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Kurzfassung

Inspiriert durch die Definition des Weakest Failure Detectors in Asynchronous Message
Passing Systems begeben wir uns auf die Suche nach dem Strongest Message Adversary
in Synchronous Message Passing Systems. Dafür müssen wir natürlich zuerst festlegen,
was ’stronger’ im Kontext von Message Adversaries überhaupt bedeutet. Ähnlich wie
im Asynchrous Message Passing Model vergleichen wir Message Adversaries, indem
wir einen Message Adversary auf einem anderen Message Adversary simulieren. Die
formale Basis für diese Arbeit ist eine Erweiterung des HO-Models, das von Charron-
Bost und Schiper in [CBS09] eingeführt wurde. Nach der formalen Definition einer
Simulation eines Message Adversaries präsentieren wir einen Algorithmus der den Message
Adversary STAR auf jedem Message Adversary, der eine Lösung für Consensus erlaubt,
simulieren kann. Das impliziert, nach unserer Definition, dass der Message Adversary
STAR ein Top Element in der induzierten Quasi-Ordnung ist. Wir führen weiter aus,
dass es nicht nur einen ’strongest’ Message Adversary gibt, sondern eine Menge an
’strongest’ Message Adversaries, und charakterisieren diese. Danach besprechen wir die
Beziehung der ’strongest’ Message Adversaries zu dem Weakest Failure Detector und
die Relation zu den paradoxen Resultaten aus [BRS+18] die durch unsere verfeinerte
theoretische Basis aufgelöst werden können. Schlussendlich definieren und beweisen wir
eine speichereffizientere Reduktion von Multi-Valued Consensus auf Binary Consensus,
die einen zentralen Baustein in unserer Message Adversary Simulation darstellt.
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Abstract

Inspired by the chase for the weakest failure detector in asynchronous message passing
systems, we look for the strongest message adversary in the synchronous setting. This
first requires defining the notion of a ’stronger’ message adversary and, similar to the
asynchronous model, building a pre-order by simulating a message adversary on top of
another message adversary. The formal basis for this thesis is an extended version of the
HO-model introduced by Charron-Bost and Schiper in [CBS09]. After stating a validity
criterion for simulated runs, i.e., a correct message adversary simulation, we present an
algorithm that can simulate the message adversary STAR atop of any message adversary
that allows to solve consensus. This implies that STAR is a top element in our relation
and thus named a ’strongest’ message adversary. However, rather than a single strongest
message adversary, it turns out that there is a set of strongest message adversaries, which
we characterize fully. After discussing the relation of a strongest message adversary to
the weakest failure detector, we elaborate on a seemingly paradoxical result presented in
[BRS+18] and resolve it by means of our refined theoretical basis. Finally we provide
and prove correct a more memory efficient reduction of multi-valued consensus to binary
consensus, which forms a crucial building block in our message adversary simulation and
also provides a practical example for the utility of message adversary simulations that
might be of independent interest.
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CHAPTER 1
Introduction

A century ago there were no computers. Fast forwarding to the first processors, we
discover that back then most of the problems concerned just one processing unit at a
time. Pretty soon after that we taught processors to talk to one another, introducing a
variety of new problems just because processors could now exchange information. One of
the most prominent problems turned out to be the seemingly trivial task of agreeing on
some common value in a group of processors, similar to a group of friends trying to agree
which pub they meet at tonight. While the choice of the pub in the group of friends
might depend on the individual taste in beer, the outcome in the set of processes depends
more on the environment, for example the timeliness of messages or the reliability of the
communication channels.

In more scientific terms, we would call this area distributed computing, meaning multiple
processing entities with some means of exchanging information together with a common
task to solve. We usually refer to the processing entities as processes to avoid confusion
with a processor, which today contains already multiple cores and each may execute
a different program, whereas a process only executes one ’program’. Coincidentally,
multicore processing already holds a distributed computing problem, namely keeping a
consistent distributed memory state.

In order to study distributed systems, we abstract away the not so important details and
focus on the core of the problems. Romantic relationships within the group of friends
might not be important, but the means of communication is. Are they all standing in a
circle and talking over each other, or are they communicating via postal mail with non
reliable delivery? Finding the next pub arguing in a circle might crucially depend on
the group synchronizing their communication in order to even understand each other.
On the other hand, the postal exchange of information may silently not deliver a letter,
and thus presents the group of friends with the entirely different challenge of deciding
whether a message is late, or never arriving.
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1. Introduction

The group of friends using the lossy postal service might decide to pay extra for same day
delivery, granting them security that if, at the end of the day, a letter did not arrive, it
was lost. This is already really close to the synchronous message passing (abbreviated as
SMP) model used in this thesis. For sake of completeness assume that a second group of
friends decides to ditch postal and every friend personally delivers every message to the
doorstep and drops it there. This introduces the danger that, on their way to the next
doorstep, a friend might find another pub they like together with an entirely different
group of friends and suddenly, silently drop out of the decision process. As they obviously
cannot inform their original group of friends about their decision to drop out, the original
group of friends cannot distinguish between them just taking very long to deliver their
messages, or them having found other friends (and a new pub). This second group of
friends is very close to the asynchronous message passing (abbreviated as AMP) model
and [FLP85] famously proved that in general, they cannot find a common pub if already
just one friend silently deserts to another group of friends.

One effort of making the decision process in asynchronous message passing possible
again involved introducing oracles for every process, called failure detectors. For our
second group of friends, this would mean every friend has an app granting them arbitrary
information about the state of the group. A weakest app (in terms of information
provided) still allowing a consensus to be reached is abbreviated as (Σ, Ω) and was
already found in [CHT96].

1.1 Motivation, problem statement and results
This thesis builds on the analogy of the group of friends trying to coordinate via the lossy
postal service. After abstracting away the whole social situation we are left with a set of
processing entities (the friends), exchanging messages in rounds (where one day is one
round) and an adversary (the postal service), which ultimately decides for each message
whether it arrives or not. The so called message adversary usually consists of a set of
infinite directed graph sequences G1, G2, . . . (one for each round), where a message arrives
at its destination q if and only if the corresponding communication graph Gk in that
round k contains an edge from the sender p to q. We can right away conclude that if the
message adversary looses every message, the processes cannot reach an agreement and
the consensus problem is unsolvable. This motivates restricting the message adversary
in some way, for example in the amount of messages it may loose in each round, or
identifying one process whose messages are guaranteed to arrive.

This raises the question of how much freedom for the message adversary is too much
freedom, i.e., when is the adversary too strong for consensus to be solvable? We know
adversaries which make solving consensus rather easy, for example, the message adversary
which looses no messages, and we know adversaries which make consensus impossible.
This suggest that there is some adversary in the middle which just allows consensus to be
solved, but any ’strengthening’ would make consensus unsolvable. The goal of this thesis
is to rigorously define and find this strongest message adversary, building on and further
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1.1. Motivation, problem statement and results

developing the idea and general approach introduced by Schmid, Schwarz and Winkler
in [SSW18]. Finding this core of making consensus possible allows us, for example, to
reduce the postal service reliability to a minimum necessary.
For an initial inspiration, we can look over to asynchronous message passing, as the
weakest failure detector for consensus has already been found there. This requires
drawing relations between AMP and SMP , which is usually done by trying to simulate
an algorithm for one model via some simulator in the other model. Raynal and Stainer in
[RS13] compared the weakest failure detector (Σ, Ω) in AMP to the message adversary
(SOURCE, QUORUM) in a very fine-grained manner. Among other results, they showed
that the failure detector Σ exactly captures the message adversary SOURCE, whereas
Ω exactly captures the message adversary QUORUM. Despite their detailed results, it
remained an open question whether any message adversary allowing consensus, and in
particular a strongest message adversary for consensus, can simulate the weakest failure
detector (Σ, Ω). In order to positively answer this question, (SOURCE, QUORUM) will
have to be a strongest message adversary or, as it turns out, belong to the set of strongest
message adversaries.
Finding a strongest message adversary requires us to define what ’stronger’ means. More
precisely, we need to relate two message adversaries in terms of their ability to allow
solving consensus. Building on the predicate emulations introduced in the heard-of
model in [CBS09], we define a message adversary simulation, as the simulation of some
algorithm specified for message adversary MA � atop of some other message adversary MA
via another simulation algorithm. We spend considerable efforts on rigorously specifying
what makes a simulation correct, meaning that the simulated algorithm behaves as if ’it
was run on the model directly’, in this case MA � in SMP. This formal definition of a
simulation of message adversary MA in SMP atop of another message adversary MA �

in SMP allows us to compare arbitrary message adversaries in terms of their problem
solving capabilities. Utilizing this, we will identify the message adversary STAR, which
simply consists of sequences of repeated star-graphs, as a top element in the preorder
defined by the message adversary simulation relation. Additionally, we extend the set of
strongest message adversaries to any message adversary that can simulate STAR.
Here we also encounter the paradoxon already spotted in [BRS+18]. There, the authors
proved that the message adversary VSSC(∞) in SMP cannot simulate any algorithm
on the failure detector Σ in AMP, implying that the message adversary VSSC(∞) in
SMP cannot simulate the weakest failure detector (Σ, Ω) in AMP . On the other hand,
they identified that VSSC(∞) can simulate any algorithm on STAR in SMP , and that
it is straight forward to simulate (Σ, Ω) in AMP on STAR, contradicting the previous
conclusions. The reason for this paradoxon was traced back to the validity condition for
simulated runs. We will sort of dance around this paradoxon, because the definition of
a correct run in this thesis differs from the definition applied in [BRS+18]. This deals
with the paradoxon by simply allowing Σ in AMP to be simulated atop of VSSC(∞) in
SMP, invalidating the first side of the contradiction.
Last, we will reduce multi-valued consensus to binary consensus. This reduction was
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1. Introduction

already proven in Winklers PhD thesis [Win19], but we will reduce its space complexity
from exponential to linear. This also provides a ’real-world’ setting, where our definition
of a message adversary simulation can be used to to prove the correctness of a simulated
algorithm.

1.2 Related work
There are already a couple of publications about possibility and impossibility results for
consensus in undirected dynamic networks [KOM11] and in directed dynamic networks
[BRS12, BRS+15, SWS16, BRS+18, WSS16]. As already mentioned, Raynal and Stainer
in [RS13] established many interesting equivalences between various failure detectors on
AMP and message adversaries on SMP, but restricted the applicability to so called
task-solving algorithms. Similar to this thesis, they also compared two systems by
simulating one on top of the other.

[KS06] introduce the GIRAF framework to compare the impact of various timeliness
and failure detector assumptions on the runtime performance of consensus algorithms.
[DLS88] examined the consensus problem in presence of partial synchrony, where the
processes’ speeds can differ, the message delay can be arbitrary (but bounded) or both.
They showed that the partially synchronous model with Φ = 1 and Δ ≥ 1 and the
asynchronous model with the perfect failure detector are not equivalent in terms of
problem solvability. Charron-Bost and Schiper introduced the HO-model in [CBS09],
which this thesis uses and extends. Instead of focusing just on synchronous message
passing, the HO-model is an abstraction that works for a large set of distributed systems
allowing for easier comparison between different models.

As already mentioned, the weakest failure detector (Σ, Ω) for consensus was found
in [CHT96] right after the concept of failure detectors was introduced in [CT96] by
nearly the same authors. This inspired several publications in the chase for the weakest
model still allowing the implementation of the failure detector Ω [ADGFT01, ADGFT03,
ADGFT04, MR99, AFM+04, MOZ05, HMSZ09, FR10]. Rajsbaum, Raynal and Travers
showed in [RRT08] that failure detectors do not increase the solution power of the
iterated immediate snapshot model over asynchronous read/write shared memory. A
more general relation between various eventually synchronous models and asynchronous
models with stabilizing failure detectors, which also considers efficiency of the algorithmic
transformations, has been established by Biely et. al. in [BHDPW07]. Among other
results, it establishes that Ω is essentially equivalent to models with an eventually timely
source, as well as to eventual lock-step rounds. [JT08, CBHW10] shed some light on
limitations of the failure detector abstraction in timing-based models of computation,
which are relevant in our context.

