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Kurzfassung

Neuronale Netze sind der derzeitige Stand der Technik für viele Aufgaben in der Computer
Vision [SBM+17, ZTLT21]. Dies inkludiert auch die Bereiche der Identifizierung und Veri-
fizierung von Autoren, welche das Ziel haben, den Autor eines handgeschriebenen Textes
zu identifizieren. Eine neue Domäne ist die Interpretierbarkeit neuronaler Netze, die als
”Black Box”-Systeme bezeichnet werden, welche sich mit der Erklärung des Entschei-
dungsprozesses des neuronalen Netzes beschäftigt [SBM+17, HVH22, GMR+18, ZTLT21].
Diese Erklärungen werden verwendet, um die Leistung des Systems zu verbessern, mögli-
che Artefakte in den Trainingsdaten zu erkennen und die Zuverlässigkeit der Systeme in
sicherheitskritischen Domänen zu erhöhen [SM19]. In dieser Arbeit werden zwei Trans-
parenzmethoden auf neuronale Netze, die auf die Identifizierung und Verifizierung von
Autoren trainiert wurden, angewendet. Die erste Methode generiert pixelweise Visua-
lisierungen, die jedem Pixel einen Wert an Signifikanz zuweisen. Die zweite Methode
generiert zwei Arten von Visualisierungen. Die erste stellt die Ähnlichkeiten zwischen
zwei Bildern dar, während die zweite Ähnlichkeiten zwischen einem Punkt im ersten Bild
und dem gesamten zweiten Bild darstellt. Das Ziel ist, forensische Experten mithilfe einer
Visualisierung zu unterstützen, welche Informationen über Ähnlichkeiten in handschriftli-
chen Texten bietet. Des Weiteren soll untersucht werden, welche Charakteristiken ein
neuronales Netz auswählt, um den Autor eines handgeschriebenen Textes zu identifizieren.
Hierzu werden drei Architekturen von neuronalen Netzen, nämlich ResNet18, ResNet20
und ResNet50, ausgewählt, welche auf Methoden aus dem derzeitigen Stand der Technik
basieren. Die Transparenzmethoden werden für die Anwendung mit diesen Netzen ange-
passt und anhand der Lösch- und Einfüge-Metriken evaluiert. Darüber hinaus werden die
Techniken qualitativ evaluiert, indem die erstellten Visualisierungen von charakteristi-
schen Bereichen mit den Bereichen, welche forensische Experten zur Identifizierung des
Autors analysieren, verglichen werden. Die Ergebnisse der Evaluierung zeigen, dass die
pixelweisen Visualisierungen bessere Ergebnisse als die punktspezifischen Visualisierun-
gen bieten, deren hervorgehobenen Bereiche nur schwer einem bestimmten Buchstaben
zuzuordnen sind. Die pixelweisen Visualisierungen zeigen ähnliche Muster in den hervor-
gehobenen Bereichen der verschiedenen Vorkommen des selben Buchstabens, was auf
einen ähnlichen Analyseprozess, wie durch einen forensischen Experten durchgeführt,
hinweist. Insgesamt besitzen die pixelweisen Visualisierungen Eigenschaften, die für die
Unterstützung eines forensischen Experten geeignet sind, während die punktspezifischen
Visualisierungen aufgrund ihrer missverständlichen Hervorhebungen nicht geeignet sind.
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Abstract

Neural Networks are the state of the art for many tasks in the computer vision domain
[SBM+17, ZTLT21]. This also includes the areas of Writer Identification and Writer
Verification, where the goal is to identify the author of a handwritten text. A more
novel task is the interpretability of neural networks, which are considered ”black box”
systems, and to provide an explanation for the decision process of the neural network
[SBM+17, HVH22, GMR+18, ZTLT21]. These explanations are used to improve the
system performance, reveal possible artefacts in the training data and increase the
reliability of such systems in safety-critical areas [SM19]. In this thesis, two transparency
techniques are applied to neural networks trained on Writer Identification and Writer
Verification. The first transparency technique provides pixel-level saliency maps, where a
significance value is assigned to each individual pixel. The second transparency technique
provides two types of saliency maps, where one type shows overall similarities between
two images and the second type displays similarities between one point in the first image
and the overall second image. The goal is to support forensic experts with a visualization
providing information on similarities in handwritten text inputs. Further, the thesis
aims to explore the characteristics selected by a neural network to identify the author of
a handwritten text. Three neural network architectures, namely ResNet18, ResNet20
and ResNet50, are selected based on methodologies proposed in the state of the art.
The transparency techniques are adjusted for use with these specific networks and are
evaluated using the deletion- and insertion score metrics. Furthermore, a qualitative
evaluation is conducted, where the visualizations are compared to the areas forensic
experts consider during the identification process of an author. The evaluation results
show that the pixel-wise saliency map technique performs better than the point-specific
saliency map technique, where the displayed highlightings are difficult to allocate to a
certain character. The pixel-wise saliency maps display similar highlighting patterns
for multiple occurrences of the same character, indicating a similar analysis process as
applied by a forensic expert. Overall, the pixel-wise saliency maps display characteristics
suitable for the support of a forensic expert, while the point-specific saliency maps are
not suitable due to non-intuitive highlightings.
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CHAPTER 1
Introduction

In the last decade, Deep Neural Networks (DNNs) have become a powerful method for
various tasks in the computer vision domain, achieving high performances and outperform-
ing previous machine learning methods [SBM+17, ZTLT21]. DNNs are now a standard
for computer vision tasks and are becoming more complex regarding their computational
effort [ZN20, ZXD17]. The area of computer vision also includes document analysis. One
topic of document analysis is Writer Identification (WI) and Writer Verification (WV)
[KFS18]. The goal of WI is to identify the author of a query handwritten text from a
collection of known authors [TW16]. A WI system is trained to provide a ranking of the
most similar handwritten documents, with the goal of listing the documents of the same
author at the top [WMC21]. In contrast, the goal of WV is to determine if two given
handwritten texts were written by the same author [Sch08]. People display different and
unique characteristics in their handwriting, allowing for the identification of a person by
their handwriting [BS07]. However, this variation in handwriting makes the identification
of the writer a non-trivial task [PP21]. Moreover, the handwriting of one person is
influenced by environmental circumstances such as the time taken for the writing process,
the writing tool, and the geographic location and upbringing of the writer. Additionally,
handwritings change over time. These differences in the handwriting of one person pose
a challenge for the identification of a writer as well [ACB19, KFS18, Sch08].

In the past five years, the attention of researchers has been drawn to machine learning
interpretability [SBM+17]. Machine learning systems, including DNNs, are considered
”black boxes”, which do not provide an explanation for the decision process responsible for
producing the output for a given input [HVH22]. Although the parameters of a trained
neural network are accessible, neural networks contain millions of them, therefore making
a manual analysis infeasible [SBM+17, ZTLT21]. The proposed transparency techniques
for machine learning interpretability aim to provide a comprehensible representation of
the input features a neural network has selected to correctly process the given input and,
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1. Introduction

therefore, provide insight into the internal decision process [GMR+18, SBM+17, ZTLT21].
Examples of visual representations created by three different transparency techniques are
shown in Figure 1.1. Figure 1.1a displays a pixel-wise highlighting of regions of interest,
where bright areas are significant for the output of the underlying neural network. The
exemplary visualization of Figure 1.1b shows regions of significance for a medical retrieval
neural network, which classifies X-ray images as normal, pneumonia or COVID-19 cases.
Figure 1.1c contains visualizations created by a transparency technique, which compares
two images and their similarities. The highlights display areas, which are of importance
for the similarity. In the literature, the terms interpretability and explainability are used
interchangeably, which is also done in the scope of this thesis [GBY+18]. Furthermore,
the term transparency is also used as a synonym for explainability.

Depending on the task at hand, the architecture of neural networks and their training
configurations are adjusted to achieve the best possible result and performance. This
results in various types of neural networks with their own characteristics. For example,
one difference in neural networks is the type of loss function used, affecting the type of
output a neural network produces. Two types are commonly used, classification- and
ranking-based losses [KSDH21]. Neural networks trained with a classification loss provide
a label representing a class to which the given input belongs. For example, in the scope
of image classification, the label represents a certain category, such as ”cat” or ”boat”,
depending on the classes the neural network has been trained on. The number of possible
outputs is restricted: if a new class is added to the data, the network must be retrained.
Neural networks trained with a ranking-based loss provide an n-dimensional embedding
vector as output, which represents a point in n-dimensional space. Two images are
considered to be of the same class if the output embeddings from these input images
are positioned closely together [KSDH21]. Transparency techniques distinguish between
neural networks with different loss types and are not necessarily applicable to all loss
types. Depending on their explanation method, they are restricted to a certain type
of loss, relying on certain characteristics of a neural network such as a classification
module. For example, the Gradient-weighted Class Activation Mapping (Grad-CAM)
method proposed by Selvaraju et al. [SCD+17] relies on gradients as weights, limiting
its use to classification neural networks but not embedding neural networks [CCHM20].
Adjusting an underlying neural network to apply a certain transparency technique or
adjusting a transparency technique to be applicable to all types of neural networks is not
ideal. Zheng et al. [ZKC+20] show that adding a classification module to a model for
the application of a transparency technique results in unintuitive representations of the
contributions of the input features.

An explanation of a machine learning system is beneficial for several reasons. First, the
system accuracy can be improved by using the insight into the system for the removal of
biases and the detection of artefacts in the training process [SM19]. Machine learning
systems are expected to use a valid strategy to execute their task successfully, i.e. using
proper and generalizable features for the decision task [AWN+22, LWB+19]. However,

2



(a) Pixel-wise highlighting of regions of interest. Bright pixels in the visualization indicate areas
which are of high importance for the output of the neural network. Images courtesy of Kobs et al
[KSDH21].

(b) Region highlighting of regions of interest. Bright regions in the visualization indicate areas of
high importance. Images courtesy of Hu et al [HVH22].

(c) Heatmap highlighting of regions of interest. The transparency technique provides information
on the similarity between an image pair learned by the underlying neural network. Red regions
indicate areas of high importance for the similarity. Images courtesy of Zhu et al [ZYC21].

Figure 1.1: Exemplary visualizations created by three different transparency techniques
to highlight the significance of regions for the output of a neural network.
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1. Introduction

this behaviour is possibly compromised when spurious artefacts are present in the training
process. For example, the method which won the PASCAL VOC challenge [EVGW+10]
classified images of horses by a copyright mark, which is present in the horse images
of the train set [SM19]. Another example is a system which used notes written on the
training data by a radiologist to determine its output [HVH22]. Manual analysis of
such datasets, however, is infeasible due to the large amount of data contained within
[AWN+22]. Second, insight into a machine learning system is especially relevant for
safety-critical areas such as the medical domain, where decisions impact human lives,
or autonomous driving, where the technology makes decisions without human interfer-
ence. Transparency of the used systems is a necessity in these areas [SM19]. Third, the
General Data Protection Regulation (GDPR) states that "[...] people have the right
not to be subject to an automated decision which would produce legal effects or similar
significant effects concerning him or her. The data controller shall safeguard the data
owner’s right to obtain human intervention, to express his or her point of view and to
contest the decision." ([ZTLT21], p.728). Transparency of a machine learning system
supports this regulation by providing information on the processing of the given data
and the corresponding output of the underlying machine learning system [SM19, WMR17].

In this work, transparency techniques are applied to neural networks trained for WI
and WV. One goal is to gain insight into the trained internal decision process of neural
networks for these tasks. Another goal is to gain an overview of the expressiveness and
validity of the visualizations generated by the selected transparency techniques when
using handwritten text images as input. Furthermore, the information provided by these
transparency techniques allows to further analyse the results provided by the WI and WV
neural networks. For example, an incorrect ranking provided by a WI neural network
for a given handwritten text image can be analysed to gain information on the features
used by the network. This information possibly exposes an incorrect use of available
information, such as the use of additional data, which is not part of the handwritten text.
Additionally, neural networks trained for WI and WV are, for example, used for the
author identification of handwritten texts such as threat letters [KFS18]. The application
of transparency techniques on such neural networks supports experts investigating the
given handwritten text by providing information on important areas in the handwritten
text and, therefore, expediting the analysis process.

1.1 Contribution
Previous work in the domain of transparency techniques mainly focuses on the applicabil-
ity of transparency techniques on neural networks trained on computer vision tasks, where
the input images are rich with information such as colours, intensities or multiple objects
contained within the image. So far, transparency techniques have been used to analyse
neural networks trained on tasks including, without limitation, image classification and
image retrieval for both natural images [Rud94] and medical scans [HVH22, ZKC+20],
as well as face recognition and person re-identification [ZYC21]. The use of transparency

4



1.2. Structure of Thesis

techniques for neural networks trained on WI and WV has not yet been a focus of research.

This thesis explores the applicability of transparency techniques for neural networks
trained on distinguishing different writers. The goal is to use transparency techniques
to provide visual information on the input features selected by the neural network to
successfully execute its task and retrieve information on the internal decision process of
the neural network. For this purpose, two transparency techniques proposed by Kobs et
al. [KSDH21] and Zhu et al. [ZYC21] have been selected from the state of the art. The
performance of these transparency techniques on the WI and WV neural networks is
qualitatively and quantitatively evaluated. Further, the goal is to provide forensic experts
with a visualization which supports their decision of an authorship for a handwritten
text by highlighting the relevant areas.

Furthermore, the following research questions will be addressed:

• What characteristics are selected by a neural network to identify the author of a
handwritten text?

• How do the visualizations of feature contribution differ from text areas, which
experts consider when identifying the author of a handwritten text?

• How well does a transparency technique perform on neural networks, which take
handwritten text images as input?

1.2 Structure of Thesis
Firstly, Chapter 2 introduces the current state of the art for transparency techniques as
well as WI and WV methodologies. The transparency techniques are divided into two
parts, where the first part introduces transparency techniques for classification networks,
and the second part focuses on transparency techniques for embedding networks. Ad-
ditionally, in the scope of the state of the art for WI and WV methodologies, common
concepts for training and evaluation of such methodologies are defined.

Chapter 3 provides an overview of the selected methodology. First, the selected ar-
chitectures of the neural networks for WI and WV are introduced. Additionally, the
hyperparameters and configurations used for the training of these networks are described.
Afterwards, the selected transparency techniques and proposed adjustments for the use
with WI and WV neural networks are introduced.

Chapter 4 presents the datasets used for the evaluation. Additionally, adjustments made
to the original datasets and the splits into train, validation and test set are described here.

Chapter 5 contains the evaluation results. First, experiments performed to improve the
performance of the underlying neural networks are outlined. Then, the evaluation of

5



1. Introduction

the transparency techniques, which includes sanity checks, quantitative and qualitative
evaluation, are presented, followed by a discussion of the results.

Finally, Chapter 6 concludes the thesis with a summary and an outline of possible
future work building upon the results of this thesis.

