
DIPLOMARBEIT

ModeLimit - A Python Package for Computing
Exclusion Limits Using Data with Unknown

Background

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Technische Physik

eingereicht von

Fatih Okçu, BSc
Matrikelnummer 01425617

Ausgeführt am Atominstitut
der Fakultät für Physik der Technischen Universität Wien

Betreuung
Betreuer/in: Assistant Prof. Dipl.-Phys. Dr.rer.nat. Florian Reindl
Mitwirkung: Univ.Ass.in Leonie Einfalt, MSc

Wien, 11.12.2023
(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)





Eidesstattliche Erklärung
Hiermit versichere ich eidesstattlich, dass ich die vorliegende Arbeit eigenständig
und ausschließlich unter Verwendung der im Quellen- und Literaturverzeichnis
aufgeführten Werke angefertigt habe.

Wien, 11.12.2023
(Unterschrift Verfasser/in)





Abstract

Direct detection dark matter searches look for the characteristic signal sig-

nature of dark matter particles scattering off standard model nuclei in their

measured recoil energy spectra. The elusive nature of a dark matter signal

introduces difficulties in its distinction from a background, especially when

the aspects of the background are not fully grasped or determined. Even in

instances where a signal is not detected, the experimenters can still estab-

lish an upper limit on the signal parameter. Due to the potential presence

of unknown background processes, the experimenters cannot rule out the

possibility that these unidentified factors might be significant enough to ex-

plain all observed events. By an appropriate choice of an interval containing

fewer events than would be expected from the dark matter signal, it is pos-

sible to make the influence of the unknown background the least disruptive.

Yellin’s methods provide this region for the calculation of upper limits on

the interaction strength of dark matter with standard model particles.

This thesis presents the development and application of the ModeLimit

Python package, a versatile tool designed for modelling one-dimensional and

two-dimensional expected signals in the context of dark matter research.

Leveraging methods proposed by S. Yellin, including the maximum gap

method, optimum interval method, and maximum patch method, Mode-

Limit allows the determination of upper limits for dark matter scattering

cross sections. Notably, the package introduces an approximation to the

optimum interval method, providing a resource-efficient alternative without

compromising accuracy. The parallelisation of data tabulation processes

significantly reduces run-time, particularly for experiments with a high ex-

pected number of events, resulting in an expanded size of tabulated data.



Results demonstrate ModeLimit’s compatibility with published results

and showcase its role in providing open-source, user-friendly solutions for

dark matter analysis in a Python environment. The package not only aligns

with the results of Yellin’s original Fortran-based implementation but also

allows applying the maximum patch method to two-dimensional data, which

is the most important contribution of this thesis.

In cases where an experiment is collecting data from more than one chan-

nel, thus having multiple observables, the utilization of the maximum patch

method becomes relevant and advantageous. Unlike conventional approaches

relying on predetermined acceptance regions, the maximum patch method

algorithmically identifies the optimal area for analysis. Even though the ac-

ceptance regions set by researchers by leveraging their knowledge of the data

allow stricter limits on the signal parameter than without any acceptance

region at all, they are inherently biased. Bias in experimental setups poses a

formidable challenge in the pursuit of scientific accuracy. The inherent sub-

jectivity introduced by manually set acceptance regions can skew results,

potentially leading to misleading conclusions. By discarding the need for

acceptance regions and finding the most optimal area for analysis algorith-

mically, ModeLimit significantly enhances the objectivity of the analysis,

offering a more transparent and unbiased evaluation of dark matter interac-

tions. ModeLimit emerges as a promising contribution to the field, offering

researchers an accessible and efficient means to navigate the complexities of

dark matter research.



Zusammenfassung

Bei der Erforschung von Dunkler Materie im Direktnachweis analysiert man

die Rückstoßenergiespektren auf der Suche nach der charakteristischen Sig-

natur von Teilchen der Dunklen Materie, die an Kernen des Standardmod-

ells gestreut werden. Die schwer zu erfassende Natur eines Dunkle-Materie-

Signals erschwert die Unterscheidung von Hintergrundrauschen, insbeson-

dere wenn die Eigenschaften des Hintergrunds nicht vollständig verstanden

oder festgelegt sind. Auch wenn kein Signal erkannt wird, haben die Forscher

die Möglichkeit, eine obere Grenze für die Signalparameter anzugeben. Auf-

grund potenziell unbekannter Hintergrundprozesse können die Forscher nicht

ausschließen, dass der unbekannte Hintergrund hinreichend signifikant ist,

um alle beobachteten Ereignisse zu erklären. Durch die geschickte Auswahl

eines Intervalls mit weniger Ereignissen, als für das erwartete Signal der

Dunklen Materie zu erwarten wären, kann der Einfluss des unbekannten

Hintergrunds minimiert werden. Yellins Methoden bieten diesen Ansatz zur

Berechnung von Obergrenzen für die Wechselwirkungsstärke der Dunklen

Materie mit Teilchen des Standardmodells.

Diese Arbeit beschäftigt sich mit der Entwicklung und Anwendung

des Python-Pakets ModeLimit, einem vielseitigen Werkzeug, das speziell

für die Modellierung von ein- und zweidimensionalen erwarteten Signalen

im Kontext der Dunkle-Materie-Forschung entwickelt wurde. ModeLimit

greift auf Methoden zurück, die von S. Yellin vorgeschlagen wurden,

darunter die Maximum-Gap-Methode, die Optimum-Intervall-Methode und

die Maximum-Patch-Methode. Es ermöglicht die Ermittlung von Obergren-

zen für Dunkle-Materie-Wirkungsquerschnitte. Insbesondere führt das Paket

eine Annäherung an die optimale Intervallmethode ein, die eine ressourcenef-



fiziente Alternative darstellt, ohne die Genauigkeit zu beeinträchtigen. Die

Parallelisierung der Datentabellierungsprozesse reduziert die Laufzeit erhe-

blich, insbesondere bei Experimenten mit einer hohen erwarteten Anzahl von

Ereignissen, was zu einer Erweiterung der tabellierten Daten führt.

Die Ergebnisse zeigen die Kompatibilität von ModeLimit mit veröf-

fentlichten Ergebnissen und unterstreichen seine Rolle bei der Bereitstel-

lung von benutzerfreundlichen Open-Source-Lösungen für die Analyse dun-

kler Materie in einer Python-Umgebung. Das Paket stimmt nicht nur mit

den Ergebnissen der ursprünglichen Fortran-basierten Umsetzung von Yellin

überein, sondern ermöglicht auch die Anwendung der Maximum-Patch-

Methode auf zweidimensionale Daten, was als wesentlicher Beitrag dieser

Arbeit herausgestellt wird.

Bei den Experimenten, die Daten aus mehr als einem Kanal sam-

meln und somit über mehrere Observablen verfügen, erweist sich der Ein-

satz der Maximum-Patch-Methode als relevant und vorteilhaft. Im Unter-

schied zu herkömmlichen Ansätzen, die auf vordefinierten Akzeptanzbere-

ichen basieren, ermittelt die Maximum-Patch-Methode algorithmisch den

optimalen Analysebereich. Obwohl die Akzeptanzbereiche, die Forscher

basierend auf ihrem Wissen über die Daten festlegen, strengere Grenzen für

den Signalparameter ermöglichen als ein fehlender Akzeptanzbereich, sind sie

von Natur aus verzerrt. Verzerrungen in Versuchsanordnungen stellen eine

große Herausforderung bei der Suche nach wissenschaftlicher Genauigkeit

dar. Die inhärente Subjektivität, die durch manuell festgelegte Akzep-

tanzbereiche eingeführt wird, kann zu verfälschten Ergebnissen und poten-

ziell verzerrten Schlussfolgerungen führen. ModeLimit verbessert die Ob-

jektivität der Analyse erheblich, indem es auf Akzeptanzbereiche verzichtet



und stattdessen den optimalen Bereich für die Analyse algorithmisch sucht.

Dies bietet eine transparentere und unvoreingenommenere Bewertung der

Wechselwirkungen mit Dunkler Materie. ModeLimit erweist sich als vielver-

sprechender Beitrag in diesem Bereich, indem es Forschern ein zugängliches

und effizientes Mittel bereitstellt, um die Komplexität der Dunkle-Materie-

Erforschung zu bewältigen.
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1 Introduction

In the pursuit of unravelling cosmic enigmas, the study of dark matter stands as a
formidable challenge. Dark matter has not yet been detected. However, there are
signs in the observations of galaxies or the cosmic microwave background radiation
pointing to its existence. Hence, there are many theories for explaining the nature
of dark matter particles and also many experiments, such as CRESST, aiming for
the detection of dark matter particles.

The expected signal from nuclear scatterings of weakly interacting massive
particles, one of the particle candidates for dark matter, is discussed in section 2.
At first, the differential rate is described as a one-dimensional energy-dependent
function. Then, using the one-dimensional differential rate, the two-dimensional
probability density function is constructed in the energy-light yield space. This
generalisation allows the usage of two-dimensional data in the analysis.

Now, even if the signal the researchers are trying to detect is below the sen-
sitivity level of the experiment and if a positive detection eludes the researchers,
it is still possible to set upper limits using the expected dark matter signal and
the sensitivity of the experiment. However, such an experiment might be contam-
inated with an unknown background, which might be hard to remove. But, if the
distribution of this unknown background were to be different than the distribu-
tion of the expected signal, this difference can be used to set a stronger upper
limit using the methods proposed by S. Yellin [1, 2, 3]. These methods work with
algorithmically set intervals where the influence of the unknown background is
expected to be the least disruptive.

Three methods are discussed in this work: the maximum gap method, the opti-
mum interval method and the maximum patch method. Apart from the maximum
gap method, these analysis methods cannot be computed analytically and rely on
conducting many Monte Carlo experiments. Thus, computers are essential for
handling the large amounts of tabulated data. A resource-efficient approximation
of the optimum interval method is introduced in section 3.3. Additionally, the
parallelisation of various operations enabled further expediting of the process.

In addition to the optimum interval method, the more advanced but computa-
tionally demanding maximum patch method is also implemented in this work. In-
stead of working with a one-dimensional expected signal, it uses a two-dimensional
density function and randomly tabulated data in a two-dimensional plane. While
the maximum patch method does not necessarily yield much stricter limits than
the optimum interval method, it helps to remove bias in the acceptance region ap-
plied to experimental data before applying the one-dimensional optimum interval
method.

The original script for e.g. optimum interval calculations was written in Fortran
in 2002 [3]. Fortran is currently not as widely used as many other programming
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languages and thus few researchers can fully understand the script. This is where
the need for an updated version of the implementation arises. For example, an
implementation of the optimum interval method has already been realised before
[4]. The Python package ModeLimit is the new open-source implementation of
Yellin’s methods in Python which not only allows users to model the expected
signal of the dark matter particles depending on their mass but also to tabulate
data with custom tabulation parameters and apply Yellin’s methods to set upper
limits on the cross sections of the dark matter. Exclusion charts as in Fig. 30 are
composed of these upper limits.

Python is currently one of the most widely used programming languages in the
field of data analysis. In comparison to Fortran, it is much easier to learn and
code in Python, which is the primary advantage of implementing the methods in
a Python package. It is modern and allows many more researchers to make use of
the methods. The package will be available for download on GitHub.

The package can be utilised in three main ways. If the researcher is just in-
terested in the expected dark matter signal as described in 2, ModeLimit can be
used to calculate one- and two-dimensional probability density functions, and cu-
mulative density functions, draw random variates stemming from these functions
and determine the expected number of events. If, however, the researcher is also
interested in setting upper limits on the cross section of dark matter particles, the
researcher may use these generated expected signals in combination with Yellin’s
methods. The third case is where the researcher would like to utilise Yellin’s meth-
ods, but use different formulae for the generation of the expected signal. In this
case, the researcher may combine the expected signals calculated by other assump-
tions and means with a ModeLimit method to set limits on the cross section.

Almost all of the instance and class variables are changeable, which is of im-
portance for flexibility reasons. Great care is taken in writing the docstrings as
readable and understandable as possible to create a user-friendly experience when
using the package. There will also be some examples provided, covering all the
above-mentioned main usages, so that the researchers can almost directly use the
package without needing to write even a single line of code but only change some
required parameters fitting their experiment. The purpose of this study is that
the ease of access brought forth by this new implementation helps researchers in
their endeavour to understand and set stricter limits on the cross section of dark
matter.

Section 5 delves into the outcomes and the implications of employing the
ModeLimit package. The one-dimensional and two-dimensional density functions
are discussed, providing a comprehensive understanding of the expected spin-
independent dark matter signal. The discussion extends to the construction of
exclusion charts, offering a visual representation of upper limits on the cross sec-

2



tions of dark matter particles. Subsequently, the examination of the advantages
and drawbacks of the approximation of the optimum interval method serves as
a pragmatic evaluation, ensuring that users can make informed decisions tailored
to the specific nuances of their experimental context. Finally, the description of a
recommended workflow acts as a practical guide, facilitating a seamless integration
of ModeLimit into the researcher’s toolkit.

It’s important to note that the results discussed in section 5 stem from a blend
of both real and simulated CRESST data. While the focus is on CRESST, it’s cru-
cial to emphasise that ModeLimit isn’t confined to this experiment alone. Yellin’s
upper limit setting methods, the backbone of ModeLimit, have already been suc-
cessfully employed in the analysis of data from the CDMS experiment. This ex-
periment uses a different detector concept, utilising low-temperature germanium
and silicon crystals [5].

