
38th EuroForth Conference

September 16-18, 2022

(Preprint Proceedings)

Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 38th EuroForth
finds us again mostly at home, and the conference is being held on the Internet.
The two previous EuroForths were also held online. Information on earlier
conferences can be found at the EuroForth home page (http://www.euroforth.
org/).

Since 1994, EuroForth has a refereed and a non-refereed track. This year
there has been one submissions to the refereed track, which was accepted (100%
acceptance rate). For more meaningful statistics, I include the numbers since
2006: 30 submissions, 22 accepts, 73% acceptance rate. This year the only
submission was authored by the program chair; Ulrich Hoffmann served as sec-
ondary chair and organized the reviewing and the final decision for that paper.
The reviews of all papers are anonymous to the author: The paper was reviewed
and the final decision taken without involving the author. I thank the program
committee for their paper reviews.

In addition to the papers and presentation handouts available before the
conference, these online proceedings also contain presentation handouts that
were provided at or after the conference. I thank the authors for their papers
and slide handouts.

You can find these proceedings, as well as the individual papers and slides,
and (when they become available) links to the presentation videos on http:

//www.euroforth.org/ef22/papers/.
Workshops and social events complement the program. This year’s Euro-

Forth has been organized by Gerald Wodni.

Anton Ertl

Program committee

M. Anton Ertl, TU Wien (chair)
Ulrich Hoffmann, FH Wedel University of Applied Sciences
Matthias Koch, Institute of Quantum Optics, Leibniz University Hannover
Jaanus Pöial, Tallinn University of Technology
Bradford Rodriguez, T-Recursive Technology
Bill Stoddart
Reuben Thomas

3

http://www.euroforth.org/
http://www.euroforth.org/
http://www.euroforth.org/ef22/papers/
http://www.euroforth.org/ef22/papers/

Contents

Refereed Papers
M. Anton Ertl: Memory Safety Without Tagging nor Static Type

Checking . 5
Presentation Slides

Nick J. Nelson: Better Values: Improvements to the implementation
of the extended Forth Value concept 16

Nick J. Nelson: Forth Query Language (FQL): Refining the result set
analysis using dynamically generated local functions 20

Ulrich Hoffmann: Fuzzing Forth . 24
Krishna Myneni: Progress Towards Porting EISPACK to Forth 33
Glyn Faulkner: Tales from the Left-Hand Path: Dark Confessions of

a Forth Hobbyist . 37
Klaus Schleisiek: German Academia and Forth 42
Bernd Paysan: Gforth 1.0 . 43
Klaus Schleisiek: uCore progress . 44
Ulrich Hoffmann: Standard Report . 45
Nate Morse: Joy to the Web: A Zero Install version of Joy (not a

production) Language called Pounce 46
M. Anton Ertl: Are locals inevitably slow? 48
Ulrich Hoffmann: Enums in Forth . 50
Nick Nelson: Resource embedding in Forth 53
Howerd Oakford: Encoding ASCII into cf2022 colorForth tokens . . . 55

4

Memory Safety Without Tagging nor Static Type Checking
M. Anton Ertl∗

TU Wien

Abstract
A significant proportion of vulnerabilities are due
to memory accesses (typically in C code) that
memory-safe languages like Java prevent. This pa-
per discusses a new approach to modifying Forth
for memory-safety: Eliminate addresses from the
data stack; instead, put object references on a sep-
arate object stack and use value-flavoured words.
This approach avoids the complexity of static type
checking (used in, e.g., Java and Factor), and also
avoids the performance overhead of dynamic type
checking for non-memory operations. This paper
discusses the consequences of this approach on the
language, and on performance.

1 Introduction
Accessing arrays with an index outside the array
bounds is usually a bug. Other memory access er-
rors include reading an uninitialized location, ac-
cessing a field of the wrong structure, and accessing
memory that has been freed. Memory access errors
are common as sources of program crashes, but they
are also a common source of vulnerabilities: Gaynor
reports [Gay20] that at least 65% of vulnerabilities
in various software environments are due to memory
safety issues.
From pretty early on there were programming

languages where such bugs could not happen or
would be caught and reported, e.g., Lisp and Al-
gol 60. Such programming languages are called
memory-safe languages.

Forth, on the other hand, allows the programmers
to shoot themselves in the foot, and relies on care-
ful programmers to avoid such bugs; while this has
some advantages, there are occasions when some
programmers prefer memory safety. The Forth
world has some answers in this area, e.g., Factor
and Oforth, but they rely on static type checking
and/or tagging all data for dynamic type checking.
In the present work, we introduce the approach

of avoiding some of that type checking by elimi-
nating addresses from the data stack, and instead
keeping object1 references on an object stack. The

∗anton@mips.complang.tuwien.ac.at
1Here object refers to a piece of memory, similar to a

contiguous region in standard Forth, or an object in the C

benefits of this approach are that it avoids both the
complexity of static type checking as well as the
slowdown of tagging and tag-checking.

In Section 2 we look at the problem and how
others have solved it. Section 3 describes our own
approach; in particular, the main contribution of
this work is to keep object references separate from
other data through separate stacks (Section 3.1)
and value-flavoured words (Section 3.6). The rest of
Section 3 describes various other changes necessary
for memory safety, but most of that is relatively
straightforward. Section 4 gives an idea about the
difference between Forth and Safe Forth by divid-
ing the Core wordset of standard Forth into words
that are unchanged in Safe Forth, and words that
need various changes. Section 5 discusses topics
beyond 1:1-correspondence between Forth and Safe
Forth. We present implementation approaches for
some common operations in Safe Forth and their
theoretical effect on performance in Section 6. Safe
Forth is currently a paper design (Section 7). Fi-
nally, Section 8 discusses some related work.

1.1 Safe Forth or a memory-safe
Forth?

The intention of this paper is to explore the idea of
memory-safety without tagging and without static
type checking in general. One can build a num-
ber of different languages on that foundation, which
makes the exposition challenging: Describing only
one of these languages loses generality, but makes
the description easier to understand. Therefore we
take this approach, and we call that language Safe
Forth, but we occasionally describe alternative vari-
ants.

Safe Forth is object-oriented; this plays a minor
role in much of this paper, but occasionally shines
through. A more detailed description of the object
model is given in Section 3.8, where the topic is first
discussed in more depth.

standard. The division of memory into pieces instead of pro-
viding a flat address space is universal in memory-safe lan-
guages. However, elsewhere in this paper object typically is
used in the object-oriented sense.

5

Ertl Memory Safety

2 Existing approaches
Most languages in wide use today are memory-safe,
with the exceptions being C, C++, assembly lan-
guage and Forth; languages like Rust and Ada have
unsafe escape hatches, and many others have inter-
faces to C that can also serve as escape hatches (but
into C, not an unsafe dialect of the base language).
As an example, Java has primitive types (such

as int or double) and reference types (objects in-
cluding arrays). Java has static type rules and the
Java compiler applies them and knows which type
an expression has. On the level of objects, the type
checker often does not know the exact class/type
of an object, just that it is a subclass of a certain
class; the exact class information is present at run-
time in a field at the start of each object and is used
for method dispatch and for subtype checking.
This scheme is roughly followed by all object-

oriented languages, but in many language imple-
mentations the primitive types and object refer-
ences are not distinguished by static type checking,
but by tagging: A bit or a few bits of a machine
word (a cell in Forth terminology) are reserved for
indicating the type of the machine word: each prim-
itive type represented as a machine word gets a dif-
ferent tag, and object references also get their tag
(usually one tag for all object references, with more
information available at the start of the object).2
There are also cases like the Ocaml interpreter that
uses tagging in a statically type-checked language
to simplify the garbage collector.
In the world of Forth-like languages, Factor uses

static type checking, while Oforth uses tagging.
These implementations ensure memory-safety as

follows:

Out-of-bounds access: Array accesses are
bounds-checked. Sophisticated compilers can
eliminate a significant proportion of these
bounds checks [BGS00].

Uninitialized location: All locations are initial-
ized. Java and Oforth zero all locations: this
initializes integers to 0, FP variables to 0.0, and
reference types to null.

Access to the wrong field: Java only allows ac-
cesses to fields that belong to the (statically
known) class of the object. Java allows casting
to a class C in order to establish that static
knowledge, but then Java tests during the cast
(at run-time) whether the object is an instance
of C. Likewise, other languages either have to
establish static knowledge or check on every
field access that the object has that field. Like

2There is also a technique called NaN-boxing which for
the purposes of this paper is a variant of tagging and is not
discussed further here.

for bounds checks, there are ways to reduce the
number of necessary checks by increasing com-
piler sophistication.

Use after free: The common approach to avoid-
ing use-after-free bugs is to let the language
perform automatic storage reclamation, either
through garbage collection or through refer-
ence counting (Python). Rust employs a so-
phisticated static type system that ensures that
no reference to an object remains when the ob-
ject is freed.

3 Safe Forth
This section discusses how Safe Forth differs from
Forth, and how its approach achieves memory-
safety.

3.1 Basic approach
The basic idea in the present approach is to separate
object references from other data types by putting
object references on a separate objects stack, and
no addresses on the data stack. Words that work
with object references take them from the objects
stack, and words that work with non-reference data
take them from the data and FP stacks.

This makes it unnecessary to use tags or sophisti-
cated type checkers, and yet (with the right setup)
it is impossible to perform address arithmetic and
similar things that are incompatible with memory
safety.

In particular, consider the twenty dynamically
most frequently executed primitives in the statistics
at http://www.complang.tuwien.ac.at/forth/
peep/sorted:

1 13.5% ;s
2 13.2% col:
3 9.0% @
4 5.1% ?branch
5 4.6% lit
6 3.4% var:
7 3.4% dup
8 3.2% user:
9 3.0% swap

10 2.8% +
11 2.5% con:
12 2.0% >r
13 1.9% r>
14 1.8% 0=
15 1.3% and
16 1.3% c@
17 1.2% !
18 1.2% over
19 1.1% cells
20 1.1% rot

6

Ertl Memory Safety

data
stack

return
stack

FP
stack

control-flow
stack

Forth-2012
conceptual

data
stack

return
stack

FP
stack

typical Forth-2012
implementation

data
stack

system
r-stack

FP
stack

object
stack

Safe Forth
data

r-stack
object
r-stack

control-flow
stack

Figure 1: Stacks in Forth and Safe Forth

The black numbers are for words that do not need
to handle tags in a tagged implementation, either
because they don’t handle data, they handle arbi-
trary data, or they push pre-tagged data (e.g., lit).
The slanted blue lines are for words that would need
to deal with tags in a tagged system, but do not
need that with our approach (or with static type
checking). The bold red lines are for words that
deal with addresses; in a tagged system like Oforth
they are replaced with words that have to check
both the tags and the class descriptors of the object
references, while with our approach (and with static
type checking) you avoid the tag checking (but still
have to check the class descriptor).
For the four problems mentioned above our ap-

proach is:

Out-of-bounds access: Array accesses are
bounds-checked (and first the object is
checked to be an array of the appropriate
type).

Uninitialized location Values, arrays, and struc-
tures are zeroed on creation.

Access to the wrong field A field access checks
whether the object actually has that field. It
is possible to optimize this check away in some
cases with relatively little complexity; e.g., in
a method of class C we know that this is an
instance of C.

Use after free Use garbage collection. Other ap-
proaches may be possible, but are unlikely to
be simpler.

What this approach does not give us is type
checking of the data on the data stack. If you want
to add 1 to the letter A, you still can3. You also
don’t have to pay the compiler complexity or run-
time cost of such type checking.

3While Safe Forth is probably not something Chuck
Moore is interested in, at least in this respect it follows his
preferences [RCM96]

3.2 Stack underflows and overflows
Stack overflows and underflows undermine memory
safety if they are not caught. Fortunately they can
be caught at no run-time cost on systems with a
paged MMU, by putting unaccessible guard pages
around each stack. This approach has been used
by Gforth since almost its inception, and is a good
approach for Safe Forth.

Gforth-fast keeps stack items in registers; to
avoid spurious underflow exceptions from traffic be-
tween these stack items and the stack in memory,
several memory slots below the stack bottom are
left accessible. In a Safe Forth using this tech-
nique, the registers and the extra memory slots of
the object stack have to be initialized to safe values
(e.g., null); then, while accessing stack items below
the bottom is possible, this cannot subvert memory
safety.

If MMU-based stack bounds checking is unavail-
able, the stack pointer can be bounds-checked (more
expensively) with code every time it is changed.

3.3 Return stack
In addition to keeping object references on a sep-
arate stack, we also have to ensure that we don’t
open a memory-safety hole through the return
stack. Forth systems typically keep return ad-
dresses on the return stack, as well as counted-
loop parameters and cells moved by the program
from the data stack with words like >r. In ordi-
nary Forth, a program can execute arbitrary code
with >r exit, which is not compatible with mem-
ory safety.

