, since callers lose the
gained control again. The overhead becomes more burdensome when parameters are not
readily available at the call-site and need to be provided as additional parameters to the
caller. This quickly leads to a blow-up of input parameters. Furthermore, information
such as which parameters are used by the caller procedure and which are provided for
calling additional procedures is impossible to discern from the type signature.

12

1 class CustomerDb m where
2 readCustomers :: FilePath -> m [Customer]
3 writeCustomers :: FilePath -> [Customer] -> m ()
4

5 class Logger m where
6 log :: String -> m ()
7

8 class Timing m where
9 timeAction :: m a -> m (a, Time)

10

11 class CustomerService m where
12 process :: [Customer] -> m [Customer]
13

14 processCustomers ::
15 (Logger m
16 , CustomerDb m
17 , Timing m
18 , CustomerService m
19 , Monad m
20) =>
21 FilePath ->
22 FilePath ->
23 m ()
24 processCustomers input output = do
25 customers <- readCustomers input
26 (newCustomers, execTime) <- timeAction (process customers)
27 log $ "Processing took: " ++ show execTime
28 writeCustomers output newCustomers

Listing 2.6: Business logic of processCustomers where the implementation is ab-
stracted via type classes.

Type classes as remedy. To address the over-abundance of explicit parameters,
we make use of type classes. We find functionality that belongs together and extract
services. A service is a collection of functional procedures that are needed to fulfil
a specific functionality. For example, reading and writing customer data are both
used for interacting with the conceptually same database. Thus, we extract them into
one service called CustomerDb. Further, we extract a Logger service, the customer
processing service CustomerService and a service Timing for collecting execution
time measurements. We opt to keep the database locations as regular parameters to
processCustomers, as they are merely data. For each of these identified services, we
introduce a type class and make processCustomers use them.

13

2. Motivating Algebraic Effect Systems

Listing 2.6 shows the implementation of processCustomers introducing the concept
of services using type classes. Type classes avoid cluttering function parameters, while
allowing to control the behaviour without modifying invocations of the procedure itself.
The procedure processCustomers contains only business logic relevant code. Ad-
ditionally, processCustomers does not use IO directly any more, but some monad
m that provides all the services required to execute the procedure. This way, we lift
the restriction that this procedure must be executed in the IO monad. For executing
processCustomers, the caller may choose any monad that implements all required
type classes.

The solution shown in Listing 2.6 addresses most of the initial issues criticised in the
original, simple implementation of Listing 2.1:

• We no longer require the use of IO, so the monadic action processCustomers
does not have unrestricted access to system resources.

• Testing is considerably easier, since the implementation can be chosen at run-time,
by simulating services.

However, we have introduced an implementation issue that easily goes unnoticed in
small examples. We require implementations for services, i.e. instances for type classes,
and each type class can have exactly one implementation per monad. Thus, for an
application, we usually introduce a type which implements the monad type class, also
called the application monad. The application monad is often a wrapper over the IO
monad, and provides a streamlined interface via the aforementioned type class-based
services. For the concrete example procedure processCustomers, the application
monad is the concrete instance for the monad m in the type signature. All services
used by processCustomers must have an instance for the application monad type.
However, if we require two different implementations for the service CustomerDb, then
we also require two different application monads, since there can be only one instance, or
implementation, for each service per application monad. As a consequence, when a single
service shall be simulated, we have to implement all services in the application monad
under test. The number of instances grows proportionally to the number of services that
may have different implementations in an application.

Algebraic effect systems. In algebraic effect systems, we declare in the type signature,
similarly to the previous approach, what services a procedure has access to. They are the
algebraic effects of the application, describing the side effects that can occur. Procedures
are then written against the abstract interface, unable to rely on any implementation
details of the respective services. In other words, procedures declare which effects may be
executed when running them. It is, thus, statically known which effects a procedure can
use, consequentially informing users which services they need to provide. The flexibility of
algebraic effect systems becomes obvious when trying to run a procedure: For each service,
we provide the implementation, named an algebraic effect handler or simply handler.

14

1 data Logger m a where
2 Log :: String -> Logger m ()
3

4 data CustomerDb m a where
5 ReadCustomers :: FilePath -> CustomerDb m [Customer]
6 WriteCustomers :: FilePath -> [Customer] -> CustomerDb m ()
7

8 data Timing m a where
9 TimeAction :: m a -> Timing m (a, Time)

10

11 data CustomerService m a where
12 Process :: [Customer] -> CustomerService m [Customer]
13

14 makeEffect ''Logger
15 makeEffect ''CustomerDb
16 makeEffect ''Timing
17 makeEffect ''CustomerService

Listing 2.7: Service API definitions in algebraic effect systems.

Handlers implement a single service, giving it semantics and a concrete implementation.
In algebraic effect systems, services are usually referred to as effects, and we will use the
two terms interchangeably. Additionally, algebraic effect handlers are functions and can
be composed using function composition. At last, once all effects for a procedure are
given a handler, the procedure is fully implemented.

We will now show how to write the procedure processCustomers using an algebraic
effect system. Similar to Listing 2.6, we identify and extract the services of the application,
as shown in Listing 2.7. At first glance, the definitions look very similar, especially the
type signatures.

The service type classes, such as Logger, are replaced by data types, and each method
is represented by a respective data constructor. Constructors are defined using gen-
eralised algebraic data types, which allows adding additional type constraints that
are otherwise not trivial to express. For example, the constructors ReadCustomers
and WriteCustomers produce different results, [Customer] and () respectively.
Additionally, for each service, the template-haskell1 function makeEffect is
used to generate boilerplate, which we will discuss in detail in Section 4.2. Impor-
tantly for this example, it generates a function that can be used in the application
code for each data constructor. It generates the functions log, readCustomers,
writeCustomers, timeAction and process, which can then be used in the defini-
tion of processCustomers.

1https://hackage.haskell.org/package/template-haskell

15

https://hackage.haskell.org/package/template-haskell

2. Motivating Algebraic Effect Systems

1 processCustomers ::
2 Members '[CustomerService, TimeAction, CustomerDb, Log] f =>
3 FilePath ->
4 FilePath ->
5 Eff f ()
6 processCustomers input output = do
7 customers <- readCustomers input
8 (newCustomers, execTime) <- timeAction (process customers)
9 log $ "Processing took: " ++ show execTime

10 writeCustomers output newCustomers

Listing 2.8: Business logic implemented using an algebraic effect system.

In Listing 2.8, we provide an implementation of processCustomers using an algebraic
effect system. The most important difference is that instead of an arbitrary monad m, the
computation is happening in the context of the Eff monad, the so-called effect monad.
Services, or effects, are asserted to be part of the effect list f the procedure has access
to. Specifying it this way does not impose any structure on f, meaning f may contain
exactly these services, or many more. The order of the services is not significant either,
allowing this procedure to be invoked whenever the caller also has access to the required
services. Procedures are, thus, composable with other procedures using the same effect
system and require no extra passing through of parameters.

Reiterating the issues we identified earlier in this section, processCustomers does
not depend on IO, thus can be implemented completely free of side effects, if so desired.
The required services are clearly specified in the type signature, documenting what the
function has access to. It is impossible, accidentally or purposefully, to send network
requests without requiring changes to service implementations. This increases the overall
confidence that processCustomers does exactly what its type signature says it does.
As an additional benefit, it allows developers to provide simulation implementations of
various services to test specific services. Contrary to the type class based implementation
given above, the implementations of services are independent of each other and can be
mixed and matched as required. The concerns regarding logging are partially addressed:
While it is trivial to switch out how text is logged, performance issues and the readability
inhibition still persists. Performance considerations of logging vary greatly, depending on
what information shall be logged, in what format it shall be logged and to what location
logs should be sent, with different trade-offs and application requirements. Since this
is out-of-scope here, we ignore potential design decisions, and focus on readability and
flexibility of the logging service.

For running a procedure, each service requires an implementation or a handler. The han-
dler can be seen as the server of a client-server application, while the procedure containing
business logic is the client. In the running example, the client processCustomers sends

16

1 runCustomerDb :: Embed IO f => Eff (CustomerDb : f) a -> Eff f a
2 runCustomerDb = interpret $ \case
3 ReadCustomers fp ->
4 embed (readCustomersFromFile fp)
5 WriteCustomers fp customers ->
6 embed (writeCustomersToFile fp customers)
7

8 runCustomerService :: Eff (CustomerService : f) a -> Eff f a
9 runCustomerService = interpret $ \case

10 Process customers -> pure (processData customers)
11

12 runLogger :: Embed IO f => Eff (Logger : f) a -> Eff f a
13 runLogger = interpret $ \case
14 Log str -> embed (putStrLn str)

Listing 2.9: Service implementations for Algebraic Effect Systems.

a request to the service implementation. The service handler then receives said request
and performs the actual work. For instance, while the application has no dependency
on IO, the handler might and often will have access to it. A handler can use IO with
the Embed IO f constraint. In Listing 2.9, we show handler functions for the services
CustomerDb, Logger and CustomerService, that implement the same functionality
as the IO heavy code of Listing 2.1.

Each service defines how requests from the client are interpreted. Similar to the client
code, the pattern of declaring the service dependencies continues, the handlers for
CustomerDb and Logger require access to IO, declare this requirement via the type
signature Embed IO f.

Assuming all handler functions are defined, we can put them all together as shown in
Listing 2.10. Handlers are functions, which allow us to compose multiple handlers using
(&) which is the reversed function application. Thus, when all effects have been handled,
the final result can be extracted, using runIO which performs IO actions in the context
of the chosen effect system.

Hiding implementation details. To improve readability, cross-cutting concerns,
such as measuring run-time performance of code, should not be part of the application
code. For most readers of processCustomers, neither measuring the execution time
of the processing step, nor logging are relevant. Ideally, such information is hidden.
Algebraic effect systems make it particularly easy to hide such implementation details
by allowing to reinterpret effects in terms of other effects. For example, without having
to change the handler function runCustomerService, we add run-time execution
time measurements and logging information. In Listing 2.11, we introduce a new

17

2. Motivating Algebraic Effect Systems

1 main :: IO ()
2 main = processCustomers "customer.db" "newCustomers.db"
3 & runCustomerDb
4 & runCustomerService
5 & runLogger
6 & runTimedAction
7 & runIO

Listing 2.10: Tying it all together: Provide an implementation for services that are
required to execute processCustomers.

1 runTimedAndLoggedCustomerService ::
2 Embed IO f =>
3 Eff (CustomerService : f) a ->
4 Eff (CustomerService : Logger : Timing : f) a
5 runTimedAndLoggedCustomerService = reinterpret3 $ \case
6 Process customers -> do
7 (customers, time) <- timeAction (process customers)
8 log $ "Processing took: " ++ show execTime
9 pure customers

Listing 2.11: Re-use service implementations to hide implementation details.

handler runTimedAndLoggedCustomerService. The handler function replaces all
processing requests made by the client with more detailed requests. Note, reinterpret3
is a utility function required to satisfy the type signature.

It is worth pointing out that the effect CustomerService is not consumed from the
list of effects. Thus, it must be interpreted by a subsequent handler. The subsequent
handler can still be the original handler runCustomerService from Listing 2.12. This
indicates that it is trivial to extend existing handlers.

Summary. We have illustrated how algebraic effect systems enable developers to
focus on the highest priority matters in an application by hiding implementation details
where appropriate and documenting service requirements upfront in type signatures.
Due to increased flexibility, they additionally make it easier to reuse existing code and
test functional procedures individually with minimally increased boilerplate for effect
definitions. Cross-cutting concerns can be implemented without polluting application
code with unnecessary details. Moreover, algebraic effect systems can express control
flow manipulating effects, such as coroutines, non-determinism and run-time exceptions.

18

1 main :: IO ()
2 main = processCustomers "customer.db" "newCustomers.db"
3 & runCustomerDb
4 & runTimedAndLoggedCustomerService
5 & runCustomerService
6 & runLogger
7 & runTimedAction
8 & runIO
9

10 processCustomers ::
11 (Members '[CustomerService, CustomerDb] f) =>
12 FilePath ->
13 FilePath ->
14 Eff f ()
15 processCustomers input output = do
16 customers <- readCustomers input
17 newCustomers <- process customers
18 writeCustomers output newCustomers

Listing 2.12: Execution of processCustomers while hiding implementation details
from the business logic.

19

CHAPTER 3
Relevant Haskell Concepts

Haskell is a purely functional programming language. It is powered by the industrial-
strength compiler GHC and comes with an extensive standard library to support devel-
opers. In this section, we present important type classes, functions and data types that
are pervasively used throughout this thesis. This includes common Haskell type classes
but also data types that are commonly referred to in effect system libraries.

3.1 Monad - Type Class Hierarchy
In Listing 3.1 we recall the definition of the Monad type class in Haskell as it exists
at the time of this writing in the base1 library version 4.19.0.0. Adding a Monad
instance for some type m, requires to provide instances for the type classes Functor
and Applicative. We include the type class methods that are required to create an
instance for the respective type classes.

The Monad type class enables developers to utilise the handy do-syntax. It allows
writing seemingly sequential procedures, similar to mainstream, procedural programming
languages and GHC desugars do-syntax to use methods of the Monad type class. While
the exact desugaring depends on implementation details of GHC, the desugaring translates
to a combination of the Applicative and Monad methods.

3.2 Parameterised Monad - Type Class Hierarchy
Parameterised monads are an extension of regular monads. The nomenclature of param-
eterised, indexed and graded monads seems to be inconsistent in literature. We base
our naming and definitions on Orchard et al. (2020) who provide a common ground for
parameterised monads (Atkey, 2009a,b). Intuitively, parameterised monads are monads

1https://hackage.haskell.org/package/base

21

https://hackage.haskell.org/package/base

3. Relevant Haskell Concepts

1 class Functor f where
2 fmap :: (a -> b) -> f a -> f b
3

4 class Functor f => Applicative f where
5 pure :: a -> f a
6 (<*>) :: f (a -> b) -> f a -> f b
7

8 class Applicative m => Monad m where
9 (>>=) :: m a -> (a -> m b) -> m b

Listing 3.1: The Monad type class hierarchy in Haskell. We show all method functions
that are required to create an instance for the respective type class.

that are parameterised by objects representing state changes as a result of computation.
We use these objects as the precondition and postcondition of monadic computations. In
Haskell, there exists no standard definition of a parameterised monad.

The definitions shown in Listing 3.2 are derived from Punchihewa and Wu (2021) but
intentionally name shadows instance methods from Section 3.1. Additionally, we closely
mirror the Monad type class hierarchy. This enables us to leverage the GHC language
extension QualifiedDo2. QualifiedDo extends GHC to permit the do-syntax for
any module that exports the functions (>>=) and pure.

In practice, these type classes have additional methods that are omitted for the sake
of simplicity. Moreover, many standard library functions have to be redefined to be
compatible with the IMonad type class hierarchy. While there are existing libraries for
parameterised monads available, none of them shadow the Monad type class methods.
This makes them incompatible to be used with QualifiedDo. Thus, we provide our
own implementation that is functionally equivalent to existing libraries.

As parameterised monads are a generalisation of monads, we can provide default instances
for the Monad type class hierarchy based on the methods from the IMonad hierarchy.

We show these instances in Listing 3.3. The instances exploit the fact that any IMonad m
permits a trivial instance of Monad (m p p). Given the Monad instance, it enables
developers to use do-syntax in procedures that have an invariant pre- and postcondition.
Only the Functor instance permits a different pre- and postcondition as it modifies
only the value of the IFunctor f.

2https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/qualified_
do.html#extension-QualifiedDo

22

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/qualified_do.html#extension-QualifiedDo
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/qualified_do.html#extension-QualifiedDo

3.3. Free and Freer Monad

1 class IFunctor f where
2 imap :: (a -> b) -> f p q a -> f p q b
3

4 class IFunctor f => IApplicative f where
5 pure :: a -> f i i a
6 (<*>) :: f i j (a -> b) -> f j r a -> f i r b
7

8 class IApplicative m => IMonad m where
9 (>>=) :: m i j a -> (a -> m j k b) -> m i k b

Listing 3.2: The parameterised Monad type class hierarchy in Haskell. We show method
functions that are required to create an instance for the respective type class.

1 instance IFunctor f => Functor (f p q) where
2 fmap = Ix.imap
3

4 instance IApplicative f => Applicative (f p p) where
5 pure = Ix.pure
6 (<*>) = Ix.(<*>)
7

8 instance IMonad m => Monad (m p p) where
9 (>>=) = Ix.(>>=)

Listing 3.3: The parameterised type classes naturally provide instances for the standard
type classes. Methods derived from the IMonad type class hierarchy are prefixed by Ix
for disambiguation.

3.3 Free and Freer Monad
A free monad is a structure that turns some structure f into a monad without f itself
having to be a monad. In Haskell, the data type Free is the free monad for any
Functor f. There are various libraries available, such as free3, that provide a Free
data type and instances for well-known type classes. In this thesis, we are mostly
interested in Free as defined by Swierstra (2008).

In Listing 3.4 we show the Free data type using the GADTs notation. Generalised
algebraic data types have been introduced by Cheney and Hinze (2003) and are used
extensively in Haskell and this thesis in particular. The Monad instance for Free f
requires that f is an instance of Functor to apply the continuation k to it. Note that
Impure closely resembles the join :: Monad m => m (m a) -> m a function.

3https://hackage.haskell.org/package/free

23

https://hackage.haskell.org/package/free

3. Relevant Haskell Concepts

1 data Free f a where
2 Pure :: a -> Free f a
3 Impure :: f (Free f a) -> Free f a
4

5 instance Functor f => Monad (Free f) where
6 Pure a >>= k = k a
7 Impure f >>= k = Impure (fmap (>>= k) f)

Listing 3.4: The Free data type in Haskell and its Monad instance for any Functor f .

1 data Freer f a where
2 Pure :: a -> Freer f a
3 Impure :: f x -> (x -> Freer f a) -> Freer f a
4

5 instance Monad (Freer f) where
6 Pure a >>= k = k a
7 Impure op f >>= k = Impure op (fmap (>>= k) f)

Listing 3.5: The Freer data structure Haskell and its respective Monad instance.

The restriction that f must be an instance of Functor is lifted by Kiselyov and Ishii
(2015) by utilising the freer-monad approach. In algebraic effect system libraries the
Functor instance is only used for passing through the continuation in f (Free f a).
Since this is uniformly handled, we extract the continuation explicitly and put it into
the Free structure directly, resulting in the code shown in Listing 3.5, calling the
resulting monad the freer-monad. Thus, the constraint that f must be an instance of
Functor can be dropped from the Monad instance for Freer. Similar to Free.Impure,
Freer.Impure closely corresponds to the (>>=) operation of the Monad type class.

