
IPASIR-UP: User Propagators for CDCL
Katalin Fazekas #

TU Wien, Austria

Aina Niemetz #

Stanford University, CA, USA

Mathias Preiner #

Stanford University, CA, USA

Markus Kirchweger #

TU Wien, Austria

Stefan Szeider #

TU Wien, Austria

Armin Biere #

Universität Freiburg, Germany

Abstract
Modern SAT solvers are frequently embedded as sub-reasoning engines into more complex tools
for addressing problems beyond the Boolean satisfiability problem. Examples include solvers for
Satisfiability Modulo Theories (SMT), combinatorial optimization, model enumeration and counting.
In such use cases, the SAT solver is often able to provide relevant information beyond the satisfiability
answer. Further, domain knowledge of the embedding system (e.g., symmetry properties or theory
axioms) can be beneficial for the CDCL search, but cannot be efficiently represented in clausal form.
In this paper, we propose a general interface to inspect and influence the internal behaviour of CDCL
SAT solvers. Our goal is to capture the most essential functionalities that are sufficient to simplify
and improve use cases that require a more fine-grained interaction with the SAT solver than provided
via the standard IPASIR interface. For our experiments, we extend CaDiCaL with our interface and
evaluate it on two representative use cases: enumerating graphs within the SAT modulo Symmetries
framework (SMS), and as the main CDCL(T) SAT engine of the SMT solver cvc5.
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1 Introduction

Modern SAT solvers frequently serve as crucial sub-reasoning engines of more complex
tools for addressing problems beyond the Boolean satisfiability problem. Examples include
solvers for Satisfiability Modulo Theories (SMT) [9], combinatorial problems [3,37], or model
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(a) The four possible states of SAT solvers accord-
ing to the IPASIR interface (see [5]).

BCP

Decide Solution
Analysis

Learning

Conflict
Analysis

SAT

UNSAT

cb_decide cb_check_found_model

cb_add_external

cb_add_reason
cb_propagate

backtracking

SOLVING

(b) The five additional states within state Solving
according to the IPASIR-UP interface.

Figure 1 The IPASIR model and its extension with states and transitions within CDCL solving.

enumeration and counting [21]. The introduction of the IPASIR interface [5] enabled a
relatively simple integration of off-the-shelf SAT solver as a black box into larger systems,
typically to incrementally solve a sequence of similar propositional sub-problems.

Many use cases, however, require a tighter integration with a more fine-grained interaction
of the SAT solver with the rest of the system. A prominent example is the CDCL(T )
framework for SMT solvers [35], where the search of the core SAT solver on the propositional
abstraction of the input problem is guided by theory solvers. Other use cases include
MaxSAT solvers, which benefit from knowing if some literals imply others [22], and solvers
for symmetric combinatorial problems, where it is desired to add additional clauses during
search [15]. Currently, such use cases require either workarounds on the user level or non-
trivial modifications of the SAT solver. As a consequence, it is non-trivial to replace the
underlying SAT solver, which prevents taking advantage of recent advancements in SAT
solving. Additionally, non-standard extensions and modifications of the SAT solver, if not
done carefully, often come at the cost of an accidental performance hit.

In this paper, we propose a generic interface able to capture the essential functionalities
necessary to simplify and improve such use cases of SAT solvers. For this purpose, we extend
the IPASIR interface [5] with an interface to facilitate external propagators, also called user
propagators (UP), yielding a new interface called IPASIR-UP.

Our extension allows users (1) to inspect and being notified about changes to the trail
during search, (2) to add clauses to the problem during solving without restarting the search,
and (3) to propagate literals directly, based on external knowledge, without explicitly adding
reason clauses (i.e., using delayed on-demand explanation). Implementing support for such
an interface is non-trivial in a state-of-the-art SAT solver, but enables a wide range of
applications to efficiently use the solver without further, application-specific workarounds and
modifications. To advocate our proposed interface, we implemented it in CaDiCaL [10], a
state-of-the-art incremental SAT solver, on top of its implementation of the IPASIR interface.