Consensus in synchronous message passing networks was already mentioned in the
seminal paper [SW89] by Santoro and Widmayer, generalizations have been published in
[SWK09, CBS09, BSW11, CGP15, CBFN15]. The term message adversary was coined
by Afek and Gafni in [AG13]. Whereas the message adversaries in all the work above are
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1.3. Outline

oblivious, meaning that they may choose the graph for a round arbitrarily from a fixed set
of graphs, [BRS12] and some follow-up work [BRS+15, SWS16] allows arbitrary sequences
of communication graphs (that can also model stabilizing behavior, for example).

1.3 Outline
In Chapter 2, we introduce SMP using the formalism of the heard-of model and extend
it with process crashes. We also formally define the consensus problem in a round based
setting. Then we briefly introduce the AMP model. We proceed with Chapter 3, where
we motivate our message adversary simulations and how we define a valid simulation.
We present a couple of very simple examples motivating the following definitions. The
chapter finishes with a formal definition of our message adversary simulations, which will
be shown in Chapter 4 to induce a preorder on message adversaries. We present a message
adversary simulation simulating STAR on any message adversary allowing consensus to
be solved, establishing STAR as a strongest message adversary. In Chapter 5, we explore
the relation between a strongest message adversary and a weakest failure detector. In
Chapter 6, we circle back to the heard-of model and the predicate emulations defined
there and relate our results to the results presented in [SSW18]. We finish this thesis
with Chapter 7, where we formally establish an equivalence between multivalued and
binary consensus in our model.
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CHAPTER 2
Model of computation

2.1 Synchronous message passing (SMP)
Following the notation of [RS13], the abbreviation we use for synchronous message passing
systems is SMPn[adv : MA]. Here, n is the number of processes and MA is the message
adversary, for example (SOURCE, QUORUM), or STAR to name a few.
The formal foundation of the model SMPn,f used here is based on the formalism of
the heard-of model, or HOmodel introduced in [CBS09], which is extended to account
for process crash failures. We study a set of n > 1 processes {p1, . . . , pn} with unique
identifiers Π = {1 . . . n} out of which up to f processes may crash at arbitrary points in
time. Failed processes end up in a non-recoverable crashed-state, denoted by ∅, which
we add to the process states. Non-failed processes may exchange messages from a set
of messages M , which includes a placeholder ⊥ indicating the empty message (i.e., no
message received). Processes may fail at any time, in particular during the sending
operation and therefore only reach a subset of the intended receivers in the round they
fail. But we can assume that the sending operation of one message to a single recipient
is atomic, i.e., we do not deal with corrupted (partially sent) messages.

Each process p ∈ Π can be described as a 3 tuple


statesp ∪ {∅}, initp, {(Sr
p , T r

p ) | r ≥ 1}�
where statesp is the set of states, initp ⊆ statesp is the set of initial states and
{(Sr

p , T r
p ) | r ≥ 1} is the set of message-sending and state-transitioning functions, one

per round r ≥ 1. Round 0 exists and is usually called the initial configuration, but S1
p

and T 1
p are already responsible for message-sending and state-transitioning.

Sr
p , the message sending function for round r, maps a state and the intended receiver to

a unique (possibly ⊥) message

Sr
p : statesp × Π → M.
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2. Model of computation

T r
p , the state-transition function for round r, maps states and partial vectors of M (the

incoming messages or ⊥ if none, indexed by Π) to the next state

T r
p : statesp × (MΠ) → statesp.

Note that Sr
p is responsible for the message p sends to itself, not T r

p . The collection
of processes is called an algorithm on Π, which is by definition deterministic. We call
an algorithm uniform if it is not aware of n (the number of processes in the system),
meaning that the same algorithm works for any arbitrary number of n. Conversely, a
non-uniform algorithm is dependent on the number of processes.

An algorithm tries to solve a given problem by sending messages between processes (one
message from every process to every process in every round), but is impaired by the
message adversary who ultimately decides which sent messages actually arrive at their
intended destination. There are different approaches for modelling this behavior; we use
a graph-based approach, whereas for example [CBS09] describes the message patterns
via predicates.

A message adversary is a set of admissible communication graph sequences and a com-
munication graph sequence σ is an infinite sequence σ = (Gr)r≥1 of directed graphs
Gr = (Π, EGr) (one graph per round), where an edge (i, j) ∈ EGr means that process
pj hears from process pi in round r. We generally assume that every process hears
from itself in every round, which is equivalent to a self-edge for every process in every
communication graph Gr. An example for a message adversary would be the tournament
message adversary TOUR [RS13]: it consists of the set of all communication graph
sequences where, in any round, for any two processes p and q, either the message from p
to q or the message from q to p is suppressed, but not both.

Note that we can translate any communication graph sequence into a heard-of collection,
as defined in [CBS09], and vice versa:

HO(p, r) = {q | (q, p) ∈ EGr } (2.1a)
EGr = {(p, q) | p ∈ HO(q, r)} (2.1b)

This translation only works assuming that every process sends a message to all other
processes in every round. Otherwise, a process not appearing in an HOset could either be
due to the message adversary suppressing the communication, or because the algorithm
did not send anything in that round. In the case of an algorithm that selectively sends
messages, this could be fixed by introducing an empty message mempty != ⊥, indicating
that the link is alive, but the process has nothing to say.

Computations in the HO-model consist of infinitely many rounds, which are communication-
closed layers in the sense that any message sent in a round can be received only in that

8



2.1. Synchronous message passing (SMP)

round. In each round r, any non-crashed process p first applies Sr
p to the current state sp

and ’emits’ the messages to be sent. After that, p ’collects’ all incoming messages from
HO(p, r) (the in-neighbors of p in Gr, see Eq. (2.1a)) and applies T r

p to its current state
together with the received messages to compute its next state s�

p.

We call the collection of the round r states

Cr = (s1, . . . , sn), Cr ∈ (states1 ∪ {∅} × · · · × statesn ∪ {∅}) (2.2)

at the end of the round (meaning, after application of the state-transition function) the
round r configuration.

In order to describe the failure pattern for a given run, we define a failure pattern function
F (r) (similar to F (t) in [CT96]) mapping a round r to the set of processes which crashed
up to that round. If a process p fails in round r�, it neither sends any messages in any
round r > r� nor does it apply any state transition function T r

p for r ≥ r�. However in
its failing round r�, process p may send just a subset of the intended messages before it
crashes. We therefore introduce a new failure characteristic function HF that defines, for
each failing process p, which messages it sends in its failing round r�:

F : N → 2Π

HF : faulty(F ) → 2Π (2.3)

We assumed processes cannot crash in their initial state, meaning F (0) = ∅, and
that process failures are non-recoverable, implying F (r) ⊆ F (r + 1). We call the set
faulty(F ) = �

r∈N F (r) the faulty processes and we call the set Π \ faulty(F ) the correct
processes. We also use the discrete derivative f = ∂F

∂r = ∂F
∂r : N → 2Π to map a round r

to the processes failing in round r.

Similar to the heard-of model in [CBS09], we call the tuple (A, MA) a communication-
graph machine (or shorter CG-machine), where A is an algorithm on Π and MA is a
message adversary for Π. A run of a CG-machine is a sequence of configurations, one
per round, and is completely determined by an initial configuration

C0 ∈ init1 × · · · × initn ,

a communication graph sequence σ ∈ MA, a failure pattern F and a failure characteristic
HF .

Note that [CBS09] uses σ to denote a run, but we already assigned it to communication
graph sequences, so here we will use � to denote a run given C0, σ ∈ MA, F, HF and
(A, MA):

� = (C0, C1, C2, . . . ) = (Cr)r≥0 = (A, MA)C0,σ,F,HF
(2.4)

We denote a synchronous message passing system where up to f processes may fail as
SMPn,f , but abbreviate the special case with f = 0 as just SMPn = SMPn,0 with
F (r) = ∅ and HF (p) = ∅ for all p ∈ Π. If we are reasoning about SMPn, then we will
abbreviate the CG-machine from Eq. (2.4) as (A, MA)C0,σ.

9



2. Model of computation

For readability, we define the helper function Mr
p(q) (in Eq. (2.5)), which provides the

message process p receives from process q in round r by combining the message sending
function Sr

q with the communication graph σr, the failure pattern F and the failure
characteristic HF :

Mr
p(q) =

�
Sr

q (�r−1
q , p) if (q, p) ∈ Eσr ∧ [q /∈ F (r) ∨ q ∈ f(r) ∧ p ∈ HF (q)]

⊥ otherwise.
(2.5)

A run � is constructively defined as follows:

�r
p =

����
T r

p (�r−1
p , (Mr

p(1), Mr
p(2), . . . Mr

p(n)) ) if r > 0 ∧ p /∈ F (r)
C0

p if r = 0
∅ if p ∈ F (r) .

(2.6)

We use �r
p to represent p’s state Cr

p after round r in �.

We then define the set of all possible runs EA,MA of a given CG-machine (A, MA) as:

EA,MA = {(A, MA)C0,σ,F,HF
| C0 ∈ init1 × · · · × initn,

σ ∈ MA,

F : N → 2Π,

HF : faulty(F ) → 2Π} ⊆ Ω

(2.7)

where F and HF conform to Eq. (2.3), and

Ω = states1 ∪ {∅} × · · · × statesn ∪ {∅}

contains all possible configurations of the algorithm A, and

Ω = Ω × Ω × . . .

denotes the set of all possible runs of A.

As we later deal with pseudo-code definitions, we can also understand a state Cr
p as a

function mapping variables to their values at the end of that round. Formally, if we
want to refer to the value of the variable y of process p in round r of run �, we would
write it as �r

p.y, but if it is clear which run � we are talking about, we will use just yr
p.

Additionally, we identify the special vector INr
p in every state, which maps each process

q to the message p received from q in round r ≥ 1:

INr
p = (Mr

p(1), Mr
p(2), . . . Mr

p(n)) (2.8)

For studying information propagation in a sequence of communication graphs (Gr)r≥1,
the compound graph is a very useful concept:

10



2.2. Consensus on SMP

Definition 1 (Compound Graph) Given two graphs G = 
V, E� and G� = 
V, E��
with the same vertex-set V , the compound graph G ◦ G� is defined as 
V, E���, where

(p, q) ∈ E�� ⇐⇒ ∃r : (p, r) ∈ E ∧ (r, q) ∈ E�.

A compound graph over multiple rounds captures a possible message chain from a process
to another process. We use this concept to capture information exchange over multiple
rounds.

Definition 2 By p
r,r�
� q, we express the fact that the communication graph sequence

permits a chain of messages from process p to process q starting in round r and ending
in round r�. Formally

p
r,r�
� q ⇐⇒ (p, q) ∈ EGr+1 ◦···◦ Gr� .

With the definition of a run, we now know how to execute an algorithm under any
message adversary, failure pattern and characteristic, but we don’t know whether said
algorithm does what we expect of it. Problems (as we encounter them here), essentially
map a run of a given algorithm to true or false depending on whether the given run
solved the problem or not. Formally, we will describe a problem through a set of correct
runs P, where a run is contained in P if and only if it solves the problem represented
by P. We will characterize a problem through a propositional formula φ, where a run �
solves a problem iff it satisfies said formula � |= φ. Thus the set of admissible runs can
be defined as:

P = {� ∈ Ωω | � |= φ} (2.9)

where Ωω is the set of all possible runs of all algorithms, i.e., CG-machines. See for
example Definition 3 for how the consensus problem is specified.

We say that an algorithm A solves a problem P under MA, if the set of all possible runs
is contained in P:

EA,MA ⊆ P
On the other hand, we say that a problem is impossible to solve under some model
SMPn,f [adv : MA], if there is no deterministic algorithm A such that EA,MA ⊆ P. For
example, every problem that requires at least some communication among the processes
is impossible under the unrestricted message adversary ∞, as the sequence (G, G, . . . )
where the only edges of G are self-loops, is also in ∞.

