
Training of Reinforcement Learning
Algorithms for Increased Flexibility
in Pumped Storage Power Plants
by Moritz Zebenholzer

A thesis for the degree of
Diplom-Ingenieur (Dipl.-Ing. or DI)

In the
Master program Chemical and Process Engineering

At the
Faculty of Mechanical and Industrial Engineering, TU Wien

Supervised by
DI Dr.techn. Felix Birkelbach, BSc

DIin Carlotta Sophie Freiin von Tubeuf, BSc

Author
Moritz Zebenholzer, BSc
Matr. Nr.: 11802510
moritz.zebenholzer@tuwien.ac.at
TU Wien
Institute for Energy Systems and
Thermodynamics
Getreidemarkt 9, A-1060 Wien

Supervisor
DI Dr.techn. Felix Birkelbach, BSc
TU Wien
Institute for Energy Systems and Thermodynamics
Getreidemarkt 9, A-1060 Wien

Co-Supervisor
DIin Carlotta Sophie Freiin von Tubeuf, BSc
TU Wien
Institute for Energy Systems and Thermodynamics
Getreidemarkt 9, A-1060 Wien

Affidavit
I declare in lieu of oath, that I wrote this thesis and performed the associated research
myself, using only literature cited in this volume. If text passages from sources are used
literally, they are marked as such. I confirm that this work is original and has not been
submitted elsewhere for any examination, nor is it currently under consideration for a
thesis elsewhere.

I acknowledge that the submitted work will be checked electronically-technically using
suitable and state-of-the-art means (plagiarism detection software). On the one hand,
this ensures that the submitted work adheres to the high-quality standards of the current
rules for ensuring good scientific practice "Code of Conduct" at the Vienna University
of Technology. On the other hand, a comparison with other students’ theses avoids
violations of my copyright.

Vienna, January 14, 2024
Moritz Zebenholzer

Abstract
Climate change requires converting the energy supply to renewables, notably by
expanding electricity generation, grid infrastructure, and storage options. Pumped
storage power plants are suitable for this and will be investigated in this thesis
using methods of Reinforcement Learning (RL), a form of machine learning. In
particular, blowing out the water in the turbine housing using compressed air will
be investigated. This occurs when switching between turbine and pump operation,
limiting the starting torque and the electrical power. In addition, blow-out is
necessary for phase shift operation.

To generate a control law, the pump-turbine model is embedded in a simulation
environment where the RL algorithm learns an optimal control scheme through
interaction with it. Modern algorithms are based on neural networks (NN) as uni-
versal function approximators, also known as Deep Reinforcement Learning (DRL).

The thesis aims to compare RL algorithms with regard to their performance system-
atically. For this purpose, neural network architectures are designed and compared
with each other in a study. In addition, the influence of hyperparameters on robust
and fast convergent training behavior is analyzed.

It can be shown that RL is able to control the blow-out process with discrete and
continuous actuating variables. Furthermore, it can be seen that these have the
same optimal behavior as defined by conventional controllers (hysteresis and PID)
and are achieved in a short training process. The designed neural networks can fully
represent the problem, requiring a minimum number of neurons per layer or learnable
parameters depending on the training parameters. According to the hyperparameter
study, it follows that there are (combinations of) learning rates where the optimum
is reached or where a predefined value is learned fastest. In addition, dependencies
of the influencing variables on training behavior were identified.

It can be concluded that the Reinforcement Learning concept is appropriate for
handling control problems satisfactorily. This requires a systematic approach to
selecting the proper neural network structure and the right choice of hyperparameters
for convergent training.

i

Kurzfassung
Der Klimawandel erfordert einen Umstieg auf erneuerbare Energien, vor allem durch
den Ausbau der Stromerzeugung, der Netzinfrastruktur und der Speichermöglich-
keiten. Pumpspeicherkraftwerke eignen sich hierfür und sollen in dieser Arbeit mit
Methoden des Reinforcement Learning (RL), einer Form des maschinellen Lernens,
untersucht werden. Im Speziellen soll der Ausblasvorgang des Wassers im Turbi-
nengehäuse mittels Druckluft untersucht werden. Dies tritt beim Wechsel zwischen
Turbinen- und Pumpenbetrieb auf, wobei das Anfahrmoment und die elektrische
Leistung begrenzt werden soll. Außerdem muss im Phasenschieberbetrieb ausgebla-
sen werden.

Um ein Regelgesetz zu erzeugen, wird das Pumpturbinenmodell in eine Simulations-
umgebung eingebettet. Der RL Algorithmus erlernt durch oftmalige Interaktion mit
einem Modell, Trial and Error, ein optimales Regelschema. Moderne Algorithmen
bauen auf neuronalen Netzen (NN) als universiellen Funktionsapproximatoren, auch
Deep Reinforcement Learning (DRL) genannt, auf.

Ziel der Arbeit ist es, RL Algorithmen systematisch auf ihre Leistungsfähigkeit zu
vergleichen. Zu diesem Zweck werden neuronale Netzarchitekturen zur Problem-
beschreibung entworfen und in einer Studie miteinander verglichen. Weiters wird
der Einfluss von Hyperparametern auf ein robustes und schnell konvergierendes
Trainingsverhalten analysiert.

Es kann gezeigt werden, dass RL den Ausblasprozess mit diskreten oder kontinu-
ierlichen Stellgrößen regeln kann. Außerdem wird gezeigt, dass diese das gleiche
optimale Verhalten aufweisen, wie durch konventionelle Regler (Hysterese und PID)
definiert und in einem kurzen Trainingsprozess erreicht werden. Die entworfenen
neuronalen Netze können das Problem vollständig abbilden, wobei eine minimale
Anzahl von Neuronen pro Schicht oder erlernbare Parameter in Abhängigkeit von
den Trainingsparametern erforderlich sind. Aus der Hyperparameter-Studie folgt,
dass es (Kombinationen von) Lernraten gibt, bei denen das Optimum erreicht wird
bzw. bei denen ein bestimmter Wert am schnellsten erlernt wird. Weiters konnten
Abhängigkeiten der Einflussgrößen auf das Training aufgezeigt werden.

Daraus lässt sich schließen, dass das Konzept des Reinforcement Learning anwendbar
ist, um Regelungsprobleme zufriedenstellend zu lösen. Dies erfordert einen systema-
tischen Ansatz zur Auswahl der passenden Architekur des neuronalen Netzes und
der richtigen Wahl der Hyperparameter für ein konvergentes Training.

ii

Acknowledgments
I would like to express my sincere gratitude to my supervisors, Felix Birkelbach
and Carlotta Tubeuf, for their caring support and valuable contributions. Their
guidance has been instrumental in both my daily work and the process of writing
the thesis. I am particularly thankful for their openness to any questions and the
invaluable advice they provided.

During my time at the institute, I was delighted to experience a warm and heartfelt
welcome. This supportive atmosphere greatly enhanced my overall experience.

I also want to extend my appreciation to my girlfriend, Lili, and my fellow students.
Their presence and support have been crucial, and without them, I would not have
completed my studies in such a balanced and relaxed manner.

iii

Contents
1. Introduction 1

1.1. Motivation . 1
1.2. Aim . 2
1.3. Methodological Approach . 2
1.4. Structure . 3

2. Theoretical Background and Methods 4
2.1. Reinforcement Learning . 4

2.1.1. Origin and Application . 4
2.1.2. Mathematical Description . 4

2.2. Reinforcement Learning Algorithms 10
2.2.1. Value-based RL Algorithms 11
2.2.2. Actor-critic-based RL Algorithms 12

2.3. Neural Network . 16
2.3.1. Origin and Application . 16
2.3.2. Artificial Neuron . 16
2.3.3. Activation Function . 17
2.3.4. Neural Network Architecture 17
2.3.5. Neural Network Training . 18

3. Use Case and Numerical Experiments 19
3.1. Reinforcement Learning Environment 19
3.2. Hydro Power Plant Model . 20
3.3. State and Action Space Definition 21

3.3.1. Discrete Action Space . 22
3.3.2. Continuous Action Space . 22
3.3.3. Extended Continuous Action Space 22

3.4. Reward Function Definition . 23
3.5. Neural Network Architecture . 23

3.5.1. Neural Networks for Value-based Algorithms 23
3.5.2. Neural Networks for actor-critic-based Algorithms 25

3.6. Reinforcement Learning Algorithms 27
3.6.1. General Settings . 27
3.6.2. Preceding Iterative Process 28
3.6.3. Neural Net Analysis Study 29
3.6.4. Hyperparameter Analysis Study 29
3.6.5. Comparison of Algorithms . 29

iv

3.6.6. Validation . 31
3.6.7. Extended Use Case . 31

4. Results and Discussion 35
4.1. Policy Deployment . 35

4.1.1. DQN Discrete Output . 35
4.1.2. DQN Policy . 36
4.1.3. PPO Continuous Output . 36
4.1.4. PPO Policy . 37

4.2. Training Curve . 38
4.2.1. DQN Training Curve . 38
4.2.2. PPO Training Curve . 38

4.3. Neural Network Analysis Study . 39
4.3.1. DQN Critic . 39
4.3.2. PPO Actor-Critic . 41

4.4. Hyperparameter Analysis Study . 42
4.4.1. DQN Learning Rate . 42
4.4.2. DQN Exploration Rate . 43
4.4.3. DQN Exploration Decay Rate 44
4.4.4. PPO Learning Rate . 45
4.4.5. PPO Entropy Loss Weight 45

4.5. Comparison of Algorithms . 47
4.5.1. Comparison of Value-based Algorithms 47
4.5.2. Comparison of Actor-critic-based Algorithms 47

4.6. Validation . 49
4.7. Extended Use Case . 51

5. Conclusion and Outlook 53

Bibliography 56

A. Appendix 58

v

Nomenclature
Acronyms

AC Actor-Critic

BEE Bellman Expectation Equation

BOE Bellman Optimality Equation

DQN Deep-Q-Network

HPA Hyperparameter Analysis

KL Kullback Leibler

MDP Markov Decision Process

ML Machine Learning

NNA Neural Net Analysis

PPO Proximal Policy Optimization

Q Q-Learning

RL Reinforcement Learning

SARSA State Action Reward succesor-State succesor-Action

TD Temporal Differences

TRPO Trust Region Policy Optimization

TU Technical University

Greek symbols

α Learning rate -

δ Threshold, Error -

ϵ Exploration -

γ Discount factor -

ϕ Parameters critic -

vi

π Policy -

θ Parameters actor -

Subscripts

i, j, k Counting indices

max Maximum

min Minimum

sim Simulation

Roman symbols

A Action space -

a Action -

a Pressurized air supply %

c Clip factor PPO -

D Advantage (function) -

E Least Mean Square Error -

E Expectation probability distribution -

F Activation function -

G Return, total (discounted) cumulative reward -

g Guide vane opening m

H Hidden layer neuron -

h History of observations -

h water height turbine housing m

I Input neuron -

J Expected return -

L Loss function -

L2 Generalisation factor NN training -

M Mini batch size -

N Experience size -

vii

n Rotational speed rpm

Na Number of neurons per layer, actor -

Nc Number of neurons per layer, critic -

O Output neuron -

P State transition probability -

p Pressure bar

P Probability distribution -

Q Action-value function space -

q Action-value function -

R Reward space -

r Reward -

r(θ) Policy probability ratio -

S State space -

s State -

T Termination time step s

t Time step s

ts Start time step experience s

V State-value function space -

v State-value function -

w Connection weight neuron -

w Entropy loss weight -

x Input signal -

y Output signal -

Superscripts
′ Successor

∗ Optimum

viii

List of Figures
1. Representation of a Markov Decision Process (MDP) adapted from

[6] with action at, state st, reward rt, successor state st+1 and reward
rt+1. 5

2. Bellman Expectation Equation for one-step look-ahead with white
circles as states s, black circles as actions a and successor state s′ as
well as reward r, taken from [13] made available under CC-BY-NC 4.0. 7

3. Bellman Expectation Equation for two-step look-ahead with white
circles as states s, black circles as actions a, successor state s′ and
action a′ as well as reward r, taken from [13] made available under
CC-BY-NC 4.0. 7

4. Representation of an artificial neuron with inputs xj , weights wj ,
bias b, activation function F and output y from j = 1 . . . n, number
of connections, adapted from [18]. 16

5. A general form of a fully connected two hidden layer neural network
with varying neurons per layer. Inputs I, outputs O, hidden neurons
N, H and connection weights a, b, c. 18

6. Reinforcement Learning Setup in Simulink with agent and envi-
ronment connected by action, observation, reward and terminating
condition. 19

7. Representation of the environment subsystem where constraint, nor-
malization, checking of the termination condition and calculation of
the reward, as well as integration of the black-box model (pumped
storage) pump-turbine, are encompassed. 20

8. Schematic cross-section of the pump-turbine with height indication
adapted from [5]. 21

9. Q-value critic with observations (I2, I3) and action (I1) as input and
Q-value (O1) as output as well as number of neurons per layer Nc1,
Nc2 and Nc3. 24

10. Q-value critic with observation (I1, I2) as input and Q-values for each
action (O1, O2) as output as well as number of neurons per layer Nc. 25

11. State-value critic with observation (I1, I2) as input and state-value
(O1) as output as well as number of neurons per layer Nc. 26

12. Actor with observation (I1, I2) as input and mean (O2) and standard
deviation (O1) as output as well as number of neurons per layer Na. 27

ix

13. Control behavior of DQN policy &hysteresis controller for the water
level corresponding to the compressed air blown into the runner over
time. 36

14. DQN RL agent policy: pressurized air supply over water height. . . 36
15. Control behavior of PPO policy &PID controller for the water level

corresponding to the compressed air blown into the runner over time. 37
16. PPO RL agent policy: pressurized air supply over water heights. . . 38
17. Training curve DQN agent, episode and average reward over episodes

and threshold value. 39
18. Training curve PPO agent, episode and average reward over episodes

and threshold value. 39
19. Neural network analysis study for DQN agent and Q-value critic 1

with episodes to reach threshold over learnable parameters of the
neural network. 40

20. Neural network analysis study for DQN agent and Q-value critic 2
with episodes to reach threshold over learnable parameters of the
neural network. 41

21. Neural network analysis study for PPO agent and state-value critic
and actor with episodes to reach threshold over learnable parameters
of the neural network. 42