Our solution to this problem is to just exclude
the return stack words like >r from Safe Forth.

Another solution is to split the return stack into
three stacks: A system return stack for system-
execution types (return addresses and loop control
paramaters), a data return stack for stashing away
data stack items, and an object return stack for
stashing away object stack items. However, if you

7

Ertl Memory Safety

implement locals, the additional benefit of the latter
two stacks does not seem to be worth the cost.
In either case, exit inside a counted loop

poses a problem (unless we split return addresses
and counted loop parameters into using different
stacks). Standard Forth has unloop to remove
counted-loop parameters, but memory-safety can
be violated in typical implementations by using
unloop in a non-standard way. However, because
the stack for system-execution types now only con-
tains these types, it is relatively straightforward
to implement exit without needing unloop: Just
count the number of counted loop nests, and let
exit compile code for dropping the corresponding
number of loop parameters before compiling the re-
turn.
Figure 1 shows the relation between the stacks in

Forth and Safe Forth. Optional stacks are shown in
light gray.

3.4 Control-flow stack
The control-flow stack contains information about
incomplete control structures during compilation.
On most systems it is implemented on the data
stack (although the standard does not guarantee
that).
We considered putting the control-flow stack

items on the object stack in Safe Forth. However, in
Safe Forth we have to ensure that do-like words are
matched with loop-like words not only during com-
pilation, but also at run-time (to avoid memory cor-
ruption by mixups of loop-control parameters and
return addresses).
Eventually the simplest way to achieve this is to

have a separate control-flow stack.

3.5 Null
Null is a value on the object stack without object;
trying to access through a null reference throws an
error. Null is implemented as address 0 (to make
type-ignorant initialization possible). Programs can
test whether a reference is null.

3.6 No variables
Variables push an address, so Safe Forth elimi-
nates them. They are replaced with values. In
addition to the classical values that communicate
with the data stack, there are ovalues for holding
object references; an ovalue ov pushes its content on
the object stack, and to ov consumes an element
from the object stack.
In all other areas variable-flavoured words for

storing data are eliminated and replaced with value-
flavoured words, with both data-stack and object-
stack variants. In particular, field-access words are

value-flavoured (Forth-2012 only provides variable-
flavoured field words).

Locals are value-flavoured in Forth-2012, which
is kept in Safe Forth. The object-stack variant is
defined by using o: in front of the local. E.g.

{: a o: b c :}

defines two data-stack locals a and c and an object-
stack local b.

All these value-flavoured words for storing data
initialize the data to 0, 0e or null if there is no
initialization value given (e.g., for locals after |).

3.7 Fields in structures
This section discusses the access of fields in struc-
tures in a non-object-oriented memory-safe Forth.
We use the Forth-2012 structure syntax in this sec-
tion, with modifications.

A (value-flavoured) field is defined with one of the
defining words ovalue: value: cvalue: fvalue:
etc.4 Fields are defined in the context of a structure.
For a field f, performing f takes a reference from

the object stack and checks if the reference points
to a structure/object that has a field f. If so, it
pushes the content of that field in the structure on
the appropriate stack (data, object, or FP stack).
If not, it throws an exception.

Performing to f5 is very similar, except that it
takes a value from the appropriate stack and stores
it in the field.

Forth’s field-defining words keep the offset on
the data stack during the definition, but that
would mean that the program could change
offsets and thus undermine memory-safety, so
in Safe Forth the offset is kept in a hid-
den variable.6 This means that we have to
use begin-structure ... end-structure rather
than the alternative 0 ... constant.

The structure name pushes an object represent-
ing the structure type on the object stack, and new
allocates an object of that type and initializes it
with the type, and all fields zeroed.

Figure 2 shows an example of a structure. We
discuss the representation of the type in Section 6.

3.8 Objects and fields
Safe Forth uses an object model with single inheri-
tance of fields and method implementations, where
every method selector can be used with any class
(duck typing). When invoking a method, the top of

4Many of these defining words are also defined for Forth
in Gforth’s struct-val.fs.

5The alternative syntax ->f is already implemented in
Gforth.

6Alternative: an opaque object referenced through the
object stack.

8

Ertl Memory Safety

begin-structure intlist
 ovalue: intlist-next
 value: intlist-val
end-structure

intlist new ovalue x
5 x to intlist-val

type
intlist-next

intlist-val

intlist
null
5

Figure 2: Source code for creating a structure and
the resulting memory for the structure

the object stack O is removed, put into this, and
used for method dispatch (calling the right method
implementation for the combination of the class of
O and the method selector).
Fields in objects are similar to fields in structures,

with one difference: they refer to the object in this
rather than the object stack, and do not consume
that object. Because this is set on method entry,
we know that the class D of the object is a subclass
of the class C for which the method implementa-
tion was defined; if f is defined in a superclass B of
C, no checking is necessary, and the check can be
eliminated when compiling f inside that method.
Note that, e.g., postpone f can put f in a con-

text where the class of this is not guaranteed to
be a subclass of B, so it’s better to make this op-
timization dependent on the compilation context.
The alternative is to ensure through language re-
strictions that f can only be used in the right con-
text, but one might overlook some corner case, and
the restrictions may be too limiting.

3.9 Arrays
Arrays are accessed through a reference on the ob-
ject stack. They are either object arrays that con-
tain only object references and null, or they are
data arrays that contain only data, no object refer-
ences. Safe Forth has typed data arrays, i.e., they
contain only cells, only characters, or only floats.
Safe Forth uses polymorphic access words:

[] (u array -- v)
->[] (v u array --)

The type of v depends on the type of the array,
e.g., for an FP array v is a FP value on the FP
stack, for an object array v is an object reference
on the object stack.7 If the index u is outside the

7A disadvantage of this approach is that [] and ->[] have
a stack effect that depends on the passed array, which makes
the code harder to analyse. Alternatively, we could have
stack-effect-specific array access words such as o[] ->o[] []
->[] f[] ->f[].

50 farray oconstant a
3e 1 a ->[]
a 1 3 slice oconstant b
5e 1 b ->[]

type
length
values

a
farray

50
0e
3e
5e
...
0e

b
fslice

1
3

type
base
start
length

Figure 3: Source code for creating an array and an
array slice, and the resulting memory

array bounds, an exception is thrown.
An alternative is to have object arrays and, for

non-objects, untyped arrays of bytes with typed ac-
cess words that use byte offsets rather than element
indices. This approach would be closer to Forth and
still memory-safe, but users of an object-oriented
memory-safe Forth probably prefer the approach
outlined for Safe Forth.

Figure 3 shows an example of an array. We dis-
cuss the representation of the type in Section 6.

The word farray creates a new FP array with
the length (number of elements) given on the data
stack; the elements are initialized to 0e.

3.10 Array slices
Forth supports representing parts of arrays by giv-
ing the start address and number of elements (or
number of address units), the same representation
as the full array. In Forth address arithmetic is used
for that, but we cannot use that in Safe Forth, so
we provide array slices instead. In the simplest case
an array slice starts at some element of the array it
is based on (with index 0 in the array slice), and has
a length at most as long as the remaining elements
of the base array.

Figure 3 shows an example of an array slice.
This assumes (object-oriented) dynamic dispatch
for ->[] to work. Once we have polymorphism for
array access words, we can have more fancyful kinds
of array slices beyond what Forth can represent with
address and length, e.g., with strided access.

3.11 Strings and String Buffers
Standard Forth uses c-addr u to represent both
strings (e.g., in type) and string buffers (e.g., in
read-file). In some cases (e.g., move), string
buffers are represented by the address alone, and
the word cannot prevent buffer overflows.

9

Ertl Memory Safety

16 stringbuf oconstant s
s" abc" s move
s type

type
maxlength
actlength

s
carray

16
3
a
b
c
...

NUL

Figure 4: Source code for creating a string buffer,
and for storing a literal string there, and the result-
ing memory

The use of two cells for this purpose leads to deep
stacks and related complications, and so a signif-
icant number of programmers advocates counted
strings or other alternative single-cell representa-
tions. So in Safe Forth we use a single reference on
the object stack for representing a string or a string
buffer.

A string buffer has a maximum length (used for
words that write to the buffer, such as read-file),
and an actual length (used for words that read from
the string, such as type); see Fig. 4. Trying to store
a too-long string into a string buffer results in an
exception.

For read-only strings the maximum length is un-
necessary. Such a specialized representation can
easily be implemented in an object-oriented Safe
Forth in addition to string buffers. Trying to write
to a read-only string results in an exception.

3.12 Execution tokens

In Forth, execute, compile, and defer! take an xt
from the data stack. In Safe Forth, we need to put
execution tokens on the object stack; however, the
execution tokens in Safe Forth will likely have a dif-
ferent representation than those in Forth, because it
needs a type field like other objects referenced from
the object header. One way to achieve this on top
of an unchanged Forth system is to create objects
that contain a type field and the Forth-level exe-
cution token. In Gforth a more efficient approach
(one memory access less) would be to add a type
field to the word header [PE19], but that requires
deeper changes.

3.13 does> and >body
Create is eliminated. Instead, does> is combined
with oconstant8 and the code behind does> starts
with the value of the oconstant pushed onto the
object stack. Correspondingly, >body produces the
value of the oconstant from its xt. E.g., the fol-
lowing is a possible implementation of constant
in a non-object-oriented memory-safe Forth (Sec-
tion 3.7):

begin-structure const-struct
value: val

end-structure

: constant (n "name" --)
const-struct new odup to val oconstant

does> (-- n)
(const-struct) val ;

3.14 Garbage collection
There are conservative garbage collectors that do
not move the data around, and do not need to know
if a cell contains a memory reference or some other
data. The existing Forth garbage collector9 is con-
servative.

Alternatively, precise garbage collection needs to
know which cells contain memory references and
which don’t; the benefit is that it can move the
data around, which eliminates fragmentation and
makes allocation faster.

In the absence of tagging, it is difficult to keep
track of all memory references in all situations:
It’s relatively straightforward to know it for ob-
ject fields: objects are headed with a class address,
and the class can contain the necessary information.
But for locals, things are more difficult; either we
have separate locals stacks for data and for object
references, or we need some way to know which cells
on the locals stack or return stack are references and
which are data. These ways either require some run-
time overhead or significant compiler complications.

To avoid such complications, we stick to conser-
vative garbage collection.

4 Words
In order to see how similar and how different Safe
Forth is from Forth, in this section we look at the
Forth-2012 core words, and determine which are un-
changed, which are changed, and how substantial
the needed changes are.

8Oconstant is the object-stack equivalent of constant. An
alternative view is that it is like ovalue except that you can-
not use to on its children. Note that you can put mutable
objects into oconstants

9http://www.complang.tuwien.ac.at/forth/
garbage-collection.zip

10

Ertl Memory Safety

In some cases one might choose the break in com-
patibility to perform other changes as well, e.g., to
change the input stream handling, but in this paper
we do not go into that and only work out changes
that are related to the requirements of memory-
safety.

4.1 Unchanged
These words typically work just on the data stack,
but in some cases some stack items are taken off or
pushed on the object stack, FP stack, or system-
return-stack as discussed above: execution tokens
are on the object stack, system compilation types
(e.g., control-flow stack items like orig) are on the
control-flow stack, system execution types (e.g.,
nest-sys, i.e., return addresses) are on the return
stack, and floating-point values are on the FP stack.
#S ’ (* */ */MOD + +LOOP - . ." /

/MOD 0< 0= 1+ 1- 2* 2/ 2DROP 2DUP 2OVER
2SWAP : ; < <# = > >IN ?DUP ABORT ABORT"
ABS AND BEGIN BL CHAR CELL+ CELLS CHAR+
CHARS CONSTANT CR DECIMAL DEPTH DO DROP
DUP ELSE EMIT EXECUTE FM/MOD HOLD I IF
IMMEDIATE INVERT J KEY LEAVE LITERAL
LOOP LSHIFT M* MAX MIN MOD NEGATE OR OVER
POSTPONE QUIT RECURSE REPEAT ROT RSHIFT
S>D SIGN SM/REM SPACE SPACES SWAP THEN U.
U< UM* UM/MOD UNTIL WHILE XOR [[’] [CHAR]
]

CELL+ CELLS CHAR+ CHARS are listed above, be-
cause they can be used to compute sizes or offsets,
but they are not very useful in most Safe Forth vari-
ants (except those that use sizes and offsets for ar-
rays instead of numbers of elements or indexes).

4.2 Adapted stack effects
#> (xd -- string)
>BODY (xt -- object)
>NUMBER (ud1 string -- ud2 stringslice)
ACCEPT (stringbuf --)
COUNT (string -- c stringslice)
ENVIRONMENT? (string -- false | ... true)
EVALUATE (... string -- ...)
FILL (stringbuf c --)
FIND (string -- xt +-1 | string 0)
MOVE (string stringbuf --)
S" (run-time: -- string)
SOURCE (-- string)
TYPE (string --)
WORD (c -- string)

Among these, count is useful only in its meaning
as alias for c@+.

