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Abstract

It is well known that the material structure at underlying levels (e.g. grain structure,
precipitation kinetics, solute atoms, etc.) significantly influences macroscopic material
properties. Modern forming simulations of metals therefore require a multiscale modelling
approach to incorporate various physical effects on different scales. Efficient computation
techniques are urgently needed to couple these different scales.
The focus of this thesis was the development of such a technique to describe the microstruc-
ture evolution of aluminium during deformation and heat treatment processes. In this
context, two main goals were defined in this work. First, the various physical models
needed to be investigated and sourced. Special attention was given to the model which
described the grain structure development based on the evolution of a dislocation density.
Second, the multiscale model to predict the simultaneous change in grain structure and
precipitation kinetics needed to be implemented. While the corresponding material models
had been already set up, the coupling of the grain structure evolution to precipitation
kinetics required a new algorithm to make the computation feasible.
During the thesis, such an algorithm named flexible clustering of parameters (flexiCluP)
was developed and tested. It aims to collect the various grain structure calculations from
all the finite elements throughout the simulation specimen into few clusters with similar
values. This way the precipitation kinetics can be computed once per cluster instead of
once per element, which significantly reduces the simulation time without sacrificing too
much accuracy.
For testing purposes, the simulations of uniaxial hot compression tests were performed
and compared to available experiments. The results have demonstrated an improvement
over uncoupled simulations, however some accuracy was still lacking. The possible reasons
were analyzed in the end of the thesis, together with future steps for further improvement
of the accuracy and the model.
Finally, both goals of this work were accomplished. First, the microstructure model used
in the present work was sourced and its detailed implementation was described. Second,
the coupling algorithm was successfully developed and coupled simulations could be run.
This coupling algorithm was kept very general and could be thus used for other multiscale
simulations.



Kurzfassung

Moderne Simulationen von Metallumformungen benötigen einen ”multiscale” Ansatz um
physikalische Effekte auf unterschiedlichen Skalen einzubinden. Der Grund dafür ist, dass
die zugrunde liegende Materialstruktur (Kornstruktur, Ausscheidungskinetik, gelöste Ato-
me, ...) die makroskopischen Materialeigenschaften nachhaltig beeinflussen. Daher sind
effiziente Algorithmen notwendig, um die verschiedenen Skalen miteinander zu verbinden.
Der Fokus dieser Diplomarbeit war die Entwicklung eines derartigen Algorithmus zur
Beschreibung der Mikrostrukturdynamik bei Aluminium während Verformng und Wärme-
behandlung. Dabei gab es zwei Hauptziele. Erstens sollten die verschiedenen physikalischen
Modelle untersucht und mit Quellen versehen werden. Insbesondere das Kornstruktur-
modell stand dabei im Vordergrund. Zweitens sollte das Gesamtmodell für Kornstruktur
und Ausscheidungskinetik implementiert werden. Während die einzelnen Materialmodelle
schon bereitstanden, fehlte ihre gemeinsame Kopplung. Diese Kopplung benötigte einen
neuen Algorithmus um die Rechenzeit gering zu halten.
Im Laufe der Diplomarbeit wurde ein solcher Algorithmus namens flexible clustering of
parameters (flexiCluP) entwickelt und getestet. Der Algorithmus sammelt die verschiedenen
Berechnungen der Kornstruktur in den finiten Elementen während eines Simulationsschrit-
tes in wenigen Clustern zusammen. Dabei ist die Kornstruktur innerhalb eines Clusters
sehr ähnlich und die Ausscheidungskinetik kann einmal für den gesamten Cluster statt
einmal pro Element berechnet werden. Der Algorithmus reduziert damit die Rechenzeit
ohne signifikant an Genauigkeit zu verlieren.
Um den Algorithmus zu testen wurden einachsige Stauchversuche simuliert und anschlie-
ßend mit verfügbaren Experimenten verglichen. Die Resultate stellten eine Verbesserung
zu ungekoppelten Simulationen dar, waren aber teilweise noch immer ungenau. Mögliche
Gründe dafür und zukünftige Schritte zur Verbesserung der Genauigkeit und des Modells
wurden am Ende dieser Diplomarbeit analysiert.
Zusammenfassend wurden beide Ziele dieser Arbeit erreicht. Erstens wurde das Mi-
krostrukturmodell mit Quellen versehen und erklärt. Zweitens war die Entwicklung des
Koppelungsalgorithmus erfolgreich und es konnten gekoppelte Simulationen berechnet
werden. Dabei wurde der Algorithmus aber allgemein gehalten, sodass er auch für andere
”multiscale” Simulationen verwendet werden kann.



Contents

1 Introduction 9

2 Theory 11
2.1 Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 What is Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Work Hardening and Recovery during Metal Working . . . . . . . . 16
2.1.3 Recovery and Grain Growth during Heat Treatment . . . . . . . . . 19
2.1.4 Recrystallization during Heat Treatment . . . . . . . . . . . . . . . 24
2.1.5 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Precipitation Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 Classical Nucleation Theory . . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Evolution Equations for Precipitate Growth . . . . . . . . . . . . . 34
2.2.3 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Macroscopic Materials Behaviour . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Formulation of FEM . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.3 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Experiment 47
3.1 Compression Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Simulation Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 FEM Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Microstructure Models . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Precipiation Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Pre Heat Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.3 Post Heat Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 54



8 Contents

4 Coupling Grain Structure and Precipitation 56
4.1 Clustering of Large Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.3 History-Dependent Clustering . . . . . . . . . . . . . . . . . . . . . 61

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 flexiCluP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 LS-DYNA and MatCalc . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Results 67
5.1 Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Post Heat Treatment Experiment No. 1 . . . . . . . . . . . . . . . . . . . . 70
5.3 Post Heat Treatment Experiments No. 2-7 . . . . . . . . . . . . . . . . . . 75

6 Summary and Outlook 83
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.1 Model Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.2 Code Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.3 Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Appendix 87

Bibliography 93



Chapter 1

Introduction

In modern materials science, the modelling and subsequent simulation of materials plays
an important role. Such simulations can support traditional experiments and reduce the
number of prototypes when developing a new part, or they can highlight problems with a
manufacturing process that previously went unnoticed. Thus it is necessary to obtain a
good theoretical understanding of the underlying physical processes, and then to transform
this understanding into usable material models for simulation.
This thesis concerns itself with the simulation of aluminium parts during pre heat treatment,
deformation and post heat treatment. It aims to accurately predict the grain structure,
which is a highly relevant parameter of a part, e.g. for determining its yield strength. A
multiscale modelling approach is used to combine three different physical scales for an
accurate description of the grain structure dynamics.

On the largest length scale, the Finite Element Method (FEM) model describes the
deformation and thermal dynamics within the metal specimen at a scale of 10−2 m to 1 m.
Such deformation has a direct impact on the microstructure at scales of about 10−6 m to
10−4 m. It locally breaks the crystal structure of the metal and leads to the formation
of crystal defects such as dislocations, while heating can anneal out these defects. In
turn, the density of crystal defects has a huge impact on metal strength, and thus the
microstructure can influence the deformation behaviour at a large scale. On an even
smaller length scale, precipitates of a size 10−8 m to 10−9 m or even the solute atoms of a
size lower than 10−10 m can inhibit the microstructure change by impeding movement of
the dislocations. In turn, the precipitation kinetics depend strongly on the microstructure,
since crystal dislocations can serve as nucleation sites for precipitates. Figure 1.1 shows
these relationships schematically. To study and implement this multiscale approach ,the
following goals are defined in this thesis.
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Fig. 1.1: Illustration of the interaction of different models within a multiscale model.

The first goal is to study and source the models used at the different length scales,
especially the microstructure model which describes the grain structure dynamics and is
called the Mean Dislocation Density Model (MD2M). This study will form a necessary
basis for potential further development of these models and should also provide a good
point of entry to the whole subject.

The second goal is to develop and implement an efficient algorithm for coupling the
simulations at different length scales. Two programs will be used in the thesis: LS-DYNA,
an FEM solver with user written code for the grain structure development, and MatCalc, a
precipitation kinetics calculator based on the CALPHAD approach. The FEM divides the
simulated part into thousands of elements, and calling a separate instance (i.e. MatCalc or
any other relevant software) for each of these elements is simply not feasible, as it exceeds
any realistic computational capacity. The coupling algorithm should address this issue and
also be general enough that it can be used for similar problems in multiscale modelling.

The present thesis is structured as follows. First, the theory will be explained in chapter
2. It concerns the microstructure evolution during metal working and heat treatment as
well as the modelling of precipitation and macroscopic material behaviour.
Afterwards, the experiments will be detailed in chapter 3. This includes the physical
experiments as well as the simulation programs and their numerical implementation.
In chapter 4, the newly developed coupling algorithm and its implementation are explained.
Then, the results together with a discussion of the experiments and the simulations are
given in chapter 5.
Finally, a summary of this work is given together with an outlook of possible future
challenges in Chapter 6.

For ease of writing and reading, the author has chosen to employ the pronoun "we" and
write the subsequent text in first person plural.



Chapter 2

Theory

The models used in this thesis are based on three theoretical fields, namely the theory of
microstructure evolution, the theory of solid state precipitation in metals and a theory for
numerical calculation of macroscopic materials behaviour, called the Finite Element Method
(FEM). These theoretical fields are combined in a multiscale modelling approach, where
different physical scales are modelled and then linked to obtain an accurate description of
simultaneous microstructure evolution and precipitation kinetics during thermo-mechanical
processing of metals such a hot deformation and heat treatment.

In this chapter, we will discuss the three different theories. First we will talk in depth
about the microstructure of metals, and we will use the resulting equations to understand
the MD2M material model. Afterwards we discuss precipitation dynamics, and finally the
FEM. At the end of each section, there is a list of the variables used for ease of reference.

2.1 Microstructure
While the chemical composition of a metal is important for many different material
properties such as density or heat conductivity, it is not the only relevant parameter. For
a long time, blacksmiths and other artisans have noticed that the previous manufacturing
process plays a crucial role for the hardness and formability of a metal. Chemically identical
materials can have vastly different properties, for example when they are hardened through
cold working. These differences in mechanical behaviour can be explained when we look at
the microscopical structure. The atoms within a metal are ordered in a crystal lattice, and
defects or changes in this ordering can have a huge impact on macroscopic parameters,
such as the yield strength.

The following theories comprise the MD2M model. Its numerical implementation is
detailed for future reference in the appendix.
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2.1.1 What is Microstructure
Overview The microstructure of a metal is its microscopical structure. It entails the
periodic lattice and all kinds of defects within this lattice. A defect is anything that breaks
the periodicity, and examples are vacancies, substitutional atoms, mismatch in lattice
structure or pockets of differing phases. Some examples of defects are shown in figure 2.1.
These defects can be ordered by their dimensionality. Point defects consist of vacancies
and substitutional atoms. Line defects are so called dislocations, and they are mismatch
lines running through the crystal. Surface defects are interfaces between different phases
or lattice structures. Finally, volume defects encompass a wide range of different things,
as any three-dimensional abnormal structure within the crystal can be classified as such.
A prominent example of a volume defect are the precipitates, which are explained in more
depth in section 2.2.
Out of all these different structures, we will now take a closer look at dislocations and
afterwards at grains and their boundaries. Dislocations are mismatch lines and as such
a one-dimensional defect. Grains are the small crystals that make up the polycristalline
metal, and their interfaces, or grain boundaries, are two-dimensional defects of great
importance.

The following section is based on [3] and [12].

Fig. 2.1: Examples of crystal defects within a two-dimensional lattice: (a) substitutional
atom; (b) vacancy; (c) different chemical composition; (d) dislocation line
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Dislocations We imagine stacking a crystal row by row, but we make a mistake and
skip one row. The lattice above the missing row now has to distort to fit the reduced
number of rows, and this phenomenon is called a dislocation. Depending on which row was
skipped, the dislocation is either an edge dislocation or a screw dislocation.1 Figure 2.2
gives an example of both. Dislocations can be described by their Burgers vector, which is
commonly denoted as b.2 This vector is obtained by going around the crystal lattice in a
closed loop within the undistorted crystal and then within the distorted crystal. Because
of the distortion, the endpoint within the distorted crystal will not be identical to the
starting point, and the difference between the two points is the Burgers vector. This can
also be seen in figure 2.2. The dislocation extends as a line along a crystal plane until
it ends in a point defect like a vacancy or a substitutional atom. Dislocations can move
within a crystal, they can be annihilated when encountering a dislocation in the opposite
direction and they can be created when stress is applied to the crystal.
A common parameter to measure the "amount" of dislocations within a crystal is the
dislocation density ρ. It can be understood in one of two equivalent ways. We imagine
a cube of metal with volume V . Within this volume there is a certain length Ldisl of
dislocations, which we can imagine like different threads running through the cube. We
then cut the cube along a surface of size A and count the number of times the dislocations
run "through" the surface, given by Ndisl. The dislocation density is then given by:

ρ = Ldisl

V
= Ndisl

A
(2.1)

We see that the dislocation density is of dimension [m]−2 and it describes the length of
dislocations per unit volume or equivalently the number of times that dislocations pass
through a unit surface within the metal.

Grains and Subgrains Almost all metals are polycrystals, which means they don’t
consist of one single crystal but instead many small crystals together. Figure 2.3 shows a
2-dimensional example. The interfaces between these small crystals are two-dimensional
defects and they are called grain boundaries. Each crystal is accordingly called a grain.
Grain size, shape and lattice orientation have a big influence on the mechanical behaviour
of the metal, such as deformation or breaking. Within a crystal, there can be smaller
grains, so-called subgrains. The difference between the subgrains and the grains is the
lattice misorientation at their boundaries, given by their relative change in lattice angle.

1Actually, most real dislocations are a mixture of both, but the local displacement can be described by
either an edge or screw form.

2Although the Burgers vector is, as the name suggests, a vector, we will only be using its length |b| and
therefore take b ∼ |b| as its magnitude.
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Fig. 2.2: Schematic overview of edge dislocations (left) and screw dislocations (right).
The Burgers vector is indicated by b, while the direction of the dislocation line
is indicated by L.
(Source: [10], licensed under Creative Commons Attribution-Share Alike 4.0
International license)

Subgrain boundaries have a small change in angle (commonly � 15◦), whereas grains have
a bigger change. Figure 2.4 shows this difference.
At first, the distinction between grains and subgrains seems arbitrary, but it becomes clear
as soon as we take a closer look at their boundaries. For smaller boundary angles, both
crystal lattices are still relatively coherent and the boundary is nothing more than a series
of dislocation lines at regular intervals. At larger boundary angles, the interface becomes
incoherent and thus its properties become independent of the relative orientation. This
leads to a different boundary energy and boundary behaviour, as grains are more "sharply"
separated than subgrains.
Two important parameters associated with grains and subgrains are the grain size δG

and the subgrain size δsub. They correspond to the average diameter of the grains and
subgrains respectively, and they are important variables of microstructure calculations.

