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Abstract
In this thesis, we deal with an optimal dividend payout from a surplus
process regulated by a Brownian motion with drift with the additional re-
striction of ratcheting - the dividend rate must remain constant or increase
but cannot decrease. An additional feature in this model is reinsurance.
The aim is to create a dividend strategy that maximizes the expected to-
tal amount of discounted dividend payments until the potential ruin of a
company. We focus on the model with only two dividend rates, where the
optimality is achieved by using threshold strategies.
We also provide some examples to illustrate the optimality findings for the
models with and without reinsurance.
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Kurzfassunng
In dieser Arbeit beschäftigen wir uns mit einer optimalen Dividendenaus-
zahlung aus einem Überschussprozess, der durch eine Brownsche Bewegung
mit Drift reguliert wird, mit der zusätzlichen Einschränkung des Ratche-
tings - die Dividendenzahlungsrate kann niemals reduziert werden. Ein
weiteres Merkmal in diesem Modell ist die Rückversicherung. Das Ziel
besteht nun darin, eine Dividendenstrategie zu finden, um die erwartete
Summe der diskontierten Dividendenzahlungen bis zum möglichen Ruin ei-
nes Unternehmens zu maximieren. Wir konzentrieren uns auf das Modell
mit nur zwei Dividendenraten, bei dem die Optimalität durch die Verwen-
dung von Threshold Strategien erreicht wird.
Außerdem geben wir einige Beispiele an, um die Ergebnisse zur Optima-
lität für die Modelle mit und ohne Rückversicherung zu illustrieren.
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Nomenclature
(Ω, F ,P) Complete probability space

(Ft)t>0 Filtration

c̄ The highest dividend rate

η Safety loading

Φ(s, Xu
s , us) Running costs or utility

ΠS
x,c Set of all admissible dividend ratcheting strategies

Ψ(T, XT ) Terminal costs of utility

τ Ruin time

b Retention level

C = (Ct)t>0 Dividend ratcheting strategy

Ct The dividend payout rate at time t

d Premium income

J(x; C) Expected payoff of strategy C

P Probability

S Set of dividend rates

V S
(x,c) Value function

W Brownian motion

XC
t Controlled surplus process
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Xt Surplus process

X0 = x Initial surplus

Yi Claim

z Threshold function

z(c1) Threshold at dividend rate level c1
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1 Introduction

In actuarial science and quantitative finance, determining the best way
to distribute dividends to shareholders from a surplus process is a well-
known challenge. Such a problem can be formally described in a variety
of ways in terms of objective functions and constraints, depending on risk
preferences, boundary conditions and the specific circumstances. In 1957
De Finetti in [Fin57] first proposed to measure the performance of an in-
surance portfolio by the expected discounted sum of dividends payments
until the time of ruin instead of the measure by the probability of ruin.
Since then many studies have been written on maximizing projected dis-
counted dividends, including modeling the total surplus of an insurance
firm using a Brownian motion, a compound Poisson process, or a general
Levy process with an infinite or finite time horizon.
Jeanblanc-Picqué and Shiryaev [M J95], along with Asmussen and Taksar
[AT97], proposed a constrained dividend rate, meaning that the dividends
paid per unit time should not exceed an upper limit. They demonstrate
that the optimal dividend strategy under this condition is now a ”gener-
alized barrier strategy” referred to as a threshold strategy. In accordance
with this approach, dividends are consistently paid at a constant rate
when the adjusted surplus exceeds the threshold l, and no dividends are
disbursed when the adjusted surplus falls below l.
In [HM22] was demonstrated that the value function represents the unique
viscosity solution of a two-dimensional HJB equation. Furthermore, they
established that it can be closely approximated through threshold strate-
gies for a finite number of potential dividend rates. In this thesis we deal
with the general ratcheting strategy, a dividend method created by Al-
brecher in [HB18] in which the dividend rate would not decrease over time
but would instead rise if the underlying process reached a certain level
and would then remain there until the point of ruin. The difference from
the existing literature ([HM22]) lies in our approach, which assumes only
two dividend rates and factors in the existence of reinsurance within the
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insurance company.
The remaining sections of this thesis are structured as follows: We start by
presenting fundamental concepts from stochastic control theory. Section
3 focuses on defining reinsurance terminologies essential for this thesis.
Section 4 presents the optimal dividend strategy. The subsequent sec-
tion 5 demonstrates numerical examples. For those interested, the R code
employed for these examples is available in Section 7.
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2 Stochastic control theory
The upcoming chapter is based on Professor Peter Grandits’s ”Stochastic
Control Theory” lecture at Technical University Vienna and [Xue]. In this
chapter, we will attempt to briefly explain the subject and goal of stochas-
tic control theory. Stochastic control theory focuses on optimizing dynamic
systems modeled through state processes. By utilizing external control in
the form of a controlled process, the aim is to achieve an optimization goal
defined by an objective functional.

2.1 The stochastic control problem
Let (Ω, F ,P) be a complete probability space and F is a σ-algebra. Let’s
set a time horizon T > 0 and let W = (Wt)t∈(0,T ) be a d-dimensional
standard Brownian motion. The following components are necessary to
describe the control problem:

• The control process u = (ut)t∈[0,T ] is a progressively measurable
stochastic process taking values in U ⊂ Rd.

• The state process X = (Xt)t∈[0,T ] is defined by a stochastic differen-
tial equation (or diffusion equation) in the form:

dXt = a(t, Xt, ut)dt + σ(t, Xt, ut)dWt (2.1)

with X0 = x, where a(·, ·, ·) : [0, T ] × Rn × U → Rn and σ(·, ·, ·) :
[0, T ] × Rn × U → Rn×d are Borel-measurable functions. b(·, ·, ·)
represents the drift coefficient, and σ(·, ·, ·) represents the diffusion
coefficient of the diffusion process. Here, the notation Xt symbolizes
the dependence of the state process on the control process u.

• The objective functional J(t, x, u) is given by:

J(t, x, u) = E
� T

t
Φ(s, Xu

s , us)ds + Ψ(T, XT ) (2.2)
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where Φ(s, Xu
s , us) denotes the running costs or utility, and Ψ(T, XT )

signifies the terminal costs of utility.

• The set of admissible control processes A(t, x) ⊆ (us)s∈[t,T ] for (t, x) ∈
[0, T ] consists of progressively measurable processes that have a unique
strong solution on [t, T ] according to 2.1 and for which 2.2 is well-
defined.

• The value function of the optimization problem is defined as:

V (t, x) = sup
u∈A(t,x)

J(t, x, u)

The objective now is to compute the value V (0, x0) for a given initial value
x0 and to determine an optimal control process u∗ such that the objective
functional is maximized, hence satisfying V (0, x0) = J(0, x0, u∗).

