
Nature Neuroscience

nature neuroscience

https://doi.org/10.1038/s41593-023-01514-1Article

Inferring neural activity before plasticity
as a foundation for learning beyond
backpropagation

Yuhang Song   1,2,3 , Beren Millidge2, Tommaso Salvatori1,4,5,
Thomas Lukasiewicz   1,4 , Zhenghua Xu   1,6 & Rafal Bogacz   2

For both humans and machines, the essence of learning is to pinpoint which
components in its information processing pipeline are responsible for an
error in its output, a challenge that is known as ‘credit assignment’. It has
long been assumed that credit assignment is best solved b y b ac kp ro pa ga­
tion, which is also the foundation of modern machine learning. Here, we
set out a fundamentally different principle on credit assignment called
‘prospective configuration’. In prospective configuration, the network
first infers the pattern of neural activity that should result from learning,
a n d t h e n t h e synaptic weights are modified to consolidate the change in
neural activity. We demonstrate that this distinct mechanism, in contrast
to backpropagation, (1) underlies learning in a well­established family of
models of cortical circuits, (2) enables learning that is more efficient and
effective in many contexts faced by biological organisms and (3) reproduces
surprising patterns of neural activity and behavior observed in diverse
human and rat learning experiments.

The credit assignment problem1 lies at the very heart of learning. Back­
propagation2, as a simple yet effective credit assignment theory, has
powered notable advances in artificial intelligence since its inception3–5
and has also gained a predominant place in understanding learning
in the brain1,6–8. Due to this success, much recent work has focused on
understanding how biological neural networks could learn in a way
similar to backpropagation9–12; although many proposed models do not
implement backpropagation exactly, they nevertheless try to approxi­
mate backpropagation, and much emphasis is placed on how close this
approximation is9,11,13,14. However, learning in the brain is superior to
backpropagation in many critical aspects. For example, compared to
the brain, backpropagation requires many more exposures to a stimu­
lus to learn15 and suffers from catastrophic interference of newly and
previously stored information16. This raises the question of whether

using backpropagation to understand learning in the brain should be
the main focus of the field.

Here, we propose that the brain instead solves credit assignment
with a fundamentally different principle, which we call ‘prospective
configuration’. In prospective configuration, before synaptic weights
are modified, neural activity changes across the network so that output
neurons better predict the target output; only then are the synaptic
weights (hereafter termed ‘weights’) modified to consolidate this
change in neural activity. By contrast, in backpropagation, the order is
reversed; weight modification takes the lead, and the change in neural
activity is the result that follows.

We identify prospective configuration as a principle that is
implicitly followed by a well­established family of neural models
with solid biological groundings, namely, energy­based networks.

Received: 18 May 2022

Accepted: 2 November 2023

Published online: xx xx xxxx

 Check for updates

1Department of Computer Science, University of Oxford, Oxford, UK. 2Medical Research Council Brain Network Dynamics Unit, University of Oxford,
Oxford, UK. 3Fractile, Ltd., London, UK. 4Institute of Logic and Computation, Vienna University of Technology, Vienna, Austria. 5VERSES AI Research
Lab, Los Angeles, CA, USA. 6State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical
Engineering, Hebei University of Technology, Tianjin, China.  e-mail: yuhang.song@bndu.ox.ac.uk; thomas.lukasiewicz@cs.ox.ac.uk;
zhenghua.xu@hebut.edu.cn; rafal.bogacz@ndcn.ox.ac.uk

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-023-01514-1
http://orcid.org/0000-0002-7999-0291
http://orcid.org/0000-0002-7644-1668
http://orcid.org/0000-0002-6719-7333
http://orcid.org/0000-0002-8994-1661
http://crossmark.crossref.org/dialog/?doi=10.1038/s41593-023-01514-1&domain=pdf
mailto:yuhang.song@bndu.ox.ac.uk
mailto:thomas.lukasiewicz@cs.ox.ac.uk
mailto:
zhenghua.xu@hebut.edu.cn
mailto:
zhenghua.xu@hebut.edu.cn
mailto:rafal.bogacz@ndcn.ox.ac.uk

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

weights between visual and olfactory neurons that would compromise
the expectation of smelling the salmon the next time the river is visited,
even though the smell of salmon was present and correctly predicted.
These undesired and unrealistic side effects of learning with back­
propagation are closely related with the phenomenon of catastrophic
interference, where learning a new association destroys previously
learned memories16. This example shows that, with backpropagation,
even learning one new aspect of an association may interfere with the
memory of other aspects of the same association.

By contrast, prospective configuration assumes that learning
starts with the neurons being configured to a new state, which cor­
responds to a pattern enabling the network to correctly predict the
observed outcome. The weights are then modified to consolidate this
state. This behavior can ‘foresee’ side effects of potential weight modi­
fications and compensate for them dynamically (Fig. 1c). To correct
the negative error on the incorrect output, the hidden neurons settle
to their prospective state of lower activity, and, as a result, a positive
error is revealed and allocated to the correct output. Consequently,
prospective configuration increases the weights connecting to the
correct output, whereas backpropagation does not (Fig. 1b,c). Hence,
prospective configuration is able to correct the side effects of learning
an association effectively and efficiently and with little interference.

Origin of prospective configuration: energy-based networks
To show how prospective configuration naturally arises in energy­based
networks, we introduce a physical machine analog, which provides
an intuitive understanding of energy­based networks and how they
produce the mechanism of prospective configuration.

Energy­based networks have been widely and successfully used in
describing biological neural systems17,25. In these models, a neural cir­
cuit is described by a dynamical system driven by reducing an abstract
‘energy’, for example, reflecting errors made by neurons (Methods).
Neural activity and weights change to reduce this energy; hence, they
can be considered ‘movable parts’ of the dynamical system. We show
that energy­based networks are mathematically equivalent to a physi­
cal machine (we call it ‘energy machine’), where the energy function
has an intuitive interpretation, and its dynamics are straightforward;
the energy machine simply adjusts its movable parts to reduce energy.

The energy machine includes nodes sliding on vertical posts con­
nected with each other via rods and springs (Fig. 2a,b). Translating
from energy­based networks to the energy machine, neural activity
maps to the vertical position of a solid node, a connection maps to a
rod (blue arrow) pointing from one node to another (where the weight
determines how the end position of the rod relates to the initial posi­
tion), and the energy function maps to the elastic potential energy of
springs with nodes attached on both ends (the natural length of the
springs is 0). Different energy functions and network structures result
in different energy­based networks, corresponding to energy machines
with different configurations and combinations of nodes, rods and
springs. In Fig. 2, we present the energy machine of predictive coding
networks12,18 because they are most accessible and are established to
be closely related to backpropagation12,14.

The dynamics of energy­based networks, which are driven by mini­
mizing the energy function, map to relaxation of the energy machine,
which is driven by reducing the total elastic potential energy on the
springs. A prediction with energy­based networks involves clamping
the input neurons to the provided stimulus and updating the activ­
ity of the other neurons, which corresponds to fixing one side of the
energy machine and letting the energy machine relax by moving nodes
(Fig. 2a). Learning with energy­based networks involves clamping the
input and output neurons to the corresponding stimulus, first letting
the activities of the remaining neurons converge and then updating
weights, which corresponds to fixing both sides of the energy machine
and letting the energy machine relax first by moving nodes and then
tuning rods (Fig. 2b).

These networks include Hopfield networks17 and predictive coding
networks18, which have been successfully used to describe informa­
tion processing in the cortex19. To support the theory of prospective
configuration, we show that it can both yield efficient learning, which
humans and animals are capable of, and reproduce data from experi­
ments on human and animal learning. Thus, on the one hand, we dem­
onstrate that prospective configuration performs more efficient and
effective learning than backpropagation in various situations faced
by biological systems, such as learning with deep structures, online
learning, learning with a limited amount of training examples, learn­
ing in changing environments, continual learning with multiple tasks
and reinforcement learning. On the other hand, we demonstrate that
patterns of neural activity and behavior in diverse human and animal
learning experiments, including sensorimotor learning, fear condi­
tioning and reinforcement learning, can be naturally explained by
prospective configuration but not by backpropagation.

Guided by the belief that backpropagation is the foundation of
biological learning, previous work showed that energy­based networks
can closely approximate backpropagation. However, to achieve it, the
networks were set up in an unnatural way, such that the neural activity
was prevented from substantially changing before weight modifica­
tion by constraining the supervision signal to be infinitely small (for
example, as in equilibrium propagation11 and in previous studies using
predictive coding networks12,20) or last an infinitely short time14,21. By
contrast, we reveal that energy­based networks without these unreal­
istic constraints follow the distinct principle of prospective configu­
ration rather than backpropagation and are superior in both learning
efficiency and accounting for data on biological learning.

Here, we introduce prospective configuration with an intuitive
example, show how it originates from energy­based networks and
describe its advantages and quantify them in a rich set of biologi­
cally relevant learning tasks. We show that prospective configuration
naturally explains patterns of neural activity and behavior in diverse
learning experiments.

Results
Prospective configuration: an intuitive example
To optimally plan behavior, it is critical for the brain to predict future
stimuli, for example, to predict sensations in some modalities on the
basis of other modalities22. If the observed outcome differs from the
prediction, the weights in the whole network need to be updated so
that predictions in the ‘output’ neurons are corrected. Backpropagation
computes how the weights should be modified to minimize the error on
the output, and this weight update results in a change in neural activity
when the network next makes the prediction. By contrast, we propose
that neural activity is first adjusted to a new configuration so that the
output neurons better predict the observed outcome (target pattern);
the weights are then modified to reinforce this configuration of neural
activity. We call this configuration of neural activity ‘prospective’ because
it is the neural activity that the network should produce to correctly
predict the observed outcome. In agreement with the proposed mecha­
nism of prospective configuration, it has indeed been widely observed
in biological neurons that presenting the outcome of a prediction trig­
gers changes in neural activity; for example, in tasks requiring animals
to predict a juice delivery, the reward triggers rapid changes in activity
not only in the gustatory cortex but also in multiple cortical regions23,24.

To highlight the difference between backpropagation and pro­
spective configuration, consider a simple example (Fig. 1a). Imagine a
bear seeing a river. In the bear’s mind, the sight generates predictions
of hearing water and smelling salmon. On that day, the bear indeed
smelled the salmon but did not hear the water, perhaps due to an ear
injury, and thus the bear needs to change its expectation related to the
sound. Backpropagation (Fig. 1b) would proceed by backpropagating
the negative error to reduce the weights on the path between the visual
and auditory neurons. However, this also entails a reduction of the

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

The energy machine reveals the essence of energy­based net­
works; relaxation before weight modification lets the network settle
to a new configuration of neural activity corresponding to the neural
activity that would have occurred after the error was corrected by the
modification of weights, that is, prospective activity (thus, we call this
mechanism prospective configuration). For example, the second­layer
‘neuron’ in Fig. 2b increases its activity, and this increase in activity
would also be caused by the subsequent weight modification (of the
connection between the first and second neurons). In simple terms,
relaxation in energy­based networks infers the prospective neural
activity after learning, toward which the weights are then modified.
This distinguishes it from backpropagation, where weight modification
takes the lead, and the change in neural activity is the result that follows.

The bottom of Fig. 2c shows the connectivity of a predictive coding
network12,18, which has dynamics mathematically equivalent to those of
the energy machine shown above it. Predictive coding networks include
neurons (blue) corresponding to nodes on the posts and separate neu­
rons encoding prediction errors (red) corresponding to springs. For
details, see Methods and Supplementary Fig. 1, where we list equations
describing predictive coding networks and show how they map on the
neural implementation and the proposed energy machine.

Using the energy machine, Fig. 2d simulates the learning problem
from Fig. 1. Here, we can see that prospective configuration indeed
foresees the result of learning and its side effects through relaxation.
Hence, it corrects the side effects within one iteration, which would
otherwise take multiple iterations for backpropagation.

Advantages of prospective configuration: reduced
interference and faster learning
Here, we quantify interference in the above scenario and demonstrate
how reduced interference translates into an advantage in perfor­
mance. In all simulations in the main text, prospective configuration

is implemented in predictive coding networks (other energy­based
models are considered in the Supplementary Notes, Section 2.1). We
also compare the performance of predictive coding networks against
artificial neural networks (ANNs) trained with backpropagation because
they are closely related, which makes the comparisons fair. In particular,
although predictive coding networks include recurrent connections,
they generate the same prediction for a given input (when inputs are
constrained but outputs are not; Fig. 2a) as standard feedforward ANNs
if their weights are set to corresponding values12,14. Therefore, loss is
the same function of weights in both models, so direct minimization
of loss with gradient descent in predictive coding networks (which
is not their natural way of training) would produce the same weight
changes as backpropagation in ANNs. Hence, comparing predictive
coding networks and backpropagation enables isolation of the effects
of the learning algorithm (prospective configuration versus direct
minimization of loss as in backpropagation).