Furthermore, we present two representative use cases of this extension of CaDiCaL in two
different application contexts: integrating CaDiCaL via IPASIR-UP as the core SAT solver
into (1) the CDCL-based SAT modulo Symmetries (SMS) framework and (2) a CDCL(T )-
based Satisfiability Modulo Theories (SMT) solver. Our experiments present evidence that
the IPASIR-UP interface provides a rich and concise interface for a modern, proof-producing,
incremental SAT solver with inprocessing in such applications.
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2 An Interface beyond IPASIR

The IPASIR interface, as introduced in [5], considers four possible states of a SAT solver
(see Figure 1a). Initially, and while the formula is under construction, the solver is in state
Unknown. When function solve() is called, it transitions into state Solving. From that
state, the solver can transition to either SAT or UNSAT (or, on interruption, back to Unknown).
Thus, IPASIR allows multiple calls to solve() while modifying the formula or querying
details of the found solution (resp. refutation) between such calls. It is, however, not possible
to interact with the solver while it is in the Solving state (except for interruptions). Our
goal is to extend IPASIR with functions that can provide such interactions, and thereby
allow to simplify and improve several use cases of modern incremental SAT solvers.

For this purpose, our interface IPASIR-UP refines the IPASIR state Solving, which
implements the main CDCL loop, into five states, as shown in Figure 1b. CDCL combines
unit propagation (BCP) with decisions (Decide) until either a clause becomes falsified by the
current assignment or each variable is assigned a truth value. In the first case, the solver
transitions into state Conflict Analysis, where it captures the reason of the contradiction
as a derived driving clause, which is then learned in state Learning. If the learned clause is
empty, the solver transitions to the UNSAT state. Otherwise, it backtracks to a lower decision
level and unit propagation starts again. In the second case, as soon as a complete assignment
is found, a standard CDCL solver will transition into the state SAT. In the presence of an
external propagator, however, we introduce an artificial state called Solution Analysis as
an intermediate state before transitioning to SAT.

In each of the five states in Figure 1b, IPASIR-UP provides a callback (with prefix “cb_”)
to interact with the external propagator (dashed transitions in Figure 1b, see Section 2.3).
Additionally, the propagator is being notified about changes to the trail (states and solid
transitions highlighted in purple in Figure 1b, see Section 2.2). In the following, we briefly
describe the main purpose of each function. Though we illustrate IPASIR-UP here by an
example implementation in C++ (see Listing 1 and Listing 2), the API is low-level enough to
be supported in C as well. Note that many other (in this context) less relevant steps of the
search (e.g. restart, reduce, and inprocessing) are ignored in the model of our interface.

2.1 Configuration and Management
In order to be able to interact with the solver while in the Solving state, a user may

connect and configure an external propagator through IPASIR-UP as follows.

Setup. When the solver is not in the Solving state, the user can connect an external
propagator via the function connect_external_propagator. This propagator may be
disconnected outside of Solving via disconnect_external_propagator. There can be
at most one external propagator connected to a solver.

Observed Variables. While an external propagator is connected, at any point in time (even
during Solving), the user can notify the solver that a variable, that might be even new,
is “relevant” by declaring it as an observed variable via add_observed_var. When not in
state Solving, observed variables can be removed via remove_observed_var. Note that
all IPASIR-UP calls involve observed variables only.

Additional Useful Functions. We propose two additional functions. First, function phase
(as already implemented in some solvers) allows to force a particular phase of the specified
variable when making a decision on that variable. Second, function is_decision can be
queried for a given variable to determine if it is currently assigned by a decision.

SAT 2023
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Listing 1 Functions for Configuration and Management (see Section 2.1).
1 // VALID = UNKNOWN | SATISFIED | UNSATISFIED
2 //
3 // require (VALID) -> ensure (VALID)
4 //
5 void connect_external_propagator ( ExternalPropagator * propagator );
6

7 // require (VALID) -> ensure (VALID)
8 //
9 void disconnect_external_propagator ();

10

11 // require ( VALID_OR_SOLVING ) /\ CLEAN(var) -> ensure ( VALID_OR_SOLVING )
12 //
13 void add_observed_var (int var);
14

15 // require (VALID) -> ensure (VALID)
16 //
17 void remove_observed_var (int var);
18