3.4 Open Union
In this thesis, we need an extensible type whose possible value range can be changed
at run-time. Union types seem to be a good fit for this use-case (Barbanera et al.,
1995), but Haskell’s type system has no first-class support for union types. However,
union types can be emulated using an open union data structure. Fundamentally, open
union is a type-indexed co-product of operations. There are many libraries available for
implementing open union data structures, e.g. data-diverse4. However, they are not
always straight-forward to use and have different performance and usability trade-offs.
Further, various open union implementations are given by Kiselyov et al. (2013), Kiselyov

4https://hackage.haskell.org/package/data-diverse

24

https://hackage.haskell.org/package/data-diverse

3.4. Open Union

1 data Op f x where
2 OHere :: f x -> Op (f : effs) x
3 OThere :: Op effs x -> Op (f : effs) x

Listing 3.6: Open union in Haskell

1 interpret :: Op '[Maybe, Either Int] String -> String
2 interpret op = case op of
3 OHere Nothing -> "No value"
4 OHere (Just m) -> m
5 OThere (OHere (Left l)) -> show l
6 OThere (OHere (Right r)) -> r

Listing 3.7: Example: Extract a value from the open union data structure Op.

and Ishii (2015), and Wu and Schrijvers (2015) specifically to serve the needs of effect
system libraries. In Listing 3.6, we show the code for the state-of-the-art open union
structure using GADTs notation based on the prior research on algebraic effect system
libraries.

The given open union Op f x encodes a union of all values, the types in the list
f can represent and produces a result of type x. For example, a value of the type
Op '[Maybe, Either Int] String allows to combine operations from the types
Maybe and Either Int and produces a String value. This type represents one of
four possible values:

• OHere Nothing

• OHere (Just (s :: String))

• OThere (OHere (Left (l :: Int)))

• OThere (OHere (Right (r :: String)))

We obtain the value of a variable of type Op '[Maybe, Either Int] String by
explicit pattern matching, as shown in Listing 3.7.

25

CHAPTER 4
The Effect System preff

We are now ready to present our main contribution for advancing the research of algebraic
effect systems, the Haskell library preff. Its name is a combination of protocol types
and algebraic effect system, which make up the integral components of preff.

Algebraic effect systems allow developers to decouple implementation from intent by
using effects to describe the syntax (i.e. a set of effect operations), and handlers to define
the respective effect’s semantics (i.e. handling of those operations). We introduce the
term protocol type for advanced type-level proofs to encode pre- and postconditions into
the effect monad. To our knowledge, preff is the only effect system that features
user-defined algebraic effects combined with a single scoped effect that utilises powerful
type-level proofs to ensure program correctness.

In the following, we first present preff and discuss the trade-offs of design decisions.
Subsequently, we evaluate the performance in terms of execution speed and demonstrate
the expressiveness of the protocol types.

4.1 The Effect Monad PrEff

In algebraic effect systems in Haskell, the effect monad is the core data structure. It
provides a monadic interface, allows sequencing of effects, and is generally the first
point of contact for developers. As the effect monad is pervasive in the algebraic effect
system, its internals are of paramount importance, impacting run-time performance and
expressiveness.

PrEff is the amalgamation of multiple effect monads introduced in various algebraic
effect systems. Specifically, it combines the freer-monad approach from Kiselyov and Ishii
(2015), with scoped operations as defined by Piróg et al. (2018) and the parameterised
effect monad as discussed by Punchihewa and Wu (2021). The resulting parameterised
freer monad supporting monadic regions is presented in Listing 4.1.

27

4. The Effect System PREFF

1 data PrEff f s p q a where
2 Value :: a -> PrEff f s p p a
3 Impure ::
4 Op f x ->
5 IKleisli (PrEff f s) p r x a ->
6 PrEff f s p r a
7 ImpureP ::
8 s p q x ->
9 IKleisli (PrEff f s) q r x a ->

10 PrEff f s p r a
11 ScopedP ::
12 ScopeE s (PrEff f s) p p' q' q x x' ->
13 IKleisli (PrEff f s) q r x' a ->
14 PrEff f s p r a

Listing 4.1: Parameterised-freer monad PrEff.

First, we focus on the data declaration data PrEff f s p q a and its type variables:

• f: The set of algebraic effects that can be performed in PrEff. The type parameter
f is also called the effect signature of PrEff and is represented by a list of algebraic
effect types. These effects do not permit a scoping algebra, and thus, cannot have
syntax with scoping semantics.

• s: A single scoped-parameterised effect type that has access to type-level states
p and q. Contrary to effects from f, the effect s consists of two components, a
base algebra and a scoped algebra, which have access to the type parameters p and
q. As such, the scoped-parameterised effect is the only effect that can be used for
encoding proofs at the type-level.

• p: The precondition of the parameterised monad PrEff. It is a phantom parame-
ter, and has no run-time representation. To invoke a procedure m with the type
PrEff f s p q a, the caller has to ensure the precondition p is met. Other-
wise, the procedure m cannot be invoked. Only the effect s may assert program
preconditions.

• q: The postcondition of the parameterised monad PrEff. Identically to p, it is a
phantom parameter. After a procedure m :: PrEff f s p q a is invoked, the
postcondition q holds and can be assumed by subsequent procedures. Only the
effect s may affect a program’s postconditions.

• a: The type of the produced value of a computation in PrEff.

Next, we discuss each constructor of PrEff.

28

4.1. The Effect Monad PrEff

1 data Op f x where
2 OHere :: f x -> Op (f : effs) x
3 OThere :: Op effs x -> Op (f : effs) x

Listing 4.2: Open union for the effect operations that can occur PrEff.

Value: The equivalent of return/pure in the IMonad/IApplicative type class.
It represents a leaf node in the abstract syntax tree. It is a pure computation that may
never produce any side effects. As such, the pre- and postcondition of this constructor
are identical.

Impure: A node in the abstract syntax tree for algebraic operations without access
to type-level information. It is a single operation of some effect eff that occurs in the
effect signature f of Op f x. Intuitively, Impure corresponds to the monadic bind
(>>=) operator of the Monad type class. All algebraic operations that can occur in
PrEff are encoded by Op f, the open union of all effects in f. These operations are
never impacted by either the pre- or postcondition of PrEff. We show the definition of
the open union in Listing 4.2. Note, the definition is identical to the previously shown
definition in Listing 3.6.

The second parameter of Impure is the continuation of the program, i.e. the rest of the
program after the operation Op f x is evaluated. In the source code, we refer to the
continuation via the variable k. The type of this continuation is:

k :: IKleisli (PrEff f s) q r x a

The name IKleisli is a type synonym for the Kleisli monad extended to the parame-
terised monad, as identified by Atkey (2009a). The type synonym simply states:

IKleisli m p q x a = x -> m p q a

However, despite the simplicity of IKleisli, it provides a common name for the
recurring concept of the continuation of a computation in PrEff. It is useful for defining
handler functions such as interpretScoped, which we discuss in Section 4.3.

The continuation k requires the result of the operation Op f x which is of type x .
It then produces the rest of the program, which requires the precondition q to hold.
Afterwards, the postcondition r holds and a value of type a is computed.

29

4. The Effect System PREFF

ImpureP: Similar to Impure, but operations have access to the type-level state of p and
q. The main difference is that it uses s p q x instead of the open union Op f x. This
allows ImpureP to affect the program’s pre- and postcondition, enabling the developer
to add complex proofs, such as session types, to the algebraic effect system. Since there
is only a single effect that has access to the pre- and postcondition, ImpureP is not
parameterised by any open union-like structure such as Op. The permitted operations
are directly constrained via the effect type parameter s.

Like Impure, ImpureP closely resembles the monadic bind operation (>>=), specific to
algebraic operations that modify the pre- and postcondition of a program. We separate
these effects from the “simple” ones to make sure, simple algebraic effects can never
modify the pre- or postcondition.

ScopedP: Constructor for the scoped algebra supported by PrEff. It allows to capture
monadic regions and provide different semantics for these regions only.

The first parameter named ScopeE is an indexed data family, which allows hiding one
type parameter in the declaration of PrEff. It represents the scoped algebra of s
and can be extended at compile-time with additional instances. Developers can add
new data family instances for s as required. The main benefit of this slightly more
complex encoding is that PrEff requires fewer type variables. This reduces the overall
boilerplate for writing programs with preff, especially for programs that require no
scoped-parameterised effect. In comparison, Punchihewa and Wu (2021)’s effect monad
requires separate type parameters for the base and scoped algebra. Other algebraic effect
system libraries also avoid the extra type parameter by tying the base and scoped algebra
together in the effect definition.

The definition of ScopeE is shown in Listing 4.3 but it is rather concise and doesn’t give
a lot of insight. However, the included kind signature of ScopeE exposes the required
type parameters that can be seen in Listing 4.1 in the usage of the ScopedP constructor.

Instances have to supply the following type arguments:

ScopeE s m p p' q' q x' x

The first type parameter s is the effect for which the scoped operation is defined. In
PrEff, this is the scoped-parameterised effect. Since s is a scoped-parameterised effect,
the type constructor s takes a pre- and postcondition, and a return type as an argument,
and thus its kind signature is forall t . t -> t -> Type -> Type. Note, that
we use t in order to not restrict the kind of pre- and postcondition in any way. This is
consistent with the IMonad type class, which permits the pre- and postcondition to have
any kind, not just Type. Furthermore, m is a parameterised monad action, therefore, it
also has the kind signature forall t . t -> t -> Type -> Type, but represents
an inner computation, or a scoped region. An inner computation, in the context of

30

4.1. The Effect Monad PrEff

1 data family ScopeE s
2 type ScopeE :: forall t .
3 (t -> t -> Type -> Type) ->
4 (t -> t -> Type -> Type) ->
5 t -> t -> t -> t ->
6 Type -> Type ->
7 Type

Listing 4.3: Indexed data family ScopeE for implementing operations with scoped
monadic regions for the effect s. It includes a kind signature to communicate the arity
of the expected type parameters.

preff, is a slice of a PrEff program, containing algebraic operations or even another
scoped operation.

We recall the usage of ScopeE in ScopedP:

ScopeE s (PrEff f s) p p' q' q x' x

The type parameters p, q are the pre- and postcondition of the operation identified by
ScopeE s. In other words, the precondition p is required for the operation ScopeE s
to be executed. Complementarily, q holds after the operation finishes execution. The
inner p' and q' are the pre- and postcondition of the inner operation. Thus, ScopeE s
is an operation with an outer and an inner pre- and postcondition. The scoped region,
i.e. the inner operation, has access to the inner pre- and postcondition p' and q'. Since
m ~ PrEff f s, i.e. the type variable m is identical to the effect monad PrEff f s, the
scoped region is always an effectful computation, with access to the effects of PrEff f s.
Separating the invariants for the scoped effect from the invariants of the encompassing
computation, allows users to provide a translation from the initial precondition p to p',
and postcondition q' to q. Consequentially, the scoped region may produce a value
of type x', but the operation s may translate it to any type x. In Section 5.3, we
demonstrate how the translation allows us to implement session types for dual party
communication.

Further, PrEff is an instance of a parameterised monad. We show this by providing
an implementation for IFunctor, IApplicative and IMonad in Listing 4.4. Each
instance essentially threads the operation through the continuation of PrEff. Unfor-
tunately, this can be the source of potential performance bottlenecks since unless the
compiler optimises the code, operations such as IMonad.>>= can be expensive. In
Section 6.2, we evaluate the performance compared to other algebraic effect systems
in Haskell via microbenchmarks. We show that the run-time performance of preff is
competitive with related effect system libraries and is applicable in real-world scenarios.

31

4. The Effect System PREFF

1 instance IFunctor (PrEff f s) where
2 imap f (Value a) = Value $ f a
3 imap f (Impure op k) = Impure op (imap f . k)
4 imap f (ImpureP op k) = ImpureP op (imap f . k)
5 imap f (ScopedP op k) = ScopedP op (imap f . k)
6

7 instance IApplicative (PrEff f s) where
8 pure = Value
9

10 Value k <*> f = imap k f
11 Impure op k <*> f = Impure op ((<*> f) . k)
12 ImpureP op k <*> f = ImpureP op ((<*> f) . k)
13 ScopedP op k <*> f = ScopedP op ((<*> f) . k)
14

15 instance IMonad (PrEff f s) where
16 return = pure
17

18 Value a >>= f = f a
19 Impure op k >>= f = Impure op ((>>= f) . k)
20 ImpureP op k >>= f = ImpureP op ((>>= f) . k)
21 ScopedP op k >>= f = ScopedP op ((>>= f) . k)

Listing 4.4: IFunctor, IApplicative, and IMonad instance of PrEff.

For better interoperability with existing code, PrEff has instances for the type classes
Monad, Applicative and Functor. We define them in terms of their parameterised
versions, since they are special cases of the parameterised classes. For brevity, we omit
the implementations of the standard type classes due to their simplicity.

4.2 Algebraic Effects Handlers in preff

User-defined algebraic effects and handlers are an essential feature of preff. Algebraic
effect handlers have been extensively studied in the past (Plotkin and Power, 2003; Plotkin
and Pretnar, 2009; Bauer and Pretnar, 2013). Especially in Haskell, different variations
of algebraic effect handlers have been introduced (Kiselyov et al., 2013; Kiselyov and
Ishii, 2015; Wu and Schrijvers, 2015; Wu et al., 2014; Piróg et al., 2018). In preff, we
leverage this prior research to enable user-defined algebraic effect handlers with minimal
boilerplate.

An effect is modelled as a data type with an arbitrary number of constructors. Each
constructor represents an operation of the respective effect. For convenience, effects and
operations are defined using GADTs. We identify the following steps for defining an

32

4.2. Algebraic Effects Handlers in preff

1 data State s a where
2 Put :: s -> State s ()
3 Get :: State s s
4

5 get ::
6 Member (State e) f => PrEff f s p p e
7 get =
8 send Get
9

10 put ::
11 Member (State e) f => e -> PrEff f s p p ()
12 put s =
13 send (Put s)
14

15 runState :: ScopedEffect s =>
16 e ->
17 PrEff (State e : f) s p q a ->
18 PrEff f s p q (e, a)
19 runState initial = interpretStateful initial $ \s -> \case
20 Get -> pure (s, s)
21 Put newS -> pure (newS, ())

Listing 4.5: Define the effect State, embed its operations and implement its respective
handler function runState.

algebraic effect in preff.

• Define the effect and its operations using GADTs.

• Embed the operations, such that they can be used in a monadic PrEff computation.

• Define an algebraic handler function for the effect.

In Listing 4.5, we demonstrate the necessary steps to define the State effect. Additionally,
we include the handler runState that provides the implementation of the State effect.

Operations of an effect, such as Put and Get, need to be embedded into the monadic
context of PrEff. In particular, given an open union Op f, where f is the effect signature
of PrEff, the operation op :: eff needs to be embedded into Op f depending on the
index of eff in the effect signature f. In other words, the exact embedding depends on
the effect signature f and its order of effects during execution. Since the order of effects
is unknown when defining get and put, we use send which takes care of embedding
an operation appropriately. As we can see in Listing 4.6, send essentially creates a

33

4. The Effect System PREFF

1 send :: Member eff f => eff a -> PrEff f s p p a
2 send f = Impure (inj f) (\x -> pure x)

Listing 4.6: Injection of algebraic effects into PrEff.

1 class Member eff f where
2 inj :: eff a -> Op f a
3

4 instance {-# OVERLAPPING #-} Member e (e ': effs) where
5 inj :: f a -> Op (f : effs) a
6 inj e = OHere e
7

8 instance Member eff f => Member eff (e ': f) where
9 inj = OThere . inj

Listing 4.7: Member type class for injection into the open union Op.

node of the PrEff monad and injects the operation into the open union via inj. The
function name send is reminiscent of the analogy that algebraic effect systems consist of
a decentralised authority that responds to requests. Thus, a PrEff program sends a
request to the decentralised authority, i.e. a handler, which in turn assigns semantics to the
syntax of State, e.g. Get and Put. To inject an operation into Op f we use the function
inj from the type class Member. This type class represents a compile-time promise that
we can inject the operation into the open union. Further, send sets the continuation of
Impure to the identity operation. Executing the continuation produces the result of the
operation. However, this continuation is extended by sequencing operations via (>>=),
resulting in an AST of the application program.

The type class Member, first introduced by Kiselyov and Ishii (2015), has two purposes:
Inject an operation into the open union and declare in the type signature of a procedure
that certain effect operations may be used. We show the definition of the Member type
class in Listing 4.7, omitting the final instance which improves the error message if a
Member constraint cannot be satisfied.

Next we look at algebraic handlers in preff. The syntax of an algebraic effect system
is defined by the signature of its effects. However, the semantics is decoupled from the
syntax and is defined via algebraic effect handler functions. Programs using algebraic
effect systems consist of multiple handler functions that can be sequentially composed into
a decentralised authority. This decentralised authority defines the program’s semantics.
Handlers translate the algebraic operations of an effect to an executable program. Usually,
a handler handles a single effect of the effect signature f. Once an effect is handled, it is
removed from the effect signature f, and no operations of the effect remain in the AST

34

4.2. Algebraic Effects Handlers in preff

1 runState' ::
2 (ScopedEffect s) =>
3 e ->
4 PrEff (State e : f) s ps qs a ->
5 PrEff f s ps qs (e, a)
6 runState' initial = \case
7 Value x -> pure (initial, x)
8 Impure (OHere op) k -> case op of
9 Put s -> runState' s (k ())

10 Get -> runState' initial (k initial)
11 Impure (OThere op) k ->
12 Impure op (\x -> runState' initial (k x))
13 ImpureP op k ->
14 ImpureP op (\x -> runState' initial (k x))

Listing 4.8: Inductive recursion over the program structure of PrEff to implement the
handler runState. Only the highlighted lines specify the semantics of the State effect.

of the PrEff computation. Once all effects have been handled, i.e. the effect signature f
is empty, only a single computation remains. This computation is then evaluated to a
single value and may produce side effects, depending on the final monadic context.