2.2 Consensus on SMP
In this thesis, we will primarily focus on the consensus problem tailored for SMPn,0,
meaning that we do not account for process failures.

11



2. Model of computation

Every process p ∈ Π has an input value x0
p ∈ V from some finite domain V that excludes

the special symbol ⊥, and a decision variable yp, which is initially yp = ⊥. We use the
term multi-valued consensus to stress that V is not restricted (but finite) and binary
consensus when |V | = 2. After a finite number of rounds, all correct processes need to
irrevocably decide on a common value from V . We define three propositional formulas,
each representing a different aspect of the consensus problem.

(V) Validity: If a process decided on v, then v is the input value to some process:

φV := ∀r > 0, ∀p ∈ Π, ∀v ∈ V : yr
p = v → ∃q ∈ Π : x0

q = v (2.10)

(A) Agreement: All processes irrevocably decide on the same value v:

φA := ∀r, r� > 0, ∀p, q ∈ Π : yr
p != ⊥ ∧ yr�

q != ⊥ → yr
p = yr�

q (2.11)

(T) Termination: All processes eventually irrevocably decide or fail:

φT := ∀p ∈ Π, ∃r > 0, ∀r� > r : yr�
p != ⊥ (2.12)

Note that we cover irrevocability with agreement and termination φA ∧ φT , whereas
[CBS09] uses a fourth condition specifying that no process may change its value once
decided. With the formal description of validity, agreement and termination in place, we
can state the consensus problem:

Definition 3 (Consensus) Assuming a set Ωω representing all possible runs of all
algorithms on n processes, we define Σ to contain all traces solving consensus:

Σ = {� ∈ Ωω |� |= φV ∧ φA ∧ φT } (2.13)

with φV , φA and φT as defined in Eq. (2.10), Eq. (2.11) and Eq. (2.12), respectively.

Given an actual algorithm A and a messages adversary MA, we require E(A,MA) ⊆ Σ.
An equivalent definition would be:

∀� ∈ EA,MA : � |= φV ∧ φA ∧ φT

which simply postulates that each possible run produced by A under MA satisfies the
consensus properties and thus all runs are a subset of the consensus problem and A solves
consensus.

2.3 Asynchronous message passing (AMP)
The section on AMPn,f will not be as exhaustive as the section on SMPn,f , as we will
not use it in such detail. We assume a finite set of messages M and a distributed system
consisting of n = |Π| processes, where each process p is again a 3-tuple


statesp ∪ {∅̃}, initp, (Sp, Tp)�.

12



2.3. Asynchronous message passing (AMP)

statesp is the set of states and initp ⊆ statesp is the set of initial states. The function Tp

Tp : statesp × A × 2M → statesp

maps a state, a failure detector output and a set of received messages to a new state,
where A is the failure detector co-domain. The function Sp

Sp : statesp × A × 2M × Π → M

maps a state, a failure detector output, a set of received messages, and a recipient to a
message to be sent to that recipient. Note that usually just one transition-and-message-
sending function is used, but this separation allows for easier modelling.

We assume a global clock with domain N = {0, 1, 2, . . . }, which is completely invisible
to the processes. Processes in AMP, as in SMPn,f , may crash at any point in time,
after which they assume the crash state ∅̃. A failure pattern F : N → 2Π maps a
time t to the set of processes which have already failed up to t. Similarly, we define
crashed(F ) = �

t→∞ F (t) as the set of crashed processes and correct(F ) = Π\crashed(F )
as the set of correct processes.

Each process may have access to the read-only output of a local failure detector, which
provides the process with additional information about the system [CT96]. Failure
detectors are sets of failure detector histories H : N × Π → A, mapping processes and a
point in time to some arbitrary value in A, which is usually Π or 2Π. A weakest failure
detector for solving consensus in wait-free environments, where up to f = n − 1 processes
may crash, is the pair (Σ, Ω) as shown in [CT96].

Definition 4 The quorum failure detector Σ consists of all histories H : N × Π → 2Π

where, given the failure pattern F , the following holds

∀p, q ∈ Π, ∀t, t� ∈ N : H(p, t) ∩ H(q, t�) != ∅ (2.14)

and
∃t� ∈ N, ∀t > t�, ∀p ∈ Π : H(p, t) ⊆ correct(F ). (2.15)

Definition 5 The eventual leader failure detector Ω consists of all histories H : N×Π →
Π where, given the failure pattern F , the following holds

∃q ∈ correct(F ), ∃t� ∈ N, ∀t > t�, ∀p ∈ Π : H(p, t) = q. (2.16)

The weakest failure detector (Σ, Ω) is the combination H : N × Π → 2Π × Π, of the
histories of Σ and Ω.

We represent the states of all processes at a point in time t ∈ N in a configuration C̃t,
with

C̃t =
�
(st

1, transitt
1), . . . , (st

n, transitt
n)
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2. Model of computation

where transitp holds all messages currently in transit for process p, i.e., all messages which
will eventually arrive at p. Note that transit is not part of p’s state and is thus invisible
to the process.
The adversary is responsible for the specific failure pattern F , the specific failure detector
history H of the given failure detector and for advancing each process, i.e., scheduling its
steps and choosing the received messages. We model the latter with an infinite sequence
of events called a schedule σ̃ : N → Π × 2M

σ̃ = (step(p, IN1
p), step(q, IN2

q), . . . )

where σ̃1 = step(p, IN1
p) denotes that process p receives the messages in the set IN1

p ⊆ M
and takes a step at time 1, possibly reading its failure detector H(p, 1). The set of
received messages IN1

p has to be a subset of the messages currently in transit for p, i.e.,
IN1

p ⊆ C0
p.transit and can be the empty set. Similar to SMP, a step at time t takes the

t − 1 configuration C̃t−1 and maps it to C̃t.
A schedule has to be sound, meaning a crashed process p ∈ F (t) does not take any steps
after time t and processes cannot take an infinite number of steps in a finite time. A
schedule also has to be admissible, meaning that all correct processes take an infinite
number of steps and all messages in transit eventually arrive at correct recipients.
For readability, we define the helper function Mt

p(q) (in Eq. (2.17)), which provides the
messages process q sends to process p at time t, i.e., the message which is placed in p’s
transit queue at time t:

Mt
p(q) = Sq(�̃t−1

q .s, H(q, t), IN, p). (2.17)

Given a failure pattern F , a failure history H , a schedule σ̃ and some initial configuration
C̃0, we define a run as a sequence of configurations (C̃t)t≥0 with C̃t = (�̃t

1, . . . , �̃t
n) where:

t > 0 : �̃t
p =

����
�
Tp(�̃t−1

p .s, H(p, t), IN), �̃t−1
p .transit \ IN

	
if σ̃t = step(p, IN)�

�̃t−1
p .s, �̃t−1

p .transit ∪ {Mt
p(q)}	

if σ̃t = step(q, IN)�
∅̃, ∅	

if p ∈ F (t)
�̃0
p = C̃0

p .

By AMPn,f [fd : (Σ, Ω)], we denote the asynchronous system with n processes of which
up to f may crash, enriched with the failure detector (Σ, Ω). This implies that any failure
pattern F fulfills |crashed(F )| ≤ f and that any corresponding failure detector history
H is in H ∈ (Σ, Ω).
Given an algorithm A, we denote the produced run as

�̃ = (A, (Σ, Ω))F,H,σ̃,C̃0

and in a similar fashion we write the set of all runs as ẼA,(Σ,Ω) without further formaliza-
tion.
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CHAPTER 3
Message Adversary Simulations

Although we introduced SMPn,f with up to f failing processes in the previous chapter, we
will focus on just SMPn = SMPn,0 in this chapter. We can think of message adversary
simulations as: given an algorithm A that solves the problem Σ in SMPm[adv : MA A],
we would like to solve Σ in SMPn[adv : MA B ] as well. Instead of rewriting A to produce
a solution under MA B , we could simulate MA A on top of MA B , and let A solve Σ there.
We then take the solution A delivered under the simulated MA A and return it for Σ on
MA B.

We assume that the simulated message adversary contains as many processes as the
underlying message adversary: m = n. We also set that the simulated algorithm has an
identical set of id’s Π, but we distinguish simulation from simulator by writing p for a
simulated process and p for its simulator. The notation already hints that each process
p will simulate p, which also entails that p has to pass the problem-related part of its
initial state to p. This one-to-one mapping immediately guarantees that any problem
for SMPn[adv : MA B ] is also a problem for the simulated SMPn[adv : MA A] and vice
versa for its solutions.

We will continue denoting the message adversary of the simulated system with MA A and
the message adversary of the underlying system as MA B. The simulated algorithm is
denoted as A, while the simulating algorithm is denoted as B. Similar to process id’s,
we refer to a round number in the simulated system by r (also called a macro round),
while a round in the simulating system is denoted by r (also called a micro round). The
round r communication graph of the simulator is (Gr)r≥1 ∈ MA B, while we denote the
simulated round r communication graph as (Gr)r≥1 ∈ MA A.
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3. Message Adversary Simulations

3.1 Simple message adversary simulations
First, we need the actual simulation algorithm B running on MA B, which will simulate
A on MA A. The simulating part itself is not that complicated: recalling the definition
of an execution (see Eq. (2.6)), all it takes is the vector of input messages that are to
be delivered to A in the current macro round r and the current state to get to the next
state. So a very simple simulation would be to just hand-over all messages received in
each round to A and send all messages produced by its message-sending function:

Algorithm 1: Arguably simplest message adversary simulation, given
algorithm A with pi = 
statesi, initi, {(Sr

i , T r
i )|r ≥ 1}�; and s0

i ∈ initi; code for
process pi.

1 Initially, let r := 1, simState := s0
i

Loop over micro rounds r = 1, 2, . . . :
2 send Sr

i(simState, j) to j
3 receive all messages as simMsgIn
4 simState ← T r

i (simState, simMsgIn)
5 r ← r + 1

Of course, this simple simulation works only if MA B = MA A. The initial value for
simState is abbreviated as s0

i ∈ initi, some valid initial state of algorithm A for the
simulated process pi, and the macro round r is equal to the micro round r.

A more sophisticated simulation algorithm is the d-collect simulation: it tags each message
m the simulated process sends with the source id i and destination id j: (i, m, j) and
then collects all tagged messages in one big message, which is broadcast to everybody. All
received sets of tagged messages {Mj , Mk, . . . } are merged together and broadcast again.
After d rounds the algorithm picks all the tagged messages intended for the simulated
process and simulates the next step.

In principle, this is the same as if each process was a router and the routing strategy
is to simply flood the network where each message had a time to live of d micro
rounds. In formal terms, d-collect contracts the communication graphs of the last
d rounds Gr . . . Gr+d−1 into one dense communication graph Gr and presents that to
SMPn[adv : MAA]:

Gr =
r+d−1


l=r

Gl ◦ · · · ◦ Gr

Although it is not a very useful algorithm, d-collect exemplifies a case where the simulated
round r is not equal to the simulator round r anymore:

r =
�r − 1

d

�
+ 1

Thus, any macro round has a corresponding micro round where the step from r − 1 to r
happens, but not (necessarily) vice versa. In the case of d-collect, the correspondence
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3.2. A formal definition of a message adversary simulation

Algorithm 2: d-collect message adversary simulation, given algorithm A with
pi = 
statesi, initi, {(Sr

i , T r
i )|r ≥ 1}�; and s0

i ∈ initi; code for process pi.

1 Initially, let r := 1, simState := s0
i ,

collectMsgSet := {(i, S1
i (simState, 1), 1), . . . , (i, S1

i (simState, n), n)}
Loop over micro rounds r = 1, 2, . . . :

2 send collectMsgSet to all
3 receive Mj = {(k, m, l), . . . } from j in recvMsgSet = {M1, . . . , Mn}
4 collectMsgSet ← collectMsgSet ∪ {(k, m, l) | (k, m, l) ∈ Mj , Mj ∈ recvMsgSet}
5 if r mod d = 0 then
6 simMsgIn ← (m1, . . . , mn) where (j, mj , i) ∈ collectMsgSet
7 simState ← T r

i (simState, simMsgIn)
8 r ← r + 1
9 collectMsgSet ← {(i, Sr

i(simState, 1), 1), . . . , (i, Sr
i(simState, n), n)}

between macro and micro rounds is fixed to a parameter d, but that’s not always the
case.

