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Inferring neural activity before plasticity 
as a foundation for learning beyond 
backpropagation

Yuhang Song    1,2,3 , Beren Millidge2, Tommaso Salvatori1,4,5, 
Thomas Lukasiewicz    1,4 , Zhenghua Xu    1,6  & Rafal Bogacz    2 

For both humans and machines, the essence of learning is to pinpoint which 
components in its information processing pipeline are responsible for an 
error in its output, a challenge that is known as ‘credit assignment’. It has 
long been assumed that credit assignment is best solved b y b ac kp ro pa ga­
tion, which is also the foundation of modern machine learning. Here, we 
set out a fundamentally different principle on credit assignment called 
‘prospective configuration’. In prospective configuration, the network 
first infers the pattern of neural activity that should result from learning, 
a           n d t    h  e n t  h e synaptic weights are modified to consolidate the change in 
neural activity. We demonstrate that this distinct mechanism, in contrast 
to backpropagation, (1) underlies learning in a well­established family of 
models of cortical circuits, (2) enables learning that is more efficient and 
effective in many contexts faced by biological organisms and (3) reproduces 
surprising patterns of neural activity and behavior observed in diverse 
human and rat learning experiments.

The credit assignment problem1 lies at the very heart of learning. Back­
propagation2, as a simple yet effective credit assignment theory, has 
powered notable advances in artificial intelligence since its inception3–5 
and has also gained a predominant place in understanding learning 
in the brain1,6–8. Due to this success, much recent work has focused on 
understanding how biological neural networks could learn in a way 
similar to backpropagation9–12; although many proposed models do not 
implement backpropagation exactly, they nevertheless try to approxi­
mate backpropagation, and much emphasis is placed on how close this 
approximation is9,11,13,14. However, learning in the brain is superior to 
backpropagation in many critical aspects. For example, compared to 
the brain, backpropagation requires many more exposures to a stimu­
lus to learn15 and suffers from catastrophic interference of newly and 
previously stored information16. This raises the question of whether 

using backpropagation to understand learning in the brain should be 
the main focus of the field.

Here, we propose that the brain instead solves credit assignment 
with a fundamentally different principle, which we call ‘prospective 
configuration’. In prospective configuration, before synaptic weights 
are modified, neural activity changes across the network so that output 
neurons better predict the target output; only then are the synaptic 
weights (hereafter termed ‘weights’) modified to consolidate this 
change in neural activity. By contrast, in backpropagation, the order is 
reversed; weight modification takes the lead, and the change in neural 
activity is the result that follows.

We identify prospective configuration as a principle that is 
implicitly followed by a well­established family of neural models 
with solid biological groundings, namely, energy­based networks. 
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weights between visual and olfactory neurons that would compromise 
the expectation of smelling the salmon the next time the river is visited, 
even though the smell of salmon was present and correctly predicted. 
These undesired and unrealistic side effects of learning with back­
propagation are closely related with the phenomenon of catastrophic 
interference, where learning a new association destroys previously 
learned memories16. This example shows that, with backpropagation, 
even learning one new aspect of an association may interfere with the 
memory of other aspects of the same association.

By contrast, prospective configuration assumes that learning 
starts with the neurons being configured to a new state, which cor­
responds to a pattern enabling the network to correctly predict the 
observed outcome. The weights are then modified to consolidate this 
state. This behavior can ‘foresee’ side effects of potential weight modi­
fications and compensate for them dynamically (Fig. 1c). To correct 
the negative error on the incorrect output, the hidden neurons settle 
to their prospective state of lower activity, and, as a result, a positive 
error is revealed and allocated to the correct output. Consequently, 
prospective configuration increases the weights connecting to the 
correct output, whereas backpropagation does not (Fig. 1b,c). Hence, 
prospective configuration is able to correct the side effects of learning 
an association effectively and efficiently and with little interference.

Origin of prospective configuration: energy-based networks
To show how prospective configuration naturally arises in energy­based 
networks, we introduce a physical machine analog, which provides 
an intuitive understanding of energy­based networks and how they 
produce the mechanism of prospective configuration.

Energy­based networks have been widely and successfully used in 
describing biological neural systems17,25. In these models, a neural cir­
cuit is described by a dynamical system driven by reducing an abstract 
‘energy’, for example, reflecting errors made by neurons (Methods). 
Neural activity and weights change to reduce this energy; hence, they 
can be considered ‘movable parts’ of the dynamical system. We show 
that energy­based networks are mathematically equivalent to a physi­
cal machine (we call it ‘energy machine’), where the energy function 
has an intuitive interpretation, and its dynamics are straightforward; 
the energy machine simply adjusts its movable parts to reduce energy.

The energy machine includes nodes sliding on vertical posts con­
nected with each other via rods and springs (Fig. 2a,b). Translating 
from energy­based networks to the energy machine, neural activity 
maps to the vertical position of a solid node, a connection maps to a 
rod (blue arrow) pointing from one node to another (where the weight 
determines how the end position of the rod relates to the initial posi­
tion), and the energy function maps to the elastic potential energy of 
springs with nodes attached on both ends (the natural length of the 
springs is 0). Different energy functions and network structures result 
in different energy­based networks, corresponding to energy machines 
with different configurations and combinations of nodes, rods and 
springs. In Fig. 2, we present the energy machine of predictive coding 
networks12,18 because they are most accessible and are established to 
be closely related to backpropagation12,14.

The dynamics of energy­based networks, which are driven by mini­
mizing the energy function, map to relaxation of the energy machine, 
which is driven by reducing the total elastic potential energy on the 
springs. A prediction with energy­based networks involves clamping 
the input neurons to the provided stimulus and updating the activ­
ity of the other neurons, which corresponds to fixing one side of the 
energy machine and letting the energy machine relax by moving nodes 
(Fig. 2a). Learning with energy­based networks involves clamping the 
input and output neurons to the corresponding stimulus, first letting 
the activities of the remaining neurons converge and then updating 
weights, which corresponds to fixing both sides of the energy machine 
and letting the energy machine relax first by moving nodes and then 
tuning rods (Fig. 2b).

These networks include Hopfield networks17 and predictive coding 
networks18, which have been successfully used to describe informa­
tion processing in the cortex19. To support the theory of prospective 
configuration, we show that it can both yield efficient learning, which 
humans and animals are capable of, and reproduce data from experi­
ments on human and animal learning. Thus, on the one hand, we dem­
onstrate that prospective configuration performs more efficient and 
effective learning than backpropagation in various situations faced 
by biological systems, such as learning with deep structures, online 
learning, learning with a limited amount of training examples, learn­
ing in changing environments, continual learning with multiple tasks 
and reinforcement learning. On the other hand, we demonstrate that 
patterns of neural activity and behavior in diverse human and animal 
learning experiments, including sensorimotor learning, fear condi­
tioning and reinforcement learning, can be naturally explained by 
prospective configuration but not by backpropagation.

Guided by the belief that backpropagation is the foundation of 
biological learning, previous work showed that energy­based networks 
can closely approximate backpropagation. However, to achieve it, the 
networks were set up in an unnatural way, such that the neural activity 
was prevented from substantially changing before weight modifica­
tion by constraining the supervision signal to be infinitely small (for 
example, as in equilibrium propagation11 and in previous studies using 
predictive coding networks12,20) or last an infinitely short time14,21. By 
contrast, we reveal that energy­based networks without these unreal­
istic constraints follow the distinct principle of prospective configu­
ration rather than backpropagation and are superior in both learning 
efficiency and accounting for data on biological learning.

Here, we introduce prospective configuration with an intuitive 
example, show how it originates from energy­based networks and 
describe its advantages and quantify them in a rich set of biologi­
cally relevant learning tasks. We show that prospective configuration 
naturally explains patterns of neural activity and behavior in diverse 
learning experiments.

Results
Prospective configuration: an intuitive example
To optimally plan behavior, it is critical for the brain to predict future 
stimuli, for example, to predict sensations in some modalities on the 
basis of other modalities22. If the observed outcome differs from the 
prediction, the weights in the whole network need to be updated so 
that predictions in the ‘output’ neurons are corrected. Backpropagation 
computes how the weights should be modified to minimize the error on 
the output, and this weight update results in a change in neural activity 
when the network next makes the prediction. By contrast, we propose 
that neural activity is first adjusted to a new configuration so that the 
output neurons better predict the observed outcome (target pattern); 
the weights are then modified to reinforce this configuration of neural 
activity. We call this configuration of neural activity ‘prospective’ because 
it is the neural activity that the network should produce to correctly 
predict the observed outcome. In agreement with the proposed mecha­
nism of prospective configuration, it has indeed been widely observed 
in biological neurons that presenting the outcome of a prediction trig­
gers changes in neural activity; for example, in tasks requiring animals 
to predict a juice delivery, the reward triggers rapid changes in activity 
not only in the gustatory cortex but also in multiple cortical regions23,24.