In Fig. 3a, we compare the activity of output neurons in the exam­
ple in Fig. 1 between backpropagation and prospective configuration.
Initially both output neurons are active (top right), and the output
should change toward a target in which one of the neurons is inac­
tive (red vector). Learning with prospective configuration results in
changes on the output (purple solid vector) that are aligned better
with the target than those for backpropagation (purple dotted vector).

Following the first weight update, we simulate multiple iterations
until the network is able to correctly predict the target. Here, ‘itera­
tion’ refers to each time the agent is presented with stimuli and con­
ducts one weight update because of the stimulus. Although the output
from backpropagation can reach the target after multiple iterations,
the output for the ‘correct neuron’ diverges from the target during
learning and then comes back; this is a particularly undesired effect
in biological learning, where networks can be ‘tested’ at any point
during the learning process, because it may lead to incorrect decisions

Incorrect output

a b

c

Negative error on a neuron
Positive error on a neuron

Connection strengthened
Connection weakened

Neural activity (high to low)
Interference

Prospective configuration (proposed)

∂L/∂x4 • ∂x4/∂x3 ... ∆w ~ –∂L/∂w

Backpropagation (conventional)

Reduced interference

Input
Correct output

∆x ~ –∂E/∂x ∆w ~ –∂E/∂w

Fig. 1 | Prospective configuration avoids interference during learning. a,
Abstract (top) and concrete (bottom) examples of a task inducing interference
during learning. One stimulus input (seeing the water) triggers two prediction
outputs (hearing the water and smelling the salmon). One output is correct
(smelling the salmon), whereas the other output is an error (not hearing the
water). b,c, Backpropagation produces interference during learning; not
hearing the water reduces the expectation of smelling the salmon (b), although
the salmon was indeed smelled. Prospective configuration, on the other hand,
avoids such interference (c). In backpropagation, negative error propagates

from the error output to hidden neurons (b; left). This causes a weakening of
some connections, which, on the next trial, improves the incorrect output but
also reduces the prediction of the correct output, thus introducing interference
(b; middle and right). In prospective configuration, neural activity settles into a
new configuration (different intensities of purple) before weight modification
(c; left). This configuration corresponds to the activity that should be produced
after learning, that is, is ‘prospective’. Hence, it foresees the positive error on the
correct output and modifies the connections to improve the incorrect output
while maintaining the correct output (c; middle and right).

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

affecting chances for survival. By contrast, prospective configuration
substantially reduces this effect.

Although backpropagation modifies weights to directly reduce
cost in the space of weights (that is, performs gradient descent), sur­
prisingly, and rather subversively, it does not push the resulting output
activity directly toward the target. To illustrate this, Fig. 3a visualizes the
cost with contour lines. Changing the activity of output neurons accord­
ing to the gradient of the cost would correspond to a change orthogonal
to the contour lines, that is, that indicated by the red arrow. However,
backpropagation changes the output in a different direction shown by
a dashed arrow. Optimizing the weights independently, without con­
sidering the effect of updating other weights, leads to output activity
not updating toward the target directly due to different weight updates
to different layers interfering with each other. By contrast, prospective
configuration considers the results of updating other weights by find­
ing a desired configuration of neural activity first. Such a mechanism
is missing in backpropagation but is natural in energy­based networks.
Supplementary Fig. 2 shows a direct comparison of how these two mod­
els evolve in weight and output spaces during learning.

Interference can be quantified by the angle between the direction
of the target (from current output to target) and learning (from cur­
rent output to output after learning, both measured without the target
provided), and we define ‘target alignment’ as the cosine of this angle
(Fig. 3b); hence, high interference corresponds to low target align­
ment (Fig. 3c).

It is useful to highlight that target alignment is affected little by
the learning rate (Fig. 3d), demonstrating that the learning rate has
little effect on the direction and trajectory that output neurons take.
The difference in target alignment demonstrated in Fig. 3a is also pre­
sent for deeper and larger (randomly generated) networks (Fig. 3e).
When a network has no hidden layers, the target alignment is equal to
1 (Supplementary Notes, Section 2.4.1). The target alignment drops
for backpropagation as the network gets deeper because changes in
weights in one layer interfere with changes in other layers (Fig. 1), and
the backpropagated errors do not lead to appropriate modification
of weights in hidden layers (Supplementary Fig. 2). Because back­
propagation modifies the weights in the direction reducing loss, it has
positive target alignment for small learning rates but not necessarily

Clamp input neuron

a c

b

d

Clamp input and output neurons Relaxation until convergence

Clamp input and output neurons Relaxation until convergence

Learn

Learn

Predict

Predict

Weight modification Next time prediction

Weight modification (∆w ~ –∂E/∂w)

Relaxation (∆x ~ –∂E/∂x)

Neural implementaion

Energy machine

x

Physical implementationRelaxation convergence

ω– – – –
++ + +ε

w
w

E

x

E

Fig. 2 | The energy machine reveals a new understanding of energy-
based networks, the mechanism of prospective configuration and its
theoretical advantages. A subset of energy­based networks can be visualized
as mechanical machines that perform equivalent computations. Here, we
present the energy machine corresponding to predictive coding networks12,18.
In the energy machine, the activity of a neuron corresponds to the height of a
node (represented by a solid circle) sliding on a post. The input to the neuron
is represented by a hollow node on the same post. A synaptic connection
corresponds to a rod pointing from a solid node to a hollow node. The weight
determines how the input to a postsynaptic neuron depends on the activity of
a presynaptic neuron; hence, it influences the angle of the rod. In energy­based
networks, relaxation (that is, neural dynamics) and weight modification (that is,

weight dynamics) are both driven by minimizing the energy, which corresponds
to relaxation of the energy machine by moving the nodes and tuning the rods,
respectively. a,b, Predictions (a) and learning (b) in energy­based networks
visualized by the energy machine. The pin indicates that neural activity is fixed to
the input or target pattern. Here, it is revealed that relaxation infers prospective
neural activity, toward which the weights are then modified, a mechanism
that we call prospective configuration. c, Physical implementation (top) and
connectivity of a predictive coding network12,18 (bottom), which has dynamics
mathematically equivalent to those of the energy machine in the middle (see
Methods for details). d, The learning problem in Fig. 1 visualized by the energy
machine, which learns to improve the incorrect output while not interfering with
the correct output, thanks to the mechanism of prospective configuration.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

close to 1. By contrast, prospective configuration maintains a much
higher value along the way. This higher target alignment of prospec­
tive configuration can be theoretically explained by the following: (1)
there exists a close link between prospective configuration and an algo­
rithm called target propagation26 (shown in Supplementary Fig. 3 and
Supplementary Notes, Section 2.2), and (2) under certain conditions,
target propagation26 has a target alignment of 1 (ref. 27; demonstrated
in Supplementary Fig. 4 and Supplementary Notes, Section 2.4.2).
Thus, the link with target propagation provides theoretical insight
(with numerical verification) into why prospective configuration has
a higher target alignment.

Higher target alignment directly translates to the efficiency of
learning. Test error during training in a visual classification task with
a deep neural network of 15 layers decreases faster for prospective
configuration than for backpropagation (Fig. 3f).

Throughout the data presented here, if learning rate is not pre­
sented in a plot, the plot corresponds to the best learning rate opti­
mized independently for each rule under the setup via a grid search.
The optimization target is either learning performance or similarity
to experimental data (details can be found in the methods for each
experiment). Thus, for example, Fig. 3f shows the test errors as training
progress, with the learning rates optimized independently for each
learning rule. The optimization target is the ‘mean of test error’ during
training, reflecting how fast the test error decreases during training.
Fig. 3g plots this mean of test error for different learning rates for both
learning rules, and the learning rates giving the minima of the curves

were used in Fig. 3f. Fig. 3h repeats the experiment on networks of other
depths and shows the mean of the test error during training as a func­
tion of network depth. The mean error is higher for lower depths, as
these networks are unable to learn the task, and for greater depths, as
it takes longer to train deeper networks. Importantly, the gap between
backpropagation and prospective configuration widens for deeper net­
works, paralleling the difference in target alignment. Efficient training
with deeper networks is important for biological neural systems known
to be deep, for example, the primate visual cortex28.

In Section 2.3 of the Supplementary Notes, we develop a formal
theory of prospective configuration and provide further illustrations
and analyses of its advantages. Supplementary Fig. 5 formally defines
prospective configuration and demonstrates that it is indeed com­
monly observed in different energy­based networks. Supplemen­
tary Figs. 6 and 7 empirically verify and generalize the advantages
expected from the theory and show that prospective configuration
yields more accurate error allocation and less erratic weight modifica­
tion, respectively.

Advantages of prospective configuration: effective learning in
biologically relevant scenarios
Inspired by these advantages, we show empirically that prospective
configuration indeed handles various learning problems that bio­
logical systems would face better than backpropagation. Because
the field of machine learning has developed effective benchmarks
for testing learning performance, we use variants of classic machine

0.35

0.45

0.6

0.4

0

0.80

0.90

1.00
a

e f g h

b

c

d

0.5
Incorrect output

Current prediction

Iteration

Rule
Prospective
configuration

Backpropagation

Rule
Prospective
configuration

Backpropagation

4
8
12

16

0.1

0.2

0.3

0.4

0.5

Loss to target Target Output before learning

Output after learning

Lower interference

Higher in
terfe

rence

Target alignment = cosineTarget

C
or

re
ct

 o
ut

pu
t

1.0

Rule
Prospective
configuration

Backpropagation

Learning rate
0.005

0.010

0.050

0.100

Current predictionTarget

0

0.80

0.90

1.00

0.5
Incorrect output

C
or

re
ct

 o
ut

pu
t

1.0

1

0.30

0.40

0.50

0.55

5 10 15
Number of layers

M
ea

n
of

 te
st

 e
rr

or

10–4 10–2 100

Learning rate
0

0.2

0.4

0.6

0.8

20 40 60
Training epoch

0.8

1.0

M
ea

n
of

 te
st

 e
rr

or

Te
st

 e
rr

or

0

0.4

0.6

0.8

1.0

10 20
Number of layers

Ta
rg

et
 a

lig
nm

en
t

Fig. 3 | Learning with prospective configuration changes the activity of
output neurons in a direction more aligned toward the target. a, Simulation
of the network from Fig. 1 showing changes in the correct and incorrect output
neurons during training (‘Iteration’) trained with both learning rules. Here,
learning with prospective configuration (purple solid vector) aligns better with
the target (red vector) than learning with backpropagation (purple dashed
vector). b, Interference can be quantified by ‘target alignment’, the cosine
similarity of the direction of the target (red vector) and the direction of learning
(purple vector). c, Higher target alignment indicates less interference and vice
versa. d, The same experiment as in a repeated with a learning rate ranging from
0.005 to 0.5 represented by the size of the markers, where it is shown that the
choice of learning rate changes the trajectories for both methods slightly, but
the conclusion holds irrespective of the learning rate. e, Target alignment of
randomly generated networks trained with both learning rules as a function

of depth of the network. Each symbol shows target alignment resulting from
training on a single randomly generated pattern. f, Test error during training on
the FashionMNIST60 dataset containing images of clothing belonging to different
categories for both learning rules with a deep neural network of 15 layers. Here,
‘test error’ refers to the ratio of incorrectly classified samples among all samples
in the test set. g, Mean of the test error over training epochs (reflecting how
fast test error drops) as a function of learning rate. Results in f and h are for the
learning rates giving the minima of the corresponding curves in g. h, Mean of test
error of other network depths. Each point is from a learning rate independently
optimized for each learning rule in the corresponding setup of network depth.
In e–h, prospective configuration demonstrates a notable advantage as the
structure gets deeper. Each experiment in f–h was repeated with n = 3 random
seeds. Error bars and bands represent the 68% confidence interval.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

learning problems that share key features with learning in natural
environments. Such problems include online learning, where weights
must be updated after each experience (rather than a batch of train­
ing examples)29, continual learning with multiple tasks30, learning in
changing environments31, learning with a limited amount of training
examples and reinforcement learning4. In all aforementioned learn­
ing problems, prospective configuration demonstrates a notable
superiority over backpropagation.

