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Abstract

Low-dimensional systems are at the heart of nanotechnology research, as, their unique

physical properties make them promising candidates for a wide range of applications.

Examples of low-dimensional systems include quantum dots, quantum wells, nanowires,

nanotubes, point defects and graphene, among others. The focus of this work is on

the two-dimensional parabolic quantum dot and silicon self-interstitial point defects. In

quantum chemistry and condensed matter physics, the equations of quantum mechanics

are applied to study the properties of physical systems. This approach allows for the

calculation of properties such as energy levels, electronic band structures, optical spectra

and chemical reactivity. The most popular method is density functional theory (DFT)

due to its good tradeoff between computational cost and accuracy. However, its general

applicability is often hindered by uncontrollable approximations used for the construc-

tion of the exchange-correlation functional. The methods of computational quantum

chemistry constitute a hierarchy that allows to systematically improve the description

of quantum many-body effects with increasing computational cost.

In this work a wide range of ab initio many-body methods is used, including density

functional theory, Hartree-Fock theory, Møller–Plesset perturbation theory and coupled

cluster theory. These methods are applied to calculate the ground and excited states

energies of the two-dimensional parabolic quantum dot and to calculate the formation

energies of the silicon self-interstitial point defects. The quantum dot is modeled as a

two-dimensional quantum harmonic oscillator and the Coulomb integrals are calculated

using a semi analytic solution that allows to integrate over the Coulomb kernel’s singu-

larity in discretized real space in any number of dimensions. The ground state energy of

the quantum dot is calculated with coupled cluster singles and doubles theory (CCSD)

while for the excited states energy the equation of motion formalism of coupled cluster

singles and doubles theory (EOM-CCSD) is used. The ground and excited state energies

are calculated with varying number of electrons in the quantum dot and varying corre-

lation strengths tuned through the harmonic potential parameter. The resulting CCSD

ground and excited state energies are compared to values available from the literature

with which we are in excellent agreement. Further, the formation energies of the silicon

self interstitials are calculated using a periodic supercell approach, at the level of CCSD

theory including a perturbative estimate for the triples amplitudes (CCSD(T)). The ba-

sis set incompleteness error (BSIE) and the finite size incompleteness error (FSIE) are
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taken into account with extrapolation schemes tailored to periodic coupled cluster theory

using a plane wave basis set. Our converged CCSD(T) formation energies are compared

to quantum Monte Carlo (QMC) data from the literature and partly to experiment,

with which we are in good agreement.
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Zusammenfassung

Niedrigdimensionale Systeme stehen im Zentrum der Nanotechnologieforschung, da ihre

einzigartigen physikalischen Eigenschaften sie zu vielversprechenden Kandidaten für eine

Vielzahl von Anwendungen machen. Beispiele für niedrigdimensionale Systeme sind

Quantenpunkte, Quantenbrunnen, Nanodrähte, Nanoröhren, Punktdefekte, Quanten-

fraktalnetzwerke und Graphen, unter anderem. Der Fokus dieser Arbeit liegt auf dem

zweidimensionalen parabolischen Quantenpunkt und den Silizium-eigenpunktdefekten.

In der Quantenchemie und kondensierten Materiephysik werden die Gleichungen der

Quantenmechanik angewendet, um die Eigenschaften physikalischer Systeme zu un-

tersuchen. Dieser Ansatz ermöglicht die Berechnung von Eigenschaften wie Energien-

iveaus, elektronischen Bandstrukturen, optischen Spektren und chemische Reaktivität.

Die beliebteste Methode ist die Dichtefunktionaltheorie (DFT) aufgrund ihres guten

Kompromisses zwischen Rechenkosten und Genauigkeit. Allerdings wird ihre allge-

meine Anwendbarkeit oft durch unkontrollierbare Approximationen behindert, die für

die Konstruktion der Austausch-Korrelationsfunktion verwendet werden. Die Methoden

der Quantenchemie bilden eine Hierarchie, die es ermöglicht, die Beschreibung der Ef-

fekte von Quantenvielteilchensystemen mit steigendem Rechenaufwand systematisch zu

verbessern.

In dieser Arbeit wird eine breite Palette von ab initio Vielteilchenmethoden verwendet,

einschließlich Dichtefunktionaltheorie, Hartree-Fock-Theorie, Møller-Plesset-Störungstheorie

und Coupled Cluster theorie. Diese Methoden werden angewendet, um die Grundzustands-

und angeregten Zustandsenergien des zweidimensionalen parabolischen Quantenpunkts

zu berechnen und die Bildungsenergien der Silizium-eigenpunktdefekte zu ermitteln.

Der Quantenpunkt wird als zweidimensionaler Quantenharmonischer Oszillator model-

liert, und die erforderlichen Coulomb-Integrale werden mithilfe einer halbanalytischen

Lösung berechnet, die es ermöglicht, über die Singularität des Coulomb-Kernels im

diskretisierten reellen Raum in beliebig vielen Dimensionen zu integrieren. Die Energie

des Grundzustands des Quantenpunkts wird mit Coupled Cluster singles and doubles

theorie (CCSD) berechnet, während für die Energie der angeregten Zustände der Bewe-

gungsgleichungsformalismus der Coupled Cluster Singles Doubles theorie (EOM-CCSD)

verwendet wird. Die Grundzustands- und angeregten Zustandsenergien werden unter
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Variation der Anzahl von Elektronen im Quantenpunkt und unter Variation der Korrela-

tionsstärken berechnet, die durch den harmonischen Potentialparameter eingestellt wer-

den. Die resultierenden CCSD-Grundzustands- und angeregten Zustandsenergien wer-

den mit Werten verglichen, die in der Literatur verfügbar sind, mit denen wir eine aus-

gezeichnete Übereinstimmung haben. Darüber hinaus werden die Bildungsenergien der

Silizium-eigenpunktdefekt mit einem periodischen superzellen Ansatz auf dem niveau der

CCSD-Theorie unter Berücksichtigung einer perturbativen Schätzung der Tripelampli-

tuden (CCSD(T)) berechnet. Der Fehler aufgrund unvollständiger Basissätze (Basis Set

Incompleteness Error, BSIE) und der Fehler aufgrund endlicher Größe (Finite Size In-

completeness Error, FSIE) werden mithilfe von Extrapolationsschemata berücksichtigt,

die auf die periodische Coupled Cluster theorie unter Verwendung einer ebenen Wellen-

basis abgestimmt sind. Unsere konvergierten CCSD(T)-Bildungsenergien werden mit

Quanten-Monte-Carlo-Daten (QMC) aus der Literatur und teilweise mit Experimenten

verglichen, mit denen wir gute Übereinstimmung erzielen.
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and unwithering support. I also thank my colleagues and friends for the insightful and

fun discussions that were had along the way, especially Alejandro Gallo whose strong

opinions invited me to delve deeper into many exciting topics, and last but not least, I

thank my family for their unwavering encouragement. This achievement wouldn’t have

been possible without all of you. Thank you.

vii





Contents

Declaration of Authorship i

Abstract iii

Zusammenfassung v

Acknowledgements vii

List of Figures xiii

List of Tables xv

Abbreviations xvii

1 Introduction 1

2 Interacting Electrons in an Atom 3

2.1 Hydrogen-like Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 The Hamiltonian and its Solutions . . . . . . . . . . . . . . . . . . 4

2.2 Relativistic Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Adding more Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Spin Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Interacting Electrons in Solids 9

3.1 Fernordnung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Bloch’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 The Many-Body Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . . 11

4 Ab Initio Many-Body Methods 13

4.1 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Exchange Correlation Approximation Hierarchy . . . . . . . . . . . 15

4.2 Hartree Fock Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 Introducing a Basis Set: Roothaan Equations . . . . . . . . . . . . 19

4.3 Post Hartree-Fock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ix



Contents x

4.3.0.1 Electron-Electron Cusp . . . . . . . . . . . . . . . . . . . 20

4.3.1 Configuration Interaction . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.2 Møller–Plesset Perturbation Theory . . . . . . . . . . . . . . . . . 22

4.3.3 Coupled Cluster Theory . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.3.1 CCSD(T) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Quantum Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Calculating Excited States . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5.1 Equation of Motion CC Theory . . . . . . . . . . . . . . . . . . . . 36

5 Numerical Methods 39

5.1 Vienna Ab Initio Simulation Package . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Plane Wave Basis Set . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.2 The Projector-Augmented-Wave Method . . . . . . . . . . . . . . 41

5.2 Coupled Cluster for Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 Basis Set Correction . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.2 Finite Size Correction . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 The Quantum Dot 45

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.1 Practical Applications . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.2 Experimental Developments and Theoretical Modeling . . . . . . . 46

6.1.3 Many-Body Methods Applied to the QD . . . . . . . . . . . . . . . 46

6.2 The Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Calculating the Coulomb Integrals . . . . . . . . . . . . . . . . . . . . . . 49

6.3.1 Convergence with Number of Gridpoints . . . . . . . . . . . . . . . 52

6.4 Basis Set Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4.1 Asymptotic behavior of the Correlation Energy . . . . . . . . . . . 53

6.4.2 Basis Set Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . 54

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.5.1 Ground State Energies . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.5.2 Excitation Energies . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.6 Conclusion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Silicon Interstitials 65

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1.1 Experimental and Theoretical Developments . . . . . . . . . . . . 66

7.1.2 Many-Body Methods for the Formation Energy . . . . . . . . . . . 67

7.2 Cell structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.4.1 HF Formation Energy Finite Size Convergence . . . . . . . . . . . 71

7.4.2 Basis Set Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.4.3 CCSD(T) Formation Energy Finite Size Correction . . . . . . . . . 73

7.4.3.1 Twist Averaging . . . . . . . . . . . . . . . . . . . . . . . 73

7.4.3.2 FSIE Correction . . . . . . . . . . . . . . . . . . . . . . . 75

7.5 Comparison to Other Methods and Discussion . . . . . . . . . . . . . . . . 75

7.6 Conclusion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



Contents xi

8 Conclusion and Summary 79

A Slater-Condon Rules 81

B Rayleigh–Schrödinger Perturbation Theory 83

C Singlet Triplet Gap Calculation 85

D Silicon Interstitials: Raw Data 87

D.1 Γ-point Calculations and Basis Set Convergence . . . . . . . . . . . . . . . 87

D.2 Random k-point Calculations . . . . . . . . . . . . . . . . . . . . . . . . . 88

Bibliography 91

Publications 103

Conferences 105





List of Figures

2.1 The relativistic and non-relativistic momentum of a point like particle as
a function of the speed of light. Expressed in terms of Hartree atomic units. 6

4.1 Jacob’s ladder of approximations to the XC functional from Ref. [13]. . . 16

4.2 Two-electron wavefunction of the He atom as a function of the angle θ12
for a fixed radial distance. Figure taken from Ref [30] . . . . . . . . . . . 20

4.3 The time evolution of the Brownian walker. Figure taken from ref. [43]. . 32

4.4 The time evolution of the drifted Brownian walker with a Gaussian trial
wavefunction. Figure taken from ref. [43]. . . . . . . . . . . . . . . . . . . 33

4.5 The time evolution of the drifted Brownian walker within the nodal pock-
ets of the antisymmetric trial wavefunction. Figure taken from ref. [43]. . 34

6.1 F (1, t)2, F (0, t)F (1, t), F (0, t)2 (equation 6.14) from left to right. See
main text for more details. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 CCSD and MP2 correlation energies and their CBS extrapolations for
N ∈ {2, 6, 12} electron systems with ω ∈ {1.0, 0.5, 0.28} as a function
of the inverse number of virtual orbitals. All energies are presented in
Hartree and ω is given in atomic units. . . . . . . . . . . . . . . . . . . . 55

6.3 First EE-EOM-CCSD excitation energy for N ∈ {2, 6, 12} electron sys-
tems with ω ∈ {1.0, 0.5, 0.28} retrieved as a function of the inverse number
of virtual orbitals N−1

v . All energies are in Hartree. . . . . . . . . . . . . . 59

6.4 Second EE-EOM-CCSD excitation energy for N ∈ {2, 6, 12} electron sys-
tems with ω ∈ {1.0, 0.5, 0.28} retrieved as a function of the inverse number
of virtual orbitals N−1

v . All energies are in Hartree. . . . . . . . . . . . . . 60

6.5 Third EE-EOM-CCSD excitation energy for N ∈ {2, 6, 12} electron sys-
tems with ω ∈ {1.0, 0.5, 0.28} retrieved as a function of the inverse number
of virtual orbitals N−1

v . All energies are in Hartree. . . . . . . . . . . . . . 61

6.6 Singlet-triplet gap calculated with UHF, UMP2 and EE-EOM-CCSD as
a function of ω in Hartree. All calculations are done with Nv = 10. . . . . 62

7.1 (a) The split-110 (X), (b) hexagonal (H), and (c) tetrahedral (T) intersti-
tial defects. The atom(s) forming the defect are shown in red, while the
nearest neighbors to the defect atoms are shown in yellow. The bonds
between the defect and nearest neighbor atoms are shown in orange. The
figures are taken from reference [183]. . . . . . . . . . . . . . . . . . . . . 68

7.2 Schematic illustration of the workflow used to get the silicon self-interstitial
formation energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.3 The formation energy as a function of the number of k-points used in
the Hartree-Fock calculation for all self-interstitials. A Γ-centered cubic
k-point mesh was used with Nk x Nk x Nk gridpoints. . . . . . . . . . . 71

xiii



List of Figures xiv

7.4 CCSD formation energy of the X interstitial as a function of the number
of orbitals per occupied orbital with and without the basis set correction
scheme (FPC). A Γ-centered cubic mesh was used. . . . . . . . . . . . . . 72

7.5 CCSD(T) formation energies as a function of the number of virtual or-
bitals per occupied orbital for all self-interstitials include finite size and
basis set corrections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



List of Tables

6.1 Summary of the convergence of CCSD energies for the N = 2 electron
system with ω = 1.0 as a function of the number of grid points Ng used
to represent the wavefunction. The CCSD energies have been computed
for a finite basis set corresponding to 6 oscillator shells or 21 orbitals. All
energies are in Hartree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Summary of CBS limit CCSD ground state energy for the 2 electron
system with ω = 1.0, with different functions used for the extrapolation.
All energies are in Hartree. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3 Summary of CBS limit CCSD ground state energy for the 2 electron sys-
tem with ω = 1.0, with different basis set sizes used for the extrapolation.
All energies are in Hartree. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4 HF energy and correlation energy contributions on the level of MP2 and
CCSD theory in Hartree for 2 electrons. Nv denotes the number of virtual
orbitals, with its value at ∞ being the extrapolated value. Our results
show that as ω increases, the HF ground state energies increases linearly
with ω. HF is a good approximation in the limit of large ω where the
inter electronic interaction is small compared to the one-body interaction. 57

6.5 Summary of CBS limit CCSD energies for N ∈ {2, 6, 12} electron systems
with ω ∈ {1.0, 0.5, 0.28}. All energies are in Hartree. . . . . . . . . . . . . 58

6.6 CBS limit excitation energies for N ∈ {2, 6, 12} electron systems with
ω ∈ {1.0, 0.5, 0.28}. All quantities are expressed in atomic units. . . . . . 63

6.7 CBS limit ground state and excitation energies for the 2 electron system
with ω ∈ {1.0, 0.5} compared to the variationally optimized energies from
Ref. [154] on the right. All quantities are expressed in atomic units. . . . 63

7.1 CCSD and CCSD(T) formation energies of the silicon self-interstitials
and the vacancy with and without the basis set and finite size correction
as a function of the unoccupied to occupied orbital ratio Nv/Nocc at the
Γ-point. FPC and FS denote that the basis set/finite size corrections are
included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Computed and converged HF, CCSD, CCSD(T) and HSE formation ener-
gies including all reported corrections in this work compared to QMC [197],
RPA [198], PBE [198], LDA [179, 182] and G0W0 [179] from the literature
and also experimental data [196, 212–215]. All results have been obtained
for the 16/17 atom cells except RPA(216), which employed 216/217 atom
cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

D.1 HF formation energies of all calculated structures, as well as the CCSD,
CCSD(T), finite size and basis set corrections. All energies are in eV. . . 88

D.2 Twist averaged results for the bulk. All energies are in eV. . . . . . . . . 89

xv



List of Tables xvi

D.3 Twist averaged results for the C3V interstitial. All energies are in eV. . . 89

D.4 Twist averaged results for the X interstitial. All energies are in eV. . . . . 89

D.5 Twist averaged results for the T interstitial. All energies are in eV. . . . . 90

D.6 Twist averaged results for the H interstitial .All energies are in eV. . . . . 90

D.7 Twist averaged results for the vacancy. All energies are in eV. . . . . . . . 90



Abbreviations

DFT Density Functional Theory

QMC Quantum Monte Carlo

BSE Bethe-Salpeter Equation

HF Hartree Fock

CI Configuration Interaction

FCI Full Configuration Interaction

MP Møller–Plesset perturbation theory

MP2 second-order Møller–Plesset perturbation theory

CC Coupled Cluster

CCSD Coupled Cluster Singles and Doubles

EOM Equation of Motion

CCSD(T) Coupled Cluster Singles Doubles and perturbative Triples

XC eXchange-Correlation

LDA Local Density Approximation

GGA Generalized Gradient Approximation

PBE Perdew–Burke–Ernzerhof

HSE Heyd–Scuseria–Ernzerhof

RPA Random Phase Approximation

DIIS Direct Inversion in the Iterative Subspace

PAW Projector Augmented Wave

NO Natural Orbital

FNO Frozen Natural Orbital

CBS Complete Basis Set

BSIE Basis Set Incompleteness Error

FPC Focal-Point Correction

xvii



Abbreviations xviii

FSIE Finite Size Incompleteness Error

HOMO Highest Occupied Molecular Orbital

LUMO Lowest Unoccupied Molecular Orbital

GTO Gaussian Type Orbital

STO Slater Type Orbital

QD Quantum Dot



Dedicated to my family. . .

xix





Chapter 1

Introduction

Low-dimensional systems are at the heart of nanotechnology research, as, their unique

physical properties make them promising candidates for a wide range of applications. In

these systems, the confinement of electrons, excitons and phonons leads to a quantization

of energy levels and enhancements of the interaction between the different constituents.

This results in phenomena such as quantum confinement, tunable band gaps, and strong

light-matter interactions, which can be harnessed for many different applications in elec-

tronics, optics, energy conversion, and sensing technology. Examples of low-dimensional

systems include quantum dots, quantum wells, nanowires, nanotubes, point defects and

graphene, among others.

In order to deepen our understanding of these systems, one has to model them by

applying many-body methods. This approach allows for the calculation of properties

such as energy levels, electronic band structures, optical spectra and chemical reactivity,

typically done by freezing the nuclei and solving the electronic part of the Schrödinger

equation approximately. An important goal of electronic structure theory is the ab initio

description of a system, allowing for accurate predictions of its electronic and optoelec-

tronic properties. The most popular method is DFT due to its good trade off between

computational cost and accuracy. Although DFT is in principle exact and therefore an

ab initio theory, in order for it to be applied to a specific system one has to know a-

priori which exchange correlation functional performs well for the given system. For this

purpose, an experimental or high level wavefunction based theory reference is needed.

Note that the validation of certain exchange correlation functionals in DFT with the

use of more accurate methods is an ongoing research in the field of quantum chemistry.

In many cases experimental references are hard to come by and the typical high level

wavefucntion based reference theory is either QMC or CCSD(T). This makes these two

methods an invaluable benchmark tool in the toolkit of condensed matter physics and
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Introduction 2

computational quantum chemistry. With the steady advancements in computational

power and the help of super computers, electronic structure theory nowadays is rou-

tinely applied to compute and predict structures, spectroscopic parameters, as well as

reaction barriers for moderate-sized systems and with more computation power in the

future electronic structure theory will continue to extend its scope.

This work aims at both applying coupled cluster (CC) theory to calculate the ground

and excited state energies of the quantum dot in different regimes of correlation and

the formation energies of the silicon self-interstitials in order to model them, as well as

evaluating the performance of CC theory itself. By performing these calculations, we

will gain insights into the accuracy of CC theory on different types of low dimensional

systems and expand our understanding of the strengths and limitations of the method

for future investigations of other important systems.

In the upcoming chapters a ground up description of the theory, methods and tools

necessary to perform these calculations is presented. Further, there are two standalone

chapters specifically on the quantum dot and the silicon self-interstitials containing all

details on what has been achieved in this thesis.