4.3 Slight changes
DOES> now works on oconstants.

EXIT now works in counted loops without preced-
ing unloop.

4.4 Substantial changes
@ is deleted. Values and value-flavoured words push
their value, and [] loads a value from an array.

! is deleted. to is used for storing into values and
fields, is for storing into deferred words, and ->[]
for storing into arrays.

+! is deleted. The system may have +to.
Allot is deleted. Words like new or array are

used instead.
State is replaced with the value state@.
Base is replaced with the value base@.

4.5 Deleted words
! +! , 2! 2@ >R @ ALIGN ALIGNED ALLOT

BASE C! C, C@ CREATE HERE R> R@ STATE
UNLOOP VARIABLE

4.6 New words
base@ (-- u)
null= (o --)
o= (o1 i2 --)
odup? (o -- null | o o)
oconstant (o "name" --)
odrop (o --)
odup (o -- o o)
oliteral (o --) (run-time: -- o)
oover (o1 o2 -- o1 o2 o1)
orot (o1 o2 o3 -- o2 o3 o1)
state@ (-- f)
oswap (o1 o2 -- o2 o1)
[] (u array -- v)
->[] (v u array --)

This set of words only allows individual values
and array data. You typically also want to add
some words for defining classes, fields and methods
(not listed here).

4.7 Statistics
Relative to a base of 133 Core words in Forth-2012,
96 (72%) are unchanged, 14 (11%) have adapted
stack effects and 2 (2%) have other small changes.
21 (16%) are deleted, and 14 (11%) are new.

5 Advanced topics
5.1 Looping over arrays
Arrays are often accessed in loops, e.g., iterating
from the first to the last element. The bounds

11

Ertl Memory Safety

checks (and type checks) for these accesses can of-
ten be optimized away, and many memory-safe lan-
guages employ compiler optimization based on some
form of data-flow analysis [BGS00] to achieve that.
Of course we want to use a simpler way in Forth.

One way is to have array-walking words that walk
the whole array (or array slice) and don’t need to
perform bounds checking. This could look as fol-
lows:

: type (string --)
arraydo emit arrayloop ;

Arraydo would take an array and push one ele-
ment of the array (from first to last) in every itera-
tion; the loop would be closed with arrayloop.

In addition one might want variants that write an
element in every iteration, or that push an element
from one array and store a result into another array,
etc. You may also want to work with a strided ar-
ray slice, possibly with negative stride (for walking
the array backwards). One problem with flexible
arraydos that can take arrays of various types, and
array slices with all kinds of strides is that the way
the array is handled is only known at run-time, so
one typically has to call a run-time-dispatched han-
dler. One could avoid that by having a variant of
arraydo for every kind of array (slice) it can be
applied to, but that leads to an explosion of words
and would result in less flexible words that use these
words.
An alternative to a do...loop-like control struc-

ture is to define a word like Postscript’s forall or
Oforth’s apply that takes an array and an xt, and
for each element of the array, pushes the element
and calls the xt. One disadvantage of this approach
is that either the code in the xt cannot access locals
of the definition containing the forall, it requires
explicit passing of the locals [EP18], or a complex
implementation; by contrast, arraydo...arrayloop
supports access to locals in the loop body.

5.2 Escape hatch
Memory-safe languages often have an escape hatch
into code that is not guaranteed to be safe: E.g.,
Modula-2 has the module SYSTEM that allows ac-
cess to low-level facilities, Java has the Java native
interface (JNI) that allows calling C functions, and
Rust has unsafe blocks.
The purpose of such an escape hatch is twofold:

• It allows doing things that are impossible in the
memory-safe language, such as low-level access
to I/O devices.

• It allows doing things more efficiently that are
inefficient in the memory-safe language. E.g.,
arraydo...arrayloop could be implemented in

Safe Forth by accessing each element individ-
ually and incurring a bounds check for each
element, but it is more efficient to write these
words in Forth without bounds checks (all ac-
cesses are within the array).

The typical approach is not to use the escape
hatch at each place in application code that needs to
deal with, e.g., I/O devices, but to define a memory-
safe interface to these I/O devices, and use the es-
cape hatch to implement this interface. This keeps
the unsafe code to a minumum.

Two people reading a draft version of this pa-
per suggested to include a way to specify absolute
addresses for memory-mapped I/O in Safe Forth.
We know of no way to achieve this without open-
ing a hole that may subvert the memory-safety
guarantees of Safe Forth. But using the escape
hatch to achieve this is appropriate and seems sim-
ple enough: E.g., one could define words for the
individual registers of the I/O device, or alterna-
tively define the I/O device as a slice in an array
of bytes (specifying the address through the escape
hatch), and use offsets in that array to access var-
ious registers. In either case, the programmer of
code beyond the escape hatch would guarantee the
memory-safety of the words added to Safe Forth, or
of the data structures modified through the escape
hatch.

An advantage of having an escape hatch is that
Safe Forth does not need to include words for ev-
ery contingency; instead, you can define them as
needed.

For Safe Forth implemented on top of Forth, the
obvious escape hatch language is Forth, and the es-
cape hatch is relatively simple to implement: Safe
Forth provides its words in a wordlist different from
the wordlists providing unsafe words, and in Safe
Forth only this wordlist and wordlists defined in
memory-safe code are on the wordlist. The escape-
hatch word forth makes the Forth wordlist avail-
able again.

There may also be cases where you want to weld
the escape hatch shut, in particular when you want
to process untrusted code (e.g., coming from the
Internet). It is straightforward to have a mechanism
for disabling the escape hatch.

5.3 Multi-threading
Some of the challenges of multi-threaded multi-
tasking are: Single-threaded stop-the-world
garbage collection is relatively simple and is
implemented in an existing garbage collector for
Forth; extending it for a single-threaded coop-
erative multi-tasker is relatively easy, but has
the unpleasant effect of stopping all tasks while
it collects. Things become really complex when

12

Ertl Memory Safety

multi-threading is involved, because other threads
may be in states that are not safe for garbage
collection. There are solutions to these problems,
but they are quite complex.
An alternative is to set the system up such that

only per-thread/task garbage collection is neces-
sary. One way to do that is that every thread/task
has its own memory and collects its own memory.
The tasks communicate through channels, mail-
boxes, or the like, but cannot pass object references
across these communication channels. Instead, if
you want to pass a data structure to another task,
it has to be marshalled (serialized) on the sender
and unmarshalled on the receiver.
The disadvantage of this approach is that the

marshalling and unmarshalling constitutes an over-
head; the advantage is that programs organized in
this way can put the tasks into different processes,
and actually even different computers.
Alternative approaches are to avoid garbage col-

lection, e.g., with a reference-counting scheme, or to
implement full-blown multi-threaded garbage col-
lection.

6 Implementation efficiency
This section does not describe the implementation
in detail, but addresses performance concerns you
may have. The implementation approaches sug-
gested in this section are designed to go with an
object-oriented system where every selector can be
used with any class (duck typing), with single in-
heritance (especially of fields), where all methods
of a class are defined before the first object of the
class is created.
In this section, we describe the implementation of

some Safe Forth features as Forth code, but it could
just as well be some other lower-level language, e.g.,
assembly language.
The performance claims are not supported em-

pirically in this paper, possibly in a future paper.

6.1 Type equality
Field accesses to structures that do not support ex-
tensions only have to check the structure type for
equality. So an access to field intlist-val in Fig. 2
could be implemented in Forth as follows:
: intlist-val (o -- n)

o> dup @ intlist = if
2 cells + @ exit then

type-error throw ;

On processors with out-of-order cores (such as
the performance cores on desktop, server, and cur-
rent smartphone CPUs) the if will usually be pre-
dicted correctly, which means that the code needed
to compute the condition (in bold red) is not on

class

next

val

intlist

null

0

b

class

next

list

null

a
list

object
-2 cells
4 cells

not-understood

list::foreach

intlist
list

object
-3 cells
4 cells

intlist::sum

list::foreach

class-limit
method-limit

foobar

foreach

class-limit
method-limit

foobar

foreach

selector sum
selector foreach

object class
 ovalue: next
 m: foreach ... ;m
end-class list

list class
 value: val
 m: sum ... ;m
end-class intlist

Figure 5: Simple example of some classes and ob-
jects. The bold red parts are used for subtype
testing, the slanted blue parts for method dispatch.

the critical path; it costs resources (of which most
such CPUs have plenty), but not latency. Only
the slanted blue part is on the critical path for
computing the result. So, on this class of CPUs
this checked version will be about as fast as the
unchecked version, at least in latency-limited code
(the usual case).

6.2 Subtype test
If the Safe Forth supports structure extension, or
equivalently inheritance of fields in classes, we need
to check if the type of the structure/object is a sub-
type of the type the field was defined for.

We use Cohen’s approach to subtype testing,
[Coh91], see Fig. 5: Each class has a subtype table
(shown in bold red) containing its own address,
and the addresses of all its ancestor classes. The
primal ancestor (object) has offset −1 cells, the
next generation (list in the example) has offset
−2 cells, etc. For each class the offset at which it
is to be found is known. E.g., list and all of its
descendents will find the address of list at offset
−2 cells in their subtype table; nondescendents will
either have a higher (closer-to-zero) class-limit,
or will have a different class at offset −2 cells. So
the code for an access to field next with a subtype

13

Ertl Memory Safety

check looks as follows:

: next (o1 -- o2)
o> dup @ dup @ -2 cells <= if

-2 cells + @ list = if
cell+ @ >o exit then then

type-error throw ;

Concerning performance, the latency in the usual
correctly-predicted case is again the same as for the
unchecked case, but the check needs more resources
than a type equality check.
Note that when accessing a field of this (the ob-

ject used for method dispatch), an ancestor class of
this is known, and if the field belongs to an an-
cestor of that class (the usual case), no check at
run-time is needed.

6.3 Method dispatch
We use a per-class method table with bounds check-
ing (a bounds-checked version of unhashed general
selectors [Ert12, Section 3.1]). The table is shown in
the blue part of Fig. 5: method-limit contains the
offset from the start of the class descriptor (where
the class addresses point to) to just beyond the last
method implemented for the class. The code for a
method dispatch looks as follows:

: sum (o -- n)
o> dup @ dup cell+ @ 3 cells u>= if

2 cells + @ execute exit then
not-understood ;

Again, the bounds check (in red) does not cost
latency on an out-of-order CPU, and the whole dis-
patch is usually as fast as the unchecked version.

6.4 Array access
An array access as a colon definition has to check
the type, and the bounds. If the array access is
implemented as a method, the method dispatch has
to be performed, but there is no need to check the
type. The bounds check has to be implemented in
any case. Here’s how f[] implemented as method
for farray (Fig. 3) might look:

m: f[] (n farray -- r)
(farray is in THIS)
dup length u< if

floats values + f@ exit then
bound-error throw ;m

The bounds check is in red, and if the if is
correctly predicted (the usual case), it does not
contribute to the latency. A correctly predicted
method dispatch also does not contribute to the la-
tency.

7 Status and further work
For now Safe Forth is a paper design. Implement-
ing it and evaluating this implementation is on my
agenda, but currently not at the top, and it depends
on the interest of the community if it ever reaches
the top.

One could implement it as a layer on top of
Forth relatively easily, but that would mean that
the object-stack access is slow. For decent perfor-
mance, the object stack needs to be implemented
with its stack pointer in a register and maybe an
OTOS (top-of-object-stack) register, and a this
register, which requires changing an existing sys-
tem at a pretty basic level and is somewhat more
involved.

8 Related work
For the main contribution of the present work, the
use of a separate stack and value-flavoured words to
reduce the need for static or dynamic type checking,
there is surprisingly little related work. A number
of Forth systems have a separate FP stack (stan-
dardized in Forth-2012), but the reason for that is
not type-safety, and the separation ends as soon as
the stack contents are stored to memory.

Similarly, a string stack has often been proposed
for dealing with strings [MM81], but again, type
safety has not been a primary goal. A vector stack
has been used for dealing with vectors [Ert17]; there
the main point is to provide vectors as an opaque
data type. Still, the object stack can be seen as a
generalization of the string and vector stacks.

There are several memory-safe languages based
on Forth, e.g., Oforth10 and Factor [PEG10]. How-
ever, Oforth uses type tagging and Factor uses
static type checking in combination with run-time
type checking, while Safe Forth uses the division
between object references and integer/FP data to
get rid of a large part of the type checking.