6



CHAPTER 2
State of the Art

This chapter gives an overview of the state of the art for transparency techniques and
neural networks for WI and WV. For the area of WV, the state of the art is extended
with methodologies proposing an approach to signature verification, where the content of
the text contained in the snippets to be compared is identical, which is not necessarily the
case for WV [Sch08]. Additionally, commonly used concepts for training and evaluation
of WI and WV neural networks and for evaluation of transparency techniques are defined
and described. The presented methods and techniques are the basis for the selection of
the methodology, as described in Section 3.

2.1 Transparency Techniques
The state of the art for transparency techniques can be divided into two groups based
on the neural networks the techniques are applicable to. The first group can be applied
to neural networks trained with a classification loss, which provide a class label as
output. The second group contains transparency techniques for neural networks trained
with an embedding loss, which output a vector embedding. Transparency techniques,
which are applicable for classification neural networks, are not necessarily applicable for
embedding neural networks and vice-versa [KSDH21]. Zheng et al. [ZKC+20] show that
extending a neural network with a classification module to apply transparency techniques
for classification networks does not result in comprehensible attention maps. Therefore,
techniques explicitly using embedding neural networks and techniques for classification
neural networks have been developed.

Zhang et al. [ZTLT21] differentiate transparency techniques by three characteristics: pas-
sive vs. active approach, type of explanation, and local vs global interpretability. Passive
approaches provide explanations for already trained networks, while Active approaches
influence the ongoing training process and network to increase its transparency. The

7



2. State of the Art

authors define four types of explanations. Examples explanations return similar samples,
while Attribution explanations provide information on the importance of input features.
Additionally, Hidden Semantics explanations provide information on one or many hidden
neurons or layers of the underlying network and Rules explanations collect rules with
which the decision for a given input is made. Local and global interpretability address
the input space. For local approaches, the explanation provided addresses single samples,
while for global approaches, an explanation for the whole underlying network is provided
[ZTLT21].

For the application of neural network explainability in the scope of this thesis, the
focus will be on passive approaches providing explanations based on the input features.

2.1.1 Concepts for Evaluation

This section defines two concepts proposed for the evaluation of transparency techniques
and the accuracy of their created visualizations.

The ’deletion score’ is an evaluation metric for saliency maps generated by a trans-
parency technique. The original metric is proposed by Petsiuk et al. [PDS18] and
calculates the change in probability for an output of a classification network if the input
image is altered. The pixels in the image are gradually deleted from a given image,
starting with the pixels with the highest significance to the neural network output, i.e.,
the pixels with the highest values in the saliency map. Petsiuk et al. [PDS18] discuss
multiple deletion strategies, such as setting the pixels to a constant value or blurring
of the pixels. After each step, the change in the probability output is measured and
plotted as a curve. An exemplary curve is shown in Figure 2.1. Here, the curve is
plotted for an input image classified as ”goldfish”. The area-under-the-curve (AUC) is
then used as the evaluation metric, where a lower value is desirable. Hu et al. [HVH22]
propose an adjustment to this metric in order to use it for neural networks providing an
embedding vector as output. Instead of measuring a change in the probability output, the
change in similarity between a query image and the adapted retrieved image is calculated.
Afterwards, the AUC for the change in the similarity score is calculated as measurement
[HVH22].

The ’insertion score’ is an evaluation metric, which is similarly calculated to the deletion
score and is proposed by Petsiuk et al. [PDS18] as well. It is calculated by gradually
inserting pixels into the given image, starting with the pixels with the highest values
in the saliency map. Petsiuk et al. [PDS18] propose to use a blurred image initially
and adding the original pixel values in each step. Similar to the deletion score, Hu et
al. [HVH22] propose to calculate the similarity between the embedding output of the
query image and the adapted retrieved image for embedding neural networks. The AUC
is calculated as well, with a higher AUC value expected for the insertion score [HVH22].

8



2.1. Transparency Techniques

(a) Input Image (b) Saliency Map

(c) Deletion Step (d) Deletion curve

Figure 2.1: Example for a deletion curve calculated for the probability ”goldfish”. Images
courtesy of Petsiuk et al [PDS18].

2.1.2 Transparency Techniques for Classification Networks

The transparency techniques for classification networks are divided into three groups:
local, semi-local and global approaches. Local approaches visualize the features selected
by a network for the decision process of one specific input, therefore providing precise
information for this individual case. However, this information does not provide insight
into the overall logic of the network. In contrast, global approaches generalize and provide
information on the general patterns learned by the network. These approaches can provide
information on the overall decision process of the network and support the detection
of biases within the training data [DVK17, GMR+18, MLB+17, ZTLT21]. Semi-local
approaches are located on the spectrum between global and local approaches. For
example, an approach providing information on a group of (similar) inputs is considered
semi-local [ZTLT21].

9



2. State of the Art

Local Approaches

Wang et al. [WZB19] propose to use the bias term for attribution. They suggest a recursive
backpropagation algorithm called Bias Backpropagation (BBp), which propagates the
bias attribution to the input features, starting on the output layer and computing it layer
by layer. Their results show that the bias can contain additional attribution information,
which is complementary to information provided by gradient-based methods. Heskes et al.
[HSBC20] use causal Shapley values to describe the correlation between an input value
and the corresponding output by a network. Using the Shapley values, their approach
provides information on important, contributing, and irrelevant features of the input
regarding the resulting output of the network. Their proposed algorithm uses causal
chain graphs to compute the values.

Global Approaches

Lapuschkin et al. [LWB+19] provide their semiautomatic framework SpRAy (spectral
relevance analysis) for the interpretability of neural networks. It provides information on
the decision process of a neural network using a whole dataset as input. The individual
relevance maps for each input sample are calculated using layer-wise relevance propagation.
Afterwards, spectral cluster analysis is applied to the created maps to find structures
within the relevance maps representing the according class. Eigengap analysis is then
applied to find distinct clusters. The approach by Salman et al. [SPL+20] combines the
local attribution of multiple networks using clustering to provide a global interpretation
of the networks. They use the Jacobian difference vector to retrieve information about
local feature importance. The Jacobian matrices are then clustered using a common
clustering algorithm.

Semi-Local Approaches

The approach by Sundararajan et al. [STY17] is called integrated gradients. The method-
ology uses the gradient operation to calculate attribution in the input. It considers the
straight-line path between the baseline and a given input and calculates the gradients
along the path. This approach fulfils the axioms of sensitivity and implementation invari-
ance. The semi-local interpretability of the methodology is given as a reference point for
the calculation and can be selected by the user. Ramamurthy et al. [NRVZD20] propose
a methodology which provides a multi-level explanation using any local explainability
technique. The methodology generates an explanation tree where leaves represent local
explanations and the root provides an overall and global explanation. The levels in
between are generated in a bottom-up fashion where explanations from multiple samples
are grouped.

2.1.3 Transparency Techniques for Embedding Networks
In this section, transparency techniques, which can be applied to neural networks pro-
viding an embedding for an input image, are described. In contrast to the techniques
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described in Section 2.1.2, these techniques do not require a classification module for the
neural network to generate the visualization.

Zheng et al. [ZKC+20] propose a transparency technique for neural networks calcu-
lating similarities and differences between images using embeddings. The approach uses
the output vector of the neural network and determines which feature dimensions are
significant for the determination of similarity. The authors explain the functionality
of their approach using three different architecture types, namely Triplet, Siamese and
Quadruplet architectures. In general, their approach aims to provide insight on the simi-
larities between two images. Using the feature vectors of a tuple of images, the authors
calculate weight vectors for each image and generate a single weight vector displaying
which feature dimensions contribute the most to the similarity and dissimilarity between
these images. Using this weight vector, the attention maps are obtained by calculating
sample scores first and using the gradient with the convolutional feature maps of the
image to generate an attention map. For their experiments, the authors use a ResNet50
as neural network architecture. The authors experiment with person re-identification,
low-shot semantic segmentation and image retrieval. For all three topics, the authors
provide qualitative and quantitative evaluations. For the qualitative evaluation, they
objectively evaluate if the created attention maps highlight the correct regions of the
image and cover the most important features of the according object. For the quantitative
evaluation of the person re-identification and image retrieval tasks, the authors use the
Recall@K metric. For the low-shot semantic segmentation task, the 1-way and 2-way
meanIOU evaluation are used [ZKC+20].

Chen et al. [CCHM20] introduce an adaptation of the Grad-CAM [SCD+17] method,
which is constructed for embedding networks, while the original Grad-CAM method is
applied to classification networks only. During the training of the transparency technique,
a grad-weights dataset is created from the training images. These weights are then
transferred during the testing phase to visualize the saliency maps for the test images
using forward propagation only. The grad-weights are calculated as described for the
Grad-CAM method. The authors use the Triplet Loss as differentiable activation for the
grad-weights generation. The grad-weights are averaged over multiple sampled triplets
to create a more accurate grad-weights dataset. In order to improve the results, the
authors propose to use the top weights by sorting them per channel and utilize the
top-M weights of this ranking. The grad-weights from the nearest training image by
embedding are selected during testing. For the selection, nearest neighbour search is
used, therefore, no back-propagation for the testing image is needed. The authors use the
CUB200-2011 dataset with the bounding box score and mask score metrics for evaluation.
For the experiments, the Grad-CAM and Grad-CAM++ methods are used as a basis for
the calculation. The authors additionally provide a qualitative evaluation by manually
comparing the saliency maps generated by models with different settings, such as the
number of triplets for the generation of the grad-weights and the change in base methods
[CCHM20]. Kuehlkamp et al. [KBC+22] note that this method is more appropriate for
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closed-set cases, as the grad-weights for the testing phase are inferred from the training
data. Therefore, this method explains why the two training images, which are spatially
closest to the test image, are similar instead of comparing two test images with each
other [ZKC+20].

Kobs et al. [KSDH21] investigate the differences in visual features selected from the
input by models with the same architecture but different loss functions. For this purpose,
the authors propose two analysis methods, a comparison of gradient-based saliency maps
and a comparison of images on image property-level. 14 different loss functions and
three different datasets, namely Cars196, CUB200 and Stanford Online Products (SOP),
are used for the experimentation. The first analysis method creates a saliency map by
highlighting pixels in the input image based on their contribution to the embedding
output of the model. For the calculation of the maps, the authors use the embedding
for a base image, i.e. an image consisting of black pixels only. The goal is to find the
pixels influencing the base embedding to reduce the distance between the base embedding
and an image embedding. The gradients of the loss-specific distance are computed and
the Smooth-Grad method is applied to reduce noise. The higher the resulting gradient
for a pixel, the more impact a pixel value change has on the embedding vector. The
authors propose to compare the saliency maps of the same input image generated by
models using different loss functions. For this purpose, the saliency maps are compared
using the average Pearson Product-Moment Correlation Coefficient and Jensen-Shannon
Divergence. The second analysis method investigates the impact of image properties such
as colour and rotation of objects on the resulting embedding. A change in a property,
which highly influences the embedding output of the model, should lead to large changes
in the embedding output. Additionally, when changing all other properties within the
same image while keeping the highly influential property unchanged should lead to small
changes in the embedding output. For this purpose, clustering behaviours for image
properties are analysed with the R-Precision metric. The authors provide qualitative and
quantitative evaluations for the saliency maps. They use the SOP, Cars196, CUB200
and a synthetically generated dataset for evaluation. For the qualitative evaluation, the
authors manually compare the highlights of the saliency maps retrieved from models
with different loss functions. For the qualitative evaluation, the cross-correlation val-
ues are compared [KSDH21]. Kobs and Hotho [KH22] note that the investigation of
differences in visual features requires controlled generated datasets in order to access
a dataset with small feature changes between images, which can be a time-consuming task.

Chen et al. [CLL+21] propose the method Attribute-guided Metric Distillation for
the explanation of person re-identification models. The goal of the method is to generate
attention maps which highlight the most important attributes for the distinction between
different persons. The transparency method itself learns to interpret the distance between
the images of two persons using semantic attributes of the images and providing informa-
tion on the impact of each attribute on the distance. The technique is trained after the
target neural network, on which it should be applied, has been trained. It is structured
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such that it has the same architecture as the target network. Both structures share the
first Convolutional Neural Network (CNN) stages. The later layers of the transparency
technique are trained using information from the target network. For an image pair,
the feature maps are extracted from the last convolutional layer of the neural network.
Using this output, the feature vectors are calculated by applying Generalized Mean
Pooling. By attaching an Attribute Decomposition Head with multiple convolutional
layers to the transparency technique, attribute-guided attention maps are generated,
which are sliced into matrices, where each matrix represents the attention for one of the
previously determined attributes of the images. The authors evaluate their method on
the Market-1501 and the DukeMTMC-ReID datasets. The datasets are evaluated on the
metric for Distillation and the metric for Attribute Decomposition. ResNet34, ResNet50
and ResNet101 architectures are used as architecture backbones. First, the models are
evaluated individually for each dataset. Afterwards, the performances on all datasets are
compared [CLL+21].

Zhu et al. [ZYC21] propose a point-to-point activation methodology, which allows
the exploration of the relationship between different images and their similarities. The
overall saliency maps are calculated by decomposition along the images. Additionally,
each pixel in one image can be compared to all pixels in the other image by decomposition
of a pixel along the other image, providing information on the similarity between the
according pixel and the other image. The authors build their methodology on the concept
of Class Activation Map (CAM). However, instead of decomposing along one image,
the authors propose to use the feature maps of two images. The point-specific saliency
maps can then be calculated by adding up the multiplication of the feature maps for
two points (x, y) and (i, j). The authors use a weakly supervised localization method to
evaluate their proposed methodology. The saliency maps for four methods (Grad-CAM,
Grad-CAM (no norm), Decomposition + Bias and Decomposition) are compared by
generating a mask using a threshold for the heatmap. Then, a bounding box is created
from the largest connected component of the mask. The comparison of the boxes is done
by Intersection over Union (IoU). Additionally, the authors apply a qualitative evaluation
using the Amazon Mechanical Turk platform. Reviewers have to compare pairs of images
consisting of one saliency map from the decomposition and one saliency map from the
Grad-CAM/Grad-CAM (no norm) methods. The reviewers are asked to select the map
from each pair that they believe to be more reasonable [ZYC21].

Zhang et al. [ZZZL22] propose an Attributable Visual Similarity Learning framework to
explain the similarities between two images. The framework provides a graph structure,
which displays coarse similarities on the top nodes, which are divided into fine details on
the lower levels, mirroring the comparison process executed by humans. The undirected
graph is extracted from a feature extractor such as a neural network, where embeddings
are extracted from each layer of the neural network. The authors note that high-level
layers contain information about high-level features, which are complementary to the
low-level features of lower layers. The nodes of the graph are called similarity nodes.
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The feature maps of each convolutional block are extracted and a global pooling and
a Fully Connected (FC) layer are applied to receive a corresponding embedding. The
similarity node is calculated as the square difference between normalized embeddings of
two input images. The edges between two similarity nodes are generated using CAMs.
The CAMs are then used to compute the correlation using the inner product. The authors
evaluate their proposed method using the CUB-200-2011, Cars196 and SOP datasets.
The recall@Ks metric is used as evaluation metric. Additionally, the authors visualize
the graph results for a number of samples from the datasets. The ResNet50 is used as
neural network. The framework is evaluated with the Margin Loss and the ProxyAnchor
Loss [ZZZL22].