The applicability of ModeLimit extends beyond these examples. Experiments
such as XENONnT, LZ, and PandaX, which harness the distinctive properties of
liquid xenon in their search for dark matter, can also leverage Yellin’s methods
implemented in ModeLimit [6, 7, 8]. These experiments detect signals labelled
as S1 and S2, triggered by various events. While these signals differ from those
in the CRESST experiment, the strength of ModeLimit lies in its adaptability.
The methods can be effectively applied to the one- or two-dimensional data pro-
duced by these experiments, enabling the setting of upper limits and enhancing
the analytical toolkit for a broader spectrum of dark matter searches.

1.1 A Brief Introduction to Dark Matter

Dark matter is a hypothetical form of matter and has not been experimentally
detected as of yet. According to models of galaxy formation and evolution, as well
as cosmological models, it is thought to be at least five times more abundant than
baryonic matter, making up roughly 27% of the total energy density of the observ-
able Universe [9]. One of the earliest documented observations of dark matter, if
not the foremost, was conducted by Swiss astronomer Fritz Zwicky in 1933 dur-
ing his investigation of the Coma Cluster [10]. However, Zwicky’s "dark matter"
was not thought of as some new hypothetical form of matter. He aimed to cal-
culate the total dynamical mass of the Coma Cluster using its velocity dispersion
in combination with the virial theorem. This dynamical mass he then compared
to the luminous mass, deduced from the amount of light emitted. He found that
the dynamic mass is some 400 times larger than the luminous mass in the Coma
cluster. The gravitational effects observed could not solely be explained by the
mass of the luminous matter in the galaxy cluster. Hence, as an explanation for
this shortage of mass, "dark matter" as in "non-luminous matter" was proposed.
Since it was thought to be just non-luminous matter causing the discrepancy in
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results, its significance was not duly recognised.
Some 40 years later, the nature of this non-luminous matter became popular.

In the 1970s, the American astronomers Vera Rubin and Kent Ford were studying
the rotation of the neighbouring spiral galaxy Andromeda using the analysis of
galaxy spectra [11]. Similar to Zwicky’s findings, a discrepancy emerged between
the mass of luminous matter and dynamic mass. Subsequent observations con-
ducted by Rubin in the 1980s substantiated and extended the evidence supporting
this discrepancy [12]. Analysing the spectrum data of spiral galaxies allows for
determining the rotation curve, which describes the rotation speed of the galaxy
as a function of the distance to the centre. Assuming a Keplerian behaviour, one
would expect a decrease in the rotation speed for larger distances from the centre.
This, however, was not observed. There was a flattening of the rotation curve. Ru-
bin and Ford observed that the stars at the outer edge of the Andromeda galaxy,
the closest galaxy to the Milky Way and a spiral galaxy, were rotating too fast.
One possible explanation for this strange behaviour was the existence of a halo of
non-visible matter surrounding the galaxies. This halo might constitute a large
portion of the mass of the galaxy to explain the behaviour of the rotation curve.
The flattening of the rotation curve is illustrated in Fig. 1.

Figure 1: The expected and the observed rotation curves of a common spiral
galaxy. The blue line, labelled "A", represents the expected rotation curve follow-
ing Keplerian laws. The red line, labelled "B", represents the observed rotational
curve of the galaxy. The resulting huge discrepancy and the flattening of the ob-
served rotation curve may be explained with the help of a dark matter halo that
constitutes a large part of the galaxy’s mass [13].

The Bullet Cluster is one of the more recent observations that strongly supports
the existence of dark matter [14, 15, 16]. The gravitational lensing caused by
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the colliding clusters cannot be explained purely by the baryonic matter and the
spatial offset of the centre of the mass from the baryonic mass is too large for a
modification of the laws of gravity to be able to explain. An X-ray image of the
collision is shown in Fig. 2. As can be seen from the image, the mass centres
inferred from the gravitational lensing and the X-ray imagery do not align. The
gaseous section, housing the majority of luminous matter, is slowed down due to
friction, consequently trailing behind the dark matter.

Figure 2: Superimposition of three images. The galaxies seen are from the visible
light image. The pink image represents the X-ray image. The blue image represents
the matter distribution inferred from the gravitational lensing. The discrepancy
between the blue and pink image is visible [17].

The Cosmic Microwave Background (CMB) is the earliest snapshot of the uni-
verse, and one can see the existence of hot and cold spots in this early snapshot, as
seen in Fig. 3. Two main forces are acting on matter, one being the gravitational
force pulling matter together and the other one being the force exerted by photonic
pressure pushing matter outward. Since dark matter does not interact with light
at all, its existence, or non-existence, would radically change the patterns observed
in CMB, because it would clump into dense regions by the gravitational pull of
regular and dark matter. Accurate measurements provided by the Wilkinson Mi-
crowave Anisotropy Probe and ESA’s Planck of the CMB fluctuations showed in
their power spectrum that the existence of dark matter is more likely than not [18,
19]. Hence, in addition to the galactic rotation curves and the gravitational lensing
of the Bullet Cluster, CMB is also in favour of the existence of dark matter.
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Figure 3: The anisotropies, the hot and cold spots, in the CMB can be seen in the
CMB-plot calculated with the data provided by ESA’s Planck spacecraft [20].

As to the true nature of dark matter, there are many hypotheses. Some fall un-
der the category of the so-called hot dark matter, meaning they are fast, relativistic
and relatively lighter, some fall under the category of cold dark matter, meaning
they are slow, non-relativistic and heavier in comparison. The focus of this work
will be Weakly Interacting Massive Particles (WIMPs). The originally proposed
WIMPs are not the same as the currently sought-after WIMPs, which usually dif-
fer in their mass and are usually called generalised WIMPs, being lighter than the
original WIMPs. Nonetheless, they are non-baryonic matter candidates and are
considered cold dark matter. The term "WIMPs" will be used interchangeably
with "generalised WIMPs" in this study.

In general, there are three categories of dark matter experiments and corre-
sponding ways of observing dark matter particles:

1. Dark matter particles can be found indirectly by looking for secondary parti-
cles created when they decay or annihilate. There are dozens of such studies
currently underway or planned, particularly for gamma rays as secondary
products [21, 22, 23, 24, 25].

2. Direct searches are the other kinds of experiments, which are of relevance
to the CRESST Experiment. Through their interactions with the regular
matter in a detector, they hope to directly detect dark matter particles [26,
6, 27, 28, 8, 29, 7]. The entire discussion in section 2 is completely devoted
to such direct detection, especially for WIMPs.

3. There are also experiments being conducted, which could produce dark mat-
ter particles through high-energy collisions [30, 31, 32, 33, 34]. For example,
if dark matter particles were created at the Large Hadron Collider (LHC),
physicists could infer their production and existence from the amount of
energy and momentum not observed after a collision.
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1.2 CRESST Experiment

In Gran Sasso, Italy, the Cryogenic Rare Event Search with Superconducting
Thermometers (CRESST) experiment searches for dark matter utilising detectors
that operate at extremely low temperatures. Particle interactions generate heat in
the detectors and this local rise in temperature allows events to be detected. Pre-
sented herein is a brief overview of the fundamental principles underlying cryogenic
detection, the CRESST facility and its detector concepts using the information
provided in [35].

At exceedingly low temperatures, the components of ordinary matter enter a
state of inactivity, where even minute amounts of energy can give rise to signif-
icant consequences. A deposit of a few hundred electronvolts (eV) from a single
particle interaction inside a CRESST crystal with a mass of ∼ O(100 g), causes a
measurable temperature spike in the attached superconducting film thermometer.

In order to investigate the interaction of dark matter particles in the laboratory,
two competing prerequisites must be met. On the one side, given the extremely
low interaction probability that dark matter particles are expected to have, a large
exposure is required to get a quantifiable interaction rate. Large exposure can be
achieved by increasing the crystal size. On the other side, the capacity to see
minuscule energy deposits is required because the recoil energy of the impacted
nucleus is expected to be low, with most events occurring in the keV range or
lower. Given that a small crystal size is more adept at detecting minuscule energy
deposits, it is crucial to find the right balance between these two competing pre-
requisites. Especially for these purposes cryodetectors are one of the frequently
used detector technologies and produce leading limits on dark matter interactions
in the low mass range. The full deposited energy in the particle recoil is detected
by the cryodetectors, acting either as bolometers or calorimeters.

1.2.1 CRESST Facility

The low expected event rate for dark matter particle-nucleus elastic scattering
necessitates a low background environment. In the detector, in addition to the
dark matter particles, muons, neutrons, electrons, photons, and alpha particles
will also interact. Cosmic rays, along with natural and induced radioactivity near
the detector, may cause these interactions. If not suppressed, these background
signals would be substantially more common than the signals expected from dark
matter particles. As a result, the equipment is situated in a deep subterranean site
under the Gran Sasso massif in Italy, which is covered on average by 1400 meters
of granite.

Secondly, various passive shielding layers as shown in Fig. 4 shield ambient
radiation emanating from the surroundings to the greatest extent possible. To
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prevent radon from penetrating the shielding, the entire shielding is encased in
an airtight aluminium container (the radon-box) that is constantly flushed with
nitrogen gas and maintained at a minor overpressure. With the polyethylene
neutron moderator in place, neutrons induced by muons in the lead of the shielding
would dominate the remaining neutron flux. The muon veto system fitted inside
the neutron moderator suppresses such a background.

Figure 4: The CRESST experiment with its different shielding layers. These
shielding layers are of paramount importance for the reduction of background
noise, shielding the in-built absorber from radiation as much as possible [36].
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1.2.2 Detector Concepts

The nuclei are in a cryogenic detector’s absorber, which can detect the minuscule
energy of a recoiling nucleus that has been hit by a dark matter particle. In the
pursuit of detecting rare interactions with low energy deposits, a sensitive detector
and highly effective noise reduction are essential. This is because various particles,
not just dark matter particles, interact within the detector, and distinguishing
them from the signals of interest is necessary.

An absorber and a temperature sensor in thermal contact, loosely coupled to a
heat bath, make up the cryogenic calorimeter as shown in Fig. 5. Since the detector
can be described as an absorber with a temperature-dependent heat capacity of C
in a very simplified model, the temperature rise is a direct measure of the deposited
energy. The energy deposition due to a particle interaction results in a detectable
temperature increase at mK temperatures due to the T 3 dependence of the heat
capacity in the phonon system.

Figure 5: Schematic drawing of a CRESST calorimeter element. An absorber
(brown) and a thermometer (red) are coupled to a heat bath.

The temperature sensors used by CRESST are superconducting phase transi-
tion thermometers, also known as transition edge sensors (TES). The thermome-
ters are stabilised in the transition from the normal conducting to the supercon-
ducting phase, where a tiny temperature increase causes a noticeable increase in
resistance, making them exceptionally sensitive thermometers. This is illustrated
in Fig. 6. CRESST uses absorbers connected to such thermometers as cryogenic
calorimetric detectors, which are extremely sensitive and can measure the total
energy deposited by an interacting particle.
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Figure 6: An example of a superconductor transition, showing the dependency of
the normalised resistance on temperature. Normalisation is performed by dividing
the resistance by the resistance in the normal conducting phase. Due to the steep-
ness of the curve, even a minor change in temperature causes a noticeable change
in resistance [37].

The detector modules for CRESST take advantage of the fact that most back-
grounds create some light in a scintillating material, whereas the sought-after dark
matter induced recoils produce little to no light. As a consequence, detectors based
on scintillating CaWO4 crystals as absorbers, shown in Fig. 7, were created. Par-
ticle interaction produces primarily heat in the form of phonons in this crystal. A
small quantity of the deposited energy is also radiated as scintillation light.

Figure 7: Schematic drawing of a CRESST-II detector module. In a reflection and
scintillation housing (grey), the target crystal (blue) and the light detector (black)
are built. Both are equipped with TES (red) that are thermally coupled to a heat
bath [36].
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Most common backgrounds (e.g. electron recoils, alpha events, etc.) can be
separated from potential dark matter signals because the amount of light produced
varies depending on the type of particle. Note that this is only true under the
assumption that dark matter particles interact with standard model nuclei and
are thus suitable for direct detection. The so-called light yield, LY = El/Ep, of
an event is defined as the ratio of the energies deposited in the light and phonon
channels and can be used to distinguish between various particle interactions, see
Figs. 8 and 9.

Figure 8: Light yield for different kinds of particles and recoil types. The elec-
tron/gamma band is represented by the grey area, the alpha particles band by the
red area, the oxygen band by the green area, and the tungsten band by the blue
area [35].

The horizontal bands originating from various event types are illustrated in the
light yield-energy plane in Fig. 8. As aforementioned, the light yield of different
event types can differ substantially. The finite detector resolution allows the partial
separation of these bands.

Now events from a specific detector will be closely examined. The data from
this detector is then later analysed using the methods from ModeLimit, which will
be discussed in later sections. The events in the Americium-Beryllium neutron
calibration data that passed the selection criteria, with all the relevant cuts ap-
plied, are shown in Fig. 9. The 90% upper and lower bounds of the e−/γ-band
are indicated by solid blue lines. The expected bands for recoils off oxygen and
tungsten are indicated by the red and green lines, respectively. The calcium band,
which is not drawn for clarity, is located between the oxygen and tungsten bands.
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Figure 9: Neutron calibration data for an exemplary CRESST-III detector in
the light yield versus energy plane. The data are fit to determine the bands for
e−/γ-events (blue), nuclear recoils off oxygen (red), and tungsten (green), where
the respective lines correspond to the upper and lower 90% boundaries of the
respective band [26].

