
 
 

 
 

 

Master Thesis  

Vision-based motion estimation for mobile 
robot navigation in harsh environment 

carried out for the purpose of obtaining the degree of  

Diplom-Ingenieur_in (DI) Mechanical and Mechanical Management  
 

submitted at TU Wien 

Faculty of Mechanical and Industrial Engineering  

by  

Utkarsh Savkare 

Mat.No.: 12202174 

 

under the supervision of  
Univ.-Prof. Dr.-Ing. Sebastian Schlund 

(E330 Institute of Management Science, Head of Department Industrial Engineering 
 Head of Research Group Human-Machine-Interaction) 

 

PhD Ambra Vandone 

(Research fellow at Scuola Universitaria Professionale Della Svizzera Italiana) 

 

 

Wien, 3rd November 2023      _____ ___ 
        Signature 



 

 
 

 

 

Ich habe zur Kenntnis genommen, dass ich zur Drucklegung meiner Arbeit unter der 
Bezeichnung 

Vision-based motion estimation for mobile robot navigation in 
harsh environment 

nur mit Bewilligung der Prüfungskommission berechtigt bin. 

 

Ich erkläre weiters Eides statt, dass ich meine Diplomarbeit nach den anerkannten Grundsätzen 
für wissenschaftliche Abhandlungen selbstständig ausgeführt habe und alle verwendeten 
Hilfsmittel, insbesondere die zugrunde gelegte Literatur, genannt habe.Weiters erkläre ich, dass 
ich dieses Diplomarbeitsthema bisher weder im In- noch Ausland (einer Beurteilerin/einem 
Beurteiler zur Begutachtung) in irgendeiner Form als Prüfungsarbeit vorgelegt habe und dass 
diese Arbeit mit der vom Begutachter beurteilten Arbeit übereinstimmt. 

 

 

 

 

 

 
Wien, 3rd November 2023          _________________________ 
           Signature 

 

 



 

 
 

Acknowledgements 
I would like to express my heartfelt gratitude to all those who have contributed to the successful 
completion of my Master's thesis. This journey has been challenging, yet immensely rewarding, 
and I owe my accomplishments to the support and encouragement of numerous individuals and 
organizations. 

First and foremost, I am deeply indebted to my thesis advisor Miss Ambra Vandone, for their 
unwavering guidance, mentorship, and invaluable insights throughout this research endeavour. 
Their expertise and dedication have played a pivotal role in shaping the direction of my study 
and in nurturing my academic growth. I am truly fortunate to have had such a knowledgeable 
and supportive mentor. 

In line, I am extremely grateful to my supervisor Univ.-Prof. Dr.-Ing. Sebastian Schlund, 
who gave me valuable insight throughout my thesis duration. 

I would like to extend my gratitude to the members of my thesis committee, from the Institute 
of Management Science for their valuable feedback, constructive criticism, and scholarly 
contributions to this work. Their collective wisdom has been instrumental in refining the quality 
of my thesis. 

I would like to extend my sincere thanks to Matteo Astori from MCH-Tronics Sagl, Manno, for 
their invaluable scientific support. 

I am also thankful to my fellow students and colleagues at Technische Universität Wien (TUW) 
and Scuola universitaria professionale della Svizzera italiana (SUPSI) for their camaraderie, 
stimulating discussions, and the shared learning experiences that have enriched my academic 
journey. 

 
 



 

i 
 

English Abstract 
Visual Odometry (VO) is a process of estimating the pose of a moving agent relying solely on 
analysis of the image streams from one or multiple onboard cameras. It finds diverse 
applications in Robotics Navigation for both outdoor and Indoor settings, Environmental 3D 
Reconstruction, Autonomous Vehicles, Augmented Reality (AR), Virtual Reality (VR), and 
Camera Stabilization. It facilitates safe and efficient navigation, exploration, and interaction 
with the environment. In outdoor scenarios, stereo visual odometry enables navigating through 
varied terrains making informed decisions for obstacle avoidance and path planning. This 
research work focuses on developing a robust stereo visual odometry algorithm for mobile robot 
navigation in outdoor environments, which can be further complimented by external sensors. 
The research's primary objective is to create a stereo vision algorithm robustly estimating robot 
motion based on stereo camera data. The algorithm incorporates state-of-the-art feature 
detection, tracking, and filtering methods, enhancing the robot's environmental perception and 
navigation efficiency. By investigating these techniques and integrating them into the stereo 
visual odometry algorithm, the research aims to improve accuracy and robustness outdoor 
environments. Extensive real-world dataset evaluations confirm the algorithm's effectiveness 
in providing incremental online estimation of the robot's position and orientation, showcasing 
its potential for safer and more reliable navigation in various real-world applications. However, 
we also identified certain shortcomings during these tests and have diligently sought solutions 
for them. We rigorously evaluated the algorithm's effectiveness through individual assessments, 
aiming to uncover its strengths and limitations. These assessments shed light on its performance 
across a spectrum of real-world scenarios, providing valuable insights for further refinement 
and optimization. By substantiating its performance through real-world datasets and self-
conducted experiments, this research offers comprehensive evidence of its potential. It 
significantly contributes to the field of stereo visual odometry by introducing a scalable and 
efficient algorithm. This innovation stands to advance robotics, autonomous vehicles, and 
augmented reality systems, ultimately improving our ability to seamlessly explore and interact 
with outdoor environments. 

Keywords - Stereo Visual Odometry, Pose Estimation, Mobile Robotics Navigation, Outdoor 
Environments, Incremental Online Estimation, Environmental Perception. 

 

  



 

ii 
 

Deutsche Kurzfassung 
Visuelle Odometrie (VO) ist ein Prozess zur Schätzung der Pose eines sich bewegenden 
Agenten, der ausschließlich auf der Analyse der Bildströme einer oder mehrerer Bordkameras 
beruht. Es findet vielfältige Anwendungen in der Robotik-Navigation für Außen- und 
Innenumgebungen, der 3D-Rekonstruktion der Umgebung, autonomen Fahrzeugen, 
Augmented Reality (AR), Virtual Reality (VR) und Kamerastabilisierung. Es ermöglicht eine 
sichere und effiziente Navigation, Erkundung und Interaktion mit der Umwelt. In Outdoor-
Szenarien ermöglicht die visuelle Stereo-Odometrie die Navigation durch unterschiedliches 
Gelände und trifft fundierte Entscheidungen zur Vermeidung von Hindernissen und zur 
Wegplanung. Diese Forschungsarbeit konzentriert sich auf die Entwicklung eines robusten 
stereovisuellen Odometrie-Algorithmus für die mobile Roboternavigation in 
Außenumgebungen, der durch externe Sensoren weiter ergänzt werden kann. Das Hauptziel der 
Forschung besteht darin, einen Stereo-Vision-Algorithmus zu entwickeln, der die 
Roboterbewegung auf der Grundlage von Stereokameradaten zuverlässig schätzt. Der 
Algorithmus umfasst modernste Methoden zur Erkennung, Verfolgung und Filterung von 
Merkmalen und verbessert so die Umweltwahrnehmung und Navigationseffizienz des 
Roboters. Durch die Untersuchung dieser Techniken und deren Integration in den 
stereovisuellen Odometrie-Algorithmus zielt die Forschung darauf ab, die Genauigkeit und 
Robustheit von Außenumgebungen zu verbessern. Umfangreiche Auswertungen realer 
Datensätze bestätigen die Wirksamkeit des Algorithmus bei der Bereitstellung einer 
inkrementellen Online-Schätzung der Position und Ausrichtung des Roboters und zeigen sein 
Potenzial für eine sicherere und zuverlässigere Navigation in verschiedenen realen 
Anwendungen. Allerdings haben wir bei diesen Tests auch gewisse Mängel festgestellt und 
sorgfältig nach Lösungen dafür gesucht. Wir haben die Wirksamkeit des Algorithmus durch 
Einzelbewertungen gründlich bewertet, um seine Stärken und Grenzen aufzudecken. Diese 
Bewertungen geben Aufschluss über die Leistung in einem Spektrum realer Szenarien und 
liefern wertvolle Erkenntnisse für die weitere Verfeinerung und Optimierung. Durch die 
Untermauerung seiner Leistung durch reale Datensätze und selbst durchgeführte Experimente 
liefert diese Forschung umfassende Beweise für ihr Potenzial. Durch die Einführung eines 
skalierbaren und effizienten Algorithmus leistet es einen wesentlichen Beitrag zum Bereich der 
stereovisuellen Odometrie. Diese Innovation soll Robotik, autonome Fahrzeuge und 
Augmented-Reality-Systeme voranbringen und letztendlich unsere Fähigkeit verbessern, 
Außenumgebungen nahtlos zu erkunden und mit ihnen zu interagieren. 

 

  



 Table of Contents 
 
 

iii 
 

Table of Contents 
 Page 

English Abstract              iii 

 Deutsches Abstract              iii  

      Table of Contents              iii 
  Contents 
1 Introduction ....................................................................................................................... 1 

1.1 Motivation and Problem Definition ............................................................................. 1 

1.2 Research Objective and Question ................................................................................ 4 

1.3 Scope and Limitations ................................................................................................. 4 

1.4 Document outline ........................................................................................................ 5 

2 Literature Review ............................................................................................................. 7 

2.1 Image formation and perspective projection ............................................................... 7 

2.2 Visual odometry pipeline........................................................................................... 10 

2.3 Visual Odometry Techniques .................................................................................... 14 

2.3.1 Methods Based on Geometry ............................................................................. 14 

2.3.2 Methods based on learning ................................................................................. 16 

2.4 Related Work and State-of-the-Art ............................................................................ 16 

3 Methodology .................................................................................................................... 18 

3.1 System Architecture .................................................................................................. 18 

3.2 Data Flow .................................................................................................................. 19 

3.3 Module Description ................................................................................................... 21 

3.3.1 Stereo Camera Calibration ................................................................................. 21 

3.3.2 Feature Detection ............................................................................................... 30 

3.3.3 Stereo Correspondence Algorithms ................................................................... 30 

3.3.4 Depth Estimation Techniques ............................................................................ 32 

3.3.5 Pose Estimation and Motion Tracking ............................................................... 33 

3.3.6 Optimization ....................................................................................................... 35 

4 Dataset and Evaluation ................................................................................................... 38 



 Table of Contents 
 
 

iv 
 

4.1 Dataset Description and Preparation ......................................................................... 38 

4.1.1 Offline Dataset ................................................................................................... 38 

4.1.2 Data Collection for Real-time Application  ....................................................... 40 

4.2 Evaluation Metrics ..................................................................................................... 41 

4.2.1 Real-time Performance Metrics ......................................................................... 41 

4.2.2 Computational Efficiency .................................................................................. 43 

4.3 Experimental Setup.................................................................................................... 43 

4.3.1 Offline Dataset Testing Setup ............................................................................ 44 

4.3.2 Real-time Application Testing Setup ................................................................. 45 

5 Implementation Details .................................................................................................. 50 

5.1 Hardware and Software Specifications...................................................................... 50 

5.2 Algorithmic Implementations  ................................................................................... 52 

5.2.1 Feature Detection and Matching: ....................................................................... 52 

5.2.2 Stereo Correspondence: ...................................................................................... 53 

5.2.3 Depth Estimation: ............................................................................................... 54 

5.2.4 Camera Pose Estimation: ................................................................................... 55 

5.2.5 Coordinate Transformations: .............................................................................. 57 

5.3 Performance Optimization Techniques ..................................................................... 58 

6 Experimental Results ...................................................................................................... 60 

6.1 Accuracy and Robustness Analysis ........................................................................... 60 

6.1.1 Offline Dataset ................................................................................................... 60 

6.1.2 Real-time application ......................................................................................... 61 

6.2 Computational Efficiency .......................................................................................... 74 

6.2.1 CPU Usage ......................................................................................................... 74 

6.2.2 Elapsed Time ...................................................................................................... 75 

6.3 Limitations and Challenges ....................................................................................... 76 

6.3.1 Impact of Changing Light Conditions ................................................................ 76 

6.3.2 Height Placement of Laser Tracker System ....................................................... 77 

6.3.3 Lack of Start Trigger and System Compatibility ............................................... 77 

7 Applications and Future Directions .............................................................................. 78 

7.1 Potential Applications of Stereo Visual Odometry ................................................... 78 



 Table of Contents 
 
 

v 
 

7.1.1 Robotics .............................................................................................................. 78 

7.1.2 Autonomous Driving .......................................................................................... 80 

7.1.3 Virtual Reality and Augmented Reality ............................................................. 81 

7.2 Future Research Directions ....................................................................................... 82 

8 Discussion ......................................................................................................................... 84 

9 Bibliography .................................................................................................................... 88 

10 Appendices ....................................................................................................................... 93 

10.1 Mathematical Formulations ....................................................................................... 93 

10.2 Code Snippets ............................................................................................................ 94 

10.2.1 Corner detection for Stereo calibration .............................................................. 94 

10.2.2 Stereo calibration and rectification .................................................................... 95 

10.2.3  Stereo VO on KITTI dataset (Parameters) ........................................................ 96 

10.2.4  Stereo VO on KITTI dataset (main) .................................................................. 97 

10.2.5 Real sense image acquisition pipeline (sensor settings) ..................................... 97 

10.2.6  Stereo VO Realtime testing (Calibration parameters) ....................................... 98 

10.2.7 Stereo VO Realtime testing (main) .................................................................... 99 

 

 List of Figures              v

 List of Tables              vii

 List of Abbreviations             v  

 

 

 

 

  



 List of Figures 
 

vi 
 

List of Figures 
Figure 1.1 SVO Pipeline in Outdoor Environment 3 

Figure 1.2 Document Outline 6 

Figure 2.1 Pin-hole camera model (Burger, 2016) 7 

Figure 2.2 Pin-hole Approximation (Scaramuzza D. , 2017) 8 

Figure 2.3 Perspective Projection flow 9 

Figure 2.4 Perspective Projection Schematic (Scaramuzza D. , 2017) 9 

Figure 3.1 Visual Odometry Data flow 19 

Figure 3.2 Stereo calibration data flow 22 

Figure 3.3 Checkerboard stereo pair 23 

Figure 3.4 Calibration corner detection and correspondence 25 

Figure 3.5 SGBM Block diagram (MathWorks Switzerland, n.d.) 30 

Figure 3.6 fitted line with RANSAC (wikipedia.org, n.d.) 34 

Figure 4.1 Fully equipped sensor setup vehicle (Andreas Geiger, 2012) 38 

Figure 4.2 One of the stereo pair from KITTI odometry grayscale dataset sequence ‘01’ 40 

Figure 4.3 Camera setup 45 

Figure 4.4 Camera fixture 45 

Figure 4.5 Tracking System Setup 45 

Figure 4.6 Forward straight-line motion 46 

Figure 4.7 Sideways Camera Orientation motion 47 

Figure 4.8 'L' Shaped Trajectory motion 47 

Figure 4.9 Free Trajectory with Forward-Facing Camera 48 

Figure 5.1 Intel® RealSense TM Depth Camera D455 (Intel® RealSense™ D455) 50 

Figure 5.2 Leica Absolute Tracker AT960-MR (hexagon.com, n.d.) 51 

Figure 5.3 Keypoint detection 52 



 List of Figures 
 

vii 
 

Figure 5.4 Stereo Correspondence 53 

Figure 6.1 Trajectory Plot 60 

Figure 6.2 ATE Error Plot 61 

Figure 6.3 Aligned Trajectory: Straight line forward motion 62 

Figure 6.5 Transition frame: Reflection during the stride (stereo pair) 63 

Figure 6.4 Relative pose error: Straight line motion 63 

Figure 6.6 feature tracking in transition frame (consecutive left images) 63 

Figure 6.7 Aligned trajectory: sideways camera orientation 64 

Figure 6.8 Relative pose error: sideways camera orientation 65 

Figure 6.10 Detected features at 19 sec 66 

Figure 6.9 Detected close features at 6 sec 66 

Figure 6.11 Aligned trajectory: 'L' shaped trajectory 67 

Figure 6.12 Relative pose error: 'L' shaped trajectory 68 

Figure 6.13 Transition frame: large reflection(i.e image saturated areas) 69 

Figure 6.14 Incorrect Stereo Correspondence (transition frame) 69 

Figure 6.15 Aligned trajectory: Free Trajectory 70 

Figure 6.16 Relative pose error: free motion trajectory 71 

Figure 6.17 Transition frame: dynamic object (Human) 71 

Figure 7.1 BlueROV 2 (Mohamad Motasem Nawaf, 2018) 79 

Figure 7.2 NASA’s twin MARS rovers (MARS Exploration Rovers, n.d.) 79 

Figure 7.3 DARPA LAGR vehicle (James S. Albus, 2006) 81 

Figure 7.4 ZED - mini (zed-mini, n.d.) 82 

 

 



 List of Tables 
 

viii 
 

List of Tables 
Table 1.1 Research objectives and questions 4 

Table 2.1 Feature Detector Comparison 11 

Table 5.1 Intel D455 Specification 50 

Table 5.2 Leica AT960-MR Specification 50 

Table 5.3 Software Specifications 51 

Table 5.4 Computational Resources 51 

Table 6.1 ATE & RPE Comparison 72 

Table 6.2 ATE & RPE Errors 74 

Table 6.3 CPU Usage 75 

Table 6.4 Elapsed time comparison 76 

   



 List of Abbreviations 
 

ix 
 

List of Abbreviations 
2D Two Dimensional 

3D Three Dimensional 

ADC Analog to Digital Conversion 

AR Augmented Reality 

ATE Absolute Trajectory Error 

BRIEF Binary Robust Independent Elementary Features 

CNN Convolutional Neural Network 

CPU Central Processing Unit 

DARPA Defense Advanced Research Projects Agency  

DDR4 Double Data Rate Synchronous Dynamic -4 

DOF Degree Of Freedom 

DSO Direct Sparse Odometry 

ESVO Event-Based Stereo Visual Odometry 

FAST Features from Accelerated Segment Test 

FLANN Fast Library for Approximate Nearest Neighbours 

FOV Field Of View 

GEM Global Electric Motorcars 

GPS Global Positioning System 

GPU Graphics Processing Unit 

HDL High-Definition Lidar 

HMD Head Mounted Display 

IDE Integrated Development Environment 

IMU Inertial Measurement Unit 

KITTI Karlsruhe Institute of Technology and Toyota 

Technological Institute at Chicago 

LAGR Learning Applied to Ground Vehicles 

LIDAR Light Detection and Ranging 

LM Levenberg–Marquardt 

NASA National Aeronautics and Space Administration 

NCC Normalized Cross-Correlation 

ORB Oriented FAST and rotated BRIEF 

PLWM Point Line Weight Mechanism  



 List of Abbreviations 
 

x 
 

RAM Random-Access Memory 

RANSAC Random sample consensus 

RGB Red-Green-Blue 

RMSE Root Mean Square Error 

ROV Remotely Operated Vehicle 

RPE Relative Pose Error 

SDK Software Development Kit 

SGBM Semi-Global Block Matching 

SGM Semi-Global Matching 

SIFT Scale-Invariant Feature Transform 

SLAM Simultaneous Localization And Mapping 

SOFT2 Stereo Odometry based on careful Feature selection 

and Tracking 

SSD Solid-State Drive 

SURF Speed Up Robust Features  

SVO Stereo Visual Odometry 

VGA Video Graphics ArrayVGA 

VIO Visual-Inertial Odometry 

VO Visual Odometry 

VR Virtual Reality 

 



 1 Introduction  
 

1 
 

1 Introduction 

The two main types of Visual Odometry (VO) are monocular VO and stereo VO. Monocular 
VO uses a single camera to track features in a sequence of images and use the motion of these 
features to estimate the camera pose. Stereo VO uses two cameras to obtain depth information, 
which can improve the accuracy and robustness of the pose estimation. 

This Chapter describes the motivation and problem definition in section 1.1, main research 
questions and objectives in section 1.2 and the scope and limitations of the thesis in section 1.3 
lastly, the section 1.4 provides a brief outline of the thesis document.  

