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ABSTRACT
Many studies have focused on the interaction between flu-
ids and solids, ranging from non-compressible to com-
pressible, inviscid to viscous fluids, with conforming and
non-conforming interfaces. In many applications, such
as microelectromechanical systems (MEMS), considering
the interaction between fluid and solid is essential to sim-
ulate their behavior accurately. We model the fluid, e.g.,
usually air, as viscous and compressible flow by consid-
ering small acoustic perturbations in the linearized con-
servation equations for both mass and momentum. Sim-
ilarly, the balance of momentum for the solid is linear
when assuming small strains and linear elastic material
behavior. This paper describes two non-conforming finite
elements (FE) formulations for modeling the interaction
between viscous acoustic and solid domains; a Nitsche-
based and a Mortar FE formulations. In the Nitsche-based
FE formulation, the continuity of velocity is enforced by a
penalty factor selected by a scaling approach which makes
the formulation dimensionally consistent. Alternatively,
the Mortar formulation introduces a Lagrange multiplier
(LM) to enforce the interface conditions. We present a
performance comparison between these two formulations
for a 2D wave propagation case study.

Keywords: non-conforming interface, Nitsche-based FE
formulation, Mortar FE formulation

1. INTRODUCTION

In many industrial applications, e.g., MEMS loudspeak-
ers, the interaction between the solid and the acoustic vis-
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cous domains has to be considered. Due to the small size
of these devices, viscosity effects in the air strongly im-
pact the device’s behavior. Therefore, the viscous acoustic
formulation must be used to accurately model the behav-
ior of MEMS transducers.

These applications can be simulated using various
models such as lumped or FE models. Additionally, the
impact of the solid deformation on the flow is usually ne-
glected as the mechanical displacement is small. For in-
dustrial applications flexibility in choosing mesh sizes for
the solid and viscous acoustic domains independently, is
advantageous, but leads to complications at the interface.
A non-conforming interface FEM formulation using for
example a Nitsche-based [1] or a Mortar [2] method can
be subsequently employed.

This paper compares two non-conforming FE formu-
lations for modeling compressible viscous fluid, elastic
solid and their interaction. Details of the derivation of the
coupled linearized formulations and their system matri-
ces in FE formulations are discussed. Finally, a 2D wave
propagation example is modeled and the results of these
two methods are compared.

2. SOLID AND VISCOUS ACOUSTIC
GOVERNING EQUATIONS

For modeling the solid domain, the linearized conserva-
tion of momentum is employed. The compressible vis-
cous acoustic domain is modeled using the linearized con-
servation of mass and momentum. The derivation of these
formulations, the necessary assumptions and the defini-
tion of solid and viscous acoustic stress tensors are de-
scribed in [3, 4]. The coupling conditions between these
two domains only affect the conservation of momentum
at the boundary. Therefore, the viscous acoustic conser-
vation of mass remains unchanged.
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Figure 1. Simple sketch of a solid-viscous acous-
tic interaction problem including elastic solid Ωs and
viscous acoustic Ωv domains with their interface Γsv.

2.1 Coupling conditions between viscous acoustic and
solid mechanics

At the interface between solid and viscous acoustic do-
mains (Γsv, see Fig. 1), the dynamic and kinematic con-
ditions have to be enforced by applying the continuity
of traction and velocity, respectively. Traction continu-
ity, i.e., force equilibrium at the interface, is enforced by
requiring

−σ · nv = σs · ns on Γsv , (1)

where σ and σs are the viscous acoustic and solid stress
tensors. The velocity continuity at the solid-viscous
acoustic interface writes

iωu = v on Γsv , (2)

where u denotes the solid displacement, v the viscous
acoustic velocity, and ω the angular velocity. To en-
force these coupling conditions, two different methods are
introduced: the Nitsche-based and the Mortar method.
These methods have already been successfully imple-
mented and validated in our open-source FE code [5].

2.2 Nitsche-based method

The Nitsche-based method is derived from the combina-
tion of the conservation of momentum of viscous acoustic
and solid and adding the penalty and the symmetrization
terms. The penalty term is added to ensure the continuity
of velocities at the interface and defined as

β

∫
Γsv

(u′ − v′) · (iωu− v) dΓ , (3)

where β is the user-defined penalty factor and •′ denotes
a test function. Employing a scaling approach, the penalty

factor advantageously makes (3) dimensionally consis-
tent [4]. The symmetrization term∫

Γsv

σs(u
′)
(
v − iωu

)
· n dΓ , (4)

is added for symmetrizing the system matrices, where n is
the normal direction at the interface, i.e., n = ns = −nv.
Finally, the coupled equations in the harmonic case are
obtained as in [4]

iω

∫
Ωv

Kp′p dΩ+

∫
Ωv

p′∇ · v dΩ = 0 , (5a)

iω

∫
Ωv

ρ0v
′ · v dΩ−

∫
Ωv

∇v′ : pI dΩ

+

∫
Ωv

µ∇v′ :
(
∇v + (∇v)T

)
dΩ

+

∫
Ωv

(µB − 2

3
µ)∇v′ : ∇ · vI dΩ+

∫
Γsv

v′ · σs · n dΓ

− iωβ

∫
Γsv

v′ · u dΓ + β

∫
Γsv

v′ · v dΓ = 0 , (5b)

− ω2

∫
Ωs

u′ · ρsuΩ+

∫
Ωs

∇u′ : C : s dΩ

−
∫
Γsv

u′ · σs · n dΓ + iωβ

∫
Γsv

u′ · u dΓ− β

∫
Γsv

u′ · v dΓ

+

∫
Γsv

σs(u
′)v · n− iω

∫
Γsv

σs(u
′)u · n = 0 , (5c)

where p the viscous acoustic pressure, µ the shear, µB the
bulk viscosity and K the comprehensibility coefficient.