Following the application of all the cuts, Fig. 10 displays the background
data in the light yield versus energy plane. As in Fig. 9, the blue, red, and
green bands represent the e−/γ-events and nuclear recoils off tungsten and oxygen,
respectively. The mean of the oxygen band is depicted by the red dashed line,
which simultaneously marks the upper boundary of the acceptance region, shaded
in yellow. The tungsten band’s 99.5% lower limit, with an energy range of 30.1 eV
to 16.0 keV, serves as the lower bound of the acceptance region. Red-highlighted
events in the acceptance region are regarded as possible dark matter candidate
events.

The acceptance region refers to the parameter space or set of conditions within
which a detector or experiment is sensitive to and capable of detecting potential
signals from dark matter interactions. The goal is to establish a well-defined set of
conditions where the experiment can effectively distinguish between potential dark
matter interactions and other sources of noise or background signals. The specific
characteristics of the acceptance region depend on the design and capabilities of
the particular dark matter experiment or detector being employed. In CRESST’s
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case, this parameter space is defined along the light yield axis by the mean of the
oxygen band and the 99.5% lower limit of the tungsten band.

Figure 10: The light yield versus the energy of events in the dark matter data set,
following the application of selection criteria. The 90% upper and lower bounds
of the e−/γ-band are shown in blue, while oxygen and tungsten are represented
by red and green bands, respectively. The red dashed line is the mean of the
oxygen band, and the yellow area represents the acceptance region extending from
that point down to the lower 99.5% border of the tungsten band. Events in the
acceptance region are highlighted in red. As in Fig. 9, the bands’ positions were
derived from the neutron calibration data [26].

13



2 Description of Expected DM Signals
WIMPs, alongside Axions, are currently the non-baryonic dark matter candidates
that are being studied the most in-depth and are thought to have the best detec-
tion potential. Therefore, like with the CRESST experiment, many dark matter
searches focus specifically on WIMPs. The foundational ideas and characteristics
of WIMP searches will be covered in this section.

According to the dark matter density at Earth’s position in the Milky Way ρχ

ρχ := 0.3
GeV/c2

cm3
, (1)

one might anticipate that due to its speed through the galaxy, the Earth will
experience a WIMP flux of the order of 106 cm−2s−1 for an assumed WIMP mass of
(100 GeV/c2) [38]. A small but detectable portion of these particles may scatter off
ordinary matter in a detector. These interactions do not have to be standard model
interactions for them to be detected and WIMPs can transfer considerable energy,
primarily to nuclei, through these interactions in the standard scenario elastic
scattering scenario. Direct search experiments, as described in 1.1, record the rate
and energies of nuclear recoils in dedicated detectors. The expected event rate for
such WIMP-induced nuclear recoils can be estimated and such recoil events may be
distinguished from background events from other sources. The following sections
2.1 and 2.2 rigorously adhere to the notation and formulae established by Jens
Schmaler, as described in [39]. Furthermore, in the context of employing a non-
rotating model, the formulations and notation described in [40] will be followed.

2.1 Modelling the Expected DM Signal

The one-dimensional projection of the expected dark matter signal, as a func-
tion of the recoil energy, necessitates a comprehensive examination of four pivotal
subtopics. The initial considerations involve the definitions of relevant cross sec-
tions integral to the description of the WIMP-nucleon scattering and the intro-
duction of the form factor to accommodate the substructure inherent in nuclei.
Subsequently, attention is directed towards the total interaction rate and the dif-
ferential rate. Lastly, the evaluation of these rates requires a detailed examination
of insights derived from astrophysics.

2.1.1 Cross Section

The differential WIMP-nucleus cross section dσ
dER

incorporates all of the inputs
from nuclear and particle physics, particularly the WIMP interaction features.
In general, the WIMP-nucleus cross section is made up of two constituents: a
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spin-dependent cross section describing a potential coupling of the dark matter
particles to the net spin of the target nuclei and a spin-independent cross section
summarising the scalar interactions.

These two contributions are independent of each other and can thus be summed
together to give the total cross section. The spin-dependent component, however,
can be disregarded if the target nuclei have no or minimal net spin, as is the
case in the CRESST experiment with CaWO4 as the target material. Thus, the
spin-independent interaction in the following is the main topic of discussion.

Most theories generally assume a similarity in the coupling of WIMPs with
various nucleons. However, the formulae presented below will utilise quantities
related to protons rather than neutrons. The cross section for this coupling can be
formulated by considering the nuclear mass mN , the mass number A, the strength
of the interaction between the protons and WIMPs f p, the form factor F and the
velocity v of WIMPs [41]:

dσ

dER

=
2mNA

2(f p)2

πv2
F 2(ER) (2)

As seen in Eq. (2), the differential cross section is not dependent on the direction of
the velocity, but solely on its absolute value. The factor A2 represents the outcome
of the coherent interaction with the target nuclei as a whole, where the scattering
amplitudes with all A nucleons add up in phase. The form factor that describes
the partial loss of coherence at greater momentum transfers is the function F (ER)
and is discussed in more detail in section 2.1.2.

The relative speed of WIMPs is expected to be below the galactic escape ve-
locity at the order of 102 km s−1, because otherwise, they could not be tied to
the Milky Way and their density in the galaxy would thus be negligibly small. If
the density is negligibly small, so is the rate of interactions with these WIMPs.
Therefore, the focus can be directed towards WIMPs with non-relativistic relative
speeds. In this case, the recoil energy is dependent on the scattering angle Θ in
the centre of the mass frame and can be expressed in a straightforward manner

ER =
µ2
Nv

2(1− cosΘ)

mN

, (3)

where
µN :=

mχmN

mχ +mN

(4)

is defined as the reduced mass of the WIMP-nucleus system, with the dark matter
mass mχ. Eq. 4 reaches its maximum value at the largest equal mχ and mN values
and cosΘ equals 1 for Θ = π. With v ≈ 10−3c, maximum expected recoil energies
are at the order of O(10 keV). Another outcome of the non-relativistic limit is that
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WIMP’s energy is not high enough to probe the target nuclei’s substructure and
will instead mostly interact with the nucleus as a whole.

Eq. (3) can be used to introduce ER,max as the highest possible energy transfer
of a WIMP with a velocity of v for cosΘ = 1:

ER,max =
2v2µ2

N

mN

(5)

Using Eq. (5), Eq. (2) can be reformulated to define the total point-like WIMP-
nucleus scattering cross section σ0 via

dσ

dER

=:
σ0

ER,max(v)
F 2(ER). (6)

By comparing Eqs. (2) and (6), it can be seen that the quantity σ0 is dependent
on the mass number of the target nucleus. Therefore, it is not the best measure
to use for comparing results from different experiments, as different experiments
employ different nuclei. For example, for xenon experiments, the relevant nucleus
is that of Xe, for CRESST the relevant nuclei are those of Ca, W and O. For this
reason, it is important to introduce a new normalised WIMP-nucleon cross section
σWN, where the dependence of the specific target is avoided [40]

σWN =
1 +mχ/mN

1 +mχ/mp

2
σ0

A2
. (7)

Here, mp denotes the proton mass. In direct dark matter searches, σWN is the
quantity that is most frequently discussed and compared. σWN is also the quan-
tity for which ModeLimit determines the upper limits and thus constrains the
interaction strength of WIMPs.

2.1.2 Form Factor

The form factor, denoted as F 2(ER), is essential for the description of the cross
section as introduced in Eq. (2). It accounts for the non-point-like substructure
of nuclei, introducing a loss of coherence in WIMP-nucleus interactions at higher
momentum transfers. This phenomenon is a consequence of the nuclei having
internal structure rather than being treated as point masses.

In conventional dark matter searches, the form factor is often parameterised
using a model initially proposed by Helm and further refined by Engel [42, 43].
This model conceptualises the nucleus as a convolution of a sphere with constant
density and a skin function

ρ(r⃗) = d3r′Θ(R2
0 − r′ 2) · const. · exp −(r⃗ − r⃗ ′)2

2s2
. (8)
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R2
0 can be defined by (R2 − 5s2) with the nuclear radius R ≃ 1.2A1/3 fm and skin

thickness s ≃ 1 fm. The skin function, modelled by a Gaussian, accounts for the
gradual loss of density near the sphere’s edge, providing a representation of the
distribution of the scattering centres within the nucleus. Applying the Fourier
transformation to this density yields the form factor

F (q) = 3
j1(qR0)

qR0

exp −1

2
q2s2 (9)

with the momentum transferred in the scattering process q =
√
2mNER. j1 denotes

the first spherical Bessel function.

The analytical calculability of this form factor for any target nucleus, coupled
with its strong approximation capabilities for numerous nuclei, especially those
with low mass numbers, makes it favourable [43]. Although the Helm model pro-
vides a straightforward approach, its simplicity might limit its ability to accurately
capture the true behaviour of nuclear density. Notably, parameters such as the nu-
clear radius R2

0 are often determined by fitting to a broad range of nuclei, making
them less precise representations of individual elements.

To address this limitation, more sophisticated formulae for estimating the nu-
clear radius, like the one proposed by Lewin and Smith [44], can be employed. It
has been observed that using altered formulations for R0, such as

R0 := c2 +
7

3
π2a2 − 5s2, (10)

can lead to better agreement with scattering data obtained from various nuclei
when employing a Helm-type form factor as in (9). The parameters a, s, and c are
defined as follows:

a := 0.52 fm, s := 0.9 fm, c := 1.23 · A1/3 − 0.6 fm. (11)

Fig. 11 depicts the form factor for different nuclei present in the CRESST experi-
ment, namely Ca, W and O. As anticipated by Eq. 9, the form factors correspond-
ing to distinct nuclei result in different values at identical energy levels. The effect
of the spherical Bessel functions is best observed in the form factor of tungsten.
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Figure 11: The squared form factor F 2(E) for Ca, W and O as a function of the
transferred energy ER.

2.1.3 Interaction Rates

The total interaction rate, denoted as Γ , in a detector penetrated by a flux of
WIMPs, denoted as Φ, can be generally written as a function dependent on the
WIMP-nucleus scattering cross section σ:

Γ = ntargetΦσ(v) (12)

ntarget stands for the density of the target nuclei with a nuclear mass of mN in
the detector with a total mass of the detector Mtarget and can be calculated by
ntarget = Mtarget/mN . The flux of WIMPs can be written as:

Φ =
ρχ
mχ

v (13)

ρχ is the aforementioned mass density of the WIMPs at Earth’s location in the
Milky Way (1) and v is their relative speed. Combining Eqs. (12) and (13) results
in:

Γ =
Mtarget

mN

ρχ
mχ

vσ(v) (14)

The rate that will be modelled and is vital for setting upper limits on cross
section is not the total rate, but the differential event rate, denoted by dΓ

dER
and

often defined in terms of counts per kilogram of target material, per day, and per
keV of recoil energy. To determine the differential rate, the expression in (14) must
be differentiated with regard to the recoil energy. Additionally, the fact that not
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all WIMPs have the same relative speed v has to be taken into consideration; it
necessitates the incorporation of a velocity distribution f(v⃗) leading to

dΓ

dER

=
ρχ

mNmχ

∞

vmin

d3vf(v⃗)v
dσ(v⃗, ER)

dER

, (15)

where vmin is the lowest possible speed of a WIMP which can induce a nuclear recoil
of energy ER. By reformulating Eq. (3) with cosΘ = 1, vmin can be expressed as:

vmin =
ERmN

2µ2
N

(16)

Although the velocity integral’s upper limit in Eq. (15) is formally infinite, it is
crucial to bear in mind that, as aforementioned, WIMPs with velocities greater
than the galaxy’s escape velocity cannot be bound to the galaxy and will therefore
have very low densities. Therefore, the integral can be truncated at the escape
velocity.

The derivative of the cross section in regard to the recoil energy in Eq. (15) has
already been discussed in section 2.1.1. By using Eqs. (6) and (7), it is possible
to reformulate Eq. (15) to

dΓ

dER

=
ρχ

2mχµ2
p

A2σWNF
2(ER)

∞

vmin

d3v
f(v⃗)

v

=:I(vmin)

, (17)

where the reduced mass µp is defined as

µp :=
mχmp

mχ +mp

. (18)

Thus, the differential rate becomes dependent on the normalised WIMP-nucleon
cross section σWN. This final expression of the differential rate is the one that will
be modelled in this thesis and ModeLimit. However, the calculation of this rate ne-
cessitates the evaluation of the final integral term by considering the astrophysical
inputs.
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2.1.4 Astrophysical Inputs

Now, attention can be directed to the integral I(vmin) in Eq. (17). In addition to
the WIMP density ρχ already provided in Eq. (1), the integral I(vmin) over the
velocity distribution is the other astrophysical input required to evaluate the dif-
ferential rate. The most basic assumption in this case is that the WIMP velocities
v⃗G in the rest frame of the galaxy follow a Maxwell-Boltzmann distribution

fG(v⃗G) =
1

N
3

2πw2

3/2

exp −3v2G
2w2

, (19)

where w is the root mean square velocity of the dark matter particles and N is
a constant normalisation factor. The distribution function in the differential rate
Eq. (17) would be exactly fG, if the WIMP velocities followed this distribution up
to infinity, and, if Earth was at rest in relation to the galaxy. The integral I(vmin)
would have the following shape under the oversimplified assumptions and through
the usage of the definition of vmin in Eq. (16):

I(vmin) ∝ exp −v2min

w2
∝ exp (−ER) (20)

Nonetheless, a general notion of the shape of the differential recoil rate as a function
of recoil energy can already be derived from this simplified case: It is effectively
the product of an exponentially decaying function and the form factor, which is
energy-dependent, see Fig. 11.