Apart from that, many design decisions in
Oforth11 are similar to those in Safe Forth: Oforth
initializes all locations to zero. You can only read
from and write to fields (with @field !field), not
take their address; field accesses are allowed only to
fields of self’s class, and no class check is necessary.
Oforth keeps only system-defined stuff on the return
stack, and it uses a separated control-flow stack.
Oforth has no variables, only (task-local) values.
Execute is a method selector for objects. Does> is
eliminated, because it can be replaced with object-
oriented dispatch. Unlike Safe Forth, Oforth imple-
ments control flow similar to Factor or Postscript:
by passing closures (quotations with lexical scoping)

10http://www.oforth.com/
11Personal communication with Franck Bensusan

14

Ertl Memory Safety

to control-flow words that execute the control-flow
word multiple times).
There is a large body of work on subtype

testing and method dispatch; Ducournau [Duc11]
gives an excellent, although somewhat abstract
overview. We choose Cohen’s subtype testing ap-
proach [Coh91] because we comply with its single-
inheritance limitation and because it is simple to
implement incrementally. For method dispatch
in objects2 [Ert12] we proposed using a number
of these techniques (to allow different space/time
tradeoffs), here we select one of those and enhance it
with bounds checking similar to that used in Oforth
[Ben18]; however, Oforth has a table of classes per
selector, while the unhashed general selectors in ob-
jects2 and in the present work have a table of selec-
tors per class.

9 Conclusion
Memory-safe languages eliminate a significant class
of bugs and vulnerabilities. Forth can be turned
into a memory-safe language by eliminating all op-
erations involving addresses, e.g., @ and !. In order
to be still useful as a general-purpose language, we
replace addresses with object references, but they
have to be distinguished from other data. Other
languages and virtual machines use tagging and/or
static type checking to distinguish them; we instead
put object references on an object stack, and have
ovalue and other defining words that keep object
references separated from other data.
Starting from this premise, and otherwise keeping

relatively close to standard Forth results in surpris-
ingly few changes to the core vocabulary.

Acknowledgments
Franck Bensusan and the reviewers provided helpful
comments that helped improve the paper.

References
[Ben18] M. Franck Bensusan. Method dispatch

in Oforth. In 34th EuroForth Conference,
pages 31–36, 2018. 8

[BGS00] Rastislav Bodik, Rajiv Gupta, and Vivek
Sarkar. ABCD: eliminating array bounds
checks on demand. In Proceedings of
the ACM SIGPLAN 2000 Conference on
Programming Language Design and Im-
plementation, pages 321–333, 2000. 2, 5.1

[Coh91] Norman H. Cohen. Type-extension type
tests can be performed in constant time.

ACM Transactions on Programming Lan-
guages and Systems, 13(4):626–629, Oc-
tober 1991. Technical Correspondence.
6.2, 8

[Duc11] Roland Ducournau. Implementing stati-
cally typed object-oriented programming
languages. ACM Computing Surveys,
43(3):Article 18, April 2011. 8

[EP18] M. Anton Ertl and Bernd Paysan. Clo-
sures — the Forth way. In 34th EuroForth
Conference, pages 17–30, 2018. 5.1

[Ert12] M. Anton Ertl. Methods in objects2:
Duck typing and performance. In 28th
EuroForth Conference, pages 96–103,
2012. 6.3, 8

[Ert17] M. Anton Ertl. SIMD and vectors. In
33rd EuroForth Conference, pages 25–36,
2017. 8

[Gay20] Alex Gaynor. What science can
tell us about C and C++’s se-
curity. Blog posting, https:
//alexgaynor.net/2020/may/27/
science-on-memory-unsafety-and-security/,
2020. 1

[MM81] Michael McCourt and Richard A. Marisa.
The string stack. Forth Dimensions,
III(4):121–124, 1981. 8

[PE19] Bernd Paysan and M. Anton Ertl. The
new Gforth header. In 35th EuroForth
Conference, pages 5–20, 2019. 3.12

[PEG10] Sviatoslav Pestov, Daniel Ehrenberg, and
Joe Groff. Factor: a dynamic stack-based
programming language. In William D.
Clinger, editor, Proceedings of the 6th
Symposium on Dynamic Languages, DLS
2010, October 18, 2010, Reno, Nevada,
USA, pages 43–58. ACM, 2010. 8

[RCM96] Elizabeth D. Rather, Donald R. Col-
burn, and Charles H. Moore. The evo-
lution of Forth. In History of Program-
ming Languages, pages 625–658. ACM
Press/Addison-Wesley, 1996. 3

15

Euroforth 2022

Better Values

Improving the extended Forth value concept

Euroforth 2022
Better Values

: STRINDEXCOMP, (xt---) \ Compiling action of a child of STRINDEX
 >BODY \ To the address of the data
 CLIT, \ Compile that address
]] DUP @ ROT * + CELL+ [[\ Calculate address of string
 OPERATORTYPE @OFF CASE
 VMOD@ OF ENDOF \ Default returns address
 VMOD! OF POSTPONE ZMOVE ENDOF \ Writes to string
 VMODADDR OF ENDOF \ ADDR also returns address
 VMODSIZE OF]] IP>NFA NAME> >BODY @ [[ENDOF \ SIZEOF returns max length
 BAD-METHOD
 ENDCASE
;

: STRINDEXINTERP (addr---) \ Interpret a child of STRINDEX
...
\ As for STRINDEXCOMP, but not postponed
...
;

: STRINDEXNEW (arraysize,maxlen---) \ Prepare a new indexed string
 1+ DUP , \ Set the string size (allow for 0 terminator)
 SWAP 1+ * ALLOT&ERASE \ Allocate (allow for 0 or 1 based indexing)
 ['] STRINDEXCOMP, SET-COMPILER \ When a child is being compiled
 INTERP> STRINDEXINTERP \ When a child is being interpreted
;

: STRINDEX (arraysize,maxlen <name>---) \ Create an indexed string from inline
 CREATE STRINDEXNEW
;

: ZSTRINDEX (arraysize,maxlen,z$---) \ Create an indexed string from a zstring
 ZCOUNT ($CREATE) STRINDEXNEW
;

Example:

STRINDEX
Indexed strings

State of play at
EuroForth 2020

Euroforth 2022
Better Values

: STRINDEXCOMP, (xt---) \ Compiling action of a child of STRINDEX
 >BODY \ To the address of the data
 CLIT, \ Compile that address
]] DUP @ ROT * + CELL+ [[\ Calculate address of string
 OPERATORTYPE @OFF CASE
 VMOD@ OF ENDOF \ Default returns address
 VMOD! OF POSTPONE ZMOVE ENDOF \ Writes to string
 VMODADDR OF ENDOF \ ADDR also returns address
 VMODSIZE OF]] IP>NFA NAME> >BODY @ [[ENDOF \ SIZEOF returns max length
 BAD-METHOD
 ENDCASE
;

: STRINDEXINTERP (addr---) \ Interpret a child of STRINDEX
...
\ As for STRINDEXCOMP, but not postponed
...
;

: STRINDEXNEW (arraysize,maxlen---) \ Prepare a new indexed string
 1+ DUP , \ Set the string size (allow for 0 terminator)
 SWAP 1+ * ALLOT&ERASE \ Allocate (allow for 0 or 1 based indexing)
 ['] STRINDEXCOMP, SET-COMPILER \ When a child is being compiled
 INTERP> STRINDEXINTERP \ When a child is being interpreted
;

: STRINDEX (arraysize,maxlen <name>---) \ Create an indexed string from inline
 CREATE STRINDEXNEW
;

: ZSTRINDEX (arraysize,maxlen,z$---) \ Create an indexed string from a zstring
 ZCOUNT ($CREATE) STRINDEXNEW
;

Good points…
● Logical separation of operations

● No magic numbers

● All values initialised

● Tidy POSTPONEs

16

Euroforth 2022
Better Values

: STRINDEXCOMP, (xt---) \ Compiling action of a child of STRINDEX
 >BODY \ To the address of the data
 CLIT, \ Compile that address
]] DUP @ ROT * + CELL+ [[\ Calculate address of string
 OPERATORTYPE @OFF CASE
 VMOD@ OF ENDOF \ Default returns address
 VMOD! OF POSTPONE ZMOVE ENDOF \ Writes to string
 VMODADDR OF ENDOF \ ADDR also returns address
 VMODSIZE OF]] IP>NFA NAME> >BODY @ [[ENDOF \ SIZEOF returns max length
 BAD-METHOD
 ENDCASE
;

: STRINDEXINTERP (addr---) \ Interpret a child of STRINDEX
...
\ As for STRINDEXCOMP, but not postponed
...
;

: STRINDEXNEW (arraysize,maxlen---) \ Prepare a new indexed string
 1+ DUP , \ Set the string size (allow for 0 terminator)
 SWAP 1+ * ALLOT&ERASE \ Allocate (allow for 0 or 1 based indexing)
 ['] STRINDEXCOMP, SET-COMPILER \ When a child is being compiled
 INTERP> STRINDEXINTERP \ When a child is being interpreted
;

: STRINDEX (arraysize,maxlen <name>---) \ Create an indexed string from inline
 CREATE STRINDEXNEW
;

: ZSTRINDEX (arraysize,maxlen,z$---) \ Create an indexed string from a zstring
 ZCOUNT ($CREATE) STRINDEXNEW
;

Not so good points…
● No index checks

● No string length checks

● Data close to code

● Unlovely SIZEOF

Euroforth 2022
Better Values

Existing word for index checking
: VICHECK { pindex paddr -- pindex' paddr } \ Checks for valid index
\ paddr is the address of the data, the first cell of which contains the array size
 pindex 0 paddr @ WITHIN IF \ Index is valid
 pindex paddr
 ELSE \ Index is invalid
 Z" Invalid index " pindex ZFORMAT Z+
 Z" for " Z+ paddr >NAME 1+ Z+ \ >NAME does not work for separated data
 Z" length " Z+ paddr @ ZFORMAT Z+
 ERROR
 0 paddr \ Use zeroth index
 THEN
;

Could do better...

Euroforth 2022
Better Values

String length checking

: SLCHECK (pz$,pindex,paddr---pz$,pindex,paddr) \ Check for string length
 2 PICK ZCOUNT NIP \ Get length of string
 OVER CELL+ @ \ Get maximum length
 U> IF \ Overflow
 Z" String length overflow index "
 2 PICK ZFORMAT Z+
 Z" for " Z+ OVER >NAME 1+ Z+ \ >NAME does not work for separated data
 FATAL \ A buffer overflow is fatal
 THEN
;

Buffer overflow is fatal!

17

Euroforth 2022
Better Values

Include the checks in the child compilation
: STRIADDR (index,bodyaddr---elementaddr) \ Calculate address of string element
 DUP CELL+ @ 1+ ROT * + 2 CELLS+ \ Optimises to 27 bytes, 8 instructions
;

: STRINDEXCOMP, (?,index,xt---) \ Compiling action of a child of STRINDEX
 >BODY \ To the address of the data
 CLIT, \ Compile that address
 POSTPONE VICHECK \ Index check
 OPERATORTYPE @OFF CASE
 VMOD@ OF POSTPONE STRIADDR ENDOF \ Default returns string address
 VMOD! OF]] SLCHECK STRIADDR ZMOVE [[ENDOF \ Writes to string
 VMODADDR OF POSTPONE STRIADDR ENDOF \ ADDR also returns address
 VMODSIZE OF]] NIP CELL+ @ [[ENDOF \ SIZEOF returns max length
 BAD-METHOD
 ENDCASE
;

Euroforth 2022
Better Values

Move to separated data part 1

: STRINDEXNEW (arraysize, maxlen --- pdata) \ Make a new child of STRINDEX
 2DUP 1+ SWAP 1+ * 2+ CELLS IRESERVE&ERASE \ Allow for 0 term and 0/1 index
 TUCK CELL+ ! \ Set maximum length
 TUCK ! \ Set index size
;

: STRINDEX (arraysize,maxlen <name>---) \ Create an indexed string from inline
 STRINDEXNEW \ Make a new child of STRINDEX
 CREATE , \ Create header and set address of data
 ['] STRINDEXCOMP, SET-COMPILER \ When a child is being compiled
 INTERP> STRINDEXINTERP \ When a child is being interpreted
;

Euroforth 2022
Better Values

Move to separated data part 2

: SLCHECK (pz$,pindex,p*addr---pz$,pindex,p*addr) \ Check for string length
 2 PICK ZCOUNT NIP \ Get length of string
 OVER @ CELL+ @ \ Get maximum length
 U> IF \ Overflow
 Z" String length overflow index "
 2 PICK ZFORMAT Z+
 Z" for " Z+ OVER >NAME 1+ Z+ \ >NAME does not work for separated data
 FATAL \ A buffer overflow is fatal
 THEN
;

: STRIADDR (index,bodyaddr---elementaddr) \ Calculate address of string element
 @ DUP CELL+ @ 1+ ROT * + 2 CELLS+
;

The double fetch problem

18

Euroforth 2022
Better Values

Adding the secret cell
: IRESERVE&ERASE (n---addr) \ Reserve separated space, and erase
 CELL+ DUP IRESERVE TUCK SWAP ERASE \ Reserve, allowing for secret cell
 CELL+ \ Return address of next cell
;

: STRINDEXNEWA (arraysize, maxlen --- pdata) \ Make a new STRINDEX - stage A
 2DUP 1+ SWAP 1+ * 2 CELLS+ IRESERVE&ERASE \ Allow for 0 term and 0/1 index
 TUCK CELL+ ! \ Set maximum length
 TUCK ! \ Set index size
;

: STRINDEXNEWB (pdata ---) \ Make a new STRINDEX - stage B
 DUP , \ Set address of data
 LATEST CTRL>NFA SWAP CELL- ! \ Save NFA in secret cell
;

: STRINDEX (arraysize,maxlen <name>---) \ Create an indexed string from inline
 STRINDEXNEWA \ Make a new child of STRINDEX - stage A
 CREATE \ Create header
 STRINDEXNEWB \ Make a new child of STRINDEX - stage B
 ...