19 // require ( VALID_OR_SOLVING ) -> ensure ( VALID_OR_SOLVING )
20 //
21 bool is_decision (int observed_var );
22

23 // require ( VALID_OR_SOLVING ) -> ensure ( VALID_OR_SOLVING )
24 //
25 void phase (int lit);
26

27 // require ( VALID_OR_SOLVING ) -> ensure ( VALID_OR_SOLVING )
28 //
29 void unphase (int lit);

The complete signature of each of these functions is shown in Listing 1. The comments
above the functions indicate the IPASIR state of the SAT solver when the function is allowed
to be called (see Figure 1a for their relations). The union of states Unknown, SAT, and UNSAT
is referred to as VALID states here, while the state VALID_OR_SOLVING indicates that the
function can be called also while the solver is in the Solving state.

2.2 Inspecting CDCL via Notifications
We introduce the following three notification functions to capture the changes to the trail (see
Listing 2 for signatures). Note that it is acceptable for a SAT solver to delay these notifications
(e.g., to notify on assignments only once BCP finished). However, all notifications must
happen at the latest before any of the callback functions in Section 2.3 are called.

notify_assignment. This function is called when an observed variable is assigned (either
by BCP or Decide or by Learning a unit clause). Its first argument is the literal that is
satisfied by the assignment, and its second argument is a Boolean flag to indicate when an
assignment is fixed. A fixed assignment is persistent and the user must ensure that it is
never undone (even if backtracking would unassign it or some assumptions of the problem
are changed).

notify_new_decision_level. This function is called on every decision, even if it does not
involve an observed variable. It does not report the actual decision or the current decision
level – it only reports that a decision happened and thus, the decision level is increased.
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notify_backtrack. This function indicates that the solver backtracked to a lower decision
level. Its single argument reports the new decision level. All assignments that are not fixed
and were made above this new decision level must be treated as unassigned.

2.3 Influencing CDCL via Callbacks
In Section 2.2, we focused on notifying the user about the changes to the trail of the SAT
solver. Based on this information, IPASIR-UP allows the user to influence CDCL in various
ways via the following callback functions in each of the five states of the search (see Listing 2
for the function signatures).

Decide. Before the solver makes a decision, the callback cb_decide allows the user to
enforce a user-specific choice of the selected variable and phase. Note that users can inject
decisions only after all assumptions are satisfied.

BCP. During unit propagation, the user can provide additional literals to be propagated
through the cb_propagate callback. Note that this callback returns only a literal to be
propagated. The propagating clause is not required at this point.

Conflict Analysis. If during conflict analysis a previous user propagation (see above)
turns out to be relevant (i.e., necessary to derive the learnt clause), the solver asks the user
for the corresponding reason clause via cb_add_reason_clause_lit, one literal at a time.
The motivation for such delayed lazy explanation (see [19, 35]) during conflict analysis is to
generate and learn only useful clauses.

Solution Analysis. If the solver determines a full assignment without falsifying any
present clauses (i.e., a SAT solution is found), cb_check_found_model is called. This
function tells the solver if the SAT model is consistent with external user constraints. If not,
additional clauses can be added to the problem without restarting the search (see below).

Learning. Whenever the solver has finished BCP (right before Decide), or in case callback
cb_check_found_model returned false, users can add new clauses to the problem. Callback
cb_has_external_clause indicates if a new clause is to be added, which is then added
via cb_add_external_clause_lit, literal by literal. For proof generation, the solver stores
these clauses as irredundant original input clauses. In case the learned clause propagates
(resp. is falsified) under the current trail, the solver transitions to BCP (resp. Conflict
Analysis). When no more clauses are to be added, the solver continues the search.

2.4 External Propagation with Inprocessing
Our interface IPASIR-UP enables a more fine-grained way of incremental SAT solving, where
new clauses may be added not only between two solve calls, but also during solving. Ways
to combine inprocessing with incremental clause addition was proposed in [17, 33], but their
implementations assumed that many clauses are added all at once. Finding an efficient way
to implement [17] when new clauses are added one by one during search (as in IPASIR-UP)
is intriguing future work. For now, we assume that observed variables are internally frozen,
and whenever a variable is added via add_observed_var, it is clean w.r.t. the reconstruction
stack. This guarantees that no restore step is necessary when external clauses are added.

