
Cross-Layer Optimizations for
Energy-Efficiency and

Robustness of Advanced
Machine Learning Architectures

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Alberto Marchisio
Registration Number 11722616

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Dr. Muhammad Shafique

The dissertation has been reviewed by:

Vijaykrishnan Narayanan Sudeep Pasricha

Vienna, 17th July, 2023
Alberto Marchisio

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Declaration of Authorship

Alberto Marchisio

I hereby declare that I have written this Doctoral Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, 17th July, 2023
Alberto Marchisio

iii

Acknowledgements

I would like to give my most sincere and immense gratitude to my advisor Prof. Dr.
Muhammad Shafique for his precise and timely guidance to conduct research in a creative
and productive way, for his countless ideas and constructive feedback to improve the
work and grow professionally. I also enjoyed his company in several conference trips to
explore beautiful places and learn more about the scientific community.

I am also grateful to the whole research group and collaborators, who made my everyday
life wonderful during this journey. A special thanks to Prof. Maurizio Martina for
conducting several interesting joint research works and for his professional support, Dr.
Vojtech Mrazek for his valuable feedback and dedication to help in reaching important
milestones, and Muhammad Abdullah Hanif, who provided me guidance and precious
advices from the start.

My warmest thank goes to my family and friends for their continuous understanding,
help and support during this adventure. I really appreciate that I can always count on
them and find the right way to proceed. These few words could not fully express my
prodigious gratitude!

I am honored to provide gratitude to all these wonderful people. Without them, I might
have not have become who I am now.

v

“All you need is lots and lots of data and lots of information about what the right
answer is, and you’ll be able to train a big neural net to do what you want.”

Geoffrey Hinton

Kurzfassung

Algorithmen des Machine Learning (ML) haben bei mehreren Aufgaben ein hohes Maß
an Genauigkeit gezeigt. Daher sind ML-basierte Anwendungen in vielen Systemen und
Plattformen weit verbreitet. Die Entwicklung effizienter ML-basierter Systeme erfordert
jedoch die Auseinandersetzung mit zwei grundlegenden Forschungsproblemen: Energieef-
fizienz und Robustheit. Aktuelle Trends zeigen das wachsende Interesse der Gemeinschaft
an komplexen ML-Modellen wie Deep Neural Networks (DNNs), Capsule Networks
(CapsNets) und Spiking Neural Networks (SNNs). Neben ihrer hohen Lernfähigkeit stellt
ihre Komplexität mehrere Forschungsherausforderungen dar.

Hochmoderne DNN-Beschleuniger optimieren typischerweise die Ausführung der gän-
gigsten Schichten und Operationen. Dennoch werden sie obsolet, wenn fortgeschrittenere
Arten von ML-Architekturen ausgeführt werden, wie etwa CapsNets, die komplexe Ope-
rationen beinhalten, oder SNNs, die eine andere Recheninfrastruktur unterstützen, die
als Neuromorphic System bekannt ist. Darüber hinaus gefährden mehrere Schwachstellen-
aspekte die korrekte Funktionalität von ML-Systemen. Daher ist es von entscheidender
Bedeutung, sicherheitsorientierte Techniken zur Verbesserung der Robustheit solcher
fortschrittlichen ML-Architekturen zu untersuchen, die möglicherweise besondere Eigen-
schaften in Bezug auf die Widerstandsfähigkeit unter widrigen Bedingungen bieten, die
sich von herkömmlichen DNNs unterscheiden. Eine weitere entscheidende Einschränkung
moderner Techniken besteht darin, dass sie sich typischerweise auf die Optimierung für
ein einzelnes Ziel konzentrieren oder eine begrenzte Anzahl von Zielen haben.

In diesem Zusammenhang befasst sich diese Arbeit mit den oben diskutierten Heraus-
forderungen, indem sie die einzigartigen Merkmale fortgeschrittener ML-Modelle nutzt
und schichtübergreifende Konzepte und Techniken untersucht, um sowohl Methoden
auf Hardware- als auch Software-Ebene zu nutzen, um robuste und energieeffiziente
Architekturen für diese fortgeschrittenen ML-Modelle zu erstellen Netzwerke. Genauer
gesagt verbessert diese Forschung die Energieeffizienz komplexer Modelle wie CapsNets
durch einen speziellen Fluss von Entwürfe auf Hardware-Ebene und Optimierungen
auf Software-Ebene, wobei das anwendungsgesteuerte Wissen dieser Systeme und die
Fehlertoleranz durch Näherungen und Quantisierung ausgenutzt werden. Diese Forschung
verbessert aufgrund ihrer inhärenten kostengünstigen Funktionen auch die Robustheit
von ML-Modellen, insbesondere für SNNs, die auf Neuromorphic Hardware ausgeführt
werden. Darüber hinaus integriert diese Forschung mehrere Optimierungsziele in speziel-

vii

le Frameworks, um gemeinsam die Robustheit und Energieeffizienz dieser Systeme zu
optimieren.

Abstract

Machine Learning (ML) algorithms have shown a high level of accuracy in several
tasks. Therefore, ML-based applications are widely used in many systems and platforms.
However, developing efficient ML-based systems requires addressing two fundamental
research problems: energy-efficiency and robustness. Current trends show the growing
interest in the community for complex ML models, such as Deep Neural Networks (DNNs),
Capsule Networks (CapsNets), and Spiking Neural Networks (SNNs). Besides their high
learning capabilities, their complexity poses several research challenges.

State-of-the-art DNN accelerators typically optimize the execution of the most common
layers and operations. Still, they become obsolete when executing more advanced types of
ML architectures, such as CapsNets that involve complex operations or SNNs that support
a different computational infrastructure known as a neuromorphic system. Moreover,
multiple vulnerability aspects threaten the correct functionality of ML systems. Therefore,
it is crucial to investigate security-oriented techniques for enhancing the robustness of such
advanced ML architectures, which might offer peculiar properties in terms of resiliency in
adverse conditions that are different from traditional DNNs. Another critical limitation of
state-of-the-art techniques is that they typically focus on optimizing for a single objective
or have a limited set of goals.

In this regard, this thesis tackles the above-discussed challenges by exploiting the unique
features of advanced ML models and investigates cross-layer concepts and techniques to
engage both hardware and software-level methods to build robust and energy-efficient
architectures for these advanced ML networks. More specifically, this research improves
the energy efficiency of complex models like CapsNets, through a specialized flow of
hardware-level designs and software-level optimizations exploiting the application-driven
knowledge of these systems and the error tolerance through approximations and quanti-
zation. This research also improves the robustness of ML models, in particular for SNNs
executed on neuromorphic hardware, due to their inherent cost-effective features. More-
over, this research integrates multiple optimization objectives into specialized frameworks
for jointly optimizing the robustness and energy efficiency of these systems.

ix

Publications of this PhD Work

Conference Papers:

[1] A. Marchisio, B. Bussolino, A. Colucci, M. Martina, G. Masera, and M. Shafique,
“Q-CapsNets: A Specialized Framework for Quantizing Capsule Networks,” in 57th
ACM/IEEE Design Automation Conference, DAC 2020, San Francisco, CA, USA,
July 20-24, 2020, pp. 1–6, IEEE, 2020. Received a HiPEAC Paper Award.

[2] A. Marchisio, A. Massa, V. Mrazek, B. Bussolino, M. Martina, and M. Shafique,
“NASCaps: A Framework for Neural Architecture Search to Optimize the Accuracy
and Hardware Efficiency of Convolutional Capsule Networks,” in IEEE/ACM
International Conference On Computer Aided Design, ICCAD 2020, San Diego,
CA, USA, November 2-5, 2020, pp. 114:1–114:9, IEEE, 2020.

[3] A. Marchisio, G. Pira, M. Martina, G. Masera, and M. Shafique, “R-SNN: An Anal-
ysis and Design Methodology for Robustifying Spiking Neural Networks against Ad-
versarial Attacks through Noise Filters for Dynamic Vision Sensors,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2021, Prague,
Czech Republic, September 27 - Oct. 1, 2021, pp. 6315–6321, IEEE, 2021.

[4] A. Viale, A. Marchisio, M. Martina, G. Masera, and M. Shafique, “LaneSNNs:
Spiking Neural Networks for Lane Detection on the Loihi Neuromorphic Processor,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2022, Kyoto, Japan, October 23-27, 2022, pp. 79-86, IEEE, 2022.

[5] A. Marchisio, B. Bussolino, A. Colucci, M. A. Hanif, M. Martina, G. Masera, and
M. Shafique, “FasTrCaps: An Integrated Framework for Fast yet Accurate Training
of Capsule Networks,” in 2020 International Joint Conference on Neural Networks,
IJCNN 2020, Glasgow, United Kingdom, July 19-24, 2020, pp. 1–8, IEEE, 2020.

[6] R. Massa, A. Marchisio, M. Martina, and M. Shafique, “An Efficient Spiking Neural
Network for Recognizing Gestures with a DVS Camera on the Loihi Neuromorphic
Processor,” in 2020 International Joint Conference on Neural Networks, IJCNN
2020, Glasgow, United Kingdom, July 19-24, 2020, pp. 1–9, IEEE, 2020.

xi

[7] A. Marchisio, G. Nanfa, F. Khalid, M. A. Hanif, M. Martina, and M. Shafique, “Is
Spiking Secure? A Comparative Study on the Security Vulnerabilities of Spiking
and Deep Neural Networks,” in 2020 International Joint Conference on Neural
Networks, IJCNN 2020, Glasgow, United Kingdom, July 19-24, 2020, pp. 1–8,
IEEE, 2020.

[8] V. Venceslai, A. Marchisio, I. Alouani, M. Martina, and M. Shafique, “NeuroAttack:
Undermining Spiking Neural Networks Security through Externally Triggered
BitFlips,” in 2020 International Joint Conference on Neural Networks, IJCNN
2020, Glasgow, United Kingdom, July 19-24, 2020, pp. 1–8, IEEE, 2020.

[9] A. Viale, A. Marchisio, M. Martina, G. Masera, and M. Shafique, “CarSNN: An
Efficient Spiking Neural Network for Event-Based Autonomous Cars on the Loihi
Neuromorphic Research Processor,” in 2021 International Joint Conference on
Neural Networks, IJCNN 2021, Shenzhen, China, July 18-22, 2021, pp. 1–10,
IEEE, 2021.

[10] A. Marchisio, G. Pira, M. Martina, G. Masera, and M. Shafique, “DVS-Attacks:
Adversarial Attacks on Dynamic Vision Sensors for Spiking Neural Networks,” in
2021 International Joint Conference on Neural Networks, IJCNN 2021, Shenzhen,
China, July 18-22, 2021, pp. 1–9, IEEE, 2021.

[11] A. Marchisio, G. Caramia, M. Martina, and M. Shafique, “fakeWeather: Adversarial
Attacks for Deep Neural Networks Emulating Weather Conditions on the Camera
Lens of Autonomous Systems,” in 2022 International Joint Conference on Neural
Networks, IJCNN 2022, Padua, Italy, July 18-23, 2022, pp. 1-9, IEEE, 2022.

[12] A. Marchisio, A. De Marco, A. Colucci, M. Martina, and M. Shafique, “RobCaps:
Evaluating the Robustness of Capsule Networks against Affine Transformations and
Adversarial Attacks,” in 2023 International Joint Conference on Neural Networks,
IJCNN 2023, Gold Coast, Queensland, Australia, June 18-23, 2023, pp. 1-9,
IEEE, 2023.

[13] A. Marchisio, M. A. Hanif, and M. Shafique, “CapsAcc: An Efficient Hardware
Accelerator for CapsuleNets with Data Reuse,” in Design, Automation & Test in
Europe Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019
(J. Teich and F. Fummi, eds.), pp. 964–967, IEEE, 2019.

[14] A. Marchisio, V. Mrazek, M. A. Hanif, and M. Shafique, “ReD-CaNe: A Systematic
Methodology for Resilience Analysis and Design of Capsule Networks under Ap-
proximations,” in Design, Automation & Test in Europe Conference & Exhibition,
DATE 2020, Grenoble, France, March 9-13, 2020, pp. 1205–1210, IEEE, 2020.

[15] R. El-Allami, A. Marchisio, M. Shafique, and I. Alouani, “Securing Deep Spiking
Neural Networks against Adversarial Attacks through Inherent Structural Parame-
ters,” in Design, Automation & Test in Europe Conference & Exhibition, DATE
2021, Grenoble, France, February 1-5, 2021, pp. 774–779, IEEE, 2021.

[16] A. Marchisio, B. Bussolino, E. Salvati, M. Martina, G. Masera, and M. Shafique,
“Enabling Capsule Networks at the Edge through Approximate Softmax and Squash
Operations,” in International Symposium on Low Power Electronics and Design,
ISLPED 2022, Boston, MA, USA, Aug 1-3, 2022, IEEE, 2022.

[17] S. Dave, A. Marchisio, M. A. Hanif, A. Guesmi, A. Shrivastava, I. Alouani, and
M. Shafique, “Special Session: Towards an Agile Design Methodology for Efficient,
Reliable, and Secure ML Systems,” in IEEE VLSI Test Symposium, VTS 2022,
Synopsys Inc., CA, USA, April 25-27, 2022, IEEE, 2022.

[18] A. Marchisio, M. A. Hanif, F. Khalid, G. Plastiras, C. Kyrkou, T. Theocharides, and
M. Shafique, “Deep Learning for Edge Computing: Current Trends, Cross-Layer
Optimizations, and Open Research Challenges,” in 2019 IEEE Computer Society
Annual Symposium on VLSI, ISVLSI 2019, Miami, FL, USA, July 15-17, 2019,
pp. 553–559, IEEE, 2019.

Workshop Papers:

[1] A. Marchisio, G. Nanfa, F. Khalid, M. A. Hanif, M. Martina, and M. Shafique,
“CapsAttacks: Robust and Imperceptible Adversarial Attacks on Capsule Networks,”
ICML Workshop on Uncertainty & Robustness in Deep Learning, UDL 2019,
Long Beach, CA, USA, July 9-15, 2019.

[2] A. Marchisio, V. Mrazek, A. Massa, B. Bussolino, M. Martina, and M. Shafique,
“HARNAS: Neural Architecture Search Jointly Optimizing for Hardware Efficiency
and Adversarial Robustness of Convolutional and Capsule Networks,” ICML
Workshop on Dynamic Neural Networks, DyNN 2022, Baltimore, MD, USA, July
17-23, 2022.

Journal Papers:

[1] A. Marchisio, V. Mrazek, M. A. Hanif, and M. Shafique, “FEECA: Design Space
Exploration for Low-Latency and Energy-Efficient Capsule Network Accelerators,”
IEEE Trans. Very Large Scale Integr. Syst. (TVLSI), vol. 29, no. 4, pp. 716–729,
2021.

[2] A. Marchisio, V. Mrazek, M. A. Hanif, and M. Shafique, “DESCNet: Developing
Efficient Scratchpad Memories for Capsule Network Hardware,” IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. (TCAD), vol. 40, no. 9, pp. 1768–1781,
2021.

[3] A. Marchisio, V. Mrazek, A. Massa, B. Bussolino, M. Martina, and M. Shafique,
“RoHNAS: A Neural Architecture Search Framework with Conjoint Optimization

for Adversarial Robustness and Hardware Efficiency of Convolutional and Capsule
Networks,” IEEE Access, vol. 10, pp. 109043–109055, 2022.

[4] A. Marchisio, G. Nanfa, F. Khalid, M. A. Hanif, M. Martina, and M. Shafique,
“SeVuC: A Study on the Security Vulnerabilities of Capsule Networks against
Adversarial Attacks,” Microprocessors and Microsystems (MICPRO), vol. 96, pp.
104738, 2023.

Other Co-Authored Publications

Conference Papers:

[1] M. Shafique, A. Marchisio, R. V. W. Putra, and M. A. Hanif, “Towards Energy-
Efficient and Secure Edge AI: A Cross-Layer Framework,” in IEEE/ACM Interna-
tional Conference On Computer Aided Design, ICCAD 2021, Munich, Germany,
November 1-4, 2021, pp. 1-9, IEEE, 2021.

[2] A. Marchisio, M. A. Hanif, M. Martina, and M. Shafique, “PruNet: Class-Blind
Pruning Method For Deep Neural Networks,” in 2018 International Joint Conference
on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil, July 8-13, 2018, pp.
1-8, IEEE, 2018.

[3] M. A. Hanif, G. M. Sarda, A. Marchisio, G. Masera, M. Martina, and M. Shafique,
“CoNLoCNN: Exploiting Correlation and Non-Uniform Quantization for Energy-
Efficient Low-precision Deep Convolutional Neural Network Inference,” in 2022
International Joint Conference on Neural Networks, IJCNN 2022, Padua, Italy,
July 18-23, 2022, pp. 1-8, IEEE, 2022.

[4] A. Marchisio, D. Dura, M. Capra, M. Martina, G. Masera, and M. Shafique,
“SwiftTron: An Efficient Hardware Accelerator for Quantized Transformers,” in
2023 International Joint Conference on Neural Networks, IJCNN 2023, Gold
Coast, Queensland, Australia, June 18-23, 2023, pp. 1-9, IEEE, 2023.

[5] A. Colucci, D. Juhász, M. Mosbeck, A. Marchisio, S. Rehman, M. Kreutzer, G.
Nadbath, A. Jantsch, and M. Shafique, “MLComp: A Methodology for Machine
Learning-based Performance Estimation and Adaptive Selection of Pareto-Optimal
Compiler Optimization Sequences,” in Design, Automation & Test in Europe
Conference & Exhibition, DATE 2021, Grenoble, France, February 1-5, 2021, pp.
108-113, IEEE, 2021.

[6] A. Colucci, A. Marchisio, B. Bussolino, V. Mrazek, M. Martina, G. Masera, and
M. Shafique, “A Fast Design Space Exploration Framework for the Deep Learning
Accelerators: Work-in-Progress,” in International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS 2020, Singapore, September 20-25,
2020, pp. 34-36, IEEE, 2020.

xv

Workshop Papers:

[1] A. Marchisio, R. Putra, M. A. Hanif, and M. Shafique, “HW/SW Co-Design and
Co-Optimizations for Deep Learning,” in ESWEEK Workshop on INTelligent
Embedded Systems Architectures and Applications, INTESA 2018, Turin, Italy,
October 04, 2018, pp. 13-18, ACM, 2018.

Journal Papers:

[1] M. A. Hanif, A. Marchisio, T. Arif, R. Hafiz, S. Rehman, and M. Shafique, “X-
DNNs: Systematic Cross-Layer Approximations for Energy-Efficient Deep Neural
Networks,” J. Low Power Electronics (JOLPE), vol. 14, pp. 520-534, 2018.

[2] M. Capra, B. Bussolino, A. Marchisio, M. Shafique, G. Masera, and M. Martina,
“An Updated Survey of Efficient Hardware Architectures for Accelerating Deep
Convolutional Neural Networks,” MDPI Future Internet, vol. 12, pp. 113, 2020.
Received the Future Internet 2022 Best Paper Award.

[3] M. Capra, B. Bussolino, A. Marchisio, G. Masera, M. Martina, and M. Shafique,
“Hardware and Software Optimizations for Accelerating Deep Neural Networks:
Survey of Current Trends, Challenges, and the Road Ahead,” IEEE Access, vol. 8,
pp. 225134-225180, 2020.

[4] F. Nikfam, A. Marchisio, M. Martina, and M. Shafique, “AccelAT: A Framework for
Accelerating the Adversarial Training of Deep Neural Networks through Accuracy
Gradient,” IEEE Access, vol. 10, pp. 108997-109007, 2022.

[5] A. Marchisio, F. Teodonio, A. Rizzi, and M. Shafique, “ISMatch: A Real-Time
Hardware Accelerator for Inexact String Matching of DNA Sequences on FPGA,”
Microprocessors and Microsystems (MICPRO), vol. 97, pp. 104763, 2023.

List of Supervised MS Student
Projects that Contributed to this

Thesis

[1] Giorgio Nanfa, “Black-Box Adversarial Attacks for Deep Neural Networks and Spiking
Neural Networks,” in Politecnico di Torino, Italy, 2019.

[2] Beatrice Bussolino, “Capsule Networks: Training and Quantized Inference,” in Po-
litecnico di Torino, Italy, 2019.

[3] Alessio Colucci, “Software- and Hardware-Level Optimizations for Fast Training of
Capsule Networks,” in Politecnico di Torino, Italy, 2019.

[4] Antonio De Marco, “Capsule Networks Robustness against Adversarial Attacks and
Affine Transformations,” in Politecnico di Torino, Italy, 2020.

[5] Riccardo Massa, “Efficient Implementation of Spiking Neural Networks on the Loihi
Neuromorphic Processor,” in Politecnico di Torino, Italy, 2020.

[6] Valerio Venceslai, “Fault-Injection and Neural Trojan Attacks on Spiking Neural
Networks,” in Politecnico di Torino, Italy, 2020.

[7] Andrea Massa, “Hardware-Aware Capsule Networks Architecture Search,” in Politec-
nico di Torino, Italy, 2020.

[8] Giacomo Pira, “Security of Event-Based Spiking Neural Networks: Attacks and
Defense Methodologies,” in Politecnico di Torino, Italy, 2021.

[9] Alberto Viale, “Efficient Implementation of Spiking Neural Networks on the Loihi
Neuromorphic Processor for Autonomous Driving Problems,” in Politecnico di Torino,
Italy, 2021.

[10] Edoardo Salvati, “Approximate Computing for Softmax and Squash functions in
Capsule Networks,” in Politecnico di Torino, Italy, 2021.

[11] Giovanni Caramia, “Adversarial Attacks for Convolutional Neural Networks and
Capsule Networks,” in Politecnico di Torino, Italy, 2021.

xvii

Contents

Kurzfassung vii

Abstract ix

Publications of this PhD Work xi

Other Co-Authored Publications xv

List of Supervised MS Student Projects that Contributed to this Thesis xvii

Contents xviii

1 Introduction 1
1.1 Optimization Objectives for DNN Models and Architectures 2

1.1.1 Energy-Efficiency . 2
1.1.2 Robustness . 3

1.2 Summary of the State-of-the-art Challenges & Research Goals 4
1.2.1 Limitations of the State-of-the-Art 4
1.2.2 Scientific Objectives and Goals 5

1.3 Thesis Contributions . 6
1.4 Thesis Outline . 8

2 Background and Related Work 11
2.1 Deep Neural Networks . 11

2.1.1 Layers and Operations . 12
2.1.2 Training and Inference . 13
2.1.3 DNN Models . 14
2.1.4 DNN Hardware Architectures 15
2.1.5 DNN Optimizations for Energy-Efficiency 19

2.2 Capsule Networks . 20
2.2.1 Traditional DNNs vs. CapsNets 21
2.2.2 CapsNet Models and Applications 22
2.2.3 Summary of Challenges for Capsule Networks 24

2.3 Spiking Neural Networks . 25

xviii

2.3.1 Spiking Neuron Models . 25
2.3.2 Spike Coding Techniques . 27
2.3.3 SNN Learning Techniques . 28
2.3.4 Neuromorphic Architectures . 29
2.3.5 Event-Based Cameras . 30
2.3.6 Example of Event-Based Datasets 32
2.3.7 Summary of Challenges for SNNs 33

2.4 Vulnerabilities of DL Systems . 33
2.4.1 Privacy Threats . 33
2.4.2 Fault Injection and Hardware Trojans 35
2.4.3 Reliability Threats . 36
2.4.4 Adversarial Security Threats 37
2.4.5 Vulnerability Studies for CapsNets 41
2.4.6 Vulnerability Studies for SNNs 42

2.5 Summary of Background and Related Work 43

3 Hardware and Software Optimizations for Capsule Networks 45
3.1 FasTrCaps: An Integrated Framework for Fast yet Accurate Training of

CapsNets . 47
3.1.1 System Overview . 47
3.1.2 Overview of Learning Rate Policies 48
3.1.3 Analysis of Learning Rate Policies on CapsNets 49
3.1.4 Overview of FasTrCaps Framework 50
3.1.5 Evaluation of the FasTrCaps Framework 54
3.1.6 Summary . 57

3.2 CapsAcc: An Efficient Hardware Accelerator for CapsNets 57
3.2.1 Motivational Analyses of CapsNets Complexity and Execution

Time . 58
3.2.2 CapsAcc Architecture Design 59
3.2.3 Dataflow Design . 63
3.2.4 Synthesis Evaluation of the Complete CapsAcc Architecture . . 65
3.2.5 Summary . 67

3.3 FEECA: A Methodology to design a Fast, Energy-Efficient CapsNet Ac-
celerator . 67
3.3.1 Overview of the FEECA Methodology 68
3.3.2 Optimization Problem . 69
3.3.3 Search Algorithms: Brute-Force vs. Heuristic Search 69
3.3.4 Set of Internal Primitives . 71
3.3.5 Estimation of the Parameters of the Accelerator 72
3.3.6 Evaluation of our FEECA Methodology 73
3.3.7 Summary . 80

3.4 DESCNet: Developing Efficient Scratchpad Memories for CapsNet Hard-
ware . 80

3.4.1 Overview of DESCNet Methodology 81
3.4.2 Required Architectural Modification and Key Research Question 83
3.4.3 Resource Analysis of CapsNet Inference 84
3.4.4 DESCNet: Scratchpad Memory Design 90
3.4.5 Our Methodology for the DSE of Scratchpad Memories 95
3.4.6 Evaluation of the DESCNet Methodology 96
3.4.7 Summary . 104

3.5 Q-CapsNets: A Specialized Framework for Quantizing CapsNets . . . 104
3.5.1 System Overview . 105
3.5.2 Analysis of Area and Energy Consumption for Reduced Wordlength 106
3.5.3 Rounding Schemes . 106
3.5.4 Q-CapsNets Framework . 107
3.5.5 Evaluation of our Q-CapsNets Framework 113
3.5.6 Summary . 115

3.6 ReD-CaNe: Resilience Analysis and Design of CapsNets under Approxi-
mations . 116
3.6.1 System Overview . 116
3.6.2 Modeling the Errors as Injected Noise 117
3.6.3 ReD-CaNe Methodology . 120
3.6.4 Evaluation of the ReD-CaNe Methodology 122
3.6.5 Summary . 125

3.7 Approximate Squash and Softmax Designs 125
3.7.1 System Overview . 126
3.7.2 Approximate Computing for DNNs Nonlinear Operations . . . 127
3.7.3 Approximate Softmax Designs 127
3.7.4 Approximate Squash Designs 131
3.7.5 Evaluation of the Approximate Softmax and Squash Designs . 133
3.7.6 Summary . 136

3.8 Summary of Hardware and Software Optimizations for Capsule Networks 136

4 Adversarial Security Threats for DNNs and CapsNets 139
4.1 RobCaps: Evaluating the Robustness of CapsNets against Affine Transfor-

mations and Adversarial Attacks . 140
4.1.1 System Overview . 140
4.1.2 RobCaps Methodology . 141
4.1.3 Experimental Setup . 143
4.1.4 Robustness Against Affine Trasformations 144
4.1.5 Robustness Against Adversarial Attacks 145
4.1.6 Analyzing the Contribution of Dynamic Routing to the Robustness

of the DeepCaps . 149
4.1.7 Summary . 150

4.2 CapsAttacks: A Study on the Security Vulnerabilities of CapsNets against
Adversarial Attacks . 151

4.2.1 System Overview . 151
4.2.2 Generation of Targeted Imperceptible and Robust Adversarial

Examples . 152
4.2.3 Evaluation of the CapsAttack Methodology 155
4.2.4 Summary . 161

4.3 fakeWeather: Adversarial Attacks for DNNs Emulating Weather Condi-
tions on the Camera Lens of Autonomous Systems 161
4.3.1 System Overview . 161
4.3.2 fakeWeather Attacks Design . 163
4.3.3 Evaluation of the fakeWeather Attacks 170
4.3.4 Summary . 175

4.4 Summary of Adversarial Security Threats for DNNs and CapsNets . . 175

5 Integration of Multiple Design Objectives into NAS Frameworks for
CapsNets and DNNs 177
5.1 Flow for Designing Integrated Frameworks with Multiple Design Objectives 177
5.2 NASCaps: A Framework for Neural Architecture Search for Optimizing

Accuracy and Hardware Efficiency of Convolutional CapsNets 178
5.2.1 System Overview . 179
5.2.2 NASCaps Framework . 180
5.2.3 Evaluation of the NASCaps Framework 187
5.2.4 Summary . 195

5.3 RoHNAS: A NAS Framework with Conjoint Optimization for Hardware
Efficiency and Adversarial Robustness of Convolutional and CapsNets 195
5.3.1 System Overview . 196
5.3.2 RoHNAS Framework . 197
5.3.3 Evaluation of the RoHNAS Framework 199
5.3.4 Summary . 201

5.4 Summary of Integration of Multiple Design Objectives into NAS Frame-
works for CapsNets and DNNs . 203

6 Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware 207
6.1 Overview of the Loihi Neuromorphic Processor 208

6.1.1 Neuron Model . 208
6.1.2 Chip Architecture . 209
6.1.3 Tools to Support Loihi Developers 210

6.2 Efficient SNN for Recognizing Gestures on Loihi 211
6.2.1 System Overview . 211
6.2.2 DNN-to-SNN Conversion . 212
6.2.3 Pre-Processing Method for the DvsGesture Dataset 219
6.2.4 Evaluation of the Accuracy Results 222
6.2.5 Summary . 224

6.3 CarSNN: An Efficient SNN for Event-Based Autonomous Cars on the
Loihi Neuromorphic Processor . 225
6.3.1 System Overview . 225
6.3.2 Problem Analysis and General Design Decisions 226
6.3.3 CarSNN Methodology . 227
6.3.4 Evaluation of our CarSNN Methodology 233
6.3.5 Summary . 238

6.4 LaneSNNs: Spiking Neural Networks for Lane Detection on the Loihi
Neuromorphic Processor . 238
6.4.1 System Overview . 239
6.4.2 Problem Analysis and General Design Decisions 239
6.4.3 LaneSNNs Design . 243
6.4.4 Evaluation of LaneSNNs . 246
6.4.5 Summary . 253

6.5 Summary of Efficient Optimizations for Spiking Neural Networks on Neu-
romorphic Hardware . 253

7 Security Threats for SNNs on Discrete and Event-Based Data 255
7.1 Security Evaluation of SNNs vs. DNNs 256

7.1.1 System Overview . 256
7.1.2 Analysis: Applying Random Noise to SDBNs 257
7.1.3 Our Novel Methodology to Generate Imperceptible and Robust

Adversarial Examples . 261
7.1.4 Evaluation of our Attack Methodology 264
7.1.5 Summary . 267

7.2 NeuroAttack: Externally Triggered Bit-Flips for SNNs 267
7.2.1 System Overview . 268
7.2.2 Bit-Flip Resilience Analysis of SNNs 268
7.2.3 NeuroAttack Methodology . 270
7.2.4 Evaluation of the NeuroAttack Methodology 274
7.2.5 Summary . 278

7.3 Robust SNN Methodology through Inherent Structural Parameters . . 279
7.3.1 System Overview . 279
7.3.2 Case Study Analysis: Comparison DNNs vs. SNNs with the same

Architectural Model . 280
7.3.3 Threat Model . 280
7.3.4 Robustness Exploration Methodology 281
7.3.5 Evaluation of the SNNs’ Robustness 283
7.3.6 Summary . 285

7.4 R-SNN: A Methodology for Robustifying SNNs through Noise Filters for
DVS . 286
7.4.1 System Overview . 286
7.4.2 Case Study Analysis: SNN Robustness against Random Noise . 287

7.4.3 R-SNN Methodology . 287
7.4.4 Evaluation of the R-SNN Methodology 291
7.4.5 Summary . 294

7.5 DVS-Attacks: A Set of Adversarial Attacks on Event-Based SNNs . . 294
7.5.1 System Overview . 295
7.5.2 Case Study Analysis: SNN Robustness against Random Noise . 296
7.5.3 Noise Filters for Dynamic Vision Sensors 297
7.5.4 Threat Model . 298
7.5.5 DVS-Attacks Methodologies . 299
7.5.6 Evaluation of the DVS-Attacks 303
7.5.7 Summary . 308

7.6 Summary of Security Threats for SNNs 308

8 Conclusion and Outlook 311
8.1 Thesis Summary . 311
8.2 Role of the Proposed Techniques in the Evolving Field of ML 312
8.3 Future Works . 313

Bibliography 317

CHAPTER 1
Introduction

Among Machine Learning (ML) systems, Deep Neural Networks (DNNs) have emerged
as an established milestone for several applications, such as computer vision, medicine,
finance, and robotics. This led to the need to deploy DNN inference workload across
various devices, including embedded systems with constrained resources. However, the
current trends in the ML community are projected in the other direction since the
newer networks tend to be deeper and more complex. For instance, Capsule Networks
(CapsNets) are peculiar types of DNNs based on capsules, which are arrays of neurons, to
learn high-level features with better capabilities than traditional DNNs. As a result, the
next generation of computing platforms executing advanced DNNs would exhibit high
complexity and consume high energy, thus challenging their feasible implementations in
resource-constrained devices.

On the other hand, Spiking Neural Networks (SNNs) emerged as an efficient computation
infrastructure for elaborating event-based DNNs, which represent in a closer manner our
current understanding of the human brain’s functionality. This led to the development
of the neuromorphic computing paradigm, whose hardware architectures support the
execution of energy-efficient event-based SNNs.

Another fundamental aspect to consider when deploying advanced Deep Learning (DL)
architectures is security. The system requires high robustness against various vulnerability
threats when dealing with safety-critical applications. An adversary can threaten the
integrity of the DL system through attacks at different levels, including the hardware and
software stacks, and perturbing the inputs, the memory, or the computational engine. As
a result, defensive countermeasures in different abstraction layers of the system must be
applied, which typically require some energy and computation overhead. Moreover, while
the security of traditional DNNs has been extensively studied, investigating the security
of advanced DL systems offers unique opportunities to exploit their peculiar features.

1

1. Introduction

Besides these constraints and requirements, the constantly-evolving market has imposed
enormous pressure on delivering optimized end-to-end systems in a timely manner.
Therefore, the optimizations for speeding up the design process are crucial to sustaining
these time-to-market demands.

1.1 Optimization Objectives for DNN Models and
Architectures

1.1.1 Energy-Efficiency

Advanced DNNs are massively resource-hungry, requiring large memories and expensive
computation engines. Moreover, due to the stringent constraints of real-time systems,
the outputs must be generated with a fast response. To enable the usage of fast and high-
accurate DNNs in resource-constrained portable devices, several optimization techniques
can be applied to improve the energy efficiency of DNNs’ execution.

At the software level, compression techniques like pruning [1][2][3] and quantization [4][5]
significantly reduce the resources needed to process a DNN workload. However, these
methods typically incur some accuracy loss or require high re-training overhead to
partially restore the original accuracy.

Another prominent research direction for finding energy-efficient DNNs is represented
by hardware-aware neural architecture search (NAS) methods. Hardware-aware NAS
methodologies [6] jointly search for DNNs’ accuracy and efficiency of their execution
on a target hardware platform. However, due to the large search space and since DNN
training and hardware measurements are very costly operations, the exploration time
tends to explode.

At the hardware level, to efficiently perform the most common DNN operations, which
are convolutional layers and fully-connected layers (i.e., generic matrix multiplications,
GEMM operations), several application-specific hardware designs have been proposed.
The most widely adopted architectures are based on a Processing Element (PE) array [7][8]
to exploit the row stationary dataflow. More flexible dataflows can be supported by
configurable architectures [9][10][11]. Moreover, the need for supporting the software-level
compression optimizations, like pruning and quantization, other specialized architectures
have been designed for efficiently processing sparse DNNs [12][13] and flexible bit-
widths [14].

On the other hand, the breakthrough of event-based computation led to the design of
neuromorphic architectures [15][16], whose aim is to perform computations asynchronously,
only when events are present. Therefore, these systems achieve extremely low energy
consumption when the scenes are captured by event-based cameras, such as Dynamic
Vision Sensors (DVS). However, the development of the tools and algorithms for designing
and training event-based SNNs is still immature, and SNN-based implementations in

2

1.1. Optimization Objectives for DNN Models and Architectures

neuromorphic hardware incur an inevitable accuracy loss compared to the correspondent
DNN implementations on conventional hardware.

1.1.2 Robustness

Despite the great success and popularity of DL-based systems in the last years, recent
works demonstrated that DNNs have intrinsic weaknesses, which undermine their trust-
worthiness. At the hardware level, the DNN systems’ misfunctioning can be caused by
permanent faults appearing during the device fabrication process or by transient faults
such as soft errors, aging, and process variations. Moreover, since the chip supply chain
comprises several third-party facilities, malicious hardware Trojans can be inserted into
the design. When their triggering conditions are met, the Trojan is activated, and its
effect may alter the correct behavior of the system.

Towards fault tolerance, traditional fault-mitigation methods are based on redundancy [17].
However, they are inefficient since the redundant hardware/execution consists of a con-
siderable overhead for real-time ML-based systems. Hence, different types of techniques
need to be employed. Fault-Aware Pruning and Training techniques [18] are effective
for mitigating permanent faults, while Range Restriction methods [19][20] can mitigate
transient faults. Moreover, recent methods [21] proposed to integrate the fault tolerance
property in the optimization goals of the NAS by minimizing the DNN model sensitivity
to bit-flips. To mitigate against hardware Trojans, detection methods [22] can be em-
ployed. They aim to monitor the systems’ operation and detect any suspect functionality
violations.

At the software level, adversarial security threads [23] are emerging. The scope of such
attacks is to apply minor modifications to the DNNs’ inputs to induce the system’s
misfunctioning. If an adversary takes control of a given DNN model’s behavior, the
security and integrity of the system are threatened, and it can affect the environment
around it as well. Moreover, privacy threats are concerning when dealing with large
databases. By analyzing private information at a large scale, confidential information
can be leaked during the DNNs’ processing flow.

To increase the robustness, various defensive approaches can be used. The most common
technique is known as adversarial training [24], which consists of augmenting the input
data with adversarial examples to force the training model to learn to behave correctly
also in the presence of attacks. Other defense techniques include quantization [25] and
noise filtering [26], which aim at reducing the impact of the adversarial perturbation.

To preserve privacy, different methodologies have been proposed. The differential pri-
vacy [27] is based on introducing randomization during the learning process. The
multi-party computation approach is based on distributing the training and testing data
on different devices, simultaneously performing computations using a specific privacy-
preserving protocol [28]. Homomorphic encryption-based mechanisms [29] maintain the
data confidentiality by executing the computations in the ciphertext domain. How-

3

1. Introduction

ever, these techniques significantly increase the system’s computational requirements.
Therefore, achieving cost-effective robustness is challenging and an open research question.

1.2 Summary of the State-of-the-art Challenges &
Research Goals

Advanced DNN systems employ a set of compute-intensive and memory-intensive op-
erations to provide high accuracy for their predictions. Moreover, several applications
require fast responses in real time. While general-purpose hardware platforms are slow
and inefficient in computing DNN workloads, deploying such resource-hungry algorithms
on edge devices is prohibitive. Therefore, a complete design flow comprising software-
level optimizations, such as compression, specialized hardware designs, and mapping, is
required.

Moreover, safety-critical applications demand DNN systems to be highly robust in
adverse conditions. There are several scenarios where an adversary agent can undermine
the system’s integrity. Hence, it is worth investigating such conditions from various
perspectives and elaborating on defensive methodologies that can mitigate the effect of
these threats.

1.2.1 Limitations of the State-of-the-Art

1. Excessive hardware and re-training overhead: Several techniques require non-
negligible hardware overhead or extensive (re-)training overhead, which makes the
ML algorithms’ execution less convenient, despite the advantages. Lightweight
methodologies (i.e., which do not incur large overhead) have not yet been studied
successfully.

2. Lack of automation in the design space exploration: An extremely manual-intensive
design effort has been conducted in the optimization design. More systematic
design space exploration methodologies need to be developed to efficiently explore
the space of the solutions.

3. Combining multiple optimization objectives: The integration of different optimiza-
tion techniques has not been studied in detail yet. Combining more aspects as
multiple optimization objectives is extremely important for developing an integrated
framework that can improve the efficiency and robustness of DNNs beyond the
capability of individual techniques.

4. Lack of specialized optimizations for advanced DL models: Different optimization
methodologies have been proposed for traditional DNNs, but they are typically not
very efficient on advanced DL models, such as CapsNets and SNNs. Specialized
optimizations for such complex DL models have not been systematically studied
yet.

4

1.2. Summary of the State-of-the-art Challenges & Research Goals

5. Combining multiple techniques for resilient DL: Different techniques have been
proposed to mitigate the effects of hardware-induced faults or software-level attacks.
However, their combined effects on the DNNs’ energy efficiency have not been
investigated.

1.2.2 Scientific Objectives and Goals
Due to several limitations of the related work and the heterogeneity of the advanced DL
models, providing cross-layer optimizations for their energy efficiency and robustness
is challenging. We breakdown the main research objectives into the following scientific
goals:

1. Identifying potential performance/energy bottlenecks of executing ML
tasks
The state-of-the-art advancements in complex DL models [30][31] are mainly focused
on maximizing the accuracy, while their hardware implementations might not be
optimized, due to the potential discrepancies between the algorithmic workload
and the hardware architectures.
Goal: This objective focuses on studying the execution of advanced DL models on
existing hardware and reporting the breakdowns. Afterward, we study whether these
analyses can be leveraged to focus the designs and optimizations on mitigating
the found bottlenecks. The key focus is on exploring optimization techniques that
significantly improve the most inefficient parts of the computations.

2. Analyzing different types of vulnerability threats and their resiliency
Due to the wide variety and heterogeneity of vulnerability threats for DNNs, the
design and deployment of trustworthy ML-based systems are challenging [32]. The
state-of-the-art techniques and optimizations for DNN resiliency are focused on
simplified objectives, while other more complex vulnerability scenarios might still
threaten the systems.
Goal: This objective focuses on analyzing the DL-based systems’ robustness by
investigating the problem from previously unexplored perspectives and combining
multiple types of vulnerability threats. The identification of these threats will
contribute to providing more solid and cost-effective techniques to mitigate these
vulnerabilities.

3. Investigating and designing resource-efficient optimizations for improving
performance and energy consumption of advanced DL models
The state-of-the-art optimizations for DNN energy-efficiency [33] are tailored for
traditional DNNs, which are composed of convolutional and fully-connected layers.
Therefore, the software-level techniques and hardware architectures might not
be optimized for a different type of workload in advanced DL models, such as
CapsNets [34].

5

1. Introduction

Goal: This objective focuses on designing novel frameworks for improving the
efficiency of training and inference of complex DL models. Moreover, it is possible
to design specialized hardware architectures and optimization tools that significantly
improve their efficiency. By systematically exploring the design space, it is possible
to identify Pareto-optimal design solutions which leverage the tradeoffs between
different optimization objectives (e.g., accuracy, energy, latency, area, memory).

4. Investigating and designing cost-effective optimizations for improving
the robustness against adversarial attacks
The state-of-the-art defenses against adversarial attacks on DL models [35] are
tailored for traditional DNNs, while might not be as efficient or applicable to
different types of encoding and communication of the information between layers,
as it is the case for SNNs. Hence, different methodologies need to be employed to
improve their robustness.
Goal: This objective focuses on analyzing the application-specific behavior of ad-
vanced DL models to propose and evaluate cost-effective defenses against adversarial
attacks. Moreover, the evaluations can be conducted for various vulnerability threat
models.

5. Designing application-specific optimization techniques
An in-depth analysis of the types of operations involved in the advanced DL algo-
rithms and the specialized hardware architectures for accelerating their execution
allows leveraging the knowledge for further improving their efficiency.
Goal: This objective focuses on analyzing application-specific optimizations for
efficiently executing advanced DL systems on specialized hardware. This study
proposes optimizations to improve the accuracy and the memory energy efficiency
without affecting the execution time.

6. Studying the interaction between different optimization objectives when
exploring the space of the solutions
The state-of-the-art optimization techniques for DL inference effectively improve
the DNN energy efficiency but might expose the DL system to vulnerability threats.
On the other hand, the state-of-the-art techniques for improving the DL robustness
often incur hardware overhead and significant energy consumption. Moreover, their
interactions have not been studied so far.
Goal: This objective focuses on exploring the interaction of different optimization
techniques for the energy efficiency and robustness of DL systems. This will help in
building frameworks for integrating multiple optimization objectives and efficiently
exploring the space of the solutions.

1.3 Thesis Contributions
This thesis aims at achieving high energy efficiency and high robustness in advanced DL
systems, enabling cost-effective resiliency for several application domains. This thesis

6

1.3. Thesis Contributions

presents novel techniques at both the hardware architecture and software levels, such
that these optimizations significantly reduce the energy consumption while maintaining
high robustness. As illustrated in Figure 1.1, this thesis is composed of the following
contributions:

HW Designs and SW-Level Optimizations for Energy-Efficiency (Chapters 3 & 6)

Security Threats and Optimizations for Resiliency and Robustness (Chapters 4 & 7)

Cross-Layer Methodologies Jointly Optimizing for Efficiency, Accuracy, and Robustness (Chapter 5)

CapsNet HW Design
(Sections 3.3-3.5)

❑ Computational Unit
❑ Data Flow
❑ Memory Organizations

CapsNet SW-Level Optimizations
(Sections 3.2 & 3.6-3.8)

❑ Efficient Training Framework
❑ Quantization Framework
❑ Approximate Computing Designs

Efficient Implementation of SNNs on
Neuromorphic Hardware (Chapter 6)
❑ DNN-to-SNN Conversion Method
❑ SNN for Car Recognition
❑ SNN for Lane Detection

DNN and CapsNet Security (Chapter 4)
❑ Robustness against Affine

Transformations
❑ Robustness against Adversarial

Attacks
❑ fakeWeather Attack Methodology

DNN and SNN Security on Discrete
Data (Sections 7.1-7.3)

❑ Adversarial Attacks Robustness
❑ Resiliency against Bit-Flips
❑ Robustness Exploration

Methodology

SNN Security on
Event-Based Data

(Sections 7.4 & 7.5)
❑ Noise Robustness
❑ DVS-Noise Filters
❑ DVS-Attacks

NASCaps: HW-Aware NAS Optimizing for:
❑ Accuracy
❑ Memory Footprint
❑ Energy Consumption
❑ Area

RoHNAS: Robust HW-Aware NAS Optimizing for:
❑ Adversarial Robustness
❑ Memory Footprint
❑ Energy Consumption
❑ Area

Figure 1.1: Overview of this Thesis.

• HW Designs and SW-Level Optimizations for Energy-Efficiency of Ad-
vanced DL Architectures
DATE ‘19 [36], DATE ‘20 [37], ‘20 [38], JCNN 20 [39][40], TVLSI ‘21 [41],
TCAD ‘21 [42], IJCNN ‘21 [43], ISLPED ‘22 [44], IROS ‘22 [45]
It consists of the complete optimization flow for designing efficient CapsNet hard-
ware, which includes the design of efficient hardware architecture, the exploration
of different configurations of computational units, data flow, and memory organiza-
tions. The hardware-level techniques are coupled with software-level methodologies
that improve the system’s efficiency in both training and inference stages through a
specialized quantization framework and approximate computing designs. Moreover,
it includes design methodologies and optimization techniques for deploying efficient
SNNs on neuromorphic hardware. Targeting the Loihi computing platform, multiple
SNN designs have been implemented and mapped on Loihi for different applications.

• Security Threats and Optimizations for Resiliency and Robustness of
Advanced DL Architectures
UDL @ ICML ‘19 [46], IJCNN ‘20 [47][48], DATE ‘21 [49], IJCNN ‘21 [50],

7

1. Introduction

IROS ‘21 [51], IJCNN ‘22 [52], MICPRO ‘23 [53], IJCNN ‘23 [54]
Exploiting the inherent features of advanced DL architectures, it is possible to
devise attack algorithms or defensive countermeasures tailored for these networks.
This thesis systematically compares the robustness of DNNs and CapsNets against
affine transformations and adversarial attacks. It also analyzes their robustness
against newly-designed attacks that fake the effect of weather conditions on the
captured images. Moreover, various security threats are investigated for SNNs. For
the analyses on discrete data, the adversarial robustness and bit-flip resiliency for
DNNs and SNNs are investigated, and a robustness exploration methodology is
proposed to fine-tune the inherent structural parameters of SNNs and achieve high
robustness. Concerning event-based data analyses, after studying the impact of
random noise, various attack algorithms are generated, and DVS-noise filters are
employed as a defense mechanism toward higher robustness.

• Cross-Layer Methodology Jointly Optimizing for Efficiency, Accuracy,
and Robustness of Advanced DL Architectures
ICCAD ‘20 [55], DyNN @ ICML ‘22 [56], Access ‘22 [57]
An HW-Aware NAS framework is proposed for designing Pareto-optimal DNNs
based on Capsule layers. To reduce the gigantic training time and search space,
an analytical model is designed to estimate the memory, energy, and latency of
DNNs executed on specialized hardware accelerators. The design space exploration
is conducted through a multi-objective evolutionary algorithm. Moreover, towards
conjoint optimizations for robustness and hardware efficiency, a systematic analysis
is conducted to select the adversarial perturbation values to employ in the NAS.
In this way, the proposed framework finds Pareto-optimal DNNs w.r.t. memory,
energy, latency, and adversarial robustness.

1.4 Thesis Outline
Chapter 2 describes the basic concepts of DNNs and discusses the background informa-
tion about CapsNets and SNNs. Afterward, it presents an overview of the vulnerability
threats for DL systems. Moreover, it discusses the current trends and related works
employed for optimizing the energy efficiency and robustness of DL systems while also
highlighting the challenges and limitations of state-of-the-art techniques.

Chapter 3 discusses the proposed design flow of software and hardware optimizations for
CapsNets. It includes SW-level optimizations for training and inference, hardware designs
of CapsNet inference accelerators and memory systems, and post-training optimizations
like quantization and approximations. The implementations and outputs of the integrated
framework are used in the security analyses of Chapter 4 and in the proposed cross-layer
methodology of Chapter 5.

Chapter 4 investigates the security vulnerabilities of advanced DL models such as DNNs
and CapsNets. It performs a comparative analysis of their robustness against affine

8

1.4. Thesis Outline

transformations and adversarial attacks. Moreover, novel adversarial attack algorithms
are proposed and evaluated for DNNs and CapsNets.

Chapter 5 discusses the proposed integrated frameworks for multi-objective optimizations
of advanced DNNs. First, it presents a NAS methodology for jointly optimizing the
accuracy, memory, energy, and latency of DNNs and CapsNets. Afterward, it discusses a
framework that also includes the adversarial robustness as a joint optimization objective.

Chapter 6 presents efficient design methodologies and optimizations for deploying SNNs
on the Intel Loihi neuromorphic processor. After providing an overview of the Loihi
architecture, it discusses the design and optimizations of SNNs for different applications.
Following an analysis to optimize the DNN-to-SNN conversion and a pre-processing
technique for training event-based data in the DNN domain, efficient SNNs for gesture
recognition are deployed and mapped on the Loihi chip. Afterward, towards autonomous
driving applications, efficient SNN designs and implementations on the Loihi processor
are proposed for car recognition and lane detection tasks.

Chapter 7 discusses the vulnerabilities of SNNs against security threats. After comparing
the adversarial robustness between DNNs and SNNs, novel attack methodologies and
defensive countermeasures are proposed. An attack threat is devised in which a specific
adversarial noise pattern in the inputs triggers a hardware Trojan that generates bit-flips
in the most vulnerable weight locations of DNNs and SNNs. Afterward, the inherent
robustness of SNNs is investigated, and a methodology is proposed to explore different
values of the SNNs’ structural parameters. Towards event-based SNNs’ security, a novel
methodology employing DVS-noise filters is proposed for improving the SNNs’ robustness
against adversarial attacks. Moreover, a set of adversarial attacks for event-based SNNs
is proposed and evaluated in the presence of such noise filters.

Finally, Chapter 8 concludes this thesis and provides an outlook for potential future
research directions.

9

CHAPTER 2
Background and Related Work

This thesis proposes cross-layer optimizations for advanced DL architectures, covering
energy efficiency and resiliency perspectives. Besides the DNNs, a special focus is given
to the advanced DL models such as CapsNets and SNNs. This chapter provides an
overview of the DL systems’ functionality and the challenges related to the specific
goals. Section 2.1 discusses a general background on DNNs followed by the latest
related work on hardware accelerators for DNNs and optimizations for energy efficiency.
Section 2.2 provides an overview of the CapsNets, with a special focus on the differences
compared to the traditional DNNs. Section 2.3 discusses the background information on
SNNs, neuromorphic architectures, and event-based vision. Section 2.4 discusses the DL
vulnerability threats and the notable related works optimizing security and resiliency.

2.1 Deep Neural Networks
The basic element of a neural network is the neuron, which attempts to mimic the
behavior of the biological neuron. A biological neuron [58], shown in Figure 2.1, consists
of the cell body (soma), the dendrites, and an axon. The dendrites carry input stimuli
processed by the soma, while the axon transmits the neuron output signal to other
neurons. On the other hand, the artificial neuron performs a weighted sum of its inputs
(Equation (2.1)), to which an offset is added as the bias term b. Then, the neuron’s
output is obtained by applying a non-linear activation function σ (Equation (2.2)).

g(x) =
N−1�
n=0

x[n]w[n] (2.1)

y = σ (g(x) + b) (2.2)

11

2. Background and Related Work

Dendrites (Inputs)
Collect
Electrical
Signals

Axon (Outputs)
Transmits Electrical
Signals

Cell body (Soma)
(Computational Unit)
Computes output
based on input
signals

Synapse
(Connection)
Connects the
output of one
neuron to other
neurons’ inputs

݃ ݔ = ୀேିଵ ܠ ݊ · ݕ[݊]ܟ = σ(݃ ܠ + ܾ)

Biological Neuron Artificial Neuron

Figure 2.1: Comparison between a biological neuron (figure adapted from [58]) and an
artificial neuron.

The neurons are organized in layers. In feedforward networks, each neuron of layer l
receives inputs from layer l − 1 and sends its activation to the neurons of layer l + 1. The
number of stacked layers indicates the depth. A neural network is typically called a Deep
Neural Network (DNN) [59] if there are more than three hidden layers.

2.1.1 Layers and Operations
The layers are categorized based on the types of connections. The following list contains
the most common types of layers in DNNs.

• Fully-Connected (FC) layers: each neuron of layer l receives as inputs all the
activations of layer l − 1 (see Figure 2.2a). Since all the connections are present,
the number of parameters of an FC layer is potentially huge. However, in practice,
it is not always necessary for an output neuron to receive information from all the
input neurons. For this reason, the convolutional layers have been designed.

(a) FC layer (b) Conv layer (c) MaxPooling layer

Figure 2.2: (a) Example of an FC layer. (b) Example of a Conv layer. (c) Example of a
MaxPooling layer.

• Convolutional (Conv) layers: the neurons are organized in a 2D grid, i.e., a
feature map, and every neuron of layer l does not receive all the activations of

12

2.1. Deep Neural Networks

the layer l − 1, but it is connected to a small receptive field [60] (see Figure 2.2b).
The receptive field size, which corresponds to the weight matrix, is commonly
called kernel size and the stride parameter S defines the distance between adjacent
receptive fields. In Conv layers with shared weights, all the neurons of layer l have
the same matrix of weights and detect the same feature in different locations of
layer l − 1. To detect multiple features, a Conv layer has multiple channels, i.e.,
there are multiple feature maps.

• Pooling layers: similar to Conv layers, Pooling layers have receptive fields. For the
group of neurons in each receptive field, their output is a single value that contains
a statistic of the group, e.g., the maximum or the average value. An example of
MaxPooling layer is shown in Figure 2.2c. The stride parameter is typically set equal
to the dimension of the receptive field to have non-overlapping windows. Pooling
layers reduce the number of activations of a layer and consequently decrease the
memory requirements and the number of computations while achieving invariance
to small local translations. Pooling layers down-sample the Conv layer outputs,
whose values heavily depend on the position of the input. Hence, Pooling layers
make DNNs more robust to minor input variations.

• Normalization layers: the input activations are usually preprocessed to have
a normal distribution, i.e., zero mean and unit variance. The normalization is
beneficial since it keeps different inputs within the same range of values to ease the
computations and avoids saturating the non-linear activation functions. Typically,
Normalization layers are inserted between Conv and FC layers. Moreover, the
activations’ normalization speeds up the training since the layers do not need to
adapt to different distributions at each training step. The most common type of
normalization is the Batch Normalization [61].

• Activation functions: without a non-linear activation function, the DNN would
be a simple cascade of linear algebra operations. To solve complex non-linear
problems, different non-linear functions are applied to the weighted sum of a neuron.
In the first developments of DNNs, the Sigmoid and Hyperbolic Tangent functions
were adopted, but their usage was reduced over the years due to their computational
complexity. The most common function is the Rectified Linear Unit (ReLU), which
forces the activations to be greater than or equal to zero. Its newer variants, such
as Leaky-ReLU and Exponential Linear Unit (ELU), aim at introducing a negative
slope for negative values. Moreover, the Softmax function is typically used in output
layers of DNNs for classification since it bounds the values in the range (0, 1) to
represent the probabilities associated with the output classes.

2.1.2 Training and Inference
DNNs learn how to perform a specific task by properly determining its parameters (weights
and biases), which are continuously updated during the training phase. Afterward, during
the inference phase, the parameters are kept constant, and the DNN makes the prediction.

13

2. Background and Related Work

The dataset is typically split into training, validation, and testing sets. The training
set is used for updating the parameters, while the validation set is used to fine-tune
the hyperparameters. The inference is conducted on the testing set, which contains
previously unseen data. There are different approaches for training DNNs:

• Supervised learning: A set of labeled input-output pairs is required. In supervised
learning, the DNNs’ parameters are updated to minimize the differences between
the output labels and the DNN predictions. This approach is widely used nowadays
in many applications due to its good performance. A common supervised learning
algorithm for training DNNs is the gradient backpropagation. The DNN’s outputs
are compared with the labels, and a loss score is calculated with a loss function,
such as the Euclidean distance or the Mean Squared Error (MSE). The parameters
are updated accordingly by an amount proportional to the partial derivative (i.e.,
the gradient) of the loss w.r.t. the parameters. The gradients are computed through
the backpropagation algorithm, which is based on the chain rule of calculus. The
actual update is done with an optimization algorithm, such as the gradient descent
or the Adam [62]. A common problem when training DNNs is overfitting, i.e., high
performance on the train set and low performance on the test set. The techniques
used to overcome this issue include L1 and L2 regularization [63], which add a
regularizing term to the loss function, and dropout [64], which randomly removes
some neurons in the DNN.

• Unsupervised learning: When only non-labeled data are available, the goal
is to find common patterns or data grouping without any guidance. The most
popular unsupervised learning approaches are based on clustering, a data mining
technique that groups unlabeled data based on attribute similarities or differences.
Common DNNs that apply unsupervised learning are autoencoders and Generative
Adversarial Networks (GANs).

• Reinforcement learning: Reinforcement learning is the third primary type of
learning. Similar to unsupervised learning, it does not need labeled data. It is based
on autonomous agents who decide to travel across states in a given environment.
The agent gets a reward in case of success but will not receive any reward in case of
failure. Hence, the agent learns how to maximize the reward from the environment.

2.1.3 DNN Models

In recent years, many DNN models have been proposed to achieve high performance on a
given task. For instance, the ILSVRC competition has driven researchers to develop high
accurate DNNs for the ImageNet dataset [65]. Along with higher accuracy, the DNN
models are growing over the years in depth and complexity, thus making them challenging
to deploy in tiny embedded devices. Historically, the most popular DNN models are
included in the following list.

14

2.1. Deep Neural Networks

• LeNet [60] (1998): it is one of the first CNN trained with backpropagation,
designed for learning the grayscale handwritten digit recognition task. It consists
of a sequence of two Conv layers followed by three FC layers.

• AlexNet [66] (2012): it is the first deep CNN designed and trained for the
ImageNet dataset, significantly outperforming other non-convolutional models that
have won the ILSVRC in previous years. It also introduced the ReLU activation
function. To ease its training, the computation was split into two GPUs.

• VGG [67] (2014): starting from the structure of the AlexNet, it furtherly increases
the number of Conv layers. Its success was supported by the availability of hardware
resources that support heavy training computations. However, a very deep sequence
of layers is challenging due to the vanishing gradient problem. As the magnitude of
the gradient drastically reduces with the depth of the network, the earlier layers
might have small gradients that hinder the correct training.

• ResNet [68] (2015): to overcome the vanishing gradient problem, the Residual
Networks (ResNets) employ skip connections in parallel to a series of Conv layers.
Hence, this structure significantly deepens the network up to 200 layers. Moreover,
the batch normalization layers are introduced as a regularization strategy.

• MobileNet [69] (2017): it is a model based on depthwise separable convolu-
tions. Its structure allows a faster execution compared to DNNs with traditional
convolutions. Hence, it is suited for implementation on mobile devices.

• NasNet [30] (2018): it is one of the first DNN model obtained through neural
architecture search (NAS). It initiated a common trend of determining the archi-
tecture of the DNN model through solving an optimization problem in which the
goal is to maximize the accuracy.

2.1.4 DNN Hardware Architectures
DNNs are a class of algorithms with intrinsic parallelism that can be exploited using
parallel computations for efficient implementations [70]. At the hardware level, the
architectures are based on many Processing Elements (PEs) that perform operations in
parallel. They can be classified as spatial and temporal architectures [71]. An overview
of their basic functionality is shown in Figure 2.3. In temporal architectures, the control
is centralized, as the PEs can only access data from the central memory without inter-PE
connections. On the contrary, in spatial architectures, each PE can also have local
memory cells and its control logic. Most importantly, the PEs in spatial architectures
are interconnected to exchange data, thus forming a PE array.

Temporal Architectures

Temporal architectures are commonly employed in general-purpose processors, such as
CPUs and GPUs. CPUs can be realized as vector processors, capable of working with

15

2. Background and Related Work

Memory Memory

(a) Temporal
Architectures

(b) Spatial
Architectures

Figure 2.3: Overview of (a) Temporal architectures and (b) Spatial architectures.

multiple data elements simultaneously. Vector processors have several Arithmetic &
Logic Units (ALUs) that synchronously perform an instruction on vector data. Therefore,
vector processors adopt the Single-Instruction-Multiple-Data (SIMD) paradigm. GPUs
are manycore architectures specifically designed for parallel computation with thousands
of cores. Similar to vector CPUs, GPUs adopt the Single-Instruction-Multiple- Thread
(SIMT) paradigm. First introduced by Nvidia, the SIMT model simultaneously executes
a single instruction on multiple cores. Each core receives different data belonging to
multiple threads running in parallel. GPUs are the common platforms for training large
and complex DNNs, thanks to the support of popular ML frameworks like PyTorch [72]
and TensorFlow [73] to execute on Nvidia GPUs. At the back end, cuDNN [74] is
an optimized library for mapping DNNs onto GPUs. In high-end Nvidia GPUs, the
traditional CUDA cores are combined with Tensor Cores [75], which are specifically
designed for large matrix operations.

Spatial Architectures

Spatial architectures are tailored and optimized for specific tasks, which offer less flex-
ibility, as they are commonly implemented on FPGAs or ASICs. DNNs are suitable
for such implementation since the sequence of operations is known at design time. The
computations are based on simple multiply-and-accumulate (MAC) operations performed
at a large scale. Hence, the memory accesses to fetch the inputs and store the results
of the MACs become the performance bottleneck. Moreover, state-of-the-art DNN
accelerators exhibit large DRAM access energy consumption compared to the MAC
energy consumption [71]. Due to the high DRAM cost, DNN accelerators have focused
on exploiting data reuse, i.e., optimizing the architecture and dataflow for reusing the
weights and feature maps when they are stored in on-chip register files or buffers, thus
minimizing the DRAM accesses. The different techniques for exploiting data reuse are
associated with the dataflow classified by the taxonomy proposed in [76] (see Figure 2.4).

• Weight Stationary: It exploits the weight reuse to minimize the energy consump-

16

2.1. Deep Neural Networks

i1

i6

i11

i16

i21 i22

i17

i12

i7

i2 i3

i8

i13

i18

i23 i24

i19

i14

i9

i4 i5

i10

i15

i20

i25

W1

M4

M7 M8

M5

W2 W3

W6

W9

M9 M8 M7 M6 M5 M4 M3 M2 M1

W9 W8 W7 W6 W5 W4 W3 W2 W1

i13 i12 i11 i8 i7 i6 i3 i2 i1M1

M4

M7 M8

M5

M2 M3

M6

M9 i25 i24 i23 i20 i19 i18 i15 i14 i13

Outputs

Convolution windows

Inputs
Weights

M2
M3
M4
M5
M6
M7
M8
M9

M1
W2
W3
W4
W5
W6
W7
W8
W9

W1

i1 i13

i25i13

Outputs

Pre-filled Inputs i3
i4
i7
i8
i9

i12
i13
i14

i2
i2
i3
i6
i7
i8

i11
i12
i13

i1

W1 M1

M9W9

Outputs

i14
i15
i18
i19
i20
i23
i24
i25

i13
Pre-filled Weights

(b) Input Stationary (c) Weight Stationary

(a) Output Stationary

Figure 2.4: Different dataflows for a DNN spatial architectures. ((a) Output Stationary.
(b) Input Stationary. (c) Weight Stationary.

tion for fetching the weights from the DRAM. Since the weights are kept stationary
in the PEs, the inputs and the partial sums are coordinately moved through the PE
array to optimize the data movement. A weight stationary dataflow is characterized
by spatial unrolling operations, in which the for loops are replaced by parallel for
loops. This mapping operation is equivalent to a loop reordering transformation
from the software perspective. An example of weight stationary dataflow is rep-
resented by the Tensor Processing Unit (TPU) [8], where the stationary weights
are stored in the PEs, the input feature maps are horizontally forwarded, and the
partial sums are accumulated along the vertical dimension.

• Output Stationary: It minimizes the data movement necessary to store and load
the partial sums from the global buffer (GLB). While using the weight stationary
dataflow the partial sum of a single output value must be stored and reloaded
to/from the GLB several times, in the output stationary dataflow each PE is
modified for locally accumulating the results of the MACs. Hence, each PE
computes all the required operations to obtain an output feature map since the
partial sums are accumulated into a single register. A popular architecture using
the output stationary dataflow is the ShiDianNao [77], where each PE of the 2D
array computes the value of a single output feature map. On the other hand, the
weights are broadcasted to all the PEs at every operation cycle, and the input
feature maps are horizontally forwarded.

• Row Stationary: Its purpose is to maximize the reuse of inputs, weights, and

17

2. Background and Related Work

partial sums jointly. In the row stationary dataflow, all the MACs performing a
row of the convolution are mapped to a single PE. A PE has a register file to store
a row of the weight kernel while the inputs are streamed in the PE using the sliding
window mechanism. A 2D array of PEs is required to process a whole Conv layer,
where each column of the array accumulates the partial sums that contribute to a
row of the output feature map. An example of row stationary dataflow is designed
in the Eyeriss architecture [7], where different types of reuse are obtained. In fact,
a row of PEs shares the same weights, the input pixels are reused diagonally, and
the partial sums are vertically accumulated.

• No Local Reuse: It maximizes the storage area by removing register files from
the PEs and allocating all the on-chip memory in the GLB. As a drawback, the
traffic between the GLB and the PE array will be higher. Another critical aspect
of this dataflow is that the global buffer size may not be sufficient to fully contain
the input feature maps, kernel weights, and output feature maps. This issue is
bypassed through the loop tiling method [78], which partitions the larger tensors
into smaller tensors that can be contained in the buffer.

Memory Hierarchy

While algorithm-level optimizations and computational workload acceleration are funda-
mental to achieving high performance, inefficient memory management could lead to a
bottleneck since, typically, the memory accesses dominate the energy consumption of a
system [79]. Hence, memory organizations must be considered a high-priority concern at
the earliest design stages. The required memory bandwidth is drastically different for
the various DNN layers since the memory access patterns vary according to the type
of layer and operations involved. For instance, an FC layer, where data reuse becomes
practically impossible, requires enormous bandwidth. To compensate for this effect, it is
crucial to devise an efficient DRAM mapping policy to optimize the DRAM accesses and
different layer scheduling [80].

Traditional memory hierarchies of DNN accelerators [81] are composed of an off-chip
DRAM and an on-chip SRAM, where for DNN applications, the on-chip memory is not
a traditional cache, but a scratchpad memory. Though general-purpose approaches for
memory design exist [82], application-specific design and optimizations are required to
achieve high energy efficiency. An efficient design of the memory hierarchy for a special-
ized application requires the exploration of several design parameters (like size, banks,
partitions, etc.) for multiple levels, affecting each other, which makes it a very challenging
problem. To address this challenge, the DESCNet methodology discussed in Section 3.4
systematically studies the design requirements (size, accesses, etc.), performance, and en-
ergy consumption, for different inference operations. A specialized multi-banked scratchpad
memory architecture is designed considering the dataflow mapping and the corresponding
memory access patterns of various operations. The memory is partitioned into multi-
ple sectors to support fine-grained sector-level power-gating, thereby providing a higher
potential for energy savings at run-time varying memory usage scenarios.

18

2.1. Deep Neural Networks

2.1.5 DNN Optimizations for Energy-Efficiency

State-of-the-art DNNs are highly resource-hungry, requiring large memories and expensive
computation engines. To enable the usage of high accurate DNNs in resource-constrained
portable devices, several optimization techniques have been proposed, aiming at improving
the energy efficiency of DNN execution. Table 2.1 provides an overview of the most
effective methods proposed in recent years.

Table 2.1: An overview of Hardware and Software optimizations for reducing the energy
consumption of DNN inference.

Technique References Short Description Key Pros Key Cons

Pruning [1][2][3]

It removes redundant
parameters of a DNN, aiming

at reducing the memory
footprint and the computations

required for DNN inference

Less computation
and memory
requirements

Accuracy loss
or high

re-training
overhead

Quantization [83][4][5][84]

It reduces the wordlength
of the DNN weights and

activations, and converting
them from floating-point into

fixed-point/integer format

Less memory
requirements and

less complex
hardware operations

Accuracy loss
or high

re-training
overhead

Approximate
Computing [85][86][87][88]

It employs approximate or
simplified arithmetic

hardware modules, aiming
at reducing their complexity

Less energy, area,
and/or latency

Accuracy loss
or high

re-training
overhead

Hardware-Aware
Neural

Architecture
Search

[89][90][91][92]

It automatically explores
and finds optimal DNN
architectures for a given
application, executing on

a given hardware platform

Joint optimization for
accuracy and efficiency

Long exploration
time, high

training cost

DNN Compression

Most DNNs are subject to redundancy concerning the weights. Consequently, it is possible
to conduct lightweight optimizations and compression methodologies without affecting
their accuracy much. The compression techniques include pruning and quantization
methodologies, which can also be combined into an integrated framework [93][94]. The
key goal is to minimize the memory footprint of DNNs, by skipping redundant connections
(i.e., pruning) and lowering the bit-width (i.e., quantization), thus enabling larger DNN
models to be implemented on resource-constrained devices. When conducting compression,
it is extremely challenging to find good tradeoffs between memory footprint and accuracy.
In this regard, our Q-CapsNets framework discussed in Section 3.5 addresses this challenge
by exploring different layer-wise and operation-wise arithmetic precisions for the quantized
network, with a maximum accuracy tolerance and a memory budget specified as constraints
to the framework.

19

2. Background and Related Work

Approximate DNNs

The high DNN redundancy can also be exploited by employing approximate hardware
modules to reduce the complexity and improve the efficiency. Due to the inherent
relatively high resilience of DNNs to approximation errors [87], approximate components
cause low accuracy degradation while significantly reducing the energy consumption.
Since the more frequent operations are based on the Multiply-and-Accumulate (MAC)
unit, the most common approaches propose approximate multipliers and adders [95].
Automated frameworks are proposed to selectively approximate DNNs based on their
error tolerance [88]. All the above-discussed optimizations can lead to significant energy
savings, but at the cost of some accuracy loss or high re-training overhead to recover the
original accuracy.

HW-Aware NAS

Another prominent research direction can be identified as hardware-aware NAS. While
traditional NAS methodologies [30] optimize only the DNN accuracy, a hardware-aware
NAS [6] jointly searches for DNN accuracy and efficiency of its execution in specialized
hardware, e.g., energy, latency, and area. However, due to the large search space, and
since DNN training and hardware measurements are costly operations, the exploration
time tends to explode when all the DNN hyper-parameters are considered. The heuristic
search methods for exploring the space of the solutions can be grouped into evolutionary
algorithms, reinforcement learning, and differentiable NAS. However, even using one of
these heuristic search methods, the massive variety of possible configurations explored to
find an exhaustive set of Pareto-optimal solutions is prohibitive. In addition, complete
detailed post-synthesis hardware measurements are unfeasible for this search due to their
long simulation times. These limitations challenge the applicability of such an exploration
in real-case HW/SW co-design searches, with stringent time-to-market constraints. To
address these challenges, our NASCaps framework discussed in Section 5.2 employs
analytical models of the functional behavior of a given specialized accelerator to quickly
obtain accurate estimations of memory usage, energy consumption, and latency when
different DNN models are executed. Moreover, the training time while exploring multiple
solutions is reduced by evaluating the accuracy of partially-trained DNNs. The number of
training epochs to employ in the search is chosen based on the tradeoff between training
time and Pearson correlation coefficient w.r.t. fully-trained DNNs.

2.2 Capsule Networks
Among advanced DL models, Capsule Networks (CapsNets) [34] have become popular in
recent years, due to their high learning capabilities and improved generalization skills,
compared to the traditional DNNs. The ability to learn hierarchical information of
different features (e.g., position, orientation, and scaling) in a single capsule achieves
high accuracy in ML vision applications, e.g., MNIST [60] and Fashion-MNIST [96]
classification, as well as effective applicability to other ML application domains, such as

20

2.2. Capsule Networks

speech recognition [97], natural language processing [98], and healthcare [99]. Indeed,
CapsNets can encapsulate the hierarchical and spatial information of the input features
in a closer manner to our current understanding of the human brain’s functionality.

However, the capsule-based layers introduce an additional dimension compared to the
matrices of the Conv and FC layers of the traditional DNNs, significantly increasing the
computational and communication workload of the underlying hardware. Therefore, a key
challenge in deploying CapsNets is their extremely high complexity. They require intense
computations due to the multiplications in the matrices of capsules and the iterative
dynamic routing-by-agreement algorithm for learning the cross-coupling between capsules.
Figure 2.5 compares the CapsNet [34] with the LeNet [60] and the AlexNet [66], in terms
of their memory footprints and the total number of MAC operations needed to perform
an inference pass. The MACs/memory ratio is a good metric to show the computational
complexity of the models, thus demonstrating the higher compute-intensive nature of
CapsNets, compared to traditional DNNs.

0
10
20
30
40

1
10

100
1000

10000

LeNet AlexNet CapsNet

M
AC

s/
M

em
or

y

M
em

or
y

[M
B]

(lo
g

sc
al

e)

Memory Footprint

MACs / Memory

Figure 2.5: Comparison of Memory footprint and (Multiply-and-Accumulate operations vs.
memory) ratio (MACs/Memory) between the LeNet [60], AlexNet [66], and CapsNet [34].

2.2.1 Traditional DNNs vs. CapsNets
As discussed in [100], among the major drawbacks of traditional DNNs, which are based
on Conv operations, there are two key issues:

1. DNNs have too few structural levels. Thus, they cannot handle different viewpoints
on the same object.

2. Pooling layers are too naive forms of information encoding since they make DNNs
translation-invariant rather than equivariant.

To overcome these problems, the CapsNets are designed. The key differences w.r.t.
traditional DNNs are summarized in Figure 2.6.

Inspired by the concept of inverse graphics, in [100] the neurons are grouped into vectors
to form the so-called capsules. A capsule encodes both the instantiation parameters (i.e.,
pose, like width, skew, rotation, and other spatial information) and its length (i.e., its

21

2. Background and Related Work

Σ Activation
 Function f(•) y

x1

x2

W1

W2 b

Σ Squash(•) y
u1

u2

W1

W2

û1

û2

c1

c2

• Scalar Values

• Detect Features

• Traditional ReLU Function
• Vectors

• Detect Entities

• Squash Function
• Dynamic Routing

Traditional DNNs CapsNets

• Pooling

Figure 2.6: Summary of key differences between traditional DNNs and CapsNets.

Euclidean Norm) is associated with the instantiation probability of the entity. In this
way, from the image pixels, the CapsNets encode the pose of low-level features, and from
the pose of the “parts”, it is possible to understand the pose of the “whole”, i.e., the
high-level entities, to make a better prediction. The CapsNets use the Squash activation
function, a multidimensional non-linear function that efficiently fits the prediction vector
that forms the capsule.

Moreover, the concept of routing is introduced to tackle the problem that DNNs are not
invariant to translations. The (Max) Pooling operation consists of collecting a group
of adjacent neurons and selecting the one with the highest activity, thus discarding the
spatial information provided by this group of neurons. For this reason, the pooling
layers are responsible for the so-called Picasso problem, in which DNNs classify an
image having a nose below the mouth and an eye below the nose as a face since they
lose spatial relationships between features. To replace the pooling layers, an iterative
routing procedure to determine the values of the coupling coefficients between a low-level
capsule to higher-level capsules is proposed in [34]. It is an iterative process in which the
agreements between the capsules of two consecutive layers are measured and updated for
a certain number of iterations at runtime during the inference.

2.2.2 CapsNet Models and Applications

Hinton et al. [100] first showed the practical applicability of CapsNets, which adopt the
capsules as basic blocks and can learn the image features in addition to its deformations
and viewing conditions. A more detailed explanation of how poses and probabilities
are computed to form a CapsNet is described in [34]. A capsule is a vector of neurons,
where each element of the array represents an instantiation parameter of the entity and
the instantiation probability is measured as the length of the vector. To represent such
probability in the range {0, 1}, the Squash function is used. The iterative procedure for
computing the coupling coefficients cij constitutes the Dynamic Routing-by-Agreement,
as shown in Algorithm 1. The coupling coefficient determines to which extent the lower-
level capsule i sends its activation to all the higher-level capsules. In other words, cij

represents the prior probability that an entity detected by a lower-level capsule i belongs

22

2.2. Capsule Networks

to the higher-level entity of capsule j. To satisfy the property that the sum of these
coefficients must be unitary, the Softmax function is applied (see line 8 of Algorithm 1).
The activation vj of the capsule j is obtained by applying the Squash function to the
pre-activation sj (line 14). The last step, consisting of updating the logits bij , is used in
the following iteration by computing the agreement through the scalar product between
the input prediction votes ûi|j and the activation vj (line 18).

Algorithm 1: Dynamic Routing-by-Agreement in CapsNets.
Input: Prediction Votes ûi|j ; Number of Iterations r; Layer l
Output: Activation Vectors vj

1 for Capsule i in Layer l do
2 for Capsule j in Layer (l + 1) do
3 Logits Initialization: bij ← 0;
4 end
5 end
6 for r Iterations do
7 for Capsule i in Layer l do
8 Softmax: cij ← softmax (bij) = ebij�

k
ebik

;
9 end

10 for Capsule j in Layer (l + 1) do
11 Sum: sj ← �

i cij · ûi|j ;
12 end
13 for Capsule j in Layer (l + 1) do
14 Squash: vj ← squash (sj) = ||sj ||2

1+||sj ||2
sj

||sj || ;
15 end
16 for Capsule i in Layer l do
17 for Capsule j in Layer (l + 1) do
18 Update: bij ← bij + ûi|j · vj ;
19 end
20 end
21 end

The first CapsNet model [34], using the vector capsules and the dynamic routing, is
shown in Figure 2.7. A Conv layer with kernel 9 × 9, stride 1 and 256 output channels is
followed by the PrimaryCaps layer, in which the neurons are grouped into 8D vectors,
organized in 32 output channels, and form a Conv capsule layer of kernel size 9 × 9 and
stride 2, using the Squash activation function. In the last ClassCaps layer, each of the 10
capsules is dedicated to recognizing the output classes. The Dynamic Routing analyzes
the features encoded by the 1152 8D capsules of the PrimaryCaps layer to generate the
10 16D activations of the ClassCaps layer. For training purposes, a decoder network
(i.e., a cascade of three FC layers) is built for obtaining the image reconstruction and

23

2. Background and Related Work

then combining the reconstruction loss with the margin loss (i.e., computed from the
instantiation probabilities of the output activations) to form the loss function. Despite
being applied mainly to relatively simple tasks, like MNIST [60] and Fashion-MNIST [96]
classification, this architecture developed by the Google Brain’s team has been extensively
analyzed and studied by the community. Hence, in the following, we consider it the
Google’s CapsNet, simply CapsNet, or ShallowCaps, in contrast to the deeper CapsNet
models.

PrimaryCaps
Layer Squash ClassCaps

Layer
Conv1
Layer ReLU Dynamic

RoutingINPUT OUTPUT
28x28

9x9 9x920x20x256 6x6x32x8 16x10

oooooooooooooooo

Figure 2.7: Architectural model of the ShallowCaps [34].

A major limitation of the ShallowCaps is that it is highly compute-intense and requires
many parameters to perform similarly to traditional DNNs for complex tasks. To
overcome these issues, the DeepCaps architecture [31] has been proposed. As shown in
Figure 2.8, besides increasing the depth, the DeepCaps exploits 3D Conv capsule layers
and 3D dynamic routing, thus significantly reducing the number of parameters. Moreover,
the decoder employs deconvolutional layers that capture more spatial relationships than
FC layers.

CO
NV

CA
PS

2D
#1

CO
NV

CA
PS

2D
#2

CO
NV

CA
PS

2D
#3

CONVCAPS 2D #4

+

CO
NV

CA
PS

2D
#5

CO
NV

CA
PS

2D
#6

CO
NV

CA
PS

2D
#7

CONVCAPS 2D #8

+

CO
NV

CA
PS

2D
#9

CO
NV

CA
PS

2D
#1

0

CO
NV

CA
PS

2D
#1

1

CONVCAPS 2D #12

+

CO
NV

CA
PS

2D
#1

3

CO
NV

CA
PS

2D
#1

4

CO
NV

CA
PS

2D
#1

5

CONVCAPS 3D

+

CO
NV

CL
AS

SC
AP

S

IN
PU

T

OU
TP

UT

Squash Dynamic RoutingReLU

Figure 2.8: Architectural model of the DeepCaps [31].

2.2.3 Summary of Challenges for Capsule Networks

As comprehensively discussed in this section, one of the CapsNets’ main challenges is their
high complexity due to the computations involving vector capsules and complex operations
like the Squash and the Dynamic Routing-by-Agreement. State-of-the-art specialized
hardware architectures accelerate the execution of traditional Conv, FC, and pooling
layers. Consequently, they do not support (or support an inefficient implementation
of) the operations involving CapsNets. To address these challenges and bridge the gap
between the high learning capability of CapsNets and their relative execution inefficiency,
Chapter 3 presents a design flow for improving the energy efficiency of CapsNets executed

24

2.3. Spiking Neural Networks

on hardware. It involves optimizations for speeding up the training and the hardware
design of a specialized accelerator for running CapsNet inference.

Moreover, the execution patterns of different CapsNet layers and operations, including
both the computational requirements and memory accesses, are significantly different
compared to the patterns observed from traditional DNNs, thus making their efficient
dataflow challenging. Hence, detailed analyses monitoring the memory access patterns
and resiliency for different layers and operations lead to designing advanced memory
architectures that can be coupled with CapsNet accelerators, and further lightweight
optimizations involving quantization and approximate computing, as will be discussed in
Chapter 3.

2.3 Spiking Neural Networks
Spiking Neural Networks (SNNs) have recently demonstrated great success due to
their high performance and low energy consumption, making them suitable for being
implemented on embedded devices, such as neuromorphic chips. Inspired by the principles
of neural computation in nature, neuromorphic architectures have emerged as high-
performance and low-power computing platforms. SNNs are models that simulate the
asynchronous event-based decision-making process of the human brain. As shown in
Figure 2.9, the SNNs receive trains of spikes as inputs. Their associated time at which
they occur, their magnitude, and their shape can be used to encode numerical information.
The event-driven computations performed by neurons and synapses propagate the spiking
information from the input to the output. SNNs can be programmed to learn and execute
complex tasks in real time and consume low energy. Considered the third generation
of neural networks [101], the SNNs follow the wave of success of the DNNs to perform
complex ML tasks. While conventional DNNs process continuous values, SNNs process
discrete spike trains, mimicking the information processing behavior of the neurons in
the human brain. The key advantage of SNNs, besides the biological plausibility, is
that they offer great potential for developing energy-efficient ML when co-designed with
neuromorphic hardware due to the sparse nature of SNNs. Figure 2.9 shows the basic
functionality of SNNs. The input spikes encode the information using spike trains. The
neurons of the network integrate the incoming spikes, which contribute to increasing the
neurons’ membrane potential. In this way, the output spikes are generated when the
membrane potential exceeds a threshold.