To highlight the difference between backpropagation and pro­
spective configuration, consider a simple example (Fig. 1a). Imagine a 
bear seeing a river. In the bear’s mind, the sight generates predictions 
of hearing water and smelling salmon. On that day, the bear indeed 
smelled the salmon but did not hear the water, perhaps due to an ear 
injury, and thus the bear needs to change its expectation related to the 
sound. Backpropagation (Fig. 1b) would proceed by backpropagating 
the negative error to reduce the weights on the path between the visual 
and auditory neurons. However, this also entails a reduction of the 
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The energy machine reveals the essence of energy­based net­
works; relaxation before weight modification lets the network settle 
to a new configuration of neural activity corresponding to the neural 
activity that would have occurred after the error was corrected by the 
modification of weights, that is, prospective activity (thus, we call this 
mechanism prospective configuration). For example, the second­layer 
‘neuron’ in Fig. 2b increases its activity, and this increase in activity 
would also be caused by the subsequent weight modification (of the 
connection between the first and second neurons). In simple terms, 
relaxation in energy­based networks infers the prospective neural 
activity after learning, toward which the weights are then modified. 
This distinguishes it from backpropagation, where weight modification 
takes the lead, and the change in neural activity is the result that follows.

The bottom of Fig. 2c shows the connectivity of a predictive coding 
network12,18, which has dynamics mathematically equivalent to those of 
the energy machine shown above it. Predictive coding networks include 
neurons (blue) corresponding to nodes on the posts and separate neu­
rons encoding prediction errors (red) corresponding to springs. For 
details, see Methods and Supplementary Fig. 1, where we list equations 
describing predictive coding networks and show how they map on the 
neural implementation and the proposed energy machine.

Using the energy machine, Fig. 2d simulates the learning problem 
from Fig. 1. Here, we can see that prospective configuration indeed 
foresees the result of learning and its side effects through relaxation. 
Hence, it corrects the side effects within one iteration, which would 
otherwise take multiple iterations for backpropagation.

Advantages of prospective configuration: reduced 
interference and faster learning
Here, we quantify interference in the above scenario and demonstrate 
how reduced interference translates into an advantage in perfor­
mance. In all simulations in the main text, prospective configuration 

is implemented in predictive coding networks (other energy­based 
models are considered in the Supplementary Notes, Section 2.1). We 
also compare the performance of predictive coding networks against 
artificial neural networks (ANNs) trained with backpropagation because 
they are closely related, which makes the comparisons fair. In particular, 
although predictive coding networks include recurrent connections, 
they generate the same prediction for a given input (when inputs are 
constrained but outputs are not; Fig. 2a) as standard feedforward ANNs 
if their weights are set to corresponding values12,14. Therefore, loss is 
the same function of weights in both models, so direct minimization 
of loss with gradient descent in predictive coding networks (which 
is not their natural way of training) would produce the same weight 
changes as backpropagation in ANNs. Hence, comparing predictive 
coding networks and backpropagation enables isolation of the effects 
of the learning algorithm (prospective configuration versus direct 
minimization of loss as in backpropagation).

In Fig. 3a, we compare the activity of output neurons in the exam­
ple in Fig. 1 between backpropagation and prospective configuration. 
Initially both output neurons are active (top right), and the output 
should change toward a target in which one of the neurons is inac­
tive (red vector). Learning with prospective configuration results in 
changes on the output (purple solid vector) that are aligned better 
with the target than those for backpropagation (purple dotted vector).

Following the first weight update, we simulate multiple iterations 
until the network is able to correctly predict the target. Here, ‘itera­
tion’ refers to each time the agent is presented with stimuli and con­
ducts one weight update because of the stimulus. Although the output 
from backpropagation can reach the target after multiple iterations, 
the output for the ‘correct neuron’ diverges from the target during 
learning and then comes back; this is a particularly undesired effect 
in biological learning, where networks can be ‘tested’ at any point 
during the learning process, because it may lead to incorrect decisions 

Incorrect output

a b

c

Negative error on a neuron
Positive error on a neuron

Connection strengthened
Connection weakened

Neural activity (high to low)
Interference

Prospective configuration (proposed)

∂L/∂x4 • ∂x4/∂x3 ... ∆w ~ –∂L/∂w

Backpropagation (conventional)

Reduced interference

Input
Correct output

∆x ~ –∂E/∂x ∆w ~ –∂E/∂w

Fig. 1 | Prospective configuration avoids interference during learning. a, 
Abstract (top) and concrete (bottom) examples of a task inducing interference 
during learning. One stimulus input (seeing the water) triggers two prediction 
outputs (hearing the water and smelling the salmon). One output is correct 
(smelling the salmon), whereas the other output is an error (not hearing the 
water). b,c, Backpropagation produces interference during learning; not 
hearing the water reduces the expectation of smelling the salmon (b), although 
the salmon was indeed smelled. Prospective configuration, on the other hand, 
avoids such interference (c). In backpropagation, negative error propagates 

from the error output to hidden neurons (b; left). This causes a weakening of 
some connections, which, on the next trial, improves the incorrect output but 
also reduces the prediction of the correct output, thus introducing interference 
(b; middle and right). In prospective configuration, neural activity settles into a 
new configuration (different intensities of purple) before weight modification 
(c; left). This configuration corresponds to the activity that should be produced 
after learning, that is, is ‘prospective’. Hence, it foresees the positive error on the 
correct output and modifies the connections to improve the incorrect output 
while maintaining the correct output (c; middle and right).
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affecting chances for survival. By contrast, prospective configuration 
substantially reduces this effect.

Although backpropagation modifies weights to directly reduce 
cost in the space of weights (that is, performs gradient descent), sur­
prisingly, and rather subversively, it does not push the resulting output 
activity directly toward the target. To illustrate this, Fig. 3a visualizes the 
cost with contour lines. Changing the activity of output neurons accord­
ing to the gradient of the cost would correspond to a change orthogonal 
to the contour lines, that is, that indicated by the red arrow. However, 
backpropagation changes the output in a different direction shown by 
a dashed arrow. Optimizing the weights independently, without con­
sidering the effect of updating other weights, leads to output activity 
not updating toward the target directly due to different weight updates 
to different layers interfering with each other. By contrast, prospective 
configuration considers the results of updating other weights by find­
ing a desired configuration of neural activity first. Such a mechanism 
is missing in backpropagation but is natural in energy­based networks. 
Supplementary Fig. 2 shows a direct comparison of how these two mod­
els evolve in weight and output spaces during learning.

Interference can be quantified by the angle between the direction 
of the target (from current output to target) and learning (from cur­
rent output to output after learning, both measured without the target 
provided), and we define ‘target alignment’ as the cosine of this angle 
(Fig. 3b); hence, high interference corresponds to low target align­
ment (Fig. 3c).

It is useful to highlight that target alignment is affected little by 
the learning rate (Fig. 3d), demonstrating that the learning rate has 
little effect on the direction and trajectory that output neurons take. 
The difference in target alignment demonstrated in Fig. 3a is also pre­
sent for deeper and larger (randomly generated) networks (Fig. 3e). 
When a network has no hidden layers, the target alignment is equal to 
1 (Supplementary Notes, Section 2.4.1). The target alignment drops 
for backpropagation as the network gets deeper because changes in 
weights in one layer interfere with changes in other layers (Fig. 1), and 
the backpropagated errors do not lead to appropriate modification 
of weights in hidden layers (Supplementary Fig. 2). Because back­
propagation modifies the weights in the direction reducing loss, it has 
positive target alignment for small learning rates but not necessarily 
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Fig. 2 | The energy machine reveals a new understanding of energy-
based networks, the mechanism of prospective configuration and its 
theoretical advantages. A subset of energy­based networks can be visualized 
as mechanical machines that perform equivalent computations. Here, we 
present the energy machine corresponding to predictive coding networks12,18. 
In the energy machine, the activity of a neuron corresponds to the height of a 
node (represented by a solid circle) sliding on a post. The input to the neuron 
is represented by a hollow node on the same post. A synaptic connection 
corresponds to a rod pointing from a solid node to a hollow node. The weight 
determines how the input to a postsynaptic neuron depends on the activity of 
a presynaptic neuron; hence, it influences the angle of the rod. In energy­based 
networks, relaxation (that is, neural dynamics) and weight modification (that is, 

weight dynamics) are both driven by minimizing the energy, which corresponds 
to relaxation of the energy machine by moving the nodes and tuning the rods, 
respectively. a,b, Predictions (a) and learning (b) in energy­based networks 
visualized by the energy machine. The pin indicates that neural activity is fixed to 
the input or target pattern. Here, it is revealed that relaxation infers prospective 
neural activity, toward which the weights are then modified, a mechanism 
that we call prospective configuration. c, Physical implementation (top) and 
connectivity of a predictive coding network12,18 (bottom), which has dynamics 
mathematically equivalent to those of the energy machine in the middle (see 
Methods for details). d, The learning problem in Fig. 1 visualized by the energy 
machine, which learns to improve the incorrect output while not interfering with 
the correct output, thanks to the mechanism of prospective configuration.
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close to 1. By contrast, prospective configuration maintains a much 
higher value along the way. This higher target alignment of prospec­
tive configuration can be theoretically explained by the following: (1) 
there exists a close link between prospective configuration and an algo­
rithm called target propagation26 (shown in Supplementary Fig. 3 and 
Supplementary Notes, Section 2.2), and (2) under certain conditions, 
target propagation26 has a target alignment of 1 (ref. 27; demonstrated 
in Supplementary Fig. 4 and Supplementary Notes, Section 2.4.2). 
Thus, the link with target propagation provides theoretical insight 
(with numerical verification) into why prospective configuration has 
a higher target alignment.