First, based on the example in Fig. 1, we expect prospective con­
figuration to require fewer episodes for learning than backpropagation.
Before presenting the comparison, we describe how backpropagation
is used to train ANNs. Typically, the weights are only modified after a
batch of training examples based on the average of updates derived

from individual examples (Fig. 4a). In fact, backpropagation relies
heavily on averaging over multiple experiences to reach human­level
performance32, as it needs to stabilize training33. By contrast, biological
systems must update the weights after each experience, and we com­
pare learning performance in such a setting. Sampling efficiency can be
quantified by mean of test error during training, which is shown in Fig. 4b
as a function of batch size (number of experiences that the updates
are averaged over). Efficiency strongly depends on batch size for back­
propagation because it requires batch training to average out erratic
weight updates, whereas this dependence is weaker for prospective
configuration, where weight changes are intrinsically less erratic and
batch averaging is required less (Supplementary Fig. 7). Importantly,
prospective configuration learns faster with smaller batch sizes, as in

0.6

Network structure

Training epoch

Pretrained model

Te
st

 e
rr

or
T-shirt
Trouser
Pullover
Dress
Coat

T-shirt

Trouser
Pullover

Dress

Concept drifting

Coat

0

0.2

0.4

0.8

500 1,000 1,500 2,000 2,500 3,000

Convolutional neural networks + CIFAR-10

Learning in changing environments (concept drifting)

Online learning

Small amount data learning

Inputs:
3@32 × 32

Feature maps:
64@16 × 16

Feature maps:
128@8 × 8 Hidden neurons:

512 Output neurons:
10

Training episode

Su
m

 o
f r

ew
ar

ds
 p

er
 e

pi
so

de

Training episode Training episode

Acrobot CartPole

Reinforcement learning

MountainCar

0
–500

–400

–300

–200

–100

100

200

300

400

500

–190

–180

–170

–160

103 0 103 0 103

Fully connected
FlattenConvolution

Kernel size: 3
Stride: 2

Padding: 1

Convolution
Kernel size: 3

Stride: 2
Padding: 1

Learning rate

Rule
Prospective configuration
Backpropagation

M
in

im
um

 o
f t

es
t e

rr
or

10–410–5

0.29

0.30

0.31

0.32

0.33

Rule
Prospective configuration
Backpropagation

Rule

Prospective
configuration

Backpropagation

Learning rate Data points per class

M
ea

n
of

 te
st

 e
rr

or

M
in

im
um

 o
f t

es
t e

rr
or

10–3

0.4

0.6

0.8

1.0

10–2 10–1

0.15

0.20

0.25

60
300

600
3,000

6,000

Learning rate
10–310–4

0.65

0.70

0.75

0.80Test error ofForgetting

Relearning

Training epoch
0

0.4

0.6

0.8

1.0

20 40 60 80

Train with

Task 1
Task 2

Task 1
Task 2 M

ea
n

of
 te

st
 e

rr
or

Te
st

 e
rr

or

Continual learning of multiple tasks

Learning rateBatch size
0.06

0.20

0.21

0.22

18163264
0.175

0.200

0.225

0.250

0.275

0.300
Averaged

(batch size = 5)

One by one
(batch size = 1)

0.10 0.20

M
in

im
um

 o
f t

es
t e

rr
or

M
ea

n
of

 te
st

 e
rr

or

a

f

i j

g

k

h

b c d e

Fig. 4 | Prospective configuration achieves a superior performance over
backpropagation in various learning situations faced by biological systems.
a–k, Learning situations include online learning29 (a–c), continual learning of
multiple tasks30 (d–e), learning in changing environments31 (f–g), learning with a
limited amount of training examples (h) and reinforcement learning4 (k). Graphs
corresponding to each situation are grouped together with the same background
color. Simulations of each situation differ from the ‘default setup’ described
in the Methods in a single aspect unique to this task. For example, the default
setup involves training with minibatches, so the batch size was only set to 1 in
a–c for investigating online learning, whereas it was set to a larger default value
in rest of the groups. In supervised learning setups, fully connected networks
(a–h) were evaluated on the FashionMNIST60 dataset, and convolutional neural
networks35 (i and j) were evaluated on the CIFAR­10 (ref. 36) dataset. In the
reinforcement learning setup (k), fully connected networks were evaluated
on three classic control problems. If the learning rate was not presented, each
point (a setup of an experiment) in the plot corresponds to the best learning rate
optimized independently for each rule under that setup. a, Difference in training
setup between computers that can average weight modifications for individual

examples to get a ‘statistically good’ value and biological systems that must apply
one modification before computing another. b, Mean of the test errors during
training as a function of batch size. c, Minimum of test error during training as a
function of learning rate. d, Test error during continual learning of two tasks.
e, Mean of test error of both tasks during training as a function of learning rate.
f, Test error during training when learning with concept drifting.
g, Mean of test error during training with concept drifting as a function of
learning rate. h, Minimum of test error during training with different amounts of
training examples (data points per class). i, Minimum of test error during training
of a convolutional neural network trained with prospective configuration and
backpropagation on the CIFAR­10 (ref. 36) dataset. j, Structure detail of the
convolutional neural network used in i. k, Sum of rewards per episode during
training on three classic reinforcement learning tasks (insets). An episode is a
period from initialization of environment to reaching a terminate state. Each
experiment in a–h was repeated with n = 10 random seeds. Each experiment in
i–k was repeated with n = 3 random seeds because these experiments are more
expensive. Error bars and bands represent the 68% confidence interval.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

biological settings. Additionally, final performance can be quantified
by the minimum of the test error, which is shown in Fig. 4c, when trained
with a batch size equal to 1. Here, prospective configuration also dem­
onstrates a notable advantage over backpropagation.

Second, biological organisms need to sequentially learn multiple
tasks, while ANNs show catastrophic forgetting. When trained on a new
task, performance on previously learned tasks is largely destroyed16,34.
The data in Fig. 4d show performance when trained on two tasks alter­
nately (task 1 is classifying five randomly selected classes in the Fash­
ionMNIST dataset, and task 2 is classifying the remaining five classes).
Prospective configuration outperforms backpropagation both in terms
of avoiding forgetting previous tasks and relearning current tasks. The
results are summarized in Fig. 4e.

Third, biological systems often need to rapidly adapt to changing
environments. A common way to simulate this is ‘concept drifting’31,
where a part of the mapping between the output neurons to the seman­
tic meaning is shuffled regularly, each time a certain number of training
iterations has passed (Fig. 4f). Test error during training with concept
drifting is presented in Fig. 4f. Before epoch 0, both learning rules are
initialized with the same pretrained model (trained with backpropa­
gation); thus, epoch 0 is the first time the model experiences concept
drift. The results are summarized in Fig. 4g and show that, for this task,
there is a particularly large difference in mean error (for optimal learn­
ing rates). This large advantage of prospective configuration is related
to it being able to optimally detect which weights to modify (Supple­
mentary Fig. 6) and to preserve existing knowledge while adapting to
changes (Fig. 1). This ability to maintain important information while
updating other information is critical for survival in natural environ­
ments that are bound to change, and prospective configuration has a
very substantial advantage in this respect.

Furthermore, biological learning is also characterized by limited
data availability. Prospective configuration outperforms backpropaga­
tion when the model is trained with fewer examples (Fig. 4h).

To demonstrate that the advantage of prospective configura­
tion also scales up to larger networks and problems, we evaluated
convolutional neural networks35 on CIFAR­10 (ref. 36) trained with
both learning rules (Fig. 4i), where prospective configuration showed
notable advantages over backpropagation. The detailed structure of
the convolutional networks is provided in Fig. 4j.

Another key challenge for biological systems is to decide which
actions to take. Reinforcement learning theories (for example, Q learn­
ing) propose that it is solved by learning the expected reward resulting
from different actions in different situations37. Such prediction of
rewards can be made by neural networks4, which can be trained with
prospective configuration or backpropagation. The sum of rewards per
episode during training on three classic reinforcement learning tasks
is reported in Fig. 4k, where prospective configuration demonstrates
a notable advantage over backpropagation. This large advantage may
arise because reinforcement learning is particularly sensitive to erratic
changes in network weights (as the target output depends on reward
predicted by the network itself for a new state; Methods).

Based on the superior learning performance of prospective con­
figuration, we may expect that this learning mechanism has been
favored by evolution; thus, in the next sections, we investigate if it can
account for neural activity and behavior during learning better than
backpropagation.

Evidence for prospective configuration: inferring the latent
state during learning
Prospective configuration is related to theories proposing that before
learning, the brain first infers a latent state of the environment from
feedback38–40. Here, we propose that this inference can be achieved in
neural circuits through prospective configuration, where, following
feedback, neurons in ‘hidden layers’ converge to a prospective pat­
tern of activity that encodes this latent state. We demonstrate that
data from various previous studies, which involved the inference of a

Training session

Starting point Target point

Perturbation (+)

Prospective configuration

|C
ha

ng
e

of
 a

da
pt

at
io

n|

Ba
ck

pr
op

ag
at

io
n

Pr
os

pe
ct

iv
e

co
nf

ig
ur

at
io

n

B+

0

0.5

1.0

1.5

R+ B– R– B+ R+ B– R– B+ R+ B– R– Prediction

Prediction + target provided

Target provided

Relaxation

No inferred memory

Weight modification

Weight modification

Neural activity Inferred memory Learn based on evoked memory

No learning

Backpropagation Data

Perception
B [B]

R [R]

+

–

B [B]

R [R]

+

–

B [B]

R [R]

+

–

Belief Prediction

Washout session Testing session

R

+

10

R

+[B]

R

+

R

+

RR

R+

R+

+

[B]

R–

B–

R+

B+

Change of adaptation

Measure adaptationMeasure adaptation

∆

a c d e

b

f

B+

R–

Fig. 5 | Prospective configuration explains contextual inference in human
sensorimotor learning. a, Structure of an experimental trial where participants
were asked to move a stick from the starting point to the target point while
experiencing perturbations. b, The minimal network for the task, including six
connections encoding the associations from the backgrounds (B and R) to the
belief of contexts ([B] and [R]) and from the belief of contexts to the prediction of
perturbations (+ and –). c–e, Sequence of sessions the participants experienced,
including training (c), washout (d) and testing (e). Darker gray boxes show the

expected network after the session, where thickness represents the strength of
connections. In the testing session, the darker box explains how the two learning
rules learn differently on the R+ trial, leading to the differences in f. f, Predictions
of the two learning rules compared to behavioral data measured from human
participants, where prospective configuration reproduces the key patterns of
data, but backpropagation does not. Each experiment was repeated with n = 24
random seeds, as there were 24 participants in the behavioral experiment.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

latent state, can be explained by prospective configuration. These data
were previously explained by complex and abstract mechanisms, such
as Bayesian models38,39, whereas here, we mechanistically show with
prospective configuration how such inference can be performed by
minimal networks encoding only the essential elements of the tasks.

The dynamical inference of a latent state from feedback has been
recently proposed to take place during sensorimotor learning39. In this
experiment, participants received different motor perturbations in
different contexts and learned to compensate for these perturbations.
Behavioral data suggest that, after receiving feedback, participants first
used the feedback to infer context and then adapted the force for the
inferred context. We demonstrate that prospective configuration is able
to reproduce these behavioral data, whereas backpropagation cannot.

Specifically, in the task (Fig. 5a), participants were asked to move
a stick from a starting point to a target point while experiencing per­
turbations. The participants experienced a sequence of blocks of trials
(Fig. 5c–e), including training, washout and testing. During the training
session, different directions of perturbations, positive (+) or negative
(–), were applied in different contexts, blue (B) or red (R) backgrounds,
respectively. We denote these trials as B+ and R–. These trials may be
associated with latent states, which we denote [B] and [R]; for example,
the latent state [B] may be associated with both background B and per­
turbation +. The next stage of the task was designed to investigate if the
latent state [B] can be activated by perturbation + even if no background
B is shown. Thus, participants experienced different trials including
R+ (that is, perturbation + but no background B). Specifically, after a
washout session (during which no perturbation was provided), in the
testing session, participants experienced one of the four possible test
trials: B+, R+, B– and R–. To evaluate learning on the test trials, motor
adaptation (that is, the difference between the final and target stick
positions) was measured before and after the test trial in two trials with
the blue background (Fig. 5e). Change in the adaptation between these
two trials is a reflection of learning about blue context that occurred
at the test trial. If participants only associated feedback with the back­
ground color (B), then the change in adaptation would only occur with
test trials B+ and B–. However, experimental data (Fig. 5f) show that
there was also substantial adaptation change with R+ trials (which was
even bigger than with B– trials).