1.1 Motivation and Problem Definition 
The demand for robust and accurate pose estimation techniques has increased due to the 
growing popularity of mobile robotics, autonomous vehicles, and augmented reality 
applications (R. Arun, 2005). Visual Odometry (VO, here after) has emerged as a critical 
technology to meet this demand, as it allows these systems to navigate and interact with their 
environment based solely on visual information from cameras (G. Carlone, 2018). VO has 
found applications in various fields such as Robotics Navigation, 3D Reconstruction, 
Autonomous Vehicles, Augmented Reality (AR), Virtual Reality (VR), and Camera 
Stabilization, enabling safe and efficient navigation, exploration, and interaction with the 
surroundings. However, outdoor environments pose unique challenges that require 
sophisticated solutions for VO (J. Engel, 2014). Factors such as varying lighting conditions, 
uneven surfaces, and dynamic changes in the environment can impact the accuracy of motion 
estimation. One particularly significant challenge is scale ambiguity, which is caused by 
changes in image scaling factors due to variations in terrain gradient. This ambiguity can lead 
to inaccurate pose estimation in dynamic outdoor scenarios. To address these challenges, 
researchers have proposed various techniques and algorithms (C. Forster, 2014). One approach 
is to use multiple cameras to improve the accuracy of pose estimation (F. Li, 2020). Stereo 
vision leverages the power of dual cameras to capture depth information through triangulation, 
which enhances the accuracy and robustness of motion estimation. This distinct advantage 
becomes even more pronounced when compared to alternative methods. Some methodologies 
incorporate additional sensors, such as LiDAR providing depth information that can be 
combined with visual data to enhance the robustness of VO algorithms and bolster accuracy but 
stereo visual odometry offers a self-contained solution that leverages purely visual cues. 
Another approach is to incorporate machine learning techniques to adapt to the specific 
challenges of outdoor environments (R. Mur-Artal, 2017). While Deep learning algorithms, like 
Convolutional Neural Networks (CNNs), have shown promising results in improving the 
accuracy of VO in challenging conditions, they are highly dependent on the training dataset and 
computationally expensive. Furthermore, researchers have also focused on developing methods 
to handle scale ambiguity in outdoor environments (J. Engel, 2014). One approach is to utilize 



 1 Introduction 
 

2 
 

additional sensors, such as GPS or IMU, to provide scale information and reduce the ambiguity 
(R. Mur-Artal, 2017) . However, IMU pose propagation is sensitive to measurement noise (T. 
Qin, 2018). In the order to address scale ambiguity, the utilization of stereo visual odometry is 
inherently advantageous. The multi-view nature of stereo setups inherently helps mitigate scale 
ambiguity by triangulating features from different perspectives, yielding a more precise 
understanding of the environment's spatial characteristics. The Stereo VO algorithm should 
effectively combine the input from a stereo camera setup and recently developed feature 
detection, feature tracking and filtering as well as depth estimation techniques to estimate the 
robot's motion.  

In SVO pipeline as illustrated in Figure 1.1, input images are acquired from 'C1' and 'C2,' 
representing the centres of a stereo camera system integrated into a graphical render of the 
UMA robot from SUPSI (D. Gitardi, 2022). Keypoints are detected and descriptors extracted 
from these images, with feature matching being a critical component of the process. By 
identifying corresponding features in the images and considering camera intrinsics, the relative 
pose, represented by a rotation matrix 'R' and a translation vector 't' can be estimated. Notably, 
the images used are captured outdoor in SUPSI Campus EST, Lugano, offering a practical 
context for the application of these techniques. Following this estimation, the estimated camera 
trajectory is plotted, providing a visual representation of the camera movement and positions 
within the robot's environment. This trajectory visualization is invaluable for mapping, 
localization, and navigation of robotic systems. 



 1 Introduction 
 

3 
 

 

 

 

Input stereo pair 
sequence 

Feature matching & 
tracking 

Pose estimation 

Motion estimation 

Mobile robot with 
Stereo camera 

Figure 1.1 SVO Pipeline in Outdoor Environment 



 1 Introduction 
 

4 
 

1.2 Research Objective and Question  
Considering the motivation and the problem definition, we formulate some goals and 
corresponding research questions to address them. 

 

 Research Objective Research Question 
1 Develop a method to incorporate 

stereo camera image data  for the 
VO algorithm.  

 

What different image processing and feature 
based techniques can be utilized to 
compensate for external sensors? 

2 Develop an optimum and feasible 
method to implement VO. 

 

How can the accuracy, robustness, and 
computational efficiency of stereo VO be 
improved using image processing and 
feature-based techniques? 

3 Develop an algorithm which adheres 
to all the conditions of satisfactory 
implementation of VO. 

 

How can the parameters of a VO algorithm 
be tuned to achieve optimal performance in 
real time, while remaining robust to changes 
in lighting conditions and occlusions? 

4 Conduct and study the performance 
of the developed algorithm in real-
time as well as on publicly available 
dataset. 

 

What is the accuracy of the estimated motion 
with respect to the ground truth, and how can 
the performance of the VO algorithm be 
further improved? 

 

Table 1.1 Research objectives and questions 

1.3 Scope and Limitations 
The title of the thesis was carefully refined to highlight particularly ‘Vision-based’ and ‘harsh 
environment’ part of the mobile robotic motion estimation. These two considerations form the 
foundation for the main tasks in this thesis research. 

The scope includes implementing state-of-the-art feature detection, tracking, and filtering 
methods, as well as depth estimation techniques, to enhance the robot's environmental 
perception and navigation efficiency. The algorithm's performance will be extensively 
evaluated using diverse real-world datasets, capturing various environmental conditions and 
challenging scenarios. 

Despite the comprehensive scope, this thesis project also has certain limitations: 

1. Computational Resources: The efficiency of the algorithm may be limited by 
computational resources, especially when processing large datasets or operating in real-
time on resource-constrained apparatus. 



 1 Introduction 
 

5 
 

2. Real-World Variability: While extensive real-world dataset evaluations will be 
conducted, the algorithm's performance may still be influenced by unanticipated and 
highly variable outdoor scenarios. 

3. Environmental Constraints: The algorithm's accuracy may be affected by extreme 
weather conditions or scenarios with limited visual features, leading to challenges in 
motion estimation. 

4. Sensor Noise: The presence of sensor noise, especially in-depth estimation techniques, 
may introduce errors and affect the overall accuracy of the algorithm. 

5. Calibration Requirements: Accurate stereo camera calibration is crucial for successful 
performance, and any calibration inaccuracies could impact the results. 

1.4 Document outline 
The Thesis report comprises several key sections illustrated in Figure 1.2. It commences with 
an "Introduction" that outlines the motivation, research objectives, scope, and document 
structure. The "Literature Review" delves into fundamental concepts and prior research. The 
"Methodology" section details system architecture, camera calibration, algorithms, and 
optimization techniques. "Dataset and Evaluation" covers data sources, evaluation metrics, and 
experimental setups. "Implementation Details" explains software, hardware, and algorithmic 
aspects. "Experimental Results" discusses accuracy, comparisons, and computational 
efficiency. The "Applications and Future Directions" section explores potential uses and future 
research areas. The "Discussion” addresses the research questions, followed by a "References" 
section. Additionally, there are "Appendices" with supplementary materials like mathematical 
formulations, code snippets, and dataset information. This structured outline guides the 
organization and presentation of the research document. 

 

 

 



 1 Introduction 
 

6 
 

 

 

 

 

Introduction

•Motivation and 
Problem Definition

•Research 
Objective and 
Question

•Scope and 
Limitations

•Document outline

Literature 
Review
•Image formation 

and perspective 
projection

•Visual odometry 
pipeline

•Visual Odometry 
Techniques

•Related Work and 
State-of-the-Art

Methodology
•System 

Architecture
•Stereo Camera 

Calibration
•Stereo 

Correspondence 
Algorithms

•Depth Estimation 
Techniques

•Pose Estimation 
and Motion 
Tracking

•Optimization

Experimentation 
and Evaluation
•Dataset 

Description and 
Preparation

•Evaluation Metrics
•Real-time 

Application Testing 
Setup

•Implementation 
details

•Experimental 
Results

Summary
•Applications and 

Future Directions
•Discussion
•References
•Appendices

Figure 1.2 Document Outline 



 2 Literature Review 
 

7 
 

2 Literature Review 

 

The literature review in this research work explores the state-of-the-art developments in visual 
odometry, with a specific emphasis on stereo visual odometry techniques. In Section 2.1, 
reflects on the basics of visual odometry, a critical pose estimation technique employed by 
various agents, including vehicles, humans, and robots, relying solely on image streams from 
attached cameras. Section 2.2 delves into stereo visual odometry techniques, which leverage 
the information from a stereo camera setup to estimate motion and pose of the agent. 
Additionally, in Section 2.3, a review of related works, the state-of-the-art algorithms, 
methodologies in the field are done with a focus on challenges, strengths, and limitations of 
current approaches. This literature review serves as a foundation for the development of a robust 
and efficient stereo visual odometry algorithm, addressing challenges in accurate motion 
estimation in outdoor environments. 

2.1 Image formation and perspective projection 
For a detailed and elaborate understanding of the Visual Odometry concept, it is essential to put 
forward the basic of any visual computational technique which is image formation. 

The basics of image formation lie at the heart of understanding how images are captured and 
represented in the digital realm (Bebis, 2017). Image formation is the process by which light 
rays from a scene interact with a camera's optical system to create a visual representation of the 
scene on an image sensor or film. 

when the light rays  pass through a camera's lens, they undergo refraction, causing the rays to 
converge and form an inverted and reversed image on the camera's image sensor or film plane 
– thin lens model (Sigmoidal, 2022). The pinhole camera model (Figure 2.1), also known as the 
geometric camera model, is a simplified theoretical representation  (Bebis, 2017). In this model, 
the camera is represented as a rectangular box with a tiny aperture or "pinhole" on one side. 

Figure 2.1 Pin-hole camera model (Burger, 2016) 



 2 Literature Review 
 

8 
 

When light rays from a scene pass through this pinhole, they travel in straight lines and strike 
the opposite side of the camera's interior, forming an inverted and reversed image on a flat 
image plane located behind the pinhole. 

The pinhole camera model comprises several key components that govern image formation. 
The pinhole is a small, single point on the camera's front side through which light rays from the 
scene pass. It is the focal point of the camera, where all the incoming rays converge (Pinhole 
Camera Model , n.d.)The image plane is a flat surface located behind the pinhole and 
perpendicular to the camera's optical axis. It serves as the recording medium where the image 
is formed (Forsyth, 2011). The image plane is typically represented by a 2D coordinate system, 
with each point on the plane corresponding to a specific location in the scene. The optical axis 
is an imaginary line that passes through the pinhole and extends perpendicularly to the image 
plane. It represents the principal axis of the camera and plays a significant role in perspective 
projection (Hartley, 2004). The field of view is the angular extent of the scene that the camera 
can capture. It is determined by the size of the image plane and the distance between the pinhole 
and the image plane (Pinhole Camera Model , n.d.). The pinhole camera model exhibits 
perspective projection, meaning that objects at different distances from the camera are projected 
onto the image plane with varying sizes. Objects farther away from the camera appear smaller 
in the image, while closer objects appear larger as seen in the Figure 2.2. This effect creates a 
sense of depth and three-dimensionality in the 2D image (Sigmoidal, 2022). 

 

The camera's image sensor  is made up of a grid of photosensitive elements, commonly referred 
to as pixels. Each pixel records the intensity of light falling on its surface converted into digital 
data through an analog-to-digital converter (ADC). creating a digital representation of the scene 
that can be stored and processed by computers and other devices (Sigmoidal, 2022). The 
resolution of the image is determined by the number of pixels on the sensor.  

Figure 2.2 Pin-hole Approximation (Scaramuzza D. , 2017) 



 2 Literature Review 
 

9 
 

When a three-dimensional point Pw in the world coordinates is projected onto the camera's 
image plane using perspective projection, it is transformed into a two-dimensional point (u, v) 
on the image plane (Sigmoidal, 2022), this flow can be understood in Figure 2.3 . 

To achieve this goal, the camera's intrinsic parameters, such as focal length and principal point, 
and the extrinsic parameters, including the camera's position and orientation in the world 
coordinate system, are considered (Bebis, 2017) as in Figure 2.4.  

 

By applying the pinhole camera model Equation 2.2 and perspective projection Equation 2.1, 
the transformation from 3D world coordinates to 2D pixel coordinates is determined The 
perspective projection process involves computing the projection matrix, which encapsulates 
the camera's intrinsic and extrinsic matrix [RT].  

 

 

Convert world point 𝑃w to 
camera point 𝑃c through rigid 

body transformation [𝑅,𝑇]
Convert 𝑃c to image-plane 

coordinates (𝑥,𝑦)
Convert (𝑥,𝑦)to (discretized) 

pixel coordinates (𝑢,𝑣) 

Figure 2.4 Perspective Projection Schematic (Scaramuzza D. , 2017) 

Figure 2.3 Perspective Projection flow 



 2 Literature Review 
 

10 
 

 

 
 

 

2.2 Visual odometry pipeline 
By utilizing the principles of perspective projection, VO algorithms can track and match visual 
features across consecutive frames, enabling incremental estimation of the camera's position 
and orientation. Following are the steps involved in Visual odometry (Stevenius, 2014) (Geiger 
A. S., 2012): 

1. Feature Detection and Tracking: VO algorithms detect and track distinctive visual 
features, such as keypoints or corners, in the images captured by the camera. Each 
feature is represented by its pixel coordinates (u, v) on the image plane. Popular feature 
detectors, such as FAST, ORB, or SIFT, etc are used to extract keypoints. The Table 
2.1 below illustrates a comparison of some major feature detectors. 

 

 

 

Equation 2.2 Camera 
Equation (Corke, 2017) 

Equation 2.1 Perspective 
Projection Equation



 2 Literature Review 
 

11 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1 Feature Detector Comparison 

2. Feature Matching: In subsequent frames, the VO algorithm matches the tracked features 
between the current frame and the previous frame. By associating the pixel coordinates 
of the same features in different frames, the algorithm establishes correspondences 
between points in 3D space (the scene) and their 2D projections on the image plane. For 
stereo camera setup different types of stereo correspondence algorithms are 
implemented some such popular algorithms are briefly mentioned below, 

 

Feature 
detector 

Description  Pros  Cons 

FAST (E. 
Rosten, 
2010) 

Computes 
difference in 
brightness based 
off neighbours in 
Bresenham circle 

Efficient Not robust to 
significant noise. 

Harris 
(Stephens, 
1988) 

Computes 
differential with 
respect to each 
direction 

Distinguishes 
corners and edges 
well 

Susceptible to scale 
variance 

ORB (Ethan 
Rublee, 
2011) 

Replacement for 
SIFT that builds 
off of the FAST 
detector 

Scale and rotation 
invariant, good 
for real-time, 
resilient to noise 

Generally, fever 
features 

SIFT (Lowe, 
2004) 

Computes oriented 
gradient 
histograms for 
patches around a 
point 

Rotation and scale 
invariant 

Computationally 
expensive. 
susceptible to blur 

Shi-Tomasi 
(al., 1994) 

Very similar to 
Harris but uses a 
simpler 
thresholding 
method for 
accepting or 
rejecting corners 

Distinguishes 
corners and edges 
well 

Susceptible to scale 
variance 

SURF 
(Herbert 
Bay, 2006) 

A more efficient 
approximation of 
SIFT 

Faster than SIFT Susceptible to 
viewpoint and 
illumination change 



 2 Literature Review 
 

12 
 

Block matching algorithms divide the stereo images into small blocks and compare 
corresponding blocks between the left and right images. Disparity is estimated by 
finding the block with the most similar intensity or feature matching score. Types of 
block matching algorithms encompass matching metrics such as Normalized Cross-
Correlation (NCC), Sum of Squared Differences (SSD), and Sum of Absolute 
Differences (SAD). 
 
Semi-Global Matching (SGM) is a global optimization method that takes into account 
the smoothness constraint of disparities across the entire image. It evaluates the 
matching cost for each pixel along multiple paths in the image and performs an 
aggregated cost to find the optimal disparity. SGM is known for its robustness and 
ability to handle occlusions and textureless regions (Hirschmuller, 2005). 
 
Graph-cut algorithms formulate the stereo correspondence problem as a Markov 
Random Field (MRF) and apply graph-based optimization techniques, such as graph 
cuts or belief propagation, to find the best disparity assignment. These algorithms 
efficiently incorporate global constraints, producing accurate results in textured and 
occluded regions. 
 
SIFT (Scale-Invariant Feature Transform) is a feature-based approach that identifies 
distinctive keypoints in both stereo images and matches them based on their feature 
descriptors. SIFT-based methods are robust to changes in viewpoint, illumination, and 
occlusions, making them suitable for challenging scenarios. 
 
Recent advancements in deep learning have led to the emergence of stereo 
correspondence algorithms based on Convolutional Neural Networks (CNNs). These 
algorithms learn to predict disparities directly from stereo image pairs, leveraging the 
rich hierarchical features extracted by CNN architectures. Deep learning-based 
approaches have achieved state-of-the-art performance in stereo matching tasks due to 
their ability to learn complex feature representations. 

3. Perspective Triangulation (Depth estimation): The correspondences obtained through 
feature matching provide the basis for perspective triangulation. Using the pinhole 
camera model and perspective projection equations, the 3D positions (X, Y, Z) of the 
matched features in the camera's coordinate system are estimated. Various depth 
estimation techniques are used in visual odometry.  

Stereo vision is a popular method for depth estimation in visual odometry. It involves 
using two cameras (stereo camera setup) to capture the same scene from slightly 
different viewpoints, mimicking how human eyes perceive depth (Hartley, 2004). By 
finding point correspondences between the left and right images, the disparity 
(horizontal shift) can be computed, which is inversely proportional to depth. 



 2 Literature Review 
 

13 
 

In the context of the standard stereo camera setup, where you have a 3D point at 
coordinates (X, Y, Z), and two cameras with a known focal length "f" and baseline "b," 
and with their image plane aligned in the XY-plane, the measured disparity can be 
expressed as, 

d = ି ∗  ௭  

Equation 2.3 Stereo Disparity 

Stereo vision relies on triangulation to estimate depth and is effective for short to 
medium-range depth estimation. 
 
Structure from Motion (SfM) is a technique that estimates 3D structure from a sequence 
of 2D images taken from a moving camera. It involves identifying and matching 
keypoints between frames, estimating camera motion between frames, and triangulating 
the keypoints to estimate depth (Szeliski, 2010). SfM can handle single or multiple 
cameras and is used in both sparse and dense reconstruction approaches. 
 
Visual SLAM (Simultaneous Localization and Mapping) is an extension of visual 
odometry that not only estimates the camera's motion but also simultaneously builds a 
map of the environment. It combines depth estimation techniques like stereo vision, 
SfM, and other sensor data (e.g., IMU, LIDAR) to achieve accurate and robust camera 
pose estimation and map creation (Scaramuzza D. , 2011). 
 
While stereo vision relies on two cameras, monocular depth estimation uses a single 
camera to estimate depth. This technique is computationally less expensive but 
inherently more challenging as it requires leveraging various cues from the scene, such 
as texture, motion, and perspective. Machine learning approaches, like using deep 
neural networks, have been employed for monocular depth estimation with promising 
results (Theobalt, 2016). 
 
Optical flow algorithms can be used for dense depth estimation in visual odometry. 
Optical flow methods track the motion of every pixel in consecutive frames, which can 
provide dense depth information. However, optical flow-based methods might be 
sensitive to illumination changes and occlusions (Cremers D. G., 2011). 
 
In some cases, specialized depth cameras, such as Time-of-Flight cameras or structured 
light sensors, can be used to directly measure depth information. These cameras provide 
depth maps with per-pixel depth values, making them valuable for visual odometry tasks 
(Cremers D. A., 2012). 

4. Motion Estimation: With the 3D positions of the matched features in both the current 
and previous frames, the VO algorithm can calculate the relative motion between the 



 2 Literature Review 
 

14 
 

frames. This motion estimation involves finding the transformation (rotation and 
translation) between the two sets of 3D feature positions, representing the camera's 
movement between frames. 

5. Incremental Pose Update: By continuously tracking and matching features in 
consecutive frames, the VO algorithm can incrementally update the camera's pose and 
position over time. This incremental estimation allows the algorithm to provide real-
time feedback on the camera's motion as it moves through the environment. 

6. Odometry Integration: The estimated camera motion from visual odometry is integrated 
over time to obtain a trajectory of the camera's path.  

2.3 Visual Odometry Techniques 
Visual Odometry techniques can be classified in two main categories: geometry-based and 
learning-based methods (Duan C, 2023). 

2.3.1 Methods Based on Geometry 
VO methods based on geometry rely on extracting geometric constraints from images 
to estimate motion (Duan C, 2023). These methods can be further categorized into: 
Feature-based method, Direct method, Semi-direct method. 
 
Feature-based methods rely on extracting and tracking distinctive visual features, also 
known as key points or interest points, in the images captured by the left and right 
cameras of a stereo setup. These features serve as reference points that are tracked over 
time to estimate the camera's motion and pose as it moves through the environment. 
Two important aspects of feature-based methods are feature extraction and feature 
matching. Feature Extraction is the first step in feature-based stereo VO involving 
detection and extraction of key point features from both the left and right images. These 
features are chosen based on their uniqueness, repeatability, and invariance to 
transformations (e.g., rotation, scale) to ensure reliable tracking. Common feature 
extraction methods include the Harris corner detector, SIFT (Scale-Invariant Feature 
Transform), ORB (Oriented FAST and Rotated BRIEF), and FAST (Features from 
Accelerated Segment Test) (Stewenius, 2011) (Pollefeys, Stereo Visual Odometry, 
2008) (Geiger A. L., 2012). Once the features are extracted, the algorithm seeks to find 
correspondences between matching key points in the left and right images. This process 
is crucial for establishing the 3D-2D point correspondences required for further 
triangulation and motion estimation. Various matching techniques are employed, such 
as brute-force matching, FLANN (Fast Library for Approximate Nearest Neighbours) 
matching, or more advanced feature matching algorithms based on descriptors and 
distance metrics (Mikolajczyk, 2005) (Bay, 2008) (Rublee, 2011). 