SAT 2023
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Listing 2 A C++ example implementation of functions for inspecting and influencing CDCL.
1 class ExternalPropagator {
2 public :
3 virtual ~ ExternalPropagator () { }
4

5 virtual void notify_assignment (int lit , bool is_fixed ) {}
6 virtual void notify_new_decision_level () {}
7 virtual void notify_backtrack ( size_t new_level ) {}
8

9 virtual int cb_decide () { return 0; }
10 virtual int cb_propagate () { return 0; }
11 virtual int cb_add_reason_clause_lit (int propagated_lit ) {
12 return 0;
13 }
14 virtual bool cb_check_found_model (const std :: vector <int > & model) {
15 return true;
16 }
17

18 virtual bool cb_has_external_clause () { return false; }
19 virtual int cb_add_external_clause_lit () { return 0; }
20 };

3 Related Work

The main motivation for incremental reasoning is to allow reusing previously learnt informa-
tion when a similar problem is solved. IPASIR [5] was introduced as a universal interface for
incremental SAT solvers, which enables easy integration into applications to take advantage
of incremental reasoning without specializing for a specific SAT solver. IPASIR-UP extends
IPASIR for use cases that require more fine-grained interaction between the application and
the SAT solver during solving. It not only gives the user more comprehensive access to
information about the solver state during solving, but allows to influence, and thus, guide its
behavior based on user-level information that is not available to the SAT solver.

For instance, adding clauses via IPASIR forces the SAT solver to restart search, delete
assumptions, and discard the trail and the implication graph. On the the other hand, adding
clauses via cb_add_external_clause_lit in IPASIR-UP allows to continue the search while
keeping all assumptions and backtracking only when a conflict is encountered.

Our proposed interface captures and standardizes functionality that is required by a range
of applications, and is thus partially implemented in some tools. An important use case for
interaction with the SAT solver as outlined above is the CDCL(T ) framework [35] for SMT
solvers. State-of-the-art SMT solvers based on this framework (e.g., [6, 13, 14]) currently
all implement a custom interaction layer with the SAT solver (see, e.g., the SAT worker
interface in [13]), which makes replacing these legacy SAT solvers with a state-of-the-art
SAT solver highly non-trivial.

The IntelSAT solver [32] implements efficient clause addition on arbitrary decision levels
(using reimplication to guarantee that no implications are missed on lower decision levels),
but does not support external decisions, lazy propagation explanation, nor notifications.

The state-of-the-art ASP solver clingo [18] provides a generic interface to augment the
tool with theory propagators. It extends the CDCL loop at four locations, with notifications
and the ability to add clauses during the search and upon checking the found model. It does
not, however, support lazy propagation explanation (i.e, cb_propagate with delayed clause
addition) and proof generation. The concept of user propagators has also been introduced in
the SMT solver z3 [11], mainly to enable users to implement custom theory support.
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4 Empirical Evaluation

To show that our interface is effective and efficient in varied use cases, we extended CaDi-
CaL [10], a state-of-the-art incremental SAT solver which implements the IPASIR interface,
with IPASIR-UP. Our extension required ∼800 lines of C++ code in CaDiCaL, accompanied
with another ∼700 lines in its model based tester. We provide an evaluation on two represen-
tative use cases: enumerating graphs with certain properties via SAT Modulo Symmetries [27],
and integrating CaDiCaL as the main CDCL(T ) SAT engine in the SMT solver cvc5 [6].

4.1 Experiments with SMS
SAT modulo Symmetries (SMS) [23–27] is a recently introduced SAT-based framework for
the exhaustive generation of combinatorial objects such as graphs, hypergraphs, or matroids
with a given property while excluding isomorphic copies of the same object (isomorph-free).
In contrast to a generate-and-test approach, which quickly becomes infeasible due to the
extremely fast-growing number of candidate objects, SMS directly generates isomorph-free
objects with the desired property. At its core, SMS runs a CDCL solver on a propositional
formula that encodes the desired property using object variables.