22. Hyperparameter learning rate analysis for DQN agent and Q-value
critic 1 with episodes to reach threshold over learning rate. 43

23. Hyperparameter learning rate analysis for DQN agent and Q-value
critic 2 with episodes to reach threshold over learning rate. 43

24. Hyperparameter exploration rate analysis for DQN agent and Q-value
critic 2 with average reward over episodes. 44

25. Training curves of DQN agent for different exploration decay rate of
Q-value critic 2. 44

26. Hyperparameter exploration decay rate analysis for DQN agent and
Q-value critic 2 with episodes to reach threshold over exploration
decay rate. 45

27. Hyperparameter learning rate analysis for PPO agent and state-value
critic and actor with average reward over learning rates. 46

28. Hyperparameter entropy loss weight analysis for PPO agent and
state-value critic and actor with episodes to reach threshold over
entropy loss weight. 47

29. Comparison of the training curves of Q, SARSA and DQN agents
for Q-value critic 2 with 256 neurons/layer and average reward over
episodes. 48

30. Comparison of the training curves of Q, SARSA and DQN agents
for Q-value critic 1 with 32 neurons/layer and average reward over
episodes. 48

x

31. Comparison of the training curves of AC, TRPO and PPO agents
for state-value critic and actor with 256 neurons/layer and average
reward over episodes. 49

32. Comparison of the training curves of AC, TRPO and PPO agents
for state-value critic and actor with 32 neurons/layer and average
reward over episodes. 49

33. Validation DQN agent with varied water heights; control behavior of
DQN policy for the water level corresponding to the compressed air
blown into the runner over time. 50

34. Validation DQN agent with varied guide vane openings; control
behavior of DQN policy for the water level corresponding to the
compressed air blown into the runner over time. 50

35. Validation PPO agent with varied water heights; control behavior of
PPO policy for the water level corresponding to the compressed air
blown into the runner over time. 51

36. Validation PPO agent with varied guide vane openings; control behav-
ior of PPO policy for the water level corresponding to the compressed
air blown into the runner over time. 51

37. Control behavior of the water level in the turbine housing and guide
vane opening due to the compressed air and guide vane actuator of
the PPO RL agent. 52

38. Training curves of DQN agent for different neurons per layer of
Q-value critic 1 neural network. 58

39. Training curves of DQN agent for different neurons per layer of
Q-value critic 2 neural network. 58

40. Training curves of PPO agent for different neurons per layer of state-
value critic and actor. 59

41. Training curves of PPO agent for different neurons per layer of state-
value critic and actor. 59

42. Hyper parameter entropy loss weight analysis for PPO agent and
state-value critic and actor with maximum average reward over en-
tropy loss weight. 59

xi

List of Tables
1. Overview of RL algorithms implemented in MatLab. 10

2. Overview of relevant parameters in the pump turbine. 21
3. Neural net parameters for Q-value critic 1. 24
4. Neural net parameters for Q-value critic 2. 25
5. Neural network parameters for state-value critic and actor. 26
6. Average rewards and threshold values for discrete and continuous

action spaces. 27
7. Overview of relevant parameters in the RL training. 28
8. Neural net analysis parameters for Q-value critic 1. 30
9. Neural net analysis parameters for Q-value critic 2. 30
10. Neural net analysis parameters for state-value critic and actor. . . . 30
11. Hyperparameter learning rate analysis for Q-value critic 1. 31
12. Hyperparameter learning rate analysis for Q-value critic 2. 31
13. Hyperparameter learning rate analysis for state-value critic and actor. 32
14. Hyperparameter exploration analysis for Q-value critic 2. 32
15. Hyperparameter entropy loss weight analysis for state-value critic

and actor. 33
16. Hyperparameter exploration decay rate analysis for Q-value critic 2. 33
17. Comparison of value-based algorithms. 33
18. Comparison of actor-critic-based algorithms. 34
19. Validation of DQN and PPO agent with varied initial heights. 34
20. Validation of DQN and PPO agent with varied guide vane openings. 34
21. Extended use case. 34

xii

1. Introduction

1.1. Motivation
Due to climate change, there is a need to reduce greenhouse gas emissions signifi-
cantly. In specific, this means converting electricity generation to renewable forms
of energy. To this end, Austria has set itself the goal of becoming climate-neutral
by 2030. For this reason, the expansion of photovoltaic, solar thermal energy and
wind power, in addition to the traditionally widespread hydroelectric and biomass
power plants, is to be increased. [1]

As renewable energy generation is accompanied by significant power fluctuations, a
structural expansion of the electricity grid and increased storage options for surplus
energy are required. The same amount of energy must always be fed into and
consumed in the grid to be stable. Pumped storage power plants are the most
flexible and economical option for storing electricity. With regard to grid stability,
they can add and remove reactive power from the grid and can also perform phase
shifts in idle mode. [2, 3]

For this reason, pumped storage power plants are used on a large scale in Austria
to store surplus energy by pumping water from deep levels into a higher reservoir
so that it can be converted back into electrical power in a turbine when needed [2].
This process can be carried out with a separate pump and turbine or a reversible
pump turbine, whereby switching between the two operating modes is necessary.
When the pump turbine starts up or when switching between turbine and pump
operation, it is necessary to blow out the water in the turbine housing in order to
limit the torque and the electrical power. The water is also blown out in phase shift
mode to minimize the active power. [4]

Reinforcement Learning (RL) algorithms can be used to control and optimize the
blow-out process to enable faster changes between operating states and thus operate
the power plant more dynamically [5]. RL is a type of machine learning in which
the algorithm learns an optimal control scheme itself through trial and error [6]. Its
ability to learn complex behaviors without explicit guidance has attracted a great
deal of attention in recent years. In combination with neural networks (NN) as
universal function approximators, deep reinforcement learning (DRL) has achieved
great success in the research field of robotics, game simulators, and control technol-
ogy [7].

1

1. Introduction

Imagined figuratively, the RL agent wanders through the unknown state space
described by the model or reality. It uses its senses to observe its environment,
which changes with every step or action it takes. It gets a reward or punishment
from his surroundings as information along the way he chooses. Its goal is to find
the optimal path to receive the most rewards at the end. To this end, it proceeds
with a certain strategy to improve its view of the world through new insights to
ultimately know which path to take in the future. [6]

1.2. Aim
The aim of the diploma thesis is to apply the Reinforcement Learning control
concept to an existing simulation model of a reversible pump turbine on a laboratory
scale. In particular, the blow-out process that occurs when switching between
turbine and pump operation is to be investigated. The main focus of the work
is on the systematic analysis of RL algorithms and NN structures for this sub-process.

Reinforcement Learning is a potent and universally applicable tool, but it must
be adapted specifically for each problem. This means that different (families of)
algorithms are more suitable for certain problems, and it is unclear from the outset
which hyperparameters must be set and which neural network must be used.

The motivation described above gives rise to the following research questions to be
addressed in this thesis:

• Is RL suitable for controlling the simulation model in a meaningful way?

• How should the deep neural network be constructed?

• How must the hyperparameters be selected to achieve optimal training behav-
ior?

• Which RL algorithm is best suited to solve the problem in terms of perfor-
mance?

1.3. Methodological Approach
In order to answer these questions, a literature review is conducted on the formal
structure of the reinforcement learning concept and its implementation as algorithms,
as well as on the architecture and mode of operation of neural networks. A simulation
environment is set up in MatLab/Simulink [8, 9] using the Deep Learning Toolbox
and Reinforcement Learning Toolbox [10, 11]. Different NN architectures are
systematically compared with each other in terms of training performance in a study.
Hyperparameters are systematically changed and their influence on the training
behavior is analyzed in studies. As an example, the control behavior is compared
with conventional controllers such as hysteresis and PID.

2

1.4. Structure

1.4. Structure
The structure of the work is divided into the following topics: Chapter 2 describes the
theoretical background of the mathematical concepts used, the numerical algorithms
and the architecture of the neural networks. Chapter 3 then provides an overview
of the simulation environment’s structure and the pump turbine’s embedded model.
The state and action space are built up, and a structure of the reward function is
defined. Finally, this part describes the neural network variants used and shows
the application of the algorithms to the problem. In Chapter 4, the results are
presented in detail in the form of plots and discussed based on performance and
convergence. Finally, Chapter 5 concludes and provides an outlook on possible
future experiments.

3

2. Theoretical Background and Methods
The relevant theoretical foundations are divided into the concept of Reinforcement
Learning in general, its application in the form of algorithms and the underlying
description by neural networks. In the first section, the mathematical formalism and
its description methods are developed. The second part presents numerical solution
methods and their hyperparameters. The third section deals with the universal
function approximation required for the practical application of the algorithms.

2.1. Reinforcement Learning
2.1.1. Origin and Application
Reinforcement Learning (RL) is a form of Machine Learning (ML) where, in con-
trast to supervised and unsupervised ML, no external information about input and
output data is required. In supervised learning, the input and output are labeled by
knowledge and the algorithm approximates a relationship between the two. This is
used for classification or regression problems, for example. In unsupervised learning,
knowledge about the input is used to collect information about the output, such as
similarities in clustering. [6, 12]

The combination of modern algorithms and neural networks as universal function
approximators enables RL, known as Deep Reinforcement Learning (DRL), to
achieve outstanding results in current research areas of robotics, process control and
games. [12, 7]

2.1.2. Mathematical Description
The following chapter is based on the textbook "Reinforcement Learning: An
Introduction" by R. S. Sutton and A. Barto [6].

Markov Decision Process

Mathematically, the RL problem can be represented in the form of a Markov Decision
Process (MDP). This is shown in Figure 1.

The agent interacts with the environment, receiving a state and reward signal and
performing an action. The state st ∈ St, also known as observation, describes the
environment and the scalar value rt ∈ Rt indicates how well the agent behaves at
time t. S and A are finite sets from the space of possible states and actions. Due to

4

2.1. Reinforcement Learning

Environment

Agent

Figure 1.: Representation of a Markov Decision Process (MDP) adapted from [6]
with action at, state st, reward rt, successor state st+1 and reward rt+1.

the action at ∈ At, which acts as an input to the environment, changes. A successor
state st+1 or s′ and a new reward rt+1 occur. The internal dynamics of the change
are described by the probability

P a
ss′ = P[St+1 = s′ | St = s, At = a]. (1)

The sequence of states, rewards and actions is referred to as a history h, see Eq. (2).
The trajectory ends with the terminating state sT and reward rT at time T and
can be understood as an episode.

h = {st, rt, at, st+1, rt+1 . . . sT , rT } (2)
If an MDP is present, then its states are fully observable and have the Markov
property,

P[St+1 | St] = P[St+1 | S1, . . . , St]. (3)

"The future is independent of the past given the present" - David Silver,
Introduction to Reinforcement Learning, p. 21 [13]

This means that only knowledge about the current state is required to describe the
system entirely. Previous states and actions from history can be neglected. Most
RL problems can be described as MDPs, whereby extensions are made in the MDP
for continuous state and action spaces.

Policy and Return

Which action the agent selects based on the current state is described by its control
strategy or policy π. This represents a stationary mapping between states and
actions. A distinction can also be made between deterministic, Eq. (4), and
stochastic policies, Eq. (5).

5

2. Theoretical Background and Methods

π(s) = a ∈ At, ∀s ∈ St (4)

π(a | s) = P[At = a | St = s], ∀s ∈ St, a ∈ At (5)

The agent’s goal is to learn a control strategy that maximizes the total (discounted)
cumulative reward Gt along the trajectory. This so-called return can be calculated
according to Eq. (6), where R is the set of possible rewards.

Gt =
T�

t=1
γt−1R(st, at, st+1) (6)

The discount factor γ takes into account the uncertainty of future rewards. For
γ = 0, only the successive reward is taken into account; with γ = 1, all future
rewards are weighted equally.

The reward generated from the environment is formed by

Ra
s = E[Rt+1 | St = s, At = a]. (7)

Reward Hypothesis: "All goals can be described by the maximisation of
expected cumulative reward" - David Silver, Introduction to Reinforce-
ment Learning, p. 13 [13]

Value Function and Bellman Equation

The state-value function vπ(s) given in Eq. (8) indicates how good it is to be in
a state. It predicts future rewards, the expected return if the policy π is followed.
The action-value function qπ(s, a) given in Eq. (9) indicates how good it is to be in
a state and perform an action and then to follow the policy π.

vπ(s) = Eπ[Gt | St = s] (8)

qπ(s, a) = Eπ[Gt | St = s, At = a] (9)

The Bellmann Expectation Equation (BEE) can be used to separate the state-
value into an immediate portion Rt+1 and a discounted state-value function of the
succeeding state γvπ(St+1),

vπ(s) = Eπ[Rt+1 + γvπ(St+1) | St = s]. (10)

The same can be done for the action-value, where γqπ(St+1, At+1) is the discounted
action-value function,

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1) | St = s, At = a]. (11)

6

2.1. Reinforcement Learning

Figures 2a and 2b show the one-step look-ahead for the state-value and action-value
functions. In the first case, the possible actions and their probability of being
executed by the policy are averaged. In the second case, the internal dynamics of
the environment are averaged for an action in a specific state. Mathematically, this
relationship can be expressed by Equations (12) and (13), where Ra

s is the reward
function, see Eq. (7), and P a

ss′ is the probability function of the internal dynamics,
see Eq. (1).

(a) One-step look-ahead for state-value
function vπ(s).

(b) One-step look-ahead for action-value
function qπ(s, a).

Figure 2.: Bellman Expectation Equation for one-step look-ahead with white circles
as states s, black circles as actions a and successor state s′ as well as
reward r, taken from [13] made available under CC-BY-NC 4.0.

vπ(s) =
�
a∈A

π(a | s)qπ(s, a) (12)

qπ(s, a) = Ra
s + γ

�
s′∈S

P a
ss′vπ(s′) (13)

If the descriptions 2a, 2b are combined in reverse, the result is a two-step look-ahead,
which is shown in Figure 3a and 3b. Equations (14) and (15) are assembled from
Equations (12) and (13). They give the recursive procedure for solving the MDP.

(a) Two-step look-ahead for state-value
function vπ(s).

(b) Two-step look-ahead for action-value
function qπ(s, a).