 2 Literature Review 
 

15 
 

 
Direct methods in stereo visual odometry (VO) are techniques that estimate the camera 
motion by directly minimizing the photometric error between corresponding pixels in 
the left and right stereo images. Unlike feature-based methods that rely on explicit 
feature extraction and matching, direct methods operate directly on the pixel intensities 
of the images. These techniques are particularly useful in handling texture-less regions 
and low-texture environments, where traditional feature-based approaches may struggle 
(Pollefeys, Stereo Visual Odometry, 2008). The first step in direct stereo VO is image 
alignment, where the two stereo images are aligned to compare corresponding pixels 
(Engel, 2012). The core of direct methods lies in the cost function, which represents the 
sum of squared differences (SSD) or other similarity measures between the pixel 
intensities in the left and right images. The objective is to find the camera motion that 
minimizes this cost function (Pollefeys, Stereo Visual Odometry, 2008). Optimization 
techniques like Gauss-Newton, Levenberg-Marquardt, or gradient descent are used to 
iteratively update the camera motion parameters and find the minimum of the cost 
function (Engel, 2012). Direct methods require dense scene representations, such as 
dense depth maps or semi-dense feature descriptors, to efficiently handle depth 
variations in the scene (Yang, 2018). To handle outliers and noisy pixel intensities, 
robust estimation techniques, such as robust cost functions or outlier rejection strategies, 
are often incorporated to enhance the algorithm's robustness (Glocker, 2014). While 
direct methods offer advantages like handling texture-less regions and fast motion, they 
can be computationally intensive, sensitive to photometric changes, and require dense 
scene representations.  
 
Semi-direct methods in stereo Visual Odometry (VO) combine the advantages of both 
feature-based and direct methods to estimate the motion and pose of a camera in a stereo 
camera setup. These methods aim to strike a balance between computational efficiency 
and robustness to handle texture-less regions, while still leveraging depth information 
for more accurate motion estimation. Unlike traditional feature-based methods that rely 
on sparse feature correspondences or direct methods that work directly with pixel 
intensities, semi-direct methods employ an intermediate scene representation. This 
representation is typically a dense map of depth or semi-dense features, providing a 
more structured way of estimating the 3D structure of the scene. Semi-direct methods 
start with feature detection in both left and right images, such as keypoints, corners, or 
edges, and then track the detected features across frames to establish correspondences 
between the stereo image pairs. The detected features are used to create a semi-dense 
reconstruction of the scene's structure, estimating depths at feature locations using 
methods like patch-based or probabilistic depth estimation. This semi-dense 
representation provides additional 3D information for more accurate motion estimation 
(Newcombe, 2011). Similar to direct methods, semi-direct methods employ photometric 
error minimization to refine the camera motion estimation. However, instead of using 



 2 Literature Review 
 

16 
 

all pixels in the images, semi-direct methods use the dense or semi-dense representation 
to calculate photometric errors, measuring the similarity of intensity values between the 
left and right images. By minimizing the photometric error using the semi-dense 
representation, semi-direct methods estimate the relative motion between consecutive 
frames, accounting for camera translation and rotation. These methods are designed to 
be computationally efficient, leveraging the semi-dense scene representation and feature 
tracking, while also benefiting from the robustness of feature-based methods to handle 
texture-less regions and occlusions (Pollefeys, Semi-direct visual odometry, 2011). 
Semi-direct methods are particularly useful in scenarios where feature-based methods 
may fail due to a lack of distinct features or in environments with significant texture-
less regions. 
 

2.3.2 Methods based on learning 
Deep learning-based methods in stereo visual odometry leverage convolutional neural 
networks (CNNs) to directly estimate camera motion and pose from stereo image pairs. 
By training on large datasets with ground-truth camera poses, these methods achieve 
end-to-end learning, bypassing traditional feature extraction and matching steps (Wang 
W. e., 2021). The CNN takes left and right stereo images as input and outputs the 
camera's motion or pose. The model is trained with a loss function that measures the 
discrepancy between the predicted and ground-truth camera motion. Inference on new 
stereo images allows real-time estimation of camera motion, enabling applications in 
navigation and localization. While deep learning-based stereo VO offers advantages, 
obtaining labelled training data can be challenging, and computational resources are 
required for efficient training (Mur-Artal, 2020). 

 

2.4 Related Work and State-of-the-Art   
Stereo visual odometry has witnessed significant advancements to achieve accurate motion 
estimation and robust navigation in outdoor environments. Various algorithms and 
methodologies have been proposed, each with its strengths and limitations. This section 
presents a review of related work and the state-of-the-art in stereo visual odometry, highlighting 
key approaches and contributions in the field. 

Stereo visual odometry techniques leverage the information from a stereo camera setup to 
estimate the 6-DOF (Degrees of Freedom) pose of an agent, enabling precise localization and 
navigation. One of the early works in stereo visual odometry introduced a direct approach based 
on minimizing the photometric error between consecutive stereo images (Scaramuzza D. a., 
2009). This direct method demonstrated promising results in terms of accuracy and robustness, 



 2 Literature Review 
 

17 
 

showing its potential for navigation in challenging outdoor environments. Another notable 
contribution in stereo visual odometry is the semi-direct visual odometry method (J. Engel, 
2014). This approach combines the advantages of both direct and feature-based methods, 
enabling efficient motion estimation while maintaining robustness to varying lighting 
conditions and dynamic changes in the environment. In recent years, learning-based techniques 
have also emerged as promising approaches in stereo visual odometry. A learning-based 
approach that leverages deep neural networks to estimate depth information from stereo image 
pairs (Schönberger, 2014). This method demonstrated significant improvements in depth 
estimation accuracy, leading to more accurate motion estimation and navigation. The state-of-
the-art in stereo visual odometry has seen the integration of sensor fusion techniques to enhance 
robustness and accuracy. For instance, proposition for a fusion-based approach that combines 
stereo visual odometry with IMU data to improve pose estimation in challenging outdoor 
scenarios (Li, 2019).Despite significant advancements, stereo visual odometry still faces 
challenges in handling scale ambiguity and dynamic changes in the environment. Researchers 
continue to explore novel algorithms and improvements to address these limitations and 
enhance the reliability of motion estimation in dynamic outdoor environments. This review of 
related work and the state-of-the-art in stereo visual odometry lays the groundwork for the 
development of a robust and efficient algorithm to address these challenges and achieve 
accurate pose estimation in diverse outdoor scenarios. 



 3 Methodology 
 

18 
 

3 Methodology 

3.1 System Architecture 
a) System Overview 

 
The vision-based motion estimation system is designed to estimate the motion and pose 
of a mobile robot in harsh environments. The system uses stereo visual odometry 
techniques to analyse image sequences from a stereo camera setup. The system 
architecture is modular, with each module responsible for a specific task in the motion 
estimation process. The stereo camera calibration module ensures precise camera 
intrinsics and extrinsics, which are crucial for accurate depth estimation and motion 
tracking. The stereo correspondence algorithms employ feature matching techniques to 
establish correspondences between the left and right stereo images. Depth estimation 
techniques are used to determine the 3D structure of the scene and provide depth 
information, which is vital for accurate pose estimation and environmental perception. 
The pose estimation and motion tracking module utilize the extracted features and depth 
information to estimate the robot's movement and position relative to its environment. 
Optimization techniques are applied to refine the accuracy and stability of the estimated 
motion. The system is designed with real-time considerations, ensuring that the motion 
estimation process is efficient and suitable for on-board implementation in mobile 
robots. Entire sequence of steps implemented to achieve Stereo VO is represented in 
Figure 3.1. The vision-based approach complements other sensing modalities, such as 
GPS or IMUs, facilitating sensor fusion for enhanced environmental perception and 
navigation adaptability. The successful implementation and evaluation of the vision-
based motion estimation system will significantly contribute to the field of mobile 
robotics. 
 

b) Components and Modules 
 
Stereo Camera Calibration 
The stereo camera calibration involves determining the intrinsic and extrinsic 
parameters of the stereo camera setup. The calibration process uses known calibration 
patterns, such as chessboards or circles, captured from multiple viewpoints. By 
analysing the correspondences between the calibration pattern points in the images and 
their corresponding 3D world coordinates, the intrinsic parameters (e.g., focal length, 
principal point) and extrinsic parameters (e.g., relative pose between the cameras) are 
computed. These calibrated parameters enable precise mapping of image points to 3D 
world coordinates, providing the foundation for subsequent motion estimation and 
environmental perception. 



 3 Methodology 
 

19 
 

3.2 Data Flow 

Figure 3.1 Visual Odometry Data flow 



 3 Methodology 
 

20 
 

Feature Detection 
Feature detectors are used for searching specific patterns or specific features which are 
unique, can be easily tracked and easily compared. 
 
Stereo Correspondence Algorithm 
The stereo correspondence algorithms deal with finding corresponding points in the left 
and right stereo images. Various feature extraction and matching techniques are 
employed to identify key points in the images and establish correspondences between 
the stereo image pair. feature detectors are used to extract keypoints, and then matching 
methods like block matching, semi-global matching, or graph-cut based algorithms are 
applied to find the correspondences. The matched feature points serve as the basis for 
triangulating 3D points and estimating the 3D structure of the scene. 
 
Depth Estimation Techniques 
The depth estimation techniques focus on estimating the depth information of points in 
the 3D scene based on the matched feature points from the stereo correspondence 
module. Triangulation methods, such as triangulating matched feature points using 
triangulation equations, are commonly employed to determine the depth of scene points. 
Additionally, the disparity map obtained from the stereo correspondence process can be 
used to estimate depth, where larger disparities correspond to closer objects and vice 
versa. Filtering techniques, such as bilateral filtering or depth map fusion, can be applied 
to improve the accuracy and smoothness of the depth map. 
 
Pose Estimation and Motion Tracking 
The pose estimation and motion tracking module utilize the depth information and 
matched feature points to estimate the robot's motion and pose relative to its 
environment. This involves tracking the movement of feature points over time and 
computing the camera's position and orientation changes. Methods like Perspective-n-
Point (PnP) algorithms, RANSAC, or iterative algorithms like Bundle Adjustment can 
be employed for accurate pose estimation. By continuously updating the robot's position 
and orientation, this module enables real-time motion tracking and navigation. 
 
Optimization 
The optimization aims to refine the estimated motion and pose to enhance accuracy and 
stability. It involves applying optimization techniques like non-linear least squares, 
Kalman filtering, or bundle adjustment to minimize errors and uncertainties in the 
motion estimation process. Optimization helps mitigate drift and cumulative errors, 
resulting in more reliable and precise motion estimates. This step is crucial for long-
term navigation tasks and maintaining accuracy during extended robot operations. 

 



 3 Methodology 
 

21 
 

3.3 Module Description 

3.3.1 Stereo Camera Calibration 
Calibration is the process to determine the intrinsic parameters (K, lens distortion) and extrinsic 
parameters (R, T) of a camera. 𝐾, 𝑅, 𝑇can be determined by applying the perspective projection 
Equation 3.1 to known 3D-2D point correspondences (Hartley, 2004). 

 

The intrinsic parameters represent the internal characteristics of each camera, such as the focal 
length, principal point, and lens distortion coefficients. The focal length determines the camera's 
field of view and influences the scale of the reconstructed 3D scene. The principal point 
represents the optical centre of the camera's image sensor (Szeliski, 2010). Lens distortion 
coefficients account for the imperfections introduced by the camera's lens and are used to 
correct image distortion (Zhang, 2000). 

The extrinsic parameters define the relative pose between the two cameras in the stereo setup. 
They describe the rotation and translation between the coordinate systems of the two cameras. 
The extrinsic parameters are essential for matching corresponding points between the left and 
right images (Hartley, 2004). 

The calibration process involves capturing images of known calibration patterns from multiple 
viewpoints and then using these images to compute the camera calibration matrices (Szeliski, 
2010). The stereo camera calibration process used involves steps as in Figure 3.2.  

 

Equation 3.1 Stereo Camera Calibration



 3 Methodology 
 

22 
 

 

Figure 3.2 Stereo calibration data flow 

 

1. Capturing Calibration Images 
 
Known calibration patterns, such as chessboards or circles with precisely known 
dimensions, are placed in the field of view of both cameras. Multiple images of these 
calibration patterns are captured from various viewpoints and orientations (Hartley, 2004). 
It is essential to capture a diverse set of calibration images with different patterns covering 
the entire field of view. 
 
For this particular project a checkerboard is used. A separate python script ‘Acquiring 
image’ is used to acquire infrared images from a stereo camera setup for calibration. It 
utilizes the Intel RealSense SDK (pyrealsense2) to interact with the RealSense camera and 
OpenCV (cv2) for image handling and display. The code captures and saves infrared 
images from both the left and right cameras, as displayed in Figure 3.3. 



 3 Methodology 
 

23 
 

 

Detailed explanation of the code: 
i. Importing Libraries: 

The necessary libraries are imported, including os, pyrealsense2, numpy (np), and 
cv2 (OpenCV). 

ii. Creating Directories: 

The code creates directories named "left_images" and "right_images" to store the 
acquired calibration images. These directories are used to organize the saved 
images. 

iii. Initializing the RealSense Pipeline: 

The RealSense pipeline and configuration are initialized to enable infrared streams 
from both cameras (left and right). 

iv. Starting the Pipeline: 

The pipeline is started with the specified configuration. 

v. Accessing Device Information: 

Device information is accessed to configure the emitter. The code sets the emitter to 
be disabled (set_emitter = 0) to use the infrared stream instead of the emitter. This 
is useful for infrared-based calibration. 

vi. Main Loop: 

The main loop continuously captures and displays the infrared frames from both the 
left and right cameras. 

vii. Capturing Frames: 

The code waits for frames to be available from the pipeline. It acquires infrared 
frames for both the left and right cameras. 

Figure 3.3 Checkerboard stereo pair 



 3 Methodology 
 

24 
 

viii. Converting Frames to Numpy Arrays: 

The acquired frames are converted to numpy arrays (left_image and right_image) 
for processing and display. 

ix. Displaying Frames: 

The infrared frames from both cameras are displayed in separate windows using 
OpenCV's cv2.imshow() function. 

x. Triggering Saving: 

When the user presses the 's' key, the saving of the current images is triggered. 

xi. Saving Images: 

If saving is triggered, the left and right infrared images are saved in the respective 
"left_images" and "right_images" directories with filenames in the format 
"stereoLX.png" and "stereoRX.png," where X is the image counter. 

xii. Incrementing Image Counter: 

The image counter is incremented to ensure unique filenames for each saved image. 

xiii. Exiting the Loop: 

The loop can be exited by pressing the 'q' key. 

xiv. Stopping the Pipeline and Closing Windows: 

When the loop is exited, the RealSense pipeline is stopped, and all OpenCV windows are 
closed. 

2. Detecting Calibration Points 
 
In the calibration images, the corners of the calibration pattern are automatically detected 
using corner detection algorithms (e.g., Harris corner detector). The detected corners are 
then matched between the left and right images to form corresponding point pairs as 
displayed in Figure 3.4. 



 3 Methodology 
 

25 
 

 
The following section titled ‘FIND CHESSBOARD CORNERS – OBJECT POINTS 
AND IMAGE POINTS’ of the Stereovision_calibartion script detects the chessboard 
corners in the left and right stereo images and finds the corresponding 2D image points. 
These image points, along with known 3D object points (chessboard corners in the real 
world), are used to calibrate the stereo camera. 
 

i. chessboardSize and frameSize:  
 
These variables specify the size of the chessboard pattern (number of internal corners) 
and the size of the frames acquired from the stereo camera. 
 

ii. criteria:  
 
The criteria variable defines the termination criteria for the corner refinement process. 
It is used in the cv.cornerSubPix() function to determine when to stop refining the corner 
positions 
 

iii. objp (Object Points):  
 
This variable is a NumPy array that stores the 3D coordinates of the chessboard corners 
in the real world. It is initialized with zeros and then the x and y coordinates are assigned 
based on the chessboard pattern's size. The z-coordinate is set to zero since the 
chessboard lies in a plane. 
 

iv. size_of_chessboard_squares_mm:  
 

Figure 3.4 Calibration corner detection and correspondence 



 3 Methodology 
 

26 
 

This variable specifies the size of the chessboard squares in millimetres. It is used to 
scale the object points to the real-world coordinates. 
 

v. Image Point and Object Point Arrays: 
 
Three arrays are defined to store the object points, image points from the left camera 
(imgpointsL), and image points from the right camera (imgpointsR). These arrays will 
be used to store the detected corner positions. 
 
 

vi. Image Acquisition and Loop:  
 
The script reads pairs of left and right stereo images from the specified directories using 
glob.glob(). It iterates over the pairs of images and performs calibration for each image 
pair. 
 

vii. Image Preprocessing:  
 
For each left and right image pair, the script reads and converts the images to grayscale 
using cv.cvtColor(). 
 

viii. Detecting Chessboard Corners: 
 
The chessboard corners are detected using the cv.findChessboardCorners() function. 
This function uses the Harris corner detector to find the corners of the chessboard pattern 
in the grayscale images. The function takes the grayscale image, chessboardSize, and a 
None argument for the optional output parameter corners. 
 

ix. Corner Refinement:  
 
If chessboard corners are found in both the left and right images (‘retL’ and ‘retR’ are 
True), the script refines the corner positions using cv.cornerSubPix(). This function 
performs subpixel corner refinement based on the criteria termination criteria. The 
refined corner positions are then added to the respective image points arrays 
(‘imgpointsL’ and ‘imgpointsR’). 
 

x. Visualization:  
 
The script draws the detected corners on the left and right images using 
cv.drawChessboardCorners() and displays the images using cv.imshow(). This 
visualization allows you to verify the correctness of the detected corners. 



 3 Methodology 
 

27 
 

 
xi. Loop Continuation and User Interaction: 

 
 After displaying the images with detected corners, the script waits for a key press. 
Pressing any key other than 's' will proceed to the next image pair. However, if ‘s' is 
pressed, the detected corners are saved, and the calibration images will be used for stereo 
camera calibration. 
 

xii. Loop Termination:  
The script continues this loop until all image pairs have been processed. To stop the 
loop, press the 'q' key. 
 

xiii. Cleanup:  
 
After processing all the image pairs, the script stops displaying the images and closes 
all OpenCV windows using cv.destroyAllWindows(). 
 
 

3. Computing Intrinsic Parameters 
 
The corresponding point pairs from the calibration images are used to compute the 
intrinsic parameters of each camera. This is typically achieved using camera calibration 
algorithms, such as Zhang's method. 
The sections titled ‘CALIBRATION’ and ‘Stereo Vision Calibration’ of the 
Stereovision_calibartion script performs stereo camera calibration using a set of 
detected chessboard corners from the left and right stereo images. Stereo calibration 
involves finding the intrinsic and extrinsic parameters of both cameras and calculating 
the Essential and Fundamental matrices, which are essential for accurate stereo vision 
reconstruction. 
 
Here's a detailed explanation of the code: 

i. Camera Calibration for Left Camera (imgL): 
cv.calibrateCamera: This function calibrates the left camera using the object 
points (‘objpoints’) and the image points (‘‘imgpointsL’’) obtained from 
the left stereo images. It returns the calibration results, including the camera 
matrix (‘cameraMatrixL’), distortion coefficients (‘‘distL’’), rotation 
vectors (‘rvecsL’), and translation vectors (‘tvecsL’). 
cv.getOptimalNewCameraMatrix: This function calculates the optimal 
camera matrix (‘‘newCameraMatrixL’’) and the region of interest 
(‘roi_L’) for the left camera. The optimal camera matrix is used to correct 
the distortion and improve the accuracy of the calibration. 



 3 Methodology 
 

28 
 

 
ii. Camera Calibration for Right Camera (imgR): 

Similarly, the right camera is calibrated using cv.calibrateCamera, and the 
calibration results are obtained for the right camera, including the camera 
matrix (‘cameraMatrixR’), distortion coefficients (‘‘distR’’), rotation 
vectors (‘rvecsR’), and translation vectors (‘tvecsR’). 
cv.getOptimalNewCameraMatrix: The optimal camera matrix 
(‘‘newCameraMatrixR’’) and the region of interest (‘roi_R’) for the right 
camera are calculated. 

 
4. Stereo Vision Calibration: 

 
flags:  
The variable flags are used to set the calibration options. In this code, 
CALIB_FIX_INTRINSIC flag is set, which means the intrinsic camera 
matrices (‘newCameraMatrixL’ and ‘newCameraMatrixR’) are fixed 
during stereo calibration. This is done because the left and right cameras 
have already been individually calibrated, and only the relative 
transformation between them needs to be estimated. 
 

cv.stereoCalibrate:  
This function performs stereo calibration to calculate the relative 
transformation between the left and right cameras and estimates the Essential 
and Fundamental matrices. It takes the object points (objpoints), the image 
points from the left (‘imgpointsL’) and right (‘imgpointsR’) cameras, as 
well as their respective camera matrices (‘newCameraMatrixL’ and 
‘newCameraMatrixR’), distortion coefficients (‘distL’ and ‘distR’), the 
size of the grayscale images (grayL.shape[::-1]), the termination criteria 
(criteria_stereo), and the calibration options (flags). The function returns the 
calibration results, including the rotation matrix (rot), translation vector 
(trans), Essential matrix (essentialMatrix), and Fundamental matrix 
(fundamentalMatrix). 