In the end, we don’t care when a macro step happens, as long as it happens. Different
simulating processes could even take macro steps at different micro rounds, as long as
macro rounds are communication closed, meaning that messages sent in round r only
arrive in round r.

Concluding with this informal introduction, we can start formalizing the concepts
introduced.

3.2 A formal definition of a message adversary simulation
We require each process p to maintain the following variables with the described semantics:

• simStater
p: The state of the simulated processor p at simulator p at the end of micro

round r.

• rr
p: The macro round rr

p the simulated process p is currently in at the end of micro
round r.

We already modeled the difference between micro rounds and macro rounds; what is
missing is a characterization of the micro rounds r where a step in the macro round r
happens. Recall that, in one micro round, the macro round may only advance by one, so
each macro round has one unique micro round where it is incremented.

We define a mapping between a macro round and the micro round where it was incremented
in Definition 6. Intuitively, given macro round x we collect all micro rounds r where
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3. Message Adversary Simulations

the macro round is equal to the desired macro round plus one {r | �r
p.r = x + 1} and

choose the smallest micro round in that set. Note that if we want the state (at the end)
of round r, we look at the state in round r + 1 because the state transition to the next
state r → r + 1 happens at the end of round r, i.e., the state for round r is actually valid
during round r + 1, as shown in Fig. 3.1.
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Figure 3.1: The correspondence of rounds and valid states between a run � simulating
the simulated run � of Algorithm 2 with d = 2. As an example, we want to access the
state in � where the simulated state of the simulated round 2 is valid. By Definition 6 we
are looking for ρ�

p(2) = inf{6, 7}, as both C6.r = 3 and C7.r = 3, and both configurations
indeed hold �2. The choice for the smallest is arbitrary.

Definition 6 (Simulated round number) The function ρ�
p : N → N that maps a

macro round to the micro round where its state becomes valid in the run � at simulated
process p is defined by:

ρ�
p(x) = {x → inf( {r | �r

p.r = x + 1} )} (3.1)

Note that ρ�
p(0) = 0 as required.

The following Definition 7 features a lot of �’s and �’s in tiny subscripts, so lets first look
at it intuitively. We have some run of a simulator �, of which we know that it wants to
simulate some other algorithm. This means that every process maintains a simulated
state simState and a simulated round number r. So what we want to do is take the
simulated states simState of all simulated processes p at the same macro round and build
a configuration out of them. As a macro round may correspond to multiple micro rounds,
we choose the smallest micro round (through the definition of ρ�

p(x)) as a representative
for that macro round. What is left is to build a sequence of configurations, which gives
us a simulated run � conforming to the definition of a run in Eq. (2.4). Note that the
simulated initial state �0 of the simulated algorithm A is not the responsibility of the
simulator and needs to be set beforehand as part of the configuration of the simulation.
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3.2. A formal definition of a message adversary simulation

Definition 7 (Simulated Run) We define a simulated run �, atop of the run �, as the
composition of its simulated states using Definition 6:

(�r)r≥0 = ((simStateρ�
1(r)

1 , simStateρ�
2(r)

2 , . . . , simStateρ�
n(r)

n ))r≥0 (3.2)

Definition 8 formalizes the simulated communication graphs construction via heard-of sets.
The set �r

p. IN contains the messages from the simulated processes that the simulated
process p heard of in round r, which are precisely those messages that were not dropped
by the simulated message adversary. All the others have been suppressed and so we place
an edge from q to p in the simulated communication graph if and only if p heard of q in
round r, i.e., the message received from q is not the empty message ⊥:

Definition 8 (Simulated communication graph) The simulated communication graph
Gr = (Π, Er), indicating which messages reached their destination in macro round r in
the simulated run � of Definition 7, is defined by using the set of received messages �r

p. IN
of p:

Er = {(q, p) | p, q ∈ Π : �r
p. IN(q) != ⊥}. (3.3)

What is left is the definition of a message adversary simulation, given the algorithm
BA (i.e., the simulator B parameterized with the algorithm A) that produces the run �.
Conceptually, it is rather straight-forward: a run � of the simulator B correctly simulated
A if (�r)r≥0 according to Definition 7 is identical to the run produced by A on a ’real’
system. By requiring that ρ�

p(x) has to be defined for all x, we ensure that macro rounds
are only incremented once in a micro round (Definition 6). Since we know the implied
simulated communication graph sequence (Definition 8) and the simulated initial state
(�0), we simply build a reference run and compare it to the simulated run (Definition 7).

Definition 9 (Message adversary simulation) Consider any algorithm A for the
message adversary MA A, for any initial state �0. A CG-machine (BA, MA B) is a message
adversary simulation, if any run � ∈ (BA, MA B) satisfies the following properties:

1. First, we require that ρ�
p(r) is defined and strictly monotonic for all r ∈ N on all

processes p:

ξ := ∀r ∈ N : ∀p ∈ Π : ρ�
p(r + 1) > ρ�

p(r) ≥ 0 (3.4)

2. Second, we postulate that the simulated communication graph sequence G implied
by the simulated run � conforms to the message adversary specification MA A, i.e.,
it is a valid communication graph sequence:

φ := (Gr)r≥0 ∈ MA A (3.5)
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3. Message Adversary Simulations

3. Finally, we require the simulated run � to be a valid run of algorithm A on MA A:
the run produced by the CG-machine when started in the simulated initial state �0

with the simulated communication graph sequence G has to be equal to the simulated
run �:

ψ := (�r)r≥0 = (A, MA A)�0,G (3.6)

BA on MA B is a message adversary simulation for A on MA A, denoted by MA A 1

BA MA B, if every run of (BA, MA B) models ξ, φ and ψ:

MA A 1 BA MA B ⇔ ∀� ∈ EBA,MA B
: � |= ξ ∧ φ ∧ ψ (3.7)

An aspect we did not formalize is the case of simulated initial state �0 versus the initial
state of BA. We motivated message adversary simulations by reasoning that we could
solve a problem by simulating another algorithm A to solve the problem for us. This
requires the simulated algorithm to start from a valid initial state �0 (both with respect
to the problem we want to solve, and with respect to A), because if the simulated initial
states are not valid, the result is not valid.

We did not formalize how to get from �0 to �0, because in the end the algorithm BA
is responsible for that. If �0, which is implied by some �0, would lead to a non-valid
solution of the simulated algorithm for the given problem (and thus a non-valid solution
of the simulator), then the simulator is simply no solution to the problem. However, the
definition of a message adversary simulation itself is not concerned with this.
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CHAPTER 4
The Strongest Message Adversary

for Consensus

In Chapter 3, we defined the concept of a message adversary simulation that allows us to
run an algorithm A (specified to run on MA A) on top of another message adversary it
was not specified for (here, MA B) via the simulator B. Now let us set aside the simulated
algorithm A together with the problem it is supposed to solve and focus on the fact that
the message adversary MA B allowed the simulation of message adversary MA A. This
already seems like the relation between message adversaries we sought: we could say
that MA A is stronger than MA B , because MA B allows solving a problem via simulating
MA A. The intuition is that MA A allows for less messages to be exchanged than MA B

and thus admits less information flow, while on the other hand MA B allows for more
messages to be exchanged than necessary to solve the given problem.

We are still considering the special case of f = 0 failing processes. After specifying a
relation using the definitions presented in Chapter 3, we provide a simulation for the
simple message adversary STAR on SMPn,0. We then argue that STAR is a strongest
message adversary for consensus: STAR allows to solve consensus and any other message
adversary that allows to solve consensus can simulate STAR.

4.1 A relation for simulation power over message
adversaries

First we have to tackle the problem that the Definition 9 of a message adversary simulation
is bound to the actual algorithm A that is simulated. Thus, in order to define a relation
just between message adversaries (via a simulator B), we could say MA A is stronger
than MA B if and only if for every A on MA A there is a simulator B on MA B such that
BA is a message adversary simulation:
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Definition 10 (Message adversary simulation-power relation) Given two message
adversaries MA A and MA B, we say MA A is stronger than MA B, denoted MA A 1MA B,
if

MA A 1 MA B ⇔ ∃B on MA B : ∀A on MA A : MA A 1 BA MA B

Theorem 1 The message adversary relation (Definition 10) 1 is a pre-order.

Proof Reflexivity is trivially satisfied, for example, by using the previously introduced
Algorithm 1:

MA A 1 MA A

For Transitivity, we assume that

MA A 1 MA B and MA B 1 MA C

with the message adversary simulations B and C for the message adversaries MA B and
MA C respectively. Now we can simply simulate MA A in the simulation of MA B using
B on top of C resulting in the CG-machine (CBA , MA C). Consequently we can simulate
any algorithm A for MA A on MA C and

MA A 1 MA C

follows. �

4.2 A message adversary simulation for SMP
With the message adversary relation in Definition 10, we have a means of relating message
adversaries in a similar fashion as is done with failure detectors [CT96, JT08]. As already
mentioned at the beginning of this chapter, our simulator simulates the message adversary
STAR on every message adversary allowing consensus:

Definition 11 (The message adversary STAR) Every admissible communication graph
sequence has one distinct center process, which broadcasts to all other processes in every
round. No other communication happens. Formally:

STAR = {(Gr)r≥1 | ∃pc ∈ Π, ∀r ≥ 1 : EGr = {(pc, q) | q ∈ Π}}

The idea of the simulator is that every process p not only simulates the process p it is
assigned to, but also the center process pc. This is possible, since the center process
never receives any messages in STAR but only sends messages (and therefore pc’s state
stays consistent on all simulators). So as soon as everybody agreed on the center process
pc, the sequence of states of pc in the run is completely determined and so are its sent
messages. Thus, with the initial state of the center process pc, every simulator p can
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simulate the messages sent from the center pc to its simulated process p without any
actual communication from pc’s simulator to p.

The remaining challenge is to distribute, or rather agree, on the initial state of the center
process pc. The wording already hints the solution, as we will simply run multivalued
consensus on the simulated initial states: after a finite number of rounds, all the simulators
will have agreed on the initial state of a common center process pc. Each process q then
simulates both pc and q in lockstep.

Algorithm 3: simStar A: Simulating algorithm
A = 
statesi, initi, r, {(Sr

i , T r
i ) | r > 0}�

for STAR, on top of a message adversary where a multi-valued consensus
algorithm
C = 
states�

i, init�
i, r�, {(Sr�

i , T r�
i )|r� > 0}�

exists, code for process i with s0
i ∈ initi.

1 Initially, let r := 1, simState := si
0, simCenterState := ⊥, simCenterId := ⊥, r� := 1,

simConsensusState.x := (simState, i), simConsensusState.y := ⊥
Loop over rounds 1, 2, . . . :

2 send Sr�
i (simConsensusState, j) to j ∈ Π

3 receive all messages as simConsensusMsgIn

4 simConsensusState ← T r�
i (simConsensusState, simConsensusMsgIn)

5 if simConsensusState.y != ⊥ ∧ r = 1 then
6 (simCenterState, simCenterId) ← simConsensusState.y
7 r� ← r� + 1
8 if simConsensusState.y != ⊥ then
9 simCenterMsgIn[simCenterId] ← Sr

simCenterId(simCenterState, simCenterId)
10 simCenterState ← T r

simCenterId(simCenterState, simCenterMsgIn)
11 if simCenterId != i then
12 simMsgIn[simCenterId] ← Sr

simCenterId(simCenterState, i)
13 simMsgIn[i] ← Sr

i(simState, i)
14 simState ← T r

i (simState, simMsgIn)
15 else
16 simState ← simCenterState
17 r ← r + 1

The algorithm does not just simulate A but also the consensus algorithm C in parallel.
As soon as C reaches a consensus on the simulated initial state (and its process id),
simStar starts simulating A. In preparation of proving that simStar simulates STAR, we
prove that simStar correctly simulates the consensus algorithm C on MA, with all the
guarantees listed in Definition 3 of the consensus problem:
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Theorem 2 simStar C is a message adversary simulation for the consensus algorithm C
for MA on the underlying message adversary MA:

MA 1simStar C MA

Proof We assume a run � = (simStar C , MA)C0,σ of Algorithm 3 simulating A = C on
the communication graph sequence σ ∈ MA of a message adversary MA that allows
running C, and alias the required variables:

simConsensusState → simState (4.1a)
r� → r (4.1b)

We can then apply Definition 6, Definition 7 and Definition 8 to define the simulated
run � and the simulated communication graph sequence G.