Figure 3.: Bellman Expectation Equation for two-step look-ahead with white circles
as states s, black circles as actions a, successor state s′ and action a′ as
well as reward r, taken from [13] made available under CC-BY-NC 4.0.

7

2. Theoretical Background and Methods

vπ(s) =
�
a∈A

π(a | s)

Ra
s + γ

�
s′∈S

P a
ss′vπ(s′)

 (14)

qπ(s, a) = Ra
s + γ

�
s′∈S

P a
ss′

�
a′∈A

π(a′ | s′)qπ(s′, a′) (15)

Exploration and Exploitation

To approach the optimal policy, the agent must consistently execute the best-
evaluated actions and exploit the best path. However, it does not know from the
outset how good it is to be in a particular state (and to perform an action). The
agent must, therefore, explore the state space to determine the best actions for
the states. The so-called exploration/exploitation dilemma arises. This is often
solved using an ϵ-greedy exploration model, see Eq. (16). Here, a random action is
selected with a probability ϵ. The action with the maximum action-value is executed
with the complementary probability. To ensure sufficient exploration in the initial
training phase and convergence to the optimal strategy at the end, the probability ϵ
may be reduced over time. This can be done via an exploration decay rate ϵdecay,
whereby the following calculation, Eq. (17), can be used to reduce the exploration
every episode until a minimum ϵmin is reached.

A =

argmax
a∈A

Q(s, a) for 1 − ϵ

arandom for ϵ
(16)

ϵ ←
�

ϵ(1 − ϵdecay) if ϵ > ϵmin

ϵ otherwise
(17)

A policy is optimal, marked with an asterisk (∗), if the optimal description of
the action-value function is maximized, Eq. (18). There is always a deterministic
optimal policy for each MDP.

π∗(a | s) =

1 for a = argmax
a∈A

q∗(s, a)

0 otherwise
(18)

The Bellman Optimality Equation (BOE) describes the optimal state-value, Eq.
(19) and action-value, Eq. (20) functions.

v∗(s) = max
a

Ra
s + γ

�
s′∈S

P a
ss′v∗(s′) (19)

q∗(s, a) = Ra
s + γ

�
s′∈S

P a
ss′max

a′ q∗(s′, a′) (20)

8

2.1. Reinforcement Learning

Temporal Differences

Temporal Differences (TD) can be used as a solution method for estimating the
value functions. Here, the description is changed iteratively by using a so-called TD
target, consisting of the reward of the next time step and the discounted value of
the successor state. The difference between the TD target and the current estimated
value is described as TD error and multiplied by the learning rate α, resulting in

V (St) ← V (St) + α[Rt+1 + γV (St+1)� �� �
TD target

−V (St)

� �� �
TD error δ

]. (21)

Policy Gradient

Another way to solve MDPs is to optimize the policy directly and not to estimate
the value function. For this purpose, a scalar performance value is introduced
depending on the parameters θ, the expected return J(θ) [12]. For the episodic
case, the expected return can be expressed as a value function for the policy π as a
function of the parameters

J(θ) = Eπθ
[Gt | St = s]. (22)

To achieve the optimal policy, the expected return should be maximized by moving
along the gradient

θt+1 = θt + α∇J(θt). (23)

Stochastic Gradient Ascent (Descent) has proven to be a good calculation method
to ensure simultaneous exploration alongside optimization. The loss function, used
for the algorithms in section 2.2, can be regarded as a negative return.

9

2. Theoretical Background and Methods

2.2. Reinforcement Learning Algorithms
The following chapter is based on the documentation of the Reinforcement Learning
Toolbox [11] and the Deep Learning Toolbox [10].

Training begins with a random initialized value function or policy to be successively
improved at each time step. To do this, the agent must explore the state space to
identify the best actions for the states to exploit them. [6]

In general, RL algorithms can be classified according to whether they have a value
function and/or a policy. Table 1 shows a selection of agents implemented in MatLab
in the Reinforcement Learning Toolbox, where a critic estimates the value function
and an actor emulates the policy. A distinction can be made between discrete and
continuous state or action spaces. Representatives of discrete action spaces are Q
(2.2.1), SARSA (2.2.1) and DQN (2.2.1); representatives of continuous action spaces
are AC (2.2.2), TRPO (2.2.2) and PPO (2.2.2). [12]

Table 1.: Overview of RL algorithms implemented in MatLab.

Critic/Actor none stochastic deterministic

none Policy Gradient

state-value
Actor Critic
Trust Region Policy Optimization
Proximal Policy Optimization

action-value
Q-Learning
SARSA
Deep-Q-Network

Soft Actor Critic Deep Deterministic Policy Gradient
TD3

If the internal system dynamics P a
ss′ , see Eq. (1), and the reward function Ra

s , see Eq.
(7), are known, it is referred to as model-based RL; if these are unknown to the agent,
then it is a model-free RL problem. Model-free RL is present in most cases; the state
value and action value function must be estimated. This can be done either online,
i.e., directly as a closed loop controller in the system, or offline using a batch of data.
Another way of distinguishing is whether the policy used for interaction with the
environment and for (policy) optimization is the same. If only one policy π is used, it
is an on-policy procedure; if two different Policies µ and π are used, it is off-policy. [6]

State-of-the-art RL methods like Deep Reinforcement Learning use approximative
functions, such as neural networks, to describe the state- and action-value and the
policy. For this reason, all further relationships are specified for the parameterized
form. These are described in detail in Chapter 2.3.

10

2.2. Reinforcement Learning Algorithms

2.2.1. Value-based RL Algorithms
The RL algorithms Q-Learning (Q), SARSA and Deep-Q-Network (DQN) are
online, model-free and value-based. This means they construct the policy using a
learned value function by maximizing over it; see Equation (18). With the off-policy
representatives Q and DQN, this is done for the "optimal" course of action. With
SARSA, this return is estimated for the current policy, as it is an on-policy procedure.
These algorithms have a discrete action output.

Q-Learning

The Q-Learning (Q) algorithm uses the following temporal difference mapping,
Equation (24), for iterative estimation of the critic Q(S, A; ϕ). The agent observes
its environment and receives a state S. For this state, it performs an action A
according to ϵ-greedy exploration, see Eq. (16), whereby it receives a reward R and
the new state S′. This represents the behavior policy. For the evaluation of the
TD target, however, an alternative action A′ is used, which is formed greedy with
respect to Q, thus resulting in the maximization over it. The new parameters are
calculated using the learning rate α and the gradient of the square of the difference
(25).

∆Q(S, A; ϕ) = R + γ max
A

Q(S′, A; ϕ) − Q(S, A; ϕ) (24)

ϕ ← ϕ + 1
2α∇ϕ(∆Q(S, A; ϕ))2 (25)

SARSA

The SARSA algorithm uses the Equation (26) to iteratively improve the value
function Q(S, A; ϕ). Here, the agent receives a state S from the environment and
executes an action A according to Equation (16). It receives the reward R and the
new state S′, for which it, in turn, calculates an action A′ using the same Equation
(16). The name of the algorithm is derived from this quintuple (S, A, R, S′, A′). The
parameters are calculated similarly to Q-Learning.

∆Q(S, A; ϕ) = R + γQ(S′, A′; ϕ) − Q(S, A; ϕ) (26)

Deep-Q-Network

The Deep-Q-Network (DQN) algorithm, introduced in [14], is a development of
Q-Learning with two critics: Q(S, A; ϕ) and Qtarget(S, A; ϕtarget). The target critic
was introduced to achieve more stable optimization. The function approximations
map the value function using a neural network with parameters ϕ and ϕtarget. Both
have the same structure and parameterization. As with the Q-Learning algorithm,
an action A is performed according to ϵ-greedy exploration, see Eq. (16). The

11

2. Theoretical Background and Methods

quadtuples (S, A, R, S′) obtained are stored in a buffer memory. A certain number
M of uniformly random tuples (Si, Ai, Ri, S′

i) are sampled from this buffer. The
Equation (27) specifies the loss function L(ϕ) to be minimized over the parameters
ϕ. The target parameters are updated with the network parameters periodically.

L(ϕ) = 1
2M

M�
i=1


Ri + γ max

A′ Qtarget(S′
i, A′; ϕtarget) − Q(Si, Ai; ϕi)

2
→ min. (27)

Algorithm 1 shows the implementation of the DQN method in MatLab/Reinforcement
Learning Toolbox. The target parameters are formed using a proportion τ of the
parameters, among the old target parameters.

initialize Q(S, A; ϕ), Qtarget(S, A; ϕtarget) with ϕ = ϕtarget randomly
for episodes = 1 to termination condition do

for t = 1 to T do

at =

argmax
a∈A

Q(st, a; ϕ) for 1 − ϵ

arandom for ϵ
execute at, observe rt, st+1
store (st, at, rt, st+1) in replay buffer
sample random minibatch (si, ai, ri, si+1) of size M

yi =

ri if episode terminates
ri + γ max

a′ Qtarget(si+1, a′, ϕtarget) otherwise
minimize Loss function L = 1

2M

�M
i=1(yi − Q(si, ai; ϕ))2

update parameters ϕtarget = τϕ + (1 − τ)ϕtarget
end

end
Algorithm 1: DQN

2.2.2. Actor-critic-based RL Algorithms
The Actor-Critic (AC), Trust Region Policy Optimization (TRPO), and Proximal
Policy Optimization (PPO) algorithms are representatives of the actor-critic-based
methods, as they each have a function approximator for both the policy and the
value function. They combine the advantages of value-based and policy gradient
methods. The actor is represented by π(A | S; θ) and the state-value critic via
V (S; ϕ).

Actor-Critic

To learn the policy and value function, the AC agent interacts with the environment
for N steps and receives the trajectory,

12

2.2. Reinforcement Learning Algorithms

h = (Sts, Ats, Rts+1, . . . , Sts+N) (28)

before the estimates are changed with start time step ts of each trajectory. With
this interaction, the N-step return Gt can be calculated, similar to Equation (6). If
the estimate of the value function is subtracted from this as a baseline, the so-called
advantage function Dt, Eq. (29), is obtained, reducing the variance [13].

Dt = Gt − V (St; ϕ) (29)

To calculate the actor’s parameters, the gradients are summed over the N experiences
along the direction of the policy gradients weighted with the advantage function,
Eq. (30). For the parameters of the critic, the mean squared error between the
estimated value function and the return is minimized, Eq. (31). The parameter sets
are renewed with the corresponding learning rates times the update; see Equations
(32), (33).

∆θ =
N�

t=1
∇θ ln π(A | St; θ)Dt (30)

∆ϕ =
N�

t=1
∇ϕ(Gt − V (St; ϕ))2 → min. (31)

θ ← θ + αactor∆θ (32)

ϕ ← ϕ + αcritic∆ϕ (33)

Trust Region Policy Optimization

The Trust Region Policy Optimization (TRPO) algorithm, introduced in [15], in-
teracts with the environment for a certain number of steps, similar to the AC. It
calculates an advantage function Dt from the states and rewards. An object function
J(θ) consisting of a probability ratio

rt(θ) = π(At | St; θ)
π(At | St; θold) (34)

between the new and old parameterized policy and the advantage function is then
maximized

J(θ) = E[rt(θ)Dt] → max. (35)

while maintaining the Kullback Leibler (KL) divergence constraint

E[KL[πθold(· | st), πθ(· | st)]] ≤ δ. (36)

13

2. Theoretical Background and Methods

The KL divergence indicates the statistical distance, i.e., how different two probability
distributions are from each other. The parameters of the critic are updated similarly
to the AC algorithm. δ is a threshold value.

Proximal Policy Optimization

The Proximal Policy Optimization (PPO) algorithm, introduced in [16], is a further
development of TRPO and a simplification. It uses a clipped surrogate objective
function. This can be structured according to Eq. (37), where c indicates the clip
factor and J(θ) is the surrogate objective function for the timestep t.

J(θ) = E

����
(1 − c)Dt if rt(θ) ≤ 1 − c and Dt < 0
(1 + c)Dt if rt(θ) ≥ 1 + c and Dt > 0
rt(θ)Dt otherwise

(37)

As a first-order approximation, the object functions of TRPO and PPO are the
same for the old parameters πold. As the policy ratio is clipped outside the range
[1 − c, 1 + c], there is no incentive for huge updates.

Algorithm 2 shows the implementation of the PPO method in MatLab/Reinforcement
Learning Toolbox. The term w · Hi(θ, Si) indicates the entropy loss weight w times
the entropy H for iteration i.

14

2.2. Reinforcement Learning Algorithms

initialize π(A | S; θ) with θ randomly
initialize V (S; ϕ) with ϕ randomly
for episodes = 1 to termination condition do

for ts = 1 to T do
generate N experiences following π: h = (Sts, Ats, Rts+1, . . . , Sts+N)
ts ← ts + N
for t = h(1) to h(N) do

calculate advantage Dt = �ts+N−1
k=t (γλ)k−tδk

and return Gt = Dt + V (St; ϕ)
with δk = Rk+1 + bγV (Sk+1; ϕ) − V (Sk; ϕ)

and b =
�

0 if k + 1 is a terminal state
1 otherwise

end
sample M experience over K epochs
minimize critic Loss function Lcritic(ϕ) = 1

2M

�M
i=1(Gi − V (Si; ϕ))2

minimize actor Loss function Lactor(θ) = 1
M

�M
i=1(wHi(θ, Si) − yi)

with yi =

����
(1 − c)Di if ri(θ) ≤ 1 − c and Di < 0
(1 + c)Di if ri(θ) ≥ 1 + c and Di > 0
ri(θ)Di otherwise

and ri(θ) = π(Ai|Si;θ)
π(Ai|Si;θold)

end
end

Algorithm 2: PPO

15

2. Theoretical Background and Methods

2.3. Neural Network
The following chapter is based on the article "An Introduction to Neural Networks"
by Ben Krose and Patrick van der Smagt [17].

2.3.1. Origin and Application
Neural networks (NN) are universal function approximators that can theoretically
describe any relationship between input and output. They originated in neurology
and psychology, with the human brain in particular as a biological model. In the
human brain, tens of trillions of neurons connected via synapses form the basis
for intelligent life [18]. In technology, neural networks are designed for highly
specialized applications. They have very poor extrapolation behavior and are
generally considered a black box. For this reason, they can only be used for the
range of the training data. NNs are a widly used to form the basis for machine
learning applications.