2.2 Writer Identification and Writer Verification
Methodologies

In the scope of this thesis, transparency techniques are applied to neural networks
trained on WI and WV. The state of the art for WI and WV is described in this section.
Additionally, common concepts for the training and evaluation of these networks are
described here.

2.2.1 Concepts for Training and Evaluation
This section defines notions and concepts which are frequently used for the training and
evaluation of neural networks and are mentioned throughout this work.

Concept for Training

The ’x-fold cross-validation’ is a training method for neural networks. The available
dataset is divided into x distinct subpartitions. This allows to train x models, where
a model i is evaluated on the ith subpartition and trained with the other combined
subpartitions [SE10].

Concepts for Evaluation

The ’leave-one-out’ strategy is an evaluation method for WI neural networks. Each image
taken from a validation or test set Q is used once as a query image q. For each query
image q, the other images are ranked based on the pairwise distance between q and the
according image to rank. The distance is calculated using a similarity criterion, such as
Euclidean distance or Cosine Similarity. The resulting ranking places images with the
smallest distance at the top and images with the highest distance at the bottom. The
goal is to have relevant images, i.e. images from the same author as q, at the top of the
ranking [LJ19, WTB14].

The ’Mean Average Precision (mAP)’ metric is an evaluation metric for machine learning

14



2.2. Writer Identification and Writer Verification Methodologies

models. It provides information on the accuracy a neural network has achieved on a
dataset and is calculated as [RB22]

mAP =
�

q∈Q AveP (q)
|Q| . (2.1)

AveP is the average precision calculated as [RB22]

AveP (q) =
�n

k=1(P (k) × relevance(k))
x

, (2.2)

where x is the number of relevant documents, i.e. the number of documents written
by the same author as q. P (k) is the percentage of relevant documents in the first k
documents of the ranking result. relevance(k) is a function defined as [RB22]

relevance(k) =
�

1, if relevant document
0, otherwise

(2.3)

The mAP value ranges from zero to one, with one indicating all relevant documents are
positioned at the top of the ranking for all query images q [KFS18, SMR08].

The ’Top-x’ metric is used for the evaluation of neural networks as well. As with
the mAP metric, a ranking of images is generated for each image in a validation or test
set. The top x images in the ranking are then inspected regarding the authorship. For
the soft criterion, i.e. ’Soft-Top-x’, at least one of the first x images in the ranking must
be from the same author as the query image for the ranking to be considered correct.
For the hard criterion, i.e. Hard-Top-x, all first x images in the ranking must be from
the same author. The Soft- and Hard-Top-x metrics are then the percentage of correct
rankings of all query images. For x = 1, the hard and soft criterion are equivalent and
therefore noted as Top-1 [CGFM17].

The ’False Acceptance Rate (FAR)’ and ’False Rejection Rate (FRR)’ are two eval-
uation metrics used for verification systems such as WV. The metrics are calculated as
the percentage of invalid objects which are accepted and the percentage of valid objects
which are rejected by the underlying system, respectively [QZZ+23]. In the case of WV,
an invalid object is a pair of images written by different authors, while a valid object is a
pair of images written by the same author. Therefore, the ’FAR’ is the percentage of
forgery pairs which are determined as genuine pairs and the ’FRR’ is the percentage of
genuine pairs which are determined as forged pairs.

The ’Equal Error Rate (EER)’ is an evaluation metric used for systems providing
a verification. It is defined as the error rate at the threshold of the similarity metric
where the False Positive Rate and True Positive Rate are equal. A lower value for the
’EER’ is desirable [LZL+19, SSGS00].
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2.2.2 Writer Identification

Christlein et al. [CBMA15] propose the use of CNNs to learn local activation features,
which are then merged to a global feature descriptor for one image using Gaussian Mixture
Model (GMM) supervector encoding. Afterwards, the descriptor is normalized. The CNN
is used to generate a local feature descriptor by cutting of the last layer after training
and using the output of the penultimate layer as descriptor. The last layer consists of
100 Softmax nodes, where each represents the ID of one of the writers in the used train
set. The CNN itself contains two blocks, where each block contains a convolutional
layer followed by a pooling layer. The output of the second block is then forwarded to a
hidden layer, which transforms the output into a 1-dimensional vector. The Rectified
Linear Unit (ReLU) is used as activation function for all layers. The CNN takes 32px
× 32px image patches as input. For the aggregation of the local feature descriptors to
global descriptors, a GMM is used. This descriptor is then normalized using a kernel
derived from the Kullback-Leibler divergence. The authors use the ICDAR2013 and CVL
datasets for training and evaluation. For the evaluation, the mAP and the hard Top-X
metrics are used [CBMA15].

Fiel and Sablatnig [FS15] propose the use of a CNN for the creation of a feature
vector for a handwritten text image. The vector is used as distance measurement to
determine the similarity of different handwritten images. In order to retrieve the feature
vector, the output of the penultimate FC layer is used. Before the images are forwarded
to the CNN, the handwritten text images are binarized with the method of Otsu followed
by applying a text line segmentation and a sliding window. The sliding window is used to
create fixed-size image patches as input and is applied with a step size of 20 pixels. The
architecture of the CNN is based on the caffenet. It contains five convolutional layers
and three FC layers. After each convolutional layer, a max pooling layer is inserted. The
network is trained using the Softmax Loss function. The final classification layer, which
consists of 1000 neurons, is cut off. During training, the resulting feature vectors of all
image patches of one handwritten image are averaged to receive a representative feature
vector for the image. The feature vectors are compared with the χ2-distance. The authors
use the ICDAR2011, ICDAR2013 and CVL datasets for evaluation. The ranking of the
documents for each query image is evaluated using the soft and hard Top-X metrics [FS15].

Xing and Qiao [XQ16] propose a DNN called DeepWriter. It consists of two paral-
lel streams, which are called Half DeepWriter and which share weights between their
layers. The architecture of the Half DeepWriter is based on the AlexNet and consists of
convolutional, max-pooling, and fully convolutional layers. The output of the two streams
after the last fully convolutional layers are summed up element-wise. Finally, a softmax
layer is applied to the given result. ReLU is used as activation function and the Softmax
Loss is used as loss function. The network takes 113px × 113px images as input. In order
to account for non-quadratic images, the authors propose a patch-scanning strategy. The
input image is resized such that the smaller side is 113px wide. Then, image patches
with a size of 113px × 113px are sampled from the resulting image. In order to preserve
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the relation between adjacent image patches, the architecture takes two adjacent image
patches as input and forwards each to one stream within the DeepWriter. For training
of the network, the authors pretrain the Half DeepWriter using the HWDB1.1 dataset.
After 400.000 iterations, the DeepWriter architecture is trained on the IAM dataset
using the pretrained weights. During training, the authors use the average from the
softmax layer output for all image patches taken from one input image to define the final
classification. In their experiments, the authors show that the use of adjacent image
pairs increases accuracy [XQ16].

Tang et al. [TW16] propose the use of a CNN for feature extraction and a Joint
Bayesian for WI. The approach takes whole handwritten images as input and extracts
global features instead of local features with the CNN. The authors propose a data
augmentation technique to generate multiple images from one handwritten image. These
images are then forwarded to the CNN, which extracts a 256-dimensional feature vector
for each image. Finally, the Joint Bayesian is used for WI. The authors consider the
handwritten text images simpler in comparison to natural scene images and therefore
propose a lightweight CNN architecture. The CNN consists of four convolutional layers,
two FC layers and a softmax layer as last layer. ReLU is used as activation function.
Each convolutional layer is followed by a local response normalization and a max pooling
layer. Additionally, one dropout layer is inserted after each FC layer to avoid overfit-
ting. The authors evaluate their approach on the ICDAR2013 and the CVL datasets.
For the evaluation, the soft Top-1, soft Top-5, soft Top-10, hard Top-2, and hard Top-
3 are used. Additionally, the hard Top-4 is used for evaluation of the CVL dataset [TW16].

Christlein et al. [CGFM17] propose to train a deep CNN in an unsupervised man-
ner for WI and writer retrieval. The train dataset is put into surrogate classes by
clustering Scale-invariant Feature Transform (SIFT) descriptors. In a first step, SIFT
keypoints are computed for the train dataset. For each keypoint, a descriptor and an
image snippet with a size of 32px × 32px centred around the keypoint are calculated.
The authors note that keypoints, which are lying between text lines, are filtered out
by using a restricted SIFT method, which keeps only minima in the scale space. The
remaining descriptors are normalized and reduced from 128 to 32 dimensions using
Principal Component Analysis (PCA). The descriptors are then clustered and the clusters
are used as targets for the training of the CNN. The output of the penultimate layer
is used as the feature descriptor. Finally, a global image descriptor is created using
Vector of Locally Aggregated Descriptors (VLAD) encoding. The authors evaluate their
proposed method on the Historical-WI and CLaMM16 datasets. The method is evaluated
using the leave-one-out strategy with the Top-1, soft Top-5, soft Top-10, hard Top-2,
hard Top-3, hard Top-4, Precision at N and mAP as evaluation metrics. The authors
first evaluate the choice of clusters in contrast to writers as surrogate classes and report
a decrease in performance when using writers. Further, four different encoding methods
are compared with each other: Sum-Pooling, Fisher vectors, GMM supervectors and the
proposed VLAD encoding. The authors report the highest performance for the VLAD
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encoding. An evaluation of the parameters revealed a peak in the mAP score when using
5000 clusters for training [CGFM17].

Keglevic et al. [KFS18] propose a triplet CNN architecture. This architecture learns a
similarity measurement for triplets of image patches. The triplet contains two image
patches from the same author, so-called positive samples, and one image patch from
a different author, a so-called negative sample. The output of the architecture is used
to generate a VLAD, which is then used for the identification of authors of further
image patches. The goal is to minimize the distance between the positive samples
and to maximize it between the negative samples. The authors propose to extract the
image patches from handwritten text images using SIFT keypoints. First, the images
are binarized. Then, SIFT features are calculated and used as centres of the 32px ×
32px image patches. The features are filtered using clustering with surrogate classes.
However, this step is omitted during evaluation. The triplet CNN architecture consists
of three DenseNet CNN branches, which share weights between their layers. The CNNs
consist of convolutional layers with ReLU as activation function and batch normalization.
They learn an embedding of the image patches using the L2 distance. The embeddings
of all image patches for one document image form its feature vector by using VLAD
encoding. The triplet CNN is evaluated on the ICDAR2013 dataset. For the evaluation,
the authors applied the leave-one-out strategy. The mAP is used for the evaluation of
the rankings. The authors evaluate their approach using four different strategies for
VLAD. Additionally, the number of clusters is varied. The best performance is achieved
using five VLADs with 100 cluster centres using the Euclidean distance. The use of mul-
tiple vocabularies instead of one leads to a better performance in all experiments [KFS18].

Nguyen et al. [NNI+19] propose an end-to-end method using multiple parallel CNNs for
feature extraction. Their approach uses multiple square images randomly sampled from
an image containing handwriting from one writer, which are forwarded in parallel to the
CNNs. The resulting writer-specific features from the CNNs are then aggregated by a
global feature aggregator. The output of the aggregator is considered as the global feature
for the given writer. This output is then forwarded to a softmax classifier, which provides
a writer prediction. The whole network is trained using Stochastic Gradient Descent
(SGD). The authors propose two architectures for the CNNs. The first architecture
extracts local features at a sub-region level. It consists of four stages, which contain a
convolutional layer and max-pooling layer. This architecture returns a 4 × 4 × 1024-
dimensional matrix. The second architecture extracts local features at the character level.
It consists of three convolutional layer blocks and returns a 1 × 1 × 1024-dimensional
matrix. For the aggregation, the authors propose three methods. Average aggregation
computes the average of the values along the depth dimension. Max aggregation selects
the maximum value along the depth dimension. The average of k-max aggregation
computes the average of the k largest values along the depth dimension. The authors use
the JEITA-HP, Firemaker and IAM datasets for evaluation [NNI+19].

18



2.2. Writer Identification and Writer Verification Methodologies

Javidi and Jampour [JJ20] propose the use of a residual neural network in combi-
nation with a Handwriting thickness descriptor (HTD) as auxiliary feature input. The
neural network consists of 18 layers with four residual blocks. Additional batch normal-
ization layers and ReLU activation function are used. The handwriting thickness is a
characteristic which varies between different people [JJ20]. The descriptor is calculated
by counting fully black rectangular patches within an input image using convolutional
processing. The HTD is conjugated with the output from the last flattening layer of
the residual network. The network takes 60px × 180px images as input. In order to
collect image patches from a larger input, the authors use a scanning strategy similar to
Xing and Qiao [XQ16]. Additionally, the constraint of at least 10% black pixels within
the image patch is given to ensure a certain amount of information within the image
patch. For the evaluation of the network, the authors use the IAM, Firemaker, CVL and
CERUG-EN datasets. The authors compare the performance of their approach with and
without the use of auxiliary features [JJ20].

Wang et al. [WMC21] propose an end-to-end framework for WI. The framework consists
of a preprocessing step and an encoding step consisting of a local feature extraction and
a global descriptor computation. The preprocessing step uses a U-Net for binarization
of the input images. The local descriptors are created using a ResNet50 architecture,
which are forwarded to an optimized encoding layer to compute global descriptors. The
architecture is shown in Figure 2.2. The authors use the DIBCO dataset to train the

Figure 2.2: Deep-TEN architecture as proposed by Wang et al [WMC21]. Image courtesy
of Wang et al [WMC21].

U-Net for binarization. For the creation of local descriptors and aggregation into one
global descriptor, the Deep-TEN architecture as proposed by Zhang et al. [ZXD17]
with additional Deep Generalized Max Pooling (DGMP) [CSS+19] is used. The authors
evaluate their framework with the Historical-WI dataset. The input images are divided
into 400px × 400px image patches. A canny edge detector with a threshold of 2000 is
used to determine the amount of handwritten text in each image patch. The framework
is trained using the Triplet Loss. For the evaluation, the Top-1 and mAP metrics are
used. The authors evaluate the performance of each individual step in the framework
and experiment with different settings. For the U-Net, the best performance is achieved
when pretraining the U-Net without fine-tuning. For the Deep-TEN architecture, the
best result is achieved when not using DGMP [WMC21].
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Rasoulzadeh and BabaAli [RB22] propose the use of a CNN together with a NetVLAD
layer, which is based on the ResNet20 architecture. The network is used to extract local
descriptors for image patches. The descriptors are then combined to global descriptors for
each image using Generalized Max-Pooling (GMP). PCA is applied before the descriptors
are compared with each other and a ranking is constructed. The Triplet Loss is used for
training. The architecture is shown in Figure 2.3. The authors use 32px × 32px image
patches as input. The patches are constructed using the handwriting contour as centre.
The last FC layer of the neural network is discarded and the 1 × 1 × 64-dimensional
feature vector is forwarded to a Global Average Pooling (GAP) layer, which is after-
wards forwarded to the NetVLAD layer learning the VLAD embeddings. The authors
evaluate their approach on the ICDAR2013, the CVL and the KHATT datasets. For
the evaluation, they use the Top-1, hard Top-2, hard Top-3 and mAP metrics. For the
optimization, Adamax with the Triplet Semi-Hard Loss is used [RB22].