1. ρ�
p(r�) is defined for all r� ≥ 0 and for all p ∈ Π, as Line 7 increments r� in every

micro round, starting in micro round 1:

ρ�
p(r�) = r�

This already defines the simulated run and the set of received messages as:

�r�
p = �

ρ�
p(r�)

p .simConsensusState (4.2a)

�r�
p. IN = �

ρ�
p(r�)

p .simConsensusMsgIn, r� ≥ 1. (4.2b)

2. Each process p receives the same messages in Line 4 as does its simulator p in
Line 3 (because simConsensusMsgIn is not modified in between), and all messages
process q intends to send to p are sent in Line 2, implying:

G = σ. (4.3)

3. Third, we prove that in every macro round r� the configurations in the reference
run ξ = (C, MA)�0,G and the simulated run � are equal

∀r� > 0 : T r�
p (�r�−1, (�r�

. IN(1), . . . �r�
. IN(n)) ) =

�r�
p = ξr�

p

= T r�
p (ξr�−1, (Mr

p(1), . . . Mr
p(n)) )

(4.4)
The base case �0 = ξ0 holds by definition, for the step we assume Eq. (4.4) is
satisfied. As simConsensusState is only written in Line 4, it is sufficient to show that
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4.2. A message adversary simulation for SMP

any process p receives the same messages in the simulated � and in the reference
run ξ:

ξr�+1
p . IN = �r�+1

p . IN = �
ρ�

p(r�+1)
p .simConsensusMsgIn, r� ≥ 0

By the induction hypothesis Eq. (4.4), the same set of messages is sent to p in both
�r�+1 (Line 2) and ξr�+1. Since both �r� and ξr� use the same Gr�+1, the same set
of messages arrives in Line 3 and further in ξr�+1

p . IN and �r�+1
p . IN. Thus we get

ξr�+1
p = �r�+1

p as needed.

�

simStar C is hence indeed a message adversary simulation for the consensus algorithm C
on MA, which allows us to postulate the consensus properties given in Definition 3 on
the simulated state simCenterState. Now we can prove:

Theorem 3 simStar C is a message adversary simulation for any algorithm A for the
message adversary STAR, on any message adversary MA that allows to solve (multivalued)
consensus:

STAR 1simStar A MA

implying:
STAR 1 MA

Proof We assume a run � = (simStar A, MA)C0,σ of Algorithm 3 for A on the communi-
cation graph sequence σ ∈ MA of a message adversary MA allowing consensus.

We can directly apply Definition 6, Definition 7 and Definition 8 to define the simulated
run � and the simulated communication graph sequence G.

1. Observe that r is incremented every micro round iff simConsensusState.y is not
⊥. We know from Theorem 2 that simConsensusState adheres to the consensus
properties, specifically termination (see Eq. (2.12)), implying that

∀p ∈ Π, ∃r : �r
p.simConsensusState(y) != ⊥

and therefore we can define
ρ�

p(r) = r0
p + r

where r0
p is the smallest r on process p such that �r

p.simConsensusState(y) != ⊥
holds.
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4. The Strongest Message Adversary for Consensus

2. As an intermediate result, we show that simCenterState and simCenterId are identical
on each process in every macro round r:

∀r ≥ 0, ∀p, q ∈ Π : �
ρ�

p(r)
p .simCenterState = �

ρ�
q(r)

q .simCenterState∧
�
ρ�

p(r)
p .simCenterId = �

ρ�
q(r)

q .simCenterId
(4.5)

The base case for ρ�
p(0) = r0

p is the micro round r0
p where C just finished at p and

Theorem 2 guarantees us agreement on each process q at Line 6 in r0
q . In the same

micro round, simCenterState is written again in Line 10 and assigned the evaluated
state-transition function together with the message sent to itself. As this evaluation
is exclusively parameterized by simCenterState and simCenterId, of which we know
equality over all processes at this point, we conclude equality holds after Line 10.
Note that, in round r0

p, the variable r is incremented and thus Line 6 is never
executed again.
The induction step also follows from the previous reasoning: the transition function
in Line 10 is evaluated with by-assumption equal states and thus maps to the same
states on each process.
Theorem 2 also guarantees us validity, which in conjunction with the initial state
of the simulated consensus algorithm implies that simCenterState is equal to some
simulated initial state and simCenterId is always equal to the same simulated process
id:

∃p ∈ Π, ∀r ≥ 1, ∀q ∈ Π : �
ρ�

q(r)
q .simCenterState = �

ρ�
p(r)

p .simState∧
�
ρ�

q(r)
q .simCenterId = p

3. Here we argue that the simulated communication graph sequence G is a star with
the process pc = simCenterId in the middle, i.e.,:

∃pc ∈ Π, ∀r > 0, ∀q ∈ Π : �r
q. IN[pc] = Sr

pc
(�r−1

pc
, q)∧

�r
q. IN[q] = Sr

q(�r−1
q , q)

(4.6)

holds on �.
Assume a process p with simCenterId != i and observe that its next state is evalu-
ated in Line 14 with exactly two received messages: one from the center process
simCenterState and one from itself assembled in Line 13.
The state of the process pc with simCenterId = i is assigned in Line 16 but evaluated
in Line 10 with just the message from itself.
This corresponds to Eq. (4.6), and thus G is a star with pc = simCenterId as the
center process.

4. Finally, we prove that the simulated run � is equal to the reference run ξ:

(�r)r≥0 = (ξr)r≥0 = (A, STAR)�0,G
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4.3. The strongest message adversaries for consensus

The base case �0 = ξ0 holds by definition, the induction hypothesis is:

�r = ξr

The simulated state simState is only written once per round in either Line 14 or
Line 16 (and, more specifically, evaluated in Line 10), which are mutually exclusive.
Therefore it is sufficient to show that each process p receives the same set of
messages in the reference and in the simulated run.
For process p != pc we know that in the reference run it receives exactly two
messages, one from pc and one from itself, p. We already showed that

�
ρ�

p(r)
p .simCenterId = pc

and
�
ρ�

p(r)
p .simCenterState = �r

pc
,

so the simulated received message from pc in Line 13 is identical to the message pc

sends to p in the reference run (because the message sending function is deterministic
and evaluated on identical states). Additionally, simMsgIn contains the message p
sends to itself.
For p = pc, the center of the star’s simulated received messages are calculated
in Line 9, its simState is assigned in Line 16, but effectively evaluated in Line 10.
Thus, it is again sufficient to prove that the set of simulated received messages
in the reference run ξpc

is exactly simMsgIn in Line 10, which is evident as both
contain just the message from pc to itself.

�

4.3 The strongest message adversaries for consensus
Theorem 2 and Theorem 3 imply that any message adversary MA that allows to solve
consensus via some algorithm C immediately allows the simulation of the message
adversary STAR. Furthermore, the proof of Theorem 3 was completely independent of
the actual algorithm A being simulated, so we can claim that Algorithm 3 simulates any
algorithm A for the message adversary STAR on any message adversary MA allowing
consensus, hence:

STAR 1 MA,

i.e., STAR is a strongest message adversary.

Formally, by Definition 10, specifically Eq. (3.5), we can also simulate any message
adversary MA that fully contains STAR ⊆ MA. This follows from the argument that
any algorithm running on MA runs correctly on any communication graph sequence
σ ∈ MA. So in order to simulate some other algorithm on a different message adversary,
it is sufficient to simulate just one communication graph sequence in MA.
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4. The Strongest Message Adversary for Consensus

As a consequence, every message adversary fully containing STAR is in the set of strongest
message adversaries S:

{MA ∈ Ω� | STAR ⊆ MA} ⊆ S, (4.7)

assuming a set Ω� of all possible message adversaries that allow to solve consensus on a
set of Π process identifiers. In particular, the combination (SOURCE, QUORUM) of the
message adversaries SOURCE and QUORUM (introduced in Chapter 5), is in S.

S also contains any message adversary which can be simulated in STAR and allows
consensus. Consider for example the message adversary STAR 1 containing just n
communication graph sequences GSTAR,1,q, q ∈ Π, where GSTAR,1,q contains a star in just
the first round and no communication after that:

EG1
STAR,1,q

= {(q, p) | p ∈ Π} (4.8a)

r > 1 : EGr
STAR,1,q

= ∅. (4.8b)

Obviously, STAR 1 allows to solve consensus and STAR 1 can be simulated in STAR.
This implies that STAR 1 can trivially simulate STAR via, for example, simStar and is
therefore in S. There are a lot of other, similar message adversaries in S, so a more
concise characterization of S is any MA that allows consensus and can be simulated in
STAR.

Theorem 4 The set of strongest message adversaries S is

S = {MA ∈ Ω� | MA 1 STAR}, (4.9)

i.e., any message adversary simulate-able in STAR and allowing consensus.

An intuition for a strongest message adversary MA is not necessarily that it makes it
difficult to write a consensus algorithm for. On the other hand, this does not mean that
the message adversary with the most complicated consensus algorithm could not also be a
strongest message adversary. Unfortunately, we do not have a metric for complicatedness
of algorithms (yet). The goal of this thesis was hence isolating a minimum amount of
information exchange necessary for solving consensus. An intuition for strongest message
adversary would be any message adversary unrestricted enough to also just allow some
one to all communication, which we identified as the minimum necessary for consensus.

Note that this does not imply that any message adversary containing the necessary
minimum allows solving consensus. Think of the completely unrestricted message
adversary, which trivially contains STAR, but does not allow consensus.

Similarly, not every message adversary allowing consensus to be solved necessarily contains
a strongest message adversary. Consider the perfect message adversary, where the only
communication graph sequence is just a sequence of fully connected graphs: it allows
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consensus to be solved but does not contain STAR (and is thus not a strongest message
adversary). This also follows the intuition that the perfect message adversary allows
more information exchange than necessary: reliable all-to-all communication is more than
the minimum required for consensus and thus it is not a strongest message adversary.
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CHAPTER 5
Message Adversary STAR and the

Failure Detector (Σ, Ω)

Having specified the class of strongest message adversaries for consensus and its specific
member STAR, we explore its relation to the weakest failure detector (Σ, Ω) for consensus
in AMP . Comparing two formal models with respect to their problem solving capabilities
is usually done by simulating one model on top of the other, but so far we have only
simulated different flavors of the same formal model, for example SMPn,0[adv : MA]
on SMPn,0[adv : MA �]. Comparing SMPn,0 with AMPn,n−1 requires a new notion
of a correct simulation, as processes in AMPn,n−1 may simply crash, while this is not
allowed in SMPn,0.

[RS13], for example, tackled this issue by using a restricted definition of problems that
works in both models. Problems turn into tasks, defined as an input/output relation
Δ relating input vectors I to output vectors O. Each input vector contains one initial
value per process and similarly each output vector O contains one accepted problem-
solving value per process. The relation Δ then matches input vectors I to output vectors
O ∈ Δ(I), with the semantics that if all processes adhere to I, the problem is solved iff
for some O ∈ Δ(I) every process i either at some point matches O[i] or i crashed. The
important part with respect to faults is that processes may crash instead of matching
the solution vector.