To model learning in this task, we considered a neural network
(Fig. 5b) where input nodes encode the background color, and outputs
encode movement compensations in the two directions. Importantly,
this network also includes hidden neurons encoding belief of being
in the contexts associated with the two backgrounds ([B] and [R]).
Trained with the exact procedure of the experiment39 from randomly
initialized weights, prospective configuration with this minimal net­
work can reproduce the behavioral data, whereas backpropagation
cannot (Fig. 5f).

Prospective configuration can produce change in adaptation
with the R+ test trial because after + feedback, it is able to also activate
context [B] that was associated with this feedback during training and
then learn compensation for this latent state. To shed light on how this
inference takes place in the model, schematics in Fig. 5c,d show evolu­
tion of the weights of the network over sessions (thickness represents
the strength of connections). The schematic in Fig. 5e shows the differ­
ence between the two learning rules after exposure to R+; although B is
not perceived, prospective configuration infers a moderate excitation
of the belief of blue context [B] because the positive connection from
[B] to + was built during the training session. The activity of [B] enables
the learning of weights from [B] to + and –, while backpropagation does
not modify any weights originating from [B].

For simplicity of explanation, we presented simulations with mini­
mal networks; however, Supplementary Fig. 8 shows that networks
with a general fully connected structure and more hidden neurons can
replicate the above data when using prospective configuration but not
when using backpropagation.

Studies of animal conditioning have also observed that feedback
in learning tasks involving multiple stimuli may trigger learning about
non­presented stimuli41,42. One example is provided in Supplementary
Fig. 9, where we show that it can be explained by prospective configura­
tion but not by backpropagation.

Evidence for prospective configuration: discovering task
structure during learning
Prospective configuration is also able to discover the underlying task
structure in reinforcement learning. Specifically, we consider a task
where reward probabilities of different options were not independent38.
In this study, humans were choosing between two options where the
reward probabilities were constrained such that one option had a higher
reward probability than the other (Fig. 6a). Occasionally the reward
probabilities were swapped, so if one probability was increased, the
other was decreased by the same amount. Remarkably, the recorded
functional magnetic resonance imaging (fMRI) data suggested that
participants learned that the values of the two options were negatively
correlated and on each trial updated the value estimates of both options
in opposite ways. This conclusion was drawn from analysis of the signal
from the medial prefrontal cortex (mPFC), which encoded the expected
value of reward. The data presented in Fig. 6c compare this signal after
making a choice on two consecutive trials: a trial in which the reward
was not received (‘punish trial’) and the next trial. If the participant
selected the same option on both trials (‘stay’), the signal decreased,
indicating that the reward expected by the participant was reduced.
Remarkably, if the participant selected the other option on the next trial
(‘switch’), the signal increased, suggesting that negative feedback for

Value of

Value of
Punishing trialAc

tiv
ity

 o
f o

ut
pu

t n
eu

ro
n

of
 s

el
ec

te
d

ch
oi

ce

%
BO

LD
 signal in m

PFC

Next trial Punishing trial Next trial Punishing trial

Prospective configuration Backpropagation fMRI data

Next trial

Rewarded choice

%40 %70

Pr (reward)Choicesa b c

Switch

Tr
ia

l

Stay
+1

The task

+1–1

Switch
Stay

Next choice0.1

0

–0.1

–0.2

0.1

0

–0.1

–0.2

$

$ $

Fig. 6 | Prospective configuration can discover the underlying task structure
during reinforcement learning. a, Reinforcement learning task. Human
participants were required to choose between two options, leading to either
reward (gaining coins) or punishment (losing coins) with different probabilities.
The probability of reward was occasionally reversed between the two options.
b, The minimal network encoding the essential elements of the task. c, Activity of
the output neuron corresponding to the selected option from networks trained

with prospective configuration and backpropagation compared with fMRI data
measured in human participants (that is, peak blood oxygenation level­dependent
(%BOLD) signal in the mPFC). Prospective configuration reproduces the key
finding that the expected value (encoded in %BOLD signal in the mPFC) increases if
the next choice after a punishing trial is to switch to the other option. The number
of trials is not mentioned in the original paper, so we simulated for n = 128 trials for
both learning rules. Error bars represent the 68% confidence interval.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

one option increased the value estimate for the other. Such learning is
not predicted by standard reinforcement learning models38.

This task can be conceptualized as having a latent state encoding
which option is superior, and this latent state determines the reward prob­
abilities for both options. Consequently, we consider a neural network
reflecting this structure (Fig. 6b) that includes an input neuron encoding
being in the task (equal to 1 in simulations), a hidden neuron encoding the
latent state and two output neurons encoding the reward probabilities
for the two options. Trained with the exact procedure of the experiment38
from randomly initialized weights, prospective configuration with this
minimal network can reproduce the data, whereas backpropagation
cannot (Fig. 6c). In Supplementary Fig. 10, we show that prospective
configuration reproduces these data because it can infer the rewarded
choice by updating the activity of the hidden neuron based on feedback.

Taken together, the presented simulations illustrate that prospec­
tive configuration is a common principle that can explain a range of
surprising learning effects in diverse tasks.

Discussion
Our paper identifies the principle of prospective configuration, accord­
ing to which learning relies on neurons first optimizing their pattern of
activity to match the correct output and then reinforcing these prospec­
tive activities through synaptic plasticity. Although it was known that
in energy­based networks the activity of neurons shifts before weight
update, it has been previously thought that this shift is a necessary cost
of error propagation in biological networks, and several methods have
been proposed to suppress it11,12,14,20,21 to approximate backpropagation
more closely. By contrast, we demonstrate that this reconfiguration
of neural activity is the key to achieving learning performance supe­
rior to that of backpropagation and to explaining experimental data
from diverse learning tasks. Prospective configuration further offers a
range of experimental predictions distinct from those of backpropaga­
tion (Supplementary Figs. 11 and 12). Together, we have demonstrated
that prospective configuration enables more efficient learning than
backpropagation by reducing interference, demonstrates superior
performance in situations faced by biological organisms, requires
only local computation and plasticity and matches experimental data
across a wide range of tasks.

Our theory addresses a long­standing question of how the brain
solves the plasticity­stability dilemma, for example, how it is possible
that, despite adjustment of representation in the primary visual cortex
during learning43, we can still understand the meaning of visual stimuli
we learned over our lifetime. According to prospective configuration,
when some weights are modified, compensatory changes are made to
other weights to ensure the stability of correctly predicted outputs.
Thus, prospective configuration reduces interference between dif­
ferent weight modifications while learning a single association. Previ­
ous computational models have proposed mechanisms that reduce
interference between new and previously acquired information while
learning multiple associations34,44. It is highly likely that such mecha­
nisms and prospective configuration operate in the brain in parallel to
minimize both types of interference.

Prospective configuration is related to inference and learning pro­
cedures in statistical modeling. If the ‘energy’ in energy­based schemes
is variational free energy, prospective configuration can be seen as
an implementation of variational Bayes that subsumes inference and
learning45. For example, dynamic expectation maximization46,47 can be
regarded as a generalization of predictive coding networks in which the
D­step optimizes representations of latent states (analogously to relaxa­
tion until convergence during inference) while the E­step optimizes
model parameters (analogously to weight modification during learning).

Other recent work48,49 also noticed that the natural form of
energy­based networks (‘strong control’ in their words) performs
different learning than backpropagation. Their analysis concentrates
on an architecture of deep feedback control, and they demonstrated

that a particular form of their model is equivalent to predictive coding
networks49. The unique contribution of our paper is to show the ben­
efits of such strong control and explain why they arise. The principle of
prospective configuration is also present in other recent models. For
example, Gilra and Gerstner50 developed a spiking model in which feed­
back about the error on the output directly affects the activity of hidden
neurons before plasticity takes place. Haider et al.51 developed a faster
inference algorithm for energy­based models that computes a value
to which the activity is likely to converge, termed latent equilibrium51.
Iteratively setting each neuron’s output based on its latent equilibrium
leads to much faster inference51 and enables efficient computation of
the prospective configuration.

Predictive coding networks require symmetric forward and back­
ward weights between layers of neurons, so a question arises concern­
ing how such symmetry may develop in the brain. If predictive coding
networks are initialized with symmetric weights (as in our simulations),
the symmetry will persist because the changes in weight between
neurons A and B are the same as those for feedback weight (between
neurons B and A). Even if the weights are not initialized symmetrically,
the symmetry may develop if synaptic decay is included in the model52
because then the initial asymmetric values decay away, and weight
values become more influenced by recent changes that are symmetric.
Nevertheless, weight symmetry is not generally required for effective
credit assignment53,54.

Here, we assumed for simplicity that the convergence of neural
activity to an equilibrium happens rapidly after the stimuli are provided
so that the synaptic weight modification after convergence may take
place while the stimuli are still present. Nevertheless, predictive coding
networks can still work even if weight modification takes place while the
neural activity is converging. Specifically, Song et al. demonstrated that
if neural activities are only updated for the first few steps, the update of
the weights is equivalent to that in backpropagation14. As a reminder,
we demonstrate here that if the neural activities are updated to equi­
librium, the update of the weights follows the principle of prospective
configuration and possesses the desirable demonstrated properties.
Thus, a learning rule where neural activities and weights are updated
in parallel will experience a weight update that is equivalent to back­
propagation at the start and then move to prospective configuration as
the system converges to equilibrium55. Furthermore, predictive coding
networks have been extended to describe recurrent structures56–58,
and it has been shown that such networks can learn to predict dynami­
cally changing stimuli even if weights are modified before the activity
converged for a given ‘frame’ of the stimulus57.

The advantages of prospective configuration suggest that it may
be profitably applied in machine learning to improve the efficiency and
performance of deep neural networks. An obstacle for this is that the
relaxation phase is computationally expensive. However, recent work
demonstrated that by modifying weights after each step of relaxation,
the model becomes comparably fast to backpropagation and easier
for parallelization55.

Most intriguingly, it has been demonstrated that the speed of
energy­based networks can be greatly increased by implementing the
relaxation on analog hardware59, potentially resulting in energy­based
networks being faster than backpropagation. Therefore, we anticipate
that our discoveries may change the blueprint of next­generation
machine learning hardware, switching from the current digital tensor
base to analog hardware and being closer to the brain and potentially
far more efficient.

Online content
Any methods, additional references, Nature Portfolio reporting sum­
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con­
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41593­023­01514­1.

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-023-01514-1

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

References
1. Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G.

Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346
(2020).

2. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning Internal
Representations by Error Propagation (Univ. California, San Diego,
Institute for Cognitive Science, 1985).

3. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification
with deep convolutional neural networks. In Advances in Neural
Information Processing Systems (NeurIPS) (eds Bartlett, P. et al.)
1097–1105 (Curran Associates, 2012).

4. Mnih, V. et al. Human-level control through deep reinforcement
learning. Nature 518, 529–533 (2015).

5. Silver, D. et al. Mastering the game of go with deep neural
networks and tree search. Nature 529, 484–489 (2016).

6. Richards, B. A. et al. A deep learning framework for neuroscience.
Nat. Neurosci. 22, 1761–1770 (2019).

7. Singer, Y. et al. Sensory cortex is optimized for prediction of future
input. eLife 7, e31557 (2018).

8. Yamins, D. L. K. et al. Performance-optimized hierarchical models
predict neural responses in higher visual cortex. Proc. Natl Acad.
Sci. USA 111, 8619–8624 (2014).

9. Sacramento, J., Costa, R. P., Bengio, Y. and Senn, W. Dendritic
cortical microcircuits approximate the backpropagation
algorithm. In Advances in Neural Information Processing Systems
(NeurIPS) (eds Bengio, S. et al.) 8721–8732 (Curran Associates,
2018).

10. Guerguiev, J., Lillicrap, T. P. & Richards, B. A. Towards deep
learning with segregated dendrites. eLife 6, e22901 (2017).

11. Scellier, B. & Bengio, Y. Equilibrium propagation: bridging the
gap between energy-based models and backpropagation. Front.
Comput. Neurosci. 11, 24 (2017).

12. Whittington, J. C. R. & Bogacz, R. An approximation of the error
backpropagation algorithm in a predictive coding network with
local hebbian synaptic plasticity. Neural Comput. 29, 1229–1262
(2017).