Euroforth 2022
Better Values

Using the secret cell
: VICHECK (pindex,paddr---pindex',paddr) \ Checks for valid index
\ paddr is the address of the data, the first cell of which contains the array size
 OVER 0 2 PICK @ WITHIN 0= IF \ Index is invalid
 Z" Invalid index " 2 PICK ZFORMAT Z+
 Z" for " Z+ OVER CELL- @ Z+ \ Add NFA from extra cell
 Z" length " Z+ OVER @ ZFORMAT Z+
 ERROR
 NIP 0 SWAP \ Use zeroth index
 THEN
;

: SLCHECK (pz$,pindex,paddr---pz$,pindex,paddr) \ Check for string length
 2 PICK ZCOUNT NIP \ Get length of string
 OVER CELL+ @ \ Get maximum length
 U> IF \ Overflow
 Z" String length overflow index "
 2 PICK ZFORMAT Z+
 Z" for " Z+ OVER CELL- @ Z+ \ Add NFA from extra cell
 FATAL \ A buffer overflow is fatal
 THEN
;

Euroforth 2022
Better Values

To do…..

Instead of throwing a FATAL on buffer
overflow, log an ERROR and truncate the
string before saving.

19

Euroforth 2022

FQL Result Set Analysis

Introducing Forth Local Functions

Euroforth 2022

Before...
: TAB-SETDATA { | pinnum poutnum pdescr piter[GtkTreeIter] -- } \ Set table data
...
 SQL| SELECT innum,outnum,notes \ Get table entries
 FROM tables
 WHERE tabnum = | CURRTAB FQL-N+ |
 ORDER BY innum
 |SQL> IF
 PROWS 0 ?DO
 FQL-NEXTROW IF
 0 PCOL ZDIGITS -> pinnum \ Get input number
 1 PCOL ZDIGITS -> poutnum \ Get output number
 2 PCOL -> pdescr \ Get description
 TABTREESTORE piter[NULL gtk_tree_store_append \ Add a row
 TABTREESTORE piter[
 0 pinnum 1 poutnum 2 pdescr -1 gtk_tree_store_set \ Put data into the row
 THEN
 LOOP
 THEN
...

FQL Result Set Analysis

Euroforth 2022

The goal...
: TAB-SETDATA { | piter[GtkTreeIter] -- } \ Set table data
...
 SQL| SELECT innum,outnum,notes \ Get table entries
 FROM tables
 WHERE tabnum = | CURRTAB FQL-N+ |
 ORDER BY innum
 |SQDO
 TABTREESTORE piter[NULL gtk_tree_store_append \ Add a row
 TABTREESTORE piter[
 0 r-innum 1 r-outnum 2 r-notes -1 gtk_tree_store_set \ Put data into the row
 SQLOOP
...

FQL Result Set Analysis

20

Euroforth 2022

Rolling up the flow control
 IF
 PROWS 0 ?DO
 FQL-NEXTROW IF
...
 THEN
 LOOP
 THEN

: |SQDO (zaddr---) \ Runs an SQL query, starts a DO..LOOP and fetches row
 NOINTERP ; \ Cannot interpret
NDCS: \ Compiling
 IN-SQL OFF \ Finished compiling SQL
 POSTPONE (|SQL>) \ Run the query
 0 CLIT, \ The initial value for the DO..LOOP
 s_?do, 3 \ Compile the DO
 POSTPONE FQL-NEXTROW \ Get the next row
 s_?br>, 2 \ Compile the IF
;

: SQLOOP (---) \ Complete a query analysis loop
 NOINTERP ; \ Cannot interpret
NDCS:
 2 ?PAIRS s_res_br>, \ Compile the THEN
 3 ?PAIRS s_loop, \ Compile the LOOP
;

FQL Result Set Analysis

Euroforth 2022

How to identify the column names?

Possibility 1:
Identify at execution time

Possibility 2:
At compilation time, create set of locals

FQL Result Set Analysis

Euroforth 2022

Parsing the SQL query

FQL Result Set Analysis

Easy

Hard

 SQL| SELECT ircallm,ircalle,irspeed,irtimeswitch,timeswitches.tsresult
 FROM ironer
 ...

 SQL| SELECT IFNULL(operator.name,CONCAT(| P" Unknown operator" ZSP Z+ FQL-Z$+ | ,
 work.opnum)) AS 'Operator',
 DATE_FORMAT(start , | Z" %e/%m/%Y %H:%i" FQL-Z$+ |) AS 'Clock in',

 DATE_FORMAT(end , | Z" %e/%m/%Y %H:%i" FQL-Z$+ |) AS 'Clock out',
 TIME_FORMAT(MAKETIME(worked/60,worked MOD 60,0),'%H:%i') AS 'Worked'

 FROM work
 ...

21

Euroforth 2022

New scanning words needed

FQL Result Set Analysis

: SQSKIP (c-addr,u---c-addr',u')
\ Skip over leading occurrences of any non-printable
character, or comma

: SQSCAN (c-addr,u---c-addr',u')
\ Scan to the first occurrence of any non-printable
character, or comma

: SQWORD (caddr1,u1---caddr2,u2,caddr3,u3)
\ Identify the first word in an SQL string

Euroforth 2022

First idea:

● Create local value for each column

● Populate set of values for each row read

FQL Result Set Analysis

How to identify the column names?

Euroforth 2022

Better idea:
Local functions!

FQL Result Set Analysis

: SQL-COLCOMP, (xt---) \ Compiling action of a child of SQL-MAKECOL
 >BODY @ CLIT, \ The column number
 POSTPONE PCOLCONV \ Fetches column data, converting to number if appropriate
;

: SQL-MAKECOL (paddr,pu---) \ Make a column function
 Z" r-" PAD2 2 MOVE \ Set prefix
 >R \ Save length
 PAD2 2+ R@ MOVE \ Copy name
 >TEMP-DICT \ Switch to local dictionary
 PAD2 R> 2+ ($CREATE) \ Create the column word
 SQL-COLNUM , \ Set the column number
 ['] SQL-COLCOMP, SET-COMPILER \ When a child is being compiled
 >REAL-DICT \ Back to normal dictionary
;

22

Euroforth 2022

Start and cleanup

FQL Result Set Analysis

: ?START-LOCALS (---) \ Set dictionary pointers to local, if not already done so
 TDPstart @ 0= IF \ Not yet initialised
 START-LOCALS \ No need to restore, it is done by ;
 THEN
;

: MICROSS-CLEANUP-LOCALS (---) \ Clean up locals, if used - called by ; etc.
 TDPstart @ IF \ Only compile if we had local values or functions
 FORGET-LOCALS \ Lose local definitions
 THEN
; ' MICROSS-CLEANUP-LOCALS ' CLEANUP-LOCALS PATCHXT 2DROP DROP

: MICROSS-HASLVs? (---f) \ True if current definition has local vals or funcs
 TDPstart @ \ Local values or functions exist
; ' MICROSS-HASLVs? ' HASLVs? PATCHXT 2DROP DROP

Euroforth 2022

Demonstration
FQL Result Set Analysis

: SQTEST1 { | ptest -- } \ List details for step programs
 123 -> ptest
 SQL| SELECT program,name,miny,maxy,run
 FROM stepprogram
 |SQDO
 cr r-program . r-name z$. SPACE r-miny . r-maxy . r-run . ptest .
 SQLOOP
;

sqtest1
1 Test 1 100 120 0 123
2 Test 2 200 220 1 123 ok

: SQTEST2 { | ptest2 -- } \ Analyse operator privileges
 SQL| SELECT COUNT(*) AS numoperators, privil
 FROM operator
 GROUP BY privil
 |SQDO
 cr r-privil . r-numoperators .
 456 -> ptest2
 SQLOOP
 cr ptest2 .
;

sqtest2
0 6
1 204
2 1
3 14
4 2
456 ok

Euroforth 2022

New and unique feature of Forth!

Dynamically create a function that has scope
only within the current definition

FQL Result Set Analysis

23

Fuzzing Forth
Apply Fuzz Tests to Forth

EuroForth'22 conference 2022-09

Ulrich Hoffmann

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

uho@ .de

Overview
Fuzzing Forth

• Introduction

• Correctness Notions

• Generators

• Mutators

• Sanitizers

• Tests

• Fuzzing

• Conclusion

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

Forth

Introduction
What fuzzing is all about?

• We assure quality of applications by testing

• Manually, especially for embedded systems → time consuming

• Automatically, correct functions, regression, TestDrivenDevelopment

• We mostly test the good cases, infrequently behaviour in bad situations

• Fuzz Tests or Fuzzing tests applications with arbitrary data to see if they break

"Crash often crash early!" - but automated

24

Correctness Notions
What's in a word?

• When is a word correct?

• need to describe the behaviour of a word

• an approach: a word does a state transition

• from a current state

• to a next state

• can be deterministic or non deterministic

States

• States can be complicated

• not just labels as with finite state machines

• Forth System State: includes the stack and return stack content,
all dictionary content, the existing definitions, etc.

• Computer State: contents of files, memory content, etc.

• Environment State: relevant state of external components

• Think of states as huge records or vectors

• A state or sets of states can be described by conditions
"the (set of all) states that satisfy the condition"

State Transitions

• many aspects of a state are not relevant for the transition and
stay as they are

• a transition (i.e. the behaviour of a word) can be described by a
pre-condition P and a post-condition Q

25

Stack Comments

• We describe conditions already in Forth with stack comments

• stack diagrams are not sufficient to specify the operation exactly
0> has the same stack effect but a different behaviour.

0< (n -- flag)

n : The condition TOS is a natural number in the current state

-- : symbolizes the transition

flag: the condition TOS is with all bits set (true) or all bits reset (false),
i.e. a flag in the next state

Stack Comments

• the post-stack-condition is too weak

• stronger post condition for 0<: 

	 flag where TOS'=true if TOS<0, TOS'=false if TOS>=0

• appropriate pre- and post-condition can describe the behaviour of a
word as precisely as desired, but they may be difficult to specify

0< (n -- flag)

...

flag: the condition TOS is with all bits set (true) or all bits reset (false),
i.e. a flag in the next state

Partial Correctness of a word (a transition)

A word ist partially correct with respect to conditions P and Q:

• if the current state satisfies the pre-condition P and if the

word terminates (i.e. does not crash) then the next state
satisfies the post-condition Q

if the current state does not satisfy the pre-condition then the
next state is undefined (computer scientists model this often with
non-terminating programs or arbitrary results).

26

Total Correctness of a word (a transition)

A word is totally correct with respect to conditions P and Q:

• if the current state satisfies the pre-condition P then the word

terminates (i.e. does not crash) and the next state satisfies
the post-condition Q

if the current state does not satisfy the pre-condition then the
next state is undefined.

Robustness of a word (a transition)

A word is robust with respect to P and Q

• if it always does a transition to a next state.

• is totally correct with respect to P and Q

• if the current state does not satisfy the pre-condition then an

error is signalled.
• throw an exception
• return an distinct error value
• ...

Fuzzing checks if an application i.e. its top-level words are robust

Fuzzing
What the fuzz?

• top level words are accessible for outside

• realize outside interfaces

• Fuzzing
• invoke a top-level words with arbitary data
• check if the system crashes

• Random data → generators and mutators

• best no crashes → sanitizers

Fuzzing checks if an application i.e. its top-level words are robust
Interfaces

top-level
wordtop-level

word

internal
words

Hardware

27

Generators
How to create random data?

• We need to generate random (stack) items.

• even distribution but also normal and other distributions

• classical Starting Forth random number generator

• linear congruence generator not good as factor for normal distribution

(Random number generation -- High level)

VARIABLE rnd HERE rnd !
: RANDOM rnd @ 31421 * 6927 + DUP rnd ! ;
: CHOOSE (u1 -- u2) RANDOM UM* NIP ;

Generators
How to create random data?
• KISS generators are simple and have better properties

• JKISS32 [1] is based on 32-bit integer arithmetic

• passes all of the Dieharder tests and the BigCrunch tests

\ JKISS32 for 32Bit Systems (algorithm by David Jones)

Variable x 123456789 x !
Variable y 234567891 y !
Variable z 345678912 z !
Variable w 456789123 w !
Variable c 0 c !