2.2.3 Writer Verification
Shaikh et al. [SDCS20] propose the use of an attention-based methodology which uses
cross- and soft-attention. The stem of the Inception-ResNet-v2 or VGG16 network is
used for feature extraction in a Siamese architecture, i.e. two networks with shared
weights and parameters are used. The output of these networks f1, f2 ∈ Rh×w×d is
forwarded to the cross-attention module. Here, the calculations are done once with f1 as
key input and f2 as query input as well as once with f2 as key input and f1 as query input.
The resulting outputs are concatenated along the channel axis and are forwarded to the
soft-attention module. The goal of this module is to identify features, which are significant
for the classification output. The soft-attention module uses 3D kernels for convolution,
which generates the output g ∈ Rh′×w′×k, where k is the number of kernels [SDCS20].
The authors use categorical Cross-Entropy Loss as well as Focal Loss as loss function
[SDCS20]. For the evaluation, the authors use segments from the CEDAR dataset, which
contain the word ”and”, as well as the whole dataset. The proposed methodology is evalu-
ated using F-1, Precision, Recall, FAR, FRR and accuracy as evaluation metrics [SDCS20].

Dey et al. [DDIT+17] propose the use of a convolutional Siamese network called SigNet
for off-line signature verification. The Siamese network uses two identical CNN archi-
tectures as backbone, which are trained to place the given input images containing a
signature in an embedding space, where signatures of the same author are placed close to
each other while signatures written by different authors are positioned further away from
each other. The CNN architecture used is taken from Krizhevsky et al [KSH12]. The two
CNNs share their parameters and weights and are joined by a Contrastive Loss function,
which uses the Euclidean distance. ReLU is used as activation function [DDIT+17]. The
overall architecture is shown in Figure 2.4. Using the Contrastive Loss, a threshold
must be determined to distinguish between genuine and forged signature pairs. The
authors determine the threshold by calculation of the maximum accuracy over all possible
threshold values using the true positive and true negative rates [DDIT+17]. The authors
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Figure 2.3: ResNet20 architecture as proposed by Rasoulzadeh and BabaAli [RB22].
Image courtesy of Rasoulzadeh and BabaAli [RB22].
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Figure 2.4: Architecture of SigNet as proposed by Dey et al [DDIT+17]. Image courtesy
of Dey et al [DDIT+17].

use the CEDAR, GPDS300, GPDS Synthetic Signature and BHSig260 signature datasets
and split them into open train and test sets using different split sizes. The created sets
are then adjusted to create the same amount of genuine and forged signature pairs for all
datasets. Additionally, the authors conduct a cross-dataset evaluation, where the SigNet
is trained on one dataset and the test set of another dataset is used for testing [DDIT+17].

Li et al. [LZL+19] propose the use of two bidirectional Recurrent Neural Networks
(RNNs) for signature verification of online acquired signatures. The first RNN, the Stroke
RNN, is used for feature extraction of the stroke information provided in a signature pair,
while the second RNN, which is called Signature RNN, uses the output from the Stroke
RNN to extract global features for the given signature pair. Both RNNs consist of two
LSTM layers. The output of the Stroke RNN consists of three digits, which represent
the probability of the signature pair being a skilled forgery, a random forgery and a
genuine pair, respectively. The overall dissimilarity between the signature pair is then
calculated as D = pSF +pRF −pG, where pSF is the probability of the pair being a skilled
forgery, pRF is the probability of a random forgery and pG is the probability of a genuine
signature pair [LZL+19]. The architecture is shown in Figure 2.5. The authors use the
BiosecureID, MCYT-100, SCUT-MMSIG and MOBISIG datasets, which contain online
signatures, for their evaluation. For preprocessing, the data is normalized using z-score.
Additionally, the signature data is divided into individual pieces at points where the pen
was lifted up, i.e. the pen pressure is 0. For the evaluation, three types of signature
pairs are created. The first pair contains signatures written by the same person, the
second pair contains one true and one forged signature and the third pair contains two
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Figure 2.5: Architecture of the methodology as proposed by Li et al [LZL+19]. Image
courtesy of Li et al [LZL+19].

genuine signatures taken from two randomly selected authors, which represents the case
of a random forgery. The EER is used as evaluation metric [LZL+19].

Cairang et al. [CZY+22] propose a methodology for signature verification. Their
framework consist of a Siamese network with Triplet Loss and Cross-Entropy Loss for
feature extraction and an Interference Layer Normalization Neck (ILNNeck) for an im-
proved generalization of the framework on different signatures [CZY+22]. The overall
architecture is shown in Figure 2.6. The feature extraction of the framework uses a CNN

Figure 2.6: Architecture of the methodology as proposed by Cairang et al [CZY+22].
Image courtesy of Cairang et al [CZY+22].

backbone with Instance Normalization (IN), while the ILNNeck uses a combination of
Cross-Entropy and Triplet Loss. IN is used as it is suited for cases where the input
contains fine-grained information, possibly on a pixel level, and improves the performance
between different datasets [CZY+22]. The structure of the ILNNeck is based on the Batch
Normalization Neck (BNNeck). However, the authors note that batch normalization
removes details in individual samples as it applies normalization over all samples in
the given batch. In contrast, Layer normalization (LN) is used to apply sample-wise
normalization. Finally, the loss is calculated as the sum of the Cross-Entropy and Triplet
Loss, where the Cross-Entropy Loss is scaled with a constant [CZY+22]. The authors
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evaluate their method on the CEDAR, BHSig-H and BHSig-B datasets as well as their
own dataset named MLSig, which contains signatures written in Chinese, English and
Tibetan. The performance is evaluated using single-dataset and cross-dataset evaluation.
The AUC and EER are used as evaluation metrics [CZY+22].
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CHAPTER 3
Methodology

This section presents the proposed methodology for the use of transparency techniques
on WI and WV neural networks. First, in Section 3.1, the neural networks to which the
transparency techniques are applied and evaluated on are defined. Two types of neural
networks have been selected. The first type is used for WI, while the second type is used
for WV. Additionally, the training procedure and configuration for the neural networks
are outlined. Then, the transparency techniques selected from the state of the art and
their use in the scope of this thesis are presented in Section 3.2. Finally, adjustments
made to the metrics used for the evaluation of the transparency techniques are described
in Section 3.3.

3.1 Neural Networks
In the scope of this thesis, neural networks are trained on the task of WI and WV. The
trained networks are used for the application of the transparency techniques and are
utilized to evaluate the functionality of the techniques. The networks used for WI and
WV are embedding networks. Therefore, the networks take an image as input and provide
an embedding vector as output. The architecture of the networks is selected based on
methodologies proposed in the state of the art as presented in Section 2.2. For the area
of WV, the state of the art is extended with methodologies for signature verification,
where the content of the text contained in the snippets to be compared is identical, which
is not necessarily the case for WV [Sch08].

3.1.1 Writer Identification Network
Three neural networks, namely ResNet50, ResNet20 and ResNet18, have been selected for
the experiments of this thesis. The selection of the ResNet50 is based on the Deep-TEN
architecture proposed by Wang et al. [WMC21], which uses a ResNet50 as feature
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Model Num. Parameters
ResNet18 11.4
ResNet20 0.4
ResNet34 21.5
ResNet50 23.9
ResNet101 42.8
ResNet152 58.5

Table 3.1: Training parameters for the ResNet architectures in millions. The number of
parameters for all ResNets except the ResNet20 are provided by Leong et al [LPLL20].

extractor. The ResNet20 is based on the architecture proposed by Rasoulzadeh and
BabaAli [RB22], where it is used for feature extraction and generation of an image
descriptor. These two methodologies are applied to the raw input images without the
need for additional information such as auxiliary features.

ResNet50 The ResNet50 network is used by the Deep-TEN architecture proposed
by Wang et al. [WMC21], where the network is used for feature extraction. Since the
feature extraction is of interest for the scope of this thesis as the transparency techniques
focus on the selection of features from the input image, the ResNet50 network is used as
WI neural network. It provides a 1000-dimensional embedding vector as output.

ResNet18 The ResNet18 model is selected based on the ResNet50 architecture. It is a
variant of the general ResNet architecture proposed by He et al. [HZRS16], which has
fewer parameters to train than the ResNet50 model and, therefore, finishes training faster
than the ResNet50 architecture [LPLL20]. Table 3.1 contains the number of parameters
for the ResNet variants. As can be seen, the ResNet18 architecture has the second
smallest number of parameters to train, with only the ResNet20 network containing
fewer parameters. Therefore, the ResNet18 model has been selected in addition to the
ResNet50 model for comparison. It provides a 1000-dimensional embedding vector as
output.

ResNet20 The methodology proposed by Rasoulzadeh and BabaAli [RB22] uses a
ResNet20 with a NetVLAD layer for WI. This architecture is complemented with batch
normalization layers, which are placed after each convolutional layer as this improves
performance. The model provides a 64-dimensional embedding vector as output.

3.1.2 Writer Verification Network
The architecture for the WV neural network is based on the architecture of SigNet
proposed by Dey et al. [DDIT+17] for the task of signature verification. The authors
suggest the use of a Siamese network, which uses two CNNs with shared parameters and
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weights as backbone. The CNNs are joined using a loss function, i.e. the Contrastive Loss.
For the scope of this thesis, the CNNs are replaced. Instead, the ResNet18, ResNet20
and ResNet50 networks are individually used as backbone.

3.1.3 Training
The training configurations are adjusted to achieve the best performance for the WI and
WV neural networks. These adjustments are described in this section. The networks
are trained using the CVL [KFDS13], Firemaker [BSV03] and ICDAR2013 [LGSP13]
datasets, which are described in detail in Chapter 4. Further experiments, which are
conducted to improve the implementation and training configuration for the WI and WV
networks, are described in the Appendix.

Loss function The WI networks are trained using a Triplet Loss with a margin of 0.3
and the Cosine Similarity as distance measurement. The WV networks are trained with a
Contrastive Loss using the Cosine Similarity. The Cosine Similarity is utilized as distance
measurement since it is also used for the quantitative evaluation of the transparency
techniques as described in Section 5.2.2.

Optimizer The WI and WV networks are trained with an Adam optimizer. The WI
networks use a learning rate of 0.01. For the WV networks, the learning rate is reduced
to 0.001 as this provides more stable results. Additionally, a scheduler as described in
the Appendix is used.

The input forwarded to the WI and WV networks has a size of 400px × 400px. The
ICDAR2013 dataset contains pages with a height of less than 400px. Therefore, for
this dataset, the input size is set to 200px × 200px. Since the authors of the ResNet20
architecture use an input size of 32px × 32px, the size of the GAP layer of the ResNet20
is adjusted to preserve the output dimension, i.e. a 64-dimensional embedding vector.
This is done by reducing the kernel size of the average pooling layer from 100 to 50.

The input images are first transformed to grayscale and then binarized using the Thresh-
old of Otsu method [Ots79]. Afterwards, the images are mapped to the range [-1;1]. The
WI and WV networks are trained using 4-fold cross-validation as described in Section
2.2.1. The networks are trained using random snippets from the train dataset. The train
dataset contains the full pages as elements. Therefore, one random snippet is taken from
each page within the dataset in each epoch. Snippets, which have less than 2% black
pixels, are discarded and another random snippet is sampled from the same page. This
is done to remove snippets which contain insufficient handwriting information for the
author identification. The threshold is determined empirically. After each epoch, the
performance is evaluated on the validation dataset, which contains full pages as well.
Therefore, each page is divided into a grid of snippets, with each snippet having a size of
400px × 400px. The page is padded with white pixels beforehand to avoid the creation
of snippets with smaller sizes. For the WI networks, the mAP is calculated, while for the
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WV networks, the accuracy is calculated. The embedding of a full page is calculated as
the mean of the embedding outputs calculated for the according snippets. The mAP is
then calculated for all pages for the WI networks. For the WV networks, the fraction of
snippets correctly classified as ”same author” and ”different author” is calculated. This is
done by creating two pairs of pages for each individual page, where the pages of one pair
are written by the same author and the page of the other pair are written by different
authors. The embedding outputs of the pages are compared using the Cosine Similarity
measurement. For the pair of pages written by the same author, the Cosine Similarity is
expected to be greater or equal to 0.5. For the pair of pages written by different authors,
the value is expected to be below this threshold. The accuracy is then calculated as the
fraction of pairs correctly classified. After the training, the mAP and accuracy for the
test sets are calculated as it is done for the validation sets using the trained model.

3.2 Transparency Techniques
The goal of the selected methodology is to visualize the contribution of the different areas
in an input image to the output of a neural network using transparency techniques. The
transparency techniques provide an encoding of the same size as the input image, where
the contribution of each area in an image is depicted.

Two transparency techniques are selected from the state of the art as described in
Section 2.1.3. Since the networks in this thesis are trained with a margin-based loss,
the transparency techniques have been selected from the state of the art for embedding
networks. The first technique provides pixel-level saliency maps and is proposed by Kobs
et al. [KSDH21]. An example for a saliency map generated by this technique is shown
in Figure 3.1. It shows the saliency map generated for a neural network trained for an
image classification task, which receives a bicycle image as input. The saliency map
highlights the contribution of the input image areas to the classification of the input
image. The second technique generates point-specific saliency maps and is proposed by
Zhu et al [ZYC21]. An example for the saliency maps generated by this technique is
shown in Figure 3.2. It shows the saliency maps generated by a face verification network,
which receives two different images of the same person as input. The overall saliency
maps then highlight the areas in the images which are considered similar. Additionally,
the point-specific saliency maps highlight similarities between a point in one image in
comparison to the other image.

The techniques have been selected due to their detailed visualization of the contri-
bution to the output embedding. The visualization provided by Kobs et al. [KSDH21]
produces an encoding by calculating the contribution on a pixel basis. This allows an
exact analysis of the significance of the input image areas, which is beneficial for images
containing scattered information such as handwritten text. The technique provided by
Zhu et al. [ZYC21] further enhances its visualization of the contribution by providing
information on similarities between two images. Additionally, it provides information on
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(a) Input Image (b) Generated Saliency Map

Figure 3.1: Saliency map generated by the transparency technique proposed by Kobs et
al. [KSDH21] for the given input image. The input image is taken from the SOP dataset
[OSXJS16].

the similarity between one point in an image and the overall comparison image. This
can be used for neural networks trained on WI and WV to detect similar patterns in
characters, where a point on a character is selected in one image and the visualization
provides information on areas with a similar pattern in the other image. Another advan-
tage of the selected methods in comparison to other state-of-the-art techniques is the
independence from auxiliary inputs. The selected techniques do not require additional
information such as image attributes for the contribution calculation but require the
trained model and input images only.