The Earth, however, is not at rest in relation to the galaxy and its average
velocity, denoted by v⊕, will be taken as the constant value of

v⊕ = 220 · 1.05 = 231 km s−1. (21)

The periodic effect of Earth’s rotation around the Sun to its velocity is disregarded
and the main component of the velocity comes from the Sun’s movement through
the Milky Way.

Furthermore, as aforementioned, the WIMP velocity distribution must be trun-
cated at the Milky Way’s escape velocity. This can be achieved by using a modified
normalisation factor [44]

N = erf(z)− 2√
π
z exp (−z2) (22)

with z being defined as

z2 :=
3v2esc
2w2

(23)
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and setting vesc as the integral’s upper limit. In the case of a non-rotating model,
as described in [40], this integral takes the form of a piece-wise defined function
where one has to differentiate between three cases:

I(vmin) = κ ·



χ(xmin − η, xmin + η)− 2η exp (−z2) xmin < z − η

χ(xmin − η, z)− exp (−z2)(z + η − xmin) z − η ≤ xmin < z + η

0 xmin ≥ z + η

,

(24)
with

η2 :=
3v2⊕
2w2

, κ =
1

N η

3

2πw2

1/2

, x2
min :=

3v2min

2w2
=

3mNER

4µ2
Nw

2
, (25)

and the function
χ(x, y) =

√
π

2
[erf(y)− erf(x)]. (26)

The constants w and vesc used in the above expressions can now be defined.
Under the assumption of the halo model of an isothermal sphere, the root mean
square velocity w in the galactic halo is dependent on the asymptotic value of the
rotational velocities v∞

w =
3

2
v∞. (27)

Thus, using the International Astronomical Union standard value of v∞ ≈ 220 km s−1,
this yields

w = 270 km s−1. (28)

The galactic escape velocity will be set to the typically used value of [45]:

vesc = 550 km s−1 (29)

Using all the formulae discussed in section 2.1, it is now possible to model
the one-dimensional expected dark matter signal. Note that the detector-specific
quantities such as cut efficiency etc. are not discussed and implemented in this
section. As mentioned at the beginning of section 2.1, this whole chapter closely
adhered to the notation and formulae described in [40] and [39].
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2.2 Transition to Two-Dimensional Density Function

The differential rate formulated in (17) is only dependent on the total nucleon-
WIMP scattering energy and thus one-dimensional. As described in section 1.2,
however, it is seen that the CRESST experiment not only collects energy but
also light yield data of scattering events. Therefore, to be able to make use of
these secondary data points, it is mandatory to transition from a one-dimensional
differential rate to a two-dimensional density function in the energy-light yield
plane

ρ(ER, L) :=
∂2Γ (ER, L)

∂L∂ER

or ρ(ER, LY ) :=
∂2Γ (ER, LY )

∂LY ∂ER

, (30)

with L being the light energy and LY the light yield.
Since the light yield data is also an important factor in deciding whether an

event is more likely to be a signal event or not, it is essential to not limit the
analysis to only one dimension. The need for a dimensional expansion can also
be seen when looking at Fig. 9. If the focus were to be solely on the energies of
events, distinguishing between events in the e−/γ band and those in the nuclear
recoil bands becomes challenging. The latter, however, is more likely to be a signal
event. So, by limiting the analysis to one dimension, the weights of different data
points by their light yield values would be lost and the limits set would be weaker.

The following formulation of the two-dimensional density function will make
use of formulae that can be found in [39] and [46] with modified notation matching
the notation from section 2.1.

The relationship between light yield, light energy and recoil energy can be
expressed as

LY = L/ER. (31)

The mean light yield of the e−/γ band, from hereafter denoted LYe with e for
electron, can be phenomenologically parameterised as

LYe(ER) = (L0 + L1ER)(1− L2 exp (−ER/L3)), (32)

with L0, L1, L2 and L3 being parameters that are derived for each detector module
through the usage of maximum-likelihood methods. The latter two parameters
account for the scintillator non-proportionality [47].

The energy-dependent quenching factor, QF (ER), for a certain nucleus N can
be written as

QFN(ER) = LYN(ER)/LYe,norm(ER). (33)

LYN(ER) is the mean light yield of a nuclear recoil occurring at nucleus N and
LYe,norm is a normalisation factor characteristic to the detector which embodies
the mean light yield of e−/γ events. Conventionally, this normalisation factor is
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given by the mean light yield of the e−/γ band (32) without the detector-specific
non-proportionality factors and is thus expressed as:

LYe,norm(ER) = L0 + L1ER (34)

Using the expressions (33) and (34) the mean light yield of a nucleus can be
rewritten as

LYN(ER) = (L0 + L1ER)QFN(ER). (35)

The scattering cross section of neutrons interacting with nuclei is dependent
on mass, particularly evident at higher energies where nuclear recoil events for
heavier nuclei become less probable. Notably, beyond an energy threshold, such as
350 keV, a predominant proportion of nuclear recoil events involve scatterings with
oxygen nuclei. For lower recoil energies, the nuclear recoil events involving calcium
nuclei become more frequent, with the emergence of the tungsten recoil band only
observable for energies below approximately 240 keV. Given the considerable over-
lap in nuclear recoil bands at recoil energies below 350 keV, the phenomenological
parametrisation in Eq. 36 is deemed more appropriate for accurate representation
[46]. Note that the variation in the mean light yield is influenced by the energy
dependence associated with the nuclear mass A [46]. Consequently, the light yield
means for Ca and O exhibit more changes in this energy region compared to W,
which can be considered nearly constant. The new phenomenological parametri-
sation is similar in structure to the (32)

LYN(ER) = LY ∞
N (1 + aN exp (−ER/dN)), (36)

where LY ∞
N stands for the light yield of the nucleus for infinite recoil energy, aN

for the fraction of energy-dependent component and dN is responsible for the rate
of exponential decay with energy.

Now, the next step involves examining the quenching pattern of the crystals
in greater detail. Different CaWO4 crystals show varying quenching behaviour
[47]. This variation seems to be dependent on the crystal’s optical quality. The
relative quantity QF exhibits a lower value when a crystal possesses a reduced
defect density, resulting in a higher overall light output. In other words, an in-
creased defect density has a lesser impact on the light yield of nuclear recoils.
This quenching variation can be simply accounted for by introducing a scaling
factor ϵi = QFN,i∗/QFN with index i standing for different detector modules. The
quenching factor of the nucleus N can be calculated for each module individually
and by rearranging the expression the quenching factor QFN,i∗ can be expressed
as

QFN,i∗(ER) = ϵiQFN(ER). (37)
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Thus, through combining the parametrisations and taking the variations in the
quenching factors into account, Eqs. (35), (36) and (37) can be distilled into one
equation describing the mean light yield of a nucleus N :

LYN(ER) = (L0 + L1ER) · ϵi ·QFN(ER) · (1 + aN exp (−ER/dN)) (38)

Finally, by utilising the one-dimensional differential rate and assuming that
events follow Gaussian distributions in the light yield plane, centred around the
mean values of the bands with varying standard deviations at each energy, the
two-dimensional density function can be formulated as:

ρN(ER, LY ) =
dΓN

dER

(ER)
1

2πσ2
N(ER)

exp −(LY − LYN(ER))
2

2σ2
N(ER)

(39)

The energy-dependent standard deviation can be calculated using the resolutions
of the light and phonon detectors with

σN(ER) = (σL(LN(ER))2 +
dLN

dER

σP (ER)
2

, (40)

where
σL(LN(ER)) = σ2

L,0 + σL,1LN(ER) + σL,2LN(ER)2 (41)

and
σP (ER) = σ2

P,0 + σ2
P,1(E

2
R − E2

thr). (42)

Parameters σL,0 and σP,0 are given by the baseline resolution of the light and
phonon detectors respectively. Parameters σL,1, σL,2 and σP,1 are derived from
calibration data. Note that the Eq. (39) is dependent on light yield but the
σN(ER), σL(ER) and σP (ER) are light-dependent. For these expressions to be
compatible with each other, convert standard deviation values from light to light
yield adhering to the principle outlined in expression (31).
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3 Yellin’s Methods for Setting Limits

The methods discussed in this section can be used to determine upper limits from
experiments with very low backgrounds; nevertheless, they cannot be applied to
identify a positive detection. Prior to delving into Yellin’s methods, it is beneficial
to take a closer look at why this method for analysing the experimental data is
useful and what Yellin’s maximum gap method is, which can be thought of as the
first step before the optimum interval method. Afterwards, an examination of a
potential approximation of the optimum interval method will follow, which can
be utilised for getting rough estimates of the limit results with much shorter run-
times and this approximation is not as computationally expensive as the optimum
interval method. Finally, an explanation of how the maximum patch method
operates will be provided, highlighting its utilisation of two-dimensional data in
contrast to the maximum gap and optimum interval methods.

Consider the events in the acceptance region of the CRESST experiment as
shown in Fig. 14. There may be known and/or unknown background processes
with some degree of uncertainty regarding their rate or shape generating the events.
Known backgrounds can be accounted for and their effect on the results can be
thus minimised. If the experimenters are unable to rule out the possibility that
the unknown background is big enough to explain all the observed events, they are
only able to report an upper limit on the signal variable, e.g. σ with a significant
certainty. Even though if they were to make a signal claim, the uncertainty bounds
would be even larger in comparison to the limits.

The methods covered in this section adopt the following strategy: Using the
expected dark matter signals described in Eqs. (17) and (39), the algorithms
determine the intervals containing fewer events than would be anticipated from
the expected dark matter signal. Thus, the algorithm renders the unknown back-
ground the least disruptive. This is of importance, especially for lower energy
regions, where the number of events can reach several hundred, as in Figs. 14
and 10. Furthermore, the automatic selection of the interval makes these methods
unbiased.

For a more comprehensive understanding of these methods and detailed deriva-
tions of the formulae, please refer to Yellin’s papers [1, 2].

3.1 Maximum Gap Method

Fig. 12 depicts the maximum gap method for CRESST-III data in the acceptance
region for a dark matter mass of 1 GeV. The black ticks along the horizontal axis
indicate events, and their location on the axis corresponds to the measured recoil
energy ER. The curve displays the normalised expected dark matter probability
density function, denoted by Γn. This function can be calculated by normalising
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Eq. (59). The maximum gap can be found by calculating the integral of the
normalised probability density function between each neighbouring event along
the energy axis and determining the largest integral. If there are N events, then
there are a total of N +1 gaps to be calculated, accounting for the two gaps at the
boundaries corresponding to the minimum and maximum energies. Integrating the
normalised probability density function between two event energies can be substi-
tuted by subtracting the values of the normalised cumulative density function, In,
evaluated at these event energies:

x = max xi =
Ei+1

Ei

dΓn

dER

: i = 0, 1, . . . , N − 1 (43)

x = max xi = In,i+1 − In,i : i = 0, 1, . . . , N − 1 (44)

Note that xi is an invariant term when performing bijective coordinate transfor-
mations. Eq. (43) describes the calculation of the gaps by using events defined in
the recoil energy space. However, Eq. (44) results in the same gaps by using the
transformed values, which are calculated by evaluating the normalised cumulative
density function at the recoil energies of the events. These transformed values are
confined to [0, 1]. In contrast, recoil energies do not have such a confinement.

Figure 12: The maximum gap for CRESST-III data in the acceptance region for a
dark matter mass of 1 GeV. The normalised expected dark matter probability den-
sity function is represented by the blue curve. The black ticks along the horizontal
axis are the measured recoil energies in the acceptance region and they represent
the possible signal events, known background events, and unknown background
events. The maximum gap (43) is depicted as the blue-filled area confined by the
energy axis, the expected dark matter signal and the two neighbouring events.
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Because the dark matter nuclear scattering described in section 2 is depen-
dent on σ, the magnitude of the maximum gap also depends directly on σ. This
dependence is crucial in setting the limit. If desired, a certain σ can be chosen
which results in a myriad of events in the maximum gap, where none are observed.
However, such a large cross section would be experimentally ruled out because it
is nearly impossible to detect zero events where a myriad of them are expected
unless there is a fundamental flaw with the experimental setting. This feature can
be utilised to set an upper limit on σ.

An assumed value of σ is rejected as being too high with confidence level C0

if the x-values of random experiments consisting of random numbers drawn from
a uniform distribution of unit density are lower than the actual maximum gap
size with probability C0. This comparison between the event distribution and a
uniform distribution of unit density can be made because of the invariance of x.
Thus, C0 can be defined as the probability that the maximum gap size would be
lower than a given value of x and can be analytically calculated with [1]:

C0(x, µ(σ)) =
m

k=0

(kx− µ(σ))k exp−kx

k!
1 +

k

µ(σ)− kx
(45)

µ is the total number of expected events calculated by integrating the expected
dark matter signal in the region of interest and it is dependent on σ. m is the
largest integer, for which the condition m ≤ µ/x applies. In order to determine
the upper limit, vary σ until the observed x-values and µ are such that C0 in Eq.
(45) reaches the desired confidence level.

3.2 Optimum Interval Method

The optimum interval method is a generalisation of the maximum gap method.
In the context of the maximum gap method, it is a fundamental premise that
intervals invariably lack the occurrence of any event. The fact that the maximum
gap method disregards all other intervals containing one or more events is a choice.
The removal of this choice by the algorithmic determination of the most optimal
interval not only leads to the removal of this bias but may also result in stronger
limits. It is not guaranteed that the interval with zero events will yield the strongest
limit, especially when there are many events in question. For instance, in the case
of CRESST-III, there are several hundred events in the acceptance region. The
optimal interval may contain e.g. 20 events, as depicted in Fig. 13. The algorithm
calculates the maximum interval value for each n number of events in an interval,
with n going from 0 to N . This results in considering a total of (N + 1)(N + 2)/2
intervals. Subsequently, the algorithm selects the most optimal interval that will
yield the strongest of upper limits.