: kiss (-- x)
 y @ dup 5 lshift xor dup 7 rshift xor dup 22 lshift xor y !
 z @ w @ + c @ + w @ z ! dup 0< 1 and 0= 0= 1 and c ! 2147483647 and w !
 x @ 1411392427 + x !
 x @ y @ + w @ + ;

[1] http://www0.cs.ucl.ac.uk/staff/D.Jones/GoodPracticeRNG.pdf

Generators
How to create random data?
• create normal distribution from even distribution

• different algorithms such as Marsaglia polar method or Box Muller

Transform require floating point

• Rule of 12 (sum and average) is simple and works on integers

• but only valid if random delivers independent random values

• linear congruence generators (such as random earlier) do not have

this property, KISS does.

: CHOOSE (u1 -- u2) KISS UM* NIP ;

: NORMAL (u1 -- u2)
 0 12 0 DO OVER CHOOSE + LOOP 12 / SWAP DROP ;

28

Generators
How to create random data?

• from CHOOSE and NORMAL we can build generators for typical Forth data

• cell data on the stack

• strings of given exact or maximal length

: cgen (-- b) 256 choose ;
: ngen (-- n) -1 choose ;
: +ngen (-- n) -1 1 rshift choose ;
: ugen (-- u) -1 choose ;

or also with specific distribution

: 'x'gen (-- c) 128 bl - choose bl + ;

: $=gen (u1 -- c-addr u2) \ string is excactly u1 characters. allocates, must be freed after use
 dup allocate throw swap 2dup bounds ?DO 'x'generate I c! LOOP ;

: $gen (u1 -- c-addr u2) \ string is shorter than u1 characters. allocates, must be freed after use
 choose $=gen ;

Generators
How to create random data?

• Generate random composed data structures such as

• structs and

• arrays or

• linked lists, etc.  

by defining appropriate (recursive) generators.

: person-gen (-- addr) ... ;

Mutators
How to change existing data?

• Mutators are similar to generators but modify existing data

• cell data on the stack

• cmut (char1 rate -- char2)

• nmut (n1 rate -- n2)

• +nmut (+n1 rate -- +n2)

• umut (u rate -- u2)

• or strings

• $=mut (c-addr1 u rate -- c-addr2 u) just changes the characters

• $mut (c-addr1 u1 rate -- c-addr2 u2) changes length and character

29

Mutators
How to change existing data?

• Modify random composed data structures such as

• structs and

• arrays or

• linked lists, etc.  

by defining appropriate (recursive) mutators.

: person-mut (addr1 rate -- addr2) ... ;

Sanitizers
How to detect and signal crashes?

• If application crash, then it is hard to monitor them.

→ Turn crashes into reported errors

• Sanitizers check if inputs are valid

• Memory sanitizers - detect illegal memory access , throw for memory faults

• Stack Sanitizers - detect stack over and underflow

• Control flow sanitizers - check for valid return addresses on EXIT

• ...

Sanitizers
How to detect and signal crashes?

• Memory sanitizers - detect illegal memory access , throw for
memory faults

• @ ! c@ c! with valid memory test, throw memory-fault on
invalid address

• linked list of valid regions that are checked on access

• bit-field of valid memory words or bytes
: ?valid (addr -- addr) dup valid? 0= #memory-fault and throw ;

: @ (addr -- x) ?valid @ ;
: ! (x addr --) ?valid ! ;

30

Sanitizers
How to detect and signal crashes?

• Stack Sanitizers - detect stack underflow

• and overflows

• much harder to detect, every push must check

• might need hardware support

: arguments (i*x u -- i*x)
 >r depth r> u< #stack-underflow and throw ;

1 2 3 3 arguments . . . (3 2 1)

Sanitizers
How to detect and signal crashes?

• Control flow sanitizers - check for valid return addresses on EXIT

• others:

• check exception stack

• ...

: exit (i*x u -- i*x) rdrop
 r@ invalid-return-addess? #return-stack-imbalance and throw
;

Tests
How do we test?

• A popular framework for tests of forth words are testers derived
from John Hayes ANS Forth tester [1]

• Tests + on a single value.

• We can elaborated test suites from this, as Gerry Jackson does for
Forth200x compliance.

[1] ftp://ftp.taygeta.com/pub/Forth/Applications/ANS/tester.fr

{ 3 4 + -> 7 }

31

Fuzzing
What the fuzz?

• In order to fuzz our applications

• run the Hayes style unit tests - fix all bugs

• define the top-level words (TLW) using sanitizers

• run the Hayes style unit tests - no issue expected

• run fuzz tests in this style

\ assuming TLW (c-addr1 u1 c-addr2 u2 -- c-addr3 u3)

many times DO
 { 100 $gen S" secret" 75 $mut TLW clearstack -> }
LOOP

Conclusion
What's below the bottom line?

• Correctness Notions - partial, total correctness, robustness

• Generators - KISS generator, rule of 12

• Mutators - change existing data

• Sanitizers - make crashes into reported errors

• Tests - Hayes style testing

• Fuzzing - stressing top level words (interfaces)

Fuzzing Forth
Apply Fuzz Tests to Forth

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

Questions?

32

progress towards porting EISPACK to forth
Krishna Myneni

EuroForth 2022

V1.0

● numerical linear algebra source libraries for scientific computing

● numerical linear algebra modules in the FSL

● basic forms of linear systems problems I

● basic forms of linear systems problems II

● overview of EISPACK

● goals of porting EISPACK to Forth

● challenges of translating unstructured Fortran to Forth

● status of EISPACK port to Forth port

● what remains to be done?

LINPACK (1979, ANL)

EISPACK (1974, ANL) †

LAPACK (1992, UTenn)

numerical linear algebra source libraries for scientific computing

● EISPACK and LINPACK were developed in 1970s – 1980s to provide well-documented, well-tested
source libraries for scientific computing.

● EISPACK solves eigensystems of equations. Code is translated from Algol¥ Fortran (Forth).

● LINPACK solves linear systems of equations. Uses BLAS (Basic Linear Algebra Subprograms) Level 1.

● LAPACK combines functionality of LINPACK and EISPACK. It factors core matrix and vector
computations (BLAS Level 3). Matlab, R, and other software use LAPACK.

† T. Haigh, “An interview with Jack J. Dongarra,” 26 April 2004, Soc. Industr. Appl. Math.;
http://history.siam.org/pdfs2/Dongarra_ returned_SIAM_copy.pdf
‡ C. L. Lawson, et al., ACM Transactions on Math. Software 5, pp 308–323 (1979); https://doi.org/10.1145/355841.355847
¥ J. H. Wilkinson and C. Reinsch, Handbook for Automatic Computation: vol II Linear Algebra, Part 2, Springer-Verlag, New York 1972.

BLAS‡ Level 1
(1979,JPL)

33

numerical linear algebra routines in the Forth Scientific Library†

module description
lufact factor a matrix A into a product of lower triangular (L) and upper triangular (U) matrices.

dets find determinant of a matrix which has been factored in LU form.

backsub solve linear system of equations using LU factorization: A X = B, where A = L U

invm find the inverse of a matrix using LU factorization.

gaussj provides tools for matrix arithmetic, finding inverse, solving linear system of equations and
least-squares problems.

svd solve matrix equations involving nearly singular matrices.

● FSL provides some LINPACK functionality.

● EISPACK functionality is completely missing from the FSL!

† The Forth Scientific Library, https://www.taygeta.com/fsl/scilib.html

basic forms of linear systems problems I

I. A X = B : A and B are given; solve for X

simple case:

2x0 + 3x1 = −6

4x0 + 8x1 = 10

matrix form:

(2 3
4 8) (x0

x1) = (−6
10)

solve using Gauss-Jordan elimination with FSL gaussj:

2 2 float matrix a{{
2 1 float matrix b{{
 2.0e0 3.0e0
 4.0e0 8.0e0 2 2 a{{ }}fput \ init matrix a{{
-6.0e0 10.0e0 2 1 b{{ }}fput \ init matrix b{{
a{{ b{{ 2 1 gaussj . \ solve and print error (0 = no error)
2 1 b{{ }}fprint \ print solution x0 and x1:
 \ -19.5
 \ 11

basic forms of linear systems problems II

II. A X = λX : A is given; solve for λ’s and corresponding X’s

simple case:

2x0 + 3x1 = λ x0

3x0 + 4x1 = λ x1

matrix form:

(2 3
3 4) (x0

x1) = λ (x0

x1)
solve using matrix tridiagonalization and QL reduction with EISPACK tred2 and imtql2 :

2 2 float matrix A{{
 2.0e0 3.0e0 3.0e0 4.0e0 2 2 A{{ }}fput

2 float array diag{ 2 float array subdiag{ 2 2 float matrix ot{{

2 2 A{{ diag{ subdiag{ ot{{ tred2 \ tridiagonalize the matrix
2 2 diag{ subdiag{ ot{{ imtql2 . \ find λs and eigenvectors; print error code
2 diag{ }fprint \ print eigenvalues (λs): -0.162278 6.16228
2 2 ot{{ }}fprint \ print corresponding eigenvectors:
 \ 0.811242 0.58471
 \ -0.58471 0.811242

34

overview of EISPACK

“EISPACK is a systematized collection of [Fortran] subroutines† which compute
the eigenvalues and/or eigenvectors of six classes of matrices…”

1 complex general
2 complex Hermitian
3 real general
4 real symmetric
5 real symmetric tridiagonal
6 real special tridiagonal

EISPACK Guide‡ provides recommended calling sequence of routines, the
“EISPACK path”, for a given problem class, e.g.

call balanc(…)
call elmhes(…)
call eltran(…)
call hqr2(…)
call balbak(…)

to find all eigenvalues and eigenvectors for a real general matrix.

† Fortran source library from August 1983 release is at https://netlib.org/eispack/
‡ B. T. Smith, et al., Matrix Eigensystem Routines – EISPACK Guide 2nd ed., Springer-Verlag 1976.

goals of porting EISPACK routines to Forth

● provide library of eigensystems solvers to support scientific computing
in Forth

● provide source library in Forth for portability, ease of use, ease of
debugging, and ability to modify/adapt the code

● translate unstructured Fortran to structured Forth for improved source
comprehensibility

● work with FSL style matrices and arrays

● provide test code and examples in library

● check results of Forth computations against “original” Fortran

challenges of translating unstructured Fortran to Forth
 subroutine imtql1(n,d,e,ierr)
 :
 :
c look for small sub-diagonal element
 105 do 110 m = l, n
 :
 if (r .eq. 0.0d0) go to 210
 :
 200 continue
c
 d(l) = d(l) - p
 e(l) = g
 e(m) = 0.0d0
 go to 105
c recover from underflow
 210 d(i+1) = d(i+1) - p
 e(m) = 0.0d0
 go to 105
c order eigenvalues
 215 if (l .eq. 1) go to 250
c for i=l step -1 until 2 do
 do 230 ii = 2, l
 i = l + 2 - ii
 if (p .ge. d(i-1)) go to 270
 d(i) = d(i-1)
 230 continue
c
 250 i = 1
 270 d(i) = p
 290 continue

: imtql1 (n d e -- ierr)
 :
 :
\ look for small sub-diagonal element
 BEGIN
 N I DO
 :
 uflow IF
\ recover from underflow
 d{ ii 1+ } f@ p f@ f- d{ ii 1+ } f!
 false to uflow
 ELSE
 d{ I } f@ p f@ f- d{ I } f!
 g f@ e{ I } f!
 THEN
 0.0e0 e{ m } f!
 REPEAT

\ order eigenvalues
 I 0 = IF
 p f@ d{ 0 } f!
 ELSE
\ for i=l step -1 until 2 do
 I 2+ 1 DO
 J 1+ I - to ii
 p f@ d{ ii 1- } f@ f>= IF
 LEAVE
 THEN
 d{ ii 1- } f@ d{ ii } f!
 LOOP
 p f@ d{ ii } f!
 THEN
 LOOP \ end main loop

35

status of EISPACK port to Forth
word description In Pr C/N.T. C/T Demo
balanc balance a real matrix

balbak form eigenvectors of a general real balanced matrix

elmhes reduce submatrix of real general matrix to upper Hessenberg form

eltran accumulate similarity transforms for reduction of real general matrix

hqr2 find eigenvalues and eigenvectors of real general matrix

htribk form eigenvectors of complex Hermitian matrix cherm-01.4th

htridi reduce complex Hermitian matrix to real symmetric tridiagonal cherm-01.4th

imtql1 find the eigenvalues of a real symmetric tridiagonal matrix rsymm-01.4th

imtql2 find eigenvalues and eigenvectors of real symmetric tridiag matrix rsymm-02.4th

tred1 reduce real symmetric matrix to tridiagonal matrix rsymm-01.4th

tred2 reduce real symmetric matrix to symmetric tridiagonal matrix rsymm-02.4th

In Pr = Fortran Forth translation in progress
C/N.T. = Completed translation, not tested
C/T = Completed translation, tested

C/T Forth code may be found at
https://github.com/mynenik/kForth-64/tree/master/forth-src/eispack

complex general
complex Hermitian
real general
real symmetric
real symmetric tridiagonal
real special tridiagonal

what remains to be done?