Chapter 2

Interacting Electrons in an Atom

The first principles (ab initio) modeling of microscopic systems is an important goal

of condensed matter physics and computational quantum chemistry. In quantum me-

chanics, particle dynamics are understood in terms of a wave-equation, the Schrödinger

equation, which was proposed in 1926 [1]. The Schrödinger equation allowed solving

hydrogen and hydrogen-like atoms analytically by reformulating it to an eigenvalue

problem. From the solution, the three principal quantum numbers emerged, giving rise

to an ab initio understanding of atomic orbitals. Nonetheless, another quantum number

needed to be introduced in order for the Schrödinger equation to fit observation, the spin

quantum number, which has been done empirically by Pauli in 1925 [2]. Note that spin

is only a simulacrum, it has nothing to do with spinning particles. Pauli called the fourth

quantum number a ”Classically Non-Describable Two-Valuedness”. Later spin emerged

from the Clifford algebra within the Dirac equation, which was derived by incorporating

special relativity into a linearized, Lorentz invariant, Schrödinger equation [3].

In general, atomic orbitals are ubiquitous for understanding the electronic configuration

of the elements and their chemical bonding, reactivity and spectroscopy. The atomic

orbital plays a central role in modeling point like structures and molecular orbitals.

In the upcoming section the atomic orbitals will be presented and used to estimate at

which point a relativistic treatment of the particles is necessary, in order to motivate

the Schrödinger equation.

2.1 Hydrogen-like Atom

A hydrogen atom consists of one positively charged proton and a single negatively

charged electron bound to the nucleus by the coulomb force. A hydrogen-like atom

3



Interacting Electrons in an Atom 4

differs from hydrogen only by the charge and mass of the nucleus, it is an atom with

only one electron for example, He+ or Li++. Since the charge of the nucleon is only a

constant in the Schrödinger equation, one can solve it for all charges in one go.

2.1.1 The Hamiltonian and its Solutions

The full Hamiltonian of a hydrogenic atom with nucleon charge Ze and mass mN is

− ℏ2

2mN
∇2

Nψ − ℏ2

2me
∇2

eψ − Ze2

4πϵ0|r⃗N − r⃗e|ψ = Eψ(r⃗e, r⃗N ). (2.1)

It contains, in order, the kinetic energy of the nucleus, the kinetic energy of the electron,

and the Coulomb attraction between them. The wavefunction depends on the coordi-

nates of both the nucleus and the electron. The center of mass and relative movement

of the constituents can be separated with the center of mass coordinate transformation,

R⃗ =
mN r⃗N +mer⃗e

M
, (2.2)

M = mN +me, (2.3)

r⃗ = r⃗N − r⃗e, (2.4)

µ =
mNme

mN +me
, (2.5)

ψ(r⃗e, r⃗N ) = ψ(R⃗, r⃗). (2.6)

Resulting in the separable equation

− ℏ2

2M
∇2

R⃗
ψ − ℏ2

2µ
∇2

r⃗ψ − Ze2

4πϵ0r
ψ = Eψ(R⃗, r⃗). (2.7)

Separating the variables

ψ(R⃗, r⃗) = ψ(R⃗)ψ(r⃗), (2.8)

yields the equation

− ℏ2

2M
∇2

R⃗
ψ = EMψ(R⃗), (2.9)

for the center of mass movement and�
− ℏ2

2µ
∇2

r⃗ −
Ze2

4πϵ0r

�
ψ = Erψ(r⃗), (2.10)

for the relative movement of the electron and nucleus, with

E = EM + Er. (2.11)
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Both can be solved analytically. The center of mass equation represents a free particle

and its solutions are the plane waves

ψ(R⃗) = eik⃗R⃗, (2.12)

and every linear combination of them. Equation 2.10 describes the hydrogenic atom in

its inertial frame and can be further separated into radial and angular parts with the

well known solutions

ψ(r⃗) = ψ(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ), (2.13)

Rnl(r) =

��
2Z

naµ

�3 (n− l − 1)!

2n(n+ l)!
e−Zr/naµ

�
2Zr

naµ

�l

L2l+1
n−l−1

�
2Zr

naµ

�
, (2.14)

En = −
�
Z2ℏ2

2µa2µ

�
1

n2
, (2.15)

where Ylm(θ, ϕ) are the spherical harmonics, L
(2l+1)
n−l−1 are the generalized Laguerre poly-

nomials and

aµ =
4πϵ0ℏ2

µe2
. (2.16)

The quantum numbers n, l and m can take the values

n = 1, 2, 3, 4, ... (2.17)

l = 0, 1, 2, ..., n− 1 (2.18)

m = −l,−l + 1, ..., 0, ..., l − 1, l (2.19)

2.2 Relativistic Limit

For the sake of argumentation we now use a semi-classical picture of the electron as a

particle. With the wavefunction from equation 2.13, one can calculate the expectation

value of the momentum operator for an arbitrary atomic orbital, to see if the electron

reaches momenta that require relativistic treatment. The expectation value for the speed

of an electron in an atomic orbital with quantum number n around a nucleus with charge

Ze is

v =
αcZ

n
, (2.20)

with

α =
e2

4πϵ0ℏc
. (2.21)

This amounts approximately to 0.73% of the speed of light for an electron in a hydrogen

atom (Z = 1) in the ground state, n = 1. With increasing charge Z, the speed increases
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linearly, meaning that the innermost electrons have to be treated with relativistic cor-

rections, while for the inner electrons of the heaviest elements Schrödinger theory cannot

be used. With more electrons around the nucleus, the outer electrons, that already have

lower speed due to their distance to the nucleus (n > 1), see a screened charge, further

lowering their speed. Which means that the outermost electrons of heavier atoms can

be treated non-relativistically. These electrons account for the chemical bonding and

reactivity properties of atoms. Further, in materials they account for the electrical, op-

tical and thermal properties. Note that the orbitals of these outer electrons will be and

are influenced by the relativistic inner orbitals through the aufbau principle.

The relativistic and non-relativistic momenta of a classical particle are

prel = mc

�
v2

c2 − v2
, (2.22)

p = mv. (2.23)

From figure 2.1 we can see that at 10% of the speed of light, both the relativistic

Relativistic
Nonrelativistic

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Speed (c)

M
om
en
tu
m

(a.u.)

Figure 2.1: The relativistic and non-relativistic momentum of a point like particle as
a function of the speed of light. Expressed in terms of Hartree atomic units.

and non-relativistic momenta are starting to disagree, with prel = 1.005p. This speed

corresponds to the speed of the innermost electron in a silicon atom, the heaviest atom

treated in this thesis.
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The full relativistic treatment of the hydrogen atom would include, besides, a correction

for the kinetic energy term, delocalisation effects due to the Compton wavelength of the

electron and spin-orbit coupling due to the electron spin interacting with the magnetic

field that is seen by its motion through the electric field of the nucleus [4].

2.3 Adding more Electrons

By adding more electrons to the Hamiltonian of the hydrogenic atom, a new term needs

to be accounted for, the electron-electron Coulomb repulsion. This is the main source

of headache in the field of electronic structure theory. The Hamiltonian of n electrons

orbiting a nucleus with charge Ze and mass mN is

− ℏ2

2mN
∇2

Nψ +
n�
i

− ℏ2

2me
∇2

iψ +
n�
i

− Ze2

4πϵ0riN
ψ +

n�
i<j

e2

4πϵ0rij
ψ = Eψ(r⃗1, ..., r⃗n; r⃗N ).

(2.24)

This equation can no longer be solved analytically, nonetheless we can uncover nec-

essary symmetries of the wavefunction by requiring that electrons are fundamentally

indistinguishable. Assume we have a solution to equation 2.24

ψ(r⃗1, ..., r⃗n; r⃗N ). (2.25)

Switching two electrons a and b in the wavefunction would still have to represent the

same particle probability distribution

|ψ(r⃗1, ..., r⃗a, ..., r⃗b, ..., r⃗n; r⃗N )|2 = |ψ(r⃗1, ..., r⃗b, ..., r⃗a, ..., r⃗n; r⃗N )|2, (2.26)

otherwise, the electrons could be distinguished through the wavefunction. This is only

the case if the wavefunction is either symmetrical or antisimmetrical with respect to

permutations in electron arguments,

ψ(r⃗1, ..., r⃗a, ..., r⃗b, ..., r⃗n; r⃗N ) = ±ψ(r⃗1, ..., r⃗b, ..., r⃗a, ..., r⃗n; r⃗N ). (2.27)

2.3.1 Spin Statistics

Experimental observation of the helium spectrum and many other atomic spectra has

shown an interesting result: The whole wavefunction of an atom is always antisym-

metrical with respect to permutations between two arbitrary electrons. Further, it is

known through many experiments that the electron has an intrinsic quantized magnetic
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moment. Due to these and many other experimental results, the Pauli principle was pos-

tulated [2], stating that a quantum state with unique quantum numbers (n, l,ml,ms)

can only be occupied by a single electron. Where ms is the spin magnetic quantum num-

ber that can take the values ±1
2 in units of ℏ. Later theoretical examinations lead to the

spin-statistics theorem [5] that states that the Pauli exclusion principle is true for all

particles with half integer spins and they obey the Fermi-Dirac statistics. These parti-

cles are called fermions and include protons, electrons and neutrons. On the other hand,

particles with integer spin are called bosons and their overall wavefuction is symmetric.

They obey the Bose-Einstein statistic and include photons and phonons, amongst many

others.

The spin quantum number σ is added to the electronic coordinates of an electron r⃗ =

(x, y, z) to form the spin-orbital

r = (r⃗, σ) = (x, y, z, σ), (2.28)

which uniquely defines the state of a single electron.



Chapter 3

Interacting Electrons in Solids

Depending on the types of bonding between the constituent particles and their macro-

scopic properties solids can be classified into many categories. The most important

distinction for this thesis is between crystalline solids and amorphous solids, with the

primary interest of this work being in crystalline solids. Crystalline solids are character-

ized by a highly ordered and repetitive arrangement of atoms or molecules. They have a

long ranged positional order (fernordnung) forming well-defined crystal structures. The

main idea is to solve the Schrödinger equation in the unit cell, and recover the prop-

erties of the whole with appropriate periodic boundary conditions that incorporate the

symmetries of the crystal. This is easier said than done.

In the next chapter, a short presentation of the mathematics of crystal structure will

be shown, leading to the Schrödinger equation with periodic boundary conditions and

Bloch’s theorem. From there the many-body Hamiltonian of an arbitrary crystal will

be presented together with the Born-Oppenheimer approximation, leading to the elec-

tronic structure Hamiltonian, which is the starting point of wavefunction based electronic

structure theory.

3.1 Fernordnung

In a solid crystal, the atoms form a well-defined periodic arrangement known as the

crystal structure. The crystal structure is characterized by its unit cell and the symme-

try of the crystal structure is constrained by the requirement that the unit cell stacks

perfectly with no gaps in all directions. In general, one can define an atom to sit at

the zero point in the coordinate system and define a vector that points to an arbitrary

neighbor atom

T⃗ (m1,m2,m3) = m1a⃗+m2⃗b+m3c⃗. (3.1)

9
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Where a⃗, b⃗ and c⃗ are vectors pointing to the nearest neighboring atom (lattice vectors)

and m1, m2 and m3 are integers. The vector T⃗ is called the translation vector, and it

contains the periodicity of the system. Many crystals don’t have a single atom sitting

on the grid, rather they have a group of atoms. It’s enough to define the position of

these atoms in the unit cell, and together with the vector T⃗ the crystal structure is

uniquely defined. Further, it is expedient for the analysis of experimental data of crystal

structures to define the reciprocal lattice vectors

a⃗∗ = 2π
b⃗× c⃗

a⃗ · (⃗b× c⃗)
, (3.2)

b⃗∗ = 2π
c⃗× a⃗

b⃗ · (c⃗× a⃗)
, (3.3)

c⃗∗ = 2π
a⃗× b⃗

c⃗ · (⃗a× b⃗)
. (3.4)

The dimension of the reciprocal lattice vectors is one over length, already hinting that

they are useful for describing the k⃗ vector. These vectors are defining a reciprocal lattice

G⃗ = a⃗∗h+ b⃗∗k + c⃗∗l, (3.5)

with h,k and l being integers. The unit cell of the reciprocal lattice is called the Brillouin

zone, and it is not the parallelepiped spanned by the vectors a⃗∗, b⃗∗ and c⃗∗. Rather, it is

the polyhedron restricted by the planes that go through the middle of the vectors and

are orthogonal to them.

Solving the Schrödinger equation inside the unit cell with periodic boundary conditions

recovers the wavefunction of the whole crystal.

3.1.1 Bloch’s Theorem

When we have electrons moving in a periodic potential, as it is the case for an electron

moving in the potential of the ions of a crystal, it is expected that the wavefunction

will also have periodicity. Bloch’s theorem states that solutions to the Schrödinger

equation in a periodic potential take the form of a plane wave modulated with a periodic

function [4]

ψ
k⃗
(r⃗) = u

k⃗
(r⃗)eik⃗r⃗. (3.6)

Where u has the same periodicity as the crystal and k⃗ is the crystal momentum vector.

Usually these eingenstates are written as ψ
nk⃗

where n is a natural number called the

band index and k⃗ is continuous. This wavefunction ansatz serves as a suitable basis for
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electrons in crystals and the continuity of k⃗ gives rise to the band structure ϵn(k⃗)

Ĥψ
nk⃗

= ϵn(k⃗)ψnk⃗
. (3.7)

The quantum state in a solid is uniquely defined by ψ
nk⃗
, but due to the periodicity of

the crystal ψ
nk⃗

= ψ
n(k⃗+K⃗)

, where K⃗ is an arbitrary reciprocal lattice vector. This means

that the quantum state can be described exclusively in the Brillouin zone without loss of

generality and the other quantum states outside the Brillouin zone are included through

the periodicity.

3.2 The Many-Body Hamiltonian

The full Hamiltonian of interacting nuclei and interacting electrons including all terms

is

Ĥ = T̂el + T̂nuc + Vel–nuc + Vel–el + Vnuc–nuc. (3.8)

with

T̂el =
�
i

− ℏ2

2me
∇2

i , (3.9)

T̂nuc =
�
N

− ℏ2

2M
∇2

N , (3.10)

Vel–nuc =
�
iN

− Ze2

4πϵ0riN
, (3.11)

Vel–el =
n�

i<j

e2

4πϵ0rij
, (3.12)

Vnuc–nuc =
�
M<N

Z2e2

4πϵ0rMN
. (3.13)

In principle, the only task left, is to solve the Schrödinger equation

ĤΨn(r⃗1, ..., r⃗n; R⃗1, ..., R⃗N ) = EnΨn(r⃗1, ..., r⃗n; R⃗1, ..., R⃗N ). (3.14)

3.2.1 Born-Oppenheimer Approximation

Equation 3.14 has the curse of dimensionality and can only be solved exactly for up

to two electrons. One has to find approximations in order to simplify the equation,

without affecting the accuracy of the quantitative description we are looking for. The

Born-Oppenheimer approximation allows to decouple the motion of the electrons and
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the nuclei. This approximation is justified because the nuclei are four to five orders

of magnitude heavier than the electron, meaning that the characteristic timescales also

differ by the same amount. This means that any change in the position of the nuclei may

be described as instantaneous from the perspective of the electrons. The zeroth-order

Born-Oppenheimer approximation [6], also called the clamped-nuclei approximation,

treats the nuclei as points that are fixed at the lattice sites. This approximation reduces

the Vnuc–nuc term to a simple constant and ignores the T̂nuc term. Which leaves us with

the non-relativistic electronic structure Hamiltonian in Hartree atomic units as

Ĥe = −1

2

�
i

∇2
i −

�
iN

Z

|R⃗N − r⃗i|
+

1

2

�
i ̸=j

1

|r⃗i − r⃗j | . (3.15)

With the R⃗N being well-defined constants describing the position of the nuclei. The

resulting time independent Schrödinger equation

Ĥe(r)Ψn(r) = EnΨn(r), (3.16)

is the main equation to solve in electronic structure theory. With r = r⃗1, ..., r⃗n.



Chapter 4

Ab Initio Many-Body Methods

Ab initio many-body methods attempt to solve the electronic Schrödinger equation

(equ 3.16) given the position of the nuclei and the number of electrons in order to yield

useful information about the properties of the studied system from first principles. The

computational ability to run these calculations has allowed theoreticians to bridge a

wide knowledge gap [7]. Ab initio many-body methods can be classified as wavefunction

based methods and non wavefunction based methods.

The most popular method is DFT, which is not wavefunction based. Further, the sim-

plest wavefunction based electronic structure calculation method is the Hartree-Fock

(HF) method. There is an array of methods trying to improve on the HF results, these

are generally called post-Hartree-Fock methods and include Møller–Plesset perturbation

theory (MP), configuration interaction (CI) and coupled cluster (CC). Another promis-

ing wavefunction based method is quantum Monte Carlo (QMC). The term encompasses

a large family of computational methods, which all rely on repeated random sampling

to solve the multidimensional integrals that arise in the different formulations of QMC.

Although for most calculations these theories are based on a single-reference, they can

be made to be multi-reference by generalization of the ansatz, but this work’s focus

is on single-reference theories only. Further, the techniques of machine learning have

opened up new ways of accelerating calculations and exploring chemical space, that can

be incorporated in the existing methods in many ways [7].

4.1 Density Functional Theory

DFT [8] is the most popular approach for electronic structure calculations of solids and

large molecules due to its good trade off between accuracy and computational cost. The

13
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basic idea of DFT is not to find the many-electron wavefunction, but rather the electronic

density n(r). This is made possible by two theorems by Hohenberg and Kohn [9].

The first theorem states that the non-relativistic ground state electron density n(r) is

uniquely defined by the potential Vext(r). The second theorem states that variations of

the ground state electron density n(r) can only lead to an increase in energy. Meaning

that the ground state is unique and can be reached with a systematic variation of the

electron density as a minimum. The theorems are mathematically proven and can be

expanded to work for degenerate systems and time-dependent densities [10]. They allow

writing the energy as a functional of the electron density

E[n(r)] =

�
Vext(r)n(r)dr + F [n(r)]. (4.1)

where Vext(r) is the potential of the nuclei the electrons are moving through and F [n(r)]

is a system independent functional that includes the kinetic energy of the electrons

and their Coulomb repulsion. The Coulomb repulsion between the electrons is the main

culprit in making the Schrödinger equation practically unsolvable. The Hohenberg-Kohn

theorem was further developed by Kohn and Sham to produce Kohn-Sham DFT [11].

In this framework, the problem of interacting electrons in a static potential is reduced to

non-interacting electrons moving in an effective potential, where the effective potential

includes the static potential of the nuclei and the effects of the Coulomb interactions of

the electrons. Having non-interacting electrons allows us to write the electron density

in terms of sums of orbitals

n(r) =
N�
i

|ψi(r)|2. (4.2)

where the index i runs over all occupied orbitals ψi(r). This allows to write the total

energy of a system expressed as a functional of the charge density in atomic units

E[n(r)] = −1

2

�
i

�
ψ∗
i (r)∇2ψi(r)dr+

�
Vext(r)n(r)dr+

1

2

� �
n(r)n(r′)
|r− r′| drdr′+Exc[n(r)].

(4.3)

The first term is the kinetic energy T [n(r)] of the non-interacting electrons occupying

one-body orbitals ψi(r), the second term is the interaction of the charge density with the

static potential of the nuclei, the third term, is the Hartree energy EH [n(r)], representing

the classical energy it would take to hold the shape of the charge density against its own

Coulomb repulsion and the last term is the so-called exchange correlation (XC) energy,

which represents the remaining error to the energy functional and is defined as

Exc[n(r)] = F [n(r)]− T [n(r)]− EH [n(r)]. (4.4)
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Minimization of the energy functional from equation 4.3 leads to a set of self-consistent

equations, the Kohn-Sham equations [11]�
−1

2
∇2

i + VN (r) + VH(r) + Vxc(r)

�
ψi(r) = ϵiψi(r). (4.5)

where VN is the nuclear electrostatic potential, VH is the Hartree potential

VH(r) =

�
n(r′)
|r− r′|dr

′ , (4.6)

and Vxc(r) the so-called XC potential

Vxc(r) =
δExc[n(r)]

δn(r)
. (4.7)

The presented approach is in principle exact, but the general exchange correlation energy

is unknown and has to be approximated. This is the starting point of XC approximations

with increasing complexity, that constitute a hierarchy of density functional approxima-

tion theories (DFA).

4.1.1 Exchange Correlation Approximation Hierarchy

The different types of exchange correlation functionals with increasing accuracy are

presented in figure 4.1 called the Jacobs ladder [12].

