ISTRATEGIES FOR WIDE-SCALE SHORT-TERM PV FORECASTING IN ENERGY COMMUNITIES

Nikolaus Houben, Lennard Visser, Wilfried van Sark, Hans Auer, Amela Ajanovic, Reinhard Haas IAEE European Conference – Sept, 2022, Athens

Research Objective

Quantify the economic impact of various data and modelling strategies on short-term rooftop PV power forecasting from the perspective of an aggregator

Phyical Model

Machine Learning Models

- Predefined Parameterized Mapping of Irradiance to Power
- Used Model: PV Watts Model¹ (pvlib python package)

G _{poaeff}	$P_{dc} = \frac{G_{poaeff}}{1000} P_{dc0} (1 + \gamma_{pdc})$	$T_{cell} - T_{ref}))$	$\eta = \frac{\eta_{nom}}{\eta_{ref}} (-0.0162\zeta - \frac{0.0059}{\zeta} + 0.9858)$ $P_{ac} = \min(\eta P_{dc}, P_{ac0})$
Input		Unit	
System Size (Pdc0)		kW (DC)	
Module Type		Standard, Premium, Thin film	
System Losses		%	
Tilt Angle		Degrees	
Azimuth Angle		Degrees	

- Function Approximation based on Input and Output Data
- Finding the parameters of a function that makes the data most likely
- Used Models: Support Vector Machine, Random Forest, XGBoost, Multi-Layer-Perceptron
- Global Horizonal Irradiance, - Features:
 - Diffuse Horizontal Irradiance,
 - **Direct Normal Irradiance**
 - (Autoregressive Measurements)

Case Study & Data²

Data Description

- Photovoltaic Data:
 - 50 Rooftop PV systems in Utrecht, NL
 - Power Data: 30s resolution, 2015-2017

Key Results from the Case Study

#1: Quality of Meta Data

- Situation: No measurement data, limited meta data,
 - so the aggregator has to estimate

- Result: Machine Learning models significantly outperform

physical models on days with shading

- Meta Data: Location, Tilt, Azimuth, Capacity
- Weather Data:
 - measured* Historic DNI, DHI, GHI,
 - air temperature, 2015-2016
- Economic Data:
 - Imbalance Prices for NL from ENTSOE
 - dual Imbalance Prices, 2015-2021
 - multiplied by the absolute error accordingly

Randomize Tilt angle, Azimuth Angle or both for - Idea:

all systems

– Results: Knowing both angles saves up to 20% in costs

- Key Idea: Input (Features) and Output (Target) Variables
 - provide implicit information of the developing
 - or present losses of the PV System
- Visual Selection of Days with apparent Shading (see below)
- Comparison of the Physical and best Machine Learning Model

#3: Quantity of Training Data

- Situation: varying availability of data for a PV System
- Key Idea: Incrementally Increase the size of the Training Data
- The validation period was fixed!
- Results show a 20% decrease in costs (and errors) when a full year of training data is available compared to 3 months

When sensor meter data is unavailable, collecting metadata on system azimuth & tilt angles can significantly increase forecast accuracy and reduce costs

Having information on both correct azimuth and tilt angles has a synergistic effect regarding cost saving

Machine learning methods are generally superior to physical methods as they learn losses, however limited quantity of data can deteriorate accuracy substantially.

¹Dobos[,] A· P^{. (2014).} PVWatts version ⁵ manual (No[.] NREL/TP⁻⁶A^{20-62641).} National Renewable Energy Lab[.](NREL^{),} Golden[,] CO ^{(United States).}

²Visser, L., Elsinga, B., Alskaif, T., & van Sark, W. G. (2022). Open-source quality control routine and multi-year power generation data of 175 PV systems. Journal of Renewable and Sustainable Energy.