Influence on Mechanical Properties Plastic deformation is enabled at an atomic level
by the generation and movement of dislocations. It is easy to imagine that a lot of
microscopic dislocations stack up to a macroscopic bending of the metal. Their mobility
is thus an important indicator for the strength of the material. It can be influenced by
precipitates that impede the movement of dislocations, which is why in general impurities
increase strength. However they can also be blocked by subgrain and grain boundaries,
meaning that metals with smaller grain sizes will be harder than the same metals with
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Fig. 2.3: Two-dimensional explanation of grain structure; (A) overall distribution of
grains and grain boundaries within the metal; (B) zoomed in view of different
crystal structures and grain boundaries. (Source: [7], with permission of the US
Department of Energy)

Fig. 2.4: Examples for crystal boundaries; (a) grain boundary, there is no coherence along
the boundary, and the boundary angle θ > 15◦; (b) subgrain boundary, the
crystal is distorted but coherent, and the boundary angle θ ≤ 15◦; the small
inverted T’s indicate dislocation lines running perpendicular to the picture.
(Source: [12], with permission of Elsevier)
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larger grains. This effect is called the Hall-Petch strengthening.
The Hall-Petch relation is given by the following equation (see [18]):

σF = σ0 + α1Gb
√

ρ + α2Gb( 1
δsub

+ 1
δG

) (2.2)

Here, σF is the flow stress (or sometimes called yield stress) above which the material
plastically deforms. Equation 2.2 tells us that σF depends on some σ0 unrelated to
dislocations, subgrains and grains, on the shear modulus G, the Burgers vector b, the
dislocation density ρ, the subgrain size δsub and the grain size δG. The parameters α1 and
α2 are fitting parameters. The significance of the flow stress σF is further elaborated in
subsection 2.3.2.
We see that a high dislocation density ρ and a small subgrain size δsub and grain size δG

lead to a high deformation resistance, which is consistent with our previous explanations.

2.1.2 Work Hardening and Recovery during Metal Working
Overview During metal working like forging or rolling, the strain causes dislocations to
be created and aggregate into subgrains. However there are also recovery processes that
counter the work hardening. In this subsection, we will derive equations for the different
mechanisms that govern the dislocation density within a worked metal.

The following subsection shows a slight modification of the model used in [13].

Hardening When a metal is deformed under work, the deformation often corresponds to
a creation of dislocations to accommodate the plastic strain. These dislocations move until
they get stuck with other dislocations to form and expand subgrain or grain boundaries.
This, in turn, results in a hardening of the material as described in equation 2.2.
As stated in [13], the increase in dislocation density due to hardening dρhard can be
described by the following equation:

dρhard =
fT

√
ρ

Ab
dεp (2.3)

Here, fT is the crystal dependent Taylor factor, ρ the dislocation density, b the Burgers
vector, A a fitting parameter and dεp the increase in plastic strain.

Glide Recovery When dislocations with opposite Burgers vectors meet, they will annihi-
late and bring the crystal to a more ordered state. This process is called recovery, and it is
one of the major forces opposing the work hardening described above. One mechanism for
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recovery is the so called dislocation glide. The mechanical strain of the deformation causes
the existing dislocations to glide along crystal planes through the metal. Subsequently,
when two dislocations with opposite Burgers vector come within an annihilation distance
dann, they cancel each other out.
According to [13], the decrease of dislocation density due to glide recovery dρglide is given
by:

dρglide = −B
2dannfT

b
ρdεp (2.4)

It is dependent on a fitting parameter B, the annihilation distance dann, the Taylor factor
fT , the Burgers vector b, the dislocation density ρ itself and the change in plastic strain
dεp.
According to [13], the annihilation distance can be expressed as:

dann = Gb4 1
2π(1 − ν)Qvac

(2.5)

Here, G is the shear modulus, b is again the Burgers vector, ν is the Poisson number of
the material and Qvac is the vacancy formation energy of the material.

Climb Recovery Another big factor in recovery is the so-called dislocation climb. In this
process, dislocations at subgrain and grain boundaries "climb" from one level of the lattice
to the next through movement of vacancies. In contrast to the hardening and the glide
mechanisms, which are activated through plastic strain, the climb mechanism is activated
by thermal movement of vacancies within the boundary region. After a dislocation has
climbed, there again exists the possibility for it to interact with a dislocation with opposite
Burgers vector and to annihilate.
As described in [13], the decrease in dislocation density due to climb dρclimb is given by:

dρclimb = −2C · D
Gb3

kBT
(ρ2 − ρ2

eq)dt (2.6)

It is dependant on the diffusion coefficient of vacancies D, the shear modulus G, the
average length of the Burgers vector b, the temperature T , the dislocation density ρ itself,
the equilibrium dislocation density ρeq and the time increment dt. Finally, the parameter
C is a fitting parameter.
We remark that climb recovery is thermally activated, and that there is climb for systems
with dεp = 0. The equilibrium dislocation density ρeq is due to the fact that many metals
retain some dislocation density even when there is no change in plastic strain ε.
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Influence of Precipitates In standard literature, the diffusion coefficient D in equation
2.6 is given by (see [13]):

D = νDb2 exp

−QD

kBT

�
(2.7)

Here, νD is the Debye frequency of the metal atoms, b is the Burgers vector, QD is the
diffusion activation energy and T the temperature. The diffusion coefficient can, however,
be influenced by solute atoms. We modify equation 2.7 in accordance with [18] and [17]:

D = χ · νDb2 exp

−QD

kBT

�
(2.8)

Since the solute atom concentrations are closely linked to precipitation, we call χ the
precipitation parameter. It is given by:

χ =
�

m�
k=1

ck

�−1

(2.9)

Here, ck is the concentration of the k-th solute atom, and their dynamics are explained in
section 2.2. We see that an increase in solute atom concentration leads to a decrease in
diffusion, which fits the real world application.

Work Hardening Model All previously discussed effects together provide a work hard-
ening equation, which describes the change in dislocation density under metal working.
The equation consists of the hardening term dρhard, the glide term dρglide and the climb
term dρclimb, and it is given by adding equations 2.3, 2.4 and 2.6 to get:

dρ = dρhard + dρglide + dρclimb =

=
fT

√
ρ

Ab
dεp − B

2dannfT

b
ρdεp − 2C · D

Gb2

kBT
(ρ2 − ρ2

eq)dt (2.10)

Relationship between Dislocations and Subgrains During the deformation, the newly
created dislocations will form subgrains within the grains. As described above for the
hardening, almost all dislocations become stuck shortly after being created. This leads
to an aggregation of dislocations in certain parts of the crystal and, eventually, these
aggregations become subgrain boundaries with the subgrains between them. A commonly
used (see [19]) formula to describe this process is given by:

δsub = K√
ρ

(2.11)



2.1 Microstructure 19

Here, δsub is the subgrain size, ρ is the dislocation density and K is a fitting parameter.
The subgrain size is relevant for determining the flow stress in equation 2.2 will become
an important parameter for recovery during the heat treatment.

2.1.3 Recovery and Grain Growth during Heat Treatment
Overview There are three main processes going on with the microstructure during a
heat treatment. They are grain growth, recovery and recrystallization. In this subsection,
we will focus on grain growth and recovery as we can use the same theoretical approach to
describe both. Recrystallization will be the subject of subsection 2.1.4.
We have already talked about recovery in subsection 2.1.2. The annihilation of dislocations
corresponds to a growth of the subgrains, as the dislocations are mostly stored in their
boundaries and bigger subgrains correspond to less boundary surface, which in turn requires
less dislocations. Grain growth works similarly, as it is the thermally activated growth
of grains to reduce the energy of grain boundaries. Microscopically, recovery and grain
growth are different processes because subgrain boundaries and grain boundaries have
different properties. However, they are similar in that a (sub)grain boundary is moving
because of some driving force. A schematic description of the processes, grain growth,
recovery and recrystallization, is given in figure 2.5.
From now on, we will shift our point of view of the microstructure. Beforehand, we took
dislocations and their density ρ as the fundamental parameter, as shown in equation 2.10,
and we calculated the subgrain size δsub accordingly, as shown in equation 2.11. Now, we
will turn this relationship around and take a look at the dynamics of the subgrain size
δsub and grain size δG. After that we can compute the dislocation density ρ by inverting
equation 2.11.

The following subsection is based on different chapters of [12] to put together a theory
of grain growth and recovery during heat treatment.

Grain Boundary Migration A very general approach to describe the movement of
subgrains and grains is given on page 123 of [12]:

v = MP (2.12)
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Fig. 2.5: Schematic diagram of recovery and recrystallization; (a) deformed state, (b)
recovered grains with subgrains inside, (c) partially recrystallized, (d) fully
recrystallized, (e) grain growth and (f ) abnormal grain growth (not covered in
this thesis). (Source: [12], with permission of Elsevier)
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Here, v gives the migration speed of the boundary, M is the grain boundary mobility, and
P is the driving force3. The variable v can now be roughly identified as either the growth
of the subgrain size dδsub

dt
or growth of the grain size dδG

dt
. This very general equation hides

the complex processes of grain growth and recovery in M and P , but it suits our needs to
describe them in a unified format.
The mobility of grain boundaries MGB is given according to page 131 of [12] by the
following equation:

MGB = CM
Db

kBT
(2.13)

The relevant parameters are a dimensionless fitting parameter CM , the diffusion coefficient
D for the material, the Burgers vector b and the temperature T . This equation incorporates
the fact that thermally activated diffusion processes control the speed of migration of grain
boundaries through the dependence of MGB on D and T .
Measurements have shown (see page 130 of [12]) that the mobility of subgrain boundaries
corresponds roughly linearly to their misorientation angle θ. In turn, this misorientation
angle corresponds roughly linearly to the boundary surface energy γsub of the subgrains
(see page 95 of [12]). Thus we make the assumption, that the subgrain mobility Msub grows
linearly with the subgrain boundary energy until it reaches the maximal value of the grain
boundary mobility MGB. This assumption can be expressed by the following equation:

Msub = MGB
γsub

γGB

(2.14)

Here, γGB is the surface energy of the grain boundaries. This chain of linear relations
helps us to combine the mobility of subgrain boundaries Msub and grain boundaries MGB

into one model.

Zener Drag Many metals contain impurities. These impurities can lead to small aggre-
gates within the crystal structure called precipitates, which have a different phase and/or
chemical composition. Their dynamics are further discussed in section 2.2. For now, we
will just take a look at how subgrains and grains interact with these precipitates. As it
turns out, they slow down the grain growth and recovery, because they inhibit subgrain
boundaries and grain boundaries from moving over them. This effect is known as Zener
pinning or Zener drag, and it reduces the driving pressure P in equation 2.12. A schematic

3Although it is called a force, P is actually given as [J ][m]−3 and denotes the pressure on the grain
boundary.
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Fig. 2.6: This figure shows the interaction between a subgrain or grain boundary and a
spherical particle. The precipitate has a radius rpr, intersects the boundary at
an angle β and a force F acts upon the grain boundary and prevents it from
passing over the particle. (Source: [12], with permission of Elsevier)

explanation is given in figure 2.6.
The Zener drag PZ is given by the following equations (see chapter 4.6 of [12]):

PZsub
= 2Nprπγsubr

2
pr

PZGB
= 2NprπγGBr2

pr (2.15)

Here, Npr is the precipitate density, γsub and γGB are the boundary energies of the subgrain
and grain boundary, and rpr is the precipitate radius.
The Zener drag is the main antagonist of recovery and recrystallization, and it links
the dynamics of subgrains, grains and dislocations to the dynamics of precipitates. The
behaviour of Npr and rpr can be calculated with the theories described in section 2.2.

Grain Growth Grains grow naturally over time, as larger grains mean less grain bound-
aries, which in turn means less energy stored in the crystal. This process works by small
grains shrinking and large grains growing even larger, and it is detailed in subfigures (d)
and (e) of figure 2.5. We will describe the grain growth through the evolution of the
(mean) grain size δG.
We have already established the grain boundary mobility MGB in equation 2.13, and so it
remains to calculate the driving force for grain growth PG. In chapter 11 from [12], we get
the following expression:

PG = αγGB

RG
= 3γGB

δG
(2.16)

Here, γG is the grain boundary energy, RG the average grain radius and α ∼ 3/2 a
geometrical coefficient. Since δG is the grain diameter, we also substitute 2RG = δG to get
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the second equation.
We can now plug equation 2.16 into equation 2.12 and remember that the Zener drag
PZGB

reduces the driving force to PG − PZGB
. The velocity v can be interpreted as

2v = 2dRG

dt
= dδG

dt
. Altogether, this gives the following expression:

dδG = MGB


6γGB

δG
− 2PZGB

�
dt

dδG = 0 if

6γGB

δG
− 2PZGB

�
< 0 (2.17)

The second equation is due to the fact that the Zener drag PZ is only a dragging force. It
pins the grain boundary in place at the precipitates, but it doesn’t cause the grains to
shrink.

Recovery As discussed above, we know that recovery leads to a movement of subgrain
boundaries and an increase of the subgrain size δsub. Therefore we can model it the same
way as we did the grain size δG, as evidenced in chapter 6 of [12]. Recovery is shown in
subfigures (a) and (b) of figure 2.5.
The mobility Msub is already given from equation 2.14, so we only need to calculate the
driving force Psub. Similarly to equation 2.16, the following expression gives the driving
force for subgrain growth:

Psub = 3γsub

δsub
(2.18)

Here, γsub is the boundary energy of subgrain boundaries and δsub is the subgrain size.
However, in reality we observe that metals retain some dislocation density even after
recovery. We already incorporated this fact in equation 2.6, and we will do the same here
by introducing the equilibrium subgrain size δsub

eq . This leads to:

Psub = 3γsub

δsub
− 3γsub

δsub
eq

(2.19)

Finally, we follow the same line of reasoning as for equations 2.17 to arrive at:

dδsub = Msub

�
6γsub

δsub
− 6γsub

δsub
eq

− 2PZsub

�
dt

dδsub = 0 if
�

6γsub

δsub
− 6γsub

δsub
eq

− 2PZsub

�
< 0 (2.20)

Again, the second equation is due to the fact that the Zener drag PZ is only a dragging
force.
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2.1.4 Recrystallization during Heat Treatment
Overview Recrystallization is another important process during heat treatment. It
describes the sudden change in crystal structure from dislocation-rich crystal to almost
perfect crystal. The driving force for this sudden change comes from the deformation,
where the energy is stored through increase of dislocations and decrease in subgrain size.
When this stored energy inside the subgrain dislocations is above a certain threshold,
some subgrains can spontaneously reform themselves into almost perfect crystals with
drastically reduced dislocation density. These new crystals form new grains and they will
grow as long as thermally possible or until they encounter other recrystallized subgrains
and the whole metal is recrystallized.
A schematic description of recrystallization is given by figure 2.5 in steps (c) and (d).

The approach described in the following section is heavily based on chapter 7 of [12],
but it also takes inspiration from [23].