In solving stochastic control problems, the method used is dynamic pro-
gramming, rooted in the Bellman principle, devised by mathematician
Richard Bellman. This principle breaks down an optimization problem
into smaller, similar sub-problems, whose solutions are then synthesized
to form the overall solution. This approach yields the Hamilton-Jacobi-
Bellman equation (HJB equation), a partial differential equation whose
solution yields the optimum [R L88]
To derive the HJB (Hamilton-Jacobi-Bellman) equation, we utilize the
Bellman principle. This principle states that behaving optimally within
the interval [t, ti] and also acting optimally after t leads to a global opti-
mum. The Bellman principle is formulated as follows:

V (t, x) = sup
u∈A(t,x)

E[
� t1

t
Φ(s, Xs, u)ds + V (t1, Xt1)] (2.3)

We assume that the value function is sufficiently smooth, i.e., V (t, x) ∈
C1,2. Applying the Itô formula to V (t1, Xt1) gives:

V (t1, Xu
t1

) = V (t, x) +
� t1

t
(Vt(s, Xu

s ) + b(s, Xu
s , us)DxV (s, Xu

s )+
1
2tr(a(s, Xu

s , us)DxxV (s, Xu
s )))ds +

� t1

t
DxV (s, Xu

s , us)dWs

13



Next, substituting V (t, X) into 2.3 and assuming that� t1

t
Vx(s, Xu

s )σ(s, Xu
s , us)dWs

is a martingale for t1 > t, and therefore has an expected value of zero, we
get:

V (t, x) = sup
u∈A(t,x)

Et,x[
� t1

t
Φ(s, Xs, u) + V (t, x)+

� t1

t
Vt(s, Xu

s )+b(s, Xu
s , us)DxV (s, Xu

s )+1
2tr(a(s, Xu

s , us)DxxV (s, Xu
s )))ds

One divides by (t1 − t) and takes the limit as t1 approaches t, assuming
permissible interchanges. Then, we obtain the HJB equation:

0 = sup
u∈U

{Φ(t, x, u) + Vt(t, x) + b(t, x, u)DxV (t, x)+

1
2tr(a(s, Xu

s , us)DxxV (s, Xu
s ))}

With

LuV (t, x) := Vt(t, x) + b(t, x, u)DxV (t, x) + 1
2tr(a(t, x, u)DxxV (t, x))

a simplified representation of the HJB equation follows:

0 = sup
u∈U

{Φ(t, x, u) + LuV (t, x)} (2.4)

To determine an optimal control process u∗, the following procedure is
followed:

1. Determine the maximum u = û(t, x) in 2.4 . If this exists, then it is
dependent on Vt, Vx, and Vxx, hence
û(t, x) = ũ(t, x, Vt(t, x), Vx(t, x), Vxx(t, x)).

2. Substitute the u from step 1 into 2.4, which yields a partial differ-
ential equation for V (·, ·) with the boundary condition V (T, x) =
Ψ(T, x). Solving this boundary value problem provides potential
candidates for the value function of the optimization problem.
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3 Reinsurance
The considerations in this chapter are based on [Car83], [Car13] and
[Kil91]. We introduce now concepts which are frequently used in this
thesis.

3.1 Definition of reinsurance
The shortest explanation of reinsurance can be found in [Kil91] who sees
reinsurance as the insurance of an insurance company. Kiln explicitly
points out that this does not include the insurance of the insurer’s prop-
erty, but only the underwriting business for sharing the liability assumed
by an insurer.
Reinsurance, sometimes also known as cession, is distinct from other forms
of insurance in three main ways:

1. In reinsurance, two insurance companies make a deal, which is different
from normal insurance where it’s usually just one person or company and
an insurer. In reinsurance, one insurer is the reinsurer and the other is
the reinsured, also called the cedant or ceding company. Reinsurers can
also pass on the risk they’ve taken, called retrocession. Then, the original
ceding company becomes the retrocedent, and the reinsurer becomes the
retrocessionaire.
2. In regular insurance, what is being protected — like a person, property,
or something you expect to gain — can face harm or loss. The insurance
company gives direct protection for these risks. Then, if part of that risk
moves from the main insurer to the reinsurer, the reinsurer starts being
responsible for paying some of the claim, but only after the main insurer
has paid a part of it first.
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3. In insurance, there’s a basic rule called the indemnity principle. It
means that when something bad happens, the insured person gets money
to cover the real financial loss, not more. But some regular insurance plans
don’t always stick to this rule. For example, life insurance might pay a set
amount when something specific happens, like death, no matter the real
loss.
But when it comes to reinsurers, they always follow this rule. They only
pay a part of the money needed. The primary insurer is responsible for a
certain percentage of the payment. This way, the insured person gets the
right amount of money to cover their actual financial loss.

3.2 The role of reinsurance
There are various reasons why insurance companies fail. Some, like being
inefficient or not charging enough, happen in other industries too. But
the most common reason is when unexpected claim costs rise, which is
the biggest expense for the insurance industry. Reinsurance mainly pro-
tects against these kinds of failures. At first, reinsurance was meant to
help insurance companies deal with really big losses that could hurt their
ability to handle claims. But as time went on, it started covering fluctu-
ations in the overall amount of claims across their whole set of policies.
Dr. F. L. Tuma described in [Tum33] that the fundamental aim of reinsur-
ance is purely technical, involving the reduction of risks that an insurance
company has assumed. R.L.Carter in [Car83] mentions that reinsurance
availability offers additional advantages. He also summarizes the roles of
reinsurance:

• The primary functions:
– to safeguard insurers from underwriting losses that might com-

promise their solvency;
– to stabilize underwriting outcomes;
– to enhance an insurer’s flexibility in terms of the types and sizes

of risks and the volume of business he can underwrite;
– to further divide the risk of loss.

• Due to the expansion of the reinsurance industry, prominent rein-
surance companies and brokers are able to provide various secondary
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services such as insurance underwriting, claims management, admin-
istrative support, and technical assistance.

• ”Reinsurance is both a risk management and a financing decision”
[Pla05]. It is the best method of risk sharing among risk-takers,
working as a key tool for managing risks. When insurers buy rein-
surance, it is like any regular company deciding to get insurance in
the first place. Buying reinsurance specifically lowers the minimum
capital requirement as a financing tool.

3.3 Forms of reinsurance
The following section is primarily based on [Car13]. Additional reference
literature includes [Dum17],[Pfe99], and [Mar14]. There are several ways
to categorize reinsurance.

• Type of business
– Active reinsurance: refers to a situation where the reinsurer

takes an active role in selecting and underwriting risks. In this
type of reinsurance, the reinsurer has more control and involve-
ment in choosing the risks they wish to cover. They actively
participate in decision-making regarding the risks they want to
reinsure.

– Passive reinsurance: occurs when the primary insurer decides
which risks to cede to the reinsurer. In this scenario, the rein-
surer accepts risks that the primary insurer chooses to trans-
fer without actively participating in the selection process. The
reinsurer plays a more passive role and accepts risks as offered
by the primary insurer.

• Technical form
– Proportional reinsurance happens when the reinsurer takes on a

predetermined percentage of a loss. Payments made to the pri-
mary insurer are determined by an agreed-upon sharing ratio.
It’s crucial to understand that not only losses but also liability
and premiums are divided based on the agreed percentage in
this type of reinsurance.
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– Non-proportional or excess reinsurance involves the reinsurer
covering a portion of the loss only when a specific threshold,
known as the priority, is surpassed. In this type of reinsurance,
there is no proportional distribution of the loss. Multiple non-
proportional reinsurance contracts can be arranged for the same
risk. This approach enables reinsurers to accurately anticipate
the maximum claim amount that will be covered.

• Legal form
– Facultative reinsurance works by the reinsurer evaluating each

risk individually before deciding to take it on. It’s commonly
used for high-risk situations that could really affect the main in-
surer. With facultative reinsurance, the ceding company always
looks for the right insurers for coverage in these cases.

– Compulsory reinsurance differs from covering individual high-
level risks by insuring a set of risks within a defined range.
The primary insurer is required to pass on all business falling
within this range to the reinsurer, who must provide reinsurance
without the choice to refuse. Here, the principle of good faith
becomes crucial because the reinsurer isn’t aware of the specific
individual risks being transferred.