2.3.1 Spiking Neuron Models
A neuron is considered the simplest computational knob in an SNN. When a spike coming
from a presynaptic neuron arrives at the input of the postsynaptic neuron, the spiking
current injected into the neuron’s body, associated with the synaptic weight, is integrated
into the membrane, thus contributing to raising its membrane potential. Several neuron
models have been proposed in the literature, and this section provides an on the most
common models employed for SNNs.

25

2. Background and Related Work

Encoding: The
sequences of events
are encoded as trains

of spikes

Output spikes

Vth

V

TTime window

Neuron Integration: The input spikes
are integrated into the neurons’

membrane potential V. The output
spikes are generated when V>Vth

Figure 2.9: Functionality of an SNN, in which the events are encoded into spikes, and the
neurons’ output spikes are generated when the membrane potential exceeds the threshold
voltage.

The McCulloch-Pitts neuron [102] is the predecessor model for the neural networks. It
simply computes the sum of the incoming spikes and emits the boolean output 1 (fires)
if the sum is higher than its threshold or 0 otherwise. Its main drawback consists of its
inability to learn. To overcome this issue, the perceptron model [103] was proposed. It
introduces the concept of learnable weights that are multiplied by the boolean outputs of
the McCulloch-Pitts neuron. A network of perceptrons represents the first generation
of neural networks, while the second generation uses the same perceptron model but
with a more complex activation function. For the third generation, which corresponds to
the SNNs, different neuron models can be employed, leveraging the trade-off between
biological plausibility and implementation cost:

• The Hodgkin-Huxley model [104] represents the most biologically plausible but also
the most complex neuron model. It involves several differential equations, which
make the development of large SNNs using this model impractical and inefficient.

• The Izhikevich model [105] can reproduce different spiking patterns as well as spike
shapes of biological cortical neurons while being less compute-intensive than the
Hodgkin-Huxley neuron. Its functionality is described through Equations (2.3)
to (2.5), where v is the membrane potential, I is the input current, u is the
membrane recovery variable, and a, b, c, d are constants that set the spike shape.

dv

dt
= 0.04v2(t) + 5v(t) + 140 − u(t) + I(t) (2.3)

du

dt
= a(bv(t) − u(t)) (2.4)

26

2.3. Spiking Neural Networks

if v ≥ Vth, then
�

v ← c

u ← u + d
(2.5)

• The Integrate-and-Fire (IF) model [106] is the simplest model from the computa-
tional perspective. For this reason, it is widely used in the SNN community. The
model is based on a resistance-capacitance (RC) circuit, similar to a low-pass filter.
Equation (2.6) describes how the membrane potential of the postsynaptic neuron
evolves over time, from which the time constant τm = RC can be derived as in
Equation (2.7).

I(t) = v(t)
R

+ C
dv

dt
(2.6)

τm
dv

dt
= −v(t) + RI(t) (2.7)

When the membrane potential reaches a certain threshold Vth at the firing time tf ,
the postsynaptic neuron produces a spike δ(t − tf), after which the membrane
potential is reset to a value vrest (often set to 0 as a common assumption [107]),
obviously lower than Vth.

• The Leaky-Integrate-and-Fire (LIF) [108] is a modified version of the IF model that
introduces the concept of refractory period. It represents the time period after a
spike in which the membrane potential cannot increase even if a train of spikes is
received at the input. The evolution over time of the membrane potential of a LIF
neuron is described by Equation (2.8).

τm
dv

dt
= −v(t) +

i0(t) +

�
wjij(t)

(2.8)

A synaptic current ij(t) is generated when a spike is received. It is then modulated
by its correspondent synaptic weight wj and added to the bias current i0(t).
Compared to the Hodgkin-Huxley model, the lower computational complexity of
the LIF neuron comes at the price of a lower biological plausibility. The LIF
model assumes that the shape of the action potentials is uniform for each spike.
This assumption limits the ability to reproduce biological spike patterns and
shapes. However, such a low complexity allows for creating large SNNs and their
implementation on neuromorphic hardware.

2.3.2 Spike Coding Techniques
The input information of SNNs is represented and propagated to the output through
spike trains. Different methods for encoding the information into spikes [109] are shown
in Figure 2.10:

27

2. Background and Related Work

Rate

ISI

TTFS

Time

Time

Time
Figure 2.10: Comparison between Rate, Inter-spike interval (ISI), and Time to first spike
(TTFS) encoding techniques.

• Rate Coding: The intensity corresponds to the probability of firing a spike, which
translates into the mean firing rate when multiple spikes are counted within an
observation period. It is the most commonly used method due to its simplicity, but
it might be power-consuming compared to other coding techniques due to the high
spiking rate.

• Inter-Spike-Interval (ISI) Coding: The intensity is temporally coded as the precise
delay between consecutive spikes.

• Time-to-First-Spike (TTFS) Coding: The intensity I is coded as the time difference
∆t between the stimulus and the first spike of a neuron. Such delay can be either
the inverse of the intensity (∆t = 1/I) or a linear relation, such as ∆t = 1 − I.
This encoding approach assumes that a neuron generates only one spike for any
given stimulus. Hence, eventual subsequent spikes that follow from that neuron are
simply ignored [110]. The main advantage is that the processing can proceed fast
since the information is already transmitted when the first spike is received.

2.3.3 SNN Learning Techniques
Different methods for training SNNs can be adopted based on the topology of learning. For
unsupervised learning, the possible approaches are based on Hebbian learning [111], the
Spike-Driven Synaptic Plasticity (SDSP) [112], and the Spike-Time-Dependent Plasticity
(STDP) [113]. The STDP, the most commonly used method in the community, is
based on strengthening (or weakening) the synaptic weights depending on the degree
of correlation between the presynaptic and postsynaptic neuronal spikes in spatial and
temporal domains.

The supervised DNN learning methods, based on the gradient backpropagation, cannot
be directly applied to SNNs since the spiking loss function is not differentiable [114]. The
possible solutions to overcome this challenge are either (1) using DNN-to-SNN conversion

28

2.3. Spiking Neural Networks

after learning the weights in the DNN domain or (2) approximating the spiking derivative
w.r.t. the loss function by using a surrogate gradient.

1. The DNN-to-SNN conversion approach is based on training the DNN with a
common gradient backpropagation procedure and then converting the trained
network into the SNN domain [115]. The accuracy loss during the conversion can
be balanced by applying weight normalization and carrying out a single forward
pass for SNN inference in multiple discrete timesteps. Another hybrid approach
consists of training a DNN, converting it into SNN, and then incrementally training
the SNN with an approximated backpropagation [116]. However, the DNN-to-SNN
conversion approach can be applied only to static datasets since DNNs cannot be
directly trained on event-based data. This challenge limits the applicability of this
technique since most of the energy-efficiency gains achieved by the SNNs are due to
using event data.

2. The surrogate gradient learning [117] bypasses the non-differentiability issue of a
LIF neuron by defining an approximate gradient during backward propagation.
It allows for employing common SNN-based backpropagation methods, such as
the Spatio-Temporal Back-Propagation (STBP) [118] or SLAYER [119]. Further
modifications and approximations of the learning rule can be applied to achieve
online learning on neuromorphic devices [120][121].

2.3.4 Neuromorphic Architectures
The recent ML breakthroughs have boosted the intelligence in edge devices. However, as
modern ML technologies and algorithms are maturing, the limitations of their conven-
tional computing infrastructures are emerging. While DNNs can scale to solve complex
problems, these gains are ensured by high computational power and memory-intense cost.
Neuromorphic computing represents a fundamental redesign principle of the computer
architecture, inspired by the mechanisms of the biological brain. The roadmap of neuro-
morphic computing departs from the abstraction layers and algorithms of conventional
computing with the scope of unlocking orders of magnitude gains in efficiency and perfor-
mance compared to conventional architectures. The conventional architectures, varying
from standard desktop processors to the most advanced AI accelerators, consume higher
power than neuromorphic architectures, whose power consumption is comparable to or
lower than the biological brain of a human. The following paragraphs briefly present the
most popular neuromorphic chips, while the Intel Loihi [16] is comprehensively discussed
in Section 6.1.
TrueNorth [15] is a digital chip designed and implemented by IBM in a 28nm CMOS
technology. The chip organization consists of a tiled array of 4096 neurosynaptic cores.
Each core has 12.75 KB of local SRAM memory, which stores the synapse states,
the neuron states, and the parameters of up to 256 LIF neurons. The spike-based
communication and asynchronous routing infrastructure enable the integration of multiple
TrueNorth chips into larger systems.

29

2. Background and Related Work

SpiNNaker [122] is a digital system designed to simulate large SNNs in real-time
designed by the University of Manchester. Its basic blocks are ARM9 cores that can
access a small amount of local memory, while some additional memory is shared across
one multi-core chip. Eighteen processor cores are grouped to form a chip, while the
system can scale when multiple chips are assembled on a board and multiple boards are
connected. The second version, named SpiNNaker 2 [123] integrates more cores per chip
and linear algebra accelerators to execute more efficiently sparse deep learning algorithms.
Its software stack facilitates the SNN deployment using python-based simulators, such as
PyNN [124]. Its interface supports standard neuron models such as LIF and Izhikevich
neurons, and common learning algorithms such as the STDP.
BrainScaleS [125] is a hybrid system that combines analog neurons with digital com-
munication networks. It supports the adaptive exponential IF neuron model, which can
be configured through a parameter to adapt to different spiking behaviors. A single chip
supports up to 512 neurons and 14 000 synapses per neuron. Larger networks can be
built by connecting multiple chips directly on the silicon wafer.
NeuroGrid [126] is a platform that employs analog/digital mixed-signal circuits to
implement large SNN models in real-time. A NeuroGrid board is composed of 16 CMOS
NeuroCore chips, and each chip contains an array of 256 × 256 two-compartmental
neurons. The full NeuroGrid board can scale up to one million neurons and billions of
synapses thanks to its asynchronous multicast tree routing digital infrastructure.
DYNAP-SE [127] is a chip fabricated by INI Zurich in a 180nm CMOS technology
node. The chip has four cores, with 256 neurons each, and supports 64k synapses. The
asynchronous digital connectivity between neurons can be re-programmed at runtime,
enabling flexible SNN model implementations, including recurrent networks.
ODIN [128] is a 28nm CMOS digital neuromorphic chip designed by the Catholic
University of Louvain. A core is composed of 256 neurons, which can be configured with
the LIF model or the Izikevich model. The parameters of the neurons are stored in a 4
KB SRAM array, and the 64k synapses are implemented as a 32 KB SRAM array.
µBrain [129] is a digital event-based neuromorphic chip implemented in a 40nm CMOS
technology. The architecture is fully asynchronous, without a clock. Due to its ultra-low
power consumption (a few tens of µW), it is more suitable for IoT applications.

2.3.5 Event-Based Cameras
Event-based sensors, also called dynamic vision sensors (DVS), take inspiration from the
functionality of the human eye’s retina. In traditional frame-based sensors the image
recording of a scene consists of stacking a series of frames at a specific temporal rate. On
the contrary, the information recorded by event-based sensors is directly related to the
light variations in the scene. More specifically, when a pixel changes its brightness, the
camera triggers an event with this information:

• x, y: the coordinates of the pixel;

30

2.3. Spiking Neural Networks

• t: the timestamp of when the event occurred;

• p: the polarity of the brightness variation, which is ON or 1 for higher brightness,
and OFF or 0 for lower brightness.

Thus, the brightness changes in the scene are recorded asynchronously and independently
for every pixel as a variable data rate sequence. As shown in fig. 2.11, for each pixel,
the brightness (measured as log intensity) is recorded when an event is triggered and
continuously monitored for a (positive or negative) change of sufficient magnitude,
compared to the previously memorized value.

ON Th.

Δ(logl)
OFF Th.

DAVIS 240C
Event-Based
CameraDAVIS 240C

chip layout

DAVIS 240C Functionality Event Generation

Figure 2.11: Functionality of the DAVIS240C camera [130], showing a simplified circuit
diagram of the DAVIS pixel and the DVS operation of converting light into events. Figure
adapted from [131].

The events are transmitted with the asynchronous address event representation (AER)
protocol. Thanks to their structure, the spikes generated by a DVS camera can directly
feed the SNNs’ inputs without any manipulation. Recently, due to their increased
popularity and demand, different high-tech. companies, including iniVation [130], Proph-
esee [132], CelePixel [133], and Samsung [134], have specialized in the commercialization
of event-based sensors.

In summary, compared to the frame-based sensors, the event-based cameras offer the
following improvements:

• High resolution in time: multiple events can be recorded with a time resolution
of a few microseconds. Hence, common frame-based issues such as oversampling,

31

2. Background and Related Work

undersampling, and motion blur are avoided. These improvements make event-based
sensors suitable for high-speed or low-latency operations.

• Adaptive data rate → less power and memory usage: the data is recorded only when
a bright variation is detected in the scene. Therefore, no information is recorded in
the absence of light changes. Hence, almost zero power consumption and efficient
information storage are achieved when the events are sparse.

• High dynamic range (up to 140dB): the large range (compared to ≈ 60dB of the
frame-based sensors) enables using DVS cameras also in extreme conditions, e.g.,
with very low light.

2.3.6 Example of Event-Based Datasets
Event-based SNNs are well suited for high-dynamics applications deployed in extremely
low-power systems. Existing applications cover wide ranges such as industrial automation,
IoT, smart mobility, healthcare, and robotics [131]. A key feature that boosts the research
and development of optimized algorithms and computation mechanisms is the availability
of open-source datasets which third parties can easily access. Among the open-source
event-based datasets, a few are analyzed in more detail.

• The IBM DvsGesture dataset [135] is a fully event-based gesture recognition
dataset. Each gesture is recorded with a DVS128 camera [136] with a resolution
of 128 × 128 pixels, providing in total 1 342 samples divided into 122 trials. In
each trial, a subject executes the 11 different gestures in sequence. A total of 29
subjects under 3 different light conditions compose the whole dataset. Each gesture
has an average duration of 6 seconds and is composed of a collection of all the
events (positive and negative) recorded by the DVS camera whenever a (positive
or negative) light variation is detected.

• The N-CARS dataset [137] is a recording of 80 minutes with an ATIS camera [138],
a sensor that has a resolution of 304 × 240 pixels and it is mounted behind the
windshield of a car. For recognition purposes, the outgoing events are converted into
grey-scale images. These are processed with a state-of-the-art object detector [139]
to extract the bounding boxes of size 120 × 100 pixels automatically. The dataset
composed of multiple samples lasting 100 milliseconds is split into 7 940 car and
7 482 background training samples, and 4 396 car and 4 211 background testing
samples.

• The DET [140] is the first dataset for the lane detection task recorded by a DVS
camera. The streams are recorded by the CeleX V sensor [133], which is one of
the event-based cameras with a high spatial resolution of 1 280 × 800 pixels. The
dataset is composed of 5 424 samples split into 2 716 training, 873 validation, and
1 835 testing samples. The streams derive from 5 hours of recording in Wuhan city,

32

2.4. Vulnerabilities of DL Systems

and then they are accumulated into grey-scale raw images delayed from each other
by 30 milliseconds.

2.3.7 Summary of Challenges for SNNs
One of the main challenges of SNNs is that they are still in the earliest development
stages and are not yet mature. Hence, most of the common neuromorphic devices
are only used for research purposes, and they have not been commercialized yet. As
previously discussed, due to its incompatibility, the DNN-to-SNN conversion technique
cannot be directly applied to event-based input. To address this challenge, Section 6.2
proposes a pre-processing technique for enabling DNN training of event-based data.
Moreover, autonomous driving implementations on neuromorphic devices are unexplored,
and mapping an SNN onto an advanced neuromorphic chip like the Intel Loihi requires
dedicated optimizations to adapt the architecture of the SNN and its parameter to the
constrained hardware resources. To this regard, Section 6.3 and Section 6.4 propose
event-based SNN implementations on Loihi for the “car vs. background” classification
and for the lane detection tasks, respectively.

2.4 Vulnerabilities of DL Systems
In light of their recent groundbreaking performances, DL systems are expected to be
reliable against multiple security threats [35]. Several studies highlighted that one of
the most critical challenges is represented by the adversarial attacks, i.e., small and
imperceptible input perturbations that cause misclassifications. Moreover, as shown
in Figure 2.12, also other DL vulnerabilities cause serious concerns questioning the
deployment of DL models in safety-critical applications. Therefore, the community
analyzed and proposed several attack methodologies and defensive countermeasures [32].
While the attacks and defenses for DNNs have been extensively studied, the security of
advanced DL models such as CapsNets and SNNs is still in its emerging phase and needs
more thorough investigations.

As shown in Figure 2.12, DL-based systems are vulnerable to different types of security
and reliability threats, which can span from maliciously-injected perturbations, such
as adversarial attacks, hardware Trojans, or injected faults, to natural misfunctioning
of the system, like permanent faults generated during chip fabrication, aging, and
process variations. Moreover, the leakage of sensitive and confidential data, including the
intellectual property of the ML model (e.g., architecture and parameters) and training
dataset, have raised several privacy issues. This section provides an overview of these
vulnerability threats.

2.4.1 Privacy Threats
Due to the massive performance and computational power of high-end DL workstations,
it is possible to perform advanced tasks using an enormous amount of data on a large

33

2. Background and Related Work

Hardware TrojansDeep Learning-based System

Adversarial Attacks

Stop Sign Speed Limit
(60km/h)

+ ➔➔
1 0 0 0 1 0

1 0 0 1 01

Soft Errors,
Aging,
Process

Variations

Permanent or Transient Faults Privacy
Training

Data
Learned
Model

ML-Based
Service

Model
Inversion
Attacks

Model
Extraction

Attacks

Figure 2.12: Vulnerability threats for DL-based systems, their manifestation and impact
on their functionality.

scale. If such data is collected from users’ private information, such as personal images,
interests, web searches, and clinical records, the DL deployment toolchain will access
sensitive information that could be mishandled. The privacy attacks for DL can be
classified into two categories: Model Inversion Attacks and Model Extraction Attacks.
While an attack in the former category aims to extract sensitive features of the training
data, an attack in the latter category aims to extract private information of the DL
model (e.g., model parameter, model architecture).

• Model Extraction Attacks: The goals of the adversary are to duplicate the parameters
and hyperparameters of the DL model and to compromise the DL algorithms’
confidentiality and intellectual property of the service provider [141][142].

• Model Inversion Attacks: The adversary aims at inferring sensitive information
from the training data. Membership inference attacks [143] can infer whether a
sensitive record belongs to the training set when the ML model is overfitted, While
Property Inference Attacks [144] infer specific properties that only hold for a subset
of the training data.

There are currently four possible categories of techniques that can be applied to avoid
these leakages of sensitive information:

• Differential Privacy: The goal is to prevent the adversary from inferring whether
specific data was used to train the target model, such that the DL algorithm learns
to extract features of the training data without disclosing sensitive information
about individuals. The privacy is guaranteed through a randomization mechanism,
which could be either based on injecting noise into the stochastic gradient descent
process (Noisy SGD [27]) or through the Private Aggregation of Teacher Ensembles

34

2.4. Vulnerabilities of DL Systems

(PATE) method [145], in which a “student” model receives the knowledge transferred
from an ensemble of “teacher” models.

• Homomorphic Encryption: It is an encryption scheme x → y, in which the ML
computations are conducted on ciphertexts y, and the decrypted output in plaintext
x matches the result that would have been computed without encryption. The data
remains confidential as long as the decryption key is unknown to the adversary. Since
the Fully Homomorphic Encryption (FHE) system [146] dramatically increases the
computational complexity of the ML algorithm, a partial homomorphic encryption
system [147] which supports only certain operations in the ciphertext domain, such
as additions or multiplications, is more suited for complex computations. In the
context of DL, CryptoNets [29] performs DNN inference on encrypted data, while
Nandakumar et al. [148] extends the encryption support to the whole DNN training
process.

• Secure Multi-Party Computation: The basic idea consists of distributing the train-
ing/testing data across multiple servers and training/inferring the DL model to-
gether, while each server does not have access to the training/testing data of
the other servers. Different privacy-preserving DL protocols have been proposed,
including SecureML [28], MiniONN [149], DeepSecure [150], Gazelle [151], and
SecureNN [152].

• Trusted Execution Environment: Additional hardware is used to create a secure and
isolated computation environment in which the DL algorithms are executed [153].
In this way, the data integrity and the confidentiality of the codes loaded inside
the protected regions are guaranteed.

However, these privacy-preserving methods significantly increase the computational
overhead and require customization for specific DL models at the software and hardware
levels to improve the computation efficiency.

2.4.2 Fault Injection and Hardware Trojans
The hardware-level security vulnerabilities for DL systems include fault injection tech-
niques (e.g., bit-flips) and the injected hardware Trojans into DL accelerators. Generically
speaking, an adversary can flip the bits of data stored into the DRAM and SRAM memory
cells through Row-Hammer attacks [154] or laser injection [155].

• Fault Injection Attack Methodologies aim at finding the most sensitive locations in
which to inject faults [156]. The Bit-Flip Attack [157] finds the most vulnerable
bits of the DL model parameters using a progressive bit search method, while the
Practical Fault Attack [158] injects faults into DL activations.

• Hardware Trojans are maliciously-introduced hardware injected during chip fabri-
cation that only activate when triggered. They represent critical threats when the

35

2. Background and Related Work

hardware devices are manufactured in off-shore fabrication facilities, thus increasing
the risk of facing untrusted supply chains. In the context of DL accelerators,
Clements et al. [159] designed hardware Trojans for the DL activation function. A
carefully designed input pattern triggers the hardware Trojan.

The defensive countermeasures to mitigate against the above-discussed vulnerabilities are
based on improving the resiliency of DL accelerators and memory systems and detecting
Trojans.

• Fault tolerance methods, similarly to the soft error mitigation methodologies, aim at
improving the resiliency of DL architectures. Such defensive techniques are based
on hardware redundancy [17], range restriction [20], or weight reconstruction [160].
More specifically, the algorithm-based fault tolerance (ABFT) method [161] detects
and corrects errors in the Conv layers.

• Trojan detection methods are based on runtime monitoring [22] of the DL accelerator.
The operations executed in the hardware device are constantly monitored, and
any suspected functionality violation due to an inserted hardware Trojan or other
reasons can be immediately detected and notified.

2.4.3 Reliability Threats
Unlike the vulnerability threats that malicious adversaries intentionally inject, DL
systems are subjected to reliability threats that undermine their correct functionality.
The continuous technology node underscaling in which the chips are fabricated has
significantly increased the probability that hardware circuits are affected by permanent
or transient faults and has accelerated the aging process.

• Permanent Faults: These process variations represent imperfections generated
during the fabrication of integrated circuits [162]. High rates of such process
variations result in permanent faults, which dramatically decrease the yield of the
fabricated wafer.

• Transient Faults: Soft errors are bit-flips caused by high-energy particle strikes or
induced by radiation events [163]. They are categorized as transient errors since
the faulty cells are not permanently damaged, but those faults vanish once new
data is written into the same locations.

• Aging: The electronic circuits gradually degrade over time [164], due to various
physical phenomena, like Bias Temperature Instability (BTI), Hot Carrier Injection
(HCI), and Electromigration (EM). These effects can manifest as an increase in
the transistors’ threshold voltage, which causes timing errors and permanent faults
over time.

36

2.4. Vulnerabilities of DL Systems

Conventional fault mitigation techniques such as Dual Modular Redundancy (DMR) [165],
Triple Modular Redundancy (TMR) [166], and Error-Correcting Codes (ECC) [167] can be
applied, but they incur huge overheads, which makes them impractical for DL applications.
Therefore, ad-hoc cost-effective mitigation techniques need to be used.

• Permanent faults mitigation: To mitigate permanent faults due to process variations
in DL accelerators, different techniques have been proposed. Fault-Aware Training
(FAT) and Fault-Aware Pruning (FAP) [18] incorporate the information of faults
into the training process and bypass the faulty components. To avoid the re-training
overhead, Fault-Aware Mapping techniques such as SalvageDNN [168] are based on
mapping the least significant weights on the faulty units.

• Soft error mitigation: To mitigate transient faults, generic fault-tolerant methods
like Ranger [20] and ABFT [161] can be applied. Moreover, FT-ClipAct [19] uses
clipped activation functions mapped into pre-specified values within a range with
the lowest impact on the output, and Sanity-Check [169] protects FC and Conv
layers of DL models employing spatial and temporal checksums that exploit the
linearity property.

• Aging mitigation: The effects of timing errors that occur in the computational units
of DL accelerators can be mitigated with ThUnderVolt [170] and GreenTPU [171].
The NBTI aging of on-chip SRAM-based memory cells in DL accelerators is miti-
gated with the DNN-Life framework [172] that employs read and write transducers
to balance the duty-cycle in each SRAM cell.

2.4.4 Adversarial Security Threats
Given a DL model M , an input x, and its output prediction label ytrue, the goal of
classical DL is to make a correct prediction, i.e., the predicted output y = M(x) is
equal to ytrue. On the contrary, an adversarial attack method aims at generating a
misclassification by introducing a small noise ε to the input, such that the adversarial
example x′ = x + ε is incorrectly classified (M(x′) ̸= ytrue). The common functionality
of adversarial attacks is depicted in Figure 2.13. Due to the wide variety of adversarial
attack typologies and threat models, it is important to define a common way for their
categorization. Towards this, four different features of adversarial attacks are shown
in Figure 2.14.

• Attacker Knowledge: It refers to the threat model in which the adversary operates
and the accessible data and features. In white-box attacks, the adversary has
full knowledge of the DL model, its parameters, the training algorithm, and the
training data. On the contrary, black-box attacks assume no knowledge about the
DL model. Hence the adversary can only craft an adversarial example by sending a
series of queries and analyzing the vulnerability based on the corresponding outputs.
Moreover, in the literature, different attacker knowledge assumption models are

37

2. Background and Related Work

Classical DL Prediction:
Strawberries + noise ε Adversarial DL Prediction:

Chesnuts

Figure 2.13: Example of adversarial attacks’ functionality, where adding noise leads to a
misclassification. Figure adapted from [23].

Training attacks (Poisoning or Backdoor Attacks):
The adversary alters the training process to create

specific classification errors.

White-Box: The attacker knows training data,
model parameters, and model architectures

Adversarial
Goal

Evaluation
Metrics

Attacker
Knowledge Black-Box: The attacker only knows inputs and

outputs, thus viewing the DL model as a black-box

Targeted Attack: The adversarial example is
classified as a specified target class

Untargeted Attack: The adversarial example can be
classified as any class different from the original

Phase of
DL Flow Inference attacks (Evasion attacks): The adversary

perturbs an input in a way that it seems normal for
a human but is wrongly classified by DL models.

Success Rate: How many adversarial examples are
successfully misclassified by the DL model

Perturbation: Distance between the original input
and the crafted adversarial example

Feature of
Adversarial
DL Method

Figure 2.14: Categorization of different types of adversarial attack methods based on
their features.

referred to as grey-box attacks, in which the adversary knows more features than
black-box attacks but does not have full access like under the white-box assumption.

• Adversarial Goal: It refers to the scope of the attack algorithm. If the goal is
simply a misclassification, the attack is untargeted, where any class different from
the correct one can be the prediction of the adversarial example. On the other

38

2.4. Vulnerabilities of DL Systems

hand, in a targeted attack, the adversary produces adversarial examples that force
the output of the DL model to predict a specific class.

• Phase of the DL Flow: It refers to the stage of the DL development in which the
adversary operates. In training attacks, the adversary poisons the training data by
injecting carefully designed samples to force the DL model to learn wrong features
that can later be used to generate specific misclassifications. On the contrary, in
evasion attacks that operate at the inference stage, the adversary tries to evade
the system by crafting malicious samples that force the DL model to make false
predictions.

• Evaluation Metrics: These refer to the quantitative methods for measuring the
strengths of the attacks and easily accessible comparison metrics. To evaluate
the robustness of the attack, the success rate measures the number of adversarial
examples that the DL model misclassifies. Since a well-designed attack needs to be
imperceptible, i.e., hardly distinguishable from the original input by a human eye,
the perturbation measures the distance between the adversarial example and the
original (clean) input.

Due to their high accuracy on many tasks, DL models are prime candidate algorithms to
be applied to safety-critical applications. However, several defensive countermeasures need
to be applied due to the security vulnerabilities that undermine their correct functionality.
An overview of adversarial attacks and defenses used in the DL design flow is shown in
Figure 2.15.

Physical
World

Training
Data

Trained
DNN Model

Optimized
DNN Model

Inference
Application

Data
Collection

Training
Methods

Efficiency
Optimizations

DNN Model
Deployment

DL Training Phase DL Testing Phase
DL Design Flow

Physical
World

Attacks

Poisoning
Attacks

Evasion
Attacks

Adversarial
Attack

Methods

Poisoning
Defense

Data
Augmentation

DL
Quantization

Pre-Processing
Filters

Adversarial
Defense
Methods

Figure 2.15: Adversarial attacks and defenses applied in different stages of the DL design
flow.

39

2. Background and Related Work

Adversarial Attacks

As previously discussed, adversarial attacks can be categorized into different types based
on the adversary’s knowledge, goal, and phase of the ML flow. Due to the mainstream
usage of DL systems, several attack methodologies have been proposed. The following
list discusses the most prominent ones:

• Poisoning Attacks: At the training stage, the training data can be poisoned with
contaminated inputs. Based on the principles of Genetic Adversarial Networks
(GANs), Goodfellow et al. [173] devised a procedure to generate samples similar
to the training set, having almost identical distribution. This method inspired
many of the successive adversarial attack methodologies. Poisoning Attacks [174]
alter the training dataset to modify the decision boundaries of the DL classifiers.
Backdoor Attacks [175] aim at training the DL model for a carefully crafted noise
pattern (acting as a backdoor) while maintaining high accuracy on its intended task.
However, a targeted misclassification is achieved when such a backdoor trigger is
present at the network’s input.

• Evasion Attacks: Different evasion attack methodologies were proposed. In white-
box settings, gradient-based attacks like the Fast Gradient Sign Method (FGSM) [23]
and its iterative version, the Projected Gradient Descent (PGD) [24] exploit the
gradient of the DL output predictions w.r.t. the inputs to craft the adversarial
perturbations as imperceptible noise that make the DL classifier cross the deci-
sion boundary. In black-box settings, the One Pixel Attack [176] demonstrated
to misclassify DL models by changing only one pixel intensity. Decision-based
attacks [177] are a subset of evasion attacks in which the adversary does not have
access to the output probabilities but only to the prediction. For instance, the
FaDec attack [178] jointly optimizes the number of queries and the perturbation
distance between the adversarial example and the clean example to fool DNNs.

• Attacks in the Physical World: While the aforementioned attacks mainly make
modifications in the experimental settings, the adversarial attacks can also be applied
in real life by introducing physical modifications [179]. Examples of physical world
attacks have been showcased in the context of road sign classification by adding
stickers [180], in the context of object detection by adding adversarial patches [181],
or in face detection using eyeglasses with special frames [182].

Adversarial Defenses

The large variety of adversarial attacks led to the design of several types of defenses,
which can be summarized and grouped into the following categories:

• Poisoning Defenses: To mitigate against poisoning attacks, several defensive coun-
termeasures have been proposed. Outlier detection-based defenses [183] filter out

40

2.4. Vulnerabilities of DL Systems

training sample outliers, which most likely correspond to poisoned samples. Since
typically backdoor attacks exploit the sparsity of DL models, the Fine-Pruning
method [184] defends against backdoor attacks by eliminating the neurons that are
dormant for clean inputs in the backdoor network.

• Data Augmentation: The basic principle of Adversarial Training [24] is to extend
the training example with the adversarial examples, for instance, generated with the
PGD attack. In this way, the DNN models achieve higher robustness against such
perturbations. This method is considered very effective in defending against adver-
sarial attacks, but its high computation overhead pushes the community to search
for efficient optimization of this procedure, such as the AccelAT framework [185].

• Quantization: The optimization techniques employed to improve the energy effi-
ciency of DL accelerators can also achieve higher robustness against adversarial
attacks. The Defensive Quantization method [25] demonstrated that the adver-
sarial noise magnitude remains contained in quantized DNNs. The QuSecNets
method [186] selects the quantization levels based on the DL resiliency and computes
the appropriate quantization threshold values based on an optimization function.
Other approaches, such as Defensive Approximation [187] are promising, but the
work of Siddique et al. [188] demonstrated that approximate computing should not
be referred to as a universal defensive technique against adversarial attacks.

• Pre-Processing Filters: Another common technique to improve the DL robustness
against adversarial attacks is to employ pre-processing filters. The basic idea of
this approach is to view the adversarial perturbation as a noise added to the input,
which can be filtered out at runtime. Methods based on Sobel filters [189] and
randomized smoothing [190] demonstrated that the pre-processing filters have a
smoothing effect and significantly reduce the adversarial success rate.

2.4.5 Vulnerability Studies for CapsNets
Recent works showed that CapsNets are vulnerable to security threats differently than
traditional DNNs [191]. Michels et al. [192] analyzed the CapsNets’ robustness against
common adversarial attacks, such as the Carlini-Wagner Attack [193], the Boundary
Attack [177], the DeepFool Attack [194] and the Universal Attack [195]. Gugglberger
et al. [196] applied the FGSM method [23] on CapsNets. Frosst et al. [197] presented
an efficient method to detect the crafted images during the reconstruction stage. Qin
et al. [198] investigated the detection of adversarial examples on CapsNets with the
reconstruction network and proposed a successful deflection algorithm [199]. Gu et
al. [200] proposed a novel CapsNet that further improves its robustness against affine
transformations. Concurrently, the CapsNets security has been analyzed from different
perspectives. The Vote Attack [201] is a technique that directly perturbs the CapsNets
by manipulating the votes from primary capsules.
However, all the above-discussed works are at their earliest development stage and did
not thoroughly analyze the effect of black-box attacks and affine transformations on

41

2. Background and Related Work

CapsNets and DNNs. Moreover, before employing CapsNets in safety-critical applications,
a challenging research question consists of analyzing their robustness in practical use-case
scenarios, e.g., investigating applications where the CapsNets’ classification accuracy is
on par or better than the state-of-the-art DNNs, and when robust defenses like adversarial
training are adopted. These challenges are addressed in Chapter 4.

2.4.6 Vulnerability Studies for SNNs
For SNNs, adversarial attacks and defenses can take advantage of different properties.
For input spike sequences based on discrete data, white-box attacks [202] and black-box
attacks [203] are generated and deployed. The work of [204] demonstrated that, after
generating the adversarial examples in the DNN domain, the SNN generated through
DNN-to-SNN conversion can be fooled by the same adversarial examples generated in the
DNN domain. Moreover, the work of [205] proposed an attack algorithm that perturbs the
SNN inputs based on the gradient computed both in the spatial and temporal domains.
The SpikeAttack [206] impacts the performance efficiency and energy consumption of the
SNNs by increasing their spiking activity.

In HIRE-SNN [207], a robust training method is designed based on adversarial training,
where the input perturbation during training is generated through adversarial attacks.
The work of Liang et al. [208] proposed a certification training of SNNs based on the
defined input boundary. Besides the conventional defense methodologies, the work of [209]
studied the impact of discrete input encoding and non-linear activations, i.e., the leak
factor in LIF neurons, on the SNNs’ adversarial robustness. It demonstrated that it
is possible to fine-tune the SNNs’ structural parameters to improve their robustness.
However, the impact on the SNNs’ robustness due to other structural parameters, such
as the LIF neuron’s firing voltage thresholds and time window boundaries, remains
unexplored.

To mitigate against privacy issues, in the PrivateSNN framework [210] the DNN-to-SNN
conversion is followed by weight encryption with spike-based training on synthetic data
for privacy-preserving SNNs.

Fault injection attacks in SNNs are also becoming a hot topic in recent years. Nagarajan et
al. [211] studied the practical fault injection scenarios in SNN accelerators. The enpheeph
framework [212] flexibly allows for investigating SNN fault models and optimizes their
simulated execution on CPUs and GPUs. Towards fault-tolerant SNNs, Spyrou et al. [213]
proposed a technique for mitigating faults in SNNs by applying dropout and recovering
the correct values in the hidden layers. The ReSpawn framework [214] proposed fault-
aware mapping techniques to mitigate permanent memory faults in SNN accelerators.
The SoftSNN methodology [215] proposed to bound the weight values to protect the
neurons from soft errors.

Recently, different spike encoding techniques have drawn attention regarding their impact
on SNN robustness. Nomura et al. [216] studied the robustness of SNNs that use the
TTFS coding. Guo et al. [217] analyzed different types of neural coding and their impact

42

2.5. Summary of Background and Related Work

on the SNN robustness. According to Kim et al. [218], the rate coding turns out more
robust against faults and adversarial attacks.

Since event-based sensing with dynamic vision sensors (DVS) is suitable for being deployed
with high efficiency on low-power neuromorphic hardware, recent works demonstrated
their applicability in safety-critical applications, such as autonomous driving, recognition,
and tracking [219]. Therefore, it is key to analyze the security aspects of event-based SNNs.
Towards this, the work of [220] modified existing DNN adversarial example generation
algorithms to be applied to event series. The work of [221] generated event-based
adversarial examples on 3D point clouds.

While the noise filters for neuromorphic sensors [222] have been initially designed for
protecting against thermal noise and junction leakage fluctuation, their application to the
input of neuromorphic computing engines as a defense mechanism against adversarial
attacks is yet to be demonstrated. To address the above-discussed challenges, Chapter 7
presents security analyses for SNNs on both discrete and event-based data.

2.5 Summary of Background and Related Work
This chapter has discussed the background information to a level of detail necessary to
understand the rest of the thesis. After discussing the basic functionality of DNNs, an
overview of the most prominent hardware architectures and the optimizations to achieve
high energy efficiency has been presented. Moreover, this chapter contains an overview of
the state-of-the-art CapsNets, SNNs, security vulnerabilities that affect DL systems, and
the most common countermeasures. This chapter also describes the limitations of the
related works with references to how they will be addressed in the following chapters.

43

CHAPTER 3
Hardware and Software

Optimizations for Capsule
Networks

This chapter discusses the SW-level optimizations for CapsNet training and inference, the
hardware designs of the PE array, and the memory organizations for CapsNet inference,
integrated with post-training optimizations such as quantization and approximate designs.
Figure 3.1 shows the proposed design flow that contributes to designing efficient CapsNets.

HW
Model

CapsAcc: HW
Accelerator for

CapsNets Inference
(Sec. 3.2)

Memory
Model

FEECA: DSE
for Fast &
Energy-
Efficient
CapsNet

Accelerators
(Sec. 3.3)

DESCNet:
DSE of

Efficient
Scratchpad
Memories

for CapsNets
(Sec. 3.4)

Set of
Pareto-
optimal

PE Arrays

ReD-CaNe:
Design of

Approximate
CapsNets
(Sec. 3.6)

CapsNet
Model

Q-CapsNets:
Quantization
Framework
(Sec. 3.5)

FasTrCaps:
Fast Training
Framework
(Sec. 3.1)

Complete
System

Design (PE
Array &

Memory)

Approx.
CapsNet

Complete
System
Design

Design of
Approximate Squash

and Softmax
(Sec. 3.7)

Quantized
CapsNet

Approx.

Figure 3.1: Overview of the design flow of this chapter.

The details of each contribution composing the flow are described in the rest of the chapter.
In Section 3.1, a framework for efficiently training CapsNets is proposed. Note that,
while the remaining sections focus on optimizations for CapsNets inference, the training
methodology is key for achieving high accuracy in a reasonable training time, which is
also beneficial for Chapter 4 and Chapter 5. Section 3.2 presents an efficient hardware
accelerator for CapsNets inference, while a more comprehensive design space exploration

45

3. Hardware and Software Optimizations for Capsule Networks

(DSE) of the architecture based on PE arrays is discussed in Section 3.3. In Section 3.4, a
DSE and design flow for the memory organizations in CapsNet accelerators are discussed.
Section 3.5 presents a quantization framework for obtaining compact CapsNets models in
a constrained memory budget. Further energy efficiency can be achieved by approximating
the hardware designs of the PE array, as discussed in Section 3.6, or approximating the
most compute-intensive activation functions like Squash and Softmax, as presented in
Section 3.7.

Major Contributions of the Chapter:

• FasTrCaps framework design: It integrates different optimizations for selecting
learning rate policies and batch sizes, and for reducing the number of parameters
of CapsNets through weight sharing and reducing its decoder’s size.

• CapsAcc architecture design: It is a specialized CMOS-based accelerator
that performs inference of a given CapsNet. The PE array allows large matrix
computations, while a specialized dataflow orchestrates the movement of weights
and activations across the architecture for different CapsNets’ operations.

• FEECA methodology design: Given the CapsAcc architecture as a baseline,
it explores the design space of different (micro-)architectural parameters of a
given CapsNet accelerator. Using analytical models of the number of clock cycles
and memory accesses required to execute CapsNets’ operations, the proposed
methodology employs an evolutionary algorithm to derive Pareto-optimal curves
w.r.t. energy consumption, area, and performance.

• DESCNet architecture design: It is a specialized scratchpad memory archi-
tecture for CapsNet accelerators, partitioned into different sectors to support
sector-level power management.

• DESCNet methodology for design space exploration: based on the sizes
and accesses required for each operation of the CapsNets’ inference, it explores
different parameters of the DESCNet memory architecture to leverage the tradeoffs
between memory, area, and energy consumption.

• Q-CapsNets framework design: Given a certain memory budget and accu-
racy tolerance, it automatically searches for the numerical precision for different
CapsNets’ layers and operations.

• ReD-CaNe methodology design: It analyzes the resiliency of CapsNets under
approximation errors. The effect of having approximate components is modeled as
a noise injection. The design space composed of approximations for different layers
and operations is explored for designing approximate CapsNets while maintaining
high accuracy.

46

3.1. FasTrCaps: An Integrated Framework for Fast yet Accurate Training of CapsNets

• Approximate Softmax and Squash designs: Since these nonlinear operations
are highly compute-intensive, specialized approximate architectures have been
designed to execute these operations efficiently. Implementing different components
leverages the tradeoffs between accuracy, area, power consumption, and delay.

3.1 FasTrCaps: An Integrated Framework for Fast yet
Accurate Training of CapsNets

Recently, CapsNets have shown improved performance compared to the traditional
Convolutional Neural Networks (CNNs), by encoding and preserving spatial relationships
between the detected features in hierarchical capsules. However, one of the biggest
hurdles in the broad adoption of CapsNets is their gigantic training time, primarily due
to the relatively higher complexity of their new constituting elements that are different
from CNNs.

In this section, we implement different optimizations in the training phase of CapsNets
and investigate how these optimizations affect their training speed and accuracy. Towards
this, we propose the novel FasTrCaps framework that integrates multiple lightweight
optimizations and a novel learning rate policy called WarmAdaBatch (that jointly performs
warm restarts and adaptive batch size), and appropriately steers them to provide high
training-loop speedup at minimal accuracy loss. We also propose weight sharing for
capsule layers. The objective is to reduce the hardware requirements of CapsNets
by removing redundant/unused connections and capsules while keeping high accuracy
through using different learning rate policies and batch sizes. The Pareto-optimal solutions
generated by FasTrCaps can be leveraged to realize tradeoffs between training time and
achieved accuracy.

3.1.1 System Overview

As shown in Figure 3.2, we present FasTrCaps, a framework that employs different
optimization techniques for significantly reducing the training time and the number of
parameters of CapsNets, while preserving or improving their accuracy.

Datasets

Optimization Techniques
❑ Learning Rate Policies
❑ Weight Sharing
❑ Reduced-Sized Decoder

CapsNet Model

Learning Rate Policy Selection

Fast Training and High Accuracy

Parameter Reduction

Optimized CapsNetEvaluation

FasTrCaps Framework

Figure 3.2: An overview of our novel contributions in this section relative to the FasTrCaps
framework.

47

3. Hardware and Software Optimizations for Capsule Networks

The key contributions are:

• Different learning rate policies (like one-cycle policy or warm restarts) are tailored
to specialize them for the CapsNet structure, and their efficiency in the CapsNet
training loop vs. the corresponding training time is analyzed.

• A novel training framework, FasTrCaps, is proposed to accelerate the training
of CapsNets by integrating different optimizations (like warm restarts, adaptive
batch size and weight sharing) in an automated fashion specialized to the structure
and training flow of the CapsNets (i.e., considering the capsules and the coupling
between capsule layers).

• The parameter reduction is achieved via weight sharing and reducing the size
CapsNets’ decoder by removing its unused connections. Those optimizations reduce
the number of parameters by more than 15%.

• The FasTrCaps framework is evaluated on the MNIST and Fashion-MNIST datasets
to remain compliant with the experimental setup of [34].

3.1.2 Overview of Learning Rate Policies
The learning rate (LR) is a key hyperparameter for a fast convergence during the training
loop of a neural network. With a large learning rate, the optimization process may stop
at a local minimum or diverge. In contrast, a low learning rate can lead to a very slow
convergence [223][224]. Given the difficulty of choosing the best value for a constant
learning rate, a dynamic learning rate policy is often adopted. It consists of varying the
learning rate during the training [225].

One-Cycle Policy (OCP) [226]: This method consists of three phases of training.
In phase 1, the learning rate linearly increases from a minimum to a maximum value
in an optimal range. In phase 2, the learning rate symmetrically decreases. In phase 3,
the learning rate must anneal to a very low value in a small fraction of the last steps.
Equation (3.1) reports the formulas of the three phases of the one-cycle policy, where
ts represents the training step, TS is the total number of steps in the training epochs,
lrmin and lrmax are the boundaries of the learning rate range. Saddle points slow down
the training flow since the gradients in these regions have smaller values. Increasing the
learning rate helps to traverse the saddle points faster.

����
lr = lrmin + ts · lrmax−lrmin

0.45·T S 0 < ts < 0.45 · TS phase-1
lr = lrmin + (ts − 0.9 · TS) · lrmin−lrmax

0.45·T S 0.45TS < ts < 0.9TS phase-2
lr = lrmin − 9 · lrmin

T S · (ts − 0.9 · TS) 0.9 · TS < ts < TS phase-3
(3.1)

Warm Restarts (WR): In the Stochastic Gradient Descent with Warm Restarts [227]
(shortly called warm restarts), after initializing the learning rate to a maximum value, it

48

3.1. FasTrCaps: An Integrated Framework for Fast yet Accurate Training of CapsNets

is decreased with cosine annealing until the lower bound of a chosen interval is reached.
Afterward, it is set again to its maximum value, realizing a step function. Equation (3.2)
describes the cosine annealing function, where ts is the training step, lrmin and lrmax

are the learning rate range boundaries, Ti is the number of training steps for every cycle.
When ts = T i and ts = 0, the cycle starts again. This process is repeated iteratively
during the whole training time, in which the cycle period needs to be properly set to
optimize accuracy and training time. Gradually Increasing the learning rate emulates a
warm restart cycle and encourages the network to step out from potential local minima
or saddle points.

lr = lrmin + 1
2 (lrmax − lrmin)

1 + cos

π · ts

Ti

(3.2)

Adaptive Batch Size (AdaBatch): Training a DNN with a small batch size can
provide faster convergence, while a larger batch size allows higher data parallelism and
high computational efficiency. Therefore, many researches have investigated methods
to increase the batch size with fixed policies or following an adaptive criterion, with
the so-called Adaptive Batch Size [228]. Starting with a small batch size allows fast
convergence in early epochs, and progressively increasing the batch size at selected epochs
improves the performance due to the larger workload available per processor in later
epochs.

3.1.3 Analysis of Learning Rate Policies on CapsNets
The above-discussed techniques have been tailored for improving the performance of
traditional CNNs in terms of accuracy and training time. In this section, we aim at
customizing different learning rate policies and batch size selection for training the
CapsNets, and at studying whether and how effective these policies are, considering the
multidimensional capsules and their cross-coupling. Since the traditional neurons of the
CNNs are replaced by capsules, the number of CapsNets’ trainable parameters (weights
and biases) is huge.

For this reason, we implemented different state-of-the-art learning rate policies for the
training loop of the CapsNet, such that these techniques are enhanced for the capsule
structures and relevant parameters of the CapsNet. Table 3.1 shows how the accuracy of
the LeNet5 and CapsNet for the MNIST dataset varies according to different optimization
techniques.
From this analysis, we derive the following key observations:

1. The warm restarts technique is the most promising because it allows reaching the
same accuracy (99.37%) as the CapsNet with a fixed learning rate while reducing
the training time by 79.31%.

2. A more extensive training with warm restarts leads to an accuracy improvement of
0.07%.

49

3. Hardware and Software Optimizations for Capsule Networks

Table 3.1: A table summarizing the comparative differences between the LeNet5 and the
CapsNet, when the same learning rate policies are applied, but considering appropriate
functional enhancements (without violating their optimization function and flow) required
to employ these policies for CapsNets. For each network, different columns of the table
show the maximum reached accuracy, training epochs needed to reach the maximum
accuracy, and the training epochs needed to reach the same accuracy of the network
when using a fixed learning rate policy.

LeNet5 CapsNet

Max
Accuracy

Epoch
of Max

Accuracy

Epochs to Reach
Accuracy of
Fixed LR

Max
Accuracy

Epoch
of Max

Accuracy

Epochs to Reach
Accuracy of
Fixed LR

Fixed 98.86% 17 17 99.37% 29 29
Exp. Decay 99.24% 28 6 99.40% 12 7

OCP 99.22% 30 19 99.38% 24 23
WR 99.23% 20 4 99.44% 11 6

AdaBatch 99.18% 19 5 99.41% 8 5

3. The adaptive batch size shows similar improvements in accuracy (99.41%) and
training epochs.

4. The first epochs with smaller batch sizes execute relatively longer when compared
to the ones with bigger batch sizes.

3.1.4 Overview of FasTrCaps Framework
Training CapsNets consists of a multi-objective optimization problem because our scope is
to maximize the accuracy while minimizing the training time and the network complexity.
A comprehensive processing flow of our FasTrCaps framework is shown in Figure 3.3.
Before describing how to integrate different optimizations in an automated training
methodology and how to generate the optimized CapsNet at the output, we present how
these optimizations have been implemented with enhancements for the CapsNets, which
is necessary to realize an integrated training framework.

Learning Rate Policies for CapsNets

The learning rate is the first parameter analyzed to improve the training process of
CapsNets. The optimal learning rate range is evaluated within the range boundaries
0.0001 and 0.001. For our framework, we use the following parameters in these learning
rate policies:

• Fixed learning rate: 0.001

• Exponential decay: starting value 0.001, decay rate 0.96, decay steps 2 000:
lr = lr0 · 0.96current_step/2 000

50

3.1. FasTrCaps: An Integrated Framework for Fast yet Accurate Training of CapsNets

Step 1:
Learning Rate Policies

Step 3: CapsNet Complexity Reduction

WarmAdaBatch:
WR + AdaBatch

…

Step 2:
Batch Size Selection:
Adaptive Batch Size,

Variation for
Different Epochs

Reduced-Sized
Decoder Weight Sharing

Ou
tp

ut
:

Op
tim

ize
d

Ca
ps

Ne
t

Ca
ps

Ne
t

FasTrCaps Framework

Warm Restarts (WR)

Figure 3.3: FasTrCaps processing flow: the CapsNet at the input goes through the
different optimization stages to search for the right learning rate policy, batch size, and
complexity reduction. It generates at the output the Optimized CapsNet, based on the
optimization criteria chosen by the user.

• One cycle policy: lower bound 0.0001, upper bound 0.001, annealing to 10−5 in
the last 10% of training steps (see Algorithm 2)

• Warm restarts: lower bound 0.0001, upper bound 0.001, cycle length = one epoch
(see Algorithm 3)

Algorithm 2: One Cycle Policy for CapsNets.
1 Procedure OneCyclePolicy(lrmin, lrmax, T otalSteps, T curr)
2 tm ← 0.45 · TotalSteps;
3 m ← lrmax−lrmin

tm
;

4 mann ← 9 · lrmin
T otalSteps ;

5 if Tcurr ≤ tm then
6 lr ← mx + lrmin;
7 else if tm ≤ Tcurr ≤ 2tm then
8 lr ← −m · (x − 2tm) + lrmin;
9 else

10 lr ← −mann · (x − 2tm) + lrmin;
11 end
12 end

Batch Size

To realize the adaptive batch size, the batch size is set to 1 for the first 3 epochs, and
then increased for 3 times every 5 epochs. That is, the user can choose a value P and
the batch size will assume the values 2P , 2P +1 and 2P +2 (see Algorithm 4).

51

3. Hardware and Software Optimizations for Capsule Networks

Algorithm 3: Warm Restarts for CapsNets.
1 Procedure WarmRestarts(lrmin, lrmax, Tcurr, Ti)

2 lr ← lrmin + 1
2 (lrmax − lrmin)

1 + cos π Tcurr

Ti

; // Learning rate

update
3 if Tcurr = Ti then // Warm Restart after Ti training steps
4 Tcurr ← 0;
5 else // Current step update
6 Tcurr ← Tcurr + 1;
7 end
8 return Tcurr;
9 end

Algorithm 4: AdaBatch for CapsNets.
1 Procedure AdaBatch(P, CurrentEpoch)
2 if CurrentEpoch ≤ 3 then
3 BatchSize ← 1;
4 else if 4 ≤ CurrentEpoch ≤ 8 then
5 BatchSize ← 2P ;
6 else if 9 ≤ CurrentEpoch ≤ 13 then
7 BatchSize ← 2P +1;
8 else
9 BatchSize ← 2P +2;

10 end
11 end

Complexity of the CapsNet Decoder

The decoder is an essential component of the CapsNet. Indeed, the absence of a decoder
would result in lower accuracy of the CapsNet. The outputs of the ClassCaps layer are fed
to the decoder: the highest valued vector (capsule) at the output is left untouched, while
the remaining 9 vectors are set to zero (Figure 3.4a). Thus, the decoder receives 10 × 16
values, where 9 × 16 are null. Therefore, we optimize the model using a reduced-sized
decoder (Figure 3.4b) with only the 1 × 16 inputs linked to the capsule that outputs
the highest probability. Overall, the original decoder has 1.4M parameters (weights and
biases), while the reduced decoder provides a 5% reduction, with 1.3M parameters.

Complexity Reduction through Weight Sharing (WS)

Algorithm 5 illustrates how to share the weights between the PrimaryCaps and the
ClassCaps layers by having a single tensor weight associated with all the 8-element
vectors inside each 6×6 capsule. This method can reduce the total number of parameters

52

3.1. FasTrCaps: An Integrated Framework for Fast yet Accurate Training of CapsNets

De
co

de
r

Re
du

ce
d

De
co

de
r

Ou
tC

la
ss

Ca
ps

Ou
tC

la
ss

Ca
ps

(a) (b)

Figure 3.4: (a) All the ClassCaps outputs except the one with the highest magnitude are
set to zero. Then the decoder receives 10 × 16 inputs. (b) Only the ClassCaps output
with the highest magnitude is fed to a reduced decoder, with 1 × 16 inputs.

by more than 15%, from 8.2 million to 6.7 million. However, the accuracy drops by
almost 0.3% compared to the baseline CapsNet.

Algorithm 5: Weight Sharing for CapsNets, applied to the ClassCaps layer.
// BatchSize is the dimension containing single elements
// Input size is [BatchSize, 32, 36, 8]

1 Procedure ClassCaps(input, BatchSize)
// Weight size is [BatchSize, 32, 1, 10, 16, 8]

2 initialize weight;
// Bias size is [BatchSize, 1, 10, 16, 1]

3 initialize bias;
// We move along the dimension with 36 elements
// S here stands for Step

4 for S = 1, 36 do
// Result size is [bs, 32, 36, 10, 16, 1]
// We use the same weight, instead of cycling

5 u[S] ← matrix_multiply(weight[1], input[S]);
6 end

// Output size is [BatchSize, 1, 10, 16, 1]
7 v ← routing(u, bias);
8 return v;
9 end

WarmAdaBatch (WAB)

Among the explored learning rate policies, the warm restarts guarantees the most
promising results in terms of accuracy. On the other hand, the adaptive batch size
provides a good tradeoff to obtain fast convergence. We propose the WarmAdaBatch
(see Algorithm 6), a hybrid learning rate policy to expand the space of the solutions by

53

3. Hardware and Software Optimizations for Capsule Networks

combining the best of the two worlds. For the first three epochs, the batch size is set
to 1. Then, it is increased to 16 for the remaining training time. The first cycle of the
warm restarts policy lasts for the first three epochs, and the second cycle lasts for the
remaining training epochs.

Algorithm 6: WarmAdaBatch training method for CapsNets.
1 Procedure WarmAdaBatch(lrmin, lrmax, MaxEpoch, MaxStep)
2 Tcurr ← 0;
3 for Epoch ∈ {1, ..., MaxEpoch} do // Batch size update
4 AdaBatch(4,Epoch);
5 if Epoch ≤ 3 then
6 Ti ← 3 ∗ 60, 000; // Steps in 3 epochs with batch size 1
7 else
8 Ti ← 27 ∗ 3, 750; // Steps in 27 epochs with batch size

16

9 end
10 for Step ∈ {1, ..., MaxStep} do // Learning Rate update
11 Tcurr ← WarmRestarts(lrmin, lrmax, Tcurr, Ti);
12 end
13 end
14 end

Optimization Choices

Our framework can automatically optimize CapsNets and its training depending on
the parameters that a user wants to improve. For instance, using WarmAdaBatch, the
accuracy and the training time are automatically co-optimized. The number of parameters
can be reduced, at the cost of some accuracy loss and training time increase, by enabling
the weight sharing, along with the WarmAdaBatch.

3.1.5 Evaluation of the FasTrCaps Framework

Experimental Setup

We developed our framework using the PyTorch library [72], running on two Nvidia
GeForce RTX 2080 Ti GPUs. We tested it on the MNIST [60] and Fashion-MNIST [96]
datasets. Both datasets are composed of 60 000 samples for training and 10,000 test
samples each. The MNIST is a collection of handwritten digits, while the Fashion-MNIST
is a collection of grayscale fashion products. After each training epoch, a test is performed.
At the beginning of each epoch, the training samples are randomly shuffled, while the
testing samples are kept in the same order. The accuracy values are computed by
averaging 5 training runs. Each training run lasts for 30 epochs, with the settings for each

54

3.1. FasTrCaps: An Integrated Framework for Fast yet Accurate Training of CapsNets

policy equal to the ones described in Section 3.1.4. The results are shown in Table 3.2
and Figure 3.5.

Table 3.2: Accuracy results obtained with CapsNet for the MNIST and Fashion-MNIST datasets,
applying different proposed solutions.

Accuracy Epochs to reach
max accuracy Parameters Weight

SharingFashionMNIST MNIST FashionMNIST MNIST
90.99% 99.37% 17 29 Fixed (Baseline) No
91.47% 99.45% 27 8 WAB No
90.47% 99.26% 17 26 Fixed (Baseline) Yes
90.67% 99.38% 20 11 WAB Yes

(a) 3D Plot for MNIST (b) 3D Plot for Fashion-MNIST

(c) Accuracy over epochs for MNIST (d) Accuracy over epochs for Fashion-MNIST

Figure 3.5: The legend is common for all the figures. (a,b) Comparison of different
optimization types integrated in our FasTrCaps framework, on the basis of accuracy,
training time and number of parameters. The training time is computed as the number of
epochs to reach the maximum accuracy, multiplied by time (in seconds) per epoch. The
abbreviated terms WAB and WS stand for WarmAdaBatch and WeightSharing, respec-
tively, with WeightSharing including also the small-decoder optimization. (c,d) Accuracy
improvements / changes over the training epochs for different optimization solutions.
(a,c) Results for MNIST. (b,d) Results for Fashion-MNIST.

Accuracy Results for the MNIST dataset

Evaluating Learning Rate Policies: Among the state-of-the-art learning policies that
we enhanced for CapsNets, the warm restarts is the most promising one, as the maximum

55

3. Hardware and Software Optimizations for Capsule Networks

accuracy improved by 0.074%. The CapsNet with warm restarts reaches the maximum
accuracy of the baseline (with fixed learning rate) in 6 epochs rather than in 29 epochs
as required by the baseline, thereby providing a training time reduction of 62.07%.

Evaluating Adaptive Batch Size: Different combinations of batch sizes in adaptive
batch size algorithm have been tested since the smaller the batch size is, the faster the
initial convergence. However, large batch sizes lead to slightly higher accuracy after 30
epochs and, most importantly, to a reduced training time. A CapsNet training epoch
with batch size 1 lasts for 7 minutes, while with batch size 128, it lasts for only 28 seconds.
Batch size 16 is a good tradeoff between fast convergence and short training time (i.e.,
49 sec/epoch). The best results, applying adaptive batch size, are obtained using batch
size 1 for the first three epochs and then increasing it to 16 for the remaining part of
the training. With this parameter selection, the accuracy increases by 0.04% w.r.t. the
baseline, and the maximum baseline accuracy is reached in 5 epochs instead of 29 epochs
as required by the baseline. However, the first three epochs take a longer time (88%
longer) because of the reduced batch size. Hence, the adaptive batch size alone is not
convenient. However, the total training time is reduced by 30% compared to the baseline.

Evaluating WarmAdaBatch: As for the batch, the first cycle of the learning rate lasts
for 3 epochs and the second one for 27 epochs. Variations of batch size and learning rate
cycles are synchronized. This solution allows a 0.088% gain in accuracy compared to the
baseline CapsNet implementation, and the baseline maximum accuracy is reached by the
CapsNet with the WarmAdaBatch in 3 epochs against 29 epochs. After the first three
epochs, the batch size changes, and the learning rate is restarted. Hence, there is a drop
in accuracy, which re-converges to the highest and most stable value in a few steps.

Evaluating Weight Sharing: By applying weight sharing to the ClassCaps layer, we
can achieve 15% reduction in the number of total parameters, decreasing from 8.2 million
to 6.7 million. However, these reductions also lead to a slight decrease in the maximum
accuracy, i.e., by 0.26%.

Comparison of Different Optimization Types

On the CapsNet model with the MNIST dataset, we also compare the different types of
optimizations in terms of accuracy and based on the training time to reach the maximum
accuracy and the number of parameters. As we can see in Figure 3.5a, we compare
different optimization methods in a 3-dimensional space. This representation provides
the Pareto-optimal solutions, depending on the optimization goals. We also compare, in
Figure 3.5c, the accuracy and the learning rate evolution in different epochs, for AdaBatch,
WarmRestarts and WarmAdaBatch. Among the space of the potential solutions, we
discuss the following two Pareto-optimal choices in detail, i.e., the WarmAdaBatch and
the combination of WarmAdaBatch and weight sharing, which we call WAB+WS.

WarmAdaBatch: This solution provides the optimal point in terms of accuracy and
training time because it achieves the highest accuracy (99.45%) in the shortest time (3

56

3.2. CapsAcc: An Efficient Hardware Accelerator for CapsNets

epochs). Varying the batch size boosts the accuracy in the first epoch, and the restart
policy accelerates the training.

WAB+WS: The standalone weight sharing reduces the number of parameters by 15%.
By combining it with WarmAdaBatch, the accuracy loss is compensated (99.38% vs.
99.37% of the baseline). At the same time, the training time is shorter than the baseline
(18 epochs vs. 29 epochs) but longer than the simple WarmAdaBatch. Our framework
chooses this solution if the parameter reduction is also included in the optimization goals.

Accuracy Results for Fashion-MNIST

The results for the Fashion-MNIST dataset are shown in Table 3.2 and Figure 3.5b,d.
However, while the combination WAB+WS is the most effective policy for reducing
the network parameters while keeping a relatively high accuracy, the WAB policy, the
ExpDecay policy, and the One-Cycle-Policy show good accuracy and training time results.
The WAB policy can keep the same training time as the best policies but at the cost
of a slight accuracy loss. Hence, even though Fashion-MNIST and MNIST require
an equivalent CapsNet architecture (i.e., without any changes), our WAB policy for
Fashion-MNIST is comparable to other learning policies.

3.1.6 Summary
The proposed FasTrCaps framework accelerates the training process of CapsNets by
integrating multiple lightweight optimizations into the training loop. Different learning
policies are analyzed and explored, and the novel WarmAdaBatch methodology is proposed.
Other optimizations of the framework, such as reducing the complexity of the decoder
and applying weight sharing, leverage the tradeoff between accuracy and training time.
Such lightweight trained CapsNet models can be deployed into hardware accelerators to
execute efficient CapsNets inference, as discussed in the following sections.

3.2 CapsAcc: An Efficient Hardware Accelerator for
CapsNets

Recently, CapsNets have overtaken traditional DNNs, because of their improved general-
ization ability due to the multi-dimensional capsules, in contrast to the single-dimensional
neurons. Consequently, CapsNets also require extremely intense matrix computations,
making it a tremendous challenge to achieve high performance. In this section, we
propose CapsAcc, the first specialized CMOS-based hardware architecture to perform
CapsNets inference with high performance and energy efficiency. Most State-of-the-art
convolutional DNN accelerators do not work efficiently for CapsNets, as their designs do
not account for critical operations involved in CapsNets, like squashing, dynamic routing,
and multi-dimensional matrix processing. Our CapsAcc accelerator targets this problem
and achieves significant improvements compared to an optimized GPU implementation.
The CapsAcc exploits the massive parallelism by flexibly feeding data to a specialized PE

57

3. Hardware and Software Optimizations for Capsule Networks

array based on the operations required in different layers. It also avoids extensive on-chip
memory load and store operations by reusing the data when possible. We synthesized the
complete CapsAcc architecture using a 45nm CMOS technology using Synopsys design
tools. This work enables highly-efficient CapsNets inference on embedded platforms.

3.2.1 Motivational Analyses of CapsNets Complexity and Execution
Time

In this section, we analyze how CapsNet inference is performed on a high-end GPU, like
the Nvidia GeForce RTX 2080 Ti GPU used in our experiments. First, we quantitatively
analyze the number of trainable parameters per layer that must be fed from memory.
Then, we benchmark our PyTorch-based CapsNet [34] implementation for the MNIST
dataset to measure its inference performance on the GPU.

Trainable parameters of the CapsNet

Table 3.3 shows quantitatively the number of parameters needed for each layer. As
evident, most of the weights belong to the PrimaryCaps layer due to its 256 channels and
8D capsules. Even though the ClassCaps layer has FC behavior, it accounts for less than
25% of the total parameters of the CapsNet. Finally, the Conv1 layer parameters and the
coupling coefficients account for a tiny percentage of the total parameters. Based on that,
we make a valuable observation for designing our hardware accelerator: by considering
8-bit fixed point weights, we can estimate that an on-chip memory size of 8MB is large
enough to contain every CapsNet’s parameter.

Table 3.3: Input size, number of trainable parameters, and output size of each layer of
the CapsNet.

Inputs # parameters Outputs
Conv1 784 20992 102400

PrimaryCaps 102400 5308672 102400
ClassCaps 102400 1474560 160

Coupling Coeff 160 11520 160

Execution Time Analyses of the CapsNet’s Inference Operations

At this stage, we measure the required time for an inference pass on the GPU. Figure 3.6a
shows the time consumed by the computations for each layer. The ClassCaps layer
represents the computational bottleneck because it is around 10× slower than the previous
layers. To obtain more detailed indications, a specific analysis has been performed
regarding each step of the routing-by-agreement process (Figure 3.6b). It is evident that
the squashing operation inside the ClassCaps layer is the most compute-intensive operation.
This analysis motivates us to spend more effort optimizing routing-by-agreement and
squashing in our CapsNet accelerator.

58

3.2. CapsAcc: An Efficient Hardware Accelerator for CapsNets

1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04
1.0E+05

Ex
ec

uƟ
on

Ti
m

e
[µ

s]

1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04
1.0E+05

Ex
ec

uƟ
on

Ti
m

e
[µ

s]

(a) (b)

Longest time:
ClassCaps Layer

Longest time:
Squash operation

Figure 3.6: Execution time breakdown of the CapsNet [34] on the Nvidia GeForce RTX
2080 Ti GPU. (a) Layer-wise breakdown. (b) Operations in the dynamic routing.

Summary of Key Observations from our Analyses

From the previously discussed analyses, we derive the following key observations:

• The CapsNet inference performed on the GPU is more compute-intensive than
memory-intensive due to the bottleneck represented by the squashing operation.

• A massive parallel computation capability in the hardware accelerator is desirable
to achieve a similar or better performance than the GPU.

• Since several parameters need to be stored in the memory, the buffers between
the PEs and the on-chip memory are beneficial to maintain high throughput and
mitigate the latency due to on-chip memory accesses.

3.2.2 CapsAcc Architecture Design
Overview

We designed the complete CapsAcc architecture and implemented it in hardware (RTL).
The top-level architecture is shown in Figure 3.7a. The detailed schemes of different
components of our accelerator are shown in Figure 3.7b and Figure 3.8. At the core,
our CapsAcc architecture has a PE array responsible for all the matrix and vector
operations in the CapsNets. The choice of PE arrays is based on the fact that they have
demonstrated to be extremely efficient in processing Conv layers [8], which are also the
initial layers of the CapsNets.

Moreover, our CapsAcc supports a specialized dataflow that allows us to exploit the
computational parallelism for multi-dimensional matrix operations. The accumulator
unit stores and properly adds together the partial sums. The activation unit performs
different activation functions based on the required operations. The (Data, Routing, and
Weight) buffers are essential to temporarily store the information to feed the PE array

59

3. Hardware and Software Optimizations for Capsule Networks

without frequently accessing the data and weight memories. The two multiplexers at
the input of the PE array introduce the flexibility to process new data or reuse them
according to the respective dataflow. The control unit coordinates all the operations at
each stage of the inference.

PE PE

PE PE

…
…

… …
Accumulator

Activation

Weight
Memory

Weight
Buffer

Routing
Buffer

Control
Unit

Data Memory

Data Buffer 16x16
PE Array

/ 8

/
8

/

//

/

/

8

8

8 8

/ 25 25

/
8

Weight1
Register

Weight2
Register

Partial Sum
Register

Da
ta

Re
gi

st
er

+x

Weight Partial Sum

Da
ta

Weight

Da
ta

Partial Sum

PE

/
8

25/

/
16

/ 8

/ 25

(a) (b)

Figure 3.7: Hardware architecture of the CapsAcc accelerator. (a) Complete accelerator
architecture. (b) Architecture of a PE.

Processing Element Array

The PE array of our CapsAcc architecture is composed of a 2D array of PEs, with 16
rows and 16 columns. The inputs are propagated towards the PE array outputs both
horizontally (Data) and vertically (Weight and Partial sum). In the first row, the Partial
sums inputs are zero-valued because each sum at this stage equals 0. Moreover, the
Weight outputs in the last row are not connected since they are not used in the following
operations.

Figure 3.7b shows the data path of a single PE. It has 3 inputs and 3 outputs: Weight,
Data, and Partial sum. The PE is composed of a multiplier and an adder. It has 4 internal
registers: (1) Data Register to store and synchronize the Data value coming from the left;
(2) Sum Register to store the Partial sum before sending it to the neighbor PE below; (3)
Weight1 Register to synchronize the vertical transfer; (4) Weight2 Register to store the
value for data reuse. The latter is particularly useful for Conv layer operations, where
the same filter weight must be reused across different input data. For FC operations,
the second weight register introduces only one clock cycle latency without changing the
throughput. The bit-widths of each signal have been designed as follows: (1) each PE
computes the product of an 8-bit fixed-point Data and an 8-bit fixed-point Weight; (2)
the sum is designed as a 25-bit fixed-point value. At full throttle, each PE generates one
output-per-clock cycle, which also implies one output-per-clock cycle for every column of
the PE array.

60

3.2. CapsAcc: An Efficient Hardware Accelerator for CapsNets

Accumulator

The Accumulator unit has a FIFO buffer to store the Partial sums from the PE array and
add them up when needed. We designed the Accumulator to support 25-bit fixed-point
data. Figure 3.8a shows the data path of our Accumulator. The multiplexer allows
feeding the buffer with the data coming from the PE array or with the data coming from
the internal adder of the Accumulator. In the overall CapsAcc architecture, there are as
many Accumulators as the number of columns of the PE array.

(a) (c)

+

Input

Output

ReLU Norm

Squash

Softmax

Input

Output

Squash LUT

Input

Output

Norm

+

Square
Register

Input

Output

+

/

Exp
Register

Input

Output

Exp

మ

^ଶ

(b)

(d) (e)

Figure 3.8: Hardware architectures of different components of the CapsAcc accelerator.
(a) Accumulator. (b) Activation unit. (c) Squashing function unit. (d) Norm function
unit. (e) Softmax function unit.

Activation Unit

The Activation Units follow the Accumulators. As shown in Figure 3.8b, they perform
different functions in parallel. The multiplexer selects the path to propagate the informa-
tion towards the output. While the figure shows only one unit, in the complete CapsAcc
architecture, there is one Activation Unit for each column of the PE array. The 25-bit
data values coming from the Accumulators are reduced to 8-bit fixed-point values to
reduce the computations at this stage.

The Rectified Linear Unit (ReLU) [229] is used for the first two layers of the CapsNet. It
is implemented by connecting the input to the output through a multiplexer, which sets
the output to zero if the input is negative.

We designed the Normalization operator (Norm) with a structure performing the
Square-and-Accumulate operation, where, instead of a traditional multiplier, there is a
Power2 operator. Its data path is shown in Figure 3.8d. A register stores the partial
sum, while the Sqrt operator produces the output. We designed the Sqrt operator as a
Look-Up Table with 12-bit input and 8-bit output. The Norm operator produces a valid
output every n + 1 clock cycle, where n is the length of the vector (or capsule dimension)
for which we want to compute the Norm. Such an operator is either used to compute

61

3. Hardware and Software Optimizations for Capsule Networks

the classification prediction or as an input for the Squashing function, as illustrated in
Figure 3.8b.

We designed and implemented the Squashing function as a Look Up Table, as shown
in Figure 3.8c. The function takes the vector sj (element-wise) and its norm ||sj || as
inputs. The Norm input comes from its respective unit. Hence, the Norm operation is
not implemented again inside the Squash unit. The LUT takes a 6-bit fixed-point data
and a 5-bit fixed-point norm as inputs to produce an 8-bit output. The first output of
the vector is produced with just one additional clock cycle compared to the Norm. We
decided to limit the bit-width to constrain the computational requirements at this stage,
following the analysis performed in Section 3.2.1 that shows the highest computational
load for this operation. Such a design using a LUT significantly reduces the latency of the
squashing operation. A pure logic-based implementation would have required complex
mathematical operations that would not be efficient when implemented in hardware.

The Softmax function design is shown in Figure 3.8e. Initially, it computes the
exponential function (8-bit Look Up Table) and accumulates the sum in a register,
followed by a division. Overall, an array of n elements can compute the softmax function
of the whole array in 2n cycles.

Control Unit

At each stage of the inference process, this unit generates different control signals for all
the components of the accelerator, according to the operations needed. Its functionality
is shown in Figure 3.9. The core of the control unit is a Finite State Machine (FSM),
which generates at the output the control signals for the multiplexers, the memories, the
buffers, and all the other components of the CapsAcc architecture. A set of counters
interacts with the FSM to guarantee the correct timing of all the operations. For example,
in a convolution operation, the number of clock cycles needed to process the data for
a given set of weights is counted before the next set of weights is loaded onto the PE
array. Therefore, the control unit is essential for correctly scheduling the operations of
the accelerator.

Finite State
Machine (FSM)

Counters
Outputs

• Mux select
• Memories’ signals
• Buffers’ signals
• PE array’s signals
• Accumulator’s signals
• Activation Unit’s signals

Other Inputs
• Operations’ types
• Operations’ sizes

Control Unit

Reset
Clock

Figure 3.9: Functionality of the Control Unit of our CapsAcc architecture.

62

3.2. CapsAcc: An Efficient Hardware Accelerator for CapsNets

Memory Hierarchy

Besides the registers embedded in the PE array and the activation unit, the memory
hierarchy is organized as follows. For each operation, all the weights are stored in the
on-chip weight memory, while the input data, which correspond to the pixel intensities
of the input image, are stored in the on-chip data memory. As an interface between
the memories and the accelerator, the data buffer and weight buffer work as a cushion
for interacting with the PE array at high bandwidth and access rate. Moreover, the
accumulator unit contains a buffer for storing the output partial sums, and the routing
buffer is used to store the coefficients of the dynamic routing.

3.2.3 Dataflow Design
This section describes how to map the processing of different types of layers and operations
onto our CapsAcc architecture. For ease of understanding, we illustrate the process with
the help of a case study performing MNIST classification on our CapsAcc. Note that
each stage of the CapsNet inference requires its mapping scheme.

Dataflow of the Conv1 Layer

The Conv1 layer has 256 channels and filters of size 9×9. First, we design a row-by-row
mapping, and after the last row, we move to the next channel. Figure 3.10a shows
how the dataflow is mapped onto our CapsAcc architecture. An illustrative example
of mapping the weights onto the weight buffer is shown in Figure 3.11. To efficiently
perform the convolutions, we hold the weight values in the PE array to reuse the filter
across different input data.

Dataflow of the PrimaryCaps Layer

The PrimaryCaps layer has one more dimension compared to the Conv1 layer, the capsule
size (i.e., 8). However, we treat the 8D capsule as a Conv layer with 8 output channels.
Thus, we map the parameters row-by-row, then move through different input channels,
and only at the third stage we move on to the following output channel. This mapping
procedure minimizes the accumulator size because our CapsAcc first computes the output
features for the same output channel. Since this layer type is convolutional, the weight
reuse dataflow is the same as the previous layer, as reported in Figure 3.10a.

Dataflow of the ClassCaps Layer

The mapping of the ClassCaps layer is described as follows. After mapping row-by-row,
we consider input capsules and input channels as the third dimension. Output capsules
and output channels represent the fourth dimension. Hence, in this way, the output
feature map (OFMAP) reuse is achieved to minimize the energy consumption of the
accumulators. However, recalling the procedure described in Algorithm 1, other types
of computations, i.e., sum, squash, update and softmax, need to be performed in this

63

3. Hardware and Software Optimizations for Capsule Networks

PE PE

PE PE

…
…

… …

Accumulator

Activation

Weight
Memory

Weight
Buffer

Routing
Buffer

Control
Unit

Data Memory

Data Buffer 16x16
PE Array

(a)

PE PE

PE PE

…
…

… …

Accumulator

Activation

Weight
Memory

Weight
Buffer

Routing
Buffer

Control
Unit

Data Memory

Data Buffer 16x16
PE Array

(b)

PE PE

PE PE

…
…

… …
Accumulator

Activation

Weight
Memory

Weight
Buffer

Routing
Buffer

Control
Unit

Data Memory

Data Buffer 16x16
PE Array

(c)

PE PE

PE PE

…
…

… …

Accumulator

Activation

Weight
Memory

Weight
Buffer

Routing
Buffer

Control
Unit

Data Memory

Data Buffer 16x16
PE Array

(d)

ܿ

ܿݒ
ݒ

ݒ

ܿ
ܾ ݏ

ݏ
û

ûû

Figure 3.10: Dataflow of our CapsAcc for different case study scenarios. (a) Conv layer
mapping. (b) Sum generation & squashing operation mapping for the first routing
iteration. (c) Update & softmax operation mapping. (d) Sum generation & squashing
operation mapping for all but the first routing iteration.

PE PE PE PE

PE PE PE PE

Weight
Buffer

PE
Array

Figure 3.11: The procedure of mapping into the CapsAcc architecture is shown through
an example of Conv filters mapped onto the weight buffer and the PE array.

layer. The input vectors for computing the sum and update operations are mapped
column-by-column onto the PE array. This approach, having each vector mapped onto
the same column of the PE array, simplifies the computations of the squash and softmax
functions, which are performed by the activation units to avoid interdependence across
different columns.

Then, we design the corresponding dataflow for each step of the routing-by-agreement
process. It is a critical phase since a less efficient mapping can potentially impact the

64

3.2. CapsAcc: An Efficient Hardware Accelerator for CapsNets

overall performance.

First, we apply an algorithmic optimization on the routing-by-agreement algorithm. During
the first operation, instead of initializing bij to 0 and computing the softmax, we directly
initialize the coupling coefficients cij to 0. This optimization can skip the softmax
computation at the first routing iteration. In fact, in this operation, all the inputs are
equal to 0, as they do not depend on the current data.

Dataflow of the Dynamic Routing

Regarding the dataflow of our CapsAcc, we identified three different scenarios during the
dynamic routing algorithm:

1. First sum generation and squash: The predictions ûj|i are loaded from the
Data Buffer, the coupling coefficients cij are coming from the Routing Buffer, the
PE array computes the sums sj , the Activation Unit selects and computes the
Squash, and the outputs vj are stored back in the Routing Buffer. This dataflow is
shown in Figure 3.10b.

2. Update and softmax: The predictions ûj|i are reused through the horizontal
feedback of the architecture, the outputs vj are coming from the Routing Buffer,
the PE array computes the updates for bij , and the Softmax at the Activation Unit
produces the coefficients cij that are stored back in the Routing Buffer. Figure 3.10c
shows the dataflow described above.

3. Sum generation and Squash: Figure 3.10d shows the dataflow for this scenario.
Compared to the Figure 3.10b, the predictions ûj|i are coming from the horizontal
feedback connection, thus exploiting data reuse also in this stage.

3.2.4 Synthesis Evaluation of the Complete CapsAcc Architecture
Experimental Setup

We implemented the complete CapsAcc architecture design in RTL (VHDL), and evaluated
it for the MNIST dataset (to stay consistent with the original CapsNet paper). We
synthesized the complete architecture in a 45nm CMOS technology using the ASIC
design flow with the Synopsys Design Compiler. We did functional and timing validation
through gate-level simulations using Mentor ModelSim and obtained the precise area,
power, and performance of our design. The complete synthesis flow is shown in Figure 3.12.

Note that, since our hardware design is fully functionally compliant with the original
CapsNet design of [34], we observed the same classification accuracy. Hence, we do
not present any classification results in this section and only focus on the performance,
area, and power consumption results, which are more relevant for an optimized hardware
architecture.

65

3. Hardware and Software Optimizations for Capsule Networks

Area
Reports

Logic
Synthesis

(Synopsys
Design

Compiler)
Initial Power
Estimation

VHDL Files

Gate-Level
Netlist

Logic
Simulation

(ModelSim)Power
Reports

Software-Level
Simulation
(pyTorch

Framework)

.saif File

.vcd File
Power

Simulation

(Synopsys
Design

Compiler)
Hardware
Prediction

Software
Prediction

.py Files

Validation

Figure 3.12: Synthesis flow and tool chain of our experimental setup.

Detailed Power and Area Breakdown

The details and synthesis parameters for conducting our design are reported in Table 3.4.
Table 3.5 shows the absolute values for the area and power consumption of all the
components of the synthesized CapsAcc. These values indicate that the buffers dominate
the area and power contributions, and the PE array is less than 1/3 of the total budget.

Table 3.4: Parameters of the
synthesized CapsAcc.

Tech. node [nm] 45
Voltage [V] 1
Area [mm2] 2.60
Power [mW] 427.44

Clk Freq. [MHz] 250
Bit width 8

On-Chip Mem. [MB] 8
Area [mm2] 2.60
Power [mW] 427.44

Table 3.5: Area and power, for the different com-
ponents of the CapsAcc architecture.

Component Area [µm2] Power [mW]
PE Array 42 867 112.31

Accumulator 32 641 47.57
Activation 29 027 2.21

Data Buffer 136 222 199.31
Routing Buffer 32 598 47.56
Weight Buffer 11 961 17.46

Other 4 330 1.10

Discussion on Comparative results

The graph in Figure 3.13a shows the performance (execution time) results of the different
layers of CapsNet inference on our CapsAcc, while Figure 3.13b shows the performance
of every sequence of the routing process. Compared with the Nvidia GeForce RTX 2080
Ti GPU performance, we obtained a significant speedup for the overall computation time

66

3.3. FEECA: A Methodology to design a Fast, Energy-Efficient CapsNet Accelerator

of a CapsNet inference pass (6×). The main notable improvements are witnessed in the
ClassCaps layer (12×) and in the Squashing operation (172×).

Operation Iteration

(a)

(b)

Figure 3.13: (a) Layer-wise performance of the inference pass on the CapsNet on
CapsAcc, compared to the GPU. (b) Performance of the inference pass on each routing-
by-agreement step on CapsAcc, compared to the GPU.

3.2.5 Summary
The proposed CapsAcc architecture is the first CMOS-based hardware accelerator for
CapsNet inference. A significant performance speedup compared to the GPU execution
is achieved by designing a flexible PE array with diverse dataflow patterns to exploit
the parallelism across different operations of the CapsNets. The CapsAcc represents the
first proof-of-concept for realizing CapsNet hardware and opens multiple directions for
its high-performance inference deployments. In this regard, the following Section 3.3
discusses a novel methodology for exploring the design space of CapsNet accelerators
and leveraging the tradeoff between area, latency, and energy consumption.