Higher target alignment directly translates to the efficiency of 
learning. Test error during training in a visual classification task with 
a deep neural network of 15 layers decreases faster for prospective 
configuration than for backpropagation (Fig. 3f).

Throughout the data presented here, if learning rate is not pre­
sented in a plot, the plot corresponds to the best learning rate opti­
mized independently for each rule under the setup via a grid search. 
The optimization target is either learning performance or similarity 
to experimental data (details can be found in the methods for each 
experiment). Thus, for example, Fig. 3f shows the test errors as training 
progress, with the learning rates optimized independently for each 
learning rule. The optimization target is the ‘mean of test error’ during 
training, reflecting how fast the test error decreases during training. 
Fig. 3g plots this mean of test error for different learning rates for both 
learning rules, and the learning rates giving the minima of the curves 

were used in Fig. 3f. Fig. 3h repeats the experiment on networks of other 
depths and shows the mean of the test error during training as a func­
tion of network depth. The mean error is higher for lower depths, as 
these networks are unable to learn the task, and for greater depths, as 
it takes longer to train deeper networks. Importantly, the gap between 
backpropagation and prospective configuration widens for deeper net­
works, paralleling the difference in target alignment. Efficient training 
with deeper networks is important for biological neural systems known 
to be deep, for example, the primate visual cortex28.

In Section 2.3 of the Supplementary Notes, we develop a formal 
theory of prospective configuration and provide further illustrations 
and analyses of its advantages. Supplementary Fig. 5 formally defines 
prospective configuration and demonstrates that it is indeed com­
monly observed in different energy­based networks. Supplemen­
tary Figs. 6 and 7 empirically verify and generalize the advantages 
expected from the theory and show that prospective configuration 
yields more accurate error allocation and less erratic weight modifica­
tion, respectively.

Advantages of prospective configuration: effective learning in 
biologically relevant scenarios
Inspired by these advantages, we show empirically that prospective 
configuration indeed handles various learning problems that bio­
logical systems would face better than backpropagation. Because 
the field of machine learning has developed effective benchmarks 
for testing learning performance, we use variants of classic machine 
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Fig. 3 | Learning with prospective configuration changes the activity of 
output neurons in a direction more aligned toward the target. a, Simulation 
of the network from Fig. 1 showing changes in the correct and incorrect output 
neurons during training (‘Iteration’) trained with both learning rules. Here, 
learning with prospective configuration (purple solid vector) aligns better with 
the target (red vector) than learning with backpropagation (purple dashed 
vector). b, Interference can be quantified by ‘target alignment’, the cosine 
similarity of the direction of the target (red vector) and the direction of learning 
(purple vector). c, Higher target alignment indicates less interference and vice 
versa. d, The same experiment as in a repeated with a learning rate ranging from 
0.005 to 0.5 represented by the size of the markers, where it is shown that the 
choice of learning rate changes the trajectories for both methods slightly, but 
the conclusion holds irrespective of the learning rate. e, Target alignment of 
randomly generated networks trained with both learning rules as a function 

of depth of the network. Each symbol shows target alignment resulting from 
training on a single randomly generated pattern. f, Test error during training on 
the FashionMNIST60 dataset containing images of clothing belonging to different 
categories for both learning rules with a deep neural network of 15 layers. Here, 
‘test error’ refers to the ratio of incorrectly classified samples among all samples 
in the test set. g, Mean of the test error over training epochs (reflecting how 
fast test error drops) as a function of learning rate. Results in f and h are for the 
learning rates giving the minima of the corresponding curves in g. h, Mean of test 
error of other network depths. Each point is from a learning rate independently 
optimized for each learning rule in the corresponding setup of network depth. 
In e–h, prospective configuration demonstrates a notable advantage as the 
structure gets deeper. Each experiment in f–h was repeated with n = 3 random 
seeds. Error bars and bands represent the 68% confidence interval.
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learning problems that share key features with learning in natural 
environments. Such problems include online learning, where weights 
must be updated after each experience (rather than a batch of train­
ing examples)29, continual learning with multiple tasks30, learning in 
changing environments31, learning with a limited amount of training 
examples and reinforcement learning4. In all aforementioned learn­
ing problems, prospective configuration demonstrates a notable 
superiority over backpropagation.

First, based on the example in Fig. 1, we expect prospective con­
figuration to require fewer episodes for learning than backpropagation. 
Before presenting the comparison, we describe how backpropagation 
is used to train ANNs. Typically, the weights are only modified after a 
batch of training examples based on the average of updates derived 

from individual examples (Fig. 4a). In fact, backpropagation relies 
heavily on averaging over multiple experiences to reach human­level 
performance32, as it needs to stabilize training33. By contrast, biological 
systems must update the weights after each experience, and we com­
pare learning performance in such a setting. Sampling efficiency can be 
quantified by mean of test error during training, which is shown in Fig. 4b  
as a function of batch size (number of experiences that the updates 
are averaged over). Efficiency strongly depends on batch size for back­
propagation because it requires batch training to average out erratic 
weight updates, whereas this dependence is weaker for prospective 
configuration, where weight changes are intrinsically less erratic and 
batch averaging is required less (Supplementary Fig. 7). Importantly, 
prospective configuration learns faster with smaller batch sizes, as in 
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Fig. 4 | Prospective configuration achieves a superior performance over 
backpropagation in various learning situations faced by biological systems. 
a–k, Learning situations include online learning29 (a–c), continual learning of 
multiple tasks30 (d–e), learning in changing environments31 (f–g), learning with a 
limited amount of training examples (h) and reinforcement learning4 (k). Graphs 
corresponding to each situation are grouped together with the same background 
color. Simulations of each situation differ from the ‘default setup’ described 
in the Methods in a single aspect unique to this task. For example, the default 
setup involves training with minibatches, so the batch size was only set to 1 in 
a–c for investigating online learning, whereas it was set to a larger default value 
in rest of the groups. In supervised learning setups, fully connected networks 
(a–h) were evaluated on the FashionMNIST60 dataset, and convolutional neural 
networks35 (i and j) were evaluated on the CIFAR­10 (ref. 36) dataset. In the 
reinforcement learning setup (k), fully connected networks were evaluated 
on three classic control problems. If the learning rate was not presented, each 
point (a setup of an experiment) in the plot corresponds to the best learning rate 
optimized independently for each rule under that setup. a, Difference in training 
setup between computers that can average weight modifications for individual 

examples to get a ‘statistically good’ value and biological systems that must apply 
one modification before computing another. b, Mean of the test errors during 
training as a function of batch size. c, Minimum of test error during training as a 
function of learning rate. d, Test error during continual learning of two tasks.  
e, Mean of test error of both tasks during training as a function of learning rate.  
f, Test error during training when learning with concept drifting.  
g, Mean of test error during training with concept drifting as a function of 
learning rate. h, Minimum of test error during training with different amounts of 
training examples (data points per class). i, Minimum of test error during training 
of a convolutional neural network trained with prospective configuration and 
backpropagation on the CIFAR­10 (ref. 36) dataset. j, Structure detail of the 
convolutional neural network used in i. k, Sum of rewards per episode during 
training on three classic reinforcement learning tasks (insets). An episode is a 
period from initialization of environment to reaching a terminate state. Each 
experiment in a–h was repeated with n = 10 random seeds. Each experiment in 
i–k was repeated with n = 3 random seeds because these experiments are more 
expensive. Error bars and bands represent the 68% confidence interval.
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biological settings. Additionally, final performance can be quantified 
by the minimum of the test error, which is shown in Fig. 4c, when trained 
with a batch size equal to 1. Here, prospective configuration also dem­
onstrates a notable advantage over backpropagation.

Second, biological organisms need to sequentially learn multiple 
tasks, while ANNs show catastrophic forgetting. When trained on a new 
task, performance on previously learned tasks is largely destroyed16,34. 
The data in Fig. 4d show performance when trained on two tasks alter­
nately (task 1 is classifying five randomly selected classes in the Fash­
ionMNIST dataset, and task 2 is classifying the remaining five classes). 
Prospective configuration outperforms backpropagation both in terms 
of avoiding forgetting previous tasks and relearning current tasks. The 
results are summarized in Fig. 4e.

Third, biological systems often need to rapidly adapt to changing 
environments. A common way to simulate this is ‘concept drifting’31, 
where a part of the mapping between the output neurons to the seman­
tic meaning is shuffled regularly, each time a certain number of training 
iterations has passed (Fig. 4f). Test error during training with concept 
drifting is presented in Fig. 4f. Before epoch 0, both learning rules are 
initialized with the same pretrained model (trained with backpropa­
gation); thus, epoch 0 is the first time the model experiences concept 
drift. The results are summarized in Fig. 4g and show that, for this task, 
there is a particularly large difference in mean error (for optimal learn­
ing rates). This large advantage of prospective configuration is related 
to it being able to optimally detect which weights to modify (Supple­
mentary Fig. 6) and to preserve existing knowledge while adapting to 
changes (Fig. 1). This ability to maintain important information while 
updating other information is critical for survival in natural environ­
ments that are bound to change, and prospective configuration has a 
very substantial advantage in this respect.

Furthermore, biological learning is also characterized by limited 
data availability. Prospective configuration outperforms backpropaga­
tion when the model is trained with fewer examples (Fig. 4h).