Driving Force for Recrystallization We first look into the requirements for recrystal-
lization. Equation 2.12 will once again be our starting point, since recrystallization also
involves grain boundaries moving through the crystal. The newly formed structures are
grains and therefore have high angle boundaries, which means we can use MGB from
equation 2.13. The driving force P rex comprises of three terms:

P rex = P rex
ρ + P rex

δsub + P rex
δrex (2.21)

These terms are due to the dislocation density (P rex
ρ ), the reduction of subgrain boundaries

(P rex
δsub) and the surface energy of the recrystallized grain (P rex

δrex).
We see from page 18 of [12] that the excess energy density eρ in the unrecrystallized
material is given by:

eρ = CρρGb2 (2.22)

Here, Cρ is a fitting parameter, G is the shear modulus and b is the Burgers vector. This
energy creates a driving force P rex

ρ , and if we assume this pressure to be equal in all
directions, we get:

P rex
ρ = eρ = Cρ(ρ − ρeq)Gb2 (2.23)

The additional variable ρeq denotes the equilibrium dislocation density, and we already
discussed its significance for equations 2.6 and 2.19.
When the recrystallized grain grows, it pushes back the other subgrains. This effect leads
to another driving force for recrystallized grains which we denote by P rex

δsub . The driving
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force acts in a similar way as the driving force for subgrain growth in equation 2.19 in that
it stems from smaller subgrains shrinking and larger subgrains growing. This prompts us
to take inspiration form [23] and express P rex

δsub by a similar term:

P rex
δsub = 3γsub

δsub
(2.24)

Here, γsub denotes the boundary energy of the subgrain boundary and δsub is the subgrain
size.
When recrystallized grains with grain size δrex grow, they also increase the boundary
energy which is on average given by Eδrex = γGBπ(δrex)2 with γGB being the boundary
energy of grain boundaries. From this term we can calculate the pressure on the surface of
a recrystallized grain and we get for the driving force P rex

δrex
4:

P rex
δrex = − 2

Aδrex

dEδrex

dδrex
= − 2

π(δrex)2
d

dδrex

�
γGBπ(δrex)2

�
= −4γGB

δrex
(2.25)

Here, Aδrex is the surface of a recrystallized grain with diameter δrex.
We can now insert the equations 2.23, 2.24 and 2.25 in equation 2.21 to arrive at the
following expression for the driving force P rex for recrystallized grain growth:

P rex = P rex
ρ + P rex

δsub + P rex
δrex

= Cρ(ρ − ρeq)Gb2 + 3γsub

δsub
− 4γGB

δrex
(2.26)

For very small grains, the last term dominates and prevents recrystallization. However as
soon as it has reached a critical size δrex

crit, the positive contributions dominate and it grows
into a recrystallized subgrain. We take into account the Zener drag PZGB

that also acts on
recrystallized grains and set P rex − PZGB

= 0 to determine this critical recrystallization
size δrex

crit:
δrex

crit = 4γGB

P rex
ρ + P rex

δsub − PZGB

(2.27)

Here, γGB is the boundary energy of grain boundaries, P rex
ρ is the driving force created by

the dislocations and P rex
δsub is the driving force created by subgrain shrinking. We now have

a threshold value for the start of recrystallization.

4The factor 2 in the following equation is due to the fact that we calculate with the grain size δrex, which
is the average diameter and not the average radius of the recrystallized grains.
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Since the contribution of the recrystallized boundary energy P rex
δrex becomes irrelevant for

sufficiently large recrystallized grains, we will ignore it from now on to get:

P rex ∼ Cρ(ρ − ρeq)Gb2 + 3γsub

δsub
(2.28)

Nucleation for Recrystallization Not all subgrains immediately recrystallize once their
size reaches δrex

crit, since δsub is just the average diameter of subgrains, so only the larger ones
are eligible for recrystallization. Additionally, recrystallization is a thermally activated
process, so there is some statistical variation for the number of grains recrystallizing. A
simple model for these circumstances is given on page 231 of [12]. We assume a thermal
distribution of potential nuclei and get the following set of equations:

dN rex

dt
= Crex exp



−Qrex

kBT

�
if δsub ≥ δrex

crit

dN rex

dt
= 0 if δsub < δrex

crit (2.29)

Here we have N rex as the total number of nuclei per volume, Crex as a fitting parameter5,
Qrex as the activation energy for recrystallization, T as the temperature, δsub as the
subgrain size and δrex

crit as the critical recrystallization size.

Recrystallized Fraction Recrystallization is often measured in terms of the recrystallized
volume fraction Xrex. We calculate it by multiplying N rex with the average volume of a
recrystallized grain:

Xrex = N rex π

6 (δrex)3 (2.30)

However, there is one last adjustment we have to make to our theory. Recrystallization,
be it through growth of recrystallized grains or through nucleation, can naturally only
occur in a non-recrystallized volume. Therefore we must modify the growth equation 2.12
and the nucleation rate given by equation 2.29 by the factor (1 − Xrex), which represents
the non-recrystallized volume fraction.
We now insert the driving force P rex −PZGB

given by equations 2.15 and 2.28 into equation
2.12 and take into account the critical recrystallized grain size δrex

crit and the factor (1−Xrex)
to get the following evolution equations for the recrystallized grain size δrex:

5The fitting parameter can instead be taken as a dynamical variable proportional to (δG
0 (δsub)2)−1, as

shown in [23]. This represents the nucleation at boundaries.
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dδrex = MGB

�
P rex

ρ + P rex
δsub − PZGB

�
(1 − Xrex)dt

dδrex = 0 if
�
P rex

ρ + P rex
δsub − PZGB

�
< 0

 if δsub ≥ δrex
crit

dδrex = 0 if δsub < δrex
crit (2.31)

Here, MGB is the grain boundary mobility, P rex
ρ is the dislocation dependent recrystalliza-

tion driving force, P rex
δsub is the subgrain shrinking dependent recrystallization driving force,

PZGB
is the Zener drag, Xrex is the recrystallized volume fraction, δsub is the subgrain size

and δrex
crit is the critical recrystallization size.

We modify equation 2.29 in the same way and we get for the nucleation rate of recrystal-
lization:

dN rex

dt
= Crex(1 − Xrex) exp



−Qrex

kBT

�
if δsub ≥ δrex

crit

dN rex

dt
= 0 if δsub < δrex

crit (2.32)

Here N rex is the total density of nuclei, Crex is a fitting parameter, Qrex is the activation
energy for recrystallization, T is the temperature, Xrex is the recrystallized volume fraction,
δsub is the subgrain size and δrex

crit is the critical recrystallization size.
Together, equations 2.30, 2.31 and 2.32 cover the dynamics of recrystallization in our
system by describing respectively the recrystallized fraction, the growth of recrystallized
grains and the nucleation rate of recrystallized grains.
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2.1.5 List of Symbols
A, B, C fitting parameters for Work Hardening Model

Crex fitting parameter for recrystallization nucleation
CM grain boundary mobility fitting parameter
Cρ fitting parameter for dislocation energy density
b Burgers vector (magnitude)

dann annihilation distance of dislocations
D diffusion coefficient
fT crystal Taylor factor
G shear modulus
kB Boltzmann constant
K fitting parameter for subgrain-dislocation relationship

Ldisl length of dislocations within unit volume
Msub subgrain boundary mobility
MGB grain boundary mobility
Ndisl number of dislocations crossing unit surface
Npr number of precipitates per unit volume
N rex number of recrystallization nuclei per unit volume
Psub subgrain size driving force
PG grain size driving force

P rex recrystallized grain driving force
PZ Zener drag

PZGB
Zener drag on grain boundaries

PZsub
Zener drag on subgrain boundaries

P rex
δrex recrystallized grain driving force from recrystallized grain size

P rex
δsub recrystallized grain driving force from dislocation density

P rex
ρ recrystallized grain driving force from dislocation density

QD diffusion activation energy
Qvac vacancy formation energy
Qrex recrystallization nucleation energy
rpr precipitate radius
dt time increment
T Temperature

Xrex recrystallized volume fraction
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χ precipitation parameter
δG grain size
δsub subgrain size
δsub

eq equilibrium subgrain size
δrex recrystallized grain size
δrex

crit critical recrystallization size
"p plastic strain

γGB grain boundary surface energy
γsub subgrain boundary surface enrgy
ν Poisson number

νD Debye frequency of the metal atoms
ρ dislocation density

ρeq equilibrium dislocation density
ρmobile density of mobile dislocations
dρclimb dislocation density decrease through climb
dρglide dislocation density decrease through glide
dρhard dislocation density increase through work hardening

σF flow stress
σ0 microstructure independent flow stress
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2.2 Precipitation Kinetics
Within a material with solute elements, these elements sometimes tend to coalesce into

small nuclei instead of being homogeneously distributed throughout the material. The
nuclei may contain different concentrations of elements or consist of a different phase than
the surrounding parent phase. This process is called precipitation.
Precipitation occurs if the energy of these small nuclei is lower than the energy of the
parent phase which they replace. When this is the case, the solute atoms can spontaneously
form such nuclei with thermal fluctuations. These nuclei can then grow through diffusion
from the parent phase. In the end, the homogeneous material is replaced by a material
with a slightly different chemical composition containing small precipitates of a different
phase and composition. This means that the overall amount of each element has stayed
the same, but through the formation of precipitates the energy was reduced by spatially
clustering some of these elements. The process is schematically shown in figure 2.7.

The following sections are based on [14].

Fig. 2.7: A two dimensional lattice with two types of atoms (black & white). Their
distribution is shown (a) before and (b) after precipitation.

2.2.1 Classical Nucleation Theory
Overview A useful method for calculating the amount of precipitate nuclei is Classical
Nucleation Theory (CNT). It couples the creation of nuclei to the chemical composition,
the temperature and the free energy of the precipitates, and it also helps estimate the
influence of grains and dislocations on nucleation.

The following discussion is based on chapter 2 of [14].
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Steady-State Flux The first point of interest is to determine the rate of newly created
nuclei in a steady-state situation. We start by considering a simple super-saturated
system consisting of two elements. The concentration of the minority element is above
the saturation point, and thus little nuclei start to coalesce. We can model this process
by looking at nuclei On of size n with corresponding surface area An. The nucleus can
grow by attaching one element and it shrinks by detaching one element. We take the
attachment rate per surface area to be a a0, and the detachment rate per surface area to
be qn. This gives us the following relations:

On + O1 → On+1 at rate = a0An

On − O1 → On−1 at rate = qnAn (2.33)

This seemingly simple model can be made continuous with respect to the nucleus size
n, so that it leads to a partial differential equation. With the assumption of a thermal
equilibrium, this equation has a solution for the steady-state nucleus flux js(n) of nuclei of
size n, that is the number of nuclei going from size n − 1 to n per differential timestep.
Steady-state means that the flux remains constant over time. After reaching a critical size
n∗, the nuclei don’t follow a thermal distribution anymore but continue to grow on their
own.6 The flux at this critical size is given by the following equations:

js(n∗) = Zβ(n∗) exp
�

−ΔGnucl(n∗)
kBT

�

Z =
�
− 1

2πkBT

�
∂2ΔGnucl

∂n2

�
n∗

	 1
2

(2.34)

Here, Z is the Zeldovich factor, β(n) = a0An is the attachment rate to a nucleus of size
n and ΔGnucl(n) is the nucleation energy of a nucleus of size n. Since nuclei of size n∗

and larger grow into full precipitates, the flux js(n∗) indicates the rate at which new
precipitates are created within a steady-state system.

Time Lag After determining the steady-state flux, we can now look at the time it takes
to reach the steady-state conditions for a system out of equilibrium. This time lag can by
calculated via the following equation:

j = js exp



−τ

t

�

6The reason for this will be given further down.
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τ = 1
4πβ(n∗)Z2 (2.35)

Here, τ is called the incubation time and it measures how long a system takes to reach a
steady-state nucleation.

The Nucleation Energy After describing the time dependent nucleation flux, we take a
look at the free energy ΔGnucl(n) of a nucleus of size n. As seen in equations 2.34, this
energy is the major influence on the rate of nucleation and the nucleation size.
It has two important contributions, namely the volume energy density of the nucleus Δgvol

and the surface energy density of the interface of nucleus and the surrounding matrix
given by Δgsurf . We now take 4π

3 Ω to be the volume of one element of the precipitate.
Assuming spherical precipitates, this leads to the following equation for ΔGnucl(n):

ΔGnucl(n) = 4π

3 nΩΔgvol + 4π(nΩ) 2
3 Δgsurf (2.36)

Here, the small g denotes the energy per volume and per surface area respectively. In the
case of supersaturation and precipitation, we find that Δgvol is negative. This explains
the precipitation dynamics, since it is now energetically more favorable for precipitates
to form. However, the surface term results in an energy barrier that the nucleus has to
overcome first (see figure 2.8) with ΔGnucl(n) having a maximum at some critical size n∗.

Fig. 2.8: Plot of the function ΔGnucl(n) with arbitrary parameters Ω and Δgvol < 0 <
Δgsurf . The energy barrier for nucleation is given by ΔGnucl(n∗) at the critical
size n∗.

Heterogeneous Nucleation Just like small dust particles can help water in the air to
form droplets and rain down, impurities and deformations within the crystal can enable
nucleation. We multiply the steady-state flux in equation 2.34 by the number of potential
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nucleation sites N to incorporate their influence. This together with equations 2.34 and
2.35 gives:

j(n∗) = NZβ(n∗) exp
�

−ΔGnucl(n∗)
kBT

�
exp



−τ

t

�
(2.37)

We can now regard homogeneous nucleation and heterogeneous nucleation as two separate
processes, each with their own N , ΔGnucl and β.
The number of homogeneous nucleation Nhom sites is just the number of lattice atoms,
and equation 2.36 gives a model for the nucleation energy. When looking at heterogeneous
nucleation, we have two important nucleation sites: dislocations and grain boundaries.
Both concepts are discussed in section 2.1.
First, we look at the number of nucleation sites. The dislocation density ρ is described in
subsection 2.1.1 and gives the length of dislocations per volume. A line of dislocations with
length L and interatomic distance a will have L

a
dislocation sites. Thus we can compute

the number of dislocation nucleation sites per volume as:

Ndisl = ρ

a
(2.38)

For a grain boundary area A within a unit volume and an interatomic distance a, we have
approximately A

a2 nucleation sites. Grains of grain size δG have a surface of A = ΓG·xG·(δG)2.
Here, ΓG is a shape factor dependant on the geometry of the grains7 and xG is the number
of grains per unit volume. This gives the following number of nucleation sites at grain
boundaries per volume:

NGB = ΓGxG
(δG)2

a2 (2.39)

We now discuss the nucleation energies ΔGnucl for heterogeneous nucleation, which has
additional terms compared to equation 2.36. When a nucleus grows along a dislocation
line or a grain boundary, it replaces these defects within the crystal and therefore reduces
the excess energy from these defects. For dislocation lines with an energy per length γρ, we
find that a nucleus of size n with a diameter d = fρn

1
3 thus effectively gains an additional

nucleation energy term:
ΔGdisl(n) = −fρn

1
3 γρ (2.40)

Similarly we can look at a nucleus along a grain boundary with diameter d = fGBn
1
3 . with

grain boundary energy per area γGB we have an additional nucleation energy term:

ΔGdisl(n) = −f 2
GBn

2
3 γGB (2.41)

7Example geometries are a sphere or a tetrakaidekahedron.
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In both cases of heterogeneous nucleation the additional energy is negative, since the
deformations are removed by the growing nucleus.
The factors fρ and fGB depend on the shape of the nuclei. Since the nucleus prefers to
grow along the dislocations or grain boundaries, it becomes flattened in direction of the
crystal defects.