 
5. Stereo Rectification 

 
Stereo rectification transforms the images from both cameras such that their epipolar 
lines become horizontal and have a constant disparity. 
 
The provided part of the calibration script includes this stereo rectification step. 

i. Stereo Rectification Parameters: 



 3 Methodology 
 

29 
 

The rectifyScale parameter is a scaling factor used in stereo rectification. It 
determines the scaling of the rectified images. A value of 1 indicates that no 
scaling is applied. 

 
ii. Stereo Rectification: 

cv.stereoRectify:  
This function performs stereo rectification using the calibration results from 
the stereo calibration step. It takes the camera matrices 
(‘newCameraMatrixL’ and ‘newCameraMatrixR’), distortion 
coefficients (‘distL’ and ‘distR’), rotation matrix (rot), translation vector 
(trans), and the scaling factor rectifyScale.The function returns the 
rectification transformation matrices for both left (‘rectL’) and right 
(‘rectR’) cameras. These matrices can be used to rectify the distorted 
images, making their epipolar lines horizontal and aligned. 
 
‘projMatrixL’ and ‘projMatrixR’:  
These variables store the projection matrices after rectification for the left 
and right cameras. They are used to transform the image points into 3D world 
coordinates (disparity to depth mapping) during depth estimation. 
 
Q:  
The disparity-to-depth mapping matrix (Q) is used to convert disparities into 
real-world depths. It allows converting the disparity value at a pixel to the 
corresponding depth value in the 3D world. 

 
iii. Undistortion and Rectification Mapping: 

 cv.initUndistortRectifyMap:  
This function initializes the undistort and rectify maps for each camera using 
the rectification results. It takes the camera matrices 
(‘newCameraMatrixL’ and ‘newCameraMatrixR’), distortion 
coefficients (‘distL’ and ‘distR’), rectification matrices (‘rectL’ and 
‘rectR’), projection matrices (‘projMatrixL’ and ‘projMatrixR’), and the 
size of the images. The function returns the rectification maps 
(‘stereoMapL’ and ‘stereoMapR’) for both left and right cameras. These 
maps are used to remap the distorted and unrectified images to their rectified 
versions efficiently. 

The calibration process provides crucial intrinsic and extrinsic parameters for both individual 
cameras and their relative transformation. These calibration parameters and matrices can be 
saved and utilized in subsequent visual odometry algorithms. 



 3 Methodology 
 

30 
 

3.3.2 Feature Detection 
In this SVO algorithm we use FAST (Features from Accelerated Segment Test) detector 
developed by Edward Rosten and Tom Drummond (E. Rosten, 2010). It is a corner detector.  

The general procedure for working of the FAST detector is mentioned hereby, choose a pixel 
(referred to as p) within the image to determine whether it's an interest point or not. This pixel 
has a certain intensity denoted as Ip. Next, pick a suitable threshold value, t. Now, envision a 
circular region consisting of 16 pixels centred around the pixel currently being examined. The 
pixel p is considered a corner when there is a group of n adjacent pixels within the 16-pixel 
circle that are either all brighter than Ip+t or all darker than Ip−t, n is set to 12. To quickly 
eliminate many non-corner cases, a high-speed test is proposed. This test focuses on just four 
pixels at positions 1, 9, 5, and 13. Initially, pixels 1 and 9 are checked to determine if they are 
significantly brighter or darker. If they pass this test, then pixels 5 and 13 are examined. If p is 
indeed a corner, then at least three of these four pixels must meet the criteria of being brighter 
than Ip+t or darker than Ip-t. If none of these conditions are met, p cannot be a corner. The 
complete segment test criteria are then applied to the remaining potential corner candidates by 
analysing all the pixels within the circle. 

3.3.3 Stereo Correspondence Algorithms 
Stereo correspondence algorithms aim to find corresponding points or pixel disparities between 
the left and right stereo images, which are essential for estimating depth information and 
reconstructing the 3D scene. 

The stereo correspondence algorithm used here is Stereo Semi-Global Block Matching (SGBM) 
based on H. Hirschmuller algorithm (Hirschmuller, 2005). The goal of the algorithm is to find 
matching keypoints or feature points in the left and right stereo images, which are essential for 
estimating the 3D position of those points. the algorithm is single-pass, considering 5 directions 
(cv::StereoSGBM Class Reference, n.d.). The SGBM architecture is illustrated in Figure 3.5. 

 

Figure 3.5 SGBM Block diagram (MathWorks Switzerland, n.d.) 

 

The key aspects of the Stereo Semi-Global Block Matching (SGBM) algorithm are: 

1. Stereo Correspondence: 



 3 Methodology 
 

31 
 

Stereo correspondence refers to the process of finding the same point or feature 
in both the left and right stereo images. It is a crucial step in stereo vision and 
visual odometry, as it allows the estimation of the 3D position of points in the 
environment. 

2. Block Matching: 

The basic idea behind the Stereo SGBM algorithm is block matching, where a 
small window (block) in the left image is searched for its corresponding window 
in the right image. The matching is based on finding similar patterns or intensity 
similarities between the two windows. 

3. Semi-Global Approach: 

The term "Semi-Global" in SGBM means that the algorithm considers the global 
information along multiple directions (disparities) while finding 
correspondences. It takes into account not only the local matching cost but also 
considers consistency along different scanlines and paths in the image. 

4. Disparity Map: 

The output of the SGBM algorithm is a disparity map, where each pixel in the 
left image is associated with a disparity value. The disparity value represents the 
horizontal shift needed to match the corresponding point in the right image with 
the point in the left image. 

5. Parameters: 

The SGBM algorithm has several parameters that can be tuned to control the 
matching process, including the block size, minimum and maximum disparity 
range, uniqueness ratio, and speckle range, among others. 

Tuning these parameters is essential to achieve accurate and reliable stereo 
correspondences. 

6. Efficiency: 

While SGBM provides good results, it can be computationally expensive, 
especially for high-resolution images or large search ranges.To address this, the 
algorithm may utilize techniques like multi-resolution or image pyramids to 
speed up the matching process. 

7. OpenCV Implementation: 

In the provided code, the OpenCV library's cv2.StereoSGBM_create function 
is used to implement the Stereo SGBM algorithm.The function takes the input 



 3 Methodology 
 

32 
 

left and right images and computes the disparity map using the specified 
parameters. 

 

3.3.4 Depth Estimation Techniques  
Depth estimation is a critical aspect of visual odometry as it helps determine the 3D structure 
of the environment 

In this thesis project the depth estimation technique used is Stereo Vision which can be 
implemented as following: 

1. Image Rectification:  

Before depth estimation, the code starts by rectifying the stereo images. Image 
rectification is a crucial preprocessing step that ensures corresponding epipolar lines in 
both images are parallel. This simplifies the disparity calculation process. It involves 
applying a geometric transformation to the images based on the camera calibration 
parameters. 

2. Disparity Calculation:  

Once the images are rectified, the disparity between corresponding points in the left and 
right images is computed. The disparity represents the horizontal shift of a point in the 
left image to its corresponding point in the right image. Disparity is inversely 
proportional to the depth of the scene points. Points that are closer to the camera will 
have higher disparity values than points that are farther away. 

3. Semi-Global Block Matching (SGBM):  

The code utilizes the Semi-Global Block Matching algorithm to compute disparities. 
SGBM is a popular algorithm for stereo matching that works by comparing small blocks 
of pixels between the left and right images to find matching blocks with similar patterns. 
It uses a cost function to find the best disparity value that minimizes the differences 
between the blocks. SGBM takes advantage of both local and global information to 
improve the accuracy of disparity calculations. 

4. Keypoint Detection and Tracking:  

To efficiently estimate depth for specific points, the code employs the FAST (Features 
from Accelerated Segment Test) algorithm to detect keypoints in the left image. 
Keypoints are points of interest in the image that are likely to have distinctive features. 
The code then tracks these keypoints using optical flow, which estimates the motion of 



 3 Methodology 
 

33 
 

keypoints between consecutive frames. By tracking keypoints, the code ensures that the 
same points are used for depth estimation in both images. 

5. Right Keypoint Calculation:  

With the disparity values obtained from SGBM, the code calculates the coordinates of 
corresponding keypoints in the right image. The disparity provides the horizontal shift, 
and by knowing the position of a keypoint in the left image, the position of its 
corresponding point in the right image can be determined. 

3.3.5 Pose Estimation and Motion Tracking  
Pose Estimation is the process of determining the relative position and orientation of a 
moving camera between consecutive frames. It involves detecting key features in the 
frames, matching them, and triangulating their 3D positions. By computing the essential 
matrix, the camera's movement can be estimated. 
 
In the Visual Odometry class, the `estimate_pose` method is responsible for estimating 
the transformation matrix between two frames. This method uses a RANSAC-based 
approach to robustly estimate the transformation. 
 
Random sample consensus (RANSAC) is an iterative approach for deducing the 
parameters of a mathematical model based on a collection of observed data points, even 
in situations where outliers are present. Outliers are disregarded in such a way that they 
do not exert any influence on the computed parameter values. Consequently, RANSAC 
can also be viewed as a technique for identifying and isolating outliers within the data 
(Strutz, 2016). 
 
RANSAC accomplishes its objective through a series of iterative steps: 
 

a) Randomly choose a subset from the original data, labelling it as the hypothetical 
inliers. 

b) Fit a model to this selected set of hypothetical inliers. 
c) Evaluate all data points against the model. Any data points in the original dataset 

that closely conform to the estimated model, as determined by a model-specific 
loss function, are categorized as the consensus set, i.e., the inliers for the model. 

d) The estimated model is considered satisfactory if a sufficient number of data 
points are classified as part of the consensus set. 

e) To enhance the model, it can be refined by re-estimating it using all the members 
of the consensus set. The quality of the fit, as measured by how well the model 
aligns with the consensus set as represented in Figure 3.6, is employed to refine 



 3 Methodology 
 

34 
 

the model fitting as iterations progress. This measure often serves as the fitting 
quality criterion for the subsequent iteration. 

 
 

 

 The RANSAC algorithm randomly selects 6 feature points (keypoints) from the two 
frames and estimates the transformation matrix using these points. 

 The transformation matrix is estimated using a nonlinear least-squares optimization 
(Levenberg-Marquardt algorithm) that minimizes the reprojection error. 

 The reprojection_residuals method calculates the residuals, which are the differences 
between the observed 2D feature points and the 2D projections of the 3D points using 
the estimated transformation matrix. The goal is to minimize these residuals to find the 
optimal transformation. 

 The RANSAC process is repeated for a specified number of iterations (`max_iter`). 
The best transformation matrix with the minimum reprojection error is selected as the 
final estimation. 

 The `estimate_pose` method returns the estimated transformation matrix. 

Motion Tracking is the process of continuously estimating the camera's movement over time 
by analyzing a sequence of frames. It involves tracking keypoint correspondences between 
frames using techniques like optical flow. The camera's motion (rotation and translation) is then 
estimated based on the tracked keypoints and geometric constraints. 

 
 The `get_pose` method is responsible for tracking the motion between consecutive 

frames. 

Figure 3.6 fitted line with RANSAC (wikipedia.org, 
n.d.) 



 3 Methodology 
 

35 
 

 The process begins by capturing the left and right images of the previous frame 
(`old_frame_left` and `old_frame_right`) and the current frame (`new_frame_left` 
and `new_frame_right`). 

 The algorithm uses FAST feature detection to find keypoints in the left image. 
 These keypoints are then tracked in the current frame using optical flow (Lucas-

Kanade method). This provides the corresponding keypoints between the previous and 
current frames. 

 Disparity maps are calculated for both the previous and current frames. Disparity 
represents the difference in the horizontal position of corresponding pixels between 
the left and right images and is used to estimate depth information. 

 Right keypoints are calculated from the left keypoints using the disparity information. 
This step helps to triangulate the 3D points seen from both images. 

 Using the keypoints and 3D points from both frames, the `estimate_pose` method is 
called to estimate the transformation matrix between the previous and current frames. 

 The `get_pose` method returns the transformation matrix, which represents the 
motion between the two frames. 

3.3.6 Optimization 
Optimization in Visual Odometry refers to the process of refining camera poses and 3D point 
positions to minimize the reprojection error. 

The major section of visual odometry where optimization is implemented are: 

Reprojection Error:  
 
Once the motion (camera pose) is estimated and 3D points are triangulated using feature 
matching, each 3D point is projected back into each image frame using the estimated 
camera poses and intrinsic camera parameters. The difference between the projected 2D 
point and the observed 2D keypoint is the reprojection error. 
 
Objective Function:  
 
The objective function is formulated to represent the sum of reprojection errors for all 
matched keypoints across all frames. It quantifies the discrepancy between the observed 
keypoints in the images and the keypoints projected from the estimated 3D structure 
and camera poses. 
 
Optimization Algorithm:  
 
The most common optimization algorithm used in Visual Odometry is Bundle 
Adjustment (BA). BA optimizes the camera poses and 3D point positions 



 3 Methodology 
 

36 
 

simultaneously to minimize the objective function (i.e., the total reprojection error). It 
takes into account all the camera poses, 3D points, and their respective uncertainties to 
refine the motion estimation and 3D reconstruction. 
 
Iterations:  
 
The optimization process is iterative. It starts with an initial estimate of camera poses 
and 3D points. Then, in each iteration, the algorithm updates the poses and 3D points to 
minimize the reprojection error further. The optimization continues for several iterations 
to improve the accuracy of the estimated camera motion and 3D structure. 
 
Convergence:  
 
The optimization process iteratively refines the camera poses and 3D points until a 
convergence criterion is met. The criterion could be a maximum number of iterations, 
or when the change in the objective function falls below a certain threshold. 

 

The optimization technique used for estimating the transformation matrix is the Levenberg-
Marquardt (LM) algorithm. The optimization is performed to minimize the reprojection error 
between the 3D points and their corresponding 2D feature points in two consecutive images. 
The goal is to find the best transformation (rotation and translation) that aligns the 3D points 
from the previous image to their corresponding 2D points in the current image. 

The optimization process is implemented using the scipy.optimize.least_squares function, 
which provides an interface for least-squares optimization. The LM algorithm is a popular 
optimization technique for nonlinear least squares problems. It combines the advantages of the 
Gauss-Newton method and the steepest descent method to find the local minimum of the 
objective function efficiently. 

The core of the optimization process is the reprojection_residuals method, which calculates the 
residuals between the observed 2D points (keypoints) in the images and the 2D points projected 
from the 3D points using the transformation matrix. The residuals represent the difference 
between the observed 2D points and the 2D points obtained by projecting the 3D points using 
the estimated transformation matrix. The goal of the optimization is to minimize these residuals. 

A breakdown of the optimization process is given below: 

1. The ‘estimate_pose’ method implements the LM optimization loop. It iteratively 
refines the transformation matrix by randomly selecting 6 feature points from the 
matched keypoints and corresponding 3D points. It then applies the ‘least_squares’ 
function to find the transformation matrix that minimizes the reprojection residuals. 



 3 Methodology 
 

37 
 

2. The ‘reprojection_residuals’ method calculates the reprojection error. It takes the 
transformation matrix (composed of rotation and translation), 2D keypoints in the 
previous and current images, and 3D points corresponding to these keypoints. It uses 
the projection matrices of the left and right cameras to project 3D points onto the image 
plane in both images. 

3. The LM algorithm iteratively updates the transformation matrix to minimize the 
residuals. It continues until either the maximum number of iterations (‘max_iter’) is 
reached or until no significant improvement is observed for a certain number of 
iterations (early termination). 

4. The ‘estimate_pose’ method returns the final transformation matrix estimated by the 
LM optimization. 

 

 



 

 4 Dataset and Evaluation 
 

38 
 

4 Dataset and Evaluation 

The Master thesis research utilizes a suitable dataset for evaluating the proposed stereo visual 
odometry algorithm. The dataset includes synchronized stereo image pairs captured from 
cameras with known calibration parameters. The dataset covers various real-world scenarios, 
capturing different environments, camera motions, and lighting conditions.  

4.1 Dataset Description and Preparation 
The dataset's diverse nature and careful preparation allow for a comprehensive evaluation of 
the stereo visual odometry algorithm's performance, including its accuracy, robustness, and 
efficiency. This evaluation is essential to validate the algorithm's effectiveness in estimating 
camera motion and 3D scene structure in real-time applications and various challenging 
environments. 

4.1.1 Offline Dataset 
The KITTI Visual Odometry dataset is a well-established benchmark designed to assess the 
accuracy and robustness of visual odometry algorithms under various real-world driving 
scenarios. The stereo data collection in the KITTI Visual Odometry dataset is achieved using a 
sophisticated sensor setup that incorporates two grayscale cameras and a Velodyne LiDAR 
scanner. The setup is mounted on a Volkswagen Passat B6 (Figure 4.1), which has been 
equipped with actuators for the pedals and steering wheel, enabling precise control of the 
vehicle during data collection.  

 

Figure 4.1 Fully equipped sensor setup vehicle (Andreas Geiger, 2012) 

 

 



 

 4 Dataset and Evaluation 
 

39 
 

 

The specific details of the stereo data collection are as follows: 

1. Grayscale Cameras: Point Grey Flea 2 (FL2-14S3M-C) 

The sensor setup includes two grayscale cameras with a resolution of 1.4 
Megapixels each.The cameras are triggered at a rate of 10 frames per second by 
the Velodyne LiDAR scanner, ensuring temporal synchronization between the 
camera frames and the 3D LiDAR data. 

2. Velodyne LiDAR Scanner: Velodyne HDL-64E 

The Velodyne HDL-64E is a high-quality LiDAR scanner capable of generating 
a 3D point cloud of the surrounding environment.It spins at 10 frames per second 
and captures approximately 100,000 points per revolution with the vertical 
resolution of 64.The LiDAR scanner plays a vital role in providing accurate 
depth information for the stereo visual odometry pipeline. 

3. Data Synchronization 

The cameras are triggered by the Velodyne LiDAR scanner, ensuring that the 
captured images correspond to the same timestamp as the LiDAR data.This 
temporal alignment is essential for accurate stereo depth estimation and motion 
tracking. 

4. Image Rectification 

The captured images undergo rectification to transform them into a common 
reference frame.This process aligns the epipolar lines, simplifying the stereo 
matching process. 

 

Specifically, we have utilized the grayscale sequence 01 (Figure 4.2) from the KITTI Visual 
Odometry dataset, encompassing the first 101 frames. 

 



 

 4 Dataset and Evaluation 
 

40 
 

4.1.2 Data Collection for Real-time Application  
Synchronized infrared image frames from a RealSense camera in real-time are utilized for live 
stereo visual odometry. A python script is used to perform this function. 

a brief explanation of the key components and functionalities of the script: 

 Importing Libraries:  

The script begins by importing the necessary libraries, including os, pyrealsense2 
(RealSense SDK), numpy, and cv2 (OpenCV). 

 Initializing the Camera:  

The RealsenseCamera class constructor initializes the RealSense camera's pipeline and 
configures it to enable infrared streams from both left and right cameras (stream index 
1 and 2, respectively). It also sets up alignment to align the infrared frames. 

 Frame Capturing:  

The get_frame_stream method is the main function for capturing frames from the 
camera. Inside the method, it waits for new frames (up to a timeout of 30,000 
milliseconds) and retrieves synchronized infrared frames from both the left and right 
cameras. 

 Enabling Autoexposure: 

Figure 4.2 One of the stereo pair from KITTI odometry grayscale dataset sequence ‘01’ 



 

 4 Dataset and Evaluation 
 

41 
 

The enable_auto_exposure function is used from the realsense library to dynamically 
adjust exposure settings based on the ambient lighting conditions. Whereas the exposure 
time is set for 100 microseconds. 
 

 Frame Preprocessing:  

Before returning the frames, the script applies histogram equalization using OpenCV 
(cv2.equalizeHist) to enhance the visibility of objects in the infrared images. 

 Release Function:  

The release method stops the camera pipeline and releases any associated resources. 

 Real-Time Streaming:  

The script sets up an infinite loop inside the get_frame_stream method to continuously 
capture and return new frames as they become available. This setup allows real-time 
streaming of synchronized infrared image frames from the RealSense camera. 

Obtaining frames with a resolution of 848 x 480 pixels from the RealSense camera provides a 
good balance between image quality and processing speed for visual odometry applications. 

4.2 Evaluation Metrics 
In stereo visual odometry, assessing the performance and accuracy of algorithms is of 
paramount importance. To gauge the effectiveness and reliability of these algorithms, a suite of 
evaluation metrics can be used. These metrics provide invaluable insights into the algorithm's 
capabilities, offering a comprehensive view of its strengths and potential shortcomings. 

In the following section, we will delve into a range of critical evaluation metrics tailored for 
stereo visual odometry. These metrics span various dimensions, including trajectory accuracy, 
pose estimation, robustness in challenging conditions, computational efficiency, and more. By 
systematically examining these metrics, we gain a nuanced understanding of how well an 
algorithm performs under diverse scenarios, ultimately aiding in optimizing the stereo visual 
odometry systems for specific applications. 