To demonstrate that the advantage of prospective configura­
tion also scales up to larger networks and problems, we evaluated 
convolutional neural networks35 on CIFAR­10 (ref. 36) trained with 
both learning rules (Fig. 4i), where prospective configuration showed 
notable advantages over backpropagation. The detailed structure of 
the convolutional networks is provided in Fig. 4j.

Another key challenge for biological systems is to decide which 
actions to take. Reinforcement learning theories (for example, Q learn­
ing) propose that it is solved by learning the expected reward resulting 
from different actions in different situations37. Such prediction of 
rewards can be made by neural networks4, which can be trained with 
prospective configuration or backpropagation. The sum of rewards per 
episode during training on three classic reinforcement learning tasks 
is reported in Fig. 4k, where prospective configuration demonstrates 
a notable advantage over backpropagation. This large advantage may 
arise because reinforcement learning is particularly sensitive to erratic 
changes in network weights (as the target output depends on reward 
predicted by the network itself for a new state; Methods).

Based on the superior learning performance of prospective con­
figuration, we may expect that this learning mechanism has been 
favored by evolution; thus, in the next sections, we investigate if it can 
account for neural activity and behavior during learning better than 
backpropagation.

Evidence for prospective configuration: inferring the latent 
state during learning
Prospective configuration is related to theories proposing that before 
learning, the brain first infers a latent state of the environment from 
feedback38–40. Here, we propose that this inference can be achieved in 
neural circuits through prospective configuration, where, following 
feedback, neurons in ‘hidden layers’ converge to a prospective pat­
tern of activity that encodes this latent state. We demonstrate that 
data from various previous studies, which involved the inference of a 
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Fig. 5 | Prospective configuration explains contextual inference in human 
sensorimotor learning. a, Structure of an experimental trial where participants 
were asked to move a stick from the starting point to the target point while 
experiencing perturbations. b, The minimal network for the task, including six 
connections encoding the associations from the backgrounds (B and R) to the 
belief of contexts ([B] and [R]) and from the belief of contexts to the prediction of 
perturbations (+ and –). c–e, Sequence of sessions the participants experienced, 
including training (c), washout (d) and testing (e). Darker gray boxes show the 

expected network after the session, where thickness represents the strength of 
connections. In the testing session, the darker box explains how the two learning 
rules learn differently on the R+ trial, leading to the differences in f. f, Predictions 
of the two learning rules compared to behavioral data measured from human 
participants, where prospective configuration reproduces the key patterns of 
data, but backpropagation does not. Each experiment was repeated with n = 24 
random seeds, as there were 24 participants in the behavioral experiment.
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latent state, can be explained by prospective configuration. These data 
were previously explained by complex and abstract mechanisms, such 
as Bayesian models38,39, whereas here, we mechanistically show with 
prospective configuration how such inference can be performed by 
minimal networks encoding only the essential elements of the tasks.

The dynamical inference of a latent state from feedback has been 
recently proposed to take place during sensorimotor learning39. In this 
experiment, participants received different motor perturbations in 
different contexts and learned to compensate for these perturbations. 
Behavioral data suggest that, after receiving feedback, participants first 
used the feedback to infer context and then adapted the force for the 
inferred context. We demonstrate that prospective configuration is able 
to reproduce these behavioral data, whereas backpropagation cannot.

Specifically, in the task (Fig. 5a), participants were asked to move 
a stick from a starting point to a target point while experiencing per­
turbations. The participants experienced a sequence of blocks of trials 
(Fig. 5c–e), including training, washout and testing. During the training 
session, different directions of perturbations, positive (+) or negative 
(–), were applied in different contexts, blue (B) or red (R) backgrounds, 
respectively. We denote these trials as B+ and R–. These trials may be 
associated with latent states, which we denote [B] and [R]; for example, 
the latent state [B] may be associated with both background B and per­
turbation +. The next stage of the task was designed to investigate if the 
latent state [B] can be activated by perturbation + even if no background 
B is shown. Thus, participants experienced different trials including 
R+ (that is, perturbation + but no background B). Specifically, after a 
washout session (during which no perturbation was provided), in the 
testing session, participants experienced one of the four possible test 
trials: B+, R+, B– and R–. To evaluate learning on the test trials, motor 
adaptation (that is, the difference between the final and target stick 
positions) was measured before and after the test trial in two trials with 
the blue background (Fig. 5e). Change in the adaptation between these 
two trials is a reflection of learning about blue context that occurred 
at the test trial. If participants only associated feedback with the back­
ground color (B), then the change in adaptation would only occur with 
test trials B+ and B–. However, experimental data (Fig. 5f) show that 
there was also substantial adaptation change with R+ trials (which was 
even bigger than with B– trials).

To model learning in this task, we considered a neural network 
(Fig. 5b) where input nodes encode the background color, and outputs 
encode movement compensations in the two directions. Importantly, 
this network also includes hidden neurons encoding belief of being 
in the contexts associated with the two backgrounds ([B] and [R]). 
Trained with the exact procedure of the experiment39 from randomly 
initialized weights, prospective configuration with this minimal net­
work can reproduce the behavioral data, whereas backpropagation 
cannot (Fig. 5f).

Prospective configuration can produce change in adaptation 
with the R+ test trial because after + feedback, it is able to also activate 
context [B] that was associated with this feedback during training and 
then learn compensation for this latent state. To shed light on how this 
inference takes place in the model, schematics in Fig. 5c,d show evolu­
tion of the weights of the network over sessions (thickness represents 
the strength of connections). The schematic in Fig. 5e shows the differ­
ence between the two learning rules after exposure to R+; although B is 
not perceived, prospective configuration infers a moderate excitation 
of the belief of blue context [B] because the positive connection from 
[B] to + was built during the training session. The activity of [B] enables 
the learning of weights from [B] to + and –, while backpropagation does 
not modify any weights originating from [B].

For simplicity of explanation, we presented simulations with mini­
mal networks; however, Supplementary Fig. 8 shows that networks 
with a general fully connected structure and more hidden neurons can 
replicate the above data when using prospective configuration but not 
when using backpropagation.

Studies of animal conditioning have also observed that feedback 
in learning tasks involving multiple stimuli may trigger learning about 
non­presented stimuli41,42. One example is provided in Supplementary 
Fig. 9, where we show that it can be explained by prospective configura­
tion but not by backpropagation.

Evidence for prospective configuration: discovering task 
structure during learning
Prospective configuration is also able to discover the underlying task 
structure in reinforcement learning. Specifically, we consider a task 
where reward probabilities of different options were not independent38. 
In this study, humans were choosing between two options where the 
reward probabilities were constrained such that one option had a higher 
reward probability than the other (Fig. 6a). Occasionally the reward 
probabilities were swapped, so if one probability was increased, the 
other was decreased by the same amount. Remarkably, the recorded 
functional magnetic resonance imaging (fMRI) data suggested that 
participants learned that the values of the two options were negatively 
correlated and on each trial updated the value estimates of both options 
in opposite ways. This conclusion was drawn from analysis of the signal 
from the medial prefrontal cortex (mPFC), which encoded the expected 
value of reward. The data presented in Fig. 6c compare this signal after 
making a choice on two consecutive trials: a trial in which the reward 
was not received (‘punish trial’) and the next trial. If the participant 
selected the same option on both trials (‘stay’), the signal decreased, 
indicating that the reward expected by the participant was reduced. 
Remarkably, if the participant selected the other option on the next trial 
(‘switch’), the signal increased, suggesting that negative feedback for 
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Fig. 6 | Prospective configuration can discover the underlying task structure 
during reinforcement learning. a, Reinforcement learning task. Human 
participants were required to choose between two options, leading to either 
reward (gaining coins) or punishment (losing coins) with different probabilities. 
The probability of reward was occasionally reversed between the two options.  
b, The minimal network encoding the essential elements of the task. c, Activity of 
the output neuron corresponding to the selected option from networks trained 

with prospective configuration and backpropagation compared with fMRI data 
measured in human participants (that is, peak blood oxygenation level­dependent 
(%BOLD) signal in the mPFC). Prospective configuration reproduces the key 
finding that the expected value (encoded in %BOLD signal in the mPFC) increases if 
the next choice after a punishing trial is to switch to the other option. The number 
of trials is not mentioned in the original paper, so we simulated for n = 128 trials for 
both learning rules. Error bars represent the 68% confidence interval.
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one option increased the value estimate for the other. Such learning is 
not predicted by standard reinforcement learning models38.

This task can be conceptualized as having a latent state encoding 
which option is superior, and this latent state determines the reward prob­
abilities for both options. Consequently, we consider a neural network 
reflecting this structure (Fig. 6b) that includes an input neuron encoding 
being in the task (equal to 1 in simulations), a hidden neuron encoding the 
latent state and two output neurons encoding the reward probabilities 
for the two options. Trained with the exact procedure of the experiment38 
from randomly initialized weights, prospective configuration with this 
minimal network can reproduce the data, whereas backpropagation 
cannot (Fig. 6c). In Supplementary Fig. 10, we show that prospective 
configuration reproduces these data because it can infer the rewarded 
choice by updating the activity of the hidden neuron based on feedback.

Taken together, the presented simulations illustrate that prospec­
tive configuration is a common principle that can explain a range of 
surprising learning effects in diverse tasks.