3.2.1 Pixel-Level Saliency Map
The first technique is based on the transparency technique proposed by Kobs et al.
[KSDH21]. Their technique provides a visualization at pixel level using a gradient-based
approach. Pixels are highlighted based on their contribution to the embedding output
of the underlying neural network. If a pixel is important for the embedding output, a
change of the pixel should lead to a significant change in the embedding output. The
saliency map is generated using the difference between an input image I and a base
image. The authors propose the use of an image containing black pixels as base image.
For this methodology, an image containing only white pixels is used as it represents a
white sheet of paper without information in the form of handwriting. An example of
the two image types is shown in Figure 3.3. For the generation of the saliency map, the
following gradients are calculated [KSDH21]:

s(I) = ∂d(xI , xbase)/∂I, (3.1)

where d() is a distance function for the two embedding vectors. For this methodology,
the Cosine Similarity is used as the underlying neural networks are trained with the
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(a) Input Image 1 (b) Input Image 2

(c) Overall Similarity Saliency Map

(d) Point-Specific Saliency Map

Figure 3.2: Saliency maps generated by the transparency technique proposed by Zhu et
al. [ZYC21] for the given input images. The overall saliency maps highlight similarities
between both images, while the point-specific saliency maps highlight similarities between
one image in comparison to one point in the other image (displayed as a red diamond).
The input images are taken from the LFW dataset [HRBLM07].

30



3.2. Transparency Techniques

(a) Input Image (b) Base Image

Figure 3.3: The input and base image for the pixel-wise saliency map generation.

Cosine Similarity as well. xI and xbase are the embeddings for image I and the base
image, respectively. A higher value for the gradients indicates a higher impact of the
according pixel value on the embedding output of the neural network. The generated map
is then normalized between 0 and 1, where 1 implies a high contribution and 0 implies
no contribution to the network output. In order to reduce the noise of the gradients,
the authors propose the use of the Smooth-Grad method by creating n image variants
by applying Gaussian Noise N to the input image. The resulting gradients are then
averaged to receive the final gradient [KSDH21]:

s′(I) = 1
n

n�
1

s(I + N). (3.2)

However, for the scope of this thesis, the Gaussian Noise is replaced by random deletion
of black pixels from the image since the input images are binarized. The value for n is
set to 4. An example of an input image and the applied noise is shown in Figure 3.4.

3.2.2 Point-Specific Saliency Map
The second transparency technique is based on the methodology proposed by Zhu et al.
[ZYC21]. This technique takes image pairs as input and creates a visualization, which
describes the areas of interest for the similarity between the images using activation
decomposition. The technique provides two types of saliency maps. The overall saliency
map displays which areas in the input images contribute towards the similarity between
the two images and is generated by decomposition of the similarity along the images.
The point-specific saliency map provides information on the similarity of one point, i.e.
one pixel, in one image to all areas in the other image by decomposition of the according
point along the other image.

For a CNN architecture with a GAP and FC layer without bias after the last con-
volutional layer, the method can be applied as follows [ZYC21]. The GAP layer is a

31



3. Methodology

(a) Input Image (b) Image with deletion of a ran-
dom amount of black pixels.

Figure 3.4: The original input image and the image with applied noise for the pixel-wise
saliency map calculation.

linear component which can be written together with the FC layer as

Sc =
�

k

wk,c(
1
z

�
i,j

Ai,j,k), (3.3)

where Sc is the score of class c before the softmax layer and wk,c denotes the weights
parameter of the k-th channel for class c for the FC layer. The number z is the
normalization term of the GAP layer and Ai,j,k is the output of the last convolutional
layer, i.e. its k-th feature map, at position (i, j). z can be calculated by the size of the
feature map, i.e. m · n where m and n are the first and second dimension of the matrix
A ϵ Rm×n×p, respectively. Equation 3.3 can be rewritten as [ZYC21]

Sc = 1
z

�
i,j

(
�

k

ωk,cAi,j,k), (3.4)

where �
k ωk,cAi,j,k is the decomposition of Sc along (i, j). The method extends this

formula for a comparison between two images q and r using their similarity by decom-
position along two points (i, j) of q and (x, y) of r, respectively. For this purpose, the
Cosine Similarity metric is used. The Cosine Similarity metric is defined as [ZYC21]

S = (eq · er)
|eq||er| , (3.5)
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where eq and er are the embeddings of the two images q and r, respectively, which are
generated by the underlying neural network. Equation 3.5 can be rewritten as [ZYC21]

S =

�
k

GAP (Aq
k)GAP (Ar

k)

|Eq||Er|
= 1

z

�
k

(
�
i,j

Aq
i,j,k

�
x,y

Ar
x,y,k)

= 1
z

�
i,j,x,y

(
�

k

Aq
i,j,kAr

x,y,k),

(3.6)

where Aq and Ar represent the feature maps of the last convolutional layers for q and
r. (i, j) is a point in q and (x, y) is a point in r. The number z is here calculated as
z = mq ·nq ·mr ·nr · |Eq| · |Er| for Aq ϵ Rmq×nq×pq and Ar ϵ Rmr×nr×pr . The point-specific
saliency map for the two points (i, j), (x, y) is then defined as �

k
Aq

i,j,kAr
x,y,k. The overall

saliency map for one image is calculated as �
i,j

(�
k

Aq
i,j,kAr

x,y,k), i.e., a summation over all

pixels for one image [ZYC21].

These formulations can be used to generalize the methodology for more complex architec-
tures [ZYC21]. Given a flattening layer for the feature output of the last convolutional
layer A ϵ Rm×n×p with the output of the flattening layer as A′ ϵ Rmnp, all following
linear components can be formulated as one linear transformation [ZYC21]:

g(A′) = W′A′ + B = Σi,jWi,jAi,j + B, (3.7)

where Wi,j is the weights matrix at position (i, j) and B is the bias term. Therefore,
Equation 3.6 can be written for this case as

Sz = gq(Aq) · gr(Ar)
= (

�
i,j

Wq
i,jAq

i,j + Bq) · (
�
x,y

Wr
x,yAr

x,y + Br). (3.8)

This equation can be formulated as

Sz =
�

i,j,x,y

(Wq
i,jAq

i,j) · (Wr
x,yAr

x,y)

+
�
i,j

(Wq
i,jAq

i,j · Br)

+
�
x,y

(Wr
x,yAr

x,y · Bq)

+Bq · Br,

(3.9)

where S is the Cosine Similarity metric and z is a normalization term. The point specific
map is then calculated as I(x, y) = (Wq

i,jAq
i,j) · (Wr

x,yAr
x,y), where (i, j) are the coordi-

nates of the selected point [ZYC21].
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Figure 3.5: Example of deletion and insertion scores calculated for a saliency map.

The authors showed in their experiments that the use of the bias term B in the equations
decreases the performance of their approach [ZYC21]. Therefore, for the scope of this
thesis, the bias term is removed for this technique.

3.3 Metrics
For the evaluation described in Chapter 5, the deletion and insertion scores, as described
in Section 2.1.1, have been adapted for use with the selected transparency techniques.
These metrics measure the change in similarity between a query and a retrieved image
when the retrieved image is altered based on its given saliency map [HVH22]. For use
with the selected transparency techniques, the query and retrieval images are the same
image. As the input images are binarized for the neural networks, the deletion and
insertion scores only affect black pixels, i.e. pixels, which are part of the handwriting.
Pixels deleted during the calculation of the score are set to white. This results in a more
realistic deletion as the pixels are set to the background colour and the handwriting
information is therefore progressively removed from the image. Additionally, the insertion
score uses a white image as the base, to which the pixels of the handwriting are gradually
added. The Cosine Similarity is used as measurement of similarity between the original
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and adjusted image, with the minimum similarity set to zero. An example for the deletion
and insertion scores is shown in Figure 3.5. The blue curve displays the change in
similarity for the actual saliency map, while the orange curve displays the change in
similarity for the random deletion and insertion of pixels. For this input image, the lines
diverge for the deletion score, with the similarity for the actual saliency map decreasing
quicker as the significant pixels are deleted first, therefore reducing the similarity between
the embedding outputs for the original and adjusted images more drastically. After
the deletion of approximately 90% of black pixels, the curves converge as the adjusted
images for both cases become more similar until all black pixels are deleted and the
adjusted images are both completely white. For the insertion score, a similar behaviour
is observable. Here, the curve of the actual saliency map displays a higher increase in
similarity than for the random insertion. After the insertion of approximately 80% of
black pixels, the cosine similarities of both cases become more similar as the adjusted
images become more similar to the original image. The change in the original image
during this process is shown in Figure 3.6 for the deletion metric and Figure 3.7 for the
insertion metric.

For the quantitative evaluation described in Section 5.2.2, the data is prepared as
described in Section 3.1.3, with the pages divided into a grid of snippets. Additionally,
snippets with less than 2% black pixels are discarded. For each snippet, the deletion and
insertion scores for the generated saliency maps are compared with the scores calculated
for a random deletion and insertion of pixels.
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(a) Removed pixel: 10%

(b) Removed pixel: 30%

(c) Removed pixel: 50%

(d) Removed pixel: 70%

(e) Removed pixel: 90%

Figure 3.6: Example of deletion progress according to the saliency map given in Figure
3.5 (left) and a random deletion (right).

36



3.3. Metrics

(a) Inserted pixel: 10%

(b) Inserted pixel: 30%

(c) Inserted pixel: 50%

(d) Inserted pixel: 70%

(e) Inserted pixel: 90%

Figure 3.7: Example of insertion progress according to the saliency map given in Figure
3.5 (left) and a random insertion (right).
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CHAPTER 4
Datasets

State-of-the-art datasets used in the context of WI and WV provide data on handwritten
text. Existing datasets can be split into two groups, offline and online handwritten
data. For the creation of online data, digital writing equipment such as a tablet is used.
The technology tracks temporal data such as pressure and location of the pen. For
offline data, only the handwriting itself is given as an image [CBMA15, Chr19]. This
thesis focuses on offline datasets. The existing datasets provide handwritten text in
multiple languages, including English, German, Greek, Dutch and Arabic. Moreover,
they contain contemporary as well as historical handwritten data. For example, the
ICDAR 2017 Historical-WI dataset contains writings created between the 13th and 20th
century [Chr19].

In the scope of this thesis, offline datasets containing contemporary handwriting are used
for the training and evaluation of WI and WV neural networks. For this purpose, the
CVL [KFDS13], the Firemaker [BSV03] and the ICDAR2013 [LGSP13] datasets have
been selected. All three datasets contain modern handwriting and are commonly used for
the training and evaluation of WI methodologies. Furthermore, the CVL and ICDAR2013
datasets provide text in two languages each, English and German as well as English and
Greek, respectively. All three datasets contain offline handwritten data. A summary of
the selected datasets and their characteristics will be presented in the following section.
The splits used for the datasets can be found online 1.

4.1 CVL
The CVL dataset [KFDS13] contains 1604 handwritten pages. 27 writers contributed
seven handwritten pages each, while 283 writers provided five pages. One page per author

1https://github.com/VCPY/dataset_split_cvl_firemaker_icdar2013, accessed 1 November 2023.
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is written in German, while the others are written in English. The text is copied from a
provided machine-printed text, which is taken from different English and German literary
texts. During the acquisition process, the writers were asked to use a ruled undersheet
to maintain a straight line for handwriting. The dataset contains full pages consisting
of machine-printed and handwritten text, as well as cropped versions containing only
the handwritten text [KFDS13]. An example of both the full and cropped version is
shown in Figure 4.1. For the purpose of this thesis, only the cropped versions of the

(a) The original page. (b) The cropped version of the page.

Figure 4.1: Examples of the handwritten pages taken from the CVL dataset [KFDS13].

samples are used. Additionally, the pages for the writer with ID 431 have been removed
from the dataset due to two of the pages being completely blank. The original dataset
provides a split into train- and test set, where the train set contains the pages of 27
writers. However, in order to have more data available for the training of the networks,
the dataset is split into two open sets, with both sets having 50% of the amount of unique
writers. Due to an overall uneven number of writers, the first set has one writer more.
Additionally, the number of pages in each set is uneven due to the random selection of
writers for the split and the uneven number of pages written by each person. The first
set is used as open train and validation set. The second set is used as test set.

4.2 Firemaker
The Firemaker dataset [BSV03] contains 1000 handwritten pages from 250 authors,
yielding four pages per author. Each page is written with a different characteristic: The
text of the first page was copied by the writers from a given machine-printed text. The
second page contains text written entirely in uppercase letters. The writers were asked
to forge their own handwriting for the third page. Finally, for the fourth page, the
writers were asked to describe a given comic in their own words [BSV03, HS20, WTB14].
The recording conditions for all writers are standardized, with all writers using the
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same writing equipment. The authors note that therefore differences in the handwriting
are unlikely to be caused by variations in the recording conditions but rather reflect
differences in handwriting styles [BSV03]. An example of four pages written by one writer
is shown in Figure 4.2. For this thesis, the pages of the dataset are cropped to remove

(a) Normal (b) Uppercase

(c) Forged (d) Free Text

Figure 4.2: Examples of the handwritten pages taken from the Firemaker dataset [BSV03].

the machine-printed information on the sheets. Similar to the CVL dataset, the dataset
is split in half to create an open train and an open test set. The authors of the dataset
removed the pages containing forged text and uppercase letters for their experiments.
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This is also done for the experiments in the scope of this thesis. The use of the dataset
in this thesis is described in more detail in Section 5.1.

4.3 ICDAR2013
The ICDAR2013 dataset [LGSP13] contains handwritten data used for benchmarking
the submitted methods of the ICDAR2013 Competition on Writer Identification. It
consists of 1000 pages written by 250 writers. Each writer copied four texts, where two
are written in English and two are written in Greek. The number of lines per page varies
between two and six lines, and the generated images are binarized [CBH+17, LGSP13].
An example of four pages written by one writer is shown in Figure 4.3. The authors of

Figure 4.3: Examples of the handwritten pages taken from the ICDAR2013 dataset
[LGSP13].

the dataset provide an official split of the data into train and test set, where the train set
contains 400 pages and the test set contains 1000 pages. However, in order to have the
same percental split into train and test set as used for the CVL dataset, the ICDAR2013
dataset is split equally into open train and test set.
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CHAPTER 5
Results and Discussions

The previous chapter introduced the methodology proposed for the use of transparency
techniques on WI and WV neural networks. This methodology is evaluated in this
chapter. First, an experiment, which is conducted on the underlying ResNet networks
to improve their performance, is introduced. The experiment explores the effect of
the hyperparameter configuration on the accuracy of the neural network for the CVL,
Firemaker and ICDAR2013 datasets. Afterwards, the transparency techniques and their
performances are evaluated using sanity checks, quantitative and qualitative evaluation
methods. Finally, the achieved results are compared and discussed.