4.2.1 Real-time Performance Metrics 
1. Absolute trajectory error (ATE) 

In the context of visual odometry systems, assessing the global consistency of the estimated 
trajectory is a vital aspect. This consistency is evaluated by comparing the absolute distances 
between the estimated trajectory and the ground truth trajectory. However, since these 
trajectories may initially exist in arbitrary coordinate frames, they need to be aligned for a 
meaningful comparison. This alignment can be achieved through a closed-form method 



 

 4 Dataset and Evaluation 
 

42 
 

developed by Horn, which determines a rigid-body transformation (denoted as S) that optimally 
maps the estimated trajectory P1:n onto the ground truth trajectory Q1:n. 

Once this transformation is obtained, the absolute trajectory error at each time step (i) can be 
computed using the formula, 

Fi := Q⁻¹i SPi 

Equation 4.1 ATE at time step (i) 

The overall performance evaluation can be done by calculating the root mean squared error 
(RMSE) across all time indices for the translational components, which is expressed as  

RMSE(F1:n) := √(1/n * ∑ ห|𝑡𝑟𝑎𝑛𝑠(𝐹𝑖)|หୀଵ 2) 

Equation 4.2 RMSE at all time indices 

In simpler terms, this process involves aligning the estimated trajectory with the ground truth, 
calculating the absolute trajectory error for each time step, and then determining the root mean 
squared error for the translational components across all time indices (J. Sturm, 2012). 

2. Relative Pose Error (RPE) 

The Relative Pose Error (RPE) serves as a measure of the local accuracy of a trajectory over a 
specified time interval (∆), making it particularly valuable for assessing visual odometry 
systems. This error metric quantifies the trajectory drift within this interval. At each time step 
(i), the RPE is calculated as follows: 

Ei := (Qi⁻¹ Qi+∆)⁻¹ (Pi⁻¹ Pi+∆ ) 

Equation 4.3 RPE at time step (i) 

This procedure generates individual relative pose errors (m = n - ∆) along the trajectory 
sequence. To provide an overall assessment, we suggest computing the Root Mean Squared 
Error (RMSE) across all time indices for the translational component as follows: 

RMSE(E1:n, ∆) := √(1/m * ∑ ห|𝑡𝑟𝑎𝑛𝑠(𝐸𝑖)|หୀଵ 2) 

Equation 4.4 RMSE at all time indices 

Here, trans (Ei) represents the translational components of the relative pose error Ei. It's worth 
noting that some researchers may prefer evaluating the mean error instead of RMSE to reduce 
the influence of outliers. Alternatively, the median can be computed for even greater resilience 
to outliers. Additionally, while rotational error evaluation is possible, assessing translational 
errors is often sufficient, as rotational errors manifest as translational errors when the camera is 
in motion. 



 

 4 Dataset and Evaluation 
 

43 
 

Regarding the time parameter ∆, its selection is essential. For visual odometry systems 
matching consecutive frames, ∆ = 1 is a logical choice, where RMSE(E1:n) represents the drift 
per frame. For SLAM system evaluation, averaging across all possible time intervals ∆ is 
recommended, as expressed by: 

RMSE(E1:n) := 1/n * ∑ 𝑅𝑀𝑆𝐸(𝐸1: 𝑛, ∆)∆ ୀ ଵ  

Equation 4.5 RMSE at all time intervals (∆)  

Alternatively, the Relative Pose Error (RPE) can be used to assess the overall trajectory error 
by averaging it across all potential time intervals (J. Sturm, 2012). 

4.2.2 Computational Efficiency  
In the context of visual odometry, computational efficiency can be assessed in the following 
ways: 

Processing Speed:  

Evaluate the system’s ability to process incoming sensor data, extract features, 
perform odometry calculations, and update the estimated state. 
 

Resource Utilization:  

Monitor the utilization of CPU and GPU resources during operation. Efficient 
algorithms should aim to minimize resource wastage. 
 

Memory Usage:  

Assess the amount of memory (RAM) consumed by the system. Efficient algorithms 
should manage memory efficiently to prevent memory leaks or excessive usage. 
 

Frame Rate:  

Determine whether the system can operate at a specified frame rate (e.g., 30 frames 
per second) to meet real-time requirements. 

4.3 Experimental Setup 
For Offline Dataset Testing we outline the chosen dataset, the software and hardware 
configurations employed, as well as the computational resources utilized. This information will 
provide a comprehensive understanding of the experimental environment in which the visual 
odometry algorithm was tested and evaluated. 



 

 4 Dataset and Evaluation 
 

44 
 

In the real-time application testing experimental setup, we aim to assess the accuracy and 
reliability of a visual odometry algorithm by comparing the path it plots with the path tracked 
by a Leica Hexagon System Laser Tracker. The hardware components include an Intel 
RealSense D455 camera, securely mounted and calibrated, and the laser tracker set up with an 
unobstructed line of sight to a reflector attached to the camera. Within a carefully defined 
courtyard environment, we establish a well-marked path, with varying lighting conditions. Data 
collection involves synchronizing camera and laser tracker data acquisition, executing the 
camera's movement along the predefined path, and recording data, including image frames and 
reflector position and orientation. This setup enables a thorough evaluation of the visual 
odometry algorithm's accuracy and performance in real-world conditions. 

4.3.1 Offline Dataset Testing Setup 

 Dataset Selection: 

The experiment utilized the grayscale sequence 01 from the KITTI Visual Odometry 
dataset. 

 Software and Algorithm Setup: 

The experiment was conducted using Ubuntu 20.04 as the operating system and 
OpenCV version 4.7.0 for implementing and running visual odometry algorithm. 

 Computational Resources: 

The processor used for the experiment was a 12th Gen Intel(R) Core (TM) i7-1280P. 

The GPU employed was a VGA compatible controller. 

 Offline Testing: 

The visual odometry algorithm was executed offline on the chosen grayscale sequence 
01 from the KITTI dataset, encompassing the first 101 frames. 

The system had 32GB of DDR4 RAM available for loading and processing image 
frames and dataset information. 

 

 

 

 

 



 

 4 Dataset and Evaluation 
 

45 
 

4.3.2 Real-time Application Testing Setup 
a) Hardware Components: 

 
The Intel RealSense D455 camera was securely mounted on the on a fixture as shown 
in Figure 4.4, which can be easily fixed on a handheld laptop to get a complete camera 
setup (Figure 4.3). Careful calibration of the camera was ensured to provide accurate 
depth and image data. 

The Leica Hexagon System Laser Tracker was positioned in a stable location at height 
of 4 meters as seen in Figure 4.5 . A clear line of sight from the laser tracker to the 
camera's reflector was maintained. 
 

Figure 4.4 Camera fixture Figure 4.3 Camera setup 

Figure 4.5 Tracking System Setup 



 

 4 Dataset and Evaluation 
 

46 
 

Reflector and Mounting: 

A reflective target or reflector was affixed on a fixture just above the left stereo 
lens to ensure secure and stable mounting.The reflector was chosen and 
positioned to facilitate easy detection and tracking by the laser tracker. 

b) Environment Setup: 
Courtyard and Path: 

A defined path or trajectory was established within the courtyard for the 
camera's movement.The path was marked with, either physical ground markings 
or other reference points. 

The significance of performing different movements and camera orientations in 
the VO experiment lies in the evaluation and validation of the robustness and 
accuracy of the pose estimation algorithm under various real-world scenarios. 
Hereby these movement types are discussed, 

1. Straight Line Movement with Forward-Facing Camera (Figure 4.6): This 
scenario represents typical forward motion, such as moving in a straight line. It 
helps evaluate the accuracy of your pose estimation algorithm for tracking linear 
paths.  

2. Sideways Camera Orientation (Figure 4.7): Turning the camera sideways 
introduces a challenging scenario where the camera's field of view is 
perpendicular to the direction of travel. This tests the algorithm's ability to handle 
scenarios where the camera is not aligned with the primary motion direction, 
which can occur in real-world situations.  

 

Direction of motion 

camera 
tracker 

Figure 4.6 Forward straight-line motion 



 

 4 Dataset and Evaluation 
 

47 
 

 

 

3. 'L' Shaped Trajectory (Figure 4.8): A 'L' shaped trajectory combines both 
straight-line and turning movements. It helps assess how well your algorithm 
handles changes in direction, including sharp turns. 

4. Free Trajectory with Forward-Facing Camera (Figure 4.9): In this scenario, you 
allow for more complex and natural movements without specific patterns. It 
evaluates the algorithm's ability to adapt to unpredictable motion, which is 
common in real-world environments. 

Direction of motion 

tracker camera 

Direction of motion 

camera tracker 

Figure 4.7 Sideways Camera Orientation motion 

Figure 4.8 'L' Shaped Trajectory motion 



 

 4 Dataset and Evaluation 
 

48 
 

 

By mimicking various real-world movements, we are testing the algorithm in scenarios 
that it may encounter in practical applications. This helps ensure the algorithm's 
reliability in diverse settings. Different movements challenge the algorithm's 
robustness. It can reveal how well the algorithm copes with changes in motion direction 
and camera orientation, which are common sources of challenges in pose estimation. It 
provides an opportunity to fine-tune and calibrate the camera and pose estimation 
parameters to achieve optimal results in different scenarios. Evaluating the algorithm's 
performance across different movement types and camera orientations helps assess its 
generalization capabilities. An algorithm should be able to adapt to a wide range of 
scenarios. Depending on application (e.g., robotics, augmented reality, autonomous 
navigation), these different movement types and camera orientations can help you 
determine if your pose estimation algorithm is suitable for our specific use case. 

 

c) Varied Lighting Conditions: 

Lighting conditions within the courtyard were not maintained consistently. The 
experiment aimed to test the algorithm's robustness by subjecting it to different 
lighting conditions, including variations in brightness and shadows. 

 

d) Data Collection and Experiment Execution: 
Data Recording: 

Data recording was carried out for both the Intel RealSense D455 camera, 
encompassing image frames, and the Leica Hexagon System Laser Tracker, 
capturing reflector position data as the camera traversed the predetermined path 
under varying lighting conditions. 

Direction of motion 

camera 

tracker 

Figure 4.9 Free Trajectory with Forward-Facing Camera 



 

 4 Dataset and Evaluation 
 

49 
 

Path Execution: 

The camera was moved along the predetermined path within the courtyard as 
planned. Continuous visibility of the camera's reflector to the laser tracker was 
maintained, ensuring an uninterrupted line of sight. 

 

 



 

 5 Implementation Details 
 

50 
 

5 Implementation Details 

This section focuses on the practical aspects of building the stereo visual odometry system, 
including the choice of hardware and software tools, algorithmic implementations, performance 
optimization techniques, and any specific considerations for real-time processing if applicable. 

5.1 Hardware and Software Specifications 

Camera Model Intel RealSense D455 Stereo Camera (Figure 
5.1) 

Resolution 848x480 pixels 

Frame Rate 5,15,30,60,90 fps 

Focal Length 1.93 mm 

 

Table 5.1 Intel D455 Specification 

  

Tracking System  Leica Absolute Tracker AT960-MR (Figure 
5.2) 

3D measurement range up to 40 m 

6DoF measuring range up to 20 m 

measurement rate up to 1kHz 

Accuracy tens of microns 

 

Table 5.2 Leica AT960-MR Specification 

Figure 5.1 Intel® RealSense TM Depth Camera D455 
(Intel® RealSense™ D455) 



 

 5 Implementation Details 
 

51 
 

 

Operating System Ubuntu 20.04 

Programming Language Python 

Integrated Development Environment (IDE) Visual Studio Code (VSCode)  

Libraries and Frameworks OpenCV 4.7.0, pyrealsense2 2.54.1.5217 

 

Table 5.3 Software Specifications 

 

Processor 12th Gen Intel(R) Core (TM) i7-1280P 

GPU 00:02.0 VGA compatible controller: Intel 
Corporation Device 46a6 (rev 0c) 

RAM 32GB DDR4 

Storage 512GB SSD  

 

Table 5.4 Computational Resources 

 

 

Figure 5.2 Leica Absolute Tracker AT960-MR 
(hexagon.com, n.d.) 



 

 5 Implementation Details 
 

52 
 

Dependencies and Versions: 

os,numpy(np),cv2(OpenCV),scipy.optimize.least_squares,time,random,mpl_toolkits.
mplot3d,tqdm,matplotlib.pyplot(plt),pytransform3d.transformations(pt),pytransform3d
.trajectories(ptr),pytransform3d.rotations (pr),pytransform3d.camera (pc), cycler. 

 

5.2 Algorithmic Implementations  

5.2.1 Feature Detection and Matching: 
The Detect method is used for feature detection in an image patch using the fastFeatures 
detector. The fastFeatures detector is based on the FAST (Features from Accelerated Segment 
Test) algorithm, which is a corner detection algorithm. It is computationally efficient and used 
for detecting keypoints (interest points) in an image for example in Figure 5.3. The keypoints 
are points that are likely to be stable and repeatable under transformations such as rotations and 
scale changes.  

 
 Implementation:  

 
The code defines a function named ‘get_tiled_keypoints’ that takes in three 
parameters: ‘self’, ‘img’, ‘tile_h’, and ‘tile_w’. This function is used to split an 
image into tiles and detect the 10 best keypoints in each tile. The ‘img’ 
parameter represents the image to find keypoints in, while ‘tile_h’ and ‘tile_w’ 
represent the height and width of each tile, respectively. This function is used 
for feature matching between stereo frames. Another function defined 
‘get_kps’ takes in coordinates x and y. It extracts a tile from an image based on 

Figure 5.3 Keypoint detection 



 

 5 Implementation Details 
 

53 
 

the given coordinates. It then detects keypoints within that tile using FAST 
feature detection algorithm. The function corrects the coordinates of the 
keypoints to match the original image. If there are more than 10 keypoints, it 
selects the top 10 based on their response value. Finally, the function returns a 
flattened list of all the keypoints detected in the image tiles. 

5.2.2 Stereo Correspondence: 
The ‘track_keypoints’ method tracks keypoints between two frames using optical flow. 
Optical flow is a computer vision technique used to track the movement of keypoints between 
consecutive frames in a video. It estimates the displacement of each keypoint from the first 
frame to the second frame (Figure 5.4). 

 Implementation:  
 
The code defines a function named ‘track_keypoints’ that takes in four 
parameters: ‘self’, ‘img1’, ‘img2’, and ‘kp1’. The function is used to track 
keypoints between two images. The ‘img1’ parameter represents the previous 
image, ‘img2’ represents the current image, and ‘kp1’ represents the keypoints 
in the previous image. There is also an optional parameter ‘max_error’ which 
specifies the maximum acceptable error for tracking. optical flow is used to track 
keypoints between two images. First, it converts the keypoints from the previous 
image (kp1) into a vector of points and expands the dimensions. Then, it uses 
cv2.calcOpticalFlowPyrLK to find the tracked counterparts (trackpoints2) in the 
current image (img2), based on the previous keypoints (trackpoints1).The status 
vector (st) is converted to Boolean values to use as a mask. A mask is created to 
select only the keypoints that are trackable and have an error below the 
maximum acceptable error. Finally, the mask is applied to filter and update 
trackpoints1 and trackpoints2. keypoints that are outside the image boundaries 
are removed. It first retrieves the height and width of the image img1. Then, it 

Figure 5.4 Stereo Correspondence 



 

 5 Implementation Details 
 

54 
 

creates a boolean mask in_bounds by checking if the y-coordinates 
(trackpoints2[:, 1]) are less than the height (h) and if the x-coordinates 
(trackpoints2[:, 0]) are less than the width (w). Finally, it selects only those 
keypoints that satisfy this condition and returns them as trackpoints1 and 
trackpoints2. 
 
 

The ‘calculate_right_qs’ method calculates the right keypoints from the left keypoints and 
disparity maps. Disparity maps are used in stereo vision to represent the pixel-wise 
displacement or depth difference between the left and right images. By using the left keypoints 
and disparity maps, corresponding right keypoints are estimated. 

 
 Implementation: 

 
This section of the code defines a function named ‘calculate_right_qs’ that 
takes in several parameters: ‘q1’, ‘q2’, ‘disp1’, ‘disp2’, ‘min_disp’, and 
‘max_disp’. The function is used to calculate the right keypoints (feature 
points) based on the given parameters. The default values for ‘min_disp’ and 
‘max_disp’ are set to 0.0 and 100.0 respectively. another function ‘get_idxs’ 
that takes in two arrays ‘q’ and ‘disp’. It converts the values of ‘q’ to integers 
and uses them as indices to extract corresponding values from the ‘disp’array. 
It then returns the extracted values along with a Boolean mask indicating 
whether each value falls within a specified range. The function is called twice 
with different input arrays (q1, disp1) and (q2, disp2). The returned values are 
assigned to variables ‘disp1’, ‘mask1’, ‘disp2’, and ‘mask2’ respectively. 
combine the masks ‘mask1’ and ‘mask2’ using logical AND operation to 
create a new mask called 'in_bounds’. Use this mask to filter the feature 
points (‘q1’, ‘q2’) and disparities (‘disp1’, ‘disp2’) that are within the bounds. 
Then, calculate the right feature points by subtracting the corresponding 
disparities from the left feature points. Finally, return the filtered left and right 
feature points (‘q1_l’, ‘q1_r’, ‘q2_l’, ‘q2_r’). 
 
 

5.2.3 Depth Estimation: 
The ‘calc_3d’ method is used to triangulate 3D points from the stereo keypoints. By knowing 
the stereo calibration parameters and disparity map, this method calculates the depth (3D 
coordinates) of the keypoints in the scene. This provides an estimation of the depth for the 
features tracked in the motion. 



 

 5 Implementation Details 
 

55 
 

 Implementation: 
 
The code defines a method called ‘calc_3d’ which takes four parameters: 
‘q1_l’, ‘q1_r’, ‘q2_l’, and ‘q2_r’. This method is used to triangulate points 
from two sets of feature points in stereo images. The purpose of this method 
is to calculate the 3D coordinates of the feature points seen from two different 
camera views. 
Convert the feature point arrays ‘q1_l’, ‘q1_r’, ‘q2_l’, and ‘q2_r’to matrices 
using the np.matrix() function. Also, convert the matrices ‘self.P_l’ and 
‘self.P_r’ to matrices and cast them as float32 using .astype(np.float32). 
Transpose the matrices ‘q1_l_mat’, ‘q2_l_mat’, ‘q1_r_mat’, and 
‘q2_r_mat’ to get their respective transposes. Then, use the 
triangulatePoints() function from OpenCV to triangulate points from the i-1'th 
image (‘P_l_mat’, ‘P_r_mat’, ‘q1_l_tran’, and ‘q1_r_tran’) and from the 
i'th image (‘P_l_mat’, ‘P_r_mat’, ‘q2_l_tran’, and ‘q2_r_tran’). Finally, 
un-homogenize the resulting homogeneous coordinates by dividing by their 
fourth element and transpose them using np.transpose().returning the variables 
‘q1’and ‘q2’. These variables represent the 3D points seen from two different 
images. 

5.2.4 Camera Pose Estimation: 
The ‘estimate_pose’ method estimates the transformation matrix (rotation and translation) 
between two frames using the RANSAC (Random Sample Consensus) algorithm. RANSAC is 
an iterative method used to estimate parameters of a mathematical model from a set of observed 
data that may contain outliers. In this case, it helps to estimate the camera's movement between 
two frames robustly even in the presence of outliers or erroneous feature correspondences. 

 
 Implementation: 

 
The code defines a function named estimate_pose that takes in five 
parameters: ‘self’, ‘q1’, ‘q2’, ‘q1’, ‘q2’, and an optional parameter 
‘max_iter’ with a default value of 100. This function is used to estimate the 
transformation matrix based on feature points and 3D points seen from two 
images. The maximum number of iterations can be specified using the 
‘max_iter’ parameter. here three variables are initialized: 
early_termination_threshold,min_error,andearly_termination.early_termina
tion_threshold is set to 5, which represents the maximum number of 
iterations allowed before terminating early.min_error is initialized with a 
value of infinity (float('inf')). This variable will be used to store the minimum 
error encountered during the iterations.early_termination is initialized to 0. 



 

 5 Implementation Details 
 

56 
 

It keeps track of the number of consecutive iterations where the error did not 
improve. 
 
an iterative optimization process is performed. It randomly selects 6 feature 
points from the given sets of points (‘q1’, ‘q2’, ‘q1’, ‘q2’). It then uses these 
sampled points to perform a least squares optimization using the 
least_squares function. The optimized transformation is evaluated by 
calculating the error using the reprojection_residuals function. If the error is 
less than the current minimum error, it updates the minimum error and saves 
the optimized pose. If no better result is found for a certain number of 
iterations (early_termination_threshold), the loop breaks. the transformation 
matrix using the rotation vector and translation vector are obtained from a 
previous step.First, it extracts the first three elements of out_pose as the 
rotation vector r. Then, it uses cv2.Rodrigues() function to convert the 
rotation vector into a rotation matrix R.Next, it extracts the remaining 
elements of out_pose as the translation vector (t) finally, it calls the 
_form_transf() method with the rotation matrix R and translation vector t to 
create the transformation matrix. 
 

The ‘get_pose’ method calculates the transformation matrix for each frame in the sequence. It 
uses the estimate_pose method to calculate the camera's relative movement between 
consecutive frames. By accumulating these transformations, the method provides an estimation 
of the camera's pose (position and orientation) for each frame in the sequence. 