13. Whittington, J. C. R. & Bogacz, R. Theories of error
back-propagation in the brain. Trends Cogn. Sci. 23, 235–250
(2019).

14. Song, Y., Lukasiewicz, T., Xu, Z. & Bogacz, R. Can the brain do
backpropagation? Exact implementation of backpropagation in
predictive coding networks. In Advances in Neural Information
Processing Systems (NeurIPS) (eds Larochell, H. et al.) 22566–
22579 (Curran Associates, 2020).

15. Tsividis, P. A., Pouncy, T., Xu, J. L., Tenenbaum, J. B. & Gershman,
S. J. Human learning in Atari. In 2017 AAAI Spring Symposium
Series 643–646 (Association for the Advancement of Artificial
Intelligence, 2017).

16. McCloskey, M. & Cohen, N. J. Catastrophic interference in
connectionist networks: the sequential learning problem.
Psychol. Learn. Motiv. 24, 109–165 (1989).

17. Hopfield, J. J. Neural networks and physical systems with
emergent collective computational abilities. Proc. Natl Acad. Sci.
USA 79, 2554–2558 (1982).

18. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field
effects. Nat. Neurosci. 2, 79–87 (1999).

19. Friston, K. The free-energy principle: a unified brain theory?
Nat. Rev. Neurosci. 11, 127–138 (2010).

20. Millidge, B., Tschantz, A. & Buckley, C. L. Predictive coding
approximates backprop along arbitrary computation graphs.
Neural Comput. 34, 1329–1368 (2022).

21. Bengio, Y. & Fischer, A. Early inference in energy-based models
approximates back-propagation. Preprint at https://doi.org/
10.48550/arXiv.1510.02777 (2015).

22. O’Reilly, R. C. & Munakata, Y. Computational Explorations in
Cognitive Neuroscience: Understanding the Mind by Simulating
the Brain (MIT Press Cambridge, 2000).

23. Quilodran, R., Rothe, M. & Procyk, E. Behavioral shifts and action
valuation in the anterior cingulate cortex. Neuron 57, 314–325 (2008).

24. Wallis, J. D. & Kennerley, S. W. Heterogeneous reward signals in
prefrontal cortex. Curr. Opin. Neurobiol. 20, 191–198 (2010).

25. Friston, K. A theory of cortical responses. Philos. Trans. R. Soc.
Lond. B Biol. Sci. 360, 815–836 (2005).

26. Bengio, Y. How auto-encoders could provide credit assignment
in deep networks via target propagation. Preprint at https://doi.
org/10.48550/arXiv.1407.7906 (2014).

27. Meulemans, A., Carzaniga, F., Suykens, J., Sacramento, J. &
Grewe, B. F. A theoretical framework for target propagation. In
Advances in Neural Information Processing Systems (NeurIPS) (eds
Larochelle, H. et al.) 20024–20036 (Curran Associates, 2020).

28. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical
processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47
(1991).

29. Fontenla-Romero, Ó., Guijarro-Berdiñas, B., Martinez-Rego, D.,
Pérez-Sánchez, B. & Peteiro-Barral, D. Online machine learning. In
Efficiency and Scalability Methods for Computational Intellect (eds
Igelnik, B. & Zurada, J. M.) 27–54 (IGI Global, 2013).

30. Hassabis, D., Kumaran, D., Summerfield, C. & Botvinick, M.
Neuroscience-inspired artificial intelligence. Neuron 95,
245–258 (2017).

31. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M. & Bouchachia, A. A
survey on concept drift adaptation. ACM Comput. Surv. 46, 1–37
(2014).

32. Puri, R., Kirby, R., Yakovenko, N. & Catanzaro, B. Large scale
language modeling: converging on 40 GB of text in four hours. In
2018 30th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD) 290–297 (IEEE, 2018).

33. Ioffe, S. & Szegedy, C. Batch normalization: accelerating
deep network training by reducing internal covariate shift. In
Proceedings of the International Conference on Machine Learning
(ICML) (eds Bach, F. & Blei, D.) 448–456 (PMLR, 2015).

34. Zenke, F., Poole, B. & Ganguli, S. Continual learning through synaptic
intelligence. In Proc. 34th International Conference on Machine
Learning (eds Precup, D. & Teh, Y. W.) 3987–3995 (PMLR, 2017).

35. O’Shea, K. & Nash, R. An introduction to convolutional neural
networks. Preprint at https://doi.org/10.48550/arXiv.1511.08458
(2015).

36. Krizhevsky, A. & Hinton, G. Learning Multiple Layers of Features
from Tiny Images. Master’s thesis, Univ. Toronto (2009).

37. Sutton, R. S. & Barto, A. G. Introduction to Reinforcement Learning,
Vol. 2 (MIT Press Cambridge, 1998).

38. Hampton, A. N., Bossaerts, P. & O’Doherty, J. P. The role of the
ventromedial prefrontal cortex in abstract state-based inference
during decision making in humans. J. Neurosci. 26, 8360–8367
(2006).

39. Heald, J. B., Lengyel, M. & Wolpert, D. M. Contextual inference
underlies the learning of sensorimotor repertoires. Nature 600,
489–493 (2021).

40. Larsen, T., Leslie, D. S., Collins, E. J. & Bogacz, R. Posterior
weighted reinforcement learning with state uncertainty. Neural
Comput. 22, 1149–1179 (2010).

41. Kaufman, M. A. & Bolles, R. C. A nonassociative aspect of
overshadowing. Bull. Psychonomic Soc. 18, 318–320 (1981).

42. Matzel, L. D., Schachtman, T. R. & Miller, R. R. Recovery of
an overshadowed association achieved by extinction of the
overshadowing stimulus. Learn. Motiv. 16, 398–412 (1985).

43. Poort, J. et al. Learning enhances sensory and multiple
non-sensory representations in primary visual cortex. Neuron 86,
1478–1490 (2015).

http://www.nature.com/natureneuroscience
https://doi.org/10.48550/arXiv.1510.02777
https://doi.org/10.48550/arXiv.1510.02777
https://doi.org/10.48550/arXiv.1407.7906
https://doi.org/10.48550/arXiv.1407.7906
https://doi.org/10.48550/arXiv.1511.08458

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

44. McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there
are complementary learning systems in the hippocampus
and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychol. Rev. 102,
419–457 (1995).

45. Dauwels, J. On variational message passing on factor graphs.
In 2007 IEEE International Symposium on Information Theory,
2546–2550 (IEEE, 2007).

46. Anil Meera, A. & Wisse, M. Dynamic expectation maximization
algorithm for estimation of linear systems with colored noise.
Entropy 23, 1306 (2021).

47. Friston, K. Hierarchical models in the brain. PLoS Comput. Biol. 4,
e1000211 (2008).

48. Meulemans, A., Farinha, M. T., Cervera, M. R., Sacramento, J. &
Grewe, B. F. Minimizing control for credit assignment with strong
feedback. In Proc. of Machine Learning Research (eds Chaudhuri,
K. et al.) 15458–15483 (PMLR, 2022).

49. Meulemans, A., Zucchet, N., Kobayashi, S., von Oswald, J.
& Sacramento, J. The least-control principle for learning at
equilibrium. Adv. Neural Inf. Process. Syst. 35, 33603–33617
(2022).

50. Gilra, A. & Gerstner, W. Predicting non-linear dynamics by stable
local learning in a recurrent spiking neural network. eLife 6,
e28295 (2017).

51. Haider, P. et al. Latent equilibrium: a unified learning theory for
arbitrarily fast computation with arbitrarily slow neurons. In
Advances in Neural Information Processing Systems (NeurIPS)
(eds Ranzato, M. et al.) 17839–17851 (2021).

52. Akrout, M., Wilson, C., Humphreys, P., Lillicrap, T. & Tweed, D. B.
Deep learning without weight transport. In Advances in Neural
Information Processing Systems (NeurIPS) (eds Wallach, H. et al.)
(Curran Associates, 2019).

53. Lillicrap, T. P., Cownden, D., Tweed, D. B. & Akerman, C. J. Random
synaptic feedback weights support error backpropagation for
deep learning. Nat. Commun. 7, 13276 (2016).

54. Millidge, B., Tschantz, A. & Buckley, C. L. Relaxing the
constraints on predictive coding models. Preprint at
https://doi.org/10.48550/arXiv.2010.01047 (2020).

55. Salvatori, T. et al. Incremental predictive coding: a parallel
and fully automatic learning algorithm. Preprint at
https://doi.org/10.48550/arXiv.2212.00720 (2022).

56. Friston, K. J., Trujillo-Barreto, N. & Daunizeau, J. Dem: a variational
treatment of dynamic systems. NeuroImage 41, 849–885 (2008).

57. Millidge, B., Tang, M., Osanlouy, M. & Bogacz, R. Predictive
coding networks for temporal prediction. Preprint at bioRxiv
https://doi.org/10.1101/2023.05.15.540906 (2023).

58. Salvatori, T. et al. Learning on arbitrary graph topologies via
predictive coding. In Advances in Neural Information Processing
Systems (NeurIPS) (eds Koyejo, S. et al.) 38232–38244 (Curran
Associates, 2022).

59. Foroushani, A. N., Assaf, H., Noshahr, F. H., Savaria, Y. & Sawan,
M. Analog circuits to accelerate the relaxation process in the
equilibrium propagation algorithm. In 2020 IEEE International
Symposium on Circuits and Systems (ISCAS) 1–5 (IEEE, 2020).

60. Xiao, H., Rasul, K. & Vollgraf, R. Fashion MNIST: a novel image
dataset for benchmarking machine learning algorithms. Preprint
at https://doi.org/10.48550/arXiv.1708.07747 (2017).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/natureneuroscience
https://doi.org/10.48550/arXiv.2010.01047
https://doi.org/10.48550/arXiv.2212.00720
https://doi.org/10.1101/2023.05.15.540906
https://doi.org/10.48550/arXiv.1708.07747
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

Methods
This section provides the necessary details for replication of the results
described in the main text.

Models
Throughout this work, we compare the established theory of backprop­
agation to the proposed new principle of prospective configuration.
As explained in the main text, backpropagation is used to train ANNs,
where the activity of a neuron is fixed to a value based on its input,
whereas prospective configuration occurs in energy­based networks,
where the activity of a neuron is not fixed.

Because in ANNs the activity of neurons x is determined by their
input, the output of the network can be obtained by propagating the
inputs ‘forward’ through the computational graph. The output can
then be compared to a target pattern to get a measure of difference
known as a loss. Because the value of a node (activity of a neuron) in
the computational graph is explicitly computed as a function of its
input, the computational graph is usually differentiable. Thus, training
ANNs with backpropagation modifies the weights w to take a step
toward the negative gradient of loss ℒ,

Δwww = −α ∂ℒ
∂www

, (1)

during which the activities of neurons x are fixed, and α is the learning
rate. The weights w requiring modification might be many steps away
from the output on the computational graph, where the loss ℒ is com­
puted; thus, ∂ℒ

∂www
 is often obtained by applying the chain rule of comput­

ing a derivative through intermediate variables (activity of output and
hidden neurons). For example, consider a network with four layers,
and let xl denote the activity of neurons in layer l and wl denote the
weights of connections between layers l and l + 1. The change in weights
originating from the first layer is then computed: ∂ℒ

∂www1 =
∂ℒ
∂xxx4

⋅ ∂xxx4

∂xxx3
… ∂xxx2

∂www1 .

This enables the loss to be backpropagated through the graph to pro­
vide a direction of update for all weights.

In contrast to ANNs, in energy­based networks, the activity of
neurons x is not fixed to the input from a previous layer. Instead, an
energy function E is defined as a function of the neural activity x and
weights w. For networks organized in layers (considered in this paper),
the energy can be decomposed into a sum of local energy terms El,

E = ∑
l

El (xxxl,wwwl−1,xxxl−1) . (2)

Here, El is called local energy because it is a function of xl, xl − 1 and wl − 1,
which are neighbors and connected to each other. This ensures that the
optimization of energy E can be implemented by local circuits because
the derivative of E with respect to any neural activity (or weights) results
in an equation containing only the local activity (or weights) and the
activity of adjacent neurons. Predictions with energy­based networks
are computed by clamping the input neurons to an input pattern and
then modifying the activity of all other neurons to decrease the energy:

Δxxx = −γ∂E
∂xxx

, (3)

where γ is the integration step of the neural dynamics. Because the terms
in E can be divided into local energy terms, this results in an equation
that can be implemented with local circuits. This process of modifying
neural activity to decrease the energy is called relaxation, and we refer
to the equation describing relaxation as neural dynamics because it
describes the dynamics of the neural activity in energy­based networks.
After convergence of relaxation, the activities of the output neurons
are taken as the prediction made by the energy­based network. Different
energy­based networks are trained in slightly different ways. For predic­
tive coding networks12,18, training involves clamping the input and out­
put neurons to input and target patterns, respectively. Then, relaxation

is run until convergence (xxx =
∗
xxx), after which the weights are updated

using the activity at convergence to further decrease the energy:

Δwww = −α ∂E
∂www

||
xxx=

∗
xxx
. (4)

This will also result in an equation that can be implemented with local
plasticity because it is just a gradient descent on the local energy. We
refer to such an equation as weight dynamics, because it describes the
dynamics of the weights in energy­based networks.