While preff provides many utility functions for defining handlers such as interpret
and interpretStateful, it is possible to directly traverse the AST of a PrEff
program. For example, it is semantically equivalent to implement runState like
runState' as shown in Listing 4.8. However, most of the inductive traversal is boil-
erplate that is irrelevant to the semantics of runState'. The utility functions for
implementing handlers, such as interpretStateful, simply abstract over these pat-
terns. Therefore, while all effect handlers in preff can be written using inductive
recursion, the users of preff are encouraged to use the utility functions provided by
preff for defining algebraic effect handlers whenever possible. In addition to being
much simpler to implement and understand, it also allows preff to apply optimisations
during AST traversals.

So far, we have omitted the constructor ScopedP of PrEff. Handling the operations
within a ScopedP node is more complex, since the structure of the operation is opaque
to runState'. Thus, we need to weave effect handlers through scoping operations.

Weaving of Handlers through Scoped Algebras

Handling of an algebraic effect requires to also handle the operations within the scoped
regions of ScopedP. However, since the scoped-parameterised effect’s operations are
opaque to handlers of other effects, this requires special care. A handler of an effect has

35

4. The Effect System PREFF

1 class ScopedEffect s where
2 weave :: Functor ctx =>
3 ctx () ->
4 (forall r u v . ctx (m u v r) -> n u v (ctx r)) ->
5 ScopeE s m p p' q' q x x' ->
6 ScopeE s n p p' q' q (ctx x) (ctx x')

Listing 4.9: Recapitulate: Definition of the type class ScopedEffect which enables
weaving of algebraic effect handlers though scoped effects.

to be weaved through the scoped operation together with the context of the handler. In
Listing 4.9, we introduce the type class, ScopedEffect, which represents the class of
scoped-parameterised algebras that can thread handlers through their scoped monadic
regions. It is a direct adaptation of the handle function from Wu et al. (2014). The
function weave takes as a first argument the initial context and a transformation function.
Then this transformation function is applied to each inner region of operations of s
and adds the context to the resulting output. Within this transformation, we apply
effect handlers of other effects, ensuring all operations of an effect are properly handled.
All scoped algebras that allow weaving handlers need to implement an instance of
ScopedEffect. In Section 4.3, we provide concrete examples for scoped-parameterised
effects that implement the ScopedEffect type class.

Given the definition of ScopedEffect, we can now complete the runState' handler
in Listing 4.10. The idea is to weave the effect handler through the inner computations
of a scoped operation node. In particular, it is important to weave intermediate state
between the scoped region and the continuation of ScopedP. Otherwise, changes to
e, the mutable variable of State, would be lost. In the usage of weave, the initial
context is the current state and a context token (e, ()), i.e. ctx () ~ (e, ()).
This context is then woven via a transformation through the scoped operation of ScopeE.
The transformation applies the handler function for the State effect to any possible
scoped operations in ScopeE s. Finally, the handler is invoked on the continuation of
ScopedP with the state obtained from the weave operation.

As we have demonstrated in Listing 4.8 and Listing 4.10, it is feasible, and not too difficult,
to write algebraic effect handlers without any utility function such as interpret or
interpretStateful. However, these utility functions abstract over the most common
use-cases and should be used whenever possible. We conjecture, that it is possible to
implement all algebraic effects using the utility functions provided by preff.

4.3 Scoped-Parameterised Effect Handlers in preff

The implementation is based on the contributions of Piróg et al. (2018) and Punchihewa
and Wu (2021). As such, the constructor ScopedP encodes the scoped algebra in

36

4.3. Scoped-Parameterised Effect Handlers in preff

1 runState' ::
2 (ScopedEffect s) =>
3 e ->
4 PrEff (State e : f) s p q a ->
5 PrEff f s p q (e, a)
6 runState' s = \case
7 ...
8 ScopedP op k ->
9 ScopedP

10 (weave
11 (s, ())
12 (\(s', inner) -> Ix.do
13 (x, newS) <- runState' s' inner
14 pure (x, newS)
15)
16 op
17)
18 (\(s', a) -> runState' s' (k a))

Listing 4.10: Completed handler runState' for State e from Listing 4.8.

PrEff and is extensible via the data family ScopeE. Similarly to algebraic effects,
scoped-parameterised effects consist of the following components:

• The base algebra component of the scoped-parameterised effect.

• The scoped algebra component of the scoped-parameterised effect.

• An embed function for each operation of both components such that the operations
can be used in monadic PrEff computations.

• The effect handler for the scoped-parameterised effect.

We illustrate the scoped algebra on the scoped-parameterised effect StateP. All opera-
tions are suffixed with *P, which stands for parameterised, to disambiguate its operations
from the non-parameterised State effect. Similar to State, StateP maintains a single
mutable variable. Contrarily, the type of this mutable variable may change during
program execution. We show how we implement this in preff and discuss the relevant
details. However, we skip over detailed explanations of type variables that have already
been introduced in Section 5.2.1.

The effect StateP supports two regular algebraic operations, PutP and GetP. These
are semantically analogous to common state effects or monads. However, PutP can

37

4. The Effect System PREFF

1 data StateP p q a where
2 PutP :: x -> StateP p x ()
3 GetP :: StateP p p p
4

5 data instance ScopeE StateP m p p' q' q x x' where
6 ZoomP ::
7 (p -> p') ->
8 (q' -> q) ->
9 m p' q' x ->

10 ScopeE StateP m p p' q' q x x
11

12 putP ::
13 p ->
14 PrEff effs StateP q p ()
15 putP p = sendP (PutP p)
16

17 getP ::
18 PrEff effs StateP p p p
19 getP = sendP GetP
20

21 zoomP ::
22 (p -> p') ->
23 (q' -> q) ->
24 PrEff effs StateP p' q' a ->
25 PrEff effs StateP p q a
26 zoomP f restore act =
27 sendScoped (ZoomP f restore act)

Listing 4.11: Operations of the parameterised StateP effect.

update both the value and the type of its mutable variable. Further, we introduce the
scoped operation ZoomP. It allows to “zoom in” on a datatype and the scoped region
only has access to the changed mutable variables. After the scoped region has finished
execution, the resulting state may be fed back into the original mutable variable. It is
clear, that the effect StateP requires access to the pre- and postcondition of PrEff.

Effects that require access to the type-level information can be defined similarly to simple
effects, but often require more type annotations. To differentiate such effects from simple
effects, we call effects that can access the type variables p and q parameterised effects.
Parameterised effects also permit an algebraic interpretation, just like simple effects, and
are expressed via GADT syntax. Definition and usage of a parameterised StateP effect,
which can change the type of its mutable value, are shown in Listing 4.11.

38

4.3. Scoped-Parameterised Effect Handlers in preff

We briefly discuss the definition of the base component StateP which is free of scoped
operations.

• PutP :: x -> StateP p x (): The update operation of the mutable variable.
It expects some value of type x and represents an operation that produces the unit
result (). The precondition is any p, which communicates that this operation can
always be invoked, no matter what the type of the mutable variable is. After the
operation PutP is performed, the type of the mutable variable has changed to x.

• GetP :: StateP p p p: Get the current value of the mutable variable. Simi-
larly to PutP, this operation can always be used since its precondition is a simple
type variable p. Moreover, it leaves the type of the mutable variable invariant,
thus, the postcondition stays the same. The only difference is that GetP produces
a value of type p.

To define scoped-parameterised effects, we have to add a data family instance for the
data family ScopeE. This provides two advantages:

• It enables the developer to change the scoped-operations of a particular scoped-
parameterised effect at compile-time.

• It avoids an additional type parameter to PrEff. Some algebraic effect systems
have separate types for the base- and scoped algebra of an effect, such as Punchihewa
and Wu (2021).

The type declaration of data instance ScopeE StateP declares the scoped opera-
tions of the StateP effect. It carries a parameterised monad m type parameter, which is
used to describe the monadic regions the operation scopes over. In preff, it holds that
m ~ PrEff f s, where f is the effect signature, i.e. a list of simple effects, and s is
the scoped-parameterised effect itself, thus s ~ StateP.

We define a single scoped-parameterised operation ZoomP. ZoomP allows users to
temporarily change the type of the value it carries from p to p', for the duration of
executing m p' q' x. After the scoped operation ends, the state value the operation
m p' q' x produces, may be changed, e.g. incorporated into the original value. Since
the postcondition is q', the type of the mutable variable is also q'.

Embedding the operations of StateP for usage in PrEff is accomplished using the utility
functions sendP and sendScoped. These utility functions are analogous to send and
we show the implementation in Listing 4.12. They essentially create a PrEff node and
initialise continuation, i.e. the second parameter to both ImpureP and ScopedP simply
produces the result of their respective operation. Differently to send, the operation,
e.g. PutP, can be used directly in the definition since there is only a single scoped-
parameterised effect s. Thus, there is no need for a Member constraint. Especially in

39

4. The Effect System PREFF

1 sendP ::
2 s p q a ->
3 PrEff f s p q a
4 sendP s =
5 ImpureP s (\x -> pure x)
6

7 sendScoped ::
8 ScopeE s (PrEff f s) p p' q' q x' x ->
9 PrEff f s p q x

10 sendScoped scopedOp =
11 ScopedP scopedOp (\x -> pure x)

Listing 4.12: Injection of algebraic effects into PrEff.

the type signature of sendScoped, it is highlighted that the monad parameter m, the
ScopeE definition from above, is always PrEff f s.

Since the StateP effect has now been defined, we continue with handling a scoped-
parameterised effect in preff. Similar to Section 4.2, algebraic effect handlers can be
defined in two ways: inductively recurse over the constructors of PrEff, or use one
of various utility functions. As before, we present both approaches, starting with the
manual recursion over PrEff in Listing 4.13. The handler consists mostly of boilerplate
to recurse over the structure of PrEff. While the handler for the operations GetP and
PutP is familiar by now, handling the scoped operation is more involved. The handler
needs to be applied to the inner action act, and its intermediate state needs to be
modified to appropriately “zoom” the state. After the scoped effect of the inner region
has been handled, we continue with the continuation of ScopedP, i.e. the rest of the
program.

The boilerplate from handling the scoped effect using inductive recursion can be avoided
by using one of the utility functions provided by preff. For defining algebraic effect
handlers that require intermediate state, interpretStatefulScoped is provided.
As we can see in Listing 4.14, this enables us to focus on the semantics of the effect,
instead of having to worry about passing the correct arguments. The first argument to
interpretStatefulScoped handles the base algebra of StateP which is identical
to the effect handler runState as seen in Listing 4.5. The second argument is a function
which handles the scoped algebra of StateP, e.g. the operation ZoomP. This function
parameter takes three arguments: run, continuation and state. First, the run
argument allows the developer to control in which order scoped regions of the operation
are evaluated, or even evaluated at all. The function run is a reference to the handler
itself, i.e. runStateP, allowing the developer to handle the StateP effect in scoped
regions. Next, the argument continuation represents the rest of the program which
the developer needs to run to continue program execution after the effect operation

40

4.3. Scoped-Parameterised Effect Handlers in preff

1 runStateP' ::
2 p ->
3 PrEff f StateP p q a ->
4 PrEff f IVoid () () (q, a)
5 runStateP' p = \case
6 Value x -> pure (p, x)
7 Impure op k ->
8 Impure op (\x -> runStateP' p (k x))
9 ImpureP op k -> case op of

10 PutP x -> runStateP' x (k ())
11 GetP -> runStateP' p (k p)
12 ScopedP op k -> case op of
13 ZoomP f restore act -> do
14 (q', a) <- runStateP' (f p) act
15 runStateP' (restore q') (k a)

Listing 4.13: Inductively recurse over PrEff to define the semantics of the StateP
effect. Only highlighted lines of code implement the semantics of the effect, whereas the
rest is required boilerplate.

ZoomP has been handled. Finally, the argument state is the current value of the
mutable variable.

Note, the utility function interpretStatefulScopedH simplifies the example further,
as it exploits the fact that most handlers continue normal program execution after the
scoped regions have been handled. Thus, scoped algebra handling of the utility function
interpretStatefulScopedH has no access to continuation, and only controls
handling of scoped regions.

Similar to simple effects, we encourage users of preff to prefer utility functions over
manually recursing over PrEff. However, we acknowledge that the use-case and ca-
pabilities of the scoped-parameterised effects sometimes warrant writing an algebraic
effect handler without utility functions. In Section 5.3, we provide such a use-case when
evaluating the expressiveness of preff.

4.3.1 Weaving of Handlers through Scoped Algebras

We return to the type class ScopedEffect which we introduced in Section 4.2, List-
ing 4.9. The type class is required to implement weaving of algebraic effect handlers
through the inner regions of scoped effects. As such, all scoped-parameterised effects
should have an instance for ScopedEffect. Creating an instance for ScopedEffect
is usually simpler than the intimidating type signature might suggest.

41

4. The Effect System PREFF

1 runStateP ::
2 p ->
3 PrEff f StateP p q a ->
4 PrEff f IVoid () () (a, q)
5 runStateP =
6 interpretStatefulScoped
7 do \state -> \case
8 PutP newState -> pure (newState, ())
9 GetP -> pure (state, state)

10

11 do \continuation run state -> \case
12 ZoomP f restore act -> do
13 (x, newState) <- run (f state) act
14 run (restore newState) $ continuation x

Listing 4.14: Define the effect handler of the StateP effect. The effect system library
preff provides the utility function interpretStatefulScoped which simplifies the
implementation of the effect handler.

1 class ScopedEffect s where
2 weave :: Functor ctx =>
3 ctx () ->
4 (forall r u v . ctx (m u v r) -> n u v (ctx r)) ->
5 ScopeE s m p p' q' q x x' ->
6 ScopeE s n p p' q' q (ctx x) (ctx x')

Listing 4.15: Recapitulate: Definition of the type class ScopedEffect which enables
weaving algebraic effect handlers though scoped effects.

For convenience of the reader, we recall the definition of the type class ScopedEffect
in Listing 4.15.

We illustrate how to add an instance for ScopedEffect on the case-study of the
parameterised state effect StateP with its previously defined scoped algebra ZoomP
in Listing 4.16. The operation op is transformed to contain the necessary context of
effect handlers. Then the transformation function, named nt, is applied to the scoped
region. This transformation, in preff, is an effect handler for some effect f in the effect
signature of PrEff f s. Thus, it makes sure that the effect’s operations are handled in
the scoped region. The context token ctx () allows us to keep track of intermediate
results, as we have shown in Listing 4.10.

Not all scoped-parameterised effects can implement the rigid interface of ScopedEffect.

42

4.3. Scoped-Parameterised Effect Handlers in preff

1 instance ScopedEffect StateP where
2 weave ctx nt (ZoomP f restore act) =
3 ZoomP f restore (nt $ act <$ ctx)

Listing 4.16: ScopedEffect instance for StateP. The transformation function argu-
ment is applied to the scoped monadic region in ZoomP.

As a consequence, it limits the order of applying effect handlers and forces the user to
always handle the scoped-parameterised effect first. Thus, such a scoped-parameterised
effect is less flexible, but still usable.

4.3.2 Strengths and Limitations
Our algebraic effect system library preff allows developers to combine the benefits of
traditional algebraic effect system libraries with the improved type safety of parameterised
monads. Algebraic effects in preff are convenient to define and use, allowing developers
to opt-in to more advanced type-level proofs when beneficial. Scoped-parameterised
effects in preff are used to implement complex control flow patterns, such as coroutines,
iterators or even session types. The limitation that preff permits only a single scoped-
parameterised effect is necessary to ensure soundness. If there was more than one
scoped-parameterised effect, it would allow subverting the type safety provided by the
pre- and postcondition in PrEff due to unexpected control flow changes. Another
potential design could implement a central authority that coordinates the overall control
flow, however, this would deteriorate the composability of the algebraic effect system.
Thus, it is a conscious tradeoff of preff to support only a single scoped-parameterised
effect to ensure soundness and composability.

43

CHAPTER 5
A Tour of preff

User-defined algebraic effects make up the core of any algebraic effect system. We demon-
strate our algebraic effect system by implementing the algebraic effects Reader, Writer
and State. These effects correspond closely to their monadic counterparts, and are com-
posable similar to the monad transformers ReaderT, WriterT and StateT. Afterwards,
we show usage of our algebraic effect system on the example from Section 2 by writing
the procedure processCustomers in preff. We define the effects that we require for
processCustomers, and show how to use IO procedures. Next, we introduce scoped-
parameterised effects in preff by applying scoped effects to processCustomers to
improve type safety. Finally, we use scoped-parameterised effects to introduce a novel
encoding of binary session types to demonstrate the expressiveness of preff.

5.1 Algebraic Effects and Handlers
We require three steps to define and use an effect in preff:

1. Define the algebraic effect using GADT where each constructor presents an effect
operation.

2. Embed each operation such that it can be used in PrEff, the effect monad of
preff.

3. Provide a handler function that gives the effect meaning, i.e. an implementation.

We demonstrate these steps on well-known effects, followed by implementing the running
example processCustomers in preff.

45

5. A Tour of PREFF

1 data Reader r a where
2 Ask :: Reader r r
3

4 data Writer w a where
5 Tell :: w -> Writer w ()
6

7 data State e a where
8 Put :: e -> State e ()
9 Get :: State e e

Listing 5.1: The Reader, Writer and State effect in PrEff.

5.1.1 Defining the Effects Reader, Writer and State

Algebraic effects allow implementing monads that are composable in a similar way to
their respective monad transformer counterparts. We illustrate the capabilities of preff
by implementing effects for the monad transformers, ReaderT, WriterT and StateT.
These effects are frequently used in most effect systems, due to their general usefulness
as building blocks for other effects.

First, we define the effects and the respective operations they can perform: ReaderT
provides the operation ask, which allows the developer to ask for the value of a read-only
variable, WriterT provides tell to collect values, and StateT provides put and get
operations for updating and retrieving the value of a mutable variable. Since the effects
mirror the monad transformers, the algebraic effect definitions should have the same
operations.

We define the effects Reader, Writer and State and provide their algebraic effect
definition using GADTs in Listing 5.1. Each effect must be parameterised by at least
one type parameter for the output type, named a in these examples. They may have
arbitrarily many additional type parameters:

• Reader can hold a read-only variable of type r.

• Writer writes values of type w that can be read by a consumer later.

• State can hold a mutable variable of type e.

Each constructor of the data types describes one operation of the respective effect. Using
GADTs allows each constructor to have a different result type. For example, Put takes
a value of type e and then produces the unit result, as indicated by State e (). The
corresponding Get operation takes no parameters and produces a value of the same type,
namely e.