The simplest approximation to the XC functional and first on the Jacobs ladder, is called

Local Density Approximation (LDA)

Exc[n(r)] =

�
ϵxc(n(r))n(r)dr, (4.8)

where the ϵxc(n(r)) is the XC correlation energy density of the uniform electron gas

(UEG) with the density n(r). The exchange part of the UEG is well known, the first

accurate description of the correlation part has been achieved with QMC [14]. LDA gives

accurate predictions of equilibrium geometries of solids and molecules, as well as bond

lengths [15]. However, it fails for the accurate description of band gaps and reaction

energies. One way to improve upon LDA is to include the gradient of the charge density

Exc[n(r)] =

�
ϵxc(n(r),∇n(r))n(r)dr , (4.9)

where ϵxc is typically expanded into a set of parameterized non-linear functions. This is

called a general gradient approximation (GGA). The most widely-used GGA functional

in solid state calculations is PBE [16]. To improve further, one can include the kinetic
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Figure 4.1: Jacob’s ladder of approximations to the XC functional from Ref. [13].

energy density τ(r) to the XC functional, referred to as meta-GGA [17]. At this point,

the XC correlation functional is still semi-local in the Kohn-Sham calculation, meaning

that it can still be expressed as an integral over three-dimensional space with ingredi-

ents that are available at each point r. The next step in improving the XC functional

approximation is adding the fully non-local exact exchange energy from HF. This is typ-

ically done with a weighting parameter α, the resulting XC functional is called a hybrid

functional [18].

EHybrid
XC = EGGA

XC + α(Eexact
X − EGGA

X ) , (4.10)

At this point, all the occupied orbitals are included in the XC functional, including the

exchange energy. Further improvement can be achieved by including the unoccupied

orbitals. This can be done with random phase approximation [19, 20] (RPA) or by

means of perturbation theory on top of the Kohn-Sham orbitals as it is done by double

hybrid approximations [21].

4.2 Hartree Fock Theory

Hartree-Fock theory [22–24] is a wavefunction based method build on the Hartree prod-

uct ansatz

ψ(x1, x2, ..., xn) = ψ(x1)ψ(x2)....ψ(xn). (4.11)



Ab initio many-body Methods 17

This ansatz would lead to the analytically exact solution in the case of non-interacting

electrons. However, as we have seen in chapter 2.3.1, the many-electron wavefunction

is always antisymmetric with respect to permutations of two electron arguments. We

can construct an antisymmetric linear combination of Hartree products with the Slater

determinant

Ψ(x1,x2, . . . ,xN ) =
1√
N !

�����������

ψ1(x1) ψ1(x2) . . . ψ1(xN )

ψ2(x1) ψ2(x2) . . . ψ2(xN )
...

...
...

...

ψN (x1) ψN (x2) . . . ψN (xN )

�����������
. (4.12)

Where the x is includes the spatial and spin coordinates of the electron. In HF theory,

we are trying to solve the general electronic structure Hamiltonian 3.15 by employing

the variational principle to self-consistently optimize the one electron orbitals in the

Slater determinant, in order to get an upper bound to the ground state energy, implying

an mean field theory. Note that the exact exchange is taken into account through the

antisymmetry of the Slater determinant. Also the orbitals ψn(xn) are orthonormal.

By using the Slater-Condon rules (see appendix A) and the Slater determinant as the

wavefunction ansatz, the variational HF energy takes the form

EHF = ⟨Ψ|Ĥ|Ψ⟩ =
occ.�
i

⟨ψi|ĥ|ψi⟩+ 1

2

occ.�
i,j

(⟨ψiψj |ψiψj⟩ − ⟨ψiψj |ψjψi⟩) , (4.13)

with the one-body integral ⟨ψi|ĥ|ψi⟩ defined as

⟨ψi|ĥ|ψi⟩ = −1

2
⟨ψi|∇2|ψi⟩+ ⟨ψi|VN(r)|ψi⟩ , (4.14)

and VN(r) being the nuclear potential . The first two-electron integral describes the

classical electrostatic Coulomb interaction between two charge densities

⟨ψiψj |ψiψj⟩ =
� �

ψ∗
i (x)ψ

∗
j (x

′)
1

|r− r′|ψi(x)ψj(x
′)dxdx′ . (4.15)

The second two-electron integral has no classical counterpart

⟨ψiψj |ψjψi⟩ =
� �

ψ∗
i (x)ψ

∗
j (x

′)
1

|r− r′|ψj(x
′)ψi(x)dxdx

′ . (4.16)

It arises out of the antisymmetry of the wavefunction ansatz and is referred to as the

exchange integral.
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Using the method of Lagrange multipliers with the constraint that the one-electron

orbitals are orthonormal ⟨ψi|ψj⟩ = δij we get the self-consistent HF equations [25]

ĥ(r)ψi(x) +
�
j

��
ψ∗
j (x

′)
1

|r− r′|ψj(x
′)dx′

�
ψi(x)

−
�
j

��
ψ∗
j (x

′)
1

|r− r′|ψi(x
′)dx′

�
ψj(x) = ϵiψi(x) , (4.17)

where ϵi are eigenenergies of the one-electron orbitals ψi. This equation is often written

in the form ĥ(r) +
�
j

	
Ĵj − K̂j

�ψi(x) = ϵiψi(x). (4.18)

With Ĵj being the Coulomb operator, and the K̂j the exchange operator. Further, the

Fock operator is defined as

f̂ = ĥ(r) +
�
j

	
Ĵj − K̂j

�
, (4.19)

making it possible to write the HF equations in the compact form

f̂ψi = ϵiψi . (4.20)

The presented HF theory has no assumptions regarding the spin part of the spin-orbitals.

When each spatial orbital is occupied twice, with one spin-up and one spin-down electron

the theory is called closed shell or restricted. Carrying out the spin integration explicitly

in equation 4.13 gives the prefactors two, four and two for the three constituents resulting

in

EHF = 2
occ.�
i

⟨ψi|ĥ|ψi⟩+
occ.�
i,j

(2⟨ψiψj |ψiψj⟩ − ⟨ψiψj |ψjψi⟩) , (4.21)

where the summation over i and j is now covering only the spatial part of the spin-

orbitals.

The correlation energy is defined as

Ecorr = Eexact − EHF. (4.22)

The correlation energy is often just a small contribution to the overall energy, but it

usually contributes significantly to energy differences that are of great importance in

determining chemical properties. By definition correlation energy is the part of the non-

relativistic energy that is missing in HF theory, thus more sophisticated theories have

to be used, commonly referred to as post-Hartree-Fock theory.
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4.2.1 Introducing a Basis Set: Roothaan Equations

In all computer implementations of HF theory, the one-electron orbitals ψi(x) are rep-

resented in terms of a basis set with basis functions χµ and coefficients Cµi

ψi(r) =

Nb�
µ=1

χµ(r)Cµi. (4.23)

The basis set can be composed of atomic orbitals, which is the usual choice for atoms and

molecules. Several choices of atomic orbitals can be used, the most used are Slater-type

orbitals (STO), Gaussian-type orbitals (GTO) and even numerical orbitals [26]. Out of

the three, GTO’s are most often used because they allow an efficient implementation

of post-Hartree-Fock methods. In periodic systems, a plane wave basis set represent

a convenient choice [26]. They are often used in combination with an ’effective core

potential’ or pseudopotential [27], such that the plane waves are only used to describe

the valence charge density.

By using a complete orthonormal basis set, every orbital can be represented uniquely

and exactly. In principle, one needs an infinite amount of functions to do that. Thus,

a truncated basis set is used in practice, introducing the basis set incompleteness error

(BSIE). Inserting the basis set representation of the orbitals 4.26 into the Fock eigenstate

equation 4.20 leads to the Roothaan equations [25]

f̂

Nb�
µ=1

χµ(r)Cµi = ϵi

Nb�
µ=1

χµ(r)Cµi. (4.24)

By multiplying from the left with χ∗
ν(r) and integrating over r the Roothaan equations

can be written in the compact form

�
ν

FµνCνi = ϵiCµi , (4.25)

where Fµν is the Fock matrix in an orthonormal basis set

Fµν =
�
χµ

��f̂ ��χν

�
. (4.26)

4.3 Post Hartree-Fock

In HF theory the many-electron wavefunction is represented as a single Slater deter-

minant constructed from orbitals that are variationally optimized by minimizing the
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Figure 4.2: Two-electron wavefunction of the He atom as a function of the angle θ12
for a fixed radial distance. Figure taken from Ref [30]

energy. In post Hartree-Fock theory the many-electron wavefunction is expanded as a

linear combination of Slater determinants, constructed from the unoccupied HF one-

electron orbitals. This gives rise to a specific convergence problem with basis set size at

the so called electron-electron cusp.

4.3.0.1 Electron-Electron Cusp

The electron-electron cusp arises from the fact that in the limit of the interelectronic

distance going to zero, the Coulomb repulsion between the electrons diverges [28, 29]. In

order for the energy to remain finite, the singularity has to be canceled out by an opposite

singularity in the kinetic energy, creating a discontinuity in the first derivative of the

wavefunction and a cusp in the wavefunction. Such a cusp can be approximated using

a finite basis set but only in the limit of Nb → ∞ will the discontinuity mathematically

be there. This results in slow convergence of chemical properties with increasing basis

set size as shown in figure 4.2 for the helium atom.

Every post HF theory has this electron-electron cusp convergence issue and in practice

tricks have to be used to model the cusp in order to speed up the convergence of the

electronic structure calculations.
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4.3.1 Configuration Interaction

In Configuration interaction, the wavefunction is represented as a linear combination of

excited Slater determinants [25]. An excited Slater determinant is obtained by replacing

an occupied orbital ψi in the HF determinant 4.12 with a virtual orbital ψa as shown in

equation 4.27 and 4.28.

Ψ(x1, . . . ,xN ) =
1√
N !

�����������������

ψ1(x1) ψ1(x2) . . . ψ1(xN )

ψ2(x1) ψ2(x2) . . . ψ2(xN )
...

...
...

...

ψi(x1) ψi(x2) . . . ψi(xN )
...

...
...

...

ψN (x1) ψN (x2) . . . ψN (xN )

�����������������
, (4.27)

Ψa
i (x1, . . . ,xN ) =

1√
N !

�����������������

ψ1(x1) ψ1(x2) . . . ψ1(xN )

ψ2(x1) ψ2(x2) . . . ψ2(xN )
...

...
...

...

ψa(x1) ψa(x2) . . . ψa(xN )
...

...
...

...

ψN (x1) ψN (x2) . . . ψN (xN )

�����������������
. (4.28)

By substituting one, two or three orbitals one obtains singly, doubly and triply excited

determinants. The occupied orbitals are typically denoted by the indexes i, j . . . and the

virtual orbitals with a, b, . . . . Note that due to the antisymmetric mixing of orbitals, it

doesn’t matter which electron is excited. The many-electron wavefunction is expanded

in the basis of Slater determinants as

ΨCI =
�
I

cIΦI . (4.29)

Where I is the set of all indices describing excited Slater determinants up to N-th

order and ΦI is the corresponding Slater determinant. With the one-particle orbitals

being orthonormal and complete (⟨ϕi|ϕj⟩ = δij) all possible Slater determinants are

also orthonormal and complete (⟨ΦI |ΦJ⟩ = δIJ). The expansion coefficients cI can be

obtained variationally minimizing the energy expectation value

ECI =
⟨ΨCI|Ĥ|ΨCI⟩
⟨ΨCI|ΨCI⟩ . (4.30)
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which leads to an eigenvalue equation [25]

⟨ΦI |Ĥ − ECI|ΨCI⟩ =
�
J

�
⟨ΦI |Ĥ|ΦJ⟩ − λcJδIJ

�
= 0 , (4.31)

that can be rewritten in compact form

Hc = Ec, (4.32)

where H is the Hamiltonian matrix in the Slater determinant basis, c is the vector

containing the coefficients, and E is a diagonal matrix with the energy expectation

values of the ground and excited states. When all possible excitations are included in

the CI expansion, this is referred to as the the full CI (FCI) expansion. FCI is often

called exact diagonalization, as it represents the exact solution within the employed

basis set. In practice not all excitations can be included, one has to cut the determinant

space at some level of excitation. This gives rise to a hierarchy of CI theory, CIS, CISD,

CISDT and so on, where the suffixes S, D and T mean singly, doubly and triply excited

Slater determinants are included in the CI expansion.

A major issue of the truncated CI methods, is that they are not size consistent. Meaning

that the sum of energies of independently computed parts of a system is not equal to

the energy of the total system, even if the parts are not interacting. Note that the FCI

method is size consistent. For example, let’s consider two Helium atoms separated by an

infinite distance described by CISD theory. A single atom has two electrons, and CISD

is equivalent to FCI in this case. The energy of two infinitely separated helium atoms

should be equivalent to two times the energy of the single helium atom, since they are

not interacting. This is not the case with CISD, since the product of both atoms being

doubly excited is now a quadruple excitation in the two atom (four electron) system

and is not included in the expansion of the wavefunction. This problem is solved by the

exponential ansatz in CC theory, which will be shown later.

4.3.2 Møller–Plesset Perturbation Theory

Perturbation theory in quantummechanics refers to an approximation scheme. The basic

idea is to split the Hamiltonian into an unperturbed part, to which solutions are already

known, and an ideally small perturbation. By introducing the perturbation to the known

Hamiltonian, we break down the problem into two parts: a solvable unperturbed system

and a small perturbation that causes deviations from these exact known solutions.

Ĥ = Ĥ(0) + λV̂ , (4.33)



Ab initio many-body Methods 23

The wavefunction and corresponding energies are expanded in a series in terms of λ, that

converges faster when the λ is small. Note that one can derive a system dependent con-

vergence criterion as a function of λ, that has to be fulfilled in order for the perturbation

expansion to converge at all. In quantum mechanics, this is generally called Rayleigh-

Schödinger perturbation theory [31] (see appendix B). Note that the convergence can

be oscillating. In the case of the unperturbed Hamiltonian being the self-consistent HF

ground state this is called Møller–Plesset (MP) perturbation theory [32]. The Hamilto-

nian is written as

Ĥ = Ĥ(0) + V̂, (4.34)

Ĥ(0) =
occ.�
i

f̂(i) , (4.35)

V̂ = Ĥ − Ĥ(0) . (4.36)

Where the unperturbed Hamiltonian is the sum of all Fock operators defined in equa-

tion 4.19 and Ĥ is the exact electronic Hamiltonian. The HF Slater determinant Ψ(0),

consisting of canonical HF orbitals (eigenstates of the Fock operators), is the solution

to the unperturbed Hamiltonian

Ĥ(0)Ψ(0) = E(0)Ψ(0) . (4.37)

Where E(0) is the zeroth-order energy and is the sum of the eigenenergies of the canonical

HF orbitals

E(0) =
occ.�
i

ϵi . (4.38)

The first order energy correction to the zeroth-order Hamiltonian yields the HF energy

⟨Ψ(0)|Ĥ(0)|Ψ(0)⟩+ ⟨Ψ(0)|V̂|Ψ(0)⟩ = E(0) + E(1) = EHF (4.39)

In order to improve on the HF ground state with MP theory, we have to go at least to

the second order energy

E(2) = ⟨Ψ(1)|V̂|Ψ(0)⟩ = ⟨Ψ(1)|Ĥ − Ĥ(0)|Ψ(0)⟩ . (4.40)

The equations above depends on the first order wavefunction Ψ(1), which can be written

in the basis of excited Slater determinants

Ψ(1) =

occ.�
i

vir.�
a

taiΦ
a
i +

occ.�
i<j

vir.�
a<b

tabijΦ
ab
ij + . . . . (4.41)

Using this wavefunction ansatz with Rayleigh-Schrödinger perturbation theory (see ap-

pendix B) and projecting onto the excited Slater determinants ⟨Φa
i |, ⟨Φab

ij |, . . . , yields
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the following equations

occ.�
k

vir.�
c

⟨Φa
i |Ĥ(0) − E(0)|Φc

k⟩tck + ⟨Φa
i |Ĥ|Φ⟩ = 0

occ.�
k>l

vir.�
c>d

⟨Φab
ij |Ĥ(0) − E(0)|Φcd

kl ⟩tcdkl + ⟨Φab
ij |Ĥ|Φ⟩ = 0 (4.42)

...

Slater determinants that are built from canonical HF orbitals are eigenstates of Ĥ(0), so

that the first term on the left-hand side of equation 4.42 yields

occ.�
k

vir.�
c

⟨Φa
i |Ĥ(0) − E(0)|Φc

k⟩tck = (ϵa − ϵi)t
a
i

occ.�
k>l

vir.�
c>d

⟨Φab
ij |Ĥ(0) − E(0)|Φcd

kl ⟩tcdkl = (ϵa + ϵb − ϵi − ϵj)t
ab
ij . (4.43)

We thus arrive at the following result for the amplitudes

tai = −⟨Φa
i |Ĥ|Φ⟩

(ϵa − ϵi)

tabij = − ⟨Φab
ij |Ĥ|Φ⟩

(ϵa + ϵb − ϵi − ϵj)
. (4.44)

Due to the Slater-Condon rules (see appendix A) for two-electron operators, Slater

determinants with more than double excitations yield zero amplitudes. Further, singly

excited amplitudes also vanish due to the Brillouin condition for canonical HF orbitals

⟨Φa
i |Ĥ|Φ⟩ = f̂a

i = 0.

Consequently, we have arrived at the result that only double excitations contribute to

the first-order wavefunction and the second-order energy in Møller–Plesset perturbation

theory. The first-order wavefunction is therefore

Ψ(1) =
occ.�
i<j

vir.�
a<b

tabijΦ
ab
ij , (4.45)

where the amplitudes are

tabij = −⟨ψiψj |ψaψb⟩ − ⟨ψjψi|ψaψb⟩
ϵa + ϵb − ϵi − ϵj

. (4.46)
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The second order energy is thus

E(2) = ⟨Ψ(1)|Ĥ|Ψ(0)⟩ =
occ.�
i<j

vir.�
a<b

tabij ⟨Φab
ij |Ĥ|Φ⟩

= −
occ.�
i<j

vir.�
a<b

	
⟨ψiψj |ψaψb⟩ − ⟨ψjψi|ψaψb⟩

�2
ϵa + ϵb − ϵi − ϵj

. (4.47)

Where ⟨ψiψj |ψaψb⟩ is the physicist notation for the Coulomb integral defined in equation

4.15. A closed shell expression in terms of spatial orbitals can be derived by assuming

that every orbital is occupied twice with a spin-up and spin-down electron. Spin inte-

gration yields

E(2) = −
occ.�
i,j

vir.�
a,b

⟨ϕiϕj |ϕaϕb⟩
	
2⟨ϕiϕj |ϕaϕb⟩ − ⟨ϕjϕi|ϕaϕb⟩

�
ϵa + ϵb − ϵi − ϵj

, (4.48)

where the indices i, j, a, and b, run over the spatial orbitals ϕ. The total MP2 energy

takes the form

EMP2 = E(0) + E(1) + E(2) = EHF + E(2) . (4.49)

MP2 theory is the simplest many-body theory that captures correlation effects. MP2

theory provides a fair compromise between efficiency and accuracy, capturing non-local

Van der Waals (vdW) interactions. However, if the HOMO-LUMO gap or band gap in

periodic systems is small, MP2 theory gives less reliable results. Higher-order pertur-

bation expansions are also straight forward, however, they are rarely used due to their

computational cost.

4.3.3 Coupled Cluster Theory

Møller–Plesset perturbation theory offers a finite-order approximation to the electronic

correlation, coupled-cluster (CC) theory [33] on the other hand provides a framework of

infinite-order approximations. By trying to correlate the spin-orbitals of electrons using

a correlation function, as described in [33], an exponential excitation ansatz emerges

naturally. Coupled cluster theory can be seen as a size consistent expansion of correlation

space, no matter the order of the excitation space cut off.

In the CC method, the wavefunction is written using the exponential ansatz

|ΨCC⟩ = exp (T̂ )|0⟩ , (4.50)
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where the cluster operator T̂ is defined as

T̂ = T̂1 + T̂2 + T̂3 + . . . . (4.51)

The excitation operators can be written in terms of second quantisation

T̂1 =
�
i

�
a

tai â
†
aâi

T̂2 =
1

4

�
ij

�
ab

tabij â
†
aâ

†
bâj âi

T̂3 =
1

36

�
ijk

�
abc

tabcijk â
†
aâ

†
bâ

†
câkâj âi

... (4.52)

Them acting on the reference Slater determinant creates excited Slater determinants

with coefficients tai , t
ab
ij , t

abc
ijk , . . . . The reference Slater determinant is typically the HF

Slater determinant.