2.3.2. Artificial Neuron
The artificial neuron, also known as a perceptron, is the basic building block of
every neural network. Its input comprises a number of weighted signals xj from
j = 1 . . . n, which are added up plus a bias b. The output y is computed via an
internal (non-linear) relationship, the activation function F . Figure 4 shows a typical
neuron structure.

ଵݔ
௝ݔ
௡ݔ

∑ ℱݓଵ
ܾ𝑏𝑏𝑏𝑏ݏ

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖݋ 𝑦𝑦ܽ𝑎𝑎𝑎𝑎𝑎𝑎ܽݒ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎݂𝑓𝑓𝑓𝑓𝑓𝑓.ݓ௝
௡ݓ

ܾ

Figure 4.: Representation of an artificial neuron with inputs xj, weights wj, bias b,
activation function F and output y from j = 1 . . . n, number of connec-
tions, adapted from [18].

The behavior can be described mathematically using the relationship

16

2.3. Neural Network

y = F(
n�

j=1
wjxj + b). (38)

2.3.3. Activation Function
There are a variety of activation functions that are used depending on the problem.
In most cases, it is a monotonically increasing function that provides a threshold.
Step-like functions such as binary distributions tend to be used for categorization
tasks. A common function for biological processes is the sigmoidal distribution
f(x) = 1/(1+e−x). Another important activation function is the hyperbolic tangent
f(x) = tanh(x). For Reinforcement Learning problems, the simple rectified linear
unit (ReLU) function is often used, which maps the non-linearity by clipping the
negative range according to

f(x) =
�

x if x > 0
0 otherwise

. (39)

2.3.4. Neural Network Architecture
A suitable neural network architecture must be selected depending on the input and
output data’s type and nature. There is no a priori way to design the network except
by trial and error. Each input neuron represents a specific piece of information
and can be, for example, a pixel in image processing, a motor voltage in a robot
controller or, in general, a state. The inputs can be different, so they are usually
normalized to the range [-1,1] to ensure equal influence. The output can, in turn, be
normalized to a certain range. In between are the so-called hidden layers responsible
for the actual approximation. The topology of the NN consists of the number of
neurons per layer, the number of hidden layers, their activation functions and the
connections between the neurons. The more neurons per layer and more layers in
the body of the NN, the more complex relationships can be represented.

The flow of information in the network can be from input to output, i.e., only
in one direction, also known as feedforward, or with a loop-back, i.e., recurrent.
This feedback can take place in the same layer, but also to previous network layers.
This allows time-dependent, dynamic data to be represented. If the output of the
previous neurons acts as a signal on all neurons in the next layer, then it is a fully
connected net. Figure5 shows the general structure of a fully connected two-layer
neural network.

17

2. Theoretical Background and Methods

Figure 5.: A general form of a fully connected two hidden layer neural network with
varying neurons per layer. Inputs I, outputs O, hidden neurons N, H and
connection weights a, b, c.

2.3.5. Neural Network Training
The training of the NN consists of a learning rule that systematically adjusts the
weights of the connections, i.e., the parameters of the NN. This learning process
aims to approximate the predicted output y to the actual one, the target t. The
Least Mean Square Error between the two outputs, defined for one neuron (Eq. (4))
in Equation (40), is used as the error criterion. Several data sets N are used to
calculate the weights.

E =
N�

k=1
Ek = 1

2

N�
k=1

(tk − yk� �� �
ek

)2 (40)

To minimize the error criterion, the weights are changed in the direction of the
derivative of the error function with respect to each weight using Gradient Descent.
The action rule, also known as Delta Rule, can be taken from Equation 41, where α
is the step size and the search direction corresponds to the gradient for one input
set k.

wj ← wj − α
∂Ek

∂wj
(41)

For a multi-layer net, the back propagation learning rule is applied, which is a
generalized gradient (Delta) rule for non-linear activation functions. The parameters
are updated starting from the output in backward direction via the hidden layers.

18

3. Use Case and Numerical Experiments
This chapter deals with the integration of the simulation model of a small-scale
pump turbine located at the test facilities of the Institute of Energy Technology
and Thermodynamics (IET) at TU Wien into the RL environment, a more detailed
description of the reversible pump turbine and its relevant parameters. The state and
action spaces for the RL problem are then created, and a suitable reward function
is defined. The different variants of the neural networks and their configuration, the
application of the algorithms, and the influence of hyperparameters on the training
and control behavior are presented.

3.1. Reinforcement Learning Environment
In a previous diploma thesis, a laboratory system of a small-scale pumped storage
power plant was modeled, set up at the test facilities of IET at TU Wien [19]. The
simulation was generated in the MatLab/Simulink environment [8, 9] using the
Simscape toolbox [20]. Based on this work, the model of the pumped storage turbine
for this application was integrated into the reinforcement learning environment as a
black box (Fig. 6) with the corresponding inputs and outputs, see section 3.3.

observation

reward

isdone

action

action

terminating_condition

reward

observation

Environment

Pump Turbine

Figure 6.: Reinforcement Learning Setup in Simulink with agent and environment
connected by action, observation, reward and terminating condition.

In addition to the observations and the reward, the terminating condition when

19

3. Use Case and Numerical Experiments

the last time step is reached, see Eq. (2), is passed. The agent trains its policy
and executes an action. Some agents have unbounded actions that must be clipped
to be physically meaningful. Constraints on the actions and normalization of the
observations are executed at an intermediate level, as shown in Figure 7. In addition,
the reward function for the state is evaluated; see Chapter 3.4.

Environment

action

termination
condition

reward

observation

Constraint Reward FunctionPump Turbine
Model

Normalization

Termination

waterheight

air volume

action

action

simulation time

Figure 7.: Representation of the environment subsystem where constraint, normaliza-
tion, checking of the termination condition and calculation of the reward,
as well as integration of the black-box model (pumped storage) pump-
turbine, are encompassed.

3.2. Hydro Power Plant Model
The centerpiece of the simulation model is the reversible pump turbine, shown in
the cross-section in Figure 8. In turbine operation, the water flows through the
radial housing, whereby the guide vane apparatus adjusts the mass flow. For pump
operation, the direction of rotation of the runner is reversed. To switch between
turbine and pump operation, the guide vanes are closed, the water in the housing
is blown out by compressed air and the direction of rotation is reversed by using
the electric machine as a motor. The guide vanes of the resulting pump system are
then opened.

The main focus is on the blow-out process, whereby relevant heights are the maximum
height possible, the blow-out height at which the runner is water-free and the critical
height at which there is a risk of air entering the tailwater area. Even when the
guide vane apparatus is closed, there is an opening and a resulting leakage. The
pressure of the injected air is set constant and the runner is assumed to be at a
standstill for blow-out. The values of the laboratory system are given in Table 2.

20

3.3. State and Action Space Definition

spiral housing runner

draft tube cone

tailwater

h
h

critical

h
h blow-out

max

guide vanes

Figure 8.: Schematic cross-section of the pump-turbine with height indication adapted
from [5].

3.3. State and Action Space Definition
The observations of the RL Agent, outputs from the environment, are the water
height in the pump-turbine housing ht in m and the momentary normalized injection
air at in % for a timestep t (see Fig. 7). The guide vane opening g in m can also be
recorded. The current normalized compressed air at in % is used as the actions of
the RL agent, i.e., inputs to the model. In addition, the guide vane opening g can
also be set in m.

To realize the blow-out process, a distinction must be made between value-based
and actor-critic-based algorithms since their action space is set to discrete and
continuous, respectively. For this reason, the definition of the state and action

Table 2.: Overview of relevant parameters in the pump turbine.

Property Variable Value Unit
maximum height hmax 0.807 m
initial height hinit 0.767 m
blow-out height hblow-out 0.639 m
critical height hcrit 0.2 m
injected air pressure p 8 bar
minimal guide vane opening gmin 0.001 m
maximum guide vane opening gmax 0.034 m
rotational speed runner n 0 rpm

21

3. Use Case and Numerical Experiments

spaces is designed differently. In doing so, the simplest possible state space for a
complete problem description is considered.

3.3.1. Discrete Action Space
In the case of the discrete controller the observation space consists of the water
level in the turbine housing and the previously executed action, the amount of
compressed air, which can be seen in Eq. (42). With these two pieces of information,
the problem of the turbine blow-out process is completely defined—the height and
whether it rises or falls can be derived. The compressed air is used as the action,
which is regulated discretely between the maximum quantity and no air, see Eq.
(43).

SD =
�

water-height ht ∈ [0, hmax] m
air supply at−1 ∈ {0, 100} %

(42)

AD =
�

air supply at ∈ {0, 100} % (43)

3.3.2. Continuous Action Space
A state space similar to the discrete one can be selected for the continuous case.
However, the previously recorded water level can also replace the previously used
action. For the continuous control, the water level at the current and previous time
is used for observation (Eq. (44)). This results in information about the change in
height and the height itself, which fully describes the problem. The compressed air
is continuously regulated between zero and maximum volume and forms the action
space (Eq. (45)).

SC =
�

water-height ht ∈ [0, hmax] m
water-height ht−1 ∈ [0, hmax] m

(44)

AC =
�

air supply at ∈ [0, 100] % (45)

3.3.3. Extended Continuous Action Space
To demonstrate the straightforward extensibility of the problem, the guide vane
opening is included based on the control with continuous action space. Now, not only
the blow-out process but also the closing process of the guide vanes is examined. The
state space can be seen in Eq. (46), where the guide vane opening is added and the
action space by the control of the vanes, see Eq. (47). This use case demonstrates
how the problem description can be more complex based on the existing control
system.

22

3.4. Reward Function Definition

SCC =

����
water-height ht ∈ [0, hmax] m
water-height ht−1 ∈ [0, hmax] m
guide vane opening gt−1 ∈ [0, gmax] m

(46)

ACC =
�

air supply at ∈ [0, 100] %
guide vane opening gt ∈ [0, gmax] m

(47)

3.4. Reward Function Definition
The reward function includes the objective of the control task but must not contain
any prior information that could influence the training. This could effect the training
towards sub-optimal policies. The blow-out process aims to reach a previously defined
water level range (Chapter 3.4) as quickly as possible and to remain in this range
in a controlled manner. Furthermore, the amount of compressed air should be
minimized. These requirements result in the reward function

Ra
s = hr − |at − at−1| − at, hr =

����
−ht for ht ≥ hblow-out

+1 for hblow-out > ht ≥ hcrit.

−1 for hcrit > ht

(48)

The first term of Equation (48) contains the desired range of water height, which
is therefore given a positive value, with non-preferred heights weighted negatively.
Implicitly, there is also a time dependency, as the positively weighted range should
be reached as quickly as possible to maximize the return in Equation (6). The
change and the amount of air consumed are weighted negatively, according to which
they should be used minimally.

3.5. Neural Network Architecture
3.5.1. Neural Networks for Value-based Algorithms
For the Reinforcement Learning algorithms Q, SARSA and DQN, which are value-
based (2.2.1) and have a discrete action space, a Q-value critic or action-value critic
is required, see equation (9). This is described using a neural network, which opens
up two possibilities for implementation. Either the Q-value can be calculated for
the observations and actions (Q-value critic 1), or a Q-value can be approximated
for each possible action for the observations (Q-value critic 2). This results in one
neuron that describes the Q-value for the first critic and two neurons that each
represent the Q-value for the two different discrete actions for the second critic. The
number of neurons per layer is denoted by Nc for the critic and Na for the actor.

23

3. Use Case and Numerical Experiments

Q-value Critic 1

In this neural network, hereafter referred to as Q-value critic 1, the action (input
I1) and the observation (input I2 and I3) are treated separately and then merged.
This neural network has three input neurons, one output neuron (O1), and three
hidden layers, as shown in Figure 9.

ଵܫ

ଷܫଶܫ ௖ܰ𝑐
௖ܰ𝑐

௖ܰଷ ௖ܰ𝑐 ଵܱ

ݐݑ݌݊ܫ ݎ݁ݕ𝐿𝐿ܮ ܱ𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐻𝐻𝐻𝐻݀݀݅ܪݎ݁ݕ𝐿𝐿ܮ ݎ݁ݕ𝐿𝐿ܮ 𝐻𝐻𝐻𝐻݀݀݅ܪ ݎ݁ݕ𝐿𝐿ܮ 𝐻𝐻𝐻𝐻݀݀݅ܪ ݎ݁ݕ𝐿𝐿ܮ
Figure 9.: Q-value critic with observations (I2, I3) and action (I1) as input and

Q-value (O1) as output as well as number of neurons per layer Nc1, Nc2
and Nc3.

The different versions of the Q-value critic 1 neural network are listed in Table 3.
There is always a factor of 2 between the number of neurons per layer for each
different version and the path of the actions (Nc2) is chosen to be half as wide as
that of the observations (Nc1). The merged path (Nc3) corresponds to the added
number of neurons per layer. The number of learnable parameters indicates the
degrees of freedom and corresponds to the weights of the connections.

Table 3.: Neural net parameters for Q-value critic 1.

Neural net Number of neurons per layer Learnable parameters
name Nc1 Nc2 Nc3 critic
NN1.1 128 64 192 46017
NN1.2 64 32 96 11745
NN1.3 32 16 48 3057
NN1.4 16 8 24 825
NN1.5 8 4 12 237
NN1.6 4 2 6 75
NN1.7 2 1 3 27

24

3.5. Neural Network Architecture

Q-value critic 2

In this neural network version, Q-value critic 2, the observation (input I1 and I2)
is mapped to two outputs (O1 and O2). Two hidden layers are used for this fully
connected net, as shown in Figure 10.

ଶܫଵܫ
ଵܱ௖ܰ

ݐݑ݌݊ܫ ݎ݁ݕ𝐿𝐿ܮ ܱ𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐻𝐻𝐻𝐻݀݀݅ܪݎ݁ݕ𝐿𝐿ܮ ݎ݁ݕ𝐿𝐿ܮ 𝐻𝐻𝐻𝐻݀݀݅ܪ ݎ݁ݕ𝐿𝐿ܮ

ܱଶ

Figure 10.: Q-value critic with observation (I1, I2) as input and Q-values for each
action (O1, O2) as output as well as number of neurons per layer Nc.