3.3 FEECA: A Methodology to design a Fast,
Energy-Efficient CapsNet Accelerator

High-performance and energy-efficient designs of CapsNet accelerators require exploration
of different design decisions (like the processing array size and configuration, and the

67

3. Hardware and Software Optimizations for Capsule Networks

structure of the PEs). Towards this, we propose FEECA, a novel methodology to
explore the design space of the (micro-)architectural parameters of a CapsNet hardware
accelerator. The FEECA methodology employs the Non-dominated Sorting Genetic
Algorithm (NSGA-II) to explore the Pareto-optimal points w.r.t. area, performance,
and energy consumption. It requires analytical modeling of the number of clock cycles
needed to perform each operation of the CapsNet inference, and the memory accesses
to enable a fast yet accurate design space exploration. We evaluated the architectures
for the MNIST benchmark (as done by the original CapsNet paper from Google Brain’s
team) and for the German Traffic Sign Recognition Benchmark (GTSRB).

3.3.1 Overview of the FEECA Methodology

The FEECA methodology (Figure 3.14) requires a CapsNet and some optimization
objectives (hardware parameters of a CapsNet accelerator) as inputs. The output of the
methodology is a set of Pareto-optimal CapsNet accelerators.

HDL architecture

Energy, latency &
area models Generation of

candidates
Evaluation of

candidates Selection

Pareto-filteringConstruction of
accelerators

Set of Pareto-optimal accelerators

CapsNet Optimization objectives

Characterized internal
parameters (Pes, REGs)

Possible configurationsCapsAcc accelerator

Search engine

FEECA

Figure 3.14: Our FEECA methodology for obtaining Pareto-optimal design configurations
of the CapsNet accelerators w.r.t. the given optimization objectives.

The methodology works in general as follows. Given a generic configurable CapsNet
accelerator (e.g., the CapsAcc) with a set of possible configurations (the search space for
further optimizations), we construct analytical models to calculate the parameters of the
accelerator for a given design, such as energy consumption, chip area, and delay (latency
taken during the inference of one CapsNet input element). The analytical models use a
set of pre-synthesized internal primitives such as PEs and registers. Then, a space-search
engine is used to find the optimal configurations of a generic CapsNet accelerator. Since
two or more optimization parameters are typically required, a multi-objective search
algorithm is needed to find configurations that tradeoff all the parameters. In this
work, we propose to deploy two different search algorithms, i.e., the brute-force and the
NSGA-II algorithm, to reduce the search time.

The output of the search engine is a set of configurations. These configurations are applied
to the generic CapsNet accelerator to get the final set of Pareto-optimal accelerators.

68

3.3. FEECA: A Methodology to design a Fast, Energy-Efficient CapsNet Accelerator

3.3.2 Optimization Problem
The CapsAcc architecture designed serves as a baseline to deploy our FEECA methodology,
whose goal is to find Pareto-optimal sets of architectural parameters of the CapsNet
accelerator to achieve a good tradeoff between our design objectives, which are area,
energy, and performance. Since we focus on multiple objectives, standard optimization
methods (e.g., branch & bound) are unsuitable for this task because they typically
optimize only one objective and are exhaustive.

Problem Formulation

The optimization problem is defined as follows.

• We have as input k parameters p1 ∈ P1, p2 ∈ P2, . . . , pk ∈ Pk of the accelerator
where Pi is a set of possible values of parameter pi.

• We define a set of configurations C ⊆ P1 × P2 × · · · × Pk.

• We are primarily interested in the configurations belonging to the Pareto set which
contains the so-called nondominated solutions.

For example, if we consider two configurations c1 and c2 ∈ C, c1 dominates c2 if: (1) c1
is not worse than c2 in all objectives, and (2) c1 is strictly better than c2 in at least one
objective.

3.3.3 Search Algorithms: Brute-Force vs. Heuristic Search
A straightforward approach uses a brute-force search. For the small test cases, evaluating
all the configurations can be feasible. It is fundamental to use specialized algorithms to
construct the Pareto front. In this work, we use an efficient construction algorithm based
on binary space partitioning [230].

However, the enumeration of all the possible combinations may be time-consuming. To
avoid that, we propose to use a multi-objective heuristic algorithm. The search algorithm
uses a modified variant of the Non-dominated Sorting Genetic Algorithm (NSGA-II) [231].
It is a powerful and intelligent algorithm for multi-objective optimizations, significantly
reducing the exploration time, despite finding solutions on the Pareto-front.

The NSGA-II algorithm [231] generates a set of offspring Qt from the current population
Pt. Each offspring is generated from two randomly picked individuals c1, c2 from Pt.
Then, a crossover binary vector of length k is randomly generated. This vector specifies
whether either c1 or c2 is used as a source for crossover. After that, one randomly selected
configuration parameter (so-called gene) is mutated with a small probability ρ.

The individuals Pt ∪ Qt are sorted into multiple fronts Fi, according to the dominance
relation. The first front F1 contains all the non-dominated solutions along the Pareto

69

3. Hardware and Software Optimizations for Capsule Networks

front. Each subsequent front (F2, F3, . . .) is constructed by removing all the preceding
fronts from the population and finding a new Pareto front. The first fronts (e.g., F1
and F2) are copied to the next population Pt+1. If any front must be split (e.g., F3), a
crowding distance is used to select individuals to Pt+1.

The algorithm runs iteratively for g generations (steps). Its pseudocode is reported in
Algorithm 7, where the following procedures are used:

• RandomConfigurations(X, n) randomly picks n configurations from a set X.

• CrossoverAndMutate(X, n) generates n new offsprings from parents P by uniform
crossover and mutation.

• EstimateParameters(X) evaluate the new candidate solutions from a set X.

• PickPareto(X) selects Pareto optimal solutions from a set X, and these solutions
are removed from the set.

• DistanceCrowding(X, n) returns n solutions from a set X.

Algorithm 7: NSGA-II.
Input: search space S, sizes of population |P |, |Q|, number of generations g
Output: Pareto set F ⊆ P1 × P2 × · · · × Pk

1 P1 ← RandomConfigurations(S, |P |);
2 for g = 1 . . . g do
3 Qi ← CrossoverAndMutate(Pi, |Q|);
4 T ← EstimateParameters(Pi ∪ Qi);
5 Pi+1 ← ∅;
6 while |Pi+1 < |P | do
7 F = PickPareto(T);
8 if |Pi+1| + |F | ≤ |P | then
9 Pi+1 ← Pi+1 ∪ F ;

10 else
11 Pi+1 ← Pi+1 ∪ DistanceCrowding(F, |P | − |Pi+1|);
12 end
13 end
14 end
15 return PickPareto(Pg);

The advantage of having a multi-objective algorithm is that it re-constructs the Pareto
front in each generation and tries to cover all possible solutions. The output of the
multi-objective algorithm is a set of non-dominated circuits.

70

3.3. FEECA: A Methodology to design a Fast, Energy-Efficient CapsNet Accelerator

3.3.4 Set of Internal Primitives
In contrast to the first version of the CapsAcc architecture, we propose a modified version
of PEs with multiple pairs of weight and data inputs (npe) multiplied and reduced using
a reduction tree.

Such types of PEs can be generated in a configurable manner, varying the following
parameters:

• number of input pairs npe of bit-width bin;

• bit-width of the partial sum bout;

• number of stages of the pipeline nstg;

• number of rows of the PE array #ROWS;

• number of columns of the PE array #COLS.

The PEs are constructed to have a minimal logical depth D = ⌈log2(nout + 1)⌉, where
nout is the maximum number of outputs from the multiplier that must be added. We
assume that bout ≥ 2bin because the output is the result of a sum of multiplications.
Then, the bit-width of each adder in the tree structure has a depth value lower than or
equal to bout. Compared to the PE architecture of CapsAcc (recall Figure 3.7b), the PE
in Figure 3.15 is a more generalized version. Hence, in the following experiments, we will
use the latter version.

Generalized PE

Figure 3.15: Example of a generalized PE with npe = 8 pairs, bin = 8, bout = 25 and
nstg = 1.

71

3. Hardware and Software Optimizations for Capsule Networks

The longest computational paths of the tree can be reduced by inserting pipeline registers
along the paths, i.e., by increasing the parameter nstg. This modification may cause
significant area and energy overhead because of the additional registers inserted in every
wire at the same pipeline stage.

3.3.5 Estimation of the Parameters of the Accelerator

An essential aspect of the brute-force search, which is also valid for the heuristic space
search, is the estimation of the HW parameters of the accelerator in a fast and accurate
way. In this work, we focus on parameters of the HW accelerator that have no impact
on the overall accuracy of the CapsNet. Hence, we focus on the parameters of the HW
accelerator, which are area, delay, and energy consumption (considering the contributions
of the PE array and the memory accesses).

Area

The model to estimate the area of the PE array is simple yet accurate. We consider
a modular approach where the estimation is built bottom-up. Since the PE array is a
Cartesian grid of PEs, the area of the PE array can be estimated as a sum of values
from a fully characterized set of primitives (PEs, Registers) for a given clock period T .
Therefore, only the logic synthesis of the primitives is needed.

Delay

Modeling the delay, i.e., the computation latency of one inference pass of the CapsNet, is
the most critical step because it has to consider having different values of the internal
primitives and different dataflows for each layer/operation of the inference. Therefore,
we build one analytical model for each operation, which computes the number of clock
cycles needed to process the inputs of the respective layer. It is parametrized by the
internal primitives of the accelerator, i.e., nstg, npe, #COLS, #ROWS. Therefore, for
each layer, the delay is computed by multiplying the number of clock cycles by the clock
period. The overall delay of the CapsNet inference is the sum of the delays for every
single operation.

Energy Consumption

The energy consumption needed by the accelerator to complete one inference pass has
two can be breakdown in two parts. The first one is the energy consumed by the PE
array, i.e., the power consumption of the PE array (calculated in a similar way as for
computing the area, summing the power consumption of a fully characterized set of
primitives), multiplied by the delay. The second contribution the energy required for the
reading operations from the data and weight memories, assuming a maximum SRAM
available of 8MB.

72

3.3. FEECA: A Methodology to design a Fast, Energy-Efficient CapsNet Accelerator

3.3.6 Evaluation of our FEECA Methodology
In this section, we show the ability of the proposed FEECA methodology to find Pareto-
optimal configurations of the PE array of the CapsNet accelerator to efficiently perform
inference of CapsNets. We conducted these experiments on the CapsNet model for
the GTSRB dataset [232]. The experiments are divided into four parts. In the first
experiment, the synthesis results of the internal primitives (PEs, registers, etc.) for
selected nstg, T , npe, bin and bout parameters are conducted. Then, two sets of Pareto-
optimal configurations in terms of energy vs. delay and area vs. delay objectives are
constructed and analyzed. The speedup and quality of the heuristic NSGA-II searching
algorithm are analyzed and discussed. Finally, a three-dimensional Pareto front is
constructed. The experimental setup and toolflow are shown in Figure 3.16. Here, the
search algorithm explores different configurations to select Pareto-optimal solutions based
on the design objectives. The evaluation is done based on the synthesized components
(PEs and Regs.) and the models extracted from the baseline CapsAcc performing the
inference of the input CapsNet.

Configurable Parameters:
#ROWS of the PE array ∈ [1, 50]
#COLS of the PE array ∈ [1, 50]
Pipeline stages nstg ∈ {1, 2}
Clock period T ∈ {2, 3, 4}
Input pairs (weight+data) npe ∈ [1, 200]
Memory Bandwidth membw ∈ [27, 210]

Design Objectives:
Energy-Delay, Area-Delay,

Area-Energy-Delay

Input
CapsNet

Output:
Set of Pareto-Optimal

Configurations

CapsAcc
Accelerator

Models
Extraction

Evaluation:
Area,

Energy,
Delay

Area
Power
EnergyMemory

Generator

PE Array
Generator

Design
Compiler

CACTI

Search Algorithm:
Brute-force or

NSGA-II

BSP Pareto

Figure 3.16: Experimental setup and toolflow for evaluating the FEECA methodology.

Generator: Synthesis of Internal Primitives

First, we generate the design primitives for bin = 8, bout = 25, nstg ∈ {1, 2} and
npe ∈ [1, 400]. The generated PEs have been synthesized using Synopsys Design Compiler
in a 45nm technology node and clock periods T ∈ {2, 3, 4}. In Figure 3.17, the parameters
of the designs for nstg ∈ {1, 2} are shown. Note that the constraint on the clock period
limits the number of inputs npe because the depth of the reduction tree is larger, and the
timing constraints are violated. For example, setting the clock period to 2ns limits npe
to 7. Therefore, the maximal npe is 7, 130 and 300 for nstg = 1 and 7, 150 and 400 for
nstg = 2, respectively.

We also synthesize the designs where the computational path is divided into two clock
cycles (registers are after the multipliers) in a pipelined fashion. The additional registers

73

3. Hardware and Software Optimizations for Capsule Networks

Low clock
period

limits npe

Low clock
period

limits npe

Figure 3.17: Power consumption and area of PEs with various bit-width of P.Sum (bout)
and nstg = 1. The dotted lines show the maximal number of inputs npe that can be
synthesized without violating the constraint for a given bit-width.

cause 28% power overhead compared to a single-cycle computation. The area overhead
is 36%. To compute the energy consumption due to the memory accesses, we design the
SRAM memory using the CACTI-P tool [233], considering the total size of 8MB and the
block size of 128B. The results of area, energy for the read access, and leakage power,
varying the memory bandwidth (membw), are reported in Table 3.6.

Table 3.6: Parameters of the SRAM.

Bandwidth [bits] 128 (107) 256 (108) 512 (109) 1024 (1010)
Area [mm2] 55.8 61.1 66.0 76.5

Read energy [nJ] 0.549 0.967 1.897 3.943
Leakage power [mW] 4272 4335 4385 4493

Complete Accelerator Construction

The parameters of the CapsAcc are optimized using the proposed FEECA methodology, as
discussed in Figure 3.16. We consider two pairs of objectives, which are energy vs. delay
(E vs. D) and area vs. delay (A vs. D). Using a brute-force algorithm, our FEECA
methodology finds 228 E vs. D Pareto-optimal configurations and 127 A vs. D Pareto-
optimal configurations, as shown in Figure 3.18 (optimal points). Note that the Pareto-
optimal solutions obtained by the brute-force highly overlap with the solutions generated
with the NSGA-II algorithm, meaning that the latter is an efficient and fidelitous
design space algorithm. Moreover, there is a relatively small area variation between the
configurations. Note that there are different solutions with the same area but different
delays. We also compared the Pareto-optimal solutions found by the NSGA-II-based
FEECA methodology with a random search of the same number of candidate solutions.
Compared to the Pareto-optimal points found by the random search (see the green points
in Figure 3.18), the Pareto-optimal points found by the NSGA-II-based search exhibit

74

3.3. FEECA: A Methodology to design a Fast, Energy-Efficient CapsNet Accelerator

67× and 146× lower average normalized Euclidean distance to the optimal points for the
E vs. D and A vs. D objectives, respectively.

Energy [mJ]

Small
Area

Variation

Figure 3.18: Pareto-optimal configurations found by the brute-force algorithm (optimal),
NSGA-II algorithm (heuristic), and random search, and the other Pareto-dominated
solutions (brute-force), for (left) energy vs. delay and (right) area vs. delay objectives.

For the E vs. D objectives, Figure 3.19 shows energy consumption and delay of the
configurations optimized (a) for the overall E vs. D and (b) for the E vs. D of each single
layer. The PrimaryCaps layer has the biggest impact on the overall energy and delay.
Thus, the layer-wise and the CapsNet-optimal configurations, in that case, fall almost
on the same curve. On the other hand, the CapsNet-optimal configurations degrade the
performance of the Sum, Update and mostly Conv1 layers, but these layers participate on
the overall objectives with a lower impact, compared to the PrimaryCaps layer. Indeed,
an optimal solution for the whole CapsNet belongs only to the PrimaryCaps layer optimal,
while it is not optimal for the other layers.

Another view on the optimal configurations is presented in Figure 3.20. This figure shows
the distribution of the parameters of the CapsNet accelerator for different configurations.
Note that if we consider all the objectives, better results are achieved when using
#ROWS = 1. Considering the E vs. D objectives, maximizing membw is convenient.
The highest contribution to the overall delay and energy consumption is due to the
PrimaryCaps layer. It is convenient to choose the value of npe in the range between 1 and
7. However, considering the Conv1 only, a better choice would have been npe ∈ {4.7}
and equal to 4 for the ClassCaps layer. The Sum, Update and ClassCaps layer prefer the
size of the PE array equal to 32 × 1. On the other hand, the distribution of the optimal
parameters for the A vs. D design objectives is different. Since the area strongly depends
on membw, all their values lead to some Pareto-optimal solutions.

Heuristic Search Algorithm

The brute-force algorithm eventually finds the optimal solutions. However, it is very slow
because all the possible solutions are explored. Therefore, we implement the heuristic

75

3. Hardware and Software Optimizations for Capsule Networks

Layer Energy [mJ] Layer Energy [mJ]

Layer Energy [mJ] Layer Energy [mJ]

Among the
Pareto-optimal

solutions
Not optimal

Not optimal
Not optimal

Figure 3.19: Energy and delay of the separate layers with configurations that are (blue
dots) optimal for the whole CapsNet and (red dots) optimal for one layer only. The
highlighted solution (nstg = 1, npe = 7, #COLS = 12, #ROWS = 1, membw = 1024,
T = 2 ns) consumes approximatively 80% of the energy in the PrimaryCaps and Conv1
layer, while the contributions for the other layer is significantly lower.

Figure 3.20: Distribution of npe and #COLS parameters for configurations that are
Pareto optimal for E-L and A-L objectives. The blue bars show the distribution of the
objectives of the whole CapsNet. The red bars show the configurations optimized for a
single layer.

76

3.3. FEECA: A Methodology to design a Fast, Energy-Efficient CapsNet Accelerator

NSGA-II algorithm to speed up the search process. For the E-L objectives, the NSGA-II
runs for 1 000 iterations of the generation process, with a population size |P | = |Q| = 50,
to find up to 50 Pareto-optimal configurations.

The NSGA-II algorithm needs only 50 050 evaluations (0.44% of the search space).
Therefore, the exploration time has been decreased from 2.5 hours to 30 seconds compared
to using brute force. The design for the E vs. D objective is not trivial because the
optimal Pareto frontier consists of 228 configurations. Therefore, the initial settings
|P | = |Q| = 50 allow us to find only a small subset of the optimal solutions, regularly
distributed due to the distance crowding. However, almost all the found solutions belong
to the optimal Pareto set, and the average normalized Euclidean distance (ANED) from
the found solutions to the nearest optimal ones is 4 · 10−5. However, the ANED from the
optimal solutions to the nearest found solutions is 0.006. To reduce the distance from
the optimal solutions, we increase the size of the population to |P | = |Q| = 150 (150 150
evaluations; 1.31% of the exploration time). With these settings, we found 150 solutions.
Although such modification causes 3× more time for the design, the ANED from optimal
to found solutions is decreased to 0.001, and each found solution belongs to the optimal
Pareto set. The heuristic design for the A vs. D objective with |P | = |Q| = 150 allows us
to find 97 of 127 configurations with an ANED from optimal to found solutions equal to
2 · 10−4. The results are shown in Figure 3.18.

Multiobjective Optimization

By running the search algorithm on our benchmark, three objectives of the CapsNet
accelerator are optimized: the area on chip, the energy consumption for the inference of
one input image, and the delay (i.e., the inference latency).

Figure 3.21 reports three different visualization perspectives of the results, where each
couple of two objectives is combined into products, which are energy × delay (EDP),
area × delay (ADP) and energy × area (EAP), respectively. By reducing the space
dimension, only a smaller number of solutions remain in the Pareto-frontiers, shown
by the grey lines. For example, the lowest-delay solution, which will be analyzed, as a
case study, in the following section, is marked with grey circles in Figure 3.21. It lays
on the Pareto-frontier only in the last two plots, i.e., the ADP vs. energy tradeoff and
EAP vs. delay, while it is not Pareto-optimal for the other case. Indeed, if we consider
the EDP, 75% of the configurations are Pareto-dominated. Similarly, considering the
ADP and the EAP, more than 42% and 43% of the configurations are Pareto-dominated,
respectively.

Case Study: Synthesis of a Pareto-Optimal Solution

As a case study, we synthesised the complete PE array of the selected solution (high-
lighted with a grey circle in Figure 3.21), using the Synopsys Design Compiler. The
microarchitectural structure of the PE array is shown in Figure 3.22. Note, since the

77

3. Hardware and Software Optimizations for Capsule Networks

Lowest-Delay
solution

(outside the
Pareto-front)

Energy-Delay
Product [mJ·s]

Area-Delay
Product [µm2·s]

Energy-Area
Product [mJ ·µm2]

Lowest-Delay

Lowest-Delay

Ar
ea

 [µ
m

2]

En
er

gy
 [m

J]

De
la

y
[s

]

Figure 3.21: Pareto-set of configurations with three objectives in a figure (top) and
combining two objectives as products (bottom). The highlighted lowest-delay solution has
a configuration of nstg = 1, npe = 4, #COLS = 32, #ROWS = 1, T = 3 ns, membw =
1024.

solution has one row, the structure of the PE differs from the generic PE (see Figure 3.15)
in two aspects:

• Since there is only one row, the Weight1 Reg. is not needed because there is no
reason to store the weight values for the subsequent rows.

• Since there is only one row, the input partial sums are null. Therefore, all the
relative connections and additions are omitted.

X X XX
+ +

+

Weight Reg.Data Reg. X X XX
+ +

+

Weight Reg.Data Reg.X X XX
+ +

+

Weight Reg.Data Reg.

● ● ●

From
 M

ux
From Mux

To Accumulators

PE Array

Figure 3.22: Microarchitecture of the PE array for the selected solution, which has
npe = 4, #COLS = 32, #ROWS = 1.

The first row of Table 3.7 shows the results of the selected solution in Figure 3.21. The
last two rows report the results of state-of-the-art designs of the baseline architecture

78

3.3. FEECA: A Methodology to design a Fast, Energy-Efficient CapsNet Accelerator

of CapsAcc (Section 3.2) and DESCNet (Section 3.4), while the rest of the rows show
the results of a few other solutions, which have the same amount of multipliers as the
solution in the first row.

Table 3.7: Results for the PE array and estimated delay, area, and energy consumption
for the whole CapsAcc architecture. The fastest (lowest delay) configuration of the
CapsAcc is highlighted in green in the first row. In contrast, the original version of the
CapsAcc, which was analyzed in Section 3.2, is reported in the second last row. All
circuits have been synthesized with the clock period T = 3 ns.

Configuration est. DeepCaps (est.) CapsNet (est.) PE array
membw npe c × r area [mm2] energy [mJ] delay [ms] energy [mJ] delay [ms] area [mm2] power [mW]

Ours

1024 4 32 × 1 76.64 210.13 2.932 84.06 0.210 0.168 36.5
512 4 32 × 1 66.13 203.78 3.247 81.70 0.392 0.168 36.5
256 4 32 × 1 61.19 210.03 3.877 84.81 0.755 0.168 36.5
128 4 32 × 1 55.93 241.23 5.137 98.88 1.482 0.168 36.5

Ours 1024

4 16 × 2 76.64 113.11 3.247 43.33 0.392 0.168 37.6
4 2 × 16 76.64 54.23 8.021 21.37 3.086 0.168 38.2
4 8 × 4 76.64 66.91 3.890 24.26 0.761 0.168 39.0
4 4 × 8 76.64 49.05 5.215 17.52 1.514 0.168 39.1
8 4 × 4 76.63 66.94 3.916 24.31 0.771 0.161 36.3
8 8 × 2 76.63 112.91 3.254 43.32 0.395 0.161 35.8
8 2 × 8 76.63 50.23 5.319 17.96 1.557 0.161 36.3
16 4 × 2 76.63 112.53 3.267 43.29 0.400 0.158 35.2
16 2 × 4 76.63 67.05 3.968 24.41 0.793 0.158 35.9
16 1 × 8 76.63 52.72 5.528 18.93 1.646 0.158 35.3
16 8 × 1 76.63 209.40 2.936 83.97 0.212 0.158 34.3
32 2 × 2 76.63 111.85 3.293 43.23 0.411 0.163 35.3
32 1 × 4 76.63 67.32 4.073 24.69 0.837 0.163 35.4
32 4 × 1 76.63 208.46 2.942 83.86 0.215 0.163 35.0
2 32 × 2 76.66 113.24 3.247 43.35 0.392 0.184 43.6
2 2 × 32 76.66 86.11 13.425 39.20 6.143 0.184 44.1
2 16 × 4 76.66 66.92 3.877 24.24 0.755 0.184 44.1
2 4 × 16 76.66 50.54 7.812 19.89 2.999 0.184 44.9

CapsAcc 1024 1 16 × 16 76.86 479.8 103.1 40.12 8.621 0.434 112.3
DescNet 128 1 16 × 16 56.15 278.31 103.1 18.37 8.621 0.434 112.3

Observations and Results Discussion

From the results in Table 3.7, we can derive that energy and delay significantly depend
on the microarchitectural configurations of the accelerator. On the other hand, the area
is strongly affected by the memory bandwidth. High memory bandwidth implies low
delay but at the cost of higher energy consumption. The system’s throughput can be
derived as the inverse of the latency. Key Observation: Note that, despite the baseline
design being 2D in terms of rows and columns of the PE array, there exist solutions in the
Pareto-front with only one row or only 1 column. This is because the second dimension
needed for accelerating the computation of matrix multiplication is embedded in the
parameter npe, which is higher than 1. Hence, an efficient parallelism is guaranteed by
the designed PE. It is remarkable that the selected solution, in the first row of Table 3.7,
reduces the delay of a factor 7×, compared to the CapsAcc.

79

3. Hardware and Software Optimizations for Capsule Networks

3.3.7 Summary

The FEECA methodology is proposed to explore the design space for specialized hardware
accelerators computing CapsNet inference. To enable this methodology, the analytical
models for the area, latency, and energy consumption as functions of the microarchitectural
parameters of the PE array (such as the size and configuration of the PE array and
the structure of the PEs) are built. Through the exploration of the design space with
the help of the genetic NSGA-II algorithm, the Pareto-optimal solutions are selected.
Besides optimizing the computing hardware design, the memory architecture design
and management are crucial for such hardware accelerators when considering energy
reductions to the overall hardware design. Hence, investing further effort to analyze the
possibilities and opportunities to employ an application-specific memory architecture can
reduce the total memory energy, as demonstrated in Section 3.4.

3.4 DESCNet: Developing Efficient Scratchpad Memories
for CapsNet Hardware

Compared to traditional DNNs, CapsNets have improved the generalization ability due
to using multi-dimensional capsules and preserving the spatial relationship between
objects. However, they pose high computation and memory requirements, making
their energy-efficient inference a challenging task. In this section, we provide, for the
first time, an in-depth analysis to highlight the design- and run-time challenges for
the (on-chip scratchpad) memories employed in hardware accelerators that execute
fast CapsNets inference. To enable high efficiency, we propose an application-specific
memory architecture called DESCNet, which minimizes the off-chip memory accesses
while efficiently feeding data to the hardware accelerator executing CapsNets inference.
We analyze the corresponding on-chip memory requirement and leverage it to design a
methodology that explores different scratchpad memory designs and their energy/area
tradeoffs. Afterward, an application-specific power-gating technique for the on-chip
scratchpad memory is devised to further reduce its energy consumption, depending
upon the dataflow of the CapsNet and the utilization across different operations of its
processing.

We integrated our DESCNet memory design with the CapsAc accelerator executing
Google’s CapsNet model for the MNIST dataset. We also enhanced the design to run
the DeepCaps for the CIFAR10 dataset. The complete hardware is synthesized for a
45nm CMOS technology using the ASIC-design flow with Synopsys tools and CACTI-
P, and detailed performance, area, and power/energy estimation is performed using
different configurations. Our results for a selected Pareto-optimal solution demonstrate
an energy reduction of 79% for the complete accelerator, including computational units
and memories, compared to the state-of-the-art design.

80

3.4. DESCNet: Developing Efficient Scratchpad Memories for CapsNet Hardware

3.4.1 Overview of DESCNet Methodology
The CapsAcc architecture described in Section 3.2 mainly focused on designing an
efficient computational array and optimizing the dynamic routing algorithm. However,
the memory architecture design and management for the CapsNet accelerators are key
aspects when considering energy reductions of the overall hardware system. Moreover,
memory optimizations for the traditional DNN accelerators do not operate efficiently
as they do consider the distinct processing flow and compute patterns of the CapsNets
algorithms. This necessitates investigations for specialized memory architectures for the
DNN accelerators executing CapsNets algorithms while exploiting their unique processing
operations and memory access patterns to enable high energy efficiency. Assuming a large
on-chip memory is typically not applicable in resource-constrained embedded applications,
e.g., deployed in the IoT-edge devices. Therefore, a memory hierarchy system with on-chip
and off-chip memories is preferred in this scenario.

As will be demonstrated in Section 3.4.3, the energy consumption for both the on-chip
and off-chip memories contributes to 96% of the total energy consumed by the CapsNet
hardware architecture. Hence, it is crucial to investigate the energy-efficient design and
management of an on-chip memory hierarchy for CapsNet hardware architectures. The
key to achieving high energy efficiency is to exploit the application-specific properties of
CapsNets, which include the processing behavior of their unique computational blocks,
mapped dataflow, and the corresponding memory access patterns. Since the operations and
memory access patterns of the CapsNet inference are distinct from those of the traditional
DNNs, the existing memory architectures for the DNN accelerators might not be efficient
when executing CapsNets inference. Therefore, to understand the corresponding design
challenges and the optimization potential, we investigate the memory requirements in
terms of size, bandwidth, and the number of accesses for every stage of the CapsNet
inference when mapping it to the CapsAcc and to a traditional DNN accelerator like the
TPU.

Traditional memory hierarchies in DNN accelerators are composed of an off-chip DRAM
and an on-chip SRAM, where the on-chip memory is basically a scratchpad memory
and not a traditional cache. Though general-purpose approaches for memory design
exist [82], achieving high energy efficiency for CapsNets requires application-specific
designs and optimizations, as discussed above. This application-specific design needs to
consider for the memory access behavior of different processing operations of the CapsNets
and their respective dataflow on a CapsNet accelerator to explore the design space of
different parameters of the memory hierarchy (i.e., size, number of banks, partitions)
for multiple levels. For instance, intensive on-chip scratchpad memory (SPM) accesses
lead to high energy and performance overhead, requiring a large on-chip memory coupled
with CapsNet accelerators supporting efficient data reuse to alleviate the overhead of
excessive off-chip memory accesses. However, a large SPM increases chip area and leakage
power. Hence, besides efficient sizing and partitioning of the SPM, an application-specific
power-gating control is also needed for further energy reduction under run-time scenarios
of diverse memory usage influenced by different processing steps of the executing CapsNet

81

3. Hardware and Software Optimizations for Capsule Networks

algorithm, when considering the corresponding wakeup overhead. Such an application-
driven memory hierarchy design and power management of the SPM for CapsNet hardware
architectures may provide significant energy reductions compared to the traditional memory
architectures for DNN accelerators while keeping high throughput.

Our Novel Contributions

Figure 3.23 provides an overview of our DESCNet memory architecture design methodol-
ogy, showing the integration of our novel contributions with a CapsNet accelerator. In a
nutshell, we propose:

1. Memory Analysis of CapsNet Inference to systematically study the design
requirements (size, accesses), energy consumption and performance, for different
operations of the CapsNet and DeepCaps inference.

2. DESCNet: A Specialized Multi-Banked Scratchpad Memory Architec-
ture for CapsNet Accelerators, which is designed considering the dataflow and
the corresponding memory access patterns of different operations of the CapsNet
inference. The SPM is partitioned into different sectors to support fine-grained
sector-level power-gating, thereby providing a higher energy savings potential under
run-time varying memory usage. Since our SPM supports common input/output
interfaces, it can be coupled with any accelerator that can execute CapsNet infer-
ence.

3. Design Space Exploration (DSE), which is performed to automatically obtain
the Pareto-optimal values of different key parameters of our DESCNet memory
architecture. It leverages tradeoffs between memory, area, and energy consumption
while exploiting the distinct processing behavior of different steps of the CapsNet
inference.

4. Application-Driven Memory Power Management: it leverages the architec-
tural parameters of the accelerator, the processing flow of the CapsNet inference,
and the interfacing with memory, to devise a sector-level power-gating for reducing
the static power.

5. Hardware Implementation and Evaluation of the complete CapsNet architec-
ture with an integrated DESCNet memory in a 45nm CMOS technology using the
ASIC-design flow with Synopsys tools and CACTI-P. We perform area and energy
evaluations for 15 233 possible configurations of the on-chip memory architectures
for the CapsNet and 215 693 for the DeepCaps, and benchmark them against the
CapsAcc memory design.

82

3.4. DESCNet: Developing Efficient Scratchpad Memories for CapsNet Hardware

On-Chip
SPM

Off-Chip
DRAM

Application-Aware Offline
Analysis of Memory

Requirements

Application-Aware
Design Space Exploration
and Power Management

CapsNet
Inference

Accelerator

Knowledge of
Requirements

Knowledge
of Utilization

Pre-trained
weights

Figure 3.23: Overview of our DESCNet Memory Design Methodology.

3.4.2 Required Architectural Modification and Key Research Question

To overcome the limitation of having large on-chip memory in the baseline CapsAcc
architecture (Figure 3.24a), and towards real-world edge implementations, we employ
a modified architecture of CapsNet hardware that has a memory hierarchy consisting
of an on-chip SPM and an off-chip DRAM, as shown in the blue boxes of Figure 3.24b,
respectively.

(a) (b)

Figure 3.24: Architectural view of the CapsNet inference accelerator. (a) Baseline
architecture in CapsAcc. (b) Modified architecture for this work with off-chip and
on-chip memory partitioning, which is more practical for embedded implementations.

Such a design can generalize the problem for diverse applications and CapsNet architec-
tures. However, considering such a memory hierarchy, the challenge then lies in designing
and managing the on-chip memory such that (i) the off-chip memory accesses are mini-
mized, (ii) the reuse of intermediate data and weights stored in the on-chip memory is
exploited at the maximal, and (iii) the unnecessary parts of the on-chip memory can
be power-gated in some scenarios of varying memory accesses without reducing the
performance of CapsNets processing. These problems have not been studied for the
CapsNets hardware yet. Towards this, we aim at investigating the following key questions
when determining the memory sizes and the communication between off-chip and on-chip
memories.

83

3. Hardware and Software Optimizations for Capsule Networks

1. How to minimize the off-chip memory accesses to reduce the energy consumption?
Every data is read from or written to the off-chip memory only once, while used
once or multiple times in the on-chip memory.

2. How to keep the latency and throughput similar/close to the case of having all
the memory on-chip, i.e., hiding the off-chip latency as much as possible? This can
be guaranteed by prefetching the data to the on-chip memory to mask the off-chip
memory latency, assuming that the on-chip memory is large enough to contain all
the necessary data.

3. How to minimize the on-chip SPM size for reducing the leakage? What would be
the appropriate design tradeoffs?

4. How can we design efficient power-gating for the on-chip SPM to save the leakage
power for the unused sectors?

5. Can we exploit the unique processing and data reuse characteristics of CapsNets to
optimize the corresponding memory access profiles?

Since the above-discussed challenges can pose contradicting requirements and constraints,
in-depth analyses of the resource requirement and usage patterns of CapsNets processing
are needed before making appropriate design decisions, which we discuss in the following
Section 3.4.3.

3.4.3 Resource Analysis of CapsNet Inference
First we investigate the Google’s CapsNet architecture [34] that performs MNIST [60]
classification, using the architectural organization presented in Figure 3.24b. We analyze
the performance and the on-chip memory requirements for different operations of the
CapsNet inference, showing their on-chip read and write accesses. Afterward, we analyze
the DeepCaps [31] for the CIFAR10 [234] classification, showing that the accumulators
have the highest contributions in memory usage and accesses. Meanwhile, the energy
breakdown analysis shows the respective contributions of the accelerator and the memories.
Our experiments obtain the same classification accuracy as for the CapsNet on the
MNIST dataset and for the DeepCaps on the CIFAR10 dataset, i.e., 99.67% and 92.74%,
respectively.

Performance and Memory Analyses for the Google’s CapsNet on the MNIST
Dataset

Memory Usage Analysis: In Figure 3.25, we analyze the on-chip memory requirements
for each operation of the CapsNet inference. The dashed lines represent their maximum
values. Note, unique operations (like ClassCaps, Sum, Squash, Update and Softmax)
of the Google’s CapsNet [34] inference mapped onto the CapsAcc accelerator exhibit
different memory utilization profiles compared to when mapped to a memory architecture

84

3.4. DESCNet: Developing Efficient Scratchpad Memories for CapsNet Hardware

designed for the traditional DNNs like the TPU [8]. The overall size can be chosen by the
operation that requires the largest amount of memory (i.e., the PrimaryCaps layer). For
this configuration, the on-chip SPM is composed of the data, weight and accumulator
memories. This analysis unleashes the available optimization potential for improving the
memory energy efficiency when designing a specialized memory architecture for CapsNet
accelerators.

16x higher
for TPU

Figure 3.25: Memory utilization of the Google’s CapsNet inference, mapped on a
specialized CapsNet accelerator (CapsAcc) and TPU. The bars represent the on-chip
memory usage. The dashed lines show the maximum requirement.

Performance Analysis: Figure 3.26a presents the execution time (i.e., number of clock
cycles) of different operations involved in the CapsNet inference. Note that the dynamic
routing operations contribute to more than half of the execution time of the complete
CapsNet inference. Overall, the performance is 116 frames-per-second (FPS) for the
CapsAcc accelerator. Suppose we combine the results of Figures 3.25 and 3.26a. In that
case, we notice that, potentially, a significant amount of leakage energy can be saved by
the power-gating part of the on-chip memory when the utilization is below 100%. We
leverage this observation to develop an application-specific power management policy for
memories of the CapsNet Accelerators, as discussed in Section 3.4.4.

Memory Access Analysis: Figure 3.27a provides a detailed analysis for each memory
component (i.e., data memory, weight memory and accumulators), which enables an
efficient DSE of different architectural parameters of the DESCNet. Note that handling
different memory components separately may enable efficient power management. Fig-
ure 3.27b and Figure 3.27c illustrate the read and write accesses, respectively, for each
operation i of the CapsNet inference, i.e., Convolutional1 (Conv1), PrimaryClass (Prim)
and ClassCaps-FullyConnected (Class). These values are required to compute the energy
consumption of the memories in the subsequent sections.

The off-chip accesses, reported in Figure 3.28, can be computed using Equations (3.3)
and (3.4), which are valid for the first three operations, indicated with the index i. RDoff

and WRoff indicate the SPM read and write accesses, while the subscripts D and W

stand for on-chip data and weight memories, respectively. In the dynamic routing, the
off-chip memory is not accessed, except for the first and last operation, because all the
values required during the dynamic routing are stored on-chip.

85

3. Hardware and Software Optimizations for Capsule Networks

Operations in the Dynamic Routing: 50.6%

Operations in ConvCaps2D layers: 73%

Figure 3.26: Clock cycles for different inference operations in (a) CapsNet for the MNIST
dataset; (b) DeepCaps for the CIFAR10 dataset.

Highest value

Efficient Data Reuse

Efficient Weight Reuse

Figure 3.27: On-chip memory analyses for different operations of the CapsNet inference
on the MNIST dataset. (a) On-chip memory usage. (b) On-chip reads. (c) On-chip
writes.

86

3.4. DESCNet: Developing Efficient Scratchpad Memories for CapsNet Hardware

(RDoff)i = (WRD + WRW)i (3.3)

(WRoff)i = (RDD)i+1 (3.4)

Off-chip memory
not accessed in the

dynamic routing

Highest value

Figure 3.28: Off-chip accesses for the CapsNet inference.

From the above analyses, we derive these key observations:

• For most operations, the accumulator’s memory usage is more than the data and
weight memories for each operation since it must store the temporary partial sums
of different output feature maps. However, the peak is visible in the weight memory
of the ClassCaps layer, which is FC.

• Data and weight memory requirements vary significantly across different operations.

• In the first two layers, the weight memory usage is relatively low compared to
the other stages because the architecture can efficiently reuse weights for the
convolutions.

• In the ClassCaps layer, the data memory usage is low because the corresponding
data reuse is efficient.

• Weight reuse is relatively more efficient in the last six operations (dynamic routing)
compared to the first three.

• During the dynamic routing, the off-chip memory is not accessed, except for the
read accesses in the first operation and write accesses in the last one, due to the
efficient data and weight reuse in these operations.

Performance and Memory Analyses for the DeepCaps on the CIFAR10
Dataset

Similar analyses have also been carried on for a deeper and more complex CapsNets such
as the DeepCaps [31]. The performance in terms of clock cycles is shown in Figure 3.26b,
and overall it is 9.7 FPS. Compared to the CapsNet, the DeepCaps shows a more
distributed partition. Overall, we can notice that the most time-consuming operations
are in the ConvCaps2D layers, which contribute to 73% of the execution time of the
complete DeepCaps inference.

87

3. Hardware and Software Optimizations for Capsule Networks

The on-chip memory usage, reads and writes are shown in Figure 3.29. Similar to the case
of the CapsNet, the accumulator’s usage is higher than the data and weight memories.
Moreover, the usage and accesses for the weight memory are low in the Conv layers but
higher for the dynamic routing operations.

Efficient Weight Reuse

High Accumulators
Usage

Figure 3.29: On-chip memory usage, reads and writes of different operations for the
DeepCaps inference.

The off-chip accesses for the DeepCaps are shown in Figure 3.30. While reads and writes
proportionally decrease by decreasing the sizes of the Conv layers, for the dynamic
routing, the accesses are low, thanks to the efficient reuse. The peak is visible at the
beginning of the ClassCaps layer due to a large number of weights in that operation.

Energy Breakdown Analysis

To compute the energy consumption of the complete architecture, we develop the following
two different versions.

(a) Figure 3.24a: an accelerator (composed of NP array, activation unit and control
unit), on-chip SPM buffers (data, weight and accumulator’s memory), and an
on-chip SPM (for data and weights). The total on-chip memory is of 8MiB.

88

3.4. DESCNet: Developing Efficient Scratchpad Memories for CapsNet Hardware

Highest value

Figure 3.30: Off-chip accesses for the DeepCaps inference.

(b) Figure 3.24b: an accelerator with the same composition as above, but different
architectures of on-chip and off-chip memories. The sizes are derived from the
previous analyses.

The energy breakdown is shown in Figure 3.31. The results are obtained by synthesizing
in a 45nm CMOS technology the CapsAcc accelerator executing the Google’s CapsNet
for the MNIST dataset. The on-chip and off-chip memory values are obtained using the
CACTI-P tool [233] with the compatible technology parameters, as it is well-adopted by
the memory community.

1% 3%

96%

Accelerator:
0.37 mJ
On-Chip Buffers:
1.08 mJ
On-Chip Memory:
38.67 mJ

3%

31%

66%

Accelerator:
0.37 mJ
On-Chip Memory:
3.39 mJ
Off-Chip Memory:
7.11 mJ

(a) (b)

Figure 3.31: Energy breakdown of different components of the CapsNet Inference Archi-
tecture: considering (a) all on-chip, as employed in CapsAcc and (b) a memory hierarchy
composed of on-chip and off-chip memories.

Our analysis shows that by designing a different memory hierarchy, we can save 73%
of the total energy compared to CapsAcc. These savings can be attributed to the
significantly reduced leakage energy due to the lower on-chip memory size. Moreover,
the on-chip memory consumes 31% of the total energy, which corresponds to the 90% of
the on-chip energy (i..e., accelerator and SPM). Hence, an application-driven memory
power management can significantly impact the overall on-chip energy savings.

89

3. Hardware and Software Optimizations for Capsule Networks

Note: the DeepCaps’ execution for the CIFAR10 dataset does not fit in the 8MiB
memory of CapsAcc. Hence, a comparison for executing the DeepCaps is not feasible.
However, as we will demonstrate later in this section, our proposed DESCNet memory
architecture enables the deployment of DeepCaps with low hardware resources.

Summary of the Key Observations From Our Analyses

Summarizing our analyses, we can leverage the following key observations to design an
efficient memory sub-system for the CapsNet hardware.

• Most of the energy is consumed by the (on-chip and off-chip) memory, as compared
to the computational array.

• An application-driven memory hierarchy, composed of an on-chip SPM and an
off-chip DRAM, can save up to 73% of the energy on the Google’s CapsNet model
without compromising the throughput compared to having a fully on-chip memory
organization. Note that the same throughput is guaranteed by prefetching the data
for the next operation in an interleaved fashion with the processing of the current
operation. Therefore, the off-chip memory latency can be hidden.

• The utilization of the on-chip memory is variable, depending upon the operation
of the CapsNet inference. Thus, applying power-gating to the non-utilized sectors
can further reduce its energy consumption.

• Partitioning the SPM into separate components (for data, weight, and accumulator)
can be beneficial for storing values and efficiently feeding them to the accelerator.

3.4.4 DESCNet: Scratchpad Memory Design
DESCNet Memory Architecture

The architecture of our DESCNet is depicted in Figure 3.32. It is connected to the
CapsNet accelerator and to the off-chip memory through dedicated bus lines. The SPM
is partitioned into B banks, where each bank consists of SC number of equally-sized
sectors. Across different banks, all the sectors are connected through a power-gating
circuitry (implemented with sleep transistors) to support an efficient sector-level power-
management control at the cost of some area overhead. Our design has SC sectors, one
for each bank, which share the same sleep signal. Note that we only consider ON and
OFF modes as they came out to be beneficial in our designs, and we did not need state-
retentive modes. Our application-driven memory power management unit determines
the appropriate control signals (i.e., ON ↔ OFF) for the sleep transistors. Once the
execution of the current operation is completed, the values in the SPM are discarded
since, in our designs, we consider a deep-sleep OFF state, which is non-retentive. The
transitions between sleep modes come at the cost of a certain wakeup energy and latency
overhead that needs to be amortized by the leakage energy savings that depends upon

90

3.4. DESCNet: Developing Efficient Scratchpad Memories for CapsNet Hardware

the sleep duration and the number of sectors in the sleep mode. Note that our memory
model can be generalized for different memory organizations supporting different sizes
and levels of parallelism, including multi-port memories. Towards this, we study the
following three design options.

(a) Figure 3.33a - Shared Multi-Port Memory (SMP): a shared on-chip memory
with 3 ports for accessing the weights, input data and accumulator’s storage in
parallel.

(b) Figure 3.33b - Separated Memory (SEP): weights, input data, and the
accumulator’s partial sums are stored in separate on-chip memories.

(c) Figure 3.33c - Hybrid Memory (HY): a combination of the above two design
options, i.e., an SMP coupled with a SEP memory.

M
em

or
y

C
on

tro
lle

r

Sector1
Sleep

Transistor

Sleep
Transistor

Sleep
Transistor

Bank1 Bank2 Bankn VDD

Ap
pl

ic
at

io
n-

D
riv

en
Po

w
er

 M
an

ag
em

en
t o

f
th

e
O

n-
C

hi
p

M
em

or
y

Sector2

Sectors

PE PE

PE PE

PE

PE

PE PE PE

Activation
Unit (ReLU,

Softmax,
Squash)

CapsAcc Architecture

DESCNet: On-Chip Scratchpad Memory

Control Unit

CPU

D
M

A

On-Chip

Off-Chip
Memory
(DRAM)

Figure 3.32: Architectural view of the complete CapsNet architecture, with a focus on
our DESCNet SPM.

Application-Driven Memory Power Management

Our application-driven memory PMU determines the sleep signals according to the
utilization profile of the memory, as observed in Figure 3.27a and Figure 3.29a. A simple
schematic showing how a sleep transistor is connected to its memory sectors is depicted
in Figure 3.34. The sleep request signal is followed by the acknowledge signal, to form a
2-way handshake protocol. The timing diagram of the complete sleep cycle (ON → OFF

91

3. Hardware and Software Optimizations for Capsule Networks

Shared Memory:
Weight, Data,
Accumulator

Off-chip,
Accelerator

Off-chip,
Accelerator
Accelerator

Accelerator

Accelerator

AcceleratorAA

D

W W

D

(a)

Weight Memory

Data Memory

Accumulator

Off-chip,
Accelerator

Off-chip,
Accelerator
Accelerator

Accelerator

Accelerator

AcceleratorA

W

D

A

W

D

(b)

Shared Memory:
Weight, Data,
Accumulator

Weight Memory

Data Memory

Accumulator

Off-chip,
Accelerator

Off-chip,
Accelerator
Accelerator

Accelerator

Accelerator

AcceleratorA

W

D
A

W

DW

W

A

A

D

D

(c)

Figure 3.33: Different Architectural Design Options of the On-Chip SPM of the CapsNet
Accelerator that are evaluated in our Application-Driven Memory DSE: (a) Shared Multi-
Port Memory. (b) Separated Memory. (c) Hybrid Memory (Shared and Separated).

→ ON) is shown in Figure 3.35. When exploiting the application-specific knowledge, it
is known from the analysis presented in Section 3.4.3 which sectors need to be activated
during the execution of different operations. Hence, the wakeup latency overhead is
transparently masked, i.e., the required sectors are pre-activated in advance, in such a
way that they are active when needed.

On-Chip Memory Sectors

VDD

VGND
Sleep request

Application-Driven
Memory PMU

Sleep acknowledge

Figure 3.34: Circuit-level schematic of the power-gating circuit, using a footer sleep
transistor connected to the PMU.

tsleep twakeup

Figure 3.35: Timing diagram of a complete sleep cycle of a sector.

92

3.4. DESCNet: Developing Efficient Scratchpad Memories for CapsNet Hardware

Application-Driven Design Space Exploration of the DESCNet Memory
Designs

Considering the above memory models, we systematically determine their organization,
sizes, the number of banks (B), and the number of sectors-per-bank (SC) through a
DSE methodology. We explore different memory architecture configurations and evaluate
their area and energy consumption. Different levels of abstraction of application-driven
knowledge (i.e., architecture and utilization profiles specific to CapsNets) are employed.
In the following equations and algorithms, we adopt these notations:

• i: index of the operations of the CapsNet inference.

• Di, Wi, Ai: operation-wise memory usage of data memory, weight memory and
accumulators, according to the analyses shown in Figure 3.27a and Figure 3.29a.

• SZ{S,D,W,A}, SC{S,D,W,A}, B{S,D,W,A}: size, number of sectors, number of banks
of {shared memory, data memory, weight memory, accumulators}, respectively.

• σ(s): pool of available numbers of memory sectors for power-gating, given the
memory size s, which are all the power of two values in the range

�
2, s

128

. Note,

the latter value is due to a limitation of the CACTI-P [233] tool, which sets the
limit for the ratio between memory size and sector size to be at least 128.

For all the memory designs, without loss of generality, the number of banks is chosen to
be BD = BW = BA = BS = 16, as it corresponds to the number of rows and columns
of the NP array of the CapsAcc architecture. To facilitate efficient data feeding to the
accelerator, this parameter is not changed in our DSE.

For the SMP design, the size of the shared memory is derived from the operation-wise
maximum memory usage scenario, as shown in Equation (3.5). Since only finite values
of memory sizes are acceptable, when computing the maxi function, the memory size
becomes the smallest acceptable size that is greater than or equal to the operation-wise
maximum, and vice-versa for the mini.

SMP:SZS = max
i

(Di + Wi + Ai) (3.5)

For the SEP design, the sizes of the data memory, weight memory, and accumulator are
set as in Equation (3.6), based on the operation-wise maximum memory usage of the
separated components.

SEP:

����
SZD = maxi(Di)
SZW = maxi(Wi)
SZA = maxi(Ai)

(3.6)

93

3. Hardware and Software Optimizations for Capsule Networks

Sizing the memories becomes a more complicated challenge for the HY design. Within
the range allowed by Algorithm 8, the memory sizes considered in our design space have
power-of-two values, with the addition of four randomly selected memory sizes (that are
25kiB, 108kiB, 450kiB, and 460kiB), to have more fine-grained results in the low-sized
range. For every possible size of data memory, weight memory, and accumulators, the size
of the shared memory is computed as the operation-wise worst-case that still guarantees
the minimum memory usage required by each operation.

Algorithm 8: Exploration of hybrid memory sizes.
Input: Operation-wise memory usage Di, Wi, Ai.
Output: Hybrid memory sizes SZS , SZD, SZW , SZA.

1 ret ← {};
2 for szd ← mini Di to maxi Di do
3 for szw ← mini Wi to maxi Wi do
4 for sza ← mini Ai to maxi Ai do
5 szs ← maxi(max(0, Di − szd)+ max(0, Wi − szw) + max(0, Ai − sza));
6 ret ← ret ∪ {(szs, szd, szw, sza)};
7 end
8 end
9 end

10 return ret;

After finding the appropriate memory sizes, the power-gating technique can be applied.
It directly affects the number of sectors in the memory designs, since a sleep transistor is
connected to each sector to switch ON or OFF the whole sector. Hence, for the memory
designs where the power-gating is not supported, the number of sectors is 1. When the
power-gating is supported, the choice of the number of sectors directly influences the
tradeoff between the reduction in the static power and the overhead of the power-gating
circuitry overhead. Towards this, Algorithm 9 describes all the combinations of valid
number of sectors allowed by the function σ(s) that are explored.

Following the above-discussed procedures, we have generated 15 233 configurations of
the DESCNet architecture for the CapsNet, and 215 693 configurations for the DeepCaps,
with different design options (SMP, SEP, HY), different sizes and number of sectors.
Note that the SMP and SEP design options can also be considered as the boundary
cases of the HY design option. On the one hand, a HY organization where SZD, SZW ,
and SZA are maximum is equivalent to the SEP because the corresponding SZS for the
HY results to be null. On the other hand, if SZD, SZW and SZA of a HY organization
are all equal to 0, its resulting SZS would have the same value as the one for the SMP.
Note that this particular solution, with SZD = SZW = SZA = 0, cannot be achieved
for a HY solution, due to the minimum constraints given in Algorithm 8. However, it
represents a hypothetical extreme case to discuss.

94

3.4. DESCNet: Developing Efficient Scratchpad Memories for CapsNet Hardware

Algorithm 9: Exploration of the number of memory sectors.
Input: Memory sizes szs, szd, szw, sza

Output: Number of sectors SCs, SCd, SCW , SCA

1 ret ← {};
2 for scs ∈ σ(szs) do
3 for scd ∈ σ(szd) do
4 for scw ∈ σ(szw) do
5 for sca ∈ σ(sza) do
6 ret ← ret ∪ {(scs, scd, scw, sca)};
7 end
8 end
9 end

10 end
11 return ret;

3.4.5 Our Methodology for the DSE of Scratchpad Memories
The flow of our methodology is depicted in Figure 3.36. The inputs are the CapsNet
models and the hardware accelerators for CapsNets. At the output, for each design
option, the values of memory organization (i.e., size, number of banks, and sectors),
energy consumption, and area are generated. The key steps of our methodology are:

1. Extraction of the memory usage and memory accesses for each operation of the
CapsNet inference. While the usage is needed for defining the design options and
sizes, the read and write accesses, along with the operation-wise clock cycles, are
used for computing the energy consumption.

2. Analysis of the design options (SMP, SEP, HY), and definition of the memory
configurations, such as size and number of banks and sectors for the power-gating.

3. A DSE of the possible memory configurations under analysis, through an exhaustive
search, to find and select the non-dominated solutions. The estimation of area
and energy consumption, with and without the power-gating option, are conducted
through the CACTI-P tool [233]. Note that we have performed an exhaustive search
because, due to the practical limitations on the memory sizes and the number of
sectors, the execution time of the search still results relatively low. We measured
the times for executing a complete DSE, including the estimation of energy and area
provided by CACTI-P, of 1.5 minutes for the Google’s CapsNet and of 22 minutes
for the DeepCaps, when running with a single-thread application on an AMD
Ryzen 5 CPU with 32GB RAM. However, if the search space increases or more
sophisticated memory evaluations require longer computational time, a heuristic
search algorithm can easily be integrated into our methodology to find a solution

95

3. Hardware and Software Optimizations for Capsule Networks

more quickly. Such a solution may be far from the optimal solution found by the
exhaustive search.

…
❑ Accumulator Size
❑ Data Reads
❑ Data Writes
❑ …

Squash
❑ Accumulator Size
❑ Data Reads
❑ Data Writes
❑ …

PrimaryCaps
❑ Accumulator Size
❑ Data Reads
❑ Data Writes
❑ …

CapsNet Hardware
Accelerator

❑ CapsAcc
❑ …

Extract
Operation-Wise
Memory Usage

CapsNet Models
❑ Google CapsNet
❑ DeepCaps
❑ …

1

ConvCaps2D
❑ Accumulator Size
❑ Data Reads
❑ Data Writes
❑ …

ANALYZER
Design Options,
Sizes, Number of

Banks and Sectors

2

DESIGN SPACE EXPLORATION
Optimizations of Memory
Configurations and Sizes

3

CACTI-P
Memory Modeling

Memory Organization, Energy Consumption, Area

SYNOPSYS-DC
(45 nm Technology)
PE Array Synthesis

Figure 3.36: DESCNet design space exploration and tool flow.

3.4.6 Evaluation of the DESCNet Methodology
Results for Google’s CapsNet (Area and Energy of the On-Chip Memory)

We evaluate different memory architectural options for area and energy consumption
using the CACTI-P tool. The results of different DESCNet architectural designs of the
scratchpad memory for the CapsNet on the MNIST dataset are discussed below.
Design Space Exploration Results and Selected Configurations (Figure 3.37):
The figure shows the tradeoff between energy and area for 15 233 different DESCNet
architectural configurations. For each design option (SMP, SEP, HY) and its corre-
sponding version with power-gating (with suffix -PG), the Pareto-optimal solutions
with lowest-energy are selected. Note, while SEP, SEP-PG and HY-PG belong to the
Pareto-frontier, HY, SMP and SMP-PG are dominated by other configurations. Their
size and number of sectors are reported in Table 3.8.
Area Comparison (Figure 3.38a): The figure shows the area breakdown of different
memory components of the DESCNet. We notice that, while the SEP organization has
relatively larger memory sizes compared to the other architectures, their area is relatively
smaller. This effect is due to having a single-port memory instead of a shared multi-ported
design, where the latter requires more area for the complex interconnections. Indeed the
area of the HY organization is lower than the SMP, due to a small-sized shared memory.
Moreover, the power-gating circuitry also incurs additional area overhead (on average,
2.75% for equally-sized SPMs) due to the sleep transistors.
Energy Breakdown at the Component Level (Figure 3.38b): The figure shows
that the HY-PG design option is more energy-efficient than the others due to having

96

3.4. DESCNet: Developing Efficient Scratchpad Memories for CapsNet Hardware

Pareto-
frontier

Figure 3.37: DSE results of the DESCNet memory configurations for the CapsNet.

Table 3.8: Selected memory configurations for the CapsNet.

Mem Shared Data Weight Acc
SZ SC SZ SC SZ SC SZ SC

SEP — — 25 kiB 1 64 kiB 1 32 kiB 1
SEP-PG — — 25 kiB 2 64 kiB 8 32 kiB 2
SMP 108 kiB 1 — — — — — —
SMP-PG 108 kiB 2 — — — — — —
HY 25 kiB 1 8 kiB 1 32 kiB 1 16 kiB 1
HY-PG 32 kiB 2 25 kiB 2 25 kiB 4 32 kiB 2

higher flexibility and higher potential of power-gating a heterogeneous combination of
sectors compared to other designs such as the SEP-PG, whose energy consumption is
slightly higher. Note that despite having a smaller size than the weight memory, the
shared memory of the HY organization consumes more energy due to the more complex
internal architecture of a multi-ported memory.

Dynamic vs. Static Energy Consumption (Figure 3.38c): When comparing
different architectural designs, the figure illustrates that: (1) moving from SMP to SEP
and then to HY, the dynamic energy can be reduced progressively; (2) moving from
HY to HY-PG, the static energy can be further reduced due to the benefits of the
power-gating, and (3) the dynamic energy remains unchanged between non-PG and -PG
organizations.

Besides this, we noticed that the wakeup latency overhead is negligible. Even though it
is masked by preloading the necessary values, its value is very low (0.072ns) compared
to the average computational time of an operation (614µs) where the sleep transistors
driving their corresponding memory sectors are in a steady state, either ON or OFF. This
behavior also explains why the contribution of the wakeup energy (on average 1.6nJ),

97

3. Hardware and Software Optimizations for Capsule Networks

High
dynamic
power

for SMP

Low
energy

Figure 3.38: Google’s CapsNet results for different components of the DESCNet memory
configurations: (a) Area breakdown, (b) Energy breakdown, (c) Static vs. dynamic
energy consumption, (d) Energy breakdown of the different operations of the CapsNet
inference.

which appears during the transitions between OFF and ON, is low.

Energy Breakdown for the Different Operations of the CapsNet Inference
(Figure 3.38d): Though the absolute values vary, the relative proportions of the energy
consumption by different operations of the CapsNet inference remain approximately
similar across different memory designs. The highest portion of energy comes from the
PrimaryCaps (Prim) layer since it has a high memory utilization and frequent access to
it. As it requires most of the available memory, the power-gating potential is limited. On
the contrary, the energy consumed by the dynamic routing operations (i.e., Sum+Squash,
Update+Softmax) is significantly lower for the -PG organizations.

Results for DeepCaps (Area and Energy of the On-Chip Memory)

Similarly to the above-discussed results for the Google’s CapsNet, detailed evaluations are
also conducted for the DeepCaps. Figure 3.39 shows the solutions in the area vs. energy
space, for 215 693 different memory design organizations. The selected solutions with
memory size and number of sectors are reported in Table 3.9. Note that the high-energy
solutions have only 1 sector (i.e., the power-gating cannot be applied), the high-area
solutions have the size of the shared memory equal to 8MiB, while the solutions with a
low area and low energy consumption have a shared memory with a size lower than or
equal to 256kiB. Compared to the CapsNet, the DeepCaps needs larger memory sizes to
efficiently handle large-scale and more complex computations.

98

3.4. DESCNet: Developing Efficient Scratchpad Memories for CapsNet Hardware

Pareto-
frontier

Figure 3.39: Design space exploration results of the DESCNet memory configurations for
the DeepCaps.

Table 3.9: Selected memory configurations for the DeepCaps.

Mem Shared Data Weight Acc
SZ SC SZ SC SZ SC SZ SC

SEP — — 256 kiB 1 128 kiB 1 8 MiB 1
SEP-PG — — 256 kiB 8 128 kiB 16 8 MiB 16
SMP 8 MiB 1 — — — — — —
SMP-PG 8 MiB 8 — — — — — —
HY 2 MiB 1 108 kiB 1 8 kiB 1 4 MiB 1
HY-PG 128 kiB 2 128 kiB 8 64 kiB 8 8 MiB 16
HY, PS=1 4 MiB 1 256 kiB 1 8 kiB 1 2 MiB 1
HY-PG, PS=1 4 MiB 8 256 kiB 8 128 kiB 16 2 MiB 4

As a consequence, although allowing to explore more different solutions, having larger
memory sizes implies higher area and energy consumption; see results in Figure 3.40.
Regarding the area, an interesting result is, as shown in Figure 3.40a, the lower area
of the HY-PG compared to the HY, despite the power-gating circuitry. This is due to
the different sizes of shared memory and accumulators, which are the most impactful
memories between the two organizations.

The energy consumption for the -PG organization is significantly lower than the non-PG
counterparts due to a heterogeneous usage of the memories across different operations
of the DeepCaps. Hence, applying power-gating reduces the static energy not only for
the dynamic routing operations but also for the ConvCaps2D computations, whose
contribution is the highest, as shown in Figure 3.40d.

In a similar way as noticed for the Google’s CapsNet, for the DeepCaps, the HY-PG is
the solution with the lowest energy consumption, the SEP organization has the lowest

99

3. Hardware and Software Optimizations for Capsule Networks

HY-PG has
lower area

than HY

Figure 3.40: DeepCaps results for different components of the DESCNet memory config-
urations: (a) Area breakdown, (b) Energy breakdown, (c) Static vs. dynamic energy
consumption, (d) Energy breakdown of the different operations of the DeepCaps infer-
ence.

area, and the SEP-PG is another organization belonging to the Pareto-frontier.

DSE for the HY-PG Design Option With Size-Constrained Memory for
DeepCaps

Motivated by the observation that the shared memory size significantly impacts the
efficiency (see Figure 3.39), and since embedded systems might have size-constrained
memory, we extend the analysis by exploring the HY-PG architectural organizations
with a memory constraint. More specifically, we performed a DSE by constraining
the maximum size of the shared memory. Moreover, the memory usage patterns and
partitions show that the shared memory of the HY and HY-PG design options do not
always require having three ports, because, for some solutions, the shared memory only
needs to store one or two different types of values.

In this regard, in this analysis, we also explored the space of the HY-PG solutions with
constrained shared memory ports (PS). Figure 3.41 shows their tradeoffs between area
and energy consumption, for 113 337 different memory configurations. The most efficient
solutions in Figure 3.41a have a size of the 1-port shared memory equal to 2 MiB and
4 MiB. The worst results are obtained by combining a shared memory of 4 MiB with an
accumulator memory of 8 MiB. Note, despite having a smaller-sized shared memory, the
solutions with the 1-port shared memory of size 128 kiB and 256 kiB are relatively less
efficient. It implies that such a size of the shared memory can couple more efficiently with

100

3.4. DESCNet: Developing Efficient Scratchpad Memories for CapsNet Hardware

the rest of the system to achieve overall a lower area and energy consumption. Moreover,
as clearly visible from Figure 3.41b, the area and energy efficiency are improved by having
a lower PS . The detailed memory configuration for the HY and HY-PG lowest-energy
solutions are shown in the respective lines of Table 3.9.

13

Most efficient: 1-port,
SZS = 2 MiB or 4 MiB

Least efficient: smaller-
sized shared memory

SZS = 128 kiB or 256 MiBk

Figure 3.41: Design space exploration results for the HY-PG DESCNet memory config-
urations for the DeepCaps, having constraints on the size and number of ports of the
shared memory.

Impact of the Memory on the Complete CapsNet Accelerator Architecture

Based on the evaluations performed in the previous sections, we select two Pareto-optimal
DESCNet architectures for the CapsNet, which are SEP and HY-PG. The choice of
these organizations is strategic because they represent the Pareto-optimal solutions with
the lowest area and the lowest energy, respectively. Note that there is no performance
loss compared to the CapsNet and DeepCaps executed on the baseline CapsAcc. We
synthesize the complete architecture of the DNN accelerator executing CapsNets for the
MNIST dataset and DeepCaps on the CIFAR10 dataset in a 45nm CMOS technology
library, using the ASIC design flow with the Synopsys Design Compiler.

The detailed area and energy estimations of the complete on-chip architectures for the
Google’s CapsNet, comprising the accelerator and the on-chip memories with SEP and
HY-PG organizations, are shown in Figures 3.42 and 3.43, respectively.

101

3. Hardware and Software Optimizations for Capsule Networks

24%

13%

35%

28%

Accelerator:
0.37 mJ
Data Memory:
0.199 mJ
Weight Memory:
0.552 mJ
Accumulators:
0.434 mJ

60%
8%

23%

9% Accelerator:
0.828 mm2
Data Memory:
0.104 mm2
Weight Memory:
0.314 mm2
Accumulators:
0.125 mm2

(a) (b)

Figure 3.42: (a) Energy and (b) area breakdown of our CapsNet inference architecture
using SEP memory.

37%

10%
13%

35%

5%
Accelerator:
0.37 mJ
Data Memory:
0.095 mJ
Weight Memory:
0.128 mJ
Accumulators:
0.353 mJ
Shared Memory:
0.05 mJ

33%

7%

9%8%

43%

Accelerator:
0.828 mm2
Data Memory:
0.173 mm2
Weight Memory:
0.213 mm2
Accumulators:
0.20 mm2
Shared Memory:
1.06 mm2

(a) (b)

Figure 3.43: (a) Energy and (b) area breakdown of our CapsNet inference architecture
using HY-PG memory.

When comparing the initial design as discussed in Figure 3.31 version (b) with the SEP
(Figure 3.42a), the total on-chip memory energy is reduced by 65% and the on-chip
memory area by 91%. Compared to version (a), our DESCNet SEP incurs 78% reduced
energy and 47% reduced area for the complete accelerator.

Our proposed DESCNet HY-PG organization reduces the on-chip energy by 82% and
the on-chip area by 35%, compared to the version (b) while reducing the total energy
and the total area by 79% and 40% compared to the version (a), respectively.

Consequently, compared to version (a), which corresponds to the state-of-the-art design of
CapsAcc, our proposed approach can provide total energy and area reductions, comprising
accelerator, on-chip memory and off-chip memory, of up to 79% and 47%, respectively,
without any performance loss.

Energy and area estimations of the complete on-chip architecture executing the DeepCaps,
using the SEP-PG organization, are reported in Figure 3.44. The graphs show a clear
dominance of the accumulator memory on both the on-chip area and the on-chip energy
due to its large size. On the contrary, the HY-PG, PS=1 organization results reported in
Figure 3.45 show a relatively more balanced distribution of the energy and area between

102

3.4. DESCNet: Developing Efficient Scratchpad Memories for CapsNet Hardware

the accumulator and the shared memory. As discussed before, since the original baseline
architecture of CapsAcc cannot execute the DeepCaps for the CIFAR10 dataset, we
cannot compare their work with our DESCNet design deploying the DeepCaps. This also
shows that our memory sub-system can indeed successfully support DeepCaps, enabling
its memory-efficient acceleration, which is not possible for the original baseline CapsAcc.

1% 2% 1%

96%

Accelerator:
4.50 mJ
Data Memory:
4.79 mJ
Weight Memory:
2.32 mJ
Accumulators:
290.5 mJ

2% 3%
3%

92%

Accelerator:
0.828 mm2
Data Memory:
0.122 mm2
Weight Memory:
0.896 mm2
Accumulators:
32.9 mm2

(a) (b)

Figure 3.44: (a) Energy and (b) area breakdown of our DeepCaps inference architecture
using SEP-PG memory.

2% 2% 1%

50%

45%

Accelerator:
4.50 mJ
Data Memory:
4.79 mJ
Weight Memory:
2.32 mJ
Accumulators:
139.8 mJ
Shared Memory:
126.9 mJ

3% 4%
3%

29%

61%

Accelerator:
0.828 mm2
Data Memory:
1.22 mm2
Weight Memory:
0.896 mm2
Accumulators:
8.34 mm2
Shared Memory:
17.7 mm2

(a) (b)

Figure 3.45: (a) Energy and (b) area breakdown of our DeepCaps inference architecture
using HY-PG, PS=1 memory.

Results Summary and Discussion

Table 3.10 shows the detailed results of the area and energy consumption for the different
DESCNet architectures obtained by our DSE for the CapsNet and the DeepCaps. The
following key observations can be derived from our analyses.

• Despite many efforts in optimizing the computational arrays of the DNN accelerators,
more fruitful area and energy savings are obtained when the optimizations are
applied to the memory, as showcased in this section with the DNN accelerators
executing both the Google’s CapsNets and the DeepCaps.

• Having large and shared multi-port memories, where different values are stored,
e.g., the SMP organization, is in general a bad design choice, because of the

103

3. Hardware and Software Optimizations for Capsule Networks

resource-hungry hardware overhead for handling heterogeneous accesses, which are
not necessary if we systematically study the application-driven memory resource
requirements. Indeed, having SZS ≤ 256 kiB can relatively jointly reduce the
energy and the area, compared to other solutions with larger SZS .

• For a certain set of solutions belonging to the HY and HY-PG design options, the
multi-port shared memory can be replaced by an equivalent single-port, offering
further energy and area reductions due to a more balanced memory breakdown
between the accumulator and the shared memory.

• Employing efficient on-chip SPM memory organization architectures (e.g., SEP,
SEP-PG, and HY-PG) significantly reduces the hardware resource requirements,
thereby bearing the development of DNN accelerator executing complex operations
such as the CapsNets in resource-constrained scenarios, which are typical for
IoT-edge devices.

Table 3.10: Area and energy consumption results for different DESCNet architectural
organizations.

NN Mem

Shared Mem Weight Mem Data Mem Accumulator Mem
Dynamic Static Wakeup Dynamic Static Wakeup Dynamic Static Wakeup Dynamic Static Wakeup

Area Energy Energy Energy Area Energy Energy Energy Area Energy Energy Energy Area Energy Energy Energy
[mm2] [mJ] [mJ] [nJ] [mm2] [mJ] [mJ] [nJ] [mm2] [mJ] [mJ] [nJ] [mm2] [mJ] [mJ] [nJ]

C
ap

sN
et

SEP — — — — 0.314 0.051 0.501 — 0.104 0.011 0.188 — 0.125 0.196 0.238 —
SEP-PG — — — — 0.469 0.053 0.135 0.044 0.173 0.012 0.083 0.048 0.200 0.205 0.148 0.064

SMP 2.521 1.859 1.529 — — — — — — — — — — — — —
SMP-PG 2.958 1.875 0.668 0.352 — — — — — — — — — — — —

HY 0.519 0.068 0.348 — 0.125 0.044 0.238 — 0.041 0.009 0.068 — 0.067 0.120 0.130 —
HY-PG 1.061 0.004 0.046 0.080 0.213 0.045 0.083 0.032 0.173 0.012 0.083 0.048 0.200 0.205 0.148 0.064

D
ee

pC
ap

s

SEP — — — — 0.617 0.039 12.172 — 1.165 0.098 22.266 — 31.392 34.268 673.562 —
SEP-PG — — — — 0.896 0.040 2.277 0.044 1.223 0.099 4.695 0.247 32.905 34.464 256.029 0.642

SMP 153.474 213.961 1214.223 — — — — — — — — — — — — —
SMP-PG 167.077 214.115 555.102 1.234 — — — — — — — — — — — —

HY 41.067 3.143 315.671 — 0.041 0.003 0.810 — 0.547 0.074 10.453 — 16.168 20.954 339.713 —
HY-PG 3.293 0.125 1.211 0.464 0.469 0.019 1.619 0.044 0.816 0.079 3.898 0.064 32.905 34.464 256.029 0.642

HY, PS=1 16.168 6.108 339.713 — 0.041 0.003 0.810 — 1.165 0.098 22.266 — 8.949 11.037 173.698 —
HY-PG, PS=1 17.731 6.019 120.913 0.642 0.896 0.040 2.277 0.044 1.223 0.099 4.695 0.247 8.338 11.091 128.696 0.642

3.4.7 Summary
Motivated by the analyses showing that a significant amount of energy can be saved
by designing a specialized memory design, the DESCNet SPM architecture is proposed.
Different architecture designs are explored to minimize the off-chip memory accesses while
efficiently feeding the data to the hardware accelerator executing CapsNets inference at
high throughput. Its application-driven memory power management unit further reduces
the leakage power. To enable the CapsNets deployment on even smaller resource- and
memory-constrained edge devices, low-precision computations can be enabled by weight
and feature maps quantization, as demonstrated in Section 3.5.

3.5 Q-CapsNets: A Specialized Framework for Quantizing
CapsNets

CapsNets require intense computations and are difficult to be deployed in their original
form on resource-constrained edge devices. This section presents Q-CapsNets, the first

104

3.5. Q-CapsNets: A Specialized Framework for Quantizing CapsNets

specialized framework for quantizing CapsNet models, to enable their efficient edge
implementations. We evaluate our framework for several benchmarks. On the DeepCaps
for the CIFAR10 dataset, the framework reduces the memory footprint by 6.2×, with
only 0.15% accuracy loss. Our methodology is desirable for employing CapsNet inference
at the edge, because it significantly reduces the computational workload and the CapsNet
memory footprint, with minimal accuracy loss.

3.5.1 System Overview
Reducing the wordlength of weights and feature maps is extremely important for improving
the energy efficiency. A too short wordlength lowers the accuracy of the CapsNets. It is
typically an undesired outcome from the end-user perspective. To find an efficient tradeoff
between the memory footprint, the energy consumption, and the classification accuracy,
we propose the novel Q-CapsNets framework (see Figure 3.46). It explores different
layer-wise and operation-wise arithmetic precisions to obtain the quantized version of
a given CapsNet, with maximum accuracy tolerance and memory budget specified as
constraints to the framework. Our approach optimizes in particular the dynamic routing,
a peculiar feature of the CapsNets involving iterative and computationally expensive
operations, with a significant impact on the energy consumption.

Rounding Schemes:
TRN, RTN, SR

Accuracy Tolerance
XY.Z%

Memory Budget
n MB

CapsNet Model,
Dataset

FP32 Training

Layer-Uniform Quantization

Layer-Wise Quantization

Dynamic Routing
Quantization for CapsNets

Proposed Q-CapsNets Framework

Output:
Quantized
CapsNet

Figure 3.46: An overview of our quantization framework.

In this section, our novel contributions are:

• We propose a specialized framework for systematically quantizing CapsNets, given
a certain accuracy tolerance (compared to the full-precision CapsNet) and a certain
memory budget for storing the weights.

• Since an expensive part of CapsNets is the dynamic routing process, we further
specialize in the search for the numerical precision for the operations of the dynamic
routing. A key advantage of using our framework, compared to traditional DNN
quantization methods, is that, as we will demonstrate in our experiments, the number
of bits for routing capsules can be further reduced compared to the wordlengths of
the other operations.

105

3. Hardware and Software Optimizations for Capsule Networks

• We test our framework on the CapsNet model [34] on the MNIST and Fashion-
MNIST datasets, and on the DeepCaps model [31] on the MNIST, FashionMNIST,
and CIFAR10 datasets. For the latter dataset, the memory footprint is reduced by
6.2× with an accuracy loss of 0.15%.

3.5.2 Analysis of Area and Energy Consumption for Reduced
Wordlength

Our overarching goal is to deploy CapsNets at the edge. The floating-point representation
is abandoned by adopting a lighter fixed-point representation. Such a wordlength
reduction of the weights and activations of a CapsNet for computing the inference
lightens the memory storage requirements. It might also significantly impact the energy
consumption of the computational units. Therefore, we analyze energy consumption
and area footprint of a MAC unit, which is the basic block of specialized CapsNet
accelerators like the CapsAcc, and of hardware blocks that perform computationally
complex operations, i.e., squash and softmax, which are needed during the CapsNet
inference. Moreover, we design different versions of a MAC unit, a softmax module,
and a squash module, varying their wordlength. We synthesize them in a 45nm CMOS
technology with the Synopsys Design Compiler tool to measure their area and energy
consumptions. Figure 3.47 shows that the area and energy consumption of MAC units
quadratically decrease w.r.t. the wordlength. Such analyses motivate us to focus on
minimizing the wordlength to reduce the energy consumption. The results shown in
Figure 3.48 are obtained by varying the number of fractional bits while keeping a single
bit for the integer part. As expected, the softmax and the squash functions require more
energy and area than a simple MAC operation. The dependence on energy consumption
and area footprint is related quadratically to the number of fractional bits. This effect
further motivates us to reduce the number of bits used to execute the various operations
of the CapsNet architectures.

MAC

Figure 3.47: Energy consumption and area footprint for a fixed-point MAC unit with
different wordlengths.

3.5.3 Rounding Schemes
A fixed-point number has an integer part QI and a fractional part QF . Hence, it can
be written as ⟨QI.QF ⟩. The total number of bits, i.e., the wordlength N , is computed
as NI + NF , which is the sum between the bits of the integer part and the fractional

106

3.5. Q-CapsNets: A Specialized Framework for Quantizing CapsNets

(b)(a)
Figure 3.48: Energy consumption and area footprint for fixed-point modules performing
(a) the softmax and (b) the squash operations with different wordlengths.

part. A fixed-point representation has precision ϵ = 2−NF , and its corresponding range
of representable numbers, in a two’s complement format, is [−2NI−1, 2NI−1 − 2−NF].

The rounding operation converts a floating-point or a large fixed-point number into a
fixed-point number with shorter wordlength. Next, we present the most common rounding
schemes.

The Truncation (TRN) simply removes all the extra digits from the fractional part,
i.e., xq = ⌊x⌋. If we assume uniformly distributed numbers, the truncation introduces a
negative average error (bias), defined as xq − x.

The Round-to-Nearest (RTN) sets a rule for approximating those values which
fall precisely halfway between the two representable numbers. In particular, half-up
rounding consists of rounding up these values. Considering uniformly distributed numbers,
rounding up halfway values introduces a negative average error, which is lower than
introducing a simple truncation, as shown in Equation (3.7).

xq = ⌊x + ϵ

2⌋ (3.7)

The Stochastic Rounding (SR) is defined as in Equation (3.8), where P ∈ [0, 1) is
a uniformly distributed random number. The SR scheme is unbiased, but the most
compute-intensive from the hardware perspective because it requires the generation of
random numbers.

�
⌊x⌋ if P ≥ x−⌊x⌋

ϵ

⌊x + ϵ
2⌋ if P < x−⌊x⌋

ϵ

(3.8)

3.5.4 Q-CapsNets Framework
Our framework can progressively reduce the numerical precision of weights and activations
in the CapsNet inference. In the first stage, we start with customizing the techniques
for CapsNets, which are also applicable to traditional DNNs. Afterward, we employ a
specialized approach for CapsNets, which is tailored for the loops of the dynamic routing.
The inputs of our framework are:

107

3. Hardware and Software Optimizations for Capsule Networks

• A CapsNet architecture, together with the training and test dataset, and its
associated architecture-specific hyperparameters.

• A library of rounding schemes to employ when quantizing the data.

• Lowering the numerical precision reduces the accuracy reached by the model.
Therefore, a tolerance accT OL on the loss of accuracy must be set to have a
margin for quantizing the network. The target accuracy acctarget is computed in
Equation (3.9).

acctarget = accF P 32 · (1 − accT OL) (3.9)

• Maximum memory budget that can be occupied for storing the quantized weights
and biases.

Our Q-CapsNets framework aims at satisfying both requirements on memory usage
and accuracy. An effective way to reduce a given model’s memory usage is through
aggressively quantizing the weights. We perform this operation in steps (1) and (2). Once
the memory budget is satisfied, we reduce the numerical precision of the weights and
activations if there is still some accuracy loss budget. Afterward, the framework returns
the model_satisfied. Otherwise, if a solution that satisfies both the requirements of
accuracy and memory usage cannot be found, our framework returns two sub-optimal
solutions:

I model_accuracy: A quantized CapsNet model with the target accuracy and the
minimum memory footprint (e.g., slightly higher than the budget);

II model_memory: A quantized CapsNet that satisfies the memory requirements
and achieves the maximum accuracy (e.g., slightly lower than the target).

Step-by-Step Description of the Framework

As a preliminary step, a given input CapsNet is trained in full-precision (32-bits floating-
point), whose accuracy is denoted as accF P 32. From accF P 32 and the accuracy tolerance
(accT OL, input of the framework), we compute the target accuracy (acctarget) as in
Equation (3.9). The procedure followed for quantizing a given CapsNet (see Figure 3.49
and Algorithm 10) is composed of the following steps:

1) Layer-Uniform Quantization of weights & activations: We convert all
weights and activations to fixed-point arithmetic, with a 1-bit integer part and
Qw-bit and Qa-bit fractional parts, respectively. Afterward, we further reduce their
precision in a uniform way (e.g., Qw = Qa). In this stage, only 5% of the accT OL

is consumed. To find the correct wordlength of Qw and Qa, we use a binary search
algorithm [235].

108

3.5. Q-CapsNets: A Specialized Framework for Quantizing CapsNets

CapsNet Models:
(FP32 Training)

CapsNet
DeepCaps

…

Dataset:
MNIST

CIFAR10
…

Settings:
Accuracy tolerance

Memory budget
Rounding schemes

Q-CapsNets Framework

Outputs:
Quantized

CapsNet Models:
model_satisfied
model_memory
model_accuracy

Figure 3.49: Flow of Our Framework for Quantizing CapsNets.

2) Memory Requirements Fulfillment: In this stage, we quantize only the CapsNet
weights. Following the idea of Raghu et al. [236] that perturbations to weights in
the final layers can be more costly than perturbations in the earlier layers, we set
for each layer l its respective Qw such that (Qw)l+1 = (Qw)l − 1. Afterward, we can
compute the correct Qw as the maximum integer value that satisfies Equation (3.10),
where L is the total number of layers, M is the memory budget, and P l is the
number of parameters (weights) in the layer l.