Since we’re using proportional reinsurance in this thesis, let’s quickly talk
about what it really means. ”Quota share” and ”Surplus share” reinsur-
ance are the two most popular types of proportional reinsurance.
The quota share contract is a simple form of reinsurance. Here, the rein-
surer agrees to cover a set percentage of every risk the main insurance
company takes on. They share both the premiums and the losses accord-
ingly. The reinsurer gets the same percentage of all the premiums, minus
a set commission. It is straightforward and helps keep costs low for the
main insurer. However, there are downsides. The reinsurer ends up taking
on risks that the main insurer could handle on its own because the main
insurer can’t assess these risks.
The proportionate sharing of premiums and losses characterizes both sur-
plus share and quota share reinsurance. The fundamental distinctions
between the two are as follows:

• In surplus treaties, the reinsurer only assumes responsibility for the
part of a risk that surpasses its own retention limit.
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• Quota share reinsurance is applicable to any insurance category,
while surplus treaties are limited to property and other insurance
classes where the insurer’s maximum potential liability is defined as
a specified sum insured or policy limit.
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4 Optimal dividend strategy in a
Brownian model

The content of this chapter mainly follows the book ”Stochastic Control
in Insurance” [Sch08] and the papers ”Optimal Ratcheting of Dividends
in a Brownian Risk Model” [HM22] and ”Optimality results for dividend
problems in insurance” [AT09]. In this chapter, we aim to determine the
optimal dividend strategy for an insurance company where the claims are
reinsured by constant proportional reinsurance. The objective is to max-
imize dividend payouts until ruin occurs. We will determine the optimal
strategy for a pair of dividend rates, demonstrating that a threshold strat-
egy represents the most advantageous approach.

4.1 Model
We’re examining a diffusion approximation of the classical risk model (de-
tailed in [Sch08], appendix D), where claims are reinsured by proportional
reinsurance with a retention level b. The premium income rate is denoted
by d = (1 + η)λµ , follows the expected value principle with a safety load-
ing η > 0. Here, E[Xt] amounts to η times the expected outflow within
a unit interval. For a claim Yi, the cedent pays bYi while the reinsurer
pays (1 − b)Yi. The premium rate for reinsurance is (1 + θ)(1 − b)λµ, and
for the insurer, it’s d = (b(1 + θ) − (θ − η))λµ. Utilizing the diffusion
approximation, we get for the post-reinsurance surplus:

x + (bθ − (θ − η))λµt + b
�

λµ2Wt

Here, W represents a standard Brownian motion. To prevent the problem
from having a trivial solution, we assume θ > η. For simplification, we
denote λµ = 1 and σ =

√
λµ2. The company’s surplus process is expressed

as:
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Xb
t = x + (bθ − (θ − η))t + σbWt.

In a complete probability space defined by (Ω, F , (Ft)t>0, P), a company
utilizes a portion of its surplus to pay dividends to shareholders at rates
within a subset S of the interval [0, c̄], where 0 ≤ c̄ < S represents the
highest allowed dividend rate. The dividend payout rate at time t is de-
noted by Ct. A dividend ratcheting strategy C = (Ct)t>0 is defined based
on an initial surplus X0 = x and a minimum dividend rate c ∈ S at
t = 0. A strategy is considered admissible if it is non-decreasing, right-
continuous, adapted to the filtration (Ft)t>0, and satisfies Ct ∈ S for all t.
The controlled surplus process can be represented as:

Xb,C
t = Xb

t −
� t

0
Csds (4.1)

We define ΠS
x,c as the collection of all admissible dividend ratcheting strate-

gies, where x ≥ 0 represents the initial surplus, and c ∈ S denotes the
minimum initial dividend rate. For a given C ∈ ΠS

x , we define:

J(x; C) = E
�� τ

0
e−qsCsds



where q > 0 and τ = inf{t ≥ 0 : XC
t < 0} stands for the ruin time. Thus,

for any initial surplus x ≥ 0 and initial dividend rate c, our objective is to
maximize

V S(x, c) = sup
C∈ΠS

x,c

J(x; C)

This represents the value function. As the company immediately goes to
ruin if its initial capital is zero, it’s important to clarify that V S(0, c) = 0
for all c ∈ S.

Remark 1. [HM22] Without the ratcheting constraint, the dividend opti-
mization problem was thoroughly investigated in the published works (see,
e.g., Shreve, Lehoczky, and Gaver [SG84], Asmussen and Taksar [AT97],
and Gerber and Shiu [GS04]). This nonratcheting problem is one-dimensional
in contrast to the ratcheting optimization problem. If VNR(x, c) represents
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the optimal value function, then V S(x, c) ≤ VNR(x, c) holds true for all
x ≥ 0. The function VNR is increasing, concave, twice continuously dif-
ferentiable with VNR(0, c) = 0 and limx→∞ VNR(x, c) = c

q . Therefore, it
satisfies the Lipschitz condition with the Lipschitz constant V ′

NR(0, c).

Now, we gather some boundedness and monotonicity properties of the
optimal value function of the dividend optimization problem with the
ratcheting constraint. We’ll restrict S to just two elements, specifically, c1
and c2, where c1 < c2 and c2 < c.

Proposition 1. The value function V S(x, c) is bounded by c/q, nonde-
creasing in x, and nonincreasing in c.

Proof. Firstly, we derive the boundedness result from the fact that the
discounted value of paying the maximum rate c̄ or in our case for S =
{c1, c2} up to infinity is c2

q .
Secondly, for c1 < c2 we have ΠS

x,c2
⊂ΠS

x,c1
and this proves non-increasing

in c.
To show that the optimal value function is non-decreasing in x we will
define similarly to [EK23] the strategy C̃s for (t, x + h):

C̃s =
 Cs if 0 ≤ s < τC ;

c2 otherwise.

where h > 0, ϵ > 0 and C is an ϵ-optimal strategy for (t, x).
Then, we have

V (t, x + h) − V (t, x) ≥ V C̃(t, x + h) − V C(t, x) − ϵ =

= E(t,x+h)[
� τ C̃

0
e−qsC̃sds] − E(t,x)[

� τC

0
e−qsCsds] − ϵ

≥ E(t,x+h)[
� τ C̃

τC
c exp−qs ds] − ϵ ≥ Kh − ϵ

where Kh and ϵ can be selected separately of C.
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Proposition 2. There exists a constant K > 0 such that

0 ≤ V S(x2, c1) − V S(x1, c2) ≤ K[(x2 − x1) + (c2 − c1)]

for all 0 ≤ x1 ≤ x2 and c1, c2 ∈ S with c1 < c2.

Proof. According to Proposition 1, when we consider a set S = {c1, c2},
where c1 < c2:

0 ≤ V S(x2, c1) − V S(x1, c2) (4.2)
for all 0 ≤ x1 ≤ x2 and c1, c2 ∈ S with c1 < c2.
Similarly as in [HM22] we aim to demonstrate the existence of a positive
value K1 such that the inequality below holds for any C ∈ S and for all
0 ≤ x1 ≤ x2:

V S(x2, c) − V S(x1, c) ≤ K1(x2 − x1). (4.3)

J(x2; C) ≥ V S(x2, c) − ε,

holds for a chosen ε > 0 and c belonging to the set of admissible strategies
with initial capital x2 ΠS

x2,c. The corresponding control process is given by

Xb,C
t = x2 +

� t

0
(bθ − (θ − η) − c1It<τ̂ − c2It≥τ̂) ds + bσWt,

where τ̂ is the time, when the dividend increases to c2. We consider τ as
the ruin time of the process XC

t and introduce �C ∈ ΠS
x1,c as �Ct = Ct and

the corresponding control process is now:

Xb, �C
t = x1 +

� t

0
(bθ − (θ − η) − c1It<τ̂ − c2It≥τ̂) ds + bσWt.