46

5.1. Algebraic Effects and Handlers

The effect monad PrEff is notably different to comparable effect monads of most other
algebraic effect systems in Haskell. In most other algebraic effect systems, the effect
monad is parameterised by two type parameters. PrEff has five type parameters, usually
denoted as PrEff f s p q a:

• f is the effect list of PrEff, i.e. the list of all effects that can be performed in a
procedure. We also refer to f as the effect signature of PrEff.

• s is the scoped effect of PrEff. The scoped effect is discussed in detail in Section 5.2.

• p and q are the pre- and postcondition which are required for scoped effects.
However, they are not relevant for algebraic effects.

• a is the result type of a PrEff computation.

An effect’s operation is simply data, expressed as a data constructor. To invoke an effect
operation in the effect monad PrEff, the operation needs to be wrapped or embedded
into the context of the effect monad. We name this process wrapping or embedding
an effect in PrEff. Therefore, we embed the operation into PrEff by implementing
an embedding function, e.g. the effect operation Ask :: Reader r r requires an
embedding function ask :: PrEff f s p p r. Conceptually, we want to inform
PrEff that a certain operation will be performed in the program.

To embed operations to be used in PrEff, preff provides the utility function send.
The send functions allow us to “send” the operation to PrEff, where it is later handled
by a handler function. It is only allowed to “send” an operation of the effect eff if eff is
part of the effect signature. However, since an embedding function, or monadic procedure,
shouldn’t specify the exact instantiation of f, we constrain the effect list of PrEff via
the type class constraint Member eff f. Intuitively, this constraint expresses that eff
is an element in the effect list f. Further, Member eff f expresses, that a function can
only be invoked if the effect eff is part of the effect list f. Thus, ask has the type class
constraint Member (Reader r) f, tell has Member (Writer w) f and put and
get have both Member (State e) f. Additionally, the type of the produced value
of the embedding function corresponds exactly to the result type of each operation
respectively. For example, Ask produces a value of type r and thus, ask has the type
PrEff f s p p r while Tell produces unit, reflected by PrEff f s p p (). We
show the full code for wrapping the operations of each effect in Listing 5.2. As we can see,
there is a close correspondence between the effect operation, identified by a constructor,
and the embedding function that allows us to perform the effect in PrEff. By convention,
the embedding function for an effect operation is the lowercased name of the operation,
for example for the effect operation Ask, we name the embedding function ask. It is
trivial to automatically generate the embedding functions that follow the convention via
template-haskell1, as we have shown in Listing 2.7. After embedding the operations
in PrEff, we can use the freshly defined algebraic effects.

1https://hackage.haskell.org/package/template-haskell

47

https://hackage.haskell.org/package/template-haskell

5. A Tour of PREFF

1 ask :: Member (Reader r) f => PrEff f s p p r
2 ask = send Ask
3

4 tell :: Member (Writer w) f => PrEff f s p p ()
5 tell x = send (Tell x)
6

7 put :: Member (State e) f => e -> PrEff f s p p ()
8 put x = send (Put x)
9

10 get :: Member (State e) f => PrEff f s p p e
11 get = send Get

Listing 5.2: Example: Embed the operations of the effects Reader, Writer and State
in PrEff. This is required to use the operations in the effect monad. Usually, these
functions are automatically generated at compile-time.

1 incrementByTwo :: Member (State Int) f => PrEff f s p p String
2 incrementByTwo = do
3 i <- get @Int
4 put (i + 2)
5 pure $ show i

Listing 5.3: Example: Increment the value of a State effect by two.

To use an effect in a procedure, the effect must be in the effect list f. As mentioned
before, this constraint is expressed by Member eff f. In Listing 5.3, we present a
simple procedure that requires a State Int effect and increases its mutable variable
by tw, then produces a String from the original integer value.

Algebraic effect systems must offer the possibility of writing handlers. A handler provides
an interpretation of an effect. There may be multiple interpretations for a single effect.
The library preff comes with a lot of convenience functions to help users define effect
handlers. Algebraic effect handlers are often defined using only the provided abstractions,
simplifying the implementation. Moreover, users do not need any knowledge of the
internal structure of PrEff to be able to implement effect handlers. In Listing 5.4, we
present the handlers for the effects Reader, Writer and State. We showcase the
utility functions:

• interpret: An essential helper that allows the user to define the semantics of
an effect in PrEff. Users simply provide the implementation for the operations.
The implementation can utilise other effects of PrEff, i.e. the effect is interpreted

48

5.1. Algebraic Effects and Handlers

1 runReader :: ScopedEffect s =>
2 r ->
3 PrEff (Reader r : f) s p q a ->
4 PrEff f s p q a
5 runReader e = interpret $ \case
6 Ask -> pure e
7

8 runWriterViaMonoid :: (ScopedEffect s, Monoid w) =>
9 PrEff (Writer w : f) s p q a ->

10 PrEff f s p q (w, a)
11 runWriterViaMonoid = interpretStateful mempty $ \s -> \case
12 Tell w -> pure (s w, ())
13

14 runState :: ScopedEffect s =>
15 e ->
16 PrEff (State e : f) s p q a ->
17 PrEff f s p q (e, a)
18 runState initial = interpretStateful initial $ \s -> \case
19 Get -> pure (s, s)
20 Put newS -> pure (newS, ())

Listing 5.4: Example: Writing handlers for Reader, Writer and State effects.

in the context of PrEff. Especially convenient for effects that do not require any
intermediate state, such as IO operations or the handler runReader.

• interpretStateful: Like interpret, effects are interpreted in PrEff. Thus,
the handler can also depend on other effects, simplifying the implementation. In
addition, interpretStateful carries a value that can be modified between each
two operation call. As such, this helper aids in implementing effect handlers with
intermediate state, such as the runState handler.

Since runReader requires no intermediate state, its handler can be implemented us-
ing interpret. Naturally, runState requires intermediate state, and thus, it uses
interpretStateful to handle the modification of mutable variables. We implement
runWriterViaMonoid using interpretStateful for the sake of simplicity. The
state variable is used as an append-only variable. In Section 4.2, we discuss the details of
handler functions, and how to write them without any utility functions.

The type signatures of the handler functions are mostly straightforward, explained below
for runReader:

49

5. A Tour of PREFF

• The handler takes an effectful PrEff computation, where the first element of the
effect signature is Reader r, specified by PrEff (Reader r : f).

• It produces a new computation where all occurrences of Reader r have been
handled, resulting in PrEff f.

• The types of the pre- and postcondition may be different, and thus they have two
distinct type variables p and q. However, handling the Reader effect may not
affect the pre- and postcondition. The resulting computation must have the same
type for the pre- and postconditions. Note, algebraic effects as defined so far can
never affect the value of the type of the pre- and postcondition.

• At last, ScopedEffect s is necessary boilerplate to enable more flexible handling
of scoped effects. The details of this type class are discussed in Section 4.3.

By now, we have defined each effect, e.g. Reader, their respective operations, e.g.
Ask, embedded the effects for use in PrEff, e.g. ask, and implemented the respective
algebraic effect handler function, e.g. runReader. This suffices for usage in preff.

5.1.2 The Running Example: processCustomers in preff

After demonstrating how to define and handle algebraic effects in preff, we proceed with
migrating processCustomers to the algebraic effect system preff. As a reminder,
we ended the discussion of the procedure processCustomers with the code shown in
Listing 5.5. The procedure processCustomers was designed according to a generic
algebraic effect system and is valid in most common algebraic effect systems, except for the
name of the effect monad. In that spirit, to make the procedure compatible with preff,
the only required modification is changing the effect monad to PrEff f s p p (),
as we highlight in Listing 5.6. Naturally, the effect monad has a different name and
we need to add a type variable s for a scoped effect. In this procedure, the pre- and
postconditions must not change. Thus, we choose the same type variable p for both pre-
and postcondition. However, this will change in Section 5.2. The return type is identical
to before, no result is produced and thus we choose ().

In processCustomers, we use the effects CustomerService and CustomerDb for
the implementation. Identically to the effects defined above, we have to define the
effects, their respective operations, embed them in a monadic PrEff computation
and implement algebraic effect handlers. We define the operations using GADTs and
handlers for the effects CustomerService and CustomerDb in Listing 5.7. For
brevity, we omit the definition of process, readCustomers and writeCustomers
and assume the existence of fitting functions processData, readCustomersIO and
writeCustomersIO.

The algebraic effects for CustomerService and CustomerDb themselves are straight-
forward. Definitions of the handler functions are mostly familiar, using the utility

50

5.2. Scoped-Parameterised Effects and Handlers

1 processCustomers ::
2 Members '[CustomerService, CustomerDb] f =>
3 FilePath ->
4 FilePath ->
5 Eff f ()
6 processCustomers input output = do
7 customers <- readCustomers input
8 newCustomers <- process customers
9 writeCustomers output newCustomers

Listing 5.5: Example: Customer processing using a generic algebraic effect system.

1 processCustomers ::
2 Members '[CustomerService, CustomerDb] f =>
3 FilePath ->
4 FilePath ->
5 PrEff f s p p ()
6 processCustomers input output = do
7 customers <- readCustomers input
8 newCustomers <- process customers
9 writeCustomers output newCustomers

Listing 5.6: Example: Customer processing using the algebraic effect system preff.
Only the effect monad needs to be changed.

function interpret for easy handling of the operations. A new feature is the constraint
Member (Embed IO) f in runCustomerDbIO which allows handlers direct access to
the IO monad. The effect Embed m is an effect that allows wrapping any monad m to be
used in PrEff, for example IO. Since the handlers use pre-defined IO procedures, this
definition is quite succinct. However, since there may be more than one distinct handler
for an effect, we can provide alternative implementations that require no IO without
modifying processCustomers at all. For example, a completely pure implementation
leverages the State effect in Listing 5.8. It uses an associative variable, that maps a
FilePath to [Customer]. The operation ReadCustomers looks up the associated
customers, while WriteCustomers saves new customers to the mutable variable.

5.2 Scoped-Parameterised Effects and Handlers
By now, we have implemented processCustomers using our algebraic effect system
library preff. While this allows developers to benefit from the flexibility and compos-
ability of algebraic effect systems, there are classes of errors that remain unaddressed, not

51

5. A Tour of PREFF

1 data CustomerService a where
2 Process :: [Customer] -> CustomerService [Customer]
3

4 data CustomerDb a where
5 ReadCustomers :: FilePath -> CustomerDb [Customer]
6 WriteCustomers :: FilePath -> [Customer] -> CustomerDb ()
7

8 runCustomerService ::
9 ScopedEffect s =>

10 PrEff (CustomerService : f) s p q x ->
11 PrEff f s p q x
12 runCustomerService = interpret $ \case
13 Process customers ->
14 pure $ processData customers
15

16 runCustomerDbIO ::
17 (Member (Embed IO) f, ScopedEffect s) =>
18 PrEff (CustomerDb : f) s p q x ->
19 PrEff f s p q x
20 runCustomerDbIO = interpret $ \case
21 ReadCustomers fp ->
22 embed $ readCustomersIO fp
23 WriteCustomers fp customers ->
24 embed $ writeCustomersIO fp customers

Listing 5.7: Example: Effect definitions and handlers for processCustomers.

1 runCustomerDbViaState ::
2 (Member (State (Map FilePath [Customer])) f, ScopedEffect s) =>
3 PrEff (CustomerDb : f) s p q x ->
4 PrEff f s p q x
5 runCustomerDbViaState = interpret $ \case
6 ReadCustomers fp -> do
7 customerMap <- get
8 pure (customerMap ! fp)
9

10 WriteCustomers fp customers -> do
11 customerMap <- get
12 put (insert fp customers customerMap)

Listing 5.8: Example: A pure implementation of the effect handler of CustomerDb.

52

5.2. Scoped-Parameterised Effects and Handlers

fully utilising the capabilities of preff. For example, if a programming error occurs and
the input database of processCustomers does not exist, then the procedure crashes
at run-time. In other words, programmer assumption and preconditions are verified
by developers, not by the compiler, and can thus be violated in a non-trivial fashion.
Our algebraic effect system library excludes these classes of programming errors via
scoped-parameterised effects. Scoped-parameterised effects consist of two components
referred to as the base algebra and the scoped algebra, formalised by Piróg et al. (2018).
Additionally, these effects are parameterised by a pre- and postcondition that can be used
to encode proofs at the type-level. To define a scoped-parameterised effect in preff, we
need to do the following:

1. Define the base algebra of the scoped effect, just like in the previous section.

2. Define the scoped algebra of the effect.

3. Embed the operations for use in PrEff.

4. Define a handler for the scoped-parameterised effect.

We show how to implement a scoped-parameterised effect on processCustomers.
First, we introduce scoped effects without type parameters. Second, the scoped effect is
extended to a scoped-parameterised effect, improving type safety and demonstrating the
capabilities of preff.

5.2.1 Scoped Effects and Handlers in preff

We introduce the effect CustomerStore which is conceptually identical to CustomerDb,
but is extended by a new operation. This new operation performs an existence check
for a database before the procedure reads from it, and continues only if the database
location can be found. In Haskell, such operations often follow the naming scheme with*
where * refers to the name of the operation. Thus, we define the operation WithStore.
Further, the effect CustomerStore defines the algebraic operations ReadStore and
WriteStore, with syntax and semantics equivalent to the operations ReadCustomers
and WriteCustomers from CustomerDb.

First, we define processCustomersImproved in Listing 5.9. It performs the same
operations as processCustomers, but validates that the database input exists
before it reads the customer data. The major changes lie in the type signature of
processCustomersImproved:

• There is only a single Member constraint, for the CustomerService effect, since
it is the only algebraic effect in processCustomersImproved.

• The type parameter s of PrEff is replaced by CustomerStore. It is the scoped
effect for this procedure.

53

5. A Tour of PREFF

1 processCustomersImproved ::
2 Member CustomerService f =>
3 FilePath ->
4 FilePath ->
5 PrEff f CustomerStore () () ()
6 processCustomersImproved input output = do
7 withStore input $ do
8 customers <- readStore input
9 newCustomers <- process customers

10 writeStore output newCustomers

Listing 5.9: Example: processCustomersImproved using the scoped-parameterised
effect CustomerStore to validate the existence of the input database location.

• Pre- and postcondition have been changed to (). The exact semantics of the pre-
and postcondition are dependent on the scoped-parameterised effect, in this case
CustomerStore. We choose the following semantics: This procedure can always
be invoked and doesn’t change the precondition during execution. The pre- and
postcondition indicate that the procedure can only be invoked if the precondition
is () and after this procedure is invoked, the postcondition is (). This allows us
to invoke processCustomersImproved twice in a row, for example.

The body of processCustomersImproved has been changed as well, we perform
an existence check via withStore which only continues execution if input exists.
Otherwise, the implementation remains conceptually unchanged. With the existence
check, processCustomersImproved is always safe to invoke and requires no further
considerations from the developer.

To define the CustomerStore effect, we have to define a scoped effect. Scoped effects
consist of two components, a base algebra and a scoped algebra as introduced by Piróg
et al. (2018). In preff, scoped effects are different compared to other effect systems,
since they are always parameterised by type-level proofs. These type-level proofs allow
developers to improve type safety when desired, but there is boilerplate involved for
defining scoped effects in simple cases. For example, s, p and q have to be given in
the type signature of PrEff f s p q a, even when these are not used. The base
algebra component for CustomerStore is similar to CustomerDb, as can be seen in
Listing 5.10. The base algebra of a scoped effect requires at least three type parameters,
p is the precondition of this effect, q the postcondition and a is the type of the value an
operation produces. For now, both operations of CustomerStore do not impose any
type-level restrictions, and thus we choose () for the pre- and postcondition.

To define the scoped algebra, the effect needs to have an instance of the ScopeE type
family. This type family can be quite intimidating due to its seeming complexity. However,

54

5.2. Scoped-Parameterised Effects and Handlers

1 data CustomerStore p q a where
2 ReadStore :: FilePath -> CustomerStore () () [Customer]
3 WriteStore :: FilePath -> [Customer] -> CustomerStore () () ()

Listing 5.10: Example: Base algebra for the scoped effect CustomerStore without
type-level information.

this complexity is often not needed, and only a subset of its features is required in our case.
Details of ScopeE and scoped-parameterised effects have been discussed in Section 4.2.
In Listing 5.11 we show how to define the scoped algebra for CustomerStore. The type
variables of ScopeE CustomerStore m p q' q' q x' x are defined as follows:

• m: Captures the monadic context of PrEff f s. In fact, m is always PrEff f s,
but we cannot encode this directly since the effect signature f is not known at
this point in execution. Thus, we assume some generic parameterised monad m for
effect definition. Note, m must be a parameterised monad because it has three type
parameters, a precondition, postcondition and the result type. Practically, this is
a functional procedure that the effect CustomerStore scopes over. Relating to
Listing 5.9, the monadic computation m () () () is the second parameter to
withStore/WithStore. The pre- and postcondition of m are both ().

• p, q: These are the pre- and postcondition of the program, where p needs to
hold for the scoped operation to be permitted and q holds after execution. We
have defined that WithStore can always be invoked and, after execution, the
postcondition is the same as the precondition. There is no reason to require the
pre- and postcondition to be (), as it is overly restrictive for no benefit. Thus, the
type signature uses p, i.e. ScopeE CustomerStore m p () () p () ().

• p', q': These are the pre- and postcondition of the scoped region. In this case
m p' q' (). Intuitively, the scoped operation sets up the environment such that
p' holds in the scoped region, and we require q' to hold after the inner operation
is executed. Since CustomerStore requires no special pre- or postcondition,
we choose () for both p' and q'. This is reflected in the final output type of
WithStore, e.g. ScopeE CustomerStore m p () () q () ().

• At last, x' and x are the result types of the respective operations. The former is
the result type of the scoped operation, e.g. m () () (), thus, x' ~ (), while
the latter is the final result type of withStore/WithStore. Since neither the
inner nor outer computation produces a result, we specify x ~ (). Thus, we
obtain the type signature ScopeE CustomerStore m p () () q () () .

Identically to algebraic effect operations, the operations of a scoped effect need to be
embedded into PrEff. The implementation, as can be seen in Listing 5.12, is similar

55

5. A Tour of PREFF

1 data instance ScopeE CustomerStore m p p' q' q x' x where
2 WithStore ::
3 FilePath ->
4 m () () () ->
5 ScopeE CustomerStore m p () () p () ()

Listing 5.11: Example: Scoped algebra for the scoped effect CustomerStore without
type-level requirements.