L−1�
l=0

P l · ((Qw)0 − l)

≤ M (3.10)

With this rule, we can obtain a quantized CapsNet model, denoted as model_memory,
which fulfills the memory requirements. Afterwards, we test the accuracy of the
model_memory, denoted as accmm and compare it to acctarget. Based on its
results, the next stage can take two directions. If accmm is higher, we continue to
(3A) for further quantization steps. Otherwise, it jumps to (3B).

3A) Layer-Wise Quantization of activations: To quantize the activations, we start
from the initial Qa, as computed during step (1). As shown in Algorithm 11,
we proceed in a layer-wise fashion. First, each layer of the CapsNet (except the
first one) is selected, and Qa is decreased until the minimum value for which the
accuracy remains higher than acctarget. Afterward, the wordlength of the first two
layers is fixed, while we further reduce Qa for all but the first layers. We repeat
this step iteratively until the Qa for the last layer is set.

4A) Dynamic Routing Quantization: The dynamic routing is computationally
expensive due to the complex operations, such as squash and softmax, performed
iteratively. Therefore, the wordlength of its arrays might be different compared to

109

3. Hardware and Software Optimizations for Capsule Networks

Algorithm 10: Pseudo-Code of Our Q-CapsNets Framework.
1 Procedure Q-CapsNets(accT OL, memory_budget)

/* Full Precision training */
2 model, accF P 32 ← train(CapsNet);
3 acctarget = accF P 32(1 − accT OL);

/* Step 1) Layer-Uniform Quantization of weights &
activations */

4 accstep1 = accF P 32(1 − accT OL · 0.05);
5 model, Q ← BinarySearch(model, (weights, act), Qinit = 32,

accmin = accstep1);
6 (Qw,s1)l = Q; (Qa,s1)l = Q ∀l;

/* Step 2) Memory requirements fulfillment */
7 [(Qw,mm)0, ..., (Qw,mm)L] ← Equation (3.10)(params P , memory_budget);
8 model_memory, accmm ← test(quant(model, weights ← Qw,mm,

act ← Qa,s1));
9 if accmm > acctarget then

/* Step 3A) Layer-Wise Quantization of activations */
10 model, Qa ← LayerWise(model, act, Qinit = Qa,s1,

accmin = acctarget + 0.5(accmm − acctarget));
/* Step4A) Dynamic Routing Quantization */

11 for each layer l with dynamic routing do
12 model, (Qa)l ← DRquant(model, model.DRactl, Qinit = (Qa)l,

accmin = acctarget);
13 end
14 return model_satisfied;
15 else

/* Step3B) Layer-Uniform and Layer-Wise Quantization
of weights */

16 model, Qw ← BinarySearch(model, weights, Qinit = Qw,1,
accmin = acctarget);

17 model_accuracy, Qw ← LayerWise(model, weights, Qinit = Qw,
accmin = acctarget;

18 return model_memory, model_accuracy;
19 end
20 end

other CapsNet layers. This step only operates on the data involving the squash
and softmax operations. As shown in Figure 3.50 and Algorithm 12, a specialized
quantization process is performed in this step. The operators of the dynamic
routing may be quantized more than the other activations (i.e., with a wordlength
lower than Qa, which we call QDR). The quantized CapsNet model generated at

110

3.5. Q-CapsNets: A Specialized Framework for Quantizing CapsNets

Algorithm 11: Algorithm for Layer-wise Quantization
1 Given: Qinit initial number of quantization bits to start the algorithm, accmin

minimum value of accuracy that can be reached;
2 Procedure LayerWise(model, params, Qinit, accmin)
3 Q = [(Q)0, (Q)1, ..., (Q)L], (Q)l = Qinit;
4 StartL = 1;
5 while StartL < L do
6 acc = 100;
7 while acc ≥ accmin do
8 (Q)l ← (Q)l − 1, l ∈ [StartL, ...,L];
9 model, acc = test(quant(model, params ← Q));

10 end
11 (Q)l ← (Q)l + 1, l ∈ [StartL, ...,L];
12 StartL ← StartL + 1;
13 end
14 return quant(model, params ← Q), Q;
15 end

the end of this step is denoted as model_satisfied.

Dynamic Routing Quantization

Figure 3.50: Quantization of a capsule layer with dynamic routing. The colored bars
show the arrays that are rounded and quantized. In green, the weights are quantized
with Qw bits. In blue, the activations are quantized with Qa bits. In red, data are more
aggressively quantized with QDR bits. The precision is lowered before compute-intensive
and complex functions (squash, softmax).

3B) Layer-Uniform ad Layer-Wise Quantization of weights: Starting from
the step (1) outcome, we quantize the weights, first in a uniform and then in a
layer-wise manner (as in step 3A) until reaching acctarget. The resulting CapsNet
model (model_accuracy) is returned as the output of the framework, together
with model_memory, as generated in step (2).

111

3. Hardware and Software Optimizations for Capsule Networks

Algorithm 12: Algorithm for Dynamic Routing Quantization
1 Given: Qinit initial number of quantization bits to start the algorithm, accmin

minimum value of accuracy that can be reached;
2 Procedure DRquant(model, params, Qinit, accmin)
3 Q = Qinit;
4 acc = 100;
5 while acc ≥ accmin do
6 Q ← Q − 1;
7 model, acc = test(quant(model, params ← Q));
8 end
9 Q ← Q + 1;

10 return quant(model, params ← Q), Q;
11 end

Rounding Scheme Selection

For every rounding scheme from the given library, its corresponding quantized model
is generated. Hence, our framework executes Algorithm 10 for each rounding scheme
in parallel. Due to different rounding errors, our framework may execute Path A for
one rounding scheme, while it executes Path B for another scheme. After executing
all branches, we select the best rounding scheme within the library using the following
criteria, based on whether the algorithm has followed Path A or Path B.

A) There are some models generated from Path A:

1) Models from Path B are discarded.
2) The model with lower memory is selected.
3) With the same memory, the model with fewer bits used to represent activations

is selected.
4) With the same memory and bits for the activations, the CapsNet model with

the simplest rounding scheme is selected, e.g., with truncation, round-to-
nearest-even, and stochastic rounding. Note that while the first one requires
the deletion of the LSBs, the last one needs more complex operations to decide
the direction of the rounding.

B) There are models only from Path B:

1) In this case, two models are returned. Selecting from memory_model, the
model with the highest-possible accuracy is returned.

2) Selecting from accuracy_model, the model with the lowest-possible memory
is returned.

3) If more than one model has the exact same highest accuracy and the lowest
memory, the simplest rounding scheme is preferred to break the tie.

112

3.5. Q-CapsNets: A Specialized Framework for Quantizing CapsNets

3.5.5 Evaluation of our Q-CapsNets Framework
Experimental Setup

We implement the Q-CapsNets framework in PyTorch [72], and we run it on two Nvidia
GeForce RTX 2080 Ti GPUs. We test it on the Google’s CapsNet model [34], i.e., the
ShallowCaps, for the MNIST [60] and FashionMNIST [96] datasets, and on the DeepCaps
model [31] for the MNIST, FashionMNIST and CIFAR10 [234] datasets. For the full
precision training, the following data augmentation is executed:

• MNIST: the images are randomly shifted by a maximum of two pixels and rotated
by 2 degrees;

• FashionMNIST: the images are randomly shifted by 2 pixels and horizontally flipped
with a probability of 0.2;

• CIFAR10: the original images of size 32 × 32 are resized to 64 × 64 using bilinear
interpolation to allow deeper networks, as reported in the original DeepCaps
paper [31]. The images are also randomly shifted by 5 pixels, rotated by 2 degrees,
and horizontally flipped with a probability of 0.5.

No data augmentation is conducted on the images for testing.

Quantized ShallowCaps for MNIST and FashionMNIST Datasets

The ShallowCaps architecture is trained in full precision (FP32) on the MNIST dataset
for 100 epochs and batch size 100. We employ an exponential decay learning policy, with
an initial learning rate of 0.001, 2 000 decay steps, and 0.96 decay rate. Its achieved test
accuracy is 99.67%.

Afterward, the framework proceeds as described in Algorithm 10, intending to satisfy the
memory and accuracy requirements concurrently. Since the algorithm has a conditional
path, we present two examples that correspond to the execution of the different branches
of the algorithm.

Test of the Path A: For the first set of experiments, we test the Path A of the frame-
work, that is, when both the memory and accuracy constraints are satisfied. Since the
memory requirement at FP32 is 217Mbit, we set the memory budget equal to 45Mbit,
with an accuracy tolerance of 0.2%. The results in Figure 3.51 [Q1] show that the
model_satisfied reduces the weights memory footprint by 4.11× compared to the
FP32 model that has an accuracy equal to 99.52%. Along with the reduction of the
weight memory (W mem), we report the reduction of the activation memory (A mem).
For model_satisfied, this memory footprint is reduced of 2.72×.

Test of the Path B: Since our framework executes Path B if it cannot find a solution
that satisfies both requirements, for its testing purpose, we specify very low memory
budgets as the input. The results of our experiments, shown in Figure 3.51, indicate

113

3. Hardware and Software Optimizations for Capsule Networks

Table 3.11: Q-CapsNet’s accuracy results, weight (W) memory and activation (A) memory
reduction for the ShallowCaps and for the DeepCaps on MNIST, Fashion-MNIST, and
CIFAR10 datasets.

Model Dataset Accuracy W mem reduction A mem reduction
ShallowCaps MNIST 99.58% 4.87× 2.67×
ShallowCaps MNIST 99.49% 2.02× 2.74×
ShallowCaps FMNIST 92.76% 4.11× 2.49×
ShallowCaps FMNIST 78.26% 6.69× 2.46×

DeepCaps MNIST 99.55% 7.51× 4.00×
DeepCaps MNIST 99.60% 4.59× 6.45×
DeepCaps FMNIST 94.93% 6.4× 3.20×
DeepCaps FMNIST 94.92% 4.59× 4.57×
DeepCaps CIFAR10 91.11% 6.15× 2.50×
DeepCaps CIFAR10 91.18% 3.71× 3.34×

that to satisfy the memory requirements, weights of model_memory [Q3] are set to
very low wordlengths, causing an extreme reduction of accuracy. To satisfy the accuracy
requirements in memory_accuracy [Q2], weights are reduced to the minimum possible
wordlength.

Wordlength
reduced up

to 3 bits

Figure 3.51: Q-CapsNets results of the ShallowCaps for the MNIST dataset.

Similar sequences of tests, with a set of accuracy tolerance and memory budget specifi-
cations, are performed on the ShallowCaps architecture for the FashionMNIST dataset.
Our experiment results are reported in Table 3.11.

Quantized DeepCaps for MNIST, FashionMNIST, and CIFAR10 Datasets

Several tests are conducted on the DeepCaps architecture. We mainly focus on the
results obtained with the SR scheme since it outperforms the other (simpler) rounding
schemes. The DeepCaps trained in full-precision on the MNIST dataset achieves 99.75%
accuracy, on par with the accuracy obtained in the original DeepCaps paper [31], while
on the FashionMNIST, it obtains a 95.08% accuracy. Table 3.11 reports some key results

114

3.5. Q-CapsNets: A Specialized Framework for Quantizing CapsNets

obtained with the Q-CapsNets framework on these two datasets. Figure 3.52 reports
graphically some key results obtained with the Q-CapsNets framework on the DeepCaps
for the CIFAR10 dataset.

Wordlength
reduced up

to 3 bits

Figure 3.52: Q-CapsNets results of the DeepCaps for CIFAR10 dataset.

Results Discussion

By considering the accuracy and the occupied weight memory as the evaluation met-
rics, we noticed that the model_satisfied is usually Pareto-dominated by the
model_accuracy, like for Q1 and Q2 in Figure 3.51, and of Q4 and Q5 in Figure 3.52.
However, since Q1 and Q5 have shorter wordlengths for the activations and the dynamic
routing compared to Q2 and Q4, respectively, the potential energy efficiency gains for its
computations using MAC operators, squash and softmax are huge, even with a slight
change in the activation memory. Note that the wordlength for the dynamic routing
operations can be reduced up to 3 or 4 bits with minimal accuracy loss compared to
the full-precision model. Such an outcome is due to a common feature of the dynamic
routing. The operations of the coefficients (along with squash and softmax) are updated
dynamically, thereby adapting to the quantization more efficiently than other layers
like Conv Layer and PrimaryCaps. Therefore, these computations can tolerate a more
aggressive quantization.

3.5.6 Summary

To enable efficient implementations of CapsNets on edge devices, the Q-CapsNets frame-
work is proposed. It exploits the peculiar features of the CapsNets, including the opera-
tions involved in the dynamic routing, to enable precision reduction of the wordlength,
based on user-defined accuracy and memory budgets. The obtained compact quantized
CapsNet models can be deployed on target resource-constrained devices such as special-
ized CapsNet accelerators. As discussed in Section 3.6 and Section 3.7, further energy
reductions in the execution of CapsNet inference can be achieved by approximating the
computational hardware units.

115

3. Hardware and Software Optimizations for Capsule Networks

3.6 ReD-CaNe: Resilience Analysis and Design of
CapsNets under Approximations

Following the Approximate Computing trend of enabling energy-efficient designs, we con-
duct an extensive resilience analysis of the CapsNets inference subjected to approximation
errors. Our methodology models the errors derived from the approximate components
(like multipliers) and analyzes their impact on the classification accuracy of CapsNets.
These analyses enable the selection of approximate components based on the resiliency
of each operation of the CapsNet inference. We extend the TensorFlow framework to
simulate the approximation noise injection (based on the models of the approximate
components) at multiple computational operations of the CapsNet inference. Our re-
sults demonstrate that the CapsNets are more resilient to the errors injected in the
computations involving the dynamic routing operations (the softmax and the update
of the coefficients) rather than other stages like convolutions and activation functions.
Our analysis is instrumental in designing efficient CapsNet hardware architectures with
approximate components. To the best of our knowledge, it is the first proof-of-concept
for designing approximations on the specialized CapsNet hardware.

3.6.1 System Overview
The proposed ReD-CaNe methodology, as shown in Figure 3.53, analyzes the resilience of
CapsNets under approximations. First, we devise a noise injection model for simulating
real scenarios of errors deriving from approximate hardware units like multipliers, which
are very common within MAC operations for the matrix multiplications of capsules.
Afterward, we analyze the error resiliency of the CapsNets by building a systematic
methodology for injecting noise into the operations of the CapsNet inference and evaluating
their impact on the accuracy. The outcome of such investigations will produce guidelines
for designing and selecting approximate components based on the resiliency of each
operation. At the output, our methodology generates an approximated version of a given
CapsNet, for achieving energy-efficient inference.

In a nutshell, our novel contributions are:

• We analyze and model the noise injections that can be generated by different
approximate arithmetic components, e.g., multipliers.

• We devise ReD-CaNe, a novel methodology for analyzing the Resilience and
Designing Capsule Networks under approximations, by systematically injecting
noise into different operations of the CapsNet inference and by measuring the
accuracy. The approximated components are chosen based on the resilience level of
the different operations of the CapsNet inference.

• We test our methodology on the DeepCaps model for the CIFAR10, MNIST, and
SVHN datasets, and on the CapsNet model for the MNIST and Fashion-MNIST

116

3.6. ReD-CaNe: Resilience Analysis and Design of CapsNets under Approximations

Hardware Accelerator

CapsNet Model
CapsNet Operations

Noise Injection Model
Error

Sources
Lib. of Approx. Components

(e.g., Approximate Multipliers)

ReD-CaNe Methodology:
Resilience Analysis and Design of

Capsule Networks under Approximations

Output:
Approximate CapsNet

Figure 3.53: Overview of our ReD-CaNe methodology. The novel contributions are shown
in blue boxes.

datasets. Our results show that the least resilient operations are the convolutions
in CapsLayers, while the dynamic routing operations of the Caps3D and ClassCaps
layers are relatively more resilient.

3.6.2 Modeling the Errors as Injected Noise

Error Sources

In a generic DNN application, errors can occur due to different sources like hardware
approximations (e.g., approximate multipliers), software approximations (e.g., quantiza-
tion), transient faults (e.g., bit flips due to particle strikes), and permanent faults (e.g.,
stuck-at-one and stuck-at-zero). In this work, we focus on approximation errors as we
target optimizations for energy efficiency.

If specialized hardware accelerators perform the CapsNet inference, a fixed-point repre-
sentation is typically preferred, compared to the floating-point counterpart [4]. Therefore,
a floating-point value x, represented in a b-bit fixed-point arithmetic, is mapped to a
range [0 : sb − 1]. The quantization function Q is defined in Equation (3.11).

Q(x) = x − min(x)
max(x) − min(x) · (2b − 1) (3.11)

In this work, we implement the CapsNets with floating-point arithmetic, but the behavior
of approximate fixed-point components is simulated by modifying their values according
to the quantization effect. Therefore, we focus on modeling the errors subjected to the
employment of approximate components in CapsNet hardware accelerators.

117

3. Hardware and Software Optimizations for Capsule Networks

Analysis of Different Operations in CapsNets

We investigate which hardware components have the highest impact on the total energy
consumption of the CapsNets’ computational blocks. Table 3.12 reports the number
of operations occurring in the computational path of the DeepCaps inference and the
energy consumption per operation. The latter has been evaluated by synthesizing the
implementation with 8-bit fixed-point operations, in a 45nm CMOS technology node with
the Synopsys Design Compiler tool. The last two columns also report the estimated total
energy share for each operation and their respective percentage. The multipliers count for
more than 96% of the total energy share of the computational path of the DeepCaps. The
occurrences of the addition are also high, but they consume only 3% of the total energy
share due to their reduced complexity compared to the multipliers. Hence, it is important
to first explore the energy savings from approximating the multiplier operations, as we
target in this work.

Table 3.12: Number of operations, unit, and total energy consumption of different basic
operations of the DeepCaps.

OPERATION # OPS Unit Energy [pJ] Total Energy [uJ] %age
Addition 1.91 G 0.0202 38.57 3.22%

Multiplication 2.15 G 0.5354 1 153.5 96.37%
Division 4.17 M 1.0717 4.474 0.37%

Exponential 175 K 0.1578 0.0276 0.03%
Square Root 502 K 0.7805 0.3920 < 0.01%

In the following, we investigate the energy optimization potential of employing approxi-
mate components. As a case study, we select the NGR approximate multiplier and the
5LT approximate adder from the EvoApprox8B library [95]. The results in Figure 3.54
demonstrate that approximating only the multipliers (XM) may save more than 28%
energy compared to the accurate implementation (Acc). Due to the low energy share
relative to the additions, the advantage of employing approximate adders (XA) or approx-
imate adders and multipliers (XAM) is negligible compared to Acc and XM solutions,
respectively.

-28.3% -1.9% -30.2%

Accurate Energy

Figure 3.54: Optimization potential by applying approximate components in CapsNets.

Motivated by the above analyses, in the following, without loss of generality and for the

118

3.6. ReD-CaNe: Resilience Analysis and Design of CapsNets under Approximations

ease of proof-of-concept development, we focus our studies on the approximate multipliers
since they have a high impact on the energy consumption, opening huge optimization
potentials.

Error Profiles for the Approximate Hardware Multipliers

We selected 35 approximate multipliers of the EvoApprox8B library [95] and analyzed
the distributions of their erroneous products P ′ compared to the accurate product P
of an 8-bit multiplier. The arithmetic error is computed in Equation (3.12), where a, b
denote the inputs to the multipliers.

∆P ′ = {∀a, b ∈ I : P ′(a, b) − P (a, b)} (3.12)

The distributions of the arithmetic errors are computed considering to have a single
multiplier, a sequence of 9 MAC units, and as a sequence of 81 MAC units, with |I| = 105

random samples per each scenario. These studies are performed for estimating the
accumulated error of a convolution with 3 × 3 and 9 × 9 filters, respectively. We selected
these values since they reflect the size of the Conv kernels of the DeepCaps and CapsNet.

The majority of the components (i.e., 31 of 35) exhibit a Gaussian-like distribution of
the arithmetic error ∆, with a mean value m and a standard deviation std. The error
distributions of two approximated multipliers from the library are shown in Figure 3.55.
Since the remaining 29 elements from the EvoApprox8B library with a Gaussian-like
distribution show similar behaviors, we only report these two approximate multipliers.

Gaussian-like
Distribution with:
❑Similar Noise

Magnitude
❑Shifted Average

(b)

(a)

Figure 3.55: Artimetic error (w.r.t. accurate 8-bit multiplier) distributions and their
interpolations w.r.t. Gaussian noise by having an approximate multiplier from the
EvoApprox8B library. (a) Distribution for the NGR multiplier. (b) Distribution for the
DM1 multiplier.

119

3. Hardware and Software Optimizations for Capsule Networks

Modeling a Gaussian noise ∆ when employing b-bit fixed-point approximate components
in a CapsNet with floating-point operations is an open research challenge. We propose
to adjust the amount of noise w.r.t. the range R of values of a given array X. Therefore,
we introduce the noise magnitude (NM) to indicate the standard deviation (std) of the
noise ∆ scaled w.r.t. R(X), and the noise average (NA) to indicate the mean value
(m) of the noise ∆ scaled w.r.t. R(X). The formulas for NM and NA are shown in
Equation (3.13) and Equation (3.14), respectively.

NM(∆M) = stdev(∆X)
R(X) (3.13)

NA(∆M) = m(∆X)
R(X) (3.14)

Since the inputs of the components (I) employed in CapsNets typically have specific
distribution patterns, the NM of the approximate component depends on the application.
This implies that the NM can significantly change for different CapsNet models and
different datasets. Therefore, we show several experiments for different benchmarks in
Section 3.6.4.

Noise Injection Modeling

Based on the above analysis, we model the error source deriving from approximate
components as a Gaussian random noise added to the considered array X without loss of
generality.

An error with specific values of NM and NA, associated with a given tensor X with
shape s is modeled as in Equation (3.15). The noisy output is represented as X ′ in
Equation (3.16).

∆X = Gauss(s, (NM · R(X))) + (NA · R(X)) (3.15)

X ′ = X + ∆X (3.16)

Gauss(s, std) + m is a function that generates a tensor of random numbers with shape s,
which follows a Gaussian distribution with mean m and standard deviation std.

3.6.3 ReD-CaNe Methodology
Our methodology, shown in Figure 3.56, is composed of 6 steps. After having identified
the list of arrays in which we want to inject noise, called Groups, we inject the noise, as
described in Equation (3.16). By monitoring the impact on the accuracy of different oper-
ations, we identify the most and the least accurate operations in a given CapsNet. Hence,

120

3.6. ReD-CaNe: Resilience Analysis and Design of CapsNets under Approximations

our ReD-CaNe methodology may provide useful guidelines for designing energy-efficient
inference, demonstrating the potential to employ approximations to specific layers and
operations (i.e., the more resilient ones) without sacrificing the accuracy much. The
step-by-step flow of our methodology is discussed in the following:

1. Group Extraction: We divide the operations of the CapsNet inference into groups
based on their type (e.g., MAC, activation function, softmax, or logits update).
This step generates the Groups.

2. Group-Wise Resilience Analysis: We monitor the test accuracy drop by
injecting noise to different groups.

3. Mark Resilient Groups: Based on the analysis performed in Step 2, we mark the
more resilient groups. After that, there are two categories of Groups, the Resilient
and Non-Resilient ones.

4. Layer-Wise Resilience Analysis for Non-Resilient Groups: For each non-
resilient group, we monitor the accuracy drop by injecting noise at each layer.

5. Mark Resilient Layers for Each Non-Resilient Group: Based on the results
of the analysis performed in Step 4, we mark the more resilient layers.

6. Select Approximate Components: For each operation, we select which approx-
imate component to use from a given library based on the resiliency measured as
the noise magnitude (NM).

STEP 1: Group Extraction: distinction
based on the type of operation

STEP 2: Group-Wise
Resilience Analysis

Groups of
Operations

STEP 3: Mark Resilient
Groups: when the

accuracy is high

STEP 4: Layer-Wise
Resilience Analysis for
Non-Resilient Groups

STEP 5: Mark Resilient Layers
for Each Non-Resilient Group:

resilient layer designation

Output: Design of
Approximate
CapsNet for

Efficient Inference

ReD-CaNe Methodology

STEP 6: Select
Approximate
Components

Input: CapsNet
Operations

Input: Approx.
Component

Library

Figure 3.56: ReDCaNe: our methodology for resilience analysis and design of Approximate
CapsNets.

Note that a step of resilience analysis consists of properly setting the input parameters
of the noise injection mechanism, i.e., NM and NA, to add the noise to the selected
CapsNet operations and monitoring the accuracy of the noisy CapsNet.

121

3. Hardware and Software Optimizations for Capsule Networks

At the output, our methodology generates the approximated version of a given CapsNet,
which is ready to execute in a specialized hardware accelerator for inference with approxi-
mate components. To save area and energy for each operation, we select the approximate
components from a given library that correspond to their resiliency level. Therefore, more
aggressive approximations are chosen for more resilient operations without significantly
affecting the classification accuracy of the CapsNet inference.

3.6.4 Evaluation of the ReD-CaNe Methodology
Experimental Setup

We train each given CapsNet model for a given dataset using TensorFlow [73], running
on two Nvidia GeForce RTX 2080 Ti GPUs. The trained model is an input to our
ReD-CaNe methodology. The noise is injected into the arrays, and then the accuracy is
monitored to identify the resilience of the operations.

We test our methodology on the DeepCaps [31] and the original CapsNet [34]. We use
the CIFAR10 [234], SVHN [237], MNIST [60], and Fashion-MINST [96] datasets. The
accuracy results obtained for different datasets are reported in Table 3.13. Table 3.14
shows the partition of the CapsNet operations into groups, which is then used in the
group extraction step.

Table 3.13: Classification accuracy results using accurate multipliers.

Architecture Dataset Accuracy

DeepCaps
CIFAR10 92.74

SVHN 97.56
MNIST 99.72

CapsNet Fashion-MNIST 92.88
MNIST 99.67

Table 3.14: Grouping the operations of the CapsNet inference.

Group Name Description
1 MAC Outputs Outputs of the matrix multiplications
2 Activations Output of the activation functions (Squash or ReLU)
3 Softmax Results of the softmax (c coefficients in dynamic routing)
4 Logits Update Update of the logits (b coefficients in dynamic routing)

The proposed methodology is implemented in TensorFlow [73]. First, the network is
trained using standard techniques. We modified the computational graph in protobuf
format by including our noise injection model in the Graph tool. We implemented a
custom node for the noise injection, where the values of NA and NM may be specified
as inputs to this node. Hence, for each node τ , a new set of nodes T is added to the

122

3.6. ReD-CaNe: Resilience Analysis and Design of CapsNets under Approximations

graph. These nodes have the same shape as τ and they consist of adding a Gaussian
noise with std = NM · R(τ) and m = NA · R(τ), given the range R of the node τ .
We use the EvoApprox8b library [95], which consists of 35 8-bit unsigned components.
We select 8-bit wordlength since it is accurate enough in the computational path of the
CapsAcc.

Detailed Analysis for the CIFAR10 Dataset

As a case study, we report detailed results for the DeepCaps on the CIFAR10 dataset.
We selected a NM ∈ [0.5 . . . 0.001]. To analyze the general scenario of error resilience, we
selected the average error NA = 0. In the experiment for the Step 2 of our methodology,
we inject the same noise amount to every operation within a group while keeping the
other groups accurate. From the results shown in Figure 3.57, we notice that the Softmax
and the Logits update groups are more resilient than MAC outputs and Activations,
because the CapsNet accuracy starts decreasing with a relatively lower NM . Note that
for low NM , the noise injection slightly increases the accuracy due to a regularization
effect similar to the dropout [64].

(b)(a)

Figure 3.57: Group-wise resilience for the CIFAR10 dataset. (a) Complete results.
(b) Zoomed view of the accuracy drop, centered at 0%.

Evaluating the Selection of Approximate Components

The selection of the approximate component for each operation depends on the level of
NM that corresponds to a tolerable accuracy loss (typically null or very low). Recalling
Equation (3.12), the parameters NM and NA are dataset-dependent since their values
change accordingly to the input range R. In our case study (DeepCaps for CIFAR10), we
select a subset of 106 elements from the inputs of every Conv2D layer of the DeepCaps,
with their corresponding distributions (frequency of occurrence) shown in Figure 3.58a.
The distribution is approximately Gaussian, but the peak between 40 and 50 in the input
feature maps is caused by a specific distribution of the input dataset. Indeed, such a
peak occurs in the first Caps2D layer, as shown in Figure 3.58b.
Hence, in Table 3.15 we measure the NM and NA parameters of the selected multipliers
in the library. We use two different input distributions, the modeled one that is based

123

3. Hardware and Software Optimizations for Capsule Networks

(a) (b)

Peak due to a
specific

distribution
of the dataset

Gaussian
distribution

Figure 3.58: (a) Distribution of 106 random samples from the inputs of the convolutions
in the DeepCaps for the CIFAR10 dataset. (b) A focus on some layers, showing the peak
in the first Caps2D layer.

on random inputs generated with a uniform distribution, and the real one, which is
based on the input distribution previously shown in Figure 3.58. Note that these values
slightly differ because the NM and NA parameters are dataset-dependent. The major
differences are due to our modeled distribution overestimating the NM and NA. Hence,
the selection of approximate components based on our models may be systematically
employed for designing approximate CapsNets.

Testing our Methodology on Different Benchmarks

We apply our methodology to other benchmarks. The results coming from the resiliency
analysis of Step 2 are shown in Figure 3.59. A key property that we can notice is that
MAC outputs and activations are less resilient than the other two groups. Meanwhile,
we noticed that the logits update on the CapsNet for the MNIST dataset (Figure 3.59d)
is slightly less resilient than the same group on the DeepCaps for the MNIST dataset
(Figure 3.59b), because the CapsNet has only one layer that performs the Dynamic
routing, while the DeepCaps has two.

Results Discussion

From our analyses, we derive that the CapsNets have interesting resilience properties. A
key observation, noticed for every benchmark, is that the layers computing the dynamic
routing (i.e., ClassCaps and Caps3D) and the corresponding groups of operations (i.e.,
softmax and logits update) are more resilient than others. Such an outcome is attributed
to a common characteristic of the dynamic routing. The values of the involved coefficients
(i.e., logits b and coupling coefficients c) are dynamically updated, thereby adapting to
the injected noise. Therefore, more aggressive approximations can be tolerated for these
computations.

124

3.7. Approximate Squash and Softmax Designs

Table 3.15: Power, area, and noise magnitude, calculated with a modeled input dataset
(with uniform distribution) and using a real input distribution I, for different approximated
multipliers from the EvoApprox8B library. We have randomly selected 14 components
representative of the complete library.

Multiplier Power Area Modeled ∆X Real ∆X

mul8u_ µW µm2 NA NM NA NM

1JFF 391 (-0%) 710 (-0%) 0.0000 0.0000 0.0000 0.0000
14VP 364 (-7%) 654 (-8%) 0.0000 0.0001 0.0000 0.0001
GS2 356 (-9%) 633 (-11%) 0.0004 0.0017 0.0001 0.0013
CK5 345 (-12%) 604 (-15%) 0.0000 0.0002 0.0000 0.0002
7C1 329 (-16%) 607 (-14%) 0.0011 0.0033 0.0007 0.0026
96D 309 (-21%) 605 (-15%) 0.0035 0.0077 0.0020 0.0051
2HH 302 (-23%) 542 (-24%) -0.0001 0.0007 -0.0001 0.0007
NGR 276 (-29%) 512 (-28%) 0.0001 0.0008 0.0002 0.0009
19DB 206 (-47%) 396 (-44%) 0.0010 0.0019 0.0010 0.0021
DM1 195 (-50%) 402 (-43%) 0.0003 0.0025 0.0005 0.0025
12N4 142 (-64%) 390 (-45%) 0.0018 0.0054 0.0019 0.0056
1AGV 95 (-76%) 228 (-68%) 0.0027 0.0080 0.0026 0.0117
YX7 61 (-84%) 221 (-69%) 0.0484 0.0741 0.0268 0.0347
JV3 34 (-91%) 111 (-84%) 0.0021 0.0267 -0.0028 0.0301
QKX 29 (-93%) 112 (-84%) 0.0509 0.0736 0.0293 0.0350

3.6.5 Summary

Following the recent trends of approximate computing, the ReD-CaNe methodology is
proposed to trade off accuracy for energy efficiency by designing approximate CapsNets
accelerators. Extensive analyses investigate the resiliency of the CapsNet inference
subjected to approximation errors. Through error models due to the approximations, the
ReD-CaNe methodology selects the approximation components to employ based on the
resiliency level for every operation of the CapsNet inference. This work demonstrates
significant energy reductions with minimal accuracy losses by applying approximate
multipliers only. However, the CapsNets inference involves other compute-intensive
operations such as squash and softmax. Towards this, the following Section 3.7 analyzes
specialized hardware designs for approximating these complex functions.

3.7 Approximate Squash and Softmax Designs
To enable the deployment of CapsNets on edge devices, we propose to leverage approximate
computing for designing approximate variants of complex operations like squash and
softmax. In our experiments, we evaluate tradeoffs between power consumption, area,
critical path delay of the designs implemented with the ASIC design flow, and accuracy

125

3. Hardware and Software Optimizations for Capsule Networks

(a)

(d)

(b)

(c)

Figure 3.59: Group-wise resilience for different benchmarks. (a) DeepCaps for the SVHN
dataset. (b) DeepCaps for the MNIST dataset. (c) CapsNet for the Fashion-MNIST
dataset. (d) CapsNet for the MNIST dataset.

of the quantized CapsNets, compared to the exact functions.

3.7.1 System Overview
Despite their massive success, most advanced DNNs such as CapsNets exhibit high
complexity due to their compute-intensive operations, which hinders their implementations
on energy-constrained edge devices. Hence, several optimizations have been proposed for
increasing the performance and reducing the energy consumption of complex DNNs on
edge devices, such as quantization and pruning. In this section, we focus on leveraging
approximate computing for optimizing CapsNets. Hence, our approach is orthogonal
to other optimization methods, as we directly perform experiments on the quantized
CapsNets.

In a nutshell, our novel contributions are:

• We analyze the state-of-the-art CapsNets models and the most advanced designs of
approximate squash and softmax.

• We design specialized approximate softmax units using domain transformations.

• We design approximate squash units with piecewise approximations.

• We implement the approximate softmax and squash architectures in VHDL, syn-
thesize them in a 45nm technology node with the ASIC design flow, and perform
gate-level simulations to evaluate the area, power consumption, and critical path
delay.

126

3.7. Approximate Squash and Softmax Designs

• We also integrate the functional approximations into the Q-CapsNets framework to
compute the inference accuracy of state-of-the-art CapsNets using the proposed
approximate units.

• Our proposed approximate softmax-b2 design outperforms the related works, having
−8% power, −11% area, −19% critical path delay, and comparable accuracy.

• Our proposed approximate squash-exp and squash-pow2 have up to −36% critical
path delay and up to −6% power consumption compared to the state-of-the-art
while showing similar accuracy as having the exact squash function.

3.7.2 Approximate Computing for DNNs Nonlinear Operations
Approximate computing is a practical design methodology aiming to achieve low power
consumption, high performance, and reduced chip area by relaxing the accuracy require-
ment in error-tolerant applications. Extensive research efforts have been dedicated to
optimizing matrix multiplications in DNNs by proposing approximate designs for adders
and multipliers. However, a key factor for achieving high computational efficiency in
DNNs and CapsNets is the implementation of nonlinear functions, such as hyperbolic
tangent, sigmoid, softmax, and squash.

Various techniques have been proposed to implement nonlinear functions in an approx-
imate form and enable efficient hardware implementations with limited accuracy loss.
The work in [238] proposed a piecewise linear approximation of the sigmoid function by
saving the curve breakpoints in a look-up table and using linear interpolation.

Regarding the softmax function, the work in [239] proposed an approximate softmax
architecture where the exponential function is computed using Taylor series expansion
and a look-up table. The work in [240] presented a hardware architecture exploiting a
mathematical transformation into the logarithmic domain to simplify the division and
approximates the logarithmic and exponential functions using linear fitting within a
specific range.

For the squash function, the work in [241] described a set of approximations of the
Euclidean norm to avoid the computation of square and square-root operations. The
work in [242] introduced an approximate square-accumulate design with a self-healing
mechanism suitable for computing the sum of the squared components in the Euclidean
norm. However, the previous works did not consider advanced methods, like piecewise
approximations and domain transformations, which are possible due to the error tolerance
of these functions inserted in the CapsNets computations, that we indeed exploit in this
work.

3.7.3 Approximate Softmax Designs
In the following, we discuss three approximate softmax architectures that describe the
algorithmic approximations and the RTL implementations. The proposed approximations

127

3. Hardware and Software Optimizations for Capsule Networks

of the softmax function are referred to as softmax-taylor, softmax-lnu and softmax-b2,
with names enclosing their key features.

The softmax function shown in Equation (3.17) is a probabilistic version of the argmax
function that returns 1 for the highest input value and 0 for all the other values.

yi = exi�n
j=1 exj

(i = 1, ..., n) (3.17)

The softmax computation involves three key operations: sum, division, and natural
exponential. In the following approximate softmax designs, we focus on the approximate
calculation of the division and the exponentiation, which are the most complex operations
of the softmax function.

Softmax-taylor Design

The softmax-taylor design is based on a specific softmax approximation [239] which
exploits the Taylor series expansion approach for computing the exponential function
and performs divisions in the logarithmic domain.

The natural exponential operation is simplified as in Equation (3.18) using the first-order
Taylor polynomial approximation method. At the architecture level, the exponential
unit consists of 2 look-up tables that implement the first two exponent contributions, a
specialized bus arrangement to get 1 + c and a multiplier to compute the final product
iteratively (see Figure 3.60a and Figure 3.60b).

exi = ea+b+c ≈ ea · eb · (1 + c) (3.18)

The division is performed in logarithmic domain by exploiting the mathematical trans-
formation in Equation (3.19).

pow2 (log2 (exi/
n�

j=1
exj)) = pow2 (w1 + log2 k1 − (w2 + log2 k2))

≈ pow2 (w1 − w2 + k1 − k2)) = 2ui+vi ≈ 2ui · (1 + vi)
(3.19)

Here, N1 = exi and N2 = �n
j=1 exj are expressed as 2wl · kl, with wl ∈ Z and kl ∈ [1, 2)

for l = 1, 2 and the base-2 logarithm of kl is approximated by the linear fitting function
kl − 1. The argument of the power-2 operator is split into its integer and fractional parts,
ui and vi, with ui ∈ Z and vi ∈ [0, 1) and 2vi is estimated as (1 + vi).

The division unit has 2 base-2 logarithm units, a leading one detector (LOD) and a shift
unit that computes the logarithm of the dividend and the divisor, a subtraction unit that

128

3.7. Approximate Squash and Softmax Designs

(a) Overview (b) EXP Unit (c) DIV Unit

Figure 3.60: Architectures of the approximate Softmax-taylor design. (a) Overview of
the Softmax-taylor architecture. (b) Softmax-taylor exponent unit. (c) Softmax-taylor
division unit.

performs the division in the logarithmic domain, and a power-2 unit (bus arrangement
and shift unit) that computes the softmax output value (see Figure 3.60c).

To comply with the CapsNet models used in our experiments, the softmax architecture
can process 10, 32, or 128 inputs.

Softmax-lnu Design

The softmax-lnu design builds on a peculiar softmax approximation [240] that adopts a
mathematical domain transformation involving natural exponential and natural logarithm
operations (see Equation (3.20)).

exp (ln (exi/
n�

j=1
exj)) = exp (xi − ln (

n�
j=1

exj)) (3.20)

The transformation into the logarithm domain allows performing the division by using a
more straightforward subtraction. The exponentiation is needed to convert the softmax
outputs from the logarithmic domain into the linear one. The architecture mainly consists
of three computational units to calculate the natural exponential of the softmax inputs
(EXPU), sum the exponentials, and evaluate the natural logarithm of the sum (LNU)
required for the division (see Figure 3.61a).

The natural exponential operation is computed by using the mathematical transformation
in Equation (3.21), with ui ∈ Z and vi ∈ [0, 1). At the architecture level, this unit is

129

3. Hardware and Software Optimizations for Capsule Networks

(a) Softmax-lnu (b) EXP Unit (c) LN Unit (d) Softmax-b2

Figure 3.61: Architectures of the approximate Softmax-lnu and Softmax-b2 de-
signs. (a) Overview of the Softmax-lnu architecture. (b) Softmax-lnu exponent unit.
(c) Softmax-lnu natural logarithm unit. (d) Overview of the Softmax-b2 design.

composed of a constant multiplier by log2 e, a specific bus arrangement to implement
1 + vi and a shift unit to compute the result (see Figure 3.61b).

exi = 2xi·log2 e = 2ui+vi = 2ui · 2vi ≈ 2ui · (1 + vi) (3.21)

The natural logarithm is computed using Equation (3.22), where F = �n
j=1 exj is

expressed as 2w ·k, with w ∈ Z and k ∈ [1, 2) and the base-2 logarithm of k is approximated
with the linear fitting function k − 1. The natural log unit consists of 4 main subunits:
a leading one detector that determines w, a shift unit that computes k, a specific
bus arrangement to get the base-2 logarithm of F , and a constant multiplier by ln 2
(see Figure 3.61c).

ln F = ln 2 · log2 F = ln 2 · (w + log2 k) ≈ ln 2 · (w + k − 1) (3.22)

The architecture includes other hardware units that compute the maximum input value,
scale the inputs, perform the division in the logarithmic domain, and allow for processing
a variable number of softmax inputs.

Softmax-b2 Design

The softmax-b2 design implements the approach of computing a softmax-like function
with powers of 2 instead of natural exponentials, and it exploits a domain transformation

130

3.7. Approximate Squash and Softmax Designs

with base-2 logarithm and power-2 operations (see Equation (3.23)).

pow2 (log2 (2xi/
n�

j=1
2xj)) = pow2 (xi − log2 (

n�
j=1

2xj)) (3.23)

The proposed approximation reduces the complexity of the hardware implementation of
the softmax-lnu design, thanks to the removal of two constant multipliers.

Compared to the softmax-lnu design, the softmax-b2 architecture (see Figure 3.61d)
avoids the preliminary multiplication by log2 e in the exponential unit and the final
multiplication by ln 2 in the logarithmic unit, by implementing the power-2 and base-2
logarithm unit, respectively.

3.7.4 Approximate Squash Designs
The proposed approximate squash designs are called squash-norm, squash-exp and squash-
pow2.

The squash function requires the computation of the norm of the input vector and the
squashing coefficient multiplied to the input vector to produce the output vector, as
shown in Equation (3.24).

y = ∥x∥2

1 + ∥x∥2
x

∥x∥ (3.24)

The first design uses a specific norm approximation [241], while the remaining two
techniques introduce novel solutions for approximating the squashing coefficient.

Squash-norm Design

The squash-norm design is inspired by the specific Euclidean norm approximation
proposed by Chaudhuri et al. [241], which is shown in Equation (3.25).

∥x∥ ≈ Dλ(x) = |ximax | + λ
n�

i=1
i ̸=imax

|xi| (3.25)

This architecture does not need the square root operator and the multiplications needed
to square the vector components. Still, it involves the computation of the absolute values
and the maximum absolute value components. The parameter λ depends on the number
of vector components, and it is selected accordingly [243].

The designed architecture is mainly composed of two units. The norm unit computes the
approximate norm, and the squashing unit produces the squash outputs (see Figure 3.62a).

131

3. Hardware and Software Optimizations for Capsule Networks

(a) Overview (b) Norm Unit (c) Squashing Unit

Figure 3.62: Architectures of the approximate Squash-norm design. (a) Overview of the
Squash-norm architecture. (b) Squash-norm norm unit. (c) Squash-norm squashing
unit.

The norm unit implements the Chaudhuri approximation [241] in Equation (3.25). It
consists of multiple arithmetic modules. A specialized component computes the absolute
value of the inputs, the accumulator sums up the absolute values, a unit computes the
maximum absolute value, a subtractor gets the second term of the formula, a multiplier
scales the sum by λ, and an adder adds the maximum value to the sum (see Figure 3.62b).

The squashing unit is composed of two look-up tables that implement the squashing
coefficient and a multiplier that computes the squash outputs as the product between
the inputs and the squashing coefficient (see Figure 3.62c).

To comply with the two CapsNet models employed in our experiments, the squash
architecture can process 4, 8, 16, or 32 inputs.

Squash-exp Design

The squash-exp design exploits a piecewise approximation of the squashing coefficient
∥x∥/(1 + ∥x∥2) in two ranges of norm values. The coefficient is approximated with the
nonlinear function 1 − e−∥x∥ in the first range and with direct mapping in the second
range. Such a range of norm values is derived experimentally from executing the inference
steps with two CapsNet models on two datasets.

At the architecture level, this design mainly consists of two computational units: the
norm and squashing units.

132

3.7. Approximate Squash and Softmax Designs

The norm unit performs the Euclidean norm of the input vector. It consists of a multiplier
that squares the input components, an accumulator that sums up the squared inputs,
and two look-up tables that implement the square root function over two specific ranges
of squared norm values (see Figure 3.63a).

(a) Norm unit (b) Squashing Unit of Squash-exp (c) Squashing Unit of Squash-pow2

Figure 3.63: Architectures of the approximate Squash-exp and Squash-pow2 designs.
(a) Norm unit of the Squash-exp and Squash-pow2 architectures. (b) Squash-exp
squashing unit. (c) Squash-pow2 squashing unit.

The squashing unit performs the piecewise approximation of the squashing coefficient to
compute the outputs. In the first range, the nonlinear function is implemented with a
component composed of a 2’s complement of the norm value, a natural exponent unit,
and a subtractor. The second-range approximation is implemented with a look-up table.
The final multiplier computes the squash outputs (see Figure 3.63b).

Squash-pow2 Design

The squash-pow2 design builds on the piecewise approximation of the squashing
coefficient used in the squash-exp architecture, but the approximating nonlinear function
used in the first range of norm values is 1 − 2−∥x∥.

At the architecture level, the exponential unit does not have the constant multiplication
by log2 e, which is replaced to implement the power-2 unit (see Figure 3.63c). The
hardware efficiency is obtained at the cost of a larger worst-case approximation error due
to the squashing coefficient in the low norm value range.

3.7.5 Evaluation of the Approximate Softmax and Squash Designs
In the following, we evaluate the approximate softmax and squash designs in terms of
inference accuracy loss and hardware implementation metrics.

133

3. Hardware and Software Optimizations for Capsule Networks

First, we explore the inference accuracy loss induced by the proposed softmax and squash
approximations in 4 case studies, with two CapsNet models on two image classification
datasets. Then, we synthesize the complete architectures and analyze our designs’ power
consumption, area usage, and timing performance.

The goal of the evaluation is to explore possible tradeoffs between the hardware im-
plementation cost of the approximate designs and the classification accuracy loss of a
CapsNet using the approximations.

Experimental Setup

We describe the approximate softmax and squash algorithms in Python and execute
extensive software simulations to evaluate the quality of each approximation compared
to the respective exact function. The experiments are conducted for over 1 000 input
vectors in a specific range. We analyze the Mean Error Distance between the maximum
and average component errors in absolute and relative terms, respectively.

To evaluate how the softmax and squash approximations affect the inference accuracy
of the complete CapsNets, we implement the approximate functions in a Python-based
CapsNet model provided by the Q-CapsNets framework. We execute an image classifica-
tion task with two CapsNet models, the ShallowCaps [34] and the DeepCaps [31], on two
image datasets, the MNIST [60] and the Fashion-MNIST [96].

As shown in Figure 3.64, our experimental setup consists of software and hardware
components. We use a python-based environment with PyTorch library and Nvidia
CUDA Toolkit to execute the inference on an Nvidia GeForce RTX 2080 Ti GPU.
We conduct the quantization of the approximate softmax and squash data to comply
with the hardware implementation and we test the quantized approximate functions
in quantized CapsNet models (see Table 3.16). Using the Q-CapsNets framework, we
quantize activations and weights of the CapsNet models and input data of the softmax
and squash functions.

Approximate Squash
and Softmax Functions
Python files

Approximate Squash
and Softmax Functions
VHDL files

SW-Level
Functional
Simulation
(Python)

SW Functional
Outputs

HW Functional
Outputs

Validation

Integration in
Q-CapsNets
Framework

CapsNets
Training and

Inference

Accuracy
Reports

Nvidia RTX 2080 Ti GPU

Logic Synthesis
(Synopsys DC) Area

Reports

Critical Path
Delays

Gate-Level
Netlist

Logic Simulation
(ModelSim)

Power Simulation
(Synopsys DC)

.saif files

.vcd files

Power
ReportsDesign Compiler

Figure 3.64: Setup and tool-flow for conducting our experiments.

134

3.7. Approximate Squash and Softmax Designs

Table 3.16: Percentage of quantized inference accuracy.

MNIST Fashion-MNIST
ShallowCaps DeepCaps ShallowCaps DeepCaps

exact functions 99.44 99.35 92.42 94.69
softmax-lnu 99.46 99.42 92.37 94.71
softmax-b2 (ours) 99.49 99.33 92.33 94.64
softmax-taylor 99.42 99.41 92.47 94.69
squash-exp (ours) 99.18 98.79 91.32 94.76
squash-pow2 (ours) 99.00 98.58 89.05 94.62
squash-norm 99.26 99.23 92.51 94.70

We implement the designed architectures in VHDL and perform functional simulations
using ModelSim to check the results against the Python model outputs. We synthesize
the architectures in a 45nm academic technology library using the ASIC design flow
with the Synopsys Design Compiler tool and obtain power consumption, area usage, and
maximum path delay for each design (see Table 3.17). Finally, we conduct post-synthesis
functional simulations and timing validation of the gate-level netlist.

Table 3.17: Hardware characteristics with clock frequency 100 MHz.

Area usage Power consumption Critical path delay
(µm2) (µW) (ns)

softmax-lnu 12,511 2,572 6.46
softmax-b2 (ours) 11,169 2,244 4.22
softmax-taylor 14,944 2,430 5.24
squash-exp (ours) 7,937 1,414 5.64
squash-pow2 (ours) 7,543 1,340 4.17
squash-norm 6,806 1,431 6.53

Evaluating the Softmax

From the experimental evaluations, we derive the following key observations about the
approximate softmax designs.

The softmax-b2 design is the best solution in terms of hardware metrics. However,
it exhibits the highest CapsNet accuracy loss in all the case studies except for the
ShallowCaps on MNIST. Actually, the b2 design consumes less area (−11% and −25%)
and power (−13% and −8%) than the lnu and taylor designs. Moreover, it achieves the
lowest critical path delay (−35% and −19% w.r.t. lnu and taylor).

135

3. Hardware and Software Optimizations for Capsule Networks

The softmax-taylor design is the best choice regarding inference accuracy loss since
it outperforms the other designs of the ShallowCaps for Fashion-MNIST. However, it
has the worst area usage (+20% and +35% w.r.t. lnu and b2) and intermediate power
consumption and critical path delay.

The softmax-lnu design shows the highest power consumption (+15% and +5% w.r.t.
b2 and taylor) and maximum path delay (+53% and +23%) but intermediate area usage.
Its performance in terms of inference accuracy loss is similar to the taylor design in all
case studies, except for the ShallowCaps for Fashion-MNIST, where the lnu performs
worse (+0.1% loss).

Evaluating the Squash

The squash-norm design is the best approximate squash solution regarding the CapsNet
accuracy loss. It is also characterized by having the best area usage (−13% and −8%
w.r.t. exp and pow2), but as a drawback, it shows the worst power (+1% and +7%) and
delay metrics (+15% and +56%).

The squash-pow2 design is the best option in terms of power consumption (−5% and
−6% w.r.t. exp and norm) and critical path delay (−25% and −36%), and intermediate
area usage. However, it implies the lowest CapsNet accuracy among all case studies.

The squash-exp design is characterized by an accuracy loss similar to the norm design
in two case studies and significantly lower accuracy in the other two cases. In exchange
for the reduced accuracy, it has intermediate power and delay metrics, but as a downside,
it shows the worst area usage (+5% and +17% w.r.t. pow2 and norm).

3.7.6 Summary
To enable efficient CapsNets inference on edge devices, diverse approximate designs
for the most compute-intensive CapsNets operations (the softmax and squash) are
designed and integrated into the CapsNets computing engine. The proposed softmax
design approximating the natural exponential with powers of 2 significantly reduces
the hardware complexity, with limited accuracy drop. The proposed squash designs
based on piecewise approximations show interesting tradeoffs between accuracy, area,
power consumption, and critical path delay. These findings contribute toward deploying
CapsNets and other complex DNN models on resource-constrained devices.

3.8 Summary of Hardware and Software Optimizations for
Capsule Networks

This chapter has discussed a flow of optimizations for CapsNets, including a fast training
framework, hardware designs of the computation unit and memory organizations, and
other energy-efficient optimizations involving quantization and approximate computing.
The design space of the solutions has been explored through heuristic algorithms that

136

3.8. Summary of Hardware and Software Optimizations for Capsule Networks

leverage the tradeoff between multiple design objectives, such as energy, latency, area,
and memory. Such an end-to-end flow of designs and set of optimizations enable the
deployment of CapsNets on edge devices with limited hardware resources. Nowadays,
besides the energy efficiency, a crucial aspect to consider when designing systems based
on advanced ML models such as CapsNets and DNNs is their robustness against the
vulnerability threats that undermine their correct functionality. Toward this, Chapter 4
discusses the security vulnerabilities, and Chapter 5 combines the energy efficiency and
robustness objectives into an integrated design flow.

137

CHAPTER 4
Adversarial Security Threats for

DNNs and CapsNets

This chapter systematically analyzes the vulnerabilities of advanced DNN models like
CNNs and CapsNets against security threats. In particular, the robustness against
affine transformations and adversarial attacks is analyzed. The design and evaluation
flow is shown in Figure 4.1. Section 4.1 provides systematic analyses by comparing
the robustness of two CapsNet models with two CNN models. In Section 4.1.4, the
robustness against affine transformations is discussed. This section also includes the
pre-processing methodology for generating affine-transformed versions of the datasets.
Section 4.1.5 presents the robustness analysis against existing adversarial attacks, such
as the PGD and Carlini-Wagner algorithms. Section 4.1.6 further discusses the impact of
the CapsNets’ routing algorithm on the robustness. In Section 4.2, a novel methodology
for generating imperceptible and robust adversarial attacks is proposed and evaluated
on various CNN and CapsNet models. Section 4.3 presents novel attack algorithms
that generate adversarial examples that fake the effect of atmospheric conditions on the
camera lens. They are evaluated on CNN and CapsNet models as well.

DL Datasets

Affine Transformations
Generation (Sec. 4.1)

Evaluation of Robustness against
Adversarial Attacks

Evaluation of Robustness against
Affine Transformations

Adversarial Attack
Algorithms Imperceptible and

Robust Adversarial
Examples Generation

(Sec. 4.2)

fakeWeather
Attacks

Generation
(Sec. 4.3)

DNN & CapsNet Models

Figure 4.1: Overview of the design and evaluation flow of this chapter.

139

4. Adversarial Security Threats for DNNs and CapsNets

Major Contributions of the Chapter:

• RobCaps methodology design: It is a systematic methodology for analyzing
the robustness of CapsNets against affine transformations and adversarial attacks
and comparing it with traditional DNNs. It also investigates the robustness under
the adversarial training defense and evaluates the impact of the dynamic routing
on the CapsNets’ robustness.

• CapsAttacks methodology design: It is an attack technique for generating
targeted imperceptible and robust adversarial examples. The attack is evaluated
on different CapsNets and DNNs for various benchmarks.

• fakeWeather attacks design: Based on the observations of how the natural
weather events affect the images captured by the cameras, specialized masks have
been designed to emulate the effect of atmospheric conditions such as snow, rain,
and hail on the camera.

4.1 RobCaps: Evaluating the Robustness of CapsNets
against Affine Transformations and Adversarial
Attacks

CapsNets can hierarchically preserve the pose relationships between multiple objects
for image classification tasks. Other than achieving high accuracy, another relevant
factor in deploying CapsNets in safety-critical applications is the robustness against input
transformations and malicious adversarial attacks.

In this section, we systematically analyze and evaluate different factors affecting the
robustness of CapsNets, compared to traditional CNNs. Towards a comprehensive
comparison, we test two CapsNet models and two CNN models on the MNIST, GTSRB,
and CIFAR10 datasets, as well as on the affine-transformed versions of such datasets.
A thorough analysis shows which properties of these architectures better contribute to
increasing the robustness and their limitations. CapsNets achieve better robustness
against adversarial examples and affine transformations than a traditional CNN with a
similar number of parameters. Similar conclusions have been derived for deeper versions
of CapsNets and CNNs. Moreover, our results reveal that dynamic routing operations
do not significantly improve the CapsNets robustness. Indeed, the main generalization
contribution is due to the hierarchical feature learning through capsules.

4.1.1 System Overview
Our objective is to investigate the following research questions:

1. Are CapsNets more robust than CNNs against adversarial attacks and affine trans-
formations?

140

4.1. RobCaps: Evaluating the Robustness of CapsNets against Affine Transformations and
Adversarial Attacks

2. If yes, how can these phenomena be analyzed systematically?

3. Which CapsNet functions contribute more to the robustness improvement?

Answering these questions is a challenging task. Firstly, we evaluate a good metric of
comparison between CapsNets and CNNs, i.e., which network models give a fair and
significant robustness comparison, which types of adversarial attacks are applied, etc.
Then, it should be interesting to analyze the transferability of the adversarial attacks,
i.e., white-box attacks. If an adversarial example has been generated to fool network A,
does it also fool network B?

In a nutshell, our Novel Contributions are:

• We generate an affined-transformed version of the CIFAR10 and GTSRB datasets,
called affCIFAR and affGTSRB, respectively.

• We compare the robustness against affine trans-formations for different
datasets and networks.

• We compare the robustness against adversarial attacks for different datasets
and networks. Further analyses have been carried on in the presence of a defense
such as the adversarial training.

• We evaluate the role of the dynamic routing towards the CapsNets robustness.

In summary, our key results show that the DeepCaps [31] is more robust than a deeper
ResNet20 [68] against affine transformation and different types of adversarial attacks,
increasing the complexity of the input data. As we will demonstrate, such robustness
improvements also hold when the adversarial examples are transferred from one network
to the other and vice-versa.

After showing the power of the capsules, we focus our analysis on the dynamic routing,
which increases the confidence of the prediction, with a consequent accuracy improve-
ment. By knowing that, our challenging question is: Is the dynamic routing also helpful
in guaranteeing the CapsNets robustness? Our results and analyses provide great in-
sights when relating CNNs and CapsNets against different adversarial attacks and affine
transformations, as well as how CapsNets behavior changes when modifying model
features.

4.1.2 RobCaps Methodology
The introduction of the CapsNets suggests that these architectures might be more robust
towards adversarial attacks than other CNNs. To demonstrate this intuition, we present
a detailed analysis to answer our main research questions and to show (1) if and why the
CapsNet under attack provides a better response than traditional CNNs, and (2) which

141

4. Adversarial Security Threats for DNNs and CapsNets

model quality plays an important role and their limits. Knowing the main differences
between CapsNets and traditional CNNs, we explore the impact of these networks on
affine transformations and adversarial attacks. Moreover, we study the role of different
functions of a CapsNet on the robustness against these attacks. Towards a fair and
comprehensive evaluation, the ShallowCaps results have been compared to three different
architectures (chosen according to their properties, their number of parameters, and their
depth) for three datasets, i.e., MNIST [60], GTSRB [232], and CIFAR10 [234].

• The ResNet20 [68] is one of the best performing CNN architectures for the CIFAR10
dataset, used in various applications. It would be interesting to compare the
capabilities of the CapsNet with a widely used CNN, which is deeper and employs
Residual Blocks with Conv and average pooling layers.

• A deeper CapsNet architecture, like the DeepCaps model [31]. Despite being deeper
than the ShallowCaps, it has fewer parameters. The DeepCaps employs 4 groups
of 2D Conv capsule layers with a 3D convolution layer in the last group and a FC
capsule layer of 10 32D capsules.

• A traditional deep CNN with the same depth as the DeepCaps, but without
multidimensional entities such as capsules. The dimensions of the layers are
reshaped in a 2D fashion, using traditional Conv layers with batch normalization
instead of capsules with squash compression and a conventional FC layer instead of
the ClassCaps layer with dynamic routing. Its comparison w.r.t. the DeepCaps
highlights the contribution to the robustness of 3D convolutions and capsules.

Our methodology, shown in Figure 4.2, is composed of the following steps:

1) Evaluation of robustness on affine transformations:

i) Train our networks with the standard datasets using the same hyperparameters
and data augmentation.

ii) Generate the affine-transformed version of each dataset for a given set of affine
transformations. For the CIFAR10 and the GTSRB datasets, we design two
novel datasets generated using transformations such as random translations,
rotations, and zooms (which we call affCIFAR and affGTSRB.

iii) Use such affCIFAR and affGTSRB datasets for inference, as the case for the
already existing affNIST [244], to evaluate the network’s response to affine
transformations.

2) Evaluation of robustness on adversarial attacks:
We use the saved parameters of the trained models to evaluate the gradient with
respect to the input for the two implemented white-box attacks. The key steps of
our methodology are:

142

4.1. RobCaps: Evaluating the Robustness of CapsNets against Affine Transformations and
Adversarial Attacks

i) Apply the projected gradient descent (PGD) attack for each architecture and
each dataset to generate adversarial examples.

ii) Test the networks with the generated adversarial inputs, evaluating the accu-
racy behavior when increasing the perturbation level.

iii) Apply the Carlini Wagner attack (CW) for each dataset.
iv) Evaluate the mean distortion required for the algorithm to misclassify 500

images of the test datasets and its fooling rate.
v) Apply at the input to a network the adversarial image generated with another

one to test the transferability of the attack.
vi) Test the robustness when the adversarial training defense is applied.

3) Analyzing the contribution of the dynamic routing to the CapsNet’s
robustness:

i) Modify the dynamic routing of the ClassCaps layer of the DeepCaps and then
generate three versions of it with different routing algorithms.

ii) Analyze the robustness against affine transformations.
iii) Analyze the robustness against PGD and CW attacks.

Adversarial
Attacks
Library

Datasets
❑ affCIFAR
❑ affGTSRB

Affine Transformations
❑ Rotation
❑ Zoom
❑ Translation

CNNs
❑ ResNet20
❑ DeepCNN

CapsNets
❑ ShallowCaps
❑ DeepCaps

Attack
Transferability

Analysis Robustness Analysis

Adversarial Training
Robustness Analysis

Dynamic Routing
Robustness Analysis

DNN Models

Minimum noise to
fool the network

Gradients for white-box attacks

Baseline robustness

Figure 4.2: Overview of our RobCaps methodology.

4.1.3 Experimental Setup
These architectures have been trained with the 40×40 sized version of the MNIST dataset
and tested on the affNIST for evaluating the robustness against affine transformations.
For all the architectures tested on CIFAR10, input data have been resized before training,
from 32 × 32 to 64 × 64, following the pre-processing steps in [31]. For the GTSRB, the
input image size is kept to 32 × 32. The data augmentation and hyperparameters used
for the training are kept the same for all the networks. As a regularization term, the
CapsNets have the reconstruction loss provided by the decoder. For the evaluation of the
loss function, we use the same as in [34] for CapsNets and the Cross-Entropy for CNNs.

We implemented the attack algorithms using the Cleverhans library [245], adapted for
the Keras framework with Tensorflow backend [73]. The networks have been trained on

143

4. Adversarial Security Threats for DNNs and CapsNets

the Nvidia GeForce RTX 2080 Ti GPU with CUDA 10. To have a good comparison
metric, we train different versions of the DeepCaps architecture, modifying or removing
the dynamic routing.

4.1.4 Robustness Against Affine Trasformations
Affine-CIFAR10 (affCIFAR) and Affine-GTSRB (affGTSRB) Datasets
Generation

While a dataset with affine transformed images of the MNIST dataset (affNIST) is already
available, we create an affine version of the CIFAR10 and GTSRB datasets, which we
call affCIFAR and affGTSRB, to compare the response of the networks. The test data
was created by modifying the 10 000 test images from the original dataset with random
affine transformations. Every image is transformed following these criteria:

• Translations: random pixels translations in one or two dimensions by a factor
between 10% and 25% of the input image size, with a fixed interval.

• Rotations: random rotations between +20 and −20 degrees with a fixed step.

• Zooms: the vertical and horizontal expansions are uniformly chosen between 0.8
(i.e., shrinking the image by 20%) and 1.2 (i.e., enlarging the image by 20%).

Affine Trasformations Results

For each model defined in Section 4.1.2, we evaluate the accuracy for all the datasets
and their respective affine transformed versions. The results are shown in Figure 4.3.

ResNet20

A
cc

ur
ac

y
[%

] MNIST affNIST GTSRB affGTSRB CIFAR10 affCIFAR

99
.1

8

99
.1

9

99
.2

2

95
.2

9

99
.1

6

95
.6

4

94
.7

3

96
.3

9

77
.3

2

91
.5

2

91
.6

8

91
.4

8

75
.6

1

87
.6

0

82
.8

3

96
.3

9

78
.8

8

84
.1

4

79
.0

3

89
.7

5

78
.6

6

69
.9

0

75
.8

4

ShallowCaps DeepCaps CNN

100

80
90

70
60
50

Figure 4.3: Robustness against affine transformations.

ShallowCaps vs. DeepCaps: As shown in Figure 4.3, the ShallowCaps on the CIFAR10
dataset achieves lower accuracy than the state-of-the-art (77.32%). Such limitation is
solved by the DeepCaps, which reaches better results even when using the affine version
of this dataset (78.66%). Thus, using a deeper architecture while keeping the same
capsule structure, the DeepCaps model has fewer parameters and better generalization.
Its accuracy for the CIFAR10 dataset (91.52%) and the affine-transformed datasets are
much higher than the ShallowCaps. In fact, despite the shallower model reaching a good
accuracy on the normal MNIST and GTSRB datasets, it is still unable to generalize as
the DeepCaps against affine transformations. The improvement could also be explained

144

4.1. RobCaps: Evaluating the Robustness of CapsNets against Affine Transformations and
Adversarial Attacks

by the presence of the 3D Conv layer. The effect of having 3D convolutions, compared
to a stack of FC capsules, is similar to when we reach the generalization level offered
by the Multi-Layer Perceptrons (MLP) and the CNNs. In the ClassCaps layer, each
element of the transformation matrix learns if a capsule is correlated with each capsule
of the following layer. On the contrary, with the 3D convolution, sliding a 3D kernel,
the same weights are used among all the layer capsules. This characteristic also allows
learning the presence of a particular feature if the input image is spatially transformed
(e.g., translated, rotated, or zoomed), preserving the capsule structure.

DeepCaps vs. CNN and ResNet20: Another significant result is provided by
comparing the response of the DeepCaps with a traditional CNN, having a similar base
architecture. While the accuracy of the CNN on the MNIST, GTSRB, and CIFAR10
datasets is similar to the DeepCaps, the CNN’s robustness against the affNIST, affGTSRB,
and affCIFAR is much lower. These results confirm the benefits of capsules against
affine transformations. Compared to the DeepCaps, the ResNet20 is deeper but has
fewer parameters. It can generalize better for the affMNIST and affGTSRB but worse
for the affCIFAR dataset. This apparently contradictory result is due to the difference
in complexity between the datasets. While for simple datasets, a deep CNN, like the
ResNet20, can generalize very well, for more complex tasks like the affCIFAR, it is
outperformed by the DeepCaps. This observation highlights the capability of the capsule
architectures to preserve spatial correlations between the features detected, and this
difference w.r.t. deeper traditional CNNs is even more evident when the input dataset is
composed of complex elements like the CIFAR10.

4.1.5 Robustness Against Adversarial Attacks
Projected Gradient Descent (PGD) Attack

We analyze the network response by increasing the perturbation level ε generated by the
algorithm. Figure 4.4a,b, and c show the results for the MNIST, GTSRB, and CIFAR10
datasets.

ROBUST

WEAK
WEAK

Figure 4.4: Robustness against the PGD attack for (a) the MNIST, (b) the GTSRB
and (c) the CIFAR10 datasets.

ShallowCaps vs. ResNet20: Applying the PDG attack for the MNIST dataset, the
ResNet20 is less vulnerable than other networks for low levels of ε. The ShallowCaps
robustness behavior, not so far from the one of the ResNet20, outperforms the ResNet20

145

4. Adversarial Security Threats for DNNs and CapsNets

when ε ≈ 0.065. Hence, despite the low number of layers, the ShallowCaps has a similar
response under the PGD attack compared to a deeper CNN.

DeepCaps vs. ShallowCaps: According to the results, the ShallowCaps is more robust
than the DeepCaps, in contrast to what happens for affine transformations. Increasing
the depth of a CapsNet does not provide more robustness against perturbed images.
Note, the ShallowCaps response for the CIFAR10 dataset has not been examined because
of its very low baseline accuracy, which is not comparable with other networks.

DeepCaps vs. ResNet20 vs. CNN: For this kind of algorithm and the MNIST
dataset, Figure 4.4a shows that the DeepCaps behaves worse than the ResNet20. On the
contrary, for more complex datasets like CIFAR10 or GTSRB, the results in Figure 4.4
show that the ResNet20 is not as robust as for the MNIST dataset. Note that by
increasing the size of the perturbation, the success rate of the attacks grows faster
than on DeepCaps. Such outcome is in line with the takeaway from Figure 4.3, which
showed the DeepCaps be more robust than the ResNet20 against the transformations in
affCIFAR.

The behavior of the CNN curves for GTSRB and CIFAR10 always stays below the curve
of the DeepCaps. It means that the capsule architecture plays a fundamental role in
improving the robustness against the PGD attacks when the dataset becomes more
complex than the MNIST.

Transferability ResNet20 ⇐⇒ DeepCaps: Towards a more comprehensive study of
the robustness against the PGD, we analyze the transferability of the attacks, between
the ResNet20 and the DeepCaps, presenting the two opposite behaviors. We provide
to the input of the DeepCaps the adversarial examples generated with the gradient of
the ResNet20 and vice-versa. Figure 4.5 shows the transferability between these two
networks for different datasets.

ROBUST

WEAK

Figure 4.5: Transferability for the PGD attack: comparison of the network response for
(a) MNIST, (b) GTSRB and (c) CIFAR10 datasets.

For the MNIST dataset, the attacks generated for the ResNet20, tested on DeepCaps,
have a more significant effect than the other way round. This outcome confirms, like
in Figure 4.5a, that the ResNet20 appears good for the generalization of the MNIST.
The opposite results can be derived for the GTSRB and CIFAR10 dataset, where the
DeepCaps shows greater robustness than the ResNet20 due to a better generalization
ability for a more complex dataset.

146

4.1. RobCaps: Evaluating the Robustness of CapsNets against Affine Transformations and
Adversarial Attacks

Carlini Wagner (CW) attack

For a more solid comparison, the CapsNets and CNNs have also been tested against the
CW attack, a different algorithm that does not define a threshold for the perturbation
magnitude (like the ε in the PGD attack). It is an iterative targeted algorithm that tries
to reduce the gap between the target and the predicted class (success rate) with the
minimum perturbation (mean distortion), estimated as the l2 distance. For a more robust
network, the algorithm necessitates more iterations to obtain that the probability of the
target class overcomes the probability of the correct class. Consequently, more iterations
imply a higher l2 distance between the original image and the adversarial example. For
our estimations, we set a maximum of 10 iterations for the MNIST and 5 iterations for
the CIFAR10 dataset. In addition, for the attacks on CIFAR10, the algorithm has been
forced to set the confidence of the targeted class as 0.5 higher than the confidence of the
correct label. Table 4.1 reports the fooling rate, i.e., the percentage of successful attacks,
and the mean distortion for both the datasets.

Table 4.1: Robustness results against the CW attack.

MNIST GTSRB CIFAR10
Network Mean Distortion Fooling Rate Mean Distortion Fooling Rate Mean Distortion Fooling Rate

ShallowCaps 1.59 98.6% 1.31 100% - -
Deepcaps 1.24 86.8% 1.16 98.8% 0.34 100%

CNN 0.95 100% 0.59 100% 0.23 100%
ResNet20 0.94 100% 0.34 100% 0.12 100%

CapsNets vs. CNNs: The CW attack is very effective for traditional CNNs. It reaches
100% fooling rate for all three datasets. Similar findings were also made in [193]. On the
other hand, both CapsNets show greater robustness (i.e., lower fooling rate) than CNNs,
for the MNIST dataset (and also for GTSRB, even if the fooling rate of the DeepCaps
is slightly lower than 100%). The CapsNets also require a higher mean distortion than
the CNNs. Hence, the resulting adversarial example would be more perceptible. For the
CIFAR10 dataset, the CW attack shows its effectiveness because, for all the networks,
the fooling rate is 100%. However, we notice that CapsNets are more robust due to
higher mean distortion.

DeepCaps vs. ShallowCaps: The DeepCaps appears more robust than the Shal-
lowCaps, because of a lower fooling rate, despite having slightly lower mean distortion.
Therefore, the depth and the 3D convolutions help to generalize better against the CW
attack.

Transferability ResNet20 ⇐⇒ DeepCaps: Table 4.2 shows the transferability of
the attacks between ResNet20 and DeepCaps for the CW attack. The values report the
accuracies of the two models that receive as input a sample of 500 targeted adversarial
examples generated by the CW algorithm applied to the other network. The high accuracy
values demonstrate the low level of transferability of the targeted CW attack. Despite
this, the ResNet20 still achieves lower accuracy than the DeepCaps, thereby performing
less robustly.

147

4. Adversarial Security Threats for DNNs and CapsNets

Table 4.2: Transferability of the CW attack between the DeepCaps and the ResNet20.

Network MNIST GTSRB CIFAR10
DeepCaps → ResNet20 97.4% 94.0% 86.8%
ResNet20 → DeepCaps 97.8% 95.4% 89.2%

DeepCaps defended with the PGD Adversarial Training

We also evaluate the robustness of DeepCaps when the PGD adversarial training is
applied compared to the normally trained DeepCaps. We chose an input perturbation
equal to ϵ = 0.03, with step size 0.005 in each algorithm iteration. From Figure 4.6, we
can derive that the adversarial training increases the robustness of the DeepCaps against
the PGD attack, both for the CIFAR10 and GTSRB datasets, because its classification
accuracy is higher than the baseline DeepCaps.

ROBUST

WEAK

Figure 4.6: Adversarially vs. normally trained DeepCaps with (a) the GTSRB and
(b) the CIFAR10 datasets.

The adversarial training with PGD defense helps the networks also against the CW
attack. For both the datasets, from Table 4.3, comparing both the mean distortion and
the fooling rate, the defended DeepCaps appears more robust. Hence, the adversarial
training improves the model interpretability and reduces the learning of brittle features
when the attack algorithm used for the defense differs from the one used for the actual
attack.

Table 4.3: Adversarially and normally trained DeepCaps against the CW attack.

GTSRB CIFAR10
Network Mean Distortion Fooling Rate Mean Distortion Fooling Rate

Normally trained DeepCaps 1.16 98.8% 0.34 100%
Adversarially trained DeepCaps 1.44 98.6% 0.84 96.6%

148

4.1. RobCaps: Evaluating the Robustness of CapsNets against Affine Transformations and
Adversarial Attacks

4.1.6 Analyzing the Contribution of Dynamic Routing to the
Robustness of the DeepCaps

As a further analysis, we investigate the contribution of the dynamic routing towards the
CapsNets generalization and, as a consequence, towards their robustness. We train two
versions of the DeepCaps architecture. (i) The original dynamic routing with 3 iterations
has been replaced by a simple connection (i.e., one iteration of dynamic routing) in both
the 3D Conv and the ClassCaps layer. (ii) The dynamic routing has been replaced by
the self-routing algorithm in the last FC layer. Then, we run the experiments on such
networks and compare them with the original DeepCaps.

Affine Trasformations

The results in Table 4.4 compare the accuracy achieved by the DeepCaps with and
without dynamic routing, and with self-routing, for the MNIST, GTSRB, and CIFAR10
datasets. While the difference is minimal, the response of the DeepCaps without dynamic
routing against affine transformations appears to be slightly better. For the CIFAR10
dataset, even if the accuracy with the standard dataset is higher with the dynamic routing
compared to the case without it, the latter works better for the affCIFAR dataset. The
self-routing shows some limits increasing the complexity of the datasets.

Table 4.4: Robustness results against affine transformations.

Network MNIST40 GTSRB CIFAR10 AffNIST AffGTSRB AffCIFAR
DeepCaps without dynamic routing 99.27% 96.27% 91.47% 87.72% 84.54% 79.86%

DeepCaps with dynamic routing 99.19% 95.29% 91.52% 87.60% 84.14% 78.66%
DeepCaps with self routing 99.25% 95.60% 90.5% 88.15% 83.17% 77.37%

We can derive that the dynamic routing in CapsNets does not contribute significantly
to the robustness against affine transformations. Indeed, it makes the DeepCaps much
computationally heavier. The functionality of the dynamic routing is to inhibit the
propagation of the activation vectors with lower contribution by lowering the values
of the coupling coefficients in such connections. Instead, the transformation matrix
learns the relationship between objects during the training. It could wrongly recognize
some relationships between the inputs and a wrong output label, which the dynamic
routing amplifies, together with the correct agreements. As a consequence, it increases
the prediction confidence of the incorrect label.

Adversarial Attacks

The comparison analysis for the PGD attack applied to the MNIST, GTSRB, and
CIFAR10 datasets are shown in Figure 4.7a, b, and c, respectively.

For the MNIST dataset, the DeepCaps with dynamic routing is slightly more robust
than the version without it. On the contrary, for the CIFAR10, the accuracy of the

149

4. Adversarial Security Threats for DNNs and CapsNets

ROBUST

WEAK

Figure 4.7: PGD results: comparison of the DeepCaps response for (a) MNIST and
(b) GTSRB and (c) CIFAR10 datasets.

DeepCaps without dynamic routing decreases faster when increasing the perturbation ε.
We can conclude that increasing the complexity of the dataset, from MNIST toward the
CIFAR10, the dynamic routing does not improve the classification capability when the
input starts to be perturbed.

Table 4.5 shows the results of the CW attack. The self-routing seems to confer robustness
with such an attack, even if the architecture with dynamic routing is outperformed by
the one without it. Since the fooling rate is lower and the mean distortion is higher
without dynamic routing, we can derive that the dynamic routing does not improve
the robustness against such an attack. It confirms that the dynamic routing does not
contribute much to the generalization.

Table 4.5: Robustness results against the CW attack.
MNIST GTSRB CIFAR10

Network Mean Distortion Fooling Rate Mean Distortion Fooling Rate Mean Distortion Fooling Rate
DeepCaps with dynamic routing 1.24 86.8% 1.16 98.8% 0.34 100%

DeepCaps without dynamic routing 1.62 74.0% 1.27 84.11% 0.46 100%
DeepCaps with self routing 2.28 48.6% 1.02 54.4% 0.52 99.2%

4.1.7 Summary

The proposed RobCaps methodology systematically studies the robustness of advanced
DNN models, such as CNNs and CapsNets, against adversarial attacks and affine trans-
formations. To evaluate the robustness against affine transformations, a methodology
to generate the image transformation is proposed. The evaluations indicate that the
DeepCaps model exhibits higher robustness than a similar-size CNN and the ResNet20
model. This observation is noticed since the DeepCaps shows higher accuracy than other
DNN models in the presence of affine transformations and adversarial attacks. Such
higher robustness is also obtained when the adversarial training is employed. In this
section, the robustness against existing adversarial attack algorithms has been studied,
while the following Section 4.2 and Section 4.3 investigate the robustness against new
adversarial attack methodologies.

150

4.2. CapsAttacks: A Study on the Security Vulnerabilities of CapsNets against Adversarial
Attacks

4.2 CapsAttacks: A Study on the Security Vulnerabilities
of CapsNets against Adversarial Attacks

A large body of work has investigated adversarial examples for CNNs, but their effective-
ness on CapsNets has not yet been investigated systematically. In our work, we study
the vulnerabilities in CapsNets to adversarial attacks. These perturbations, added to
the inputs, are small and imperceptible to humans but can fool the network into mispre-
dicting. We propose a greedy algorithm to generate imperceptible adversarial examples
in a black-box attack scenario automatically. We show that this attack applied to the
GTSRB and CIFAR10 datasets misleads CapsNets in making a correct classification.
This outcome can be catastrophic for smart CPS, like autonomous vehicles. Moreover, we
apply the same adversarial attacks to a 5-layer CNN (LeNet), a 9-layer CNN (VGGNet),
and a 20-layer CNN (ResNet). We analyze the outcome compared to the CapsNets, to
study their different behaviors under adversarial attacks.

4.2.1 System Overview
In this section, we aim to address the following key research questions:

1. Is a CapsNet vulnerable to adversarial examples? If yes, how, why, and to what
extent?

2. How does the CapsNets’ vulnerability to adversarial attacks differ from that of the
traditional CNNs?

Studying the vulnerability of the CapsNet to such adversarial attacks for the GTSRB
dataset is crucial for autonomous vehicle use cases. Moreover, to our knowledge, we
are the first to automatically generate an attack image for such CapsNet in a black-box
scenario. We compare the CapsNet robustness with the CNNs with 5 and 9 layers, and
the DeepCaps robustness with a 20-layer ResNet.

In a nutshell, our Novel Contributions are:

1. We develop a novel algorithm to generate targeted imperceptible and
robust adversarial examples automatically.

2. We analyze the robustness behavior of the CapsNet, the DeepCaps, a 5-layer
CNN (LeNet), a 9-layer CNN (VGGNet), and a 20-layer CNN (ResNet), under
adversarial attacks applied to the input images of the CIFAR10 and GTSRB
datasets, and study their differences.

3. We compare the robustness of the CapsNets with traditional CNNs, under the
adversarial examples generated by our algorithm.

151

4. Adversarial Security Threats for DNNs and CapsNets

In summary, our results show that the CapsNet has comparable robustness to a much
deeper CNN like the VGGNet, while the LeNet is much more vulnerable to adversarial
attacks, while the DeepCaps is more robust than the ResNet. Therefore, a fundamental
step forward for the security of safety-critical applications can be done by employing
deep and complex networks such as the DeepCaps.

4.2.2 Generation of Targeted Imperceptible and Robust Adversarial
Examples

An efficient adversarial attack can generate imperceptible and robust examples to fool the
network. Before discussing the details of our algorithm, we describe the importance of
these two aspects.

Imperceptibility and Robustness

An adversarial example is typically considered imperceptible if the modifications of the
original sample are so small that humans cannot notice them or they are hardly recognized.
To create imperceptible adversarial examples, we need to add the perturbations in the
pixels of the image with the highest standard deviation. The perturbations added in
high variance regions are less evident and more difficult to detect than the ones applied
in low variance pixels. Considering an area of M · N pixels x, the standard deviation
(SD, Equation (4.1)) of the pixel xi,j can be computed as the square root of the variance,
where µ is the average of the M · N pixels:

SD(xi,j) =

����� M�
k=1

N�
l=1

(xk,l − µ)2 − (xi,j − µ)2

M · N
(4.1)

Hence, if the pixel is in a high variance region, its standard deviation is high, and the
probability of detecting a modification of the pixel is low. To quantify the imperceptibility,
we define the distance (D, Equation (4.2)) between the original sample X and the
adversarial sample X*, where δi,j is the perturbation added to the pixel xi,j :

D(X∗, X) =
M�

i=1

N�
j=1

δi,j

SD(xi,j) (4.2)

This value indicates the total amount of perturbation added to all the pixels under
consideration. We define DMAX as the maximum total perturbation tolerated by the
human eye. The value of DMAX can vary among different datasets or images because it
depends on the resolution and the contrast between neighboring pixels.

An adversarial example is typically called robust if the gap function, i.e., the gap between
the target class probability and the maximum class probability, is maximized (see
Equation (4.3)).

152

4.2. CapsAttacks: A Study on the Security Vulnerabilities of CapsNets against Adversarial
Attacks

GAP = P (target class) − max{P (other classes)} (4.3)

For higher gap function values, the adversarial example becomes more robust since
the changes in the probabilities due to the image transformations (e.g., resizing or
compression) tend to be less effective. Indeed, if the gap is high, a variation of the
probabilities could not be sufficient to misclassify.

Generation of the Adversarial Examples

Obtaining, at the same time, imperceptibility and robustness is complicated. Typically,
a robust attack would require perceptible input changes, while an imperceptible attack
does not change the classification much. We propose an iterative methodology deploying
a heuristic algorithm to generate targeted imperceptible and robust adversarial examples
automatically in a black-box scenario, i.e., we assume that the attacker has access to
the input image and the output probabilities vector, but not to the network model.
Our attack generation methodology is shown in Figure 4.8. Details are provided in
Algorithm 13. The goal of our methodology is to modify the input image to maximize
the gap function (i.e., imperceptibility) until the distance between the original and the
adversarial example is under DMAX (i.e., robustness).