27



Figure 13: The maximum interval value containing 20 events for CRESST-III
data in the acceptance region for a dark matter mass of 1 GeV. The normalised
expected dark matter probability density function is represented by the blue curve.
The black ticks along the horizontal axis are the measured recoil energies in the
acceptance region and they represent the possible signal events, known background
events, and unknown background events. The maximum interval value, represent-
ing the largest integral of the signal between two events with 20 events in between,
is depicted as the blue-filled area confined by the energy axis, the expected dark
matter signal and the two neighbouring events.

Define Cn(x, µ) as the probability that an interval containing ≤ n events has
an expected number of ≤ x events for a given cross section. n = 0 represents the
case mentioned in the maximum gap method and can be analytically solved. In
contrast to C0, Cn(x, µ) for n ≥ 1 cannot be determined analytically and Monte
Carlo tabulations need to be performed. Then, once the optimal n has been set by
the algorithm, Cn may be used to determine an upper limit in the same manner
as C0: with x equal to the maximum expected number of events taken across all
intervals with ≤ n events, Cn(x, µ) is the confidence level at which the assumed
cross section is rejected as being too large.

The details of the Monte Carlo tabulations and the setting of upper limit are
discussed in section 4.3.
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3.3 Approximation of the Optimum Interval Method

As explained in 3.2, for the optimum interval method to be utilised, a lot of tab-
ulations and computational calculations need to be processed. These tabulations
and calculations can extend run-times from minutes to hours and even days, de-
pending on tabulation and evaluation parameters set. If a researcher, however, is
interested in quick estimates of the upper limits a certain signal model yields, the
approximation is much more useful and time-saving.

The approximation of the optimum interval method implemented in this work
relies on two key assumptions. The first assumption is that the tabulated data
for a certain amount of the expected number of events can be approximated by
pre-calculated tabulated data of two neighbouring µ. The second assumption,
namely that the distribution of the tabulated data is roughly Gaussian distributed
complements the first one and makes predictions feasible for µ exceeding that of
pre-calculated tabulated data. However, it is important to remember that these
assumptions have their limits and could affect how accurate the results are.

A more detailed explanation of the implementation can be found in section 4.4.
The advantages and disadvantages of this approximation are described in section
5.4.

3.4 Maximum Patch Method

The one-dimensional Yellin methods discussed in sections 3.1 and 3.2 have a sig-
nificant drawback when applied to CRESST data analysis. This drawback arises
from their inability to consider the two-dimensional nature of CRESST data, which
involves both energy and light yield values. These methods focus solely on event
energies and disregard the light yield information once an event is classified as
either within or outside the pre-defined acceptance region.

This drawback means that these methods cannot distinguish whether the light
yields of observed events match the expected characteristics of a signal. This issue
becomes evident when considering the background events from the e−/γ. They
would be treated the same as events located within the nuclear bands at the same
energy levels, even though the latter are more likely to be genuine signal events.

Hence, as already briefly discussed in section 2.2, there is a clear need for a
more comprehensive approach to the data analysis of dark matter experiments that
takes into account both energy and light yield parameters. This approach would
enable a more refined differentiation between potential signals and background
events. This is exactly where the maximum patch method comes in.

The working principle of this method is similar to the principle of the maximum
gap method, plus one dimension. The description of the maximum patch method
in this section resembles Jens Schmaler’s more in-depth discussion in [39]. The
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maximum gap can be thought of as the largest difference between two neighbouring
cumulative density function values corresponding to the energies of the measured
events. The range of a cumulative density function is by definition between 0 and
1. The energy values E of the data are thus converted into new values x1

E → x1 (46)

with 0 ≤ x1 ≤ 1.
The same logic can be applied to the two-dimensional density function in Eq.

(39) through a coordinate transformation, converting energy-light yield values to
newly defined x1 and x2 values

(E,LY ) → (x1, x2) (47)

with 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1. The transformed distribution function’s value
then corresponds to the expected number of events

ρ(x1, x2) = µ (48)

where µ denotes again the expected number of events. Since the expected num-
ber of events for a certain experiment is not dependent on other variables, the
statement

ρ(x1, x2) = const. (49)

is valid. Yellin shows a possible way of transforming the multidimensional density
function in [2]. Since the density function is two-dimensional, two quantities shall
be defined,

ρ1(E) :=
+∞

−∞
dLY ′ρ(E,LY ′) (50)

and

ρ0 :=
+∞

−∞
dE ′ρ1(E). (51)

Since ρ0 is calculated by simply integrating the two-dimensional density function
along both of its axes, ρ0 equals µ. Using these two ρi quantities, the transformed
coordinates x1 and x2 can now be calculated using the following relations:

x1(E) :=
1

ρ0

E

−∞
dE ′ρ1(E ′) (52)

and

x2(E,LY ) :=
1

ρ1(E)

LY

−∞
dLY ′ρ(E,LY ′). (53)
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Using the coordinate transformation described above the two-dimensional data
provided by an experiment searching for dark matter can be transformed into x1

and x2 values. Just as in the maximum gap method, the next step is identifying
the maximum patch, the largest rectangle with no data points inside it. Analogous
to Eq. (43), the size of these patches is expressed as

xi :=
x2,2,i

x2,1,i

x1,2,i

x1,1,i

ρ(x1, x2)dx1dx2. (54)

Because the density function is constant, see Eq. (49), Eq. (54) can be reformu-
lated into

xi := µ
x2,2,i

x2,1,i

x1,2,i

x1,1,i

dx1dx2. (55)

The integral part of Eq. (55) represents the geometrical area A in the x1-x2 plane,
which leads to

xi = µ · Ai. (56)

The maximum patch is then the rectangle with the largest area of all possible
rectangles in the x1-x2 plane

x = µ ·max{Ai : i = 0, 1, . . . , ni} (57)

with A = x/µ. The fact that µ, which can be calculated by the differential rate
of the dark matter scattering described in section 2, is dependent on the nor-
malised WIMP-nucleon cross section σWN results in maximum patch x also being
dependent on σWN . Exactly this dependency is needed for setting the upper limit
using the maximum patch method. Similarly, C0(x, µ) represents the likelihood
that, when considering an expected number of events µ in the experiment, the
observed maximum patch size is less than or equal to x. In contrast to the maxi-
mum gap method, this time the analogous function C0(x, µ) cannot be expressed
analytically, but is expressed through a Poisson process

C0(x, µ) =
∞

N=0

C
′
0(A,N)

µN

N !
e−µ (58)

where C
′
0(A,N) represents the probability that the maximum patch size is less

or equal to x, given N observed events. The sum in Eq. (58) can be truncated
at a certain N -value, after which the absolute values of the summands become
negligibly small. In order to determine this probability a Monte Carlo simulation
is required, which is explained in detail in section 4.5.

Finally, as is the procedure with the maximum gap method, to find the upper
limit on the cross section with a certain confidence level, for example, 90% confi-
dence level, identify the value of σWN at which the function C0(x, µ) (58) equals
0.9.
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4 Implementation

In this work, the expected signal of WIMPs in the standard scenario and Yellin’s
analysis methods have been implemented in a package based on the programming
language Python. Initially, there were two separate classes, one for modelling the
signal, namely SignalModel, and one for analysing the data with Yellin’s methods
and setting upper limits on the cross section, namely Limit. Later a third class
was created, the ModeLimit, which inherited both of these classes and combined
their workflow, resulting in a more user-friendly experience. The code mainly relies
on two fundamental libraries to accelerate the run-time and make the code run
smoothly: NumPy and SciPy [48, 49]. NumPy helps in processing large amounts
of data stored in multidimensional arrays efficiently. SciPy makes it possible to
utilise fundamental mathematical operations like integrating discrete functions and
defining standard functions like normal distributions, error functions and natural
constants. Ultimately, the library Matplotlib is used to provide most of the plots
in this study [50].

A closer look at the CRESST-III and CRESST-II data is necessary before
explaining what the package classes do. CRESST-III and CRESST-II data are used
for the calculation of upper limits on the cross sections of dark matter using the
maximum gap and optimum interval methods. Additionally, the maximum patch
method uses two-dimensional simulated data that resembles that of CRESST-III.

4.1 Description of CRESST Data

Certain detector-related information is provided in the descriptions of CRESST-III
and CRESST-II data [26, 51].

Starting with CRESST-III, the light yield graphs of this detector have already
been briefly discussed in Fig. 9 and in Fig. 10. The energy range is restricted
to events below 16 keV, which determines the upper integral limit, EUpper, for
calculating the expected number of events µ. Exposure before data selection is
5.594 kg d. In the context of the CRESST experiment, adjustments to the signal
model are imperative to account for various experimental factors, ensuring its
comparability to the energy distribution observed by the detector. The corrected
signal model, denoted as dΓ

dER
(ER), incorporates considerations for finite energy

resolution, energy threshold, and the probability of survival after imposed cuts.
This model is formulated through an integral involving the convolution of the
differential rate dΓ

dER
(E) with a normal distribution N (ER − E, σ2

Res), where σRes

represents the resolution of the phonon detector:

dΓ

dER

(ER) = Θ(ER − Ethr) · εCut · εAR ·
∞

0

dΓ

dER

(E) · N (ER − E, σ2
Res)dE (59)
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The convolution term for the finite energy resolution of the experiment. Due to
the convolution term, events with energies just under the threshold energy are also
taken into consideration. Therefore, it is crucial for the integral to begin at 0 rather
than the threshold energy. The integral can be truncated at the upper limit of the
region of interest, 16 keV. Not every event survives the data selection criteria, hence
the convoluted differential rate is multiplied by the probability of surviving εCut.
Additionally, the likelihood of a signal event falling within the acceptance region
is represented by εAR. Lastly, the condition for an event triggering a detection
in reconstructed energy sets a sharp threshold, represented with a Heaviside step
function Θ(ER − Ethr), with Ethr specified as 0.0301 keV. For CRESST-III, the
resolution σRes is 0.0046 keV. εCut and the material-specific εAR are provided by
the CRESST Collaboration [26]. The histograms of the data can be seen in Fig.
14.

Figure 14: Blue: Energies in keV for all events surviving data selection in CRESST-
III. Orange: Energies in keV for all events in the acceptance region for the
CRESST-III dark matter search, as in Fig. 10.

CRESST-II Lise data is described in a similar fashion with varying parameter
values. The energy range is restricted to events below 40 keV and the exposure
before data selection is 52.15 kg d. Ethr is taken as 0.307 keV and σRes as 0.062
keV. Furthermore, εCut and the material-specific εAR are provided in the form of
a single file combining these two functions.
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Depicted in Fig. 15 is the simulated data intended for the application of the
maximum patch method. The energy range considered is limited to events below 16
keV, and the initial exposure before data selection stands at 2.87 kg d. Parameters
include Ethr set to 0.025 keV and σRes to 0.005 keV. It’s noteworthy that both
εCut and the material-specific εAR align with those employed in the description of
CRESST-III data.

Figure 15: The light yield versus the energy of events in the dark matter data
set, following the application of selection criteria. The 90% upper/lower bounds
and the mean lines of the e−-band, γ-band, tungsten band and oxygen band are
depicted by the blue, orange, green and red lines, respectively.

4.2 Modelling the Expected Signal

The class SignalModel performs the necessary calculations needed for the formulae
described in section 2 using the Python packages NumPy and SciPy. For the one-
dimensional case, the calculations are performed using a one-dimensional NumPy
array. For the two-dimensional case, this array takes the form of a two-dimensional
matrix. When utilising ModeLimit, firstly, the instance variables of the class are
initialised, which encompass most of the aforementioned constant values like the
dark matter density ρχ, proton mass mp, galactic escape velocity vesc etc. The
step size of the energy grid can be modified by the user. When setting the step
size, exercise caution to choose a value significantly smaller than the detector’s
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resolution, preferably five times smaller if feasible. The default value of 0.0005 keV
has been found suitable for analysing the CRESST data. After the initialisation,
the user sets the detector parameters. In the next step, the differential rates of
given materials as in Eq. (17) and the probability density functions (PDFs) are
calculated.

To accelerate the process and not compute unnecessary calculations, calculating
until which energy value the integral expressed in Eq. (24) returns non-zero values
is beneficial. Hence, the inequation xmin ≥ (z + η) dictates the upper bound of
the energy grid, with xmin, z and η defined in Eqs. (23) and (25). Subsequently,
a for loop is initiated, iterating over the various materials. For each material, the
differential rate in (kg d keV pb)−1 is calculated as described in Eq. (59). After
the loop, the final PDF can be calculated by the weighted sum of material-specific
differential rates.

Furthermore, the SignalModel package has methods for calculating the corre-
sponding CDFs of the PDFs, drawing samples using the inversion method and
computing the number of expected events µ by integrating over Eq. (59):

µ =
Upper limit of ROI

Threshold
dER

dΓ

dER

(ER) · σ · exposure (60)

In order to calculate the two-dimensional density function, the one-dimensional
PDF can be made use of, with one modification - the PDF is not multiplied with
acceptance region efficiencies1. Henceforth, the calculation of the two-dimensional
density function can be accomplished by multiplying the one-dimensional PDF in
Eq. (59) with the two-dimensional Gaussian distribution as expressed in Eq. (39).
The number of expected events µ can then be calculated with

µ =
Upper LY limit

Lower LY limit

Upper limit of ROI

Energy threshold
ρ(ER, LY )dERdLY · σ · exposure. (61)

Note that in contrast to the one-dimensional scenario, we set εAR to one.