Multi-component Nucleation Up until now we have only taken a two-element system
into consideration. Because of the almost purely thermodynamical approach and the
generalized expressions of the nucleation energy, we can come to the same conclusions for
multi-component nucleation with different types of precipitates with potentially different
crystal structures. The numerical values of ΔGnucl change, but the general equations stay
the same.

2.2.2 Evolution Equations for Precipitate Growth
Overview After obtaining a certain number of precipitate nuclei in a given system -
for example through CNT - the issue of their time-evolution arises. This problem can
be solved by using a thermodynamical approach, namely the Thermodynamic Extremal
Principle (TEP).

The following discussion is based on chapter 3.5 of [14].

Thermodynamic Extremal Principle The evolution of the nuclei can be calculated with
the TEP. We describe the system with the Gibbs energy G, which depends only on a set
of state variables qi such as the temperature, pressure and the chemical compositions and
sizes of different nuclei, that means G = G(qi). The thermodynamic extremal principle
now tells us that the time-evolution of G will go along a path where the energy dissipation
Q := −Ġ is maximised. In contrast to the Gibbs energy, the dissipation rate may also
depend on the velocities q̇i, that is Q = Q(qi, q̇i). This gives the following set of equations:

Q = −dG

dt
= − �

i

∂G

∂qi

q̇i

∂Q

∂qi

= 0 ; ∂Q

∂q̇i

= 0 (2.42)

A heuristic approach to understanding the thermodynamic extremal principle is as follows:
For an isothermal and isobaric process, Q is equivalent to the change in entropy Ṡ, which
should be maximal.
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This set of equations can be solved through method of Lagrange multipliers by solving the
following equations for all qi, q̇i:

∂

∂qi

�
Q + λ

�
dG

dt
+ Q

�	
= 0

∂

∂q̇i

�
Q + λ

�
dG

dt
+ Q

�	
= 0 (2.43)

Gibbs Energy We take a system of m precipitates and their surrounding matrix with
volume V , made up of n different types of chemical elements. The total Gibbs energy is
then given by three terms: the volume energy of the precipitates Gvol, the surface energy
of the precipitates Gsurf and the chemical energy of elements in the surrounding matrix
Gmatrix. We can write the equation as follows:

G = Gvol + Gsurf + Gmatrix

G =
m�

k=1

4πr3
k

3

�
Δgvol,k +

n�
i=1

ckiµki

�
+

m�
k=1

4πr2
kΔgsurf,k +

n�
i=1

V c0iµ0i (2.44)

The values c1i, ..., cmi and µ1i, ..., µmi denote the concentrations and the chemical potential
of element i in the precipitate 1, ..., m, with c0i and µ0i denoting its concentration and
chemical potential in the surrounding matrix. Each precipitate k has its own radius rk, its
volume energy Δgvol,k and its surface energy Δgsurf,k.
As an additional constraint for the Gibbs energy, we have mass conservation:

const = V c0i
+

m�
k=1

4πr3
k

3 cki (2.45)

This equation gives an additional Lagrange multiplier for equations 2.43.

Dissipation Rate There are once again three terms which need to be considered for the
energy dissipation Q: the interface migration (growth and shrinkage of the precipitate)
with Qmig, the diffusion inside of the precipitate with QDint and the diffusion within the
surrounding matrix with QDext. Equations for these terms are rather complex and can be
found in [14]. The important fact is that each depends only on chemical constants, the
concentrations cki, the radii rk and both their time derivatives ċki and ṙk. Using these
equations and setting cki, rk as the state variables qj, we can insert into equations 2.43
and explicitly calculate the precipitation evolution.
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2.2.3 List of Symbols
a interatomic distance
a0 attachment rate to a nucleus per surface area
An surface area of a nucleus of size n

ci concentration of element i

c0i concentration of element i in the surrounding matrix
cki concentration of element i in the precipitate k

fρ nucleus shape factor for nucleation along dislocations
fGB nucleus shape factor for nucleation along grain boundary
G total Gibbs energy of the system

Δgvol,k free energy per volume of the precipitate k

Δgvol free energy per volume of a nucleus
Δgsurf free energy per surface of a nucleus
Δgsurf,k free energy per surface of the precipitate k

ΔGnucl(n) nucleation energy for a nucleus of size n

js steady-state flux of newly created nuclei
kB Boltzmann constant
n∗ critical nucleus size
N number of nucleation sites

Ndisl number of nucleation sites at dislocations
NGB number of nucleation sites at grain boundaries
On number of nuclei with size n

qi state variables for thermodynamical approach
qn detachment rate from a nucleus of size n per surface area
Q energy dissipation of the system

Qmig interface migration dissipation
QDint energy dissipation due to diffusion inside of the precipitates
QDext energy dissipation due to diffusion in the matrix close to the precipitates

rk precipitate radius
t time
T temperature
V volume of the material
xG number of grains per volume
Z Zeldovich factor
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β(n) attachment factor for a nucleus of size n

δG grain size
γρ energy per length of dislocation line

γGB surface energy of grain boundary per area
ΓG grain surface geometry factor
λ Lagrange multiplier

µ0i chemical potential of element element i in the surrounding matrix
µki chemical potential of element i in the precipitate k

τ incubation time for a precipitation system to reach steady-state
ρ dislocation density
Ω volume factor of a single precipitate element



38 2 Theory

2.3 Macroscopic Materials Behaviour
Although many equations governing macroscopic material behaviour such as classical
mechanics or heat conduction are straightforward, the complexity of problems often rules
out an analytical solution by hand. The development of computers in the last century,
however, has opened up a plethora of possibilities for physicists. Now, differential equations
do not need to be solved analytically any more, since they can be approached numerically.
Thus we will focus in this chapter on one such numerical algorithm named the Finite
Element Method (FEM). With it we will be able to calculate mechanical deformations, as
well as thermal conduction within a solid body.

The subject of FEM is large enough to warrant a thesis of its own, so we will not go
into too much detail. Our goal in this section will be to get an initial understanding of
the theory and see how it is applied. Therefore it is important to note that the following
section is by no means a rigorous mathematical derivation, but it should give a good
understanding of the theoretical aspects.

2.3.1 Formulation of FEM
Overview We will now take a look at the mathematical foundation of the FEM ap-
proach. It is characterized by a more abstract way of tackling the problem, as it uses
variational formulations instead of straightforward differential equations. Further, it relies
on mathematical notions of a vector space of functions and a basis thereof.

The following subsection is based on chapter 4 of [4] and two courses at TU Wien, [9]
and [8].

Variational Formulation The variational formulation of problems has seen successful
application in many areas of physics, especially mechanics. As basic principle, we have
the minimizing of some functional Π[x]8. This functional depends on a set of functions,
which are here indicated by the vector x, and x belongs to some function vector space
X. This functional Π often represents the total energy of the system, while x stands for
the trajectories of particles or fields varying in space and time, and the vector space X

contains all sufficiently smooth functions that fulfil certain boundary conditions. The
physical solution is now the set of functions x∗ which minimizes the functional Π[x],

8The square brackets indicate that it is not a function evaluated at specific values, but a functional
evaluated at a whole function.
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that is Π[x∗] ≤ Π[x] for all eligible sets of functions x ∈ X. In the classical variational
formulation, this is described by the vanishing of the variational derivative at x∗:

δΠ|x∗ = 0 (2.46)

Generally, X has infinite dimension, as it encompasses all sufficiently smooth functions
that fulfil the respective boundary conditions. However, we can take a finite dimensional
subset Y ⊂ X and reformulate the problem within this subset. Once again we search for
the minimal value of Π[x], but now we can write the set of functions x with respect to
the base functions bk of Y :

x =
�

k

λkbk (2.47)

This means we can rewrite the functional as being purely dependant on the λk and thus
as a function instead of a functional:

Π[x] = Π
��

k

λkbk

	
= Π̃(λk) (2.48)

Now we can substitute the variational derivative in equation 2.46 by the standard derivative
to get:

∂Π̃
∂λk

|(λ∗)k = 0 (2.49)

If we choose the subset Y carefully, the subset solution x̃∗ = �
k=1(λ∗)kbk will approximate

the real solution x∗ well enough. Thus we have transformed a variational problem into a
classical calculus problem.

Approximation Functions, Elements and Mesh We remind ourselves that the afore-
mentioned approach works for any subset, but we will only reach a sensible approximation
with well chosen subsets Y . Functions within the subset must be able to "imitate" all
other functions within the general solution set X for this to work.
In FEM, these functions are obtained by partitioning the problem area into the titular
finite elements. For most physical problems, we consider some sort of one-, two- or
three-dimensional domain like a line, surface or a solid object. We can now cut this object
into small blocks, which, together with their corner points, form the so-called mesh. The
blocks may have one of many different geometrical forms, but cuboids and tetraeders
are most commonly used in three dimensions, whereas quadrilaterals and triangles are
most commonly used in two dimensions. An example of such a mesh is given in figure 2.9.
These blocks are the finite elements, and their corner points are called the nodes.
With this mesh we can now define an example set of functions for the approximation. The
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functions should be localized in some way as this makes it possible to locally approximate
very well without interfering elsewhere. For this, we define one continuous function associ-
ated with each node, which has value 1 at this node and value 0 at all others. In addition,
the function should only be non-zero within the elements that have this node as a corner
point. These requirements can be achieved by defining a polynomial within each element
that interpolates between the nodal points and has value 0 at those element boundaries
that do not touch the node. An example for this with triangles in a two-dimensional mesh
is given in figure 2.9.
These functions are not analytical, but they are continuous and almost everywhere one-time
differentiable.9 They form a basis of a vector space of functions, and we can approximate
any boundary conditions by simply pre-defining the values of the boundary nodes. As
with the elements themselves, these functions are not the only ones that can be used, but
they are a very common example.

Fig. 2.9: Finite element method for a 1x1 square with triangular elements; (a) the mesh;
(b) node function for the central node
(The scaling of the vertical axis on subfigure (a) is irrelevant. For visualization
purposes, subfigure (a) has been tilted to match subfigure (b).)

Stiffness Matrices Very often, the variational formulation in physics has quadratic terms
for the inherent energy and linear terms for the coupling of external forces. The mechanical
deformation equation and the thermal diffusion equation given in subsection 2.3.2 are an
example for this. We can then split the functional Π into the inherent-energy part ΠE

9By careful choice of higher dimensional polynomials, we can actually achieve higher differentiability.
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and the force part ΠF , where the first is quadratic and the second linear in the arguments.
This gives the following equalities:

Π
��

k

λkbk

	
= ΠE

��
k

λkbk,
�

k

λkbk

	
+ ΠF

��
k

λkbk

	

=
�
k,l

λkλlΠE[bk, bl] +
�

k

λkΠF [bk] (2.50)

The expressions ΠE[bk, bl] and ΠF [bk] only depend on the base functions bk and thus can
be computed before solving the minimizing equation 2.49. We can define the stiffness
matrix Mk,l and the load vector lk the following way:

Mkl := 1
2ΠE[bk, bl] lk := −ΠF [bk] (2.51)

Inserting equation 2.50 into equation 2.49, we see that the result is the following linear
equation: �

l

Mkl(λ∗)l = lk (2.52)

This simplification is one of the reasons why the FEM is so successful in numerical
simulations. When choosing well known base functions such as the nodal functions
discussed above, the stiffness matrix Mk,l can often be computed with relative ease.
Since the forces vary from problem to problem, the load vector lk needs to be calculated
individually. However as ΠF [bk] often is an integral of bk multiplied by the forces, this is
also done relatively easy. Afterwards, the computer just needs to solve equation 2.52 to
get the solution.
The localization of the base functions bk as described above is an immense benefit for this
approach. Since only very few bk overlap, the matrix Mk,l becomes a sparse matrix with
zeroes almost everywhere. This way, when choosing a very high number of elements which
results in a very high-dimensional matrix Mk,l, the computer can still handle the matrix
calculations.

2.3.2 Application
Overview The theory detailed in subsection 2.3.1 can be applied to many different
problems. We are interested in two of them, namely the solid body deformations and the
heat conduction equation.
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The paragraph about solid body deformations is based on chapter 4 of [4], and the
paragraph on plastic deformations is based on chapter 6 of [21]. The last paragraph about
thermal conduction is based on chapter 2 of [8], but it can also be found in chapter 7 of [4].

Solid Body Deformations A class of problems which are most commonly solved by the
FEM are the solid body deformations. They describe a solid body subjected to different
stresses and the deformation thereof. The total energy Etot of the problem is given by the
following expression (see chapter 4 of [4]):

Etot = 1
2



V

ε : σdV −



V
fB · udV −



S

fS · udS −
M�

m=1
F m · um (2.53)

At a certain point x within the deformed body, ε(x) is the strain tensor, σ(x) the
stress tensor, fB(x) the body force density, fS(x) the surface force density and u(x) the
displacement caused by the forces. The integration domain V stands for the full volume
of the body, while S stands for its surface. The last term is composed of the sum over all
M singular point forces F m multiplied by the displacement um at that point. We can see
that the first term represents the inherent work, while the remaining terms represent the
influence of exterior forces.
Before we can use equation 2.53 as a starting point for the FEM, we have to relate the
stress tensor σ with the strain tensor ε and the strain tensor ε with the displacements u,
so that we can reduce the energy to a functional for the displacement functions u. The
first relationship is given by Hooke’s Law:

σ = Cε ⇔ σij =
�
kl

Cijklεkl (2.54)

The four-tensor C ∼ Cijkl is symmetric and a material property, and it can in the more
simple cases be expressed by the elasticity modulus E and the Poisson number ν. The
second relationship is given by the definition of the strain:

ε = ∇ ⊗ u ⇔ εij = ∂ui

∂xj

(2.55)

Together, equations 2.53, 2.54 and 2.55 let us define the energy functional Π[u]:

Π[u] = 1
2



V

(∇ ⊗ u) : C(∇ ⊗ u)dV −



V
fB · udV −



S

fS · udS −
M�

m=1
F m · um (2.56)

From there on, we can use the FEM approach discussed in subsection 2.3.1 to approximate
the solution.
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Plastic Deformation The calculations above assume a perfectly elastic material, where
the deformations are linearly dependent on the applied forces. However, many relevant
processes involve plastic straining of the involved materials. The general property of plastic
straining is that after reaching some flow stress σF , the relationship between stress and
strain will not follow the linear Hooke’s Law in equation 2.54 anymore. A one-dimensional
example for this is given in figure 2.10.
In general, we can describe plastic deformation in the following way (see chapter 6 of [21]).
First, we compute the elastic deformation by using the functional given in equation 2.53.
From the deformation u we can then compute the strain ε and the stress σ, as indicated
in equations 2.55 and 2.54. Then we define some scalar equivalent stress σ̄ that depends
on the stress tensor σ and compare it to the flow stress σF of the material:

σ̄(σ) − σF ≥ 0 (2.57)

If this condition is met, we assume that plastic deformation takes place, and we reduce
the previously purely elastic strain tensor ε by the plastic strain tensor increment dεp:

ε̃ = ε − dεp (2.58)

This gives a new stress σ̃ according to equation 2.54. We then also consider the plastic
hardening by increasing the flow stress proportional to the total amount of plastic strain
added:

σ̃F = σF + Hdεp ; dεp = ||dεp|| (2.59)

Here, H is the hardening parameter of the material and ||.|| is the matrix norm. The
values of dεp have to be chosen in a way that afterwards, the equivalent stress is equal to
the flow stress, that is:

σ̄(σ̃) − σ̃F = 0 (2.60)

After this equality is reached, the plastic strain dεp is the final result for the plastic
deformation of the system.
There are many different models for the definition of the equivalent stress σ̄(.) or the choice
of the plastic strain increment dεp, and we will not go into detail here. More complex
models can incorporate a variety of different effects, like anisotropic plasticity or different
behaviour under elongation and compression. For example the FEM simulation program
LS-DYNA has over 200 different models, each briefly described in [16].
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Fig. 2.10: Stress-strain curve of a typical metal. Up until σF , the deformation is elastic
and approximately linear. Afterwards, there is plastic straining.