If �τ ≤ τ represents the ruin time of the process X
�C

t it holds that XC
t −X

�C
t =

x2 − x1 for t ≤ �τ . Introducing C�τ
u = C�τ+u allows us to express:

J(x2; C) − J(x1; �C) = E
�� τ

�τ e−qs(c1Is<τ̂ + c2Is≥τ̂) ds


= E
E

� τ

�τ e−qs(c1Is<τ̂ + c2Is≥τ̂) ds

������F�τ


= E
E

e−q�τ � τ−�τ
0

e−qu(c1I�τ+u<τ̂ + c2I�τ+u≥τ̂)du

������F�τ


≤ E
E

� τ−�τ
0

e−qu(c1I�τ+u<τ̂ + c2I�τ+u≥τ̂)du

������F�τ
 ≤ V S(x2 − x1, 0).
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The final inequality arises from adjusting the stopping times and stems
from Theorem 2 of Claisse, Talay, and Tan in [JT16]. Therefore, this leads
us to:

V S(x2, c) − V S(x1, c) ≤ J(x2; C) − J(x1; �C) + ε

≤ V S(x2 − x1, 0) + ε

≤ VNR(x2 − x1) + ε

≤ K1(x2 − x1) + ε.

This suggests that based on Proposition 1, 4.3 leads to the determination
that K1 = V ′

NR(0).
We will demonstrate that for c1 and c2 in S where c1 ≤ c2, there exists a
positive K2 such that:

V S(x, c1) − V S(x, c2) ≤ K2(c2 − c1). (4.4)

Consider a scenario where there is a positive value ε and a set C within
ΠS

x1,c such that J(x; C) ≥ V S(x, c1) − ε. Now, define �T as the minimum
time t when Ct surpasses c2, and let τ represent the ruin time of the
XC

t process. We introduce �C in ΠS
x,c2

such that �Ct = c2It< �T + CtIt≥ �T .
X

�C
t signifies the controlled surplus process associated with it and τ̄ ≤ τ

represents the corresponding ruin time. When considering �Cs−Cs ≤ c2−c1,
XC

τ = XC
τ̄ − X

�C
τ̄ ≤ (c2 − c1)τ̄ . Following Remark 1, we observe that:

E
�� τ

τ̄
Cse

−qsds


≤ E
�
V S(XC

τ̄ , 0)
�

This inequality arises due to a modification or adjustment in the stop-
ping times, influenced by Theorem 2 by Claisse, Talay, and Tan [JT16].
Consequently,

E
�� τ

τ̄
Cse

−qsds


≤ E
�
VNR(XC

τ̄ )
�

≤ E [VNR((c2 − c1)τ̄)]
≤ K1E

�
e−qτ̄ τ̄(c2 − c1)

�
.
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Therefore, we can represent the inequality

V S(x, c1) − V S(x, c2) ≤ J(x; C) + ε − J(x; �C)

= E
�� τ̄

0

�
Cs − �Cs

�
e−qsds


+ E

�� τ

τ̄
Cse

−qsds
�
+ ε

≤ 0 + E
�� τ

τ̄
Cse

−qsds
�
+ ε

≤ K1E[e−qτ̄ τ̄(c2 − c1)] + ε

≤ K2(c2 − c1) + ε.

This inequality leads to a conclusion denoted by equation 4.4 if we take
K2 = K1 maxt≥0e

−qtt. The establishment of this relationship derives from
the connections among equations 4.2, 4.3, and 4.4.
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4.2 Hamilton-Jacobi-Bellman equations
First of all, we motivate the Hamilton-Jacobi-Bellman equation. Let ϵ > 0,
then for each x > 0 exist a ϵ-optimal strategy cx such that J(x, cx) ≥
V (x, c) − ϵ. We choose a dividend rate c to be paid out until a point in
time h > 0, or until the time of ruin τ if this occurs before. Hence we can
write:

V (x, c) ≥ J(x, c) = Ex[
� τ∧h

0
e−qscds] + Ex[I{τ>h}

� τ

h
e−q(s+h)usds]

Since ϵ is arbitrary we find:

V (x, c) ≥ c

q
(1 − Ex[e−q(τ∧h)] + e−qhEx[V (Xτ∧h, c)] (4.5)

We assume that V (x, c) is twice continuously differentiable. Using Ito’s
formula we get:

V (Xτ∧h, c) = V (x, c) +
� τ∧h

0
σbV (xs, c)′dWs+� τ∧h

0
((bθ − (θ − η) − c)V (xs, c)′ + σ2b2

2 V (x)′′, c)ds

We assume now that � t
0 V (xs, c)′dWs is a martingale. Combining the last

equation and 4.5 and dividing by h gives

cE[1 − e−q(τ∧h)

qh
] − 1 − e−qh

h
V (x, c)

+ E[ 1
h

� τ∧h

0
((bθ − (θ − η) − c)V (Xs, c)′ + σ2b2

2 V (Xs, c)′′)ds] ≤ 0

If the limit and expectation can be interchanged, for h → 0 it follows

σ2b2

2 V ′′(x, c) + (bθ − (θ − η) − c)V ′(x, c) − qV (x, c) + c ≤ 0

Since this inequality has to be true for all 0 ≤ c ≤ c and it is equality at
least for one c, we have the HJB equation with boundary condition:

V (0) = 0
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sup
0≤c≤c

σ2b2

2 V ′′(x, c) + (bθ − (θ − η) − c)V ′(x, c) − qV (x, c) + c

= 0

First to find a Hamilton-Jacobi-Bellman equation and then to show that
the value function is the unique viscosity solution of the corresponding HJB
equation with boundary condition c̄/q when x goes to infinity, where c̄ =
max S will be our approach to solve this optimisation problem for S ⊂
[0, ∞] where S is a finite set. The scenario in which an explicit solution can
be found is the most practical. The equation must be solved numerically
if an explicit solution cannot be found. However, it is only logical to use a
numerical solution after confirming that a solution is indeed present (see
[HM22] for more optimisations problems and different techniques to show
that the value function really solves the equation).
Let us now analyze the scenario S = {c} - paying a constant dividend
rate c up to the ruin time is the unique admissible strategy in this specific
case. The value function V c

(x,c) is the unique solution of the second-order
differential equation

Lc(V ) := σ2b2

2
∂

∂x2V + ((bθ − (θ − η)) − c) ∂

∂x
V − qV + c = 0 (4.6)

with boundary conditions V c(0, c) = 0 and limx→∞ V c(x, c) = c/q. The
particular solution of this differential equation 4.6 is c

q . The homogenous
solution of 4.6 is of the form:

a1e
λ1(c)x + a2e

λ2(c)x

where a1,a2 ∈ R and λ1(c) > 0 and λ2(c) < 0 are the roots of the charac-
teristic equation

σ2b2

2 z2 + ((bθ − (θ − η)) − c)z − q = 0

associated to the operator Lc, that is,

λ1(c) := c − (bθ − (θ − η)) +
�

(c − (bθ − (θ − η)))2 + 2qσ2b2

σ2b2 ,

λ2(c) := c − (bθ − (θ − η)) −
�

(c − (bθ − (θ − η)))2 + 2qσ2b2

σ2b2
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Here, we list some fundamental characteristics of λ1 and λ2.
1. λ1(c) = −λ2(c) if c = (bθ − (θ − η)) and λ2

1(c) ≤ λ2
2(c) if and only if

c − (bθ − (θ − η)) ≥ 0
2. λ′

1(c) = 1
σ2b2 (1 + c−(bθ−(θ−η))√

(c−(bθ−(θ−η)))2+2qσ2b2 ) and

λ′
2(c) = 1

σ2b2 (1 − c−(bθ−(θ−η))√
(c−(bθ−(θ−η)))2+2qσ2b2 ), so λ′

1(c),λ′
2(c) ∈(0, 2

σ2b2 ).