5.1 Hyperparameter Configuration for ResNet Training
Initially, the selected WI ResNet architectures as described in Section 3.1.1 achieve a
higher performance on the CVL dataset compared to the Firemaker and ICDAR2013
datasets. For example, the ResNet18 architecture achieves a mAP of 96.09% on the
CVL test dataset, but a lower mAP of 40.67% on the Firemaker and 31.37% on the
ICDAR2013 test set after 100 epochs. To improve the performance, a comparison of
different hyperparameter configurations for the training for a WI task is conducted with
both datasets. For each configuration, four models are trained, with the dataset split
into open train and test set as described in Chapter 4. 4-fold cross-validation is used for
the training of these models. The results shown in this section display the average test
mAP of all four models on the test set.

The evaluation is done with a ResNet18 model using Triplet Loss with a margin of
0.1 and the Cosine Similarity as distance measurement. The model uses an Adam
Optimizer with a learning rate of 0.01. The models are trained for 100 epochs with input
images with a size of 400px × 400px. The loss function and image size are based on the
training process suggested by Wang et al [WMC21].
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5. Results and Discussions

Pages mAP
2 59.40
3 35.66
4 17.10

Table 5.1: Performance of the ResNet18 model on the test set of the reduced versions of
the Firemaker dataset. Values are given in percent.

For the training and evaluation of the models, the Firemaker and ICDAR2013 datasets
have been adjusted as follows to achieve a better performance.

Firemaker For the Firemaker dataset, the number of pages per writer is reduced
by removing forged and uppercase pages from the dataset. This is done in accordance
to Bulacu et al. [BSV03], who removed these two pages for their experiments as well
[HS20, WTB14]. The model achieves a mAP of 59.40% on this adjusted dataset as shown
in Table 5.1. Here, the model is trained and evaluated with four, three or two pages.
For the case of three pages, the forged page has been removed from the dataset, while
for two pages, the page containing only uppercase letters has been removed additionally.
The table shows that the model performs best when only two pages per writer are used.
Therefore, the dataset is adjusted, and the pages containing forged text and uppercase
letters are removed.

ICDAR2013 The ICDAR2013 dataset contains pages written in English and Greek.
However, the CVL dataset contains multiple pages per author written in English as
well, while neither the CVL nor the Firemaker dataset contain pages written in Greek.
Therefore, to provide a dataset focused on a different language, the dataset is adjusted
by removing the English pages for the remaining training runs and evaluation.

For the hyperparameter search, the batch size and the number of random samples
taken from each page per epoch are varied. Additionally, the model is initialized with
and without pretrained weights. For the training runs, if not stated otherwise, the batch
size is set to 128, the number of random samples per page is set to one and the model is
not initialized with pretrained weights.

Batch Size The value chosen for the batch size does impact the accuracy of the model
for both datasets. The value is set to 32, 64 and 128 for different training runs. Table 5.2
shows the mAP value for the test sets of both datasets. The test mAP diverges for the
models trained with different batch sizes. The model trained on the ICDAR2013 dataset
performs best with a batch size of 32, while the model trained on the Firemaker dataset
performs best with a batch size of 128.
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5.1. Hyperparameter Configuration for ResNet Training

Batch Size Firemaker ICDAR2013
32 52.42 49.48
64 57.03 47.27
128 58.39 40.62

Table 5.2: Performance of the ResNet18 model trained with different batch sizes. The
table displays the average mAP score of the four models for the test set. Values are given
in percent.

Weights Firemaker ICDAR2013
Pretrained 76.56 66.90

Not Pretrained 54.86 37.71

Table 5.3: Performance of the ResNet18 model initialized with and without pretrained
weights. The table displays the average mAP score for the four trained models for the
test set. Values are given in percent.

Pretrained Weights The performance of the model also increases when the model is
initialized with pretrained weights provided by PyTorch [PGM+19]. This is shown in
Table 5.3. Here, a comparison of two models, where one is initialized with pretrained
weights, while the other model is trained without pretrained weights, can be seen. The
average mAP score shows that for both datasets, the models initialized with pretrained
weights perform better than the models without pretrained weights. For the Firemaker
dataset, the mAP score increases by 22 percentage points, while the score increases by
29 percentage points for the ICDAR2013 dataset.

Number of Samples The performance of the model can be increased by raising the
number of random samples taken from one page per epoch during training. This does
not affect the number of samples taken from one page for the validation and test set.
Table 5.4 shows the difference in accuracy when increasing the number of samples per
page. Here, the achieved mAP score increases with an increased number of samples, with
the exception of seven samples for the Firemaker dataset, where the accuracy slightly
decreases in comparison to five samples, and five samples for the ICDAR2013 dataset,
where the accuracy decreases by four percentage points in comparison to three samples.

Overall, the highest performance for the Firemaker dataset is achieved by a pretrained
model, which is trained with a batch size of 128 and nine snippets per page. This model
achieves a test mAP of 88.77%. For the ICDAR2013 dataset, the highest performance is
achieved by a pretrained model, which is trained with a batch size of 32 and nine samples
per page. This model achieves a test mAP of 80.96%. These configurations are used for
the training of the WI and WV networks and subsequently used for the evaluation of the
transparency techniques.
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Num Samples Firemaker ICDAR2013
1 60.50 39.62
3 61.36 48.33
5 69.88 44.49
7 68.29 51.29
9 72.74 56.21

Table 5.4: Performance of the ResNet18 model trained with different numbers of samples.
The table displays the average mAP score of the four models for the test set. Values are
given in percent.

5.2 Evaluation of Transparency Techniques
In this section, the evaluation of the transparency techniques is described. First, a
sanity check with a ResNet18 model and different types of weights is performed, which is
described in Section 5.2.1. Then, the evaluation metrics for the quantitative evaluation
and the results of the evaluation process are described in Section 5.2.2. Afterwards, a
qualitative evaluation is conducted by comparing highlights of the occurrences of the
same characters. The results are presented in Section 5.2.3. Finally, the results of the
evaluation are discussed, and the applicability of the selected transparency techniques on
neural networks trained on WI and WV assessed, which is described in Section 5.2.4.

5.2.1 Sanity Check
In order to validate the responsiveness of the created saliency maps to the trained model,
a sanity check, as proposed by Arras et al. [AOS22], is conducted. This evaluation allows
to analyse if the explanations created by a transparency technique correlate with the
parameters of a model and differ between a trained and an untrained model. The results
of this analysis do not provide any information on the correctness of the visualization
but are considered an additional verification [AOS22].

The sanity check is conducted for both transparency techniques using a ResNet18
model. The saliency maps are calculated for an untrained model, a model initialized
with pretrained weights provided by PyTorch [PGM+19] and a model trained on WI.
The results for the pixel-wise saliency maps are shown in Figure 5.1. Here, the calculated
saliency maps for the given input image are displayed. As can be seen, the saliency maps
differ for each model type. The untrained model does not focus on certain patterns in the
image but creates its output based on random pixels and image areas. The pretrained
model, in contrast, focuses on the contour of the handwriting. The trained WI model
uses the pixels of the handwriting for the creation of its output. This shows that the
pixel-wise saliency map technique is responsive to the parameters of the model. The
result for the point-specific saliency maps are shown in Figure 5.2. The differences in the
saliency maps show the responsiveness of the technique to the parameters of the model.
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5.2. Evaluation of Transparency Techniques

(a) Input image (b) Saliency map for
untrained model

(c) Saliency map for
pretrained model

(d) Saliency map for
model trained on WI

Figure 5.1: Pixel-wise saliency maps calculated for three ResNet18 models with different
weights.

(a) Input image (b) Saliency map for
untrained model

(c) Saliency map for
pretrained model

(d) Saliency map for
model trained on WI

Figure 5.2: Point-specific saliency maps calculated for three ResNet18 models with
different weights.

The saliency map for the untrained model places the highest significance at the middle
of the image. The pretrained model focuses more on certain areas of the handwritten
texts. In contrast, the trained WI model focuses on specific and, in comparison to the
pretrained model, small areas of the handwritten text.

These experiments show that both selected transparency techniques are responsive to
the parameters of the underlying neural network and create corresponding visualizations.

5.2.2 Quantitative Evaluation
For the quantitative evaluation of the transparency techniques, the insertion and deletion
metrics as described in Section 3.3 are used. For the evaluation, the underlying neural
networks are trained with the train sets of the CVL, Firemaker and ICDAR2013 datasets
as described in Section 3.1.3. Additionally, the training configurations and adjustments
to the datasets, as described in Section 5.1, are applied. However, the neural networks for
this evaluation are not initialized with pretrained weights, although the experiments show
that the neural network performance on the Firemaker and ICDAR2013 datasets can be
improved by using pretrained weights. The sanity checks described in Section 5.2.1 show
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WI (mAP) WV (accuracy)

CVL
ResNet18 86.41 90.48
ResNet20 56.43 67.58
ResNet50 82.41 88.52

Firemaker
ResNet18 70.73 93.4
ResNet20 39.66 68.4
ResNet50 57.64 86.0

ICDAR2013
ResNet18 62.08 91.57
ResNet20 47.10 76.14
ResNet50 53.98 90.43

Table 5.5: Scores achieved on the test sets of the CVL, Firemaker and ICDAR2013
datasets by the model with the highest test mAP in the case of WI neural networks and
highest accuracy in the case of WV neural networks. Values are given in percent.

that the model with pretrained weights highlights regions around the handwriting present
in the image, which is displayed in Figure 5.1c. Models trained on WI and initialized
with these weights consider the regions around the handwriting as well. Due to the
characteristic of the insertion and deletion score, namely the insertion and deletion of
black pixels, pixels which are part of the background are not considered. Therefore, the
saliency maps created when using pretrained weights are not suitable for these evaluation
metrics. In order to create saliency maps, which can be evaluated with these metrics,
the neural networks are trained without pretrained weights. The training procedure uses
4-fold cross-validation. For the evaluation, the model with the highest test mAP in the
case of WI neural networks and the highest accuracy in the case of WV neural networks
is used. The test mAP scores and accuracies achieved by the neural networks are shown
in Table 5.5. The results show that all WV neural networks perform better than their
WI equivalents. Moreover, the WI and WV ResNet18 networks provide the best results
for all datasets, while the WI and WV ResNet20 networks provide the lowest results for
all datasets.

The results of the quantitative evaluation for the deletion and insertion score calcu-
lations are shown in Table 5.6 and Table 5.7, which display the percentage of snippets for
which the deletion and insertion scores are better in comparison to a random insertion
and deletion, i.e. where the AUC value for the saliency map is lower for the deletion score
and higher for the insertion score. The transparency technique as proposed by Zhu et
al. [ZYC21] provides two types of saliency maps as described in Section 3.2.2. However,
the point-specific saliency map requires a manual selection of a point in the image. A
manual selection is not feasible due to the large amount of snippets. Therefore, only the
pixel-level saliency map proposed by Kobs et al. [KSDH21] and the overall saliency map
proposed by Zhu et al. [ZYC21] is used for the quantitative evaluation.
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5.2. Evaluation of Transparency Techniques

Pixel-Level Point-Specific
Del. Ins. Del. Ins.

CVL
ResNet18 89.66 95.27 25.57 97.66
ResNet20 12.87 95.00 8.61 100.00
ResNet50 55.57 98.30 8.30 98.76

Firemaker
ResNet18 97.23 100.00 8.30 99.85
ResNet20 15.64 95.69 22.77 99.77
ResNet50 51.33 89.29 21.42 99.25

ICDAR2013
ResNet18 82.31 99.88 8.01 99.64
ResNet20 15.08 99.64 7.22 100.00
ResNet50 71.97 99.68 7.30 99.84

Table 5.6: Percentage of calculated deletion and insertion scores, where the saliency map
performs better than random deletion and insertion, i.e. the deletion AUC score is lower
and the insertion AUC score is higher for the saliency map. Values are calculated for
neural networks trained on WI.

WI networks The scores in Table 5.6 show the quantitative evaluation results for the
WI neural networks. They indicate that the performance of the pixel-level saliency maps
is dependent on the underlying neural network architecture. This can be seen for the
deletion scores of all three networks. While the mAP scores of the three networks vary for
all three datasets, the deletion scores for the pixel-level saliency maps do not show this
amount of variation. For example, the ResNet50 network achieved a mAP of 82.41% on
the CVL dataset and mAP of 57.64% on the Firemaker dataset. However, the pixel-level
deletion score percentages for both datasets are similar, with 55.57% for the CVL dataset
and 51.33% on the Firemaker dataset. The percentages for the insertion scores for both
types of saliency maps are high for the WI neural networks, with all but one value being
above 90%. This suggests that the neural networks are able to correctly classify a snippet
of handwritten text with little information, i.e. when only a few pixels or areas are
inserted into the image and therefore available to the neural network. The results also
show that the pixel-level saliency maps perform better than the point-specific saliency
maps regarding the deletion score for the WI neural networks. One possible explanation
is that the deletion of individual pixels alters important handwriting information, which
the network uses to identify the author, more drastically than the deletion of multiple
pixels from one area of text, where the network can use other unaltered areas with less
significance within the snippet to identify the author.

WV networks The scores in Table 5.7 display the quantitative evaluation results
for the WV neural networks. Similar to the WI neural networks, a higher performance
on the insertion scores than on the deletion scores is displayed for both saliency maps.
All insertion score percentages except two are above 90%. In contrast, all deletion
score percentages except one fall below the threshold of 70%. This also indicates that
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5. Results and Discussions

Pixel-Level Point-Specific
Del. Ins. Del. Ins.

CVL
ResNet18 67.38 92.28 18.10 97.12
ResNet20 11.33 84.26 34.50 100.00
ResNet50 61.08 96.74 28.61 89.83

Firemaker
ResNet18 57.46 92.19 8.36 99.36
ResNet20 43.63 98.91 15.28 99.98
ResNet50 69.15 97.67 13.93 99.02

ICDAR2013
ResNet18 75.64 99.68 11.61 99.64
ResNet20 6.24 98.30 10.26 100.00
ResNet50 51.13 95.54 16.27 99.84

Table 5.7: Percentage of calculated deletion and insertion scores, where the saliency map
performs better than random deletion and insertion, i.e. the deletion AUC score is lower
and the insertion AUC score is higher for the saliency map. Values are calculated for
neural networks trained on WV.

the neural networks are able to classify a snippet of handwritten text with only little
information available. The results for the WV neural networks show a similar behaviour
to the WI neural networks. They indicate that the deletion of individual pixels alters
the characteristic of the handwritten text more than the point-specific saliency maps,
therefore resulting in a lower deletion score percentage for the point-specific saliency
maps. In contrast, the deletion of patches for the point-specific saliency maps removes
parts of the information, while other handwritten text, which contains information as
well, remains unchanged and can be used for the creation of the embedding output of the
neural network. In contrast to the WI neural networks, the performance of the pixel-level
saliency maps on the WV neural networks does not display a pattern regarding the
underlying neural network. The deletion score percentage for the ResNet20 network is
the lowest for all three datasets. However, the insertion score percentage achieved by the
ResNet20 is the highest for the Firemaker and ICDAR2013 datasets.