1 readStore ::
2 FilePath -> PrEff eff CustomerStore () () [Customer]
3 readStore p =
4 sendP (ReadStore p)
5

6 writeStore ::
7 FilePath -> [Customer] -> PrEff eff CustomerStore () () ()
8 writeStore p c =
9 sendP (WriteStore p c)

10

11 withStore ::
12 FilePath ->
13 PrEff eff CustomerStore () () () ->
14 PrEff eff CustomerStore p p ()
15 withStore i m =
16 sendScoped (WithStore i m)

Listing 5.12: Example: Embed the operations of a scoped algebra for the effect
CustomerStore as a monadic PrEff computation.

to algebraic effects but it requires two new helper functions: sendP and sendScoped.
Conceptually, they serve the same purpose as send from Listing 5.2, but are specific
to embedding operations of the respective scoped effect, as these affect the pre- and
postcondition. Embedding operations for a scoped-parameterised effect has the same
requirement as for algebraic effects, namely that the type signature of the function
needs to correspond closely to the operation definition. For example, the result type of
readStore has to be the same as the result type of ReadStore.

At last, a handler for CustomerStore needs to be defined. Unfortunately, the previously
defined utility functions such as interpret and interpretStateful cannot be
reused, since CustomerStore consists of two components, the base algebra and the
scoped algebra. In preff, we define utility functions that abstract over PrEff, enabling
developers to write handlers more easily and independently of the internal implementation

56

5.2. Scoped-Parameterised Effects and Handlers

1 runCustomerStoreIO ::
2 Member (Embed IO) f =>
3 PrEff f CustomerStore p q a ->
4 PrEff f IVoid () () a
5 runCustomerStoreIO =
6 interpretScopedH
7 do \case
8 ReadStore fp -> do
9 embed $ readCustomersIO fp

10 WriteStore fp cs -> do
11 embed $ writeCustomersIO fp cs
12

13 do \run -> \case
14 WithStore fp m -> do
15 exists <- embed (customersExistIO fp)
16 when exists $ do
17 run m

Listing 5.13: Example: Handler for the effect CustomerStore using the handler utility
function interpretScopedH. The function argument run is used to conditionally run
the scoped region if the database location is found.

of PrEff. Listing 5.13 shows the handler for the scoped effect CustomerStore. The
implementation uses interpretScopedH, one of the many utility functions in preff,
for handling scoped-parameterised effects. It splits the implementation into base and
scoped algebra handlers, and resembles interpret but for scoped effects. While the
handler for the base algebra is quite familiar by now, e.g. for each operation the semantics
are defined using appropriate IO procedures, the scoped operation has the additional
parameter run. This parameter allows the handler to decide how to continue program
execution. Essentially, it is a reference to the effect handler we are defining, enabling us
to re-use the semantics of the base and scoped algebra for the monadic region. In this
particular example, it allows us to encode that the continuation of withStore is only
executed if customersExistIO can find the store location.

The definition and implementation of the scoped effect CustomerStore is complete
with the definition of the handler. excludes run-time failures, and provides a safe to
use interface. However, the existence check is performed every time the procedure
processCustomersImproved is invoked. This might be undesirable due to per-
formance considerations, and moreover, does not make the usage of readStore and
writeStore itself any safer. Developers may just use the operations without calling
withStore for the input parameter. Scoped-parameterised effects can enrich the effect
to make readStore always safe to use.

57

5. A Tour of PREFF

5.2.2 Scoped-parameterised Effects and Handlers in preff

Our algebraic effect system library preff provides pre- and postconditions in its effect
monad PrEff which differentiates it from most other algebraic effect system libraries in
Haskell. This enables developers to encode non-trivial proofs at the type-level, which are
verified by the compiler at compile-time. In preff, we name these proofs protocol types
as they can encode protocols like contracts for control flow execution.

Previously, we introduced scoped effects for preff on the CustomerStore example to
implement the functional procedure processCustomersImproved. While this avoids
run-time failures by introducing an existence check for the database location, it is still
possible to use readStore incorrectly. In this section, we amend the scoped effect
CustomerStore to make use of the pre- and postcondition sections provided by PrEff
to increase the type safety and exclude incorrect usage.

Since it should only be possible to invoke the operation ReadStore when there is a
proof for the existence of the database, we need to change the algebraic effect definition of
CustomerStore. We introduce the phantom type Store db, which represents a proof
that the database db exists. Thus, ReadStore is modified to expect a precondition
Store inp and cannot be invoked if this precondition is not met. After reading the
database, it remains valid, which means that after invoking the operation ReadStore,
the proof still exists, i.e. the postcondition remains unaltered. Differently, WriteStore
has no precondition, it can be invoked at any time. However, after writing to a certain
location, we can be sure that this location exists. Thus, while WriteStore has no
precondition, the postcondition is Store out, where out is the database location. Note
that it is also possible to add the new location to a list of known database locations in
the type signature. However, for the sake of simplicity we abstain from further advanced
techniques. Eisenberg and Weirich (2012) provide an introduction to dependently typed
programming in Haskell which can be translated for preff. We show the full definition
of the base algebra in Listing 5.14.

Since FilePath is not sufficient to track the exact database location at the type-level,
the database location parameter is replaced by Proxy db. Proxy2 is often used in
Haskell as a surrogate for communicating type information. The purpose is to use a type
representation of the database location, for example Proxy @"customers.db".

The extended CustomerStore effect suffices to implement processCustomersTyped
which is the final version of processCustomers with improved type safety in preff.
We show the implementation of processCustomersTyped in Listing 5.15. Interest-
ingly, the implementation is now very similar to the original processCustomers from
Listing 5.6. In both procedures the implementation assumes that the input database exists
but previously the programmer had to verify correctness while now the compiler verifies
type safety. The main difference is the type signature of processCustomersTyped:

2https://hackage.haskell.org/package/base-4.18.0.0/docs/Data-Proxy.html

58

https://hackage.haskell.org/package/base-4.18.0.0/docs/Data-Proxy.html

5.2. Scoped-Parameterised Effects and Handlers

1 data Store db
2

3 data CustomerStore p q a where
4 ReadStore ::
5 Proxy db -> CustomerStore (Store db) (Store db) [Customer]
6 WriteStore ::
7 Proxy db -> [Customer] -> CustomerStore p (Store db) ()

Listing 5.14: Example: Base algebra for scoped-parameterised effect CustomerStore.
Uses a phantom type Store to encode pre- and postconditions for the operations.

• Proxy inp/out: Type representation of the database locations. It replaces the
FilePath parameters but serves the same purpose: The procedure reads from
the database location inp and writes new customer data to out. Naturally, at
run-time, inp and out encode a concrete database location.

• Store inp/out: The functional procedure processCustomersTyped can only
be invoked, if there is a proof that a database exists at inp. Further, after execution,
the postcondition guarantees that the database at location out exists. This guar-
antee holds since the procedure processCustomersTyped uses writeStore
which creates a database at the location out.

The implementation itself is identical to previous iterations, the only modification is
the usage of Ix.do instead of the well-known do. This is a feature of recent GHC
versions, called QualifiedDo3 which allows developers to use the do syntax for monad-
like structures that cannot implement the Monad type class. In Section 4.1, we show
the implementation of IMonad, which provides the implementation of Ix.do. We
require Ix.do because processCustomersTyped changes its type parameters during
execution, from Store inp to Store out. Such an interface cannot be implemented
with Monad only, but requires the IMonad interface. As a rule of thumb, whenever the
pre- or postcondition changes during execution, the code region requires Ix.do instead
of do.

Currently, given the algebraic component of CustomerStore, the only way to create a
proof that a database location exists is by invoking WriteStore. However, this entails
that we can never read from a store location unless we have written to it before. This is
dissatisfactory, rather it should be possible to check whether a database location exists
by encoding this proof for a scoped region. Such proofs can be achieved via the scoped
operation WithStore, as shown in Listing 5.16.

3https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/qualified_
do.html#extension-QualifiedDo

59

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/qualified_do.html#extension-QualifiedDo
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/qualified_do.html#extension-QualifiedDo

5. A Tour of PREFF

1 processCustomersTyped ::
2 Member CustomerService f =>
3 Proxy inp ->
4 Proxy out ->
5 PrEff f CustomerStore (Store inp) (Store out) ()
6 processCustomersTyped inp out = Ix.do
7 customers <- readStore inp
8 newCustomers <- process customers
9 writeStore out newCustomers

Listing 5.15: Example: Type-safe variant of processCustomers that uses the scoped-
parameterised effect CustomerStore to safely access the customer database. It requires
Ix.do as it changes the pre- and postcondition of PrEff.

1 data instance ScopeE CustomerStore m p p' q' q x' x where
2 WithStore ::
3 Proxy inp ->
4 m (Store inp) q' () ->
5 ScopeE CustomerStore m p (Store inp) q' p () ()

Listing 5.16: Example: Scoped-parameterised algebra for CustomerStore. The high-
lighted inner monadic region assumes that Store inp exists and may read its data.

The definition of WithStore is almost identical, except for the pre- and postcondition
of the monadic region. In m (Store inp) (Store out) (), the monadic compu-
tation can assume that the database exists and use readStore as required, since the
precondition Store inp is satisfied by WithStore. After the execution of m, any
arbitrary postcondition may hold, specified by q'. The operation WithStore discards
the postcondition of the inner computation, and restores the initial precondition.

With the scoped-parameterised effect CustomerStore, we now consider an exam-
ple where we invoke processCustomersTyped in Listing 5.17. For brevity, we as-
sume the embedding functions have already been defined, as they follow the same
schema as before. The example illustrates, how we have moved the existence check out
of processCustomersTyped. This simplifies the implementation of the procedure
processCustomersTyped and excludes issues at run-time as no developer can invoke
processCustomersTyped without providing a proof of the database’s existence.

At last, we have to define the handler for the scoped-parameterised effect CustomerStore.
Like before, in Listing 5.13, the utility function interpretScopedH is used for con-
veniently defining the semantics of the base and scoped algebra of CustomerStore.
Only one change is required, since the database location is only encoded in the type, we

60

5.2. Scoped-Parameterised Effects and Handlers

1 invocationExample ::
2 Member CustomerService f =>
3 PrEff f CustomerStore p p ()
4 invocationExample = Ix.do
5 withStore (Proxy @"customers.db") $ Ix.do
6 processCustomersTyped (Proxy @"customers.db")
7 (Proxy @"newCustomers.db")

Listing 5.17: Example: Invoke processCustomersTyped in a type safe manner.

1 runCustomerStoreIO ::
2 Member (Embed IO) f =>
3 PrEff f CustomerStore p q a ->
4 PrEff f IVoid () () a
5 runCustomerStoreIO =
6 interpretScopedH
7 do \case
8 ReadStore (p :: Proxy inp) -> do
9 let fp = symbolVal p

10 embed $ readCustomersIO fp
11 WriteStore (p :: Proxy out) cs -> do
12 let fp = symbolVal p
13 embed $ writeCustomersIO fp cs
14

15 do \run -> \case
16 WithStore p m -> do
17 let fp = symbolVal p
18 exists <- embed (customersExistIO fp)
19 when exists $ do
20 run m

Listing 5.18: Example: Final handler for the scoped-parameterised effect
CustomerStore.

need to translate it into a value, e.g. a FilePath. GHC provides symbolVal4, which
translates the type to a String value. Once a value is created, the internal semantics of
the effect can be specified using the existing procedures.

By now, we have shown how to define new algebraic effects in preff, give their operations

4https://hackage.haskell.org/package/base-4.18.0.0/docs/GHC-TypeLits.html#
v:symbolVal

61

https://hackage.haskell.org/package/base-4.18.0.0/docs/GHC-TypeLits.html#v:symbolVal
https://hackage.haskell.org/package/base-4.18.0.0/docs/GHC-TypeLits.html#v:symbolVal

5. A Tour of PREFF

semantics and how to use them with PrEff. Additionally, preff is capable of expressing
scoped algebras, similar to comparable algebraic effect systems in Haskell. Handlers are
defined using convenient utility functions that trivialise defining new effects. Moreover,
we showcased the scoped-parameterised effects which are unique to preff. Scoped-
parameterised effects allow improving the type safety of a program by encoding the
pre- and postcondition in the type signature of the effect monad PrEff. Even though
scoped-parameterised effects are more complex than simple algebraic effects, they are
opt-in in the implementation. They enable developers to use the simpler algebraic effects
when appropriate, but also to improve type safety by introducing pre- and postconditions
into their functional procedures.

5.3 Show Case: Session Types in preff

As a show case of using preff, we provide a novel encoding of binary session types into
a scoped-parameterised effect. This requires less than 120 lines of code and indicates the
expressiveness of preff. Later on, in Section 6.1, we will show that the expressivity of our
new implementation of session types is comparable to the ones of related implementations
of sessions types in Haskell. We argue that our new binary session type encoding benefits
from the composability and extensibility of preff and that its practical applicability
surpasses those of related session type libraries in Haskell. The full code of 114 lines of
the Session effect of our session type implementation is shown in the Appendix.

The purpose of the session type effect is to ensure the communication between exactly
two participants is well-typed. If a program is well-typed, then it can never deadlock
and no unexpected messages are sent. This property must be verified by the compiler at
compile-time, not at run-time. For this case study, we define a scoped-parameterised effect
that tracks the order of its operations. Then we provide a pure execution implementation
using cooperative multitasking, i.e. Coroutines, verified to never deadlock.

Session types were first introduced by Takeuchi et al. (1994) and have since then been a
topic of extensive study. They are based on the π-calculus by Milner et al. (1992) which
is a calculus for process communication. In the calculus, any reducible expression shows
well-formed communications. Consequentially, session types ensure that a well-typed
program does not deadlock. This property can be verified by a compiler using a calculus
reminiscent of the π-calculus.

For embedding session types into Haskell, we first define what operations are valid in our
session type embedding. We provide first-class support for the following operations:

• Send and Receive for messages.

• Choice and Offer, where one participant offers two branches and the other partici-
pant chooses one of them.

62

5.3. Show Case: Session Types in preff

1 data S t; data C a b; data SL body;
2 data R t; data O a b; data CL body;
3

4 type family Dual' proc
5 type instance Dual' (R a) = S a
6 type instance Dual' (S a) = R a
7 type instance Dual' (O a b) = C (Dual a) (Dual b)
8 type instance Dual' (C a b) = O (Dual a) (Dual b)
9 type instance Dual' (CLU a) = SLU (Dual a)

10 type instance Dual' (SLU a) = CLU (Dual a)
11

12 type family Dual proc where
13 Dual (x: xs) = Dual' x : Dual xs

Listing 5.19: Session type operations represented as type constructors. The types
represent the operations Send, Receive, Choice, Offer, Server-Loop and Client-Loop. The
duality of the session type is implemented via the type families Dual' and Dual.

• Loop for repeating parts of a protocol. Our embedding provides unbounded loops,
where one of the participants decides after each iteration of the loop if it shall
terminate.

We express these operations as Haskell phantom types, as shown in Listing 5.19. Since
these are phantom types, none of the data types have any value constructors, only type
constructors, which are important for specifying the protocol in the pre- and postcondition
of PrEff.

S and R represent send and receive operations respectively, while C and O are the choice
and offer operators. The types SL and CL are used for encoding repetition of a protocol,
e.g. loops. There are two different constructors, one for the server and one for the client
of the loop, where the former decides when the loop ends.

We define a protocol as a type-level list of the operations defined in Listing 5.19. For
example, a simple ping-pong client, that first sends a String and then receives a String
is represented as:

'[S String, R String]

A protocol that offers a choice between receiving a String and receiving an Int is:

'[O '[R String] '[R Int]]

63

5. A Tour of PREFF

1 type Session ::
2 forall k. [k] -> [k] -> Type -> Type
3 data Session p q r where
4 Send :: a -> Session (S a : p) p ()
5 Recv :: Session (R a : p) p a

Listing 5.20: Base algebra of the Session effect.

At last, a server implementing the well-known “guess a number” game generates a number
at random, repeatedly waits for the client to guess a number until it guesses correctly is
modelled as:

'[SLU '[R Int]]

To make sure two participants are compliant, e.g. one protocol is the dual of the other,
we define for each operation its dual. For example, when the client expects to receive a
number, then the server needs to send a number. We implement an open type family,
named Dual', which defines for each operation its dual. Since a protocol is a list of
operations, we define a closed type family Dual that applies Dual' to each operation of
the protocol. We show the full implementation of the duality relation in Listing 5.19.
Note, this definition of duality is not complete and may reject programs that are in fact
well-formed. Other notions of duality are discussed by Bernardi et al. (2014), but we
decide to use the inductive duality which is sufficient for our example.

After defining the operations and duality of the dual-party session type effect, we introduce
the base algebra of the Session effect in Listing 5.20. The base algebra consists solely
of the operations Send and Recv. In similar spirit to previous examples, the operations
in the precondition indicate that they can only be executed, if the respective operation
is expected to be executed next. The operation is then removed from the operation
list, i.e. removed from the postcondition. Intuitively, a program starts from a protocol
definition and incrementally consumes parts of the precondition until it has reached the
end, i.e. the postcondition is '[]. If a protocol fully consumes the protocol, we say a
program is compliant with the protocol.

The scoped algebra for Session implements five operations. While the implementation
is shown in Listing 5.21, we discuss each constructor in detail.

• Offer: Provides a binary choice to the communication partner. Since the exact
path in the protocol is only known at run-time, the operation needs to be able to
handle both branches in the protocol. Hence, it takes two monadic parameters,
which may have a different protocol, signalled by a and b. However, both protocols
need to be fully consumed and thus the postcondition is '[] for both branches.

64

5.3. Show Case: Session Types in preff

1 data instance ScopeE Session m p p' q' q x' x where
2 Offer ::
3 m a '[] x ->
4 m b '[] x ->
5 ScopeE Session m (O a b : c) '[O a b] '[] c x x
6 Sel1 ::
7 m a '[] x ->
8 ScopeE Session m (C a b : c) a '[] c x x
9 Sel2 ::

10 m b '[] x ->
11 ScopeE Session m (C a b : c) b '[] c x x
12 LoopS ::
13 m a '[] (Maybe x) ->
14 ScopeE Session m (SLU a : c) a '[] c (Maybe x) [x]
15 LoopC ::
16 m a '[] x ->
17 ScopeE Session m (CLU a : r) a '[] r x [x]

Listing 5.21: Scoped algebra of Session.