[RS13] also already showed an equivalence between the message adversary (SOURCE, QUORUM)
in a synchronous setting and the weakest failure detector for consensus (Σ, Ω) in an
asynchronous setting. As (SOURCE, QUORUM) is a strongest message adversary for
consensus (and thus allows consensus to be solved), we expect STAR to be simulatable
in (Σ, Ω) and thus confirm the results presented in [RS13].
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5.1 Simulating STAR in (Σ, Ω)
We start by introducing the message adversary (SOURCE, QUORUM), which is composed
by the intersection of the sets in Definition 12 and Definition 13.

Definition 12 The message adversary SOURCE is the set of all communication graph
sequences (Gr)r>0, where

∃p ∈ Π : ∃r� > 0 : ∀r ≥ r� : ∀q ∈ Π : (p, q) ∈ EGr .

I.e., there exists a process p which eventually always reaches all other processes in every
round.

Definition 13 The message adversary QUORUM is the set of all communication graph
sequences (Gr)r>0, where

∀p, q ∈ Π : ∀r, r� > 0 : {x | (x, p) ∈ EGr } ∩ {x | (x, q) ∈ EGr� } != ∅.

I.e., any two processes p, q, share in any two rounds at least one common in-neighbor.

We proceed with introducing a new notion of f-crash compatible message adversaries.
The idea is that if, starting from some round r0, a process q in SMPn,0[adv : MA] is
permanently suppressed in some σ ∈ MA (meaning that all its outgoing messages are
always dropped), then the rest of the processes Π \ {q} do not care if q is dead or still
running. So, given a concrete failure pattern F and a failure history HF for SMPn,f ,
we might be able to restrict the message adversary MA to a subset MA F,HF

, such that
each communication graph sequence σ ∈ MA F,HF

exactly hides the process crashes in F
and HF , i.e., suppresses all messages from crashed processes once they crashed. Then,
assuming consensus can be solved under MA on SMPn,0[adv : MA], it can also be solved
under MA F,HF

⊆ MA on SMPn,f [adv : MA F,HF
].

Definition 14 We call a message adversary MA f -crash compatible if, for each failure
pattern F and corresponding failure characteristics HF , the F, HF -masking set

MA F,HF
= {G ∈ MA | φ(G, F, HF )}

is non-empty. We define φ as

φ(G, F, HF ) := ∀p ∈ Π, ∀r ≥ 1 :�
(p ∈ F (r) ∧ p /∈ f = ∂F

∂r
(r)) → (∀q ∈ Π : (p, q) /∈ EGr )

	∧�
(p ∈ f = ∂F

∂r
(r)) → (∀q ∈ Π : (p, q) ∈ EGr → q ∈ HF (p))

	
,

(5.1)

recall that f = ∂F
∂r (r) is the discrete derivative of F (r), i.e., maps a round r to the

processes failing in round r.
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For example, the message adversary (SOURCE, QUORUM) is (n − 1)-crash compatible:
in any failure pattern F and any failure characteristic HF , there is at least one process
pc which does not fail. As (SOURCE, QUORUM) contains STAR, we know that at least
the star with the non-crashed process as the center is in the set MA F,HF

, making it
non-empty and (SOURCE, QUORUM) (n − 1)-crash compatible.

This allows us to formalize the previous intuition in Theorem 5, where we relate the state
sequences of all processes in a run on SMPn,f to the same processes in SMPn,0 with
the same communication graph sequence σ up to the round where they crash.

Theorem 5 Given a failure pattern F , a failure characteristic HF , any run �

� = (A, MA F,HF
)C0,σ,F,HF

of any algorithm A on some σ ∈ MA F,HF
⊆ MA in SMPn,f [adv : MA F,HF

], of the
f-crash compatible message adversary MA, has an equivalent run η

η = (A, MA)C0,σ

with the same σ in crash-free SMPn[adv : MA], in the sense that all processes behave
identical (same states in the same rounds) up to the round where they crash, i.e.,

∀r > 0, ∀p ∈ Π : �r
p = ηr

p ∨ �r
p = ∅. (5.2)

Note that, as correct processes never crash, they exhibit the exact same state sequence
(�r

p)r≥0 in SMP as in SMPn,f .

Proof Assume a failure pattern F , a failure characteristic HF , a f-crash compatible
message adversary implying some run � = (A, MA F,HF

)C0,σ,F,HF
of any algorithm A on

some σ ∈ MA F,HF
⊆ MA. We also assume a run η = (A, MA)C0,σ of the same algorithm

on the same communication graph sequence σ and on identical initial states.

We prove the invariant in Eq. (5.2) by induction. The base case r = 0 holds, as we
assumed identical initial states.

For the induction step we assume the invariant holds in some round r − 1, already
implying that every process sends the same messages in both runs � and η, and we only
have to show that in both runs the same messages arrive. Assume a message m from p
arrives at q in round r in run �, implying that (p, q) ∈ Eσ and therefore the same message
also arrives in η.

Now assume the message m from p arrives at q in round r in run η. By Eq. (5.1) we
know that:

�
(p ∈ F (r)∧p /∈ f = ∂F

∂r
(r)) → ((p, q) /∈ Eσr )

	∧�
(p ∈ f = ∂F

∂r
(r)) → ((p, q) ∈ Eσr → q ∈ HF (p))
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holds on σ, implying, as (p, q) ∈ Eσr , that p has not crashed up to round r, or just
crashes in round r. As p /∈ F (r) implies that the message m also arrives in �, we assume
that p ∈ f = ∂F

∂r (r), which means, by the rightmost implication in the expression above,
that q ∈ HF (p) and m arrives at q in this case as well. �

Having specified (SOURCE, QUORUM) and the concept of an f-crash tolerant message
adversary, we cite the simulator from [RS13, Theorem 5] in Algorithm 4 and slightly adapt
it to our notation. It simulates SMPn,0[adv : (SOURCE, QUORUM)] on AMPn,n−1[fd :
(Σ, Ω)] by basically just waiting for all messages of the processes which are currently in
the quorum and the process which is currently the leader. As both the leader and the
processes in the quorum are eventually correct, their messages eventually arrive and the
simulator makes a step. The resulting simulated communication graph sequence then
lies in (SOURCE, QUORUM).

Algorithm 4: The simulator from [RS13, Theorem 5] (slightly adapted to
match our notation), simulating A = 
statesi, initi, ri, {(Sri

i , T ri
i ) | ri > 0}� for

SMPn,0[adv : (SOURCE, QUORUM)] on AMPn,n−1[fd : (Σ, Ω)]. Here, qri is
the quorum and ldi is the current leader, provided by (Σ, Ω). Code for process
pi.

1 ri := 1, sim_rec_messagesi[1, . . . , n] := [⊥, . . . , ⊥], ls_statei := s0
i

2 foreach r > 0 do
3 rec_messagesi[r][1, . . . , n] ← [⊥, . . . , ⊥]
4 repeat forever
5 msgs_to_sendi[1, . . . , n] := [Sri

i (ls_statei, 1), . . . , Sri
i (ls_statei, n)]

6 foreach j ∈ Π do
7 send((ri, msgs_to_sendi[j])) to pj

8 repeat
9 cur_qri ← qri

10 cur_ldi ← leaderi

11 until (∀j ∈ cur_qri \ {i} : rec_messagesi[ri][j] != ⊥)∧
12 (cur_ldi = i ∨ rec_messages[ri][cur_ldi] != ⊥)
13 foreach j ∈ cur_qri ∪ cur_ldi do
14 sim_rec_messagesi[j] ← rec_messagesi[ri][j]
15 ls_statei ← T ri

i (ls_statei, sim_rec_messagesi)
16 ri ← ri + 1

when (r, m) received from pj: rec_msgsi[r][j] ← m.

Theorem 6 For any simulated run � of A in Algorithm 4, with the failure history F ,
the failure characteristic HF , the simulated communication graph sequence G ∈ MA and
an initial configuration C0:

� = (A, (SOURCE, QUORUM))C0,G,F,HF
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the communication graph sequence G is in the F, HF -masking set of (SOURCE, QUORUM)

G ∈ (SOURCE, QUORUM)F,HF
.

Proof We assume a run �̃ = (C̃t)t≥0 of Algorithm 4 and define the function ρ̃�̃
p : N → N

mapping a round x ≥ 0 to the time t where it was incremented:

ρ̃�̃
p(x) = {x → inf{t | C̃t

p.r = x + 1}},

which we abbreviate with ρ̃p(x) for readability. The simulated run � is then defined as

�r
p = Cr

p = C̃ ρ̃p(r)
p .ls_state.

We leave the proof of correctness, i.e., that

� = (A, (SOURCE, QUORUM))C0,G,F,HF

to the authors in [RS13], and focus on the properties of the simulated communication
graph sequence.

Let the function φ : Π → N map a process p to the time t where it last incremented its
rp (i.e., just before failing):

φ(p) = sup{t ∈ N | C̃t−1
p .r + 1 = C̃t

p.r}

and denote the round where p crashes by crashp = C̃
φ(p)
p .r. Note that φ(p) = crashp = ∞

as required if p does not crash. The failure history F and the failure characteristic HF of
the simulated run � can then be specified as

F (r) : {q ∈ Π | r ≥ φ(q)}
HF (p) : {q ∈ Π | C̃ ρ̃q(crashp)

q .sim_rec_messages[p] != ⊥} (5.3)

By Line 14 the simulated communication graph sequence (Gr)r≥1 is

Er = {(p, q) | p, q ∈ Π : C̃ ρ̃q(r)
q .sim_rec_messages[p] != ⊥}. (5.4)

We now show that the simulated communication graph sequence G is in the F, HF -masking
set of (SOURCE, QUORUM):

G ∈ (SOURCE, QUORUM)F,HF
.

Assume G /∈ (SOURCE, QUORUM)F,HF
, then there exists an edge from a crashed process

p to q in some simulated round r0. We consider the first case where p ∈ F (r0) but
p /∈ f = ∂F

∂r (r0), i.e., p crashed in some earlier round φ(p) < r0. This implies that p
sends no message with the round tag r0, contradicting Eq. (5.4), where q has received a
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message from p in the simulated round r0. In the second case, where p ∈ f = ∂F
∂r (r0), we

know that q /∈ HF (p) by assumption, implying

C̃ ρ̃q(crashp)
q .sim_rec_messages[p] = ⊥

This again contradicts Eq. (5.4) where, by assumption, q has received a message from p
in round crashp.

�

We can conclude with Theorem 7, which claims that the weakest failure detector (Σ, Ω)
in AMP can simulate the strongest message adversary STAR in SMP with respect to
general task solvability.

Theorem 7 Any task can be solved in the enriched message-passing model

AMPn,n−1[fd : (Σ, Ω)]

if it can be solved in the synchronous model

SMPn,0[adv : STAR].

Proof By [RS13, Theorem 5] together with Theorem 6, we know that Algorithm 4
simulates any algorithm A on the message adversary (SOURCE, QUORUM)F,HF

. I.e.,
the simulated run � of algorithm A simulated by Algorithm 4 is equal to

� = (A, (SOURCE, QUORUM)F,HF
)C0,G,F,HF

,

with F , HF and G depending on the particular run of Algorithm 4.
Because � is parameterised with the F , HF masking set (SOURCE, QUORUM)F,HF

,
Theorem 5 guarantees us identical execution of correct processes in � and in �, where

� = (A, (SOURCE, QUORUM))C0,G
and G = G, i.e., both runs use the same communication graph sequence.
This immediately grants us task solvability using any algorithm A� for STAR. Al-
gorithm 4, on AMPn,n−1[fd : (Σ, Ω)], simulates Algorithm 3, on SMPn,n−1[adv :
(SOURCE, QUORUM)F,HF

]. We know that the correct processes in Algorithm 3 behave
as if they run on SMPn[adv : (SOURCE, QUORUM)], meaning they correctly simulate
A� on STAR. As there are still processes crashing (silently), this implies task solvability
but not problem solvability. This is because, in general, problems for SMP do not allow
process crashes, but tasks do.