The general solution of the differential equation 4.6 is:
c

q
+ a1e

λ1(c)x + a2e
λ2(c)x

The solutions of Lc(V ) = 0 with boundary condition V (0) = 0 follow this
form:

c

q
(1 − eλ2(c)x) + a(eλ1(c)x − eλ2(c)x)

with a ∈ R. And finally, the unique solution of Lc(V ) = 0 with boundary
condition V (0) = 0 and limx→∞ V (x) = c

q corresponds to a = 0, so that

V c(x, c) = c

q
(1 − eλ2(c)x) (4.7)

We also have that V c(·, c) is increasing and concave. Given a set S ⊂ [0, ∞]
with c̄ = max S < ∞, we have that

V S(x, c) ≤ V c̄(x, c̄) = c̄

q
(1 − eλ2(c̄)x)

and so, by Remark 1, we conclude that limx→∞ V S(x, c) = c̄
q for any c ∈ S.
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4.3 Hamilton-Jacobi-Bellman equations for
S = {c1, c2}

Initially, our aim is to derive the HJB equation for the generalized set S -
when S would consist of finitely many dividend rates. Subsequently, we’ll
demonstrate how this equation would manifest if the set S were reduced
to just two elements: c1 and c2. Hence, we’re examining the scenario:

S = {c1, c2},

where 0 < c1 < c2 < c̄. We note V S(x, ci) = V {c1,c2}(x, ci) and simplify the
notation

V ci(x) = V S(x, ci). (4.8)

So now we have

V c1(x) ≥ V c2(x) ≥ 0,

where V c2(x) = V {c2}(x, c2) as defined in (4.7). The HJB equation linked
to (4.8) is given by:

max{Lci(V ci(x)), V ci+1(x) − V ci(x)} = 0 (4.9)

for x ≥ 0 and i = 1.

We demonstrate that V ci represents the viscosity solution of the respective
HJB equation.
Definiton 1. (a) A locally Lipschitz function u : [0, ∞) → R is a viscosity
supersolution to (4.9) at x ∈ (0, ∞) if any twice continuously differentiable
function φ : [0, ∞) → R with φ(x) = u(x) such that u − φ reaches the
minimum at x satisfies

max{Lciφ(x), V ci+1(x) − φ(x)} ≤ 0

The function φ is called a test function for supersolution at x.
(b) A function u : [0, ∞) → R is a viscosity subsolution to (4.9) at

x ∈ (0, ∞) if any twice continuously differentiable function ψ : [0, ∞) → R
with ψ(x) = u(x) such that u − ψ reaches the maximum at x satisfies

max{Lciφ(x), V ci+1(x) − φ(x)} ≥ 0
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The function ψ is called a test function for subsolution at x.
(c) A function u : [0, ∞) → R which is both a supersolution and subso-

lution at x ∈ [0, ∞) is called a viscosity solution to (4.9) at x.

Theorem 1. The optimal value function V ci(x) for 1 ≤ i < n is the unique
viscosity solution of the associated HJB equation (4.9) with boundary con-
dition V ci(0) = 0 and limx→∞ V ci(x) = c/q.

Theorem 2. The optimal value function V ci(x) for 1 ≤ i < n is the
smallest viscosity supersolution of the the associated HJB equation (4.9)
with boundary condition V ci(0) = 0 and limx→∞ V ci(x) ≥ c/q.

In our case where S = {c1, c2} and 0 < c1 < c2 < c̄, we note V S(x, ci) =
V {c1,c2}(x, ci) and simplify the notation V ci(x) = V S(x, ci). So now we
have V c1(x) ≥ V c2(x) ≥ 0. The HJB equation linked to (4.8) is given by
max{Lc1(V c1(x)), V c2(x) − V c1(x)} = 0 for x ≥ 0 and i = 1. In a similar
manner as previously mentioned, we show that V ci denotes the viscosity
solution for the corresponding HJB equation.
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4.4 Comparison of the value functions for b = 0
and b = 1 and S = {c}

In this part, we aim to compare the value functions when there’s no rein-
surance (b = 1) against complete reinsurance (b = 0) using the same
constant strategy c. We assume that c > η. Several examples and proofs
cited in [Eis09] and in [Eis10] were beneficial for this capital. We’ll demon-
strate that, in certain scenarios with specific values of q, the value function
appears more favorable without reinsurance compared to the one with full
reinsurance. In conclusion, we’ll find that this particular value of q remains
consistent across all q values. Hence, we take S = {c}. In this scenario, the
only permissible strategy involves maintaining a constant dividend rate,
denoted as c until the occurrence of the ruin time. Next, we’ll illustrate two
methods for computing the value function. The initial approach involves
calculation based on the expectation value, while the second method relies
on the time of ruin. Let’s begin with the initial approach:
The value function V {c}(x, c) for b = 0 is the unique solution of the differ-
ential equation:

Lc(V ) := (η − θ − c) ∂

∂x
V − qV + c = 0 (4.10)

with boundary conditions V {c}(0, c) = 0 and limx→∞ V {c}(x, c) = c
q . The

solutions from equation 4.10 follow this form:

c

q
+ a1e

λ1(c)x

with a1 ∈ R, where θ1(c) < 0 is the solution of the equation

(η − θ − c)z − q = 0

linked to the operator Lc, that is,

λ1(c) := q

η − θ − c

The solutions of equation Lc(V ) = 0 with boundary condition V (0) = 0
follow now this form
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c

q
(1 − eλ1(c)x)

with a ∈ R. And finally, the unique solution of Lc(V ) = 0 is

V 0(x, c) = c

q
(1 − eλ1(c)x)

V 0(x, c) = c

q
(1 − e

q
η−θ−c x) (4.11)

Now, considering a retention level of b = 1 (no reinsurance) in our model,
the value function V c

(x,c) for b = 1 is the unique solution of the differential
equation:

Lc(V ) := σ2

2
∂

∂x2V + (η − c) ∂

∂x
V − qV + c = 0 (4.12)

with boundary conditions V c(0, c) = 0 and limx→∞ V c(x, c) = c/q. The
solutions of equation 4.6 follow this form:

c

q
+ a

λ1(c)x
1 + a

λ2(c)x
2

with a1,a2 ∈ R, where λ1(c) > 0 and λ2(c) < 0 are the roots of the
characteristic equation

σ2

2 z2 + (η − c)z − q = 0

linked to the operator Lc, that is,

λ1(c) := c − η +
�

(η − c)2 + 2qσ2

σ2 ,

λ2(c) := c − η −
�

(η − c)2 + 2qσ2

σ2

The solutions of equation Lc(V ) = 0 with boundary condition V (0) = 0
follow now this form
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c

q
(1 − eλ2(c)x) + a(eλ1(c)x − eλ2(c)x)

with a ∈ R.
And finally, the unique solution to Lc(V ) = 0 with boundary condition

V (0) = 0 and limx→∞ V (x) = c
q corresponds to a = 0, so that

V 1(x, c) = c

q
(1 − eλ2(c)x)

V 1(x, c) = c

q
(1 − e− (η−c)+

√
(η−c)2+2qσ2
σ2 ) (4.13)