• Sel1/Sel2: When one of the communication partners offers a binary branching
choice in the protocol, either of the branches can be chosen at run-time by the
other communication partner. Hence there are two distinct operations for deciding
on the first or second protocol branch respectively. Since each operation follows a
single branch, only one monadic parameter compliant with the respective protocol
branch is required for either operation. These two operations form the counterpart
to the Offer operation.

• LoopS: Handles the server-side of the loop construct. It takes a monadic action
that represents the body of the loop and the body is repeatedly executed producing
a value of type Maybe x. If the loop body produces a Nothing value, the loop
ends for both participants. Thus, the server controls how many times a loop is
executed. All loop results are collected in a list, namely [x].

• LoopC: Handles the client-side of the loop construct and it takes a monadic action
that represents the body of the loop. As the client-side can not terminate the loop
on its own, each loop iteration may produce a value of type x. Similar to before,
the results of each iteration are collected in a list [x].

We embed the operations as monadic PrEff computations identically to previous ex-
amples, such as Listing 4.11. Further, we provide example programs that are compliant
with the session types presented above in Listing 5.22.

65

5. A Tour of PREFF

1 -- Implements a simple ping-pong server
2 pingPong ::
3 PrEff f Session '[S String, R String] '[] String
4 pingPong = Ix.do
5 send "Ping"
6 s <- recv
7 pure s
8

9 -- Offer a choice between receiving a 'String' and an 'Int'.
10 stringOrInt ::
11 PrEff f Session '[O '[R String] '[R Int]] '[] String
12 stringOrInt =
13 offer
14 Ix.do
15 n <- recv @String
16 pure n
17

18 Ix.do
19 n <- recv @Int
20 pure (show n)
21

22 -- Game server where the client tries to guess a number.
23 -- Assumes 'RandomNumber' effect that has a single operation:
24 --
25 -- * 'getNumber': generates a random number.
26 --
27 -- The procedure 'guessNumberServer' returns the number of
28 -- attempts it took the client to guess the number.
29 guessNumberServer ::
30 Member RandomNumber f =>
31 PrEff f Session '[SLU '[R Int]] '[] Int
32 guessNumberServer = Ix.do
33 num <- getNumber
34 attempts <- loopS $ Ix.do
35 n <- recv
36 if n == num
37 then pure Nothing
38 else pure (Just ())
39 pure $ length attempts

Listing 5.22: Example: Monadic procedures implementing various protocols in preff.

66

5.3. Show Case: Session Types in preff

This ends the tour of preff. We have shown a complete case study of how to define
and use effects using preff.

67

CHAPTER 6
Evaluation

In this section, we evaluate our algebraic effect system preff with respect to expressivity
and performance. First, we evaluate the expressiveness of preff by comparing our
lightweight session types encoding, as introduced in Section 5.3, to existing session type
libraries in Haskell based on their respective features. Second, we examine our effect
system library’s real-world applicability, by evaluating the performance comparing it to
well-known state-of-the-art effect system libraries.

6.1 Expressivity
Regarding expressivity, we qualitatively compare our implementation of session types
with related libraries available in Haskell according to the following metrics.

1. Control flow patterns: Which control flow patterns are supported by the library?
For example, is protocol alternation supported, and how can parts of a protocol be
repeated? In particular, repetition of protocol parts can be implemented in various
ways with different trade-offs.

2. Communication layouts: Which communication layouts are supported by the
library? We distinguish between these three layouts:

• Two communication partners only: The session type is capable of verifying
the communication between exactly two actors can never deadlock. Moreover,
there can only be one communication channel.

• More than two protocol participants: The communication between more than
two actors can never deadlock and the session type provides a global context
that ensures this property over multiple communication channels. This is a
strictly more expressive session type.

69

6. Evaluation

• Multiple point-wise dual participants: While there are multiple communication
channels such that any two participants can safely communicate, there is no
global context. Thus, deadlocks are possible in specific scenarios, such as the
“Dining Philosopher’s” problem proposed by Dijkstra. However, this is a strict
superset of supporting exactly two communication partners.

3. First-class citizen session type: Is the session type a first-class citizen in the library?
This is the case if it is possible to delegate the handling of a session type to a
different actor. Often, this is referred to as channel delegation.

4. Extensible implementation: Can the library be extended with additional effectful
computations? For example, a library is extensible if it provides a monad for writing
a program adhering to a session type that can perform computations with side
effects, such as IO computations. In general, an extensible session types library
requires a monad transformer interface, or needs to be part of an effect system.

Due to various changes to the compiler internals of GHC, most of the related libraries do
not compile any more with recent versions of GHC, such as 9.6.2. The only libraries that
can be currently compiled are effect-sessions, simple-sessions, Coroutine
and our contribution preff. Migrating the remaining libraries to be compatible with
the recent GHC version 9.6.2 is out of scope of this thesis. Thus, we take examples
from the original papers and assume their correctness. This leaves a margin of error, but
small inconsistencies do not distract of this work, and are therefore negligible.

6.1.1 Findings and Discussion
Table 6.1 summarises the control flow primitives supported by the various implementations
of session types. They all session type libraries support some form of send and receive,
and protocol alternations. The main difference lies in how repetition is implemented,
either by using recursion or loops. Many session type calculi are based on the π-calculus,
thus encodings tend to use recursion variables and fixed-points to simulate equi-recursive
types (Dardha, 2014). Notable exceptions are Coroutine and preff, which both
support looping constructs but not recursion. While recursion variables are a more
faithful translation of the π-calculus, loops are more naturally expressed in preff and
are, to the best of our knowledge, equally expressive as recursive encodings.

In Table 6.2, we summarise the possible communication styles and whether a session type
is a first-class citizen in the respective library. No library provides session types capable
of verifying a protocol between multiple communication partners. However, session types
are first-class citizens in all libraries that support more than dual party session types.

At last, the underlying implementation of session types plays a vital role when it comes
to flexibility and composability with other frameworks and libraries. We present an
an overview of the implementations in Table 6.3. Further, we elaborate the different
implementations and discuss their advantages and disadvantages. Note, most libraries

70

6.1. Expressivity

Table 6.1: Control flow patterns supported by session type libraries in Haskell.

Framework Alternation Recursion Loops
simple-sessions ✓ ✓ ✗

full-sessions ✓ ✓ ✗

sessions ✓ ✓ ✗

effect-sessions ✓ ✓ ✗

sessiontypes ✓ ✓ ✗

Coroutine ✓ ✗ ✓

preff ✓ ✗ ✓

Table 6.2: Communication patterns and capabilities of session type libraries in Haskell.

Framework Communication Partners First-Class Citizen
simple-sessions Multi point-wise dual ✓

full-sessions Multi point-wise dual ✓

sessions Multi point-wise dual ✓

effect-sessions Multi point-wise dual ✓

sessiontypes Dual ✗

Coroutine Dual ✗

preff Dual ✗

define a type Session for embedding session types into a monadic interface. These
definitions usually differ in each respective library. Unless stated otherwise, when we
refer to the type Session, we refer to the definition in the library we are currently
discussing.

simple-sessions Introduced by Pucella and Tov (2008), simple-sessions uses
a parameterised monad wrapping the IO monad. Thus, it extends the IO monad
with two phantom parameters to implement the interface of the parameterised monad.
Similar to the already mentioned library Coroutine, there is no way to extend the
Session monad of simple-sessions. It is, therefore, not possible to add effects to
the Session monad for which the authors have not already accounted for.

full-sessions The full-sessions was implemented by Imai et al. (2010). Its
Session monad wraps a State monad on top of the IO monad. While Session
implements the pendant of a parameterised monad, contrary to other session type
libraries, pre- and postconditions do have a run-time representation. They represent the
current state of various session types, implementing a state machine for advancing the
protocol. Due to the run-time representation, session types can be easily delegated to

71

6. Evaluation

other actors. However, since Session is neither a monad transformer nor provides any
other means of extension, there is no way to extend it with effects the authors did not
anticipate before. Adding additional effects is impossible in the current implementation,
only IO effects are permitted.

sessions One of the oldest session type embeddings in Haskell, introduced by
Neubauer and Thiemann (2004). Its SessionType type is essentially a State monad,
carrying a value representation of the current session. Since there are no points of
extension or transformer interfaces, it is not possible to extend sessions to embed
other monadic computations other than IO.

sessiontypes A different implementation is given in sessiontypes1. In addition
to leveraging parameterised monads, sessiontypes features the additional type class
MonadSession. This enables different interpretations of a session type, in both pure
and impure code. The implementation uses value terms for embedding session type
operations, building an abstract syntax tree for the communication process. By choosing
an algebraic data type encoding for session type operations, it bears close resemblance to
a free monad encoding. It also provides the type class IxMonadT, to turn instances of
MonadSession into an indexed monad transformer. This enables developers to embed
arbitrary monadic computations, such as IO and State, into the execution context
of MonadSession. However, only one parameterised effect can be used, a limitation
sessiontypes shares with preff.

effect-sessions The library effect-sessions was implemented by Orchard
and Yoshida (2016) and uses a graded monad interface for its sequential computation
interface. Its Process type wraps the IO monad and implements the graded monad
interface.
Session types are encoded into the phantom parameter of Process and communication is
performed via explicitly passed channel values. There are no extension points to Process
type, thus the only other monadic operation that can be performed is the IO effect.
While being a very sophisticated library that elegantly supports session type delegation
and multiple point-wise communication participants, it proves to be incompatible with
other existing frameworks, making it difficult to reuse existing code.

Coroutine In Coroutine2 the authors use a parameterised continuation monad for
its implementation. This permits a natural implementation of session types using a pure
continuation monad. The library permits wrapping of arbitrary monadic operations into
the context of the parameterised monad interface but introduces no way of extension. In
other words, neither monad transformers, nor IO actions are permitted in combination
with the session type monad. Although the encoding of session types is simple and
insightful, its limitation renders it inflexible in practice.

1https://hackage.haskell.org/package/sessiontypes
2https://hackage.haskell.org/package/Coroutine

72

https://hackage.haskell.org/package/sessiontypes
https://hackage.haskell.org/package/Coroutine

6.2. Performance

preff At last, preff encodes session types into an algebraic effect system. Since
preff is designed for adding extensions, it is no surprise that the freer monad encoding
of effects seems to be the most flexible one of the most commonly known session type
encodings. It allows for embedding arbitrary effects, as known from other effect systems,
into the communication between two participants, making it the most flexible solution
for session types out of the considered competitors. Additionally, preff is extensible, it
is possible to implement a custom embedding of session types, with support for currently
unsupported control flow patterns, such as recursion, or even multiple communication
participants.

Table 6.3: Underlying implementations of session type libraries in Haskell

Framework Implementation
simple-sessions Parameterised IO Monad
full-sessions Parameterised IO/State Monad
sessions Parameterised State Monad
sessiontypes Parameterised Monad Transformer with Term Representation
effect-sessions Graded IO Monad
Coroutine Parameterised Continuation Monad
preff Parameterised Freer Monad / PrEff

6.1.2 Conclusion
The session type encoding we chose to illustrate the expressiveness of preff is a flexible
and lightweight alternative to most other session type libraries. It is designed for
extensibility, e.g. allows adding more communication primitives, includes no run-time
overhead, and can perform other effects beyond IO computations. Additionally, the
encoding has better type inference, due to lower complexity and requires no experimental
features in GHC. The sole drawback is that this encoding permits no obvious session
type delegation. However, we think this drawback is not inherent to preff’s design and
could be improved in subsequent work.

Based on this qualitative comparison, we conclude preff excels at being an algebraic
effect system that provides extraordinary flexibility to implement complex control flow
patterns, such as dual-party session types.

6.2 Performance
Run-time performance is important to algebraic effect system libraries as they are intended
to provide:

• a high-level description of what a program does, and

73

6. Evaluation

• primitives that allow implementing performant programs and algorithms.

However, all algebraic effect system libraries incur performance overhead due to their
effect monad implementation and effect handler fusion. We measure the performance
of well-known effect system libraries, including our contribution preff, on a series of
microbenchmarks.

6.2.1 Methodology
The metric of performance is measured based on the effect-zoo3 project. It implements
microbenchmarks for commonly used effect system libraries in Haskell. We add preff
to the set of benchmarked effect system libraries in our fork 4 effect-zoo and report
our findings. First, we introduce the microbenchmarks and discuss what metric they
are supposed to benchmark. Each library implements the microbenchmark, but for
brevity we only show the benchmark code for preff. The type signatures of preff
microbenchmarks are specialised to indicate no parameterised effects are permitted using
IVoid. Second, we present the benchmark results and discuss potential bottlenecks in
preff’s implementation. Finally, we summarise the results and discuss whether preff’s
performance is sufficient for real-world applications.

The benchmarks are executed using the benchmark framework criterion, which is
fine-tuned for Haskell microbenchmarks. We run the experiments on an AMD Ryzen 7
3800X processor, which has a single core performance of 3.9 GHz up to 4.5 GHz, on a
machine with 32 GB DDR4 RAM. We use GHC version 9.6.2 to compile the project
and apply the compilation flags -O2 -flate-specialise.

CountDown

In our microbenchmark CountDown, a program counts down from an initial value until
the value is zero. The implementation uses a single State effect with a mutable Int
variable. CountDown measures the minimal overhead induced by the encoding of the
effect system library, since no other effects can affect the overall performance. Ideally,
running such simple programs is as quick as a pure function in Haskell. The code for
CountDown is presented in Listing 6.4.

BigStack

The BigStack microbenchmark consists of one simple Reader and one State effect.
The value of the State effect is repeatedly modified for a pre-determined number of
times. In Listing 6.5, the program is shown as specifically written for preff.

The program is executed using a variable number of unused in-between handlers that
handle effects that are not actually used by the program. It aims to benchmark how

3https://github.com/ocharles/effect-zoo
4https://github.com/fendor/effect-zoo

74

https://github.com/ocharles/effect-zoo
https://github.com/fendor/effect-zoo

6.2. Performance

1 countDown ::
2 Member (State Int) eff =>
3 PrEff eff IVoid () () Int
4 countDown = do
5 n <- get
6 if n <= 0
7 then pure n
8 else do
9 put (n - 1)

10 countDown

Listing 6.4: Source code of the microbenchmark CountDown in preff.

1 bigStack ::
2 (Member (State Int) f, Member (Reader Int) f) =>
3 PrEff f IVoid () () ()
4 bigStack = Ix.do
5 n <- ask
6 replicateM_ n (modify (+ n))

Listing 6.5: Source code of the microbenchmark BigStack in preff.

unused effects impact execution performance. As the unused effects, the Identity effect
is chosen. Additionally, the cost of traversing the abstract syntax tree in effect systems
using the free monad encoding becomes apparent, since each handler has to traverse the
full program structure. The benchmark is run with 0, 1, 5, and 10 Identity effects.
We expect effect handler fusion to have a noticeable impact on this microbenchmark
because it reduces the number of program traversals.

FileSizes

Effect systems are extensible by design: Adding new effects is the norm, not the exception.
We measure the overhead of custom effects in the microbenchmark FileSizes. Some
effect systems provide additional performance improvements for commonly used effects,
such as State or Reader. Custom effects are not specifically optimised, thus, this
measures how expensive interpreting a custom effect is on its own. This benchmark
features Logging and File effects, the former writes messages to an IORef 5, while
the latter reads the size of files from disk. Out of all our benchmarks, it has the

5https://hackage.haskell.org/package/base-4.17.0.0/docs/Data-IORef.html#t:
IORef

75

https://hackage.haskell.org/package/base-4.17.0.0/docs/Data-IORef.html#t:IORef
https://hackage.haskell.org/package/base-4.17.0.0/docs/Data-IORef.html#t:IORef

6. Evaluation

1 fileSizes ::
2 (Member File f, Member Logging f) =>
3 [FilePath] ->
4 PrEff f IVoid () () Int
5 fileSizes files = do
6 sizes <- mapM calculateFileSize files
7 return (sum sizes)
8

9 calculateFileSize ::
10 (Member File f, Member Logging f) =>
11 FilePath -> PrEff f IVoid () () Int
12 calculateFileSize path = do
13 logMsg ("Calculating the size of " ++ path)
14 msize <- tryFileSize path
15 case msize of
16 Nothing ->
17 0 <$ logMsg ("Could not calculate the size of " ++ path)
18 Just size ->
19 size <$ logMsg (path ++ " is " ++ show size ++ " bytes")

Listing 6.6: Source code of the microbenchmark FileSize in preff.

closest resemblances to a real-world application. Listing 6.6 contains the code of this
microbenchmark.

Reinterpretation

A major difference of algebraic effect systems compared to the monad transformer based
main competitor mtl is that they can “re-interpret” effects in terms of other existing
effects. This allows to reduce code duplication since interpretation of an effect can be
delegated to a more specialised effect, e.g. State, while still having the expressivity of a
custom effect. Additionally, it allows developers to simulate the interpretation of effects
for testing and addressing cross-cutting concerns, such as authentication, for deployment.
The microbenchmark Reinterpretation features a Zooit effect which represents
an abstract service for listing data. It reinterprets the effect into a mocked HTTP and
Logging effect, which captures context information and error handling, without leaking
implementation details to the user of Zooit.

6.2.2 Discussion of Findings

We present and discuss the results of the microbenchmark project effect-zoo.

76

6.2. Performance

Table 6.7: Execution time of CountDown in µs (lower is better).

Size 100 Size 1000
Name Mean σ Mean σ

mtl (lazy) 12.409 0.130 123.144 0.614
mtl (strict) 11.169 0.048 110.797 0.247
freer-simple 4.713 0.076 45.978 0.559
fused-effects 20.131 0.067 199.633 0.804
polysemy 22.992 0.124 228.982 1.468
preff 5.383 0.022 53.448 0.362
Reference 0.039 0.001 0.241 0.002

CountDown

The run-time figures are shown in Table 6.7 and a corresponding visualisation thereof
in Figure 6.8. As expected, the Reference implementation, which uses no effect system
or other abstractions, outperforms by a considerable margin. GHC can generate very
efficient byte-code for this particular instance. As a surprise to us, the two second-fastest
frameworks are preff and freer-simple, with almost identical performance, sur-
passing mtl, which we expected to be the fastest, since GHC is optimised to compile
type classes into efficient code. The two entries for mtl are using a lazy and a strict
implementation of the State monad respectively. In microbenchmarks, laziness is almost
always a hindrance if every value is guaranteed to be needed. Delaying a computation
adds an indirection, justifying the performance difference in the lazy and strict mtl
implementations. We include both evaluation strategies in the evaluation. The slowest
frameworks are polysemy and fused-effects, which both build on the theoreti-
cal foundation of Wu et al. (2014) and Wu and Schrijvers (2015). We conjecture the
performance deteriorates because of the additional complexity introduced by scoped
algebras. Handling scoped algebras introduces additional work for the algebraic effect sys-
tem libraries polysemy and fused-effects, while freer-simple does not support
scoped algebras. Even though preff supports scoped algebras, due to the separation of
scoped effects and non-scoped effects, preff does not have to perform any additional
work in this microbenchmark.