�

As expected at the beginning of this chapter, STAR may be simulated in (Σ, Ω) with
respect to task solvability. STAR being a strongest message adversary, this result implies
that any strongest message adversary is simulatable in (Σ, Ω), as it can be simulated in
STAR.
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CHAPTER 6
Consequences of our Results

6.1 Comparing message adversary simulations to other
definitions

We already mentioned that message adversary simulations have been defined in [SSW18]
already, but not as formal as in this thesis.

Definition 15 ( [SSW18, Page 114] ) We say that A emulates (macro-)rounds ρ ∈
{1, 2, . . . } of SMPn[adv : M ], if, in any run of the latter, the value of NewHO

(ρ)
p

computed at the end of macro-round ρ satisfies:

(E1) q ∈ NewHO
(ρ)
p iff sr1−1

q � srk
p , i.e., if there exist an integer ! ∈ [1, k], a chain of

! + 1 processes p0, p1, ..., p� from p0 = q to p� = p, and a subsequence of ! increasing
round numbers r1, ..., r� in macro-round ρ such that, for any index i, 1 ≤ i ≤ !, we
have pi−1 ∈ HO(pi, ri).

(E2) The collection NewHO
(ρ)
p for all p ∈ Π, ρ > 0 satisfies M .

This definition already sounds very similar to the d-collect message adversary simulation
in Algorithm 2 and, without proof, we claim that d-collect is also a message adversary
emulation according to (E1) and (E2). We now examine the differences between the
emulation presented in [SSW18] and the simulation in Definition 9, and we will argue
that any run classified as a message adversary simulation according (E1) and (E2) is
also valid message adversary simulation by Definition 9. This shows that our definition
captures the definition in [SSW18] completely.

We start by identifying our required variables simState and r in a given run �, which
according to (E1) and (E2) is a message adversary simulation. As A emulates A 1, it

1The paper also uses A to denote the simulated algorithm
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needs to keep A’s state somewhere and we simply alias that to our simState. The variable
r does not exist, but the paper uses the unspecified function k(p, ρ) to map macro rounds
ρ to micro rounds at process p:

r1 = k(p, ρ − 1) + 1, r2 = k(p, ρ − 1) + 2, . . . , rk = k(p, ρ)

The paper does not explicitly mention in which round the macro state is valid, so we
simply fix ρ�

p(r) = k(p, r).

Given a run � satisfying (E2), we know that the communication graph G built by the
�
ρ�(r)
p .IN = NewHO

k(p,r)
p sets is a valid communication graph sequence in the message

adversary M . This already fulfills our Definition 8, as NewHO is the set of simulated
received messages (i.e., IN), and thus satisfies Eq. (3.5) of Definition 9.

Next we need to show, by induction, that the simulated run (�r
p)r≥0 produced by �p

adheres to Eq. (3.6) of Definition 9. We assume that the simulated initial configuration �0

in � is a valid initial configuration (i.e., �0 ∈ init1 × · · · × initn of the simulated algorithm
A) and we compare � to the reference run ξ given by ξ = (A, M)�0,G .

The induction step is, assuming for a round r that the configurations in our reference run
ξr and the simulated run �r are equal, so are the configurations in round r + 1. Assuming
that the simulated process p in the simulated run � receives a message in macro round r
from q, we know by (E1) that there exists a message chain from q to p and the message
lands in NewHOp. Therefore (by construction of the simulated communication graph
of round r) the message from q to p is not suppressed in the reference run ξ. On the
other hand, since ξr and �r are equal by assumption, the reference run and the simulated
run send the same messages and therefore the same messages arrive in ξr and in �r. The
state-transition function is deterministic and has to map to the same succeeding states:

ξr+1 = �r+1

So if a run is a simulation according to (E1), (E2) it is also equal to our reference run ξ
and thus a message adversary simulation according to Definition 9.

6.2 The strongest MA and the heard-of model
The heard-of model [CBS09] characterizes different systems only via so-called communi-
cation predicates and does not require definitions of message adversaries, crash-histories
or any other model specific attributes. Communication predicates simply state which
process hears from which other processes while performing a step at a given point in time,
where time is defined as a global entity not available to the processes. This abstraction
allows the comparison of many different systems, for example comparing the problem
solving capabilities of some message adversary on SMP with some failure detector
combined with a round based algorithm on AMP.

This relation between predicates is established via predicate emulators. Similar to message
adversary simulations presented here, they simulate a different predicate that specifies the
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6.2. The strongest MA and the heard-of model

simulated received messages of each simulated process. Our simulated message adversary
STAR can be expressed in the heard-of model, as

PSTAR = ∃pc ∈ Π : ∀q ∈ Π : ∀r ≥ 1 : HO(q, r) = {pc, q}

like any other message adversary for SMP . We thus originally intended to express our
results in the heard-of model, but Algorithm 3 turned out not to be a valid predicate
emulation.

This is due to criteria (E1) [CBS09, p. 55], which is essentially the same as condition
(E1) in [SSW18] that we mention in Definition 15 in Section 6.1. It is a validity condition
postulating that if a message arrives at the simulated process p, sent from q, then a
message chain exists from the sending simulator q to the receiving simulator p, which is
not necessarily the case in Algorithm 3.

The validity of our message adversary simulation is instead guaranteed by the equivalence
of the simulated run to a reference run of a CG-machine, for the same initial states,
with the identical communication graph sequence. This, as we argue in Section 6.1, also
captures the criterion (E1), in the sense that any SMP algorithm that is a predicate
emulation according to (E1) and (E2), is a message adversary simulation according to
Definition 9, but not necessarily vice versa.

In order to turn Algorithm 3 into a proper predicate translation, [SSW18] modified (E1)
to just requiring one message to reach all processes, thus acquiring ’initial knowledge’
(and therefore being able to locally compute further messages). We will instead state the
validity condition as ’any received message has to have been sent before’ and argue that
Algorithm 3 is a predicate emulation according to (E1’), defined as

(E1’) If m ∈ INr
p then m = Mr

p(q).

This formalization requires the existence of two things: the set of received messages INr
p

in the simulated round r and the message receiving function Mr
p(q), i.e., the message q

sends to p in the simulated round r, have to be defined on each simulator. We argue that
the two definitions required are present on any predicate emulation, but not necessarily
easy to define.

Note that both validity conditions (E1’) and the original (E1) do not imply a correct
emulation, as in both cases the simulator could tamper with the simulated state during
the simulation, making it non-correct. While the original (E1) allows a valid emulation
to still be a non-correct emulation, i.e., an emulator could provide a forged message but
still be valid because a message chain exists, (E1’) is necessary for a correct emulation.

We already presented two simulators which provide IN and M, the first is Algorithm 3 and
the second is Algorithm 4 in Section 5.1 that simulates SMP in AMP . For Algorithm 3,
we can take the required definitions directly from the proof of Theorem 3, where we
showed that it is a message adversary simulation, which, according to Section 6.1, already
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6. Consequences of our Results

implies that it is a predicate emulation. For Algorithm 4, the (trivial) message receiving
function is defined by

Mr
p(q) = Sr

q(C̃ρq(r)
q .ls_state, p)

and the set of received messages is defined by

INr
p = C̃ρq(r)

q .sim_rec_messages.

Last we show that Algorithm 4 fulfills (E2) in Definition 15 and our modified (E1’).
Theorem 6 proved that the simulated communication graph sequence satisfies the predicate
of (SOURCE, QUORUM)F,HF

, so we only need to show that a simulated received message
was actually sent before. As Line 7 sends only messages from the simulated process,
and Line 14 builds the simulated receive set exclusively out of received messages, any
simulated received message has to have been sent before, implying (E1’).

The modified validity condition (E1’) captures Algorithm 3 but still allows some valid
emulations to be non-correct, i.e., every emulation where the emulated state is modified
in between some steps. An even better validity condition would be the configuration-by-
configuration comparison to a reference run, which is exactly what a message adversary
simulation does. This means that (E1’) is, without loss of generality, necessary for a
correct run, but not sufficient. In essence, the choice of the validity condition used is a
trade-of between amount of work to prove it and the required formal correctness of the
proven simulated run.

6.3 Paradoxes
[SSW18] pointed out a seemingly paradoxical result of our findings, as they proved that
the message adversary VSSC(∞) (which allows to solve consensus) cannot simulate the
failure detector Σ in AMP and hence cannot simulate the weakest failure detector (Σ, Ω)
either. On the other hand, their results also showed that VSSC(∞) allows to simulate
STAR and that it is trivial to simulate (Σ, Ω) in AMP atop of STAR, a contradiction!
The problem could be traced back to the fact that the simulator for STAR does not
necessarily provide a strongly correct process of the underlying system as the center
process. We have not introduced strongly correct up to now, so we provide an informal
definition here.

Definition 16 (Strongly correct process) A process is called strongly correct iff its
messages reach all other processes infinitely often.

This implied that the simulation of (Σ, Ω) atop of STAR is not a valid simulation, as the
set of simulated strongly correct processes (the center of the star) does not necessarily
coincide with the set of strongly correct processes of the underlying system. This comes
back to the initial validity condition (E1) in Definition 15, which implies that, if a
simulated process transfers information, the simulator needs to transfer information.
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6.3. Paradoxes

This assumption is also crucial in their proof that VSSC(∞) cannot simulate the failure
detector Σ, making it sort of the contradictory core of the previously mentioned paradox.

This thesis aimed at never assuming the validity condition (E1). As already mentioned,
we establish validity of a simulation by comparison to a reference run on an equivalently
parameterized CG-machine. Our simulation also does not necessarily provide a strongly
correct process of the underlying system as the center of the star; the simulated algorithm
is completely oblivious of that fact, making it correct. Algorithm 3 works because, by
agreeing on a simulated process’ state, it already agrees on any future message sent in
the whole network as the network layout is fixed from the beginning.

This feature is arguably the beauty of Algorithm 3. Short lived stability in a system,
just long enough to solve consensus, is sufficient to guarantee a forever property, namely
’center-to-all’ communication. This could also be seen as the ability of the simulator to
simply define a different simulated failure pattern than the underlying failure pattern,
as the simulators can ’un-crash’ a crashed simulator. It does require relinquishing the
very intuitive assumption that repeated simulated communication requires repeated
underlying communication, but, as the simulated algorithm obviously cannot tell the
difference, it is without alternative.
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CHAPTER 7
Multi-Valued Consensus from

Binary Consensus

In this chapter, we extend the applicability of Theorem 3 to any message adversary
allowing just binary consensus, by reducing multi-valued consensus to binary consensus in
SMPadv : MA. We achieve this with Algorithm 5, which solves multi-valued consensus
given a binary consensus algorithm. Whereas such a reduction is known for classic
synchronous distributed systems with byzantine faults [TC84], it has been introduced
in the message adversary setting only in Winkler’s recent PhD thesis [Win19]. We will
adapt the algorithm presented there to our framework and decrease its exponential space
complexity to just a linear one.

Algorithm 5 intuitively operates as follows: each process concurrently simulates n + 1
instances C1, . . . , Cn+1 of the binary consensus algorithm and at the same time floods all
initial values on the network. The inputs I1, . . . , In+1 of the n + 1 consensus instances
(interpreted as vectors), are configured in such a way that Ik and Ik+1 differ by just one
bitflip, as shown in Table 7.1. As the first instance starts with I1, which only contains
0’s, it has to decide on zero. Similarly, as the last instance similarly starts with In+1,
which only contains 1’s, it has to decide on one. Therefore there exists at least one
pair of instances Cj , Cj+1 where a single bitflip in the initial vectors Ij , Ij+1 changed
the decided value, implying that the message from the process which flipped that bit
must have reached all other processes. As the initial multi-valued consensus values are
piggybacked on each message from the binary consensus algorithm, we know that also
the multi-valued consensus value had to reach every process and we simply choose that
value.

The following lemma proves that Algorithm 5 is correct.