 
 Implementation: 

 
The method get_pose takes in four parameters: old_imgL, old_imgR, 
new_imgL, and new_imgR. This method is used to calculate the 
transformation matrix for a pair of images. It starts by assigning the left 
images to img1_l and img2_l. Then, it obtains tiled keypoints using 
get_tiled_keypoints() function. Next, it tracks the keypoints between the two 
images using track_keypoints() function. After that, it calculates the 
disparities between the old and new left images using disparity.compute() 
function. Then, it calculates the right keypoints using calculate_right_qs() 
function. Finally, it calculates the 3D points using calc_3d() function and 
estimates the transformation matrix using estimate_pose() function. 
 
 



 

 5 Implementation Details 
 

57 
 

After obtaining the camera pose, the 3D points are projected into the image plane using the 
camera's intrinsic matrix and extrinsic parameters. The difference between the projected 2D 
keypoints and the actual detected keypoints is computed, giving us the reprojection residuals. 
These residuals represent the accuracy of the pose estimation and how well the 3D points align 
with the detected keypoints. 

 
 Implementation: 

 
The code defines a method called ‘reprojection_residuals’that takes in five 
parameters: ‘dof’, ‘q1’, ‘q2’, ‘q1’, and ‘q2’. The translation vector is 
obtained from the ‘dof’ array. It then creates a transformation matrix using 
the rotation matrix and translation vector. Next, it creates projection matrices 
for two images (i-1 and i) by multiplying the transformation matrix with 
‘self.P_l’. Finally, it makes the 3D points homogenize by adding a column 
of ones to ‘q1’ and ‘q2’ arrays.3D points from the i-th image are projected 
onto the i-1 image and vice versa. It first computes the projected points 
‘q1_pred’ by multiplying ‘q2’ (the 3D points in the i-th image) with the 
forward projection matrix f_projection, and then un-homogenizes them. 
Similarly, it computes ‘q2_pred’ by multiplying ‘q1’ (the 3D points in the 
i-1st image) with the backward projection matrix b_projection, and un-
homogenizes them. Finally, it calculates the residuals by subtracting the 
actual 2D points ‘q1’ and ‘q2’ from their respective predicted values, and 
flattens the resulting array before returning it. 

5.2.5 Coordinate Transformations: 
The ‘_form_transf’ method is used to create a transformation matrix from a rotation matrix 
and a translation vector. In visual odometry, the camera's movement is typically represented as 
a combination of rotation and translation. The transformation matrix allows for easy conversion 
between different coordinate systems and enables the accumulation of transformations to 
estimate the camera's trajectory. 

 
 Implementation: 

 
The code calculates the transformation matrix ‘transf’ using the get_pose 
function. It then updates the current pose ‘cur_pose’ by multiplying it with 
transf. The updated ‘cur_pose’ is appended to the ‘camera_pose_list’, and 
its x and y coordinates are appended to the ‘estimated_path’. Finally, the x 
and y coordinates of the updated pose are assigned to variables 



 

 5 Implementation Details 
 

58 
 

‘estimated_camera_pose_x’ and ‘estimated_camera_pose_y’, 
respectively. 

5.3 Performance Optimization Techniques 
Visual odometry is a computationally intensive task, and achieving real-time performance 
while maintaining accuracy is often a delicate balance. Different applications and hardware 
constraints may require different optimization strategies, and the choice of techniques should 
be made based on the specific context and performance requirements. Regular benchmarking 
and profiling are essential to identify performance bottlenecks and ensure that the visual 
odometry system meets its objectives. 

Following performance optimization techniques utilized in this algorithm. 

Faster Feature Detection (FAST algorithm): 

Feature detection is a fundamental step in visual odometry, where distinctive 
points in the image, known as keypoints or features, are identified. These 
keypoints are tracked across consecutive frames to estimate camera motion. It is 
a popular and efficient feature detection algorithm. It works by comparing the 
intensity of pixels in a circular neighbourhood around a candidate pixel. It 
classifies the candidate pixel as a keypoint if a sufficient number of pixels in the 
circle are significantly brighter or darker than the candidate pixel. The FAST 
algorithm is designed for speed and reduces computational overhead by 
minimizing the number of intensity comparisons required. By using the FAST 
algorithm for feature detection, the code can identify keypoints more quickly, 
leading to a faster visual odometry pipeline. 

Speed and Accuracy of Optical Flow (Lucas-Kanade with pyramids): 

Optical flow is the pattern of apparent motion of objects between consecutive 
frames in a sequence. It is used to track the movement of keypoints from one 
frame to another. The Lucas-Kanade optical flow method is an iterative 
algorithm that estimates the motion of keypoints by solving a system of 
equations. It assumes that the motion of pixels between frames is small and 
approximates it linearly. Pyramids, in the context of optical flow, refer to the 
image pyramids, which are multi-scale representations of the image. By creating 
image pyramids, the optical flow can be estimated at different scales, allowing 
for large and small motion to be captured effectively. The use of pyramids in the 
Lucas-Kanade method helps improve the accuracy of optical flow estimation, 
especially in areas with large motion or significant changes in the scene. More 
accurate optical flow results in better feature correspondences between frames, 
which, in turn, enhances the accuracy and robustness of visual odometry. 



 

 5 Implementation Details 
 

59 
 

Efficient Disparity Map Computation (Stereo Block Matching): 

In the case of stereo visual odometry, where two cameras are used to perceive 
depth, computing the disparity map is a crucial step. The disparity map 
represents the pixel-wise disparity or depth difference between the two stereo 
images. It helps establish correspondences between points in the two camera 
views. The stereo block matching algorithm (SGBM) is a common method for 
disparity map computation. It works by comparing small blocks of pixels in one 
image with the corresponding blocks in the other image to find the best matching 
blocks. It is already optimized for speed, making it suitable for real-time 
applications. By efficiently computing the disparity map, the visual odometry 
system can obtain reliable depth information, which contributes to better and 
more accurate motion estimation. 

Least Squares Optimization: 

Least squares optimization is used in the visual odometry pipeline to refine the 
initial motion estimates and improve their accuracy. The initial motion between 
frames is estimated using the motion models (e.g., from optical flow or disparity 
map). However, these estimates may contain errors due to various factors like 
noise, occlusions, or dynamic objects in the scene. The least squares 
optimization formulates an objective function that minimizes the reprojection 
error, which is the difference between the predicted positions of keypoints (from 
initial motion) and their actual positions in the image. By iteratively optimizing 
the motion parameters to minimize the reprojection error, the motion estimates 
become more accurate, leading to improved camera pose estimation. 



 

 6 Experimental Results 
 

60 
 

6 Experimental Results 

6.1 Accuracy and Robustness Analysis 
Considering the evaluation metrics discussed in the section 4.2 we evaluate the offline KITTI 
dataset and the real-time application testing. 

6.1.1 Offline Dataset 
The Absolute Trajectory Error (ATE) provides a quantitative measure of the accuracy of a pose 
estimation algorithm by illustrating the absolute positional error between the estimated camera 
trajectory and the ground truth trajectory. The increasing errors indicate error accumulation 
over time. This is a common challenge in VO, particularly in scenarios with no loop closures 
as only first 100 frames of the KITTI sequence ‘01’ is analysed and the aligned trajectories 
along with error is plotted (Figure 6.1) to check for the basic working and understanding of the 
Stereo VO algorithm. 

 

 

 

(m
) 

(m) 

Figure 6.1 Trajectory Plot 



 

 6 Experimental Results 
 

61 
 

This ATE plot (Figure 6.2) reveals a pattern of increasing error values as the image sequence 
unfolds. Notably, the observed trend corresponds with the sequence's dynamic navigation, 
characterized by a right turn and changes in direction along the road. The rising ATE values 
suggest that the VO system encounters challenges in accurately estimating the trajectory during 
these turns. The dataset presents formidable challenges due to a combination of factors. These 
challenges include a low frame rate and high driving speeds, resulting in substantial inter-frame 
motion, with displacements of up to 2.8 meters per frame. Consequently, the potential for 
establishing feature correspondences between frames is notably constrained. Furthermore, the 
dataset frequently incorporates moving obstacles, such as passing vehicles, bicycles, and 
pedestrians, which can exert a significant influence on the performance of visual odometry 
algorithm. Moreover, in Sequence 01, comprising images captured during highway driving, the 
difficulty is amplified as it becomes particularly challenging to identify recurring feature points 
in consecutive frames (Krombach, 2018).  

6.1.2 Real-time application 
Practical application of the developed must be tested in an environment which is semi-
controlled so as to imitate the real-world conditions in which an agent would be utilized. The 
experiment setup is in accordance to the conditions mentioned in the experimental setup section. 
Here, we delve into a detailed analysis of the results obtained from the experiments designed to 
evaluate the performance of the stereo visual odometry algorithm under various types of 
motion. 

(m
) 

Figure 6.2 ATE Error Plot 



 

 6 Experimental Results 
 

62 
 

a) Straight Line Movement with Forward-Facing Camera 
 
The experiment involving straight line movement with a forward-facing camera aimed 
to assess the algorithm's ability to estimate the motion accurately in a scenario 
commonly encountered in outdoor navigation and robotics. 

Accuracy and Precision 

The mean Absolute Trajectory Error (ATE) for the straight-line movement scenario as 
plotted in Figure 6.3 is 0.733 meters. This value represents the average deviation 
between the estimated trajectory and the ground truth trajectory.  

 

The mean Relative Pose Error (RPE) value of approximately 0.121 meters serves as a 
measure of the algorithm's overall precision in estimating relative poses. It indicates, on 
average the algorithm maintains a reasonably consistent level of precision in estimating 
relative poses between consecutive frames. The majority of RPE plot points cluster 
closely around the mean, visualized in Figure 6.5. This clustering suggests that the 
algorithm exhibits a high degree of precision in providing relative pose estimates in 
most scenarios. When the same type of motion is repeated, the algorithm's output is 
reliably close to the ground truth. However, the presence of outliers in the RPE plot, 
with maximum RPE values reaching 0.613 meters and minimum RPE values as low as 
0.014 meters, reveals instances where the algorithm's precision deviates significantly 
from the mean.  The observation of the highest outlier at 13.53 seconds, coincides with 
the first instance of the sun being reflected by the window pane (Figure 6.4), is a 

Figure 6.3 Aligned Trajectory: Straight line forward motion 



 

 6 Experimental Results 
 

63 
 

significant reason for this maximum outlier. This increase might be caused by 
challenges related to changes in lighting conditions or the presence moving reflections 
impacting the keypoint detection and feature tracking of the algorithm (Figure 6.6).  

 

Figure 6.5 Relative pose error: Straight line motion 

Figure 6.4 Transition frame: Reflection during the stride (stereo pair) 

Figure 6.6 feature tracking in transition frame (consecutive left images) 



 

 6 Experimental Results 
 

64 
 

Furthermore, the RPE decreases again when the scene gets closer to the wall and offers 
more features for the algorithm to track and estimate poses accurately. As the algorithm 
processes more data and refines its estimation, the decrease over time is achieved 
through combination of optical flow and Levenberg-Marquardt (LM) optimization. 
Optical flow is employed to compute the motion of distinct keypoints across successive 
frames, enabling an initial estimation of the camera's pose. Subsequently, the system 
computes the reprojection residuals, representing the geometric discrepancy between 
observed keypoints and their projections in the estimated trajectory. The LM 
optimization technique iteratively refines the camera's pose by minimizing these 
residuals, systematically updating the pose parameters to minimize the overall error. 
This demonstrates the algorithm's adaptability to different scene complexities and its 
ability to refine accuracy based on available features. 

b) Sideways Camera Orientation 

The experiment involving sideways camera orientation presented a different challenge, 
where the camera's orientation was perpendicular to the direction of motion. This 
scenario is relevant for applications like urban navigation and autonomous driving. 

Accuracy and Precision 
 
The mean ATE value of 0.784 meters suggests that, on average, the algorithm's 
estimated trajectory deviates by approximately 0.7841 units from the ground truth 
trajectory during sideways camera orientation (Figure 6.7). During this orientation, the 
camera's field of view included a mix of nearby objects and distant features, which vary 
the scene's complexity dynamically. 

Figure 6.7 Aligned trajectory: sideways camera orientation 



 

 6 Experimental Results 
 

65 
 

The mean RPE value of approximately 0.137 meters indicates the algorithm's average 
precision in estimating poses relative to ground truth poses during the 'Sideways Camera 
Orientation' scenario. The presence of outliers in the RPE plot (Figure 6.8), particularly 
the increasing trend, impacts the algorithm's precision. It's noteworthy that the mean 
RPE value for forward-facing orientation is 0.121 meters, suggesting that the algorithm 
performs better when the camera is oriented forward. 

 
Initially low RPE can be explained by the camera's proximity to various static objects 
in the scene. When the camera is in close proximity to these objects, the algorithm 
benefits from more reliable feature tracking and reference points as seen in Figure 6.10 
. Consequently, this results in lower RPE values due to the enhanced ability to accurately 
estimate the camera's pose. The presence of nearby features introduces significant 
parallax in the camera's field of view, which aids the algorithm in achieving better pose 
estimation accuracy. The trend of increasing RPE outliers beyond 19 seconds suggests 
a reduction in the algorithm's precision during this phase. This trend is attributed to the 
transition of the scene from close proximity to various static objects to a predominantly 
distant wall, approximately 20 meters away. Distant walls, especially when they lack 
distinctive features (Figure 6.9), do not provide the same level of parallax as nearby 
objects. This lack of pronounced parallax in the distant wall scene poses a challenge to 
the algorithm's ability to estimate the camera's pose accurately. As the camera moves 
away from the nearby objects, the algorithm faces a challenging situation for pose 
estimation. 

 

Figure 6.8 Relative pose error: sideways camera orientation 



 

 6 Experimental Results 
 

66 
 

While the number of outliers reduce after the peak at 19 seconds, the fact that their 
magnitudes continue to increase indicates that, as the scenario progresses, the 
algorithm's pose estimation errors become more pronounced and less reliable in 
comparison to ground truth poses. This trend is observed due to the factors such as a 
lack of distinctive features and reduced scene complexity. 
 

 
 
 
 

 

Figure 6.10 Detected close features at 6 
sec  

Figure 6.9 Detected features at 19 sec 



 

 6 Experimental Results 
 

67 
 

 
c) 'L' Shaped Trajectory 

 
The 'L' shaped trajectory experiment aims to assess the algorithm's accuracy in handling 
complex and non-linear motion patterns. 
 
Accuracy and Precision  
 
The mean ATE for the 'L' Shaped Trajectory' scenario is 2.328 meters. The ATE is low 
until the end of the motion along the x-axis as seen in Figure 6.11. However, the trend 
changes significantly after a sharp turn is performed. At this point, the ATE increases 
significantly, indicating that the algorithm struggles to accurately estimate poses after 
sharp turns. 

During the straight motion along the x-axis, the algorithm exhibits commendable 
performance, reflected in the RPE mean value of approximately 0.114 meters plotted in 
Figure 6.12. This relatively low mean RPE indicates that the algorithm maintains a 
consistent level of precision during this phase, with very few outliers. 
Interestingly, the turn phase is characterized by an almost complete absence of RPE 
outliers, demonstrating the algorithm's reliability in estimating poses during this specific 
motion pattern. This reliability during the turn can be attributed to the algorithm's ability 
to handle gradual turn dynamics, even when the camera undergoes simultaneous 
translation and rotation. During a turn, the algorithm performs well due to abundant 
motion cues, generating an accurate initial estimate.  

Figure 6.11 Aligned trajectory: 'L' shaped trajectory 



 

 6 Experimental Results 
 

68 
 

However, once the turn is completed and the scene changes abruptly, the algorithm's 
continued reliance on the outdated initial estimate led to error accumulation. This occurs 
because subsequent frames are aligned with the inaccurate estimate, causing the 
camera's estimated pose to drift from the true pose, resulting in increased ATE and RPE 
values. 

 

After the turn, the scenario changes as the camera's viewpoint encounters a large 
reflection in the scene (Figure 6.13). Large reflections introduce confusing depth cues 
and disrupt feature tracking. In this case, the presence of a large reflection, combined 
with the algorithm's transition from a well-handled turn to a scene with distorted depth 
perception, contributes to the sudden increase in RPE outliers. These outliers culminate 
in the maximum RPE value of approximately 0.932 meters. This observation 
underscores the impact of scene-specific complexities, such as large reflections on 
stereo correspondence (Figure 6.14), impacting the algorithm's pose estimation 
accuracy. 
 

Figure 6.12 Relative pose error: 'L' shaped trajectory 



 

 6 Experimental Results 
 

69 
 

 

 
 

d) Free Trajectory with Forward-Facing Camera 
 
The experiment involving a free trajectory with a forward-facing camera simulated real-
world scenarios where the robot's motion is unrestricted and can vary significantly. 
 
Accuracy and Precision  
 
The mean ATE for the 'Free Motion Trajectory' scenario is 1.045 meters. The highest 
ATE value of 1.663 meters observed at the end of the sequence plotted in Figure 6.15, 
where the motion direction is abruptly flipped. Suggesting that the algorithm performs 
well in linear straight motions while it struggles more in managing changes in motion 
direction. 
 

Figure 6.13 Transition frame: large reflection(i.e image saturated areas) 

Figure 6.14 Incorrect Stereo Correspondence (transition frame) 



 

 6 Experimental Results 
 

70 
 

 

 
During straight motion segments, the RPE remains consistent along the mean of 0.175 
meters, reflecting the algorithm's ability to maintain precision in estimating poses when 
the camera motion is relatively predictable and straightforward. The trend of consistent 
RPE during turns is a positive indicator of precision. It suggests that the algorithm can 
maintain a reliable level of pose estimation accuracy even during challenging non-linear 
motion patterns. However, the significant increase in RPE values after the turns is 
notable particularly around 6 and 15 seconds during the stride as seen in Figure 6.16. 
This indicates that while the algorithm maintains precision during the turn itself, but 
faces difficulties in accurately estimating poses immediately following the turn, as 
observed in the accuracy analysis. 

Figure 6.15 Aligned trajectory: Free Trajectory 



 

 6 Experimental Results 
 

71 
 

The presence of a dynamic moving object (a human being) in the scene (Figure 6.17) at 
8.5 second adds complexity to the scenario and this is where the maximum RPE value 
of 0.989 meters is observed.  

 

Figure 6.16 Relative pose error: free motion trajectory 

Figure 6.17 Transition frame: dynamic object (Human) 



 

 6 Experimental Results 
 

72 
 

Comparative data of all the 10 strides performed during the experiment is enlisted in the Table 
6.1. 

 

 

 

 

 

 

 

 

Table 6.1 ATE & RPE Comparison 

0 0.5 1 1.5 2 2.5 3 3.5

Straight Line Movement with Forward-Facing…

Straight Line backward Movement

Sideways Camera Orientation- 1

Sideways Camera Orientation- 2

L' Shaped Trajectory- 1

L' Shaped Trajectory- 2

L' Shaped Trajectory- 3

Free motion Trajectory- 1

Free motion Trajectory- 2

Free motion Trajectory- 3

Translational error (m)

M
ot

io
n 

Ty
pe

Straight
Line

Moveme
nt with

Forward-
Facing

Camera

Straight
Line

backward
Moveme

nt

Sideways
Camera

Orientati
on- 1

Sideways
Camera

Orientati
on- 2

L' Shaped
Trajector

y- 1

L' Shaped
Trajector

y- 2

L' Shaped
Trajector

y- 3

Free
motion

Trajector
y- 1

Free
motion

Trajector
y- 2

Free
motion

Trajector
y- 3

RPE RSME 0.172 0.202 0.202 0.233 0.193 0.206 0.238 0.232 0.244 0.254
ATE RSME 0.803 1.086 0.918 1.136 2.436 2.225 1.871 1.363 1.102 2.963

ATE & RPE Comparision Across 10 Motion Types

RPE RSME ATE RSME



 

 6 Experimental Results 
 

73 
 

 

Robustness Analysis 

The algorithm shows adaptability to changes in scene complexity. When the scene 
contains more features, such as when it gets closer to a wall, the algorithm refines its 
accuracy effectively. It can handle variations in scene complexity and progressively 
improves accuracy as more features become available. This adaptability is a sign of 
robustness in scenarios with changing environments. Despite its adaptability, the 
algorithm is sensitive to certain challenging factors. It exhibits an increase in error when 
there are changes in lighting conditions or the presence of dynamic objects like sun 
reflections. The presence of large reflections in the scene poses a challenge, leading to 
a sudden increase in error. This sensitivity suggests that the algorithm might require 
additional mechanisms to handle abrupt changes in scene characteristics. 

In scenes with nearby features having pronounced parallax, the algorithm performs 
comparatively well. It benefits from parallax when nearby features are present. Higher 
parallax is beneficial in two critical steps of the Stereo VO algorithm, during feature 
tracking and triangulation. When tracking keypoints between frames, greater parallax 
makes it easier to accurately match and track these features, improving feature 
correspondence accuracy. Moreover, during triangulation, higher parallax enables more 
accurate and well-conditioned estimation of 3D points from 2D correspondences, 
contributing to more precise pose estimation, reducing ambiguities in feature tracking 
and 3D reconstruction. Henceforth, it faces difficulties in scenes with a distant wall and 
fewer distinctive features.  