The exponential of the cluster operator is given by the expansion

exp (T̂ ) = 1 + T̂ +
1

2!
T̂ T̂ +

1

3!
T̂ T̂ T̂ + · · · ≡

∞�
0

1

n!
T̂n . (4.53)

For an N -electron system, the cluster operator T̂ contains up to N -fold excitations and

is exact. In practice, the cluster operator T̂ is truncated at some number of excitations,

yielding a hierarchy of CC theories termed CCS, CCSD, CCSDT, etc., where the suffixes

S, D and T, stand for singles, doubles and triples excitations included. Due to the cut-

off happening in the argument of the exponential instead in the wavefunction expansion

itself, all combinations of excited Slater determinants (up to the order of the cut-off) are

included in the wavefunction and thus the theory is guaranteed to be size consistent.

First we will take a look at CCSD theory. The cluster operator is now truncated after

T̂2 and the wavefunction ansatz reads

T̂ = T̂1 + T̂2, (4.54)

|ΨCCSD⟩ = exp (T̂1 + T̂2)|0⟩ =
�
1+T̂1+T̂2+

1

2!
T̂ 2
1 +T̂1T̂2+

1

3!
T̂ 3
1 +

1

4!
T̂ 4
1 +

1

2!
T̂ 2
2 +. . .

�
|0⟩ .

(4.55)

Where |0⟩ is the HF reference wavefunction. In order to compute the CC energy and the

tai and tabij amplitudes, we plug the CCSD wavefunction |ΨCCSD⟩ into the Schrödinger
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equation and project onto the HF, singly and doubly excited Slater determinants

⟨0|�Ĥ − ECCSD

�|ΨCCSD⟩ = 0 (4.56)

⟨Φa
i |
�Ĥ − ECCSD

�|ΨCCSD⟩ = 0 (4.57)

⟨Φab
ij |

�Ĥ − ECCSD

�|ΨCCSD⟩ = 0 . (4.58)

Note that from now on we are talking about closed shell CCSD with intermediate nor-

malization ⟨0|ΨCCSD⟩ = 0. From equation 4.56 the CCSD correlation energy is obtained

Ecorr = ECCSD − EHF = ⟨0|�Ĥ − ECCSD

�|ΨCCSD⟩ = ⟨0|Ĥ�1
2
T̂ 2
1 + T̂2

�|0⟩
=

occ.�
i,j

vir.�
a,b

�1
2
tai t

b
j + tabij

�	
2⟨ϕiϕj |ϕaϕb⟩ − ⟨ϕjϕi|ϕaϕb⟩

�
. (4.59)

Note that equation 4.59 is valid for every CC theory, since higher than double excitations

have vanishing matrix elements (see appendix A). Also with cannonical HF orbitals the

only contributions to the energy comes from doubly excited Slater determinants, namely

the double excitation cluster operator T̂2 and twice the single excitation cluster operator

T̂ 2
1 . The equations 4.57 and 4.58 lead to a set of non-linear amplitude equations that

can be solved iteratively. Typically, these equations are reformulated by multiplying the

Schrödinger equation with e−T̂ from the left.

⟨0|e−T̂ ĤeT̂ |0⟩ = ECCSD

⟨Φa
i |e−T̂ ĤeT̂ |0⟩ = 0

⟨Φab
ij |e−T̂ ĤeT̂ |0⟩ = 0 . (4.60)

This is called the similarity transformation, with H̃ = e−T ĤeT being the similarity

transformed Hamiltonian. The singles and doubles amplitude equations need to be

solved iteratively by optimizing the amplitudes, for this to happen the residuals, as

defined below, need to vanish

rai =⟨Φa
i |e−T̂ ĤeT̂ |0⟩

rabij =⟨Φab
ij |e−T̂ ĤeT̂ |0⟩ . (4.61)
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In every iteration, the CCSD amplitudes are updated as following

rai =tai −
Ra

i

ϵa − ϵi� �� �
New amplitudes tai

rabij =tabij − Rab
ij

ϵa + ϵb − ϵi − ϵj� �� �
New amplitudes tabij

, (4.62)

where Ra
i and Rab

ij are computed using the amplitudes tai and tabij . The equations for Ra
i

and Rab
ij are given below.

After the first iteration, Rab
ij are just the two-electron integrals ⟨ϕiϕj |ϕaϕb⟩ and the

amplitudes are equivalent to MP2 theory. This procedure works well when the MP2

amplitudes are a reasonably good starting point, typically for systems with a large

HOMO-LUMO gap or in solid state physics a large band gap. The iterative procedure

can be accelerated using the direct inversion in the iterative subspace (DIIS) method [34].

The doubles amplitudes from equations 4.60 involve up to quadruple excitations, since

Hamiltonian matrix elements vanish if the Slater determinant differs by more than two

orbitals. Analogously, the singles amplitudes involve up to triples excitations. Using the

Baker-Campbell-Hausdorf (BHC) expansion

e−T̂ ĤeT̂ = Ĥ+


T̂ , Ĥ


+
1

2!

	
Ĥ, T̂


, T̂

�
+

1

3!

		
Ĥ, T̂


, T̂

�
, T̂

�
+

1

4!

			
Ĥ, T̂


, T̂

�
, T̂

�
, T̂

�
,

(4.63)

one can derive the amplitudes equations. Note that this expansion truncates after fourth-

order, the reason being that the Hamiltonian contains only up to two-body operators.

Deriving the equations is a difficult task, unlike MP2 theory where the amplitudes de-

pend only on one specific Coulomb integral (and its exchange contribution), in CCSD

theory all possible two-electron integrals are needed. We present the closed shell expres-

sion for the singles and doubles amplitudes from the work of Hirata et. al [35]

Ra
i =

�
c

κac t
c
i −

�
k

κki t
a
k +

�
kc

κkc
�
2tcaki − tcaik

�
+
�
kc

κkc t
c
i t

a
k +

�
kc

wak
ic t

c
k+�

kcd

wak
cd t

cd
ik +

�
kcd

wak
cd t

c
i t

d
k −

�
klc

wkl
ic t

ac
kl −

�
klc

wkl
ic t

a
kt

c
l (4.64)
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Rab
ij =vabij +

�
kl

χkl
ij t

ab
kl +

�
kl

χkl
ij t

a
kt

b
l +

�
cd

χab
cdt

cd
ij +

�
cd

χab
cdt

c
i t

d
j + P

�
c

λa
c t

cb
ij−

P
�
k

λk
i t

ab
kj + P

�
c

�
vabic −

�
k

vkbic t
a
k

�
tcj − P

�
k

�
vakij +

�
c

vakij t
c
j

�
tbk+

P
�
kc

�
2χak

ic − χak
ci

�
tcbkj − P

�
kc

χak
ic t

bc
kj − P

�
kc

χbk
ci t

ac
kj (4.65)

κki =
�
lcd

wkl
cdt

cd
il +

�
lcd

wkl
cdt

c
i t

d
l

κac =
�
kld

wkl
cdt

ad
kl +

�
kld

wkl
cdt

a
kt

d
l

κkc =
�
ld

wkl
cdt

d
l

λk
i = κki +

�
lc

wkl
ic t

c
l

λa
c = κac +

�
kd

wak
cd t

d
k

χkl
ij = vklij +

�
c

vklic t
c
j +

�
c

vklcjt
c
i +

�
cd

vklcdt
cd
ij +

�
cd

vklcdt
c
i t

d
j

χab
cd = vabcd −

�
k

vakcd t
b
k −

�
k

vkbcdt
a
k

χak
ic = vakic −

�
l

vlkic t
a
l +

�
d

vakdc t
d
i −

1

2

�
ld

vlkdct
da
il −

�
ld

vlkdct
d
i t

a
l +

1

2

�
ld

wlk
dct

ad
il

χak
ci = vakci −

�
l

vlkci t
a
l +

�
d

vakcd t
d
i −

1

2

�
ld

vlkcdt
da
il − 1

2

�
ld

wlk
dct

d
i t

a
l , (4.66)

where vpqsr are the two-electron integrals defined by

vpqsr = ⟨ϕpϕq|ϕsϕr⟩, (4.67)

and wpq
sr the antisymmetrized two-electron integrals given by

wpq
sr = 2⟨ϕpϕq|ϕsϕr⟩ − ⟨ϕpϕq|ϕrϕs⟩ . (4.68)

P is the permutation operator

P
�
. . .

�ab

ij
=

�
. . .

�ab

ij
+
�
. . .

�ba

ji
. (4.69)

The computationally most expensive tensor contraction is vabcdt
cd
ij , that requires N4

vN
2
o

operations. Thus, the computational complexity of CCSD theory is of order O(N6)

where N is a measure of the size of the system. Including higher excitations increases the

computational complexity by another N2. Meaning, CCSDT scales as O(N8), CCSDTQ

as O(N10), and so on.
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4.3.3.1 CCSD(T)

Since CCSD theory already entails a quite expensive calculation, CCSDT can only be

done on relatively small systems. Nevertheless, it is desirable to incorporate a greater

level of correlation, even if only approximated [36]. One popular scheme to go beyond

CCSD theory is to evaluate the triples excitation level in a non-iterative perturbative

way [37]. The general idea is to include an estimate of the triples excitation energy cor-

rection inspired by MP5 perturbation theory [36]. This is referred to as coupled cluster

singles, doubles with perturbative triples theory, CCSD(T). While CCSD contains all

the terms that appear in third-order perturbation theory (MP3) and more, CCSDT on

the other hand, does not contain all terms from MP4 theory [33, 38]. CCSD(T) contains

effects of triple excitations in CC theory in a one-shot sense, including a balanced sub-

set of fifth-order terms from MP5. CCSD(T) scales as O(N7) and it achieves chemical

accuracy consistently in the description of a large set of molecules compared to other

many-body methods [39–41].

4.4 Quantum Monte Carlo

Quantum Monte Carlo refers to a family of methods that all share two common ideas:

The quantum properties are written as path integrals and these path integrals are com-

puted with stochastic (Monte Carlo) methods. The starting point of Quantum Monte

Carlo [42] is the time-dependent Schrödinger equation with its solution

iℏ
|Ψ(t)⟩
∂t

= Ht|Ψ(t)⟩ (4.70)

|Ψ(t)⟩ = e−iHt|Ψ(0)⟩ (4.71)

where Ψ(0) is an arbitrary initial state. As far as we are interested in obtaining the time-

independent eigensolutions of H time plays no fundamental role; it can be considered a

parameter. Writing the time-dependent wavefunction in the basis of H

H|ϕn⟩ = En|ϕn⟩ (4.72)

|Ψ(t)⟩ =
�
n

e−itEncn|ϕn⟩ (4.73)

together with the imaginary time transformation t → −it yields

|Ψ(t)⟩ =
�
n

cne
−tEn |ϕn⟩, (4.74)
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where the cn are the coefficients ⟨ϕn|Ψ(0)⟩. Once the solution to |Ψ(t)⟩ has been ob-

tained, it is possible to extract the low-lying spectrum simply by evolution in imaginary

time.

|Ψ(t)⟩ ∼ |ϕ0⟩+O(e−t(E1−E0))|ϕ1⟩. (4.75)

The quantity to be computed can be expressed in terms of a time-independent N-body

Green’s function

Ψ(x, t) = ⟨x|e−tH|Ψ(0)⟩, (4.76)

Ψ(x, t) =

�
dx0⟨x|e−tH|x0⟩Ψ(x0, t = 0), (4.77)

G(x, x0, t) = ⟨x|e−tH|x0⟩. (4.78)

In general the Green’s function is unknown and has to be computed and approximated.

The imaginary time can be divided into N small intervals such that t = Nτ . Then the

exponential operator is split

e−tH = e−τH−τH...−τH = e−τHe−τH...e−τH. (4.79)

By inserting the resolution of the identity between each e−τH in equation 4.78, we get

an exact relation for any N

G(x, x0, t) =

�
dx1...dxN−1Π

N−1
i=0 G(xi, xi+1, τ), (4.80)

where x = xN . A general short-time approximation to the Green’s function is known

Gapprox = G0(x, x0, τ)e
−τV(x), (4.81)

with G0 being a simple Gaussian known in physics from heat diffusion

G0(x, x0, τ) =
1√
2πτ

e−
(x−x0)

2

2τ +O(τ2) (4.82)

and V being the Coulomb potential. Combining all these considerations leads us to the

main result

ϕ0 = lim
t→∞ lim

N→∞

�
dx1...dx2Π

N−1
i=0 Gapprox(xi, xi+1, τ)ΨT (x0, t = 0). (4.83)

The ground state of the time-independent Schrödinger equation can be expressed as

a multidimensional integral of a known function with an arbitrary trial wavefunction

ΨT . In the limit of infinite infinitesimal timesteps N → ∞ and τ → t
N , the short time

approximation is analytical. In the limit of imaginary time t → ∞ only the ground state

remains, as can be seen in equation 4.74. Equation 4.83 is formally written in terms of
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Figure 4.3: The time evolution of the Brownian walker. Figure taken from ref. [43].

Feynman path-integrals with

ΠG0 = e−
� t
0 dsT [x(s)] (4.84)

where

T =
1

2

∂x(t)2

∂t
, (4.85)

and similarly

Πe−V = e−
� t
0 dsV [x(s)], (4.86)

yielding the formal expression for the ground state

ϕ0(x) =
�
paths

e−
� t
0 dsT [x(s)]e−

� t
0 dsV [x(s)], (4.87)

where the integration over all xi is substituted for a sum over all possible paths.

The quantity from equation 4.84 is the probability density associated with Brownian

trajectories. This puts forward the idea of simulating all possible paths stochastically as

Brownian paths. However, the quantity 4.86 varies too wildly as a function of the paths,

as shown in figure 4.3. This stems from the fact that the Brownian paths are blind with

respect to the Coulomb potential; they visit the configuration space uniformly. One

needs a way to guide the Brownian trajectories to regions of importance for the exact

wavefunction Φ0(x). This can be done using an appropriate trial wavefunction ΨT (x).
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Figure 4.4: The time evolution of the drifted Brownian walker with a Gaussian trial
wavefunction. Figure taken from ref. [43].

Introducing a new density f(x, t) = ΨT (x)Ψ(x, t) and multiplying each side of the time

dependent Schrödinger equation by ΨT we get

∂f(x, t)

∂t
= −ΨTH 1

ΨT
f(x, t). (4.88)

With some simple algebra [42] we arrive at the new equation of evolution

∂f(x, t)

∂t
=

1

2
∇2f(x, t)−∇[b(x)]− EL(x)f(x, t) (4.89)

with the drift vector

b(x) =
∇ΨT

ΨT
(4.90)

and the local energy

EL(x) =
HΨT

ΨT
. (4.91)

Now the bare potential V(x) is replaced with a screened potential EL and the free

diffusion (kinetic energy) is replaced with a drifted diffusion. Further, the statistical

fluctuation of EL vanishes if the trial wavefunction is equal to the ground state ΨT = Φ0.

This is referred to as the zero variance property. Figure 4.4 shows the effect a Gaussian

trial wavefunction has on the Brownian walkers. Until now, we have tried to find a

solution to the Schrödinger equation, disregarding the fact that the wavefunction of a
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Figure 4.5: The time evolution of the drifted Brownian walker within the nodal
pockets of the antisymmetric trial wavefunction. Figure taken from ref. [43].

fermionic system has to be antisymmetric. In principle, this can be taken into account

by properly antisymmetrizing the trial wavefunction. If ΨT is properly antisymmetric:

⟨ΨT |e−tH|x0⟩ =
�
n

e−Ent⟨ϕn|ΨT ⟩ϕn(x0) (4.92)

with ϕn being either bosonic or fermionic, however

⟨ϕboson
n |ΨT ⟩ = 0, (4.93)

therefore, only the fermionic wavefunction will be left. The problem with this approach

comes from the nodes of the antisymmetric trial wavefunction. At these locations, the

drift vector 4.90 diverges. Therefore, these nodes represent a repulsive barrier for the

drifted Brownian walkers. They will be trapped forever in domains delimited by the

nodal structure of the trial wavefunction (nodal pockets) as shown in figure 4.5. For

that reason, the Schrödinger equation is solved with the additional constraint that the

solution has the same sign as the trial wavefunction, this is referred to as the fixed-node

approximation [44]. The problem with this approach is that the nodal surfaces of the

trial wavefunction have to coincide with the nodal surfaces of the exact wavefunction,

which is in general unknown.
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In order to have exact ab initio QMC simulations, one must take a non-vanishing trial

wavefunction (bosonic) and add an antisymmetric weight to the averages to project

out the fermionic ground state. This leads to widely unstable simulations due to the

fluctuations in the sign of the average. This problem is generally referred to as the sign

problem [45]. Solving this problem would allow for exact QMC simulations, which would

be comparable to finding an exact XC functional in DFT.

The presented approach is shared for variational Monte Carlo (VMC) and diffusion

Monte Carlo (DMC). VMC is commonly used in many sorts of quantum problems,

while DMC is the most common high-accuracy method for electrons, since it comes

close to the exact ground state energy fairly efficiently.

4.5 Calculating Excited States

All previously presented many-body methods in this chapter are routinely used to calcu-

late ground state energies. However, one is generally interested in the excited states as

well and most of the many-body methods presented can be extended to include excited

state energies. Time-dependent DFT (TDDFT) [10, 46], theories based on the GW

approximation [47, 48] and the Bethe-Salpeter equation [49] (BSE) are widely used to

calculate excited states in molecules and solids. Further, density matrix renormalization

group (DMRG) [50], HF, MP2, CI and excited states extensions of CC theory can also

be used to calculate the excited states of a system.

In TDDFT theory, the results depend strongly on the choice of the XC functional.

Similarly, in G0W0 theory the quasiparticle energies depend strongly on the Kohn-Sham

orbital energies. Further, for full GW-BSE calculations, many approximations have to

be made, hindering it’s range of applicability. DMRG theory is routinely used for low-

dimensional systems. CI theory yields excited state energies in addition to the ground

state energy naturally, through exact diagonalization. The drawbacks of CI theory have

been discussed in section 4.3.1. The equation of motion formalism of CC theory (EOM-

CC) can be used to calculate the excited state energies with a similar computational

cost to CC ground state calculations.

In this work, EE-EOM-CCSD [51] theory has been used to calculate the excited states

of the parabolic two dimensional quantum dot.
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4.5.1 Equation of Motion CC Theory

Similar to how excited states are obtained in CI, in CC theory, excited states can be

obtained through diagonalization of the similarity transformed Hamiltonian H̃ in a suit-

able subspace of the Hilbert space. We use a charge-neutral variant of this methodology,

for which the number of electrons is conserved with no spin flip restrictions on the am-

plitudes. The ansatz for the excited state, with a CCSD groundstate is

|ΨEOM⟩ = R̂|ΨCCSD⟩ = R̂ exp (T̂1 + T̂2)|0⟩, (4.94)

Ĥ|ΨEOM⟩ = ER|ΨEOM⟩, (4.95)

where R̂ is the excited cluster operator

R̂ = r0 +
�
i

�
a

rai â
†
aâi +

�
ij

�
ab

rabij â
†
aâ

†
bâiâj + . . . , (4.96)

and ER is the excitation energy.

It should be noted that EOM-CC theory is an exact procedure, however in practical

calculations T̂ and R̂ have to be truncated to some tractable level of excitation, usually

singles and doubles excitation. Nevertheless, EOM-CCSD theory provides an exact

treatment of two electron systems.

This formalism is called equation of motion for its resemblance to the equation of motion

equation for operators in the Heisenberg picture of quantum mechanics, subtracting

R̂Ĥ|ΨCCSD⟩ = ECCSDR̂|ΨCCSD⟩ (4.97)

from equation 4.95 yields,

[Ĥ, R̂]|ΨCCSD⟩ = (ER − ECCSD)|ΨCCSD⟩. (4.98)

Rewriting equation 4.98 in terms of the HF reference |0⟩ is equivalent to the commutator

equation

[H̃, R̂]|0⟩ = (ER − ECCSD)R̂|0⟩ = ∆ERR̂|0⟩, (4.99)

involving the similarity transformed Hamiltonian H̃ and the excitation energy ∆ER.

The scalars r0, r
a
i and rabij have to be computed; this is done in an iterative way.

Due to the similarity transformed Hamiltonian being non-Hermitian, its left and right

eigenvectors are not simply Hermitian conjugates. However, the distinction between left

and right eigenstates becomes only important if one is interested in calculating properties



Ab initio many-body Methods 37

other than the energy, since equation 4.99 can be solved without any consideration of

left eigenvectors [51]. It follows from the general properties of non-Hermitian eigenvalue

problems that these two sets of solutions satisfy the property of biorthogonality.

The EOM framework can also be used to calculate excited states for other theories such

as HF and RPA in the Tamm Dancoff approximation [52, 53]. Note that due to the

commutator on the left-hand side of equation 4.99 only connected diagrams need to be

considered.