Now, we’re utilizing the second method and show for some special values
of the rate c with a positive probability that the surplus process for b = 1
remains positive up to infinity.
The choice of the admissible strategy c for the case b = 0 which corresponds
to buying continuously full reinsurance until the time of ruin leads to a
Xb0:

X0
t = x + (η − θ − c)t,

with negative drift. As a consequence, the time of ruin τ c1,b0 can be ex-
plicitly computed and that is:

τ = inf{t ≥ 0 : Xb0
t < 0}

τ = inf{t ≥ 0 : x + (η − θ − c)t < 0}

τ c,0 = x

θ − η + c

J(x; c) = E[
� τ c,0

0
e−qscds] = cE[

� τ c,0

0
e−qscds]
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V 0(x, c) = c

q
(1 − e

q
η−θ−c x)

Since θ > η (if not, the insurer could gain a risk-free profit by purchasing
full reinsurance and still collecting a positive premium) it follows that the
drift η − θ − c is negative. Hence the ruin will occur almost surely and we
have:

Px(τ c,0 = ∞) = 0 (4.14)

The choice of the admissible strategy c for the case b = 1 which corresponds
to no reinsurance until the time of ruin leads to a X1, which is:

X1
t = x + (η − c)t + σWt

and

τ c,1 = inf{t ≥ 0 : Xb1
t < 0}

J(x; c) = E[
� τ c,b1

0
e−qscds] = c

q
E[1 − e−qτ c,b1 ]

Calculating the Laplace transform of τ c,1 (refer to [Sch08], page 216) we
get that

E[e−qτ c,b1 ] = e
(c−η)−

√
(c−η)2+2qσ2
σ2 x

It follows:

V 1(x, c) = c

q
(1 − e

(c−η)−
√

(c−η)2+2qσ2
σ2 x)

We refer now to the example (1) in [BS10], page 295.
For η > c:

Px(τ c,1 = ∞) = 1 − e−(η−c)x−|η−c|x = 1 − e−(η−c)x−(η−c)x = 1 − e2x(c−η) > 0
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We have now from 4.14 and the last equation that

Px(τ c,0 = ∞) = 0

and for η > c:

Px(τ c,1 = ∞) > 0

We show that in certain situations, with particular values of q, the value
function seems better without reinsurance when compared to the function
with complete reinsurance. We compare:

V 1(x, c) = c

q
(1 − e

(c−η)−
√

(c−η)2+2qσ2
σ2 x)

and

V 0(x, c) = c

q
(1 − e

q
η−θ−c x).

Because the functions appear quite similar and differ only in their expo-
nents, we’ll focus our comparison on these exponents. We have now this
function:

f(q) = (c − η) −
�

(c − η)2 + 2qσ2

σ2 − q

η − θ − c

The first derivative of f(q) would be:

f ′(q) = − 1
η − θ − c

− 1�
(c − η)2 + 2qσ2

For q = 0 it applies:

f ′(0) = 1
θ − η + c

− 1
|c − η|

Since c > η we have that |c − η| = c−η. This implies that there is a unique
minimum q∗ of f(q). Now, we know that there is a q1 so that f(q1) = 0.
For each q ≤ q1 it holds:

(c − η) −
�

(c − η)2 + 2qσ2

σ2 ≤ q

η − θ − c
,
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which implies

V 1(x, c) ≥ V 0(x, c),

what means that the value function without reinsurance looks better when
compared to the function with full reinsurance for these particular values
of q.
For q > q1 we have:

V 1(x, c) < V 0(x, c).
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4.5 The optimal strategies
In [HM22] is showed for b = 1 that, regardless of whether S is finite or an
interval with max S = c, the optimal strategy for sufficiently small c is to
immediately start paying dividends at the maximum rate c.

4.6 The optimal dividend strategies
We take S = {c1, c2}, where c1 < c2. Similarly as in [HB18] we will describe
the optimal dividend strategy. Given that the optimal value function V ci is
a viscosity solution to (4.9), there are values of x where V ci = V ci+1, which
in our case means V c1 = V c2 and also values of x where Lci(V ci)(x) = 0, in
our case Lc1(V c1)(x) = 0. So now we can partition (0, ∞) into the closed set
D1 = {x : V c1(x) = V c2(x)} and the open set E1 = {x : V c1(x) > V c2(x)}.
The optimal strategy would be to pay dividend at rate c1, when the current
surplus is in E1 and to increase dividend rate to c2 when the current surplus
is in D1.
Since S = {c1, c2} the optimal strategy of this restricted optimization
problem has just three possibilities. The first one is to pay dividends at a
rate of c2 until ruin; the second one is to pay dividends at a rate c1 until
ruin; the third option is to pay dividends at a rate of c1 and then increase
to c2. We will describe this optimal strategy mathematically.
For S̃ = S \ {c2} = {c1} we will define a function z : S̃ → [0, ∞) and a
threshold strategy:

πz = (Cx,c1)(x,c1)∈[0,∞)×S

where Cx,c1 ∈ΠS
x,c1

as follow:

• if i = 2 dividends will be paid out at a rate of c2 up to the time of
ruin

• if i = 1 and x < z(c1) dividends will be paid out at a rate of c1
as long as the surplus is less than z(c1) up to the ruin time; if the
current surplus hits z(c1) before the time of ruin, proceed as follows
Cx,c2 ∈ ΠS

x,c2
. We can write

(Cx,c1)t = c1It<τ̃<τ + c1It<τ<τ̃ + (CXτ̃ ,c2)Iτ̃<t<τ
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where τ̃ is the first time at which the surplus reaches z(c1) and τ is
the time of ruin.

We call z(c1) the threshold at dividend rate level c1 and z : S̃ → [0, ∞)
the threshold function.
The expected payoff of the stationary strategy πz is defined as:

W z(x, c1) := J(x; Cx,c1)

for i = 1, 2.

Proposition 3. We have the following formula for W z:

W z(x, c2) = c2
q

(1 − eλ2(c2)x)

W z(x, c1) =
 W z(x, c2) if x ≥ z(c1);

c1
q (1 − eλ2(c1)x) + az(c1)(eλ1(c1)x − eλ2(c1)x) otherwise.

where az(c1) := W z(z(c1),c2)− c1
q (1−eλ2(c1)z(c1))

eλ1(c1)z(c1)−eλ2(c1)z(c1) and λ1(ci) > 0 and λ2(ci) < 0 for
i = 1, 2 and for b > 0, which means if reinsurance is bought, are the roots
of the characteristic equation

σ2b2

2 z2 + ((bθ − (θ − η)) − ci)z − q = 0

that is,

λ1(ci) := ci − (bθ − (θ − η)) +
�

(ci − (bθ − (θ − η)))2 + 2qσ2b2

σ2b2 ,

λ2(ci) := ci − (bθ − (θ − η)) −
�

(ci − (bθ − (θ − η)))2 + 2qσ2b2

σ2b2 .

Proof. We refer to [HB18], proof of Proposition 5.2.