Discussion
Our paper identifies the principle of prospective configuration, accord­
ing to which learning relies on neurons first optimizing their pattern of 
activity to match the correct output and then reinforcing these prospec­
tive activities through synaptic plasticity. Although it was known that 
in energy­based networks the activity of neurons shifts before weight 
update, it has been previously thought that this shift is a necessary cost 
of error propagation in biological networks, and several methods have 
been proposed to suppress it11,12,14,20,21 to approximate backpropagation 
more closely. By contrast, we demonstrate that this reconfiguration 
of neural activity is the key to achieving learning performance supe­
rior to that of backpropagation and to explaining experimental data 
from diverse learning tasks. Prospective configuration further offers a 
range of experimental predictions distinct from those of backpropaga­
tion (Supplementary Figs. 11 and 12). Together, we have demonstrated 
that prospective configuration enables more efficient learning than 
backpropagation by reducing interference, demonstrates superior 
performance in situations faced by biological organisms, requires 
only local computation and plasticity and matches experimental data 
across a wide range of tasks.

Our theory addresses a long­standing question of how the brain 
solves the plasticity­stability dilemma, for example, how it is possible 
that, despite adjustment of representation in the primary visual cortex 
during learning43, we can still understand the meaning of visual stimuli 
we learned over our lifetime. According to prospective configuration, 
when some weights are modified, compensatory changes are made to 
other weights to ensure the stability of correctly predicted outputs. 
Thus, prospective configuration reduces interference between dif­
ferent weight modifications while learning a single association. Previ­
ous computational models have proposed mechanisms that reduce 
interference between new and previously acquired information while 
learning multiple associations34,44. It is highly likely that such mecha­
nisms and prospective configuration operate in the brain in parallel to 
minimize both types of interference.

Prospective configuration is related to inference and learning pro­
cedures in statistical modeling. If the ‘energy’ in energy­based schemes 
is variational free energy, prospective configuration can be seen as 
an implementation of variational Bayes that subsumes inference and 
learning45. For example, dynamic expectation maximization46,47 can be 
regarded as a generalization of predictive coding networks in which the 
D­step optimizes representations of latent states (analogously to relaxa­
tion until convergence during inference) while the E­step optimizes 
model parameters (analogously to weight modification during learning).

Other recent work48,49 also noticed that the natural form of 
energy­based networks (‘strong control’ in their words) performs 
different learning than backpropagation. Their analysis concentrates 
on an architecture of deep feedback control, and they demonstrated 

that a particular form of their model is equivalent to predictive coding 
networks49. The unique contribution of our paper is to show the ben­
efits of such strong control and explain why they arise. The principle of 
prospective configuration is also present in other recent models. For 
example, Gilra and Gerstner50 developed a spiking model in which feed­
back about the error on the output directly affects the activity of hidden 
neurons before plasticity takes place. Haider et al.51 developed a faster 
inference algorithm for energy­based models that computes a value 
to which the activity is likely to converge, termed latent equilibrium51. 
Iteratively setting each neuron’s output based on its latent equilibrium 
leads to much faster inference51 and enables efficient computation of 
the prospective configuration.

Predictive coding networks require symmetric forward and back­
ward weights between layers of neurons, so a question arises concern­
ing how such symmetry may develop in the brain. If predictive coding 
networks are initialized with symmetric weights (as in our simulations), 
the symmetry will persist because the changes in weight between 
neurons A and B are the same as those for feedback weight (between 
neurons B and A). Even if the weights are not initialized symmetrically, 
the symmetry may develop if synaptic decay is included in the model52 
because then the initial asymmetric values decay away, and weight 
values become more influenced by recent changes that are symmetric. 
Nevertheless, weight symmetry is not generally required for effective 
credit assignment53,54.

Here, we assumed for simplicity that the convergence of neural 
activity to an equilibrium happens rapidly after the stimuli are provided 
so that the synaptic weight modification after convergence may take 
place while the stimuli are still present. Nevertheless, predictive coding 
networks can still work even if weight modification takes place while the 
neural activity is converging. Specifically, Song et al. demonstrated that 
if neural activities are only updated for the first few steps, the update of 
the weights is equivalent to that in backpropagation14. As a reminder, 
we demonstrate here that if the neural activities are updated to equi­
librium, the update of the weights follows the principle of prospective 
configuration and possesses the desirable demonstrated properties. 
Thus, a learning rule where neural activities and weights are updated 
in parallel will experience a weight update that is equivalent to back­
propagation at the start and then move to prospective configuration as 
the system converges to equilibrium55. Furthermore, predictive coding 
networks have been extended to describe recurrent structures56–58, 
and it has been shown that such networks can learn to predict dynami­
cally changing stimuli even if weights are modified before the activity 
converged for a given ‘frame’ of the stimulus57.

The advantages of prospective configuration suggest that it may 
be profitably applied in machine learning to improve the efficiency and 
performance of deep neural networks. An obstacle for this is that the 
relaxation phase is computationally expensive. However, recent work 
demonstrated that by modifying weights after each step of relaxation, 
the model becomes comparably fast to backpropagation and easier 
for parallelization55.

Most intriguingly, it has been demonstrated that the speed of 
energy­based networks can be greatly increased by implementing the 
relaxation on analog hardware59, potentially resulting in energy­based 
networks being faster than backpropagation. Therefore, we anticipate 
that our discoveries may change the blueprint of next­generation 
machine learning hardware, switching from the current digital tensor 
base to analog hardware and being closer to the brain and potentially 
far more efficient.
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Methods
This section provides the necessary details for replication of the results 
described in the main text.

Models
Throughout this work, we compare the established theory of backprop­
agation to the proposed new principle of prospective configuration. 
As explained in the main text, backpropagation is used to train ANNs, 
where the activity of a neuron is fixed to a value based on its input, 
whereas prospective configuration occurs in energy­based networks, 
where the activity of a neuron is not fixed.

Because in ANNs the activity of neurons x is determined by their 
input, the output of the network can be obtained by propagating the 
inputs ‘forward’ through the computational graph. The output can 
then be compared to a target pattern to get a measure of difference 
known as a loss. Because the value of a node (activity of a neuron) in 
the computational graph is explicitly computed as a function of its 
input, the computational graph is usually differentiable. Thus, training 
ANNs with backpropagation modifies the weights w to take a step 
toward the negative gradient of loss ℒ,

Δwww = −α ∂ℒ
∂www

, (1)

during which the activities of neurons x are fixed, and α is the learning 
rate. The weights w requiring modification might be many steps away 
from the output on the computational graph, where the loss ℒ is com­
puted; thus, ∂ℒ

∂www
 is often obtained by applying the chain rule of comput­

ing a derivative through intermediate variables (activity of output and 
hidden neurons). For example, consider a network with four layers, 
and let xl denote the activity of neurons in layer l and wl denote the 
weights of connections between layers l and l + 1. The change in weights 
originating from the first layer is then computed: ∂ℒ

∂www1 =
∂ℒ
∂xxx4

⋅ ∂xxx4

∂xxx3
… ∂xxx2

∂www1 . 

This enables the loss to be backpropagated through the graph to pro­
vide a direction of update for all weights.

In contrast to ANNs, in energy­based networks, the activity of 
neurons x is not fixed to the input from a previous layer. Instead, an 
energy function E is defined as a function of the neural activity x and 
weights w. For networks organized in layers (considered in this paper), 
the energy can be decomposed into a sum of local energy terms El,

E = ∑
l

El (xxxl,wwwl−1,xxxl−1) . (2)

Here, El is called local energy because it is a function of xl, xl − 1 and wl − 1, 
which are neighbors and connected to each other. This ensures that the 
optimization of energy E can be implemented by local circuits because 
the derivative of E with respect to any neural activity (or weights) results 
in an equation containing only the local activity (or weights) and the 
activity of adjacent neurons. Predictions with energy­based networks 
are computed by clamping the input neurons to an input pattern and 
then modifying the activity of all other neurons to decrease the energy:

Δxxx = −γ∂E
∂xxx

, (3)

where γ is the integration step of the neural dynamics. Because the terms 
in E can be divided into local energy terms, this results in an equation 
that can be implemented with local circuits. This process of modifying 
neural activity to decrease the energy is called relaxation, and we refer 
to the equation describing relaxation as neural dynamics because it 
describes the dynamics of the neural activity in energy­based networks. 
After convergence of relaxation, the activities of the output neurons 
are taken as the prediction made by the energy­based network. Different 
energy­based networks are trained in slightly different ways. For predic­
tive coding networks12,18, training involves clamping the input and out­
put neurons to input and target patterns, respectively. Then, relaxation 

is run until convergence (xxx =
∗
xxx), after which the weights are updated 

using the activity at convergence to further decrease the energy:

Δwww = −α ∂E
∂www

||
xxx=

∗
xxx
. (4)

This will also result in an equation that can be implemented with local 
plasticity because it is just a gradient descent on the local energy. We 
refer to such an equation as weight dynamics, because it describes the 
dynamics of the weights in energy­based networks.