1The idea behind the two-dimensional density function and the maximum patch method
is making use of both the measured energy and the light yield of events. In contrast to the
one-dimensional PDF, the two-dimensional density function will be applied to two-dimensional
data and not one. Hence, the need for multiplying event data with acceptance region efficiencies
vanishes. A pre-selection on the two-dimensional data can still be applied for excluding mainly
e−/γ events.
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4.3 Utilisation of the Optimum Interval Method

In this section, the implementation of Yellin’s optimum interval method will be
discussed, detailing the process of tabulating and computing the necessary data
required for determining upper cross section limits. Note that not only the tabu-
lated data but also the experimental data will be utilised and processed for these
limit calculations.

Starting with the calculations needed for the optimum interval method, the
first step is calculating the x-values, defined in Eqs. (43) and (44), of the detected
experimental data with M values for all k-largest intervals with k ∈ {0,M − 1}.
The resulting values are x1, x2, . . . , xM−1. Note that for calculating the x-values
the normalised cumulative density function derived from the differential rate is
used, as in (44). This normalisation allows for the tabulated data, which will be
between 0 and 1, to be comparable with experimental data transformed, which
will also be between 0 and 1 due to the properties of the corresponding normalised
CDF.

The goal now is to determine which k and corresponding xk is best suited
to set a limit on the cross section σ. The best k is the one which provides the
most information on how compatible/incompatible the experimental data and the
model are. The "extremeness" value will be used as a measure of this information,
which will be defined shortly. A comparison will be made regarding the degree
of "extremeness" or rarity of the xk value from the experimental data against a
distribution of xk values from the Monte Carlo generated data. Extreme in the
sense of being too out of the ordinary a value as discussed in section 3.2. These
extremeness values will help us set the limits on cross sections which would predict
too many events in an interval where none are observed.

The next step is the generation of the tabulated data sets which will be com-
pared to experimental data and intervals. These data sets consist of N data sets of
length n drawn from a continuous uniform distribution on [0, 1] for each possible
µ(σ) of interest. The sizes of these N arrays are not constant but are Poisson-
distributed with a mean value of µ, Pois(µ) = n. This accounts for the fact, that
the expected number of events µ(σ) is seldom an integer value. The calculation
of the x-values for all k-largest intervals for each data set is now performed, mir-
roring the approach used for the experimental data. Since the data is drawn from
a uniform distribution, the x-values are simply the differences between the two
values. Consequently, distributions of x-values are obtained for each µ and k, see
Tab. 1.
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for each µ
Data sets k = 0 k = 1 k = 2 . . .
1 x0,1 x1,1 x2,1 . . .
2 x0,2 x1,2 x2,2 . . .
3 x0,3 x1,3 x2,3 . . .
...

...
...

...
...

N x0,N x1,N x2,N . . .

Table 1: Table with x-values for the Monte Carlo generated N data sets with sizes
n for all k-intervals. Such a table exists for each µ. The first indices of the x-
values represent the corresponding k-value, indicating how many other elements
are allowed between two elements. The second indices of the x-values represent
the data set index that the x-values are a part of.

Figure 16: Histogram of the x-values for different k-values, i.e. for different columns
in table 1, for an arbitrary µ.

After the generation of all data sets, the above-mentioned "extremeness", de-
noted as Γk,N , can be calculated for each xk,N by determining the percentile of
each xk,N in the distribution along the corresponding column in Tab. 1, which
then results in Tab. 2:
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for each µ
Data sets k = 0 k = 1 k = 2 . . . ΓMax

1 Γ0,1 Γ1,1 Γ2,1 . . . ΓMax,1

2 Γ0,2 Γ1,2 Γ2,2 . . . ΓMax,2

3 Γ0,3 Γ1,3 Γ2,3 . . . ΓMax,3
...

...
...

...
...

...

N Γ0,N Γ1,N Γ2,N . . . ΓMax,N

Table 2: Table with Γ-values for the Monte Carlo generated N data sets with sizes
of n for all k-intervals. Such a table exists for each µ. The first indices of the
Γ-values represent the corresponding k-value, indicating how many other elements
are allowed between two elements. The second indices of the Γ-values represent
the data set index that the x-values are a part of.

Figure 17: Histogram of the ΓMax-values for different µ, i.e. histogram of the last
column in Tab. 2, for various µ.

Using Tab. 2, it is now possible to determine the largest Γ-value along each
row. The determination involves finding the largest Γ-value per data set, resulting
in a total of N ΓMax-values for each µ:

ΓMax,i = max{Γk,i : k = 0, 1, . . . , ni}, i = 0, 1, . . . , N (62)
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Coming back to the experimental data, using the distributions of the x-values
from the generated data, depicted in Fig. 16, the extremeness values of the exper-
imental data can be determined for all k-intervals. The extremeness values of the
experimental data are denoted as Ck, not as Γk. In a manner akin to the definition
of ΓMax for the Monte Carlo generated data, CMax(µ) can be defined as

CMax(µ) = max{Ck : k = 0, 1, . . . ,M − 1}. (63)

Figure 18: Illustration showing CMax(µ) and C̄Max(0.9, µ(σ)). There is one such
graph for each dark matter mass. The blue line represents the exemplary distribu-
tion of CMax(µ) values. The green line represents the CMax value of an exemplary
µ. The orange line represents the C̄Max(0.9, µ(σ)) which is larger than 90% of the
CMax(µ) values.

For each µ, the percentile of CMax(µ) in the corresponding distribution of
ΓMax can be determined, and for each confidence level, CL, and µ(σ), there exists
a C̄Max(CL, µ(σ)), which is the CL-percentile in this distribution. Assuming a
confidence level of 90%, the C̄Max(0.9, µ(σ)) would be larger than exactly 90% of
the ΓMax-values in the respective µ. Hence, the limit on µ(σ), and consequently
the limit on σ, is given for the µ̄ for which the equation

CMax(µ̄) = C̄Max(CL, µ̄) (64)

holds. Because of the inherent randomness of the tabulated data, a filter is applied
to these values, as in Fig. 19. The first value to exceed 0.9 thus determines µ̄.
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The value, that such fraction of C of random experiments with the given µ
and no unknown background will give CMax < C̄Max(C, µ), defines the function
C̄Max(C, µ). As a result, the cross section’s upper limit at 90% confidence level
is represented by the experiment’s CMax equalling C̄Max(0.9, µ), which is depicted
in Fig. 19. C̄Max(0.9, µ), the CMax value at which the 90% confidence level is
attained, as a function of µ is shown in Fig. 19. The C̄Max(0.9, µ)-values increase
with increasing µ-values. By observing the pattern of ΓMax-values for increasing
µ-values, the rise of the C̄Max(0.9, µ) function is expected.

Figure 19: Plot showing C̄Max(0.9, µ), the CMax value at which the 90% confidence
level is attained, as a function of the total number of expected events µ in the
experimental range. The orange line is attained by smoothing the results using
the Savgol filter. The usage of the filter is for visual purposes only. The blue line
is jagged due to the inherent randomness of generated data.

4.4 Approximating the Optimum Interval Method

As discussed in section 3.3, the approximation relies on two major assumptions.

1. Between the minimum and maximum µ in the pre-calculated data, the tabu-
lated data can be approximated by the pre-tabulated data of the neighbour-
ing µ-values.

2. For an expected number of events exceeding the maximum µ in the pre-
calculated data, the tabulated data can be approximated by an extrapolation
under the assumption that the tabulated data is Gaussian distributed.
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In this work, the µmin = 0.25 and µmax = 1000 for the pre-calculated data. A total
of 1000 expected numbers of events are geometrically spaced between these two
values, including these two. The number of arrays for each µ is set to N = 750.
The next step is calculating the distributions of x for each µ and k-values, and
using the histograms depicted in Fig. 16 to calculate the corresponding CDFs
and save these CDFs locally. A similar approach is then applied to histograms of
ΓMax-values depicted in Fig. 17, but instead of calculating the CDFs and then
saving them, the whole histograms are saved by their unique values in pre-defined
bins and unique counts.

Two scenarios come to mind when utilising this approximation for the tabulated
data:

1. In the first case, the user makes use of the same µ-values that are also used
for the pre-calculated and pre-tabulated data. In that case, the only errors in
play would arise due to the finite binning choices. The CDF of x-distributions
for example is defined by 1000 data points between 0 and 1. The more data
points there are between 0 and 1, the better the approximation would be.
However, increasing the number of data points would also mean more storage
space and run-time. In that case, the approximation loses its value because it
is exactly developed for getting estimates in a short amount of time without
demanding a lot of computational resources.

2. In the second case, the user makes use of an arbitrary expected number
of events that are not a part of the µ used for the pre-calculated and pre-
tabulated data. In this case, not only do the errors of the previous case come
into play, but new error sources arise due to approximating the tabulated
data for these certain µ-values using the tabulated data of neighbouring µ-
values. The weighted averages of the CDFs of x-distributions and histograms
of ΓMax-values are calculated with weights depending linearly on the distance
of these neighbours in µ-space to each other.

Under the conditions of the first scenario, the newly tabulated and approx-
imated x- and ΓMax-distributions for µ values can be seen in Fig. 20. As an-
ticipated, the centres of the x-distributions tend to shift to smaller numbers for
increasing µ-values. The variance in distribution also sinks. Increasing the k-
value results in larger values, because more events are allowed to be between
the values subtracted from each other. This effect is also observed in Fig. 16.
The x-distributions show significant similarities in their behaviour. The ΓMax-
distributions, on the other hand, do not seem to overlap to the same extent as
the x-distributions. This is true, especially for smaller µ-values. Note, that this
is the case where the newly tabulated data is tabulated for the same µ-values as
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the pre-tabulated data was tabulated for. Thus, even for two identical values of
µ, two sets of Monte Carlo experiments yield slightly different ΓMax-values.

Figure 20: Top left plot depicts the comparison of x-distributions for a given µ
and k, in this case µ = 15.11 and k = 0. The bottom left depicts the comparison
of ΓMax-values for the same µ. The plots on the right side depict the same com-
parisons but for different µ and k, namely µ = 199.76 and k = 100. In this figure,
the µ-values of the newly tabulated and pre-tabulated data coincide.

Under the conditions of the second scenario, where the µ-values of the tabulated
and pre-tabulated data do not share any values, the error would be expected to
rise due to the nature of the approximation. However, Fig. 21 shows no apparent
increase in the error of the estimations. The CDF graphs of the x-distributions
still show significant overlap and the histograms of ΓMax show, at least for high
µ-values, a considerable amount of overlap. For low µ-values the overlap does not
seem to be noteworthy, but that is not the case even when the µ-values are shared
as in Fig. 20, therefore, to expect such overlap now would not be correct because
Monte Carlo experiments by nature tend to result in different ΓMax distributions,
even if all the starting parameters and conditions are same.
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Figure 21: Top left plot depicts the comparison of x-distributions for a given µ
and k, in this case µ = 15.06 and k = 0. The bottom left depicts the comparison
of ΓMax-values for the same µ. The plots on the right side depict the same com-
parisons but for different µ and k, namely µ = 200.65 and k = 100. In this case,
the µ-values of the newly tabulated and pre-tabulated data do not coincide.

If the maximum number of expected events exceeds the maximum µ, for which
data was pre-tabulated, the second assumption starts playing a role. From the
plots depicted in Fig. 20 and 21 it can be inferred that this assumption is only
acceptable under certain conditions, e. g. for x-distributions when the µ-values
are large and the k-values are small in comparison, and for the ΓMax distributions
in general for high µ-values. For x-distributions the error tends to grow with
increasing k-values, as can be seen in Fig. 22. If the optimum interval is not found
for small k-values, the estimation error will grow.

The data used for the approximation can be modified by the user. The maxi-
mum µ value for the pre-tabulated data is already set to a high value, but if the
user reckons that this µmax will not be sufficient, the user may choose to create
a new pre-tabulated data. By setting the maximum µ of the pre-tabulated data
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high, the second scenario as a whole can be avoided to ensure better results.

Figure 22: Top left plot depicts the comparison of x-distributions for an out of
bounds µ-value of 1050 and k = 0. The top right and bottom left plots depict
the same comparison for different k-values, namely 50 and 100. The bottom left
depicts the comparison of ΓMax-values for the same µ. In this case, the µ-values
of the newly tabulated and pre-tabulated data do not coincide and the maximum
number of expected events in the newly tabulated data0 exceeds that of the pre-
tabulated data.

The extrapolation of µ-values is done by fitting Gaussian functions to the
distributions and saving the mean and standard deviation values into a dataframe.
These are then used to predict the mean and standard deviation values of the
distributions for the µ-values out of bounds by utilising a similar logic with distance
calculation to the neighbouring µ-value as is estimated for values between two
neighbouring µ-values.