Backpropagation and prospective configuration are not restricted
to specific models. Depending on the structure of the network and
the choice of the energy function, one can define different models
that implement the principle of backpropagation or prospective con­
figuration. In the main text and most of the Supplementary Notes, we
investigate the most standard layered network. In this case, both ANNs
and energy­based networks include L layers of weights w1, w2, …, wL and
L + 1 layers of neurons x1, x2, …, xL + 1, where x1 and xL + 1 are the input and
output neurons, respectively. We consider the relationship between
activities in adjacent layers for ANNs given by

xxxl = wwwl−1f (xxxl−1) , (5)

and the energy function for EBNs described by

El = 1
2 (xxx

l −wwwl−1f (xxxl−1))
2
. (6)

This defines the ANNs to be the standard multilayer perceptrons (MLPs)
and the energy­based networks to be the predictive coding network. In
Eq. (6) and below, the square operator (v)2 denotes the inner product
of vector v with itself. The comparison between backpropagation and
prospective configuration in the main text is thus between the above
MLPs and predictive coding networks; this choice is justified as (1) they
are the most standard models61 and (2) it is established that the two are
closely related12,14 (that is, they make the same prediction with the same
weights and input pattern), thus enabling a fair comparison. Neverthe­
less, we show that the theory (Supplementary Fig. 5) and empirical
comparison (Supplementary Figs. 6 and 7) between backpropagation
and prospective configuration generalize to other choices of network
structures and energy functions, that is, other energy­based networks
and ANNs, such as GeneRec62 and Almeida–Pineda63–65.

Putting Eqs. (5) and (6) into the general framework, we can obtain
the equations that describe MLPs and predictive coding networks,
respectively. Assume that the input and target patterns are sin and starget,
respectively. Prediction with MLPs is

xxx1 = sssin andxxxl = wwwl−1f (xxxl−1) for l > 1, (7)

where xL + 1 is the prediction. Training MLPs with backpropagation is
described by

Δwwwl = −α ∂ℒ
∂wwwl

= −α ∂ℒ
∂xxxL+1

⋅ ∂xxx
L+1

∂xxxL
… ∂xxxl+1

∂wwwl
whereℒ = 1

2 (sss
target − xxxL+1)

2
,
(8)

which backpropagates the error ∂ℒ
∂xxxl

 layer by layer from output
neurons.

The neural dynamics of predictive coding networks can be
obtained using Eq. (2):

Δxxxl = −γ ∂E
∂xxxl

= −γ∂(E
l + El+1)
∂xxxl

. (9)

Similarly, the weight dynamics of predictive coding networks can be
found,

Δwwwl = −α ∂E
∂wwwl

= −α∂El+1

∂wwwl
. (10)

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

To reveal the neural implementation of predictive coding net­
works, we define the prediction errors to be

εεεl = xxxl −wwwl−1f (xxxl−1) . (11)

The neural and weight dynamics of predictive coding networks can be
expressed (by evaluating derivatives in Eqs. (9) and (10)) as

Δxxxl = −γεεεl + f′ (xxxl) ∘ (wwwl)
T
εεεl+1 and (12)

Δwwwl = αεεεl+1(f (xxxl))
T
, (13)

where the symbol ∘ denotes element­wise multiplication. Assuming that
εl and xl are encoded in the activity of error and value neurons, respectively,
Eqs. (11) and (12) can be realized with the neural implementation in Fig. 2c.
In particular, error ε and value x neurons are represented by red and blue
nodes, respectively; excitatory + and inhibitory − connections are repre­
sented by connections with solid and hollow nodes, respectively. Thus,
Eqs. (11) and (12) are implemented with red and blue connections, respec­
tively. It should also be noted that the weight dynamics are also realized
locally. The weight change described by Eq. (13) corresponds to simple
Hebbian plasticity66 in the neural implementation of Fig. 2c; that is, the
change in a weight is proportional to the product of activity of presynaptic
and postsynaptic neurons. Thus, a predictive coding network, as an
energy­based network, can be implemented with local circuits only due
to the local nature of energy terms (as argued earlier in this section). Note
that when the network is expressive enough such that learning can reduce
the energy E to 0, the loss ℒ must also become 0 as ℒ is one of the terms in
energy E, that is ℒ = EL+1, and, in this case, the predictive coding network
is guaranteed to minimize the loss, just like backpropagation67.

The full algorithm of the predictive coding network is summarized
in Algorithm 1. In all simulations in this paper (unless stated otherwise),
the integration step of the neural dynamics (that is, relaxation) is set to
γ = 0.1, and the relaxation is performed for 128 steps (𝒯𝒯 in Algorithm 1).
During relaxation, if the overall energy is not decreased from the last
step, the integration step is reduced by 50%; if the integration step is
reduced two times (that is, reaching 0.025), relaxation is terminated
early. By monitoring the number of relaxation steps performed, we
notice that in most of the tasks we performed, relaxation is terminated
early at around 60 iterations.

Algorithm 1. Learn with a predictive coding network12,18

In the Supplementary Information, we also investigate other
choices of network structures and energy functions, resulting in other
ANNs and energy­based networks. Overall, the energy­based networks
investigated include predictive coding networks12,18, target predictive
coding networks and GeneRec62, and the ANNs investigated include
backpropagation and Almeida–Pineda63–65. Details of all the models
can be found in corresponding previous work and are also given in the
Supplementary Notes, Section 2.1.

Interference and measuring interference (that is,
target alignment)
In Fig. 3a, because it simulates the example in Fig. 1, the network has
one input neuron, one hidden neuron and two output neurons; weights
were all initialized to 1, the input pattern was [1], and the target pattern
was [0, 1]. Learning rates of both learning rules were 0.2, and the weights
were updated for 24 iterations. Fig. 3d repeated the same experiment
as in Fig. 3a but with the learning rate searched from
(0.005,0.01,0.05,0.1) , which is wide enough to cover essentially all
learning rates used to train deep neural networks in practice.

In Fig. 3e, there were 64 neurons in each layer (including input and
output layers) for each network; weights were initialized via standard
Xavier uniform initialization68. No activation function was used, that
is, linear networks were investigated. Depths of networks (L) took
values from {1, 2,… , 24, 25}, as reported on the x axis. Input and target
patterns were a pair of randomly generated patterns with a mean of 0
and standard deviation (s.d.) of 1. Learning rates of both learning rules
were 0.001. Weights were updated for one iteration, and target align­
ment was measured. The whole experiment was repeated 27 times with
each individual experiment reported as a point.

Simulations in Fig. 3f–h followed the experimental setup in
Fig. 4a–h; these are described at the end of Biologically relevant tasks.

Biologically relevant tasks
In supervised learning simulations, fully connected networks in
Fig. 4a–h were trained and tested on FashionMNIST60, and convolu­
tional neural networks35 (Fig. 4i,j) were trained and tested on CIFAR­10
(ref. 36). With FashionMNIST, models were trained to perform classifi­
cation of gray­scaled fashion item images into ten categories, such as
trousers, pullovers and dresses. FashionMNIST was chosen because it is
of moderate and appropriate difficulty for multilayer non­linear deep
neural networks so that the comparisons with energy­based networks

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

are informative. Classification of the data in CIFAR­10 is more difficult,
as it contains colored natural images belonging to categories such as
cars, birds and cats and is thus only evaluated with convolutional neural
networks. Both datasets consist of 60,000 training examples (that is,
training set) and 10,000 test examples (that is, test set).

The experiments in Fig. 4a–h followed the configurations
described below, except for the parameters investigated in specific
panels (such as batch size, size of the dataset and size of the architec­
ture), which were adjusted as stated in the descriptions of the specific
experiments. The neural network was composed of four layers and 32
hidden neurons in each hidden layer. Note that the state­of­the­art MLP
models of FashionMNIST are all quite large69. However, they are highly
overparameterized and thus are not suitable to base our comparison
on because the accuracy reaches more than 95% regardless of the learn­
ing rule due to the overparameterization. Thus, there was no space for
demonstrating any meaningful comparison in these state­of­the­art
overparameterized models. Overall, the size of the model on FashionM­
NIST demonstrated in this paper was a reasonable choice, with baseline
models reaching reasonable performance (~0.12 test error for the
standard machine learning setup) while maintaining enough room for
demonstrating performance differences for different learning rules.
The size of the input layer was 28 × 28 for FashionMNIST60 gray scaled,
and the size of the output layer was ten as the number of classes for
both datasets. The weights were initialized from a normal distribution

with a mean of 0 and s.d. of √
2

nl+nl+1
, where nl and nl + 1 are the numbers

of neurons in the layer before and after the weight, respectively. This
initialization is known as Xavier normal initialization68. The activation
function f () is sigmoid. We defined one iteration as updating the
weights for one step based on a minibatch. Each iteration contained
(1) a numerical integration procedure of relaxation of energy­based
networks, which captures its continuous process; and (2) one update
of weights at the end of the above procedure. The number of examples
in a minibatch, called the batch size, was by default 32. One epoch
comprised presenting the entire training set split over multiple mini­
batches. At the end of each epoch, the model was tested on the test set,
and the classification error was recorded as the ‘test error’ of the epoch.
The neural network was trained for 64 epochs, thus yielding 64 test
errors. The mean of the test error over epochs, that is, during training
progress, is an indicator of how fast the model learns, and the minimum
of the test errors over epochs is an indicator of how well the model can
learn, ignoring the possibility of overfitting due to training for too long.
Learning rates were optimized independently for each configuration
and each model. Each experiment was repeated ten times (unless stated
otherwise), and the error bars represent the 68% confidence interval
computed using bootstrap.

We now describe settings specific to individual experiments. In
Fig. 4b, different batch sizes were tested (as shown on the x axis). In Fig. 4c,
the batch size was set to 1. In continual learning of Fig. 4d, training
alternated between two tasks. Task 1 involved classifying five randomly
selected classes in a dataset, and task 2 involved classifying the remain­
ing five classes. The whole network was shared by the two tasks; thus,
different from the network used in other panels, the network only had
five output neurons. This better corresponds to continual learning
with multiple tasks in nature, because, for example, if humans learn to
perform two different tasks, they typically use one brain and one pair
of hands (that is, the whole network is shared), as they do not have two
different pairs of hands (that is, humans share the output layers across
tasks). Task 1 was trained for four iterations, task 2 was trained for four
iterations, and the training continued until a total of 84 iterations was
reached. After each iteration, error on the test set of each task was meas­
ured as ‘test error’. In Fig. 4e, the mean of test error of both tasks during
training of Fig. 4d at different learning rates is reported. In Fig. 4d–g
investigating concept drifting31,70,71, changes to class labels were made
every 64 epochs, and the models were trained for 3,000 epochs in total.

Thus, every 64 epochs, five of ten output neurons were selected, and the
mapping from these five output neurons to the semantic meaning was
pseudorandomly shuffled. In Fig. 4h, different numbers of data points
per class (shown on the x axis) were included in the training set (subsets
were randomly selected according to different seeds).

In Fig. 4i, we trained a convolutional network with
prospective configuration and backpropagation, with the
structure detailed in Fig. 4j. For each learning rule, we
independently searched seven learning rates ranging from
{0.0005,0.00025,0.0001,0.000075,0.00005,0.000025,0.00001}. Both
learning rules were trained for 80 epochs, with a batch size of 200.
Because training deep convolutional networks is more difficult and
slower than training shallow fully connected networks, a few improve­
ments were applied to both learning rules. Specifically, a weight decay
of 0.01 and an Adam optimizer72 were applied for both learning rules.
To reduce running time, the weights were updated more frequently in
predictive coding networks; that is, the weights were updated at all
steps of inference instead of at the last step of inference. Inference was
run for a fixed number of 16 iterations; thus, weights were updated 16
times for each batch of data. Thus, for fair comparison, backpropaga­
tion also updated weights 16 times on each batch of data. Training in
each configuration (each learning rule and each learning rate) was
repeated three times with different seeds.