Chapter 5

Numerical Methods

The goal of this thesis is to calculate the formation energies of the silicon self-interstitials

at CCSD(T) level of theory, and the excited states of the two dimensional quantum dot

with EE-EOM-CCSD theory.

As the first step, one has to define the structures in terms of the Born-Oppenheimer

approximation and choose a basis set. In order to obtain the numerical values for ground

state energies at CCSD(T) level of theory, one has to calculate the coulomb integrals

needed to construct the reference and excited Slater determinants. In this thesis, this

has been achieved using the Vienna ab initio simulation package (VASP) [54–56] for

the silicon self-interstitials. For the quantum dot, a real space integration technique

using semi analytic solutions to the Coulomb integral has been developed that will be

discussed later. All CC calculations have been done using our high-performance open-

source coupled cluster simulation code [57–60], coupled cluster for solids (CC4S).

In the upcoming sections, the numerical methods from VASP and CC4S will be pre-

sented.

5.1 Vienna Ab Initio Simulation Package

VASP is a ab initio simulation program for modeling materials at an atomic scale.

It can compute approximate solutions to the many-body Schrödinger equation using

either DFT or HF. In VASP a material is modeled in terms of a periodic supercell.

The ion positions of the cell are specified, and the periodicity is implemented in terms of

boundary conditions. The in k⃗ continuous Brillouin zone is sampled with a discrete mesh

of Bloch vectors, introducing the finite size incompleteness error (FSIE). Converging this

sampling is one of the essential tasks in many calculations, similar to the convergence

39
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with basis set size. In VASP the key quantities, like the one-electron orbitals or the

charge density, are expressed in a plane-wave basis set [26]. The interactions between

the electrons and ions are modeled using norm-conserving or ultrasoft pseudopotentials,

referred to as the projector-augmented-wave method [27]. It uses an array of highly

efficient iterative matrix diagonalization techniques that speed up the self-consistency

cycle [55].

5.1.1 Plane Wave Basis Set

A plane-wave basis set, in contrast to STO and GTO, is a delocalized basis set. Typically,

the choice of the plane-wave basis set is based on an energy cutoff, the plane waves that

fit below the energy cutoff criterion are then included in the calculation introducing

the BSIE. Plane waves are popular in calculations involving three-dimensional periodic

boundary conditions. In such systems, the one particle orbitals are Bloch orbitals

⟨r+R|ψnk⟩ = ⟨r|ψnk⟩eikR , (5.1)

where n is the band index and k is the k-point index. The Bloch orbitals can be expanded

using the plane wave basis in reciprocal space as

⟨r|ψnk⟩ = 1√
Ω

�
G

CG
nke

iGr . (5.2)

Where Ω is the volume of the Wigner-Seitz cell. There are a few advantages to using

plane waves, for example, the kinetic energy operator is diagonal in the reciprocal space,

meaning that integrals over real space can be efficiently carried out using fast Fourier

transforms. Also, they naturally fulfill the periodicity of the computational cell, as

required by the Bloch theorem. Further, they are independent of the atomic composition

of the computational cell. A single plane wave corresponds to a constant probability

density

Ψk(r⃗) = Aeikr⃗ (5.3)

Ψ⋆
k(r⃗)Ψk(r⃗) = A2. (5.4)

Therefore, it is easy to represent probability distributions that are not oscillating wildly

with plane-wave basis sets, meaning wavefunctions with low gradients where the elec-

trons are delocalized. The core electrons tend to be concentrated very close to the

nuclei, resulting in localized probability distributions with high density gradients. For

these electrons to be accurately described using plane waves, an impractically high en-

ergy cutoff for the basis set has to be chosen. In practice, this problem is solved using
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an effective core potential, or pseudopotential [55], such that the plane waves are only

used to describe the valence electron’s charge density, which is usually delocalized.

5.1.2 The Projector-Augmented-Wave Method

In the PAW method [55], space is divided into two regions: the augmentation spheres,

or core region, and the interstitial region between the spheres. The one electron Bloch

orbitals ψnk are derived from the pseudo orbitals ψ̃nk in terms of a linear transformation

|ψnk⟩ = |ψ̃nk⟩+
�
i

�|ϕi⟩ − |ϕ̃i⟩
��
p̃i|ψ̃nk

�
, (5.5)

where i is a short notation for the atomic site Ri, with |ϕi⟩ containing the atomic orbitals

uniquely characterized by the quantum numbers n, l and m. The pseudo Bloch orbitals

|ψ̃nk⟩ are variational quantities expanded using the plane waves in reciprocal space

⟨r|ψ̃nk⟩ = 1√
Ω

�
G

CG
nkGei(G+k)r . (5.6)

The pseudo partial waves |ϕ̃i⟩ are equivalent to the atomic orbitals ϕi outside a core

radius rc and are mapped continuously onto them inside the core radius. The core

radius is typically chosen to be around one-half of the nearest neighbor’s distance. The

projector functions |p̃i⟩ are dual to the pseudo partial waves

⟨p̃i|ϕ̃j⟩ = δij . (5.7)

In the interstitial region, the pseudo orbitals ψ̃nk are identical to the exact one electron

Bloch orbital ψnk while in the core region, the pseudo orbitals are mapped onto the one

electron orbitals through equation 5.5. Inside the spheres, the pseudo orbitals ψ̃nk are

only a computational tool and an inaccurate approximation to the true orbitals since the

norm of the all-electron wavefunction is not reproduced. Yet they allow using a much

smaller basis in the calculations, making them practically possible.

5.2 Coupled Cluster for Solids

CC4S [57–60] is a high-performance open-source coupled cluster simulation code. The

main goal of CC4S is to study the electronic properties of solid-state systems, using

coupled cluster theory with periodic boundary conditions. Solving the coupled clus-

ter equations is computationally extremely demanding. Therefore, CC4S makes use
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of state-of-the-art, high-performance libraries such as the Cyclops Tensor Framework

(CTF), which is a parallel tensor contraction engine. Further, it uses the message-

passing interface (MPI) and open multiprocessing (openMP) for parallelization.

CC4S takes as input a reference wavefunction and the Coulomb integrals. The refer-

ence wavefunction and Coulomb integrals can be prepared either using VASP or FHI-

aims (Fritz Haber Institute ab initio materials simulations), with more interfaces in the

making. With this information, CC4S can calculate the CCSD grounstate energy, the

perturbative triples correction to it (CCSD(T)) and the EE-EOM-CCSD excited state

energies. CC4S also includes a BSIE and FSIE correction algorithm tailored to CCSD

theory.

5.2.1 Basis Set Correction

In all our CC calculations frozen natural orbitals (FNO) [61] were used, since they

increase the convergence of CC calculations by an order of magnitude with no drawback.

The FNOs are the eigenfunctions of the one-particle electron density matrix. They can

be interpreted as a basis set transformation to virtual orbitals with a maximum electron

density such that less basis set functions are needed to span the relevant part of the

virtual orbital space and thus basis set convergence is increased substantially. However,

the electron electron cusp [28] convergence problem still remains as discussed in section

4.3.0.1. The cusp represents the leading order term in the BSIE. In order to treat

the BSIE in cc4s a pair-specific cusp correction scheme [59] is implemented which has

been discussed thoroughly elsewhere [62–64]. This scheme is based on diagrammatically

decomposed contributions to the electronic correlation energy that dominate the BSIE.

This correction scheme is implemented on the level of CCSD theory, but it can be used

to estimate the BSIE for CCSD(T) too.

5.2.2 Finite Size Correction

In every practical calculation a finite size system has to be simulated. This introduces

the FSIE and it should be noted that many properties converge slowly with respect

to the system size. This stems from the fact that wavefunction based theories capture

long range correlation effects such as dispersion interaction explicitly. In cc4s a finite

size correction interpolation technique is used similar to structure factor interpolation

methods used in quantum Monte Carlo calculations. In CCSD theory the energy can be

expressed as an integral over the electronic transition structure factor multiplied by the

coulomb kernel in reciprocal space [60]. The FSIE partly originates from an inaccurate

sampling of this integral. The value of the integral at and around the origin is known,
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such that we can interpolate the region between the origin and our calculation with

the FSIE and get a finite size correction. The technical details of this algorithm are

described in [60].





Chapter 6

The Quantum Dot

In the following chapter the two dimensional quantum dot is presented. The quantum

dot is modeled as a two dimensional harmonic oscillator, and approximated with a wide

range of ab initio methods, including HF, MP2, CCSD and EOM-CCSD. A scheme to

calculate the necessary Coulomb integrals utilizing semi-analytic solutions in realspace

around the Coulomb kernels singularity is developed. Further, an analytic expression

for the scaling of the BSIE error as a function of number of virtual orbitals is derived,

allowing the extrapolation to the complete basis set limit energies. The ground and

first three excited states energies are calculated in closed shell quantum dots with 2, 6

and 12 electrons in different regimes of correlation tuned through the harmonic oscillator

strength ω. The ground state is calculated at the CCSD level of theory, while the excited

states are calculated using EE-EOM-CCSD theory. The following discussion has been

published in Ref. [65].

6.1 Introduction

A quantum dot (QD) is a semiconducting nanocrystal embedded in a host semiconductor

with a larger band gap such that the excitons localized at the QD have a de Broglie

wavelength comparable to the size of the crystal. The typical size of such a nanocrystal

is 2nm–100nm and it is made out of roughly a million atoms. In this context, virtually

all electrons are tightly bound to the nuclei of the material such that the number of

free electrons in a QD ranges typically from 1 to 100. As described by the quantum

mechanical theory of solids, the electrons do not get trapped in the real nuclei of the

material but instead simply sense a potential well of the QD, thus forming discrete

energy levels. These electrons behave as free electrons with a renormalized mass. For

example, electrons in the semiconductor GaAs appear to carry a mass of only 7% of

45
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the mass of free electrons. QDs are often referred to as artificial atoms because they

exhibit similar properties as atoms such as level spacing, ionization energy and magnetic

moments, albeit on different energy scales.

6.1.1 Practical Applications

Due to their tunable optical and electronic properties, QDs are widely used in many

practical applications including solar cells, light-emitting diodes, laser technology as

well as biological and biomedical applications [66–72]. The use of QDs as cosmetic hair

dyes is the oldest known application, dating back more than 2000 years, when PbS QDs

were synthesized using naturally occurring materials like Ca(OH)2, PbO and water [73].

6.1.2 Experimental Developments and Theoretical Modeling

Over the past few decades, several ways to synthesize and investigate dynamical proper-

ties of QDs with extraordinary high precision have been developed [74]. Consequently,

experimental and theoretical research on these nanoparticles has harnessed much atten-

tion and insight [71, 72, 75–98].

The simplest model used in theoretical studies of QDs, which has proven to be adequate,

is the harmonic oscillator [99]. In this model, the interaction of the electrons with

the surrounding semiconductor material is approximated through the material-specific

effective mass of the electrons and a material-specific relative dielectric constant that

screens the Coulomb interaction. In passing we note that a more realistic nanoscale

model of QDs can be obtained by an empirical pseudopotential based approach [100, 101].

In contrast to other many-body systems, in QDs, the coupling strength of the two-body

operator relative to the one-body operator can be freely varied over a wide range of

values, thus giving rise to various regimes of interelectronic correlation.

6.1.3 Many-Body Methods Applied to the QD

The simple expression of the QD model Hamiltonian allows for a straightforward appli-

cation of many-electron methods that have historically been developed for atoms and

crystals. One-electron theories such as DFT in the Kohn-Sham framework of approxi-

mate exchange and correlation (XC) energy functionals [102–105] and the HF [80, 106–

115] approximation often achieve a qualitatively correct agreement with experiment.

In contrast to DFT calculations, FCI investigations of QDs yield exact results for a

given basis set and have been applied to QDs in a number of studies [69, 114, 116–130].
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Alternatively, QMC has been used for QDs thoroughly [129, 131–139]. Here the com-

putational cost grows relatively modestly with the number of electrons and it provides

highly accurate ground state energies. Moreover, there is the possibility to use the nodal

structure of the ground state trial wavefunction to impose restrictions on the solutions.

In this way, excited states can be calculated as well even if calculations on general excited

states are not straightforward. CC theory, being numerically less expensive than FCI

while having size consistency by construction, provides ground state and excited state

energies with an accuracy that is comparable to quantum QMC calculations [140, 141].

MP2 and CCSD have been shown to be useful approaches to calculate atomic, molecular

and solid-state properties [33, 142–146]. They have also been used to study QD Hamil-

tonians in a number of studies [140, 141, 147, 148, 148, 149]. Via the EOM formalism,

CC theory can also be applied to excited states [51], and was already applied to atoms,

molecules and recently even solids [33, 150–152] and quantum plasmons and excitons

[153].

Here, we seek to apply EE-EOM-CCSD theory to study excited states in two dimensional

QDs [154, 155]. To this end, we employ an implementation of EE-EOM-CCSD that was

recently used to investigate defects in solids employing ab initio Hamiltonians [152].

6.2 The Harmonic Oscillator

Following the description in Ref. [99], a QD can be modeled as fermionic particles con-

fined to two dimensions in a parabolic potential. The corresponding one-body Hamilto-

nian in such a potential is given in atomic units by

Ĥ(x, y) =
p2x + p2y

2
+

1

2
ω2

�
x2 + y2

�
. (6.1)

Here, ω is a measure of the confinement strength of the electron in the parabolic potential

well. Consequently, the Schrödinger equation can be separated into x and y coordinates,

resulting in the differential equation for the 1D harmonic oscillator�
−1

2

∂2

∂x2
+

ω2x2

2

�
ψ(x) = Eψ(x), (6.2)
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admitting the well-known solutions

ψn(x) =
1√
2nn!

�ω
π

� 1
4
e−

ωx2

2 Hn

�√
ωx

�
En = ω

�
n+

1

2

�
Hn(x) = (−1)nex

2 dn

dxn

�
e−x2

�
where n ∈ N. The corresponding solutions to the non-interacting 2D problem are

ψnm(x, y) = ψn(x)ψm(y) (6.3)

Enm = En + Em = ω(n+m+ 1). (6.4)

We note that the ground state is given by the solution with m = 0 and n = 0 and is

non-degenerate. The first excited state is given by the solutions with (n = 1,m = 0)

and (n = 0,m = 1) and has a degeneracy of 2. The second excited state is given by

(n = 2, m = 0), (n = 0, m = 2) and (n = 1, m = 1) and has a degeneracy of 3, and so

forth.

The electronic structure of the 2D QD is strongly affected by electronic correlation effects

caused by inter electronic interactions. To describe the true many-body nature of the

2D QD with N electrons, we have to include the two-body Coulomb interaction and

consider the following two-body Hamiltonian

Ĥ =
N�
i=1

Ĥ(xi, yi) +
1

2

N�
i ̸=j

1�
(xi − xj)2 + (yi − yj)2

, (6.5)

where Ĥ(xi, yi) is the one-body operator defined by equation 6.1. Herein we employ the

bare Coulomb interaction. We note, however, that many model Hamiltonians for QDs

account for screening effects by including various approximations to the permittivity in

the inter electronic interaction.

Given the fermionic character of the particles, the form and relative strength of the

one-particle and two-particle operators of the above Hamiltonian, it is reasonable to

assume that conventional quantum chemical many-electron wave function based methods

yield reliable solutions for its ground and excited states. In this hierarchy of quantum

chemical wavefunction based methods, the HF theory, employing a self consistent field

approximation, is a well-established starting point.
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6.3 Calculating the Coulomb Integrals

We calculate the ground state of the QD using closed shell CCSD theory and the first

three excited states with EE-EOM-CCSD as described in chapter 4. In order to apply

these methods one has to calculate the Coulomb integrals in the basis of the solutions

to the 2D quantum harmonic oscillator. One has to compute the following integrals

∞�
−∞

∞�
−∞

∞�
−∞

∞�
−∞

dx1dx2dy1dy2
ψ∗
nm(x1, y1)ψ

∗
op(x2, y2)ψqr(x1, y1)ψst(x2, y2)�

(x1 − x2)2 + (y1 − y2)2
, (6.6)

where ψnm are the two dimensional orbitals introduced in equation 6.3. For Gaussian

based basis sets and their derivatives, methods for analytical computation of such inte-

grals exist, which are commonly based on recursive relations and can be implemented

on a computer using code generation facilities [156–158]. Our numerical approach for

calculating the Coulomb integrals is computationally less efficient but can be applied

to arbitrary orbitals in realspace. This can potentially be useful for model Hamiltoni-

ans represented in a set of basis functions that are difficult to expand using Gaussian

functions or their derivatives but can be well represented on a sufficiently dense spatial

grid.

The main idea of our approach is to assume that the singular Coulomb kernel exhibits

a more rapid spatial variation than the orbitals and that the employed real space grid is

dense enough to approximate the orbitals by a constant inside any volume/area sampled

by the grid.

To perform the integration in equation 6.6 we discretize the integration domain into

hypercubes with an edge length of ∆x centered at xi, xj , yk, yl.

�
ijkl

� xi+
∆x
2

xi−∆x
2

� xj+
∆x
2

xj−∆x
2

� yk+
∆x
2

yk−∆x
2

� yl+
∆x
2

yl−∆x
2

ψmnopqrst(x1, y1, x2, y2)�
(x1 − x2)2 + (y1 − y2)2

dx1dx2dy1dy2. (6.7)

With i, j, k, l ∈ Z, xi = i∆x, xj = j∆x, yk = k∆x, yl = l∆x and

ψmnopqrst = ψ∗
mnψ

∗
opψqrψst. (6.8)

Employing simple quadrature, we approximate the wavefunction from 6.7 to be constant

within each integration block.

�
ijkl

ψmnopqrst(xi, yj , xk, yl)

����
dx1dx2dy1dy2�

(x1 − x2)2 + (y1 − y2)2
(6.9)
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This leaves us with the integral over the Coulomb kernel, which cannot be treated in the

same manner due to points with xi = xj and yk = yl, where the Coulomb kernel becomes

singular. We solve this problem using the Laplace transformation of the Coulomb kernel,

leading to a simplified expression. We start with

� xi+
∆x
2

xi−∆x
2

� xj+
∆x
2

xj−∆x
2

� yk+
∆x
2

yk−∆x
2

� yl+
∆x
2

yl−∆x
2

dx1dx2dy1dy2�
(x1 − x2)2 + (y1 − y2)2

. (6.10)

Applying the Laplace transformation

1

|r⃗1 − r⃗2| =
2√
π

� ∞

0
dte−t2(|r⃗1−r⃗2|)2 (6.11)

yields
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with ∆i = i− k and ∆j = j − l. The integration over x1 and x2� ∆x
2

−∆x
2

� ∆i∆x+∆x
2

∆i∆x−∆x
2

dx1dx2 e−t2(x1−x2)2 (6.13)

can be done analytically using the error function, analogously for y1 and y2. The result

is

F (∆i, t) =
1

2t2
(e−∆x2(∆i−1)2t2 − 2e−∆x2∆i2t2 + e−∆x2(∆i+1)2t2 +∆x

√
πt

(−2∆ierf(∆x∆it) + (∆i+ 1)erf(∆x(∆i+ 1)t)− (∆i− 1)erf(∆x(−∆i+ 1)t))) (6.14)

And this leaves us with a 1D integral over the variable t for every ∆i and ∆j.

a(∆i,∆j) =
2√
π

� ∞

0
dtF (∆i, t)F (∆j, t) (6.15)

As it can be seen in Figure 6.1 the integrand F (∆i, t)F (∆j, t) is well behaved and can

be integrated numerically without much computational cost. In some special cases for

example ∆i = ∆j = 0 the analytic solution is available.
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2
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2− 1− 3asinh(1)

�
∆x3

(6.16)

But for the general case ∆i ̸= ∆j we have to solve the integral numerically.
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Figure 6.1: F (1, t)2, F (0, t)F (1, t), F (0, t)2 (equation 6.14) from left to right. See
main text for more details.

The functional form of the integral is not dependent on the domain of integration.

Therefore the integral will always be proportional to ∆x3 times a constant a(∆i,∆j).

Note that the Constants a(∆i,∆j) are not dependent on ∆x. Equation 6.7 can be

rewritten as

�
ijkl

ψmnopqrst(xi, yj , xk, yl)a(∆i,∆j)∆x3. (6.17)

We now evaluate the Coulomb integrals in real space numerically. Note that the con-

stants a(∆i,∆j) only need to be computed once and can be used for every ∆x. ∆i

and ∆j define the distance of the integration region from the singularity in steps of ∆x.