Backpropagation and prospective configuration are not restricted 
to specific models. Depending on the structure of the network and 
the choice of the energy function, one can define different models 
that implement the principle of backpropagation or prospective con­
figuration. In the main text and most of the Supplementary Notes, we 
investigate the most standard layered network. In this case, both ANNs 
and energy­based networks include L layers of weights w1, w2, …, wL and 
L + 1 layers of neurons x1, x2, …, xL + 1, where x1 and xL + 1 are the input and 
output neurons, respectively. We consider the relationship between 
activities in adjacent layers for ANNs given by

xxxl = wwwl−1f (xxxl−1) , (5)

and the energy function for EBNs described by

El = 1
2 (xxx

l −wwwl−1f (xxxl−1))
2
. (6)

This defines the ANNs to be the standard multilayer perceptrons (MLPs) 
and the energy­based networks to be the predictive coding network. In 
Eq. (6) and below, the square operator (v)2 denotes the inner product 
of vector v with itself. The comparison between backpropagation and 
prospective configuration in the main text is thus between the above 
MLPs and predictive coding networks; this choice is justified as (1) they 
are the most standard models61 and (2) it is established that the two are 
closely related12,14 (that is, they make the same prediction with the same 
weights and input pattern), thus enabling a fair comparison. Neverthe­
less, we show that the theory (Supplementary Fig. 5) and empirical 
comparison (Supplementary Figs. 6 and 7) between backpropagation 
and prospective configuration generalize to other choices of network 
structures and energy functions, that is, other energy­based networks 
and ANNs, such as GeneRec62 and Almeida–Pineda63–65.

Putting Eqs. (5) and (6) into the general framework, we can obtain 
the equations that describe MLPs and predictive coding networks, 
respectively. Assume that the input and target patterns are sin and starget, 
respectively. Prediction with MLPs is

xxx1 = sssin andxxxl = wwwl−1f (xxxl−1) for l > 1, (7)

where xL + 1 is the prediction. Training MLPs with backpropagation is 
described by

Δwwwl = −α ∂ℒ
∂wwwl

= −α ∂ℒ
∂xxxL+1

⋅ ∂xxx
L+1

∂xxxL
… ∂xxxl+1

∂wwwl
whereℒ = 1

2 (sss
target − xxxL+1)

2
,
(8)

which backpropagates the error ∂ℒ
∂xxxl

 layer by layer from output 
neurons.

The neural dynamics of predictive coding networks can be 
obtained using Eq. (2):

Δxxxl = −γ ∂E
∂xxxl

= −γ∂(E
l + El+1)
∂xxxl

. (9)

Similarly, the weight dynamics of predictive coding networks can be 
found,

Δwwwl = −α ∂E
∂wwwl

= −α∂El+1

∂wwwl
. (10)
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To reveal the neural implementation of predictive coding net­
works, we define the prediction errors to be

εεεl = xxxl −wwwl−1f (xxxl−1) . (11)

The neural and weight dynamics of predictive coding networks can be 
expressed (by evaluating derivatives in Eqs. (9) and (10)) as

Δxxxl = −γεεεl + f′ (xxxl) ∘ (wwwl)
T
εεεl+1 and (12)

Δwwwl = αεεεl+1(f (xxxl))
T
, (13)

where the symbol ∘ denotes element­wise multiplication. Assuming that 
εl and xl are encoded in the activity of error and value neurons, respectively, 
Eqs. (11) and (12) can be realized with the neural implementation in Fig. 2c. 
In particular, error ε and value x neurons are represented by red and blue 
nodes, respectively; excitatory + and inhibitory − connections are repre­
sented by connections with solid and hollow nodes, respectively. Thus, 
Eqs. (11) and (12) are implemented with red and blue connections, respec­
tively. It should also be noted that the weight dynamics are also realized 
locally. The weight change described by Eq. (13) corresponds to simple 
Hebbian plasticity66 in the neural implementation of Fig. 2c; that is, the 
change in a weight is proportional to the product of activity of presynaptic 
and postsynaptic neurons. Thus, a predictive coding network, as an 
energy­based network, can be implemented with local circuits only due 
to the local nature of energy terms (as argued earlier in this section). Note 
that when the network is expressive enough such that learning can reduce 
the energy E to 0, the loss ℒ must also become 0 as ℒ is one of the terms in 
energy E, that is ℒ = EL+1, and, in this case, the predictive coding network 
is guaranteed to minimize the loss, just like backpropagation67.

The full algorithm of the predictive coding network is summarized 
in Algorithm 1. In all simulations in this paper (unless stated otherwise), 
the integration step of the neural dynamics (that is, relaxation) is set to 
γ = 0.1, and the relaxation is performed for 128 steps (𝒯𝒯  in Algorithm 1). 
During relaxation, if the overall energy is not decreased from the last 
step, the integration step is reduced by 50%; if the integration step is 
reduced two times (that is, reaching 0.025), relaxation is terminated 
early. By monitoring the number of relaxation steps performed, we 
notice that in most of the tasks we performed, relaxation is terminated 
early at around 60 iterations.

Algorithm 1. Learn with a predictive coding network12,18 

In the Supplementary Information, we also investigate other 
choices of network structures and energy functions, resulting in other 
ANNs and energy­based networks. Overall, the energy­based networks 
investigated include predictive coding networks12,18, target predictive 
coding networks and GeneRec62, and the ANNs investigated include 
backpropagation and Almeida–Pineda63–65. Details of all the models 
can be found in corresponding previous work and are also given in the 
Supplementary Notes, Section 2.1.

Interference and measuring interference (that is, 
target alignment)
In Fig. 3a, because it simulates the example in Fig. 1, the network has 
one input neuron, one hidden neuron and two output neurons; weights 
were all initialized to 1, the input pattern was [1], and the target pattern 
was [0, 1]. Learning rates of both learning rules were 0.2, and the weights 
were updated for 24 iterations. Fig. 3d repeated the same experiment 
as in Fig. 3a but with the learning rate searched from 
(0.005,0.01,0.05,0.1) , which is wide enough to cover essentially all 
learning rates used to train deep neural networks in practice.

In Fig. 3e, there were 64 neurons in each layer (including input and 
output layers) for each network; weights were initialized via standard 
Xavier uniform initialization68. No activation function was used, that 
is, linear networks were investigated. Depths of networks (L) took 
values from {1, 2,… , 24, 25}, as reported on the x axis. Input and target 
patterns were a pair of randomly generated patterns with a mean of 0 
and standard deviation (s.d.) of 1. Learning rates of both learning rules 
were 0.001. Weights were updated for one iteration, and target align­
ment was measured. The whole experiment was repeated 27 times with 
each individual experiment reported as a point.

Simulations in Fig. 3f–h followed the experimental setup in  
Fig. 4a–h; these are described at the end of Biologically relevant tasks.

Biologically relevant tasks
In supervised learning simulations, fully connected networks in  
Fig. 4a–h were trained and tested on FashionMNIST60, and convolu­
tional neural networks35 (Fig. 4i,j) were trained and tested on CIFAR­10 
(ref. 36). With FashionMNIST, models were trained to perform classifi­
cation of gray­scaled fashion item images into ten categories, such as 
trousers, pullovers and dresses. FashionMNIST was chosen because it is 
of moderate and appropriate difficulty for multilayer non­linear deep 
neural networks so that the comparisons with energy­based networks 
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are informative. Classification of the data in CIFAR­10 is more difficult, 
as it contains colored natural images belonging to categories such as 
cars, birds and cats and is thus only evaluated with convolutional neural 
networks. Both datasets consist of 60,000 training examples (that is, 
training set) and 10,000 test examples (that is, test set).

The experiments in Fig. 4a–h followed the configurations 
described below, except for the parameters investigated in specific 
panels (such as batch size, size of the dataset and size of the architec­
ture), which were adjusted as stated in the descriptions of the specific 
experiments. The neural network was composed of four layers and 32 
hidden neurons in each hidden layer. Note that the state­of­the­art MLP 
models of FashionMNIST are all quite large69. However, they are highly 
overparameterized and thus are not suitable to base our comparison 
on because the accuracy reaches more than 95% regardless of the learn­
ing rule due to the overparameterization. Thus, there was no space for 
demonstrating any meaningful comparison in these state­of­the­art 
overparameterized models. Overall, the size of the model on FashionM­
NIST demonstrated in this paper was a reasonable choice, with baseline 
models reaching reasonable performance (~0.12 test error for the 
standard machine learning setup) while maintaining enough room for 
demonstrating performance differences for different learning rules. 
The size of the input layer was 28 × 28 for FashionMNIST60 gray scaled, 
and the size of the output layer was ten as the number of classes for 
both datasets. The weights were initialized from a normal distribution 

with a mean of 0 and s.d. of √
2

nl+nl+1
, where nl and nl + 1 are the numbers 

of neurons in the layer before and after the weight, respectively. This 
initialization is known as Xavier normal initialization68. The activation 
function f () is sigmoid. We defined one iteration as updating the 
weights for one step based on a minibatch. Each iteration contained 
(1) a numerical integration procedure of relaxation of energy­based 
networks, which captures its continuous process; and (2) one update 
of weights at the end of the above procedure. The number of examples 
in a minibatch, called the batch size, was by default 32. One epoch 
comprised presenting the entire training set split over multiple mini­
batches. At the end of each epoch, the model was tested on the test set, 
and the classification error was recorded as the ‘test error’ of the epoch. 
The neural network was trained for 64 epochs, thus yielding 64 test 
errors. The mean of the test error over epochs, that is, during training 
progress, is an indicator of how fast the model learns, and the minimum 
of the test errors over epochs is an indicator of how well the model can 
learn, ignoring the possibility of overfitting due to training for too long. 
Learning rates were optimized independently for each configuration 
and each model. Each experiment was repeated ten times (unless stated 
otherwise), and the error bars represent the 68% confidence interval 
computed using bootstrap.