To extend a predictive coding network to a convolutional neural
network (or to any network with a layered structure58,73), we can define
the forward function of a layer (that is, how the input of layer l + 1 is
computed from the neural activity of layer l) with weights wl to be

ℱwwwl (xxxl). For example, for the MLPs described above, ℱwwwl (xxxl) = wwwlf (xxxl).
For a convolutional network, ℱwwwl (xxxl) is a more complex function of wl
and xl, and also wl and xl are not simple matrix and vector anymore (to
be defined later). Defining an ANN with ℱ() would be (that is, Eq. (5)
becomes) xxxl = ℱwwwl−1 (xxxl−1). Defining an energy function of a predictive
coding network with ℱ() would be (that is, Eq. (6) becomes)

El = 1
2
[xxxl − ℱwwwl−1 (xxxl−1)]

2
. Thus, neural and weight dynamics would be

(that is, Eqs. (12) and (13) become) Δxxxl = −γεεεl + ∂ℱ
wwwl (xxxl)
∂xxxl

εεεl+1 and

 Δwwwl = αεεεl+1 ∂ℱwwwl (xxxl)
∂wwwl

, respectively. As ℱwwwl (xxxl) is defined, ∂ℱwwwl (xxxl)
∂xxxl

 and ∂ℱwwwl (xxxl)
∂wwwl

are obtained via auto differentiation in PyTorch (https://pytorch.org/

tutorials/beginner/basics/autogradqs_tutorial.html). Thus, training a
convolutional predictive coding network is as simple as replacing lines
11 and 16 in Algorithm 1 with the above corresponding equations.

In the following, we define ℱwwwl (xxxl) for convolutional networks. First,
xxxl ∈ ℝcl×hl×wl, where cl, hl and wl are the number of features, height and
width of the feature map, respectively. The numbers for each layer are
presented in Fig. 4j in the format cl@hl × wl. For example, for the first
layer (input layer), the shape was 3@32 × 32 as it is 32 × 32 colored
images, that is, with three feature maps representing red, green and
blue. We denote kernel size, stride and padding of this layer as kl, sl and
pl, respectively. The numbers for each layer are presented in Fig. 4j.
Thus, wwwl ∈ ℝcl+1×cl×kl×kl. Finally, xl + 1 is obtained via

xxx l+1[c, x, y] = f (xxx l [∶, xsl − pl ∶ xsl − pl + kl, ysl − pl ∶ ysl − pl + kl])

⋅wwwl [c, ∶, ∶, ∶] ,
(14)

where [a,b,…] means indexing the tensor along each dimension, : means
all indexes at that dimension, a: b means slice of that dimension from
index a to b − 1, and ⋅ is dot product. In the above equation, if the slicing
o f x l o n t h e se c o n d a n d t h i rd d i m e n s i o n s , t h a t i s ,
xxxl [∶, xsl − pl ∶ xsl − pl + kl, ysl − pl ∶ ysl − pl + kl] , is outside its defined
range ℝcl×hl×wl, the entries outside range are considered to be 0, known
as padding mode of zeros.

In Fig. 3f, networks of 15 layers were trained and tested on the
FashionMNIST60 dataset. Learning rates in Fig. 3f were optimized

http://www.nature.com/natureneuroscience
https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html
https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

independently by a grid search over (5.0, 1.0, 0.5, 0.1, 0.05, 0.01, 0.005,
0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0.000005) for each learn­
ing rule, as shown Fig. 3g; that is, each learning rule in Fig. 3f used the
learning rate that gave a minimal point in the corresponding curve
in Fig. 3g. The experiment in Fig. 3h investigated other network
depths ({1, 2,4,6,8, 10, 12, 14, 15}) in the same setup. Similar to Fig. 3f,
the learning rate for each learning rule and each ‘number of layers’
was the optimal value (in terms of mean of test error as the y axis of
the figure) independently searched from (5.0, 1.0, 0.5, 0.1, 0.05, 0.01,
0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0.000005). Hidden
layers were always of size 64 in the above experiments. In the above
experiment, only a part of the training set was used (60 data points
per class) so that the test error was evaluated more frequently to
reflect the difference on efficiency of the investigated learning rules.
The activation function f () used is LeakyReLU instead of the standard
sigmoid because sigmoid results in difficulty in training deep neural
networks. Other unmentioned details followed the defaults,
as described above.

In the reinforcement learning experiments (Fig. 4k), we evaluated
performance on three classic reinforcement learning problems: Acro­
bot74,75, MountainCar76 and CartPole77. We interacted with these envi­
ronments via a unified interface by OpenAI Gym78. The observations st
of these environments are vectors describing the status of the system,
such as velocities and positions of different moving parts (for details,
refer to the original articles or documentation from OpenAI Gym). Each
entry of the observation st is normalized to mean 0 and s.d. 1 via Wel­
ford’s online algorithm79,80. The action space of these environments is
discrete. Thus, we can have a network taking in observation st and
predicting the value (Q) of each action at with different output neurons.
Such a network is known as an action­value network, in short, a Q net­
work. In our experiment, the Q network contained two hidden layers,
each of which contained 64 neurons, initialized the same way as the

network used for supervised learning, described before. One can
acquire the value of an action at at a given observation st by feeding st
into the Q network and reading out the prediction on the output neuron
corresponding to the action at; such a value is denoted Q (st,at). The
training of Q is a simple regression problem to target ̂Rt, obtained via
Q learning with experience replay (summarized in Algorithm 2). Con­
sidering st to be sin and ̂Rt to be starget, the Q network can be trained with
prospective configuration or backpropagation. Note that ̂Rt is the
target of the selected action at (that is, the target of one of the output
neurons corresponds to the selected action at); thus, ̂Rt is, in practice,
considered to be ssstarget [at]. For prospective configuration, it means
that the rest of the output neurons except the one corresponding to at
are freed; for backpropagation, it means that the error on these neurons
is masked out.

A predictive coding network with slightly different settings from
the defaults was used for prospective configuration. The integration
step was fixed to be half of the default (γ = 0.05), and relaxation was
performed for a fixed and smaller number of steps (𝒯𝒯 = 32). This change
was introduced because Q learning is more unstable (smaller integra­
tion step) and more expensive (smaller number of relaxation steps)
than supervised learning tasks. To produce a smoother curve of ‘sum
of rewards per episode’ in Fig. 4k from SumRewardPerEpisode in Algo­
rithm 2, the SumRewardPerEpisode curve was averaged along Train-
ingEpisode with a sliding window with a length of 200. Each experiment
was repeated with three random seeds, and the shadows represent 68%
confidence interval across them. Learning rates were searched inde­
pendently for each environment and each model from the range
{0.05,0.01,0.005,0.001,0.0005,0.0001}. The results reported in Fig. 4k
are for the learning rates yielding the highest mean of ‘sum of rewards
per episode’ over training episodes.

Algorithm 2. Q learning with experience replay

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

Simulation of motor learning
As shown in Fig. 5, we trained a network that included two input neu­
rons, two hidden neurons and two output neurons. The two input
neurons were one­to­one connected to the two hidden neurons, and the
two hidden neurons were fully connected to the two output neurons.
The two input neurons were considered to encode presenting the blue
and red background, respectively. The two output neurons were con­
sidered to encode the prediction of the perturbations toward positive
and negative directions, respectively. Presenting and not presenting a
background color were encoded 1 and 0, respectively; presenting and
not presenting perturbations of a particular direction were encoded 1
and 0, respectively. The weights were initialized from a normal distribu­
tion with mean 0 and an s.d. fitted to the behavioral data (see below),
simulating that the participants had not built any associations before
the experiments. Learning rates were independent for the two layers,
as we expected the connections from perception to belief and from
belief to predictions to have different degrees of plasticity. The two
learning rates were also fitted to the data (see below).

The number of participants and training and testing trials follow
exactly as described for the human experiment38. In particular, for
each of the 24 simulated participants, the weights were initialized with
a different seed of the random number generator. They each experi­
enced two stages: training and testing. Note that the pretraining stage
performed in the human experiment was not simulated here as its goal
was to make human participants familiar with the setup and devices.

In the training stage, the model experienced 24 blocks of trials.
In each block, the model was presented with the following sequence
of trials, matching the original experiment38:

•	 The model was trained with two trials without perturbation,
B0 and R0, with the order counterbalanced across consecutive
blocks. Note that, in the human experiment, there were two
trial types without perturbations (channel and washout trials),
but they were simulated in the same way here as B0 or R0 trials
because they both did not include any perturbations.

•	 The model was trained with 32 trials with perturbations, where
there were equal numbers of B+ and R– within each of the 8 trials
in a pseudorandom order.

•	 The model experienced two trials, B0 and R0, with the order
counterbalanced across consecutive blocks.

•	 The model experienced n ← {14, 16, 18} washout trials (equal num­
bers of B0 and R0 trials in a pseudorandom order), where n ← {a, b, c}
denotes sampling without replacement from a set of values a, b
and c and replenishing the set whenever it becomes empty.

•	 The model experienced one triplet, where the exposure trial was
either B+ or R–, counterbalanced across consecutive blocks.
Here, a triplet consisted of three sequential trials: B0, the speci­
fied exposure trial and B0 again.

•	 The model experienced additional n ← {6, 8, 10} washout trials
(equal numbers of B0 and R0 trials in a pseudorandom order).

•	 The model experienced one triplet again, where the exposure trial
was either B+ or R–, whichever was not used on the previous triplet.

In the testing stage, the model then experienced eight repetitions
of four blocks of trials. In each block, one of the combinations of B+,
R+, B– and R– was tested. The order of the four blocks was shuffled
in each of the eight repetitions. In each block, the model first experi­
enced n ← {2, 4, 6} washout trials (equal numbers of B0 and R0 trials in a
pseudorandom order). The model then experienced a triplet of trials,
where the exposure trial was the combination (B+, R+, B– or R–) tested
in a given block to assess single­trial learning of this combination. The
change in adaption in the model was computed as the absolute value of
the difference in the predictions of perturbations on the two B0 trials in
the above triplet, where the prediction of perturbation was computed
as the difference between the activities of the two output neurons. The
predictions were averaged over participants and the above repetitions.

The parameters of each learning rule were chosen such that the
model best reproduced the change in adaptation shown in Fig 5f.
In particular, we minimized the sum over set C of the four exposure trial
types of the squared difference between average change in adaptation
in experiment (dc) and model (xc):

∑
c∈C

(axc − dc)
2. (15)

The model predictions were additionally scaled by a coefficient a fitted
to the data because the behavioral data and model outputs had differ­
ent scales. An exhaustive search was performed over model parame­
ters. The s.d. of initial weights could take values from {0.01,0.05,0.1},
and two learning rates for two layers could take values from
{0.00005,0.0001,0.0005,0.01,0.05} . For each learning rule and each
combination of the above model parameters, the coefficient a was then
resolved analytically (restricted to be positive) to minimize the sum of
the squared errors of Eq. (15).

Simulation of human reinforcement learning
As shown in Fig. 6b, we trained a network that included one input neu­
ron, one hidden neuron and two output neurons. The input neuron was
considered to encode being in the task, so it was set to 1 throughout
the simulation. The two output neurons encoded the prediction of the
value of the two choices. Reward and punishment were encoded as 1
and −1, respectively, because the participants were either winning or
losing money. The model selected actions stochastically based on the
predicted value of the two choices (encoded in the activity of two out­
put neurons) according to the softmax rule (with a temperature of 1).
The weights were initialized from a normal distribution of mean 0 and
an s.d. fitted to experimental data (see below), simulating that the
human participants had not built any associations before the experi­
ments. The number of simulated participants (number of repetitions
with different seeds) was set to 16, as in the human experiment38. The
number of trials was not mentioned in the original paper, so we simu­
lated for 128 trials for both learning rules.