The script for creating the pre-tabulated data needed for the approximation
will be included in the script, so that certain modifications, such as changing the
µ-values, can be applied to the pre-tabulated data.
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4.5 Data Tabulation for the Maximum Patch Method

The foundational working principles of the maximum patch method are explained
in section 3.4. This section will concentrate on the algorithm for identifying the
largest rectangles with no data points inside them and on the distributions of the
rectangle sizes, which is necessary for calculating C

′
0(A,N) in Eq. (58). A more

in-depth algorithm can be found in [39], which also involves finding rectangles with
a set number of data points in it. Alg. 1 is a simplified and optimised algorithm for
maximum patch purposes only and can be utilised to calculate the distributions
for maximum patch sizes:

Algorithm 1 Maximum Patch Algorithm
for N in [1, Nmax] do

Create empty list AMax

for NMC in [1, NMCMax
] do

Lr ← N random pairs of numbers in a x1-x2 space with 0 ≤ {x1, x2} ≤ 1
Append (0, 0) and (1, 1) to Lr

Sort Lr by the first coordinate x1

Ar ← Rectangle areas (x1,i+1 − x1,i) · (1 − 0) calculated by using the
pairs from Lr

for i in [0, N + 1] do
for j in [i+ 2, N + 2] do

xji,diff ← x1,j − x1,i

Sr ← Sublist of Lr between the indices i+1 and j− 1, including
these two

Append (0, 0) and (1, 1) to Sr

Sort Sr by the second coordinate x2

As ← Rectangle areas xji,diff · (x2,k+1−x2,k) calculated by using
the pairs from Sr

Append As to Ar

end for
end for
Append largest value in Ar to AMax

end for
Through the distribution of areas, calculate the cumulative density func-

tions representing the areas being less or equal to certain values needed for Eq.
(58)
end for

Note that Nmax theoretically needs to be infinitely large according to the sum
in Eq. (58). However, given that the individual terms within the sum diminish as
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N increases, truncating the sum at a sufficiently large N proves adequate. In the
context of this study, Nmax is set to 516.

In Fig. 23 the rectangles with the largest areas not containing any points can
be observed for two different N values, N = 25 and N = 150. As expected,
the largest rectangles tend to shrink with increasing N values because the area
becomes more crowded and finding large areas devoid of any points becomes a
challenge.

Figure 23: Two plots of randomly generated points and the corresponding maxi-
mum patches for different N values. The plot on the left depicts 25 points repre-
senting the randomly generated data in Alg. 1, and the plot on the right depicts
150 such points. The blue rectangles represent the maximum patches for these
Monte Carlo experiments. The area of the maximum patch is 0.29 for N = 25 and
0.06 for N = 150.

Fig. 24 shows the last step in Alg. 1, where the cumulative density function is
calculated using the distribution of areas. For this plot, a total of 10,000 Monte
Carlo experiments were performed. The amount of Monte Carlo experiments here
is crucial. If the number is too low, the CDF might be jagged which might lead
to an important issue. It is known that with each random point added to x1-x2

space, the average space for one point and thus the average size of the maximum
patch must decrease. For a low number of events in the x1-x2 space, adding 1 point

46



still results in a significant enough change of the expected maximum patch size so
that even a low number of Monte Carlo experiments would be able to differentiate
between two neighbouring distributions in the N -space. However, with increasing
N , the addition of 1 point to x1-x2 space has a much less significant effect on the
size of the maximum patch, hence a low number of Monte Carlo experiments might
not be able to differentiate between two neighbouring distributions in the N -space
properly and the probabilities might get mixed up. For this reason, performing
as many Monte Carlo experiments as possible is very important, even though it is
very time-consuming.

Figure 24: Left: The distribution of maximum patch areas calculated for N = 25.
The histogram shifts towards 0 for increasing N values. Right: Corresponding
cumulative distribution function of maximum patch areas. 10000 Monte Carlo
experiments were performed for these results.

Using the transformation rules expressed in Eqs. (52) and (53), one can calcu-
late the inverse transformation to get from x1-x2 plane back to E-LY plane. This
allows the visualisation of the rectangular maximum patch in the x1-x2 plane in
the E-LY plane. As expected, the maximum patch is no longer a rectangle, as
shown in Fig. 25. By examining the distribution of the two-dimensional density
function in the E-LY plane (39), one could have anticipated the observed shape
of the maximum patch.
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Figure 25: Left: The plot depicts 150 points representing the randomly generated
data in Alg. 1. The blue rectangle represents the maximum patch for this Monte
Carlo experiment. Right: The inverse transformation of these points and the
maximum patch back to E-LY plane. Note that the graph is zoomed in around
the transformed patch, hence not all 150 data points are visible in this plot.

It is also worth mentioning that C0(x, µ) in Eq. (58) can be pre-calculated for
preset N and µ-values. Since A is dependent on µ, by binning the A-values and
using the distributions of maximum patch areas. Alg. 1, used for calculating the
largest empty rectangle, is a slightly modified version of the algorithm described
in [52] and is of at least the time complexity O(n2). Thus, calculating C0(x, µ) in
the presence of many observed events increases the run-time significantly. For this
reason, the implementation of the pre-calculated C0(x, µ)-values can be beneficial
and time-saving. In the search for the largest empty rectangle, more intricate
algorithms are available for utilisation. An alternative algorithm, as detailed in
[52], exhibits a time complexity of O(n log(n)), offering the potential to further
reduce the overall run-time.
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4.6 Usage of Multiprocessing

Using Python’s multiprocessing module is beneficial when dealing with processes
that can be parallelised. In this study, as aforementioned, the tabulation of data
needed for Yellin’s optimum interval and maximum patch methods can be time-
consuming. This is especially true for the optimum interval method if the expected
number of events µ is very high or for the maximum patch method if the amount
of data before any kind of pre-selection is very large. Luckily, these processes can
be parallelised in a pretty straightforward manner.

For the optimum interval method, a total of four key calculations are paral-
lelised:

• Calculation of x-values shown in Tab. 1.

• Calculation of x-distributions depicted in Fig. 16.

• Calculation of Γ-values shown in Tab. 2.

• Calculation of ΓMax distributions depicted in Fig. 17.

In order to share the workload proportionately among multiple cores, a special
sorting algorithm of µ-values is utilised. Suppose that the µ-values range from
µmin to µmax and there is a total of four cores. First, four empty lists are created.
The first list gets the largest and the smallest µ-values, µmax and µmin, and these
values are then deleted from the list of µ-values. The second list gets the new
largest and smallest µ-values, µmax,new and µmin,new and so on. After the fourth
list, the loop sorts the new largest and smallest µ-values into the first list again.
This procedure continues until all the µ-values are exhausted and sorted. This
way, all cores get approximately the same workload. Parallelising the tabulation
without this sorting would result in the first list being completed fairly quickly
and the last list still computing maybe its first µ-value, because the larger µ-values
require more computation. Without the sorting beforehand, the multiprocessing
would save only a negligible amount of time.

The multiprocessing applied to the tabulation of data needed for the maximum
patch method is in contrast very straightforward. The different number of random
data points N is shared between cores. The cores then run NMC Monte Carlo
experiments for that particular N . The results are then saved into .txt files.
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4.7 Required Inputs

The inputs needed for the proper execution of the code vary depending on one
key factor; whether or not the user utilises the WIMP signal model described in
section 2.1. The following inputs are required independent of the model used:

• List of dark matter masses, for which the limit should be calculated,

• Estimates of minimum and maximum values for the expected number of
events µ,

• Confidence level of the limit,

• Unbinned measured data by the experiment,

• Whether to tabulate new random data for the optimum interval method and
the number of lists in such data,

If the user chooses to use the dark matter model described in this work, then the
following additional inputs are required:

• List of target materials containing information about the atomic mass, the
mass ratio in relation to the molecule, the corresponding chemical symbol,

• Acceptance region efficiencies of the materials as a function of energy as
explained in 1.2.2, if there are any at all,

• Detector-related information, i.e. exposure, resolution, threshold, upper en-
ergy limit of the region of interest, cut efficiency,

• The upper limit and the step size for the energy grid. These are parameters
that are needed for the definition of the energy axis, which will be used for
evaluating energy-dependent values,

• The sample size for the random variables that a user can draw from the
summed probability distribution modelled with SignalModel. It is needed
only if the rvs method will be used.

However, if the user chooses to use another signal model, but wishes to make use
of the methods implemented, then the required additional inputs are:

• List of cross section σ values and corresponding expected number of events
µ, for each dark matter mass,

• List of cumulative density functions (CDFs) with the corresponding energy
grid values, for each dark matter mass,
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• If the data is two-dimensional, then the list of two-dimensional density func-
tions (2D-DFs) with the corresponding energy grid and light yield values, for
each dark matter mass,

• Whether µ’s dependence on σ is linear or not.

Note that the algorithm can compute σ̄ only if µ(σ) is a strictly monotonic function.
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5 Results
In this chapter, the results of the implementation of the signal model and Yellin’s
analysis methods will be presented and discussed.

5.1 One-Dimensional Density Functions

The signal model presented in this work depends on many variables, as explored
in section 2.1, however, this section will focus on the dependence of probability
density functions (PDFs) and cumulative density functions (CDFs) on dark matter
masses.

Figure 26: Graphs of non-normalised PDFs multiplied with their respective rel-
ative mass density in the molecule CaWO4 for dark matter masses mχ equalling
1 GeV, 10 GeV, 75 GeV and 150 GeV. The blue coloured graph represents the
PDF of calcium, the orange coloured graph represents the PDF of tungsten, the
green coloured graph represents the PDF of oxygen and the red coloured graph
represents the weighted sum of all these three PDFs. The computations of the
PDFs incorporate distinct parameters unique to CRESST, including resolution,
cut efficiency, exposure, energy threshold, the chemical composition of the crystal,
and acceptance region efficiencies of individual elements.

As expected from the dependence of Eq. (17) on dark matter mass mχ and
on the material, different PDFs for different masses and different materials are
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obtained. As can be seen from Fig. 26, different materials dominate the summed
PDF for different dark matter masses. For small masses, the summed PDF is
dominated by tungsten for lower energies and mainly dominated by oxygen for
higher energies, and the PDF of calcium has hardly any impact on the summed
PDF. With increasing masses, however, one sees the increasing influence of calcium
more clearly for medium and high energies. For large masses, such as 150 GeV, one
sees the effect of the form factor (9) and thus the influence of the PDF of tungsten
on the summed PDF. Furthermore, one can see that the maximum achievable
recoil energies increase with increasing mass.

Figure 27: Graphs of normalised CDFs for dark matter masses mχ equalling 1
GeV, 10 GeV, 75 GeV and 150 GeV. The blue coloured graph represents the CDF
of calcium, the orange coloured graph represents the CDF of tungsten, the green
coloured graph represents the CDF of oxygen and the red coloured graph repre-
sents the sum of all these three CDFs. The computations of the CDFs incorporate
distinct parameters unique to CRESST, including resolution, cut efficiency, expo-
sure, energy threshold, the chemical composition of the crystal, and acceptance
region efficiencies of individual elements.

In the figure of the CDFs (Fig. 27), one can observe how the summed CDF
becomes more and more dominated by the CDF/PDF of tungsten as the mass
increases, as one would expect, as the area under the PDF of tungsten in the
graph of PDFs (Fig. 26) becomes increasingly larger compared to that of the
other elements.
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5.2 Two-Dimensional Density Functions

As mentioned in section 2.2, the expansion of the one-dimensional PDF into a
two-dimensional density function (2D-DF) in the energy-light yield plane can be
achieved by inserting the one-dimensional PDFs, save for the multiplication with
the acceptance region efficiencies, into Eq. (39). Therefore, since the mass depen-
dency of the PDFs is already discussed in the previous section 5.1, this section will
focus on the target-nuclei dependency of the 2D-DFs.

Figure 28: Graphs of non-normalised 2D-DFs multiplied with their respective rel-
ative mass density in the molecule CaWO4 for a dark matter mass mχ of 10 GeV.
Top left, top right and bottom left plots show the partial 2D-DFs of calcium, tung-
sten and oxygen respectively. The bottom right plot depicts the weighted sum of
these three partial 2D-DFs, resulting in the total expected signal distribution in
the E-LY space. The computations of the 2D-DFs incorporate distinct parameters
unique to CRESST, including resolution, cut efficiency, exposure, energy threshold
and the chemical composition of the crystal.

Fig. 28 consists of four plots, three of them representing the partial 2D-DFs for
the three nuclei of CaWO4 and the fourth one representing the weighted sum of
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these three 2D-DFs. As anticipated from the results depicted in Fig. 26, different
nuclei stretch up until different energy values along the horizontal axes and the
spread in light yield along the vertical axes are different, which can be explained
by the nuclei-specific variables found in expression (39). Following the pattern
shown in Fig. 26, the lower energy region is heavily influenced by the presence
of tungsten, while the influence of other nuclei becomes more apparent at higher
energies, particularly as the probability of tungsten recoil events get effectively
negligible.

Figure 29: Graphs of 2D-CDFs for a dark matter mass mχ of 10 GeV and CaWO4.
The top left, top right and bottom left plots show the 2D-CDFs of calcium, tung-
sten and oxygen respectively. The bottom right plot depicts the 2D-CDF con-
structed from the weighted sum of these three partial 2D-DFs. Note that these
2D-CDFs are constructed by summing the values of the 2D-DFs along their light
yield axis. The energy axes stretch up to maximum recoil energies that can be
calculated by utilising the Eq. (24). The computations of the 2D-CDFs incorpo-
rate distinct parameters unique to CRESST, including resolution, cut efficiency,
exposure, energy threshold and the chemical composition of the crystal.

55



The presented visualisations in Fig. 29 illustrate the two-dimensional cumula-
tive density functions (2D-CDFs). These functions are generated by cumulatively
summing the values of the two-dimensional probability density functions along the
light yield axis. The varying lengths of the 2D-CDFs along the energy axis can
be explained by Eq. (24). This equation plays a crucial role in determining the
energy value beyond which the probability density function is equal to zero.