X*
 Adversarial image

@ current iteration

Input image

Pixel
perturbations

& record
changes DNN

or

CapsNet

High variation
selection

Δ GAP

Output
probabilities

Compute GAP,
GAP(+), GAP(-)

D(X,X*)>Dmax

Distance
D(X,X*)

Output:
Adversarial

Example Y

First
iteration

Misclassification

X*
 Adversarial image

@ next iteration
N

Figure 4.8: Our methodology to generate adversarial examples.

Attack Methodology Discussion

The algorithm considers that every pixel has three different values since the images are
based on three channels (red, green, and blue: RGB). Compared to the algorithm proposed
in [246], our attack is applied to a set of pixels with the highest standard deviation at every
iteration to create imperceptible perturbations. Moreover, our algorithm automatically
decides whether it is more effective to add or subtract the noise to maximize the gap,
according to the values of two parameters, GAP (+) and GAP (−). These changes increase
the imperceptibility and robustness of the attack. For clarity, we have expressed the
formula used to compute the standard deviation in a more comprehensive form.

153

4. Adversarial Security Threats for DNNs and CapsNets

Algorithm 13: Adversarial Attack Generation.
1 Given: original sample X, maximum human perceptual distance DMAX , noise

magnitude δ, M · N pixels, target class, P, V;
2 while D(X∗, X) < DMAX do
3 Compute Standard Deviation SD for every pixel;
4 Select a subset P of pixels included in the region of M · N pixels with the

highest SD for every channel;
5 Compute GAP , GAP (−), GAP (+);
6 if GAP (−) > GAP (+) then
7 V ariationPriority(xi,j) = [GAP (−) − GAP] · SD(xi,j);
8 else
9 V ariationPriority(xi,j) = [GAP (+) − GAP] · SD(xi,j);

10 Sort in descending order VariationPriority for every channel;
11 Select V pixels with the highest VariationPriority between the three channels;
12 if GAP (−) > GAP (+) then
13 Subtract noise with magnitude δ from the pixel in the respective channel;
14 else
15 Add noise with magnitude δ to the pixel in the respective channel;
16 Compute D(X∗, X) as the sum of the D(X∗, X) of every channel;
17 Update the original example with the adversarial one;

Our algorithm operates in the following steps:

1. Select a subset P of pixels, included in the area M · N , with the highest SD for
every RGB channel, making their possible modification difficult to be detected.

2. Compute the gap function as the difference between the probability of the target
class and the maximum output probability.

3. For each pixel in P , compute GAP (+) and GAP (−): these values correspond
to the gap function, estimated by adding and subtracting a perturbation unit to
each pixel, respectively. These gaps help decide whether adding or subtracting the
noise is more effective. For each pixel in P , we consider the highest value between
GAP (+) and GAP (−) to maximize the distance between the two probabilities.

4. For each pixel in P , calculate the Variation Priority by multiplying the gap difference
with the SD of the pixel. This value indicates the efficacy of the pixel perturbation.

5. For every channel, the P values of Variation Priority are ordered, and the highest
V values are perturbed.

6. Only V values of the total 3 · P are perturbed. The noise is added or subtracted
according to the highest value of the previously computed GAP (+) and GAP (−).

154

4.2. CapsAttacks: A Study on the Security Vulnerabilities of CapsNets against Adversarial
Attacks

7. Once the original input image is replaced by the adversarial example, the next
iteration starts. The iterations stop when the distance D overcomes DMAX .

4.2.3 Evaluation of the CapsAttack Methodology
Experimental Setup

For the analysis of the GTSRB dataset, we consider the CapsNet [34]. We implement
it in TensorFlow to perform image classification on the GTSRB dataset [232] with an
accuracy of 97.6%. This dataset has images of size 32 × 32 divided into 34 799 training
examples and 12 630 testing examples. Each pixel intensity value spans from 0 to 1. The
number of classes is 43. For evaluation purposes, we compare the CapsNet with a 5-layer
CNN (LeNet) [60], trained for 30 epochs, and a 9-layer CNN (VGGNet) [247], trained
for 120 epochs. Their accuracy for clean test images is 91.3% and 97.7%, respectively.

For the analysis of the CIFAR10 dataset, we consider the DeepCaps architecture [31],
which is composed of 18 layers. We implement it in TensorFlow, and its classification
accuracy on the CIFAR10 dataset [234] is 91.52%. The CIFAR10 dataset contains 50 000
training images and 10 000 testing images of size 32 × 32, divided into 10 classes. We
compare it with a 20-layer ResNet [68], which has an accuracy with clean test images of
91.48%.

We apply our methodology, discussed in Algorithm 13, to the previously described
CapsNet, DeepCaps, LeNet, VGGNet, and ResNet. We test it on two different examples
to verify how our algorithm works. We consider M = N = 32, because the GTRSB and
CIFAR10 datasets are composed of 32 × 32 images, P = 100, and V = 20. The value
of δ equals 10% of the maximum value between all the pixels. The parameter DMAX

depends on the SD of the pixels of the input image: its value changes according to the
examples because D(X∗, X) does not increase in the same way for each example.

Our Methodology applied to the CapsNet

We test the CapsNet on two different examples of the GTSRB dataset, shown in Fig-
ure 4.9a (Example 1) and Figure 4.9e (Example 2). To test whether our methodology
works independently from the choice of the target class, we distinguish two cases:

Case I: the target class is the class relative to the second highest initial output probability.

Case II: the target class is the class relative to the fifth highest probability between all
the initial output probabilities.

By analyzing Case I and Case II, we can make the following key observations:

1. The CapsNet classifies the input image shown in Figure 4.9a as “120 km/h speed
limit” (S8) with a probability equal to 0.0370. For Case I, the target class is “Double
curve” (S21) with a probability equal to 0.0297. After 13 iterations of our algorithm,
the image (Figure 4.9b) is classified as “Double curve” with a probability equal to

155

4. Adversarial Security Threats for DNNs and CapsNets

(a) (b) (c) (d) (e) (f) (g)

Figure 4.9: Images for the attack applied to the CapsNet: (a) Original input image of
Example 1. (b) Image misclassified by the CapsNet at iteration 13 for Case I. (c) Image
misclassified by the CapsNet at iteration 16 for Case I. (d) Image at iteration 12 for
Case II. (e) Original input image for Example 2. (f) Image at iteration 5, applied to the
CapsNet. (g) Image misclassified by the CapsNet at iteration 21.

0.0339. Hence, the probability of the target class has overcome the initial one, as
shown in Figure 4.10a. At this step, the distance D(X∗, X) is equal to 434.20. By
increasing the number of iterations, the robustness of the attack increases because
the gap between the two probabilities increases, but also, the perceptibility of
the noise becomes more evident. After the iteration 16, the distance grows above
DMAX = 520. The sample is represented in Figure 4.9c. This analysis shows that
there is a tradeoff between robustness and imperceptibility.

Misclassification Correct classification
but lower confidence

Reduced Gap but
correctly classified

(a) (b) (c)

Figure 4.10: CapsNet results for the GTSRB dataset: (a) Output probabilities of Example
1 - Case I: blue bars represent the starting probabilities, orange bars the probabilities at
the point of misclassification, and yellow bars at the DMAX . (b) Output probabilities
of Example 1 - Case II: blue bars represent the starting probabilities, and orange bars
are the probabilities at the DMAX . (c) Output probabilities of Example 2: blue bars
represent the starting probabilities, and orange bars the probabilities at the DMAX .

For Case II, the probability relative to the target class “Beware of ice/snow” (S30)
is equal to 0.0249, as shown in Figure 4.10b. The gap between the maximum
probability and the probability of the target class is higher than the gap in Case I.
After 12 iterations, the network has not misclassified the image yet (Figure 4.9d).
In Figure 4.10b, we can observe that the gap between the two classes has decreased,
but not enough for a misclassification. However, at this iteration, the value of the
distance overcomes DMAX = 520. In this case, we show that our algorithm would
need more iterations to misclassify at the cost of slightly perceivable perturbations.

2. The CapsNet classifies the input image shown in Figure 4.9e as “Children crossing”
(S28) with a probability equal to 0.042. The target class is “60 km/h speed limit”
(S3) with a probability equal to 0.0331. After 5 iterations, the distance overcomes
DMAX = 250, while the network has not misclassified the image yet (Figure 4.9f)

156

4.2. CapsAttacks: A Study on the Security Vulnerabilities of CapsNets against Adversarial
Attacks

because the probability of the target class does not overcome the initial maximum
probability, as shown in Figure 4.10c. The misclassification appears at the iteration
21 (Figure 4.9g). However, the perturbation is highly perceivable. Therefore, if
this noise perception is not acceptable, such a solution would be discarded by our
methodology, and a new solution would be searched, for which an adaptation of the
constraints may be required, or a different input image is captured in a real-world
system (e.g., a new image at a different distance from the camera).

Our Methodology applied to the VGGNet and the LeNet

To compare the robustness of the CapsNet and the 9-layer VGGNet, we choose to evaluate
the previous two examples, which have been applied to the CapsNet. For Example 1, we
consider only Case I as the benchmark because Case II shows a similar behavior. The
VGGNet classifies the input images with different output probabilities compared to the
ones obtained by the CapsNet. Therefore, our metric to evaluate the resistance of the
VGGNet against our attack is based on the value of the gap at the same distance.

To compare the robustness of the CapsNet and the 5-layer LeNet, we consider only
Example 1 (Figure 4.11a) because Example 2 (Figure 4.11d) is already classified incorrectly
by the LeNet. Note that the image of Example 2 belongs to the subset of images that
are correctly classified by the CapsNet and the VGGNet, but incorrectly by the LeNet.
Applying our algorithm to the LeNet, we observe that it is more vulnerable than the
CapsNet and the VGGNet.

(a) (b) (c) (d) (e) (f) (g)

Figure 4.11: Images for the attack applied to the CNNs: (a) Original input image
for Example 1. (b) Image at the iteration 3, applied to the VGGNet. (c) Image at
the iteration 9, misclassified by the VGGNet. (d) Original input image for Example
2. (e) Image at the iteration 2, applied to the VGGNet. (f) Image at the iteration 6,
misclassified by the LeNet. (g) Image at the iteration 13, misclassified by the LeNet.

From our experiments, we make these key observations:

1. The VGGNet classifies the input image (Figure 4.11a) as “120 km/h speed limit”
(S8) with a probability equal to 0.976. The target class is “100 km/h speed
limit” (S7) with a probability equal to0.021. After 3 iterations, the distance
overcomes DMAX = 520, while the VGGNet has not misclassified the image yet
(Figure 4.11b). Hence, our algorithm would need to perform more iterations before
fooling the VGGNet, since the two initial probabilities were very distant, as shown

157

4. Adversarial Security Threats for DNNs and CapsNets

in Figure 4.12a. Such scenario appears after 9 iterations (Figure 4.11c), where the
probability of the target class is 0.483.

2. The VGGNet classifies the input image (Figure 4.11d) as “Children crossing” (S28)
with a probability equal to 0.96. The target class is “Beware of ice/snow” (S30)
with a probability of 0.023. After 2 iterations, the distance overcomes DMAX = 250,
while the VGGNet has not misclassified the image yet (Figure 4.11e). As in the
previous case, this scenario is due to the high gap between the initial probabilities,
as shown in Figure 4.12b. We can also notice that the VGGNet reaches DMAX in
a lower number of iterations than the CapsNet.

3. The LeNet classifies the input image (Figure 4.11d) as “120 km/h speed limit” (S8)
with a probability equal to 0.672. The target class is “30 km/h speed limit” (S1)
with a probability equal to 0.178. After 6 iterations, the perturbations fool the
LeNet, because the image (Figure 4.11f) is classified as the target class with a
probability equal to 0.339. The perturbations become perceptible after 13 iterations
(Figure 4.11g), where the distance overcomes DMAX = 520.

Misclassification, but
with perceptible noise

High Gap between
correct class and

target class

High Attack
Robustness

(a) (b) (c)

Figure 4.12: CNNs results for the GTSRB dataset: (a) Output probabilities of Example
1 on the VGGNet: blue bars represent the starting probabilities, orange bars the
probabilities at the point of misclassification, and yellow bars at the DMAX . (b) Output
probabilities of Example 2 on the VGGNet: blue bars represent the starting probabilities
and orange bars the probabilities at the DMAX . (c) Output probabilities of Example 1
on the LeNet: blue bars represent the starting probabilities, orange bars the probabilities
at the point of misclassification, and yellow bars at the DMAX .

Our Methodology Applied to the DeepCaps and ResNet20 on the CIFAR10
Dataset

We test the DeepCaps and ResNet on two different images of the CIFAR10 dataset,
shown in Figure 4.13a (Example 3) and in Figure 4.13d (Example 4). Both analyses have
been conducted by choosing the target class as the second highest probability between
the initial output probabilities.

The following key observations can be derived from our experiments:

1. For Example 3, both the DeepCaps and the ResNet correctly classify the input
image (Figure 4.13a) as “truck” (S9), and for both networks, the target class is
“ship” (S8). As shown in Figure 4.14a, the DeepCaps is fooled by the attack. After 6

158

4.2. CapsAttacks: A Study on the Security Vulnerabilities of CapsNets against Adversarial
Attacks

(a) (b) (c) (d) (e) (f) (g)

Figure 4.13: Images for the attack applied to the DeepCaps and ResNet20: (a) Original
input image for Example 3. (b) Image at the iteration 11, misclassified by the DeepCaps.
(c) Image at the iteration 8, misclassified by the ResNet20. (d) Original input image
for Example 4. (e) Image at the iteration 9, applied to the DeepCaps. (f) Image at the
iteration 14, misclassified by the DeepCaps. (g) Image at the iteration 9, misclassified
by the ResNet20.

iterations of the attack, the image is classified as “ship” with a probability of 0.421.
Increasing the number of iterations increases the gap between the probabilities,
thus making the attack more robust. After 11 iterations, the distance has overcome
DMAX = 520, and the adversarial example generated at this point is shown in
Figure 4.13b. Similarly, the attack also fools the ResNet. After 5 iterations, it is
classified as “ship” with a probability of 0.376. At the iteration 8 (see Figure 4.13c),
the probability associated to the class “ship” is 0.433, while the distance has
overcome DMAX = 520.

2. Example 4 (Figure 4.13d) is correctly classified as a “bird” by the DeepCaps, with
a probability equal to 0.847. The second highest probability, which will be the
attack’s target class, is associated with the class “horse” (S7). After 9 iterations,
the distance overcomes DMAX = 450, while the image shown in Figure 4.13e is still
correctly classified as a “bird” by the DeepCaps with a probability equal to 0.524.
The yellow bars in Figure 4.14c show that the image in Figure 4.13f is classified as
a “horse” with a probability equal to 0.365, but the distance is way beyond DMAX .
Hence, only a perceptible noise can mislead the DeepCaps.

3. The Example 4 (Figure 4.13d) is correctly classified as a “bird” by the ResNet, with
a probability equal to 0.910. The target class is “deer” (S4). After 9 iterations, the
probability of the target class has overcome the initial one. As shown in Figure 4.14d,
the ResNet classifies the image in Figure 4.13g as a “deer” with a probability equal
to 0.483. At this point, the distance has also reached DMAX = 450.

Attack Vulnerability Comparison between the CapsNet and the CNNs

From our analyses, we can observe that the vulnerability of the 9-layer VGGNet to our
adversarial attack is slightly lower than the vulnerability of the CapsNet, since the former
requires more perceivable perturbations to be fooled. Our observation is corroborated
by the results in Figure 4.15, where the value of D(X∗, X) increases more sharply for
the VGGNet than for the CapsNet. Hence, the noise perception in the image can be

159

4. Adversarial Security Threats for DNNs and CapsNets

0

0.5

1

S9 S8 S1 S6 S7

Pr
ob

ab
ili

ty

Class

IteraƟon 0
IteraƟon 6
IteraƟon 11

Misclassification

0

0.5

1

S9 S8 S1 S3 S6

Pr
ob

ab
ili

ty

Class

IteraƟon 0
IteraƟon 5
IteraƟon 8

Robust Attack

0

0.5

1

S2 S7 S4 S0 S5

Pr
ob

ab
ili

ty

Class

IteraƟon 0
IteraƟon 9
IteraƟon 14

Misclassification,
but with

perceptible noise

0

0.5

1

S2 S4 S7 S6 S0

Pr
ob

ab
ili

ty

Class

IteraƟon 0
IteraƟon 9

Misclassification
with low confidence

(a) (d)(c)(b)

Figure 4.14: CIFAR10 results: (a) Output probabilities of Example 3 on the DeepCaps:
blue bars represent the starting probabilities, orange bars represent the probabilities
at the point of misclassification, and yellow bars denote probabilities at the DMAX .
(b) Output probabilities of Example 3 on the ResNet20: blue bars represent the starting
probabilities, orange bars represent the probabilities at the point of misclassification,
and yellow bars denote probabilities at the DMAX . (c) Output probabilities of Example
4 on the DeepCaps: blue bars represent the starting probabilities, orange bars denote
the probabilities at the DMAX , yellow bars represent the point of misclassification with
D(X∗, X) > DMAX . (d) Output probabilities of Example 4 on the ResNet20: blue bars
represent the starting probabilities, orange bars denote the probabilities at the point of
misclassification, which coincides with the DMAX .

measured as the value of D(X∗, X) divided by the number of iterations. Note that
the noise in the VGGNet becomes perceivable after a few iterations. Moreover, we can
observe that the choice of the target class plays a key role in the attack’s success.

Perceptible
Noise for
VGGNet

The Distance D(X*,X) increases
more sharply for the VGGNet

(a) (b)

Figure 4.15: D(X∗, X) behavior for (a) Example 1, and (b) Example 2.

We also notice other features that lead to the differences between the VGGNet and the
CapsNet. The VGGNet is deeper and contains a larger number of weights, while the
CapsNet can achieve a similar accuracy with a smaller footprint. This effect causes a
disparity in the prediction confidence between the two networks. It is clear that the Cap-
sNet has a much higher learning capability than the VGGNet, but this phenomenon does
not reflect in the prediction confidence. Indeed, comparing Figure 4.10 and Figure 4.12,
we can notice that the output probabilities predicted by the CapsNet are close to each
other, even more than the LeNet. However, the perturbations do not affect the CapsNet’s
output probabilities as much as for the CNNs. The LeNet, even though it has a similar
depth and a similar number of parameters, is more vulnerable than the CapsNet.

By comparing the DeepCaps with the ResNet20, we can notice that, despite the prediction
confidence being slightly higher for the ResNet, the DeepCaps is less vulnerable to these
perturbations. For instance, as noticed in Figure 4.14, after 9 iterations of the attack

160

4.3. fakeWeather: Adversarial Attacks for DNNs Emulating Weather Conditions on the Camera
Lens of Autonomous Systems

running on Example 4, the ResNet is fooled, while the DeepCaps still correctly classifies.

4.2.4 Summary
This section presents the proposed CapsAttacks methodology for generating targeted
imperceptible and robust adversarial examples. It is an iterative procedure that introduces
image perturbations in a black-box scenario. The evaluations are conducted on various
CNN and CapsNet models, and the output probability variations across different attack
iterations are analyzed in detail. Aligned with the observations noticed in the previous
Section 4.1, the CapsNets exhibit higher adversarial robustness than CNNs. In particular,
the DeepCaps shows higher robustness than the ResNet20. Further robustness analyses
comparing CNNs and CapsNets will be discussed in the following Section 4.3.

4.3 fakeWeather: Adversarial Attacks for DNNs
Emulating Weather Conditions on the Camera Lens of
Autonomous Systems

Recently, DNNs have achieved remarkable performances in many applications, while
several studies have enhanced their vulnerabilities to malicious attacks. In this section, we
emulate the effects of natural weather conditions for introducing plausible perturbations
that mislead the DNNs. Observing the effects of such weather perturbations on the camera,
we model these patterns to create different masks that fake the effects of atmospheric
conditions such as rain, snow, and hail. Even though the perturbations injected by our
attacks are visible, their presence is unnoticed due to their association with natural
events. We test our proposed fakeWeather attacks on multiple CNN and CapsNet models
and report significant accuracy drops when such adversarial perturbations are applied.
This work introduces a new security threat for DNNs, which is especially severe for
safety-critical applications and autonomous systems.

4.3.1 System Overview
The key goal for an adversarial attack and its applicability in practical use cases consists
of not being detected as adversarial but rather as plausible/common. The most straight-
forward approach is to inject a minimal amount of perturbations, to make the differences
between the clean and adversarial images imperceptible to the human eye. However, the
attacker needs to access a set of information, including DNN model architecture and
parameters, inputs, and outputs (i.e., in white-box settings), or only inputs and outputs
(in black-box settings). Even the most advanced decision-based black-box attacks still
have access to the DNN predicted output class for each image. However, in practice, it
may be difficult to obtain such information due to the protection mechanisms applied by
the DNN-based system developers. Moreover, another critical limitation resides in the
fact that even the most query-efficient algorithms [248] need to perform a certain amount
of queries (i.e., inference passes) to generate the adversarial perturbation, which might

161

4. Adversarial Security Threats for DNNs and CapsNets

not be practical in case of stringent real-time constraints, due to the latency overhead
caused by the queries.

Considering these limitations of the adversarial attacks that aim at injecting imperceptible
perturbations to the original images, our approach follows a different strategy. Our novel
idea is to introduce perturbations to the input image so that it is not considered adversarial
since it resembles a natural scene captured by the camera. Even though the differences
between the clean image and the adversarial image may be noticed, the adversarial
image is hardly categorized as “adversarial” since it simply captures a plausible natural
condition. The reason is due to the fact that traditional adversarial ML evaluates the
comparison between the adversarial image and the original image. However, in real-world
practice, it is impossible to evaluate it since we can only access image recorded by the
camera. Noticeably, our methodology is advantageous compared to previous works since
it is conducted in what we call a true black-box setting, i.e., a scenario where the attacker
has no information about the DNN architecture and parameters nor its outputs. The
only information needed is the size of the input image for generating adversarial masks
of that size. Moreover, our attack algorithm does not require any query. Hence, it can
easily be applied at run time.

Towards this, we observe how the camera perceives natural weather conditions, such
as rain, snow, and hail. We exploit this observation by designing fakeWeather attack
algorithms that fake these effects on the camera. An overview of its functionality is
illustrated in Figure 4.16. Our approach can be used not only as an adversarial attack
algorithm to mislead the DNN but also as a data augmentation technique for reinforcing
the DNN training under these conditions. Our contributions can be summarized as
follows:

• We observe several images of natural weather events that affect the camera and
identify the patterns that are more common in such images.

• By only knowing the image size, we design three fakeWeather masks that emulate
the effect of such atmospheric conditions on the camera.

• We evaluate the fakeWeather attacks on multiple DNN models (LeNet-5, ResNet-32,
CapsNet) for the CIFAR10 dataset, and obtain a success rate of the attacks varying
between 30% and 82.5%.

Observation
of Camera
Lens with

Atmospheric
Perturbations

Pattern
Extraction

Mask Generation
Rain Snow Hail

Trained
DNN Model

Dataset

High Accuracy for
Clean Images
High Attack

Success Rate for
Perturbed Images

fakeWeather Attacks Design Evaluation

Figure 4.16: Overview of the fakeWeather attacks functionality.

162

4.3. fakeWeather: Adversarial Attacks for DNNs Emulating Weather Conditions on the Camera
Lens of Autonomous Systems

4.3.2 fakeWeather Attacks Design
Problem Formulation and Assumptions

Considering the previous discussions, we propose the fakeWeather methodology. An
in-depth view of its key steps is shown in Figure 4.17. The final goal is to produce a finite
set of perturbations with certain patterns that resemble the effect of natural weather
events. Therefore, such patterns are crafted by faking that the camera lens is dirty due
to atmospheric perturbations (such as rain, snow, and hail). After observing their effects
on several real-world examples, the common patterns are extracted and reproduced for
generating the perturbation masks. The attacks are conducted in what we call a true
black-box setting, i.e., assuming that:

• the adversary has no information about the DNN model architecture, its parameters,
and its output;

• the only information available for the attacker is the size of the input images.

P2 Pn

P1
P3

1) Observation of Weather Effects on Images

2) Extraction of Common Patterns

.

3) fakeWeather
Mask Generation:

combination of
many patterns

4) Image Perturbation

Predicted:
deer ✓

Predicted:
bird

Figure 4.17: Overview of the fakeWeather attack methodology, highlighting the key steps.

Observation of Weather Conditions

The fakeWeather attacks are performed by introducing drops of water and snowflakes.
A common water drop has a spherical shape, while a snowflake has a hexagonal shape.
However, in practical use cases, these weather conditions do not represent the camera’s
primary focus. A camera captures scenes of rain and snow differently, resulting in a set
of blurry dots that overlap with the image. For instance, considering vision for smart
mobility, the camera can be placed either outside the vehicle (and therefore exposed to
the weather conditions) or inside the vehicle but close to the window. Without loss of
generality, we model a drop or a snowflake as a single pixel w.r.t. the image of h × l
pixels, where h and l represent the height and length, respectively.

163

4. Adversarial Security Threats for DNNs and CapsNets

Pattern Extraction and Mask Generation

According to the previous considerations, the fakeWeather methodology extends the
formulation of the One Pixel Attack [176], in which the perturbation of a single pixel is
defined as an array of 5 elements (x, y, r, g, b) where:

• (x, y) represent the coordinates of the pixel to be modified;

• (r, g, b) indicate the pixel’s color in RGB format.

Hence, an adversarial pattern combines multiple pixel attacks where the perturbation
introduced on the pixel i can be written as in Equation (4.4). An example of how to
generate the adversarial pattern is shown in Figure 4.18.

pixeli = (xi, yi, ri, gi, bi) (4.4)

l

h

one pixel perturbation:݈݁ݔ݅ଵ = ,ଵݔ) ,ଵݕ ,ଵݎ ݃ଵ, ܾଵ)
ଵ݈݁ݔ݅ = ,ଵݔ) ,ଵݕ ,ଵݎ ݃ଵ, ܾଵ)݈݁ݔ݅ଶ = ,ଶݔ) ,ଶݕ ,ଶݎ ݃ଶ, ܾଶ)݈݁ݔ݅ = ,ݔ) ,ݕ ,ݎ ݃, ܾ)

n-pixels perturbation:

Figure 4.18: Encoding of pixel perturbations that form the adversarial pattern.

The colors, i.e., the values of (ri, gi, bi), are determined according to the weather condition:

• rain: (rr, gr, br) = (208, 209, 214)

• snow and hail: (rs, gs, bs) = (249, 242, 242)

Specific patterns are generated for each type of fakeWeather attack (i.e., rain, snow, and
hail). Common patterns are extracted from natural images and reproduced to form the
set of pixel coordinates (xi, yi) that belongs to the attack mask. Once designed, the same
mask is applied to all the images under attack.

164

4.3. fakeWeather: Adversarial Attacks for DNNs Emulating Weather Conditions on the Camera
Lens of Autonomous Systems

fakeRain Attack

The mask employed in the fakeRain attack is designed based on the combination of
several water drops. The camera lens can be naturally soiled due to the rain, where
the water drops make up different patterns. We can recognize three real-case scenarios,
categorized as an agglomerate of drops, drop patches, and drop lines. As shown in
Figure 4.19, the next step consists of modeling these patterns in terms of perturbed pixel
coordinates.

(a) agglomerate of drops (b) water drop patch (c) drop lines

Agglomerate Pattern Patch Patterns Line Pattern

Figure 4.19: Several patterns of water drops observed from the real environment. (a) ag-
glomerate of drops, (b) water drop patch, (c) drop lines.

The Agglomerate Pattern can be modeled by combining together 5 pixels to form a cross
sign, according to the sketch in Figure 4.20a and Algorithm 14. The Patch Pattern
(see Figure 4.20b) can have three different shapes, namely the vertical patch, which can
be modeled as two consecutive pixels that share the same x coordinate (lines 4-6 of
Algorithm 15), the diagonal patch, modeled as two pixels forming a diagonal (lines 10-17
of Algorithm 15, and the two dots patch, in which two pixels are separated by a blank
space (lines 20-22 of Algorithm 15). The Line Pattern, shown in Figure 4.20c, is modeled
as a vertical line of n pixels (see Algorithm 16).

Moreover, in rainy conditions, we can observe that the water drops tend to concentrate
in the bottom corners of the image. Hence, to emulate this effect, in the fakeRain
attack, a V-shape is created to divide the image into two areas (see the example in
Figure 4.21). Below the V, several agglomerate patterns are densely concentrated. Above
the V, path and line patterns are more sparsely distributed. Algorithm 17 describes
the procedure for generating the fakeRain mask. Note that it is a three-step process
where (i) several agglomerate patterns are added (see line 2 of Algorithm 17), (ii) other
agglomerate patterns are added if the coordinate is below the V (line 5 of Algorithm 17),

165

4. Adversarial Security Threats for DNNs and CapsNets

(a) (c)(b)

Figure 4.20: A graphical representation of (a) Agglomer-
ate Pattern, (b) Patch Patterns, and (c) Line Pattern.

Figure 4.21: V-shaped
fakeRain attack.

Algorithm 14: Agglomerate Pattern
Input: Coordinate (x0, y0)
Output: Agglomerate Pattern Pa

1 Pa = ∅;
2 k = 0;
3 for i ← 0 to 2 do
4 for j ← 0 to 2 do
5 if (i + j = 0 ∨ i + j = 2 ∨ i + j = 4) then
6 Pa ← pixelk = (x0 + i, y0 + j, rr, gr, br);
7 k ← k + 1;

and (iii) different types of patch patterns and line patterns are added above the V (line 7
of Algorithm 17).

fakeSnow Attack

The fakeSnow attack is designed based on the assumption that a snowflake can be
modeled as a single pixel because the dimension of each snowflake is relatively small, as
observed in Figure 4.22. According to these considerations, the snow pattern Ps consists
of a single pixel, which can be modeled as in Equation (4.5), where (x0, y0) represents
the coordinate where the snow pattern is constructed.

Ps ← pixel0(x0, y0, rs, gs, bs) (4.5)

Another key feature observed from real images is that the snowflakes are more densely
concentrated close to the horizon line. In practice, this behavior can be modeled by
cutting the image into three parts through two horizontal lines, as shown in Figure 4.23,
and placing more dense snow patterns in the middle region while keeping the top and
the bottom of the image relatively less populated by snow patterns. The generation of

166

4.3. fakeWeather: Adversarial Attacks for DNNs Emulating Weather Conditions on the Camera
Lens of Autonomous Systems

Algorithm 15: Patch Pattern
Input: Coordinate (x0, y0), Type t
Output: Patch Pattern Pp

1 Pp = ∅;
2 switch t do
3 case 0 do // Vertical Patch
4 for j ← 0 to 1 do
5 Pp ← pixelj = (x0, y0 + j, rr, gr, br);

6 case 1 do // Diagonal Patch
7 k = 0;
8 for i ← 0 to 1 do
9 for j ← 0 to 1 do

10 if (i + j = 1) then
11 Pp ← pixelk = (x0 + i, y0 + j, rr, gr, br);
12 k ← k + 1;

13 case 2 do // Two Dots Patch
14 for j ← 0 to 1 do
15 Pp ← pixelj = (x0, y0 + 2 · j, rr, gr, br);

Algorithm 16: Line Pattern
Input: Coordinate (x0, y0), Length n
Output: Line Pattern Pl

1 Pl = ∅;
2 for j ← 0 to n − 1 do
3 Pl ← pixelj = (x0, y0 + j, rr, gr, br);

Figure 4.22: Several snowflakes observed, which can be modeled as single dots.

167

4. Adversarial Security Threats for DNNs and CapsNets

Algorithm 17: fakeRain Mask Generation
Input: Image size: length l and hight h
Output: fakeRain Mask Mr

1 Mr = ∅;
2 Mr ← Pa({0, ..., l − 3}, 0);
// use many agglomerate patterns in the first line

3 for (i, j) ∈ ({0, ..., l − 3}, {0, ..., h − 3}) do
4 if (i + j < h+l

4) ∨ (l − i + j < h+l
4) then

5 Mr ← Pa(i, j) ∨ {};
// sparsely add agglomerate patterns below the V

6 else
7 Mr ← Pp(i, j, t) ∨ Pl(i, j, n) ∨ {};

// sparsely add patch patterns or line patterns above
the V

the mask for the fakeSnow attack is described in Algorithm 18. It proceeds in different
manners based on the vertical coordinate j. In the middle region of the image, equally-
spaced dense snow patterns are added to the fakeSnow mask (line 9 of Algorithm 18). In
the upper and lower parts of the image, rows of dense and sparse (i.e., largely spaced)
snow patterns are alternatively added (lines 4-7 of Algorithm 18).

(a)
Upper Part:
Less dense

(b)
Middle Part:
More dense

(c)
Lower Part:
Less dense

Figure 4.23: Mask for the fakeSnow attack, divided into three parts.

fakeHail Attack

Compared to the snow, a hail scene produce relatively larger ice balls perceived by the
camera, as shown in Figure 4.24. Therefore, the hail pattern is not modeled as a single
pixel but as an agglomerate of 8 pixels, as described in Algorithm 19.

Since the hail patterns appear irregularly, the fakeHail mask can be generated through a
collection of hail patterns, as described in Algorithm 20. Note that the hail patterns are
sparsely injected because, for each coordinate, the hail pattern can be injected into the
mask or not (line 3 of Algorithm 20).

168

4.3. fakeWeather: Adversarial Attacks for DNNs Emulating Weather Conditions on the Camera
Lens of Autonomous Systems

Algorithm 18: fakeSnow Mask Generation
Input: Image size: length l and hight h
Output: fakeSnow Mask Ms

1 Ms = ∅;
2 for j, ∈ {0, 2, 4, ..., h − 2}) do
3 if (j < h

3 − 1) ∨ j > 2h
3 − 1) then

// upper and lower parts
4 if j ≡ 0 mod 4 then
5 Ms ← Ps({0, 3, 6, 9, ..., l − 2}, j + 1);
6 else // skip some snow patterns
7 Ms ← Ps({0, 6, 12, ..., l − 2}, j + 1);
8 else // middle part
9 Ms ← Ps({0, 3, 6, 9, ..., l − 2}, j + 1);

// add dense snow patterns

Hail Pattern

Figure 4.24: Observation of hail conditions, which lead to the design of the hail pattern.

Algorithm 19: Hail Pattern
Input: Coordinate (x0, y0)
Output: Hail Pattern Ph

1 Ph = ∅;
2 k = 0;
3 for i ← 0 to 3 do
4 for j ← 0 to 3 do
5 if (i = j ∧ i < 2) ∨ (i + j = 3) ∨ (i = 2 ∧ j ̸= 2) then
6 Ph ← pixelk = (x0 + i, y0 + j, rs, gs, bs);
7 k ← k + 1;

169

4. Adversarial Security Threats for DNNs and CapsNets

Algorithm 20: fakeHail Mask Generation
Input: Image size: length l and hight h
Output: fakeHail Mask Mh

1 Mh = ∅;
2 for (i, j) ∈ ({0, ..., l − 4}, {0, ..., h − 4}) do
3 Mh ← Ph(i, j) ∨ {};

4.3.3 Evaluation of the fakeWeather Attacks
Experimental Setup

We conducted the experiments on three DNN models, which are the LeNet-5 [60], the
ResNet-32 [68] and the CapsNet [34], trained for the CIFAR10 dataset [234]. It is a
collection of 50 000 training images and 10 000 testing images of size 32 × 32 × 3, divided
into 10 classes.

The LeNet has been trained for 200 epochs, using a batch size of 128, weight decay
0.0001, and a learning rate scheduler that reduces its value from 0.05 to 0.0004. The
32-layer ResNet has been trained for 200 epochs, using a batch size of 128, weight decay
0.0001, and a learning rate that decreases from 0.1 to 0.001. The CapsNet has been
trained for 200 epochs with a batch size of 64 and a learning rate of 0.001. For clean test
images, we measure an accuracy of 74.88%, 92.31%, and 79.82% for the LeNet, ResNet,
and CapsNet, respectively.

Afterward, the fakeWeather masks have been applied to 200 testing samples and the
adversarial success rate has been evaluated for each attack type (i.e., fakeRain, fakeSnow
and fakeHail) and each DNN model. The training, the implementation of the fakeWeather
attacks, and their evaluation have been conducted using the Keras framework with the
TensorFlow [73] back-end and executed on an ML-workstation equipped with two Nvidia
GeForce RTX 2080 Ti GPUs.

fakeWeather Attacks Evaluation

Table 4.6 reports the results in terms of Adversarial Success Rate (ASR) for the fakeRain,
fakeSnow and fakeHail attacks. This metrics indicate the ratio between the misclassified
examples and all the tested examples. The results are compared with the state-of-the-art
1-pixel, 3-pixel, and 5-pixel attacks proposed by Su et al. [176]. Moreover, Figure 4.25
shows a collection of adversarial examples generated with the fakeWeather attacks.

fakeRain Evaluation

The fakeRain attack is successful for the LeNet and the ResNet, since their ASRs are
72% and 67%, respectively. The ResNet is slightly more robust than the LeNet, because
of its deeper structure. The ASR decreases to 36% for the CapsNet since its model
architecture that groups neurons into capsules, along with the dynamic routing, helps in

170

4.3. fakeWeather: Adversarial Attacks for DNNs Emulating Weather Conditions on the Camera
Lens of Autonomous Systems

Table 4.6: Evaluation of the Adversarial Success Rate (ASR) for the LeNet, the ResNet,
and the CapsNet on the CIFAR10 dataset. Our proposed fakeWeather attacks have been
compared to the 1-pixel, 3-pixel, and 5-pixel attacks [176].

ASR on Attack LeNet ResNet CapsNet
1-pixel 63% 34% 19%
3-pixel 92% 79% 39%
5-pixel 93% 79% 36%

fakeRain (ours) 72% 67% 36%
fakeSnow (ours) 75.5% 79.5% 30%
fakeHail (ours) 82.5% 78.5% 63%

fakeRain Attack fakeSnow Attack fakeHail Attack

(a) (b) (c)

(d) (e) (f)

Figure 4.25: Examples of a few images of the CIFAR10 dataset on which the fakeWeather
attacks are applied. (a) and (d): fakeRain adversarial examples. (b) and (e): fakeSnow
adversarial examples. (c) and (f): fakeHail adversarial examples.

better encoding the spatial relations between image features. The example in Figure 4.25a
shows the image of a deer on which the fakeRain mask is applied. All three DNN models
erroneously classify it as a “bird”, while its clean version is correctly classified as a “deer”.
Similarly, the image in Figure 4.25d is incorrectly classified as a “truck” by both the
LeNet and the ResNet, while its clean version is correctly predicted as a “ship”. However,
the CapsNet still classifies its adversarial example as a “ship”.

fakeSnow Evaluation

For the fakeSnow attack, the relations between the ASRs of the three DNN models are
similar to the observations made for the fakeRain attack, where the CapsNet is more

171

4. Adversarial Security Threats for DNNs and CapsNets

robust than the other CNNs. However, the ASR values are higher for the ResNet than
the LeNet. The example in Figure 4.25b showing a frog with the fakeSnow mask is
correctly classified by the CapsNet. However, it is incorrectly predicted as a “cat” by the
ResNet and as a “truck” by the LeNet. Its clean image is correctly classified as a “frog”
by all the DNNs. The horse in Figure 4.25e is correctly classified by the CapsNet and
the ResNet, while the LeNet classifies it as a “deer”.

fakeHail Evaluation

The ASR relative to the fakeHail attack is significantly higher than the previous attacks,
particularly for the CapsNet. Due to the relatively large perturbations introduced by
the hail patterns (i.e., 8-pixel perturbations), the fakeHail mask can break the spatial
relations learned by the CapsNet and lead to many misclassified samples. The example
in Figure 4.25c represents a ship with the fakeHail mask, which is incorrectly classified
as an “airplane” by the CapsNet and the LeNet, and as a “truck” by the ResNet. The
image in Figure 4.25f is incorrectly classified as a “deer” by the ResNet, as a “cat” by
the LeNet, and as a “frog” by the CapsNet, despite showing an airplane.

Case Studies: Output Probability Variations under fakeWeather attacks

For a more comprehensive evaluation, we analyze the output probability variations when
different types of fakeWeather attacks are applied to the ResNet, LeNet, and CapsNet
models. For reference, the 10 classes of the CIFAR10 dataset are associated with a digit
0 − 9 according to the convention in Table 4.7.

Table 4.7: Class labels for the CIFAR10 dataset.

Class
0 airplane
1 automobile
2 bird
3 cat
4 deer
5 dog
6 frog
7 horse
8 ship
9 truck

Figure 4.26 shows, as an example, the image of a “truck” of the CIFAR10 dataset and the
corresponding adversarial examples obtained with the fakeWeather attacks. Figure 4.27

172

4.3. fakeWeather: Adversarial Attacks for DNNs Emulating Weather Conditions on the Camera
Lens of Autonomous Systems

shows how such images are classified by different DNN models. The clean image is
correctly predicted as the class 9, i.e., “truck” by the LeNet, despite having relatively low
confidence (see Figure 4.27a). When each of the fakeWeather masks is applied, the LeNet
predicts the image as a “frog” with quite high confidence. The probability variations
for the ResNet have a different behavior. The clean image is correctly classified by the
ResNet with high confidence (see Figure 4.27b), while the fakeWeather attacks produce
different outcomes. With the fakeRain mask the image is classified as an “automobile” by
the ResNet, with the fakeSnow mask the highest probability belongs to the class “bird”,
and the ResNet classifies the adversarial fakeHail image as an “airplane”. The CapsNet’s
output probabilities, while they are more concentrated towards the middle values, i.e.,
1/10, report that the clean image is correctly classified (see Figure 4.27c), while for all
the fakeWeather attacks, the highest probability belongs to the class “horse”.

(a) (b) (c) (d)

Figure 4.26: Example showing a “truck” to which the fakeWeather attacks are applied.
(a) Clean image, (b) fakeRain image, (c) fakeSnow image, and (d) fakeHail image.

0,06

0,08

0,1

0,12

0 1 2 3 4 5 6 7 8 9
clean rain snow hail

0
0,2
0,4
0,6
0,8

1

0 1 2 3 4 5 6 7 8 9
clean rain snow hail

0
0,2
0,4
0,6
0,8

1

0 1 2 3 4 5 6 7 8 9
clean rain snow hail

(a) LeNet-5 Classification
“truck”
correct

Misclassification
“frog” with high

confidence

(b) ResNet-20 Classification
“truck”
correct

Misclassification
low confidence

Misclassification “horse”
“truck”
correct

(c) CapsNet Classification

Ou
tp

ut
Pr

ob
ab

ili
tie

s

Figure 4.27: Analysis of the output probability variation for a “truck” to which the
fakeWeather attacks are applied. (a) Output probabilities for the LeNet. (b) Output
probabilities for the ResNet. (c) Output probabilities for the CapsNet.

Figure 4.28 shows the image of a “bird” of the CIFAR10 dataset and the corresponding
adversarial examples obtained with the fakeWeather attacks. Figure 4.29 shows how such
images are classified by different DNN models. The clean image is already misclassified as
an “airplane” by the LeNet (see Figure 4.29a). With the fakeRain or the fakeHail mask,
the LeNet classifies the adversarial image as a “frog”, while the adversarial fakeSnow
image is classified as a “truck”. The clean image is correctly classified by the ResNet as a
“bird” with high confidence (see Figure 4.29b). The fakeRain and fakeHail adversarial
images are classified as a “cat”, while the fakeSnow is unsuccessful because the image is
still correctly classified by the ResNet, even though with lower confidence than the clean
image. The CapsNet correctly classifies the clean image by a narrow margin compared

173

4. Adversarial Security Threats for DNNs and CapsNets

to the other classes (see Figure 4.29c). The fakeRain and fakeSnow attacks produce
adversarial images that are classified as a “frog” by the CapsNet, while the image with
the fakeHail mask is correctly classified by the CapsNet.

(a) (b) (c) (d)

Figure 4.28: Example showing a “bird” to which the fakeWeather attacks are applied.
(a) Clean image, (b) fakeRain image, (c) fakeSnow image, and (d) fakeHail image.

0
0,2
0,4
0,6
0,8

1

0 1 2 3 4 5 6 7 8 9
clean rain snow hail

0,06

0,08

0,1

0,12

0 1 2 3 4 5 6 7 8 9
clean rain snow hail

0
0,2
0,4
0,6
0,8

1

0 1 2 3 4 5 6 7 8 9
clean rain snow hail

(b) ResNet-20 Classification (c) CapsNet Classification(a) LeNet-5 Classification
“airplane”
incorrect

Misclassified
high

confidence
“bird” correct

(clean & fakeSnow)

Misclassification “cat”
“bird” correct

(clean & fakeHail)
Misclassification

“frog”

Ou
tp

ut
Pr

ob
ab

ili
tie

s

Figure 4.29: Analysis of the output probability variation for a “bird” to which the
fakeWeather attacks are applied. (a) Output probabilities for the LeNet. (b) Output
probabilities for the ResNet. (c) Output probabilities for the CapsNet.

Results Discussion and Comparison

Following the above-discussed results, we can make the following observations:

• All the fakeWeather attacks produce a high ASR for the LeNet and ResNet (ASR >
65%).

• The fakeHail attack is the strongest because it achieves an ASR of 63% for the
CapsNet and higher ASR for the other DNNs.

Compared to the methods of [176], our fakeWeather methods have higher ASR than the
1-pixel attack for every DNN (see Table 4.6). However, the 3-pixel and 5-pixel attacks
have higher ASR than our attacks. Note that, while the approach used in [176] is based
on an evolutionary algorithm that requires several queries, our methodology does not
need any query. Yet, the ASR of the CapsNet for the fakeHail attack is 27% higher than
the 5-pixel attack.

174

4.4. Summary of Adversarial Security Threats for DNNs and CapsNets

Future Outlooks and Applicability

From another point of view, our contributions, other than a methodology for generating
adversarial attacks in real-time without queries, can be viewed as a data augmentation
technique for generating synthetic samples of weather scenes. We envision the possibility
of expanding the dataset with images that contain fakeWeather masks and training
DNN-based classifiers more robustly to such atmospheric phenomena, in a similar way
as the adversarial training functionality [24]. Since the only information needed is the
image size, its high scalability makes our fakeWeather attack methodology suitable for
any vision-based outdoor application.

4.3.4 Summary
The proposed fakeWeather attacks are methodologies to generate adversarial examples
by emulating the effects of atmospheric phenomena on the camera lens. Observing a
set of images under weather conditions, the patterns captured by the camera lens are
modeled to create dedicated fakeRain, fakeSnow, and fakeHail masks. The proposed
attacks are operated in a so-called true black-box setting, where the adversary has no
access to the DNN model parameters and its output. One of the key advantages of this
procedure is that the attack algorithm does not need any query at runtime. Therefore,
the adversary can apply the attack in real-time with very little latency. The evaluations
on various CNN and CapsNet models show high adversarial success rates of the attacks.

4.4 Summary of Adversarial Security Threats for DNNs
and CapsNets

This chapter has discussed several robustness analyses, comparing the CNNs with the
CapsNets. Among the vulnerability threats, the affine transformations and adversarial
attacks for image classification applications have been studied. Moreover, novel method-
ologies for generating adversarial attacks have been proposed. Extensive evaluations
have demonstrated that CapsNets show superior robustness than CNNs with similar
sizes, while also, in some cases, they have higher robustness than deeper CNN models
like the ResNet. The following Chapter 5 will discuss the challenges and methodologies
to combine various optimization objectives, such as robustness and efficiency, into an
integrated design flow.

175

CHAPTER 5
Integration of Multiple Design

Objectives into NAS Frameworks
for CapsNets and DNNs

This chapter discusses methodologies for designing frameworks that integrate multiple
design objectives into the design flow. Integrating multiple optimization objectives
is challenging since it typically leads to a search space explosion. Therefore, several
optimizations for exploring the search space quickly and accurately are proposed. First,
Section 5.1 discusses the flow employed for conducting multi-objective optimizations.
Afterward, as case studies, two multi-objective NAS frameworks are discussed. Section 5.2
presents an HW-aware NAS framework that jointly optimizes for accuracy and hardware
efficiency, expressed in the form of memory, latency, and energy consumption. Section 5.3
discusses a framework for conducting robust HW-aware NAS, in which the adversarial
robustness is also included in the optimization objectives.

5.1 Flow for Designing Integrated Frameworks with
Multiple Design Objectives

Figure 5.1 shows the flow of our integrated HW-aware NAS framework. The core of
the methodology consists of finding the set of optimization objectives that need to be
optimized during the search. The multi-objective optimization tool searches for Pareto-
optimal DNN model candidates w.r.t. the objectives. Due to the large design space and
the enormous amount of time required for exact evaluations of all the metrics, several
optimizations need to be employed to reduce the exploration time. The DNN execution in
hardware, including all the design-time optimizations (e.g., quantization and data reuse),
is modeled to estimate the efficiency with analytical computations. The accuracy and

177

5. Integration of Multiple Design Objectives into NAS Frameworks for
CapsNets and DNNs

robustness of the DNNs are modeled and evaluated conjointly. The following Section 5.2
and Section 5.3 will discuss all the optimization steps for designing the framework in
more detail.

Major Contributions of the Chapter:

• HW execution model: it analytically models the hardware execution of different
DNN and CapsNet layers on a given specialized accelerator. It computes latency,
memory usage, and energy consumption for computing each operation.

• NASCaps framework design: it searches the DNN model architecture con-
figurations based on convolutional and capsule layers to be executed on a given
hardware accelerator. To explore the design space, a specialized multi-objective
genetic algorithm has been deployed to define the Pareto-frontier between accuracy
and energy efficiency.

• RoHNAS framework design: it conducts a multi-objective hardware-aware NAS
for convolutional and capsule networks, where the robustness against adversarial
attacks is one of the optimization objectives, together with energy, memory, and
latency. Different adversarial perturbation values are selected based on their
respective impact on the DNNs’ robustness.

Efficiency
Evaluation

Accuracy
Evaluation

Robustness
Evaluation

HW
Design

HW Execution
Model

Vulnerability
Threat Model

Vulnerability
Threats

Multi-Objective
Optimization

Reference
DNN Models

Design-Time
Optimizations
(Quantization,

Data Reuse,
Low-Precision)

DNN Model
Candidates

DNN Accuracy
Level

DNN Efficiency
Level

DNN Robustness
Level

Figure 5.1: Overview of the design flow for integrating multiple optimization objectives,
as shown in this chapter.

5.2 NASCaps: A Framework for Neural Architecture
Search for Optimizing Accuracy and Hardware
Efficiency of Convolutional CapsNets

Among DNN models, CapsNets encode and learn spatial correlations between different
input features, thereby obtaining superior learning capabilities than traditional (i.e.,
non-capsule-based) DNNs. However, designing CapsNets using conventional methods

178

5.2. NASCaps: A Framework for Neural Architecture Search for Optimizing Accuracy and
Hardware Efficiency of Convolutional CapsNets

is tedious and incurs significant training effort. Recent studies have demonstrated that
powerful methods to automatically select the optimal DNN configuration for a given set
of applications and training datasets are based on the NAS algorithms. Moreover, due to
their extreme memory and computational requirements, DNNs are employed using the
specialized hardware accelerators in IoT-Edge/CPS devices.

In this section, we propose NASCaps, an automated framework for the hardware-
aware NAS of different DNN models, covering both traditional convolutional DNNs and
CapsNets. We investigate the efficacy of deploying a multi-objective Genetic Algorithm
(e.g., based on the NSGA-II evolutionary algorithm). The proposed framework can jointly
optimize the DNN accuracy and the corresponding hardware efficiency, expressed in terms
of memory, energy, and latency of a given hardware accelerator executing DNN inference.
Besides supporting the traditional layers of a DNN (such as Conv and FC), our framework
is the first to model and support the specialized capsule layers and dynamic routing in
the NAS flow. We evaluate our framework generating different DNN configurations on
different datasets, and demonstrate the tradeoffs between the different output metrics.

5.2.1 System Overview
In the early stage of deep learning, the DNN architectures were manually designed.
However, their structures became very complex. Therefore, NAS methodologies emerged
as an attractive procedure for selecting the optimal DNN model for a given set of
applications and training datasets. Most automatic tools based on a NAS algorithm only
focus on optimizing the DNN accuracy. Only a few of them have recently considered
the hardware metrics in the optimization problem, for instance, evaluating the hardware
resources (e.g., #FLOPs, memory requirements) available for performing the DNN
inference. To our knowledge, none of them include the possibility of employing capsule
layers and dynamic routing in the design space, which are inevitable for automatically
designing the CapsNets.

Toward this, we propose NASCaps, a framework for the NAS of DNNs, which not
only incorporates the most common DNN layer types (such as Conv, FC) but also, for
the first time, the capsule layers. Our framework supports multi-objective hardware-
aware optimizations since it investigates the network accuracy and accounts for different
hardware efficiency parameters (such as latency, memory usage, and energy consumption)
that are crucial for embedded DNN inference accelerators.

However, the wide variety of possible configurations that should be explored to obtain
an exhaustive set of Pareto-optimal solutions might dramatically explode. In addition,
despite adopting the most advanced learning policies and employing high-end GPU
clusters, complex CapsNets and CNNs typically require a long training time. Complete
detailed post-synthesis hardware measurements are not practical for this search due
to their long simulation times. These limitations challenge the applicability of such
an exploration in real-case HW/SW co-design searches with stringent time-to-market
constraints.

179

5. Integration of Multiple Design Objectives into NAS Frameworks for
CapsNets and DNNs

To address the above challenges, we employ different optimizations and integrate them
into our NASCaps framework (Figure 5.2). The steps are summarized in the following
novel contributions:

• We present a framework, called NASCaps, to automatically search the DNN model
architecture configurations based on Conv layers and capsule layers.

• We analytically model the operations involved in the CapsNet architectures, includ-
ing the different types of capsule layers and the dynamic routing.

• We model the functional behavior of a given specialized CapsNet and CNN hardware
accelerator at a high level to quickly estimate the latency, memory usage, and
energy consumption when different DNN architectural models are executed.

• Based on the NSGA-II method, we developed a specialized multi-objective genetic
algorithm to solve a multi-objective Pareto-frontier selection of DNN architectures
while optimizing the neural network’s accuracy, energy consumption, memory usage,
and latency.

• To reduce the training time for exploring different solutions, we devise a methodology
to evaluate the accuracy of partially-trained DNNs. The number of training epochs
is selected based on the tradeoff between training time and Pearson correlation
coefficient w.r.t. fully-trained DNNs.

• During the exploration phase, we trained and evaluated more than 600 candidate
DNN solutions running on the GPU-HPC computing nodes equipped with four
high-end Nvidia V100-SMX2 GPUs. The Pareto-optimal solutions generated by our
NASCaps framework are competitive w.r.t. the previous state-of-the-art accuracy
values for CapsNets, i.e., the DeepCaps, while improving the corresponding hardware
efficiency, thereby opening new avenues towards the deployment of high-accurate
DNNs at the edge.

5.2.2 NASCaps Framework
Framework Overview

Our multi-objective NASCaps framework generates and evaluates convolutional- and
capsule-based DNNs, by performing a multi-objective NAS, to find a set of accurate
yet resource-efficient DNN models, i.e., jointly considering the DNN validation accuracy,
energy consumption, latency, and memory footprint. The search is based on our special-
ization of the genetic NSGA-II algorithm [231], to enable a search with multi-objective
comparison and selection among the generated candidate DNNs.

An overview of the structure and workflow of the NASCaps framework is shown in
Figure 5.2. As input, it receives the configuration of the underlying hardware accelerator

180

5.2. NASCaps: A Framework for Neural Architecture Search for Optimizing Accuracy and
Hardware Efficiency of Convolutional CapsNets

Random
DNNs (initial) Evaluate

Select P best
individuals

Generate Q offsprings
(crossover, mutation)

U

HW
model

Termination
conditions

Extraction of energy,
memory, latency

DNN Training
with Limited

Epochs

Fully-trained
inference

Full training

NSGA-II

DNNs and CapsNets
Layer Library

HW Accelerator

Dataset

Output: Set of
Pareto-optimal

High-Accurate &
HW-Efficient

Convolutional
CapsNets

NASCaps Framework

Figure 5.2: Overview of our NASCaps framework, showing different components and
their interconnections defining the workflow.

(that would execute the generated DNN in the real-world scenario) and a given dataset
used for DNN training, as well as a collection of the possible types of layers that can
be used to form different candidate DNNs. First, we create a layer library that includes
Conv layers, capsule layers (as defined in [34]), and the CapsCell and FlatCaps layers
defined in [31]. We envision that, due to the modular structure of our framework, other
types of layers can easily be integrated into its future versions to extend the search
space further, also thanks to the use of a simple modular representation of the candidate
networks relying on the combination of single-layer descriptors.

The automated search is initialized with N randomly-generated DNNs used as input to
start the evolutionary search process. Each candidate DNN is evaluated in terms of its
validation accuracy after training for a limited number of epochs. This optimization is
designed to curtail the computational cost and reduce the required search time while
keeping a good correlation w.r.t. the full-training accuracy, measured with the Pearson
correlation coefficient. Moreover, each DNN under test is also characterized for its
energy consumption, latency, and memory footprint, by modeling its inference processing
considering the final real-world use case of executing the generated DNN on a specialized
DNN hardware accelerator. At this evaluation point, the genetic algorithm proceeds
to the next step, finding a new Pareto-frontier that contains the best candidate DNN
solutions at each iteration. At the end of this selective procedure, the Pareto-optimal
DNN solutions are fully-trained for 100 epochs for the MNIST, Fashion-MNIST, and
SVHN datasets and for 300 epochs for the CIFAR10 dataset to make an exact accuracy
evaluation. In the following subsections, we discuss the key components of our framework
in detail.

Parametric Modeling of CapsNet Layers and Architectures

The proposed genetic-based NASCaps framework relies on an explicit position-based
representation for each layer of the candidate DNNs. This representation allows defining

181

5. Integration of Multiple Design Objectives into NAS Frameworks for
CapsNets and DNNs

the key parameters of each layer uniquely.

The DNN layers have been constructed using a layer descriptor, which encodes the
information needed to build and model a given candidate network in a very compact
form. Each layer descriptor is a 9-element position-based structure, thus guaranteeing
the modularity for constructing any given DNN architecture. The elements of the
layer descriptor are listed as follows:

1. type of layer,

2. size of the input feature maps nin,

3. number of input channels chin,

4. number of input capsules capsin,

5. kernel size kernelsize,

6. stride size stridesize,

7. size of the output feature maps nout,

8. number of output channels chout,

9. number of output capsules capsout.

Such a representation allows describing even more complex structures by simply defining
a new layer type. For instance, a layer descriptor can define a more complex repeating
structure composed of multiple elements, like a CapsCell in the DeepCaps architecture.
This way, the DeepCaps architecture has been described with six layer descriptors. The
first one is for the single Conv layer, followed by four CapsCell blocks and a final Class
Capsule layer.

The complete DNN architecture description is then completed by two non-layer terms
that allow encoding the position of a skip connection and an indicator, called resize flag,
to explicitly indicate if the input resizing is required. Figure 5.3 shows the proposed
format to describe a candidate DNN architecture, referred to as the genotype.

Modeling the Execution of CapsNets in Hardware Accelerators

The NASCaps framework can receive any given hardware accelerator executing DNN
inference as an input. For illustration, we showcase the modeling of the CapsAcc
accelerator. This choice is related to the fact that it supports the execution of all the
capsule layers. Starting from the RTL-level description of the CapsAcc architecture, we
extract and model the different micro-architectural configurations at a higher abstraction
level, which constitutes the inputs for our model. First, the description of the operation-
specific parameters of the layers is presented. Afterward, the global parameters strictly
related to the CapsAcc accelerator are discussed.

182

5.2. NASCaps: A Framework for Neural Architecture Search for Optimizing Accuracy and
Hardware Efficiency of Convolutional CapsNets

La
ye

rd
es

cr
ip

to
r

Genotype

Figure 5.3: Proposed structure of the genotype.

Operation-Specific Modeling for different Layers

The operation-specific parameters that can be extracted from the execution of different
operations in the hardware are the following:

• weights: number of weights in the layer,

• sums_per_out: number of terms to be added for an output value,

• data_per_weight: number of feature maps multiplied by the same weight.

For each operation, these parameters are computed by different equations due to the
different nature of the respective types of computations (see Table 5.1). Note that, by
setting capsin and capsout to 1, the ConvCaps and ClassCaps layers become a traditional
Conv layer and FC layer, respectively.

Table 5.1: Equations for the operation-specific modeling of CapsNets.

Operation weights sums_per_out data_per_weight

ConvCaps layer (chin · kernel2size + 1) · chout · capsout · capsin (kernel2size + 1) · chin · capsin (nout)2 · chin · capsin

ConvCaps3D layer (chin · kernel3size + 1) · chout · capsout · capsin (kernel3size + 1) · chin · capsin (nout)2 · chin · capsin

ClassCaps layer (chin · n2
in + 1) · chout · capsout · capsin (n2

in + 1) · chin · capsin 1
Dynamic Routing chin · kernel2size · chout capsin 1

Global Parameter Modeling

Our models estimate the latency and the energy consumption of the inference of one
input, for a given CapsNet, while the memory footprint is computed as the sum of the
number of weights for each layer. They are modeled for each operation in a modular way
(i.e., bottom-up). First, the weights must be loaded onto the PE array, then reused as
long as they need to be multiplied by other inputs. Afterward, the next group of weights
is loaded until all the computations of the layers are done (see Equations 5.1-5.3). The
model has been validated by comparing the results with the hardware implementation of
the CapsAcc accelerator. The adopted model parameters are the following:

183

5. Integration of Multiple Design Objectives into NAS Frameworks for
CapsNets and DNNs

• w_load_cycles: number of clock cycles required to load the weight onto the PE
array,

• w_loads: number of groups of weights loaded onto the PE array,

• cycles(l): number of cycles required to execute the layer l,

• ma: number of memory accesses,

• enmem: energy consumption of a single memory accesses,

• pwrP EA: power consumption of the PE array.

w_load_cycles = 16 (5.1)

w_loads =

weights

16 · min (16, sums_per_out)

�
(5.2)

cycles(l) = w_load_cycles · w_loads + data_per_weight (5.3)

The overall latency is then computed as the sum of the contributions of the layers (see
Equation (5.4)).

latency =
�
l∈L

cycles(l) · T (5.4)

In Equation (5.5), the number of memory accesses is computed by distinguishing whether
the operation is a Conv layer. Such a distinction has been implemented by analyzing the
value of data_per_weight, which is greater than 1 for Conv layers and 1 otherwise.

ma =
�

256, if data_per_weight = 1
16 · max(sums_per_out − 15, 1), otherwise

(5.5)

The energy of the accelerator (see Equation (5.6)) is estimated as the sum of the energy
of memory accesses and the sum of the power consumption of each layer processed in the
PE array, multiplied by its latency (period T and the number of cycles). Note that the
average power consumption of the PE array is used in our model.

energy =

ma · 8
128

�
· enmem +

�
l∈L

cycles(l) · T · pwrP EA (5.6)

184

5.2. NASCaps: A Framework for Neural Architecture Search for Optimizing Accuracy and
Hardware Efficiency of Convolutional CapsNets

The Multi-Objective NSGA-II Algorithm

The selection of the Pareto-optimal solutions for the NASCaps framework is based on the
NSGA-II evolutionary algorithm [231]. It has a main loop (lines 2-11 of Algorithm 21)
whose iterations represent a single generation of the overall evolution process of an
initial population. The initial population (sized n) is randomly generated and can be
referred to as P1 (line 1 of Algorithm 21). This set of solutions represents the initial
parent generation of the algorithm. The crossover among the solutions belonging to Pt

(line 3) allows the generation of a new set of offspring individuals Qt. At this point, the
population Pt ∪ Qt is sorted according to a non-domination criterion. For each iteration
of the inner loop (lines 6-11), the candidate solutions are grouped into different fronts
Fi. The ones included in the first front F1 represent the best-found solutions for the
overall population. Each subsequent front (F2, F3, . . .) is constructed by removing all
the preceding fronts from the population and finding a new Pareto-front. Since the first
front may be composed of less than n individuals, the solutions from subsequent fronts
will also be selected to be part of the following parent generation.

Algorithm 21: The genetic NSGA-II algorithm used in our NASCaps frame-
work.

Require: search space S, sizes of population |P |, |Q|, number of generations g
Ensure: Pareto set F ⊆ P1 × P2 × · · · × Pk

1 P1 ← RandomConfigurations(|P |);
2 for g = 1 . . . G do
3 Qi ← CrossoverAndMutate(Pi, |Q|);
4 T ← EstimateParameters(Pi ∪ Qi);
5 Pi+1 ← ∅;
6 while |Pi+1| < |P | do
7 F = PickPareto(T);
8 if |Pi+1| + |F | ≤ |P | then
9 Pi+1 ← Pi+1 ∪ F ;

10 else
11 Pi+1 ← Pi+1 ∪ DistanceCrowding(F, |P | − |Pi+1|);

12 Return: PickPareto(Pg);

To have precisely n parents in the output set, the solutions that are part of the last front
are ranked using the crowded distance comparison approach (line 11), which consists
of sorting the population of that front according to each objective function value in
ascending order. These steps are shown in Figure 5.4. Only half of the population
becomes part of the following parent generation, while the other half is discarded.

These steps repeat for a certain number g of generations. The complete pseudocode is
reported in Algorithm 21, where the following procedures are used:

185

5. Integration of Multiple Design Objectives into NAS Frameworks for
CapsNets and DNNs

F1
F2

F3

F4
F5

Pt

Qt

F1
F2
F3

Crossover
&

Mutation Pareto
Front

Sorting

Crowding
Distance
Sorting

Pt+1

Figure 5.4: Sorting of the population.

• RandomConfigurations(n) randomly generates n configurations belonging to the
search space.

• CrossoverAndMutate(X, n) generates n new offsprings from parents P by crossover
and mutation.

• EstimateParameters(X) evaluates the new candidate solutions from a set X.

• PickPareto(X) selects the Pareto-optimal solutions from a set X, and these
solutions are removed from the set.

• DistanceCrowding(X, n) returns n solutions from a set X.

The advantage of a multi-objective algorithm lies in the fact that it re-constructs the
Pareto-front at each generation, aiming to cover all the possible solutions. The algorithm’s
output is a set of non-dominated solutions.

Crossover and mutation operations

The two key operators in the progression of a genetic algorithm are crossover and mutation.
The standard single-point crossover operation allows the generation of the offspring
solutions, given two parent solutions Pa and Pb that have been previously randomly
picked among the current population candidates. The genotypes of the two parent
individuals are split into two parts each. The splitting point is pseudo-randomly selected.
Initially, a cut point is randomly chosen. Then, a series of checks are performed to verify
the validity of the output genotypes. The following criteria have been applied to choose
the splitting point correctly:

• the cut-points are chosen to ensure that the generated DNN is made up of at least
one initial Conv layer and a minimum of 2 capsule layers,

• no Conv layer is placed between two capsule layers.

Note, the reason behind the second constraint is that capsules aim to derive higher-level
information w.r.t. Conv layers. At this point, the actual crossover operation is performed.
As shown in Figure 5.5, the last parts of the parent genes Pa and Pb are switched.

186

5.2. NASCaps: A Framework for Neural Architecture Search for Optimizing Accuracy and
Hardware Efficiency of Convolutional CapsNets

Figure 5.5: Example of crossover between two genotypes.

The second fundamental operation performed by the algorithm is mutation. As it has
been implemented for our NASCaps framework, the operator performs a mutation by
randomly choosing one of the layer descriptors from the genotype of the input candidate
network, and by randomly modifying one of the main parameters of the selected layer
with a probability pm. In particular, the parameters that can be affected by a mutation
are the kernel size, the strides, the number of output capsules, and the position of the
skip connection.

After these two operations, a further step is performed to ensure the validity of the
output genotypes that, in many cases, will represent an invalid DNN. This correction
step allows properly adjusting the input and output tensor dimensions for every layer for
genotypes derived from a mutation or a crossover operation, which can randomly modify
or join different parent genotypes.

5.2.3 Evaluation of the NASCaps Framework

Experimental Setup

The overview of our experimental setup and tool flow is shown in Figure 5.6. The training
and testing for accuracy of the candidate DNNs have been conducted with the TensorFlow
library [73], while extensive experiments are performed using the GPU-HPC computing
nodes equipped with four NVIDIA Tesla V100-SXM2 GPUs. Our proposed NASCaps
framework has been evaluated for the MNIST [60], Fashion MNIST (FMNIST) [96],
SVHN [237] and CIFAR10 [234] datasets. The implementation of the HW model is based
on the CapsAcc architecture. The core PEs were synthesized using the Synopsys Design
Compiler with a 45nm CMOS technology node and a clock period T of 3ns.

The experiments were divided into three steps.

187

5. Integration of Multiple Design Objectives into NAS Frameworks for
CapsNets and DNNs

GPU-HPC with 4 Nvidia Tesla V100-SXM2

Design Compiler (DC)

HW Accelerator
RTL Description

HW Accelerator
Model

Candidate
DNN

DNN Training with
Limited Epochs

Partially-Trained
DNN

Fully-Trained
DNN

Fully-Trained
Inference

Partially-Trained
Inference DNN Training with

Full Epochs

Energy, memory,
latency for a

single operation

Energy, memory,
latency for the
complete DNN

Required
Operations

Partially-Trained
Accuracy

Fully-Trained
Accuracy

Figure 5.6: Setup and tool-flow for conducting our experiments.

1. In the first step, a basic random search has been performed to investigate how
many training epochs are necessary to train the candidate DNNs and evaluate their
accuracy in the loop of the genetic NSGA-II algorithm.

2. During the second step, the search algorithm for finding Pareto-optimal DNN
architectures for the energy, memory, latency, and accuracy objectives is executed.

3. Finally, the selected Pareto-optimal DNNs have been fully-trained.

To evaluate the transferability of the selected DNNs w.r.t. different datasets, the selected
DNNs have been fully-trained also for the other datasets. Moreover, the following settings
have been used to conduct the experiments:

• Initial parent population size |P | = 10

• Offspring population size: |Q| = 10

• Maximum number of generations for the genetic loop: g = 20

• Mutation probability: pm = 10%

• kernelsize ∈ {3 × 3, 5 × 5, 9 × 9}
• stridesize ∈ {1, 2}
• chout ∈ {1, 2, . . . , 64}
• capsout ∈ {1, 2, . . . , 64}

These values and the training hyper-parameters (e.g., batch sizes, number of epochs and
learning rate) have been selected by conducting a set of preliminary experiments and
considering reasonable run times.

188

5.2. NASCaps: A Framework for Neural Architecture Search for Optimizing Accuracy and
Hardware Efficiency of Convolutional CapsNets

Results for Reduced Training Epochs for Full-Training Accuracy Estimation

One of the most crucial aspects of the NAS lies in its high computational exploration
cost due to the large number of candidate DNNs that constitute the population and the
time-consuming training steps needed to evaluate the accuracy. To limit the time needed
to perform the complete search and its computational cost, we propose a two-stage
evaluation approach.

1. The first step consists of training the population of candidate networks with a
limited number of epochs, producing a set of partially-trained DNNs. The validation
accuracy obtained by the partially-trained DNNs has been used to evaluate the
Pareto-fronts in the NSGA-II algorithm. The choice of the number of epochs has
been determined carefully by analyzing the impact of different epoch sizes over the
achieved accuracy for different datasets.

2. Afterward, the candidate networks that show their accuracy and hardware efficiency
in a Pareto-front are fully-trained to evaluate their actual validation accuracy.

Hence, this approach allowed using only a reduced number of training epochs to predict
the full-training accuracy of the DNNs. This approach has been tested using 66 randomly
generated DNNs (in addition to CapsNet and DeepCaps architectures) and performing a
full training on them while recording the obtained validation accuracy at each training
epoch. The Pearson correlation coefficient (PCC) [249] has been computed to analyze
the correlation between the accuracy of the fully-trained DNNs and the accuracy of the
same DNNs at the intermediate steps.

Table 5.2 shows the values of the PCC, computed between the accuracy of the DNNs
after n training epochs and their accuracy after full training. The median cumulative
training time needed to perform an n epoch training is also reported. As expected, this
study allowed us to determine that more complex datasets require a larger number of
training epochs to distinguish the most promising networks from the rest correctly. For
the case of the MNIST dataset, 5 epochs are sufficient to reach a PPC equal to 0.9999.
Instead, for the CIFAR10 dataset, such a high confidence value is never reached within
the first few epochs. In this case, 10 training epochs are selected, which ensure a PCC
equal to 0.9334. This choice leveraged the tradeoff between the correlation coefficient
and the required training time. Of course, a larger number of training epochs can also be
selected, but it would drastically increase the exploration time due to the DNN training,
which is a crucial parameter to consider when large populations or several generations
are explored by the NASCaps framework. On the other hand, the selection performed
after 10 epochs of training allowed to discard more Pareto-dominated candidate networks
than what would have been discarded after 5 epochs. For the Fashion-MNIST and SVHN
datasets, the selection stage has also been performed after 5 training epochs.

Note that a specific set of networks can be discarded relatively early, i.e., after a few
training epochs, since they do not improve their accuracy much. The candidate networks

189

5. Integration of Multiple Design Objectives into NAS Frameworks for
CapsNets and DNNs

Table 5.2: Pearson correlation coefficient (PCC) and median cumulative training time
expressed in seconds (MCTT) for the MNIST, Fashion-MNIST (FMNIST), SVHN, and
CIFAR10 datasets.

Epoch n. 1 3 5 10 15 20

MNIST PCC 0.8407 0.9998 0.9999 1.0000 1.0000 1.0000
MCTT 55.4 166.2 277.0 554.0 831.0 1108.0

FMNIST PCC 0.8306 0.8963 0.9013 0.9935 0.9989 0.9998
MCTT 86.2 258.7 431.1 862.3 1293.4 1724.6

SVHN PCC 0.6812 0.8733 0.9518 0.9531 0.9667 0.9876
MCTT 128.3 385.0 641.6 1283.3 1924.9 2666.6

CIFAR10 PCC 0.2969 0.4259 0.7279 0.9334 0.9518 0.9879
MCTT 61.6 184.7 307.9 615.8 923.6 1231.5

that pass the selection stage can then complete their training. A second selection stage
is beneficial for performing a more fine-grained selection of the candidate networks and
avoiding the tedious and computational-hungry full-training of Pareto-dominated DNNs.

NASCaps Results for the Partially-Trained DNNs

Our NASCaps framework is first applied to the MNIST dataset to evaluate its efficiency
and correct behavior. The number of generations is set to 20, but a maximum time-out of
12 hours has been imposed for MNIST and Fashion-MNIST, while a 24-hour maximum
search time has been used for CIFAR10 and SVHN.

The search for the MNIST-NAS lasted for 20 complete generations, and the single
candidate networks were trained for 5 epochs. This setup led to train and evaluate a total
of 210 DNNs. The resulting individual solutions are compared to the two reference state-
of-the-art solutions, which are the CapsNet and DeepCaps architectures. In Figure 5.7a,
each DNN architecture is represented w.r.t. the four objectives of the search.

The Fashion-MNIST search ended at its 19th generation (in 12 hours) and evaluated
a total of 200 candidate architectures. The search for the SVHN dataset lasted for 12
generations, allowing us to evaluate 130 architectures. For the CIFAR10 dataset, the
search reached its 14th generation, with a total of 150 tested architectures.

Figure 5.7 shows how the evolutionary search algorithm progressed for the MNIST and
CIFAR10 datasets. Note that the red dots, i.e., the initial population at generation
0, represent randomly generated DNNs. The objectives significantly improve during
the following iterations when our evolutionary algorithm finds better candidate DNN
architectures using crossover and mutation operations iteratively. The reduced epoch
training allowed us to evaluate many candidate networks (a total of nearly 700 architec-
tures) based on convolutional and capsule layers. This method led to finding multiple
candidate architectures that have reached an accuracy up to 30.86% higher than the
best among the partially-trained state-of-the-art solutions, i.e., within the limits of a

190

5.2. NASCaps: A Framework for Neural Architecture Search for Optimizing Accuracy and
Hardware Efficiency of Convolutional CapsNets

(a) Partially-trained NAS for MNIST

(b) Partially-trained NAS for CIFAR10

First generation:
inefficient

Pareto Frontier

More than 20% higher
accuracy than DeepCaps

Figure 5.7: Partially-Trained DNN NAS for (a) the MNIST dataset, and (b) the CIFAR10
dataset. The color shows in which generation the solution occurs first.

strongly reduced training time. For instance, the NAS for the CIFAR10 dataset produced
a network with an accuracy of 76.46% after 10 epochs, while the DeepCaps architecture
reached only 45.60% accuracy within the same training interval. This corroborates that
our NASCaps can generate networks with higher accuracy than DeepCaps-like structures
when constrained to short training time.

NASCaps Results for the Selected Fully-Trained DNNs

After the first selection stage, the candidate DNNs belonging to the Pareto-optimal
subsets have been fully trained to evaluate their final accuracy. Figure 5.8 shows the
Pareto-optimal solutions at the end of the full-training process.

NASCaps for the MNIST Dataset

The highest-accuracy architecture found during the MNIST search reached an accuracy
of 99.65% in 93 epochs of training. However, that particular solution requires 2.8× more
energy, 2.5× more time, and 2.4× more memory w.r.t. the CapsNet architecture. The
red front in Figure 5.8a also highlights other interesting solutions belonging to the derived
Pareto-optimal front, with a slightly lower accuracy, but up to a couple of orders of
magnitude lower energy, memory, and latency achieved by our identified solutions.

191

5. Integration of Multiple Design Objectives into NAS Frameworks for
CapsNets and DNNs

(a) Fully-trained Results for MNIST

(b) Fully-trained Results for Fashion-MNIST

(c) Fully-trained Results for SVHN

(d) Fully-trained Results for CIFAR10

Large energy
savings

Lower latency
than DeepCaps

Figure 5.8: Fully-trained DNN results for (a) the MNIST, (b) the Fashion-MNIST,
(c) the SVHN, and (d) CIFAR10 datasets.

NASCaps for the Fashion-MNIST Dataset

One of the Pareto-optimal solutions in Figure 5.8b achieves an accuracy of 92.15% in 51

192

5.2. NASCaps: A Framework for Neural Architecture Search for Optimizing Accuracy and
Hardware Efficiency of Convolutional CapsNets

epochs. This solution improved the latency (−79.38%), energy (−88.43%), and memory
footprint (−63.05%) compared to both the CapsNet and DeepCaps architectures, with
almost the same accuracy as the last one, which is 93.94%.

NASCaps for the SVHN Dataset

The set of experiments for the SVHN dataset in Figure 5.8c produced a solution that
reached an accuracy of 93.17%, i.e., 3.52% lower than the DeepCaps, in 56 epochs of
training. This solution also significantly reduced the energy by 97.05% and latency
by 29.56%, compared to the DeepCaps, but it requires 1.6× more memory. On the
other hand, another interesting solution reached an accuracy of 92.53% while requiring
30.59% lower energy, 59.63% lower latency, and 62.70% lower memory, compared to the
DeepCaps.

NASCaps for the CIFAR10 Dataset

A solution found by the CIFAR10-NAS in Figure 5.8d achieved an accuracy of 85.99%
after 300 epochs of training while significantly improving all the other objectives compared
to the DeepCaps architecture. This particular solution (NASCaps-C10-best in Table 5.3)
reduced the energy consumption by 52.12%, the latency by 64.34%, and the memory
footprint by 30.19% compared to the DeepCaps executed on the CapsAcc accelerator.
However, it encountered a slight accuracy drop of about 1% when using the same training
settings. Table 5.3 reports also other Pareto-optimal DNN architectures found by our
NASCaps framework for the CIFAR10 dataset.

Table 5.3: Selected CIFAR10 architectures after 300-epoch training.

Architecture Accuracy Energy Latency Memory
DeepCaps 87.10% 36.30 mJ 4.29 ms 9 052 kiB
NASCaps-C10-best 85.99% 17.38 mJ 1.53 ms 6 319 kiB
NASCaps-C10-a0d 74.11% 4.53 mJ 1.12 ms 1 718 kiB
NASCaps-C10-9fd 74.00% 5.11 mJ 0.36 ms 713 kiB
NASCaps-C10-658 73.91% 5.06 mJ 1.54 ms 5 573 kiB
CapsNet 55.85% 88.80 mJ 1.82 ms 8 573 kiB

Transferability of the Selected DNNs Across Different Datasets

To test the transferability of the DNN solutions found by our NASCaps framework, the
dataset-specific DNNs have also been trained and tested on the rest of the considered
datasets. Table Table 5.4 reports the matrix of highest-accuracy solutions obtained by
this transferability analysis.

The NASCaps-C10-best architecture of Table 5.3 resulted also particularly accurate for
the other datasets. For the MNIST dataset, it achieved an accuracy of 99.72% in 37
epochs of training, which is also higher than the solutions found by the MNIST-NAS. For
the Fashion-MNIST dataset, it reached an accuracy of 93.87% in 32 epochs of training,
which is even higher than the DeepCaps after 100 epochs of training. When tested on the

193

5. Integration of Multiple Design Objectives into NAS Frameworks for
CapsNets and DNNs

SVHN dataset, it reached an accuracy of 96.59%, thus outperforming the highest-accuracy
DNN found during the SVNH-NAS. The NASCaps-C10-best architecture is similar to
the DeepCaps, but it has two initial Conv layers and three CapsCell blocks without skip
connection. The highest-accuracy architecture found by the MNIST-NAS also performed
well with the Fashion-NMIST dataset, reaching an accuracy of 93.34% after 91 epochs of
training.

Table 5.4: Highest-Accuracy DNNs found by the dataset-specific NAS, which are then
trained for the other datasets for 100 epochs.

Architecture MNIST FMNIST SVHN CIFAR10
NASCaps-MNIST-best 99.65% 93.34% 96.36% 71.44%
NASCaps-FMNIST-best 99.49% 92.15% 93.12% 68.34%
NASCaps-SVHN-best 99.51% 91.43% 93.17% 63.72%
NASCaps-C10-best 99.72% 93.87% 96.59% 76.46%

The results reported in Table 5.4 show how the solution NASCaps-C10 is the best overall
architecture found during the four searches performed. The evolutionary process was
based on a random initial parent population newly generated at each search. Moreover,
the small size of the initial parent population may have contributed to a non-convergence
of the four dataset-specific searches that have been performed. Also, not all four searches
reached the same generation at the end of the experiments.

Summary of Key Results

The above results show how our NASCaps framework has been able to explore multiple
solutions with diverse tradeoffs, thanks to the usage of an evolutionary algorithm for a
multi-objective search. It has been possible to generate and test 690 candidate networks
for the four dataset-specific searches. Using four high-end NVIDIA Tesla V100-SXM2,
our NASCaps framework required 90 GPU-hours to test the partially-trained candidate
networks. The new 64 Pareto-optimal architectures have been fully-trained, requiring in
total additional 682 GPU-hours (i.e., 28 days). Our approach allowed us to outperform
many objectives of the state-of-the-art solutions when performing the full training, despite
the strict time constraints applied to the single searches. In summary, our framework
allowed us to:

• Derive some efficient architectures, such as the above-discussed NASCaps-C10-best
that reached an almost similar accuracy as of the state-of-the-art while significantly
improving all other objectives of the search, i.e., energy, memory, and latency.

• Perform early candidate selection while achieving high accuracy after the full
training.

194

5.3. RoHNAS: A NAS Framework with Conjoint Optimization for Hardware Efficiency and
Adversarial Robustness of Convolutional and CapsNets

• Achieve good transferability between different datasets, as demonstrated by the
fact that the NASCaps-C10-best DNN, which is found for the CIFAR10-specific
search, outperforms other dataset-specific searches also on other datasets.

5.2.4 Summary

The NASCaps framework is proposed to conduct HW-aware NAS. The optimization
objectives of the framework are classification accuracy and hardware efficiency, expressed
in terms of latency, energy consumption, and memory footprint when executed on the
specialized hardware accelerators. It not only models and incorporates the most common
types of DNN layers (such as Conv, FC) but also the different types of capsule layers
and dynamic routing. To speed up the evaluation time, the functional behavior of the
convolutional and capsule layer execution in specialized hardware accelerators are modeled
to quickly estimate memory, energy, and latency, for different DNN model inferences. A
genetic algorithm based on the principles of the NSGA-II algorithm is proposed to solve
the multi-objective optimization problem and select Pareto-frontiers of DNN models.

Moreover, to further reduce the training time, the accuracy of the DNN candidates is
evaluated after a limited number of training epochs (i.e., partial training), while the
Pareto-optimal DNNs are fully trained. Integrating accuracy and hardware efficiency
into a NAS framework is challenging and requires a significant design effort. Adding
the robustness property as an optimization objective in the flow would further increase
the design space and require dedicated optimizations. The challenges and the proposed
solutions for integrating the robustness objective into the framework will be discussed in
Section 5.3.