The different versions of the Q-value critic 2 neural network are listed in Table 4,
where there is a factor of 2 between the number of neurons per layer.

Table 4.: Neural net parameters for Q-value critic 2.

Neural net Number of neurons per layer Learnable parameters
name Nc critic
NN2.1 256 67074
NN2.2 128 17154
NN2.3 64 4482
NN2.4 32 1218
NN2.5 16 354
NN2.6 8 114
NN2.7 4 42
NN2.8 2 18

3.5.2. Neural Networks for actor-critic-based Algorithms
For the actor-critic-based algorithms AC, TRPO and PPO (2.2.2), which are used
with a continuous action space, a state-value critic, see Eq. (8), and an actor, see

25

3. Use Case and Numerical Experiments

Eq. (5), are used. The state-value critic is structured similarly to the Q-value critic
2, requiring only one output. It takes the observation as input (input I1 and I2)
and approximates the state-value (output O1). This can be seen in Figure 11 and
the parameters are listed in Table 5.

ଶܫଵܫ ଵܱ௖ܰ

ݐݑ݌݊ܫ ݎ݁ݕ𝐿𝐿ܮ ܱ𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐻𝐻𝐻𝐻݀݀݅ܪݎ݁ݕ𝐿𝐿ܮ ݎ݁ݕ𝐿𝐿ܮ 𝐻𝐻𝐻𝐻݀݀݅ܪ ݎ݁ݕ𝐿𝐿ܮ
Figure 11.: State-value critic with observation (I1, I2) as input and state-value (O1)

as output as well as number of neurons per layer Nc.

The actor, which can be seen in Figure 12, uses the observation (input I1 and I2) as
input and calculates a mean value (output O2) and a standard deviation (output
O1) for the action according to Eq. (5). For this purpose, a softmax activation layer
(normalized exponential function) is used in the neuron prior to the output (O1).
The parameters are in the Table 5.

Table 5.: Neural network parameters for state-value critic and actor.

Experiment Number of neurons per layer Learnable parameters
name Na Nc actor critic
NN3.1 256 256 67074 66817
NN3.2 128 128 17154 17025
NN3.3 64 64 4482 4417
NN3.4 48 48 2594 2545
NN3.5 32 32 1218 1185
NN3.6 24 24 722 697
NN3.7 16 16 354 337
NN3.8 8 8 114 105
NN3.9 4 4 42 37
NN3.10 2 2 18 15

26

3.6. Reinforcement Learning Algorithms

ଶܫଵܫ
ଵܱ௔ܰ

ݐݑ݌݊ܫ ݎ݁ݕ𝐿𝐿ܮ ܱ𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐻𝐻𝐻𝐻݀݀݅ܪݎ݁ݕ𝐿𝐿ܮ ݎ݁ݕ𝐿𝐿ܮ 𝐻𝐻𝐻𝐻݀݀݅ܪ ݎ݁ݕ𝐿𝐿ܮ

ܱଶ

Figure 12.: Actor with observation (I1, I2) as input and mean (O2) and standard
deviation (O1) as output as well as number of neurons per layer Na.

3.6. Reinforcement Learning Algorithms
3.6.1. General Settings
The conventional hysteresis and PID controller for the discrete or continuous action
spaces provide the returns defined as optimal that can be achieved with the given
reward function, see chapter 3.4. To find a measure of how well the policy behaves
in comparison to the optimum, a lower limit is required. About the control behavior,
the minimum is defined if no action is selected at all, i.e., the controlled variable
compressed air is 0 % for the entire simulation. In between, the required limit
returns can be computed for certain thresholds shown in Tab. 6. The values refer
to a sample time of 1 s.

Table 6.: Average rewards and threshold values for discrete and continuous action
spaces.

threshold average reward
value discrete continous
min. -97.58 -97.58
max. 93.85 92.88
99 % 91.93 90.98
98 % 90.02 89.07
95 % 84.28 83.36
90 % 74.71 73.83

Relevant parameters in the RL training are given in Tab. 7 and consist of the

27

3. Use Case and Numerical Experiments

simulation and sample time, the discount factor, and the number of episodes averaged
for the average reward value. A minimum exploration ϵmin is defined for the value-
based algorithms. A mini-batch size and update frequency of the parameters are set
for both thethe actor-critic representatives. The L2 factor, an additional term in
the loss function, helps avoid overfitting the NN parameters when it is increased. In
order to exclude any starting deviations in the training progress, the neural networks
were always initialized in the same way.

Table 7.: Overview of relevant parameters in the RL training.

Property Variable Value Unit
simulation time tsim 120 s
sample time tsample 1 s
averaging window length 15 -
discount factor γ 0.99 -
minimal exploration ϵmin 0.001 -
mini-batch size DQN M 64 -
mini-batch size PPO M 128 -
update frequency 1 -
regularization factor L2 0.005 -

3.6.2. Preceding Iterative Process
The value-based algorithms Q, SARSA, DQN and the actor-critic-based algorithms
AC, TRPO, PPO are compared with each other in terms of performance. This
includes the maximum reward achieved and the number of episodes to reach a
certain threshold. This requires an adequate neural network and a robust choice
of hyperparameters to enable a stable and fast training process that achieves high
rewards. These requirements result in an iterative process where a very broad
network (256 neurons/layer) is initially used to find robust parameter sets for all six
algorithms. This includes a preliminary hyperparameter study to obtain convergent
training curves. Based on initial qualitative differences in performance, the most
promising algorithm in each category is selected. The assumption is that DQN is the
most suitable value-based agent. For actor-critic agents, it is assumed that PPO has
the superior behavior in terms of performance. These assumptions need to be verified.

The actual neural network analysis (NNA) study can then be carried out with a
defined set of parameters. The most suitable network is then used for the hyperpa-
rameter analysis (HPA) study. The comparison of the algorithms using the default
and the chosen network for the best-performing parameters is a way of confirming
the previous choice of algorithm for each category.

In the following, unless otherwise stated, the D in the experiment names refers to

28

3.6. Reinforcement Learning Algorithms

discrete action space (value-based) for the DQN algorithm. The same applies to C
in the experiment names, i.e., continuous action space (actor-critic-based) for the
PPO algorithm.

3.6.3. Neural Net Analysis Study
The neural networks of the value-based representative DQN and actor-critic-based
variant PPO are analyzed in terms of how many neurons per layer are required and
how many episodes must be trained to reach a specific threshold value which is
defined in Tab. 6. The experimental configurations used for this can be found in
Tables 8, 9, and 10.

3.6.4. Hyperparameter Analysis Study
The learning rate α, the exploration ϵ and the exploration decay rate ϵdecay are
identified as hyperparameters for the analysis for the value-based algorithms with
a discrete action space, see Chapter 2.2.1. The learning rates (actor αactor and
critic αcritic) and the entropy loss weight w are considered for the actor-critic-based
representatives; see Chapter 2.2.2. In the simulations, one parameter is changed at
a time, and the others are fixed to identify correlations.

For both variants of the Q-value critic, the learning rate is varied in the range of
4 orders of magnitude between 10−1 and 10−5. The experimental parameter sets
can be found in Table 11 and 12. Table 13 shows the hyperparameters used for
the variation of the learning rates of actor and critic for the PPO algorithm. The
learning rates are also varied in the same order of magnitude. For each case, the
same neural network is used.

For the DQN algorithm, the influence of exploration and its rate of decline over
time is analyzed. The parameter sets used for this study can be found in Tables
14 and 16. The exploration is analyzed in a range of 1 to 100 %. The exploration
decay rate varies between 5 ∗ 10−3 and 10−5. The influence of entropy loss weight is
to be investigated for the PPO algorithm. A range between 0 and 90 % is selected
for this. Table 15 shows the parameter sets used for this study.

3.6.5. Comparison of Algorithms
The selected neural networks and parameter sets are used for the comparison in the
group of value-based (Q, SARSA, DQN) and actor-critic-based (AC, TRPO, PPO)
algorithms. In addition, the tests are repeated with a wide NN (256 neurons/layer).
The test parameters can be taken from Table 17 for the value-based algorithms and
Table 18 for the actor-critic-based representatives. The hyperparameters used differ
within the comparison group, as they each require different parameter sets for fast
and robust convergence. For the algorithms Q, SARSA, AC and TRPO, this was
determined in a previous iterative process, which is not part of this work.

29

3. Use Case and Numerical Experiments

Table 8.: Neural net analysis parameters for Q-value critic 1.

Experiment Neural Learning rate Exploration Exploration decay
name network α ϵ rate ϵdecay

D1.1 NN1.1

1 · 10−3 50 % 1 · 10−4

D1.2 NN1.2
D1.3 NN1.3
D1.4 NN1.4
D1.5 NN1.5
D1.6 NN1.6
D1.7 NN1.7

Table 9.: Neural net analysis parameters for Q-value critic 2.

Experiment Neural Learning rate Exploration Exploration decay
name network α ϵ rate ϵdecay

D1.8 NN2.1

1 · 10−3 50 % 1 · 10−4

D1.9 NN2.2
D1.10 NN2.3
D1.11 NN2.4
D1.12 NN2.5
D1.13 NN2.6
D1.14 NN2.7
D1.15 NN2.8

Table 10.: Neural net analysis parameters for state-value critic and actor.

Experiment Neural Learning rate Entropy loss
name network actor αactor critic αcritic weight w

C1.1 NN3.1

1 · 10−3 1 · 10−4 10 %

C1.2 NN3.2
C1.3 NN3.3
C1.4 NN3.4
C1.5 NN3.5
C1.6 NN3.6
C1.7 NN3.7
C1.8 NN3.8
C1.9 NN3.9
C1.10 NN3.10

30

3.6. Reinforcement Learning Algorithms

Table 11.: Hyperparameter learning rate analysis for Q-value critic 1.

Experiment Neural Learning rate Exploration Exploration decay
name network α ϵ rate ϵdecay

D2.1

NN1.4

1 · 10−1

50 % 1 · 10−4

D2.2 5 · 10−2

D2.3 1 · 10−2

D2.4 5 · 10−3

D2.5 1 · 10−3

D2.6 5 · 10−4

D2.7 1 · 10−4

D2.8 5 · 10−5

D2.9 1 · 10−5

Table 12.: Hyperparameter learning rate analysis for Q-value critic 2.

Experiment Neural Learning rate Exploration Exploration decay
name network α ϵ rate ϵdecay

D2.10

NN2.4

1.0 · 10−1

50 % 1 · 10−4

D2.11 5.0 · 10−2

D2.12 1.0 · 10−2

D2.13 5.0 · 10−3

D2.14 2.5 · 10−3

D2.15 1.0 · 10−3

D2.16 7.5 · 10−4

D2.17 5.0 · 10−4

D2.18 1.0 · 10−4

D2.19 5.0 · 10−5

D2.20 1.0 · 10−5

3.6.6. Validation
A modified initial state that was not initially used for learning can be specified to
validate the trained RL policies. The water level at the start of the blow-out process
is varied. In addition, the opening degree of the guide vanes can be changed, and
thus, the leakage of the turbine housing. This can be seen in Tables 19 and 20.

3.6.7. Extended Use Case
For the more complex use case, the state and action spaces are changed according
to the Chapter 3.3.3 and trained with the following parameter set, see Table 21.
This corresponds to that of experiment C1.1.

31

3. Use Case and Numerical Experiments

Table 13.: Hyperparameter learning rate analysis for state-value critic and actor.

Experiment Neural Learning rate Entropy loss
name network actor αactor critic αcritic weight w

C2.1

NN3.5

1 · 10−5

1 · 10−5

10 %

C2.2 1 · 10−4

C2.3 1 · 10−3

C2.4 1 · 10−2

C2.5 1 · 10−1

C2.6

1 · 10−4

1 · 10−5

C2.7 1 · 10−4

C2.8 1 · 10−3

C2.9 1 · 10−2

C2.10 1 · 10−1

C2.11

1 · 10−3

1 · 10−5

C2.12 1 · 10−4

C2.13 1 · 10−3

C2.14 1 · 10−2

C2.15 1 · 10−1

C2.16

1 · 10−2

1 · 10−5

C2.17 1 · 10−4

C2.18 1 · 10−3

C2.19 1 · 10−2

C2.20 1 · 10−1

C2.21

1 · 10−1

1 · 10−5

C2.22 1 · 10−4

C2.23 1 · 10−3

C2.24 1 · 10−2

C2.25 1 · 10−1

Table 14.: Hyperparameter exploration analysis for Q-value critic 2.

Experiment Neural Learning rate Exploration Exploration decay
name network α ϵ rate ϵdecay

D3.1

NN2.4 1 · 10−3

100 %

1 · 10−4

D3.2 90 %
D3.3 70 %
D3.4 50 %
D3.5 30 %
D3.6 10 %
D3.7 1 %

32

3.6. Reinforcement Learning Algorithms

Table 15.: Hyperparameter entropy loss weight analysis for state-value critic and
actor.

Experiment Neural Learning rate Entropy loss
name network actor αactor critic αcritic weight w

C3.1

NN3.5 1 · 10−3 1 · 10−4

0 %
C3.2 1 %
C3.3 5 %
C3.4 10 %
C3.5 15 %
C3.6 20 %
C3.7 50 %
C3.8 70 %
C3.9 90 %

Table 16.: Hyperparameter exploration decay rate analysis for Q-value critic 2.

Experiment Neural Learning rate Exploration Exploration decay
name network α ϵ rate ϵdecay

D3.8

NN2.4 1 · 10−3 50 %

5.0 · 10−3

D3.9 1.0 · 10−3

D3.10 5.0 · 10−4

D3.11 1.0 · 10−4

D3.12 7.5 · 10−5

D3.13 5.0 · 10−5

D3.14 1.0 · 10−5

Table 17.: Comparison of value-based algorithms.

Experiment Neural Algorithm Learning rate Exploration Exploration decay
name network α ϵ rate ϵdecay

D4.1 NN1.4 Q 1 · 10−4 50 %

1 · 10−4

D4.2 NN2.4
D4.3 NN1.4 SARSA 1 · 10−3 1 %D4.4 NN2.4
D4.5 NN1.4 DQN 1 · 10−3 50 %D4.6 NN2.4

33

3. Use Case and Numerical Experiments

Table 18.: Comparison of actor-critic-based algorithms.