The algorithm's robustness varies significantly during different phases of a scenario. It 
struggles during sharp turns, resulting in significant errors. However, during gradual 
turn dynamics, it maintains good accuracy and precision. The algorithm's performance 
is consistent during straight motion segments, maintaining precision when the camera 
motion is relatively predictable and straightforward. However, it faces challenges after 
abrupt changes in motion direction, leading to increased errors. 

Overall, the algorithm exhibits robustness to varying degrees across different scenarios 
as shown in Table 6.2. It shows adaptability to changing scene complexities, but its 
sensitivity to certain challenging factors like abrupt changes in lighting or the presence 
of dynamic objects affects its performance. The algorithm's robustness is influenced by 
specific scene characteristics. 

 

 

 

 

 



 

 6 Experimental Results 
 

74 
 

 

 

Motion type ATE 
RMSE 

ATE 
mean 

ATE 
max 

ATE 
min 

Final 
ATE  

RPE 
RMSE 

RPE 
mean 

RPE 
max 

RPE  
min 

Straight Line 
Movement with 
Forward-Facing 
Camera 

0.803 0.733 1.609 0.183 0.506 0.172 0.121 0.613 0.014 

Straight Line 
backward Movement 

1.086 0.967 2.267 0.216 0.937 0.202 0.138 0.775 0.004 

Sideways Camera 
Orientation- 1 

0.918 0.784 2.020 0.149 0.605 0.202 0.137 0.762 0.002 

Sideways Camera 
Orientation- 2 

1.136 1.103 1.807 0.432 0.592 0.233 0.18 0.686 0.005 

L' Shaped Trajectory- 
1 

2.436 2.328 3.618 0.777 1.378 0.193 0.117 0.995 0.002 

L' Shaped Trajectory- 
2 

2.225 2.052 3.148 0.387 2.127 0.206 0.13 0.918 0.006 

L' Shaped Trajectory- 
3 

1.871 1.731 2.823 0.359 1.746 0.238 0.162 0.826 0.009 

Free motion 
Trajectory- 1 

1.363 1.217 2.519 0.281 1.323 0.232 0.167 0.766 0.006 

Free motion 
Trajectory- 2 

1.102 1.045 1.663 0.352 0.826 0.244 0.175 0.864 0 

Free motion 
Trajectory- 3 

2.963 2.671 5.409 1.054 3.752 0.254 0.171 0.989 0 

 

Table 6.2 ATE & RPE Errors 

6.2 Computational Efficiency 
The performance of VO algorithms not only depends on the ability to accurately estimate pose 
and trajectory but also on capacity to perform those process swiftly and without burdening the 
computational resources at disposal. The efficiency with which these estimates are obtained 
plays a pivotal role in real-time applications. This section delves into two critical aspects of 
computational efficiency: “CPU Usage” and “Elapsed Time”. 

6.2.1 CPU Usage 
CPU usage provides valuable insights into the computational demands of the stereo visual 
odometry algorithm. It is typically categorized into “System” (sys) and “User” (us) components, 
each representing the proportion of CPU resources allocated to system-level and user-level 
processes, respectively. System CPU Usage (sys) in context of visual odometry, includes tasks 
such as data loading, memory management, and other system-related operations necessary for 
algorithm execution. User CPU Usage (us) encompasses the actual computations, image 
processing, feature tracking, and pose estimation performed by the algorithm. 



 

 6 Experimental Results 
 

75 
 

Collected CPU Usage data for a diverse set of 10 distinct motion scenarios in Table 6.3 
encompass a wide range of motion complexities, from simple linear movements to intricate, 
high-curvature trajectories. By examining CPU Usage for each of these motions gives insights 
into algorithm’s adaption to different computational demands. 

 

6.2.2 Elapsed Time 
Elapsed Time, also known as execution time for a visual odometry algorithm measures the 
actual time it takes for the algorithm to process input data, perform computations, and estimate 
the robot's pose and trajectory. Elapsed Time encompasses the entire duration of algorithm 
execution and includes factors like data loading, feature extraction, matching, and pose 
estimation. This Table 6.4 encapsulates the algorithm's speed and responsiveness when 
presented with diverse motion complexities and computational workloads. 

  

Table 6.3 CPU Usage 

Straight
Line

Moveme
nt with

Forward-
Facing

Camera

Straight
Line

backward
Moveme

nt

Sideways
Camera

Orientati
on- 1

Sideways
Camera

Orientati
on- 2

L' Shaped
Trajector

y- 1

L' Shaped
Trajector

y- 2

L' Shaped
Trajector

y- 3

Free
motion

Trajector
y- 1

Free
motion

Trajector
y- 2

Free
motion

Trajector
y- 3

us (sec) 10.5 10.6 11 10.3 10.4 9.6 10.7 9.7 10.5 10.9
sys (sec) 13.1 14.6 15.4 12.8 12.5 12.9 11.9 12.1 12.4 12.5

0

2

4

6

8

10

12

14

16

18

CP
U 

%

Motion Type

CPU Usage



 

 6 Experimental Results 
 

76 
 

6.3 Limitations and Challenges 
This section serves as an exploration into the limitations and challenges that were encountered 
during the course of this Stereo VO experiment. These challenges encompass various facets of 
methodology and data collection process, providing essential context for the interpretation of 
the results. 

6.3.1 Impact of Changing Light Conditions 
During the outdoor experiment execution, the natural lighting conditions exhibited variations. 
These fluctuations in natural light conditions are typical in outdoor environments over an 
extended duration and influence the quality of data and the performance of the sensors and 
instruments employed in the study. Variations in natural lighting levels resulted in exposure 
changes, leading to differences in the quality and clarity of captured images between different 
time intervals. As the outdoor lighting changed, it introduced challenges related to the visibility 
of features of interest within the experimental scene. Changes in sunlight angles led to the 
occurrence of shadows or glare, which impact the interpretation of captured data. 

Table 6.4 Elapsed time comparison 

Straight
Line

Moveme
nt with

Forward
-Facing
Camera

Straight
Line

backwar
d

Moveme
nt

Sideway
s

Camera
Orientati

on- 1

Sideway
s

Camera
Orientati

on- 2

L'
Shaped
Trajecto

ry- 1

L'
Shaped
Trajecto

ry- 2

L'
Shaped
Trajecto

ry- 3

Free
motion
Trajecto

ry- 1

Free
motion
Trajecto

ry- 2

Free
motion
Trajecto

ry- 3

elasped time (sec) 36.183 35.107 32.489 36.413 52.794 45.136 39.891 30.951 42.64 57.018
cpu % 23.6 25.2 26.4 23.1 22.9 22.5 22.6 21.8 22.9 23.4

0

10

20

30

40

50

60
El

ap
se

d 
tim

e 
&

 cp
u%

Motion Type

Elasped Time Comparision Across 10 Motion Types 



 

 6 Experimental Results 
 

77 
 

To mitigate the impact of changing light conditions, the camera was configured with 
autoexposure control, which allowed dynamic adjustment of the exposure settings in response 
to changing light levels. The exposure time was set to a specific value (e.g., 100 microseconds) 
to ensure that variations were within a manageable range. 

6.3.2 Height Placement of Laser Tracker System 
The deliberate choice to position the laser tracker system at a height of approximately 5 meters 
was to satisfy the requirement for the laser beam emitted by the tracking system to be 
consistently and accurately reflected back from the centre of the reflector. This alignment was 
critical to obtain larger Field of View (FOV) and ensure the operational reliability of the 
tracking system. To achieve this alignment, the reflector had to maintain a constant orientation, 
continually facing the laser tracker. From this vantage point, the tracking system had an 
unobstructed line of sight to the reflector, and the laser beam could consistently target the 
reflector's centre. However, variations in height introduce challenges related to calibration and 
measurement accuracy. 

6.3.3 Lack of Start Trigger and System Compatibility 
The absence of a synchronized start trigger during the experiment was due to the tracking 
system and the Stereo VO estimation system operating on different platforms and physically 
separated during the experiment. 

The laser tracking system utilized its proprietary software to collect data, which necessitated a 
direct cable connection to the tracking system. Conversely, the camera was mounted on a 
separate laptop, and the VO algorithm was executed on this mobile platform. This physical 
separation and the differing operating environments posed challenges in achieving a uniform 
start trigger for both systems. The lack of a synchronized start trigger introduced implications 
for data synchronization and subsequent analysis. The discrepancies in system start times meant 
that timestamps for data collection were not perfectly aligned. Consequently, instances occurred 
where one system collected data while the other did not, leading to timestamps that were 
occasionally mismatched. These misalignments affected the accuracy of motion estimation and 
tracking results, especially when precise temporal correlation between ground truth and 
estimated data was essential. 

To mitigate the challenges posed by the absence of a synchronized start trigger and timestamp 
discrepancies, synchronization of the timestamps was done between the ground truth and 
estimated data by converting them to the Unix timestamp format. This conversion ensured that 
the timestamps were expressed in a common time reference, facilitating alignment. To further 
align the data, interpolation was done to estimate missing data points, ensuring that data 
collected by one system during periods of misalignment could be estimated and incorporated 
into the analysis. 



 

 7 Applications and Future Directions 
 

78 
 

7 Applications and Future Directions 

7.1 Potential Applications of Stereo Visual Odometry 
Stereo Visual Odometry holds immense potential in various domains, revolutionizing industries 
such as robotics, autonomous driving, virtual reality (VR), augmented reality (AR), and 3D 
reconstruction. By leveraging stereo camera setups, Stereo VO can accurately estimate the 3D 
motion of objects, vehicles, or users in their respective environments. Stereo VO enables precise 
navigation for autonomous vehicles, enhances immersion in virtual environments, aids in 
robotic tasks, and facilitates the creation of detailed 3D maps.  

7.1.1 Robotics 
In context of ‘Robotics’, here only mobile robotic platforms are considered. These platforms 
can be broadly classified as Land robots, Underwater robots, Space Exploration robots, 
Agriculture robots. Applications of stereo VO is Land robots are explained in the next section 
‘Autonomous Driving’. 

 Underwater robots  
 

Fast Visual Odometry for a Low-Cost Underwater Embedded Stereo System (Mohamad 
Motasem Nawaf, 2018)  implemented on BlueROV2 (Figure 7.1), facilitates underwater 
surveys and run smoothly in real-time. A first post-image acquisition module provides 
direct visual feedback on the quality of the taken images which helps appropriate actions 
to be taken regarding movement speed and lighting conditions. It implements a light 
visual odometry method adapted to the underwater context. The proposed method uses 
the captured stereo image stream to provide real-time navigation and a site coverage 
map which is necessary to conduct a complete underwater survey. The visual odometry 
uses a stochastic pose representation and semi-global optimization approach to handle 
large sites and provides long-term autonomy, whereas a novel stereo matching approach 
adapted to underwater imaging and system attached lighting allows fast processing and 
suitability to low computational resource systems. 



 

 7 Applications and Future Directions 
 

79 
 

 
 Space Exploration robots 

 
Visual odometry for the Mars Exploration Rovers (Figure 7.2) developed by NASA (Y. 
Cheng, 2006) has presented an approach of position estimation to find features in a 
stereo image pair and track them from one frame to the next. Visual odometry has been 
a highly effective tool for maintaining vehicle safety while driving near obstacles on 
slopes, achieving difficult drive approaches in fewer sols, and ensuring accurate science 
imaging. Although it requires active pointing by human drivers in feature-poor terrain, 
the improved position knowledge enables more autonomous capability and better 
science return during planetary operations. 

 

Figure 7.2 NASA’s twin MARS rovers (MARS Exploration Rovers, n.d.) 

 

Figure 7.1 BlueROV 2 (Mohamad 
Motasem Nawaf, 2018) 



 

 7 Applications and Future Directions 
 

80 
 

 
 Agricultural robots 

 
Vision-based localization and mapping in the agricultural environment is challenging 
due to the unstructured scene with unstable features, illumination variations, bumpy 
roads, and dynamic environmental objects. To address these challenges, stereo direct 
visual odometry system with modifications on Stereo-DSO can be implemented (T. Yu, 
2021). Firstly, select some well-matched static stereo points in the latest keyframe to 
improve the accuracy of inverse depth calculation for tracking. The inverse depth can 
further distinguish close objects from background, which will avoid large and far-away 
scene objects in keyframe determination. To boost efficiency and accuracy at the 
tracking stage, a point selection method to sample map points and remove outliers is 
used. Furthermore, altitude smoothness verification with a local flat ground assumption 
and recovery method for tracking failure on bumpy roads are introduced to improve the 
system’s robustness. Finally, a far-away keyframe is reserved in the sliding window to 
alleviate the orientation drift since the agricultural robots usually move straightly 
following the crop row.  

7.1.2 Autonomous Driving 
Autonomous vehicles represent a rapidly advancing and highly challenging application area for 
visual odometry, especially in unstructured environments. Visual odometry plays a pivotal role 
in enabling truly autonomous vehicles, as it deals with various critical factors, including 
dynamic scenes, illumination changes, long-term operation, and large-scale environments. The 
algorithms designed for this application must address these specific complexities to ensure 
accurate and reliable motion estimation, allowing autonomous vehicles to navigate safely and 
effectively in diverse and unpredictable surroundings. 

One such approach is vehicle localization in dense urban environments using a stereoscopic 
system and a GPS sensor (Lijun Wei, 2011). A stereoscopic system is employed to capture 
stereo video footage, enabling the reconstruction of the environment and estimation of vehicle 
motion. This process involves feature detection, matching, and triangulation from each pair of 
images. To ensure accuracy, a relative depth constraint is applied, which eliminates tracking 
inconsistencies caused by vehicle ego-motion. The optimal rotation and translation between the 
current and reference frames are computed using an RANSAC-based minimization technique. 
Additionally, GPS positions obtained from an on-board GPS receiver are periodically used to 
adjust the estimated vehicle orientations and positions derived from stereovision. 

To validate the proposed method, it was tested using real sequences acquired from a GEM 
vehicle equipped with a stereoscopic system and an RTK-GPS receiver. The results 
demonstrate that the integration of vision and GPS data yields a trajectory that aligns better 
with the ground truth compared to using vision alone, particularly concerning vehicle 



 

 7 Applications and Future Directions 
 

81 
 

orientation. Conversely, the stereovision-based motion estimation method helps rectify issues 
with the GPS signal, such as failures caused by multipath problems or other noises. In essence, 
this approach combines the strengths of both vision and GPS technologies, providing more 
robust and accurate motion estimation for autonomous vehicle applications. 

Another application is DARPA’s LAGR (Learning Applied to Ground Robotics) vehicle 
(Figure 7.3 DARPA LAGR vehicle (James S. Albus, 2006)) (Howard, 2008). it is equipped 
with two stereo camera pairs, wheel encoders and a MEMs IMU. A very simple filter is 
employed that fuses visual odometry, wheel encoder and IMU data. Most of the time, the filter 
simply integrates motion estimates from visual odometry, but falls back on encoders and IMU 
data when the visual odometry reports failure. 

 

 

 

7.1.3 Virtual Reality and Augmented Reality 
VR/AR technology is a highly popular and productive research focus because of its wide range 
of potential applications and development directions. There are, however, existing technical 
difficulties relating to three core issues of augmented reality technology: realizing stable and 
accurate virtual three-dimensional registration, realizing virtual reality integration, and 
realizing natural human-computer interaction. Visual-inertial odometry (VIO) is the fusion of 
information measured by the visual sensor and by the inertial measurement unit. The latter is 
used to calculate the motion relationship of the sensor between adjacent time frames, and so 
calculate the motion trajectory. In a VR head mounted display (VR HMD), the estimated pose 
of the user’s head is used as the starting point of the virtual reality scene rendering process 
(Mandal, 2019).  

Figure 7.3 DARPA LAGR vehicle 
(James S. Albus, 2006) 



 

 7 Applications and Future Directions 
 

82 
 

One of the application stereo visual odometry can be easily demonstrated by ‘ZED Mini’ as 
shown in Figure 7.4 ZED - mini (zed-mini, n.d.). It is a mixed-reality camera integrating aspects 
of both virtual and augmented reality. It has a Stereo-IMU camera setup which mimics the way 
human eyes perceive the world. The camera captures high-resolution stereo video and 
integrates it with dynamic space mapping and tracking which blends the virtual elements in real 
world scene. (zed-mini, n.d.) 

7.2 Future Research Directions  
Stereo odometry based on careful feature selection and tracking SOFT2 is a VO model 
capitalizing on the limitations established by epipolar geometry and kinematics, tailor-made for 
setups that lack pure rotation characteristics. The approach minimizes the distances between 
points and epipolar lines, thus ensuring robustness against uncertainties in object depth. The 
initial phase involves estimating motion up to scale using a single camera. Subsequently, a 
simultaneous estimation of absolute scale and extrinsic rotation for the second camera is 
proposed, mitigating the impact of fluctuating stereo rig extrinsics. To refine motion estimates 
across a temporal frame window, an epipolar line bundle adjustment procedure is employed. 
Furthermore, a novel approach employing multiple hypotheses for feature matching is 
introduced, designed for self-similar planar surfaces that incorporate appearance changes due 
to perspective shifts. 

Human Visual Attention Mechanism-Inspired Point-and-Line Stereo Visual Odometry 
(PLWM-VO) for Environments with Uneven Distributed Features (Wang C. Z., 2023)  is 
proposed to describe scene features in a global and balanced manner. A weight-adaptive model 
based on region partition and region growth is generated for the human visual attention 
mechanism, where sufficient attention is assigned to position-distinctive objects (sparse 
features in the environment). Furthermore, the sum of absolute differences algorithm is used to 
improve the accuracy of initialization for line features. Compared with the state-of-the-art 
method (ORB-VO), PLWM-VO shows a reduction in the absolute trajectory error. Although 
the time consumption of PLWM-VO is higher than that of ORB-VO, online test results indicate 
that PLWM-VO satisfies the real-time demand. The proposed algorithm not only significantly 

Figure 7.4 ZED - mini (zed-mini, n.d.) 



 

 7 Applications and Future Directions 
 

83 
 

promotes the environmental adaptability of visual odometry, but also quantitatively 
demonstrates the superiority of the human visual attention mechanism. 

T-ESVO: Improved Event-Based Stereo Visual Odometry via Adaptive Time-Surface and 
Truncated Signed Distance Function (Zhe Liu, 2023), incorporates event cameras which have 
potential to be an excellent complement for standard cameras within various visual tasks, 
especially in illumination-changing environments or situations requiring high-temporal 
resolution. Hereby, an event-based stereo visual odometry (VO) system via adaptive time-
surface (TS) and truncated signed distance function (TSDF), namely, T-ESVO, is proposed. 
The system consists of three carefully designed components, including the event processing 
unit, the mapping unit, and the tracking unit. Specifically, the event processing unit adopts a 
novel spatial–temporal adaptive TS that can deal with different camera motions in various 
environments. The mapping unit introduces the TSDF to describe the 3D representation of 
environments and achieves depth estimation based on the global historical depth information 
contained in the environmental TSDF description. The tracking unit achieves the 6-DoF pose 
estimation through an 3D–2D registration method based on the left/right TS selection 
mechanism and the depth point selection mechanism. The experimental results show that T-
ESVO achieves good performance in both accuracy and robustness when compared with other 
state-of-the-art event-based stereo VO systems. 

Stereo Visual Odometry Approach Based on Optical Flow and Depth Information (Duan C, 
2023) is a VO model that capitalizes on the synergy between optical flow and depth 
information. Unlike certain monocular VO techniques, this approach eliminates the need for 
extra frames or initialization with external information to establish absolute scale, and it also 
addresses the consideration of moving objects. By fusing optical flow and depth information, a 
novel framework for stereo VO is established, leveraging deep neural networks. This 
framework facilitates the simultaneous generation of optical flow and depth outputs from 
consecutive pairs of stereo RGB images. This method surpasses established learning-based and 
monocular geometry-centred techniques achieving real-time performance, thereby establishing 
the method's dual advantage of effectiveness and efficiency. 

Stereo Visual Odometry with Deep Learning-Based Point and Line Feature Matching using an 
Attention Graph Neural Network (Shenbagaraj Kannapiran, 2023) is an approach to utilize both 
point and line features and incorporates an innovative feature-matching mechanism driven by 
an Attention Graph Neural Network. This mechanism is effective in challenging weather 
conditions like fog, haze, rain, and snow, as well as in situations with varying lighting 
conditions such as nighttime illumination and glare. The outcomes reveal that this approach 
outperforms existing line matching algorithms, achieving a higher number of successful line 
feature matches. When combined with point feature matches, this method consistently 
demonstrates strong performance in adverse weather and dynamic lighting environments.



 
 
 8 Discussion 
 

84 
 

8 Discussion  

This section provides answers to the research questions that were posed. It addresses these 
questions in sequence, beginning with "What different image processing and feature-based 
techniques can be employed to compensate for external sensor limitations?" Following that, it 
examines "How can image processing and feature-based techniques be utilized to enhance the 
accuracy, robustness, and computational efficiency of stereo VO?" Subsequently, it delves into 
the inquiry "How can the parameters of a VO algorithm be adjusted to achieve optimal real-
time performance while maintaining robustness in the face of changing lighting conditions and 
occlusions?". 