Approximating the Coulomb kernel by a constant in the region of integration becomes

more accurate with increasing distance from the singularity. So a cutoff has to be chosen

where the distance to the singularity is big enough such that we can use the constant

approximation. With ∆i = 25 and ∆j = 0 equation 6.10 with the constant approxima-

tion gives 0.04∆x3, while evaluated with our scheme it gives 0.0400054∆x3. Thus we

have chosen ∆i = 25 as cutoff.
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With this scheme, calculations of Coulomb integrals, and every other integral involving

the Coulomb kernel, can be reduced to a tensor contraction with the constant universal

matrix a(∆i,∆j) by mapping the orbitals onto discretized realspace.

Note that this evaluation scheme for the Coulomb integrals can be generalized to three

dimensional systems straightforwardly.

Now the Coulomb integral from equation (6.6) can be rewritten as a sum

�
ijkl

ψ∗
nm(xi, yj)ψ

∗
op(xk, yl)ψqr(xi, yj)ψst(xk, yl)ai−k,j−l∆x3. (6.18)

where aij is a system independent matrix that does not depend on ∆x. {i, j, k, l} are

here discretisation indices and are not to be confused with hole indices. Note that the

factor ∆x3 implies that aij is dimensionless. Although this approach is computationally

significantly less efficient than the recursive scheme, the computational bottle neck in

the present study remains in the EE-EOM-CCSD calculations.

6.3.1 Convergence with Number of Gridpoints

We first discuss the numerical reliability of our approach. Let us note that our approach

employs a single computational parameter, ∆x, which defines the grid spacing used

for the real space representation of all orbitals and the numerical integration. Table

6.1 shows the computed CCSD energies of the two-electron system with ω = 1.0 for a

range of ∆x. Our findings show that 300 × 300 grid points suffice to achieve sub-mHa

precision. For all further Coulomb integral calculations, we have therefore discretized the

wavefunction into squares of edge length ∆x = 0.0342 a.u., in a range where |ψ(x, y)|2 >
10−10. However, we note that a careful comparison between results summarized in our

work and Refs. [140, 154] reveals that the published CCSD ground state energies do not

always agree to within mHa. We attribute these discrepancies to different choices of

basis sets in the CCSD and Hartree–Fock calculations, which can result in a different

convergence behaviour of the energies to the complete basis set limit. Our basis set

extrapolation approach will be discussed in the following sections.

6.4 Basis Set Convergence

Having assessed the reliability of our numerical approach, we now turn to the discussion

of the ground state results obtained on the level of HF, MP2 and CCSD theories. We

stress that it is necessary to converge all post-HF correlation energies with respect to
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Table 6.1: Summary of the convergence of CCSD energies for the N = 2 electron
system with ω = 1.0 as a function of the number of grid points Ng used to repre-
sent the wavefunction. The CCSD energies have been computed for a finite basis set

corresponding to 6 oscillator shells or 21 orbitals. All energies are in Hartree.

∆x (a.u.) Ng CCSD

0.1025 100×100 3.013673
0.0513 200×200 3.013621
0.0342 300×300 3.013613
0.0256 400×400 3.013610
0.0205 500×500 3.013612
0.0171 600×600 3.013613

the employed orbital basis set. For 3-dimensional ab initio systems and the uniform

electron gas [159], it is known from second-order perturbation theory that the basis set

error scales as 1/Nv, where Nv refers to the number of virtual orbitals. The complete

basis set limit is obtained by extrapolating Nv → ∞.

For the studied system, the two dimensional QD, we expect a similar behavior for the

correlation energies. In order to motivate the validity of this assumption, we have shown

analytically that the asymptotic relation holds for the second-order perturbation theory

correlation energy.

6.4.1 Asymptotic behavior of the Correlation Energy

The correlation energy in second-order perturbation theory is given by

Ecorr =
�
k

| ⟨0| 1
rij

|k⟩ |2
Ek − E0

. (6.19)

Where |0⟩ denotes the ground state, k is a excited state of the unperturbed Hamiltonian

and E0 and Ek are the corresponding energies. In theory, the summation goes over all

excited states but in practice we have to truncate the summation at some cutoff kcut. To

replace the cutoff energy with the number of virtual orbitals in the above equation, we

have to employ equation 6.3 and equation 6.4. We are only interested in the asymptotic

behavior of the cutoff error, which is defined by

Eerr = lim
Nv→∞

∞�
kcut

| ⟨0| 1
rij

|k⟩ |2
Ek − E0

. (6.20)
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Furthermore, we can use the formula

lim
n→∞ e−

x2

2 Hn(x) ∼ 2n√
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2

�
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√
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2
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to approximate our excited states with a simple cos function. Now the Coulomb integral

can be calculated analytically, which leaves us with the result

lim
R→∞

⟨(00), (00)| 1

rij
|(RR), (RR)⟩ = 4RΓ

�
1+R
2

�4
π4(R!)2

(6.22)

where R denotes the shell of the orbital. Inserting this result into equation 6.20 and

using the approximation for the gamma function

lim
x→∞Γ(x+ 1) ∼

√
2πx

�x
e

�x
(6.23)

gives us

Eerr =
∞�
R

4(R− 1)2

π6R5
. (6.24)

In the above equation, the sum can be replaced by an integration, yielding

Eerr =
4

π6

�
− 1

2R2
+

2

3R3
− 1

4R4

�
. (6.25)

As the final step we have to convert the shell R to the number of orbitals Nv. By

assuming filled shells we can write

R =
1 +

√
8Nv + 1

2
(6.26)

which gives us the final result for the basis set error of second-order perturbation theory

correlation energies computed using a truncated basis in the limit of Nv → ∞:

lim
Nv→∞

Eerr ∼ 1

Nv
. (6.27)

6.4.2 Basis Set Extrapolation

Numerical results for the correlation energies retrieved as a function of 1/Nv are de-

picted in Fig.6.2 and confirm the BSIE scaling for both MP2 and CCSD. From these

numerical findings we conclude that the correlation energies can be linearly fitted using

the following formula E(Nv) = ECBS +
A
Nv

with parameters (ECBS, A).
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Figure 6.2: CCSD and MP2 correlation energies and their CBS extrapolations for
N ∈ {2, 6, 12} electron systems with ω ∈ {1.0, 0.5, 0.28} as a function of the inverse
number of virtual orbitals. All energies are presented in Hartree and ω is given in

atomic units.

Throughout this work ECBS refers to extrapolated complete basis set limit energies that

have been obtained by fitting the latter function using energies obtained with 65 and 77

orbitals.

It is worth noting that in the specific case of ω = 1.0 for the 2 electron quantum dot

the exact energy E = 3.0 is available from the literature [140, 160], also a variationally

achieved energy as a function of ω that agrees to 5 decimal places with the analytic

solution is available [154]. Comparing our CBS energy with the analytic solution E =

3.0 leaves a discrepancy that we attribute to the extrapolation scheme. The 1/Nv

extrapolation captures the leading order finite basis set errors. However, as evident

from the convergence in table 6.2, other terms also contribute to the basis set error and

sufficiently large Nv have to be used in order for the 1/Nv extrapolation to obtain reliable

results. Our analysis shows that including higher order terms in the extrapolation scheme

(equation 6.25) brings us even closer to the exact energy. However, technically it’s

simpler and more robust to use only the leading term. Further, increasing the basis set
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Table 6.2: Summary of CBS limit CCSD ground state energy for the 2 electron system
with ω = 1.0, with different functions used for the extrapolation. All energies are in

Hartree.

Extrapolation function ECBS

ECBS +
a
Nv

3.00217

ECBS +
a
Nv

+ b

N
3
2
v

3.00147

ECBS +
a
Nv

+ b

N
3
2
v

+ c
N2

v
3.00083

Table 6.3: Summary of CBS limit CCSD ground state energy for the 2 electron system
with ω = 1.0, with different basis set sizes used for the extrapolation. All energies are

in Hartree.

Nv ECBS

44 - 54 3.00259
54 - 65 3.00238
65 - 77 3.00217

size also brings us closer to the exact CBS limit, summarized in table 6.3. But at this

point we cannot afford larger basis set sizes.

6.5 Results

We study QDs for a range of electron numbers and ω ∈ {1.0, 0.5, 0.28}. ω characterizes

the correlation strength in the system relative to the potential energy. Large ω corre-

spond to weakly correlated systems whereas small ω correspond to stronger correlated

systems [140].

Throughout this section all quantities are presented in atomic units (a.u.). In particular,

all energy values are therefore given in Hartree.

6.5.1 Ground State Energies

Table 6.4 summarizes the HF, MP2 and CCSD correlation energies together with the

CBS limit for ω ∈ {1.0, 0.5, 0.28} for the 2 electron system. Compared to the HF

energy, the MP2 correlation energy changes only slightly with ω. However, on a relative

scale the importance of the correlation energy contribution to the ground state energy

increases from 5.3 % to 11.7 % (ratio of MP2/CCSD correlation energy and the ground

state energy for N = 2, ω = 1.0 a.u. and 0.28 a.u.). Low-order perturbation theories

like MP2 become less reliable in the regime of strong correlation. CCSD, being a more

accurate theory in the sense that it contains all contributions from MP3 theory and
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Table 6.4: HF energy and correlation energy contributions on the level of MP2 and
CCSD theory in Hartree for 2 electrons. Nv denotes the number of virtual orbitals,
with its value at ∞ being the extrapolated value. Our results show that as ω increases,
the HF ground state energies increases linearly with ω. HF is a good approximation
in the limit of large ω where the inter electronic interaction is small compared to the

one-body interaction.

ω (a.u.) Nv HF MP2 CCSD

1.0 9 3.1626 -0.1182 -0.1374
14 3.1618 -0.1284 -0.1442
20 3.1618 -0.1347 -0.1482
27 3.1618 -0.1395 -0.1508
35 3.1618 -0.1431 -0.1526
44 3.1618 -0.146 -0.1539
54 3.1618 -0.1483 -0.1548
65 3.1618 -0.1501 -0.1556
77 3.1618 -0.1517 -0.1562
∞ 3.1618 -0.1602 -0.1596

0.5 9 1.7998 -0.107 -0.1259
14 1.7997 -0.1149 -0.1302
20 1.7997 -0.1202 -0.1324
27 1.7997 -0.1242 -0.1339
35 1.7997 -0.1272 -0.1348
44 1.7997 -0.1296 -0.1356
54 1.7997 -0.1315 -0.1361
65 1.7997 -0.1331 -0.1365
77 1.7997 -0.1345 -0.1369
∞ 1.7997 -0.1418 -0.1387

0.28 9 1.1417 -0.0962 -0.1129
14 1.1417 -0.102 -0.1151
20 1.1417 -0.1065 -0.1162
27 1.1417 -0.1098 -0.1169
35 1.1417 -0.1123 -0.1174
44 1.1417 -0.1144 -0.1178
54 1.1417 -0.1161 -0.1181
65 1.1417 -0.1174 -0.1183
77 1.1417 -0.1186 -0.1185
∞ 1.1417 -0.1249 -0.1194



The Quantum Dot 58

Table 6.5: Summary of CBS limit CCSD energies for N ∈ {2, 6, 12} electron systems
with ω ∈ {1.0, 0.5, 0.28}. All energies are in Hartree.

ω (a.u.) Electrons ECBS

1.0 2 3.0022
6 20.1839
12 65.7644

0.5 2 1.6609
6 11.8118
12 39.2343

0.28 2 1.0222
6 7.6292
12 25.7190

more, is expected to yield more accurate results than MP2 for small ω. We can see that

the relative CCSD and MP2 contributions to the ground state energy differ more as ω

decreases.

The linear scaling of the correlation energies with ω and the basis set convergence shown

in Fig.6.2 is found to be qualitatively independent of the number of electrons. All calcu-

lated CBS ground state energies are summarized in Table 6.5 for further reference. Our

findings demonstrate that small electron numbers already serve as a good approximation

to the behavior of ground state energies with the investigated parameters.

6.5.2 Excitation Energies

Having established a procedure to converge the ground state energies with the basis

set, we now seek to discuss the excited state properties. To this end, we employ EE-

EOM-CCSD theory and the same Hamiltonian employed for the ground state. We have

calculated the first three excitation energies, where the first excited state in EE-EOM-

CCSD theory corresponds to a triplet state while the second and third excited states

are singlet states.

Analogously to the ground state, we need to converge the excitation energies carefully

with the basis set. Figures 6.3, 6.4 and 6.5 give evidence that the EE-EOM-CCSD

excitation energies converge in a similar manner to the complete basis set limit. However,

the slope is significantly less steep, resulting in excitation energies with relatively small

basis set incompleteness errors when employing Nv = 77. Note that in the case of

N = 12 and ω = 0.28 we use Nv = 114 for the extrapolation. We estimate the CBS

limit of the excitation energies using an identical extrapolation procedure as used for
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Figure 6.3: First EE-EOM-CCSD excitation energy for N ∈ {2, 6, 12} electron sys-
tems with ω ∈ {1.0, 0.5, 0.28} retrieved as a function of the inverse number of virtual

orbitals N−1
v . All energies are in Hartree.

the ground state. In the case of excited states, as seen in figures 6.3 - 6.5, the slope of

the extrapolation function is less steep, resulting in a more reliable result.

Figure 6.6 shows the first excitation energy (singlet-triplet gap) for N = 2 as a function

of ω. EE-EOM-CCSD calculations predict an excitation energy that decreases with

decreasing ω. Approximating the singlet-triplet gap on the level of UHF theory yields

an inter system crossing at ω = 0.3926 a.u.. However, UHF energies neglect correlation

effects, which are expected to be larger in magnitude for the singlet state than for the

triplet state. It has already been discussed that the singlet-triplet crossing predicted by

UHF results from the neglect of the electron-electron correlation [110]. Indeed, we find

that UMP2 and EOM-CC theory predict no singlet-triplet crossing. Details on how the

UMP2 and UHF singlet-triplet gap was calculated can be found in appendix C.

Finally, Table 6.6 summarizes the CBS excitation energies from Fig. 6.3, 6.4 and 6.5. It

shows that the linear scaling of the excitation energies with ω is qualitatively unchanged

when comparing N = 2, N = 6 and N = 12 electron systems. Our findings show



The Quantum Dot 60

1.
00
3
1.
01
0 N = 2

ω = 1.0

0.
56
5

0.
66
3 N = 6

ω = 1.0

0.
53
3

0.
77
5 N = 12

ω = 1.0
0.
50
2
0.
50
6

E
n
er
gy

(a
.u
.) N = 2

ω = 0.5

0.
23
3

0.
31
0 N = 6

ω = 0.5

0.
23
3

0.
40
6 N = 12

ω = 0.5

0
40
−1
20
−1

10
−1

0.
28
1

0.
28
3 N = 2

ω = 0.28

EOM-CCSD

0
40
−1
20
−1

10
−1

N−1
v

0.
10
4

0.
16
4 N = 6

ω = 0.28

0
40
−1
20
−1

10
−1

0.
11
7

0.
24
1 N = 12

ω = 0.28

Figure 6.4: Second EE-EOM-CCSD excitation energy for N ∈ {2, 6, 12} electron
systems with ω ∈ {1.0, 0.5, 0.28} retrieved as a function of the inverse number of virtual

orbitals N−1
v . All energies are in Hartree.

that all excitation energies scale linearly with ω. For the 2 electron quantum dot the

singlet-singlet excitations (in our work the second and third excitation) are variationally

available [154]. We have compared our singlet-singlet excitation energies to values from

Ref. [154] and they are in excellent agreement as summarized in Table 6.7. The remain-

ing differences of the excitation energies can be attributed to the CBS extrapolation

procedure and also to the numerical procedures regarding the Coulomb integrals and

the wavefunction, as described in the previous section.

6.6 Conclusion and Summary

We have investigated a model Hamiltonian for two dimensional QDs using quantum

chemical many-electron theories including HF, MP2 and CCSD. For the study of excited

states we have employed the equation-of-motion formalism of CCSD theory (EOM-

CCSD). We have outlined a numerical method to compute the Coulomb integrals for
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Figure 6.5: Third EE-EOM-CCSD excitation energy for N ∈ {2, 6, 12} electron sys-
tems with ω ∈ {1.0, 0.5, 0.28} retrieved as a function of the inverse number of virtual

orbitals N−1
v . All energies are in Hartree.

arbitrary orbitals represented on a discrete numerical grid. Although this method is

computationally less efficient than recursive schemes for orbitals that correspond to

Gaussians or their derivatives, we note that it can become potentially useful for different

model Hamiltonians that include a one-body part and corresponding eigenfunctions

which are difficult to expand using Gaussians or their derivatives.

We have investigated the convergence of the computed correlation energies for ground

and excited states with respect to the number of virtual orbitals numerically, finding

a convergence behavior for two dimensional QDs which is identical to the basis set

convergence of the second-order correlation energy in perturbation theory of the three

dimensional electron gas. Furthermore, we have performed an analytic derivation for

the two dimensional QD on the level of second-order perturbation theory that supports

this convergence behavior. Based on this analysis, we have extrapolated all computed

correlation energies for ground and excited states to the complete basis set limit assuming

a 1/Nv convergence of the remaining finite basis set errors and compared them partly

to analytic and variationally achieved semi-analytic results.
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Figure 6.6: Singlet-triplet gap calculated with UHF, UMP2 and EE-EOM-CCSD as
a function of ω in Hartree. All calculations are done with Nv = 10.

The computed ground state energies in a range of ω = 0.28 a.u., which corresponds to

a strongly correlated regime, to ω = 1.0 a.u., has revealed that the HF energy scales

linearly with respect to ω and that the relative contribution of the MP2 and CCSD

correlation energies to the ground state energy increases with decreasing ω. Further-

more, we have observed that with decreasing ω the relative difference between the MP2

and CCSD correlation energy is increasing, outlining that CCSD captures higher order

correlation effects than MP2.

Using the EE-EOM-CCSD formalism, we have calculated the first three excitation en-

ergies of the QD and partly compared them to values from the literature. Our findings

show that the excitation energies scale linearly with ω and for N = 12 and ω = 0.28 the

second and third excitation become numerically degenerate.

Finally, our work also demonstrates that two dimensional QD model Hamiltonians serves

not only as a suitable tool for experimental QDs but can also be used as efficient and

well-controlled testing ground of approximate many-electron theories to study ground

and excited state properties. Using a single parameter to tune the confinement via the

harmonic potential, the Hamiltonian can be modified to switch between different regimes
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Table 6.6: CBS limit excitation energies for N ∈ {2, 6, 12} electron systems with
ω ∈ {1.0, 0.5, 0.28}. All quantities are expressed in atomic units.

ω (a.u.) Electrons First excita-
tion

Second excita-
tion

Third excita-
tion

1.0 2 0.5943 0.9999 1.4571
6 0.5218 0.5532 0.7028
12 0.4752 0.4834 0.5138

0.5 2 0.2530 0.4999 0.6609
6 0.2136 0.2271 0.3152
12 0.1913 0.1951 0.2063

0.28 2 0.1212 0.2800 0.3361
6 0.0991 0.1018 0.1589
12 0.0883 0.0897 0.0897

Table 6.7: CBS limit ground state and excitation energies for the 2 electron system
with ω ∈ {1.0, 0.5} compared to the variationally optimized energies from Ref. [154] on

the right. All quantities are expressed in atomic units.

ω (a.u.) Ground state Second excitation Third excitation

1.0 3.002/3.000 1.000/1.000 1.457/1.459

0.5 1.661/1.660 0.500/0.500 0.661/0.662

of correlation strengths and investigate the accuracy of finite-order perturbation theories.

However, we find that EOM-CCSD performs qualitatively correctly for the investigated

parameter ranges and that the remaining errors are expected to be only of quantitative

interest. In future work we seek to investigate different levels of EOM theories and

compare to other widely-used electronic structure theories that treat ground and excited

state phenomena. Further, the improvement of the semi-analytic realspace evaluation

of the Coulomb integrals, due to it’s universal applicability, may be of interest in the

future.





Chapter 7

Silicon Interstitials

In the following chapter we present a study of the self-interstitial point defect formation

energies in silicon using a range of quantum chemical theories including the CC method

within a periodic supercell approach. We study the formation energies of the so called

X, T, H and C3V self-interstitials and the vacancy V. Our results are compared to find-

ings obtained using different ab initio methods published in the literature and partly to

experimental data. In order to achieve computational results that are converged with

respect to system size and basis set, we employ the recently proposed finite size error

corrections and basis set incompleteness error corrections. Our CCSD(T) calculations

yield an order of stability of the X, H and T self-interstitials, which agrees both with

quantum Monte Carlo results and with predictions obtained using the random-phase ap-

proximation as well as using screened hybrid functionals. Compared to quantum Monte

Carlo results with backflow corrections, the CCSD(T) formation energies of X and H

are only slightly larger by about 100meV. However, in the case of the T self-interstitial,

we find significant disagreement with all other theoretical predictions. Compared to

quantum Monte Carlo calculations, CCSD(T) overestimates the formation energy of the

T self-interstitial by 1.2 eV. Although this can partly be attributed to strong correla-

tion effects, more accurate electronic structure theories are needed to understand these

findings.