Thermal Conduction Another class of common problems for FEM application are the
thermal conduction problems. The governing functional Π[T ] of the temperature T is
given by the following equation (see chapter 7 of [4]):

Π[T ] =



V

1
2

�
i

Ki

�
∂T

∂xi

�2

dV −



V
cT

dT

dt
dV −



V

TqBdV −



S
TqSdS (2.61)

At the point x we have T (x) as the temperature, Ki(x) as the heat conductivity in
i-direction, c(x) as the heat capacity, dT/dt(x) as the time derivation of the temperature,
qB(x) as the heat sources within the body and qS(x) as the heat sources on the surface.
The integration domain V stands for the full volume of the body, while S stands for its
surface. Both the heat conductivity and the heat capacity are material parameters.
The main difference between the thermal conduction equation 2.61 and the deformation
equation 2.53 is the second term with the time derivative. We can solve this problem
by using the FEM approach spatially and an ordinary differential equation in time (see
chapter 2 of [8]). We assume that we already have a mesh with base functions bk, as
described in subsection 2.3.1. Now we make the Ansatz that our final solution T (t) will
be given by the following:

T (t) =
�

k

λk(t)bk (2.62)

This means that we assume only the coefficients λk depend on the time. For each time t,
we can now use the FEM approach. We define the following matrices and vectors:

M1
kl :=



V

�
i

Ki
∂bk

∂xi

∂bl

∂xi

dV

M2
kl :=



V

cbkbldV
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lB
k (t) :=



V

bkqB(t)dV lS
k (t) :=



S

bkqS(t)dS (2.63)

The load vectors lB
k (t) and lS

k (t) depend on the time t, since the heat sources qB(t) and
qS(t) are boundary conditions that may depend on the time. Altogether we can plug the
Ansatz from equation 2.62 into equation 2.61 to get the following equation:

Π̃(λj) = 1
2

�
kl

M1
klλ

kλl − �
kl

M2
klλ

k dλl

dt
− �

k

(lB
k + lS

k )λk (2.64)

In the last step, we maximize Π̃ for the λk at a given time t. The time derivatives dλl

dt
are

independent of the λk and thus we get:

�
k

M2
ik

dλk

dt
=

�
k

M1
kiλ

k − (lB + lS)i (2.65)

This is an ordinary differential equation in time which we can solve either explicitly or
through a standard numerical difference scheme.
There are other ways as well to model thermal conduction equations with FEM, but the
approach detailed above should give a good insight on how this problem can be tackled,
and is fitting for the scope of this work.
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2.3.3 List of Symbols
bk, bk (vector/scalar) base functions of subset S

c heat capacity
C, Cijkl Hookes law tensor
fB, fS body force density, surface force density

F m point force
H hardening parameter
Ki heat conductivity in i direction
Mkl stiffness matrix
M1

kl heat flow part of thermal stiffness matrix
M2

kl heat dissipation part of thermal stiffness matrix
lk load vector

lB
k , lS

k body load vector, surface load vector
qB, qS body heat source, surface heat source

x potential solution functions of variational problem
x∗ solution of variational problem
X space of potential solution functions
Y finite dimensional subspace of X

t time
T temperature

u, ui displacement vector

�, "ij strain tensor
d"p plastic strain increment
d�p plastic strain tensor increment
λk coordinates with respect to base functions bk

(λ∗)k coordinates of the solution
Π[x] (energy) functional for variational formulation

ΠE[x1, x2] bilinear inherent energy functional
ΠF [x] linear force functional
Π̃(λk) (energy) functional Π[x] evaluated at x = �

k λkbk

σF flow stress
σ̄(σ) equivalent stress



Chapter 3

Experiment

The theories and algorithms discussed within this thesis need validation. To this end,
a set of relatively simple compression tests that had already been performed at LKR
Leichtmetallkompetenzzentrum Ranshofen GmbH (LKR) was taken as a reference for
the numerical simulation. The simulation incorporated the different theories discussed in
chapter 2 by using the FEM solver LS-DYNA, the precipitation kinetics program MatCalc
and some user written FORTRAN code.
The overall setup of programs had already been used at LKR to simulate similar experi-
ments, but this time a coupling between LS-DYNA and MatCalc was implemented.

3.1 Compression Test
In 7 experiments, small aluminium cylinders were compressed and heat-treated at LKR with
the DIL 805A/D/T, a dilatometer with integrated compression and heating capabilities
(see [1] for more information). The process consisted of three stages: the pre heat treatment,
the deformation and the post heat treatment, which are schematically shown in figure 3.1.
Originally, the goal of this experiment was to measure the influence of heat treatments
on recrystallization after deformation, but within the context of this work it is used as
reference for the numerical simulation.
The compressed cylinders had a diameter of 5 mm and a height of 10 mm and consisted
of the alloy AA2024 detailed in table 3.1. All process parameters are given in table 3.2.
They were first subjected to a pre heat treatment, where they were heated with a rate
(dT/dt)a and then remained at a temperature of Ta for a specific time ta. Afterwards, the
cylinders were compressed at this temperature with a strain rate of ε̇b up to a total strain
of εb. Following the compression, the specimens were subject to two different post heat
treatments. In experiment No. 1, the cylinder was kept at the deformation temperature
for a time tc1 and rapidly cooled down afterwards at a rate (dT/dt)c1 . In the experiments
No. 2-7, the cylinders were rapidly cooled down at a rate (dT/dt)c1 immediately after



48 3 Experiment

the deformation and then subsequently heated again up to a temperature of Tc2 with a
heating rate of (dT/dt)c2 . In experiment No. 7, the specimen was left at constant high
temperature after it reached Tc2 for a time tc2 . After their respective treatment ended,
all cylinders were cut in half, anodized with Barker’s reagent to make the microstructure
visible and then analyzed under the microscope (see figures 5.4 and 5.8). The whole
process is schematically depicted in figure 3.1.

Fig. 3.1: Schematic overview of the compression test consisting of (a) the pre heat
treatment, (b) the deformation, (c1) the first step of the post heat treatment (for
all cylinders), (c2) the second step of the post heat treatment (the corresponding
samples were quenched directly after deformation)

Tab. 3.1: Chemical composition of the aluminium alloy AA2024 in %.

Al Cu Mg Mn Fe Si
AA2024 93,69 4,27 1,42 0,4 0,12 0,1

Tab. 3.2: Parameters of the different compression tests

N (dT/dt)a Ta ta εb ε̇b tc1 (dT/dt)c1 (dT/dt)c2 Tc2 tc2

[◦C/s] [◦C] [s] [-] [s−1] [s] [◦C/s] [◦C/min] [◦C] [min]
1 15 470 10 1 1 600 35 - - -
2 15 470 900 1 1 0 35 7,1 450 -
3 15 470 900 1 1 0 35 7,1 460 -
4 15 470 900 1 1 0 35 7,1 470 -
5 15 470 900 1 1 0 35 7,1 480 -
6 15 470 900 1 1 0 35 7,1 490 -
7 15 470 900 1 1 0 35 7,1 490 33
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3.2 Simulation Programs
The numerical implementation of the experiments described in section 3.1 uses two different
programs, namely MatCalc and LS-DYNA. They handle the precipitation (MatCalc) and
the FEM-computation (LS-DYNA). The microstructure model MD2M described in the
section 2.1 and the appendix is implemented as user code in LS-DYNA. A Flowchart of
their inputs and outputs is given in figure 3.2.

Fig. 3.2: Overview of the inputs and outputs of the programs discussed in this section.
The user-defined models described in subsection 3.2.2 are part of the LS-DYNA
program and thus have no explicit input / output themselves.

3.2.1 FEM Solver
LS-DYNA For the overall simulation of compression and heat treatment, the program
LS-DYNA version R11 was used. LS-DYNA is a general purpose FEM program based
on the approach detailed in section 2.3 and it can run thermal, mechanical and thermo-
mechanical simulations. It began its development in the 70’s as a way to simulate in
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3D the impact of low-altitude release nuclear warheads at Lawrence Livermore National
Laboratory (see [5]), but it has evolved into an all-purpose FEM commercial software used
around the globe.
A major asset of LS-DYNA is the large library of material models (see [16]), which can
be defined in the input. There are both thermal and mechanical models, which describe
the nonlinear element behaviour of the FEM equations. The input / output handling
of LS-DYNA can either be done by manually writing into the text-files, or by using
LS-PrePost or similar pre-processing programs for LS-DYNA.

Input LS-DYNA takes the material properties (e.g. density, elastic modulus, ...), the
finite element mesh and the simulation procedure as input. They are written in specific
text files with the .k ending.

Output The simulation saves the current mesh at predefined intervals (which may be
larger than the actual timesteps) to d3plot files containing the values of most variables.
These files can be visualized with LS-PrePost (see the figures in chapter 5). In addition,
the last state can be written to an ASCII file, which can be used as input file with a .k
ending for a subsequent simulation.

3.2.2 Microstructure Models
User-Defined Material Models The program LS-DYNA allows a certain amount of user
code to be implemented. In place of the material models mentioned in subsection 3.2.1,
the user can choose to write their own code in Fortran. The code will then be called by
LS-DYNA in each timestep once for each FEM element. Originally, this was intended
for the user to write more exotic nonlinear models or get a better control over individual
calculations, but the open-ended nature of this function allows to implement additional
models, such as the microstructure dynamics detailed in section 2.1, on top of the FEM.
Such a model comes with a set of free variables that can be used to store and calculate
values for each element. The program LS-DYNA then saves these variables for each
timestep, which can be used for further calculations, but also for visualization in post-
processing. The plots in figures 5.13 and 5.7 show the distribution of variables that were
stored in this way.

Mean Dislocation Density Model The MD2M detailed in subsection 6.2.3 was imple-
mented within this user code. For the work hardening part, a mechanical model was used,
while the recovery and recrystallization part was written in a thermal model. This means
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for each timestep and for each FEM element, the microstructure is calculated and the
variables are stored using the aforementioned free variables.
For the mechanical model, a simple calculation for plastic straining was added in the
beginning to calculate the deformation and obtain the plastic strain increment d"p.
For the thermal model, an option for clustering and interfacing with MatCalc was also
implemented, which is described in more detail in chapter 4.

Input / Output The inputs and outputs of the MD2M are described in the appendix.
Additionally, the work hardening part takes mechanical input provided by LS-DYNA. A
schematical representation is given in figure 3.3.

Fig. 3.3: Overview of the inputs and outputs of the user defined models discussed in this
section.
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3.2.3 Precipiation Solver
For the implementation of the precipitation kinetics discussed in section 2.2, the program
MatCalc version 6.04 was used. MatCalc started as a PhD thesis project at the Graz
University of Technology, Austria, in 1993. Initially, it modelled precipitation in interstitial-
free and bake-hardening steel, but over the years, it has been greatly refined.
In its current state, MatCalc uses the nucleation theory described in subsection 2.2.1 and
the evolution equations derived from the thermodynamic extremal principle described
in subsection 2.2.2 to simulate multicomponent precipitation in a given metal. A major
advantage of MatCalc are the vast databases which it accesses for these calculations. It
can either be operated through the console or via GUI (graphical user interface). More
information about the version and program can be found in [2].

Input The program is given three types of input. First, it needs the properties of the
overall domain where the precipitation happens, such as the dislocation density, the grain
size, the chemical composition and the phase of the surrounding matrix and others. Second,
the program gets a list of all different possible precipitates within the precipitation domain.
Each entry in this list entails the chemical composition of the precipitate, the lattice
misfit, the interface mobility and more. The last input is the heat treatment, meaning the
simulation time and the corresponding temperature progression. The inputs can either be
read from a file or be given directly to MatCalc through the console or GUI.

Output MatCalc calculates a plethora of variables during the precipitation simulation,
such as individual precipitates and their sizes. Any of those variables can be requested
directly through the console or GUI. MatCalc can also save the current state into a binary
file, which may be used as input at a later time. Finally, a MatCalc session keeps running
until explicitly closed and it always stores the last computed state. This means a session
can be called again to continue the computation where it last ended.
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3.3 Numerical Implementation
The simulation of the different experiments described in section 3.1 was done in three
steps, as shown in figure 3.4. Each step is a distinct simulation in itself, but these different
simulations pass their results over to the next step, so that a coherent simulation of the
whole process emerges.
To examine the influence of the clustering algorithm described in 4, all 7 experiments were
simulated in 3 different variants (see table 3.3). The first two stages of the experiment
(see figure 3.1), namely the pre heat treatment and the deformation were simulated the
same way for all 3 variants, since they either use LS-DYNA or MatCalc and don’t require
any coupling between the two programs. The last stage of the simulation, namely the post
heat treatment, is where the 3 variants differ in whether they coupled to MatCalc and
how this coupling was implemented.

Tab. 3.3: Simulation Variants

MatCalc Clustering
1 no no
2 yes no
3 yes yes

Fig. 3.4: Schematic overview of the numerical implementation and the programs used in
each simulation step. The * in the last step indicates the different variants, as
seen in table 3.3.

3.3.1 Pre Heat Treatment

For the pre heat treatment simulation, MatCalc was used to simulate the precipitation
kinetics (described in section 2.2) during the pre heat treatment. The program was started
once for the whole specimen, since the initial microstructure of the material was assumed
to be uniform.
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Input The starting value for the grain size δG was measured in advance, the starting
value for the dislocation density was taken as 1011 m−2 (an estimated value in line with
typical values of 1010 m−2 − 1011 m−2, see [11]), and the material parameters given in table
3.1 were used for the precipitation domain, as well as for the list of possible precipitates.