● complete translation and testing of words needed to solve eigensystems
for real general matrices (target date: end of 2022)

● begin translation of words for solution of complex general matrices (2023)

● write demo programs to test and illustrate use of EISPACK in Forth (2023 – 2024)

● testing, testing, testing …

applications are the payoff!

36

The Left-Hand Path
dark confessions of a Forth hobbyist

Glyn Faulkner
EuroForth 2022

2022-09-17

This is the gateway to Hell, baby. . .
Welcome to The Underworld.
— Kassandra Cross

The Left-hand Path

In Western Esotericism. . .

Right-hand path magic used for good, or guided by a code of ethics
Left-hand path magic used for evil, or without consideration of

morality

In Forth. . .

The Right-hand Path Forth used as a powerful tool to solve
real-world problems quickly and efficiently

The Left-hand Path writing many Forth and Forth-adjacent
language interpreters that the world definitely doesn’t
need

37

Joy: the Gateway Drug

The original concatenative functional language by Manfred von
Thun

calc ==
[numerical]
[]
[unswons

[dup [+ - * /] in]
[[[calc] map uncons first] dip call]
["bad operator\n" put]
ifte]

ifte;

From Joy to Funeral
A concatenative functional language in Polish notation

def reverse [fold 'cons []]
def odd [= 1 % 2]
def even [= 0 % 2]

-- fold [fun] start [list]
def *fold [fold dig 2 'dup]
def fold [

doif
[dip 'drop drop]
[fold *apply dip 'swap dig 2 'uncons]

dip 'unrot *null rot
]
def rot [exhume 2]
def unrot [bury 2]

Funeral (2011-12)
Used for HTML generation

html body div h1 "Hello World"

def html [newTag "html" setDefault
xmlns="http://www.w3.org/1999/xhtml"]

def body [newTag "body"]
def div [newTag "div"]
def h1 [newInlineTag "h1"]

including some ugly proprietary markup needed for a work project

def guess_value_from_name [
doif

[prepend "<<IPF~" append ">>" drop]
[prepend "<<" append cons .. append ">>"]

= "IPQ" dup take 3 dup
]

38

Cantilever (2014)

An indirect-threaded Forth-like written in 32-bit x86 assembly,
inspired by JonesForth with influences from Joy and Funeral

: -- ['\n' =] scan-in ; #immediate
-- and now we have comments. Yay!

First class dates

0,1 ok 2022-02-28 1 + putdate nl
2020-02-28 1 + putdate ;

2022-03-01
2020-02-29

And times

0,1 ok 11:33:30 32 + puttime ;
11:34:02

The downward spiral
HackForth (2014)

word NextWord 8 "nex" # (-- label)
call SkipSpaces
call MakeLabel
addl %ecx, %edx
movl %edx, (next_input)

end

Thing (2014)

prim compile_lit ",lit" # (n --)
m_dup
movl $lit, %eax
call compile_call
stosl
m_drop

ret

The Quest for Minimalism

STTW (2015)
op fetch "@" _dup ; mov (%edx), %eax
op store "!" mov %eax, (%edx) ; _drop

TinyASM (2018)
(?0 w1 w2 ... if x is non-zero skip w1)
: ?0 (x --) 0<> cell-size and >r + r> ;

FifthWheel (2018)
?: dup (n -- n n) dsp@ @ ;
?: drop (x --) dsp@ cell+ dsp! ;

39

Rage-coding

Projects I started due to anger or frustration, then quickly
abandoned once I had calmed down.
WebOfHate (2018)
A small memory-footprint web browser that puts the user, instead of
coporations, back in control (reaction to trying to compile
Chromium from source)

BootstrapFromMBR (2020)
Let’s throw our operating systems away and return to the stone-age
(reaction to all modern operating systems!)

Wide (2021)
A tiny Forth IDE, intended to include compiler, debugging tools and
full-featured editor (reaction to learning that the Atom editor exists)

The Need for Speed (of development)
OneDayProject (2022-03-08)
A native code compiler in approximately sixty x86 machine
instructions.
despatch: # read a 16-bit token and despatch

based on the two high-bits.
_dup
xor %eax, %eax
mov _src, %esi
subl $1, _slen
jc bye
lodsw
mov %esi, _src
xor %ecx, %ecx
shld $2, %ax, %cx
shl $2, %ax
mov handlers(,%ecx,4), %ecx
jmp *%ecx

Lessons learned walking the left-hand path
I Replacing lods with a separate move from memory and add is

often a performance gain for ITC code
I Replacing lods with pop also works (bigger difference on

Intel)!
I You can implement direct-threading using ret as NEXT and

ESP as the instruction-pointer. But just don’t.
I Binary source code generally isn’t a great idea. . .
I . . . but having a binary-token intermediate representation

simplifies your compiler and speeds the process of
bootstrapping a new Forth.

I It does not appear to be possible to fit a useful Forth system
into the 510 bytes available on an x86 boot sector.

I You can write an assembler in Forth using only c,. . . if you
enjoy pain.

I Forth can be bootstrapped using a subset of Forth, without the
need for compile-time execution, as if and recurse represent
predictable sequences of instructions.

I It is possible to bring-up a rudimentary Forth system in one day,
even in assembly.

I GNU assembler isn’t as bad as you think.
I Rage-programming is rarely productive!

40

Where next?

How about a parameterised Forth interpreter generator?

[marsu@celaeno 4g]$./4g -t ITC -T -m ANSI -o forth
Indirect-threaded x86_64 Linux ANSI Forth
Options: top-of-stack in register, linked-list dictionary
Generating forth.S
gcc -m64 forth.S -o forth
Done
[marsu@celaeno 4g]$./forth

Ask me how this is going next year!

Comments/Questions?

41

Forth
 and

German Academia
Report of a Field Trip

Klaus Schleisiek
kschleisiek at freenet.de

The Event
38th workshop of the Programming Languages and
Computation Concepts section of Gesellschaft für Informatik.

At present, Type Checking is the pig that is chased thru the
computer science village.

After it became clear to me that this implies an automatic stack
checker for Forth, I am all for it.

One presentation dealt with the design of an extensible
language. The chosen implementation strategy was very
complex.

New Trend
It seems that there is a growing discontent of conventional
compiling strategies that use Phrase Structure Grammar,
characterized by BNF specifications.

Instead Dependency Grammar based on a dictionary or lexicon
is considered to be the more flexible approach.

It has been shown that both phrase structure grammar and
dependency grammar cover the same set of linguistic
constructs, namely context free grammars.

Scheme, Forth, Prolog, Smalltalk, APL, and LISP are
examples of dependency grammar systems.

See: https://dl.acm.org/doi/10.1145/3133850.3133859

Open Issues
In the paper, these topics are considered "open issues":

1. User Defined Data Structures
• Create ... Does>

2. Nesting Lexicons and Introducing Scopes
• Vocabulary Tree

3. Handling Ambiguity
• Vocabularies and Redefinitions

4. Dynamic Binding
• evaluate

5. Higher Order Words (Metaprogramming)
• immediate

Academia and Forth
The academic world does not know about the simplicity of the
Forth approach.

Therefore, I am going to hold a presentation next year:

"Poor Man's Compilers - How Forth Treats its Source Code"

Conclusion
The academic computer science and the Forth communities use
different terminology.

We don't understand each other.

We have to learn their terminology in order to be understood.

volksForth will be re-engineered to serve as a
Model Forth System in order to understand how it works.

42

1
43

µCore
 Progress Report

Klaus Schleisiek
kschleisiek at freenet.de

Bytes
I implemented IP/UDP and (R)ARP on µCore. It worked pretty
efficiently, although µCore is a cell addressed processor.

Looking at the amount of code needed for a full IP protocol
stack implementation I concluded that it would be more
efficient to realize byte addressing in µCore rather then re-
coding the entire protocol stack for cell addressing.

Because a byte addressed processor can re-use most of MPE's
IP protocol stack.

Byte Adressing
Realizing a byte addressed µCore turned out to take much less
time then I wasted during the past 20 years explaining why byte
addressing is not needed at all.

An new VHDL constant byte_addr_width has been introduced.
It may take the following values:

0 - Cell addressed, no bytes, data_width may take any value.

1 - Byte addressed 16 bit machine, data_width = 16.

2 - Byte addressed 32 bit machine, data_width = 32.

A byte addressed machine uses about 10% more logic
resources.

Division / Multiplication
In the past I used fuzzy tests for the signed/unsigned division
and multiplication instructions. But it always gave me an
uneasy feeling.

An exhaustive test routine that would test all possible numbers
dividing a double integer dividend by a single integer divisor.
It compiled into 1020 instructions and therefore, it would be
executible by a 10 bit machine.

This reduced the time needed for a full test to about 5 hours.

Test Routine
Basically, the test routine works as follows:
Dividend 2@ Divisor @ m/mod Divisor @ m* rot s>d d+

If the result equals the dividend, we have a correct result and
should have no overflow. The following four cases may occur:

1. Correct result, overflow not set - ok

2. Correct result, overflow set - error

3. Incorrect result, overflow set - ok

4. Incorrect result, overflow not set - error

Several case 4 errors popped up and I was able to debug the
overflow generation code.

Links
microCore is available on git:

https://github.com/microCore-VHDL

and here is documentation:

https://github.com/microCore-VHDL/microCore/tree/master/documents

44

Forth200x Standard Report
Impromptu Talk

EuroForth'22 conference 2022-09

Ulrich Hoffmann

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

uho@ .de
T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

Forth200x

Forth200x Standard Report

• Meeting just before euroForth for 2 days

• minutes at http://www.forth200x.org/meetings/2022-notes.html

• Call for participation	 your contribution is welcome, register below and/or contact me

• WEB sites	 	 forth200x.org, forth-standard.org

• Discussion Forum	 Mattermost at chat.forth-standard.org

• Involve the community	 new system for public voting

• Proposal: [160] minimalistic core API for recognizers 

 https://forth-standard.org/proposals/minimalistic-core-api-for-recognizers#reply-892

• Next meetings: virtual on 2023-02-17, in person 2023-09-13 to 2023-09-15 please join

45

Joy to the Web

A Zero Install version of Joy
(not a production) Language called

"Pounce"

Joy (some archives, some code, but old) a
concatenative language
Cat (no longer maintained) is also concatenative
(get it ...cat)
Kitten (some development happening) a small
concatenative language
I could not help making yet another interpreter,
naming it by the most joyous act of a cat, "Pounce"

I Love Forth, but I'm also enamored by functional
programming... so exploring these together, you find some
"concatenative" languages:

l could not get the "Joy language" to compile/run
on my hardware, so I started making
interpreters (as one does).
I vowed that no one would have to install
anything to just "try" Joy. Which lead me to
make this browser based language, Pounce.
In the process of making interpreters, choices
are made that eventually deviated from "pure"
Joy.
Pounce has "zero state" outside of the stack and
the program queue (dequeue). see
https://pounce-lang-show-case.netlify.app/ and
https://github.com/pounce-lang

https://pounce-lang-show-case.netlify.app/
You can edit code in the blue text boxes interactively and
see the result in the yellow box below.

46

until next year

https://pounce-lang-show-case.netlify.app/

https://github.com/pounce-lang

47

Are locals inevitably slow?

M. Anton Ertl, TU Wien

How to code 3dup?

: 3dup.3 {: a b c :} a b c a b c ;

instr. bytes system
41 158 Gforth AMD64
16 44 iforth 5.0.27 (plus 20 bytes entry and return code)
7 19 lxf 1.6-982-823 32-bit

41 149 SwiftForth 3.11.0 32-bit (calls LSPACE)
26 92 VFX Forth 64 5.11 RC2

\ lxf code
mov eax , [ebp]
mov [ebp-Ch] , eax
mov eax , [ebp+4h]
mov [ebp-8h] , eax
mov [ebp-4h] , ebx
lea ebp , [ebp-Ch]
ret near

VICHECK from Nick Nelson’s "Better Values"

: VICHECK {: pindex paddr -- pindex’ paddr :} \ Checks for valid index
\ paddr is the address of the data, the first cell of which contains the array size

pindex 0 paddr @ WITHIN IF \ Index is valid
pindex paddr

ELSE \ Index is invalid
\ code for reporting the error elided

THEN ;

: VICHECKs (pindex paddr -- pindex’ paddr) \ Checks for valid index
\ paddr is the address of the data, the first cell of which contains the array size

over 0 2 pick @ WITHIN IF \ Index is valid
\ the stack already contains the stuff

ELSE \ Index is invalid
\ code for reporting the error elided

THEN ;

48

VICHECK from Nick Nelson’s "Better Values"

instructions bytes system
locals stack locals stack

21 9 68 27 lxf 1.6-982-823 32-bit
22 5 78 19 VFX Forth 64 5.11 RC2

Discussion and Conclusion

• Are locals inevitably slow? No

• lxf is analytical about the return stack (including locals)
but only in straight-line code

• C compilers have been register-allocating locals for decades
Even on architectures like IA-32 with 8 registers

Counterarguments

• Locals are against the Forth spirit

• Locals are not used enough to justify optimizing them

49

Enums in Forth
Best Practices and Alternatives

Impromptu Talk
EuroForth'22 conference 2022-09

Ulrich Hoffmann

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

uho@ .de

Overview
Enums in Forth

• Enums in Forth

• Explicit using Forth Phrases™

• Nice Syntax - give names for phrases

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

Enums

Enums in Forth

• enumerations give names to values

• you don't remember all the numbers

• or they are likely to change

• or they are different on different systems

• use CONSTANTs

Nick Nelson:

"I don't like magic numbers."