A comparison of the results shows a variation in the results for neural network models
trained on WI and WV. For example, the performance of the ResNet18 model shows
a difference in the achieved score for the two types of neural networks. While the WI
network achieved 89.66%, 97.23% and 82.31% on the CVL, Firemaker and ICDAR2013
datasets, respectively, the WV neural network achieved a lower score for all three datasets,
namely 67.38% on the CVL, 57.46% on the Firemaker and 75.64% on the ICDAR2013
dataset. This indicates an influence of the loss function and training procedure on the
creation of the saliency map, as both types of networks use the same architectures as
backbones but differ in their loss functions and training procedures.
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5.2. Evaluation of Transparency Techniques

5.2.3 Qualitative Evaluation

Forensic experts consider characteristics such as spelling idiosyncrasies, ink deposition
of a handwriting and cultural influences to determine the author of a handwritten text
[Sch08]. Additionally, these experts apply their individual approach by using their
personal experience, making the identification of an author a subjective task [Sch08].
Schomaker [Sch08] notes that this knowledge "[...] is partly perceptual and is difficult to
verbalize, partly cognitive and explainable to others: colleagues in the forensic domain,
criminal investigators, lawyers and judges." ([Sch08], p.12).

This aggravates the comparison of explanations created by a transparency technique with
the analysis done by a human expert. Christlein [Chr19] notes that the identification pro-
cess can include a comparison of occurrences of the same character at different positions
in the handwritten text. Therefore, this section analyses the saliency maps on similarities
in highlightings of the same character in the same and different image snippets. The
intensity of a given highlight is only meaningful in the scope of its snippet. The selected
transparency techniques normalize the calculated values of the saliency maps, leading
to the existence of at least one area with the highest possible significance highlight in
each snippet. Therefore, the highlights do not provide information on absolute values
but display a relative significance between areas of the same snippet.

Two images with handwritten text from two different authors are selected from the
test set of the CVL dataset for the evaluation of the saliency maps generated by WI and
WV neural networks, since all three neural networks achieved a high performance on this
dataset as shown in Table 5.5. The selected pages are shown in Figures 5.3a and 5.3b.
For the page in Figure 5.3a, the WI ResNet18 and ResNet50 networks return the other
four pages written by the same author on top of the ranking, i.e. the page has an average
precision of 1, while the ResNet20 ranks three pages of the same author at the top and
the page has an average precision of 0.9167. For the page in Figure 5.3b, the retrieval
does not work, as the pages written by the same author are ranked outside the top 150
pages. For the WI ResNet18, ResNet20 and ResNet50 networks, the page has an average
precision of 0.0408, 0.0246 and 0.0413, respectively. For the WV ResNet18, ResNet20
and ResNet50 networks, the other pages written by the same author as the first page are
returned as matches. For the second page, the ResNet20 returns three pages as matches
and one page as a non-match. However, for the ResNet18 and ResNet50 networks, all
other pages for the second page are returned as non-match. The neural networks have
been trained with the CVL dataset beforehand, as described in Section 3.1.3. Therefore,
the same models are used as in Section 5.2.2. The saliency maps for the selected images
are then calculated for the ResNet18 and ResNet20 networks, since the saliency maps for
the ResNet50 network are similar to the saliency maps for the ResNet18 network.
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(a)

(b)

Figure 5.3: Pages taken from the test set of the CVL dataset [KFDS13] as described in
Section 4.1 for the evaluation of the transparency techniques.

Pixel-Wise Saliency Map

Examples for the saliency maps generated for the WI networks for the first and second
page are shown in Figure 5.4. The saliency maps for the first page display similar
highlighting patterns for multiple occurrences of the same character. An example is
the character ”y”. Its occurrences are displayed in Figure 5.5. The highlighting pattern
differs from network to network but stays consistent for the saliency maps created for one
neural network type. For the ResNet18, the right side of the arch as well as the bottom
part display a peak highlighting in all cases, with the left side of the arch highlighted
less in comparison. For the ResNet20, the upper arch of the character is displayed with
a peak highlight, while the bottom arch is highlighted less in comparison. A similar
highlighting pattern is also present for the character ”f”. Examples of occurrences are
shown in Figure 5.6. For this character, the highlighting pattern is similar for both
networks. The highlighting peaks in the area where the vertical and horizontal lines cross.
Additionally, the highlight changes when the horizontal line is positioned close to the
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(a) ResNet18 First Page (b) ResNet20 First Page

(c) ResNet18 Second Page (d) ResNet20 Second Page

Figure 5.4: Pixel-wise saliency maps for the handwritten text of the first and second
page for the WI ResNet18 and ResNet20 networks.

(a) ResNet18 First Page (b) ResNet20 First Page

(c) ResNet18 Second Page (d) ResNet20 Second Page

Figure 5.5: Occurrences of the character ”y” in the saliency maps for the first and second
page generated for the WI networks.
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(a) ResNet18 First Page (b) ResNet20 First Page

(c) ResNet18 Second Page (d) ResNet20 Second Page

Figure 5.6: Occurrences of the character ”f” in the saliency maps generated for the WI
networks for the first and second page.

(a) ResNet18 (b) ResNet20

Figure 5.7: Occurrences of the character ”p” in the saliency maps generated for the WI
networks for the first page.

bottom part of the vertical line, where the bottom part of the character is highlighted as
well. However, both networks also display deviating highlightings for their occurrences
of characters such as ”p”, which occurs twice on the page. The occurrences are shown
in Figure 5.7. For the ResNet18, the first occurrence displays the highest significance
on the bottom left of the circle and the bottom of the vertical line, while the second
occurrence displays the peak highlightings at the top right of the circle and the bottom
of the vertical line. For the ResNet20, the first occurrence is highlighted at the top and
bottom right of the circle, while the second occurrence is highlighted on the left of the
circle.

In contrast to the first page, the saliency maps for the second page display large differences
in their highlighting patterns for multiple occurrences of the same character. For example,
the character ”f” does not display a similar highlighting, which is shown in Figure 5.6.
For the ResNet18 and ResNet20, the highlights differ for each occurrence. Similarities in
highlighting, however, are present for the character ”y” as shown in Figure 5.5 and the
character sequence ”he” for the ResNet18 as shown in Figure 5.8, where the connection
between the characters is highlighted in combination with the right part of the arch of
”h”. However, for the ResNet20, the highlighting for the same character sequence differs
for the occurrences on the page.

Examples for the saliency maps generated for the WV networks for the first and second
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(a) ResNet18

(b) ResNet20

Figure 5.8: Occurrences of the character sequence ”he” in the saliency maps generated
for the WI networks for the second page.

page are shown in Figure 5.9. For both WV networks, the saliency maps display scattered

(a) ResNet18 First Page (b) ResNet20 First Page

(c) ResNet18 Second Page (d) ResNet20 Second Page

Figure 5.9: Pixel-wise saliency maps for the handwritten text of the first and second
page on the WV ResNet18 and ResNet20 neural networks.

highlights, with the saliency maps for the ResNet18 displaying distributed intensities
between the characters of the handwritten text. Additionally, the highlighting patterns
for characters differ between the networks trained on WI and the networks trained on
WV. For example, the WI ResNet18 network highlights the crossing of the lines of the
character ”f” with high significance for the first page, while the WV ResNet18 networks
places high significance on the bottom of the vertical line. Examples of occurrences are
shown in Figure 5.10.
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(a) WI ResNet18 (b) WV ResNet18

Figure 5.10: Occurrences of the character ”f” in the saliency maps generated for the WI
and WV ResNet18 networks for the first page.

(a) WI ResNet20 (b) WV ResNet20

Figure 5.11: Occurrences of the character ”i” in the saliency maps generated for the WI
and WV ResNet20 networks for the second page.

The saliency maps generated for the second page for the WV ResNet20 network differ
from the saliency maps generated for the WI ResNet20 network. For example, the WV
network places a high intensity highlight on the dot of the character ”i”. This, however,
is not present for the WI network, where the dot of the character is displayed with the
lowest significance in the snippet. Examples are shown in Figure 5.11.

Overall, the saliency maps display similarities in the highlighting of characters for
the saliency maps of one network, but deviating highlightings for saliency maps generated
from different networks. This indicates that the networks take different areas of the char-
acters into account when identifying the author of the handwritten text. A comparison of
highlights between the saliency maps of Figure 5.3a and Figure 5.3b shows that the maps
for the snippets of Figure 5.3a contain more single areas with high intensity in comparison
to the snippets in Figure 5.3b, where multiple areas and characters are displayed with
high intensity. This indicates that the snippets of the second page do not have salient
characteristics, which the neural networks can used to identify the author. Instead, all the
available information is used to determine the output of the neural network. Moreover,
the saliency maps for the first page contain more consistent highlighting patterns for the
characters, while the character highlightings vary more in saliency maps for the second
page.

Comparing the generated saliency maps of the two networks shows that overlapping areas
with high intensity occur for the networks especially in snippets with few characters.
However, for snippets with multiple characters, i.e. where the snippets contain a word
with more than five characters, the highlightings differ from network to network. This
indicates that the networks focus on different aspects of the handwritten text if multiple
characters and, therefore, more information is present in the snippet.
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The noisy highlights displayed by the saliency maps generated for the WV networks
indicate an influence of the loss selected for the underlying neural network, since the WV
are trained with the Contrastive Loss and the WI networks are trained with the Triplet
Margin Loss.

Point-Specific Saliency Map

Examples for the point-specific saliency maps generated for the WI networks for the
first and second page are shown in Figure 5.12. The saliency maps for the ResNet20

(a) ResNet18 First Page (b) ResNet20 First Page

(c) ResNet18 Second Page (d) ResNet20 Second Page

Figure 5.12: Point-specific saliency maps for the handwritten text of the first and second
page on the WI ResNet18 and ResNet20 neural networks.

display a similar highlighting pattern for the character ”f” for the first page. The peak
highlighting for this character is placed at the centre of the character, where the vertical
and horizontal lines cross. However, for the second page, no highlighting pattern emerges.
Examples for the highlights are shown in Figure 5.13. The saliency maps for the ResNet20
network display a similar highlighting pattern for the character ”d” as well, where the
circular area is displayed with a peak highlight for the first page. For the second page, a
similar highlighting pattern emerges, where the area between the circle and the vertical
line is highlighted. This, however, is not the case for the saliency maps for the ResNet18
network, where no highlighting pattern emerges for this character. Examples for the
occurrences in the saliency maps are shown in Figure 5.14.

Examples for the point-specific saliency maps generated for the WV networks for the
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(a) ResNet18 First Page (b) ResNet20 First Page

(c) ResNet18 Second Page (d) ResNet20 Second Page

Figure 5.13: Occurrences of the character ”f” in the saliency maps generated for the WI
networks for the first and second page.

(a) ResNet18 First Page (b) ResNet20 First Page

(c) ResNet18 Second Page (d) ResNet20 Second Page

Figure 5.14: Occurrences of the character ”d” in the saliency maps generated for the WI
networks for the first and second page.

first and second page are shown in Figure 5.15. Both networks place peak highlights at
different locations than the WI networks. For example, the WI ResNet18 network places
peak highlights for the first page on the character sequences ”ffer”, ”nd” and ”ar”, which
is shown in Figure 5.12a, while the WV ResNet18 network places one peak highlight on
the character sequence ”th” as shown in Figure 5.15a. The saliency maps for the first
page for the ResNet18 display multiple occurrences of the character ”o” with the same
highlighting pattern, where a peak highlight is placed at the bottom left of the character.
However, this pattern is not displayed for all occurrences of this character. The ResNet20
network also displays a highlighting pattern for the same character, where one end of the
line, which constructs the character, is highlighted. Examples are shown in Figure 5.16.

Overall, the point-specific saliency maps for the ResNet20 network display similari-
ties in highlightings for the same character, however, the saliency maps for the ResNet18
network contain highlighting patterns with large deviations between the occurrences.
Additionally, the exact position of a highlight is difficult to determine for this network,
as it covers large areas of the page and, in some cases, overlaps multiple characters. This
aggravates the allocation of a highlight to a certain character. In contrast, the ResNet20
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(a) ResNet18 First Page (b) ResNet20 First Page

(c) ResNet18 Second Page (d) ResNet20 Second Page

Figure 5.15: Point-specific saliency maps for the handwritten text of the first and second
page for the WV ResNet18 and ResNet20 neural networks.

(a) ResNet18 (b) ResNet20

Figure 5.16: Occurrences of the character ”o” in the saliency maps generated for the WV
networks for the first page.

network displays concise highlighting areas, which are located closely to handwritten text
and can thus be assigned to a character. This shows the influence the feature map size of
the last convolutional layer has on the accuracy of the generated highlighting regarding
its allocation, as the feature maps for the ResNet20 network are significantly larger than
the feature maps for the ResNet18 network. In multiple cases for the ResNet18 network,
the peak highlight is not placed on top of a character but in the vicinity of them, such as
below the character. This indicates that the area around the characters is also analyzed
by the neural network.

Point-to-Image Comparison

The point-specific saliency map technique, as described in Section 3.2.2, provides a
second type of saliency map, where a point in an image can be selected for an analysis
of its similarity to a second image. For this section, the analysis is conducted between
a point in an image snippet and a second snippet taken from another page written
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by the same author as the first snippet. A ResNet18 model is used as the underlying
neural network. One snippet is selected from each page as shown in Figures 5.3a and 5.3b.

The saliency maps generated for the snippets taken from two pages written by the
first author are shown in Figure 5.17. For the first snippet, a point on the character ”e”

(a) (b) (c) (d)

Figure 5.17: Point-specific saliency maps for the first author with a point selected within
one snippet and a comparison to the overall other image. The selected points are displayed
as red diamonds.

has been selected. A peak highlight is correctly placed on an occurrence of the same
character within the character sequence ”their”. The highlight with the second-highest
significance is also correctly placed on another occurrence of this character in the sequence
”ther”. However, the third-highest significance is placed on the character sequence ”fig”,
where the character does not occur. Additionally, another occurrence of the character in
the character sequence ”the” is highlighted with weak intensity. For the second snippet,
the point has been placed on the character ”e” as well. Here, a peak highlight is positioned
below an occurrence of the same character in the character sequence ”when”. The second
and third-highest significance values, however, are assigned to the characters ”a” and
”m” within the character sequence ”sam”. It is noteworthy, however, that the right part
of the character ”a”, resembles the characteristics of the character ”e”. This similarity
is shown in Figure 5.18. Three other occurrences of the character ”e” in the sequences

(a) (b)

Figure 5.18: Character parts taken from the page shown in Figure 5.3a. The left snippet
displays the right part of the character ”a” while the right snippet displays an occurrence
of the character ”e”.

”we”, ”he” and ”older” are shown with a weak-intensity highlight.