Various image processing and feature-based approaches to compensate for external 
sensor limitations 

The Feature detector based on the FAST (Features from Accelerated Segment Test) algorithm, 
Stereo Semi-Global Block Matching (SGBM) correspondence, depth information from stereo 
images, estimating camera pose using the RANSAC (Random Sample Consensus) algorithm 
and tracking the camera poses using combination keypoint correspondences optical flow and 
disparity calculation constitute into an effective visual odometry technique which can 
compensate for stand-alone navigation using data from IMU (Inertial Measurement Unit), GPS, 
or wheel encoders. 

Properly calibrated stereo cameras provide accurate information about the robot's environment. 
When fused with IMU data, this enables precise positioning and orientation estimation, even in 
challenging situations where IMU data alone might suffer from drift or noise. Calibrated 
cameras can also assist in better feature tracking, improving the quality of data used for 
navigation. Stereo correspondence algorithms help establish correspondences between stereo 
images, leading to 3D reconstruction of the environment. By combining this 3D information 
with data from wheel encoders, it becomes possible to create a more reliable odometry system. 
Wheel encoders may suffer from slippage or inaccuracies over time, but visual odometry can 
help correct for these errors. Estimating depth information from stereo images provides 
valuable context for navigation. Integrating this depth data with GPS can enhance localization, 
especially in environments with poor GPS signal quality, such as urban canyons or dense 
forests. Additionally, combining depth data with wheel encoder readings can help correct for 
wheel slippage or irregularities. Pose Estimation and Motion Tracking modules enable accurate 
tracking of the robot's motion and pose. When fused with IMU data, they help correct for short-
term IMU drift. By continuously refining the robot's estimated position and orientation using 
visual odometry, IMU data, and GPS information, navigation accuracy improves, and 
cumulative errors are minimized. Optimization techniques refine motion and pose estimates, 
making them more accurate and stable. When applied in conjunction with IMU, GPS, or wheel 



 
 
 8 Discussion 
 

85 
 

encoder data, optimization helps maintain consistent and accurate navigation results over time. 
It can also address sensor noise and bias, further enhancing overall navigation performance. 

In summary, integrating these image processing and feature-based techniques with data from 
IMU, GPS, or wheel encoders offers several advantages for navigation. Enhanced accuracy can 
be achieved by combining multiple data sources and using visual cues from stereo cameras, 
navigation systems can achieve higher accuracy than relying on any single sensor alone. These 
techniques compensate for the limitations of individual sensors. For instance, they can correct 
for IMU drift, GPS signal loss, wheel encoder errors, and other sensor-related issues. The 
continuous processing and optimization provided by these techniques allow for real-time 
adaptation to changing environmental conditions, ensuring robust and reliable navigation. 
Cumulative Errors are reduced by refining estimates and minimizing errors at each step, 
assisting the navigation system to maintain accuracy even during extended operations. 
Incorporating these techniques into navigation systems can significantly improve their 
performance and reliability when dealing with data from IMU, GPS, or wheel encoders. 

Optimization of the precision, resilience, and computational efficiency of stereo visual 
odometry 

While the FAST algorithm primarily focuses on speed, it indirectly contributes to accuracy by 
rapidly identifying keypoints or distinctive points in stereo images. These keypoints serve as 
essential reference points for tracking camera motion accurately. Efficiently detecting features, 
the FAST algorithm helps maintain robustness in challenging scenarios, such as low-texture 
environments or scenes with motion blur. Robust feature detection ensures a consistent stream 
of relevant data for motion estimation. The FAST’s ability to identify keypoints quickly reduces 
the computational overhead in the visual odometry pipeline. This efficiency is crucial for 
achieving real-time performance in stereo VO applications. 

The Lucas-Kanade optical flow method, when used in conjunction with image pyramids, 
improves the accuracy of optical flow estimation. Image pyramids provide a multi-scale 
representation of the image, enabling the algorithm to handle large and small motion accurately. 
This enhanced accuracy directly benefits stereo VO by providing precise information about 
how keypoints move between frames. Accurate optical flow estimation enhances the robustness 
of stereo VO, especially in scenes with substantial motion or significant changes. It ensures that 
feature correspondences are reliable, even in complex environments. Despite its iterative nature, 
the Lucas-Kanade method is computationally efficient, particularly when combined with image 
pyramids. This computational efficiency supports real-time processing in stereo VO 
applications. 

Efficient Disparity Map Computation using Stereo Block Matching algorithm (SGBM) 
efficiently computes the disparity map, which represents depth differences between stereo 
images. This depth information greatly enhances the accuracy of stereo VO. Accurate depth 
information helps in better understanding the 3D structure of the environment, improving 



 
 
 8 Discussion 
 

86 
 

motion estimation. Reliable disparity map computation contributes to the robustness of stereo 
VO, especially when dealing with challenging scenes containing occlusions or varying lighting 
conditions. It ensures that the system can maintain accurate feature correspondences. SGBM is 
optimized for speed, making it well-suited for real-time applications. Its efficiency in 
computing the disparity map allows for swift and continuous depth estimation, which is 
essential for accurate stereo VO. 

Least squares optimization plays a crucial role in refining initial motion estimates. By 
minimizing reprojection errors between predicted and actual keypoints positions, this 
optimization technique significantly improves the accuracy of camera pose estimation in stereo 
VO. The iterative nature of least squares optimization helps mitigate errors in initial motion 
estimates caused by factors like sensor noise, occlusions, or dynamic objects in the scene. This 
leads to increased robustness in stereo VO. While least squares optimization adds 
computational complexity, its benefits in accuracy and robustness outweigh the cost. It ensures 
that stereo VO maintains a high level of accuracy even in challenging situations. 

Optimizing Visual Odometry Algorithm Parameters for Real-Time Performance and 
Robustness in Changing Environments 

Fine-tuning parameters used in stereo vision and visual odometry to control the behaviour of 
the StereoSGBM algorithm, keypoint detection (FAST), and optical flow tracking (Lucas-
Kanade) can significantly impact the accuracy and performance of stereo visual odometry. 

Stereo Vision Parameters namely, 

minDisparity is the minimum possible disparity value. It represents the minimum horizontal 
shift for matching pixels between the left and right images. A smaller value can lead to better 
depth estimation if your camera setup has a baseline close to zero. 

numDisparities is the disparity search range, which defines the maximum horizontal shift for 
matching pixels between the left and right images. A larger value could potentially capture 
objects at greater distances but may require more computational resources.  

blockSize is the size of the disparity-matching window or block. Larger block sizes can improve 
robustness but may reduce accuracy in the presence of depth discontinuities. Experimentation 
can be done with larger or smaller window sizes to optimize the trade-off between accuracy 
and computational efficiency. 

P1 (Penalty1) and P2 (Penalty2) are penalties for disparity change by plus or minus 1 between 
adjacent pixels within the same block. Suitable value of ‘k’ discourages discontinues or larger 
disparities. 

Formula: Pn = kn * blockSize * blockSize 

Equation 8.1 Penalty calculation 



 
 
 8 Discussion 
 

87 
 

Computer Vision Parameters like, 

The FAST (Features from Accelerated Segment Test) feature detector is used to detect 
keypoints in the image. Adjusting the threshold for feature detection 
(fastFeatures.setThreshold()) allows to detect more or fewer features based on your specific 
requirements. Lower thresholds will detect more features, but it can also lead to false positives.  

lk_params (Lucas-Kanade parameters) for the Lucas-Kanade optical flow algorithm, which is 
used for tracking keypoints between frames. These parameters can affect how well features are 
tracked between frames. ‘winSize’, size of the window for optical flow tracking. ‘flags’, A flag 
specifying the algorithm options. ‘maxLevel’, number of levels in the image pyramid. ‘criteria’, 
termination criteria for the iterative process. 

 

RealSense Camera Parameters: 

Emitter Settings segment controls the emitter settings of the RealSense camera, affecting the 
emission of infrared light. 

depth_sensor.set_option(rs.option.emitter_enabled, set_emitter): Enables or disables the 
emitter, where set_emitter is set to 0 to turn off the emitter.  

sensor.set_option(rs.option.enable_auto_exposure, True): Enables automatic exposure control. 

depth_sensor.set_option(rs.option.exposure, exposure_time): Sets the exposure time to 100 
microseconds. 

Histogram Equalization applies histogram equalization to the captured infrared frames to 
enhance contrast and image quality. cv2.equalizeHist(new_frame_left) and 
cv2.equalizeHist(new_frame_right) Apply histogram equalization to the left and right infrared 
frames. 

Frame Capture Rate determines the capture rate by setting a timeout for waiting for frames. 
frames = self.pipeline.wait_for_frames(30000): Waits for frames with a timeout of 30,000 
microseconds (30 milliseconds). 

 

 

 

 

 



 
 
 9 Bibliography 
 

88 
 

9 Bibliography 

al., J. S. (1994). Good features to track. In Computer Vision and Pattern Recognition 1994. 
1994 IEEE Computer Society Conference, (pp. 593-600). 

Andreas Geiger, P. L. (2012). Are we ready for Autonomous Driving? The KITTI Vision 
Benchmark Suite. Conference on Computer Vision and Pattern Recognition (CVPR). 

Bay, H. T. (2008). SURF: Speeded up robust features. Computer Vision and Image 
Understanding, 110(3), 346-359. 

Bebis, D. (2017). Image Formation. CS791E Notes. University of Nevada,Reno, Nevada, 
United States of America. Retrieved from 
https://www.cse.unr.edu/~bebis/CS791E/Notes/ImageFormation.pdf 

Burger, W. (2016). Zhang’s camera calibration algorithm: in-depth tutorial and 
implementation. HGB. 

C. Forster, M. P. (2014). Visual odometry for small handheld devices. 2014 IEEE International 
Conference on Robotics and Automation (ICRA) (pp. 4697-4704). Hong Kong, China: 
IEEE. 

Corke, P. (2017). Robotics, Vision and Control. Springer Cham. 

Cremers, D. A. (2012). Time-of-Flight Cameras: Principles and Applications. IEEE Signal 
Processing Magazine, 29(6), 93-104. 

Cremers, D. G. (2011). Optical flow for camera pose estimation: A tutorial. . Foundations and 
Trends® in Computer Graphics and Vision, 6(1), 1-100. 

cv::StereoSGBM Class Reference. (n.d.). Retrieved from 
https://docs.opencv.org/3.4/d2/d85/classcv_1_1StereoSGBM.html. 

D. Gitardi, S. S. (2022). UMA Universal Maintenance Automata – an adaptable robotic 
platform designed to run maintenance operations in harsh environment. 55th CIRP 
Conference on Manufacturing Systems (pp. 1473-1478). ELSEVIER B.V. 

Duan C, J. S. (2023). StereoVO: Learning Stereo Visual Odometry Approach Based on Optical 
Flow and Depth Information. Applied Sciences, 13(10):5842. 

E. Rosten, R. P. (2010). Faster and Better: A Machine Learning Approach to Corner Detection. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 105-119. 

Engel, J. e. (2012). Direct visual odometry with scale. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 34(4), 721-733. 



 
 
 9 Bibliography 
 

89 
 

Ethan Rublee, V. R. (2011). Orb: An efficient alternative to sift or surf. Computer Vision 
(ICCV) 2011 IEEE international conference, (pp. 2564-2571). 

F. Li, T. Z. (2020). Robust visual-inertial odometry for autonomous driving in urban 
environments. IEEE Robotics and Automation Letters, 5(1), 470-477. 

Forsyth, D. A. (2011). Computer Vision: A Modern Approach- 3rd Edition. Prentice Hall. 

G. Carlone, F. D. (2018). Robust visual-inertial odometry under dynamic conditions. IEEE 
Transactions on Robotics, 34(1), 140-155. 

Geiger, A. L. (2012). A tutorial on visual odometry. Foundations and Trends in Computer 
Graphics and Vision, 7(1), 1-86. 

Geiger, A. S. (2012). Visual Odometry: The Problem, The Algorithm, and the Application. 
Springer. 

Glocker, A. e. (2014). Visual odometry in challenging environments. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 36(8), 1529-1545. 

Hartley, R. a. (2004). Multiple View Geometry in Computer Vision - 2nd Edition. Cambridge 
University Press. 

Herbert Bay, T. T. (2006). Surf: Speeded up robust features. European conference on computer 
vision, (pp. 404-417). 

hexagon.com. (n.d.). Retrieved from hexagon.com: https://hexagon.com/products/leica-
absolute-tracker-at960 

Hirschmuller, H. (2005). Accurate and efficient stereo processing by semi-global matching and 
mutual information. 2005 IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition (CVPR'05) (pp. 807-814). San Diego, CA, USA: IEEE . 

Howard, A. (2008). Real-time stereo visual odometry for autonomous ground vehicles. 
IEEE/RSJ International Conference on Intelligent Robots and Systems. 

Intel® RealSense™ Depth Camera D455. (n.d.). Retrieved from 
https://www.intelrealsense.com/depth-camera-d455/ 

J. Engel, T. S. (2014). Direct visual odometry with scale estimation. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 36(8), 1628-1642. 

J. Sturm, N. E. (2012). A benchmark for the evaluation of RGB-D SLAM systems. 2012 
IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 573-580). 
Vilamoura-Algarve, Portugal: IEEE. 



 
 
 9 Bibliography 
 

90 
 

James S. Albus, R. V. (2006). THE LAGR PROJECT - Integrating learning into the 4D/RCS 
Control Hierarchy. International Conference on Informatics in Control, Automation and 
Robotics | 3rd | | Set bal Polytechnic Institute. Setubal, 1, PO. 

Krombach, N. &. (2018). Feature-based visual odometry prior for real-time semi-dense stereo 
SLAM. Robotics and Autonomous Systems, 109. 

Li, X. e. (2019). Visual-inertial odometry with deep feature integration. arXiv preprint 
arXiv:1904.03441 (2019).  

Lijun Wei, C. C. (2011). GPS and Stereovision-Based Visual Odometry. International Journal 
of Vehicular Technology. 

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International 
journal of computer vision, 91-110. 

LS, O. (2022). Image Formation - Selected Literature References. Olympus LifeScience. 
Retrieved from https://www.olympus-lifescience.com/en/microscope-
resource/primer/anatomy/imageformationreferences/ 

Mandal, D. K. (2019). Visual Inertial Odometry At the Edge: A Hardware-Software Co-design 
Approach for Ultra-low Latency and Power. Design, Automation & Test in Europe 
Conference & Exhibition (DATE), (pp. 960-963). Florence. 

MARS Exploration Rovers. (n.d.). Retrieved from https://mars.nasa.gov/mer/ 

MathWorks Switzerland. (n.d.). Retrieved from 
https://ch.mathworks.com/help/visionhdl/ug/stereoscopic-disparity.html 

Mikolajczyk, K. &. (2005). A performance evaluation of local descriptors. International 
Journal of Computer Vision, 60(1), 60-72. 

Mohamad Motasem Nawaf, D. M.-P.-M. (2018). Fast Visual Odometry for a Low-Cost 
Underwater Embedded Stereo System. Sensors (Basel). 

Mur-Artal, R. e. (2020). ORB-SLAM3: An open-source SLAM system for monocular, stereo, 
and RGB-D cameras. IEEE Transactions on Robotics, 36(4), 1080-1096. 

Newcombe, R. A. (2011). DTAM: Dense tracking and mapping in real-time. Proceedings of 
the IEEE International Conference on Computer Vision (ICCV).  

Perspective Projection - Wikipedia. (2022). Retrieved from Wikipedia, The Free Encyclopedia. 

Pinhole Camera Model . (n.d.). Retrieved from Wikipedia: 
https://en.wikipedia.org/wiki/Pinhole_camera 

Pollefeys, M. V. (2008). Stereo Visual Odometry. Springer. 



 
 
 9 Bibliography 
 

91 
 

Pollefeys, M. V. (2011). Semi-direct visual odometry. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 33(5), 998-1011. 

R. Arun, G. K. (2005). Parallel tracking and mapping for small visual-inertial systems. IEEE 
Transactions on Robotics and Automation, 21(5), 799-812. 

R. Mur-Artal, J. M. (2017). Scale-aware visual-inertial odometry. IEEE Transactions on 
Robotics, 33(6), 1487-1505. 

Rublee, E. R. (2011). ORB: an efficient alternative to SIFT. IEEE International Conference on 
Computer Vision (ICCV). 

Scaramuzza, D. (2011). Visual Odometry: Theory, Algorithms, and Applications. Springer. 

Scaramuzza, D. (2017). Lecture: Vision algorithms for mobile. 

Scaramuzza, D. a. (2009). Visual odometry for challenging environments. IEEE Transactions 
on Robotics, 25(1), 226-240. 

Schönberger, J. L. (2014). Monocular visual odometry for large-scale environments. 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 
2014 (pp. 801-808). Washington, D.C: IEEE. 

Shenbagaraj Kannapiran, N. B.-Y. (2023). Stereo Visual Odometry with Deep Learning-Based 
Point and Line Feature Matching using an Attention Graph Neural Network. 
arXiv:2308.01125. 

Sigmoidal. (2022). Fundamentals of Image Formation in Computer Vision. Retrieved from 
https://sigmoidal.ai/en/fundamentals-of-image-formation/ 

Stephens, C. H. (1988). A combined corner and edge detector. Alvey vision conference, (pp. 
23.1-23.6). 

Stevenius, H. (2014). Fundamentals of Visual Odometry. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 36(7), 1432-1446. 

Stewenius, H. a. (2011). Feature-based Visual Odometry. Springer. 

Strutz, T. (2016). Data Fitting and Uncertainty 2nd edition. Springer Vieweg . 

Szeliski, R. (2010). Computer vision: algorithms and applications. Springer Science & 
Business Media. 

T. Qin, P. L. (2018). VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State 
Estimator. IEEE Transactions on Robotics, 1-17. 



 
 
 9 Bibliography 
 

92 
 

T. Yu, J. Z. (2021). Accurate and Robust Stereo Direct Visual Odometry for Agricultural 
Environment. IEEE International Conference on Robotics and Automation (ICRA), (pp. 
2480-2486). Xi'an, China. 

Theobalt, C. A. (2016). Monocular depth estimation: A survey. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 38(2), 409-425. 

Wang, C. Z. (2023). Human Visual Attention Mechanism-Inspired Point-and-Line Stereo 
Visual Odometry for Environments with Uneven Distributed Features. Chin. J. Mech. 
Eng.  

Wang, W. e. (2021). Deep stereo visual odometry: A survey. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 43(1), 124-144. 

wikipedia.org. (n.d.). Retrieved from 
https://en.wikipedia.org/wiki/Random_sample_consensus 

Y. Cheng, M. W. (2006). Visual odometry on the mars exploration rovers - a tool to ensure 
accurate driving and science. Ieee Robotics and Automation Magazine, 54-62. 

Yang, S. e. (2018). DeepVO: Deep visual odometry for challenging environments. Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).  

zed-mini. (n.d.). Retrieved from www.stereolabs.com: https://www.stereolabs.com/zed-mini/ 

Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 22(11), 1330-1334. 

Zhe Liu, D. S. (2023). T-ESVO: Improved Event-Based Stereo Visual Odometry via Adaptive 
Time-Surface and Truncated Signed Distance Function. Adv. Intell. Syst. 2300027., 
https://doi.org/10.1002/aisy.202300027. 

 

 

 

 

 

 



 
 
 10 Appendices 
 

93 
 

10 Appendices 

 

10.1 Mathematical Formulations  
Equation 2.1 Perspective Projection Equation 10 

Equation 2.2 Camera Equation (Corke, 2017) 10 

Equation 2.3 Stereo Disparity 13 

Equation 3.1 Stereo Camera Calibration 21 

Equation 4.1 ATE at time step (i) 42 

Equation 4.2 RMSE at all time indices 42 

Equation 4.3 RPE at time step (i) 42 

Equation 4.4 RMSE at all time indices 42 

Equation 4.5 RMSE at all time intervals (∆) 43 

Equation 8.1 Penalty calculation 86 

 

  



 
 
 10 Appendices 
 

94 
 

10.2 Code Snippets  
Here important code snippets mentioned for implementation of Stereo Visual Odometry are 
illustrated, subsequent complete codes and files can be accessed through git repository. 

https://github.com/UtkarshSavkare/StereoVO.git 

10.2.1  Corner detection for Stereo calibration 
 

 



 
 
 10 Appendices 
 

95 
 

10.2.2  Stereo calibration and rectification 
 

 

 

 

  



 
 
 10 Appendices 
 

96 
 

10.2.3  Stereo VO on KITTI dataset (Parameters) 

 



 
 
 10 Appendices 
 

97 
 

10.2.4  Stereo VO on KITTI dataset (main) 

 

10.2.5  Real sense image acquisition pipeline (sensor settings) 
 

 

 

 



 
 
 10 Appendices 
 

98 
 

10.2.6  Stereo VO Realtime testing (Calibration parameters) 

 

 

 

 

 

 

 

 

 

 



 
 
 10 Appendices 
 

99 
 

10.2.7  Stereo VO Realtime testing (main) 
 