5.3 RoHNAS: A NAS Framework with Conjoint
Optimization for Hardware Efficiency and Adversarial
Robustness of Convolutional and CapsNets

DNNs are computationally-complex and vulnerable to adversarial attacks. To address
multiple design objectives, we propose RoHNAS, a novel NAS framework that jointly
optimizes for adversarial robustness and hardware efficiency of DNNs executed on spe-
cialized hardware accelerators. Besides the traditional convolutional DNNs, RoHNAS
additionally accounts for complex types of DNNs such as CapsNets. To reduce the explo-
ration time, RoHNAS analyzes and selects appropriate values of adversarial perturbation
for each dataset to employ in the NAS flow. Extensive evaluations on multi-GPU-HPC
nodes provide a set of Pareto-optimal solutions, leveraging the tradeoff between the
above-discussed design objectives. For example, a Pareto-optimal DNN for the CIFAR10
dataset exhibits 86.07% accuracy while having a latency of 4.47 ms, an energy of 38.63
mJ, and a memory footprint of 11.85 MiB.

195

5. Integration of Multiple Design Objectives into NAS Frameworks for
CapsNets and DNNs

5.3.1 System Overview
Traditionally, the adversarial robustness of a given DNN is investigated a posteriori, i.e.,
once the DNN is already designed. Another metric typically analyzed a posteriori is the
hardware efficiency of a DNN implemented on a given hardware accelerator. Hence, such
a lack of awareness challenges the feasibility of its implementation on resource-constrained
devices. The goal of this work is to integrate these diverse yet important objectives into a
NAS framework to obtain Pareto-optimal solutions that explore the potential tradeoffs
between different design objectives like computational complexity, memory, energy, latency,
and security. Including the DNN robustness into the optimization goals of the NAS is
challenging because, besides the challenges in its representation in the design framework,
it might lead to a massive search space explosion due to several additional factors and
extremely time-consuming training and evaluations of numerous candidate solutions.

Our work performs joint optimizations for the hardware efficiency and adversarial ro-
bustness, thereby leading to the increased complexity of the optimization problem, as
well as considerable training time to evaluate the DNN robustness. Moreover, it is quite
challenging to model, implement and evaluate the hardware execution of different DNNs
and CapsNets (including Conv layers, FC layers, and dynamic routing) in the NAS design
flow.

To address the above-discussed challenges, we propose the novel RoHNAS framework
that integrates multiple optimization objectives (like hardware efficiency and adversarial
robustness) for diverse types of DNNs, like CNNs and CapsNets. RoHNAS employs the
following key mechanisms:

1. For architectural model flexibility and fast hardware estimation, we employ analyti-
cal models of the layers and operations of DNNs and CapsNets, and their mapping
and execution on specialized accelerators.

2. To speed up the robustness evaluation, we analyze and choose the values of the
adversarial perturbations, which provide valuable differences when performing the
NAS with DNNs subjected to such adversarial perturbations.

3. We develop a specialized evolutionary algorithm, following the principles of the
NSGA-II method, to conduct a multi-objective Pareto-frontier selection, with
conjoint optimization for energy, memory, latency, and adversarial robustness of
DNNs.

4. To reduce the overall training time, we evaluate the DNNs trained for a limited
number of epochs, while the Pareto-optimal DNNs are evaluated after full training
to obtain the exact results.

We have implemented our RoHNAS using the TensorFlow library and evaluated more
than 900 DNNs for the MNIST, Fashion-MNIST, and CIFAR10 datasets. Extensive

196

5.3. RoHNAS: A NAS Framework with Conjoint Optimization for Hardware Efficiency and
Adversarial Robustness of Convolutional and CapsNets

validations are performed on Nvidia’s multi-V100 GPU-HPC nodes requiring weeks to
months of experimentation time.

5.3.2 RoHNAS Framework
Our evolutionary algorithm-based NAS methodology performs a multi-objective search.
It automatically searches for inherently robust yet hardware-efficient DNN models by
selecting Pareto-optimal candidates in terms of energy, latency, memory footprint, and
robustness. The search space comprises both CapsNets and traditional CNNs. The
workflow of our RoHNAS framework is shown in Figure 5.9, and is explained in detail in
the following subsections.

Output: Hardware-Efficient and Adversarially Robust Pareto-Optimal DNNs

Candidate
DNNs

Best Candidate Selection

Crossover & Mutation
U

Evaluation:
HW-Efficiency

Adversarial Attack on Fully-Trained DNNsFull Training of Selected Solutions

Evolutionary
Search

Algorithm

Adversarial Perturbation
Value Selection

Evaluation: Adversarial
Robustness

Fast Training
with Limited

Epochs

End of
Iterations?

First Generation:
Random DNNs

Y

N

HW Accelerator Adversarial Attack Algorithm Dataset

Analytical Model of
HW Accelerator

Figure 5.9: Overview of our RoHNAS framework and its key functionalities.

The framework’s inputs are the hardware accelerator, the algorithm for generating the
adversarial attack, and the dataset. After modeling the hardware accelerator analytically,
the appropriate values of the adversarial perturbation to employ in the search are
selected. This process consists of analyzing the accuracy vs. adversarial perturbation
curve and focusing on the high variation region that corresponds to the highest slope of
the curve. After selecting the values of the adversarial perturbation to employ in the
search, the evolutionary search algorithm (based upon the principles of the NGSA-II
genetic algorithm [231]) performs an iterative exploration using crossover, mutation, and
best DNN candidate selection based on the objectives. To speed up the process during
the evolutionary algorithm, the adversarial robustness is evaluated after a fast training,
i.e., for DNNs trained with a limited number of epochs, where its number is determined
based on the Pearson Correlation Coefficient [249]. Towards generating exact robustness
results, the set of Pareto-optimal DNN models are fully-trained, and the robustness
against the adversarial attack on fully-trained DNNs is evaluated.

197

5. Integration of Multiple Design Objectives into NAS Frameworks for
CapsNets and DNNs

Design Space Reduction by Selecting an Appropriate Adversarial
Perturbation Value

By considering several topologies and strengths of adversarial perturbations, the design
space can potentially explode. Hence, the RoHNAS framework restricts the design space
by automatically selecting the values of adversarial perturbations to be used in the NAS
for a given dataset. Algorithm 22 summarizes the proposed procedure. For each element
of the test dataset, the adversarial example is generated through the PGD algorithm [24]
(line 4). Here we use PGD for illustrative reasons, and other adversarial attack algorithms
can be integrated into our RoHNAS framework. The parameter ε determines the amount
of adversarial perturbation. When considering the accuracy variation w.r.t. ε, the region
in which the slope is highest is in the middle of the graph, which corresponds to half
of the clean accuracy, i.e., Acc0

2 when considering that Acc0 is the clean accuracy. By
exploiting this intuition, our algorithm selects εNAS , which is the adversarial perturbation
amount that provides the closest accuracy to the desired value of Acc0

2 . The selected
value of εNAS is employed in the One EPS search, which optimizes for the robustness
against one perturbation value. Moreover, aiming at covering a broader spectrum of
adversarial perturbation range, the Two EPS search is devised. εlow and εhigh are selected
(lines 10-11), and the NAS is conducted by optimizing for the adversarial accuracy with
both values.

Algorithm 22: Adversarial Perturbation Selection.
Input: Deep Neural Network: N ;
Test Dataset: D = �

j
Xj ;

Adversarial Perturbation Budget: εi ∈ E = [εMIN , εMAX];
Output: Perturbation to apply for the NAS: εNAS ;

1 Acc0 = Accuracy(N(D));
2 for i ∈< E > do
3 for j ∈< D > do
4 X ′

ij = PGD(N, εi, Xj);
5 end
6 D′

i = �
j

X ′
ij ;

7 Acci = Accuracy(N(D′
i));

8 end
9 εNAS = εi : Acci ≈ Acc0

2 ;
10 εlow ≈ εNAS

10 ;
11 εhigh ≈ 3 · εNAS ;

198

5.3. RoHNAS: A NAS Framework with Conjoint Optimization for Hardware Efficiency and
Adversarial Robustness of Convolutional and CapsNets

5.3.3 Evaluation of the RoHNAS Framework
Experimental Setup

The PGD adversarial attack algorithm [24] has been implemented with the CleverHans
library [245]. The hardware model has been implemented using the NASCaps library,
which is based on the CapsAcc architecture synthesized using the Synopsys Design
Compiler tool, with a 45nm technology node and a clock period of 3 ns. The training
and testing of the DNNs, implemented in TensorFlow [73] have been running on the
GPU-HPC computing nodes equipped with four NVIDIA Tesla V100-SXM2 GPUs. Note
that our experiments were running for 2 000 GPU hours with our fast evaluation method
and 8 000 GPU hours for the complete training and PGD attack evaluation. Without
these exploration time reductions, or by considering more complex optimization problems
(e.g., deeper DNN models or larger datasets), the exploration time would have lasted
several GPU months.

The search algorithm is initialized with a random population of 10 elements, running for
a maximum of 20 iterations of the genetic loop. The offspring population size is 10, and
the mutation probability is 10%. Each Conv layer can be composed of a 3 × 3, 5 × 5, or
9 × 9 kernel, with a stride of either 1 or 2. The channels and capsule dimensions span
between 1 and 64.

Selection of Adversarial Perturbation for the NAS

The amount of adversarial perturbation is a crucial parameter to be selected for performing
the NAS. Following the above-discussed procedure, the Pareto-optimal DNNs of the
NASCaps library have been tested under the PGD attack, with different values of the
adversarial perturbation ε. The results reported in Figure 5.10 show that, as expected,
the higher ε is, the lower the DNN accuracy drops. The selected values for the NAS
are detailed in Table 5.5. The selection process follows the procedure described in
Algorithm 22. The One EPS column refers to the search using a single value of ε, while
the Two EPS column refers to a search conducted with two different values of ε, which
are called εlow and εhigh. Note that a simple dataset like the MNIST requires a relatively
high adversarial perturbation to impact the DNN robustness. On the other hand, on a
more complex dataset like the CIFAR10, a smaller perturbation is already sufficient to
misclassify a specific set of inputs.

Table 5.5: Selected values of the adversarial perturbation ε for the NAS, for MNIST,
Fashion-MNIST, and CIFAR10 datasets. There are also reported the values of εlow and
εhigh for the Two EPS search.

Two EPS εlow One EPS ε Two EPS εhigh

MNIST 3e-3 3e-2 1e-1
F-MNIST 1e-3 1e-2 3e-2
CIFAR10 3e-5 3e-4 1e-3

199

5. Integration of Multiple Design Objectives into NAS Frameworks for
CapsNets and DNNs

10-7 10-5 10-3 10-1 10-7 10-5 10-3 10-1 10-7 10-5 10-3 10-1

(a) MNIST (c) CIFAR10
100

80
60
40
20

0

Ac
cu

ra
cy

 [%
]

ε

(b) Fashion-MNIST

Figure 5.10: Analysis of the DNN robustness under the PGD attack, with different
adversarial perturbation values, for (a) MNIST, (b) Fashion-MNIST, and (c) CIFAR10.

RoHNAS Results with Fast DNN Robustness Evaluation

To reduce the exploration time, our algorithm trains the DNNs only for a limited number
of epochs, which results in a fast robustness evaluation. The similarity w.r.t. the full-
training robustness has been measured through the Pearson Correlation Coefficient [249],
using the procedure described in Section 5.2. The choice of 10 training epochs for the
CIFAR10 dataset and 5 epochs for the Fashion-MNIST and MNIST datasets leverages
the tradeoff between a high correlation and low training time.

The results of the RoHNAS - One EPS with fast robustness evaluation are reported
in Figure 5.11. The earliest generation of the algorithm produces sub-optimal DNN
solutions, while most Pareto-optimal solutions are found in the latest generation. Note
that, for the RoHNAS evaluated on the CIFAR10 dataset, the latest generations produce
DNNs that are less robust against the PGD attack but still belong to the Pareto-frontier
due to the low energy consumption. Note that several candidate DNNs found in the
earliest generations are highly vulnerable to the PGD attack and are automatically
discarded by the Pareto-frontier selection.

RoHNAS Exact Results for Pareto-Optimal DNNs

The Pareto-optimal DNNs selected at the previous stage have been fully-trained to obtain
an exact robustness evaluation. The DNNs for MNIST and Fashion-MNIST have been
trained for 100 epochs, while 300 training epochs have been used for CIFAR10. The results
reported in Figure 5.12 show tradeoffs between the design objectives. In Figure 5.12a,
a Pareto-optimal solution found by the RoHNAS framework for the CIFAR10 dataset
achieves an accuracy of 86.07% while having a memory footprint of 11.85 MiB, an energy
consumption of 38.63 mJ, and a latency of 4.47 ms. Similarly, a solution for the Fashion-
MNIST dataset in Figure 5.12b reaches an accuracy of 93.40% while having 6.40 ms
latency, 61.19 mJ energy, and 16.82 MiB memory. Note that, while the Two EPS search
finds Pareto-optimal solutions in the middle range of energy, other interesting low-energy
solutions are found by the One EPS search. The Pareto-optimal DNN search for the
MNIST dataset covers a more heterogeneous range of values, leveraging the tradeoffs
between different objectives.

200

5.3. RoHNAS: A NAS Framework with Conjoint Optimization for Hardware Efficiency and
Adversarial Robustness of Convolutional and CapsNets

Energy [mJ] Latency [s] Memory footprint [B]

M
NI

ST
ac

cu
ra

cy
F-

M
NI

ST
ac

cu
ra

cy
CI

FA
R-

10
ac

cu
ra

cy

(b)

(c)

(a)

Low robustness
but low energy

Inefficient, discarded

Figure 5.11: RoHNAS ’ fast evaluation of DNN robustness under PGD attack, showing
tradeoffs w.r.t. energy, latency, and memory footprint. (a) Results for CIFAR10.
(b) Results for Fashion-MNIST. (c) Results for MNIST.

The RoHNAS framework has been compared with other state-of-the-art DNN and
CapsNet architectures and NAS methodologies that include capsule layers in the search
space. Figure 5.13 shows the comparison between our RoHNAS framework (One EPS
setting), NASCaps, CapsNet [34] and DeepCaps [31]. For the MNIST dataset, the
Pareto-optimal solutions generated with the RoHNAS framework are particularly robust
for a large range of perturbation ε. Indeed, the accuracy starts decreasing at around one
order of magnitude higher ε than NASCaps. For the Fashion-MNIST, the robustness
behavior of the Pareto-optimal DNNs selected with the RoHNAS framework is closely
related to the CapsNet. Instead, for the CIFAR10 dataset, the RoHNAS DNNs’ behavior
is comparable to the DeepCaps for low values of ε, while a Pareto-optimal RoHNAS
solution offers good robustness also with higher adversarial perturbation.

The evaluation of the RoHNAS framework with the Two EPS setting is shown in
Figure 5.14. Compared to the One EPS setting, the NAS produces different levels of
robustness w.t.r. ε for the MNIST and Fashion-MNIST datasets. However, for the
CIFAR10 dataset, the Two EPS search leads to less robust results than the One EPS
counterpart.

5.3.4 Summary
The proposed RoHNAS is a NAS framework jointly optimizing hardware efficiency (latency,
energy, and memory footprint) and robustness against adversarial attacks. Building upon
the NASCaps framework discussed in Section 5.2, the adversarial robustness is integrated

201

5. Integration of Multiple Design Objectives into NAS Frameworks for
CapsNets and DNNs

Energy [mJ] Memory footprint [B] Latency [s]

Energy [mJ] Memory footprint [B] Latency [s]

Energy [mJ] Memory footprint [B]

CI
FA

R-
10

 a
cc

ur
ac

y

Latency [s]

F-
M

NI
ST

 a
cc

ur
ac

y
M

NI
ST

 a
cc

ur
ac

y

(b)

(a)

(c)

Low energy
solutions in the
Two EPS search

Heterogeneous
range of values

Figure 5.12: RoHNAS ’ exact robustness evaluation of Pareto-optimal DNN solutions
under the PGD attack, showing tradeoffs w.r.t. hardware-efficiency. (a) Results for
CIFAR10. (b) Results for Fashion-MNIST. (c) Results for MNIST.

into the framework as another optimization objective. To speed up the robustness
evaluation, the values of the adversarial perturbations that provide valuable differences
when performing the NAS with DNNs subjected to such adversarial perturbations are
selected. Afterward, the adversarial examples with the chosen perturbation values are
generated to evaluate the DNN robustness. A specialized multi-objective optimization
algorithm is devised by employing analytical models of the hardware execution of the
CNN and CapsNet operations and conducting training for a limited number of epochs.
It is based on the genetic NSGA-II algorithm, and it performs a multi-objective Pareto-
frontier selection with conjoint optimization for energy, memory, latency, and adversarial
robustness of DNNs.

202

5.4. Summary of Integration of Multiple Design Objectives into NAS Frameworks for CapsNets
and DNNs

High robustness

Figure 5.13: Evaluation of the RoHNAS framework with the One EPS setting, compared
to other state-of-the-art architectures and NAS algorithms.

5.4 Summary of Integration of Multiple Design Objectives
into NAS Frameworks for CapsNets and DNNs

This chapter has proposed methodologies to integrate several design objectives into a
single framework. The emerging trends of neural architecture search techniques have
driven the way to design high-accurate DNN models. However, the high accuracy alone

203

5. Integration of Multiple Design Objectives into NAS Frameworks for
CapsNets and DNNs

Different
robustness

levels

Figure 5.14: Evaluation of the RoHNAS framework with the Two EPS setting, compared
to other state-of-the-art architectures and NAS algorithms.

does not automatically guarantee high energy efficiency and robustness. Towards this,
the proposed flow also integrates hardware efficiency and robustness as optimization
objectives of the NAS algorithm. Therefore, the DNN architectural and model parameters
are shaped to leverage the tradeoffs between accuracy, robustness, and hardware efficiency
when executed on specialized hardware accelerators. While such specialized accelerators
significantly reduce DL inference’s power and energy consumption, shifting the computa-

204

5.4. Summary of Integration of Multiple Design Objectives into NAS Frameworks for CapsNets
and DNNs

tion into the event-based domain is another promising way. In fact, it is possible to reduce
the power consumption of complex DL tasks by several orders of magnitude by executing
event-based SNNs on neuromorphic hardware platforms, compared to using conventional
computing infrastructures. Towards this, Chapter 6 discusses efficient implementations
and optimizations for executing complex SNN tasks on the Loihi processor, which is one
of the most advanced neuromorphic architectures. Moreover, Chapter 7 discusses several
security threats for SNNs and the potential defensive countermeasures.

205

CHAPTER 6
Efficient Optimizations for Spiking

Neural Networks on
Neuromorphic Hardware

This chapter presents methodologies and optimization techniques for deploying SNNs
on neuromorphic hardware. The Intel Loihi processor is used as a target computing
platform to deploy energy-efficient SNNs. An overview of the Loihi chip is discussed in
Section 6.1. Afterward, different applications were treated and deployed. Section 6.2
presents a methodology for implementing efficient SNNs for gesture recognition. First,
the analysis to optimize the DNN-to-SNN conversion is discussed in Section 6.2.2. Then,
the pre-processing method for enabling the training of event data in the DNN domain
is presented in Section 6.2.3. Towards applications more oriented to autonomous cars,
Section 6.3 presents efficient implementations of event-based SNNs for car recognition,
while Section 6.4 presents SNNs for lane detection implemented on the Loihi neuromorphic
processor.

Major Contributions of the Chapter:

• DNN-to-SNN conversion analysis: A systematic analysis has been conducted
to optimize the tunable parameters involved in the DNN-to-SNN conversion process.

• Pre-processing methodology for event-based training in the DNN domain:
It accumulates events into a compatible format for traditional DNN training,
properly selecting the accumulation parameters. Experiments are conducted on
event-based gesture recognition applications.

• CarSNN design: It is a methodology for designing SNNs for event-based car
detection and deploying them on the Loihi neuromorphic processor. The design

207

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

decisions have been made towards leveraging the tradeoffs between accuracy and
energy efficiency while fitting on a limited Loihi neurocores budget and providing
low-latency responses.

• LaneSNNs design: It is a methodology for designing SNNs for event-based lane
detection, following the semantic segmentation approach, and deploying them on
the Loihi neuromorphic chip. A pre-processing method reduces the computational
complexity by reducing the resolution of input and output images. A novel loss
function combines the Weighted Binary Cross Entropy and the Mean Squared Error
measured to improve the accuracy.

6.1 Overview of the Loihi Neuromorphic Processor
The Intel Loihi chip [16], based on a neuromorphic mesh of 128 neurocores, executes the
neuron computations in a highly parallel and power-efficient asynchronous manner. The
neurocore management is guaranteed by 3 embedded x86 processors, and an asynchronous
network-on-chip (NoC) allows communication between neurons.

6.1.1 Neuron Model
The Loihi architecture implements the well-known CUrrent BAsed Leaky-Integrate-and-
Fire (CUBA-LIF) neuron. Each neuron is modeled as a charge reservoir. A current spike
on the output axons is generated when such a charge overcomes the voltage threshold.
The two internal state variables of the model are the synaptic response current ui(t) and
the membrane potential Vi(t). A postsynaptic neuron i receives in input a train of spikes
that are sent by a presynaptic neuron j. The spikes can be represented as a train of
Dirac delta functions at time tk, as in Equation (6.1).

σj(t) =
�

k

δ(t − tk) (6.1)

The train of spikes is then processed by a synaptic filter input response αu(t), which is
defined as in Equation (6.2), where H(t) is the step function, and τu a time constant.

αu(t) = e− t
τu

τu
H(t) (6.2)

Each filtered spike train is multiplied by the synaptic weight wij associated with the
synapse that connects neurons i and j, and added with an additional bias current bi to
compute the synaptic response current in Equation (6.3).

ui(t) =
�

j

wij(αu ∗ σj)(t) + bi (6.3)

208

6.1. Overview of the Loihi Neuromorphic Processor

The membrane potential then integrates the synaptic current as in Equation (6.4). Every
time the membrane potential overcomes the voltage threshold θi, the neuron i emits an
output spike, and its membrane potential is reset to a vrest value.

v̇i(t) = − 1
τv

vi(t) + ui(t) − θiσi(t) (6.4)

Note that the time constant τv is responsible for the leaky behavior of the model [16].

6.1.2 Chip Architecture
As shown in Figure 6.1, a Loihi chip is composed of 128 neuromorphic cores (neuro-
cores), and each neurocore can implement up to 1024 primitive spiking neural units
(compartments), which emulate trees of spiking neurons. The spikes generated by each
neuron are delivered to all the compartments belonging to its synaptic fan-out through
the asynchronous NoC in the form of packetized messages, following a mesh operation
executed over a series of algorithmic timesteps. This process uses a barrier synchroniza-
tion mechanism to ensure that all neurons are ready to proceed coherently to the next
timestep. To implement wider and deeper SNNs that do not fit on a single 128-neurocore
chip, multiple chips can be combined together without any latency increase due to the
message exchange. The off-chip communication interface extends the mesh up to 4 096
on-chip cores and up to 16 384 hierarchically connected cores. The 3 embedded ×86
processors, called Lakemounts, guarantee the correct functioning of the entire system.
They can also be used to probe the performance of the chips and transfer information to
the user.

The mesh operation is composed of the following sub-operations:

1. Each neurocore independently iterates over its compartments, and if a compartment
neuron is in a spike firing state, the spike message is generated.

2. All the messages are distributed to all the neurocores containing synaptic fan-outs
through the NoC.

3. When a neurocore ends the internal distribution of spikes to its neurons, it sends a
barrier synchronization message received by the neighbor neurocores. This message
has the effect of flushing all the traveling spikes. After that, another barrier message
notification is generated by the same neurocore.

4. When all the neurocores receive the second signal, the timestep is incremented.

The microarchitecture of a single neurocore is composed of four units:

1. The Synapse unit is responsible for routing the input spikes to the appropriate
compartments and retrieving the corresponding synaptic weights from memory.

209

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

PARALLEL I/O

PARALLEL I/O

PA
RA

LL
EL

I/O

PA
RA

LL
EL

I/O
FP

IO

LM
T

LM
T

LM
T

NoC

Neuromorphic
Core

X86
Processor

Off-Chip
Interface

Figure 6.1: Architectural view of the Loihi chip.

2. The Dendrite unit manages the synaptic current and membrane voltage for each
compartment. It is also responsible for verifying whether a neuron is firing and
delivering this information to the Axon.

3. The Axon unit generates the output spikes, in which each message is associated
with the specific address of postsynaptic neurons.

4. The Learning unit, using the spike traces at the output of the neurocore and other
local information, updates the synaptic weights according to the learning rule.

6.1.3 Tools to Support Loihi Developers
A solid tool flow is essential for enabling large-scale usage of the hardware architecture
and conducting cutting-edge research. The software stacks abstract away the users
from the low-level hardware details, allowing them to focus on high-level modeling of
algorithms, network architectures, and learning rules.

Shortly after the Loihi was made available for researchers, the NxSDK [250] API was
released. Through this API, a programmer can define the SNN model architecture and
its parameters, such as decay time constants, spike impulse values, synaptic weights,
refractory delays, spiking thresholds, and custom learning rules. Moreover, external

210

6.2. Efficient SNN for Recognizing Gestures on Loihi

stimulus spikes can be injected into designated connections at specified timesteps. The
network state and power/energy consumption can be monitored at runtime. After
checking that the specifications comply with the hardware support, the compiler [251]
greedily assigns network entities (compartments, synapses, learning rules) to the available
resources to minimize the occupied neurocores.

To ease the development of complex and deep SNNs, NxTF [252] provides a programming
interface derived from Keras and a compiler optimized for mapping deep convolutional
SNNs to the multi-core Intel Loihi architecture. It supports both SNNs trained directly
on spikes and models converted from traditional DNNs through SNN-ToolBox [115],
processing both sparse event-based and dense frame-based datasets.

Recently, other SNN simulators like PyNN [124], Nengo [253][254], and Brian [255][256]
has been extended with the support to map the model onto the Loihi neuromorphic
hardware.

6.2 Efficient SNN for Recognizing Gestures on Loihi
SNNs can be implemented with high energy efficiency on neuromorphic processors like
the Intel Loihi and fed by event-based cameras. However, non-spiking DNNs with many
layers can achieve relatively high accuracy on image classification and recognition tasks,
while the research on SNN learning rules for real-world applications is not mature yet.
The accuracy results for SNNs are typically achieved either by converting the trained
DNNs into SNNs or by directly deploying and training SNNs in the spiking domain. To
enable the conversion from a DNN to an SNN, we perform a comprehensive analysis of
this process, specifically designed for Intel Loihi, showing our methodology for designing
an SNN that achieves nearly the same accuracy as its corresponding DNN. Towards the
event-based sensors, we design a pre-processing technique evaluated for the DvsGesture
dataset, which allows it to be used in the DNN domain. Therefore, based on the outcome
of the first analyses, we train a DNN for the pre-processed DvsGesture dataset and
convert it into its equivalent SNN for its deployment on the Intel Loihi chip, which
enables real-time gesture recognition. The results report that our SNN achieves 89.64%
classification accuracy and occupies only 37 Loihi cores.

6.2.1 System Overview
A promising approach to training SNNs in a supervised learning environment is to train
a DNN with state-of-the-art backpropagation techniques and then assign the trained
parameters (weights and biases) to an equivalent SNN representation by applying a
conversion process. This approach has shown promising results, primarily because it
allows us to get the best from the two worlds. The converted SNN behaves like a normal
SNN, with its benefits in terms of latency and efficiency. At the same time, we can
train the network using efficient methodologies that ensure high-accuracy results in
classification tasks. However, such a conversion mechanism may not always provide the

211

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

expected results. Many aspects must be considered, like the original DNN structure,
the training process, and the parameters that control the DNN-to-SNN conversion.
This behavior is accentuated when the converted SNN is deployed on limited-precision
hardware like the Intel Loihi chip, which restricts the degree of freedom of the conversion
process.

This section presents a complete DNN-to-SNN design process, systematically discussing
the effects of the key parameters used in the conversion. We evaluate their effects and
extract important general rules that can be successfully applied to deploy an SNN for
the Intel Loihi or similar neuromorphic platforms. Once we have an SNN that achieves
high accuracy on both the MNIST and the CIFAR10 datasets, we also evaluate it on
the DvsGesture dataset, which comprises 11 gestures recorded with a DVS event-based
camera. The main challenge when implementing the DNN-to-SNN conversion mechanism
to get a trained SNN is that we cannot train a DNN on the event series generated by the
DVS camera. Hence, we first need to collect the events into frames and then train the
DNN on such a converted dataset. We discuss different pre-processing techniques and
report the accuracy results achieved by the DNN on the converted dataset. Then, after
performing the conversion, the SNN is tested on the DvsGesture dataset, and afterward,
it can be deployed for real-time classification on the Intel Loihi.

In a nutshell, our Novel Contributions are:

• We perform a comprehensive parameter analysis of the process of converting a
DNN into an SNN.

• We design a pre-processing method for the DvsGesture dataset through frame-based
accumulation to make such a dataset compatible with the DNN domain.

• We train a given DNN for the pre-processed DvsGesture dataset and convert it to
an SNN that can then be deployed on the Intel Loihi.

6.2.2 DNN-to-SNN Conversion
The DNN-to-SNN conversion mechanism has shown promising results in terms of accuracy
consistency among the original DNN and the converted SNN [115]. To reach these results,
the trained parameters of the DNN must be efficiently converted into the corresponding
parameters of the SNN. This process also requires considering the intrinsic differences
between the two models, and some adjustments are consequently required to obtain
a correct conversion. During training, for each connection among two neurons of the
consecutive layers i and i+1, the weight wi,i+1 is learned. Moreover, for each neuron
of the layer i+1, also the bias bi+1 is derived. In the equivalent SNN model, these
parameters must be translated into their equivalent values for the spiking neural model.
Specifically referring to the Intel Loihi model, the conversion works as follows:

• the bias bi+1 is associated to the bias current ubias of the neuron ni+1.

212

6.2. Efficient SNN for Recognizing Gestures on Loihi

• wi,i+1 is directly set as the weight of the synapse connecting neurons ni and ni+1.

Besides the learned parameters, each DNN layer has to be converted to an equivalent
spiking version. It means that each layer is composed of equivalent spiking neurons
that adopt the neuron model of the Loihi architecture. To implement the DNN-to-SNN
conversion, we use the SNNToolBox (SNN-TB) [115], an open-source conversion tool
compatible with the Loihi’s Python NxSDK-0.9.5.

The results obtained with the conversion mechanism may not be always optimal due to
specific constraints of the Loihi neurocores and several limitations of the NxSDK API.
Therefore, we present a case study for the DNN-to-SNN conversion, specifying a set of
general guidelines for achieving a converted SNN that reaches similar accuracy levels as
the corresponding DNN.

Evaluation Metrics for the Conversion Process Quality

The conversion mechanism requires a series of preliminary considerations for a successful
conversion. First, the Loihi architecture adopts limited precision synaptic weights, defined
in the interval [−256, 255]. On the other hand, the trained DNN adopts full-precision
weights. Therefore, preliminary quantizing the DNN-trained weights is key to get a
precise converted SNN. In this quantization phase, the distribution of the input weights
has a significant role in the outcome of the conversion. The input weights must be
clipped into the Loihi quantized range. Hence, a tight weight distribution can be mapped
to the quantized interval without relevant errors. On the other hand, outliers in the
distribution of the original weights can be the primary source of an imprecise conversion
since very high weights are clipped to fit into the quantized interval. It leads to possible
inconsistencies between the pre- and post-quantization weight distributions. To decrease
the strong outliers in the final trained weights, the L2 regularization, applied both on
activations and kernels during training, helps to keep weights in a limited range.

A good practice to evaluate the conversion quality is to look at the correlation plots
between the DNN activations and the corresponding SNN output spikerates. Figure 6.2
shows three typical correlation plots that can be obtained with good and bad conversion
processes.

(a) (b) (c)

Figure 6.2: Examples of correlation plots between the DNN activations and their converted
SNN spikerates.

213

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

The plot in Figure 6.2a is an example of a good correlation plot, where the DNN activations
are appropriately converted into SNN spikerates, being all the points distributed along
the main diagonal. On the contrary, the plot in Figure 6.2b shows a relatively worse
conversion, in which the DNN activations and the SNN spikerates are distributed along
the diagonal, but the collection of points is not confined to the desired range. The plot
in Figure 6.2c is another example of a bad conversion, but in this case, the activations
and the spikerates are not correlated.

Tunable Conversion Parameters

Many structural parameters can be tuned during the DNN-to-SNN conversion, and a
detailed analysis of their effects on the converted SNN is needed. These parameters affect
the spiking neuron model, the network’s characteristics, and the experiment duration.

• Reset mode: The reset mode defines the neuron’s behavior after a spike. As
previously said, the neuron spikes whenever its membrane potential exceeds the
threshold Vth. After the spike occurs, the membrane potential is reset to a certain
value that depends on the chosen reset mode:

– Hard Reset: The membrane potential is reset to a value equal to 0 after
the neuron spikes. This solution is less computationally expensive but also
relatively less accurate.

– Soft Reset: The membrane potential is reset to a value corresponding to the
difference between the membrane threshold and the highest value reached by
the membrane potential. This solution is more expensive but relatively more
accurate than the hard reset since the number of compartments required to
simulate each neuron is doubled.

• Desired Threshold to Input Ratio (DThIR): The weights of the input DNN
model have to be converted to synaptic weights of the SNN. Due to the limited
dynamic range of spiking neurons, the outputs may saturate due to an excessively
high input provided by some out-of-scale synaptic weights. Therefore, it is necessary
to normalize the network and set a constant ratio between the incoming neuron
inputs and its membrane threshold [257].

• Experiment duration: This parameter defines the number of timesteps for which
the network receives the same input image, i.e., the inference time. A longer
duration provides the network more time to output its prediction, but it increases
the latency of the system.

The development of the DNN architecture is realized using the python Keras API, which
is one of the APIs supported by Intel NxSDK. Loihi’s Python NxSDK currently does
not support all Keras layers. The only supported layers are reported in Table 6.1. This
limitation must be considered during the development of a DNN architecture.

214

6.2. Efficient SNN for Recognizing Gestures on Loihi

Table 6.1: Layers supported by NxSDK.

Dense Flatten Reshape Padding
AvgPooling2D DepthwiseConv2D Conv1D Conv2D

DNN Training

To study the behavior of the conversion mechanism, a small network has been used to
evaluate the process. Such a network, denoted cNet, is a CNN that contains only Conv
layers and a final dense layer. Its structure is reported in Table 6.2.

Table 6.2: cNet architecture for the MNIST dataset.

Layer features Kernel stride Output Shape Activation
Input 1 28 × 28 × 1 ReLU

Conv2D 16 4 × 4 2 13 × 13 × 16 ReLU
Conv2D 32 3 × 3 1 11 × 11 × 32 ReLU
Conv2D 64 3 × 3 2 5 × 5 × 64 ReLU
Conv2D 10 4 × 4 1 2 × 2 × 10 ReLU
Flatten 40
Dense 10 Softmax

To achieve a better conversion, both activation and weight L2 Reguralization are applied
to the network layers. In both cases, its value is set to 1 · 10−4. Using regularization
during training is preferable to prevent from the divergence of the parameter distribution
and avoiding information loss due to the quantization process of the parameters.

The datasets for which the analyses have been performed are the MNIST [60] and
CIFAR10 [234]. The intensity levels are normalized between 0 and 1 for each input image.
Both networks are implemented in Keras, using TensorFlow [73] backend. The training
is conducted with the following policies:

• learning rate decay: after initializing it to 0.001, it is halved after 15 consecutive
epochs without validation accuracy increases until it reaches a final value of 5 · 10−7.

• Adam optimizer [62].

• Small data augmentations, with width and height shifts of 0.1, and 10◦ rotations.

After training, the test accuracy values achieved by the networks are reported in Table 6.3.

Conversion Process

The trained DNN model is converted into its equivalent SNN model via the SNN-TB
tool. The conversion mechanism requires four main steps:

215

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

Table 6.3: Accuracy results of the DNN mod-
els.

Nework Dataset Accuracy
cNet MNIST 98.79%
cNet CIFAR10 78.92%

Table 6.4: Constraints of the Loihi
neurocores.

Neurocore constraints
max compartments 1024
max fan-in axons 4096

max fan-out axons 4096

• Parsing: The toolbox extracts the relevant information from the original model,
discarding layers that are not used in the inference phase (Dropout, BatchNormal-
ization, etc.) and converting the MaxPooling-2D layers that may be present into
the supported AveragePooling-2D. The parsed model is used as a reference for the
following conversion.

• Conversion: An NxSDK-compatible spiking model is obtained applying a nor-
malization process that adjusts the weights and biases to the constrained dynamic
range of the spiking neurons, to satisfy the selected value of DThIR.

• Partition: The conversion process needs to find a valid partition of the neural
network on the Loihi chip. Some constraints have to be respected to have a valid
partition. These constraints, reported in Table 6.4, are related to the synaptic
fan-in and fan-out of every neurocore and the maximum number of neurons that
can be mapped onto a single neurocore.

• Mapping: The partition is mapped onto the Loihi, and the model is now ready to
be used in the SNN deployment.

Experimental Setup

All the experiments are conducted on the Intel Neuromorphic Research Cloud (NRC)
server, using one of the available Loihi partitions. The experiments are executed on
the Nahuku32 board, which is composed of 32 Loihi chips. The three main tunable
conversion parameters that have been analyzed for a fine-tuning conversion are the reset
mode, DThIR, and experiment duration. Several experiments have been conducted to
evaluate the effects of these parameters on the final SNN accuracy.

Results Varying the DThIR

In this stage, we evaluate the conversion results varying the DThIR. The experiment
duration is set to 256 timesteps, which is a reasonable choice for both the soft and hard
resets, as we will discuss later. The tested DThIR levels are 21, 23, and 25. Selecting
higher levels is usually not an optimal solution because the membrane potential threshold
may get too large. The results are reported in Figure 6.3.

216

6.2. Efficient SNN for Recognizing Gestures on Loihi

(a) MNIST (b) CIFAR10

Figure 6.3: cNet, results varying the DThIR on (a) MNIST and (b) CIFAR10.

Analysis for MNIST: In both soft reset and hard reset cases, the SNN accuracy is
equivalent to the DNN accuracy value for DThIR = 21 and 23. However, when the
parameter is increased to 25, the accuracy drops in both soft and hard reset cases.

Analysis for CIFAR10: Also in this case, the highest accuracy is reached for DThIR
= 21, for both hard and soft resets. However, the accuracy starts decreasing when the
DThIR is set to 23 and reaches a minimum when the DThIR is increased to 25.

As a consequence, a value of DThIR = 21 is chosen for the following further analysis.

Results Varying the Experiment Duration and Reset Mode

These analysis aim at finding a good compromise between experiment duration and reset
mode. We expect to get more precise results in terms of output latency by choosing a
longer duration. Moreover, the soft reset should provide higher accuracy values. The
results are reported in Figure 6.4.

(a) MNIST (b) CIFAR10

32 64 128 256 512 1024 32 64 128 256 512 1024

32 64 128 256 512 102432 64 128 256 512 1024

Figure 6.4: cNet, results varying the experiment duration on (a) MNIST and (b) CI-
FAR10.

Analysis for MNIST: Looking at the results for the MNIST dataset, a test accuracy
equal to 98.70% (i.e., only 0.09% lower than the DNN accuracy) is reached with the soft
reset for an experiment duration longer than 64 timesteps. On the other hand, at least
128 timesteps for the hard reset are needed to reach the same level of accuracy. Moreover,

217

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

the accuracy reached by both the hard and the soft reset remains stable also for a more
extended experiment duration.

Analysis for CIFAR10: The results for the CIFAR10 dataset clearly show that the
DNN accuracy of 78.92% is never reached for the hard reset case. The maximum accuracy
of 67.20% is reached when the experiment duration is longer than 256 timesteps. On the
other hand, despite not achieving the same results as the corresponding DNN, the soft
reset achieves better performance than the hard reset. An accuracy equal to 77.10% is
reached with 256 timesteps, slowly growing to 77.40% with a longer experiment of 1024
timesteps.

For an experiment duration of 256 timesteps, the average time to execute a single inference
step of image classification and the Intel Loihi chip usage are reported in Table 6.5.
Looking at the occupied neurocores for both the MNIST and CIFAR10 cases, the soft
reset uses more cores.

Table 6.5: Accuracy results of the DNN models.

Reset Mode Dataset Classification time Neurocores
soft MNIST 8.312 ms 27
hard MNIST 6.464 ms 20
soft CIFAR10 21.371 ms 37
hard CIFAR10 26.159 ms 29

To better understand why the soft reset achieves better results than the hard reset, we
compare the correlation plots of the converted layers. Figure 6.5 shows the correlation
plots of the first 4 layers, both for the soft reset and hard reset versions and on both
datasets. For each case, we apply an experiment duration of 256 timesteps and a DThIR
equal to 21.

(a) MNIST (b) CIFAR10

Figure 6.5: Correlation plots for the first 4 layers of cNet after its conversion to the
corresponding SNN model, for (a) MNIST and (b) CIFAR10.

At first glance, it is immediately noticed that the correlation plots of the soft reset
conversion are more compliant with the expected behavior when compared to the hard
reset conversion, both for the MNIST and CIFAR10 datasets. Looking at the experiment

218

6.2. Efficient SNN for Recognizing Gestures on Loihi

for MNIST using soft reset, the correlation plot of the first layer shows a perfect con-
glomeration of activations (x-axis) vs. spikerates (y-axis) along the main diagonal. This
means that the conversion of this layer is working as desired, having all the SNN neurons
spiking at a rate equivalent to their corresponding DNN activations. Similar principles
are adopted for the following layers.
Looking at the experiment for MNIST using hard reset, the correlation plots show a
relatively worse conversion behavior. The points in the first layer are distributed with an
overlapped-staircase behavior. The same observation is noted in the second layer, where
a dilatation of the agglomerate of points is also present along the x-axis. However, both
in the 3rd and 4th layers correlation plots, the points are sufficiently compacted along the
diagonal, and the final accuracy achieved by this SNN is similar to the DNN accuracy.
For the CIFAR10 analysis, the soft reset provides good correlation plots, despite the
points form a thicker agglomerate compared to the MNIST case. On the other hand,
the hard reset provides worse results. The correlation between the activations and the
spikerates is relatively less evident, with a general behavior more emphasized than the
MNIST case. The analyses reported in these results justify the 10% accuracy drop
encountered using the hard reset conversion, as seen in Figure 6.3 and Figure 6.4.
Overall, the use of the soft reset mode provides higher accuracy results due to the lower
information loss during the conversion, as clearly illustrated by the correlation plots in
Figure 6.5. A good choice for the value of the experiment duration seems to be ≥ 256
timesteps. A shorter duration may lead to an accuracy loss, as shown for the CIFAR10
dataset. On the other hand, having more than 512 timesteps does not lead to a higher
accuracy, as shown in the MNIST and CIFAR10 results. Finally, a DThIR value equal to
21 seems to be the best way to reduce the conversion loss. f

6.2.3 Pre-Processing Method for the DvsGesture Dataset
Event-based data are ideal when used at the input of the SNNs due to their intrinsic
asynchronous and spiking behavior. However, in this context, we are training a network
in the DNN domain, and only in the second stage, we convert it into an equivalent SNN.
This approach forces us to find an alternative representation of the input data, as the
DNN is not trainable on pure sequences of events. A valid solution would be to train
the DNN with a frame series obtained by collecting the incoming events. However, the
following choices have to be made to achieve a good conversion into frames:

• Choose the number of events to collect into a single frame.

• Select the size of the frame and its number of channels.

• Set a policy for positive and negative events accumulation.

Events Accumulation

As reported in [114], there are two accumulation approaches:

219

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

1. Time-based accumulation: all events that occur in a fixed time window are accumu-
lated in a single frame.

2. Quantitative-based accumulation: a fixed number of consecutive events are accumu-
lated in a single frame.

The first solution ensures that the timing information within frames is preserved. On the
other hand, the second solution guarantees that every frame will have the same amount
of information. However, it may not be a good choice regarding gesture recordings since
the number of events generated by a gesture within a fixed time window also depends
on the type of the gesture itself. Not all gestures produce the same amount of events
per second. Hence, using a quantitative approach, the number of the generated frames
depends on the number of events produced by the gesture. The same gestures with the
same time length may lead to a different amount of frames, having different event rates.

Consequently, the final dataset will result in an imbalance, having a diverse number
of frames per class, both in the train and test sets. To balance the dataset, we may
reduce the number of frames per gesture to a value equal for all classes, but this would
result in a drastic reduction of the used information from the original event-based
recordings. Therefore, based on these considerations, the time-based accumulation is
preferable because it guarantees a balanced dataset. Hence, the results relative to the
quantitative-based accumulation are not discussed in the following section.

Time Window Size

The number of events per second varies from gesture to gesture and between different
trials of the same gesture. A mean value of 98 events/ms is computed by evaluating the
original dataset over all the available gestures of the different trials. This information
gives a relevant starting point in choosing the time window size each frame has to cover.
In this research, the time windows of 60ms, 150ms, 235ms and 300ms are explored.
Choosing a time window of less than 60ms would bring an insufficient amount of events
collected per frame, thus preventing a proper classification. On the other hand, an
accumulation time longer than 300ms would lead to a total of less than 3 frames per
second, which we consider the minimum for a real-world application.

A single frame might also have more than one channel, each of them covering a subset
of the whole time window. For instance, a frame covering a window of 300ms can
have 3 channels, where each channel covers a sub-windows of 100ms. This solution
generates frames where the temporal information is preserved because the channels cover
consecutive time sections.

Moreover, another solution consists of using overlapped frames, i.e., when the time
windows covered by two consecutive frames are partially overlapped. For instance, using
an overlap factor of 2 with frames of 300ms, the frames would cover partially overlapped
ranges. The first frame would be [0ms; 300ms], and the next would cover the range
[150ms; 450ms]. There are several advantages in choosing this solution:

220

6.2. Efficient SNN for Recognizing Gestures on Loihi

• The number of frames generated from the original dataset is multiplied by the
overlap factor, leading to a bigger dataset that provides better training results.

• The frames can cover different time windows, augmenting the temporal information
in the dataset.

• The system’s throughput is multiplied by the overlap factor.

In our experiments, we select an overlap factor of 2. Using an overlap factor n > 2 would
generate redundant overlapped frames. On the contrary, a value n < 2 would reduce the
benefits of having overlapped frames.

Events Polarity

Each event carries the x and y coordinates of the detected event and the polarity of the
event, which can be either positive or negative.

• The first possibility is to accumulate the positive and negative events in two different
channels of the frame, c+ and c−. Both the channel pixels are initialized to 0, and
when a positive event is detected, the pixel (x, y, c+) is increased by 1. On the
other hand, a negative event increments the pixel (x, y, c−) by 1. Finally, the
pixel intensities are normalized to the range [0; 255]. Since the accumulation of
opposite signed events forms a trace of the gesture motion over time, this solution
prevents information loss because the polarity information becomes relevant when
the gestures differ only w.r.t. their sense of rotation.

• The second solution (inspired by the work of [114]) is to accumulate all positive
and negative events on the same channel, keeping the polarity information. All
pixels are initialized to a mean value of 128 and incremented or decremented by 1
depending on the event polarity.

• The third possibility (as inspired from the work of [114]) is to discard the polarity
and collect all the events into a single channel by simply incrementing the pixel (x,
y) every time a positive or a negative event occurs.

The above-described solutions have been tested on the DNN, and based on the accuracy
achieved, the following considerations can be observed. Overall, the best solution is
the third, where the polarity is discarded. The 2-channel accumulation solution has
not shown particular improvements in the final accuracy compared to the case of the
discarded polarity. At the same time, having two channels for separately storing the
polarity comes with a set of drawbacks, such as an increased dimension of the DNN
and increased size of the dataset. Moreover, the number of occupied neurocores for the
converted SNN is higher than using a single channel, which also impacts the system’s
latency. For this reason, the 2-channel policy can be discarded. Considering the 1-channel

221

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

polarity accumulation, the obtained results have shown an accuracy drop (≃ −4%) w.r.t.
the discarded polarity case. This approach leads to having frames with generally a high
pixel intensity level, all initialized to a non-zero value, thus leading to lower classification
results. For these reasons, in Table 6.6, only the results achieved without signed polarity
accumulation are reported.

Frame Size

Lastly, the dimension of the frame is chosen. The original recordings have a dimension
of 128 × 128. However, such a dimension may be too high when used as an input to
our converted SNN, leading to a large number of neurocores required to deploy the
SNN on Loihi and increasing the prediction latency. Hence, we resized the image to a
dimension of 32 × 32 by applying a preliminary Average Pooling step. This process is
also helpful in removing the noisy events from the original recordings, thereby producing
input frames that only contain the relevant gesture information. Also, a 64 × 64 size has
been evaluated, but the DNN accuracy results did not show any improvement over the
32 × 32 size. On the other hand, a 16 × 16 size would be too small for achieving good
recognition by the DNN.
Another solution, proposed by [258] for the same dataset, is to collect only the events
inside a 64 × 64 attention window that moves and keeps track of the incoming gestures.
Afterward, the Average Pooling is applied to the 64 × 64 frame, reducing its size to
32 × 32.
This solution has been implemented and evaluated, but the accuracy was (≃ −5%) lower
than the one achieved with the whole image frame. Such an accuracy drop may be due
to the removal of the gesture itself from its contest by shrinking the input window to the
area where the actual gesture takes place. In this way, the DNN may not distinguish
between equivalent gestures executed with opposite arms.

Dataset Structure

In the above-discussed pre-processing approaches, the frames are associated with their
corresponding labels and accumulated into a train set and a test set. The dataset
dimension depends on the chosen pre-processing approaches. Fewer frames are generated
with longer time windows, whereas the amount of frames increases as the time window
covered by each frame gets shorter. The pre-processing stages are summarized in
Figure 6.6.

6.2.4 Evaluation of the Accuracy Results
All the generated pre-processed datasets have been tested with the cNet network, along
with the same training parameters for MNIST and CIFAR10. This procedure has been
followed to ensure that the accuracy differences between the DNN and SNN depend
on the data pre-processing step and are not related to the network architecture or the
training policies.

222

6.2. Efficient SNN for Recognizing Gestures on Loihi

Figure 6.6: DvsGesture pre-processing: the number of frame channels may depend on
the chosen polarity policy or, in a time-based accumulation, on the time length of each
channel.

The conversion process has been conducted applying the soft reset mode, and an experi-
ment duration of 256 timesteps, with DThIR=21, since these are the settings showing
the best results for both the MNIST and the CIFAR10 analyses. Using the previously-
discussed pre-processing analysis, a set of different frame-converted datasets has been
realized. In all these datasets, the frame size is set to 32 × 32, and the event polarity is
discarded. The converted datasets differ in the possible use of the temporal overlapping
between frames, the frame accumulation time duration, and the number of channels per
frame. Table 6.6 shows the accuracy results for the DNN on the different post-processed
datasets.

Table 6.6: Pre-processing techniques applied to the original gesture DVS dataset and
relative DNN accuracy. For all the datasets, the frame size equals 32 × 32, and the
polarity information is discarded. Each generated datasets has been tested with the cNet
DNN.

Dataset duration(ms) overlap channels DNN accuracy
D1 60 (10 per ch.) ✗ 6 85.23%
D2 60 (20 per ch.) ✗ 3 85.44%
D3 150 (50 per ch.) ✗ 3 87.89%
D4 235 (78 per ch.) ✗ 3 88.63%
D5 300 (100 per ch.) ✗ 3 88.33%
D6 100 ✗ 1 74.14%
D7 235 (78 per ch.) 2 3 88.87%
D8 300 (100 per ch.) 2 3 90.46%

Dataset D1 indicates that choosing a time window of only 60ms gives relatively low
accuracy results, similarly to the case of dataset D2, where the time range covered by
each channel is doubled. This behavior can be attributed to a few events accumulated

223

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

for each channel.

When observing the datasets D3-5, the time window is progressively incremented until a
maximum duration of 300ms is covered. The results show that a high level of accuracy is
reached with a 3-channel frame covering a period of 235ms.

Dataset D6 has been realized to investigate whether using a single channel frame could
be a reasonable solution. In this case, the accuracy drop can be attributed to the fact
that the single frame does not contain temporal information since all the events are
accumulated in a single channel.

When observing the datasets D7 and D8, an overlap factor of 2 is introduced. The
accuracy increases to reach a value of 90.46% in dataset D8, which is the best obtained
value.

The cNet DNN model trained on dataset D8 is then converted to its equivalent SNN and
deployed on the Loihi platform. The converted SNN reaches a test accuracy of 89.64%,
which is only 0.82% lower than the original DNN representation. Moreover, the average
time needed for classifying an input frame is 11.43ms. These results must be compared
with the state-of-the-art test accuracies achieved in [135] and in [119]. The work in [135]
reaches a test accuracy of 94.59% with a 64×64 frame size, whereas the accuracy achieved
on a 32 × 32 frame drops down to 90.78%. This last value is only 1.14% higher than the
one obtained in this research using frames with the same dimension of 32 × 32, but it is
obtained with a much bigger DNN (having 16 Conv layers with many more feature maps
per layer) than the one used in this work (see Table 6.2 for our network configuration).
However, we did not consider employing such large and deep networks to maintain low
resource utilization and low latency for real-time embedded implementations.

In [119], the test accuracy reached on a smaller portion of the original dataset (1.5
seconds per gesture) is 93.64%, which is 4% higher w.r.t. the one obtained with our
methodology. However, since their SNN is designed and trained from scratch (i.e., not
using a conversion mechanism), they have directly used the original event-based dataset,
avoiding an inevitable information loss related to the pre-processing step.

Regarding latency, with our best solution (D8), the total time needed for a frame
classification is 150ms + 11.42ms = 161.42ms. Since the overlap factor is 2, the next
frame starts after 150ms. Therefore, we considered 150ms per frame. This configuration
provides a throughput of 6.24 frames-per-second, a feasible solution for a real-time system.

6.2.5 Summary
The proposed methodology demonstrates an end-to-end application for event-based SNNs
on the Loihi neuromorphic processor. First, the DNN-to-SNN conversion process is
analyzed, and different optimizations are applied to reduce the accuracy loss due to the
conversion. Then, towards the usage of the event-based sensors, a pre-processing method
is designed to use event datasets, such as the DvsGesture, in the DNN domain. Gesture
recognition is one of the most common benchmarks in the neuromorphic community, while

224

6.3. CarSNN: An Efficient SNN for Event-Based Autonomous Cars on the Loihi Neuromorphic
Processor

this is not the only application that can be executed on Loihi. For example, other tasks
more related to autonomous vehicles can be performed, such as car detection and lane
detection, as will be discussed in the following Section 6.3 and Section 6.4, respectively.

6.3 CarSNN: An Efficient SNN for Event-Based
Autonomous Cars on the Loihi Neuromorphic
Processor

Autonomous Driving (AD) related features enable new forms of mobility that are also
beneficial for intelligent and autonomous systems like robots, smart industries, and
smart transportation. The decisions must be made quickly and in real-time for these
applications. Moreover, in the quest for electric mobility, these operations must follow the
low power policy without affecting the autonomy of the mean of transport or the robot
much. These two challenges can be tackled using SNNs. SNNs achieve high performance
with low latency and power consumption when deployed on specialized neuromorphic
hardware. In this section, we use an SNN connected to an event-based camera to face one
of the fundamental AD problems, i.e., the classification between cars and other objects.
To consume lower power than traditional frame-based cameras, we use a Dynamic Vision
Sensor. The experiments are conducted following an offline supervised learning rule and
mapping the learned SNN model on the Intel Loihi Neuromorphic Research Chip. Our
best experiment achieves an accuracy of 86% for the offline implementation, which drops
to 83% when ported onto the Loihi Chip. The Neuromorphic Hardware implementation
has a maximum of 0.72 ms of latency for every sample and consumes only 310 mW. To
our knowledge, this work is the first implementation of an event-based car classifier on a
Neuromorphic Chip.

6.3.1 System Overview
Since each task represents a real-time problem, we want the entire decision-making system
to have good reactivity with very low latency, to minimize the chance of catastrophic car
accidents due to late decisions. Another challenge is related to the system’s robustness,
which must operate in all conditions, particularly for different illumination and weather
conditions. Moreover, the system should be optimized for low power consumption, an
important design criterion for automotive, especially in the context of battery-driven
electric mobility.

In our research, we focus on the “cars vs. background” classification problem. To
overcome these limitations, we identify three main research objectives:

1. the system should use the major robust vision engine, i.e., an event-based camera;

2. the network should be a low-complexity event-based SNN for energy-constrained
systems;

225

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

3. the developed SNN should fulfill the system constraints to be implemented onto a
neuromorphic hardware chip.

Following these research goals, we design, optimize, and implement the SNN on the
Intel Loihi Chip [16], and evaluate it on the N-CARS dataset [137]. It is based on the
Asynchronous Time-based Image Sensor (ATIS) [138], which is an event-based camera.

6.3.2 Problem Analysis and General Design Decisions

For the classification problem that we face, we use a supervised learning method and
train the network based on the desired behavior. Each sample is composed of a stream of
events, where a stream represents the same object to classify. Within the same sample,
the present spikes are correlated in time and space with the past and future spikes [137].
To achieve good performance, we have to consider this temporal correlation and use a
learning method capable of exploiting this property. As claimed in [118], the STBP is one
of the best offline learning methods since it achieves very high classification accuracy in
tasks that involve event-based camera streams. It also uses TD and SD to compute the
gradients and train the SNN. Hence, we employ this learning method in our experiments.

As it is also a real-time problem, the system should be very reactive and generate the
correct prediction in few milliseconds. Since we need a very reactive prediction, we can
use only a subset of input information to implement the Attention Window strategy.
To find the area that focuses the attention on input data, we analyze and evaluate the
event occurrences in the train and test sets of the N-CARS dataset [137]. Due to the
relatively large dataset dimension, such a study resembles a good approximation of the
real problem and does not impact the generalization property of our system.

The event occurrences in different attention windows are evaluated in Figure 6.7. Most
of the events are contained in the region of size 50 × 50 in the bottom-left corner, both
in the train and test sets. Hence, as reported in Table 6.7, we can denote this as the
first attention window. The second attention window also starts from the bottom-left
corner and has a doubled size (i.e., 100 × 100).

(a) Train set (b) Train set

Figure 6.7: Event occurrences on (a) train and (b) test sets of the N-CARS dataset.

226

6.3. CarSNN: An Efficient SNN for Event-Based Autonomous Cars on the Loihi Neuromorphic
Processor

Table 6.7: Delimited points for Attention windows.

Attention window P. 0 (x,y) P. 1 (x,y) P. 2 (x,y) P. 3 (x,y)
First attention window (0,0) (0,50) (50,50) (50,0)

Second attention window (0,0) (0,100) (100,100) (100,0)

Considering its practical implementation on an existing Neuromorphic Hardware,
the Intel Loihi Chip, the network is designed following all its constraints, summarized
in Table 6.8.

Table 6.8: Main constraints for developing the SNN implemented on the Intel Loihi
Neuromorphic Research chip.

Property Constrain
Maximum Compartments per Core 1024 Compartments

Maximum fan-in of a Core 4096 Pre-Synapses
Maximum fan-out of a Core 4096 Post-Synapses

Synaptic fan-in state size 128 KB

A summary of the general design decisions taken after analyzing the problem is shown in
Table 6.9.

Table 6.9: General decisions taken after analyzing the problem.

Properties of the problem Decision
Knowledge of the correct output Use of supervised learning rule

Time and space correlation Consider TD and SD
Real-time Use simple SNN

High-performance vision sensor Use event-based camera
Accurate profiling of real problem Use N-CARS dataset

Many events in limited area Use attention windows
Low power consumption Use Neuromorphic Chip

6.3.3 CarSNN Methodology
Our methodology for designing the SNN model for the “cars vs. background” classification,
which we call CarSNN, is composed as a three-step process, as shown in Figure 6.8.
After defining the SNN model architectures considering different attention windows, we
discuss the methods to find the parameters for SNN training and feeding the input data.

CarSNN Model Design

To achieve good classification results, our CarSNN receives the input events from two
distinct polarity channels, one for positive and the other for negative events. Towards
the problem generalization, we consider this as a multi-classification problem (i.e., not

227

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

NETWORKS DEFINITION

Have 2 output channels

Inspired by the SNN for
the DvsGesture

Use three different
attention windows

TRAINING PARAMETERS

Use the STBP learning rule

• Adam
optimizer

• MSE loss
function

• LR=10−5
or 10−4

LEARNING RULE NEURON MODEL
• Vth = 0.3 to 0.8
• Τa1 2 = Vth
• τ = 0.2 ms

• Vth = 0.4
• Τa1 2 = 0.4
• τ = 0.2 ms

INPUT PARAMETERS
Use accumulation in time

• Ts = 0.5 ms to 2.0 ms
• Tl = 2.0 ms to 10.0 ms
• Batch size = 40 to 80

• Ts = 1.0 ms
• Tl = 10.0 ms
• Batch size = 40

1 2

3

Receive 2 distinct polarity
channels as inputs

Figure 6.8: Three-step process followed to design our CarSNN with the training and
feeding input parameters.

as a simple binary classification problem). Therefore, the output layer of the CarSNN
consists of two neurons corresponding to the two possible classes, one for cars and one
for background objects.

Since the architecture proposed in [121] achieved high classification accuracy and low
latency on the DvsGesture dataset [135], we modify this model to correctly function for
the N-CARS dataset. Compared to the model of [121], our CarSNN has different kernel
size, padding, and output channels on the first Conv layer, and different sizes of the last
two dense layers.

Based on the attention window analysis, we design three different SNNs for the three
different sizes of input images:

1. Size 128 × 128 (Table 6.10): the model is very similar to the SNN proposed in [121].
Since this size is larger than the N-CARS dataset image size, which is 120 × 100,
the exceeding pixels do not produce spikes and are padded by zeros (i.e., no event).
Such an image size is equal to the resolution of the ATIS DVS camera [138]. Hence,
this network can be easily implemented with it.

2. Size 50 × 50 (Table 6.11): this uses the first attention window.

3. Size 100 × 100 (Table 6.12): this uses the second attention window.

Parameters for Training

Using a backpropagation-based supervised learning rule, such as the STBP, it is possible
to tune several hyper-parameters. We focus our attention on:

228

6.3. CarSNN: An Efficient SNN for Event-Based Autonomous Cars on the Loihi Neuromorphic
Processor

Table 6.10: SNN model for full-size images (input size 128 × 128).

Layer type In ch. Out ch. Kernel size Padding Stride
Av. pooling 2 2 4 − −
Convolution 2 32 3 1 1
Av. pooling 32 32 2 − −
Convolution 32 32 3 1 1
Av. pooling 32 32 2 − −

Dense 2048 1024 − − −
Dense 1024 2 − − −

Table 6.11: SNN model for first attention window (input size 50 × 50).

Layer type In ch. Out ch. Kernel size Padding Stride
Av. pooling 2 2 4 − −
Convolution 2 32 3 1 1
Av. pooling 32 32 2 − −
Convolution 32 32 3 1 1
Av. pooling 32 32 2 − −

Dense 512 144 − − −
Dense 144 2 − − −

Table 6.12: SNN model for second attention window (input size 100 × 100).

Layer type In ch. Out ch. Kernel size Padding Stride
Av. pooling 2 2 4 − −
Convolution 2 32 3 1 1
Av. pooling 32 32 2 − −
Convolution 32 32 3 1 1
Av. pooling 32 32 2 − −

Dense 1568 512 − − −
Dense 512 2 − − −

• loss function: we adopt the Mean Squared Error (MSE) loss criterion, since
it achieves the highest performance in [118];

• optimizer: we use Adam [62], because it seems the best for the STBP;

• learning rate (lr): after some preliminary tests, we find the best value is around
1e−5 and 1e−4. The training is faster with the latter value since the SNN achieves
good accuracy results in fewer epochs.

Since the adopted SNN learning rule is directly implemented on the LIF neurons, other
specific parameters can be adjusted. We mainly focus on the formalization of the

229

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

membrane potential update (ut+1,n
i) and highlight the membrane potential decay factor

τ (Equation (6.5)).

ut+1,n
i = ut,n

i τ(1 − ot,n
i) +

l(n−1)�
j=1

wn
ijot+1,n−1

j + bn
i (6.5)

Another key parameter of a LIF neuron is its threshold (Vth). If the membrane potential
overcomes this level, an output spike is generated, and the potential is reset to a specific
value. For every experiment, all the neurons have the same Vth and 0 as the reset value.

The third parameter to set (a1
2) is related to the approximation of the derivative of the

spiking nonlinearity. We model it as a rectangular pulse function defined in Equation (6.6):

h1(u) = 1
a1

sign

|u − Vth| <
a1
2

(6.6)

In the following, we conduct some experiments to set the previously-discussed parameters,
focusing on Vth. We made these decisions:

• Vth: we change this value from 0.3 to 0.8 and evaluate which curve achieves the
best accuracy;

• a1
2 : it assumes the same value of the threshold, as this assumption is made in [118];

• τ : this value must be small to have good approximation of the neuron model and
in particular of f(ot,n

i). We set it to 0.2 ms.

To speed up this process and achieve good performance, we introduce an accumulation
mechanism. We accumulate the spikes at a constant time rate called sample time (Tsample);
for these first experiments, such a value is set to 10 ms. Every Tsample time, we construct
a new input image for the SNN. The events that compose the image are summed by the
following simple rule, based on which each pixel can have a maximum of one spike per
channel. Each derived image is maintained stable to the input of the proposed SNN by a
time window of 15 time steps. Therefore, this accumulation mode can compress the input
information. The accuracy that we evaluate refers to every sample (i.e., accumulated
image) trained for 300 epochs. Table 6.13 and Figure 6.9 report the results of these
experiments, in which we use the SNN with the full size image (Table 6.10).

From Table 6.13, we notice that the best accuracy is achieved when Vth is equal to 0.4.
Moreover, from Figure 6.9, we can notice that, while a Vth of 0.3 leads to a relatively
high accuracy after a few epochs, the training curve with Vth equal to 0.4 have less
instability than for the other experiments. These two reasons lead us to select 0.4 for the
Vth parameter.

230

6.3. CarSNN: An Efficient SNN for Event-Based Autonomous Cars on the Loihi Neuromorphic
Processor

Table 6.13: Experiments to find the best value of Vth.

input size Vth
a1
2 τ Tsample batch size lr accuracy

ms ms %
128 × 128 0.3 0.3 0.2 10 20 1e−5 83.0
128 × 128 0.4 0.4 0.2 10 20 1e−5 84.0
128 × 128 0.5 0.5 0.2 10 20 1e−5 82.4
128 × 128 0.6 0.6 0.2 10 20 1e−5 81.9
128 × 128 0.8 0.8 0.2 10 20 1e−5 82.6

High accuracy
after few epochs

Stable high accuracy

Figure 6.9: Percentage of accuracy for the experiment made to evaluate the best value
for Vth.

Parameters for Feeding the Input Data

The input spikes are feeded to the SNN with an accumulation strategy to speed up the
training. Despite this limitation, we notice from the experiments conducted in Table 6.13
that the accuracy is relatively high. Hence, we keep this property that gives us some
advantages:

• decrease power consumption;

• increase the reactivity of the system because input data are compressed.

Moreover, We also define an upper bound to the system’s latency of 10 ms. Therefore,
for the train, we take only 10 ms from the sample stream with a random initial point.
It is defined as the maximum acceptable sample length (Tl). With this constraint, two
different procedures can be followed:

1. accumulate the spikes every Tl time (Tsample = Tl) and predict a unique input
image for the whole input stream, as we did in the previous experiments;

231

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

2. accumulate the spikes to have more than one input image for every input stream
(Tsample < Tl), then see what the class with majority prediction is.

We conduct analyses to find the best sample time and the accuracy variation with two
different batch sizes (BS on Table 6.14). In these experiments we use the second procedure
for the image accumulation and we set the parameters as follows: Vth = 0.4, a1

2 = 0.4,
τ = 0.2 ms.

The training lasts for 200 epochs. To speed up this process, we use a learning rate equal
to 1e−4 and a minimum batch size equal to 40. We also use three metrics to evaluate the
accuracy:

• one-shot accuracy on test data (acc.s): it is the accuracy found on all the samples
taken at Ts of the test dataset;

• accuracy on test data (acc.test): it is the accuracy for all the sample streams of the
test dataset, calculated based on the majority prediction of the part of the stream
with sample length equal to Tl;

• accuracy on train data (acc.train): it is the counterpart of the accuracy on test data
but computed on train streams of the dataset.

Table 6.14: Experiments to find the best value for Ts, Tl and batch size.

Input size Ts Tl BS lr acc.s acc.test acc.train

ms ms % % %
128 × 128 1.0 2.0 80 1e−4 80 79 83
128 × 128 1.0 4.0 80 1e−4 80 80 86
128 × 128 1.0 6.0 80 1e−4 51 51 51
128 × 128 1.0 8.0 80 1e−4 80 79 89
128 × 128 1.0 2.0 40 1e−4 80 77 86
128 × 128 1.0 4.0 40 1e−4 80 83 88
128 × 128 1.0 6.0 40 1e−4 72 70 90
128 × 128 1.0 8.0 40 1e−4 81 86 91
128 × 128 1.0 10.0 40 1e−4 80 86 94
128 × 128 2.0 10.0 40 1e−4 51 51 51
100 × 100 0.5 10.0 40 1e−4 75 80 84
100 × 100 1.0 10.0 40 1e−4 81 85 92
100 × 100 2.0 10.0 40 1e−4 51 51 51
50 × 50 0.5 10.0 40 1e−4 67 71 79
50 × 50 1.0 10.0 40 1e−4 71 75 81
50 × 50 2.0 10.0 40 1e−4 74 77 83

The results in Table 6.14 provide us the necessary feedback for setting the value of Ts. If
it is small (like 0.5 ms), there are more points for the same stream sample. However,

232

6.3. CarSNN: An Efficient SNN for Event-Based Autonomous Cars on the Loihi Neuromorphic
Processor

it is challenging to train the SNNs, because the accumulation has not effect, and the
temporal correlation is lost. On the other hand, the accuracy decreases when we use high
Ts (i.e., 2 ms). The best trade-off is obtained when Ts equals 1 ms.

Moreover, the batch size affects the training process. To have high accuracy, its value
should be limited to 40.

In the first experiments of Table 6.14, we consider only the variation of Tl and BS. As
expected, with constant BS and same value of acc.s, the acc.test increases or remains
stable with the increasing of Tl. This behavior is due to having more sub-predictions to
compute the final result when Tl is large. The non-deterministic training process justifies
the changes in the acc.s.

6.3.4 Evaluation of our CarSNN Methodology
The STBP learning method is based on backpropagation without using local information.
Moreover, the gradients are computed with differential equations that are not directly
implementable into the on-chip learning engine of the Intel Loihi Neuromorphic hardware.
For these reasons, our CarSNN is trained offline, and the resulting parameters are mapped
onto the neuromorphic chip.

Experimental Setup

Coherently with the analysis in previous sections, to train and validate the prediction
system, we use the N-CARS dataset [137]. We also consider this dataset for the two
fundamental reasons that it collects event-based camera streams and is the largest labeled
event-based dataset acquired in real-world conditions.

We describe and implement the SNNs using the PyTorch library [72]. We model the SNNs’
functional behavior using the formula of Equation (6.5) that contains the mechanism to
update the membrane potential.

We ran the experiments on a workstation equipped with CentOS Linux release 7.9.2009
operating system, an Intel Core i9-9900X CPU, and Nvidia GeForce RTX 2080 Ti GPUs.

The setting of the hyper-parameters is summarized in Table 6.15.

Table 6.15: Parameters of the experiments.

Epochs Ts Tl BS lr Vth
a1
2 τ

ms ms ms
200 1.0 10.0 40 1e−3 to 1e−6 0.4 0.4 0.2

We randomly shuffle the dataset streams, and take the sample of Tl starting from a
random initial point. We set the BS to 40, which gives the best accuracy in the previous
experiments (according to Table 6.14) and maintains a reasonable training time duration.
We set the same values of Ts = 1 ms and Tl = 10 ms for these three experiments to

233

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

have a fair comparison. These two values leverage the tradeoff found from the results in
Table 6.14. The learning rate (lr) is reduced by 0.5 every 20 epochs, starting from 1e−3.
With this mechanism, the accuracy slightly increases compared to having a fixed lr.

Only the weights are updated during training to ease the model mapping onto the Loihi
Neuromorphic Chip, while the bias is forced to 0. The training process lasts for 200
epochs, and every sample taken at Ts time is evaluated for 20 time steps. With these
software and hardware settings, the training for a single epoch on all the dataset samples
is measured to be about 300 seconds. For the inference, the mean latency for all samples,
given at the time Ts, is about 0.8 ms.

Accuracy Results for CarSNN Offline Training

Table 6.16 shows the results in terms of accuracy for the offline implementation.

Table 6.16: Results of the offline training experiments.

Input size acc.s acc.test acc.train

% % %
128 × 128 80.1 85.7 93.6
100 × 100 80.5 86.3 95.0
50 × 50 72.6 78.7 85.3

The accuracy results for the attention window of size of 100 × 100 are comparable to
the values for the full image size (128 × 128), and indeed exhibit slightly higher acc.test

and acc.train. This effect can be explained because the cropped part of the sample is not
relevant for the correct classification and may lead to an SNN misbehavior. On the other
hand, the input streams consisting of a small part of the original image (50 × 50) lead to
a significant accuracy decrease.

Moreover, from the results in Table 6.16, we can notice overfitting due to the gap between
acc.train and acc.test. It can be considered to be the upper bound of the accuracy for our
developed CarSNN models.

CarSNN Implemented on Loihi

To implement our network on the Loihi Neuromorphic Chip, we have to exploit some
similarities between its model and our offline model used in the previous experiments.
Equation (6.7) reports how the Compartment Voltage (CompV), which represents the
membrane voltage of a neuron, is evaluated in the Loihi chip.

CompVt+1 = CompVt
212 − δv

212 + CompIt+1 + bias (6.7)

The Compartment Current (CompI) is formulated by Equation (6.8), where the sum
expression accumulates the weighted incoming spikes from jth pre-synaptic neuron.

234

6.3. CarSNN: An Efficient SNN for Event-Based Autonomous Cars on the Loihi Neuromorphic
Processor

CompIt+1 = CompIt
212 − δi

212 + 26+wgtExp
�

j

wjsjt+1 (6.8)

In Equations 6.7 and 6.8, we can set the following parameters:

• δi: Compartment Current Decay;

• δv: Compartment Voltage Decay;

• bias: bias component on CompV ;

• wgtExp: value used to implement very different weights between different SNN
layers.

Comparing between the formulation of our offline model (i.e., Equation (6.5)) and the
Equation (6.7), we notice its similarity to Equations 6.9 to 6.12.

CompVt = ut (6.9)

CompIt =
�

j

wjojt+1 if δi = 212 (6.10)

212 − δv

212 = τ (6.11)

bias = b (6.12)

We implement only the CarSNN described in Table 6.10, which achieves good offline
accuracy results (as indicated in Table 6.16) and it represents the most complex developed
network, based on power consumption, latency, and number of neurons.

The Intel Loihi Neuromorphic Hardware uses only 8 bits to store weights. The maximum
weight range is (−7, 6). Since these values are different between layers and the wgtExp
is limited we:

1. multiply weights and Vth by 25 (this value does not consider the default multiplica-
tion for 26 of weights and Vth made on the Loihi);

2. use all the 8 bits to store our values.

235

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

Table 6.17: Translation of parameters to the Loihi Chip.

Offline implementation Loihi implementation
Parameter Value Precision Parameter Value Precision

Vth 0.4 Floating point 64 bits Vth mant 10 Fixed point 12 bits
weight ×1 Floating point 64 bits weight ×25 Fixed point 8 bits

τ 0.2 Floating point 64 bits δv 3276 Fixed point 12 bits
b 0 Floating point 64 bits bias 0 Fixed point 8 bits
− − Floating point 64 bits δi 0 Fixed point 12 bits

According to Equations 6.9-6.12, the other neuromorphic hardware parameters can be
adjusted.

All the setup parameters are summarized in Table 6.17.

We define our CarSNN through the Intel Nx SDK API version 0.9.5 and run it onto
the Nahuku32 partition. In particular, we use the NxTF supported Layers, such as
NxConv2D, NxAveragePooling2D, and NxDense utilities. This kind of implementation
is helpful to automatically improve the performance of the SNN in a simple manner.
The CarSNN is tested on the N-CARS dataset. Every sample at Ts is replicated for
10 timestep, and we insert a blank time of 7 timestep between samples. The number
of timesteps per inference is equal to 17. This decision is made to follow the real-time
constraint of a maximum inference latency of 1 ms.

In the results reported in Table 6.18, the mean latency, referred to as the time used to
evaluate every sample at Ts, is calculated by multiplying the mean total execution time
(in timesteps) for the number of timesteps per inference.

The maximum latency is referred to as the maximum “spiking time” for every timestep,
considering the time where the Loihi Chip is used and makes the classification decision.
This value can be used to evaluate whether the latency constraint is met. It does not
include the time overhead used to exchange results between the chip and the host system,
which can be suppressed by directly using output ports.

Table 6.18: Results of the CarSNN implemented onto the Loihi Chip.

acc.s acc.test Neurons Synapses Neurocores Mean latency Max latency
% % number number number µs µs

72.16 82.99 54,274 5,122,048 151 899.6 ≈ 700

From Table 6.18, the following observations can be made:

• The acc.test for the implementation onto the Loihi chip is 2.6% lower than the
offline application.

• The maximum latency does not exceed Ts (1 ms).

236

6.3. CarSNN: An Efficient SNN for Event-Based Autonomous Cars on the Loihi Neuromorphic
Processor

Table 6.19 describes the power and energy consumption of the application implemented
on the Neuromorphic Chip. In particular:

• LakeMounts Power : it is the consumption of the embedded processors [16] used to
manage neurons and exchange messages with the host system.

• Neuro-cores Power : it represents the consumption for the neurons.

• System Power : it is the consumption of the entire system, where a large portion is
represented by the static power consumed by the inactive cores of the used partition.
It uses only 2 neurocores out of 32.

• Energy per inference: it is the mean energy consumed to classify one sample.

Table 6.19: Power and energy consumption of the CarSNN implemented onto the Loihi
Chip.

LakeMounts Power Neurocores Power System Power Energy per Inference
mW mW mW µJ
40.8 314.5 1375.4 319.7

Hence, Table 6.19 reports the energy and power consumption of the application imple-
mented on the Loihi Chip, which is several orders of magnitude lower than the same
measure on GPUs.

Comparison with the State-of-the-Art

To our knowledge, CarSNN is the first Spiking CNN designed to perform event-based
“cars vs. background” classification on neuromorphic hardware. It is also the first method
that uses statistical analysis of events occurrences to indicate different attention windows
on it. In this work, we use a simple yet efficient technique for event accumulation in time
to maintain the correlation between spikes. Among the related works, to achieve good
performance, the time correlation is supported with different methods:

• Histograms of Averaged Time Surfaces (HATS) [137]: it uses local memory to
calculate the average of Time Surfaces, which represents the recent temporal
activity within a local spatial neighborhood.

• Hierarchy Of Time Surfaces (HOTS) [259]: it uses a hierarchical computation of
Time Surfaces between the layers.

• Gabor-filter [260]: it considers the spatial correlation between events and assigns
them to the channels based on this information.

237

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

In HATS [137], all approaches are evaluated with a simple linear Support Vector Machine
(SVM) on the N-CARS dataset. The results of such a simple classifier method are
compared with our CarSNN in Table 6.20. The Gabor-filter method adopts a two-layer
SNN before the SVM. Since the upper bound of Tl is 10 ms for the real-time constraint,
the comparison is made considering this limitation.

Table 6.20: Comparison of results for Tl = 10 ms.

Classifier (Accumulation approach) acc.test

Linear SVM (HOTS) ≈ 0.54
Linear SVM (Gabor-SNN) ≈ 0.66

Linear SVM (HATS) ≈ 0.81
CarSNN (128 × 128 attention window) 0.86
CarSNN (100 × 100 attention window) 0.86

CarSNN (50 × 50 attention window) 0.79

As highlighted in Table 6.20, our CarSNN achieves better accuracy with a limited Tl

than the Linear SVMs implemented after the use of different and more complicated
accumulation approaches.

6.3.5 Summary

The proposed CarSNN models are efficient SNN classifiers for event-based “car vs.
background” classification. The training parameters, input parameters, and network
model are determined with the proposed methodology. Moreover, an attention window
mechanism is used to accumulate the events in the region where most events occur. Two
versions of the proposed CarSNN models outperform the related works by 5% accuracy
at the same latency while also achieving low power consumption on the Loihi chip. It
represents a prominent method for resource-constrained event-based autonomous systems
on neuromorphic hardware, as will be demonstrated in Section 6.4 for a lane detection
application.

6.4 LaneSNNs: Spiking Neural Networks for Lane
Detection on the Loihi Neuromorphic Processor

AD-related features represent essential elements for the next generation of mobile robots
and autonomous vehicles focused on increasingly intelligent, autonomous, and inter-
connected systems. The applications using these features must provide, by definition,
real-time decisions, and this property is critical to avoid catastrophic accidents. Moreover,
all the decision processes require low power consumption to increase the lifetime and
autonomy of battery-driven systems. These challenges can be addressed by efficiently
implementing SNNs on Neuromorphic Chips and using event-based cameras instead of
traditional frame-based cameras.

238

6.4. LaneSNNs: Spiking Neural Networks for Lane Detection on the Loihi Neuromorphic
Processor

In this work, we present a new SNN-based approach, called LaneSNN, to detect the
lanes marked on the streets using event-based camera streams. We develop four novel
SNNs characterized by fast response and low complexity, and train them using an offline
supervised learning rule. Then, we implement and map the learned SNNs models onto
the Intel Loihi Neuromorphic Research Chip. We develop a novel method for the loss
function based on the linear composition of Mean Squared Error (MSE) and Weighted
binary Cross Entropy (WCE) metrics. Our experimental results report a maximum
Intersection over Union (IoU) measure of 0.62 and a very low power consumption of 1 W.
The best IoU is obtained with an SNN implementation that occupies only 36 neurocores
on the Loihi chip while providing a low latency of less than 8 ms for recognizing an image,
thereby enabling real-time performance. The IoU values provided by our networks are
comparable with the state-of-the-art but at a much low power consumption of 1 W.

6.4.1 System Overview
To be able to drive safely, autonomous vehicles and mobile robots must continuously
analyze the surrounding environment and consider any slightest variation to make the best
decision and prevent catastrophic accidents. Hence, the decision process must occur in
real-time. Moreover, the developed AD system should maintain low energy consumption.

Following these research objectives, we design, optimize, and implement SNNs on the Intel
Loihi Neuromorphic Research Chip [16], and evaluate them on the DET dataset [140].
Moreover, the vision system is based on an event-based DVS camera [133].

We introduce LaneSNNs to detect pixels that represent the lanes on general images
collected by an event-based camera. Our key contributions are:

• we follow the Semantic Segmentation approach to implement the algorithms;

• we adopt a dataset pre-processing unit to reduce the resolution of input and output
images and to guarantee low complexity;

• we introduce a novel loss function that provides a trade-off between the Weighted
Binary Cross Entropy and the Mean Squared Error measures;

• we implement the SNNs on the Intel Loihi Neuromorphic Research Chip;

• as evaluation, we analyze results in the form of different Pareto Curves, and we
compare our results with the state-of-the-art.

6.4.2 Problem Analysis and General Design Decisions
Lane Detection Techniques

The lane detection is one of the fundamental tasks in the AD field. We aim to design
and develop a device for automatically recognizing which parts of an image collected by

239

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

a camera correspond to the lanes marked on the street. Among the literature, there exist
three general classes of methods used to detect and recognize sub-parts of an image [261]:

1. Object detection: the device recognizes the coordinates of some points which
constitute the lanes [262]. After that, to obtain an output image, these results
must be post-processed to get the labeled image, thus increasing latency and power
consumption.

2. Semantic segmentation: the device distinguishes only two classes and determines
the class of each pixel coming from the input image by individually looking at
it. At the output, we can generate an image where the pixel intensities define its
class [263] [264].

3. Instance segmentation: it is based on the similar principles as the semantic
segmentation, but the lanes can be grouped into different classes [263] [264].

A real-time response from the detection device is required to leave more time for the
decision-making part of the AD vehicle. Moreover, we are mainly focused on the position
of the detected lanes. Therefore, we choose to use the semantic segmentation approach,
which can achieve good performance with reduced latency and power consumption.