In the following sections a short presentation on the history, experimental developments

and the importance of silicon is given, as well as a condensed matter physicist perspective

on the silicon self-diffusion. The following discussion has been published in Ref. [161].

65
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7.1 Introduction

With over half a century of producing nanometer-sized silicon devices, one would antici-

pate a comprehensive understanding of this material, particularly considering the current

need for near-atomic precision in manufacturing today’s nanometer-sized transistors.

Nevertheless, due to the miniaturization process, even the accidental formation of a

single trapping center can have a significant impact on the electronic properties of the

sample, making this phenomenon the most feared issue in the industry [162].

7.1.1 Experimental and Theoretical Developments

To better understand the influence of single isolated vacancies and interstitials, these

have to be produced experimentally. This can be achieved with 1–3MeV electron irradi-

ation performed at cryogenic temperatures. The identification of these centers is possi-

ble through characterization techniques like electron paramagnetic spectroscopy (EPR),

which is capable of targeting the atomic distortion triggered by the form of the local-

ized electronic density [163, 164]. Infrared optical absorption and deep-level transient

spectroscopy can also be used to identify center-induced states within the semiconduc-

tor gap [165–167]. The availability of experimental data motivated the development

of simple theoretical models geared towards quantitatively reproducing the basic fea-

tures of these defects. Furthermore, the rapid growth in computational resources made

it possible to perform ab initio calculations to model and understand their properties

thoroughly on an atomic level.

Point defects, such as vacancies, interstitials and anti-site defects, are the only thermo-

dynamically stable defects at finite temperatures [168]. The presence of point defects

often controls the kinetics of the material and can therefore fundamentally alter its elec-

tronic, optical and mechanical properties. This makes the understanding of point defects

technologically important for a wide range of applications such as doping of semiconduc-

tors [169–172], production of quantum devices [173, 174], and controlling the transition

temperature of shape memory alloys [175].

Of all materials, silicon is one of the most important for industrial use and plays a crucial

role in a wide variety of devices, e.g., advanced electronic devices, power devices, solar

cells, and microelectronic systems. In all these applications, Czochralski (CZ) and float-

ing zone (FZ) silicon single crystals are used (except for some solar cells) [176]. The dif-

fusion characteristics and thermodynamics of silicon self-interstitials and vacancies dom-

inate the doping and annealing processes for electronics applications [170, 171]. How-

ever, the understanding of self-diffusion in silicon remains incomplete despite decades
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of research [173, 177–197]. Questions regarding the role of the self-interstitials and the

vacancy in the self-diffusion remain. One of the remaining questions, which needs to

be addressed using quantum mechanical methods, is the formation energy of the silicon

self-interstitials and vacancy.

7.1.2 Many-Body Methods for the Formation Energy

Again, the most widely used method in this regard is DFT. Exchange correlation func-

tionals based on the local density approximation (LDA), general gradient approxima-

tion (GGA) and hybrid functionals predict formation energies in the range of 2 eV-

4.5 eV [182]. Green’s function based methods, such as the GW approximation, are ex-

pected to yield more accurate results and predict formation energies of about 4.5 eV [179].

A low-scaling implementation of the random-phase approximation reported formation

energies on a similar scale [198]. QMC provides another computationally more expen-

sive alternative to DFT and is among the most accurate electronic structure methods

available. Several groups have calculated the formation energies using QMC [197, 199].

In this work, we focus only on the former [197], because it employs a Slater-Jastrow-

backflow wavefunction, which changes the formation energies substantially.

The CC method is widely used in molecular quantum chemistry, where it achieves high

accuracy in the prediction of reaction energies for a wide range of systems. While be-

ing an efficient method for calculating small to medium-sized molecules, single-reference

CC methods have never been used to calculate the formation energies of silicon self-

interstitials and the vacancy in diamond cubic crystal silicon. Only over the past few

years have computationally efficient implementations of periodic CC methods become

available to study such systems [58, 200–202]. Moreover, recent developments in em-

bedding approaches also make it possible to study such local phenomena using CC

methods [203–211]. The goal of this work is to calculate the formation energies of the

silicon self-interstitials and vacancy at the level of CCSD(T) theory and compare them to

experimental data [196, 212–215] and reference data from literature [179, 182, 197, 198].

7.2 Cell structure

In order to simulate a silicon self-interstitial one has to define a periodic simulation cell.

The employed simulation cells of silicon self-interstitials are obtained by adding one Si

atom to the diamond cubic crystal structure of bulk silicon and relaxing the atomic

positions. The silicon self-interstitial structures are shown in figure 7.1.
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Figure 7.1: (a) The split-110 (X), (b) hexagonal (H), and (c) tetrahedral (T) inter-
stitial defects. The atom(s) forming the defect are shown in red, while the nearest
neighbors to the defect atoms are shown in yellow. The bonds between the defect and
nearest neighbor atoms are shown in orange. The figures are taken from reference [183].

The energetically most stable silicon self-interstitial (X) is one in which two silicon

atoms reside symmetrically shifted from the position previously occupied by one. The

two atoms are oriented parallel to the [110] direction. The second most favorable self-

interstitial (H) is where the additional Si atom is equidistant to six other atoms, forming

a hexagonal ring. It is worth noting that this configuration is unstable in DFT-PBE,

where the central atom of the ring is slightly moving away in a direction orthogonal to the

ring (C3V) [179, 216]. The last self-interstitial considered in this work, with the highest

energy, is where the additional Si atom is coordinated equidistantly to four nearest

neighbors, forming a tetrahedron (T). For the T interstitial, the highest occupied state

is threefold degenerate but only occupied by two electrons, which potentially introduces a

multireference character. The vacancy is created by removing one Si atom from the bulk

structure. Like the T interstitial, it has a threefold degenerate highest occupied state,

occupied by two electrons. The vacancy is known to undergo a Jahn-Teller distortion

to a D2d symmetry [217].
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Figure 7.2: Schematic illustration of the workflow used to get the silicon self-
interstitial formation energies.

All the ion positions of the used structures have been relaxed at the DFT level using

the PBE exchange and correlation energy functional [16]. The shape and volume of the

cells are kept fixed during the relaxation procedure.

7.3 Workflow

All coupled cluster calculations are performed using our high-performance open-source

coupled cluster simulation code, cc4s. The preparation of the necessary reference wave-

function and the required intermediates was performed using the VASP [54–56].

The workflow is schematically depicted in figure 7.2.
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For all calculations in VASP a plane-wave kinetic energy cut off of Ecut = 400 eV has

been used. The employed smearing parameter is σ = 10−4 eV and a convergence crite-

rion of ∆E = 10−6 eV is used. All other numerical parameters were left unchanged from

their default values. The HF calculations are performed using VASP and the structures

described in section 7.2. The HF calculations are done using a Γ-centered 7 × 7 × 7

k-point mesh. All post-HF calculations sample the first Brillouin zone using a single

k-point only. Further, we need to compute all unoccupied HF orbitals since in CC the-

ory we approximate the many-electron wavefunction using excited Slater determinants,

constructed by occupied and unoccupied HF orbitals. In VASP this is achieved by set-

ting the number of virtual orbitals to the maximum number of plane-waves in the basis

set. The convergence of the CCSD electron correlation energy is very slow when us-

ing canonical HF orbitals. A much faster convergence to the complete basis set limit is

achieved using natural orbitals. In VASP approximate natural orbitals can be calculated

as described in Eq.(2) from Ref. [61]. After calculating all natural orbitals, a subset of

them is chosen for the cc4s calculations. For the coupled-cluster theory calculations, we

chose the number of unoccupied natural orbitals per occupied orbital to be 5, 10, 15, 20,

25 and 30. Additionally, for the basis set correction algorithm described in section 5.2.1

and in the references therein, the MP2 pair energies are needed. For this purpose, there

are two algorithms available in VASP [218, 219]. In our case, we have used a 16-atom

cell for the bulk with 32 occupied orbitals; therefore, the MP2 algorithm from Ref. [219]

is more efficient. In the case of more than 50 occupied orbitals, a different algorithm

based on LTMP2 might be faster and less memory consuming [218]. Note that the basis

set correction algorithm uses a focal-point approach, and from now on, the basis set cor-

rection is also referred to as the focal-point correction (FPC). With these preparations

done, VASP can provide all necessary files needed for the CCSD(T) calculation with the

finite size and basis set error correction computed by cc4s. It is worth noting that the

CCSD calculation in cc4s converges much faster when using the DIIS mixer instead of

the default linear mixer. The described workflow with all necessary files can be found

on zenodo [220].

After studying the BSIE, we chose our number of virtual orbitals per occupied orbital

to be 10 and repeated all calculations with 10 randomly chosen k-point shifts in order

to get a twist average estimate of the CCSD(T) correlation energies.

All calculations have been performed using 16 compute nodes, each equipped with

384 GB main memory.

Further, we have calculated the formation energies at the HSE level of theory with up

to 5× 5× 5 k-points (converged within 10-–20 meV.), as shown in Table 7.2 below.
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7.4 Results

We now discuss the formation energies of the silicon self-interstitial structures described

in section 7.2 at the CCSD(T) level of theory. We use 16 atom cells for the pristine bulk

crystal with periodic boundary conditions, the interstitial cells have 17 atoms, while

the vacancy has 15 atoms. The HF energies, CCSD, CCSD(T), finite size and basis set

energy corrections can be found in appendix D in table D.1.

The formation energy is calculated by subtracting the energy of the interstitial cell with

the energy of the bulk cell scaled to the same number of atoms:

EF = Eint − Nint

Nbulk
Ebulk. (7.1)
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Figure 7.3: The formation energy as a function of the number of k-points used in the
Hartree-Fock calculation for all self-interstitials. A Γ-centered cubic k-point mesh was

used with Nk x Nk x Nk gridpoints.

7.4.1 HF Formation Energy Finite Size Convergence

We first discuss the convergence of the HF energy contribution to the formation energies.

Figure 7.3 shows the convergence of the HF formation energies with respect to the

size of the k-point mesh used in the HF calculation. We used a Γ-centered cubic k-

point mesh with up to 7×7×7 grid points. Using only one k-point gives qualitatively

and quantitatively wrong formation energies. With a k-point mesh size of 5×5×5, the
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formation energies are already well converged and increasing the k-point grid size further

to 7×7×7 increases the formation energies of X, H and C3V by less than 8.5meV, while

T and V increase by 29meV and 19meV.
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Figure 7.4: CCSD formation energy of the X interstitial as a function of the number
of orbitals per occupied orbital with and without the basis set correction scheme (FPC).

A Γ-centered cubic mesh was used.

7.4.2 Basis Set Convergence

We now discuss the convergence of the correlation energy contributions to the formation

energies with respect to the number of virtual orbitals. Let us note that the HF for-

mation energy Contributions are independent of the virtual orbital basis set size. The

MP2 calculations employ the complete virtual orbital basis set defined by the kinetic

energy cutoff of the plane wave basis set. Furthermore the MP2 correlation energies are

automatically extrapolated to the complete basis set limit using a procedure explained

in Ref. [218]. For the post-MP2 correlation energy calculations, we employ approximate

natural orbitals as virtual orbitals and seek to converge the correlation energies explic-

itly by increasing the number of virtual orbitals. We find that this approach allows for

an effective cancellation between basis set incompleteness errors of correlation energies

for different systems when taking their differences. Furthermore, we add a basis set

incompleteness error correction described in Ref. [59] to accelerate the convergence of

the CCSD correlation energy. The effect of the basis set correction on the formation

energy is highlighted in figure 7.4, which depicts the formation energy retrieved as a

function of the number of virtual orbitals per occupied orbital for the X interstitial.
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Our results indicate that between 10 and 20 virtual orbitals per occupied orbital suf-

fice to achieve converged formation energies with and without the basis set correction,

respectively. The remaining basis set incompleteness error is caused by fluctuations on

the scale of about 10meV, which is smaller than the expected accuracy of the employed

theories. Figure 7.5 shows the convergence of the CCSD(T) formation energies of all
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Figure 7.5: CCSD(T) formation energies as a function of the number of virtual
orbitals per occupied orbital for all self-interstitials include finite size and basis set

corrections.

self-interstitials with respect to the number of natural orbitals, including the finite size

and basis set corrections. Note that the basis set correction behaves similarly for all

self-interstitials. From figure 7.5, we see that Nv/Nocc = 10 is already accurate enough

to assume convergence within chemical accuracy (≈ 43meV).

7.4.3 CCSD(T) Formation Energy Finite Size Correction

7.4.3.1 Twist Averaging

With Nv/Nocc = 10, we repeat all calculations at 10 random k-points in order to obtain a

twist-averaged estimate of the correlation energy contribution to the formation energies.

This approach reduces finite size errors in CC calculations that originate from single-

particle effects [58]. The energy corrections for the twist averaging can be found in the

appendix D, in tables D.2-D.7. Using 10 random k-points our standard deviation from

the average CCSD(T) energy is in decreasing order for EF(T) = 227meV, EF(V) =
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Table 7.1: CCSD and CCSD(T) formation energies of the silicon self-interstitials and
the vacancy with and without the basis set and finite size correction as a function of
the unoccupied to occupied orbital ratio Nv/Nocc at the Γ-point. FPC and FS denote

that the basis set/finite size corrections are included.

HF/MP2 Nv/Nocc CCSD CCSD(T) CCSD-FS CCSD-FPC CCSD-FS-FPC CCSD(T)-FS-FPC

C3V 5 6.659 5.981 6.149 6.334 5.824 5.001
8.502 10 6.484 5.753 6.012 6.343 5.871 5.083
4.408 15 6.374 5.614 5.907 6.305 5.837 5.044

20 6.347 5.577 5.880 6.317 5.850 5.059
25 6.330 5.556 5.864 6.288 5.822 5.031
30 6.315 5.537 5.849 6.308 5.843 5.053

X 5 5.864 5.094 5.285 5.646 5.067 4.142
7.930 10 5.776 4.982 5.254 5.670 5.148 4.296
3.780 15 5.686 4.866 5.169 5.657 5.141 4.289

20 5.677 4.853 5.162 5.666 5.150 4.305
25 5.669 4.842 5.155 5.666 5.152 4.311
30 5.663 4.831 5.150 5.671 5.158 4.313

T 5 7.857 7.051 7.238 7.435 6.816 5.833
9.954 10 7.628 6.764 7.055 7.455 6.882 5.949
5.355 15 7.531 6.641 6.964 7.469 6.902 5.974

20 7.511 6.611 6.944 7.447 6.880 5.952
25 7.489 6.584 6.923 7.458 6.892 5.968
30 7.476 6.565 6.910 7.456 6.890 5.964

H 5 6.358 5.717 5.877 5.986 5.504 4.722
8.162 10 6.231 5.538 5.783 6.053 5.605 4.854
4.212 15 6.132 5.413 5.689 6.058 5.615 4.864

20 6.103 5.376 5.661 6.046 5.604 4.854
25 6.090 5.360 5.649 6.075 5.635 4.890
30 6.075 5.341 5.634 6.056 5.616 4.869

V 5 5.291 4.866 4.820 4.999 4.528 3.993
5.554 10 5.034 4.546 4.573 4.952 4.492 3.961
4.305 15 4.960 4.443 4.500 4.942 4.483 3.942

20 4.942 4.413 4.484 4.925 4.467 3.921
25 4.926 4.394 4.470 4.928 4.472 3.928
30 4.919 4.380 4.462 4.928 4.472 3.924

101meV, EF(X) = 80meV, EF(C3V) = 73meV and EF(H) = 51meV. After twist

averaging, the formation energy of V, T and X increases by 818meV, 367meV and

239meV. While the formation energy of the C3V and H interstitial decreases by 85meV

and 44meV, indicating that it is important to account for this contribution.

The Γ-point formation energies are shown in Table 7.1, while the twist-averaged for-

mation energies are shown in Table 7.2 for X, H, and T and in Tables D.7 and D.3

in the appendix D for V and C3V. Further, we calculate the formation energies at the

DFT level of theory, utilizing the Heyd-Scuseria-Ernzerhof (HSE) exchange correlation

functional again in Table 7.2. The HF energies, CCSD, CCSD(T), and finite-size and

basis set energy corrections can be found in Table D.1 in the appendix D.
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Table 7.2: Computed and converged HF, CCSD, CCSD(T) and HSE formation ener-
gies including all reported corrections in this work compared to QMC [197], RPA [198],
PBE [198], LDA [179, 182] and G0W0 [179] from the literature and also experimental
data [196, 212–215]. All results have been obtained for the 16/17 atom cells except

RPA(216), which employed 216/217 atom cells.

Cell HF CCSD CCSD(T) QMC QMC (nobf) G0W0 RPA RPA (216) HSE PBE LDA Exp.

X 7.930 5.295 4.535 4.4 4.9 4.46 4.27 4.17 4.46 3.56 3.29
T 9.954 7.127 6.316 5.1 5.2 4.53 4.44 4.92 3.66 3.56
H 8.162 5.559 4.810 4.7 4.9 4.4 4.45 4.37 4.82 3.74 3.4 4.2 - 4.7

7.4.3.2 FSIE Correction

Next, we briefly discuss the effect of the FSIE correction based on the structure factor

interpolation, which accounts for two-electron finite size errors. Table 7.1 summarizes

the computed CCSD formation energies with and without the corresponding finite size

correction denoted as CCSD-FS and CCSD, respectively. It is not surprising that this

correction is significant and on the scale of about 0.5 eV. However, based on previous

results reported in Ref. [58] we expect that the employed finite size correction will suffice

for the 16/17 atom cells to achieve chemical accuracy in the convergence of the computed

formation energies with respect to the employed system size. Furthermore, it can be

concluded from the comparison between CCSD-FS and CCSD in table 7.1, that the

computed finite size correction is already well converged using Nv/Nocc = 10. Note that

the finite size correction can currently only be applied to the CCSD calculation. The (T)

contribution to the formation energies is significantly smaller than the CCSD correlation

energy contribution, which makes it plausible to neglect the finite size correction to the

(T) contribution.

7.5 Comparison to Other Methods and Discussion

Table 7.1 also includes results for the vacancy formation energy. We note that these

calculations employ a 15-atom cell only. Due to the small supercell size, the system does

not undergo a Jahn-Teller distortion [217], which can be observed for larger cells and

which significantly changes the formation energy. Therefore, we note that these results

are only meaningful as benchmarks for other theories employing identical geometries

and can not be compared to experiment. Our best estimates of the formation energies

at the level of HF, CCSD and CCSD(T) theory including all corrections discussed above

are compared to values from the literature and experiment in table 7.2. We see that

the formation energies calculated with LDA and PBE are small (3–4 eV) and close to

each other for all self-interstitials, with a difference of 80 − 160meV. Yet the order of

stability is not the same; for LDA the most stable self-interstitial is X then H and T.
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For PBE T has a lower energy than H. Incorporating a portion of the exact exchange

correlation energy in the HSE functional increases the formation energies, and their

difference to 360meV and 100meV, with the order of stability of X, H and T. RPA

predicts the same order of stability with a difference between X and H of 180meV,

while the difference between H and T is 80meV. Increasing the cell size to 216 atoms

changes the differences significantly to 130meV and 600meV, still with the same order

of stability. G0W0 for 16 atom cells predicts that H is more stable than X while their

difference is only 60meV. In QMC, using 16 atom cells without a backflow correction, X

and H are nearly degenerate, while the difference to T is 300meV. Including the backflow

correction gives the order of stability as X, H and T with clear differences of 300meV

and 400meV. We now turn to the wavefunction methods employed in this work. The

formation energies calculated with HF are much larger than the ones calculated with the

other theories presented. While the order of stability is in agreement with the corrected

QMC calculations, their difference is 232meV and 1792meV. Expanding the correlation

space further to CCSD and CCSD(T) theory, including the basis set and finite size

correction, lowers the formation energies by 2.8–2.6 eV and another 811–749meV. Their

relative difference also changes to 264meV and 1568meV for CCSD theory and 275meV

and 1506meV for CCSD(T) theory. Our estimated CCSD(T) formation energies are in

good agreement with extrapolated QMC calculations [197] employing a Slater-Jastrow-

backflow correction for the X and H interstitial. However, we have a discrepancy of 1.2 eV

for the T interstitial. This could stem from the fact that in DFT the energetically highest

occupied orbitals are threefold degenerate while being occupied by two electrons. It may

be an indication that a multireference treatment is needed. Our CCSD(T) formation

energy for the H interstitial is within reasonable agreement with experiment, being

110meV above the experimental upper bound.