Output As output, the mean radius of the precipitates rpr, the precipitate density Npr

and the precipitation parameter χ (see equation 2.9) at the end of the heat treatment
were obtained, as well as a binary file that saved the precipitation state for use in the post
heat treatment simulation.

3.3.2 Deformation
The mechanical FEM solver of LS-DYNA (see subsection 3.2.1) was used to simulate the
compression of the specimen. For the implementation of the work hardening dynamics of
the microstructure, the MD2M was implemented in the previously described mechanical
user-defined material in LS-DYNA.

Input In previous simulations at LKR, fitting parameters such as A, B, C from equation
2.10 had already been fitted through extensive trial simulations. Material parameters
such as the elastic modulus E had been measured through experiments or looked up in
literature (see [13] for a detailed list of values and sources). The initial grain size was
taken as 65 µm (also determined through experiments). All precipitation results were
taken from the output of the pre heat treatment simulation in MatCalc. The modelling
and meshing of the cylinder was done in LS-PrePost.

Output As output, the deformed specimen was obtained, as well as for each element the
values of the dislocation density ρ, the grain size δG and the plastic strain εp.1

3.3.3 Post Heat Treatment

The thermal FEM solver of LS-DYNA was used to simulate the post heat treatment. The
recovery and recrystallization part of MD2M was implemented in the previously described
thermal user-defined material in LS-DYNA.
For experiments No. 2-7 in table 3.2, only experiment 7 was simulated. This is because
the simulation of experiment No. 7 incorporates all others, as they were conducted in the
same way but stopped at lower temperatures.

1Passing the subgrain size δsub was not necessary, since it is related to the dislocation density ρ via
equation 2.11.
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There was also a clustering option implemented into the user code within LS-DYNA to
couple it to the simulation performed by MatCalc. It is described in more detail in chapter
4. To evaluate the impact of this clustering, three variants of the post heat treatment
simulation were conducted for each experiment. They differed in whether they used the
clustering algorithm and MatCalc for the precipitation kinetics. Table 3.3 gives an overview
of the different variants.

Input As with the deformation simulation, all material parameters and fitting parameters
had already been determined for previous simulations at LKR. The output of the mechanical
LS-DYNA simulation provided the input for the thermal LS-DYNA simulation, with the
mesh, the dislocation density ρ, the grain size δG and the plastic strain εp being preserved.
For those variants with coupling to MatCalc, the binary output file from the end of the pre
heat treatment simulation in MatCalc was used as a starting point. In the other variant,
the precipitation parameter χ, the precipitate density Npr and the precipitate radius rpr

were taken from the pre heat treatment as constant values.

Output The output of this simulation was the time dependent distribution of the mi-
crostructure and precipitation values. For variant 3, the time dependent cluster distribution
was also part of the output.

Variant 1 The first variant (see table 3.3) was the most simple simulation, where
MatCalc was not used in the post heat treatment stage of the simulation. Instead, the
final precipitation values obtained during the pre heat treatment were used as constant
values during the post heat treatment simulation.

Variant 2 The second variant (see table 3.3) coupled one session of MatCalc to the
FEM simulation in LS-DYNA. In each timestep within the simulation, the values of the
grain size δG and the dislocation density ρ were averaged over all FEM elements, and the
results were passed to the MatCalc session. This method allowed the precipitation values
calculated by MatCalc to play a more dynamic role, but it didn’t take into account the
various regions with different microstructure within the specimen.

Variant 3 The third variant (see table 3.3) used the clustering algorithm described in
chapter 4 to couple LS-DYNA to MatCalc. As many MatCalc sessions as there were
clusters ran concurrently to the simulation, which lead to different precipitation values in
different regions of the simulation.



Chapter 4

Coupling Grain Structure and
Precipitation

One goal of this master thesis was the coupling of the grain size evolution calculated by
the MD2M and implemented within LS-DYNA to the precipitation kinetics simulated by
MatCalc during the post heat treatment. In previous simulations at LKR, it was assumed
that the number and size of precipitations doesn’t change after the pre heat treatment.
However, depending on the time and duration of the post heat treatment, this assumption
can be wrong. Thus, the aforementioned coupling becomes necessary.
This proved to be a difficult task, as it is not feasible to simply call a MatCalc session for
each FEM element, since the interfacing with MatCalc, as well as its computations, are
very time consuming. Therefore, an alternative method needed to be employed, namely
the clustering algorithm described within this chapter.

The suggested algorithm is of general purpose and not confined to solving the problem
discussed above. It might be applied to similar problems in multi-scale computations when
simulations at different length scales are performed.

4.1 Clustering of Large Datasets
We look at large datasets (e.g. all elements within a FEM simulation) which require a
complex evaluation function (e.g. the calculation of precipitation kinetics with MatCalc).
The idea, then, is to split the data points into clusters with similar values and then
compute the evaluation function once for each cluster instead of once for each data point.
If the data points are similar enough and if the evaluation function is smooth enough, the
error between the calculation for the cluster mean value and each data point within that
cluster will be negligible. Thus, instead of calling the evaluation function once for each
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data point, it will only be called once for each cluster. We can estimate the time reduction
for this computation in the following way:

tcluster ≈ t0
Z

N
(4.1)

Here, tcluster is the computation time with the clustering algorithm implemented, t0 is the
computation time without the algorithm, Z is the estimated number of clusters and N is
the number of data points. A schematic representation of this idea is given in figure 4.1.

Fig. 4.1: Overview of the clustering algorithm. Similar data points are represented in the
same colour and the square boxes represent the computation of an evaluation
function; (a) without clustering; (b) with clustering

4.1.1 Clustering
Overview The clustering algorithm should take a set of N data points as input and
give a set of Z clusters as output, where Z will be determined during the clustering. To
achieve this, we will have to face two challenges. First, we need to define a measure of
"closeness", so that we can determine when two data points possibly belong to the same
cluster. Second, we need to think about the algorithm with which the clusters are created.1

We will tackle both problems in the following subsection. The algorithm is shown for an
example of 2 dimensional data points in figure 4.2.

1This problem of clustering has been discussed extensively in recent years (see [22]), but the main focus
there has been data evaluation. This means, given a certain dataset, the goal is to cluster it into
sensible clusters of data for better human evaluation (an example would be the mobile phone user
data within a country, where the intent is to detect user patterns). However, our goal is not pattern
recognition but efficient computation, so we will develop our own approach.
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Fig. 4.2: Overview of the clustering algorithm. The two dimensional data points are
represented as red dots; (a) unclustered dataset; (b) rescaled unclustered dataset;
(c) start of clustering; (d) during clustering; (e) reclustering finished

Weighted Norm We start by denoting the data points by xn. Each data point is an array
of arbitrary dimension K, such as Euclidean coordinates, the pressure and temperature at
a certain place or the grain size and dislocation density of an FEM element, and a two
dimensional example for a dataset is given in figure 4.2 (a). Each data point xn has entries
xn

k , and, since we want to compare and cluster them, all data points need to be of the same
dimension K. As we want to cluster data points with similar values, we need to define a
notion of "closeness" for them. The different data dimensions might vary drastically in
scale, for example when looking at grain size and dislocation density, where the values
for grain size are of magnitude ∼ 10−6 m but the values for dislocation density are of
magnitude ∼ 1012 m−2. Therefore we introduce global limits λk for each data dimension.
The limits denote the maximum distance in each dimension that we want to have in our
clusters. To continue with the previous example, the limit for the grain size could be
2 · 10−7 m, but the limit for the dislocation density could be 5 · 1011 m−2. We can now
introduce a distance measure that will help us with the clustering, the weighted norm dλ

w.
It is defined for two data points xi and xj as follows:

dλ
w(xi, xj) :=

 K�
k=1

�
xi

k − xj
k

λk

�2 1
2

(4.2)
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As we can see, the weighted norm is just the Euclidean norm, but with the k-th dimension
divided by λk, and this dependence on λ is denoted by the superscript. It gives a general
approach to "closeness", as we now have two data points xi and xj eligible for the same
cluster if and only if dλ

w(xi, xj) ≤ 1.
From a mathematical point of view, equation 4.2 is equivalent to rescaling the k-th
coordinate axes by a factor 1/λk, which is shown as step (b) in figure 4.2.

Cluster Creation From now on we will assign each cluster a number z, and Z will be
the total number of clusters. Each cluster z has a special point cz with coordinates cz

k,
which we call the cluster center2. Whenever we want to measure the "closeness" between a
cluster z and a data point xn, we will use this cluster center as a reference and compute
the weighted norm dλ

w(cz, xn).
We now start the clustering by assigning x1 to the first cluster and designating x1 = c1 as
the cluster center, which gives us a total cluster number of Z = 1. From now on, we go
through all data points xn in sequence, and for each do the following:

• Check for the distance dλ
w(xn, cz) to all existing clusters and record the cluster zmin

with the minimal distance dλ
w(xn, czmin).

• If dλ
w(xn, czmin) ≤ 1, then assign xn to the cluster zmin.

• If dλ
w(xn, czmin) > 1, then create a new cluster numbered Z + 1, assign xn to this

new cluster and designate xn = cZ+1 as the new cluster center.

After running this algorithm for all data points, every data point will belong to a cluster,
and within a certain cluster every data point will have a weighted norm difference of at
most 1 to the cluster center.3 The whole process is schematically shown in steps (c) and
(d) of figure 4.2, where the clusters are indicated by yellow circles. In step (c), the first
cluster is chosen and in step (d), the subsequent clusters are chosen according to the
discussed algorithm.

Reclustering After the clusters have been created, we can try to improve them by using
an approach very similar to the K-means clustering approach (see [22]).
For each cluster, we calculate the average value of all data points belonging to that cluster
and set these averages as the new cluster centers cz. Then we once again go through all
data points and assign each data point xn to the cluster where dλ

w(xn, cz) is minimal. The
2It is important to note that cz is not the average value of all data points in the cluster z, since we a

priori don’t know which data points will belong to it.
3When we look at the definition of dλ

w in equation 4.2, we see that this conforms to our initial wish that
elements within one cluster should differ at most by roughly λk in the k-th coordinate.
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difference to the previous algorithm is that the total number of clusters Z and their centers
cz are already known, and that no new clusters are created in this step. We can repeat
this step as often as we like to further refine the clustering. After each reclustering, there
is a possibility that a cluster is empty, since all elements actually fit better into different
clusters. If this is the case, we simply remove the cluster, relabel the other clusters to
1, ..., Z − 1 and do not consider the removed cluster any further. The effect of reclustering
is schematically shown in step (e) of figure 4.2.

4.1.2 Evaluation
Overview After clustering the data points, we can now turn our attention to computing
the evaluation function, which we will call f(x) from now on. This evaluation function
can be any continuous function, such as the precipitation kinetics of a local microstructure.
We will quickly discuss the evaluation algorithm and then take a look into the underlying
mathematics to justify its potential accuracy. As we will see, this accuracy depends greatly
on the continuity of the evaluation function.

Evaluation Algorithm For a cluster z, we calculate the average value of all data points
within that cluster, which we denote by x̄z. Afterwards, we evaluate the function at this
average value to get f(x̄z). Then we distribute this result back to all data points within
that cluster. If we denote fcluster(x) as the evaluation by the clustering algorithm, we get
for data points xn in the cluster z:

f(xn) ∼ fcluster(xn) = f(x̄z) (4.3)

The ∼ indicates that the clustering result fcluster(xn) is (hopefully) similar to the actual
result f(xn) for each data point xn.

Accuracy To justify the approximation in equation 4.3, we will now look at a function f

which is uniformly continuous in the relevant domain.4 Further, instead of the standard
Euclidean norm |.|2 we use dλ

w. Since dλ
w is just a global rescaling coupled with the standard

Euclidean norm, it is equivalent to |.|2, and therefore the uniform continuity holds for
dλ

w. The advantage now is that we can fine-tune the rescaling in different directions by

4This assumption is plausible, since most physical processes are continuous, apart from a finite number
of discontinuities (such as phase transformations). For domains that contain no discontinuities, as
long as the input data points are bounded, we will always have uniform continuity. For domains that
contain a discontinuity, the approximation will hold everywhere except for a small area around the
discontinuity.
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changing the limits λk to achieve the optimal δ in the inequality. For a given " this gives
the following inequality:

dλ
w(x, y) ≤ δ ⇒ |f(x) − f(y)| ≤ " ∀ x, y (4.4)

We now define new limits λ∗
k := λkδ. The new limits produce a new weighted norm dλ∗

w for
which we can deduce the following relation from equation 4.2:

dλ∗
w (x, y) = δdλ

w(x, y) (4.5)

Substituting this into equation 4.4, we get:

dλ∗
w (x, y) ≤ 1 ⇒ ||f(x) − f(y)|| ≤ " ∀ x, y (4.6)

When we now look at the cluster creation, we see that within a cluster, data points have
a weighted norm difference of � 1 to the cluster average. This gives for a data point xn

within a cluster z with the cluster average x̄z the following inequality:

||f(xn) − fcluster(xn)|| = ||f(xn) − f(x̄z)|| � " (4.7)

We can achieve a sufficiently small " by choosing the limits λk well.
Altogether this shows the importance of the continuity of the evaluation function f , which
has to be considered before each application, as well as the strong dependence on the
chosen limits λk.

4.1.3 History-Dependent Clustering
Time Evolution Problems When the output of the evaluation function describes the
time evolution of a system (e.g. the precipitation kinetics of a metal), its output is often
dependent on external parameters (e.g. temperature, dislocation density, grain size), but
also on its internal state and its previous internal variables (e.g. the current sizes and types
of all different precipitates). We assume that the evaluation function has the following
form:

f(x, S) = (y, S∗) (4.8)

The inputs are the external variables x and the internal state S. The outputs are some
variables y which we will use externally, and the evolved internal state S∗.
We could apply the previously discussed clustering algorithm to this problem. However,
we would need to cluster over multiple timesteps for all input variables, that is for x and
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for S. As S potentially contains a high number of variables (e.g. the current sizes and
types of all different precipitates), this is not always feasible.

History-Dependent Clustering We can solve the problem by preserving the clusters
over different timesteps and storing the internal state S once for each cluster, since all
elements within one cluster have the same state. For this, we assume that we have the
following pairs of input to our problem:

(zold, Szold) 1 ≤ zold ≤ Zold

(xn, zn
old) 1 ≤ n ≤ N (4.9)

The pairs (zold, Szold) denote the old clusters zold and their respective internal state Szold ,
while the pairs (xn, zn

old) denote the data points and the clusters they currently belong to.
The subscript old emphasizes the previous clustering.5

We then group the data points into sets according to their old clusters:

Xz∗
old

:= {xn : zn
old = z∗

old} (4.10)

Afterwards, we cluster the Xz∗
old

individually according to the previously discussed clustering
algorithm, but without evaluating them yet.
To evaluate the newly obtained cluster z, we calculate the average of the data points x̄z as
before. For the evaluation function, we also need the internal state of the cluster. Since we
clustered the Xz∗

old
individually, all xn within the cluster come from the same old cluster

z∗
old. All data points within the cluster z thus have the internal state Sz∗

old . We can now
evaluate a data point xn within the cluster:

f(xn, Szn
old) ∼ fcluster(xn, Szn

old) =

= f(x̄z, Sz∗
old) = (yz, Sz) (4.11)

here, yz is the output in which we are interested, and Sz is the new internal state of the
cluster z.