Let us now maximize the expected payoff W z(x, ci) among all threshold
functions z : S̃ → [0, ∞). From now on, we only consider c2 > qσ2

2µ (other-
wise z∗ = 0). It’s important to note that in this context, we are seeking the
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highest expected payoff among all possible threshold strategies, not among
all possible admissible strategies. Since W z(x, c2) is known, we will solve
this optimization problem using a backward recursion. This approach con-
sists of looking for the optimal threshold strategy as a one one-dimensional
optimization problem.
Since in our case S consists of only c1 and c2, our approach is to find the
maximum of az(ci) among all the possible threshold functions, where i =
1. From Proposition 3, we can obtain W z∗(x, c1) and z∗(c1). We will now
define the continuous function G : [0, ∞) → R:

G1(y) :=
W z(y, c2) − c1

q (1 − eθ2(c1)y)
eθ1(c1)y − eθ2(c1)y (4.15)

for y > 0. Since

lim
y→∞ W z(y, c2) = c2

q
>

c1
q

then for y large enough, G1(y) > 0 and limy→∞ G1(y) = 0. G1 reaches its
maximum in [0, ∞) and

z∗(c1) = min(arg max
y→∞ G1(y))

exist because of the continuity of G1. If z∗(c1) > 0 for x ∈ [0, z∗(c1)), the
function W z∗(x, c1) fulfills Lc1(W c1)(x) = 0 and for x ≥ z∗(c1), the function
W z∗(x, c1) fulfills W z∗(x, c1) = W z∗(x, c2) (this also holds for z∗(c1) = 0).

Theorem 3. If z∗ is the optimal threshold function, then W z∗(x, ci) is the
optimal function V ci(x) defined in the section 4.1 for i = 1, 2.

Proof. Similarly, as in [HB18]: by Definition 3: W z∗(x, c2) = V c2(x). If
i = n − 1 = 1 (in our case), by definition, W z∗(x, cn−1) = W z∗(x, cn) =
W z∗(x, c2) = c2

q (1 − eλ2(c2)x) for x ≥ z∗(c1).
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5 Numerical examples
Now, let’s examine a numerical example for S = {c1, c2} with the param-
eters θ = 0.5, η = 0.4, σ = 0.2, c1 = 0.2, c2 = 0.3 and q = 0.04 for
b = 0.01, 0.5 and 1. To determine the optimal value function V associated
with these values, we follow these steps:

• Firstly, we define λi(c1) and λi(c2), for i=1,2.

• Next, we establish the continuous function Gi(y), initially defined
as described in (4.15), as the function az(ci) to determine z(ci) for
i = 1. Following this, we determine the value of y representing z(ci)
within az(ci), so that y maximizes Gi, again for i = 1.

• After that we redefine az(c1) and use z(c1) to determine the optimal
value function V .

In (4.4) we showed, for S = c with specific values of q (see (2.2)), the
value function without reinsurance appears more favorable compared to
the one with full reinsurance. In our numerical case we take c = 0.3 and
demonstrate that this holds true across all 0 ≤ q ≤ 1 values (Figure 5.1).
Figure 5.2 shows the relationship between value function and the starting
capital x for different b values in the classical dividend problem with a
ratcheting constraint - dividend can never be decreased. The z(c1) values
for b = 0.01, b = 0.5 and b = 1 are 0.1010101, 3.838384 and 0.8080808,
respectively. In this scenario, the best strategy is a threshold strategy
detailed in (4.6).
The efficiency loss when decreasing b is relatively small for large initial
capital x, but the resulting expected discounted dividends are significantly
smaller for both small and intermediate values of x. The relative efficiency
loss is not enormous for b = 0.5 (see Figures 5.3 and 5.4 for the plots of
this difference).

In Figures 5.4 to 5.6, we present similar plots considering the scenario
where c1 = 0.8, c2 = 0.9 causing the maximum dividend rate to be at
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Figure 5.1: Value function for b = 1 (dashed) and b = 0 (black) for a constant c
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Figure 5.2: Value function for b = 1 (dashed), b = 0.5 (dotdashed) and b = 0.01 (black)

Figure 5.3: Difference in value functions
for b=1 and b=0.5

Figure 5.4: Difference in value functions
for b=1 and b=0.01
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Figure 5.5: Value function for b = 1 (dashed), b = 0.5 (dotdashed) and b = 0.01 (black)

least double the drift bθ − (θ − η) of the uncontrolled risk process. The
overall picture remains similar, the impact of decreasing b, which means
buying reinsurance at a lower retention level, becomes more noticeable.
Additionally, for larger initial capital x, the inefficiency brought about by
buying reinsurance is evident.

Figures 5.8 and 5.9 represent value function V as a function of the initial
capital x and retention level b. Figure 5.10 illustrates the value function
in relation to b while keeping x constant at 5. It confirms that opting out
of reinsurance results in a higher value function.

Figure 5.6: Difference in value functions
for b=1 and b=0.5

Figure 5.7: Difference in value functions
for b=1 and b=0.01
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Figure 5.8: Value function of x and b

Figure 5.9: Value function of x and b
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Figure 5.10: Value function of b for x=5
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6 Conclusion
In this master thesis, we explored a specific approach to managing divi-
dends in insurance risk theory. Our focus was on a ratcheting dividend
strategy combined with reinsurance, where the dividend rate remains con-
stant or can only increase once throughout the surplus process. We devel-
oped mathematical formulas to calculate the expected discounted dividend
payouts until insolvency. Through numerical demonstrations across var-
ious retention levels represented by b, we observed that this particular
ratcheting strategy performed optimally when b was set at 1, indicating a
scenario without reinsurance. Additionally, we visually highlighted differ-
ences in value functions and created a three-dimensional plot illustrating
the behavior of the value function in our analysis.
Moving forward, there are several potential directions to expand this study.
Future research could explore scenarios involving multiple barriers, where
the implementation of a ratcheting strategy coupled with reinsurance could
provide valuable insights into the dynamics and outcomes associated with
gradual increases in dividend rates across multiple thresholds.
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7 Attachment
7.1 Code in R
This section lists all codes that are used for simulations in R.

theta2_c1 <- function(c1, theta, eta, b, q, sigma) {
ifelse(b == 0,

q / (eta - theta - c1),
(c1 - (b * theta - (theta - eta)) -
sqrt((c1 - (b * theta - (theta - eta)))ˆ2 +
2 * q * sigmaˆ2 * bˆ2)) / (sigmaˆ2 * bˆ2)

)
}

theta2_c2 <- function(c2, theta, eta, b, q, sigma) {
ifelse(b == 0,

q / (eta - theta - c2),
(c2 - (b * theta - (theta - eta)) -
sqrt((c2 - (b * theta - (theta - eta)))ˆ2 +
2 * q * sigmaˆ2 * bˆ2)) / (sigmaˆ2 * bˆ2)

)
}

theta1_c1 <- function(c1, theta, eta, b, q, sigma) {
ifelse(b == 0,

q / (eta - theta - c1),
(c1 - (b * theta - (theta - eta)) +
sqrt((c1 - (b * theta - (theta - eta)))ˆ2 +
2 * q * sigmaˆ2 * bˆ2)) / (sigmaˆ2 * bˆ2)

)
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}

# Define G(y) function
G <- function(theta, c1, c2, eta, b, q, sigma, y) {

num <- (c2/q) * (1 - exp(theta2_c2(c2, theta,
eta, b, q, sigma) * y)) -

(c1/q) * (1 - exp(theta2_c1(c1, theta,
eta, b, q, sigma) * y))

denom <- exp(theta1_c1(c1, theta, eta, b, q, sigma) * y) -
exp(theta2_c1(c1, theta, eta, b, q, sigma) * y)

num / denom
}

# Find the value of y that maximizes G(y) with respect to b
find_d <- function(b, theta, c1, c2, eta, q, sigma, y_values) {

max_y_index <- which.max(G(theta, c1, c2, eta, b, q,
sigma, y_values))
d <- y_values[max_y_index]
return(d)

}

# Redefine a_c1 and value_function using the calculated
d with respect to b
a_c1 <- function(b, theta, c1, c2, eta, q, sigma, y_values) {

d <- find_d(b, theta, c1, c2, eta, q, sigma, y_values)
num <- (c2/q) * (1 - exp(theta2_c2(c2, theta,
eta, b, q, sigma) * d)) -