Experiment Neural Algorithm Learning rate Entropy loss
name network actor αactor critic αcritic weight w

C4.1 NN3.1 AC 1 · 10−3 1 · 10−3

10 %

C4.2 NN3.5
C4.3 NN3.1 TRPO 1 · 10−4 1 · 10−4
C4.4 NN3.5
C4.5 NN3.1 PPO 1 · 10−3 1 · 10−4
C4.6 NN3.5

Table 19.: Validation of DQN and PPO agent with varied initial heights.

Initial water height Percentage of total height
0.16 m 20 %
0.4 m 50 %
0.65 m 80 %

Table 20.: Validation of DQN and PPO agent with varied guide vane openings.

Guide vane opening Percentage of total opening
0.006 m 18 %
0.014 m 41 %
0.034 m 100 %

Table 21.: Extended use case.

Experiment Neural Algorithm Sample Learning rate Entropy loss
name network time actor αactor critic αcritic weight w

C5.1 NN3.1 PPO 0.25 s 1 · 10−3 1 · 10−4 10 %

34

4. Results and Discussion
This chapter starts by showing the control behavior of the water height in the pump-
turbine housing and the underlying policy for the DQN and PPO algorithms. The
training processes that led to the control principle are shown. The different variants
of the neural networks are subsequently analyzed in a study. The hyperparameter
analysis presents the influence of relevant training parameters on performance. Based
on this, the algorithms of the value-based (Q, SARSA, DQN) and actor-critic-based
(AC, TRPO, PPO) representatives are compared with each other. The control
behavior of the DQN and PPO algorithms is validated by demonstrating different
use cases. Finally, the guide vane opening extends the use case, displaying the
resulting control behavior.

4.1. Policy Deployment
The policy or control strategy corresponding to the parameterized neural network
is extracted from the fully trained agent. This acts as a controller on the environ-
ment, whereby the observation is taken as input, and the calculated output on the
environment corresponds to the manipulated variable.

4.1.1. DQN Discrete Output
Figure 13 displays the control behavior of the water level in the turbine housing due
to the compressed air blown into the runner. The compressed air volume is either
maximum or 0, also called discrete action, as two states are possible. The diagram
shows the water level (ht in m, blue) and the air supply (at in %, red) over time (t
in s) for the DQN RL control with a solid line and the hysteresis controller with a
dashed line. The blow-out and critical height (black) are also plotted. For Chapters
4.1 and 4.2, experiment D1.11, see Tab. 9, is shown as an example of the DQN agent.

The curves of the different control concepts for discrete outputs are on top of each
other; they are identical. For this reason, the trained RL agent reaches the optimum
previously defined by the two-point controller. As the observations required to
calculate the action according to the policy are not yet available at the start of the
simulation, the agent must wait for two time steps. As the reward function, defined
in Chapter 3.4, weights the compressed air and the change in air volume with the
same factor, it is better to blow in longer and less often and cause a lower water
level. This results in a higher average reward.

35

4. Results and Discussion

Figure 13.: Control behavior of DQN policy & hysteresis controller for the water
level corresponding to the compressed air blown into the runner over
time.

4.1.2. DQN Policy
Figure 14 illustrates the policy, whereby two curves (red and blue) are shown for
the observations of water height and previously executed action, the compressed air.
This visual representation corresponds to the policy described by the underlying
neural network.

Figure 14.: DQN RL agent policy: pressurized air supply over water height.

4.1.3. PPO Continuous Output
Figure 15 displays the control characteristics of the water level in the turbine housing
due to a continuously controlled air supply. It shows the water level (ht in m, blue)
and the air supply (at in %, red) over time (t in s) for the PPO RL control (solid)
and the PID controller (dashed). For Chapters 4.1 and 4.2, experiment C1.10, see
Tab. 10, is shown as an example of the PPO agent with a modified sampling time
of tsample = 0.25 s.

36

0.8

S O 6 .s •

-§i 0.4
]
:;,
J 0.2

---water height DQN
- - - water height Hysteresis Control
- - - threshold 0.639 m
- - - threshold 0.2 m
--- air supply DQN
- - - air supply Hysteresis Control

100

"" 80 .s
,5

.g
60 i:i.

5i
-~

40 "d

"
20 -~

[
o ~ --~ --~------~------~--~--~------~-----~ o

0 W W

timet ins

"" 100 -.s ---------------~----
,5 1--- observation: prev. action a,_1 = 100 % 1

b 80 - --- observation: prev. action a,_1 = 0 %

00

-~
"O

Cl)

·i
'"' p.

60 -

40-

20 -

0 ~----~'----~'~----~ ' ----~'~----~'----~'~ ~ ---~'----~'
0 0.1 0.2 0.3 0.4 0.5 0.6 0. 7 0.8

observation: water heigth h, in m

4.1. Policy Deployment

In continuous control, the trained PPO agent can reproduce a similar control
behavior to the PID controller. The curves are approximately superimposed. The
neural network consists of 2 neurons per layer, resulting in 18 degrees of freedom
for the actor and 15 for the critic.

Figure 15.: Control behavior of PPO policy & PID controller for the water level
corresponding to the compressed air blown into the runner over time.

4.1.4. PPO Policy
The underlying policy can be represented as a surface plot (Figure 16), where the
water height at two consecutive points in time is used as the input and the action
as the height coordinate. The yellower, the more compressed air is used; the bluer,
the less. Three different ranges can be recognized: 100 % compressed air, where
the water level is above the level at which the runner is considered to be blown
out. 0 %, where the water level is far below the blow-out height. The air supply in
between depends on how close the level is below the blow-out height and how high
it was one-time step earlier.

37

0.8

S 0.6 .s

~0.4
]
....
" 1 0.2

0

F

0

l
\,. -

20 40 60
timet ins

- 100
---water height PPO policy
- - - water height PID controller i,..c 80
---air supply PPO policy
- - - air supply PID controller

80 100

- 60

- 40

- 20

0
120

.s
<j

0. ;:,
00

....
·@
"O

" -~
;:,
00
00

"
0.

4. Results and Discussion

Figure 16.: PPO RL agent policy: pressurized air supply over water heights.

4.2. Training Curve
The training progression shows how the episode reward (blue) and the moving
average reward over 15 episodes (red), calculated from this, change over episodes.
The episode reward varies significantly at the beginning of the training, but the
fluctuation becomes smaller and smaller as the training progresses. The average
value increases (approximately) steadily.

4.2.1. DQN Training Curve
Figure 17 shows an example of the training curve of the DQN agent for experiment
D1.11. The threshold value (black dashed) is specified as 99 % of the optimum and
is reached after about 500 episodes.

4.2.2. PPO Training Curve
Figure 18 displays an example of the training curve of the PPO agent for the
modified experiment C1.10. The threshold value (black dashed) is specified as 99 %
of the optimum for this configuration and is reached after about 3850 episodes. Due
to the changed sample time, the episode and average reward also change accordingly.
As this is a finer time resolution for illustrative purposes only, the limits have not
been stated.

38

4.3. Neural Network Analysis Study

Figure 17.: Training curve DQN agent, episode and average reward over episodes
and threshold value.

Figure 18.: Training curve PPO agent, episode and average reward over episodes
and threshold value.

4.3. Neural Network Analysis Study
The neural network analysis (NNA) study investigates which architecture with which
number of neurons per layer is best suited to achieve a particular threshold value.

4.3.1. DQN Critic
Figures 19 and 20 show the NNA study for the DQN agent and the Q-value critic 1
and 2, respectively, with episodes to reach the thresholds plotted over the learnable
parameters of the neural network. The specific limits are given as 90 % (yellow), 95
% (red) and 98 % (blue) of the previously defined optimum.

The experiments used in Figure 19 are defined in Table 8 and relate to the neural
network structures defined in Table 3. The number of degrees of freedom equals the
number of parameters that can be learned. Experiments D1.1 with neural networks
NN1.1 to D1.7 and NN1.7 are plotted from left to right.

39

100

0

1-100
Q)

-200

300 400 500

---episode reward
--- average reward
- - - threshold

-300 ~-----~-----~-----~-----~------~----~

400

200

0

"E
 -200
i'::

-400

-600

0 100 200 300
episodes

400 500 600

--------------:~-~ -~---------------

500 1000 1500 2000
episodes

2500

380 385 r

375
370~---~----~

2000 3000 4000

--- episode reward
--- average reward
- - - threshold

3000 3500 4000

4. Results and Discussion

The experiments used in Figure 20 are defined in Table 9 and relate to the neural
network structures defined in Table 4. Experiments D1.8 with neural networks
NN2.1 to D1.15 and NN2.8 are plotted from left to right.

For the studied range of approximately 101 to 5 · 104 degrees of freedom, the number
of neurons used per layer has almost no influence on the Q-value critic 1 at a low
threshold value of 90 % of the optimum. A difference in the number of training
episodes can only be seen at higher target values. As narrow NNs only have a few
neurons per layer and few parameters, the values must be finely tuned to each other
to map the functional relationships. This requires a longer training phase, as progress
can be very slow at the beginning of training. This can be seen in Figure 38 in the
Appendix. A good compromise for the choice of neural network structure is the
smallest number of neurons per layer for good generalization but so many that the
functional relationship can be reproduced with the required accuracy. The local min-
imum number of episodes needed to reach the defined threshold is approximately 800
degrees of freedom. NN1.4 is selected and can be recognized by the black vertical line.

Figure 19.: Neural network analysis study for DQN agent and Q-value critic 1
with episodes to reach threshold over learnable parameters of the neural
network.

The Q-value critic 2 results in an increase in the number of episodes for narrow
neural networks that cannot fully map the degree of complexity. The corresponding
training curve can be seen in Figure 39 in the Appendix. Only with more neurons
per layer (≥ 8) can the required limit of 98 % be achieved. Very broad NNs can
make rapid training progress in the beginning due to the high number of adjustable
parameters. However, they may have problems reaching the optimum because
there are too many degrees of freedom to be adjusted. More emphasis is placed on
achieving the required average reward (98%) for the NN choice. Furthermore, a fast
convergence is advantageous and if several structures show similar behavior, then
the one with the fewest neurons per layer is chosen for better generalization. The

40

1200

"O --+-- average reward 98 %opt.
ö 1000 --+-- average reward 95 %opt. ..c::

00 --+-- average reward 90 %opt. (l)
'-< ..c:: 800
+'

..c:: u
'" 600 (l)
'-<

B
00 400
(l)

"O
0
00 200 ·a
(l)

0
101 102 103 104 105

learnable parameters

4.3. Neural Network Analysis Study

network NN2.4 is selected with approximately 1200 degrees of freedom and can be
recognized by the black line.

Figure 20.: Neural network analysis study for DQN agent and Q-value critic 2
with episodes to reach threshold over learnable parameters of the neural
network.

At this point, it is not yet possible to say which critic structure is preferred for this
problem, so both are analyzed regarding the learning rate.

4.3.2. PPO Actor-Critic
Figure 21 shows the NNA study for the PPO agent and state-value critic and actor
with episodes for reaching threshold values plotted over learnable parameters of the
actor. The specific limits are given as 90 % (yellow), 95 % (red) and 99 % (blue) of
the previously defined optimum.

The experiments used in Figure 21 are defined in Table 10 and refer to the neural
network structures for the critic and actor defined in Table 5. They are connected
by the number of parameters that can be learned. Experiments C1.1 with neural
networks NN3.1 to C1.10 and NN3.10 are plotted from left to right.

The network structure for the actor-critic-based algorithms is varied so that both
the critic and actor are changed in width simultaneously. For this reason, the two
NNs must be regarded as one training structure. It can be seen that only four
variants reach the limit value of 99 % of the optimum. There is a much stronger
dependence on the degrees of freedom, which indicates a more complex problem
in the continuous case. Broad NN versions show faster convergence, although the
required 99 % cannot be achieved with 128 neurons per layer. However, slower
convergence is accepted due to better generalization properties with fewer degrees
of freedom. It is also assumed that stronger dependencies of the hyperparameters
can be shown with less complex network structures.

41

1200

--+-- average reward 98 %opt.

1000 --+-- average reward 95 %opt. ..c::
"' --+-- average reward 90 %opt. Q)
H ..c:: 800 ...,

..c:: u ro 600 Q)
H

0 ...,
"' Q)

400
"O
0
"' 200 ·a
Q)

0
10' 102 103 10• 105

learnable parameters

4. Results and Discussion

The neural network, NN3.5, with approximately 1200 degrees of freedom for each
actor and critic, is again selected, which offers the best compromise between a low
number of neurons (32) and reaching the optimum in a small number of episodes.
The training progressions can be seen in Figures 40 and 41 in the Appendix.

Figure 21.: Neural network analysis study for PPO agent and state-value critic and
actor with episodes to reach threshold over learnable parameters of the
neural network.

4.4. Hyperparameter Analysis Study
The hyperparameter analysis (HPA) study aims to determine the dependencies of
parameters on training behavior. To this end, the learning rate(s), the exploration,
the exploration decay rate and the entropy loss weight are examined. The hyperpa-
rameters were selected so that it is assumed that they influence the learning process
and occur across all algorithms (of the group). There are more influencing factors,
but the analysis of these is not part of the work.

4.4.1. DQN Learning Rate
Figures 22 and 23 show the HPA study for the DQN agent and the Q value critic 1
and 2, respectively, with the episodes for reaching the thresholds plotted against
the learning rate α. The specific limits are given as 90 % (yellow), 95 % (red) and
98 % (blue) of the previously defined optimum. The experiments in Figure 22 are
defined in Table 11 with the neural network NN1.4. Figure 23 parameter sets can
be found in Table 12 with NN2.4.

If the two variants of the learning rate HPA are compared with each other, it can
be seen that a noticeable difference only occurs at higher target values (average
reward ≥ 95 %opt). For both, there is a minimum number of episodes to reach the
threshold value of 98 %opt and is therefore marked as the best learning rate with a

42

2000

--+-- average reward 99 %opt.