Effect of History-Dependend Clustering With this algorithm, the previous clustering
is taken into account, and it can only be refined. Since different clusters have different
internal states and histories, their elements must be considered separately and they cannot

5In the case of the first clustering, the algorithm needs the existing clusters zold and internal states Szold

as input. An option is to have just one starting cluster, which means that at the beginning all data
points have the same cluster and thus the same internal state S.
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be put into the same new cluster. The effect is that clusters can never merge together,
even if, at a later time, their data points have similar values again. They can only stay
the same or split up into smaller clusters, and figure 4.3 shows such a process.

Fig. 4.3: Schematic representation of history-dependent clustering. Each circle represents
a cluster with the internal state Si

t at time t. In the first timestep, the initial
cluster splits up into three distinct clusters. In the second timestep, all values
are similar enough so that the clusters don’t split up further. In the third
timestep, the first cluster splits in two, because its data points have diverged
too much since the last clustering. This is however not the case for the other
two clusters and they stay the same.
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4.2 Implementation
As seen by the the equations describing the precipitation kinetics in section 2.2, MatCalc
is a continuous evaluation function, so we can use the clustering algorithm described in
section 4.1 to couple LS-DYNA and MatCalc. This algorithm first had to be put into code,
and this code then needed to be implemented within LS-DYNA.

4.2.1 flexiCluP
The clustering module6 Flexible Clustering of Paramters (flexiCluP) was developed to
implement the clustering algorithm discussed in section 4.1. It is written in FORTRAN
and can be compiled together with the main program which uses the clustering algorithm.

Code The history dependent clustering is called via the subroutine hiDe_flexiCluP.
This subroutine takes as input an array of data points, the clustering limits and an array
of integers that contains the current cluster numbers as needed for the history dependent
approach. The outputs are an array filled with the evaluation result for each data point
and an array of integers that contain the new cluster numbers.
The code also has a dummy function called evaluation_function where the evaluation
function needs to be implemented. flexiCluP is implemented so that the user just needs
to write the evaluation function for a single data point. To this end, it provides the input
value, as well as the previous cluster integer, which corresponds to the previous internal
state. As output it expects the results from the evaluation function. The new internal
state of each cluster must be saved separately, as flexiCluP doesn’t concern itself with the
internal states of the clusters. Figure 4.4 gives a schematic overview of the subroutine.

4.2.2 LS-DYNA and MatCalc
As explained in subsection 3.2.2, LS-DYNA allows for a certain amount of FORTRAN user
code to be implemented. Two subroutines7, thumat11 and uctrl, as well as the flexiCluP
module, were used to implement the clustering and evalutation algorithm. The clustered
data points were the temperature T , the grain size δG and the dislocation density ρ within
the different FEM elements, and the evaluation function was the MatCalc computation.
The MatCalc sessions were called by FORTRAN through console commands, and the
internal states S were automatically saved within these persistent sessions. Figure 4.5
shows a flowchart of the implementation.

6A module in FORTRAN is similar to a library in other programming languages.
7A subroutine is a function with no explicit return value in FORTRAN, similar to a void function in C.
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Fig. 4.4: Schematic overview of the subroutine hiDe_flexiCluP and the function
evaluation_function within.

thumat11 The subroutine thumat11 (thermal user material 11 ) is one option to im-
plement user-defined material models in LS-DYNA. It was used for the recovery and
recrystallization models, as described in subsection 3.2.2. After calculating the microstruc-
ture, the dislocation density ρ, the grain size δG and the temperature T were saved onto
a global array, which had an entry for each element. This array had a global scope, so
its values persisted between function calls, which made it possible to store and access the
individual element variables outside of thumat11.

uctrl1 The subroutine uctrl1 (user control 1 ) is called once per timestep and can be
modified by the user. Within uctrl1, the subroutine hiDe_flexiCluP was called. The
inputs were the values ρ, δG and T from the global array, then another global array
containing the previous cluster numbers and finally the clustering limits, which were
constant throughout the simulation. The outputs were the precipitation parameter χ,
the precipitate density Npr and the precipitate radius rpr. These were saved into a global
array, so that they could be accessed by the individual elements in thumat11.
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Fig. 4.5: Flowchart of the thermal LS-DYNA simulation with clustering: For each
timestep, the program applies the FEM approach described in section 2.3.
The material model is implemented in the subroutine thumat11, which is
called once for each element. Afterwards, the subroutine uctrl1 is called once
per timestep by LS-DYNA. It clusters the previously gathered data and sends it
to the MatCalc sessions. After returning the results, they are distributed back
to the elements.



Chapter 5

Results

In this chapter the results of the experiment, as well as the simulations are presented. To
recap, there were 7 experiments conducted, which are detailed in table 3.2, but only 2
simulations, one for experiment No. 1 and one for experiments No. 2-7. The reason was
that experiments No. 2-7 have the same parameters, but were just stopped at different
temperatures, so one simulation going through all temperatures is sufficient to model them.
Experiment and simulation both were divided into three stages, which consist of the pre
heat treatment, deformation and post heat treatment. This is depicted in figures 3.1 and
3.4. However, to gauge the impact of the clustering and coupling, the post heat treatment
was simulated with 3 variants for each simulation, as shown in table 3.3.
The pre heat treatment consisted only of a single calculation in MatCalc for experiment
No. 1 and experiments No. 2-7 each. Since there was no original code or model involved,
it has been omitted here.
The program LS-PrePost was used to visualize the simulation results, and the specimen
was (virtually) cut in half to get a better sense of the distribution of values. The only
exception is the compression in figure 5.1, which was visualized in shaded 3D.

5.1 Deformation
Macroscopic Deformation The aluminium cylinder was compressed at a strain rate of
1 s−1, which can be seen in figure 5.1. This deformation was the same for experiments No.
1-7. The corresponding plastic strain of a cross section at the end of the deformation in
experiment No. 1 is shown in figure 5.2. It is highest in the center and at the buckled
edges, while next to the impactors the part barely deforms.
The apparent cross shape is a typical shape for this kind of experiment, and it is called
the forging cross (see chapter 6.3 in [15]). Since the plastic strain has a huge influence on
the dislocations, this forging cross is like a fingerprint of the deformation process and it
can be recognized in the microstructure further down the line.
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Fig. 5.1: Timesteps t = 0 s (a), t = 0.5 s (b) and t = 1 s (c) in the compression test
simulation at strain rate 1s−1. The impactors are depicted in blue and red, and
the specimen is depicted in yellow. All are visualized in shaded 3D.

Microstructure The dislocation density of a cross section at the end of the compression
test simulation is given for experiment No. 1 and experiments No. 2-7 in figure 5.3 (see
table 3.2 for the process parameters of the experiments).
Even though the deformation was identical, the different experiments already exhibit a
different dislocation density. Experiment No. 1 had a pre heating time of 10 s, while
experiments No. 2-7 had 600s. This means that for experiment No. 1, fewer solute atoms
could dissolve in the matrix and thus their concentrations were lower. Therefore the
dislocation relaxed faster through climb recovery, since the solute drag was lower. This
effect is incorporated in the addition of the precipitation parameter χ in equations 2.8 and
2.9 which affects the recovery in equation 2.10.
The dislocation density of the deformation step is passed on to the post heat treatment
simulation, so we can see that the difference in pre heat treatment times has a significant
impact on the rest of the simulation.
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Fig. 5.2: The dimensionless plastic strain after the deformation for experiment No. 1.

Fig. 5.3: Dislocation densities in [m−2] at the end of the compression step before the post
heat treatment for (a) experiment No. 1 and (b) experiments No. 2-7.
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5.2 Post Heat Treatment Experiment No. 1
Experiment Parameters As detailed in table 3.2, during the pre heat treatment the
specimen was heated to 470 ◦C at a rate of 15 ◦C/s and kept there for 10 s. Afterwards it
was deformed at a strain rate of 1 s−1 at the same temperature. Finally it was kept at
470 ◦C for 600 s during the post heat treatment and then quickly cooled down to 20 ◦C at
35 ◦C/s.
The simulation was done in three variants, which are given in table 3.3. They consist of
variant 1 with constant precipitation variables, variant 2 where one precipitation calculation
is done for the average of the whole specimen and variant 3 with full coupling and clustering
as described in chapter 4.

Variant 2 Figures 5.5 and 5.6 show a strange behaviour for the simulation variant 2.
Since variant 2 is a mix between variants 1 and 3, the unique features of variant 2 seemed
like an artifact of the simulation. This is especially true since variants 1 and 3 have almost
identical values. After some investigation, it turned out that the MatCalc session for the
precipitation kinetics failed to launch. This resulted in erroneous precipitation values and
thus caused the false results.

Grain Size The actual experiment specimen can be seen in figure 5.4. It has been cut
open and the grain structure has been highlighted with Barker’s reagent.
For comparison, the simulated grain size is given in figure 5.5. At the center, the grain size
is larger than at the top and bottom, which is in line with the experimental measurement.
However, variants 1 and 3 suggest even larger grains towards the edges of the specimen,
which are not observed in reality. One reason for this discrepancy could be that the
simulation is not finely tuned enough and the edges recrystallize without doing so in reality.
There could also be a problem with the recrystallization model, for example the fact that
it treats grains as spherical, which is not the case in reality (see figure 5.4).
Coming back to variants 1 and 3, their values are very similar. This suggests that the
constant precipitation variables in variant 1 were a good approximation. Therefore the
precipitation kinetics during the post heat treatment did not have a large influence on the
grain structure.

Recrystallized Volume Fraction The evolution of the recrystallized fraction within the
simulation can be seen in figure 5.6 for all three simulation variants.
We can see that recrystallization starts relatively early, since the specimen is already
heavily recrystallized after 85 s heat treatment and fully recrystallized at the end of the
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treatment. This result is hard to validate, since the specimen in figure 5.4 only gives the
grain size but not whether these grains are already recrystallized or not.
Further, we see again that variants 1 and 3 are very similar. This supports the suspicion
that the precipitation kinetics did not play a huge role in this simulation.

Clustering In figure 5.7 we see for variant 3 the cluster distribution within the specimen
at the end of the simulation, as well as the distribution of the precipitate density Npr and
the precipitate radius rpr. Both values were calculated within the specimen according to
the clustering, as described in chapter 4.
The cluster distribution shows that the clustering algorithm has worked as intended, as
the clusters are distributed along regions with roughly the same microstructure. This can
be checked when comparing the pattern to figures 5.5 and 5.6.
However, the distributions of Npr and rpr after 600 s show that the precipitation kinetics
were the same almost everywhere. Only after the cooling at 613 s there emerges a difference
in the precipitation variables. This is another strong indicator the precipitation kinetics
during this experiment were neglegible.

Discussion Altogether we see that the simulation can recreate the forging cross pattern
and have a corresponding grain structure evolution which in the center is similar to
the observed grain structure in the experiment. On the other hand, the accuracy of
the grain structure towards the edges can still be improved. The simulation also shows
recrystallization almost everywhere, which doesn’t seem to conform with the experiments
at the edges.
Finally, the clustering algorithm seems to work as intended, but there is much evidence
that the precipitation kinetics did not play a large role during this experiments post heat
treatment.
Variant 2 of the simulation failed, but since it is a mix of variants 1 and 3 and their results
were similar, we can safely assume that it would have produced matching values.

Fig. 5.4: Section of the specimen anodized with Barker’s reagent to make the microstruc-
ture visible.
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Fig. 5.5: Grain size within the specimen for (a) simulation variant 1, (b) simulation
variant 2 and (c) simulation variant 3. The values are taken at the end of the
simulation after cooling down to 20 ◦C.
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Fig. 5.6: Recrystallized volume fraction for (a),(b) simulation variant 1, (c),(d), simulation
variant 2 and (e),(f) simulation variant 3. The left column (a),(c),(e) is taken
after 85 s and the right column (b),(d),(f) is taken at the end after 613 s.
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Fig. 5.7: Variant 3 of the post heat treatment simulation. The top picture (a) shows the
cluster distribution in the end at 613 s.
In the middle row are (b) the precipitate density Npr and (c) the mean precipitate
radius rpr at 600 s and 470 ◦C, just before cooling down.
In the bottom row are again (d) Npr and (e) rpr, but this time at 613 s and
20 ◦C, after cooling down.
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5.3 Post Heat Treatment Experiments No. 2-7
Experiment Parameters As detailed in table 3.2, during the pre heat treatment the
specimen was heated to 470 ◦C at a rate of 15 ◦C/s and kept there for 600 s. Afterwards
it was deformed at a strain rate of 1 s−1 at the same temperature. Then it quickly cooled
down to 20 ◦C at 35 ◦C/s and afterwards reheated at a rate of 7, 1 ◦C/min. The specimens
No. 2-6 were then subsequently removed and inspected at temperatures 450 ◦C, 460 ◦C,
470 ◦C, 480 ◦C and 490 ◦C respectively. The final specimen No. 7 was kept at 490 ◦C for
another 33 min.
All these experiments were captured with one simulation, which was just evaluated multiple
times at the relevant temperatures.
Like for experiment No. 1, the simulation was done in three variants, which are given in
table 3.3. They consist of variant 1 with constant precipitation variables, variant 2 where
one precipitation calculation is done for the average of the whole specimen and variant 3
with full coupling and clustering as described in chapter 4.

Grain Size The actual experiment specimens can be seen in figure 5.8. They have been
cut open and the grain structure has been highlighted with Barker’s reagent. In addition,
the grains at the center have been measured for experiment No. 7 with an average radius
of about 103 µm.
The simulated grain size of experiment No. 7 is given in figure 5.9 for all three variants.
Each has a grain size of about 100 µm at the center, which is in line with the experimental
measurement. Like with experiment No. 1, the simulated grain size gets larger further
to the edges, whereas it stays relatively the same or gets even smaller in the actual
experiments. Again, this suggests room for improvement with either the fitting parameters
or the model itself.
We can see a significant difference in the grain size distribution between the three variants.
Variant 1 generally has the largest grains, while variant 2 has slightly smaller ones,
and variant 3 has the smallest grains. Thus, variant 3 is closest to reality, although
its predictions are still not accurate at the edges. This difference between the variants
behaviour suggests that the precipitation kinetics played an important role during the
post heat treatment of experiments No. 2-7. It also demonstrates that variant 2 can be
seen as a mixture of variants 1 and 3, since its values lie between the other two.