(c1/q) * (1 - exp(theta2_c1(c1, theta, eta,
b, q, sigma) * d))

denom <- exp(theta1_c1(c1, theta, eta, b, q, sigma) * d) -
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exp(theta2_c1(c1, theta, eta, b, q, sigma) * d)
num / denom

}

value_function <- function(b, c1, c2, theta, eta,
q, sigma, x, y_values) {

d <- find_d(b, theta, c1, c2, eta, q, sigma, y_values)
ifelse(x >= d,

(c2 / q) * (1 - exp(theta2_c2(c2, theta,
eta, b, q, sigma) * x)),
(c1 / q) * (1 - exp(theta2_c1(c1, theta,
eta, b, q, sigma) * x)) +

a_c1(b, theta, c1, c2, eta, q, sigma, y_values) *
(exp(theta1_c1(c1, theta, eta, b, q, sigma) * x) -

exp(theta2_c1(c1, theta, eta, b, q, sigma) * x))
)

}

value_function_1 <- function(b, c2, theta, eta, q,
sigma, x, y_values) {

(c2 / q) * (1 - exp(theta2_c2(c2, theta, eta, b,
q, sigma) * x))

}

value_function_2 <- function(b, c2, theta, eta, q,
sigma, x, y_values) {

(c2 / q) * (1 - exp(theta2_c2(c2, theta, eta, b,
q, sigma) * x))

}
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# value function for the same c2=0.3 and b=1 and b=0.01
#curve(value_function_1(b=1, c2 = 0.3, theta =
0.5, eta = 0.4, q = 0.04, sigma = 0.2, x),
# from = 0, to = 30, n = 100, xlab = "x",
# ylab = "Value Function", col = "red", lwd = 3,
# main = "Value Function for b=1 (red), b=0.5 (blue)
and b=0.01 (black)")

#curve(value_function_1(b=0, c2 = 0.3, theta = 0.5,
eta = 0.4, q = 0.04, sigma = 0.2, x),
# from = 0, to = 30, n = 100, add=TRUE, xlab = "x",
# ylab = "Value Function", col = "black", lwd = 3,
# main = "Value Function for b=1 (red), b=0.5 (blue)
and b=0.01 (black)")

# Specify y_values for the curve function
y_values <- seq(0, 10, length.out = 100)

curve(value_function(b=1, c1 = 0.2, c2 = 0.3, theta = 0.5,
eta = 0.4, q = 0.04, sigma = 0.2, x, y_values),

from = 0, to = 10, n = 100, xlab = "x",
col = "red", lwd = 3)

curve(value_function(b=0.5, c1 = 0.2, c2 = 0.3, theta = 0.5,
eta = 0.4, q = 0.04, sigma = 0.2, x, y_values),

from = 0, to = 10, n = 100, add=TRUE, xlab = "x",
col = "blue", lwd = 3)

curve(value_function(b=0.1, c1 = 0.2, c2 = 0.3, theta = 0.5,
eta = 0.4, q = 0.04, sigma = 0.2, x, y_values),

from = 0, to = 10, n = 100, add=TRUE, xlab = "x",
col = "black", lwd = 3)

#difference_plot <- function(x, c1, c2, theta, eta, q, sigma, b1, b2)
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{
# d_b1 <- find_d(b1, theta, c1, c2, eta, q, sigma, y_values)
# d_b2 <- find_d(b2, theta, c1, c2, eta, q, sigma, y_values)

# value_function_b1 <- value_function(b1, c1, c2, theta, eta,
q, sigma, x, y_values)
# value_function_b2 <- value_function(b2, c1, c2, theta, eta,
q, sigma, x, y_values)

#difference <- value_function_b1 - value_function_b2

# return(difference)
#}

#curve(difference_plot(x, c1 = 0.8, c2 = 0.9, theta = 0.5,
eta = 0.4, q = 0.04, sigma = 0.2, b1 = 1, b2 = 0.01),
# from = 0, to = 10, n = 100, xlab = "x", ylab =
"Difference in Value Functions",
# col = "green", lwd = 3,
# main = "Difference in Value Functions for b=1 and b=0.5",
# ylim = c(0, 8)
#)

# Generating values for b and x
b_values <- seq(0, 1, length.out = 100)
x_values <- seq(0, 10, length.out = 100)

# Creating a meshgrid of b and x values
grid <- expand.grid(b = b_values, x = x_values)

# Evaluating the value_function for each combination of b and x
grid$value <- mapply(function(b, x) value_function(b, c1 = 0.2,
c2 = 0.3, theta = 0.5, eta = 0.4, q = 0.04, sigma = 0.2,
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x, y_values),
grid$b, grid$x)

# Reshape data for plotting
z_matrix <- matrix(grid$value, nrow = length(b_values),
ncol = length(x_values))

# Define custom tick labels for x and y axes
# custom_x_labels <- seq(0, 1, by = 2) # Adjust according to
your preference
#custom_y_labels <- seq(0, 10, length.out = 5) # Adjust
according to your preference

# Create a 3D surface plot with custom axis labels
persp3D(z = z_matrix, x = b_values, y = x_values, theta = 30,
phi = 30,

col = "skyblue", border = "black",
xlab = "x", ylab = "b", zlab = "Value Function",
main = "Value Function Surface Plot",

xticklabs = custom_x_labels, yticklabs = custom_y_labels)

x <- 0:10
y <- 0:1

# To illustrate simple
z_values <- function(x, b){

value_function(b, c1 = 0.2, c2 = 0.3, theta = 0.5, eta = 0.4,
q = 0.04, sigma = 0.2, x, y_values)

}

# prepare variables.
z <- outer(x, b, z_values)

# plot the 3D surface
persp(x, b, z, main=’3D Plot’, shade = 0.6, col = gray(seq(0.2, 0.8,
length = 100)), theta = 30, phi = 15, ticktype=’detailed’,
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cex.axis = 0.7)

library(rgl)

b_values <- seq(0, 1, length.out = 100)
x_values <- seq(0, 30, length.out = 100)

# Creating a meshgrid of b and x values
grid <- expand.grid(b = b_values, x = x_values)

# Evaluating the value_function for each combination of b and x
grid$value <- mapply(function(b, x) value_function(b, c1 = 0.2,
c2 = 0.3, theta = 0.5, eta = 0.4, q = 0.04, sigma = 0.2,
x, y_values),

grid$b, grid$x)

# Reshape data for plot3d
z_matrix <- matrix(grid$value, nrow = length(x_values),
ncol = length(b_values))

# Prepare variables.

# Plot the 3D surface with smaller axis labels
#persp(x, b, z, shade = 0.6, col = "yellow", theta = 30,
phi = 15, ticktype=’detailed’, cex.axis = 0.7,
aspect = c(1, 1, 0.7))
rgl::persp3d(b_values, x_values, z_matrix, col = "gray",
shade = 0.6, theta = 30, phi = 15, xlab = "x", ylab = "b",
zlab = "Value Function", ticktype=’detailed’, cex.axis = 0.7,
aspect = c(1, 1, 0.7))

b_values <- seq(0, 1, length.out = 100)
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# Calculate the corresponding value function for each ’b’
value_curve <- sapply(b_values, function(b) {

value_function(b, c1 = 0.2, c2 = 0.3, theta = 0.5,
eta = 0.4, q = 0.04, sigma = 0.2, x = 9, y_values)

})

# Plot the curve for the value function with respect to ’b’
plot(b_values, value_curve, type = "l",

xlab = "b", ylab = "Value Function",
col = "black", lwd = 2,
main = "Value Function as a function of b")
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