BigStack

The BigStack microbenchmark measures the performance impact of a larger effect
list. Its results are presented in Table 6.9 and Figure 6.10. There is no Reference
implementation this time because no such implementation exists. In this particular
benchmark, mtl performs similarly to the algebraic effect system library freer-simple.
We expected the fusion optimisations of fused-effect to have a bigger impact, but it
performs similarly to polysemy. It is also surprising that freer-simple is the second-
fastest effect system library. Discrepancy in expectation might be caused by high constant
factors of the optimisations applied in polysemy and fused-effect. Underwhelming

77

6. Evaluation

Figure 6.8: Visualisation of CountDown benchmark results.

are the results of preff: up to 32 times slower than freer-simple, and 13 times
slower than polysemy and fused-effect. The results seem very suspicious because
even in the case of zero unused Identity effects, the performance suffers greatly, while
in Section 6.2.2 we see the performance of interpreting a single effect is competitive with
other effect system libraries. Even more suspicious, the relative performance difference
between preff with the stack sizes 0 and 10 is about 5 %, which is noticeable smaller
compared to other effect system libraries. We identify two possible reasons:

1. Interpreting two effects incurs considerable performance overhead in preff.

2. Performance sensitive optimisations have not been applied by GHC.

Results in later sections render possibility 1 unlikely. Thus, we conjecture that GHC fails
to optimise preff in this microbenchmark. Careful addition of INLINE pragmas and
strictness annotations might mitigate the performance regression.

Further, we repeated the experiment for the GHC version 9.4.7 to compare results
and noticed that mtl gets considerably better optimised. When investigating one of
the intermediate representations of GHC, called core, it becomes obvious that this
particular GHC version optimises monad transformers more efficiently. This supports
our hypothesis of optimisation brittleness in microbenchmarks.

FileSizes

In Table 6.11, the results of the FileSizes benchmark are presented. Further, in
Figure 6.12 a visual contextualisation is shown. The monad transformer based li-
brary mtl achieves identical performance to the Reference implementation. However,
fused-effect also performs identically, making it the fastest effect system library in
this benchmark. The other three libraries have similar performance characteristics, in
the smaller instances undistinguishable, while in the largest instance, freer-simple

78

6.2. Performance

Table 6.9: Execution time of BigStack in µs (lower is better).

Size 0 Size 1
Name Mean σ Mean σ

mtl 163.118 1.074 169.193 1.098
freer-simple 122.967 0.688 144.100 0.958
fused-effects 370.047 1.096 387.629 1.451
polysemy 295.446 1.141 320.466 1.841
preff 3908.220 18.162 3925.283 25.996

Size 5 Size 10
Name Mean σ Mean σ

mtl 187.481 2.032 212.146 2.426
freer-simple 203.818 0.920 304.587 1.144
fused-effects 450.658 3.617 523.783 4.600
polysemy 453.051 2.453 609.322 3.121
preff 3962.599 17.959 4087.535 40.503

Figure 6.10: Visualisation of BigStack benchmark results.

pulls slightly ahead. While preff is not as fast as some of the competitors, it is not
the slowest either, hinting there is more potential to further improve the performance.
The relative closeness of results might be a hint, that this benchmark is bottlenecked by
the number of disk operations, rather than the effect system itself. We think, this is a
common situation for most real-world applications.

Reinterpretation

In the last microbenchmark Reinterpretation, the capability of reinterpreting effects
in terms of other effects is tested for its usability in practice. Its performance measurements
are shown in Table 6.13 and visualised in Figure 6.14. Note, neither mtl nor Reference
are present here because the concept of reinterpretation is not expressible in either.
Interestingly, performance is more or less the same for all effect systems, except for

79

6. Evaluation

Table 6.11: Execution time of FileSizes in µs (lower is better).

Size 1 Size 10 Size 100
Name Mean σ Mean σ Mean σ

freer-simple 2.099 0.007 20.196 0.175 202.616 1.668
fused-effects 2.886 0.013 26.332 0.067 261.763 0.972
mtl 2.257 0.007 20.802 0.109 206.104 0.601
polysemy 2.823 0.040 26.683 0.120 264.883 3.751
preff 1.918 0.020 20.070 0.250 259.661 1.389
Reference 1.591 0.012 15.504 0.027 155.088 0.634

Figure 6.12: Visualisation of FileSizes benchmark results.

Size 1 Size 10 Size 100
Name Mean σ Mean σ Mean σ

freer-simple 1.334 0.008 13.698 0.048 133.648 0.307
fused-effects 2.018 0.008 20.483 0.056 217.852 0.269
polysemy 3.314 0.019 30.915 0.110 317.399 1.198
preff 1.344 0.013 13.707 0.091 165.651 0.377

Table 6.13: Execution time of Reinterpretation in µs (lower is better)

polysemy. It seems, polysemy has higher overhead in all instances, potentially from
performing more work in the background.

6.2.3 Summary of Findings
All of the effect system libraries in this benchmark are used in software applications at
the time of this writing. Since preff’s performance is competitive with the presented
algebraic effect system libraries, we claim its adequacy for all software applications that are
already using algebraic effect system libraries. The concern about optimisation brittleness
remains for programs compiled with GHC. A further inspection of the microbenchmark
BigStack might illuminate where preff currently falls behind in practice. Explicit

80

6.2. Performance

Figure 6.14: Visualisation of Reinterpretation benchmark results.

efforts to implement effect handler fusion similar to Wu and Schrijvers (2015) and
improving the asymptotic complexity of PrEff’s monadic bind operator as shown by
Voigtländer (2008) could narrow the gap in performance.

However, microbenchmarks are unsuited to estimate the performance in an application
in general. They might benchmark a use-case the given effect system is particularly
well-fitted to handle, or a pathological example that does not even arise in real-world
applications. As such, we cannot extrapolate the performance of preff to specific real-
world scenarios, and only tell what kind of scenarios are cheap and what are expensive.

We argue that preff is acceptable for real-world applications. Whereas it does not
outperform competitors and falls behind in some aspects, its unique design trade-offs
and future optimisation opportunities render it a promising alternative to current effect
system libraries. Especially, since we believe the performance of most applications is
mainly dependent on external sources, such as network bandwidth and disk read/write
performance.

81

CHAPTER 7
Conclusion

In this thesis we introduced a new algebraic effect system library called preff. This
library differs from traditional algebraic effect system libraries as it combines the strengths
of traditional effect systems, such as composability, ease of use, and multiple interpre-
tations per effect, with parameterised effects which significantly improve type safety of
procedures. Additionally, we focused on usability of preff, providing various utilities
to keep the non-parameterised effects easy to implement, while enabling developers
to use parameterised effects in practice. Our qualitative and experimental evaluation,
when compared to related state-of-the-art libraries in Haskell, proved preff to be an
exceptionally expressive effect system library which performs well in practice.
Our new effect monad PrEff is the amalgamation of state-of-the-art effect monads. It
takes the freer monad encoding known in traditional algebraic effect system libraries and
extends it for scoped-parameterised effects, leading to the parameterised freer monad
encoding. This enabled us to benefit from the related research on algebraic effect system
libraries and infused them with additional type safety. Futhermore, we extended the
weave abstraction for parameterised effects, allowing them to weave context through the
monadic regions of scoped effects. The result of this is an algebraic effect system library
that is as easy to use as related effect system libraries but can benefit from additional pre-
and postconditions in the program execution. We demonstrated the expressiveness of our
contributed library by implementing a novel encoding of session types that can be used
in our algebraic effect system. Implementing session types required approximately 120
lines of code, which demonstrates that preff is well-suited for implementing complex
and novel control flow patterns. Finally, we proved that preff’s run-time performance
is competitive with related effect system libraries that are actively being used in modern
software applications.
Conceptually, we extended the map of algebraic effect system libraries by introducing a
combination of algebraic and scoped-parameterised algebraic effects and effect handlers,
which, to the best of our knowledge, is not present in previous systems. This enables the

83

7. Conclusion

implementation to provide additional type safety in procedures that previously had to be
verified manually by the developer.

Our algebraic effect system library is published to the wider Haskell community by
uploading preff to Hackage1, where it can easily be shared, explored and experimented
with. Additionally, to encourage future contributions from third-parties, we publish the
source-code of preff on GitHub2 under the BSD-3-Clause License.

7.1 Future Work
Our algebraic effect system library preff can still be improved in various directions in
future research. We highlight below the most important ones.

Ecosystem

Writing an application requires access to the ecosystem of Haskell. Thus, preff needs
to be compatible with well-known packages available on Hackage3, the Haskell package
repository. In particular, preff should provide support for common tasks such as
logging, network requests and database access. Other effect system libraries provide
support for common tasks in separate packages. Extending preff to provide similar
support would help adoption in real-world applications.

Performance

As we have shown in Section 6.2, the run-time performance can be further improved. First,
we could apply the techniques of Voigtländer (2008) to improve the asymptotic complexity
of the monadic bind operation (>>=). This should require minimal internal changes
and no changes to the external interface. Initial experiments show promising results,
considerably improving the run-time performance of the microbenchmark BigStack.
Second, writing effect handlers to enable efficient fusion as shown by Wu and Schrijvers
(2015) should further improve the performance.

Integration into the framework of van den Berg and Schrijvers (2023)

A general purpose framework, called “Higher-Order Effects & Handlers Framework”,
for higher-order effects and handlers is introduced by van den Berg and Schrijvers
(2023). Their framework provides a categorical formalisation of algebraic effect systems
with various feature sets and implements them generically. Integrating preff into
the framework would allow us to benefit from the categorical foundations and generic
performance improvements.

1https://hackage.haskell.org/package/preff
2https://github.com/fendor/preff
3https://hackage.haskell.org/

84

https://hackage.haskell.org/package/preff
https://github.com/fendor/preff
https://hackage.haskell.org/

7.1. Future Work

Dependent Types
In this thesis, we have shown advanced typing techniques to verify session types. Future
work may explore the usage of dependent types in preff using singletons as introduced
by Eisenberg and Weirich (2012).

Scoped Effects
Our algebraic effect system library preff is currently limited to a single scoped effect to
be used for a procedure. This limitation is pragmatically motivated and ensures the type
safety of the algebraic effect system. However, allowing the usage of more scoped effects
when rigorous restrictions are in place is possible. For example, it might be feasible to
allow additional scoped effects if the scoped-parameterised effect is provably not being
used in a procedure and the control flow manipulation of the scoped effect can not escape
the procedure context.

85

List of Figures

1.1 Terminology overview of pure/impure functions. 2

6.8 Visualisation of CountDown benchmark results. 78
6.10 Visualisation of BigStack benchmark results. 79
6.12 Visualisation of FileSizes benchmark results. 80
6.14 Visualisation of Reinterpretation benchmark results. 81

87

List of Tables

6.1 Control flow patterns supported by session type libraries in Haskell. . . . 71
6.2 Communication patterns and capabilities of session type libraries in Haskell. 71
6.3 Underlying implementations of session type libraries in Haskell 73
6.7 Execution time of CountDown in µs (lower is better). 77
6.9 Execution time of BigStack in µs (lower is better). 79
6.11 Execution time of FileSizes in µs (lower is better). 80
6.13 Execution time of Reinterpretation in µs (lower is better) 80

89

List of Listings

2.1 Simple business logic for processing data 10
2.2 Customer processing where the database locations can be changed at run-time. 11
2.3 Customer processing with limited configurability. 11
2.4 Allow configuration of every aspect of processCustomers. 12
2.5 Example invocation of the procedure processCustomers from Listing 2.4. 12
2.6 Business logic of processCustomers where the implementation is ab-

stracted via type classes. 13
2.7 Service API definitions in algebraic effect systems. 15
2.8 Business logic implemented using an algebraic effect system. 16
2.9 Service implementations for Algebraic Effect Systems. 17
2.10 Tying it all together: Provide an implementation for services that are required

to execute processCustomers. 18
2.11 Re-use service implementations to hide implementation details. 18
2.12 Execution of processCustomers while hiding implementation details from

the business logic. 19

3.1 The Monad type class hierarchy in Haskell. We show all method functions
that are required to create an instance for the respective type class. . . . 22

3.2 The parameterised Monad type class hierarchy in Haskell. We show method
functions that are required to create an instance for the respective type class. 23

3.3 The parameterised type classes naturally provide instances for the standard
type classes. Methods derived from the IMonad type class hierarchy are
prefixed by Ix for disambiguation. 23

3.4 The Free data type in Haskell and its Monad instance for any Functor f . 24
3.5 The Freer data structure Haskell and its respective Monad instance. . . 24
3.6 Open union in Haskell . 25
3.7 Example: Extract a value from the open union data structure Op. 25

4.1 Parameterised-freer monad PrEff. 28
4.2 Open union for the effect operations that can occur PrEff. 29
4.3 Indexed data family ScopeE for implementing operations with scoped monadic

regions for the effect s. It includes a kind signature to communicate the arity
of the expected type parameters. 31

4.4 IFunctor, IApplicative, and IMonad instance of PrEff. 32

91

4.5 Define the effect State, embed its operations and implement its respective
handler function runState. 33

4.6 Injection of algebraic effects into PrEff. 34
4.7 Member type class for injection into the open union Op. 34
4.8 Inductive recursion over the program structure of PrEff to implement the

handler runState. Only the highlighted lines specify the semantics of the
State effect. 35

4.9 Recapitulate: Definition of the type class ScopedEffect which enables
weaving of algebraic effect handlers though scoped effects. 36

4.10 Completed handler runState' for State e from Listing 4.8. 37
4.11 Operations of the parameterised StateP effect. 38
4.12 Injection of algebraic effects into PrEff. 40
4.13 Inductively recurse over PrEff to define the semantics of the StateP effect.

Only highlighted lines of code implement the semantics of the effect, whereas
the rest is required boilerplate. 41

4.14 Define the effect handler of the StateP effect. The effect system library
preff provides the utility function interpretStatefulScoped which
simplifies the implementation of the effect handler. 42

4.15 Recapitulate: Definition of the type class ScopedEffect which enables
weaving algebraic effect handlers though scoped effects. 42

4.16 ScopedEffect instance for StateP. The transformation function argument
is applied to the scoped monadic region in ZoomP. 43

5.1 The Reader, Writer and State effect in PrEff. 46
5.2 Example: Embed the operations of the effects Reader, Writer and State

in PrEff. This is required to use the operations in the effect monad. Usually,
these functions are automatically generated at compile-time. 48

5.3 Example: Increment the value of a State effect by two. 48
5.4 Example: Writing handlers for Reader, Writer and State effects. . . . 49
5.5 Example: Customer processing using a generic algebraic effect system. . . 51
5.6 Example: Customer processing using the algebraic effect system preff. Only

the effect monad needs to be changed. 51
5.7 Example: Effect definitions and handlers for processCustomers. . . . 52
5.8 Example: A pure implementation of the effect handler of CustomerDb. . 52
5.9 Example: processCustomersImproved using the scoped-parameterised

effect CustomerStore to validate the existence of the input database
location. 54

5.10 Example: Base algebra for the scoped effect CustomerStore without type-
level information. 55

5.11 Example: Scoped algebra for the scoped effect CustomerStore without
type-level requirements. 56

5.12 Example: Embed the operations of a scoped algebra for the effect CustomerStore
as a monadic PrEff computation. 56

92

5.13 Example: Handler for the effect CustomerStore using the handler util-
ity function interpretScopedH. The function argument run is used to
conditionally run the scoped region if the database location is found. . . . 57

5.14 Example: Base algebra for scoped-parameterised effect CustomerStore.
Uses a phantom type Store to encode pre- and postconditions for the
operations. 59

5.15 Example: Type-safe variant of processCustomers that uses the scoped-
parameterised effect CustomerStore to safely access the customer database.
It requires Ix.do as it changes the pre- and postcondition of PrEff. . . 60

5.16 Example: Scoped-parameterised algebra for CustomerStore. The high-
lighted inner monadic region assumes that Store inp exists and may read
its data. 60

5.17 Example: Invoke processCustomersTyped in a type safe manner. . . 61
5.18 Example: Final handler for the scoped-parameterised effect CustomerStore. 61
5.19 Session types and its respective duality. 63
5.20 Base algebra of the Session effect. 64
5.21 Scoped algebra of Session. 65
5.22 Example: Monadic procedures implementing various protocols in preff. 66

6.4 Source code of the microbenchmark CountDown in preff. 75
6.5 Source code of the microbenchmark BigStack in preff. 75
6.6 Source code of the microbenchmark FileSize in preff. 76

1 Full definition of the Session effect. 104
2 Embedding functions for the Session effect. 105
3 Algebraic effect handler for the Session effect that interprets two procedures

using cooperative multitasking. 106

93

Acronyms

AST abstract syntax tree. 5, 34, 35

GADT generalised algebraic data type. 15, 23, 25, 32, 33, 38, 45, 46, 50

GHC Glasgow Haskell Compiler. 1, 5, 6, 21, 22, 59, 61, 70, 73, 74, 77, 78, 80

95

Bibliography

R. Atkey. Algebras for Parameterised Monads. In A. Kurz, M. Lenisa, and A. Tar-
lecki, editors, Algebra and Coalgebra in Computer Science, pages 3–17, Berlin,
Heidelberg, 2009a. Springer Berlin Heidelberg. ISBN 978-3-642-03741-2. doi:
10.1007/978-3-642-03741-2_2. URL https://link.springer.com/chapter/
10.1007/978-3-642-03741-2_2.

R. Atkey. Parameterised notions of computation. Journal of
Functional Programming, 19(3-4):335–376, 2009b. doi: 10.
1017/S095679680900728X. URL https://www.cambridge.
org/core/journals/journal-of-functional-programming/
article/parameterised-notions-of-computation/
82CE5F0583C3390BBBD305830255FAA0.

F. Barbanera, M. Dezaniciancaglini, and U. Deliguoro. Intersection and union types:
Syntax and semantics. Information and Computation, 119(2):202–230, 1995. ISSN
0890-5401. doi: 10.1006/inco.1995.1086. URL https://www.sciencedirect.
com/science/article/pii/S0890540185710863.