Furthermore, we apply the standard Galerkin method
by substituting the approximations of velocity, pressure
and displacement into the conservation of mass (5a), con-
servation of momentum for both viscous acoustic (5b) and
solid (5c). The resulting system of equations for the vis-
cous acoustic formulation coupled to the solid domain is Spp Spv 0

Svp Svv Svu
0 Suv Suu

 {p}
{v}
{u}

 =

 {0}
{fv}
{fu}

 ,
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where Sij = −ω2M ij+iωCij+Kij with the following
mass matrix

M ij =

 0 0 0
0 0 0
0 0 Muu

 ,

damping matrix

Cij =

 Cpp 0 0
0 Cvv CΓvu
0 0 CΓuu


and stiffness matrix

Kij =

 0 Kpv 0
Kvp +KΓvp

Kvv +KΓvv KΓvu
0 Kuv +KΓuv Kuu

 . (6)

2.3 Mortar method

For modeling the coupling between solid and viscous
acoustic domains using the Mortar method an additional
unknown t is used. This unknown represents the traction
at the interface, as in the LM, and verifies

t = −σ · nv = σs · ns . (7)

Continuity of the velocities (2), is enforced in a weak
sense at the interface, i.e., we require∫

Γsv

t′ · (iωu− v) dΓ = 0, (8)

which also provides the additional equations necessary for
the determination of the introduced unknown at the in-
terface. The continuity of traction is ensured thanks to
the additional unknown t at the interface. In this method,
the conservation of mass (5a) remains unchanged, and the
solid and viscous acoustic conservation of momentum are
obtained as

iω

∫
Ωv

ρ0v
′ · v dΩ−

∫
Ωv

∇v′ : pI dΩ

+

∫
Ωv

µ∇v′ :
(
∇v+(∇v)T

)
dΩ+

∫
Ωv

(µB−
2

3
µ)∇v′ : ∇·vI dΩ

+

∫
Γsv

v′ · t dΓ = 0 , (9a)

−ω2

∫
Ωs

u′·ρsuΩ+

∫
Ωs

∇u′ : C : s dΩ−
∫
Γsv

u′·t dΓ = 0 .

(9b)

The resulting system matrix for the Mortar method is ob-
tained as

Spp Spv 0 0
Svp Svv Svu Svt
0 Suv Suu Sut
0 Stv Stu 0




{p}
{v}
{u}
{t}

 =


{0}
{fv}
{fu}
{0}

 ,

where the mass matrix only includes Muu. The damping
and stiffness matrices are defined as

Cij =


Cpp 0 0 0
0 Cvv 0 0
0 0 0 0
0 0 CΓtu

0

 ,

Kij =


0 Kpv 0 0

Kvp +KΓvp
Kvv 0 KΓvt

0 Kuv Kuu KΓut
0 KΓtv

0 0

 . (10)

The primary disadvantage of this approach stems from the
presence of a zero on the diagonal of the system matrix,
resulting in issues with saddle points.

3. RESULTS

To compare the described methods, various test cases
were implemented and validated. This section presents
a 2D wave propagation in a channel excited by solid dis-
placements. The geometry and boundary conditions are
depicted in Fig. 2, and the material properties of these
domains are chosen to have equal wavelengths. Density,
Poisson ratio, and elasticity of the solid are 1.225 kgm−3,
0.33 and 9.5e-4 Nm−2, respectively, and the fluid mate-
rial properties are described in Tab. 1.

Figure 3 and 4 show the solid and viscous acoustic
velocity and pressure distribution along the channel using
the Nitsche-based and Mortar formulations. The velocity
field in the solid domain shows the standing wave behav-
ior, whereas the velocity field in the viscous domain shows
the decaying waves, where the velocity reaches zero at the
end of the channel. Both methods exhibit these behav-
iors and produce identical numerical results. The main
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Figure 2. Boundary conditions for 2D wave prop-
agation. Yellow and blue colors show the solid and
fluid regions, respectively

Table 1. Fluid material properties
Properties Value
Density in kgm−3 1.225
Bulk viscosity in Nsm−2 1.22e-1
Shear viscosity in Nsm−2 1.5e-2
Compression modulus in Nm−2 1.427e9

advantage of these methods is their ability to use non-
conforming interfaces, making these methods beneficial
for modeling complex geometries where specific meshes
are required for different domains.

4. CONCLUSION

This paper compares two methods for modeling solid and
viscous acoustic interaction: the Nitsche-based and the
Mortar methods. These methods were thoroughly ex-
plained and their FE formulations and associated system
matrices were obtained. The main difference between
these methods is that the Nitsche-based method enforces
the continuity of velocities at the solid-viscous acoustic
interface through a penalty term, which requires a user-
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Figure 3. Velocity distribution along the channel
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Figure 4. Pressure distribution along the channel

defined penalty factor. Whereas the Mortar method in-
troduces a new unknown at the interface called the LM
to enforce coupling conditions. However, the new un-
known causes saddle point problems due to a zero on the
diagonal of the system matrix. Both methods were imple-
mented and validated using various test cases, including a
2D wave propagation with a solid excitation, where both
methods were shown to produce identical results.
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