Dataset Pre-Processing

Coding of Input Information into Spikes: The DET dataset comprises labeled
grey-scale raw images captured by the DVS camera. To extract the spiking information
and directly feed the SNNs with them, we use the rate coding technique. Hence, we
compare pixel intensities to random values for converting them into spike trains with the
Poisson distribution.

Reducing the Spatial Resolution: The DET Dataset is recorded by the CeleX V
DVS camera [133], and it is composed of input and label images with high resolution in
space (1280 × 800 pixels per image for both the inputs and the labels). This property
can be beneficial during the training of AI networks. In fact, it contains sufficient input
information for better understanding how to generalize the task. On the other hand,
the labels with very high resolution lead to a considerable imbalance between lane and
background classes, thus decreasing the accuracy when using a semantic segmentation
approach [262].

Moreover, we design SNN models that can be directly deployed on the Loihi Neuromorphic
Chip [16]. The used Neuromorphic device has some limitations for collecting output
spike counters related to the output neurons. Our preliminary analyses indicate that a
maximum of 400 spike counters can be implemented. Hence, we reduce the label images’
size to only 400 pixels. We also reduce the resolution of the input image size to 1600
pixels to be coherent with the resized output image dimension.

240

6.4. LaneSNNs: Spiking Neural Networks for Lane Detection on the Loihi Neuromorphic
Processor

To prevent the SNNs from a possible overfitting problem, before reducing the image size,
we perform data augmentation. In this specific case, we use 271 random training images
and related labels, and perform on them random vertical translation (between −100 and
100 pixels) and rotation (between −30◦ and 30◦).
To reduce the dimension of the dataset images, we use two subsequent steps:

1. Vertical cropping: for each image, we crop the top 300 pixels rows and the bottom
200 pixels rows that do not contain relevant information.

2. Average resizing: we resize the images from size 1280 × 300 to 80 × 20 for the
inputs and 40 × 10 for the labels. This operation is made by the area interpolation
mechanism implemented through the OpenCV Python library.

For the label images, before the average resizing step, we give the intensity value of
400 to all the lane pixels (denormalization step). Then, after resizing, each pixel with
an intensity greater than 0 is labeled as a lane, and its value is normalized to 1. This
mechanism is required because we operate resizing on a large scale, and without the
denormalization/normalization step, we may lose the thinnest lanes.
The steps for reducing the size of the dataset images are summarized in Figure 6.10.

200200
300

271

Original

Data
augmentation

Cropping

Denormalization

Avg. resizing
Normalization

Result

800
12802713

800
12802713

+ 800
1280

300
12802984

300

800
12802713

800
12802713

+

12802984
300

12802984
300

12802984
300

271
800

1280

402984
10802984

20

402984
10

802984
20

Figure 6.10: Steps followed to resize the images of the training set of the DET dataset.
The input images are on the right, while the label images are on the left. For the testing
set, we do not perform data augmentation, while all the other steps remain unchanged.

Learning Rule

The DET dataset comprises three labeled parts: training, validation, and testing. Hence,
it is convenient to implement a supervised learning rule for the SNNs to obtain higher

241

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

performance with limited training time rather than using an unsupervised learning rule.
More specifically, we decided to use a direct supervised learning rule to reduce the system’s
latency. To obtain the input spike trains through the rate coding strategy, the spikes
are correlated in time and space because they are based on the same image. Hence, to
achieve high performance, we use the Spatio-Temporal Back-Propagation (STBP) [118]
learning rule that considers both spatial and temporal domains. The core of this learning
rule is described through Equations 6.13 and 6.14. More details are discussed in [118].

∂L

∂bn =
T�

t=1

∂L

∂ut,n
· ∂ut,n

∂Lbn =
T�

t=1

∂L

∂ut,n
(6.13)

∂L

∂W n =
T�

t=1

∂L

∂ut,n
· ∂ut,n

∂xt,n
· ∂xt,n

∂W n
=

T�
t=1

∂L

∂ut,n
· ot,n−1 (6.14)

They are used to perform the Gradient Descendent Optimization Algorithm. Using
the implementation of the STBP learning rule, the derivative of a smooth function replaces
the derivative of the spiking nonlinearity, following the Surrogate Gradient [117]
strategy.

Loss Function

The lane and background classes in the DET dataset are also imbalanced after the dataset
pre-processing step. Therefore, we employ the Weighted Binary Cross-Entropy (WCE)
loss function [265] that is a variant of the more common Binary Cross-Entropy (BCE)
loss function. It is described in Equation (6.15), where ŷ is the predicted probability
of having a lane in a determined pixel, and y represents the class value, which can be
positive (y = 1) or negative (y = 0).

LW CE(y, ŷ) = −(β · y · log(ŷ) + (1 − y) · log(1 − ŷ)) (6.15)

The WCE function introduces a slight improvement for the unbalanced labels because
the positive class (i.e., the presence of the lane) is weighted by the coefficient β that
balances the positive and negative prediction.

However, the STBP learning rule [118] is always studied with the implementation of the
Mean Squared Error (MSE) loss function (Equation (6.16)), which is not widely used for
segmentation problems [266].

LMSE =
�n

i=1(yi − ŷi)2

n
(6.16)

Therefore, for the lane detection task, we introduce a novel loss function that combines
the benefits of both MSE and WCE. This joint weighted loss function can be formalized
by the eq. (6.17).

242

6.4. LaneSNNs: Spiking Neural Networks for Lane Detection on the Loihi Neuromorphic
Processor

LMSE & W CE = (1 − p) · LMSE + p · LW CE , (6.17)

where p denotes the parameter related to the WCE contribution and (1 − p) denotes the
MSE contribution, such that 0 ≥ p ≥ 1.

6.4.3 LaneSNNs Design
LaneSNNs Methodology Overview

Based on the above discussion, we discuss the design of our LaneSNN networks, along
with specific design decisions. To summarize the most important steps of our design, we
present our design methodology in Figure 6.11.

Low power and
low latency

Algorithm
Reusability

SNN on Loihi
Limited spike

counters
Limited type of

layers

Event-based
camera

Semantic
segmentation

STBP learning rule
with Adam
optimizer

MSE: best for STBP
not for semantic

segmentation

Loss function:
Loss = (1-p) MSE + p

WCE
End-to-end NNs

DET dataset
Gray scale

images
Limited by

specific DVS
High class
imbalance

Reduce spatial resolution on input
Reduce spatial resolution on label

Labels normalization/denormalization
Reduced class imbalance

Rate coding to
derive one

channel input
spike trains

Low accuracy for
thinnest lanes

Anti-overfitting

DATASET
PRE-PROCESSING

Detect only
lane position

CNN LaneSNN Fully-C600, Fully-C800, and Fully-
C800600 LaneSNNs

Figure 6.11: Design methodology of LaneSNNs models. On the top, there are the
three main desired properties (grey boxes). In the middle, the different design steps
and decisions (blue boxes) are made to follow the properties and overcome the research
challenges (red boxes). The outcome is the design of four LaneSNN models at the bottom.

Input and Output

To be coherent with the choices made on the DET dataset discussed in Section 6.4.2,
since we generate only one spike train per pixel from each raw gray-scale image, we

243

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

implement our networks with only one input channel.

The output size needs to be consistent with the dimension of the label images of the
modified DET dataset. Hence, the last layer should have 400 output neurons, one for
each pixel. Their firing rates represent the probability of the corresponding pixel being a
lane in the resulting image.

Network Architectures

In literature, there are many algorithms based on NNs for facing general semantic segmen-
tation tasks. They can be classified into two classes according to their implementation:

• End-to-End: these algorithms use only the NN without any pre and post-processing
steps to tackle the lane detection problem. Usually, in these cases the network
is split into two subsequent parts, i.e., reducing (downsampling) and increasing
(upsampling) the image size during the elaboration [267].

• More than one step: the NN represents only a part of the whole detection algorithm,
and it is useful for other more complex conventional algorithms [268] when these
standalone NNs achieve low performance [269].

For reducing the latency and power consumption of the complete system, we choose to
implement End-to-End algorithms. For the Loihi implementation, we design the networks
through the NxTF library [252]. It can describe only basic layers such as Conv, FC, and
average pooling.

We develop a spiking CNN inspired by the analysis made by the works in [269] [270].
In the first work [269], a small FC network is deployed at the end of the NN as the
upsampling part. The second work [270] emphasizes the importance of Conv layers over
others types for the downsampling structure.

Therefore, we design our first network, called CNN LaneSNN (see Table 6.21), with
five Conv layers by which the input sample image size (80 × 20) is reduced to 20 × 5
pixels for each of the 16 channels. Afterward, the image enters into the upsampling
region made of 400 output neurons connected to the following Conv layer. Moreover, we
adopt a dropout layer.

To decrease the power consumption further, we develop simpler structures that use only
one or two FC hidden layers. Moreover, low-complexity FC SNNs are likely to consume
low power and are easily implementable onto a Neuromorphic Chip.

Therefore, we develop two FC networks with 800 and 600 neurons for the hidden layer
(Fully-C800 LaneSNN, Table 6.22, and Fully-C600 LaneSNN, Table 6.23, respec-
tively), and a structure with two FC hidden layers called Fully-C800600 LaneSNN.
(Table 6.24).

244

6.4. LaneSNNs: Spiking Neural Networks for Lane Detection on the Loihi Neuromorphic
Processor

Table 6.21: Structure of CNN LaneSNN.

Layer type In ch. Out ch. Kernel size Padding Stride % Dropout
Convolution 1 4 3 1 1 −
Convolution 4 4 3 1 1 −
Convolution 4 8 3 1 2 −
Convolution 8 8 3 1 1 −
Convolution 8 16 3 1 2 −

Dropout 16 16 − − − 10
Dense 1600 400 − − − −

Table 6.22: Structure of Fully-C800 LaneSNN.

Layer Number of neurons
Input 1600 (image of size 80 × 20)

Hidden 800
Output 400 (image of size 40 × 10)

Table 6.23: Structure of Fully-C600 LaneSNN.

Layer Number of neurons
Input 1600 (image of size 80 × 20)

Hidden 600
Output 400 (image of size 40 × 10)

Table 6.24: Structure of Fully-C800600 LaneSNN.

Layer Number of neurons
Input 1600 (image of size 80 × 20)

Hidden 800
Hidden 600
Output 400 (image of size 40 × 10)

Anti-Overfitting Techniques

Due to the label imbalance of the DET dataset [140], the networks hardly generalize
the task due to overfitting issues. This problem is primarily noticed in the layers of the
networks that present many connections. For this reason, in the CNN LaneSNN, we
insert a dropout layer between the last Conv layer and the FC layer. Since the dropout
percentage is not so high, it does not hamper the network training. Its value of 10% is
selected after some preliminary experiments.

For the other developed networks, we do not apply dropout strategies because, due to
the small complexity of the networks, this operation can drastically reduce the achieved
results.

245

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

We use the Gaussian noise insertion technique before all four networks’ layers. We define
its entity with the relative standard deviation σr. All the inserted Gaussian noise have
σr equal to 0.1 for each layer of each developed network.

Finally, we apply the decoupled weight decay regularization on every layer of every network
(Equation (6.18) [271]), where:

• wt+1 and wt are respectively the new and the old synaptic weights on which we
apply the optimizer;

• λ defines the rate of the weight decay per step;

• ∇ft (wt) is the tth batch gradient;

• lr is the learning rate.

wt+1 = (1 − λ) · wt − lr · ∇ft (wt) , (6.18)

table 6.25 summarizes all the implemented strategies.

Table 6.25: Implemented anti-overfitting strategies.

Anti-overfitting strategy Networks Where/when Entity
Data augmentation All Train dataset +271 images

Dropout CNN Before output layer 10%
Gaussian noise All Input of all layers σr = 0.1
Weight decay All Optimization steps different values of λ

6.4.4 Evaluation of LaneSNNs
As discussed in section 6.4.2, we perform the training of the network with the STBP
learning rule. It uses Equations 6.13 and 6.14 [118] to evaluate the gradients. These
computations are too elaborated to be executed onto the on-chip learning engine of the
Intel Loihi Neuromorphic Chip. Therefore, our LaneSNNs are trained offline, and then
we implement the networks achieving the best results on the neuromorphic hardware.

Accuracy Definition

The outputs of our LaneSNNs represent the probabilities for each pixel to be classified as
a lane. Compared to a direct prediction of the class, the probability prediction is a more
flexible method, which allows us to tune and even calibrate the threshold for interpreting
the predicted probabilities.

To derive the best threshold level for the predicted probabilities, we study the graphs that
correlate the Precision and Recall values (PR curves [272]) evaluated in Equation (6.19).

246

6.4. LaneSNNs: Spiking Neural Networks for Lane Detection on the Loihi Neuromorphic
Processor

Precision = TP

TP + FP
, Recall = TP

TP + FN
(6.19)

• Precision is the number of lane pixel predictions matched with the label (True
Positive or TP), divided by the number of pixels predicted as lane (True Positive
and False Positive or FP).

• Recall is the number of lane pixel predictions matched with the label (TP), divided
by the number of lane pixels in the label (TP and False Negative or FN).

Then we define the F-measure (see Equation (6.20)) to find the best threshold to balance
the two parameters.

F-measure = 2 · Precision · Recall
Precision + Recall (6.20)

To distinguish between lanes and background classes, the F-measure is computed for
all the possible thresholds applied to the output probabilities, and its maximum value,
which corresponds to the best threshold, is selected. Moreover, to fairly compare
the performance of our networks, we use the Intersection over Union (IoU) value
(Equation (6.21) [273]).

IoU = |Predicted lanes ∩ True lanes|
|Predicted lanes ∪ True lanes| (6.21)

We compute the best thresholds for every N predicted image, and we define the overall
best threshold as their numerical mean (Equation (6.22)).

best th =

N�
i=1

best thi

N
(6.22)

Afterward, we apply the best th on the results and compute the IoU value distinctly for
each image (Equation (6.23)).

IoU =

N�
i=1

IoUi(best th)

N
(6.23)

247

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

Experimental Setup

Our LaneSNNs, described using the PyTorch library [72], are trained on the DET
dataset [140], after performing the pre-processing operations discussed in Section 6.4.2.
We ran the experiments on a workstation equipped with an Intel Core i9-9900X CPU
and multiple Nvidia GeForce RTX 2080 Ti GPUs. An overview of the tool flow used for
conducting the experiments is shown in Figure 6.12.

SNN
Training
Methods

Dataset SNN Training
on Nvidia RTX
2080-Ti GPUs

SNN Training IoU

Trained SNN
Model & Weights

Loihi

DVS Camera

Prediction
Probability

Learning
parameters

Rate
Coding

SNN Model
parameters

Th.

Figure 6.12: Setup and tool flow for conducting our experiments.

We use the STBP learning rule [118] and the loss function described in Equation (6.17)
for computing the distance between prediction and labels during training. Through these
modifications, the complete training set has 241 837 and 951 763 pixels representing the
lane and the background classes, respectively. It corresponds to a negative (background)
over positive (lanes) ratio of 3.93. Hence, to contrast the imbalance, we set the coefficient
β of Equation (6.17) to 4.0 for every experiments. On the other hand, the value p used to
set the percentage of loss derived by the WCE over the MSE functions varies from 0.0 to
0.5 for each experiment. We observe that the insertion of the MSE contribution leads to
a faster SNN convergence. Focusing on other specific learning hyper-parameters, we set:

• Optimizer: we use Adam [62], since it is efficient when coupled with the STBP.
On that, we apply the decoupled weight decay strategy [271]. We vary λ of Equa-
tion (6.18) from 0.0 to 5e−4 with steps of 1e−4.

• Learning rate (lr): we use the fixed learning rate approach varying in the range
from 1e−5 to 1e−3. These values are selected after preliminary analyses and
guarantee the convergence of the method in a few epochs.

The adopted learning rule is based on LIF neurons. The formalization of the membrane
potential update (ut

i + 1, n) is defined in Equation (6.24), where:

• ut,n
i is the membrane potential before the update;

248

6.4. LaneSNNs: Spiking Neural Networks for Lane Detection on the Loihi Neuromorphic
Processor

• ot,n
i represents the presence (1) or the absence (0) of a spike generated on the output

axon;

• �l(n−1)
j=1 wn

ijot+1,n−1
j represents the incoming synaptic weighted spikes;

• bn
i is a bias term.

ut+1,n
i = ut,n

i τ(1 − ot,n
i) +

l(n−1)�
j=1

wn
ijot+1,n−1

j + bn
i (6.24)

The tunable parameters of a LIF neuron are:

• membrane threshold (Vth): it is the same for all neurons, and its value changes
from 0.2 to 1.0;

• membrane reset potential (Vreset): for all the experiments, its value is the same
for every neuron, and it is always set to 0 V ;

• membrane time constant (τ): for all the experiments, it is set to 0.2 ms.

Moreover, the STBP learning rule uses the surrogate gradient mechanism to approximate
the derivative of the spiking nonlinearity with simpler functions. For this purpose, the
rectangular pulse function is adopted (Equation (6.25)).

h1(u) = 1
a1

sign

|u − Vth| <
a1
2

(6.25)

This assumption is coherent with the work of [118] since different types of approximations
do not involve a significant accuracy variation, and the rectangular pulse function
represents an efficient formula developed for this purpose.

Therefore, according to Equation (6.25), we can adjust the parameter a1
2 that represent

the pulse width. It has the same value as Vth, as made in [118].

All the experiments run for 200 training epochs with a batch size of 4. The batch size
value, set based on a preliminary analysis, represents a trade-off between the achieved
accuracy and the training time.

We create a single spike train for each gray-scale input image pixel. Moreover, since every
spike train is made of 30 time steps, it can collect up to 30 spikes. The spike trains per
image are not computed offline before training but are generated at run-time. Therefore,
they are different for each training epoch to increase the training process robustness. Since
this information is provided as input without applying any accumulation mechanism, the
LaneSNNs analyze each input image for 30 time steps.

249

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

LaneSNNs Implemented on Loihi

For implementing our trained LaneSNNs onto the Intel Loihi Neuromorphic Chip, we
have to set its model parameters such as Compartment Voltage threshold (Vth mant),
Compartment Current Decay (δi), Compartment Voltage Decay (δv), Compartment Bias
(bias), Synaptic Weights (weight) and Weight Exponent (wgtExp).

We multiply weights and Vth by a factor (k) calculated from the weight magnitudes of all
the SNN synapses as in Equation (6.26):

k = 24 − 1
maxall synapses(| weighti |) (6.26)

In the multiplication of the weights by k, we use the whole dynamic range for the
maximum value, thus minimizing wgtExp. All the setup parameters are summarized in
Table 6.26.

Offline implementation Loihi implementation
Parameter Value Precision Parameter Value Precision

Vth ×1 Float 64 bits Vth mant ×k Fixed 12 bits
weight ×1 Float 64 bits weight ×k Fixed 8 bits

τ 0.2 Float 64 bits δv 3276 Fixed 12 bits
b 0 Float 64 bits bias 0 Fixed 8 bits
− − Float 64 bits δi 0 Fixed 12 bits

Table 6.26: Translation of parameters to the Loihi Chip for the LaneSNNs (For the Loihi
the weight bits also include the wgtExp bits).

We implement all the trained LaneSNNs onto the Loihi Neuromorphic Chip, considering
all the possible values of Vth, λ and lr, characterized by the best parameter p. This
implementation is conducted using the Intel Nx SDK API version 1.0.0 running onto the
Nahuku32 partition. This code is developed using the NxTF Layers and in particular
NxConv2D and NxDense utilities [252]. The LaneSNNs are tested on the testing set
of the DET dataset [140]. We use the same method for feeding the input images for
the offline training. Hence, we create a spike train for every pixel of each input image
on-the-fly. Every spike train lasts for 30 time steps. We insert a blank time equal to 10
time steps between two consecutive samples.

To compute of the IoU measure, we find the best threshold directly from the reconstructed
images at the output of the Loihi chip.

Pareto Optimal Solutions

We can analyze multiple Pareto-optimal models to efficiently evaluate the LaneSNNs
implemented onto the Intel Loihi. Therefore, we use the Pareto Optimal frontier
curve to find the best trade-off solutions between the achieved IoU and:

250

6.4. LaneSNNs: Spiking Neural Networks for Lane Detection on the Loihi Neuromorphic
Processor

(a) (b) (c)

Fully-C800 Fully-C600 Fully-C800600 Pareto-optimal curve

Figure 6.13: The legend is common for all figures. Pareto-optimal solutions for Fully-C800,
Fully-C600, and Fully-C800600 LaneSNNs. (a) IoU vs. Time per inference. (b) IoU vs.
Power. (c) IoU vs. Neurocores.

1. latency, i.e., the mean time duration required for the classification of all the pixels
of a single image (Figure 6.13a);

2. power consumption of the entire Intel Loihi chip (Figure 6.13b);

3. network complexity, number of neurocores occupied (Figure 6.13c).

From the first graph (Figure 6.13a), we can see that within the Pareto-optimal front, the
maximum time to detect the lanes on a stream of 30 time steps is limited to 7.27 ms
and it is achieved by the Fully-C800 network. It can be decreased to 6.02 ms with a
reduction on IoU of about 6%. In the second graph (Figure 6.13b), we can observe that
the lowest Pareto-optimal power consumption is measured by the simplest Fully-C600
network, but the highest IoU is reached by the Fully-C800 network. Overall, the power
consumption of the Loihi chip does not vary much around 1W .

Figure 6.13c shows that, among the Pareto-optimal solutions, the Fully-C600 network is
the simplest because of the lower number of occupied neurocores. Moreover, the best
IoU is measured by the Fully-C800 network, but its complexity is significantly greater
than the minimum value.

Best Results for Each LaneSNN

The best results obtained in terms of IoU for each type of LaneSNN for both offline and
online implementations are summarized in Table 6.27.

Table 6.27: Best IoU measures achieved by the different LaneSNNs for offline (GPU)
and online (Loihi) implementations.

IoU CNN IoU Fully-C600 IoU Fully-C800 IoU Fully-C800600
GPU Loihi GPU Loihi GPU Loihi GPU Loihi

0.598 0.208 0.637 0.527 0.633 0.542 0.652 0.416
0.551 0.349 0.632 0.623 0.629 0.613 0.590 0.550

The CNN LaneSNN has the lowest IoU results for both online and offline implementations.
Its GPU implementation achieves an acceptable level of IoU , but this value decreases for

251

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

the online implementation due to the weight approximation errors propagating layer by
layer during the offline-to-online translation.

The highest offline result is measured by the Fully-C800600 network that has two FC
hidden layers. However, it has lower IoU for the online implementation than the value
achieved by the simpler FC networks Fully-C600 and Fully-C800. The best online IoU
result is achieved by the Fully-C600 network, which is the simplest SNN. Moreover,
despite being slightly greater, its online and offline IoU measures are comparable to the
results obtained with the Fully-C800 network.

Comparison with the State-of-the-Art

For this application, less complex SNNs can be effectively implemented onto the Loihi
Neuromorphic Chip and achieve competitive performances for real-time embedded systems
with low power consumption and low latency. This is also favored by using event-based
cameras as vision sensors of the AD system. On the other hand, in literature, many
algorithms involve non-spiking NNs to tackle the lane detection problem.

For a fair comparison, we evaluate the results of state-of-the-art networks on the same
dataset (DET dataset [140]). Therefore, all these NNs also use a DVS camera as the
vision sensor for the system.

The results of the state-of-the-art techniques, which are FCN [270], DeepLabv3 [274],
RefineNet [275], LaneNet [276], SCNN [277] and LDNet [267], are compared to our
LaneSNNs in Table 6.28.

Table 6.28: Comparison of IoU achieved by different algorithms for the lane detection
problem faced by the semantic segmentation approach.

Classifier IoUoffline IoUonline Number of parameters
FCN 0.585 − 132.27 M

DeepLabv3 0.585 − 39.05 M
RefineNet 0.614 − 99.02 M
LaneNet 0.647 − 0.53 M
SCNN 0.673 − 25.16 M
LDNet 0.767 − 5.71 M

CNN LaneSNN (ours) 0.598 0.349 1.39 M
Fully-C600 LaneSNN (ours) 0.637 0.623 1.20 M
Fully-C800 LaneSNN (ours) 0.633 0.613 1.60 M

Fully-C800600 LaneSNN (ours) 0.652 0.550 2.00 M

We can notice that our CNN LaneSNN achieves higher performance than the FCN
and DeepLabv3 algorithms despite their use of more complex networks to make their
predictions. The FCN uses AlexNet [66] made of five Conv layers, three pooling layers,
and three FC layers. DeepLabv3 [274] is composed of Atrous Spatial Pyramid Pooling
(ASPP) layers. It probes an incoming Conv layer with filters at multiple sampling rates.

252

6.5. Summary of Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

This method is not developed onto the Loihi yet since NxTF facilities [252] do not
implement the ASPP layers. Moreover, it achieves lower performance than RefineNet
(based on long residual connections), LaneNet (based on upsampling layers), SCNN
(based on slice-by-slice convolutions), and LDNet (based on ASPP, many convolution
stacks, and upsampling layers). These structures cannot be implemented onto the Loihi
with the NxTF facilities [252] that support pooling, FC, and traditional convolution
layers.

All the other FC LaneSNNs have IoU comparable with LaneNet and overcome the
performance of more complex algorithms. Moreover, the Fully-C800600 LaneSNN
achieves a similar result as the one obtained by the SCNN algorithm while using less
than 10× parameters. On the other hand, the highest IoU result has been achieved by
the LDNet, at the price of very high complexity, and it cannot be implemented onto a
neuromorphic hardware device.

The above-discussed considerations do not take into account that all LaneSNNs are tested
on the modified DET dataset and not on the original dataset, as it is for all the other
discussed algorithms. However, the pre-processing step for the DET dataset allows all
the LaneSNNs to be directly implementable on the Loihi Neuromorphic Chip, achieving
competitive performance also online.

6.4.5 Summary
The proposed LaneSNN methodology consists of a set of optimizations for conducting
event-based lane detection on the Loihi neuromorphic processor. The core of the method-
ology is based on the semantic segmentation approach. The SNN training is based on
a novel loss function that combines the WCE and MSE metrics to take advantage of
the supervised STDP rule. The SNNs deployed with the proposed LaneSNN methodol-
ogy represent the first implementations of event-based lane detectors on the Loihi chip
and show high performance and power efficiency gains compared to the related works
implemented on conventional computation platforms.

6.5 Summary of Efficient Optimizations for Spiking
Neural Networks on Neuromorphic Hardware

This chapter has discussed a set of optimizations and implementations of SNNs on the
Loihi neuromorphic hardware chip. By knowing the specifications and resource constraints
of the target hardware platform, several optimization techniques are applied to implement
energy-efficient SNNs. The DNN-to-SNN conversion process requires a comprehensive
analysis specifically designed to implement the converted SNN into the Intel Loihi. Even
if conducted offline, the architectural models and training rules for the SNNs need to
be tailored for the Loihi implementation to allow their feasibility and enhance their
performance and energy efficiency. Compared to the non-spiking DNNs implemented on
conventional architectures, the SNNs implemented on neuromorphic processors exhibit

253

6. Efficient Optimizations for Spiking Neural Networks on Neuromorphic
Hardware

high-efficiency gains. However, their robustness against vulnerability threats remains an
ongoing research challenge. Towards this, the following Chapter 7 will discuss the security
threats for SNNs. The event-based nature of SNNs and their different computational
principles compared to traditional DNNs require dedicated security analyses and offer
unique possibilities to enhance their robustness.

254

CHAPTER 7
Security Threats for SNNs on

Discrete and Event-Based Data

This chapter investigates the vulnerabilities of SNNs against security threats. Novel
attack methodologies and defensive countermeasures are proposed. The analyses are
conducted both on discrete data, as well as on event-based data. The flow followed
in this chapter is shown in Figure 7.1. Section 7.1 provides a comparative analysis of
the security vulnerabilities of SNNs and DNNs with respect to the adversarial noise.
Section 7.2 presents a cross-layer attack that threatens the SNNs’ robustness. A carefully
crafted adversarial input noise triggers a hardware Trojan that injects bit-flips in the most
vulnerable weight locations. Section 7.3 studies the inherent robustness of SNNs and
explores different values of the SNNs’ structural parameters, which are the neuron’s firing
voltage threshold and time window boundary. Towards the SNNs’ security for event-based
data, Section 7.4 presents a methodology for improving the robustness against adversarial
attacks by employing noise filters for DVS sensors. Moreover, Section 7.5 presents a set
of stealthy yet efficient adversarial attack methodologies targeted to perturb the event
sequences and test them in the presence of noise filters for DVS cameras.

Adversarial Attacks
for Discrete Data

(Sec. 7.1)

Adversarial Attacks
for Event Data

(Sec. 7.5)

Adversarial Examples

HW Trojan Performing
Bit-Flip Attacks (Sec. 7.2)

Robust SNNs Implemented
on Neuromorphic HW

SNN Models

Discrete
Datasets

Event-Based
Datasets

DVS-Noise Filters
(Sec. 7.4)

Tuning of SNN Structural
Parameters to Enhance
Robustness (Sec. 7.3)

Neuromorphic
HW Model

Figure 7.1: Overview of the flow for generating attacks and designing defensive counter-
measures discussed in this chapter.

255

7. Security Threats for SNNs on Discrete and Event-Based Data

Major Contributions of the Chapter:

• Robustness analysis of SNNs: An in-depth methodology is designed to evaluate
the robustness of SNNs and compare it to non-spiking DNNs. It investigates
their robustness against random noises added to the inputs and against crafted
adversarial examples.

• NeuroAttack methodology design: It injects bit-flips in specific weight memory
locations to fool SNNs and DNNs. The attack is triggered when a crafted adversarial
pattern is provided in the input image.

• Robust SNN designs by tuning their structural parameters: A systematic
methodology is designed for investigating the SNN robustness. It explores the
impact of SNNs’ structural parameters for designing robust SNNs.

• R-SNN methodology design: It is an adversarial defense technique that employs
noise filters for DVS to increase the SNNs’ robustness.

• DVS-Attacks design: It is a set of adversarial attack methodologies that perturb
DVS signals. It also contains specifically crafted attacks that fool SNNs in the
presence of DVS noise filters.

7.1 Security Evaluation of SNNs vs. DNNs
SNNs present many advantages in terms of energy efficiency and biological plausibility
compared to standard non-spiking DNNs. Prior works have demonstrated that DNNs
are susceptible to adversarial attacks, i.e., minimal perturbations added to the input can
lead to targeted or random misclassifications. In this section, we aim to investigate the
security of SNNs. Towards this, we comparatively study the security vulnerabilities in
DNNs and SNNs with respect to the adversarial noise. Afterward, we propose a novel
black-box attack methodology. Without knowing the internal structure of the SNN, it
employs a greedy heuristic to generate imperceptible and robust adversarial examples
for the given SNN. To obtain a fair comparison, we conduct an in-depth evaluation of
our methodology for a Spiking Deep Belief Network (SDBN) and a DNN with the same
number of layers and neurons, for understanding the differences between SNNs and DNNs
when subjected to adversarial examples. Our work opens new avenues of research toward
the SNNs’ robustness, considering their similarities to the human brain’s functionality.

7.1.1 System Overview
In this section, we aim to generate imperceptible and robust adversarial examples for
SNNs under black-box settings. Prior works [202] studied the vulnerabilities of SNNs
under white-box settings, while we consider a black-box assumption, which makes the
attacker stronger in a wide range of real-world environments. For a fair comparison
during the evaluation, we apply these attacks to an SDBN and a DNN with the same

256

7.1. Security Evaluation of SNNs vs. DNNs

number of layers and neurons. First, we analyze the vulnerability of SDBNs to random
and adversarial noise, for identifying the similarities/differences w.r.t. DNNs. Our
experiments demonstrate that, when a random noise is applied to a given SDBN, its
classification accuracy decreases for higher noise magnitude. Moreover, when our attack
is applied to SDBNs, we notice that the output probabilities exhibit a different behavior
than for the case of DNNs. While the adversarial example remains imperceptible, the
misclassification is not always achieved in the SDBNs.

In short, we make the following novel contributions:

• We analyze the variation in the accuracy of an SDBN when random noise is added
to the inputs.

• We evaluate the improved generalization capability of the SDBN when adding
random noise to the training images.

• We develop an automated methodology to create imperceptible adversarial examples
for DNNs and SNNs.

• We apply our methodology for generating adversarial examples to an SDBN (the first
attack of this kind applied to SDBNs) and a DNN, and evaluate their imperceptibility
and robustness.

7.1.2 Analysis: Applying Random Noise to SDBNs
Spiking Deep Belief Networks

Deep Belief Networks (DBNs) [278] are widely used multi-layer networks for classifi-
cation tasks and have been implemented in many domains such as audio processing,
visual processing, images and text recognition [278]. DBNs are constructed by stacking
pre-trained Restricted Boltzmann Machines (RBMs), which are energy-based models
consisting of two layers of FC neurons. RBMs are typically trained with unsupervised
learning algorithms to extract the information stored in the hidden neurons, and then a
supervised approach is conducted to train an ML classifier based on these features [279].

Spiking DBNs (SDBNs) improve the energy efficiency and computation speed compared
to DBNs. Such behavior has already been observed in the work of [280], which proposed
a DBN model composed of 4 RBMs of 784 − 500 − 500 − 10 neurons, respectively.
After its offline training, it is transformed into the event-based domain to increase the
processing efficiency and the computational power. The RBMs are trained with Persistent
Contrastive Divergence (CD), an unsupervised learning rule that employs Gibbs sampling,
a Markov-Chain Monte-Carlo algorithm that optimizes for fast parameter convergence,
selectivity, and sparsity [281]. Once every RBM is trained, their feature information
is saved in the hidden neurons to use it as input for the following layer. Afterward, a
supervised learning algorithm [282], based on the features coming from the unsupervised
training, is implemented. The RBMs of this model use the Siegert function [283] in their

257

7. Security Threats for SNNs on Discrete and Event-Based Data

neurons. It allows having a good approximation of the firing rate of LIF neurons used for
CD training. Hence, the neurons of an SDBN generate Poisson spike trains, according to
the Siegert formula.

This represents a significant advantage in terms of speed and power consumption compared
to the classical DBNs based on a discrete-time model [280]. Since there has been no prior
work on studying the security vulnerabilities of such SDBNs, we aim at investigating
these aspects in a black-box setting, which is important for their real-world applications
in safety-critical systems.

Experimental Setup

As a case study, we consider an SDBN [280] composed of 4 FC layers of 784−500−500−10
neurons, respectively. We implement this SDBN in Matlab for analyzing the MNIST
database. Each pixel intensity is encoded as a value in the range between 0 and 255.
The input data are scaled to the range [0, 0.2] to directly convert intensities into spikes.
In our experiments, the pixel intensities are represented as the probability that a spike
occurs.

Understanding the Impact of Input Random Noise on the Accuracy of an
SDBN

We evaluate the accuracy of the SDBN for different noise magnitudes applied to three
different sets of images:

• to all the training images.

• to all the test images.

• to both the training and test images.

To test the SDBN’s vulnerability, we apply two different types of noises: normally-
distributed and uniformly-distributed random noise.

Table 7.1 and Figure 7.2 report the results of our experiments. The initial accuracy
obtained for the clean image without applying noise is 96.2%. When applying the noise
to the test images, the SDBN accuracy decreases accordingly with a noise magnitude
increase, more evidently in the case of the normally-distributed random noise. The
reason for this behavior is that the standard normal distribution contains a broader
range of values than the uniform distribution. For both noise distributions, the accuracy
significantly decreases when the noise magnitude is around 0.15 (see the values highlighted
in red in Table 7.1).

When the noise is applied only to the training images, the SDBN accuracy does not
decrease much like in the previous case, for the noise magnitude (δ) lower than 0.1.
On the contrary, for δ = 0.02, the accuracy increases (see the blue-colored values in

258

7.1. Security Evaluation of SNNs vs. DNNs

Table 7.1: Evaluation of the SDBN accuracy for two different types of random noise with
different noise magnitude values. The red and blue values help the reader identify the
accuracy results discussed in the text. (ACC stands for Accuracy, TR&TST indicates
noise applied to both Training and Test Datasets)

ACC TRAIN TEST TR&TST TRAIN TEST TR&TST
δ NORMALLY UNIFORMLY

0.02 96.65 94.73 96.54 96.8 96.02 96.81
0.05 95.19 94.42 94.99 96.7 95.64 96.72
0.08 92.99 82.73 73.64 95.89 94.64 95.56
0.1 76.01 77.07 10.39 94.34 93.36 92.8
0.15 24.61 48.23 10.32 47.03 82.76 10.51
0.2 10.26 33.34 10.05 14.64 60.79 10.16
0.3 10.31 21.52 9.88 9.59 34.9 10.16
0.4 10.27 17.05 10.34 9.98 23.16 10.03

More robust

Figure 7.2: Normal and uniform random noise added to all the pixels of the MNIST
dataset.

Table 7.1) w.r.t. the baseline (i.e., without noise). Indeed, adding noise to training
samples improves the generalization capability of the network. Therefore, its capability
to correctly classify new unseen samples also increases. This observation, as was analyzed
in other scenarios for DNNs with back-propagation training [284], is also valid for our
SDBN model. However, the accuracy drops significantly if the noise is equal to or greater
than 0.1. This behavior indicates that the SDBN cannot learn input features due to the
inserted noise. Thus it is unable to classify the inputs correctly.

When the noise is added to both the training and test samples, we observe that the
behavior noticed for the noise added to only the training images is accentuated. The
accuracy is similar to or higher than the baseline for low noise magnitudes (mainly in
the uniform noise case). For noise magnitudes larger than 0.1 (more precisely, 0.08 for
normal noise), the accuracy decreases more sharply than for the case of noise added only
to the training images. This value of noise magnitude represents a threshold of tolerable
noise for the SDBN. Hence, the network cannot classify well when the noise is too high.

259

7. Security Threats for SNNs on Discrete and Event-Based Data

Applying Noise to a Restricted Window of Pixels

In this study, we add a random noise with normal distribution to a restricted area of
pixels of the test images. Considering a rectangle of 4×5 pixels, we analyze two scenarios:

• The noise is applied to 20 pixels on the top-left corner of the image. The accuracy
variation is represented by the blue-colored line of Figure 7.3. As expected, the
accuracy remains almost constant since the noise affects irrelevant pixels. The
resulting image for a noise of 0.3 is shown in Figure 7.4b.

• The noise is applied to 20 pixels in the middle region of the image, with coordinates
(x, y) = ([14 17], [10 14]). Compared to the previous case, the accuracy decreases
more significantly (orange-colored line of Figure 7.3) since some white pixels
that represent the handwritten digits (and therefore the important ones for the
classification) are modified by the noise. The resulting image for a noise of 0.3
is shown in Figure 7.4c. This analysis shows that the location of noise insertion
impacts the accuracy, thereby unleashing a potential vulnerability of SNNs that
adversarial attacks can exploit.

Accuracy
drop

Figure 7.3: Normal random noise applied to some pixels of the MNIST test images.

(a) (b) (c)

Figure 7.4: Comparison between images with normally distributed random noise with a
magnitude of 0.3 applied to the corner and the center of the image. (a) Without noise.
(b) Noise applied to the top-left corner. (c) Noise applied to the center.

260

7.1. Security Evaluation of SNNs vs. DNNs

Key Observations from our Analyses

From the above analyses, we derive the following key observations that an adversarial
example generation methodology can exploit.

• The normally-distributed noise has higher impact than the uniform counterpart
because the accuracy decreases more sharply.

• For a low noise magnitude added to the training images, we observe a small accuracy
improvement due to the improved generalization capabilities of SDBNs.

• When the noise is applied to a restricted window of pixels, the effect of the
perturbation is more evident if the window is located in the center of the image
(or generally speaking, in the input regions belonging to the features that are key
for the correct classification), as compared to the corner. This behavior is due to
the noise applied to the pixels, which play an important role in accurate feature
learning and, consequently, in the correct classification.

7.1.3 Our Novel Methodology to Generate Imperceptible and Robust
Adversarial Examples

Similar to the case of DNNs, the objective of a good attack on SNNs is also to generate
adversarial images that are difficult to be detected by a human eye (i.e., imperceptible) and
resistant to physical transformations (i.e., robust). Therefore, for better understanding,
we first discuss these two aspects.

Imperceptibility of Adversarial Examples

Creating an imperceptible example means adding perturbations to the pixels while
ensuring that humans do not notice them. We consider an area A = N · N of pixels x,
and we calculate the standard deviation of a pixel (SD(xi,j) as in Equation (7.1).

SD(xi,j) =

����� N�
k=1

N�
l=1

(xk,l − µ)2 − (xi,j − µ)2

N · N
(7.1)

Here, µ is the average value of the pixels belonging to the N · N area. If a pixel has a
large standard deviation, a perturbation added to it is more hardly recognized by the
human eye than a pixel with a low standard deviation. The sum of all perturbations δ
added to the pixels of the area A allows us to compute the distance (D(X∗, X)) between
the adversarial sample X∗ and the original one X. Its formula is shown in Equation (7.2).

D(X∗, X) =
N�

i=1

N�
j=1

δi,j

SD(xi,j) (7.2)

261

7. Security Threats for SNNs on Discrete and Event-Based Data

Such a value can be used to monitor the imperceptibility. In fact, the distance D(X∗, X)
indicates how much perturbation is added to the pixels of the area A. Therefore, the
maximum perturbation tolerated by the human eye can be associated with a specific
value of the distance, DMAX . The value of DMAX can vary among different images or
datasets since it depends on the resolution and the contrast between neighboring pixels.

Robustness of adversarial examples

Many adversarial attack methods are used to maximize the probability of the target
class to ease the classifier misclassification of the image [23][24]. The main problem of
these methods is that they do not account for the relative difference between the class
probabilities, i.e., the gap, defined in Equation (7.3).

Gap(X∗) = P (target class) − max{P (other classes)} (7.3)

Therefore, a minimal modification of the probabilities can make the attack ineffective
after an image transformation. To improve the robustness, it is desirable to increase the
difference between the target class probability and the highest probability among the
other classes, i.e., to maximize the gap function.

How to Automatically Generate Attacks for SNNs?

Obtaining both imperceptibility and robustness at the same time is complicated. Typically,
a robust attack would require perceptible changes in the input, while an imperceptible
attack does not change the classification much. We designed a heuristic algorithm to
generate imperceptible yet robust adversarial examples for SNNs automatically. Note that
our technique also applies to DNNs. Leveraging the same methodology for generating
adversarial examples for both SNNs and DNNs enables a fair comparison. Our algorithm
is based on the black-box model assumption, i.e., the attacks are performed on some
pixels of the image without knowing the network architecture. Given the maximum
allowed distance DMAX such that human eyes cannot detect perturbations, the problem
can be expressed as in Equation (7.4).

arg max
X∗ Gap(X∗) s.t. D(X∗, X) ≤ DMAX (7.4)

In summary, the purpose of our iterative algorithm is to perturb a set of pixels for maxi-
mizing the gap function, thus making the attack robust while keeping the distance between
the samples below the desired threshold for the perturbation to remain imperceptible.

Based on the key observations of our previous analyses, our iterative methodology (see
Algorithm 23) perturbs only a window of pixels of the image. We choose a certain value
N that defines an area of N · N pixels and perform the attack on a subset of M pixels
within the N · N region.

262

7.1. Security Evaluation of SNNs vs. DNNs

Algorithm 23: Methodology for Generating Adversarial Examples for SNNs
and DNNs
1 Given: network (SNN or DNN), original sample X, maximum human perceptual

distance Dmax, noise magnitude δ, area A of N · N pixels, number of pixels to
perturb M

2 while D(X∗, X) < DMAX do
3 Compute Standard Deviation SD for every pixel of A;
4 Compute Gap(X∗), Gap−(X∗), Gap+(X∗);
5 if Gap(X∗)− > Gap(X∗)+ then
6 V ariationPriority(xi,j) =
7 [Gap−(X∗) − Gap(X∗)] · SD(xi,j);
8 else
9 V ariationPriority(xi,j) =

10 [Gap+(X∗) − Gap(X∗)] · SD(xi,j);
11 Sort V ariationPriority in descending order;
12 Select M pixels with highest V ariationPriority;
13 if Gap(X∗)− > Gap(X∗)+ then
14 Subtract noise with magnitude δ from the pixel;
15 else
16 Add noise with magnitude δ to the pixel;
17 Compute D(X∗, X);
18 Update the original example with the adversarial one;

After computing the standard deviation for the selected N ·N pixels, we calculate the gap
function, i.e., the difference between the probability of the target class and the highest
probability between the other classes. Then, the algorithm decides whether to add a
positive or a negative noise to the pixels. Therefore, we compute two parameters for each
pixel, Gap+(X∗) and Gap−(X∗). Gap+(X∗) is the value of the gap function computed
by adding a perturbation unit to a single pixel, while Gap−(X∗) is its counterpart,
computed by subtracting a perturbation unit. According to the difference between these
values and the gap function and considering the standard deviation, we compute the
variation priority, a function that indicates the effectiveness of the pixel perturbation.
For example, if Gap−(X∗) is greater than Gap+(X∗), subtracting the noise will be more
effective than adding it to the pixel because the difference between P (target class)
and max[P (other classes)] will increase more. Once the VariationPriority vector is
computed, its values are sorted, and the highest M values of the N · N window are
perturbed. The noise is added to or subtracted from the selected M pixels depending
upon the highest value between Gap+(X∗) and Gap−(X∗). Then, the algorithm starts
the next iteration by replacing the original input image with the created adversarial one.
The iterations terminate when the distance between original and adversarial examples
overcomes the maximum perceptual distance.

263

7. Security Threats for SNNs on Discrete and Event-Based Data

7.1.4 Evaluation of our Attack Methodology

Experimental Setup

Using the methodology of Algorithm 23, we attack the same SDBN as the one analyzed
in Section 7.1.2 and a DNN. To achieve a fair comparison, we design the DNN for our
experiments having the same set of parameters as the SDBN, i.e., composed of four FC
layers of 784 − 500 − 500 − 10 neurons, respectively. The DNN is trained with the scaled
conjugate gradient backpropagation algorithm [285], and after training, its achieved
classification accuracy on the MNIST dataset is 97.13%.

For discussion, we start with a test image labeled as “five” (see Figure 7.5). It is classified
correctly by both networks but with different output probabilities. We use a value of δ
equal to the 10% of the pixel intensity scale range and a DMAX of 22 to compare the
attacks. We distinguish two cases having different search window sizes:

(I) Figure 7.5a: N = 5 and M = 10. Based on the analysis in Section 7.1.2, we define
the search window in a central area of the image that is affected by high variation,
as shown by the red square.

(II) Figure 7.5b: N = 7 and M = 10. It can be interesting to observe the difference
w.r.t. in case I: in this situation, we perturb the same amount M of pixels, chosen
from a search window containing 24 more pixels.

(a) (b)

Figure 7.5: Selected area of pixels to attack. (a) 5 × 5 area. (b) 7 × 7 area.

DNN Under Attack

The baseline DNN classifies our test sample as a “five” with its associated probability
equal to 98.79%, as shown in the blue-colored bars of Figure 7.6. The target class is
“three” for both cases. The classification results of their respective adversarial images
are shown in Figure 7.6 for both cases. From the results in Table 7.2, we observe that
having a small search window leads to a more robust attack than having larger search
windows. The generated adversarial examples are shown in Figure 7.7.

264

7.1. Security Evaluation of SNNs vs. DNNs

(a) Case I (b) Case II

Figure 7.6: Output probabilities of the DNN. (a) Attack using the search window of case
I. (b) Attack using the search window of case II.

Table 7.2: Results of our simulations for the DNN.
(Case I) After 14 iterations, the target class probability has exceeded the correct class.
Figure 7.7a shows the sample at this stage (denoted as intermediate in Figure 7.6a). In
the following iteration (see Figure 7.7b), the gap between the two classes increases, thus
increasing the robustness but also the distance. The sample at this point (denoted as
final in Figure 7.6b) corresponds to the attack output since at iteration 15, the distance
falls above the threshold.
(Case II) After 11 iterations (denoted as final in Figure 7.6b), the sample (in Figure 7.7d)
is classified as a “three”. Since at the iteration 12 the distance is already higher than
DMAX , Figure 7.7c shows the sample at the 10th iteration, whose output probabilities
are denoted as intermediate in Figure 7.6b.

CASE ITER P MAX CLASS P TARGET CLASS DISTANCE
I 0 98.79 0.89 0
I 14 44.16 55.74 20.18
I 15 36.25 63.67 21.77
II 0 98.79 0.89 0
II 10 57.53 42.01 16.29
II 11 49.45 50.32 21.19

SDBN Under Attack

Our baseline SDBN, without attack, classifies our test sample as a “five” with a probability
equal to 82.69%. The complete set of initial “clean-case” output probabilities is shown in
Figure 7.8. We select “three” as the target class.

The results in Table 7.3 show that, in contrast to the attack applied to the DNN, for

265

7. Security Threats for SNNs on Discrete and Event-Based Data

(a) (b) (c) (d)

Figure 7.7: Adversarial samples applied to the DNN. (a) 14th iteration of case I. (b)
15th iteration of case I. (c) 10th iteration of case II. (d) 11th iteration of case II.

case I:

• The SDBN output probabilities do not change monotonically when increasing the
iterations of our algorithm.

• At the 20th iteration, the SDBN classifies the target class with a probability of
31.08%, while D(X∗, X) = 7.79.

• At the other iterations, before and after iteration 20, the output probability of
correctly classifying the image as the original class still dominates.

Meanwhile, for case II, we observe that:

• At the 9th iteration, the SDBN misclassifies the image. The probability of classifying
it as a “three” is 50.60%, with a distance D(X∗, X) = 10.91. As a side note, the
probability of classifying it as an “eight” is 49.40%.

• At the other iterations, before and after the 9th, the output probability of classifying
the image as a “five” is higher than 50%.

Predicted
class: 5

Figure 7.8: Output probabilities of the SDBN for the original sample.

266

7.2. NeuroAttack: Externally Triggered Bit-Flips for SNNs

Table 7.3: Results of our simulations for the SDBN.

CASE ITER P MAX CLASS P TARGET CLASS DISTANCE
I 0 82.69 7.64 0
I 20 60.29 31.08 7.79
I 21 66.21 11.80 8.15
II 0 82.69 7.64 0
II 9 0 50.60 10.91
II 10 64.94 12.03 11.76

Comparative Discussion between the SDBN and the DNN

We can notice how the DNN is vulnerable to the attacks generated by our algorithm, while
the SDBN exhibits a very different response to the attack. The output probabilities of the
SDBN do not follow the expected trend but may sporadically lead to a misclassification.
Each image pixel is converted to a spike train. Thus, a slight modification of the pixel
intensity can have unexpected consequences, like incorrect feature detection. The SNN
sensitivity of the targeted attack is clearly different from the DNN sensitivity for a similar
case.

7.1.5 Summary

In this section, the security vulnerabilities of SNNs have been studied and compared
to DNNs. After analyzing the robustness against random noise, a methodology for
generating imperceptible and robust adversarial examples is proposed. The robustness
of SNNs and DNNs against this attack has been analyzed. This study highlights the
different responses against adversarial attacks between SNNs and DNNs. The following
sections further investigate the vulnerabilities of SNNs.

7.2 NeuroAttack: Externally Triggered Bit-Flips for SNNs

Due to their proven efficiency, ML systems are deployed in a wide range of domains. More
specifically, SNNs emerged as a promising solution to the energy-efficiency, accuracy,
and resource-utilization challenges in ML systems. While their deployments are going
mainstream, they suffer from inherent security and reliability issues. In this section,
we propose NeuroAttack, a cross-layer attack methodology that threatens the SNNs’
robustness by exploiting low-level reliability issues through a high-level attack. Notably,
we trigger a fault-injection-based sneaky hardware backdoor through a carefully crafted
adversarial input noise. Our results on DNNs and SNNs show a critical integrity threat
to state-of-the-art ML techniques.

267

7. Security Threats for SNNs on Discrete and Event-Based Data

7.2.1 System Overview
The focus of this work is to show a new attack methodology threatening the integrity of
both the DNNs and SNNs. We design a cross-layer attack that transforms a circuit-level
vulnerability into a system-level security flaw. We exploit memory bit-flips in neural
synaptic weights through a hardware Trojan triggered by a surgical adversarial attack.

To the best of our knowledge, this is the first end-to-end attack against SNNs that exploits
circuit-level backdoors through a high-level input pattern.

In summary, the contributions in this section are as follows:

• We analyze the resilience of SNNs to errors.

• We propose a methodology to trigger a bit-flip attack remotely using an adversarial
input pattern.

• We introduce NeuroAttack, a hardware Trojan triggered by an input noise. We
design and evaluate different versions of the noise pattern triggering the Trojan.

• We show the practicality of our NeuroAttack methodology on DNNs and SNNs, by
converting pre-trained DNNs into the spiking domain.

7.2.2 Bit-Flip Resilience Analysis of SNNs
Statistical Analysis of Random Bit-Flips

In this section, we investigate the resilience of SNNs to random bit-flips in their parameters.
Two different networks, whose architectures are reported in Table 7.4 and Table 7.5, have
been implemented. The first network is the so-called Multilayer Perceptron (MLP), while
the second newtork is the LeNet-5.

Table 7.4: Structure of the Multilayer Perceptron network.

Layer Output shape
Input 784
Dense 1200
Dense 1200
Dense 10

The two networks have been trained for 30 epochs. They reach a test accuracy on the
MNIST dataset of 95.54% for the MLP and 99.05% for the LeNet. Weights and biases
are quantized to 8 bits. The first study is a statistical analysis of both networks. The
bit-flip probability, which represents the probability for which the weights are subjected to
bit-flips, is set between 0% and 95% to have 20 distinct points. The results are averaged

268

7.2. NeuroAttack: Externally Triggered Bit-Flips for SNNs

Table 7.5: Structure of the LeNet network [60].

Layer Output shape Output maps Kernel size Strides
Input (28, 28, 1) - - -

Conv2D (28, 28, 32) 32 (5,5) (1,1)
MaxPool2D (14, 14, 32) - - (2,2)

Conv2D (10, 10, 48) 48 (5,5) (1,1)
MaxPool2D (5, 5, 48) - - (2,2)

Dense 256 - - -
Dense 84 - - -
Dense 10 - - -

Figure 7.9: Accuracy and number of bit-flips vs bit-flip probability for (a) the MLP, and
(b) the LeNet network.

over 5 independent runs. The results of accuracy against the bit-flip probability for the
MLP and the LeNet are shown in Figure 7.9a and Figure 7.9b, respectively.

These results show that the accuracy is significantly reduced in the MLP also for a
low bit-flip probability. However, for networks with many parameters, a high number of
parameters undergo bit-flips even for low values of bit-flip probability. The situation is
clear looking at Figure 7.9a and Figure 7.9b, which depict the average accuracy (right
axis, red line) compared to the average number of flipped bits (left axis, blue line), for
the MLP and the LeNet, respectively. The number of flipped bits with the same bit-flip
probability appears to be more than one order of magnitude lower in the LeNet than in
the MLP. This analysis shows the high resiliency of a neural network whose performance
is only degraded for large errors in the network parameters. However, as demonstrated
in the following section, these networks are only resilient to probabilistic attacks while
showing a very different behavior in the case of targeted errors that an adversary can

269

7. Security Threats for SNNs on Discrete and Event-Based Data

apply.

Bit-Flip with Gradient Search Algorithm

Analysis for the MNIST Dataset: In this section, we discuss a way to reduce the
accuracy of a given network by applying errors to the lowest possible number of bits.
The gradients of the loss function with respect to the network’s parameters are analyzed
similarly to what is done during the learning phase while taking inspiration from the
work of [157]. The gradients computation returns a list of n-dimensional arrays with
the same shape of the parameters. The highest gradient in absolute value is selected
and its corresponding parameter is reconsidered the target parameter. To obtain the
maximum reduction of accuracy, one bit of the target parameter is flipped. Then, the
target parameter is masked to avoid that it is considered at the next iteration. The
results demonstrate that the accuracy is highly reduced for a small number of bit-flips
of the MLP (see the blue line in Figure 7.10) and for the LeNet (see the red line in
Figure 7.10), considering a global analysis of the parameters. Note that only 30 bit-flips
are sufficient to crush the accuracy of the two networks completely.

0 10 20 30 40 50

Figure 7.10: Accuracy vs. number of bit-flips for MLP@MNIST, LeNet@MNIST and
CNN@CIFAR10.

Analysis for the CIFAR10 Dataset: Similar experiments have been also performed
for the CIFAR10 dataset [234], which is composed of 60 000 training and 10 000 test RGB
32 × 32 images. The CNN used in our experiments, whose architecture is reported in
Table 7.6, reaches an accuracy of 79% after 50 epochs of training.

The gradient search algorithm is applied to all the parameters of the network. Similar
results compared to the previous cases are achieved. However, the orange line in
Figure 7.10 shows that the accuracy drop is more emphatic. The accuracy reaches a
plateau at around 10% for only 4 bit-flips, a more critical result than for the LeNet and
the MLP on the MNIST dataset.

7.2.3 NeuroAttack Methodology
Threat Model

The attack phase is supposed to be applied within the supply chain where a malicious
agent can insert hardware Trojans. Indeed, modern integrated circuit design often

270

7.2. NeuroAttack: Externally Triggered Bit-Flips for SNNs

Table 7.6: CNN structure used in the experiments on CIFAR10.

Layer Output shape Output maps Kernel size Strides
Input (32, 32, 3) - - -
Conv2D (32, 32, 32) 32 (3,3) (1,1)
Conv2D (30, 30, 32) 32 (3,3) (1,1)
MaxPool2D (15, 15, 32) - - (2,2)
Dropout 0.25 (15, 15, 32) - - -
Conv2D (15, 15, 64) 64 (3,3) (1,1)
Conv2D (13, 13, 64) 64 (3,3) (1,1)
MaxPool2D (6, 6, 64) - - (2,2)
Dropout 0.25 (6, 6, 64) - - -
Dense 512 - - -
Dropout 0.25 512 - - -
Dense 10 - - -

involves several design houses, fabrication houses, third-party IPs, and electronic design
automation tools that are supplied by different vendors. Such a horizontal production
model makes the security extremely difficult to preserve during the supply chain [286].
Moreover, the attack is in a grey-box setting, i.e., the attacker has complete knowledge of
the systems’ architecture and internal parameters but is unaware of the training dataset
and training hyperparameters.

Hardware Trojan Design

The hardware Trojan is designed to perform fault injection (i.e., bit-flips) in the network
parameters to degrade its accuracy and undermine its integrity. The malicious behavior
is triggered through a specifically crafted input noise. The idea is to trigger fewer hidden
hardware Trojans built in the circuit during the supply chain. Taking advantage of
the previous analyses, hardware stealthy Trojans are inserted at appropriate locations.
Each Trojan consists of a 2-way multiplexer where one input is the original bit, and
the other input is the complemented bit derived through an inverter. The multiplexer’s
selection signal is at the logic value high only if a trigger is added to the input image.
Therefore, the network will behave correctly when a new input is supplied, providing
high accuracy for the clean dataset. However, if a trigger is inserted in the input image
in the form of hidden noise, the fault injections will be activated, and the accuracy will
be degraded significantly. The setting is explained in Figure 7.11, in which the grey
neuron is the target neuron and the orange arrows represent the synapses with bit-flip
applied. To generate the selection signal of the multiplexers, the output of the target
neuron is compared against a threshold chosen according to the results of our experiments.
Note that the goal of the trigger is that neuron’s output exceeds the threshold when the
perturbation is added to the image, and not when the clean input is given. The first step
of the methodology is to select a particular neuron that satisfies the desired behavior.

271

7. Security Threats for SNNs on Discrete and Event-Based Data

To transfer the approach from the DNN to the SNN domain, a counter accumulates
the number of spikes at the input of the comparator. Moreover, the threshold must be
converted from its analog value to the corresponding spike rate. The counter is reset at
the end of the processing of every input.

out
ce
clk

clr

TARGET
NEURON

INPUTS

OUTPUTS

COMPARATOR

THRESHOLD

COUNTER

w
ei

gh
t(

8-
bi

tq
ua

nt
iza

tio
n)

Trigger Pattern Design Hardware Implementation

Figure 7.11: Scheme of the Trojan attack for the MLP with the counter added present
only in SNN implementation.

Trigger Pattern Design

Since there is a direct relationship between the analog output value of a neuron and
its corresponding spike rate, the knowledge learned through the DNN analysis can be
transferred to the SNN implementation. Moreover, a good correlation between analog
values and spike rates is necessary when using the SNN toolbox for the DNN-to-SNN
conversion. We aim to embed the trigger into one neuron of the network, called the target
neuron. In other words, the objective of our proposed technique is that such a target
neuron fires in the presence of a carefully designed mask in the input image. The design
is composed of several steps:

• Selecting the target layer: the choice of the target neuron strongly depends on
the target layer selection. In the case of a CNN, the layer choice is directly related
to the choice of the size of the trigger mask. The reason is that neurons belonging
to deeper Conv layers are connected to a larger input image area. The higher the
order of the layer, the larger the image area that will account for the trigger. In
the first Conv layer, the position, shape, and value of the gradients are quite clear
and correspond to the feature map of the neurons. The gradients cover the entire
image for neural networks with only dense layers (e.g., MLPs). In this case, if a
smaller trigger pattern is desired, a mask that does not comprehend the entire area
covered by the gradients can be crafted.

272

7.2. NeuroAttack: Externally Triggered Bit-Flips for SNNs

• Choosing the target neuron: The target neuron is selected as the one with
the highest value among the sum of absolute values of weights connected to the
neurons of the previous layer. This is modeled by Equation (7.5).

argmaxt(
N�

i=1
ABS(Wlayeri,t

)) (7.5)

• Choosing the triggering mask: A random initial image is generated, and the
network is inferred with that image, leading to a value initialOUT P UTk

at the output
of the target neuron. The parameter targetOUT P UTk

is chosen to be much higher
than initialOUT P UTk

. A cost function is then defined in Equation (7.6), where
δi = targetOUT P UTi − initialOUT P UTi , i is the index of each neuron in the target
layer.

cost =
�N

i=1 δ2
i

N
(7.6)

Let k be the index of the target neuron. We redefine the above expression as in
Equation (7.7).

cost = δ2
1 + δ2

2 + ... + δ2
k + ... + δ2

N

N
(7.7)

For each δi it is imposed that targetOUT P UTi = initialOUT P UTi except for δk,
where targetOUT P UTk

̸= initialOUT P UTk
. To understand which part of the image

influences the target neuron, the derivative of the cost function is computed w.r.t.
the pixels of the random input image. Based on this, a mask M is created, and a
random initial trigger is generated through the dot product between the mask and
the random initial image. The mask may also be chosen differently, but it must
overlap with the gradient matrix.

• Generating the trigger: The trigger generation algorithm (see Algorithm 24) is
inspired by the work of Liu et al. [287]. In the first line, the initialization parameters
are set. valmin and valmax help manage the trigger imperceptibility but should
always lie in the range (0, 1). The loop iterates until the cost reaches a specific
threshold or until a maximum number of iterations. The gradients ∆ are first
computed and then limited by a mask suited for the gradients. Compared to the
algorithm in [287], line 6 is added to limit the minimum and maximum values for
the pixels in the trigger.
At the end of the loop, the trigger is generated with pixels’ values optimized to
induce the saturation of the target neuron. If the parameter targetOUT P UTk

is
too high, the target neuron will reach a lower value, which we call finalvaluek

. A
threshold is chosen such that, if the neuron’s output value exceeds the threshold,
the output of the comparator is set to logic high, and the multiplexers are switched.

273

7. Security Threats for SNNs on Discrete and Event-Based Data

Algorithm 24: Trigger generation loop.
1 Initialize: valmin, valmax, lr, epc, epochs, th, cost;
2 while cost < th and epc < epochs do
3 ∆ = ∂cost

∂x
;

4 ∆ = ∆ · M ;
5 x = x − lr · ∆;
6 x = clip(x, valmin, valmax);
7 epc = epc + 1;
8 return x;

Consequently, for each targeted weight, the selected bit is complemented. The
threshold is calculated through Equation (7.8), where ξ is a parameter that depends
on the network architecture and the attack method.

threshold = finalvaluek
− ξ, (7.8)

• Trigger application: The trigger can be applied to the image in two ways: (1)
as a stamp applied to the image or (2) as a noise added to the image. In the first
case, the pixel values in the trigger region are exactly the optimal ones generated
by the loop described in lines 2-7 of Algorithm 24. However, this solution could be
less imperceptible. In that case, a careful selection of the layer and trigger mask
parameters (position, dimension, maxval) should be made. The second case could
be of more general interest since it produced good imperceptibility results, as shown
in the following Section 7.2.4. Moreover, knowing the pixel intensity distribution
helps to choose the trigger parameters.

7.2.4 Evaluation of the NeuroAttack Methodology
Experimental Setup

Both the original and the modified dataset are used for inference, and the number of times
both datasets make the target neuron exceed the threshold is recorded. Possibly, some
images from the original dataset saturate the neuron, causing an undesired activation
of the Trojans for an exceedORIGINAL amount of times. However, to obtain a stealthy
attack, a carefully crafted trigger should lead to keeping this value to almost zero.
Hence, the accuracy is not noticeably reduced if the input trigger is not present. We call
dimDAT ASET the number of images in the dataset, exceedORIGINAL the number of images
from the original dataset in which the threshold is exceeded, and exceedMODIF IED the
number of images from the modified dataset in which the threshold is exceeded. Therefore,
the attack aims at being both practical and stealthy, and thereby simultaneously satisfy
the following conditions:

274

7.2. NeuroAttack: Externally Triggered Bit-Flips for SNNs

1. exceedORIGINAL << exceedMODIF IED

2. exceedORIGINAL << dimDAT ASET

3. exceedMODIF IED ≃ dimDAT ASET

The results obtained using the MNIST and CIFAR10 datasets on the MLP, LeNet and
CNN networks are discussed in the following sections.

Results on the MNIST dataset

Targeting the first Conv layer of the LeNet-5 with parameters reported in the first row
of Table 7.7, the trigger shown in Figure 7.12d is produced.

Table 7.7: Structure of the networks, parameters, and results for our experiments.

Net Layer valmax ξ targetOUT P UTk
initialV ALk

finalV ALk
exceedORIGINAL exceedMODIF IED

MNIST LeNet 1st Conv2D 0.3 0.1 100 0.04 0.21 0 10000
MNIST LeNet 2nd Conv2D 0.3 0.1 100 0.08 1.56 5 7585
MNIST MLP 1st Dense 0.1 0.1 100 0.05 1.21 15 9904

CIFAR10 CNN 1st Conv2D 0.3 0.1 100 0.02 0.23 4 10000

(a) (b) (c) (d) (e) (f)

Figure 7.12: Process of trigger generation in the first Conv layer of the LeNet. (a) Initial
input trigger. (b) Gradients of the selected neuron. (c) Mask created through gradients.
(d) Final trigger after loop. (e) and (f) are two images with the applied trigger.

Figures 7.12a, b, and c show the random initial image, the initial gradient values, and
the mask M, respectively. The mask is crafted to reflect the shape of the gradients. The
images from both the original and modified test sets (two examples from the latter are
shown in Figures 7.12e and f) are inferred. The results are reported in Table 7.7, where
exceedORIGINAL = 0 and exceedMODIF IED = 10000.

Targeting the second Conv layer, the obtained results are significantly different. The
trigger is more perceptible and overlapped to a significant part of the images, as can
be seen in Figure 7.13. In this case, with the same experimental settings, the obtained
statistics are exceedORIGINAL = 5 and exceedMODIF IED = 7585, as also reported in
Table 7.7.

This demonstrates that targeting a neuron in the second Conv layer leads to a relatively
worse result. In fact, we can observe that, on average, the gradients are higher than
the gradients corresponding to a target neuron in the first Conv layer. We define
the correlation between the target neuron and the masked area of the image S as in

275

7. Security Threats for SNNs on Discrete and Event-Based Data

(a) (b) (c) (d) (e) (f)

Figure 7.13: Process of trigger generation in the second Conv layer of the LeNet. (a) Initial
input trigger. (b) Gradients of the selected neuron. (c) Mask created through gradients.
(d) Final trigger after loop. (e) and (f) are two images with the applied trigger.

Equation (7.9), where γi,j is the gradient corresponding to the pixel with indexes i,j in
the trigger mask, and M is the size of the side trigger, in case of a square trigger.

S =
�N

i,j γi,j

M2 (7.9)

It can be seen that in the first convolution layer S = 2.21 · 10−5, whereas in the second
convolution layer S = 1.4 · 10−6. This clearly shows that for a neuron in the 2nd layer, the
variation with the input pixel is much lower. If we call ρ the value in Equation (7.10), we
can see that it is getting lower when choosing target neurons belonging to deeper layers.

ρ = exceedMODIF IED − exceedORIGINAL (7.10)

Considering the MLP, a square mask is created and put in the bottom-right corner. Its
side is varied between 5 and 17 pixels, with steps of 2 pixels. Since, in the beginning, the
area of the trigger is too small, there are not enough pixels to optimize the saturation of
the target neuron. The difference between initialvaluek

and finalvaluek
results in a small

value. Moreover, a huge number of images from the original dataset make the target
neuron exceed the threshold, leading to a small value of ρ. On the one hand, a larger
area of the trigger increases ρ as can be seen in Figure 7.14 and, on the other hand, it
leads to a less stealthy trigger.

In the case of the MLP network, an interesting result is obtained with a lower value of
valmax = 0.1. Even though we are targeting the first layer, the gradients are covering the
complete image (Figure 7.15b) since it is an FC layer. Hence, we create a mask suited for
the gradient, which spans across the whole image, as shown in Figure 7.15c. In this case,
the trigger is applied as a noise in the image. Due to the low value of valmax, the trigger
is imperceptible, as shown in Figures 7.15e and f. We obtained a very high ρ, shown in
Table 7.7, and high imperceptibility at the expense of more challenging applicability.

Results on the CIFAR10 dataset

In this case, targeting the first layer, with parameters set as shown in Table 7.7, the
trigger shown in Figure 7.16d is produced. The superposition of the trigger on the original
images (two examples) is shown in Figures 7.16f and h.

276

7.2. NeuroAttack: Externally Triggered Bit-Flips for SNNs

Figure 7.14: Plot of ρ with respect to the trigger size.

(a) (b) (c) (d) (e) (f)

Figure 7.15: Process of trigger generation in the first layer of the MLP. (a) Initial input
trigger. (b) Gradients of the selected neuron. (c) Mask created through gradients.
(d) Final trigger after loop. (e) and (f) are two images with the applied trigger.

(e) (f) (g) (h)

(a) (d)(b) (c)

Figure 7.16: Process of trigger generation in the first layer of the CNN for the CIFAR10
dataset. (a) Initial input trigger. (b) Gradients of the selected neuron. (c) Mask
created through gradients. (d) Final trigger after loop. (e) First image from the dataset.
(f) First image with trigger applied. (g) Second image from the dataset. (h) Second
image with trigger applied.

277

7. Security Threats for SNNs on Discrete and Event-Based Data

Hardware Overhead

Given the amount M of bit-flips applied, the hardware overhead is constituted as the
following.

1. M inverters, constituted by 2 transistors each.

2. M 2-way multiplexer, constituted by 16 transistors each in a 4 NANDs implemen-
tation.

3. In the case of a DNN, a digital comparator, whose complexity depends on the
neuron’s fanout.

4. In the case of an SNN, a counter to count the spikes, and a comparator to check
when the counter reaches a particular value.

The overhead of multiplexers and inverters can be estimated as (2 + 16) × M . From the
experiments reported in Section 7.2.2, it is clear that an amount of about just 30 bit-flips is
enough to completely crash the performances of the DNN for the two networks operating
on the MNIST dataset, or 4 bit-flips in the case of the CNN operating on the CIFAR10
dataset. The hardware overhead of inverters and multiplexers, calculated in terms of
transistors, is about (2+16)×30 = 540 in the first case, whereas it is just (2+16)×4 = 72
in the second case. In the case of an SNN, a counter is added, whose module should be at
least as large as the maximum spiking rate a neuron can have. The number of transistors
needed for a module N counter is given by #transistors = (N − 2) × 6 + (N × 4) × 4,
where the first addend gives the contribution of the AND gates, whereas the second gives
the contribution of the T-type flip-flops.

7.2.5 Summary

The proposed NeuroAttack methodology exploits the bit-flip resilience analysis to design
a stealthy hardware Trojan that flips the most significant weight bits of an SNN or a
DNN. The backdoor Trojan is triggered by a carefully-crafted adversarial pattern, which
is, in practice, imperceptible elsewhere. The proposed attack represents a critical threat
to the trustworthiness of both DNNs and SNNs. It is applicable in practice with little
hardware overhead, while it does not affect the internal structure of SNNs. However,
as will be demonstrated in the following Section 7.3, the SNNs have higher inherent
robustness compared to DNNs. Moreover, it can be further enhanced by tuning its
structural parameters, like the threshold voltage and the time window for sampling the
spikes.

278

7.3. Robust SNN Methodology through Inherent Structural Parameters

7.3 Robust SNN Methodology through Inherent
Structural Parameters

Recent works [207][208] showed the inherent robustness of SNNs to security attacks
without considering the variability in their structural spiking parameters. This section
explores the security enhancement of SNNs through internal structural parameters.
Specifically, we investigate the SNN robustness to adversarial attacks with different values
of the neuron’s firing voltage thresholds and time window boundaries. We thoroughly
study the SNNs’ security under different adversarial attacks in the strong white-box
setting, with different noise budgets and under variable spiking parameters. Our results
show a significant impact of the structural parameters on the SNNs” security, and
promising sweet spots can be reached to design trustworthy SNNs with 85% higher
robustness than a traditional non-spiking DNN system. To the best of our knowledge,
this is the first work that investigates the impact of structural parameters on the SNNs’
robustness to adversarial attacks.

7.3.1 System Overview
While the reliability and security of traditional (i.e., non-spiking) DNNs against adversarial
attacks have been thoroughly studied, the corresponding analysis of the SNNs’ robustness
is still under-explored. Due to their bio-inspired aspect, higher behavioral dimensions are
present in SNNs compared to non-spiking DNNs. Therefore, a more comprehensive study
is required to understand the inherent behavior of SNNs, especially under adversarial
attacks. Towards this, the following key questions need to be investigated:
(Q1) How do the spiking structural parameters (i.e., threshold voltage and time window)
affect the SNNs’ behavior under attack?
(Q2) Are SNNs inherently robust against adversarial attacks, regardless of the structural
parameters?
(Q3) Does a combination of structural parameters that provides high accuracy also
guarantee high robustness?

To address these research questions, the following key contributions are proposed:

• We propose a systematic methodology for analyzing the SNN robustness. We
are the first to explore the impact of neurons’ structural parameters (i.e., spiking
threshold voltage Vth and time window boundary T) on the SNNs’ robustness
against the strong white-box adversarial attacks.

• The SNN learnability and security studies show that the SNNs’ inherent robustness
is strongly conditioned by these structural parameters.

• We design trustworthy SNNs, by fine-tuning their structural parameters around the
previously-found sweet spots. For instance, a 5-layer SNN trained on the MNIST
dataset achieves up to 84% accuracy improvement compared to a corresponding
CNN when the PGD attack with ε = 1.5 noise budget is applied.

279

7. Security Threats for SNNs on Discrete and Event-Based Data

7.3.2 Case Study Analysis: Comparison DNNs vs. SNNs with the
same Architectural Model

To highlight the importance of the problem, we conducted a motivational case study. We
trained a 5-layer CNN, with 3 Conv layers and 2 FC layers on the MNIST dataset [60]
using the PyTorch framework [72], and an SNN with the same number of layers and
neurons per layer with the Norse framework [288]. We applied the white-box PGD
attack [24] on both networks and monitored the accuracy variation w.r.t. the noise
budget ε. The results reported in Figure 7.17 indicate that the CNN has higher accuracy
for low noise magnitude. However, after the turnaround point of ε = 0.5, the SNN clearly
shows a more robust response to the attack than its CNN counterpart, with an accuracy
gap higher than 50%. For ε > 0.5, the accuracy of the CNN decreases sharply, while
the slope for the accuracy drop in the SNN is lower. This outcome motivated us to
investigate the inherent robustness of the SNNs further.

Turnaround point

DNN more accurate SNN more robust
>50% gap

Figure 7.17: PGD adversarial attack applied to a CNN and an SNN that have the same
number of layers with equal size and an equal number of neurons.

These experiments give a quick overview of the high potential of SNNs in terms of security
compared to traditional DNNs. However, while these experiments are run using the
default SNN structural parameters, one cannot generalize this observation until a deeper
analysis is made.

7.3.3 Threat Model

Adversary Knowledge

In our experiments, we assume the strongest case where an attacker is attempting to design
adversarial attacks to fool an SNN classifier in a white-box attack scenario. We assume
a powerful attacker who has the full knowledge of the victim classifier’s architecture
and parameters (including the structural parameters Vth and T). The attacker uses this
knowledge to create adversarial examples.

280

7.3. Robust SNN Methodology through Inherent Structural Parameters

Attack Generation

We evaluate the SNNs’ robustness using one of the most widely used attacks, the PGD [24].
It is one of the strongest iterative variants of the FGSM where the adversarial example is
generated following Equation (7.11).

xt+1 = PSx(xt + α · sign(∇xLθ(xt, y))) (7.11)

Where PSx() is a projection operator projecting the input into the feasible region Sx, and
α is the additive noise at each iteration. The PGD attack tries to find the perturbation
that maximizes the loss of a model on a given sample while keeping the perturbation
magnitude lower than a given budget. It is an iterative gradient-based attack that is
considered a high-success attack.

7.3.4 Robustness Exploration Methodology
Our study explores the SNNs’ robustness under different adversarial noise budgets, and
this, for different (Vth, T) parameters combinations. Figure 7.18 gives an overview of
different components of our methodology. It is composed of the following two main
steps. (1) The first step of the exploration is meant to exclude combinations of structural
parameters that are not propitious for efficient learning in SNNs. Indeed, there is no
interest in studying the robustness of SNNs with low baseline performance. (2) In the
second step, for all (Vth, T) settings that enable the SNN training to converge efficiently,
we proceed with a robustness exploration.

SNN (Vi, Tj)

Voltage
Threshold Vi

Time
Window Tj

Adversarial
Noise ε

Training in
Spiking
Domain

SNN
Architecture

Learnability Analysis

Security Analysis

Generate
Adversarial

Attacks

Robustness
Evaluation of
SNN(Vi, Tj, ε)

Output:
Trustworthy
SNN Design

Robust
Combinations

of (Vi, Tj)

Does
SNN(Vi, Tj)

learn?

1

2

Figure 7.18: Methodology steps for exploring the SNN robustness, varying the threshold
voltage Vth, the time window T , and the adversarial perturbation ε.

Algorithm 25 details our robustness exploration methodology. Lines 1 and 2 browse the
n threshold voltages and m time windows to explore. Once the training is launched
(line 3), we proceed to the SNN learnability study for the given combination (Vth, T). As

281

7. Security Threats for SNNs on Discrete and Event-Based Data

shown in line 4, the learnability is quantitatively verified by setting a minimum baseline
accuracy level below which we consider the SNN learning inefficient. This value depends
on the SNN architecture, learning method, dataset, and application. In our case study,
we use this accuracy threshold equal to 70% as it is typically achieved by state-of-the-art
SNNs [288].

The security analysis starts from line 5. It generates adversarial examples with different
noise budgets to fool the SNN. The noise budget models the aggressiveness allowed
within the attack generation; the higher the noise budget, the more aggressive the attack
is. First, the counter of successful attack generation cases is initialized (line 6). Then,
we browse the dataset D (line 7) to generate the adversarial attacks using PGD, as
shown in line 8. Afterward, the algorithm verifies if the generated example can fool the
SNN (lines 9-10), i.e., if the attack forced the output to a wrong label, and accordingly
increment the adversarial success counter. Then the robustness is evaluated for every
ε value as the rate of attacks for which the adversary failed to generate an adversarial
example that fools the victim SNN (line 11). Hence, by tracking the accuracy slope w.r.t.
ε, we can compare the robustness of each model to adversarial attacks.

Algorithm 25: Robustness Exploration Algorithm.
Inputs:
Membrane Voltage Thresholds: V th = Vi /i ∈ [1, n];
Spiking Time Windows: T = Tj/j ∈ [1, m];
Adversarial Noise Budgets: ε = εk /k ∈ [1, p];
SNN Architectures: Sij = SNN(Vi, Tj);
Labeled Test Set: D = (Xt, Lt);
Accuracy threshold: Ath

Output: Robustness Level
1 for i ← 1 to n do
2 for j ← 1 to m do
3 Train(Sij = SNN(Vi, Tj));
4 if Accuracy(Sij) ≥ Ath then

// Sij learns
5 for k ← 1 to p do
6 Adv = 0;
7 for Xt ← 1 to < D > do

// Adversarial Attack
8 X∗

t = PGD(Sij , εk, Xt);
9 if Sij(X∗

t) ̸= Lt then
10 Adv++ ;

11 Robustness (εk)= 1 − Adv
<D> ;

282

7.3. Robust SNN Methodology through Inherent Structural Parameters

7.3.5 Evaluation of the SNNs’ Robustness
Experimental Setup

Our experiments are performed using Norse [288], a library that expands PyTorch [72]
with primitives for bio-inspired neural components, thereby allowing to train and run
SNNs in the spiking domain. The adversarial attacks are implemented using Foolbox
v3.1.1 [289]. The SNN architecture is a Lenet-5 adapted to the spiking domain using the
LIF neuron model and trained on the MNIST database [60]. The experiments are run on
an Nvidia GeForce RTX 2080 Ti GPU.

Learnability Study

Before studying the robustness when varying the structural parameters, we need to define
our exploration space. The default values of the threshold voltage and time window
parameters are (Vth, T) = (1, 64). Therefore, we focus on having an overview of the
learnability of SNNs in the neighborhood of these settings. Figure 7.19 shows the accuracy
heat map for different (Vth, T) combinations. The horizontal and vertical axes denote
Vth and T , respectively. Different colors denote the accuracy of the SNN. Note that the
highest-accuracy combination tends to be towards the top-left corner, i.e., low Vth and
high T . However, the heat map is not monotonic. For example, there are combinations
with an accuracy lower than 16%, surrounded by combinations with an accuracy higher
than 89%.

Vi

T j

High-accuracy
region

Non-monotonic
behavior

Figure 7.19: Heat map showing the accuracy of SNNs trained on the MNIST dataset
under different combinations of Vth and T .

While it is evident that studying the robustness of non-learnable combinations is not
useful, we use this map as a reference to track the behavior of SNNs under attack with
different noise budgets.

283

7. Security Threats for SNNs on Discrete and Event-Based Data

Security Study

In this section, we investigate the robustness of SNNs while increasing the attacks’
adversarial noise magnitude in a white-box scenario. We first proceed to a holistic
exploration under all previous combinations of Vth and T . Figure 7.20 shows the accuracy
degradation of SNNs under the PGD attack with noise magnitudes of 1 and 1.5.

(b) Security Analysis (Ɛ=1.5)

ViRelatively high
robustness

(a) Security Analysis (Ɛ=1)

Vi

T j

Different
robustness

T j

Figure 7.20: Heat maps showing the SNN accuracy for the MNIST dataset using different
combinations of (Vi, Tj). (a) Security analysis for ε = 1. (b) Security analysis for ε = 1.5.

The first fascinating insight we extract from Figure 7.20 is that high baseline learnability
(without adversarial attacks) is not a guarantee of robustness. Moreover, we notice
a different evolution of the SNNs w.r.t. adversarial attacks based on their respective
structural parameters. More specifically, two SNNs with a starting comparable accuracy
may have different behaviors under attack. For example, both combinations (Vth, T) =
(0.5, 80) and (Vth, T) = (0.75, 72) start with 97% accuracy. However, while the accuracy
of the first combination (as highlighted in Figure 7.20a) drops to 27% under ε = 1 attack
budget, the second loses only 6% of its initial accuracy under the same attack noise
magnitude.
Figure 7.20b shows a more accentuated behavior for large adversarial perturbations
(ε = 1.5), where more than half of the heat map has SNN accuracies lower than 20%. It
is interesting to note that the accuracy of the SNN with (Vth, T) = (0.75, 48) has dropped
to 2% when ε = 1.5, while it was relatively higher (86%) when ε = 1. On the other hand,
the SNN with (Vth, T) = (1, 80) shows relatively high robustness against the PGD attack
since the SNN accuracy has not dropped much (from 72% when ε = 0 and ε = 1 to 66%
when ε = 1.5).

CNNs’ vs. SNNs’ Robustness Comparison

In this section, we analyze a set of insightful (Vth, T) combinations and track their impact
on the SNNs’ robustness compared to the Lenet-5 CNN trained on the same dataset.