Recrystallized Volume Fraction The evolution of the recrystallized fraction within the
simulation can be seen in figures 5.10 for variant 1, 5.11 for variant 2 and 5.12 for variant
3. All figures have a depiction for each of the experiments No. 2-7.
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We can see that for variant 1, the specimen is already fully recrystallized in experiment
No. 2 which corresponds to a final temperature of 450 ◦C. This is completely wrong when
compared to figure 5.8, where we can see that recrystallization started between 460 ◦C

and 470 ◦C.
For variant 2, the recrystallization starts somewhere between 460 ◦C and 470 ◦C, which is
correct when compared to figure 5.8. However, the simulation of experiment No. 5 has
already fully recrystallized, which is not the case for the real specimen. As with the grain
size, this discrepancy shows that there is room for improvement in the model.
Variant 3 shows a similar behaviour to variant 2, with the difference being that the recrys-
tallization happens slightly earlier. This means that variant 3 also gets the recrystallization
timing approximately right, but afterwards there are some problems.
The differences in recrystallization timings between the variants is further evidence that
for experiments No. 2-7, the precipitation kinetics played an important role. It is, however,
hard to determine whether variant 3 was an improvement over variant 2 since both results
differ from the actual experiments.

Clustering Figure 5.13 shows the clustering at the end of the simulation for variant 3,
as well as the precipitate density Npr and the precipitate radius rpr at 470 ◦C, which
corresponds to experiment No. 4. Both values were calculated within the specimen
according to the clustering, as described in chapter 4.
The cluster distribution indicates that the clustering worked as intended, just like with
experiment No. 1, and the distribution of Npr and rpr shows that the calculation of
MatCalc for each cluster worked as well.
In addition the values for Npr and rpr provide further proof that the precipitation kinetics
were varying within the specimen and thus the precipitation coupling was necessary.

Discussion Again, the simulations manage to produce a relatively accurate value for the
grain size in the center of the specimen. However, as with experiment No. 1, the grain
size towards the edges is not accurate.
We can also see that for experiments No. 2-7, a coupling to the precipitation kinetics is
necessary to produce sensible recrystallization results. This is evidenced by the fact that
variant 1 recrystallizes much too early. It is, however, hard to say whether variant 3 is a
significant upgrade over variant 2, since it is complicated to measure the recrystallized
fraction in real specimens.
Regarding the clustering alorithm, the simulations again provide good evidence that it
is working as intended and calculating the precpitation kinetics with MatCalc for each
cluster.
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Fig. 5.8: Sections of specimens anodized with Barker’s reagent to make the microstructure
visible. The specimens were cooled down after heating up to (2) 450 ◦C, (3)
460 ◦C, (4) 470 ◦C, (5) 480 ◦C, (6) 490 ◦C and (7) after an additional 33 min
of heat treatment at 490 ◦C.
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Fig. 5.9: Grain size within the specimen for experiment No. 7 and (a) simulation variant
1, (b) simulation variant 2 and (c) simulation variant 3. The values are taken at
the end (after holding 490 ◦C for 33 mins) of the simulation.
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Fig. 5.10: Variant 1 of the post heat treatment simulation. The recrystallized volume
fraction is shown at (a) 450 ◦C, (b) 460 ◦C, (c) 470 ◦C, (d) 480 ◦C, (e) 490 ◦C
and (f) after an additional 33 min of heat treatment at 490 ◦C.
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Fig. 5.11: Variant 2 of the post heat treatment simulation. The recrystallized volume
fraction is shown at (a) 450 ◦C, (b) 460 ◦C, (c) 470 ◦C, (d) 480 ◦C, (e) 490 ◦C
and (f) after an additional 33 min of heat treatment at 490 ◦C.
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Fig. 5.12: Variant 3 of the post heat treatment simulation. The recrystallized volume
fraction is shown at (a) 450 ◦C, (b) 460 ◦C, (c) 470 ◦C, (d) 480 ◦C, (e) 490 ◦C
and (f) after an additional 33 min of heat treatment at 490 ◦C.
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Fig. 5.13: Variant 3 of the post heat treatment simulation. The figures show (a) the
cluster distribution and the resulting distributions of (b) the precipitate density
Npr in [m−3] and (c) the mean precipitate radius rpr in [m] at 470 ◦C.



Chapter 6

Summary and Outlook

6.1 Summary
This thesis aimed to improve the simulation of aluminium during deformation and heat
treatment. The previous multiscale model already combined the grain structure evolution
and recrystallization with macroscopic parameters such as temperature and the deformation,
and it was expanded by a computation of the precipitation kinetics. In chapter 2, the
physical theory behind the various models was explained. The MD2M model in particular
was studied and sourced in section 2.1, and a guideline to its numerical implementation
was given in the appendix. This documentation will facilitate maintenance and further
development to the model and the code.
The expanded model was implemented numerically through a special algorithm which
coupled the existing implementation to a precipitation kinetics program. For this, the
simulation used the FEM solver LS-DYNA and the precipitation kinetics calculation
program MatCalc. Both are detailed in section 3.2, while their implementation is described
in section 3.3.
The coupling algorithm was developed during this thesis and it uses a clustering approach
to improve the computation speed of the coupling. During the FEM simulation, in each
timestep the algorithm gathers all elements with similar grain structure into clusters and
computes the precipitation kinetics only once for each cluster. Without the algorithm,
the simulation would probably have taken multiple weeks or even more than a month
to complete. With the algorithm, the calculation time was a few days. Further, the
clustering algorithm was designed to be general enough so that it is not bound to this
specific problem. It can be used for other multiscale applications to reduce computation
time. The clustering algorithm and its implementation are given in chapter 4.
In the end, various multiscale simulations of hot compression tests were performed and
compared to available experiments to validate the multiscale model and the clustering
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algorithm. The 7 experiments all consisted of a pre heat treatment, a uniaxial compression
step and a post heat treatment. Every experiment was simulated in three variants to gauge
the impact of the precipitation coupling and the clustering algorithm. The first variant
used no coupling and just had static precipitation variables throughout the simulation.
The second variant averaged the values of all elements within the specimen and calculated
the precipitation kinetics once in each timestep. Finally, the third variant used the full
coupling available through the clustering algorithm. The experiments are described in
section 3.1, while the results and discussion thereof is given in chapter 5.
The results in section 5.3 show that there is a significant difference in the recrystallization
behaviour between variant 1 and variants 2 and 3. The fully coupled and clustered variant
3 fits reasonably well for all experiments, while variant 1 recrystallized too early for
experiments No. 2-7 (see figure 5.6). Variant 2 had failed for experiment No. 1 (see
figure 5.6), but worked well for experiments No. 2-7. Altogether, the results show that
the clustering algorithm works as intended. They also suggest that a coupled simulation
is necessary, since the precipitation kinetics during the heat treatment influenced the
recrystallization behaviour for the simulation of experiments No. 2-7. It is important to
note here that the impact of the successful coupling is likely even greater for more complex
geometries and processes. However, their simulation would have exceeded the bounds of
this thesis.
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6.2 Outlook

6.2.1 Model Refinement
Current Situation The simulated experiment was very simple and is more of a proof of
concept. The model and the parameters could be refined to obtain more accurate results.

Simulation Parameters There needs to be a parameter study for choosing the optimal
clustering limits and reaffirm the various fitting parameters used. This helps to improve
the predictive accuracy of the model, e.g. for the exact values of the dislocation density.
After that, there could be other types of experiments with either larger specimens or with
different procedures such as hot-rolling. These could show the range of validity for the
model.

Improved Recrystallization Models A major shortcoming of the recovery and recrys-
tallization models described in subsections 2.1.3 and 2.1.4 is the missing of a grain growth
equation after recrystallization. This can be seen in equation 2.31, which stops the grain
growth of the recrystallized grains after full recrystallization, that is Xrex = 1. However,
in reality we observe continuous grain growth, even after recrystallization, as depicted in
figure 2.5 and as seen in the experiments in figure 5.8. This effect could be implemented
similar to equation 2.17, but only coming into play after a sufficiently high recrystallization,
e.g. 0.9 < Xrex.

6.2.2 Code Performance
Current Situation The clustering algorithm managed to make the coupled simulations
possible. However, the simulation times were still too high, taking as long as 138 hours
for one simulation of experiments No. 2-7 variant 3. For application in more complex
simulations, these times have to be cut down drastically. This could be achieved by the
following two methods.

Reworked LS-DYNA Code The current LS-DYNA implementation is a single-threaded,
sequential simulation, which doesn’t utilize potential parallel processing capabilities. Thus,
a great way to reduce the simulation time is to rewrite the code for Message Passing
Interface (MPI).
MPI is a parallel processing standard for FORTRAN and C with premade libraries and
easy portability for different systems. It allows the user to divide the numerical work onto
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different cores that run parallel and pass data between each other. Also, this standard is
supported by LS-DYNA.

Reworked MatCalc Coupling A major timesink of the simulation is the reading and
writing of MatCalc outputs to files. Potential solutions suggested by the developers of
MatCalc are to either incorporate it directly into the code via library, or to pass data
via a socket1. Both methods would drastically reduce call times for MatCalc, but their
implementation is rather complicated.

6.2.3 Clustering Algorithm
Current Situation The clustering algorithm is a potent way to gather similar data points
and reduce the computational complexity of their evaluation. Still, it could be improved
by adding functionalities or refining existing ones. The improvements described in this
subsection were not necessary for the coupling of LS-DYNA and MatCalc, but they would
be useful for other applications of the clustering algorithm.

Dynamic Limits When looking at the evaluation function, there may be areas of input
values where even big differences in the data points have very similar outputs. On the
other hand, there may be areas where even the slightest change in input can result in a
drastically different output. At the moment, there is one set of limits λ that stay constant
over the whole input area. Therefore it is necessary to fit the limits to the most sensitive
input area, which means smaller limits and more clusters, which increases computational
complexity.
However, if the sensitive areas can be estimated beforehand, the limits might become
dependent on the inputs of the weighted norm dλ

w(x, y), that is λ = λ(x, y). This means
that in areas where the output of the evaluation function rapidly changes, the limits can
be sufficiently small, while in other areas where the output function is nearly constant,
the limits can be larger to accommodate this fact.

Interpolated Evaluation The current algorithm evaluates each cluster once to get the
final results. This is equivalent to keeping the evaluation function constant within that
cluster. Another possibility is to interpolate the evaluation function within one cluster by
evaluating at more than one data point per cluster. This allows for larger clusters, since
the evaluation within each cluster is more accurate.

1Sockets are a way for programs to communicate directly via RAM, which is a lot faster than communi-
cating via files on the hard drive.



Appendix

The Mean Dislocation Density Model (MD2M)
The MD2M uses the theory discussed above to simulate the microstructure evolution
during metal working as well as during heat treatments. Its state variables are the (mean)
dislocation density ρ, the subgrain size δsub, the grain size δG and the recrystallized fraction
Xrex. The model consists of two parts, namely the work hardening model described in
subsection 2.1.2 for simulating metal working, and the recovery and recrystallization
models described in subsections 2.1.3 and 2.1.4 for simulating heat treatments.

On the following pages, the governing equations are detailed together with a reference
to the relevant theory. They are written sequentially, so the models can be read like
instructions for a computer, with earlier lines updating variables that are necessary later
on. Whenever the increase of some variable x is denoted by dx = ..., the next step is
always x = x + dx, and it is ommited for convenience. This = sign is to be interpreted in
a programming sense, where x = x + 2 means that the variable x is increased by 2.

The MD2M was developed at LKR based on the various sources mentioned above. It is
worth to note here that the used microstructure model MD2M has certain similarities with
the microstructure model implemented directly in MatCalc. The basics for both models
are common and were previously developed in collaboration between the LKR and TU
Wien (see e.g. [20] and [6]). Further development took place in these groups independently
(see e.g. [13]).
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WORK HARDENING

INITIALIZATION

Constants

σ0, α1, α2, G, χ, b, νD, QD, fT , A, B, C, Qvac, ρeq, K taken from literature /
trial simulations

State Variables

ρ = ρ0 initial values of disloca-
tion density (usually ρeq)

δG = δG
0 and grain size
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CALCULATION IN EACH STEP

Input Variables

T , d"p, dt inputs from FEM model,
see subsection 2.3.2

Diffusion Coefficient

D = χ · νDb2 exp
�−QD

kBT

�
equation 2.9

Annihilation Distance

dann = Gb4 1
2π(1−ν)Qvac

equation 2.5

Flow Stress Model for Dislocation Density

dρ =

= fT
√

ρ

Ab
dεp − B 2dannfT

b
ρdεp − 2C · D Gb2

kBT
(ρ2 − ρ2

eq)dt equation 2.10

δsub = K√
ρ

equation 2.11

Hardening

σF = σ0 + α1Gb
√

ρ + α2Gb( 1
δsub + 1

δG ) equation 2.2 and subsec-
tion 2.3.2

H = GfT

2

�
α1 + α2

K

�
·

�
1
A

− 2Bdann
√

ρ
�

taking dσF

d�p
and using

equations 2.2 and 2.10
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RECOVERY AND RECRYSTALLIZATION

INITIALIZATION

Constants

Cρ, ρeq, G, b, γsub, γGB νD, QD, CM , δsub
eq , K, Crex, Qrex taken from literature /

trial simulations

State Variables

δsub = δsub initial values of disloca-
tion density,

δG = δG
0 grain size,

δrex = δrex
crit recrystallized grain size

N rex = 0 and recrystallization nu-
clei
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CALCULATION IN EACH STEP

Input Variables

T , dt inputs from FEM model,
see subsection 2.3.2

χ, Npr, rpr precipitation variables,
either static or from
external program (e.g.
MatCalc, see sections 2.2
and 3.2)

Diffusion Coefficient

D = χ · νDb2 exp
�−QD

kBT

�
equation 2.9

Grain and Subgrain Boundary Mobility

MGB = CM
Db

kBT
equation 2.13

Msub = MGB
γsub

γGB
equation 2.14

Zener Drag

PZGB
= 2NprπγGBr2

pr

PZsub
= 2Nprπγsubr

2
pr equation 2.15

Grain Growth

dδG = MGB

�
6γGB

δG − 2PZGB

�
dt

dδG = 0 if
�

6γGB

δG − 2PZGB

�
< 0 equation 2.17



92 6 Summary and Outlook

Recovery

dδsub = Msub



6γsub

δsub − 6γsub

δsub
eq

− 2PZsub

�
dt

dδsub = 0 if



6γsub

δsub − 6γsub

δsub
eq

− 2PZsub

�
< 0 equation 2.20

ρ =
�

K
δsub

�2
equation 2.11

Recrystallization

P rex = Cρ(ρ − ρeq)Gb2 + 3γsub

δsub equation 2.28

δrex
crit = 4γGB

P rex−PZGB

equation 2.27

dN rex = Crex exp
�
−Qrex

kBT

�
(1 − Xrex)dt

dN rex = 0 if δsub < δrex
crit equation 2.32

dδrex =

������������
MGB (P rex − PZGB

) (1 − Xrex)dt

0 if (P rex − PZGB
) < 0

dδrex = 0 if δsub < δrex
crit equation 2.31

Xrex = N rex π
6 (δrex)3 equation 2.30
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