,.q --+-- average reward 95 % 0 pt.
00 1500 --+-- average reward 90 %opt. Cl) ,_,

,.q ...,
,.q
 1000 Cl) ,_,
0 ...,
00
Cl)

"Cl 500 0

·ä
Cl)

0
101 102 103 104 105

learnable parameters

4.4. Hyperparameter Analysis Study

vertical line (black). Since a larger range of learning rates leads to good results for
the simple neural network structure used in Q-value critic 2, see Chapter 3.5.1, this
is preferred and used for the subsequent HPAs.

Figure 22.: Hyperparameter learning rate analysis for DQN agent and Q-value critic
1 with episodes to reach threshold over learning rate.

Figure 23.: Hyperparameter learning rate analysis for DQN agent and Q-value critic
2 with episodes to reach threshold over learning rate.

4.4.2. DQN Exploration Rate
Figure 24 shows the HPA study for the DQN agent and Q-value critic 2 with
episodes for reaching threshold values plotted over exploration rate ϵ. The specific
limits are shown for 90 % (yellow), 95 % (red) and 98 % (blue) of the previously
defined optimum. Table 14 defines the experiments used for this study.

Higher exploration means that a random action is chosen more often than the one
where the highest Q-value is assumed. As far as the very simple case of the discrete
action space is concerned, in which either air is blown into the runner housing or
nothing is done, no statement can be made about the effect of exploration on the

43

700

 600
A

--+-- average reward 98 %opt.

--+-- average reward 95 %0 pt.
00
Q) 500 '"

--+-- average reward 90 %0 pt.
A
-+-
A 400 u ro
Q)

'" 300 0
-+-
00
Q) 200 '"O
0
00

0 @" 100

0
10-4

1000

,f;J 800

Q)

ll
-+-

600 A u ro
Q)

'" .8 400
00
Q)

'"O
0 200 ·"' P,
Q)

0
10-5 10-4

10-3
learning rate a

10-3
learning rate a

10-2

--+-- average reward 98 % 0 pt.

--+-- average reward 95 %opt.

--+-- average reward 90 %opt.

10-2 10-1

4. Results and Discussion

maximum reward achieved or how quickly this is achieved. It is assumed that this
must be an error of some kind, as the exploration does not influence the training
behavior. No difference could be detected for different initialization of the neural
network weights.

Figure 24.: Hyperparameter exploration rate analysis for DQN agent and Q-value
critic 2 with average reward over episodes.

4.4.3. DQN Exploration Decay Rate
Figures 26 shows the HPA study for the DQN agent and Q-value critic 2 with
episodes for reaching threshold values plotted over exploration decay rate ϵdecay.
The specific limits are given as 90 % (yellow), 95 % (red) and 98 % (blue) of the
previously defined optimum. Table 16 defines the experiments used for this study.

Figure 25.: Training curves of DQN agent for different exploration decay rate of
Q-value critic 2.

It can be seen that with lower exploration decay rates, more training episodes are
needed to reach the threshold. Higher rates result in an almost constant value. The
training curves of the experiments can be found in the appendix in Figure 25. It

44

800

"Cl
0 ..c::

600 00
Cl)c:: ...,

..c::
'-' eo 400 Cl)
0 ...,
00
Cl)

"Cl 200 0 ·a
Cl)

0
0 0.1 0.2 0.3

100

50

"Cl 0 ;
Cl) -50
Cl)
bO

 -100

-150

-200

0 200

0.4

400

0.5
exploration c

600
episodes

0.6 0.7

800

--+-- 98 % 0pt

--+-- 95 %opt

--+-- 90 % 0pt

0.8 0.9 1

--- Cdecay = 5 • 10-3

--- Cdecay = l • 10-3

--- Cdecay = 5 • 10-4

--- Cdecay = l • 10-4

--- iödecay = 7.5 · 10-5

--- iödecay = 5 • 10-5

--- iödecay = l • 10-5

--- threshold

1000 1200

4.4. Hyperparameter Analysis Study

is clear that at the beginning of the training with a low decay rate, the training
curve is very flat and steeper as the decay rate increases. This is the case up to
ϵdecay = 10−3, where the average value drops in the training only to rise sharply
again later.

Figure 26.: Hyperparameter exploration decay rate analysis for DQN agent and Q-
value critic 2 with episodes to reach threshold over exploration decay
rate.

4.4.4. PPO Learning Rate
Figure 27 shows the HPA study for the PPO agent and state-value critic and actor
with average reward values plotted over the learning rates of actor αactor and critic
αcritic. The yellower the color bar, the higher the average reward, the bluer the
lower. The training progressions were simulated for a maximum of 2000 episodes
and the highest average reward achieved was used. The line where the learning rates
are equal is also shown in red. All the parameter sets can be found in Table 13.

There are two areas (shown here in yellow) where very high values close to the
optimum can be achieved. On the one hand, this is with equal learning rates of
α = 10−2 or with an actor learning rate of αactor = 10−3 and critic learning rate of
αcritic = 10−4. It can generally be seen that higher average rewards can be achieved
in the range where the learning rate of the critic is smaller than that of the actor.
Therefore, the actor’s neural network should learn and execute faster to achieve
stable training progress and a higher reward. The actor’s prolonged learning rate of
10−5 does not result in any meaningful learning behavior, which is why it was not
included in the plot.

4.4.5. PPO Entropy Loss Weight
Figure 28 shows the HPA study for the PPO agent, state-value critic and actor
with episodes to reach threshold over entropy loss weight w. The maximum average
values achieved for different entropy loss weights can be taken from Figure 42 in the

45

1200

3l 1000 0
,;;J

<1l

 800
..c:: u
'" 600 <1l
.8
00 40
<1l

'"Cl
0

·"' P,
<1l

0
10-4 10-3

exploration decay rate Edecay

--+-- average reward 98 %opt.

--+-- average reward 95 %opt.

--+-- average reward 90 %0 pt.

10-2

4. Results and Discussion

8
9

8
9

9
0

9
0

90

9
1

9
1

9
1

9
1 9

2
9
2

9
2

9
2

9
2

9
3

9
3

9
3

9
3

9
3

9
3

9
4

9
4

9
4

9
4

9
4

9
4

9
5

9
5

9
59

5

9
5

9
5

9
5

9
6

969
6

9
6

96
9
6

9
6

9
7

97

9
7

97

9
7

9
8

98

9
8

9
8

99

Figure 27.: Hyperparameter learning rate analysis for PPO agent and state-value
critic and actor with average reward over learning rates.

appendix. The experiments are defined in Table 15.

The additional term in the actor loss function of the PPO agent (Algorithm 2), the
entropy loss term w · H(θ, S), causes the agent to favor exploration, as for higher
values, it is more uncertain which action to take. This can help to get out of local
optima. If there is no need to ensure excessive exploration due to a very simple
use case, which is present, the optimum can also be achieved without an additional
term, as shown in Figure 28.

Convergence towards the optimum is only possible with low entropy loss weight
values. High values favor more exploration and are, therefore, more of a handicap
at the end of the training process, which can be recognized by the fact that from w
> 0.2, the progressions no longer reach 99 % of the optimum.

46

4.5. Comparison of Algorithms

Figure 28.: Hyperparameter entropy loss weight analysis for PPO agent and state-
value critic and actor with episodes to reach threshold over entropy loss
weight.

4.5. Comparison of Algorithms
The value-based and actor-critic-based algorithms are tested for the initial assump-
tion that DQN and PPO are the best-performing agents in their group.

4.5.1. Comparison of Value-based Algorithms
Figures 29 and 30 show the comparison of the training curves of Q (blue), SARSA
(red) and DQN (yellow) agents for Q-value critic 2 with 256 and 32 neurons per
layer, respectively. The average reward is plotted over the number of episodes.
Reaching the threshold value is indicated by a vertical black line. The parameter
sets are in Table 17.

The DQN agent is superior for both the broad and the shallow neural network, as
it reaches the optimum much faster. Both the Q and SARSA agents do not reach
the threshold value (black dashed). This comparison is consistent with the original
assumption that the DQN agent is the most suitable for value-based algorithms.

4.5.2. Comparison of Actor-critic-based Algorithms
Figures 31 and 32 show the comparison of the training curves of AC (blue), TRPO
(red) and PPO (yellow) agents for state-value critic and actor with 256 and 32
neurons per layer, respectively. The average reward is plotted over the number of
episodes. A vertical black line indicates reaching the threshold value (black dashed).
The parameter sets are in Table 18.

The TRPO agent trains very quickly and reaches a high value after a few training
episodes but then has problems reaching the maximum average reward. This is
because it has extensive updates of the actor and critic. In contrast, the PPO

47

1200

:s --+-- 99 %opt
0 1000 --+-- 90 %opt ..c:::
Cl) --+-- 75 % 0pt (l)

800 ..c::: .,.,
..c:::
 600 (l)
0 .,.,
Cl) 400
(l)

"O
0

·ä 200
(l)

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

entropy loss weight w

4. Results and Discussion

Figure 29.: Comparison of the training curves of Q, SARSA and DQN agents for Q-
value critic 2 with 256 neurons/layer and average reward over episodes.

Figure 30.: Comparison of the training curves of Q, SARSA and DQN agents for
Q-value critic 1 with 32 neurons/layer and average reward over episodes.

is a simplification and has a clipped update, which is characterized by a slower
progression at the beginning but convergence to the optimum. The AC algorithm
does not reach the target value. This comparison supports the original thesis that
the PPO agent from the actor-critic-based algorithms is the most suitable.

48

100

0

1
 -100

Q)

-200

-----~ - ~- ~- =-::=:::~-----------------------

--Q
--SARSA
--DQN
- - - threshold

-300 ~--~---~---~~-~---~-------~--~------~
0 100 200 300

100

50

"cl 0 1,1

Q) -50
Q)

 -100
ro

-150

-200
0 500

400 500
episodes

episodes

600 700

1000

800 900 1000

--Q
--SARSA
--DQN
- - - threshold

1500

4.6. Validation

Figure 31.: Comparison of the training curves of AC, TRPO and PPO agents for
state-value critic and actor with 256 neurons/layer and average reward
over episodes.

Figure 32.: Comparison of the training curves of AC, TRPO and PPO agents for
state-value critic and actor with 32 neurons/layer and average reward
over episodes.

4.6. Validation
Figures 33 and 34 show the validation plots for the DQN and Figures 35 and 36 for
the PPO agents with varied water heights and guide vane openings, respectively.
The control behavior of the water level in the turbine housing due to the compressed
air is shown over time. The experimental data used can be found in Tables 19 and
20 for the DQN and PPO agents, respectively.

It can be seen that although no training was done for these initial conditions, the
polices show very good generalization. The DQN agent maintains the water level
between the boundaries for different initial heights of water in the turbine housing
or degrees of opening of the guide vanes. For all three different water heights, the
PPO policy regulates the water level very quickly to the same value (just below
the blow-out height) and keeps it constant. The same statement can be made for

49

100

0

1
 -100

"'

-200

::~
85~---~~---~~

100 200 300

--AC
--TRPO
--PPO
- - - threshold

-300 ~--~---~------~---~---~---~--~---~--~

100

50

0 1 - -50
i
 -100

-150

-200

0

0

100 200

100 200

300 400

300 400

500
episodes

500
episodes

600

600

700 800 900 1000

95

90

85
800 900 1000

--AC
--TRPO
--PPO
- - - threshold

700 800 900 1000

4. Results and Discussion

different guide vane openings. It is necessary to add here that it must be assumed
that the simulation does not correctly represent the air leakage for larger openings.
This is because a much larger opening requires just a minimum more compressed
air supply.

Figure 33.: Validation DQN agent with varied water heights; control behavior of
DQN policy for the water level corresponding to the compressed air blown
into the runner over time.

Figure 34.: Validation DQN agent with varied guide vane openings; control behavior
of DQN policy for the water level corresponding to the compressed air
blown into the runner over time.

50

0.8

S 0.6 .s
..!

~0.4
]
.... .
Q) .• -· J 0.2 -

,-7

---water height, h,nit = 0.65 m
- - - water height, h,nit = 0.4 m
---------- water height, h,nit = 0.16 m •

.--- .--- --- air supply, h,nit = 0.65 m
- - - air supply, h,nit = 0.4 m
---------- air supply, h,nit = 0.16 m

\ 1 ,....- ,....- ----
t-- ----
1

1

100

80

60

40

20

o ~-~---~~~-~-~----~~~ ~ ----~--~-~~-----~"-t)

S 0.6 .s
..!

 0.4
]
t;,
l 0.2

0 20 40 60
timet ins

80 100

---water height, g = 0.006 m
- - - water height, g = 0.014 m
--- ----- water height, g = 0.034 m
--- air supply, g = 0.006 m
- - - air supply, g = 0.014 m
---------- air supply, g = 0.034 m

. \ .
·. f

1

1

120

100

80

60

40

20

o- - ~ ---------- - ~--~-------- 1-
o 20 40 60

timet ins
80 100 120

/:?-
.s
Cj

b
0.
0.

" 00

-~
"d

(!)

"' ·.::
" 00
00
(!)
0.

/:?-
.s
Cj

b
0.
§'
00

-~
"d

(!)

-~
fil
00
(!)
0.

4.7. Extended Use Case

Figure 35.: Validation PPO agent with varied water heights; control behavior of
PPO policy for the water level corresponding to the compressed air blown
into the runner over time.

Figure 36.: Validation PPO agent with varied guide vane openings; control behavior
of PPO policy for the water level corresponding to the compressed air
blown into the runner over time.

4.7. Extended Use Case
In the extended use case, where the guide vane opening can also be controlled in
addition to the water height of the turbine housing, the resulting control behavior
is shown in Figure 37. The opening of the guide vanes (gt in cm, blue) is plotted in
addition to the water level and compressed air. Experiment C5.1, see Tab. 21, is an
example of the PPO agent with the neural network NN3.1 for extended state and
action spaces. In this experiment, the same parameters that were found to be most
suitable for the continuous action space were used. These parameters would have to
be adapted for the extended use case in order to achieve better control behavior.