The saliency maps generated for the snippets taken from two pages written by the
second author are shown in Figure 5.19. For the first snippet, a point at the bottom
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(a) (b) (c) (d)

Figure 5.19: Point-specific saliency maps for the second author with a point selected
within one snippet and a comparison to the overall other image. The selected points are
displayed as red diamonds.

of the character ”o” has been selected. The second snippet contains two occurrences
of this character, however, they are not highlighted with a peak highlight. Instead,
the character sequence ”edges” is highlighted strongly with a peak below the second
occurrence of the character ”e”. Additionally, strong highlights are placed in the middle
of the character sequence ”Alas” and below the second occurrence of the character ”c” in
the character sequence ”correct”. Both characters, ”e” as well as ”c”, contain a round
bottom part, similar to the character ”o”. However, a similar characteristic is present for
the character ”a”, which is minimally highlighted in the saliency map. For the second
snippet, a point at the bottom of the character ”o” has been selected as well. Here, the
saliency map displays a peak highlight below the character sequence ”en”, which is part
of the sequence ”generall”. Another peak highlight is placed below the character ”u” in
the sequence ”our”. The third strongest highlight is displayed below the character ”e”
in the sequence ”one”. For all three cases, the highlighted characters display a round
bottom part, similar to the selected character ”o”. However, the five actual occurrences
of the character ”o” are not displayed with peak highlights, with two being shown with a
medium-intensity highlight. In comparison to the saliency maps for the first page, the
highlights for the saliency maps of the second page are more distributed and overlap
multiple characters, which aggravates the allocation of the highlights to a certain character.

The saliency maps display characteristics that indicate a comparison of patterns in
characters executed by the underlying neural network. These patterns are not restricted
to certain characters, as has been shown for the characters ”e” and ”o”, where other
characters with similar features are highlighted strongly as well. However, the actual
occurrences of the same character are not reliably highlighted, with multiple occurrences
being weakly highlighted. This shows that the point-specific saliency map does display
similar patterns and features but does not select all occurrences of characters with the
same features.
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5.2.4 Discussion

The pixel-wise saliency maps frequently display similar highlightings for multiple occur-
rences of the same character. The point-specific saliency maps, however, do not display
similar highlightings in a reliable frequency. Additionally, the position of a peak highlight
moves around in the vicinity of a character for this type of saliency map. The pixel-wise
saliency maps are able to display more precise values regarding the significance of an
area in an image, since the values are calculated for each pixel individually. In contrast,
the point-specific saliency maps are calculated based on the feature maps of the last
convolutional layer and are upscaled to the size of the input image, with interpolation
used to create values for each individual pixel. This results in inaccuracies regarding the
exact position of a highlight and the values for the areas between the originally calculated
values. As a consequence, the allocation of a highlight to a certain character or character
part is possible for the pixel-wise saliency maps but is aggravated for the point-specific
saliency maps. This is also supported by the quantitative evaluation results, which show
that the pixel-level saliency maps perform better than the point-specific saliency maps for
the deletion score. The difference in performance indicates that the pixel-wise saliency
maps provide more accurately allocated highlightings than the point-specific saliency
maps. Moreover, due to the positioning of the highlights next to the characters for the
point-specific saliency maps, the deletion and insertion scores cannot use the overall
information of the highlight as it is not fully placed on black pixels. This indicates one
reason why the deletion score is worse for the point-specific saliency maps than for the
pixel-level saliency maps, where the highlights are allocated on the handwritten text
itself. The upscaling of the calculated values to create a point-specific saliency map
indicates that this transparency technique performs well when only little information
in concise locations is present. This suggests that the use of the point-specific saliency
maps with character-based input images, i.e. images containing only one handwritten
character, could improve the level of detail the point-specific saliency maps can provide.

A disadvantage of both types of maps is the normalization of the calculated values
for the creation of the visualization. This results in incomparability of peak highlights
between saliency maps created by the same technique, since the actual value of signifi-
cance might be different. Instead, the intensity of the highlights can be compared within
one snippet only.

The qualitative evaluation results indicate that the neural networks analyse occurrences
of the same character, similar to a human investigator. Additionally, the neural networks
consider few characters with high significance if multiple characters and, therefore, more
information is available, indicating a focus on salient characteristics. In contrast, if few
characters are available, more characters and areas in the image are considered for the
creation of an embedding output.

As described in Section 5.2.2, the quantitative evaluation results suggest a robustness of
the underlying neural networks to the amount of information available. For both types
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of neural networks, WI and WV, the insertion score for the point-specific saliency maps
is higher or equal and the deletion score lower or equal in comparison to the pixel-wise
saliency maps. An exception for the deletion score is present for the WI ResNet20 model
on the Firemaker dataset and the WV ResNet20 model on the CVL and ICDAR2013
datasets. For the insertion score, an exception is present for the ResNet50 WV model on
the CVL dataset. This indicates that the underlying neural network is able to correctly
classify an input image if batches of the handwritten text are removed or inserted, while
problems occur when the handwritten text is altered by a few pixels in comparison to
the original handwritten text.

Overall, the similar highlightings for different occurrences of the same character for
the pixel-wise saliency maps and the similar processing of the input data to a human
investigator shows that this transparency technique can support the analysis of a hand-
written text by an investigator by highlighting similar patterns in characters. This
transparency technique suggests locations containing interesting information for the
identification process and, therefore, facilitates the analysis process. Further, due to the
calculation of significance on a pixel-based level, this transparency technique is suitable for
neural networks, which take handwritten text as input and contain significant information
at multiple locations in the input image. However, the point-specific saliency maps display
non-intuitive highlightings regarding the allocation of a highlight to a certain character
and are not suitable for the support of the analysis process. The characteristics of the
generated saliency maps indicate that the use of these maps for neural networks, which
take images containing compact information such as natural images, is more suitable
than for neural networks, which take handwritten text images as input.
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CHAPTER 6
Conclusion

6.1 Summary
In this thesis, the applicability of transparency techniques on neural networks trained on
WI and WV is evaluated. DNNs are used in many areas in the computer vision domain,
where they have become the state of the art for such tasks [SBM+17, ZTLT21]. This
includes the area of WI and WV, where the DNNs are used to identify the author of a
handwritten text. This is, for example, used in forensic evaluations, where handwritten
texts are compared for similarities [KFS18]. The topic of machine learning interpretability
has become a focus topic in the past five years [SBM+17]. The proposed transparency
techniques, which provide insight into the decision process of a neural network, are used
to remove bias from the training data, detect artefacts present in the training process and
to increase the trust and reliability of such systems in safety-critical areas [SM19, ZTLT21].

This thesis is a first step into the topic of transparency for neural networks trained
on WI and WV. The goal is to gain insight into the decision process of the underlying
neural network and support investigators with a visualization, which provides informa-
tion on similarities in the given handwritten text. For this purpose, two transparency
techniques, namely the pixel-wise saliency maps proposed by Kobs et al. [KSDH21]
and the point-specific saliency maps proposed by Zhu et al. [ZYC21], are selected from
the state of the art for embedding neural networks. Additionally, three neural network
architectures, namely ResNet18, ResNet20 and ResNet50, are selected based on the state
of the art for WI and WV. The neural networks are trained and evaluated using the CVL,
Firemaker and ICDAR2013 datasets. The transparency techniques are quantitatively
evaluated using an adjusted version of the deletion and insertion score as proposed by Hu
et al [HVH22]. For the qualitative evaluation, the saliency maps calculated for two pages
taken from the CVL dataset are compared for similarities in highlightings for multiple
occurrences of the same characters.
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The results of the evaluation show large differences in the performance of the dele-
tion and insertion score. The deletion scores are comparably lower than the insertion
scores. Moreover, the deletion scores for the pixel-wise saliency maps are overall bet-
ter in comparison to the deletion scores of the point-specific maps. This suggests a
robustness of the underlying neural network to the amount of available information
but indicates problems occurring in the neural network when the available handwriting
information is altered by removing pixels. Moreover, the qualitative evaluation shows
that the point-specific saliency maps contain highlights which are vague regarding the
allocation to a certain character, while the allocation is simpler for the pixel-wise saliency
maps. Similarities in highlightings for the same character at different occurrences are
present for the pixel-wise saliency maps, while the highlights show great variations for
the point-specific saliency maps. Overall, the pixel-wise saliency maps are suitable for the
support of forensic experts, while the point-specific saliency maps display non-intuitive
highlightings regarding the location of a highlight and are therefore not suitable.

In Section 1.1, three research questions are defined. The first question is defined as ”What
characteristics are selected by a neural network to identify the author of a handwritten
text?”. The evaluation results described in Section 5.2 have shown that the trained
neural networks select parts of characters or whole characters from the given handwritten
text, depending on the amount of information available in the input snippet and the
characteristics of the given characters. Additionally, areas such as connections between
successive characters are considered if they contain significant information. Moreover, the
sanity checks in Section 5.2.1 and the qualitative evaluation of the point-specific saliency
maps show that neural networks also consider the area surrounding the characters, such as
contours and areas inbetween characters. The second question is defined as ”How do the
visualizations of feature contribution differ from text areas, which experts consider when
identifying the author of a handwritten text?”. The results of the qualitative evaluation
as described in Section 5.2.3 show that similar highlights are present in the pixel-wise
saliency maps for different occurrences of the same character. As Christlein [Chr19] notes,
the identification process of a forensic expert can include the comparison of characteristics
of the same characters at different positions in a given handwritten text. Comparing this
procedure to the highlightings created by the pixel-wise saliency maps shows a similarity
in the approach to the identification of an author, where the underlying neural network
considers similar areas and features of a character to identify the author. Finally, the
third question is defined as ”How well does a transparency technique perform on neural
networks, which take handwritten text images as input?”. The quantitative evaluation
shows that both of the selected transparency techniques display issues, as the deletion
scores are generally lower than the insertion scores. Especially for the point-specific
saliency maps, the deletion scores are considerably low, with none of the WI and WV
neural networks achieving a score above 35%. This indicates that the transparency
techniques have performance problems with neural networks, which take handwritten
text images as input.

66



6.2. Future Work

6.2 Future Work
This thesis provides a first step towards the explainability of WI and WV neural networks.
Therefore, the proposed approach and evaluation can be further enhanced to receive
more insight into this topic.

The quantitative evaluation uses the deletion and insertion of black pixels in the input
images for the neural networks. This adjustment was made due to the binarization of
the input images and, therefore, the non-existence of grey values, which were originally
proposed by Hu et al. [HVH22] for this evaluation metric. However, the restriction of
the deletion onto black pixels in the input image restricts the use of all information the
saliency maps provide. This becomes visible in the sanity checks described in Section 5.2.1.
Here, the saliency maps produced by pretrained neural networks use the information
contained on the contour of the handwritten text, which includes underlying white pixels.
This information, however, is not used during the deletion and insertion score as it lies
outside the boundaries of the handwritten characters. In future work, a quantitative
evaluation method suitable for cases, where white and black pixels should be considered,
could be explored.

Further work could include the evaluation of changes in the distance between embeddings
of the snippets of one page and how the removal of information from the according image
snippets influences this distance. This would provide a more detailed insight into the
importance of certain areas in the image and the behaviour of different types of snippets
regarding the amount of information they contain. This would additionally allow to
determine the effect different characters and their characteristics have on the embedding
output. Moreover, unique characteristics such as a crossed-out text and their impact on
the embedding output could be explored.

The qualitative evaluation of the transparency techniques on WI neural networks dis-
played similar highlightings for characters in different image snippets. However, due
to the normalization of the values to generate the saliency map, the intensity of the
highlightings may vary, depending on other information available in the snippet and its
significance for the determination of the authorship. Therefore, experiments could be
conducted on the similarity of highlightings for characters for a character-based neural
network, i.e. a network which takes input images containing a single character. Due
to the absence of other information, the intensity of the highlighting can be taken into
account for the evaluation in this case.
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Appendix

ResNet Architecture
In order to verify the implementation of the chosen ResNet models and to identify
possible problems in the implementation, a comparison of the chosen implementation
with existing implementations is conducted. For this purpose, the ResNet50 neural
network is compared with a ResNet50 neural network provided by Phan [Pha21]. Their
architecture and training process achieves a test accuracy of 93.65% on the Cifar-10
dataset [Pha21]. For this purpose, the performances of the two implementations are
compared by adjusting different parameters of the training process and observing the
changes in the achieved accuracies. The results are shown in Table 1. The split into
training and test set provided by the authors of the dataset is used for all evaluations.
The weights of the models are not initialized and the models are trained for 100 Epochs.

The Architecture column displays which ResNet50 architecture is used. ”Base” refers to
the PyTorch implementation of the ResNet50 architecture, while ”Phan” refers to the
implementation provided by Phan [Pha21]. The Output column refers to the dimension
of the output of the network. The Transformation column notes if transformations
have been applied to the input images during training. The transformations consist of

Architecture Output Transform. Scheduler Eval. Loss Acc.
Base 1 × 1000 No No Class Cross-Entropy 76.84%
Base 1 × 1000 Yes No Class Cross-Entropy 72.17%
Base 1 × 10 Yes No Class Cross-Entropy 77.37%
Base 1 × 10 Yes Yes Class Cross-Entropy 89.23%
Base 1 × 1000 Yes Yes Class Cross-Entropy 89.56%
Base 1 × 1000 Yes Yes KNN Triplet-Margin 86.49%
Base 1 × 1000 Yes No KNN Triplet-Margin 74.59%
Phan 1 × 1000 Yes Yes KNN Triplet-Margin 91.01%
Phan 1 × 1000 Yes No KNN Triplet-Margin 80.20%

Table 1: Models and parameters chosen for the evaluation of the ResNet50 performance
on the Cifar-10 dataset.
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1 SGD:
2 dampening: 0
3 lr: 0.01
4 maximize: False
5 momentum: 0.9
6 nesterov: True
7 weight_decay: 0.01

Listing 1: Parameters used for the SGD optimizer.

random cropping with padding set to 4, random horizontal flip and normalization by
mean and standard deviation for the training data. These transformations are selected
based on the implementation provided by Phan [Pha21], where the same configuration
for the transformations is used. For the test data, only normalization is applied. The
Scheduler column displays if a scheduler has been used for the learning rate of the
training. The scheduler implementation of the Linear Warmup Cosine Annealing by
Phan [Pha21] is used for all runs with scheduler. Two types of evaluations are displayed
in the Evaluation column. The first evaluation, the class evaluation, compares the output
of the neural network with the true class label. In order to calculate the accuracy, the
percentage of images labelled correctly by the network is taken. For this evaluation, the
Cross-Entropy Loss is used, which is a commonly used loss function for classification
tasks [GRLGPC20]. The second evaluation uses a KNN algorithm. The images of the
test dataset are forwarded to the network, which provides an embedding vector for each
image. For each query image in the test set, the three nearest neighbours are calculated
and the most often occurring label of these neighbours is taken as the label for the query
image. The test accuracy is again calculated as the percentage of correctly labelled
images. For this evaluation, the Triplet Margin Loss with a margin of 0.1 is used. The
SGD is used as optimizer. If not stated otherwise, the parameters for the optimizer are
set as seen in Listing 1. For each evaluation, the test accuracy is given in the table.

The results show that the scheduler improves the achieved test accuracy. The accuracy of
a neural network architecture can be improved by 12 percentage points when a scheduler
is used. Therefore, the scheduler is selected for the training process of the WI and WV
neural networks. Additionally, the architecture proposed by Phan performs better on the
dataset than the PyTorch implementation, where an increase of five percentage points
can be observed. However, in order to use an architecture comparable to the ResNet50
architectures used in the literature, the PyTorch implementation is further used in this
thesis.
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