A. Bauer and M. Pretnar. An Effect System for Algebraic Effects and Handlers.
In R. Heckel and S. Milius, editors, Algebra and Coalgebra in Computer Science,
page 1–16, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-
40206-7. doi: 10.1007/978-3-642-40206-7_1. URL https://doi.org/10.1007/
978-3-642-40206-7_1.

G. Bernardi, O. Dardha, S. J. Gay, and D. Kouzapas. On duality relations for ses-
sion types. In M. Maffei and E. Tuosto, editors, Trustworthy Global Computing,
pages 51–66, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. ISBN 978-3-662-
45917-1. doi: 10.1007/978-3-662-45917-1_4. URL https://doi.org/10.1007/
978-3-662-45917-1_4.

J. I. Brachthäuser, P. Schuster, and K. Ostermann. Effects as Capabilities: Effect Handlers
and Lightweight Effect Polymorphism. Proceedings of the ACM on Programming
Languages, 4(OOPSLA), Nov. 2020. doi: 10.1145/3428194. URL https://doi.
org/10.1145/3428194.

97

https://link.springer.com/chapter/10.1007/978-3-642-03741-2_2
https://link.springer.com/chapter/10.1007/978-3-642-03741-2_2
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/parameterised-notions-of-computation/82CE5F0583C3390BBBD305830255FAA0
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/parameterised-notions-of-computation/82CE5F0583C3390BBBD305830255FAA0
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/parameterised-notions-of-computation/82CE5F0583C3390BBBD305830255FAA0
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/parameterised-notions-of-computation/82CE5F0583C3390BBBD305830255FAA0
https://www.sciencedirect.com/science/article/pii/S0890540185710863
https://www.sciencedirect.com/science/article/pii/S0890540185710863
https://doi.org/10.1007/978-3-642-40206-7_1
https://doi.org/10.1007/978-3-642-40206-7_1
https://doi.org/10.1007/978-3-662-45917-1_4
https://doi.org/10.1007/978-3-662-45917-1_4
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194

J. Carette, O. Kiselyov, and C.-c. Shan. Finally Tagless, Partially Evaluated. In
Z. Shao, editor, Programming Languages and Systems, pages 222–238, Berlin, Hei-
delberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-76637-7. doi: 10.
1007/978-3-540-76637-7_15. URL https://link.springer.com/chapter/10.
1007/978-3-540-76637-7_15.

J. Cheney and R. Hinze. First-Class Phantom Types. Technical report, Cornell University,
2003. URL https://hdl.handle.net/1813/5614.

O. Dardha. Recursive session types revisited. Electronic Proceedings in Theoretical
Computer Science, 162:27–34, Aug. 2014. doi: 10.4204/eptcs.162.4. URL https:
//doi.org/10.4204%2Feptcs.162.4.

R. A. Eisenberg and S. Weirich. Dependently Typed Programming with Singletons.
ACM SIGPLAN Notices, 47(12):117–130, 2012. doi: 10.1145/2430532.2364522. URL
https://dl.acm.org/doi/abs/10.1145/2430532.2364522.

K. Imai, S. Yuen, and K. Agusa. Session Type Inference in Haskell. In K. Honda and
A. Mycroft, editors, Proceedings Third Workshop on Programming Language Approaches
to Concurrency and communication-centric Software, PLACES 2010, Paphos, Cyprus,
21st March 2010, volume 69 of EPTCS, pages 74–91, 2010. doi: 10.4204/EPTCS.69.6.
URL https://doi.org/10.4204/EPTCS.69.6.

O. Kammar, S. Lindley, and N. Oury. Handlers in Action. In Proceedings of the 18th
ACM SIGPLAN International Conference on Functional Programming, ICFP ’13, page
145–158, New York, NY, USA, 2013. Association for Computing Machinery. ISBN
9781450323260. doi: 10.1145/2500365.2500590. URL https://doi.org/10.1145/
2500365.2500590.

A. King. With scoped effects, handlers must be a part of the pro-
gram, 2020. URL https://gist.github.com/lexi-lambda/
d8fe82b2932e77b178d67cac81d0aaee. Accessed: 2023-10-15.

D. J. King and P. Wadler. Combining Monads. In J. Launchbury and P. Sansom, editors,
Functional Programming, Glasgow 1992, pages 134–143, London, 1993. Springer London.
ISBN 978-1-4471-3215-8.

O. Kiselyov and H. Ishii. Freer Monads, More Extensible Effects. In Proceedings of the
2015 ACM SIGPLAN Symposium on Haskell, Haskell ’15, page 94–105, New York,
NY, USA, 2015. Association for Computing Machinery. ISBN 9781450338080. doi: 10.
1145/2804302.2804319. URL https://doi.org/10.1145/2804302.2804319.

O. Kiselyov, A. Sabry, and C. Swords. Extensible Effects: An Alternative to Monad Trans-
formers. ACM SIGPLAN Notices, 48(12):59–70, Sept. 2013. ISSN 0362-1340. doi: 10.
1145/2578854.2503791. URL https://doi.org/10.1145/2578854.2503791.

98

https://link.springer.com/chapter/10.1007/978-3-540-76637-7_15
https://link.springer.com/chapter/10.1007/978-3-540-76637-7_15
https://hdl.handle.net/1813/5614
https://doi.org/10.4204%2Feptcs.162.4
https://doi.org/10.4204%2Feptcs.162.4
https://dl.acm.org/doi/abs/10.1145/2430532.2364522
https://doi.org/10.4204/EPTCS.69.6
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2500365.2500590
https://gist.github.com/lexi-lambda/d8fe82b2932e77b178d67cac81d0aaee
https://gist.github.com/lexi-lambda/d8fe82b2932e77b178d67cac81d0aaee
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2578854.2503791

D. Leijen. Koka: Programming with Row Polymorphic Effect Types. Electronic Proceed-
ings in Theoretical Computer Science, 153:100–126, June 2014. doi: 10.4204/EPTCS.
153.8. URL https://doi.org/10.4204/EPTCS.153.8.

S. Liang, P. Hudak, and M. Jones. Monad Transformers and Modular Interpreters.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’95, page 333–343, New York, NY, USA, 1995. Associ-
ation for Computing Machinery. ISBN 0897916921. doi: 10.1145/199448.199528. URL
https://doi.org/10.1145/199448.199528.

S. Marlow et al. Haskell 2010 language report. 2010. URL https://www.haskell.
org/onlinereport/haskell2010/.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I. Information
and Computation, 100(1):1–40, 1992. ISSN 0890-5401. doi: 10.1016/0890-5401(92)
90008-4. URL https://www.sciencedirect.com/science/article/pii/
0890540192900084.

M. Neubauer and P. Thiemann. An Implementation of Session Types. In B. Jayaraman,
editor, Practical Aspects of Declarative Languages, pages 56–70, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg. ISBN 978-3-540-24836-1. doi: 10.1007/978-3-540-24836-1_
5. URL https://doi.org/10.1007/978-3-540-24836-1_5.

D. Orchard and N. Yoshida. Effects as Sessions, Sessions as Effects. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’16, page 568–581, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450335492. doi: 10.1145/2837614.2837634. URL
https://doi.org/10.1145/2837614.2837634.

D. Orchard, P. Wadler, and H. Eades. Unifying graded and parameterised monads.
Electronic Proceedings in Theoretical Computer Science, 317:18–38, May 2020. doi:
10.4204/eptcs.317.2. URL https://doi.org/10.4204%2Feptcs.317.2.

S. Peyton Jones, K. Hammond, W. Partain, P. Wadler, and C. Hall. The Glasgow
Haskell Compiler: a technical overview. In Proceedings of Joint Framework for
Information Technology Technical Conference, Keele, pages 249–257. DTI/SERC,
1993. URL https://www.microsoft.com/en-us/research/publication/
the-glasgow-haskell-compiler-a-technical-overview/.

M. Piróg, T. Schrijvers, N. Wu, and M. Jaskelioff. Syntax and Semantics for Operations
with Scopes. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’18, page 809–818, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN 9781450355834. doi: 10.1145/3209108.3209166. URL
https://doi.org/10.1145/3209108.3209166.

99

https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.1145/199448.199528
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://www.sciencedirect.com/science/article/pii/0890540192900084
https://www.sciencedirect.com/science/article/pii/0890540192900084
https://doi.org/10.1007/978-3-540-24836-1_5
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.4204%2Feptcs.317.2
https://www.microsoft.com/en-us/research/publication/the-glasgow-haskell-compiler-a-technical-overview/
https://www.microsoft.com/en-us/research/publication/the-glasgow-haskell-compiler-a-technical-overview/
https://doi.org/10.1145/3209108.3209166

G. Plotkin and J. Power. Algebraic Operations and Generic Effects. Applied Categorical
Structures, 11(1):69–94, Feb. 2003. ISSN 1572-9095. doi: 10.1023/A:1023064908962.
URL https://doi.org/10.1023/A:1023064908962.

G. Plotkin and M. Pretnar. Handlers of Algebraic Effects. In G. Castagna, editor,
Programming Languages and Systems, pages 80–94, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg. ISBN 978-3-642-00590-9.

R. Pucella and J. A. Tov. Haskell Session Types with (Almost) No Class. SIGPLAN
Notices, 44(2):25–36, Sept. 2008. ISSN 0362-1340. doi: 10.1145/1543134.1411290. URL
https://doi.org/10.1145/1543134.1411290.

H. Punchihewa and N. Wu. Safe Mutation with Algebraic Effects. In Proceedings of
the 14th ACM SIGPLAN International Symposium on Haskell, Haskell 2021, page
122–135, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450386159. doi: 10.1145/3471874.3472988. URL https://doi.org/10.1145/
3471874.3472988.

T. Schrijvers, M. Piróg, N. Wu, and M. Jaskelioff. Monad Transformers and Modular
Algebraic Effects: What Binds Them Together. In Proceedings of the 12th ACM
SIGPLAN International Symposium on Haskell, Haskell 2019, page 98–113, New York,
NY, USA, 2019. Association for Computing Machinery. ISBN 9781450368131. doi: 10.
1145/3331545.3342595. URL https://doi.org/10.1145/3331545.3342595.

W. Swierstra. Data Types à La Carte. Journal Functional Programming, 18(4):423–436,
July 2008. ISSN 0956-7968. doi: 10.1017/S0956796808006758. URL https://doi.
org/10.1017/S0956796808006758.

K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing
system. In C. Halatsis, D. Maritsas, G. Philokyprou, and S. Theodoridis, editors,
PARLE’94 Parallel Architectures and Languages Europe, pages 398–413, Berlin, Hei-
delberg, 1994. Springer Berlin Heidelberg. ISBN 978-3-540-48477-6.

B. van den Berg and T. Schrijvers. A Framework for Higher-Order Effects & Handlers,
2023. URL https://doi.org/10.48550/arXiv.2302.01415.

J. Voigtländer. Asymptotic Improvement of Computations over Free Monads. In
P. Audebaud and C. Paulin-Mohring, editors, Mathematics of Program Construction,
pages 388–403, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-
70594-9. doi: 10.1007/978-3-540-70594-9_20. URL https://doi.org/10.1007/
978-3-540-70594-9_20.

N. Wu and T. Schrijvers. Fusion for Free - Efficient Algebraic Effect Handlers. In R. Hinze
and J. Voigtländer, editors, Mathematics of Program Construction, pages 302–322,
Cham, 2015. Springer International Publishing. doi: 10.1007/978-3-319-19797-5_15.
URL https://doi.org/10.1007/978-3-319-19797-5_15.

100

https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1145/1543134.1411290
https://doi.org/10.1145/3471874.3472988
https://doi.org/10.1145/3471874.3472988
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.48550/arXiv.2302.01415
https://doi.org/10.1007/978-3-540-70594-9_20
https://doi.org/10.1007/978-3-540-70594-9_20
https://doi.org/10.1007/978-3-319-19797-5_15

N. Wu, T. Schrijvers, and R. Hinze. Effect Handlers in Scope. ACM SIGPLAN Notices,
49(12):1–12, Sept. 2014. ISSN 0362-1340. doi: 10.1145/2775050.2633358. URL
https://doi.org/10.1145/2775050.2633358.

N. Xie and D. Leijen. Effect Handlers in Haskell, Evidently. In Proceedings of
the 13th ACM SIGPLAN International Symposium on Haskell, Haskell 2020, page
95–108, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450380508. doi: 10.1145/3406088.3409022. URL https://doi.org/10.1145/
3406088.3409022.

101

https://doi.org/10.1145/2775050.2633358
https://doi.org/10.1145/3406088.3409022
https://doi.org/10.1145/3406088.3409022

Appendix

103

1 data S a; data O a b ; data SL a
2 data R a; data C a b ; data CL a
3

4 type family Dual' proc
5 type instance Dual' (R a) = S a
6 type instance Dual' (S a) = R a
7 type instance Dual' (O a b) = C (Dual a) (Dual b)
8 type instance Dual' (C a b) = O (Dual a) (Dual b)
9 type instance Dual' (CL a) = SL (Dual a)

10 type instance Dual' (SL a) = CL (Dual a)
11

12 type family Dual proc where
13 Dual '[] = '[]
14 Dual (x : xs) = Dual' x : Dual xs
15

16 data Session p q r where
17 Send :: a -> Session (S a : p) p ()
18 Recv :: Session (R a : p) p a
19

20 type End :: [Type]
21 type End = '[]
22

23 data instance ScopeE Session m p p' q' q x' x where
24 Offer ::
25 m a End x ->
26 m b End x ->
27 ScopeE Session m (O a b : c) '[O a b] End c x x
28 Sel1 ::
29 m a End x ->
30 ScopeE Session m (C a b : c) a End c x x
31 Sel2 ::
32 m b End x ->
33 ScopeE Session m (C a b : c) b End c x x
34 ServerLoop ::
35 m a End (Maybe x) ->
36 ScopeE Session m (SL a : c) a End c (Maybe x) [x]
37 ClientLoop ::
38 m a End x ->
39 ScopeE Session m (CL a : r) a End r x [x]

Listing 1: Full definition of the Session effect.

104

40 send ::
41 forall a f p.
42 a ->
43 PrEff f Session (S a : p) p ()
44 send a = sendP (Send a)
45

46 recv ::
47 forall a p f.
48 PrEff f Session (R a : p) p a
49 recv = sendP Recv
50

51 sel1 ::
52 PrEff f Session a End x ->
53 PrEff f Session (C a b : p) p x
54 sel1 act = sendScoped (Sel1 act)
55

56 sel2 ::
57 PrEff f Session b End x ->
58 PrEff f Session (C a b : p) p x
59 sel2 act = sendScoped (Sel2 act)
60

61 offer ::
62 PrEff f Session a End x ->
63 PrEff f Session b End x ->
64 PrEff f Session (O a b : p) p x
65 offer s1 s2 = sendScoped (Offer s1 s2)
66

67 loopS ::
68 PrEff effs Session a End (Maybe x) ->
69 PrEff effs Session (SL a : p) p [x]
70 loopS act = sendScoped (ServerLoop act)
71

72 loopC ::
73 PrEff f Session a End x ->
74 PrEff f Session (CL a : p) p [x]
75 loopC act = sendScoped (ClientLoop act)

Listing 2: Embedding functions for the Session effect.

105

76 connect :: (Dual p1 ~ p2, Dual p2 ~ p1) =>
77 PrEff f Session p1 '[] a -> PrEff f Session p2 '[] b ->
78 PrEff f IVoid () () (a, b)
79 connect (Value x) (Value y) = pure (x, y)
80 connect (ImpureP (Recv) k1) (ImpureP ((Send a)) k2) =
81 connect (runIKleisli k1 a) (runIKleisli k2 ())
82 connect (ImpureP ((Send a)) k1) (ImpureP (Recv) k2) =
83 connect (runIKleisli k1 ()) (runIKleisli k2 a)
84 connect (ScopedP op1 k1) (ScopedP op2 k2) = case (op1, op2) of
85 (Sel1 act1, Offer act2 _) -> Ix.do
86 (a, b) <- connect act1 act2
87 connect (runIKleisli k1 a) (runIKleisli k2 b)
88 (Sel2 act1, Offer _ act2) -> Ix.do
89 (a, b) <- connect act1 act2
90 connect (runIKleisli k1 a) (runIKleisli k2 b)
91 (Offer act1 _, Sel1 act2) -> Ix.do
92 (a, b) <- connect act1 act2
93 connect (runIKleisli k1 a) (runIKleisli k2 b)
94 (Offer _ act1, Sel2 act2) -> Ix.do
95 (a, b) <- connect act1 act2
96 connect (runIKleisli k1 a) (runIKleisli k2 b)
97 (ServerLoop act1, ClientLoop act2) -> Ix.do
98 (a, b) <- connectLoop act1 act2
99 connect (runIKleisli k1 a) (runIKleisli k2 b)

100 (ClientLoop act1, ServerLoop act2) -> Ix.do
101 (a, b) <- connectLoop act2 act1
102 connect (runIKleisli k1 b) (runIKleisli k2 a)
103 where
104 connectLoop bodyA bodyB = go ([], [])
105 where
106 go (r1, r2) = Ix.do
107 (a, b) <- connect bodyA bodyB
108 case a of
109 Nothing -> pure (r1, b : r2)
110 Just a' -> go (a' : r1, b : r2)
111 connect (Impure cmd k1) k2 = Impure cmd $ iKleisli $
112 \x -> connect (runIKleisli k1 x) k2
113 connect k1 (Impure cmd k2) = Impure cmd $ iKleisli $
114 \x -> connect k1 (runIKleisli k2 x)

Listing 3: Algebraic effect handler for the Session effect that interprets two procedures
using cooperative multitasking.

106

	Kurzfassung
	Abstract
	Contents
	Introduction
	Algebraic Effect Systems
	Related Work
	Contributions of this Thesis
	Structure of this Thesis

	Motivating Algebraic Effect Systems
	Relevant Haskell Concepts
	Monad - Type Class Hierarchy
	Parameterised Monad - Type Class Hierarchy
	Free and Freer Monad
	Open Union

	The Effect System preff
	The Effect Monad PrEff
	Algebraic Effects Handlers in preff
	Scoped-Parameterised Effect Handlers in preff

	A Tour of preff
	Algebraic Effects and Handlers
	Scoped-Parameterised Effects and Handlers
	Show Case: Session Types in preff

	Evaluation
	Expressivity
	Performance

	Conclusion
	Future Work

	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Bibliography
	Appendix