To compare the ability of the two learning rules to account for the
pattern of signal from the mPFC, for each of the rules, we optimized
the parameters describing how the model is set up and learns (the s.d.
of initial weights and the learning rate). Namely, we searched for the
values of these parameters for which the model produces the most
similar pattern of its output activity to that in the experiment. In par­
ticular, we minimized the sum over set C of four trial types in Fig. 6c of
the squared difference between model predictions xc and data dc on
mean mPFC signal:

∑
c∈C

(axc + b − dc)
2. (16)

The model predictions were additionally scaled by a coefficient a and
offset by a bias b because the fMRI signal had different units and base­
line than the model. To compute the model prediction for a given trial
type, the activity of the output neuron corresponding to the chosen
option was averaged across all trials of this type in the entire simulation.
The scaled average activity from the model is plotted in Fig. 6c, where
the error bars show the 68% confidence interval of the scaled activity.
To fit the model to experimental data, the values of model parameters
and the coefficient were found as described in the previous section. In
particular, we used exhaustive grid search on the parameters. The
models were simulated for all possible combinations of s.d. of initial
weights and the learning rate from the following set: {0.01,0.05,0.1}.
For each learning rule and each combination of the above model param­
eters, the coefficient a (restricted to be positive) and the bias b were
then resolved analytically to minimize the sum of the squared error of
Eq. (16).

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

Statistics and reproducibility
The work in this paper involved computer simulations, but due to ran­
dom initialization of weight parameters, the simulations were repeated
multiple times. No statistical method was used to predetermine the
number of repetitions, but for simulations corresponding to behavioral
or neurophysiological experiments, the number of repetitions was
matched to the number of participants in the given experiment. No data
were excluded from the analyses. Because the order of execution has
no effect on the results of the numeric experiments, they were not ran­
domized. The investigators were not blinded to outcome assessment.

To visualize the variability of simulation results, we either pre­
sented individual data points or error bars showing confidence inter­
vals or box plots. Confidence intervals were computed using bootstrap
throughout the paper, and detailed descriptions of the implementation
can be found at https://seaborn.pydata.org/tutorial/error_bars.htm
l#confidence­interval­error­bars. The details of the methods used
to produce the box plots are available at https://seaborn.pydata.org/
generated/seaborn.boxplot.html.

Reporting summary
Further information on research design is available in the Nature Port­
folio Reporting Summary linked to this article.

Data availability
Learning tasks analyzed in Fig. 4a–j were built using the publicly avail­
able FashionMNIST60 and CIFAR­10 (ref. 36) datasets. These datasets
are incorporated in most machine learning libraries, and their origi­
nal releases are available at https://github.com/zalandoresearch/
fashion­mnist and https://www.cs.toronto.edu/~kriz/cifar.html,
respectively. Reinforcement learning tasks analyzed in Fig. 4i were
built using the publicly available simulators by OpenAI Gym78. Source
data are provided with this paper.

Code availability
Complete code and full documentation reproducing all simulation results
written in Python are publicly available at https://github.com/Yuhang­
Song/Prospective­Configuration released under GNU General Public
License v3.0 without any additional restrictions (for license details, see
https://opensource.org/licenses/GPL­3.0 by the open source initiative).

References
61. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press

Cambridge, 2016).
62. O’Reilly, R. C. Biologically plausible error-driven learning using

local activation differences: the generalized recirculation
algorithm. Neural Comput. 8, 895–938 (1996).

63. Almeida, L. B. A learning rule for asynchronous perceptrons with
feedback in a combinatorial environment. In Artificial Neural
Networks: Concept Learning (ed. Diederich, J.) 102–111 (IEEE
Computer Society Press, 1990).

64. Pineda, F. Generalization of back propagation to recurrent and
higher order neural networks. In Advances in Neural Information
Processing Systems (NeurIPS) (ed. Anderson, D.) 602–611 (Curran
Associates, 1987).

65. Pineda, F. J. Dynamics and architecture for neural computation.
J. Complex. 4, 216–245 (1988).

66. Hebb, D. O. The Organisation of Behaviour: A Neuropsychological
Theory (Science Editions New York, 1949).

67. Senn, W. et al. A neuronal least-action principle for real-time
learning in cortical circuits. Preprint at bioRxiv https://doi.
org/10.1101/2023.03.25.534198 (2023).

68. Glorot, X. & Bengio, Y. Understanding the difficulty of training
deep feedforward neural networks. In Proc. 13th International
Conference on Artificial Intelligence and Statistics (eds Teh, Y. W. &
Titterington, M.) 249–256 (PMLR, 2010).

69. Tolstikhin, I. O. et al. Mlp-mixer: an all-mlp architecture for vision.
In Advances in Neural Information Processing Systems (NeurIPS)
(eds Ranzato, M. et al.) 24261–24272 (Curran Associates, 2021).

70. Žliobaitė, I. Learning under concept drift: an overview. Preprint at
https://doi.org/10.48550/arXiv.1010.4784 (2010).

71. Tsymbal, A. The Problem of Concept Drift: Definitions and Related
Work. Technical report, Computer Science Department, Trinity
College Dublin (2004).

72. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization.
https://doi.org/10.48550/arXiv.1412.6980 (2014).

73. Salvatori, T., Song, Y., Lukasiewicz, T., Bogacz, R. & Xu, Z.
Reverse differentiation via predictive coding. In Proc. 36th AAAI
Conference on Artificial Intelligence (Salvatori, T., Song, Y., Xu, Z.,
Lukasiewicz, T. & Bogacz, R.) 8150–8158 (Curran Associates, 2022).

74. Sutton, R. S. Generalization in reinforcement learning: successful
examples using sparse coarse coding. In Advances in Neural
Information Processing Systems (NeurIPS) (eds Touretzky, D. et al.)
1038–1044 (NIPS, 1995).

75. Geramifard, A., Dann, C., Klein, R. H., Dabney, W. & How, J. P. RLPy:
a value-function-based reinforcement learning framework for
education and research. J. Mach. Learn. Res. 16, 1573–1578 (2015).

76. Moore, A. Efficient memory-based learning for robot control.
Technical report, Carnegie Mellon Univ. (1990).

77. Barto, A. G., Sutton, R. S. & Anderson, C. W. Neuronlike adaptive
elements that can solve difficult learning control problems. In IEEE
Transactions on Systems, Man, and Cybernetics, 834–846 (1983).

78. Brockman, G. et al. OpenAI Gym. Preprint at https://doi.
org/10.48550/arXiv.1606.01540 (2016).

79. Welford, B. P. Note on a method for calculating corrected sums of
squares and products. Technometrics 4, 419–420 (1962).

80. Knuth, D. E. Art of Computer Programming, Vol. 2 (Addison-Wesley
Professional, 2014).

Acknowledgements
We thank T. Behrens for comments on the manuscript and A. Saxe and
M. Witbrock for discussions. The presented research was supported
by the following grants: China Scholarship Council under the
State Scholarship Fund (Y.S.), JPMorgan AI Research Awards (Y.S.),
Biotechnology and Biological Sciences Research Council grant BB/
S006338/1 (R.B.), Medical Research Council grant MC_UU_00003/1
(R.B.), the Alan Turing Institute under the EPSRC grant EP/N510129/1
(T.L.), the AXA Research Fund (T.L.), National Natural Science
Foundation of China grants 61906063 and 62276089 (Z.X.), Natural
Science Foundation of Hebei Province, China, grant F2021202064
(Z.X.), Natural Science Foundation of Tianjin City, China, grant
19JCQNJC00400 (Z.X.), the ‘100 Talents Plan’ of Hebei Province, China,
grant E2019050017 (Z.X.) and the Yuanguang Scholar Fund of Hebei
University of Technology, China (Z.X.). The funders had no role in study
design, data collection and analysis, decision to publish or preparation
of the manuscript. This research was also funded, in part, by JPMorgan
Chase & Co. Any views or opinions expressed herein are solely those of
the authors listed and may differ from the views and opinions expressed
by JPMorgan Chase & Co. or its affiliates. This material is not a product
of the Research Department of J.P. Morgan Securities, LLC. This material
should not be construed as an individual recommendation for any
particular client and is not intended as a recommendation of particular
securities, financial instruments or strategies for a particular client. This
material does not constitute a solicitation or offer in any jurisdiction.

Author contributions
Y.S. and R.B. conceived the project. Y.S., R.B., B.M. and T.S. contributed
ideas for experiments and analysis. Y.S. and B.M. performed simulations.
Y.S., B.M. and R.B. performed mathematical analyses. Y.S., T.L. and R.B.
managed the project. T.L and Z.X. advised on the project. Y.S., R.B. and
B.M. wrote the paper. T.S., T.L. and Z.X. provided revisions to the paper.

http://www.nature.com/natureneuroscience
https://seaborn.pydata.org/tutorial/error_bars.html#confidence-interval-error-bars
https://seaborn.pydata.org/tutorial/error_bars.html#confidence-interval-error-bars
https://seaborn.pydata.org/generated/seaborn.boxplot.html
https://seaborn.pydata.org/generated/seaborn.boxplot.html
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/YuhangSong/Prospective-Configuration
https://github.com/YuhangSong/Prospective-Configuration
https://opensource.org/licenses/GPL-3.0
https://doi.org/10.1101/2023.03.25.534198
https://doi.org/10.1101/2023.03.25.534198
https://doi.org/10.48550/arXiv.1010.4784
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.48550/arXiv.1606.01540

Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01514-1

Competing interests
Y.S., B.M. and R.B. are shareholders in Fractile, Ltd., which designs
artificial intelligence accelerator hardware. The remaining authors
declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41593-023-01514-1.

Correspondence and requests for materials should be addressed to
Yuhang Song, Thomas Lukasiewicz, Zhenghua Xu or Rafal Bogacz.

Peer review information Nature Neuroscience thanks Karl Friston,
Walter Senn, Friedemann Zenke and Joel Zylberberg for their
contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-023-01514-1
http://www.nature.com/reprints

1

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

M
a

rc
h

 2
0

2
1

Corresponding author(s):
Rafal Bogacz, Yuhang Song, Thomas

Lukasiewicz, Zhenghua Xu

Last updated by author(s): 26/09/23

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection no new data were collected for this manuscript.

Data analysis Complete code and full documentation reproducing all simulation results written in Python is publicly available at

https://github.com/YuhangSong/Prospective-Configuration. It is released under GNU General Public License v3.0 without any additional

restrictions (for license’s details see https://opensource.org/licenses/GPL-3.0 by the open source initiative).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets

- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Learning tasks analysed in Fig. 4a-j were built using the publicly available FashionMNIST and CIFAR-10 datasets. They are incorporated in most machine learning

2

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

M
a

rc
h

 2
0

2
1

libraries, and their original releases are available at https://github.com/zalandoresearch/fashion-mnist and https://www.cs.toronto.edu/~kriz/cifar.html,

respectively. Reinforcement learning tasks analysed in Fig.4k were built using the publicly available simulators by OpenAI Gym https://www.gymlibrary.ml.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid

confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in

study design whether sex and/or gender was determined based on self-reporting or assigned and methods used. Provide in the

source data disaggregated sex and gender data where this information has been collected, and consent has been obtained for

sharing of individual-level data; provide overall numbers in this Reporting Summary. Please state if this information has not

been collected. Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based

analysis.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic

information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and

how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size This study did not involve any data collections, but only computer simulations. Since the computer simulations involved random initialization

of the models, they were repeated multiple times, and the exact number of repetition for each simulation is given in the manuscript. No

statistical method was used to predetermine the number of repetitions, but for simulations corresponding to behavioural or

neurophysiological experiments, the number of repetitions was matched to the number of subjects in the given experiment.

Data exclusions No data were excluded.

Replication All results of simulations can be replicated by running the code we made available.

Randomization Since the order of execution has no effect on result of numeric experiments, they were not randomised.

Blinding No blinding was performed, because the analysis and visualization of experimental data were performed automatically by computer code.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

3

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

M
a

rc
h

 2
0

2
1

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

	Inferring neural activity before plasticity as a foundation for learning beyond backpropagation

	Results

	Prospective configuration: an intuitive example

	Origin of prospective configuration: energy-based networks

	Advantages of prospective configuration: reduced interference and faster learning

	Advantages of prospective configuration: effective learning in biologically relevant scenarios

	Evidence for prospective configuration: inferring the latent state during learning

	Evidence for prospective configuration: discovering task structure during learning

	Discussion

	Online content

	Fig. 1 Prospective configuration avoids interference during learning.
	Fig. 2 The energy machine reveals a new understanding of energy-based networks, the mechanism of prospective configuration and its theoretical advantages.
	Fig. 3 Learning with prospective configuration changes the activity of output neurons in a direction more aligned toward the target.
	Fig. 4 Prospective configuration achieves a superior performance over backpropagation in various learning situations faced by biological systems.
	Fig. 5 Prospective configuration explains contextual inference in human sensorimotor learning.
	Fig. 6 Prospective configuration can discover the underlying task structure during reinforcement learning.