We now describe settings specific to individual experiments. In  
Fig. 4b, different batch sizes were tested (as shown on the x axis). In Fig. 4c,  
the batch size was set to 1. In continual learning of Fig. 4d, training 
alternated between two tasks. Task 1 involved classifying five randomly 
selected classes in a dataset, and task 2 involved classifying the remain­
ing five classes. The whole network was shared by the two tasks; thus, 
different from the network used in other panels, the network only had 
five output neurons. This better corresponds to continual learning 
with multiple tasks in nature, because, for example, if humans learn to 
perform two different tasks, they typically use one brain and one pair 
of hands (that is, the whole network is shared), as they do not have two 
different pairs of hands (that is, humans share the output layers across 
tasks). Task 1 was trained for four iterations, task 2 was trained for four 
iterations, and the training continued until a total of 84 iterations was 
reached. After each iteration, error on the test set of each task was meas­
ured as ‘test error’. In Fig. 4e, the mean of test error of both tasks during 
training of Fig. 4d at different learning rates is reported. In Fig. 4d–g 
investigating concept drifting31,70,71, changes to class labels were made 
every 64 epochs, and the models were trained for 3,000 epochs in total. 

Thus, every 64 epochs, five of ten output neurons were selected, and the 
mapping from these five output neurons to the semantic meaning was 
pseudorandomly shuffled. In Fig. 4h, different numbers of data points 
per class (shown on the x axis) were included in the training set (subsets 
were randomly selected according to different seeds).

In Fig. 4i, we trained a convolutional network with  
prospective configuration and backpropagation, with the  
structure detailed in Fig. 4j. For each learning rule, we  
independently searched seven learning rates ranging from 
{0.0005,0.00025,0.0001,0.000075,0.00005,0.000025,0.00001}. Both 
learning rules were trained for 80 epochs, with a batch size of 200. 
Because training deep convolutional networks is more difficult and 
slower than training shallow fully connected networks, a few improve­
ments were applied to both learning rules. Specifically, a weight decay 
of 0.01 and an Adam optimizer72 were applied for both learning rules. 
To reduce running time, the weights were updated more frequently in 
predictive coding networks; that is, the weights were updated at all 
steps of inference instead of at the last step of inference. Inference was 
run for a fixed number of 16 iterations; thus, weights were updated 16 
times for each batch of data. Thus, for fair comparison, backpropaga­
tion also updated weights 16 times on each batch of data. Training in 
each configuration (each learning rule and each learning rate) was 
repeated three times with different seeds.

To extend a predictive coding network to a convolutional neural 
network (or to any network with a layered structure58,73), we can define 
the forward function of a layer (that is, how the input of layer l + 1 is 
computed from the neural activity of layer l) with weights wl to be 

ℱwwwl (xxxl). For example, for the MLPs described above, ℱwwwl (xxxl) = wwwlf (xxxl). 
For a convolutional network, ℱwwwl (xxxl) is a more complex function of wl 
and xl, and also wl and xl are not simple matrix and vector anymore (to 
be defined later). Defining an ANN with ℱ() would be (that is, Eq. (5) 
becomes) xxxl = ℱwwwl−1 (xxxl−1). Defining an energy function of a predictive 
coding network with ℱ()  would be (that is, Eq. (6) becomes) 

El = 1
2
[xxxl − ℱwwwl−1 (xxxl−1)]

2
. Thus, neural and weight dynamics would be  

(that is, Eqs. (12) and (13) become) Δxxxl = −γεεεl + ∂ℱ
wwwl (xxxl)
∂xxxl

εεεl+1  and 

 Δwwwl = αεεεl+1 ∂ℱwwwl (xxxl)
∂wwwl

, respectively. As ℱwwwl (xxxl) is defined, ∂ℱwwwl (xxxl)
∂xxxl

 and ∂ℱwwwl (xxxl)
∂wwwl

 

are obtained via auto differentiation in PyTorch (https://pytorch.org/

tutorials/beginner/basics/autogradqs_tutorial.html). Thus, training a 
convolutional predictive coding network is as simple as replacing lines 
11 and 16 in Algorithm 1 with the above corresponding equations.

In the following, we define ℱwwwl (xxxl) for convolutional networks. First, 
xxxl ∈ ℝcl×hl×wl, where cl, hl and wl are the number of features, height and 
width of the feature map, respectively. The numbers for each layer are 
presented in Fig. 4j in the format cl@hl × wl. For example, for the first 
layer (input layer), the shape was 3@32 × 32 as it is 32 × 32 colored 
images, that is, with three feature maps representing red, green and 
blue. We denote kernel size, stride and padding of this layer as kl, sl and 
pl, respectively. The numbers for each layer are presented in Fig. 4j. 
Thus, wwwl ∈ ℝcl+1×cl×kl×kl. Finally, xl + 1 is obtained via

xxx l+1[c, x, y] = f (xxx l [∶, xsl − pl ∶ xsl − pl + kl, ysl − pl ∶ ysl − pl + kl])

⋅wwwl [c, ∶, ∶, ∶] ,
(14)

where [a,b,…] means indexing the tensor along each dimension, : means 
all indexes at that dimension, a: b means slice of that dimension from 
index a to b − 1, and ⋅ is dot product. In the above equation, if the slicing 
o f  x l  o n  t h e  se c o n d  a n d  t h i rd  d i m e n s i o n s ,  t h a t  i s , 
xxxl [∶, xsl − pl ∶ xsl − pl + kl, ysl − pl ∶ ysl − pl + kl] , is outside its defined 
range ℝcl×hl×wl, the entries outside range are considered to be 0, known 
as padding mode of zeros.

In Fig. 3f, networks of 15 layers were trained and tested on the 
FashionMNIST60 dataset. Learning rates in Fig. 3f were optimized 

http://www.nature.com/natureneuroscience
https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html
https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

independently by a grid search over (5.0, 1.0, 0.5, 0.1, 0.05, 0.01, 0.005, 
0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0.000005) for each learn­
ing rule, as shown Fig. 3g; that is, each learning rule in Fig. 3f used the 
learning rate that gave a minimal point in the corresponding curve 
in Fig. 3g. The experiment in Fig. 3h investigated other network 
depths ({1, 2,4,6,8, 10, 12, 14, 15}) in the same setup. Similar to Fig. 3f, 
the learning rate for each learning rule and each ‘number of layers’ 
was the optimal value (in terms of mean of test error as the y axis of 
the figure) independently searched from (5.0, 1.0, 0.5, 0.1, 0.05, 0.01, 
0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0.000005). Hidden 
layers were always of size 64 in the above experiments. In the above 
experiment, only a part of the training set was used (60 data points 
per class) so that the test error was evaluated more frequently to 
reflect the difference on efficiency of the investigated learning rules. 
The activation function f () used is LeakyReLU instead of the standard 
sigmoid because sigmoid results in difficulty in training deep neural 
networks. Other unmentioned details followed the defaults,  
as described above.

In the reinforcement learning experiments (Fig. 4k), we evaluated 
performance on three classic reinforcement learning problems: Acro­
bot74,75, MountainCar76 and CartPole77. We interacted with these envi­
ronments via a unified interface by OpenAI Gym78. The observations st 
of these environments are vectors describing the status of the system, 
such as velocities and positions of different moving parts (for details, 
refer to the original articles or documentation from OpenAI Gym). Each 
entry of the observation st is normalized to mean 0 and s.d. 1 via Wel­
ford’s online algorithm79,80. The action space of these environments is 
discrete. Thus, we can have a network taking in observation st and 
predicting the value (Q) of each action at with different output neurons. 
Such a network is known as an action­value network, in short, a Q net­
work. In our experiment, the Q network contained two hidden layers, 
each of which contained 64 neurons, initialized the same way as the 

network used for supervised learning, described before. One can 
acquire the value of an action at at a given observation st by feeding st 
into the Q network and reading out the prediction on the output neuron 
corresponding to the action at; such a value is denoted Q (st,at). The 
training of Q is a simple regression problem to target ̂Rt, obtained via 
Q learning with experience replay (summarized in Algorithm 2). Con­
sidering st to be sin and ̂Rt  to be starget, the Q network can be trained with 
prospective configuration or backpropagation. Note that ̂Rt  is the 
target of the selected action at (that is, the target of one of the output 
neurons corresponds to the selected action at); thus, ̂Rt  is, in practice, 
considered to be ssstarget [at]. For prospective configuration, it means 
that the rest of the output neurons except the one corresponding to at 
are freed; for backpropagation, it means that the error on these neurons 
is masked out.