Lemma 1 Binary consensus can be solved in a model SMPn[adv : MA] if and only if
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7. Multi-Valued Consensus from Binary Consensus

Algorithm 5: MultiValuedConsensus: Multi-valued consensus for initial value
vi and decision variable yi using a binary consensus algorithm
C = 
statesi, initi, {(Sr

i , T r
i )|r ≥ 1}� with the initial state s0

i ∈ initi. Code for
process pi.

1 Initially, let r := 1, x := vi, setIn[1, . . . , n] := ⊥, setIn[i] := x,
consensusState[1 . . . n + 1] := s0

i

2 consensusState[1 . . . i].x := 0
3 consensusState[i + 1 . . . n + 1].x := 1
4 consensusMsgIn[1 . . . n][1 . . . n + 1] := ⊥
5 foreach l ∈ {1 . . . n}, k ∈ {1 . . . n + 1} do
6 consensusMsgOut[l][k] ← S1

i (consensusState[k], l)
Loop over rounds 1, 2, . . . :

7 send (setIn, consensusMsgOut[l]) to l
8 receive (setInj , consensusMsgRecvj) from j

9 consensusMsgIn[1 . . . n][1 . . . n + 1] := ⊥
10 foreach (setInj , consensusMsgRecvj) received from j do
11 foreach l ∈ {1 . . . n} : setInj [l] != ⊥ do
12 setIn[l] ← setInj [l] /* maintain array of known input values */
13 consensusMsgIn[j] ← consensusMsgRecvj

14 foreach k ∈ {1 . . . n + 1} do
15 consensusState[k] ←

T r
i (consensusState[k],

�
consensusMsgIn[1][k], . . . , consensusMsgIn[n][k]

	
)

16 if ∀k ∈ {1 . . . n + 1} : consensusState[k].y != ⊥ then
17 for k = 1 to n do
18 if consensusState[k].y = 0 ∧ consensusState[k + 1].y = 1 then
19 yi ← setIn[k]
20 break
21 r ← r + 1
22 foreach l ∈ {1 . . . n}, k ∈ {1 . . . n + 1} do
23 consensusMsgOut[l][k] ← Sr

l (consensusState[k], l)

multi-valued consensus can be solved in SMPn[adv : MA].

We split the proof into two parts. The first part only shows that Algorithm 5 is a message
adversary simulation for the binary consensus algorithm C for each of its n + 1 instances.
The second part then proves the multi-valued consensus property.

Proof We assume a run � = (MultiValuedConsensus, MA)C0,σ of Algorithm 5 simulating
the k ∈ {1 . . . n + 1} instance of C on the communication graph sequence σ ∈ MA and
alias the required variables:

consensusState[k] → simState. (7.1)
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We can then apply Definition 6, Definition 7 and Definition 8 to define the simulated run
� and the simulated communication graph sequence G.

1. ρ�
p(r) is defined for all r ≥ 0 and for all p ∈ Π as Line 21 increments r in every

micro round, starting in micro round 1:

ρ�
p(r) = r

This already defines the simulated run and the set of received messages for consensus
instance k as:

�r
p = �

ρ�
p(r)

p .consensusState[k] (7.2a)

�r
p. IN = (�ρ�

p(r)
p .consensusMsgIn[1][k], . . . , �

ρ�
p(r)

p .consensusMsgIn[n][k]), r ≥ 1.

(7.2b)

2. Each process pk ∈ Π in each consensus instance k receives messages from qk ∈ Π,
to be used in Line 15, iff its simulator p receives consensusMsgRecvq from q in Line 8
(because consensusMsgIn[q][k] is consensusMsgRecvq[k] if a message from process
q was received, else ⊥), and all the intended messages from qk to pk are sent in
Line 6 and Line 23, implying:

Gk = σ (7.3)

for each consensus instance k.

3. We prove that in every macro round r the configurations in the reference run
ξ = (C, MA)�0,G and the simulated run � of consensus instance k are equal:

∀r > 0 : T r
p (�r−1, (�r. IN(1), . . . �r. IN(n)) ) =

�r
p = ξr

p

= T r
p (ξr−1, (Mr

p(1), . . . Mr
p(n)) )

(7.4)
The base case �0 = ξ0 holds by definition, for the step we assume Eq. (7.4) is
satisfied. As consensusState[k] is only written in Line 15, it is sufficient to show that
any process pk receives the same messages in the simulated � and in the reference
run ξ:

ξr+1
pk

. IN = �r+1
pk

. IN = (�ρ�
p(r+1)

p .consensusMsgIn[1][k], . . . , �
ρ�

p(r+1)
p .consensusMsgIn[n][k])

By the induction hypothesis Eq. (7.4), the same set of messages is sent to pk in both
�r+1 and ξr+1. Since both �r and ξr use the same Gr+1, the same set of messages
arrives in Line 8, lands in consensusMsgIn[∗][k], and therefore also in ξr+1

pk
. IN and

�r+1
pk

. IN. Thus we get ξr+1
pk

= �r+1
pk

as needed.
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7. Multi-Valued Consensus from Binary Consensus

p1 p2 · · · pn−1 pn

C1 0 0 · · · 0 0 → 0
C2 1 0 · · · 0 0
C3 1 1 · · · 0 0
...

...
... . . . ...

...
Cn 1 1 · · · 1 0

Cn+1 1 1 · · · 1 1 → 1

Table 7.1: The initial values I1, . . . , In+1 of the n + 1 consensus instances C1, . . . , Cn+1
on each of the n processes. Note that the matrix is not symmetric.

�

We proved that Algorithm 5 is a message adversary simulation for the binary consensus
algorithm C, inheriting the consensus properties validity, agreement and termination for
the second part of our proof.

Proof We begin by observing that each process starts its binary consensus instances as
shown in the matrix in Table 7.1 in Line 2 and Line 3. We have n + 1 instances and,
representing the initial values as an n + 1 bit array starting from all 0’s, we shift in a 1
from the right going to each next instance. By validity, we know that the first instance
C1 has to decide on 0, whereas the last instance Cn+1 has to decide on 1, implying there
is some instance j where Cj decides on 0 and Cj+1 decides on 1.
As the initial values of instances Cj and Cj+1 only differ in one value, namely the switch
from a 0 to a 1 at process j, we know that there exists a chain of messages from process
j to every other process q ∈ Π in the communication graph sequence σ:

∀q ∈ Π : ∃r, r� < rq : j
r,r�
� q

where q decides in round rq.
Assume not and there exists a process p != j such that there does not exists a chain of
messages j

r,r�
� p for all r, r� < rp. This implies that the set of processes which have a

message chain to p before round rp does not include j, i.e., any process, before sending a
message along a chain to p, has not heard of process j. As the communication graph
sequence σ is the same for the run of instances Cj and Cj+1, this implies that p receives
the same set of messages in both instances up to round rp and p ends up in the same
state in round rp in both instances. But this contradicts our assumption that instances
Cj and Cj+1 decide on a different value.
The algorithm maintains an array of all initial values of all processes in setIn. As there is
a chain of messages from j to any process p and Algorithm 5 broadcasts its setIn in every
round, the initial value of j will reach every process and is finally chosen in Line 19.

�
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CHAPTER 8
Conclusions

This thesis started by introducing the synchronous message passing model along the lines
of the heard-of model presented in [CBS09] and extended it with process crashes. We then
defined CG-machines as the ’communication graph sequence’-equivalent to HO-machines
and formulated a rigorous definition of a message adversary simulation. The validity
of a simulation, called a simulated run, is given by its equivalence to a reference run
on a CG-machine with identical parametrization, as we consider a simulation to be
correct iff it cannot be distinguished from a normal run. This gave us the formal tools
for defining a strongest message adversary STAR, via a message adversary simulation
where we also simulate the center process in lock-step with the simulated process at each
simulating process in the system. This is possible, as the underlying message adversary
allows consensus to be solved and therefore the processes can agree on a simulated state,
i.e., the state of the center process. It turned out that there is not just one strongest
message adversary, but a set of strongest message adversaries, which we characterized in
Theorem 4 as the set of message adversaries which can be simulated in STAR and allow
consensus to be solved.
We then compared SMPadv : STAR with AMPfd : (Σ, Ω), where (Σ, Ω) is the weakest
failure detector for consensus. We concluded that they are equal with respect to task
solvability which coincides with the results from [RS13]. Coming back to the heard-of
model we briefly introduced predicate emulations and examined the relationship of our
results to the conclusions in [CBS09]. As it turned out, our simulation is not a valid
predicate emulation because our simulation simulates the center process alongside the
simulated process and does not require any actual communication to take place. We thus
introduced a new validity condition along the lines of ’if a message arrives, it was sent
before’, with the advantage of being more accurate but also more complicated.
Finally, we proved that multi-valued consensus can be efficiently reduced to binary
consensus in the message adversary model, which extended our definition for the set of
strongest message adversaries to all message adversaries allowing consensus to be solved.
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8. Conclusions

8.1 Further Research
In Chapter 3, we introduced a couple of restrictions on message adversary simulations,
which might be interesting to relax. For example, what happens if one drops the one-to-
one mapping such that one simulator may simulate multiple processes, or if one allows
multiple macro rounds in one micro round? One could also replace consensus with
set-consensus and not simulate STAR but SP_UNIF , see [SSW18].

An obvious extension would be simulations on AMP where just the concept of comparing
configurations to a reference run is kept. Does this result in the same conclusion as the
weakest failure detector?
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Glossary

(Sr
p , T r

p ) The message-sending function S and the state transitioning function T for
process p at round r. 7

(A, MA) The CG-machine consisting of algorithm A together with the message adversary
MA. 9

(Gr)r≥1 A simulated communication graph sequence. Each Gr describes which messages
arrive in the simulated round r. 15

(Gr)r≥1 A communication graph sequence. Each Gr describes which messages arrive in
round r. 2

Cr The round r configuration of a run � in SMP . 9

F (r) The failure pattern. For each round it provides a set of processes which failed up
to that round. 9

HO(p, r) The heard-of set of process p in round r, defined in [CBS09]. 4

HF (p) The failure characteristic. For each process p it provides a set of processes which
p reaches in its failing round. 9

M The set of messages an algorithm may send. 7

MA A 1BA MA B This means that the simulator B, running on MA B, can simulate A
running on MA A. This implies that MA A is stronger than MA B. 20

Ωω
A The set of possible runs of algorithm A. 10

ΩA The set of possible configurations of algorithm A. 10

� A simulated run, usually in combination with an actual run � of a simulator which
defines the simulated run. 18

� A run of an algorithm in SMP . 9

Π The set of processes in the distributed system, usually |Π| = n. 7
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AMP[fd : (Σ, Ω)] The asynchronous message passing model with the failure detector
(Σ, Ω). xiii

EA,MA The set of runs of algorithm A on SMP with the message adversary MA. 10

Mr
p(q) This is a helper function that maps to the message which process q sends to

process p in round r. 10

SMP [adv : MA] The synchronous message passing model with the message adversary
MA. xiii

MA A message adversary. 3

QUORUM The message adversary QUORUM, see Definition 13. 3

SOURCE The message adversary SOURCE, see Definition 12. 3

STAR The message adversary STAR, see Definition 11. ix

VSSC(∞) A message adversary that allows solving consensus, specified in [BRS+18]. 3

simStarA The simulator simStar simulating the algorithm A on the message adversary
STAR. 23

INr
p The set of messages process p receives in round r. 10

�̃ A run of an algorithm in AMP. 14

∅̃ The state of a crashed process in AMP. 12

∅ The state of a crashed process in SMP . 7

correct(F ) The set of correct processes in a run in AMP under the failure characteristic
F . No process in correct(F ) ever crashes. 13

crashed(F ) The set of crashed processes in a run in AMP under the failure characteristic
F , i.e., the complement of correct(F ). 13

f = ∂F
∂r The discrete derivative of F (r). 9

initp The set of initial states in a given algorithm for the processor p, we set that
initp ⊆ statesp. 7

statesp The set of states in a given algorithm for the processor p. 7
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