For instance, if the object is a graph, the graph property is expressed using variables eu,v

for each vertex pair u, v indicating existence of an edge between u and v. Isomorphic copies are
avoided by guiding the solver to generate canonical objects, e.g., by requiring the adjacency
matrix to be lexicographically minimal. Static SAT encodings of lexicographic minimality
require an exponential number of clauses [30]. Hence SMS delegates the minimality check to
an external algorithm invoked whenever the SAT solver decides on an object variable. SMS
can perform the minimality check even when many object variables are undecided. This
check tests if a minimal object is consistent with the current partial truth assignment. A
symmetry-breaking clause is sent back to the CDCL solver if the check fails.

In previous work, SMS used clingo [18], an ASP solver with support for adding custom
propagators. The IPASIR-UP interface enables us to replace clingo in SMS with CaDiCaL.
We use cb_has_external_clause to indicate if we have a symmetry-breaking clause to add
and cb_propagate to propagate literals. To exhaustively generate all isomorph-free objects
with the given property, we add a clause forbidding each object found so far. We can do this
via the standard IPASIR interface or IPASIR-UP using callback cb_check_found_model.

In the following, we compare the performance of SMS between CaDiCaL+IPASIR-UP
and clingo on two graph generation tasks. The first task is to generate up to isomorphism
all graphs for a given number n of vertices without additional restrictions, i.e., the formula
describing the graph is empty. The second task is to generate up to isomorphism all non-010-
colorable graphs with a minimum degree of at least three not containing a cycle of length 4.
A graph is 010-colorable if the vertices can be colored with 0 and 1 such that there is no
monochromatic edge with color 0 and no monochromatic triangle with color 1.

These graphs are interesting for topics related to the famous Kochen-Specker Theorem
from quantum mechanics [2]. For encoding the non-010-colorability, we follow previous
work [29]. In contrast to the first task, the encoding is relatively large, even exponential in
the number of vertices, and contains auxiliary non-object variables.

For CaDiCaL, the default configuration propagates literals and exhaustively enumerates
all graphs using the IPASIR-UP interface when possible. Configuration enum-IPASIR
propagates literals and adds symmetry-breaking clauses via IPASIR-UP but uses IPASIR
for enumeration. Configuration no-prop corresponds to default without propagating literals
but learning the clause immediately. Configuration no-inpro corresponds to default without

SAT 2023
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Table 1 Enumerating up to isomorphism: all graphs (top) and all KS candidates (bottom).

CaDiCaL+IPASIR-UP [s] Clingo [s]

#vertices #graphs default enum-IPASIR no-prop red irred

All graphs

6 156 0.01 0.02 0.01 0.02 0.01
7 1044 0.09 0.13 0.09 0.10 0.09
8 12346 0.95 1.59 1.00 1.15 1.07
9 274668 34.24 64.27 34.31 81.67 94.65

10 12005168 50815.60 109443.72 57616.47 213959.23 196576.58

#vertices #graphs default no-inpro no-prop red irred

KS candidates

16 0 10.58 9.14 13.58 25.07 18.56
17 1 39.82 31.48 44.58 122.28 87.92
18 0 190.16 59.37 187.29 872.98 493.17
19 8 1220.51 1253.96 1341.80 10542.41 3348.14
20 147 13647.66 16449.50 13493.86 67728.42 82871.65

inprocessing on the non-observed variables. For clingo, we either add the clauses as redundant
(configuration red), i.e., the symmetry-breaking clauses are part of the clause-deletion policy,
or the clauses are irredundant (configuration irred). Table 1 summarizes the results given
the number of vertices in column #vertices. The number of generated graphs is given in
column #graphs. All the here presented experiments ran on a cluster equipped with Intel
Xeon E5-2640v4 CPUs at 2.40 GHz.

For enumeration, the new interface gives a speedup over IPASIR (Table 1, top): with
IPASIR, the search is started at the root level after a model has been found, while with
IPASIR-UP, the current trail is preserved and backtracked. The bottom part of Table 1
shows that the versions using CaDiCaL perform better. Inprocessing improves performance
on the larger instances, but with less vertices it is more efficient to be turned off. On other
SMS applications, we observed clingo and CaDiCaL performing similarly. However, CaDiCaL
with IPASIR-UP shows the potential to solve problems outside the other solver’s reach.