50

Enums in Forth

• enumerations give Names to values - explicit with Constants

0 Constant black
1 Constant red
2 Constant green
3 Constant yellow

: .color (c --)
 dup black = IF drop ." black" EXIT THEN
 dup red = IF drop ." red" EXIT THEN
 dup green = IF drop ." green" EXIT THEN
 dup yellow = IF drop ." yellow" EXIT THEN
 ." color " . ;

Enums in Forth

• doing the calculations on your own

• Forth Phrases™, a sequence of inline forth word with no
name attention - might be sign of bad factoring

•

0
dup Constant black 1+ \ 0
dup Constant red 1+ \ 1
dup Constant green 1+ \ 2
dup Constant yellow 1+ \ 3
drop

• let the Forth interpreter do the calculation

• enum operations dup and 1+ are in different parts → combine them

dup Constant x 1+ ! dup 1+ swap Constant x

Enums in Forth

• doing the calculations on your own

• Forth Phrases™, a sequence of inline forth word with no
name attention - might be sign of bad factoring

•

0
dup 1+ swap Constant black \ 0
dup 1+ swap Constant red \ 1
dup 1+ swap Constant green \ 2
dup 1+ swap Constant yellow \ 3
drop

• explicit with Forth Phrases™

• a Forth Phrases is a sequence of inline forth words with no name

• Attention! Repeated phrases might be sign of bad factoring

• factorization given a name to phrases over + swap -> bounds

dup 1+ swap

51

Enums in Forth

• name the calculation - use the name to do the calculation implicitly

• traditionally (math) names this iota (greek letter 𝛊)

: iota (x -- x+1 x) dup 1+ swap ;

0
iota Constant black \ 0
iota Constant red \ 1
iota Constant green \ 2
iota Constant yellow \ 3
drop

1 under+

Enums in Forth

• name the calculation - use the name to do the calculation implicitly

• traditionally (math) names this iota (greek letter 𝛊)

: 𝛊 (x -- x+1 x) dup 1+ swap ;

0
𝛊 Constant black \ 0
𝛊 Constant red \ 1
𝛊 Constant green \ 2
𝛊 Constant yellow \ 3
drop

1 under+

Enums in Forth

• Using a Defining word and capture Constant

: 𝛊 (x -- x+1 x) dup 1+ swap ;
: Enum (n1 -- n2) 𝛊 Constant ;

0 Enum black \ 0
 Enum red \ 1
 Enum green \ 2
 Enum yellow \ 3
drop

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

Enums

: Enum (n1 -- n2) dup Constant 1+ ; 
see SwiftForth

enum{ black, red, green, yellow }; 
see Vfx

52

Euroforth 2022

Resource Embedding

Euroforth 2022
Resource Embedding

: EMBEDCOMP (xt---) \ Compiler for children of EMBED
 >BODY @ POSTPONE LITERAL
;

: EMBED { pzpath | pfile plen ppos -- } \ Embed a file within the Forth directory
 pzpath R/O OPEN-ZFILE SWAP -> pfile 0= IF \ File opened OK
 pfile FILE-SIZE -ROT D>S -> plen 0= plen 0<> AND IF \ File size ok and is non-zero
 plen CELL+ IRESERVE -> ppos \ Get address of reserved space
 plen ppos ! \ Save length
 ppos CELL+ plen pfile READ-FILE 0= SWAP plen = AND 0= IF \ Read in OK
 CR Z" Cannot read file " pzpath Z+ Z" to embed" Z+ Z$. ABORT
 THEN
 ELSE \ No file size
 CR Z" Failed to embed empty file " pzpath Z+ Z+ Z$. ABORT
 THEN
 pfile CLOSE-FILE DROP \ Close file
 ELSE \ Cannot open file
 CR Z" Cannot open file " pzpath Z+ Z" to embed" Z+ Z$. ABORT
 THEN
 CR Z" Embedding " pzpath z+ z$.
 pzpath ZCOUNT ($CREATE) \ Create Forth word from file path
 ppos , ['] EMBEDCOMP set-compiler \ Returns the address of file length
 interp>
 @
;

Euroforth 2022
Resource Embedding

4 1 callproc: EMBEDDIRFUN { ppath pstat ptype pbuf -- n } \ Callback function from walk dir tree
 ptype 0= IF \ Only files
 ppath ZCOUNT 1- + C@ [CHAR] ~ <> IF \ No Glade backup files
 ppath EMBED \ Embed file
 THEN
 THEN
 FALSE \ Continue
;

: EMBEDDIR { pzdir | pdir -- } \ Embed all files in directory
 pzdir EMBEDDIRFUN 0 0 nftw IF \ Walk directory
 CR Z" Failed to embed files from directory " pzdir Z+ Z+ Z$. ABORT
 THEN
;

SVGICONSDIR EMBEDDIR \ Embed SVG icon files

53

Euroforth 2022
Resource Embedding

: DEBEDICON { picon | pbed pdest pfile -- } \ Copy embedded svg icon to the tracknet temp directory
 SVGICONSDIR picon Z+ ZCOUNT SEARCH-CONTEXT IF \ Embedded file found
 EXECUTE -> pbed \ Set embedded address
 TEMPDIR picon Z+ -> pdest \ Construct destination path
 pdest ZCOUNT DELETE-FILE DROP \ Delete any previous file
 pdest R/W CREATE-ZFILE SWAP -> pfile 0= IF \ Temporary file opened OK
 pbed CELL+ pbed @ pfile WRITE-FILE DROP \ Write image to temporary file
 pfile CLOSE-FILE DROP
 ELSE \ Failed to create file
 Z" Failed to create debedded file " picon Z+ FATAL
 THEN
 ELSE \ Failed to find embedded file
 Z" Failed to find file " picon Z+ Z" to debed" Z+ FATAL
 THEN
;

...
 Z" caret-right-solid.svg" DEBEDICON
...

Euroforth 2022
Resource Embedding

: LOAD-SCALED-PIXBUF? { zpath | paddr pfile -- ppb } \ Get scaled pixbuf from embedded, false if fail
 zpath ZCOUNT SEARCH-CONTEXT IF \ Embedded file found
 EXECUTE -> paddr \ Get address of count
 PIXBUF-TEMPFILE ZCOUNT DELETE-FILE DROP \ Delete any previous file
 PIXBUF-TEMPFILE R/W CREATE-ZFILE SWAP -> pfile 0= IF \ Temporary file opened OK
 paddr CELL+ paddr @ pfile WRITE-FILE DROP \ Write image to temporary file
 pfile CLOSE-FILE DROP
 PIXBUF-TEMPFILE 16 REMSCALE DUP \ Scale
 TRUE NULL gdk_pixbuf_new_from_file_at_scale
 ELSE
 FALSE
 THEN
 ELSE
 FALSE
 THEN
;

54

EuroForth 2022 Sep 18

Encoding ASCII into cf2022 colorForth tokens

Encoding ASCII into cf2022 colorForth tokens EuroForth 2022 Sep 18

Cakes and Biscuits

Flour plus :

Name Fat Egg(s) Raising Agent Topping

Pancake 0.5 1 0 Maple Syrup

Biscuit 0.5 0 Soda Chocolate

Cake 1 2 Soda Icing

Bread 0 0 Yeast Butter

Jaffa Cake 0.25 0.5 Soda Chocolate

Encoding ASCII into cf2022 colorForth tokens EuroForth 2022 Sep 18

Cakes and Biscuits

Computer plus :

Name File ASCII, Unicode Raising Agent Topping

C Source File 1 1, UTF-8 Pre-processor Libraries

Word Docx 1 1, * Templates Styles

Forth Source 1 1, UTF-8 Forth Source Database

PDF file 1 1, UTF-8 Forth-like Zip, Signing

colorForth 0.01 0.01, UTF-8 Forth Chocolate

55

Encoding ASCII into cf2022 colorForth tokens EuroForth 2022 Sep 18

Layers

Choose your ingredients, add toppings.

Encoding ASCII into cf2022 colorForth tokens EuroForth 2022 Sep 18

Layers

Win32Forth Native Forth colorForth JaffaCake Forth

Application Application Application Application

File System File System Blocks Blocks

OS OS - OS/VM

Hardware Hardware Hardware Hardware

Encoding ASCII into cf2022 colorForth tokens EuroForth 2022 Sep 18

; ASCII / UTF8 support. If the first Shannon-Fano encoded letter is a 4 bit NULL,

; display the next 24 bits as three ASCII characters.

; $03e3c009 is displayed as ‘><’

56

Encoding ASCII into cf2022 colorForth tokens EuroForth 2022 Sep 18

showShannonFano: ; (token --) \ display the Shannon-Fano encoded token on TOS

; ASCII / UTF8 support. If the first Shannon-Fano encoded letter is a 4 bit NULL,

; display the next 24 bits as three ASCII characters.

mov _SCRATCH_, _TOS_ ; save the token value

and _SCRATCH_, 0xF0000000

cmp _SCRATCH_, 0x00000000

jnz .forward

; display as three ASCII characters

mov _SCRATCH_, _TOS_

mov _TOS_, _SCRATCH_

shr _TOS_, 20

and _TOS_, 0x000000FF

jz .null_terminator

DUP

call emit_

mov _TOS_, _SCRATCH_

shr _TOS_, 12

and _TOS_, 0x000000FF

jz .null_terminator

DUP

call emit_

mov _TOS_, _SCRATCH_

shr _TOS_, 4

and _TOS_, 0x000000FF

jz .null_terminator

DUP

call emit_

; arrive here if an ASCII character is an ASCII NULL, or if all three have been emitted

.null_terminator:

call space_ ; display a space character at the end of the word

DROP

ret

Encoding ASCII into cf2022 colorForth tokens EuroForth 2022 Sep 18

lowercase: ; display a white text word in normal lower-case letters

call white

showSF_EDI_: ; (--) \ display a Shanon-Fano encoded token pointed to by edi in the current colour

DUP

mov _TOS_, [(edi * 4) - 0x04] ; fetch the next token – drops through to showShannonFano

call showShannonFano

.forward:

; display as Shannon-Fano encoded token name

and _TOS_, byte -0x10 ; and _TOS_, 0xFFFFFFF0 ignore token colour when displaying the letters

lowercasePrimitive: ; (token --) \ display the given Shanon-Fano encoded word in the current colour

call unpack

jz lowercasePrimitiveEnd

call emitSF_

jmp lowercasePrimitive

lowercasePrimitiveEnd:

call space_

DROP

DROP

ret

Encoding ASCII into cf2022 colorForth tokens EuroForth 2022 Sep 18

This simple change to the colorForth pre-parsed source format, and the
corresponding editor display words, allows the colorForth system to continue
to use 32 bit „colored“ tokens, and also support ASCII / UTF-8 characters.

ToDo: Add keyboard support to type ASCII / UTF-8 characters !

57

	Preface
	Contents
	M. Anton Ertl: Memory Safety Without Tagging nor Static Type Checking
	Nick J. Nelson: Better Values: Improvements to the implementation of the extended Forth Value concept
	Nick J. Nelson: Forth Query Language (FQL): Refining the result set analysis using dynamically generated local functions
	Ulrich Hoffmann: Fuzzing Forth
	Krishna Myneni: Progress Towards Porting EISPACK to Forth
	Glyn Faulkner: Tales from the Left-Hand Path: Dark Confessions of a Forth Hobbyist
	Klaus Schleisiek: German Academia and Forth
	Bernd Paysan: Gforth 1.0
	Klaus Schleisiek: uCore progress
	Ulrich Hoffmann: Standard Report
	Nate Morse: Joy to the Web: A Zero Install version of Joy (not a production) Language called Pounce
	M. Anton Ertl: Are locals inevitably slow?
	Ulrich Hoffmann: Enums in Forth
	Nick Nelson: Resource embedding in Forth
	Howerd Oakford: Encoding ASCII into cf2022 colorForth tokens