7.6 Conclusion and Summary

We have calculated the formation energies of the silicon self-interstitials and the vacancy

in a periodic supercell at the CCSD(T) level of theory. We have used correction schemes

tailored to CC theory to reduce the BSIE and the FSIE. Our results have been compared

to data from the literature and experiment, including LDA, PBE, HSE, RPA, G0W0 and

QMC.

In general, DFT using the LDA and PBE functionals fails to differentiate the struc-

tures, resulting in small energy differences between the self-interstitials while also un-

derestimating the formation energies. Additionally, HF overestimates the formation

energies. The HSE functional offers a compromise, and its formation energies are in
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good agreement with the much more expensive and accurate QMC calculations. The

QMC formation energies of the two most stable self-interstitials, X and H, are nearly

degenerate. This degeneracy is lifted by employing the Slater-Jastrow-backflow trial

wavefunction [197].

Our CCSD(T) formation energies are in good agreement with QMC calculations employ-

ing a Slater-Jastrow-backflow wavefunction for the X and H interstitials. The CCSD(T)

formation energy for the H interstitial is within reasonable agreement with experimental

data, being 110meV above the upper bound. However, the CCSD(T) formation energy

of the T interstitial is 1.2 eV higher than in the QMC calculations. Since in DFT the

highest occupied orbital of the T interstitial is threefold degenerate but only occupied by

two electrons, we suppose a multireference approach may be necessary. We stress that

none of the discussed methods is expected to work for strongly correlated systems. DFT

based approaches underestimate the formation energy of strongly correlated defects due

to the introduction of partly filled orbitals that reduce the self-interaction error. QMC

techniques require multideterminant trial wavefunctions for strongly correlated systems

to reduce the error from the fixed-node approximations, and RPA is expected to inherit

part of the DFT errors for the treatment of strongly correlated systems. Therefore, we

have to conclude that more sophisticated theories will be needed in future studies to

fully resolve the observed discrepancy for the formation energy of the T interstitial.

Although we demonstrated that basis set convergence can be achieved efficiently at the

level of CCSD(T) theory using recently presented methods, the treatment of finite size

errors is still challenging and relatively large defect concentrations had to be employed.

However, we note that recently developed embedding methods will allow to investigate

much lower defect concentrations in a computationally efficient manner [221].





Chapter 8

Conclusion and Summary

Zero-dimensional systems and the modeling of their physical properties are a very broad

field of research on their own. In order to achieve an accurate description of their

electronic structure, it is often necessary to go beyond DFT. The main goal of this thesis

is to model specifically the excited states of the two dimensional parabolic quantum dot

and the self-interstitial point defects in silicon. This has been done by applying one

of the most accurate ab initio many-body methods available, coupled cluster theory.

Specifically for the silicon interstitials, we use CC theory utilizing a plane wave basis

set within the PAW framework. In this work, we aim at both applying CC theory to

model the QD and the silicon interstitials as well as evaluating the performance and

applicability of CC theory itself as well as providing benchmark results.

In the first part of the thesis, an introduction is given (chapter 1), followed by an

incremental history of the key concepts of quantum mechanics, including the atomic

many-body problem, wavefunction symmetry and relativistic considerations regarding

the Schrödinger equation in chapter 2. In chapter 3 the attention is shifted towards

the many-body problem in solids, presenting the crystal structure and Bloch’s theorem,

leading to the Born-Oppenheimer approximation and the many-body electronic structure

Hamiltonian. In chapter 4 the most popular ab initio many-body methods used to

approximate solutions to the many-body electronic structure Hamiltonian are presented

and discussed, with an emphasis on density functional theory, coupled cluster theory

and quantum Monte Carlo theory, followed by a discussion of the calculations of excited

states. In chapter 5 the programs VASP and cc4s, which have been extensively used in

this thesis, are presented, including details on their algorithms.

In the second part of the thesis, the two dimensional parabolic quantum dot and the

self-interstitial point defects in silicon are presented. In chapter 6 the QD is presented,
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including its practical applications and a thorough historic perspective on the experi-

mental and theoretical developments regarding the QD. The harmonic oscillator, which

is used to model the QD, is presented, followed by the presentation of a semi-analytic

scheme to calculate the necessary Coulomb integrals. A basis set extrapolation based

on the asymptotic behavior of the MP2 correlation energy is presented and discussed,

leading to the CCSD ground state energy and the EE-EOM-CCSD excited state energies

of the QD in different regimes of correlation with different numbers of electrons. The

results are discussed and compared to values from the literature, with which we are in

good agreement, showing that the QD model Hamiltonian is not only a suitable tool

to describe experimental QDs but can also be used as an efficient and well-controlled

testing ground for many-body methods. In chapter 7 the self-interstitial point defects

in silicon are presented, highlighting the importance of silicon self-diffusion, including a

history of the experimental and theoretical developments regarding silicon self-diffusion

and silicon self-interstitial formation energies. The cell structures used for the periodic

supercell calculation are presented, followed by a description of the workflow used to get

the best estimates for the BSIE and FSIE corrected CCSD(T) formation energies. Our

results are compared to a wide array of other many-body methods from the literature,

including QMC, DFT and experimental data. The results are in good agreement with

backflow-corrected QMC calculations; however, there is a significant deviation between

the CCSD(T) and QMC formation energies of 1.2eV, for the tetrahedral interstitial,

which is discussed and attributed to a possible multi-reference character, but ultimately

remains unresolved.

This thesis has demonstrated that periodic CC calculations can be applied to calculate

the properties of solids and zero-dimensional structures embedded in solids at the level

of CCSD(T) theory, which will help to extend the scope and further the improvement of

computationally more efficient yet less accurate methods by providing a more accurate

benchmark result.



Appendix A

Slater-Condon Rules

In wavefunction based theories, one needs to calculate the matrix elements of the Hamil-

tonian projected onto arbitrary excited Slater determinants

HIJ = ⟨ΦI |Ĥ|ΦJ⟩. (A.1)

The Slater-Condon rules allow the calculation of these matrix elements for any pair

of orthonormal Slater determinants ΦI and ΦJ . Assuming the usuall HF reference

determinant Φ, one can describe the matrix elements of the hamiltonian projected onto

all other determinants simply by their difference in spin-orbitals.

The Hamiltonian can be split into one-body and two-body parts

Ĥ =Ĥ1 + Ĥ2 ,

Ĥ1 =
occ.�
i

ĥ(i) ,

Ĥ2 =
occ.�
i ̸=j

1

rij
. (A.2)

The Slater-Condon rules for the one-body part Ĥ1 are

⟨Φ|Ĥ1|Φ⟩ =
occ.�
i

⟨ψi|ĥ|ψi⟩ ,

⟨Φa
i |Ĥ1|Φ⟩ =⟨ψa|ĥ|ψi⟩ ,

⟨Φab
ij |Ĥ1|Φ⟩ =0 (A.3)

⟨Φabc
ijk |Ĥ1|Φ⟩ =0 (A.4)

...
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The matrix elements of the two-body part Ĥ2 are

⟨Φ|Ĥ2|Φ⟩ =1

2

occ.�
ij


⟨ψiψj | 1

r12
|ψiψj⟩ − ⟨ψiψj | 1

r12
|ψjψi⟩



,

⟨Φa
i |Ĥ2|Φ⟩ =

occ.�
j


⟨ψaψj | 1

r12
|ψiψj⟩ − ⟨ψaψj | 1

r12
|ψjψi⟩



,

⟨Φab
ij |Ĥ2|Φ⟩ =⟨ψaψb| 1

r12
|ψiψj⟩ − ⟨ψaψb| 1

r12
|ψjψi⟩ ,

⟨Φabc
ijk |Ĥ2|Φ⟩ =0 , (A.5)

⟨Φabcd
ijkl |Ĥ2|Φ⟩ =0 , (A.6)

...



Appendix B

Rayleigh–Schrödinger

Perturbation Theory

In Rayleigh-Schrödinger perturbation theory we are looking for the solutions of the

time-independent Schrödinger equation

ĤΨn = EnΨn , (B.1)

The main idea is to split the Hamiltonian into two parts

Ĥ = Ĥ0 + λV̂ , (B.2)

where Ĥ0 is the uperturbed Hamiltonian and V̂ is the perturbation. λ is a scalar pa-

rameter that later will be set to one. The ground-state wavefunction Ψ and energy E

are now expanded as a Taylor series of λ

Ψ(λ) =Ψ(0) + λΨ(1) + λ2Ψ(2) + . . . , (B.3)

E(λ) =E(0) + λE(1) + λ2E(2) + . . . , (B.4)

with

Ψ(k) =
1

k!

�
∂kΨ

∂λk

�
λ=0

,

E(k) =
1

k!

�
∂kE

∂λk

�
λ=0

. (B.5)

If we use the Taylor expansion of the wavefunction and energy in the time idependent

Schrödinger equation and equate the coefficients of same powers of λ we arrive at a
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hierarchy of equations


Ĥ0 − E(0)

|Ψ(0)⟩ = 0 (B.6)
Ĥ0 − E(0)

|Ψ(1)⟩+ 
V̂ − E(1)


|Ψ(0)⟩ = 0 (B.7)
Ĥ0 − E(0)

|Ψ(2)⟩+ 
V̂ − E(1)


|Ψ(1)⟩ − E(2)|Ψ(0)⟩ = 0 (B.8)

...

Multiplying each equation from the left with ⟨Ψ(0)| and using the orthogonality ⟨Ψ(0)|Ψ(k)⟩ =
δk0, yields the following equations for the energies

E(0) =⟨Ψ(0)|Ĥ|Ψ(0)⟩ (B.9)

E(1) =⟨Ψ(0)|V̂|Ψ(0)⟩ (B.10)

E(2) =⟨Ψ(0)|V̂|Ψ(1)⟩ (B.11)

...

In order on to determine the second order correction to the energy E(2), one has to

determine the first order correction to the wavefunction Ψ(1). Assuming we have an

orthonormal set of solutions Ψ
(0)
n for the zeroth order Hamiltonian Ĥ0, one can represent

the first order wavefunction in terms of Ψ
(0)
n

Ψ(1) =
�
m

C(1)
m Ψ(0)

m , (B.12)

The coefficients C
(1)
l can be obtained by inserting equation B.12 into equation B.7 and

multiplying with ⟨Ψ(0)
l | from the left,

�
m

C(1)
m ⟨Ψ(0)

l |Ĥ0 − E(0)|Ψ(0)
m ⟩+

�
m

C(1)
m ⟨Ψ(0)

l |V̂ − E(1)|Ψ(0)⟩ = 0 , (B.13)

and therefore

C
(1)
l =

⟨Ψ(0)
l |V̂|Ψ(0)⟩

E(0) − E
(0)
l

. (B.14)



Appendix C

Singlet Triplet Gap Calculation

In order to calculate the singlet and triplet ground state energy of the 2 electron QD

with HF and MP2 theory the following Slater determinants have been used:

|Ψsinglet⟩ = |(00, ↑)(00, ↓)⟩
|Ψtriplet⟩ = |(00, ↑)(01, ↑)⟩ .

The HF ground state energy for the 2 electron QD is given by

EHF = ⟨Ψgs| Ĥ |Ψgs⟩+ ⟨Ψgs| V̂ |Ψgs⟩

where Ĥ is the single-body part of the Hamiltonian and V̂ is the Coulomb repulsion

between the electrons. Inserting the ansatz for the wavefunctions of singlet and triplet

states and applying the Slater-Condon rules gives

Es = ω + ⟨0000|0000⟩
Et = 2ω + ⟨0001|0001⟩ − ⟨0000|0101⟩ .

The MP2 ground state energy is

EMP2 = E(0) + E(1) + E(2)

E(0) = ⟨Ψgs| Ĥ |Ψgs⟩
E(1) = ⟨Ψgs| V̂ |Ψgs⟩

E(2) =
�

k ̸=Ψgs

| ⟨k| V̂ |Ψgs⟩ |2
Ek − Egs

.
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Applying the Slater-Condon rules and using the same singlet and triplet wavefunctions

as for HF yields a additional contribution to the HF energy

EMP2,s = Es +
�
abcd

| ⟨0000|abcd⟩ − ⟨00ab|00cd⟩ |2
ω(−a− b− c− d)

EMP2,t = Et +
�
abcd

| ⟨0001|abcd⟩ − ⟨00ab|01cd⟩ |2
ω(1− a− b− c− d)



Appendix D

Silicon Interstitials: Raw Data

D.1 Γ-point Calculations and Basis Set Convergence

Table D.1 shows the CCSD and CCSD(T) energy corrections to the HF ground state

energies, as well as the basis set and the finite size correction. The HF energy was

calculated using a Γ-centered 7×7×7 k-point mesh. All the other corrections were

calculated at the Γ-point.
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Table D.1: HF formation energies of all calculated structures, as well as the CCSD,
CCSD(T), finite size and basis set corrections. All energies are in eV.

HF Nv/Nocc CCSD CCSD(T) FS BS

Bulk 5 -43.4765 -2.3715 -3.7478 -9.7135
-151.920 10 -49.9044 -3.4427 -3.8412 -4.0339

15 -51.6199 -3.7680 -3.8593 -2.4171
20 -52.3780 -3.9174 -3.8633 -1.6891
25 -52.8151 -4.0039 -3.8653 -1.2599
30 -53.0515 -4.0461 -3.8654 -1.0200

C3V 5 -48.0369 -3.1975 -4.4917 -10.6451
-152.9134 10 -55.0409 -4.3890 -4.5530 -4.4268

15 -56.9736 -4.7637 -4.5677 -2.6377
20 -57.8062 -4.9321 -4.5715 -1.8250
25 -58.2881 -5.0274 -4.5724 -1.3807
30 -58.5542 -5.0770 -4.5723 -1.0903

X 5 -48.2597 -3.2894 -4.5609 -10.5387
-153.4851 10 -55.1774 -4.4519 -4.6033 -4.3915

15 -57.0905 -4.8230 -4.6169 -2.5965
20 -57.9043 -4.9867 -4.6201 -1.8062
25 -58.3773 -5.0805 -4.6210 -1.3409
30 -58.6339 -5.1316 -4.6207 -1.0757

T 5 -48.2917 -3.3253 -4.6008 -10.7425
-151.4606 10 -55.3498 -4.5223 -4.6540 -4.4593

15 -57.2692 -4.8940 -4.6676 -2.6304
20 -58.0948 -5.0627 -4.6716 -1.8590
25 -58.5816 -5.1593 -4.6727 -1.3693
30 -58.8459 -5.2094 -4.6727 -1.1039

H 5 -47.9977 -3.1610 -4.4635 -10.6933
-153.2528 10 -54.9550 -4.3508 -4.5291 -4.4641

15 -56.8764 -4.7222 -4.5437 -2.6421
20 -57.7108 -4.8892 -4.5467 -1.8522
25 -58.1881 -4.9839 -4.5476 -1.3534
30 -58.4548 -5.0331 -4.5472 -1.1027

V 5 -41.0219 -2.6484 -3.9846 -9.3988
-136.8709 10 -47.3057 -3.7151 -4.0613 -3.8637

15 -48.9880 -4.0494 -4.0775 -2.2835
20 -49.7164 -4.2020 -4.0798 -1.6001
25 -50.1419 -4.2861 -4.0802 -1.1794
30 -50.3710 -4.3320 -4.0803 -0.9470

D.2 Random k-point Calculations

Tables D.2-D.7 show the CCSD and CCSD(T) energy corrections to the HF ground state

energies, as well as the basis set and the finite size correction for 10 random k-points

using 10 virtual orbitals per occupied orbital.
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Table D.2: Twist averaged results for the bulk. All energies are in eV.

HF CCSD CCSD(T) FS BS

Bulk -49.8167 -3.7600 -4.2053 -4.0146
-151.920 -49.7882 -3.6116 -4.0349 -4.0027

-49.7887 -3.6936 -4.1435 -4.0076
-49.7851 -3.6124 -4.0151 -4.0076
-49.7881 -3.6590 -4.1462 -4.0077
-49.8101 -3.7460 -4.1749 -4.0190
-49.7918 -3.6290 -4.0086 -4.0090
-49.8083 -3.7545 -4.2244 -4.0303
-49.8207 -3.7633 -4.1717 -4.0173
-49.7976 -3.7073 -4.1158 -4.0102

Average -49.7995 -3.6937 -4.1240 -4.0126

Formation Energy 0

Table D.3: Twist averaged results for the C3V interstitial. All energies are in eV.

HF CCSD CCSD(T) FS BS

C3V -55.0793 -4.6865 -4.8126 -4.3949
-152.9134 -55.0242 -4.5504 -4.6772 -4.3986

-55.1168 -4.6773 -4.8237 -4.3960
-55.0566 -4.5760 -4.6621 -4.3849
-55.0991 -4.6385 -4.8578 -4.3967
-55.1570 -4.7165 -4.7976 -4.3899
-55.0867 -4.6046 -4.6337 -4.3900
-55.1814 -4.7321 -4.9133 -4.3893
-55.1799 -4.7372 -4.7677 -4.3942
-55.1135 -4.6757 -4.7427 -4.3928

Average -55.1094 -4.65948 -4.76885 -4.39272

Formation Energy 4.998

Table D.4: Twist averaged results for the X interstitial. All energies are in eV.

HF CCSD CCSD(T) FS BS

X -55.0427 -4.6651 -4.8119 -4.3681
-153.4851 -55.1184 -4.5860 -4.7078 -4.3438

-55.0224 -4.6324 -4.7803 -4.3883
-55.0596 -4.5699 -4.6657 -4.3641
-55.0501 -4.6117 -4.8226 -4.3873
-55.0537 -4.6725 -4.8059 -4.3848
-55.0422 -4.5854 -4.6454 -4.3788
-55.0168 -4.6710 -4.9005 -4.4082
-55.0689 -4.6791 -4.7565 -4.3684
-55.0544 -4.6451 -4.7333 -4.3727

Average -55.0530 -4.63182 -4.76299 -4.37646

Formation Energy 4.535



Silicon Interstitials: Raw Data 90

Table D.5: Twist averaged results for the T interstitial. All energies are in eV.

HF CCSD CCSD(T) FS BS

T -55.2699 -4.7589 -4.8835 -4.3863
-151.4606 -55.2986 -4.6747 -4.7801 -4.3943

-55.3547 -4.7756 -4.8900 -4.3931
-55.2511 -4.6547 -4.7454 -4.4002
-55.1553 -4.6366 -4.8288 -4.3856
-55.2156 -4.7206 -4.8375 -4.3851
-55.0346 -4.5578 -4.6527 -4.4022
-55.0616 -4.6681 -4.8444 -4.4209
-55.1094 -4.6811 -4.7886 -4.3854
-55.1468 -4.6625 -4.7681 -4.3789

Average -55.1897 -4.67906 -4.80191 -4.39320

Formation Energy 6.316

Table D.6: Twist averaged results for the H interstitial .All energies are in eV.

HF CCSD CCSD(T) FS BS

H -55.0364 -4.6706 -4.7986 -4.3909
-153.2528 -54.9589 -4.5200 -4.6609 -4.3890

-55.0356 -4.6364 -4.7915 -4.3832
-54.9648 -4.5345 -4.6405 -4.3797
-55.0054 -4.5977 -4.8300 -4.3916
-55.0608 -4.6697 -4.7742 -4.3860
-54.9979 -4.5684 -4.6153 -4.3882
-55.0974 -4.6879 -4.8865 -4.3808
-55.0909 -4.6923 -4.7437 -4.3858
-55.0385 -4.6379 -4.7173 -4.3803

Average -55.0287 -4.62153 -4.74585 -4.38555

Formation Energy 4.810

Table D.7: Twist averaged results for the vacancy. All energies are in eV.

HF CCSD CCSD(T) FS BS

V -46.8932 -3.7864 -4.1677 -3.8147
-136.8709 -46.9264 -3.7007 -4.0489 -3.8173

-46.9694 -3.7560 -4.1327 -3.7825
-46.8965 -3.6820 -4.0553 -3.8076
-46.8375 -3.6923 -4.0976 -3.8153
-46.8939 -3.7783 -4.1499 -3.8024
-46.8376 -3.6612 -4.0657 -3.8129
-46.7661 -3.7462 -4.1541 -3.8628
-46.8131 -3.7611 -4.1651 -3.8299
-46.8483 -3.7296 -4.1263 -3.8017

Average -46.8682 -3.72940 -4.11633 -3.81470

Formation Energy 4.779
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