In contrast to the representation in Fig. 28, the differences in energy-dependent
factors specific to different nuclei, which influence the Gaussian spread along the
light yield axis, become more evident in the cumulative distribution functions.
Additionally, the summed 2D-CDF exhibits noticeable asymmetry in the lower
energy region, particularly up to 5 keV, a feature not as clearly visible in Fig. 28.
This asymmetry predominantly arises from the impact of tungsten recoil events
that dominate the lower energy regions, as highlighted in the top-right plot of Fig.
28.

5.3 Exclusion Charts

Four different Yellin’s methods were discussed in section 3. This chapter will
present the results these methods yield when applied to data provided by CRESST-
III Det. A and CRESST-II Lise detector modules [26, 51]. The results of these
methods implemented in this study will then be compared to the limits calculated
by the original script written by S. Yellin. It is important to emphasise that
the data made available by these experiments include only one-dimensional recoil
energy data, and, the light yield data is not included in these data sets. Hence, in
this study, the maximum patch method will only be applied to simulated data.

An exclusion limit represents the border between two areas. Above the ex-
clusion limit, physicists can say that if there was a WIMP with such and such
mass and cross section, an experiment should have been able to detect this WIMP
with a certain confidence level. Under the exclusion limit is the area where the
experiment with its current specifications is simply not able to detect or rule out
the existence of a WIMP with such and such mass and cross section. Since the
detector should have been able to detect WIMP presence with particle mass and
cross section landing in the area above the exclusion limit and since no dark matter
particles were detected in this area, these mass-cross section pairs can be excluded
by this experiment.
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Figure 30: Exclusion charts of CRESST-III and CRESST-II Lise experiments
showing the upper limits on cross sections of WIMP-nucleon scattering given in pb,
for corresponding WIMP masses given in GeV. The blue line represents the cross
sections determined by the original implementation of Yellin’s optimum interval
method written in Fortran. The orange, green and red exclusion lines represent
the cross sections determined by ModeLimit using the maximum gap method,
optimum interval method and the approximation for the optimum interval method
respectively.

The exclusion charts of CRESST-III and CRESST-II Lise experiments are
shown in Fig. 30. It is observed that the results of the approximation and the opti-
mum interval method implemented in ModeLimit seem to overlap almost perfectly
with the results calculated by the original implementation of Yellin’s optimum in-
terval method, if a bit more conservative. The slight differences may have been
caused by the parameter differences in calculations of the expected signal discussed
in 2.1. The maximum gap method seems to deviate in its results from the other
methods. Section 3 explains how the maximum gap method works and how it
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only focuses on gaps with no other data points. This is a very strong limitation
because the gap with zero data points in it may not be the best option to set the
upper limit. Therefore, such deviations are not unexpected.

As described in section 3.2, in order to calculate the limits shown in Fig. 30,
first the corresponding µ̄-values are being calculated. The information on the µ̄-
values needed for calculation may be useful for the recommended workflow, which
is described in section A. Using the approximation of the optimum interval method,
one can calculate the estimate of the needed maximum value of µ̄ in a quick and
convenient way. Then, making use of this particular information, one can tabulate
new data with µ-values reaching beyond the estimated maximum value of µ̄ for
more accurate results.

Figure 31: Corresponding µ̄-values to the cross sections visualised in Fig. 30. The
blue, orange and green lines represent the µ̄-values determined by ModeLimit using
the maximum gap method, optimum interval method and the approximation for
the optimum interval method respectively.

The graphical representation in Fig. 31 showcases the µ̄-values plotted against
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dark matter masses. These µ̄-values play a pivotal role in determining the limits
depicted in Figure 30. Similar to the observations in Fig. 30, the results of the
approximation and the optimum interval method with newly tabulated data agree
with each other. However, the results obtained through the maximum gap method
deviate from the aforementioned approaches, mirroring the trends observed in the
exclusion chart plot.

Specifically, the calculated µ̄-values for the experimental data from CRESST-
III hover around 500, while those derived from the CRESST-II Lise data reach
values up to 1000. It is noteworthy that tabulating data for achieving such high
expected numbers of events, necessary for calculating these µ̄ values, proves to be
a resource-intensive and time-consuming process. This consideration prompts a
closer examination of the advantages and disadvantages associated with the ap-
proximation of the optimum interval method, as detailed in section 5.4. Further-
more, the optimal usage of the approximation within an ideal workflow is discussed
in section A.

Moving forward, a comprehensive examination of the outcomes yielded by the
maximum patch method when applied to simulation data becomes the focus of
attention. The results obtained through the maximum patch method will be com-
pared to the results of the optimum interval method applied to the full data and
the subset of the data within the acceptance region, as defined in Fig. 10.

As can be seen in Fig. 32, the exclusion limits determined by the maximum
patch method demonstrate similar behaviour as the exclusion limits determined by
the optimum interval method. However, a notable distinction lies in the strength of
the limits, with the maximum patch method outperforming due to its incorporation
of not only the energy of the event but also the light yield. This consideration
provides a more refined assessment of the exclusion limits. As anticipated, the
optimum interval method, when applied to the full dataset, yields the weakest
limits.
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Figure 32: Top: Exclusion chart of the simulation data showing the upper limits
on cross sections of the WIMPs given in pb for corresponding WIMP masses
given in GeV. Bottom: Corresponding µ̄-values to the cross sections plotted in
the figure above. The blue, orange, and green lines show values from different
methods: The optimum interval method applied to full data, the optimum interval
method applied to data in the acceptance region, and the maximum patch method,
respectively.

In Fig. 33, it can be seen how the limits shown in Fig. 32 relate to each other.
A better comprehension of behavioural disparities in various mass regions can be
achieved by calculating the quotients of different limits set by different methods.
For lower masses, the optimum interval method applied to the full data and data
in the acceptance region provide similar results, hence the quotients are close to
unity. In this mass region, the maximum gap method yields limits that are between
30% and 40% of the limits set by the optimum interval method.

In the medium mass region, the limits’ relations show significant changes. The
optimum interval method no longer yields the same limits when applied to full
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data and data in the acceptance region. The results of the optimum interval
method applied to data in the acceptance region tend to move towards the limits
determined by the maximum patch method.

For higher masses, these methods result in similar limits, hence the quotients
are close to unity. The gap between the results of the optimum interval method
applied to full data and the maximum patch method/optimum interval method
applied to data in the acceptance region is larger in the high mass region than in
the low and medium mass regions.

Figure 33: Top: Exclusion chart of the simulation data showing the upper limits
on cross sections of the WIMPs given in pb for corresponding WIMP masses given
in GeV. Bottom: Corresponding µ̄-values to the cross sections plotted in the figure
above.

5.4 Advantages and Disadvantages of the Approximation

While the approximation shows significant overlap with the results of actually
tabulated data in Fig. 30, it is important to note its limitations. As discussed
in section 4.4, using the µ-values used in data tabulation for the approximation
yields the best results because it models the distribution of x- and Γ-values the
least and delivers a downsampled version of actually pre-tabulated data. Using
µ-values that are already covered by the µ-range of the pre-tabulated data but
are not exactly the same µ-values used for the pre-tabulated results in deviations.
Using µ-values that are not covered by the µ-range of the pre-tabulated data adds
another layer of deviation from true limits, due to the behaviour shown in Fig. 22.
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So, it is of importance to not use only the approximation for end results, due to
accuracy concerns.

Tabulation Saved data Approximation
RAM [GB] 20.31 10.16 0.363
Storage [GB] 1.93 0.62 0.4
Run-time [s] 3217.21 1738.25 250.49

Table 3: Table comparing the results of RAM usage, storage space usage and
run-time measurements. The approximation is calculated using a total of 1000
geometrically spaced µ-values between 0.25 and 2000 and 1000 lists are generated
for each µ. For the calculation by tabulating new data, a total of 600 geometrically
spaced µ-values are used with 1000 lists consisting of random numbers with Poisson
distributed sizes for each µ. The limits are determined for 168 dark matter masses
spanning from 0.16 GeV up to 129.746 GeV.

The implementation of this approximation is driven by its notable advantages.
In a quantitative comparison between optimum interval calculations by tabulating
new data, by using pre-tabulated saved data and the approximation, the approx-
imation excels not only in run-time but also in RAM usage and storage space
needed. Table 3 shows that the approximation is about 13 times faster than tabu-
lating new data and about 7 times faster than using saved pre-tabulated data. The
storage space needed for the approximation is also smaller than both, especially
considering that the approximation in this case covers a µ-range between 0.25 and
2000, whereas the tabulated data only covers the µ-range between 0.25 and 1000.
Since, as explained in section 4.3, the sizes of the lists are Poisson distributed,
tabulating data for higher µ-values would result in more RAM usage and storage
space needed for saving data. The RAM comparison is very significant. Whereas
the tabulation of new data costs 20 GB of RAM, using the pre-tabulated saved
data costs only half of that and making use of the approximation is only a mere
fraction of about 2%. As one can see, even though the accuracy of the approxi-
mation is of course not as good as that of tabulated data, these advantages still
make it useful.

62



6 Conclusion

The Python package ModeLimit equips researchers engaged in the domain of dark
matter experiments with a versatile and flexible tool. It allows researchers to
model both the one-dimensional and two-dimensional PDFs and CDFs of the ex-
pected spin-independent dark matter signal as described in section 2. Then, using
these CDFs in combination with the measurement data or simulated data, Mode-
Limit enables the determination of upper limits on the cross sections of the dark
matter particles in the presence of an unknown background by leveraging analy-
sis methods proposed by S. Yellin, namely the maximum gap method, optimum
interval method, and maximum patch method. In addition to the expected dark
matter signal implemented in ModeLimit, researchers may choose to tweak the
default class variables, such as the dark matter density, or completely ignore the
implemented expected signal to employ their models of expected signals for the
determination of the upper limits using Yellin’s methods.

In contrast to the maximum gap method, the optimum interval method and the
maximum patch method cannot be solved analytically. For this reason, ModeLimit
is equipped with an approximation of the optimum interval method as described
in sections 3.3 and 4.4. This approximation offers a resource-efficient alternative
without compromising significant accuracy, see Fig. 30. Detailed in the recom-
mended workflow in section A is an exemplary utilisation of the approximation.
Furthermore, by parallelising the data tabulation processes for the optimum in-
terval method and maximum patch method, the run-time is reduced substantially.
This efficiency gain is particularly high for tables with high µ-values as the size of
the tabulated data grows with increasing µ-values.

One of the notable contributions of ModeLimit is its integration of Yellin’s
maximum patch method. Unlike the maximum gap and optimum interval meth-
ods, which are designed to analyse only one-dimensional data like recoil energy,
ModeLimit broadens the scope by incorporating the maximum patch method and
hence enabling the analysis of two-dimensional data, such as recoil energy and
light yield. This approach eliminates the need for the acceptance region chosen
by researchers based on their knowledge of the data, as illustrated in Figure 10.
By algorithmically determining the most optimal area for analysis, the maximum
patch method ensures a more unbiased outcome, thereby enhancing the overall
objectivity and reliability of the results.

Crucially, the results generated by the ModeLimit package, as extensively de-
tailed in Section 5.3, exhibit a high degree of alignment with the findings published
by the CRESST Collaboration, calculated by using the earlier Fortran-based orig-
inal script. This robust alignment underscores the reliability and accuracy of
ModeLimit in reproducing outcomes consistent with established calculations.

Moreover, ModeLimit distinguishes itself through its user-friendly and easily
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integrable design into Python-based research environments. This characteristic
streamlines the implementation process and equips researchers with a straightfor-
ward and accessible tool for computing upper limits in rare event searches, partic-
ularly in the context of experiments focused on dark matter. Thus, the package’s
adaptability and simplicity contribute to widening the accessibility of the afore-
mentioned analysis methods and fostering collaboration in the field of rare event
searches.

In summary, the open-source Python package ModeLimit emerges as an impor-
tant and potentially useful implementation of Yellin’s methods for setting upper
limits when analysing experimental or simulated data of dark matter searches
with a presumed unknown background. Its successful alignment with established
results, coupled with its incorporation of innovative features, signals a promising
step forward in the world of dark matter research.

Looking forward, it’s clear that ModeLimit holds promise well beyond the
boundaries of the CRESST experiment. A particularly exciting avenue lies in em-
ploying ModeLimit across a range of experiments, each approaching the quest for
elusive dark matter in its own unique way. For instance, experiments such as LZ,
PandaX, and XENONnT, which employ liquid xenon in the search of elusive dark
matter particles, can potentially benefit from the versatility of Yellin’s methods
implemented in ModeLimit. Thus, ModeLimit can prove invaluable for setting
upper limits on the cross section of dark matter by utilising data from diverse
experiments in the field.
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Appendix

A Recommended Workflow with the ModeLimit

In this section, an optimal workflow for the ModeLimit Python package will be
explored. The focus lies in setting upper limits for cross sections related to different
dark matter masses. A clear and efficient workflow is key here. This approach not
only makes the most of the ModeLimit package but also helps get valuable insights
from the data.

1. Use the approximation for the optimum interval method to see the range of
needed µ-values for setting proper upper limits.

2. Tabulate new data with very dense geometrically spaced µ-values with a high
number of lists consisting of random number for each µ using the information
on the µ-range acquired in step 1. This step will cost time but will also yield
higher accuracy of results. Save the tabulated data. If the µ-values needed
are high, using multiprocessing may save a considerable amount of time.

3. If you want to recalculate the limits for different masses or slight changes
in the signal model, you can either use the saved data or use the approx-
imation again. The former is recommended if the changes will not result
in drastic changes of the µ-range. If it does, resetting the µ-range with the
approximation is recommended.

4. If two-dimensional data is available, using the maximum patch method is an
option.

Code examples for setting all the necessary parameters will be provided in the
package to achieve a user-friendly and easy-to-use experience.
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