A predictive coding network with slightly different settings from 
the defaults was used for prospective configuration. The integration 
step was fixed to be half of the default (γ = 0.05), and relaxation was 
performed for a fixed and smaller number of steps (𝒯𝒯 = 32). This change 
was introduced because Q learning is more unstable (smaller integra­
tion step) and more expensive (smaller number of relaxation steps) 
than supervised learning tasks. To produce a smoother curve of ‘sum 
of rewards per episode’ in Fig. 4k from SumRewardPerEpisode in Algo­
rithm 2, the SumRewardPerEpisode curve was averaged along Train-
ingEpisode with a sliding window with a length of 200. Each experiment 
was repeated with three random seeds, and the shadows represent 68% 
confidence interval across them. Learning rates were searched inde­
pendently for each environment and each model from the range 
{0.05,0.01,0.005,0.001,0.0005,0.0001}. The results reported in Fig. 4k 
are for the learning rates yielding the highest mean of ‘sum of rewards 
per episode’ over training episodes.

Algorithm 2. Q learning with experience replay 
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Simulation of motor learning
As shown in Fig. 5, we trained a network that included two input neu­
rons, two hidden neurons and two output neurons. The two input 
neurons were one­to­one connected to the two hidden neurons, and the 
two hidden neurons were fully connected to the two output neurons. 
The two input neurons were considered to encode presenting the blue 
and red background, respectively. The two output neurons were con­
sidered to encode the prediction of the perturbations toward positive 
and negative directions, respectively. Presenting and not presenting a 
background color were encoded 1 and 0, respectively; presenting and 
not presenting perturbations of a particular direction were encoded 1 
and 0, respectively. The weights were initialized from a normal distribu­
tion with mean 0 and an s.d. fitted to the behavioral data (see below), 
simulating that the participants had not built any associations before 
the experiments. Learning rates were independent for the two layers, 
as we expected the connections from perception to belief and from 
belief to predictions to have different degrees of plasticity. The two 
learning rates were also fitted to the data (see below).

The number of participants and training and testing trials follow 
exactly as described for the human experiment38. In particular, for 
each of the 24 simulated participants, the weights were initialized with 
a different seed of the random number generator. They each experi­
enced two stages: training and testing. Note that the pretraining stage 
performed in the human experiment was not simulated here as its goal 
was to make human participants familiar with the setup and devices.

In the training stage, the model experienced 24 blocks of trials.  
In each block, the model was presented with the following sequence 
of trials, matching the original experiment38:

•	 The model was trained with two trials without perturbation, 
B0 and R0, with the order counterbalanced across consecutive 
blocks. Note that, in the human experiment, there were two 
trial types without perturbations (channel and washout trials), 
but they were simulated in the same way here as B0 or R0 trials 
because they both did not include any perturbations.

•	 The model was trained with 32 trials with perturbations, where 
there were equal numbers of B+ and R– within each of the 8 trials 
in a pseudorandom order.

•	 The model experienced two trials, B0 and R0, with the order 
counterbalanced across consecutive blocks.

•	 The model experienced n ← {14, 16, 18} washout trials (equal num­
bers of B0 and R0 trials in a pseudorandom order), where n ← {a, b, c} 
denotes sampling without replacement from a set of values a, b 
and c and replenishing the set whenever it becomes empty.

•	 The model experienced one triplet, where the exposure trial was 
either B+ or R–, counterbalanced across consecutive blocks. 
Here, a triplet consisted of three sequential trials: B0, the speci­
fied exposure trial and B0 again.

•	 The model experienced additional n ← {6, 8, 10} washout trials 
(equal numbers of B0 and R0 trials in a pseudorandom order).

•	 The model experienced one triplet again, where the exposure trial 
was either B+ or R–, whichever was not used on the previous triplet.

In the testing stage, the model then experienced eight repetitions 
of four blocks of trials. In each block, one of the combinations of B+, 
R+, B– and R– was tested. The order of the four blocks was shuffled 
in each of the eight repetitions. In each block, the model first experi­
enced n ← {2, 4, 6} washout trials (equal numbers of B0 and R0 trials in a 
pseudorandom order). The model then experienced a triplet of trials, 
where the exposure trial was the combination (B+, R+, B– or R–) tested 
in a given block to assess single­trial learning of this combination. The 
change in adaption in the model was computed as the absolute value of 
the difference in the predictions of perturbations on the two B0 trials in 
the above triplet, where the prediction of perturbation was computed 
as the difference between the activities of the two output neurons. The 
predictions were averaged over participants and the above repetitions.

The parameters of each learning rule were chosen such that the 
model best reproduced the change in adaptation shown in Fig 5f.  
In particular, we minimized the sum over set C of the four exposure trial 
types of the squared difference between average change in adaptation 
in experiment (dc) and model (xc):

∑
c∈C

(axc − dc)
2. (15)

The model predictions were additionally scaled by a coefficient a fitted 
to the data because the behavioral data and model outputs had differ­
ent scales. An exhaustive search was performed over model parame­
ters. The s.d. of initial weights could take values from {0.01,0.05,0.1}, 
and two learning rates for two layers could take values from 
{0.00005,0.0001,0.0005,0.01,0.05} . For each learning rule and each 
combination of the above model parameters, the coefficient a was then 
resolved analytically (restricted to be positive) to minimize the sum of 
the squared errors of Eq. (15).

Simulation of human reinforcement learning
As shown in Fig. 6b, we trained a network that included one input neu­
ron, one hidden neuron and two output neurons. The input neuron was 
considered to encode being in the task, so it was set to 1 throughout 
the simulation. The two output neurons encoded the prediction of the 
value of the two choices. Reward and punishment were encoded as 1 
and −1, respectively, because the participants were either winning or 
losing money. The model selected actions stochastically based on the 
predicted value of the two choices (encoded in the activity of two out­
put neurons) according to the softmax rule (with a temperature of 1).  
The weights were initialized from a normal distribution of mean 0 and 
an s.d. fitted to experimental data (see below), simulating that the 
human participants had not built any associations before the experi­
ments. The number of simulated participants (number of repetitions 
with different seeds) was set to 16, as in the human experiment38. The 
number of trials was not mentioned in the original paper, so we simu­
lated for 128 trials for both learning rules.

To compare the ability of the two learning rules to account for the 
pattern of signal from the mPFC, for each of the rules, we optimized 
the parameters describing how the model is set up and learns (the s.d. 
of initial weights and the learning rate). Namely, we searched for the 
values of these parameters for which the model produces the most 
similar pattern of its output activity to that in the experiment. In par­
ticular, we minimized the sum over set C of four trial types in Fig. 6c of 
the squared difference between model predictions xc and data dc on 
mean mPFC signal:

∑
c∈C

(axc + b − dc)
2. (16)

The model predictions were additionally scaled by a coefficient a and 
offset by a bias b because the fMRI signal had different units and base­
line than the model. To compute the model prediction for a given trial 
type, the activity of the output neuron corresponding to the chosen 
option was averaged across all trials of this type in the entire simulation. 
The scaled average activity from the model is plotted in Fig. 6c, where 
the error bars show the 68% confidence interval of the scaled activity. 
To fit the model to experimental data, the values of model parameters 
and the coefficient were found as described in the previous section. In 
particular, we used exhaustive grid search on the parameters. The 
models were simulated for all possible combinations of s.d. of initial 
weights and the learning rate from the following set: {0.01,0.05,0.1}. 
For each learning rule and each combination of the above model param­
eters, the coefficient a (restricted to be positive) and the bias b were 
then resolved analytically to minimize the sum of the squared error of 
Eq. (16).
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Statistics and reproducibility
The work in this paper involved computer simulations, but due to ran­
dom initialization of weight parameters, the simulations were repeated 
multiple times. No statistical method was used to predetermine the 
number of repetitions, but for simulations corresponding to behavioral 
or neurophysiological experiments, the number of repetitions was 
matched to the number of participants in the given experiment. No data 
were excluded from the analyses. Because the order of execution has 
no effect on the results of the numeric experiments, they were not ran­
domized. The investigators were not blinded to outcome assessment.

To visualize the variability of simulation results, we either pre­
sented individual data points or error bars showing confidence inter­
vals or box plots. Confidence intervals were computed using bootstrap 
throughout the paper, and detailed descriptions of the implementation 
can be found at https://seaborn.pydata.org/tutorial/error_bars.htm
l#confidence­interval­error­bars. The details of the methods used 
to produce the box plots are available at https://seaborn.pydata.org/
generated/seaborn.boxplot.html.

Reporting summary
Further information on research design is available in the Nature Port­
folio Reporting Summary linked to this article.

Data availability
Learning tasks analyzed in Fig. 4a–j were built using the publicly avail­
able FashionMNIST60 and CIFAR­10 (ref. 36) datasets. These datasets 
are incorporated in most machine learning libraries, and their origi­
nal releases are available at https://github.com/zalandoresearch/
fashion­mnist and https://www.cs.toronto.edu/~kriz/cifar.html, 
respectively. Reinforcement learning tasks analyzed in Fig. 4i were 
built using the publicly available simulators by OpenAI Gym78. Source 
data are provided with this paper.

Code availability
Complete code and full documentation reproducing all simulation results 
written in Python are publicly available at https://github.com/Yuhang­
Song/Prospective­Configuration released under GNU General Public 
License v3.0 without any additional restrictions (for license details, see 
https://opensource.org/licenses/GPL­3.0 by the open source initiative).
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Replication All results of simulations can be replicated by running the code we made available.

Randomization Since the order of execution has no effect on result of numeric experiments, they were not randomised.

Blinding No blinding was performed, because the analysis and visualization of experimental data were performed automatically by computer code.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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