51

0.8

13
.s 0.6

i 0.4
"iil ..c:
....
" l 0.2

0

0.8

l3 0 6 .s •

i 0.4
"iil ..c:
....
" l 0.2

0

0

100
---water height, hinit = 0.65 m
- - - water height, hinit = 0.4 m 80
· · · · · · · · · · water height, hinit = 0.16 m ------

--- --- ---air supply, hinit = 0.65 m
60

--- - - - air supply, hinit = 0.4 m
· · · · · · · · · · air supply, hinit = 0.16 m

40

20

0
20 40 60 80 100 120

timet ins

100

\ ---water height, g = 0.006 m
l'---------------------------1 - - - water height, g = 0.014 m f-=

· · · · · · · · · water height, g = 0.034 m
--- air supply, g = 0.006 m
- - - air supply, g = 0.014 m
· · · · · · · · · air supply, g = 0.034 m

- 40

1 ~ ------~-------'------~'~------~'-------'------ 0
0 20 ® 00

timet ins

1cR
.s
,§

i';>
0.
§'
00

-~
"O

" ·E
fil
00

"
0.

4. Results and Discussion

Figure 37.: Control behavior of the water level in the turbine housing and guide vane
opening due to the compressed air and guide vane actuator of the PPO
RL agent.

52

0.8 1 100~

.s s - 80 '" .s 0.6
 - 60 0.

'§,0.4 " "'----
'iil - 40 ·.i -= "O

"' 0.2 - 20 -~
" L

fii
"'

0 0 0.

0 20 40 60 80 100 120
timet ins

0.02
s
.s

<:5i 0.015
bll
Ci ·s
"' 0.01 0.
0

"' Ci

 0.005
"' "O ·s
bll

0
0 20 40 60 80 100 120

5. Conclusion and Outlook
This thesis investigated how Reinforcement Learning (RL) methods can be applied
to a model of a small-scale pumped storage power plant located at the Institute
of Energy Systems and Thermodynamics (IET) test facilities at TU Wien. For
this purpose, a sub-process of the transition from turbine to pump operation in a
reversible pump turbine, the blow-out process of water from the turbine housing
by compressed air, was investigated. This process, which was easy to control using
conventional methods (hysteresis and PID controller), determined the maximum
return and optimum behavior. A model created in a previous thesis was embedded
in an RL simulation environment. Suitable state and action spaces were defined
to describe the problem and enable control. To have a proper solution metric, a
reward function was established that includes the control objective. Neural network
architectures were designed and analyzed in a study. A hyperparameter study was
carried out to determine the parameters’ dependencies on the training behavior of
the agent and the subsequent control. The most suitable algorithms were found,
their control behaviors were compared with conventional controllers, and their
underlying control policies were analyzed.

Regarding the question of whether RL is suitable for controlling the simulation model
in a meaningful way, it was shown that the maximum return according to the reward
function and the optimum control behavior could be reproduced for both discrete
(with a DQN agent) and continuous (with a PPO agent) actions. This means that
the water height in the turbine housing to be regulated reaches and remains within
a predefined height range as quickly as possible with the least amount of compressed
air. This is equivalent to correctly approximating the action-value function for
value-based and value function and policy for actor-critic-based algorithms. The
control behavior was visualized for better clarity for both algorithms. The training
process was fast and convergent.

With knowledge of the optimum, the question of which deep neural network is
appropriate can be answered. The structures of neural networks were compared
with each other in a study. Four different basic architectures were designed for the
various function approximators. For a robust set of training parameters retained for
the study, it was found that a minimum number of neurons per layer is required
to represent the system entirely. With regard to the number of training episodes,
a minimum occurs for broader networks, which was defined as the most suitable
structure. For both the DQN and PPO agents, an optimal result for a neural
network with only two neurons per layer (order of degrees of freedom ∼ 101) can be

53

5. Conclusion and Outlook

found with specially adapted training parameters.

When asked how the hyperparameters must be selected to achieve optimal training
behavior, the following hyperparameters’ dependencies on the training performance
could be shown with the choices of neural networks. For the DQN agent, it can
be seen that there is a learning rate at which a maximum reward is achieved or a
defined limit is trained the fastest. No clear dependence of the training behavior on
exploration could be shown. For the exploration decay rate, it was demonstrated
that fewer training episodes are required for larger values, although a limit can be
observed. For the PPO agent, there is a combination of learning rates at which a
maximum reward is achieved or a defined limit is trained the fastest. Also, smaller
entropy loss weights favor faster training and higher average rewards.

With the neural networks and hyperparameters found, it could be demonstrated
that the DQN agent is superior to the Q and SARSA agent from the value-based
algorithms. The same applies to the PPO agent compared to the actor-critic-based
algorithms AC and TRPO. In a final step, the DQN and PPO agents were validated
with varying initial water heights and guide vane openings. The system could
be satisfactorily controlled for different initial states. Therefore, the question of
the most suitable RL algorithm for the problem description can be answered with
the Deep-Q-Network for discrete actions and the Proximal Policy Optimization
algorithm for continuous actions.

In summary, it can be said that the RL concept is applicable to control challenges
but must be specifically adapted to the problem at hand. Systematically optimized
control of a model with RL requires a suitable state space selection that describes
the problem as simply as possible but entirely and an action space that enables the
desired control. The reward function must be defined to contain the control objective
completely. Modern, simplified algorithms have proven to be suitable. The neural
network’s structure must be designed so that the complexity can be represented.
A good compromise of neurons per layer should be determined in a coarse neural
network study. In addition, the hyperparameters must be chosen appropriately to
achieve convergent and fast training. This requires a coarse hyperparameter study
in which combinations of parameters are found. Since it becomes difficult to define
an optimal control behavior for more complex use cases, the algorithms’ results
must be compared with each other.

The use case was chosen so that it can be easily controlled with conventional con-
trollers to obtain a defined optimum with regard to the reward function. Based on
this upper bound, all experiments could be compared with each other. However,
this meant that some of the neural network and hyperparameter study findings were
not completely conclusive. For example, no dependence of the exploration rate on
the training behavior could be shown. This may be due to a calculation error or a
use case that is too simple. For this reason, it is difficult to determine whether the

54

results can be generalized to higher-dimensional state and action spaces.

It must be added that the solver often had difficulties solving the given states in the
model. The model must be better conditioned so that fewer algebraic loops, which
are difficult to resolve, occur.

Future research questions could deal with extending the discussed process. In the
first step, the guide vane opening was also included as a controllable variable and
successfully trained in addition to the water height. For this purpose, an arbitrary
time dependency of the guide vane closing was incorporated. The model of the
pump-turbine must be modified in such a way that the dynamics of the guide vane
apparatus are physically correctly represented. In addition, the speed of the rotor
must be included in the system as an adjustable variable. With these modifications,
the entire transition from turbine to pump operation could be analyzed using RL
methods.

55

Bibliography
[1] Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation

und Technologie (BMK). “Energie in Österreich 2021: Zahlen, Daten, Fakten”.
In: (2022), p. 64.

[2] Deutsche Energie-Agentur GmbH. “Analyse der Notwendigkeit des Ausbaus
von Pumpspeicherwerken und anderen Stromspeichern zur Integration der
erneuerbaren Energien”. In: Integr. Vlsi J. (2010), p. 176.

[3] Fraunhofer Institute for Solar Energy Systems. “Windenergie Report Deutsch-
land 2009”. In: (2011), p. 87.

[4] A. Maly and C. Bauer. “Experimental investigation of a free surface oscil-
lation in a model pump-turbine”. In: IOP Conference Series: Earth and
Environmental Science 774 (June 2021), p. 012068. doi: 10.1088/1755-
1315/774/1/012068.

[5] C. Tubeuf, F. Birkelbach, A. Maly, M. Krause, and R. Hofmann. “Enabling
Reinforcement Learning for Flexible Energy Systems Through Transfer Learn-
ing on a Digital Twin Platform”. In: Jan. 2023, pp. 3218–3228. doi: 10.52202/
069564-0289.

[6] R. S. Sutton and A. Barto. Reinforcement learning : an introduction. eng.
Second edition. Adaptive computation and machine learning. Cambridge,
Massachusetts London, England: The MIT Press, 2018. isbn: 0262039249.

[7] L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko. “Reinforcement
learning for control: Performance, stability, and deep approximators”. In:
Annu. Rev. Control 46 (2018), pp. 8–28. issn: 1367-5788.

[8] The MathWorks Inc. MATLAB version: 9.13.0 (R2022b). Natick, Massachusetts,
United States, 2022. url: https://www.mathworks.com (visited on 01/11/2024).

[9] The MathWorks Inc. Simulink version: 10.6 (R2022b). Natick, Massachusetts,
United States, 2022. url: https://www.mathworks.com (visited on 01/11/2024).

[10] The MathWorks Inc. Deep Learning Toolbox version: 14.5 (R2022b). Natick,
Massachusetts, United States, 2022. url: https://www.mathworks.com/
help/deeplearning/ (visited on 01/11/2024).

[11] The MathWorks Inc. Reinforcement Learning Toolbox version: 2.3 (R2022b).
Natick, Massachusetts, United States, 2022. url: https://www.mathworks.
com/help/reinforcement-learning/ (visited on 01/11/2024).

56

https://doi.org/10.1088/1755-1315/774/1/012068
https://doi.org/10.1088/1755-1315/774/1/012068
https://doi.org/10.52202/069564-0289
https://doi.org/10.52202/069564-0289
https://www.mathworks.com
https://www.mathworks.com
https://www.mathworks.com/help/deeplearning/
https://www.mathworks.com/help/deeplearning/
https://www.mathworks.com/help/reinforcement-learning/
https://www.mathworks.com/help/reinforcement-learning/

Bibliography

[12] R. d. R. Faria, B. D. O. Capron, A. R. Secchi, and M. B. de Souza. “Where
Reinforcement Learning Meets Process Control: Review and Guidelines”. In:
Processes 10.11 (2022), p. 2311. issn: 2227-9717.

[13] D. Silver. Lectures on Reinforcement Learning. url: https://www.davidsilver.
uk/teaching/. 2015. (Visited on 01/11/2024).

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C.
Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg,
and D. Hassabis. “Human-level control through deep reinforcement learning”.
eng. In: Nature (London) 518.7540 (2015), p. 529. issn: 1476-4687.

[15] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust Region
Policy Optimization”. In: CoRR abs/1502.05477 (2015). arXiv: 1502.05477.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal
Policy Optimization Algorithms”. In: CoRR abs/1707.06347 (2017). arXiv:
1707.06347.

[17] B. Krose and P. van der Smagt. “An introduction to neural networks”. In: J
Comput Sci 48 (Jan. 1993).

[18] S. Haykin. Neural networks : a comprehensive foundation. eng. Upper Saddle
River, NJ [u.a.]: Pentice Hall, 1994. isbn: 0023527617.

[19] M. W. Krause. Modellierung einer Pumpturbine für flexiblen Betrieb. 2023.
url: https://doi.org/10.34726/hss.2023.96365.

[20] The MathWorks Inc. Simscape version: 5.4 (R2022b). Natick, Massachusetts,
United States, 2022. url: https://www.mathworks.com/help/simscape/
(visited on 01/11/2024).

57

https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347
https://doi.org/10.34726/hss.2023.96365
https://www.mathworks.com/help/simscape/

A. Appendix
The following figures give a more detailed view of the training progressions.

Figure 38.: Training curves of DQN agent for different neurons per layer of Q-value
critic 1 neural network.

Figure 39.: Training curves of DQN agent for different neurons per layer of Q-value
critic 2 neural network.

58

0
'"O

 -100

r
-200 --- 2 neurons/layer

--- 128 neurons/layer
--- threshold

-300 ------------~-----~-----~-----------~

0

1
 -100

Q)

-200

0 200 400 600
episodes

800 1000 1200

--- 2 neurons/layer
--- 256 neurons/layer
--- threshold

-300 ----~---~--------~---~----~---~---~---~
0 200 400 600 800 1000 1200 1400 1600 1800

episodes

Figure 40.: Training curves of PPO agent for different neurons per layer of state-
value critic and actor.

Figure 41.: Training curves of PPO agent for different neurons per layer of state-
value critic and actor.

Figure 42.: Hyper parameter entropy loss weight analysis for PPO agent and state-
value critic and actor with maximum average reward over entropy loss
weight.

59

0

1-100
1::

& -200
(l)

-300

--- 256 neurons/layer
--- 128 neurons/layer
--- 64 neurons/layer
---48 neurons/layer
--- 32 neurons/layer
--- threshold

-400 ~--~---~---~--~---~-------~---------~

"O

(l)

'" (l)
bO ro
'" (l)

 s

0 100

100

0

200 300 400 500
episodes

600 700 800 900 1000

--- 24 neurons/layer
--- 16 neurons/layer
--- 8 neurons/layer
---4 neurons/layer
--- 2 neurons/layer
--- threshold

-300 ~-------------------------------------~
0 500 1000 1500 2000 2500

episodes

100

80

60

40

20
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

entropy lass weight w

	Introduction
	Motivation
	Aim
	Methodological Approach
	Structure

	Theoretical Background and Methods
	Reinforcement Learning
	Origin and Application
	Mathematical Description

	Reinforcement Learning Algorithms
	Value-based RL Algorithms
	Actor-critic-based RL Algorithms

	Neural Network
	Origin and Application
	Artificial Neuron
	Activation Function
	Neural Network Architecture
	Neural Network Training

	Use Case and Numerical Experiments
	Reinforcement Learning Environment
	Hydro Power Plant Model
	State and Action Space Definition
	Discrete Action Space
	Continuous Action Space
	Extended Continuous Action Space

	Reward Function Definition
	Neural Network Architecture
	Neural Networks for Value-based Algorithms
	Neural Networks for actor-critic-based Algorithms

	Reinforcement Learning Algorithms
	General Settings
	Preceding Iterative Process
	Neural Net Analysis Study
	Hyperparameter Analysis Study
	Comparison of Algorithms
	Validation
	Extended Use Case

	Results and Discussion
	Policy Deployment
	DQN Discrete Output
	DQN Policy
	PPO Continuous Output
	PPO Policy

	Training Curve
	DQN Training Curve
	PPO Training Curve

	Neural Network Analysis Study
	DQN Critic
	PPO Actor-Critic

	Hyperparameter Analysis Study
	DQN Learning Rate
	DQN Exploration Rate
	DQN Exploration Decay Rate
	PPO Learning Rate
	PPO Entropy Loss Weight

	Comparison of Algorithms
	Comparison of Value-based Algorithms
	Comparison of Actor-critic-based Algorithms

	Validation
	Extended Use Case

	Conclusion and Outlook
	Bibliography
	Appendix