4.2 Experiments with SMT
Satisfiability Modulo Theories (SMT) solvers serve as the back-end reasoning engine for a
variety of applications (e.g., [1,4,12,20,28,34]). The majority of state-of-the-art SMT solvers
are based on the CDCL(T ) framework [35], which tightly integrates theory solvers with a
CDCL SAT solver at its core. The CDCL(T ) SAT engine is queried to find a satisfying
assignment of the propositional abstraction of the input formula, which is then iteratively
refined until either the assignment is T -consistent or the SAT engine determines unsat.

The CDCL(T ) framework requires a tight integration with the SAT solver in a way that
allows the theory layer to interact with the SAT solver during search, i.e., in an online fashion.
This is in contrast to other lazy SMT approaches based on the same abstraction/refinement
principle that integrate a SAT solver as a black box, e.g., lemmas on demand [8,31]. That
is, rather than querying the SAT solver for a full satisfying assignment of the propositional
abstraction, the theory layer guides the search of the SAT solver until a T -consistent
assignment is found or the formula becomes unsatisfiable.

Further, throughout this process, a backward communication channel allows the SAT
solver to notify the theory layer about variable assignments, decisions, and backtracks. The
theory layer uses this information to derive conflicts, propagate theory literals, or suggest
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Table 2 SMT-LIB benchmarks solved by cvc5 and cvc5-ipasirup with a 300 seconds time limit.

cvc5 cvc5-ipasirup
Division solved time [s] solved time [s]

Arith (6,865) 6,303 173,628 6,299 176,278
BitVec (6,045) 5,552 153,899 5,529 161,482
Equality (12,159) 5,320 2,062,804 5,322 2,061,758
Equality+LinearArith (53,453) 45,902 2,288,230 45,906 2,288,352
Equality+MachineArith (6,071) 983 1,533,646 987 1,532,782
Equality+NonLinearArith (21,104) 13,314 2,419,535 13,053 2,486,588
FPArith (3,965) 3,145 268,628 3,155 266,245
QF_Bitvec (42,472) 40,321 984,880 40,320 985,946
QF_Datatypes (8,403) 8,077 110,704 8,168 82,878
QF_Equality (8,054) 8,044 9,394 8,047 7,169
QF_Equality+Bitvec (16,585) 15,817 307,558 16,015 234,369
QF_Equality+LinearArith (3,442) 3,388 23,041 3,381 23,465
QF_Equality+NonLinearArith (709) 627 27,428 629 27,598
QF_FPArith (76,238) 76,054 94,487 76,081 76,700
QF_LinearIntArith (16,387) 11,670 1,575,635 12,004 1,512,696
QF_LinearRealArith (2,008) 1,721 130,408 1,766 113,919
QF_NonLinearIntArith (25,361) 13,037 4,094,712 13,682 3,840,933
QF_NonLinearRealArith (12,134) 11,166 333,933 11,238 316,728
QF_Strings (69,908) 69,357 203,677 69,296 230,918

Total (391,363) 339,798 16,796,234 340,878 16,426,813

decision variables based on theory-guided heuristics. If theory propagations are involved
in deriving a conflict in the SAT solver, the theory layer must provide explanations for
the propagated theory literals. If a partial assignment of the propositional abstraction is
T -inconsistent, the theory layer sends a lemma to the SAT solver to refine the abstraction.

cvc5 is a state-of-the-art CDCL(T ) SMT solver widely used in industry and academic
projects [6]. It relies on a highly customized version of MiniSat [16] as its core SAT engine,
which was extended to support the production of resolution proofs, pushing and popping of
assertion levels, and custom theory-guided decision heuristics. The interaction with cvc5’s
theory layer is directly implemented in MiniSat by various callbacks.

These customizations make it difficult to replace this version of MiniSat with a state-
of-the-art SAT solver and take advantage of improvements in SAT solving. Replacing this
customized MiniSat with a SAT solver that implements IPASIR-UP enables us to easily
switch it out with any other solver that implements the interface. It further has the additional
advantage that interaction with the SAT layer is standardized and clean, i.e., no “hacks”
have to be added to the SAT solver that may accidentally impact performance.

We integrated CaDiCaL with the IPASIR-UP extension as main CDCL(T ) SAT engine
while fully utilizing the IPASIR-UP notification and callback interface: notify_assignment is
used to construct the current partial assignment for the observed theory literals; the incremen-
tal solver state of cvc5 is managed via notify_new_decision_level and notify_backtrack,
which are utilized to restore its internal state when backtracking decisions; cb_propagate and
cb_add_reason_clause_lit are used for theory propagations and explanations; cb_decide
to implement custom decision heuristics; cb_add_external_clause_lit for adding lem-
mas and conflicts; and cb_check_found_model to check whether the SAT assignment is
T -satisfiable. cvc5 further uses phase to set the phase for specific variables, and is_decision
to query if a specific variable was used to make a decision.
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The full integration of CaDiCaL as CDCL(T ) SAT engine of cvc5 required about 700
lines of C++ code on top of cvc5 1.0.5. In the following, we refer to this version of cvc5 with
CaDiCaL as the CDCL(T ) SAT engine as cvc5-ipasirup. Note that proof production is not
yet supported in cvc5-ipasirup, since this requires an extension of the proof infrastructure
of cvc5 to support DRAT proofs (MiniSat was customized to emit resolution proofs).

We evaluate the overall performance of cvc5-ipasirup against cvc5 version 1.0.5 on all
non-incremental benchmarks of the 2022 release of SMT-LIB [7]. We ran this experiment on
a cluster equipped with Intel Xeon E5-2650v4 CPUs and allocated one CPU core, 8GB of
RAM and a time limit of 300 seconds for each solver and benchmark pair (unknown answers
were treated as timeouts). Table 2 shows the number of solved benchmarks and runtime
grouped into the divisions defined in SMT-COMP 2022 [36].

Overall, cvc5-ipasirup solves 1080 more benchmarks than cvc5 and improves over cvc5
in 13 out of 19 divisions. On the 336, 533 commonly solved benchmarks, cvc5-ipasirup
(947, 053s) is 1.16× faster than cvc5 (1, 096, 092s). For quantifier-free divisions, cvc5-
ipasirup significantly improves over cvc5 in arithmetic logics (+1091) and in logics that
combine bit-vectors with arrays (+198). On quantified divisions, cvc5-ipasirup’s perfor-
mance is similar to cvc5 except for the UFNIA logic (in division Equality+NonLinearArith),
where cvc5-ipasirup solves 251 less benchmarks than cvc5. The overall results of cvc5-
ipasirup are very encouraging, given the fact that the cvc5 code base is tuned for its custom
version of MiniSat. This particularly applies to the quantifiers module in cvc5, explaining
the UFNIA performance regression. However, the cvc5-ipasirup implementation provides a
solid baseline to tune and improve cvc5’s internals for the IPASIR-UP interface.

5 Summary and Future Work

In this paper, we proposed an extension of the IPASIR interface of SAT solvers to facilitate
interactions with the solver during the search. We demonstrated the usage and benefits of such
an interface in two representative use cases. However, to enable all functionalities of modern
SAT solvers, some restrictions were introduced. For example, to enable inprocessing, external
clauses can have only observed (i.e., frozen) variables. Further, in our current implementation
proof production is only experimental. In future work it needs to be evaluated and extended
to support further features such as distinction of redundant and irredundant external clauses.

We believe that both developers of more complex reasoning tools and end-users of SAT
solvers can strongly benefit from a unified interface that provides access and control over
the details of CDCL methods during incremental problem solving. Though the proposed
IPASIR-UP interface provides a sufficient set of functions to cover a very wide range of
applications, there are many possible extensions to consider in the future. For example,
users might want to decide when to restart the search or where to backtrack upon a conflict.
Sharing more information about the internal search statistics, or variable and clause scores
could also be valuable. We hope that further discussions and further use cases of IPASIR-UP,
for instance in MaxSAT, knowledge compilation or in QBF reasoning, will make it clear what
kind of extensions and refinements would be the most practical.
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