284

7.3. Robust SNN Methodology through Inherent Structural Parameters

Figure 7.21 compares the robustness of SNNs with different structural parameters w.r.t.
its correspondent CNN. This figure shows the impact of structural parameters on SNNs’
security in a more detailed fashion. In fact, while the combination (Vth, T) = (2.25, 56)
achieves lower robustness than the CNN, up to 85% higher robustness is reached by the
combination (Vth, T) = (1, 48). Another interesting case is represented by the combination
(Vth, T) = (1, 32), whose clean accuracy is only 78% (as highlighted in Figure 7.21), while
it has 75% higher accuracy than the CNN when a strong noise budget (i.e., ε > 1) is
applied.

2

Low clean
accuracy

Higher
robustness
than CNN

Figure 7.21: Robustness of SNNs tested on MNIST with different Vth and T parameters
under the PGD attack and compared to the Lenet-5 CNN.

7.3.6 Summary

In this section, the robustness of DNNs and SNNs has been studied, and the reasons for
the higher SNN robustness against adversarial attacks have been highlighted. Moreover,
the proposed robustness exploration methodology enables fine-tuning of the structural
parameters of the SNNs to increase their robustness. The evaluations show that these
structural parameters have a strong impact on the SNN robustness, and a dedicated
exploration is required before employing SNNs for safety-critical applications. These
findings make SNNs attractive solutions for robust and efficient deep learning systems.

While the above-discussed analyses in this chapter focus on the SNN security for discrete
data, the SNNs have shown high-efficiency gains when they operate from event-based
data, e.g., by receiving a stream of events captured by a DVS camera as input. Towards
this, the security-related issues for event-based SNNs are discussed in the following
Section 7.4 and Section 7.5.

285

7. Security Threats for SNNs on Discrete and Event-Based Data

7.4 R-SNN: A Methodology for Robustifying SNNs
through Noise Filters for DVS

SNNs aim to provide energy-efficient learning capabilities when deployed on neuromorphic
chips with event-based DVS cameras. This section studies the SNNs’ robustness against
adversarial attacks on such DVS-based systems and proposes R-SNN, a novel methodology
for robustifying SNNs through DVS-noise filtering. We generate adversarial attacks
on DVS signals and apply noise filters for DVS sensors to defend against adversarial
attacks. Our results demonstrate that the noise filters successfully prevent the SNNs
from being fooled. The SNNs in our experiments achieve more than 90% accuracy on the
DvsGesture [135] and NMNIST [290] datasets under different adversarial threat models.

7.4.1 System Overview
Similar to the issue of traditional DNNs, the SNNs’ trustworthiness is also threatened
by adversarial attacks. Although some preliminary studies have been conducted, such a
problem is unexplored for event-based SNN systems. As a starting point, the techniques for
designing robust SNNs can be inspired by the recent advancements in defense mechanisms
for DNNs, where adversarial learning algorithms, loss/regularization functions, and image
preprocessing have emerged. The latter approach consists of suppressing the adversarial
perturbation through dedicated input filtering. Noteworthy, for SNN-based systems fed
by DVS cameras, the attacks and preprocessing-based defenses for frame-based sensors
cannot be directly deployed due to differences in the signal properties. Hence, specialized
noise filters for DVS sensors [222] must be employed.

The impact of DVS signal filtering for secure neuromorphic computing is a new and open
research problem. Towards this, we devise R-SNN, a novel methodology that employs
attack-resistant noise filters on DVS signals as a defense strategy for robustifying SNNs
against adversarial attacks. Since the DVS cameras also contain temporal information,
the generation process of adversarial perturbation is technically different compared
to traditional adversarial attacks on images, in which only the spatial information is
considered. Therefore, the temporal information must be leveraged to develop a robust
defense.

In short, our key contributions are the following:

• We analyze the impact of noise filtering for DVS under multiple adversary threat
models, i.e., by placing the filter at different stages of the system or assuming
different knowledge of the adversary.

• We generate adversarial perturbations for the DVS signal to attack SNNs.

• R-SNN Design Methodology: we propose a methodology to apply specialized DVS-
noise filters for increasing the robustness of SNNs against adversarial attacks.

286

7.4. R-SNN: A Methodology for Robustifying SNNs through Noise Filters for DVS

• Our experimental results exhibit high SNN robustness against adversarial attacks
under different adversary threat models.

7.4.2 Case Study Analysis: SNN Robustness against Random Noise
As a preliminary analysis for motivating our study in the above-discussed research
directions, we conduct the following experiments. We trained a 4-layer Spiking CNN,
with 2 Conv layers and 2 FC layers, for the DvsGesture dataset [135] using the SLAYER
method [119] on an ML-workstation with two Nvidia GeForce RTX 2080 Ti GPUs. For
every frame of events, we inject uniform and normally-distributed random noise in the
testing dataset, and we measure the classification accuracy. Moreover, to mitigate the
effects of the perturbations, the filter of [222] is applied, with different spatio-temporal
parameters (s and t). The obtained accuracy w.r.t. different noise magnitudes are shown
in Figure 7.22. As highlighted in the figure, the filter slightly reduces the accuracy of the
SNN when no noise is applied. However, the SNN becomes more robust when the filter
is applied in the presence of noise. For instance, when considering normally-distributed
noise with a magnitude of 0.55, the filter with s = 1 and t = 5 improves the accuracy by
64%. Such a filter works even better when uniformly-distributed noise is applied. Indeed,
the perturbations with a large magnitude of 0.85 and 1 are filtered out well as the SNN
maintains a relatively high accuracy of 85% and 74%, respectively.

Slight accuracy
drop due to

the filter

High
robustness

Figure 7.22: Analyzing the impact of applying the normal and uniform noise to the
DvsGesture dataset.

7.4.3 R-SNN Methodology
Noise Filters for Dynamic Vision Sensors

Event-based cameras [136] are bio-inspired sensors for acquiring visual information directly
correlated to the light variations in the scene. The DVS cameras work asynchronously, not
recording frames with precise timing. Instead, the sensors record negative and positive

287

7. Security Threats for SNNs on Discrete and Event-Based Data

brightness variations in the scene. Thus, each pixel encodes a brightness change in the
scene. Pixels are independent and can record both positive and negative light variations.
The event-based sensors consume significantly less power than classical frame-based
image sensors since the data is recorded only when a brightness variation is detected in
the scene. Therefore, no information is recorded in the absence of light changes, leading
close to zero power consumption. Therefore, DVS sensors can be efficiently deployed on
edge devices and directly coupled to neuromorphic hardware for SNN-based applications.

DVS sensors are mainly subjected to background activity noise caused by thermal activity
and junction leakage current [291]. When the DVS is stimulated, a window of neighbor
pixels activates simultaneously, generating events. Therefore, the actual events show a
higher spatio-temporal correlation than the noisy events. This empirical observation is
exploited for filtering out the noise [222]. The correlation between events in a spatio-
temporal neigborhood is computed. If the correlation is lower than a specific threshold,
the events are likely capturing noise and are filtered out. Otherwise, they are kept. The
procedure is reported in Algorithm 26, where s and t are the only filter parameters used
to determine the dimensions of the spatio-temporal neighborhood. For large values of s
and t, only a few events are filtered out. The filter’s decision is made by the comparison
between te − M [xe][ye] and t (lines 8-9 of Algorithm 26).

Algorithm 26: Noise filter in the spatio-temporal domain.
Inputs:
a list of events E in the form (xe, ye, pe, te), which correspond to the x-coordinate,
the y-coordinate, the polarity, and the timestamp of the event e, respectively
a 128 × 128 matrix M
the spatial and temporal filter parameters s and t
Output: a filtered list of events E

1 Initialize M = 0;
2 Order the events E from the oldest to the newest;
3 for e in E do
4 for i in (xe − s,xe + s) do
5 for j in (ye − s, ye + s) do
6 if not (i == xe and j == ye) then
7 M [i][j] = te;

8 if te − M [xe][ye] > t then
9 Remove e from E;

Adversarial Attacks in the Spatio-Temporal Domain

Currently, adversarial attacks are deployed in many DL applications. They represent a
serious threat to safety-critical applications. A successful attack aims to generate small
perturbations to fool the network. Recently, some preliminary studies on adversarial

288

7.4. R-SNN: A Methodology for Robustifying SNNs through Noise Filters for DVS

attacks for SNNs have been conducted [202][204]. However, these previous works do not
analyze the attacks on frames of events coming from DVS cameras.

For the adversarial attacks on images, the perturbations are introduced in the spatial
domain only. However, when considering adversarial attacks on videos, which are
sequences of image frames, the attack algorithm can also perturb the temporal domain.
While it is expected that the perturbations added to one frame propagate to other frames
through temporal interaction, perturbing only a sparse subset of frames makes the attack
stealthy. Indeed, state-of-the-art attacks on videos only add perturbations to a few
frames, which propagate to other frames to misclassify the video.

Adversary Threat Models

In our experiments, we assume different threat models in the system setting, shown in
Figure 7.23. In all three scenarios, the given adversarial attack algorithm perturbs the
frames of events generated from the DVS camera to fool the SNN. In the threat model A⃝,
the attacker has access to the frames of events at the input of the SNN. In the threat
model B⃝, the DVS noise filter is inserted in the system in parallel to the adversarial
perturbation conducted by the attacker. It means that the attacker is unaware of the
filter. Since, under these assumptions, the attack could be relatively weak, we also
analyze the threat model C⃝, in which the attacker is aware of the presence of the DVS
noise filter. In such a scenario, the filter is seen as a preprocessing step and embedded in
the attack loop.

Frame of
Events

Adversarial
AttackEnvironment DVS Camera SNN on Neuromorphic

Hardware

Class

Pr
ob

ab
ili

ty

Output

Frame of
Events

Environment DVS Camera SNN on Neuromorphic
Hardware

Class

Pr
ob

ab
ili

ty

Output

Noise
Filter

Frame of
Events

Environment DVS Camera SNN on Neuromorphic
Hardware

Class

Pr
ob

ab
ili

ty

Output

Noise
Filter

A

B

C

Figure 7.23: Adversarial threat models considered in this work. (a) The adversary
introduces adversarial perturbations to the frames of events at the input of the SNN.
(b) The noise filter is inserted as a defense to secure the SNNs against adversarial
perturbations while the adversary is unaware of the filter. (c) The adversary is aware of
the presence of the noise filter and sees it as a preprocessing step of the SNN.

289

7. Security Threats for SNNs on Discrete and Event-Based Data

Adversarial Attack Generation for Frames of Events

The generation procedure for the adversarial attack for frames of events works as follows.
Inspired by the algorithms of attacks for frame-based videos, we devise the specialized
attack algorithm for the DVS signal. Algorithm 27 describes the step-by-step procedure of
our methodology. It is an iterative algorithm that progressively computes the perturbation
values based on the SNN’s loss function (lines 2-17 of Algorithm 27) for every frame series
of the dataset D. A mask M decides in which subset of event frames the perturbation
should be added (line 3 of Algorithm 27). Then, the output probability and its respective
loss, computed in the presence of the perturbation, are obtained in lines 5 and 6 of
Algorithm 27. Finally, the perturbation values are calculated based on the input gradients
w.r.t. the loss.

Algorithm 27: The SNN Adversarial Attack Methodology.
Inputs:
a mask M able to select only certain frames
a dataset D composed of DVS images
a perturbation P to be added to the images
the output probability prob of a certain class
Output: perturbed dataset

1 for d in D do
2 for i in max_iteration do
3 Add P to d only to the frames selected by M ;
4 Calculate the prevision on the perturbed input;
5 Extract prob of the actual class of d;
6 Update the loss value: loss = −log(1 − prob);
7 Calculate the gradients and update P ;

Our Proposed Defense Methodology

Our methodology for defending SNNs is based on specialized DVS-noise filtering. The
details for selecting efficient values of the spatial parameter s and temporal parameter t
of the filter are reported in Algorithm 28. For different threat models, it automatically
searches for the best combination of s and t by applying the attack in the presence of
the filter with the given parameters. The accuracy of the SNN in such conditions is
compared to the previously-recorded highest accuracy (line 8 of Algorithm 28). At the
output, the parameters s′ and t′, which provide the highest accuracy, are found.

290

7.4. R-SNN: A Methodology for Robustifying SNNs through Noise Filters for DVS

Algorithm 28: The R-SNN Defense Methodology.
Inputs:
the collection M of adversarial threat models
the adversarial attack A
a DVS noise filter F (s, t) with spatial parameter s and temporal parameter t
the set S of possible values of s
the set T of possible values of t
the SNN network N(F) that we want to robustify with F
Output: Values s′ and t′ for a robust defense in M

1 for m in M do
2 Set the relative positions of A and F , based on m;
3 Acc′ = 0;
4 s′ = 0;
5 t′ = 0;
6 for s in S do
7 for t in T do
8 if Accuracy(N(F (s, t))) ≥ Acc′ then
9 Acc′ =Accuracy(N(F (s, t)));

10 s′ = s;
11 t′ = t;

7.4.4 Evaluation of the R-SNN Methodology

Experimental Setup

In our experiments, we used two event-based datasets, the DvsGesture [135] and the
NMNIST [290]. The former is a collection of 1077 samples for training and 264 for testing,
grouped into 11 classes. The latter is a spiking conversion of the original frame-based
MNIST dataset [60]. It contains 60 000 training and 10 000 testing samples generated
by an ATIS event-based sensor [138] that is moved while capturing the original MNIST
images projected on an LCD screen. For the DvsGesture dataset, we considered the
4-layer SNN as described in [119], with two Conv layers and two FC layers. It has been
trained for 625 epochs using the SLAYER backpropagation method [119], using a batch
size of 4 and learning rate of 0.01. For the NMNIST dataset, we employed a spiking
multilayer perceptron with two FC layers [119], trained for 350 epochs with the SLAYER
backpropagation method [119], using a batch size of 4 and learning rate of 0.01. We
implemented the SNNs using the PyTorch framework [72] on an ML-workstation with
two Nvidia GeForce RTX 2080 Ti GPUs. We also implemented the adversarial attack
algorithm and the noise filter of [222] in PyTorch.

291

7. Security Threats for SNNs on Discrete and Event-Based Data

SNN Robustness under Attack Without the Noise Filter

For the threat model A⃝, the attacker introduces the adversarial perturbations directly
to the input of the SNN. In this case, as shown in the black bar of Figure 7.24a, the
SNN for the DvsGesture dataset is not protected by the filter and the accuracy drops to
15.15%. A similar behavior is noted on the SNN for the NMNIST dataset, where the
attack reduces the accuracy to 4% (91% reduction, see the black bar in Figure 7.24b).
We noticed that for both datasets, the largest accuracy drop is already obtained after
the attack algorithm’s first iteration. Further iterations of the algorithm do not appear
to reduce the accuracy to a greater extent.

(a)

(b)

Strong
influence of s

Peak values

Peak values

Figure 7.24: SNN robustness under the adversarial threat model A, and the threat model
B with different parameters s and t of the filter. (a) Results for the DvsGesture dataset.
(b) Results for the NMNIST dataset.

SNN Robustness under Attack by Noise Filter-Unaware Adversary

Afterward, we analyzed the SNN robustness for the threat model B⃝, that is the case
in which the attacker can introduce a perturbation on the input but is not aware of
the presence of the DVS filter. For this experiment set, the accuracy was much higher
than for the threat model A⃝, proving the effectiveness of the filter as a defense method
for guaranteeing high SNN robustness. The results obtained with our proposed R-SNN
methodology, varying both the parameters s and t of the filters, are reported in Figure 7.24.
On the SNN for the DvsGesture dataset, for a wide variety of values of s and t, the
accuracy does not change much, settling around 90%, while with t = 500 it dropped
to 48%. However, when t = 1, the influence of s is more evident. In fact, the accuracy

292

7.4. R-SNN: A Methodology for Robustifying SNNs through Noise Filters for DVS

scales from 62.5% when s = 1 to 83% when s = 4. In all the other cases, the difference is
almost not noticeable. On the contrary, we can observe that the higher s is, the slower
the filter processes all the data. Among the considered values, t = 10 produced the
highest accuracy for every s, peaking at 91.67% with s = 3 and s = 4. On the SNN
for the NMNIST dataset, a similar behavior is shown. For t = 1, the accuracy strongly
depends on s. The peak of 94% accuracy is reached for (s, t) = (3, 2) and (s, t) = (4, 2).
Note that this is only 1% lower than the original accuracy, i.e., with clean inputs. On
the other hand, the accuracy drops below 90% for t ≥ 20.

SNN Robustness under Attack by Noise Filter-Aware Adversary

We also evaluated the R-SNN methodology on the threat model C⃝, in which the attacker
is aware of the presence of the filter. This time the filter is introduced as a part of the
SNN, more specifically as a preprocessing stage. As expected, the filter is also effective as
a defense mechanism in this scenario. The differences w.r.t. the threat model B⃝ are not
noticeable. Among the experiments for the DvsGesture dataset, the highest robustness
is reached for (s, t) = (3, 10) and (s, t) = (4, 10), where the SNN exhibits an accuracy of
91.67% (see Figure 7.25a). For the NMNIST dataset, the highest robustness, i.e., with
an accuracy of 94%, is measured for (s, t) = (3, 2) and (s, t) = (4, 2) (see Figure 7.25b).
Such a result is a clear sign that this kind of attack cannot overcome the presence of the
filter. Therefore, the attack algorithm cannot effectively learn the filter’s functionality
through a gradient-based approach, even though being aware of it.

(b)

(a)

s=4

s=1
s=2
s=3

Figure 7.25: SNN robustness under adversarial threat model C. (a) Results for the
DvsGesture dataset. (b) Results for the NMNIST dataset.

293

7. Security Threats for SNNs on Discrete and Event-Based Data

Case Study: Output Probability Variation

To investigate the effect of the adversarial attack and the filter more in detail, we show
a comprehensive case study on a test DvsGesture sample labeled as left-hand wave.
Figure 7.26 reports the frames of events and output probabilities for each adversarial
threat model presented in this section, as well as for the clean inputs and the filtered event
series without attack. For the clean images, the SNN correctly classifies the events as the
class 2, which corresponds to left-hand wave (see Figure 7.26a). By filtering the input
signal with s = 2 and t = 5, as shown in Figure 7.26b, the frames of events are visibly
different from the previous case. However, the changes in the output probabilities are
minimal, so the SNN correctly classifies the input. When the attack is applied, the output
probability of the class 0, which corresponds to hand clap, exceeds the correct class. Note
that, despite a great difference in the output probabilities, the modifications of the frames
of events, compared to the clean event series, are barely noticeable (see Figure 7.26c).
However, in the presence of the filter under the adversarial threat models B⃝ and C⃝,
the SNN correctly classifies the input. The high probability gap between the correct
class and the other classes in Figure 7.26d and Figure 7.26e is an indicator of the high
robustness of our defense method.

7.4.5 Summary

This section studied the robustness of SNNs against adversarial attacks on DVS-based
systems. The proposed R-SNN methodology employs DVS-noise filtering to increase the
robustness against the attacks. This work represents the first study of adversarial attacks
on DVS signals and the first application of these filters as a defense mechanism against
such attacks. It represents a proof-of-concept, which is extended by considering more
advanced noise filters and specialized adversarial attack methodologies in the following
Section 7.5.

7.5 DVS-Attacks: A Set of Adversarial Attacks on
Event-Based SNNs

Despite being energy-efficient when deployed on neuromorphic hardware and coupled with
event-based DVS cameras, SNNs are vulnerable to security issues, such as adversarial
attacks. Toward this, we propose DVS-Attacks, a set of efficient yet stealthy adversarial
attack algorithms targeted to perturb the event sequences that form the input of the SNNs.
Then, we demonstrate that noise filters for DVS can be employed as a defense technique
against adversarial attacks. Afterward, we implement and test the attacks in the presence
of two types of noise filters for DVS signals. The experimental results indicate that the
filters can only partially protect the SNNs against our proposed DVS-Attacks. Even
using the noise filter defenses, our proposed Mask Filter-Aware Dash Attack can reduce
the SNN accuracy by more than 20% on the DvsGesture dataset and by more than 65%
on the NMNIST dataset, compared to the original clean frames.

294

7.5. DVS-Attacks: A Set of Adversarial Attacks on Event-Based SNNs

Classes0 2 4 6 8 10

Sp
ike

s

140
120
100

80
60
40
20

0

Classes0 2 4 6 8 10

Sp
ike

s

500
400
300
200
100

0

Classes
0 2 4 6 8 10

Sp
ike

s

140
120
100

80
60
40
20

0

Classes0 2 4 6 8 10

Sp
ike

s

120
100

80
60
40
20

0

(a)

(b)

(c)

(d)

Classes0 2 4 6 8 10

Sp
ike

s

140
120
100

80
60
40
20

0

(e)

Correct
classification

Misclassification

Correct
classification,

high robustness

Correct
classification,

high robustness

Figure 7.26: Detailed example of a sequence of events labeled as left-hand wave. On the
left, the frames of events are shown. The histograms on the right-most column report
the number of spikes emitted by the neurons of the last layer, which correspond to the
output classes. (a) Clean event series. (b) Event series filtered with s = 2 and t = 5.
(c) Event series under the adversarial threat model A, unfiltered. (d) Event series under
the adversarial threat model B, filtered with s = 2 and t = 5. (e) Event series under the
adversarial threat model C, filtered with s = 2 and t = 5.

7.5.1 System Overview

Different security threats challenge the normal functionality of DNNs and SNNs. The
DNN trustworthiness has been thoroughly investigated in recent years, highlighting that
one of the most critical issues is represented by adversarial attacks. Although some
initial studies have been conducted, SNNs’ trustworthiness is a relatively unexplored
problem. More precisely, DVS-based systems have not yet been systematically investigated
for SNN security. The generation of adversarial attacks for DVS is an open research
problem. Towards this, we propose DVS-Attacks, a set of adversarial attack algorithms
for DVS signals, and test them in systems where noise filters are employed as a defensive

295

7. Security Threats for SNNs on Discrete and Event-Based Data

mechanism against them. Since the DVS cameras also contain the temporal information,
the generation of adversarial examples is technically different than traditional adversarial
attacks on images, in which only the spatial information is considered. Hence, the
temporal information must be leveraged to develop the attack and defense mechanisms.

In a nutshell, we devise the following contributions:

• We propose DVS-Attacks, a set of adversarial attack methodologies injecting per-
turbations into DVS signals.

• In particular, the MF-Aware Dash Attack is specifically crafted to be resistant
against the Mask Filter defense by adding perturbations only to a limited set of
frames.

• The experimental results on the DvsGesture and NMNIST datasets show that the
attacks fool the SNNs when no filter is employed. Moreover, the noise filters cannot
fully protect against the DVS-Attacks, which represent a critical security threat for
SNN-based neuromorphic systems.

7.5.2 Case Study Analysis: SNN Robustness against Random Noise

We perform the following experiments as a preliminary study to moticate our research in
the above-discussed directions. We trained a 4-layer SNN with 2 Conv and 2 FC layers for
the DvsGesture dataset [135] using the SLAYER method [119] in a DL-workstation having
two Nvidia GeForce RTX 2080 Ti GPUs. For every frame of events, we perturb the testing
dataset by adding normally-distributed random noise and measuring the classification
accuracy. Moreover, to mitigate the effects of the perturbations, the Background Activity
Filter (BAF) and the Mask Filter (MF) of [222] are applied, with various filter parameters.
Figure 7.27 shows the accuracy results for different noise magnitudes. As highlighted in
the figure, the filter may reduce the SNN’s accuracy when no noise is applied. More than
20% accuracy drop is noticed on the MF with T = 25, and lower drops for the other
filters. However, when subjected to noise, the SNN becomes more robust when the filter
is applied. For instance, when considering normally-distributed noise with a magnitude
of 0.55, the BAF with s = 1 and t = 5 contributes for up to 64% accuracy improvement.
On the other hand, BAFs with s ≥ 2 does not increase the accuracy significantly
compared to the unfiltered SNN. Moreover, MFs with T ≥ 100 work even better than
the BAFs when affected by large noise perturbations. Indeed, the perturbations with a
magnitude of 1.0 are filtered out relatively well by the MFs with large T , while, for the
same value of noise magnitude, both the MFs with T ≤ 50 and the BAF with s = 1
and t = 5 obtain an accuracy of only ≈ 33 − 34%. The key message learned from this
study is that the noise filters for DVS signals can restore a large portion of SNN accuracy
that would have been lost due to the perturbations. This motivates us to employ such
filters as defense mechanisms against adversarial attacks.

296

7.5. DVS-Attacks: A Set of Adversarial Attacks on Event-Based SNNs

T
T
T
T

T

Slight accuracy
reduction

High
robustness

(N)

Figure 7.27: Analyzing the impact of applying the normally-distributed noise to the
DvsGesture dataset, in the presence of BAF and MF noise filters.

7.5.3 Noise Filters for Dynamic Vision Sensors

Background Activity Filter

DVS sensors are typically affected by background activity noise generated by thermal
noise and junction leakage current [291]. When the DVS sensor is stimulated, typically a
neighborhood of pixels is simultaneously generating events. Therefore, the actual events
have a higher spatio-temporal correlation compared to the noise-related events. This
empirical intuition is exploited for generating the Background Activity Filter (BAF) [222].
If the correlation between event in a spatio-temporal neighborhood is lower than a certain
threshold, the events are filtered out since they are likely due to noise. The procedure
is reported in Algorithm 29, where the parameters S and T define the dimensions of
the spatio-temporal neighborhood. For large S and T , several events are filtered out.
The decision of the filter is made through the comparison between te − M [xe][ye] and T
(lines 8-9 of Algorithm 29).

Mask Filter

Another type of scenario of spontaneous noise activity is generated on the pixels with
low temporal contrast. In this case, a Mask Filter (MF) is required to filter out such
noise [222]. The procedure reported in Algorithm 30 shows that, compared to the BAF,
the MF has only the temporal parameter T . The mask is activated if a pixel’s activity
exceeds T (lines 7-8 of Algorithm 30). After the mask is set, every event generated on a
coordinate where the mask is active is removed (lines 10-11 of Algorithm 30). Both the
BAF and MF have been implemented and evaluated for intrinsic and parasitic noise added
to DVS sensors, while their application as a defensive mechanism against adversarial
attacks is still unexplored.

297

7. Security Threats for SNNs on Discrete and Event-Based Data

Algorithm 29: Background Activity Filter for event-based sensors.
Inputs:
a list of events E in the form (xe, ye, pe, te), which correspond to the x-coordinate,
the y-coordinate, the polarity, and the timestamp of the event e, respectively
a 128 × 128 matrix M
the spatial and temporal filter parameters s and t
Output: a filtered list of events E

1 Initialize M = 0;
2 Order the events E from the oldest to the newest;
3 for e in E do
4 for i in (xe − s,xe + s) do
5 for j in (ye − s, ye + s) do
6 if not (i == xe and j == ye) then
7 M [i][j] = te;

8 if te − M [xe][ye] > t then
9 Remove e from E;

7.5.4 Threat Model

The system that we consider in our experiments is composed of a DVS camera for
capturing the scenes of the environment as event sequences and a given SNN deployed
on the neuromorphic device. As shown in Figure 7.28, the adversarial attacks and noise
filters are located at the input of the SNN and can modify the sequences of events.
We perform several experiments with different combinations of attacks and defenses.
The noise filters described in Section 7.5.3 have been employed as defense mechanisms.
For the combinations where both attacks and defenses are applied to the system, the
perturbations injected by the attack are applied before the filtering operation. In this
way, it can filter out any events generated or modified by the attack, thus aiming at
making a strong defense in practical systems. The detailed discussion of the adversarial
attack methodologies is conducted in the following Section 7.5.5.

Sequences
of Events

Adversarial
Attack Algorithms

Environment DVS Camera SNN on Neuromorphic
Hardware

Class

Pr
ob

ab
ili

ty

Output

Noise Filter
Defenses

Figure 7.28: Threat model considered in this work, where different types of adversarial
attacks are deployed, and different types of DVS noise filters are applied as a defense.

298

7.5. DVS-Attacks: A Set of Adversarial Attacks on Event-Based SNNs

Algorithm 30: Mask Filter for event-based sensors.
Inputs:
a list of events E in the form (xe, ye, pe, te), which correspond to the x-coordinate,
the y-coordinate, the polarity, and the timestamp of the event e, respectively
an N × N matrix M , where N is the size of the frames
an N × N activity matrix, representing the number of events produced by each
pixel
the temporal threshold T
Output: a filtered list of events E

1 Initialize activity = 0;
2 for x in range(N) do
3 for y in range(N) do
4 for e in E do
5 if (x, y) == (xe, ye) then
6 activity[x][y]+ = 1;

7 if activity[x][y] > T then
8 M [x][y] = 1;

9 for e in E do
10 if M [xe][ye] == 1 then
11 Remove e from E;

7.5.5 DVS-Attacks Methodologies

Sparse Attack

The proposed Sparse Attack is an iterative algorithm that progressively updates the
perturbation values according to the loss function (lines 2-7 of Algorithm 31) for every
frame series of the dataset D. Its mask M determines in which subset of the event frames
the perturbation should be added (line 3). Then, the output probability and its loss,
obtained in the presence of the perturbation, are computed in lines 5 and 6, respectively.
Finally, the perturbation values are updated according to the gradients of the inputs
with respect to the loss (line 7).

Frame Attack

The Frame Attack is a simple yet effective attack methodology that consists of adding
a noise frame around the sample (see lines 4-5 of Algorithm 32). It does not require
expensive calculations since the same perturbation (that forms the frame) is added to all
the samples. Such a frame is not easy to spot in a dataset made of large images, like
the DvsGesture (128 × 128), while its perturbations are more evident on the NMNIST
dataset (34 × 34). One drawback is the overhead in terms of events added to the

299

7. Security Threats for SNNs on Discrete and Event-Based Data

Algorithm 31: Sparse Attack Methodology.
Inputs:
a mask M able to select only certain frames
a dataset D composed of DVS images
a perturbation P to be added to the images
the output probability prob of a certain class
Output: perturbed dataset

1 for d in D do
2 for i in max_iteration do
3 Add P to d only to the frames selected by M ;
4 Calculate the prevision on the perturbed input;
5 Extract prob for the actual class of d;
6 Update the loss value as loss = −log(1 − prob);
7 Calculate the gradients and update P ;

samples. In fact, the number of events dramatically increases for every frame since the
attack targets each pixel of the boundary. Therefore, the sample size and the inference
latency for processing the events with SNNs and filters increase as well.

Algorithm 32: Frame Attack Methodology.
Inputs:
an event-based dataset D
a (C × N × N × T) tensor d ⊂ D, where C represents the channels, N represents
the frame dimensions, and T the sample duration
Output: perturbed dataset

1 for d in D do
2 for x in range(N) do
3 for y in range(N) do
4 if x == 0 or x == N − 1 or y == 0 or y == N − 1 then
5 d[:, x, y, :] = 1;

Corner Attack

As the name suggests, the Corner Attack targets the corner of the images. It starts by
targeting only two pixels on the top-left corner (lines 8-9 of Algorithm 33). Then, if the
attack is not successfully fooling the SNN (line 11), the algorithm moves to the other
corners. If some samples are still correctly classified after hitting all four corners, the
perturbation size increases and the algorithm resumes back from the first corner. Before
the updating phase, when the perturbation switches between corners or increases its size,
the attack is applied to each sample in the dataset that was not corrupted yet. The

300

7.5. DVS-Attacks: A Set of Adversarial Attacks on Event-Based SNNs

number of samples reduces as the algorithm proceeds, and the process speeds up. The
main characteristic of this attack is that the samples are affected by a different amount
of perturbation. For example, while the SNN misinterprets the majority of the samples
after a few iterations, other samples are perturbed for a longer time, thus making the
attack easier to spot.

Algorithm 33: Corner Attack Methodology.
Input: an event-based dataset D made of (C × N × N × T) tensors, where C

represents the number of channels, N the size, and T the duration of the
sample; S is a list of the samples that compose D

Output: perturbed dataset
1 x = 0;
2 y = 2;
3 left = True;
4 while S is not empty do
5 for s in S do
6 for i in range(N) do
7 for j in range(N) do
8 if i == x and (left and j < y or left and j ≥ N − y − 1) then
9 s[:, i, j, :] = 1;

10 The perturbed sample s is fed to the SNN, which produces a prediction P ;
11 if P is incorrect then
12 Remove s from S;

13 if x == 0 then
14 x = N − 1;
15 else
16 left = left xor 1;
17 x = 0;
18 if left then
19 y = y + 1;

Dash Attack

The Dash Attack methodology is designed taking inspiration from the Corner Attack.
Indeed, the two algorithms are pretty similar. The main difference is that in the Dash
Attack, only two pixels are targeted at a time. The main structure of the algorithm is
similar to the Corner Attack, as the Dash Attack starts targeting the top-left corner and
modifying the first two pixels. Moreover, the x, y coordinates are updated to hit only two
consecutive pixels within the same timestamp (see lines 14-22 of Algorithm 34). Hence,
this attack is tough to spot, and the introduced perturbations do not cause a significant

301

7. Security Threats for SNNs on Discrete and Event-Based Data

overhead of events on the samples. Moreover, all the samples under the Dash Attack are
subjected to the same amount of perturbations.

Algorithm 34: Dash Attack Methodology.
Input: an event-based dataset D made of (C × N × N × T) tensors, where C

represents the number of channels, N the size, and T the duration of the
sample; S is a list of the samples that compose D

Output: perturbed dataset
1 xmin = 0;
2 x = 0;
3 y = 2;
4 left = True;
5 while S is not empty do
6 for s in S do
7 for i in range(N) do
8 for j in range(N) do
9 if i == x and (left and (j == y or j == y − 1) or left and

(j == N − y or j == N − y + 1)) then
10 s[:, i, j, :] = 1;

11 The perturbed sample s is fed to the SNN, which produces a prediction P ;
12 if P is incorrect then
13 Remove s from S;

14 if x == xmin then
15 x = N − xmin − 1;
16 else
17 left = left xor 1;
18 x = xmin;
19 if left then
20 y = y + 1;

21 if y > N/2 then
22 xmin = xmin + 1;

MF-Aware Dash Attack

A critical issue of the above-discussed attacks, as will be discussed in Section 7.5.6, is their
intrinsic weakness against the MF. They targeted both ‘on’ and ‘off’ channels of the same
pixels for the whole sample duration. Hence, the distinction between the pixels modified
by the attack and those not affected is evident since the number of events generated in
the targeted pixel coordinates is significantly higher than those associated with the other
coordinates that were not hit during the attack. In addition, we have to consider that

302

7.5. DVS-Attacks: A Set of Adversarial Attacks on Event-Based SNNs

the proposed attacks primarily focus on the boundaries of the images. Therefore, they
do not typically overlap with useful information since, in the datasets that we used, the
subject is centered. Therefore, by hitting the perimeter or the corners, there is low risk
of superimposing adversarial noise on the main subject. These considerations explain
why the MF is successful in restoring the original SNN accuracy. The targeted pixel
coordinates are easily identifiable given their large number of events, and the filter does
not interfere with the useful information because modifications are mainly made at the
edge of the image.

Based on these observations, we have designed an attack that aims to nullify the defense
provided by the MF, which we call MF-Aware Dash Attack. It receives as input the
parameter th, which is related to the T parameter of the MF (recall from Algorithm 30),
and limits the number of frames that can be modified for each pixel (line 11 of Algo-
rithm 35). Therefore, the algorithm perturbs only a couple of pixels, as in the case of the
Dash Attack. However, after perturbing th frames, it proceeds to the following frames
(lines 13-14). The MF-Aware Dash Attack generates the visual effect of a dash advancing
along a line. The larger the parameter th is, the slower the dash will seem to move along
the image.

7.5.6 Evaluation of the DVS-Attacks

Experimental Setup

We conduct experiments on two datasets, the DvsGesture [135] and the NMNIST [290].
As classifier for the DvsGesture dataset, we employ the 4-layer SNN as described in [119],
with two Conv layers and two FC layers, trained for 625 epochs using the SLAYER
backpropagation method [119], with a batch size of 4 and a learning rate of 0.01. We
measure a test accuracy of 92.04% on the clean dataset. As classifier for the NMNIST
dataset, we implement a multilayer perceptron with two FC layers [119], trained for 350
epochs using the SLAYER backpropagation method [119], with a batch size of 4 and a
learning rate of 0.01. The test accuracy is 95% on the clean dataset. We implement the
SNNs using the PyTorch framework [72] on a DL-workstation with two Nvidia GeForce
RTX 2080 Ti GPUs. We also implement the adversarial attack algorithms and the noise
filters using PyTorch.

Results for the Sparse Attack

The Sparse Attack on DVS frames successfully fools the SNNs on both benchmarks
since the accuracy is significantly decreased to 15.15% for the DvsGesture dataset and
4% for the NMNIST dataset. By looking at the adversarial examples reported on the
left side of Figure 7.29, no significant perturbations are visible, thus making the Sparse
Attack stealthy. However, the accuracy may be easily restored using a noise filter. When
the BAF filter is applied, for a wide range of values of the (s, t) parameters, the SNNs’
accuracy exceeds 90% (as highlighted in Figure 7.29). The Sparse Attack can easily

303

7. Security Threats for SNNs on Discrete and Event-Based Data

Algorithm 35: MF-Aware Dash Attack Methodology.
Input: an event-based dataset D made of (C × N × N × T) tensors, where C

represents the number of channels, N the size, and T the duration of the
sample; S is a list of the samples that compose D; th is a parameter
associated with the activity threshold of the MF

Output: perturbed dataset
1 x = 0;
2 y0 = 2;
3 th0 = 10;
4 left = True;
5 while S is not empty do
6 for s in S do
7 th = th0, y = y0;
8 for t in T do
9 for i in range(N) do

10 for j in range(N) do
11 if i == x and t < th and (left and (j == y or j == y − 1)

or left and (j == N − y or j == N − y + 1)) then
12 s[0, i, j, t] = 1;

13 if t == th then
14 th = th + th0 , y = y + 2;

15 The perturbed sample s is fed to the SNN, which produces a prediction P ;
16 if P is incorrect then
17 Remove s from S;

18 if x == 0 then
19 x = N − 1;
20 else
21 left = left xor 1 , x = 0;
22 if left then
23 y0 = y0 + 1;

bypass the MF with low T . On the contrary, high robustness is achieved when T ≥ 50
for the DvsGesture dataset and when T ≥ 25 for the NMNIST dataset.

Results for the Frame Attack

The experimental results of the Frame Attack are reported in Figure 7.30. As expected,
the perturbations are perceivable as a line added to the border of the scene. This feature
is more accentuated on the NMNIST dataset, in which the resolution is of 34 × 34 pixels.

304

7.5. DVS-Attacks: A Set of Adversarial Attacks on Event-Based SNNs

(a)

(b)

Mask Filter

Mask Filter

Background Activity Filter

Background Activity Filter

High accuracy Robust for
T ≥ 50

Robust for
T ≥ 25

High accuracy

Figure 7.29: Evaluation of the Sparse Attack: frame samples and accuracy when the
BAF and MF are applied, for (a) DvsGesture and (b) NMNIST.

On the other hand, the perturbations are less perceivable on the 128 × 128 examples of
the DvsGesture dataset. The accuracy drops to 9.85% and 8% under the Frame Attack
for the two datasets, respectively. However, the BAF does not protect well as a defense
against the Frame Attack. As highlighted in Figure 7.30, there exist no values of the
(s, t) parameters of the BAF for which the SNNs’ accuracy is almost restored. Indeed,
the accuracy variation compared to the attack without the filter is relatively low. On the
other hand, the MF stands out as a successful defense since the SNNs’ accuracy values
are high for large values of T .

(a)

(b)

Mask FilterBackground Activity Filter

Background Activity Filter Mask Filter

Robust for
T ≥ 50

Robust for
T ≥ 25

Low accuracy

Low accuracy

Figure 7.30: Evaluation of the Frame Attack: frame samples and accuracy when the
BAF and MF are applied, for (a) DvsGesture and (b) NMNIST.

Results for the Corner Attack

The Corner Attack is visibly stealthier than the Frame Attack. Indeed, the perturbations
are only added to the corner of the images. For instance, the perturbation is noticeable
at the top-left corner of the first example or the bottom-left corner of the second example

305

7. Security Threats for SNNs on Discrete and Event-Based Data

of Figure 7.31b. Moreover, the SNNs are entirely fooled by the Corner Attack, since the
accuracy without filter drops to 0%. The BAF works relatively better for the DvsGesture
dataset than the MNIST dataset. However, the accuracy remains low in the presence
of the BAF filter as defense. The peak of only 15.15% accuracy for the SNN on the
DvsGesture dataset is reached with s = 1 and t = 5, as highlighted in Figure 7.31a.
Similarly to the Frame Attack, the Corner Attack can also be successfully mitigated when
the MF with large T is applied.

(a)

(b)

Mask Filter

Background Activity Filter Mask Filter

Background Activity Filter

Robust for
T ≥ 50

Robust for
T ≥ 25

Low peak (15.15%)

Figure 7.31: Evaluation of the Corner Attack: frame samples and accuracy when the
BAF and MF are applied, for (a) DvsGesture and (b) NMNIST.

Results for the Dash Attack

The Dash Attack performs similarly as the Corner Attack, but the perturbations are not
strictly confined to a corner. In this way, the perturbations injected by the attack are
very similar to the inherent background activity noise generated by the DVS camera
capturing the events. For instance, the attack perturbations injected to the examples
for the NMNIST dataset (see Figure 7.32b) might be confused with the background
noise. Compared to the Corner Attack, while the SNNs’ accuracy under the Dash Attack
without filter drops to 0%, the BAF defense produces a slightly higher accuracy for the
DvsGesture dataset. However, the accuracy peak of 28.41% (highlighted in Figure 7.32a),
obtained in the presence of the BAF with s = 1 and t = 10, is too low to consider the
BAF as a suitable defense method against the Dash Attack. Once again, a robust defense
for SNNs is guaranteed by the MF with large T .

Results for the MF-Aware Dash Attack

Figure 7.33 evaluates the experiments conducted on the MF-Aware Dash Attack, for
different values of th. While the perceivability of the adversarial examples is similar to
that of the Corner and Dash Attacks, the behavior of the MF-Aware Dash Attack when
noise filters are applied is different. Moreover, the SNN’s accuracy under attack without
the filter reaches 7.95% for th = 50 on the DvsGesture dataset. The SNNs defended by
the BAF show a moderate robustness level. When s = 3 and t = 1, the accuracy reaches

306

7.5. DVS-Attacks: A Set of Adversarial Attacks on Event-Based SNNs

(a)

(b)

Mask Filter

Background Activity Filter Mask Filter

Background Activity Filter

Robust for
T ≥ 50

Robust for
T ≥ 25

Peak of 28.41%

Figure 7.32: Evaluation of the Dash Attack: frame samples and accuracy when the BAF
and MF are applied, for (a) DvsGesture and (b) NMNIST.

59.09% for the DvsGesture dataset when the MF-Aware Dash Attack with th = 50 is
applied. However, when t ≥ 5, the accuracy is lower than 31.44% for the DvsGesture
dataset and lower than 13% for the NMNIST dataset. The key advantage compared to
the previous attacks resides in the behavior of the MF-Aware Dash Attack in the presence
of the MF. If T ≥ th, the SNN accuracy falls lower than 23.5% for the DvsGesture
dataset and lower than 2% for the NMNIST dataset. On the contrary, the results when
T < th are similar to the behaviors obtained for the other attacks. For instance, the curve
relative to the MF-Aware Dash Attack with th = 50 and T = 25 achieves an accuracy of
71.21% for the DvsGesture dataset, which is 20.83% lower than the clean SNN accuracy.

(a)

(b)

Mask Filter

Background Activity Filter Mask Filter

Background Activity Filter

Peak for BAF
< 31.44%

Peak for MF, th=50

Low accuracy
for T ≥ th

Low accuracy
for T ≥ th< 13%

Figure 7.33: Evaluation of the MF-Aware Dash Attack: frame samples and accuracy when
the BAF and MF are applied, for (a) DvsGesture and (b) NMNIST. The adversarial
frame samples reported on the left side of the figure are generated with th = 150 for the
DvsGesture dataset and th = 20 for the NMNIST dataset.

307

7. Security Threats for SNNs on Discrete and Event-Based Data

Key Observations Derived from the Experiments

By analyzing in more detail the results of the different attack methodologies, we can
derive the following key observations:

• All the attack algorithms belonging to the DVS-Attacks set successfully fool the
SNNs when no filter is applied as shown by the significant decrease in the SNNs’
accuracy.

• The Sparse Attack is the stealthiest attack, while Corner, Dash and MF-Aware
Dash Attacks are sthealtier than the Frame Attack.

• The BAF achieves good defense only for the Sparse Attack, while all the other
attacks fool SNNs protected by the BAF. Some accuracy is recovered for the
MF-Aware Dash Attack, but a significant accuracy loss is measured.

• Different (s, t) parameters of the BAF need to be evaluated to find the highest
accuracy, and the combinations of these parameters leading to high accuracy may
vary according to different attack algorithms.

• The MF with large T is a good defense against almost every attack, but it does not
protect well against the MF-Aware Dash Attack since it is an adversarial attack
designed explicitly to be successful in the presence of the MF.

• The best MF-Aware Dash Attack, with th = 50 for the DvsGesture dataset, and
with th = 10 for the NMNIST dataset, lowers the accuracy of SNNs by more than
20% and 65% for the two datasets, respectively.

7.5.7 Summary
The proposed DVS-Attacks are a set of efficient yet stealthy adversarial attack method-
ologies for perturbing event sequences at the input of the SNNs. The noise filters for
the DVS signals, such as the BAF and MF, can be used as defense mechanisms against
adversarial attacks. The evaluations of the attacks in the presence of the filters show
that the filters partially restore the SNN accuracy, but attacks specifically designed to be
resistant to the filters, such as the MF-aware Dash Attack methodology, show a high
attack success rate.

7.6 Summary of Security Threats for SNNs
This chapter has investigated several security analyses for SNNs and their comparison
with DNNs. Different vulnerability threats have been investigated, including adversarial
attack methodologies for discrete and event-based data and backdoor attacks that inject
bit-flips. Moreover, a defense mechanism that tunes the SNNs’ inherent structural
parameters is leveraged to increase their robustness. Against attacks in the event-based

308

7.6. Summary of Security Threats for SNNs

domain, noise filters can be successfully applied. Nevertheless, specifically designed
attacks show the potential to bypass such filters. This comprehensive set of analyses and
studies enables advanced optimization strategies for deploying SNNs for safety-critical
applications. Combining their high robustness with the low energy consumption of their
implementation onto neuromorphic computing platforms, the SNNs represent promising
solutions for robust and energy-efficient DL systems.

309

CHAPTER 8
Conclusion and Outlook

8.1 Thesis Summary
DNNs have revolutionized the approach of generating high-accurate predictions for various
tasks. However, they are computationally and memory intensive. Hence, their deployment
on resource-constrained devices is challenging. Moreover, the current trends in the ML
community demonstrated that, despite having high learning capabilities, advanced DL
architectures pose even more stringent constraints due to their high complexity. In
addition, DNNs suffer from various vulnerability threats that undermine their integrity
and question their practical deployments in safety-critical applications.

This thesis tackles these challenges by exploiting the potential of energy reductions
and security improvements of advanced DL systems. To enable this, novel techniques
are proposed at both the software and hardware levels. Multi-objective techniques are
employed to achieve cross-layer optimizations for energy efficiency and robustness. The
high complexity of advanced DL models like CapsNets and SNNs requires dedicated
designs and optimizations for energy efficiency while offering unique possibilities for
enhancing their robustness.

One of the key contributions is the complete design flow for optimizing the CapsNets’
execution. Unlike traditional DNNs, CapsNets involve more complex operations like
squash and dynamic routing that execute inefficiently on standard DL accelerators.
Hence, specialized designs are required to enable their efficient execution. The proposed
optimization flow includes a fast training framework, hardware designs of the computation
units and memory organizations, and post-training quantization and approximations.
When exploring the design space, heuristic algorithms are employed to leverage the
tradeoffs between energy consumption, latency, area, and memory while monitoring
the accuracy. Such an end-to-end flow of designs and set of optimizations enable the
deployment of CapsNets on embedded devices with limited hardware resources.

311

8. Conclusion and Outlook

Various security analyses have been conducted toward the deployment of CapsNets in
safety-critical applications. The robustness against affine transformations and adversarial
attacks for CapsNets and DNNs has been investigated and compared. Moreover, novel
techniques for generating adversarial attacks have been proposed. The evaluations have
shown that CapsNets tend to be more robust than traditional DNNs with similar sizes,
while, in some cases, CapsNets also achieve higher robustness than deeper CNN models
like the ResNet.

The emergence of NAS methodologies led to creating high-accurate DNNs for a given
task with minimal design effort. However, high accuracy does not automatically translate
into high energy efficiency or robustness. Towards this, the proposed flow also integrates
hardware efficiency and robustness as optimization objectives of the NAS algorithm.
Hence, such a multi-objective NAS shapes the DNN architectural and model parameters
to leverage the tradeoffs between accuracy, robustness, and hardware efficiency when
executed on specialized hardware accelerators.

SNNs represent another cutting-edge research direction for advanced ML models. They
are biologically-plausible models that exhibit lower power consumption than traditional
DNNs when implemented on neuromorphic devices connected to DVS cameras. However,
their deployment in various application domains and trustworthiness are still under-
explored. Towards this, a set of optimizations and implementations of SNNs on the
Loihi neuromorphic hardware chip is devised. Knowing the target hardware platform’s
specifications and resource constraints makes it possible to shape the architectural SNN
models, their training rules, and the pre-processing mechanisms to implement low-latency
and energy-efficient SNNs for various applications. Moreover, SNNs’ vulnerability threats
have been investigated. A defense mechanism that tunes the SNNs’ inherent structural
parameters is leveraged to increase their robustness. Noise filters represent successful
defenses against attacks in the event-based domain, but specifically designed attacks can
bypass such filters in specific settings. Considering that their high robustness couples
with the low energy consumption of their implementation onto neuromorphic devices,
SNNs represent promising computing infrastructures for energy-efficient and robust DL
systems.

8.2 Role of the Proposed Techniques in the Evolving Field
of ML

The proposed techniques have been demonstrated to optimize the energy efficiency
and robustness of advanced DL models. However, in the fast-evolving field of ML,
where thousand or billions of researchers worldwide are working on similar topics, it is
challenging to keep pace with recent advancements. Without the due precautions, a
cutting-edge method could quickly become outdated when a new technique outperforms
it or tackles the same problem from a different perspective more efficiently. To mitigate
these issues and to maintain crucial roles in the evolving field of ML, our techniques have
the following properties.

312

8.3. Future Works

• Orthogonality to other optimization techniques: Our optimization methodologies
are orthogonal to other optimization techniques. In this way, if a new method
is proposed, it can be integrated into the optimization flow. An example of
this property is that the quantization method is orthogonal to other compression
techniques, e.g., pruning. Hence, if a new pruning methodology is proposed, it
can be applied alongside our quantization method to further improve the energy
efficiency.

• Modularity: Our frameworks are designed with modular building blocks that can
be easily extended with newly-introduced algorithms and techniques. For instance,
our multi-objective NAS framework has modular layer descriptors. Therefore, the
search space can be easily extended with new types of layers.

• Black-box relations with the DL model: Our techniques do not depend on the
architectural model of the DNN, CapsNet, or SNN under investigation. This
property allows the possibility to apply our methods to new types of DL models.
For example, our proposed black-box adversarial attack methodologies can be
deployed for the new DL models proposed in the literature and adapted for different
applications and datasets.

• Open-source: Our frameworks are publicly available in online repositories. This
allows other researchers to use our codes to reproduce the experiments and directly
modify our methodologies to align them with the newest research directions.

8.3 Future Works
The investigations, evaluations for various experiment conditions, and comparisons with
relevant state-of-the-art works in this thesis demonstrate a dire need to mitigate energy
and security-related issues for DL architectures. Moreover, the next-generation computing
infrastructures must support complex operations with limited resources and guarantee
high robustness in various adverse conditions. The valuable contributions and outcomes
of this research work open new avenues for energy-aware and cost-effective robustness for
DL applications, summarized in the following list.

• Energy-Efficiency Optimizations
The proposed designs have shown that advanced DNNs strongly tolerate low
precision and compression techniques. However, the limit of such a tolerance
remains an open research question. How much can we compress and approximate
without compromising accuracy and robustness? Towards this, fine-grained pruning
and quantization can push the energy consumption closer to the lower boundary.
Another exciting research direction consists of extending the NAS framework by
exploring the space of the solutions of the hardware architectural parameters
and memory configurations. In this way, the optimization problem would jointly
co-search the neural model and hardware architecture for extra energy savings.

313

8. Conclusion and Outlook

With the emergence of other classes of advanced ML models, such as Transformers,
a specialized set of hardware and software optimizations for minimizing their energy
consumption is required. For instance, the hardware execution support could be
extended by designing specialized hardware modules that execute advanced layers
and operations (e.g., attention), and extending the NAS operation to include these
operations in the search space.
Moreover, the conventional computing paradigm in which logic and memory are
separated entities may be quickly outscored by the emerging in-memory computing
paradigm, where the computations are conducted inside specific memory cells. This
strategy can significantly reduce the memory accesses and largely impact the energy
efficiency of the complete system.

• Algorithms and Applications for Event-Based Neuromorphic Computing
The proposed designs implemented on neuromorphic hardware have demonstrated
fast performance and high energy efficiency on various tasks. On the other hand,
the security analyses have highlighted their weaknesses and robustness. These
results are promising for deploying event-based SNNs for safety-critical domains.
However, their implementations in various applications are still unexplored and
immature. All ranges of control and autonomous systems, like vehicles, robots, and
drones, can benefit if they are deployed in event-based platforms.
Another promising research direction consists of revisiting the basic functionality of
SNNs, by designing more efficient neurons, synapses, and specialized spike encoding
mechanisms. These types of investigations might lead to more efficient computing
and learning engines that can shape the future of our everyday life.
Moreover, the continuous learning paradigm, in which the networks’ weights are
progressively updated to adjust for the new input distribution, might potentially
improve the SNNs’ accuracy and robustness while maintaining low power consump-
tion.

• Robustness and Security-Oriented Optimizations
As demonstrated in this thesis, various attack threats can be envisioned. The
creativity of adversary agents in creating new and efficient attack methodologies
is constantly evolving. The defense techniques should rapidly adapt to mitigate
against new attacks.
Moreover, robust defenses should protect against multiple vulnerability threats
without affecting the system’s performance. Towards this, the robustness method-
ologies can be extended by including in the optimization goals not only adversarial
robustness but also fault tolerance, privacy, hardware security, and other classes of
protection mechanisms based on the systems’ requirements.
Another crucial area of investigation is the impact of energy-aware optimizations on
DL systems’ robustness. For example, investigating the impact of approximations on
the systems’ robustness might lead to designing specialized approximate components
that enhance the robustness.

314

8.3. Future Works

• Further Cross-Layer Optimizations
While the proposed multi-objective NAS methodologies are based on evolutionary
algorithms, another promising research direction for determining the architectural
parameters is represented by differentiable NAS.
Moreover, the outlook for privacy-preserving DL is shifting towards encryption and
decryption mechanisms that do not reveal sensitive content. Towards this, there is
a dire need for designing specialized accelerators for encrypted DL systems since
their computational complexity is prohibited. The encryption property can also be
included in the NAS framework for securing DL systems.

315

Bibliography

[1] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections
for efficient neural network,” in Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada (C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, eds.), pp. 1135–1143, 2015.

[2] A. Marchisio, M. A. Hanif, M. Martina, and M. Shafique, “Prunet: Class-blind
pruning method for deep neural networks,” in 2018 International Joint Conference
on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil, July 8-13, 2018, pp. 1–8,
IEEE, 2018.

[3] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable
neural networks,” in 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, OpenReview.net, 2019.

[4] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam, and
D. Kalenichenko, “Quantization and training of neural networks for efficient integer-
arithmetic-only inference,” in 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pp. 2704–2713, Computer Vision Foundation / IEEE Computer Society, 2018.

[5] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: hardware-aware automated
quantization with mixed precision,” in IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 8612–
8620, Computer Vision Foundation / IEEE, 2019.

[6] L. Sekanina, “Neural architecture search and hardware accelerator co-search: A
survey,” IEEE Access, vol. 9, pp. 151337–151362, 2021.

[7] Y. Chen, J. S. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks,” in 43rd ACM/IEEE Annual
International Symposium on Computer Architecture, ISCA 2016, Seoul, South Korea,
June 18-22, 2016, pp. 367–379, IEEE Computer Society, 2016.

[8] N. P. Jouppi, C. Young, N. Patil, D. A. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell,

317

M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gul-
land, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz,
A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Ku-
mar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg,
A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Wal-
ter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance analysis of a
tensor processing unit,” in Proceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA 2017, Toronto, ON, Canada, June 24-28, 2017,
pp. 1–12, ACM, 2017.

[9] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible dataflow
accelerator architecture for convolutional neural networks,” in 2017 IEEE Interna-
tional Symposium on High Performance Computer Architecture, HPCA 2017, Austin,
TX, USA, February 4-8, 2017, pp. 553–564, IEEE Computer Society, 2017.

[10] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: enabling flexible dataflow mapping
over DNN accelerators via reconfigurable interconnects,” in Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2018, Williamsburg, VA, USA, March
24-28, 2018 (X. Shen, J. Tuck, R. Bianchini, and V. Sarkar, eds.), pp. 461–475,
ACM, 2018.

[11] Y. Chen, T. Yang, J. S. Emer, and V. Sze, “Eyeriss v2: A flexible accelerator for
emerging deep neural networks on mobile devices,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 9, no. 2, pp. 292–308, 2019.

[12] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “EIE:
efficient inference engine on compressed deep neural network,” in 43rd ACM/IEEE
Annual International Symposium on Computer Architecture, ISCA 2016, Seoul,
South Korea, June 18-22, 2016, pp. 243–254, IEEE Computer Society, 2016.

[13] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. S.
Emer, S. W. Keckler, and W. J. Dally, “SCNN: an accelerator for compressed-sparse
convolutional neural networks,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA 2017, Toronto, ON, Canada, June
24-28, 2017, pp. 27–40, ACM, 2017.

[14] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Esmaeilzadeh,
“Bit fusion: Bit-level dynamically composable architecture for accelerating deep
neural network,” in 45th ACM/IEEE Annual International Symposium on Computer
Architecture, ISCA 2018, Los Angeles, CA, USA, June 1-6, 2018 (M. Annavaram,
T. M. Pinkston, and B. Falsafi, eds.), pp. 764–775, IEEE Computer Society, 2018.

318

[15] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,
B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser,
R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar,
and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable
communication network and interface,” Science, vol. 345, no. 6197, pp. 668–673,
2014.

[16] M. Davies, N. Srinivasa, T. Lin, G. N. Chinya, Y. Cao, S. H. Choday, G. D. Dimou,
P. Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu, D. Mathaikutty,
S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. Weng, A. Wild, Y. Yang, and
H. Wang, “Loihi: A neuromorphic manycore processor with on-chip learning,” IEEE
Micro, vol. 38, no. 1, pp. 82–99, 2018.

[17] E. Ozen and A. Orailoglu, “Boosting bit-error resilience of DNN accelerators through
median feature selection,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
vol. 39, no. 11, pp. 3250–3262, 2020.

[18] J. J. Zhang, T. Gu, K. Basu, and S. Garg, “Analyzing and mitigating the impact
of permanent faults on a systolic array based neural network accelerator,” in 36th
IEEE VLSI Test Symposium, VTS 2018, San Francisco, CA, USA, April 22-25,
2018, pp. 1–6, IEEE Computer Society, 2018.

[19] L. H. Hoang, M. A. Hanif, and M. Shafique, “Ft-clipact: Resilience analysis of deep
neural networks and improving their fault tolerance using clipped activation,” in
2020 Design, Automation & Test in Europe Conference & Exhibition, DATE 2020,
Grenoble, France, March 9-13, 2020, pp. 1241–1246, IEEE, 2020.

[20] Z. Chen, G. Li, and K. Pattabiraman, “Ranger: Boosting error resilience of deep
neural networks through range restriction,” CoRR, vol. abs/2003.13874, 2020.

[21] C. Schorn, T. Elsken, S. Vogel, A. Runge, A. Guntoro, and G. Ascheid, “Automated
design of error-resilient and hardware-efficient deep neural networks,” Neural Comput.
Appl., vol. 32, no. 24, pp. 18327–18345, 2020.

[22] R. Fani and M. S. Zamani, “Runtime hardware trojan detection by reconfigurable
monitoring circuits,” The Journal of Supercomputing, 2022.

[23] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio and
Y. LeCun, eds.), 2015.

[24] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” in 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings, OpenReview.net, 2018.

319

[25] J. Lin, C. Gan, and S. Han, “Defensive quantization: When efficiency meets robust-
ness,” in 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019, OpenReview.net, 2019.

[26] B. Liang, H. Li, M. Su, X. Li, W. Shi, and X. Wang, “Detecting adversarial image
examples in deep neural networks with adaptive noise reduction,” IEEE Trans.
Dependable Secur. Comput., vol. 18, no. 1, pp. 72–85, 2021.

[27] M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and
L. Zhang, “Deep learning with differential privacy,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016 (E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, eds.), pp. 308–318, ACM, 2016.

[28] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving
machine learning,” in 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017, pp. 19–38, IEEE Computer Society, 2017.

[29] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig, and J. Wernsing,
“Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy,” in Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016 (M. Balcan and
K. Q. Weinberger, eds.), vol. 48 of JMLR Workshop and Conference Proceedings,
pp. 201–210, JMLR.org, 2016.

[30] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures
for scalable image recognition,” in 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pp. 8697–8710, Computer Vision Foundation / IEEE Computer Society, 2018.

[31] J. Rajasegaran, V. Jayasundara, S. Jayasekara, H. Jayasekara, S. Seneviratne, and
R. Rodrigo, “Deepcaps: Going deeper with capsule networks,” in IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, pp. 10725–10733, Computer Vision Foundation / IEEE, 2019.

[32] M. Shafique, M. Naseer, T. Theocharides, C. Kyrkou, O. Mutlu, L. Orosa, and
J. Choi, “Robust machine learning systems: Challenges, current trends, perspectives,
and the road ahead,” IEEE Des. Test, vol. 37, no. 2, pp. 30–57, 2020.

[33] M. Capra, B. Bussolino, A. Marchisio, G. Masera, M. Martina, and M. Shafique,
“Hardware and software optimizations for accelerating deep neural networks: Survey
of current trends, challenges, and the road ahead,” IEEE Access, vol. 8, pp. 225134–
225180, 2020.

[34] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” in
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,

320

USA (I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.
Vishwanathan, and R. Garnett, eds.), pp. 3856–3866, 2017.

[35] M. Shafique, A. Marchisio, R. V. W. Putra, and M. A. Hanif, “Towards energy-
efficient and secure edge AI: A cross-layer framework ICCAD special session paper,”
in IEEE/ACM International Conference On Computer Aided Design, ICCAD 2021,
Munich, Germany, November 1-4, 2021, pp. 1–9, IEEE, 2021.

[36] A. Marchisio, M. A. Hanif, and M. Shafique, “Capsacc: An efficient hardware
accelerator for capsulenets with data reuse,” in Design, Automation & Test in
Europe Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019
(J. Teich and F. Fummi, eds.), pp. 964–967, IEEE, 2019.

[37] A. Marchisio, V. Mrazek, M. A. Hanif, and M. Shafique, “Red-cane: A systematic
methodology for resilience analysis and design of capsule networks under approxi-
mations,” in 2020 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2020, Grenoble, France, March 9-13, 2020, pp. 1205–1210, IEEE, 2020.

[38] A. Marchisio, B. Bussolino, A. Colucci, M. Martina, G. Masera, and M. Shafique,
“Q-capsnets: A specialized framework for quantizing capsule networks,” in 57th
ACM/IEEE Design Automation Conference, DAC 2020, San Francisco, CA, USA,
July 20-24, 2020, pp. 1–6, IEEE, 2020.

[39] A. Marchisio, B. Bussolino, A. Colucci, M. A. Hanif, M. Martina, G. Masera, and
M. Shafique, “Fastrcaps: An integrated framework for fast yet accurate training
of capsule networks,” in 2020 International Joint Conference on Neural Networks,
IJCNN 2020, Glasgow, United Kingdom, July 19-24, 2020, pp. 1–8, IEEE, 2020.

[40] R. Massa, A. Marchisio, M. Martina, and M. Shafique, “An efficient spiking neural
network for recognizing gestures with a DVS camera on the loihi neuromorphic
processor,” in 2020 International Joint Conference on Neural Networks, IJCNN
2020, Glasgow, United Kingdom, July 19-24, 2020, pp. 1–9, IEEE, 2020.

[41] A. Marchisio, V. Mrazek, M. A. Hanif, and M. Shafique, “FEECA: design space
exploration for low-latency and energy-efficient capsule network accelerators,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 29, no. 4, pp. 716–729, 2021.

[42] A. Marchisio, V. Mrazek, M. A. Hanif, and M. Shafique, “Descnet: Developing
efficient scratchpad memories for capsule network hardware,” IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., vol. 40, no. 9, pp. 1768–1781, 2021.

[43] A. Viale, A. Marchisio, M. Martina, G. Masera, and M. Shafique, “Carsnn: An
efficient spiking neural network for event-based autonomous cars on the loihi neuro-
morphic research processor,” in International Joint Conference on Neural Networks,
IJCNN 2021, Shenzhen, China, July 18-22, 2021, pp. 1–10, IEEE, 2021.

321

[44] A. Marchisio, B. Bussolino, E. Salvati, M. Martina, G. Masera, and M. Shafique,
“Enabling capsule networks at the edge through approximate softmax and squash
operations,” in ISLPED ’22: ACM/IEEE International Symposium on Low Power
Electronics and Design, Boston, MA, USA, August 1 - 3, 2022 (H. H. Li, C. Augustine,
A. K. Coskun, and S. Ghosh, eds.), pp. 27:1–27:6, ACM, 2022.

[45] A. Viale, A. Marchisio, M. Martina, G. Masera, and M. Shafique, “Lanesnns:
Spiking neural networks for lane detection on the loihi neuromorphic processor,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022,
Kyoto, Japan, October 23-27, 2022, pp. 79–86, IEEE, 2022.

[46] A. Marchisio, G. Nanfa, F. Khalid, M. A. Hanif, M. Martina, and M. Shafique,
“CapsAttacks: Robust and Imperceptible Adversarial Attacks on Capsule Networks,”
ICML Workshop on Uncertainty & Robustness in Deep Learning, UDL 2019, Long
Beach, CA, USA, July 9-15, 2019.

[47] A. Marchisio, G. Nanfa, F. Khalid, M. A. Hanif, M. Martina, and M. Shafique, “Is
spiking secure? A comparative study on the security vulnerabilities of spiking and
deep neural networks,” in 2020 International Joint Conference on Neural Networks,
IJCNN 2020, Glasgow, United Kingdom, July 19-24, 2020, pp. 1–8, IEEE, 2020.

[48] V. Venceslai, A. Marchisio, I. Alouani, M. Martina, and M. Shafique, “Neuroattack:
Undermining spiking neural networks security through externally triggered bit-flips,”
in 2020 International Joint Conference on Neural Networks, IJCNN 2020, Glasgow,
United Kingdom, July 19-24, 2020, pp. 1–8, IEEE, 2020.

[49] R. El-Allami, A. Marchisio, M. Shafique, and I. Alouani, “Securing deep spiking
neural networks against adversarial attacks through inherent structural parameters,”
in Design, Automation & Test in Europe Conference & Exhibition, DATE 2021,
Grenoble, France, February 1-5, 2021, pp. 774–779, IEEE, 2021.

[50] A. Marchisio, G. Pira, M. Martina, G. Masera, and M. Shafique, “Dvs-attacks:
Adversarial attacks on dynamic vision sensors for spiking neural networks,” in
International Joint Conference on Neural Networks, IJCNN 2021, Shenzhen, China,
July 18-22, 2021, pp. 1–9, IEEE, 2021.

[51] A. Marchisio, G. Pira, M. Martina, G. Masera, and M. Shafique, “R-SNN: an analysis
and design methodology for robustifying spiking neural networks against adversarial
attacks through noise filters for dynamic vision sensors,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2021, Prague, Czech Republic,
September 27 - Oct. 1, 2021, pp. 6315–6321, IEEE, 2021.

[52] A. Marchisio, G. Caramia, M. Martina, and M. Shafique, “fakeweather: Adversarial
attacks for deep neural networks emulating weather conditions on the camera lens
of autonomous systems,” in International Joint Conference on Neural Networks,
IJCNN 2022, Padua, Italy, July 18-23, 2022, pp. 1–9, IEEE, 2022.

322

[53] A. Marchisio, G. Nanfa, F. Khalid, M. A. Hanif, M. Martina, and M. Shafique, “Se-
VuC: A Study on the Security Vulnerabilities of Capsule Networks against Adversarial
Attacks,” Microprocessors and Microsystems (MICPRO), 2023.

[54] A. Marchisio, A. De Marco, A. Colucci, M. Martina, and M. Shafique, “RobCaps:
Evaluating the Robustness of Capsule Networks against Affine Transformations
and Adversarial Attacks,” in International Joint Conference on Neural Networks
(IJCNN), 2023.

[55] A. Marchisio, A. Massa, V. Mrazek, B. Bussolino, M. Martina, and M. Shafique,
“Nascaps: A framework for neural architecture search to optimize the accuracy
and hardware efficiency of convolutional capsule networks,” in IEEE/ACM Interna-
tional Conference On Computer Aided Design, ICCAD 2020, San Diego, CA, USA,
November 2-5, 2020, pp. 114:1–114:9, IEEE, 2020.

[56] A. Marchisio, V. Mrazek, A. Massa, B. Bussolino, M. Martina, and M. Shafique,
“HARNAS: Neural Architecture Search Jointly Optimizing for Hardware Efficiency
and Adversarial Robustness of Convolutional and Capsule Networks,” ICML Work-
shop on Dynamic Neural Networks (DyNN), 2022.

[57] A. Marchisio, V. Mrazek, A. Massa, B. Bussolino, M. Martina, and M. Shafique,
“Rohnas: A neural architecture search framework with conjoint optimization for
adversarial robustness and hardware efficiency of convolutional and capsule networks,”
IEEE Access, vol. 10, pp. 109043–109055, 2022.

[58] S. Freeman and H. Hamilton Biological Science, 2005.

[59] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends in Machine
Learning, vol. 2, no. 1, pp. 1–127, 2009.

[60] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278 – 2324, 12 1998.

[61] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in Proceedings of the 32nd International Conference
on Machine Learning (F. Bach and D. Blei, eds.), vol. 37 of Proceedings of Machine
Learning Research, (Lille, France), pp. 448–456, PMLR, 07–09 Jul 2015.

[62] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.),
2015.

[63] A. Y. Ng, “Feature selection, l1 vs. l2 regularization, and rotational invariance,”
in Proceedings of the Twenty-First International Conference on Machine Learning,
ICML ’04, (New York, NY, USA), p. 78, Association for Computing Machinery,
2004.

323

[64] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal
of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014.

[65] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami,
Florida, USA, pp. 248–255, IEEE Computer Society, 2009.

[66] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada,
United States (P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, eds.), pp. 1106–1114, 2012.

[67] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(Y. Bengio and Y. LeCun, eds.), 2015.

[68] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778, IEEE Computer Society,
2016.

[69] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.

[70] M. Capra, B. Bussolino, A. Marchisio, M. Shafique, G. Masera, and M. Martina, “An
updated survey of efficient hardware architectures for accelerating deep convolutional
neural networks,” Future Internet, vol. 12, no. 7, p. 113, 2020.

[71] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep neural
networks: A tutorial and survey,” Proc. IEEE, vol. 105, no. 12, pp. 2295–2329, 2017.

[72] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada (H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox,
and R. Garnett, eds.), pp. 8024–8035, 2019.

324

[73] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
“Tensorflow: A system for large-scale machine learning,” in 12th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA,
USA, November 2-4, 2016 (K. Keeton and T. Roscoe, eds.), pp. 265–283, USENIX
Association, 2016.

[74] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” CoRR,
vol. abs/1410.0759, 2014.

[75] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter, “NVIDIA
tensor core programmability, performance & precision,” in 2018 IEEE International
Parallel and Distributed Processing Symposium Workshops, IPDPS Workshops 2018,
Vancouver, BC, Canada, May 21-25, 2018, pp. 522–531, IEEE Computer Society,
2018.

[76] Y. Chen, J. S. Emer, and V. Sze, “Using dataflow to optimize energy efficiency of
deep neural network accelerators,” IEEE Micro, vol. 37, no. 3, pp. 12–21, 2017.

[77] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and
O. Temam, “Shidiannao: shifting vision processing closer to the sensor,” in Pro-
ceedings of the 42nd Annual International Symposium on Computer Architecture,
Portland, OR, USA, June 13-17, 2015 (D. T. Marr and D. H. Albonesi, eds.),
pp. 92–104, ACM, 2015.

[78] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing fpga-based
accelerator design for deep convolutional neural networks,” in Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, USA, February 22-24, 2015 (G. A. Constantinides and D. Chen,
eds.), pp. 161–170, ACM, 2015.

[79] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richard-
son, C. Kozyrakis, and M. Horowitz, “Understanding sources of inefficiency in
general-purpose chips,” in 37th International Symposium on Computer Architecture
(ISCA 2010), June 19-23, 2010, Saint-Malo, France (A. Seznec, U. C. Weiser, and
R. Ronen, eds.), pp. 37–47, ACM, 2010.

[80] R. V. W. Putra, M. A. Hanif, and M. Shafique, “Drmap: A generic DRAM data
mapping policy for energy-efficient processing of convolutional neural networks,” in
57th ACM/IEEE Design Automation Conference, DAC 2020, San Francisco, CA,
USA, July 20-24, 2020, pp. 1–6, IEEE, 2020.

[81] H. Li, M. Bhargava, P. N. Whatmough, and H. P. Wong, “On-chip memory technology
design space explorations for mobile deep neural network accelerators,” in Proceedings

325

of the 56th Annual Design Automation Conference 2019, DAC 2019, Las Vegas, NV,
USA, June 02-06, 2019, p. 131, ACM, 2019.

[82] P. R. Panda, N. D. Dutt, and A. Nicolau, “On-chip vs. off-chip memory: the data
partitioning problem in embedded processor-based systems,” ACM Trans. Design
Autom. Electr. Syst., vol. 5, no. 3, pp. 682–704, 2000.

[83] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with
limited numerical precision,” in Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015 (F. R. Bach and D. M.
Blei, eds.), vol. 37 of JMLR Workshop and Conference Proceedings, pp. 1737–1746,
JMLR.org, 2015.

[84] M. A. Hanif, G. M. Sarda, A. Marchisio, G. Masera, M. Martina, and M. Shafique,
“Conlocnn: Exploiting correlation and non-uniform quantization for energy-efficient
low-precision deep convolutional neural networks,” in 2022 International Joint
Conference on Neural Networks, IJCNN 2022, IEEE, 2022.

[85] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “Approxann: an approximate
computing framework for artificial neural network,” in Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2015, Grenoble,
France, March 9-13, 2015 (W. Nebel and D. Atienza, eds.), pp. 701–706, ACM,
2015.

[86] C. Chen, J. Choi, K. Gopalakrishnan, V. Srinivasan, and S. Venkataramani, “Ex-
ploiting approximate computing for deep learning acceleration,” in 2018 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2018, Dresden, Ger-
many, March 19-23, 2018 (J. Madsen and A. K. Coskun, eds.), pp. 821–826, IEEE,
2018.

[87] M. A. Hanif, R. Hafiz, and M. Shafique, “Error resilience analysis for systematically
employing approximate computing in convolutional neural networks,” in 2018 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2018, Dresden,
Germany, March 19-23, 2018 (J. Madsen and A. K. Coskun, eds.), pp. 913–916,
IEEE, 2018.

[88] V. Mrazek, Z. Vasícek, L. Sekanina, M. A. Hanif, and M. Shafique, “ALWANN:
automatic layer-wise approximation of deep neural network accelerators without
retraining,” in Proceedings of the International Conference on Computer-Aided
Design, ICCAD 2019, Westminster, CO, USA, November 4-7, 2019 (D. Z. Pan, ed.),
pp. 1–8, ACM, 2019.

[89] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V.
Le, “Mnasnet: Platform-aware neural architecture search for mobile,” in IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pp. 2820–2828, Computer Vision Foundation / IEEE,
2019.

326

[90] P. Achararit, M. A. Hanif, R. V. W. Putra, M. Shafique, and Y. Hara-Azumi,
“APNAS: accuracy-and-performance-aware neural architecture search for neural
hardware accelerators,” IEEE Access, vol. 8, pp. 165319–165334, 2020.

[91] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia,
and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search,” in IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 10734–10742,
Computer Vision Foundation / IEEE, 2019.

[92] W. Jiang, L. Yang, S. Dasgupta, J. Hu, and Y. Shi, “Standing on the shoulders of
giants: Hardware and neural architecture co-search with hot start,” IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., vol. 39, no. 11, pp. 4154–4165, 2020.

[93] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding,” in 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2016.

[94] F. Tung and G. Mori, “CLIP-Q: deep network compression learning by in-parallel
pruning-quantization,” in 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 7873–7882,
Computer Vision Foundation / IEEE Computer Society, 2018.

[95] V. Mrazek, R. Hrbacek, Z. Vasícek, and L. Sekanina, “Evoapproxsb: Library
of approximate adders and multipliers for circuit design and benchmarking of
approximation methods,” in Design, Automation & Test in Europe Conference &
Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31, 2017 (D. Atienza and
G. D. Natale, eds.), pp. 258–261, IEEE, 2017.

[96] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms,” CoRR, vol. abs/1708.07747, 2017.

[97] X. Wu, Y. Cao, H. Lu, S. Liu, D. Wang, Z. Wu, X. Liu, and H. Meng, “Speech
emotion recognition using sequential capsule networks,” IEEE ACM Trans. Audio
Speech Lang. Process., vol. 29, pp. 3280–3291, 2021.

[98] W. Zhao, H. Peng, S. Eger, E. Cambria, and M. Yang, “Towards scalable and
reliable capsule networks for challenging NLP applications,” in Proceedings of
the 57th Conference of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers (A. Korhonen,
D. R. Traum, and L. Màrquez, eds.), pp. 1549–1559, Association for Computational
Linguistics, 2019.

[99] H. N. Monday, J. Li, G. U. Nneji, S. Nahar, M. A. Hossin, and J. Jackson, “Covid-19
pneumonia classification based on neurowavelet capsule network,” Healthcare, vol. 10,
no. 3, 2022.

327

[100] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-encoders,” in
Artificial Neural Networks and Machine Learning - ICANN 2011 - 21st Interna-
tional Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011,
Proceedings, Part I (T. Honkela, W. Duch, M. A. Girolami, and S. Kaski, eds.),
vol. 6791 of Lecture Notes in Computer Science, pp. 44–51, Springer, 2011.

[101] W. Maass, “Networks of spiking neurons: The third generation of neural network
models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[102] W. S. McCulloch and W. H. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” in The Philosophy of Artificial Intelligence (M. A. Boden, ed.),
Oxford readings in philosophy, pp. 22–39, Oxford University Press, 1990.

[103] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and
organization in the brain.,” Psychological review, vol. 65 6, pp. 386–408, 1958.

[104] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current
and its application to conduction and excitation in nerve,” The Journal of Physiology,
vol. 117, no. 4, pp. 500–544, 1952.

[105] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Trans. Neural Networks,
vol. 14, no. 6, pp. 1569–1572, 2003.

[106] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons, Popula-
tions, Plasticity. Cambridge University Press, 2002.

[107] H. Paugam-Moisy and S. M. Bohté, “Computing with spiking neuron networks,”
in Handbook of Natural Computing (G. Rozenberg, T. Bäck, and J. N. Kok, eds.),
pp. 335–376, Springer, 2012.

[108] Z. Wang, L. Guo, and M. Adjouadi, “A biological plausible generalized leaky
integrate-and-fire neuron model,” in 36th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, EMBC 2014, Chicago, IL, USA,
August 26-30, 2014, pp. 6810–6813, IEEE, 2014.

[109] F. Ponulak and A. J. Kasinski, “Introduction to spiking neural networks: Infor-
mation processing, learning and applications.,” Acta neurobiologiae experimentalis,
vol. 71 4, pp. 409–33, 2011.

[110] Z. Pan, J. Wu, M. Zhang, H. Li, and Y. Chua, “Neural population coding for effective
temporal classification,” in International Joint Conference on Neural Networks,
IJCNN 2019 Budapest, Hungary, July 14-19, 2019, pp. 1–8, IEEE, 2019.

[111] B. Ruf and M. Schmitt, “Hebbian learning in networks of spiking neurons using
temporal coding,” in Biological and Artificial Computation: From Neuroscience to
Technology, International Work-Conference on Artificial and Natural Neural Net-
works, IWANN ’97, Lanzarote, Canary Islands, Spain, June 4-6, 1997, Proceedings

328

(J. Mira, R. Moreno-Díaz, and J. Cabestany, eds.), vol. 1240 of Lecture Notes in
Computer Science, pp. 380–389, Springer, 1997.

[112] S. Fusi, M. Annunziato, D. Badoni, A. Salamon, and D. J. Amit, “Spike-driven
synaptic plasticity: Theory, simulation, VLSI implementation,” Neural Comput.,
vol. 12, no. 10, pp. 2227–2258, 2000.

[113] G. Srinivasan, P. Panda, and K. Roy, “Stdp-based unsupervised feature learning
using convolution-over-time in spiking neural networks for energy-efficient neu-
romorphic computing,” ACM J. Emerg. Technol. Comput. Syst., vol. 14, no. 4,
pp. 44:1–44:12, 2018.

[114] B. Rückauer, N. Känzig, S. Liu, T. Delbrück, and Y. Sandamirskaya, “Closing the
accuracy gap in an event-based visual recognition task,” CoRR, vol. abs/1906.08859,
2019.

[115] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion of
continuous-valued deep networks to efficient event-driven networks for image classifi-
cation,” Frontiers in Neuroscience, vol. 11, 2017.

[116] N. Rathi, G. Srinivasan, P. Panda, and K. Roy, “Enabling deep spiking neural
networks with hybrid conversion and spike timing dependent backpropagation,” in
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020, OpenReview.net, 2020.

[117] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural
networks,” IEEE Signal Process. Mag., vol. 36, no. 6, pp. 51–63, 2019.

[118] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropagation
for training high-performance spiking neural networks,” Frontiers in Neuroscience,
vol. 12, 2018.

[119] S. B. Shrestha and G. Orchard, “SLAYER: spike layer error reassignment in time,”
in Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada (S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, eds.), pp. 1419–1428, 2018.

[120] A. Renner, F. Sheldon, A. Zlotnik, L. Tao, and A. T. Sornborger, “The back-
propagation algorithm implemented on spiking neuromorphic hardware,” CoRR,
vol. abs/2106.07030, 2021.

[121] K. Stewart, G. Orchard, S. B. Shrestha, and E. Neftci, “Online few-shot gesture
learning on a neuromorphic processor,” IEEE J. Emerg. Sel. Topics Circuits Syst.,
vol. 10, no. 4, pp. 512–521, 2020.

329

[122] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker project,”
Proc. IEEE, vol. 102, no. 5, pp. 652–665, 2014.

[123] C. Liu, G. Bellec, B. Vogginger, D. Kappel, J. Partzsch, F. Neumärker, S. Höppner,
W. Maass, S. B. Furber, R. Legenstein, and C. G. Mayr, “Memory-efficient deep
learning on a spinnaker 2 prototype,” Frontiers in Neuroscience, vol. 12, 2018.

[124] A. P. Davison, D. Brüderle, J. M. Eppler, J. Kremkow, E. B. Müller, D. Pecevski,
L. U. Perrinet, and P. Yger, “Pynn: a common interface for neuronal network
simulators,” Frontiers Neuroinformatics, vol. 2, p. 11, 2008.

[125] S. Schmitt, J. Klähn, G. Bellec, A. Grübl, M. Güttler, A. Hartel, S. Hartmann,
D. H. de Oliveira, K. Husmann, S. Jeltsch, V. Karasenko, M. Kleider, C. Koke,
A. Kononov, C. Mauch, E. Müller, P. Müller, J. Partzsch, M. A. Petrovici, S. Schiefer,
S. Scholze, V. N. Thanasoulis, B. Vogginger, R. Legenstein, W. Maass, C. Mayr,
R. Schüffny, J. Schemmel, and K. Meier, “Neuromorphic hardware in the loop:
Training a deep spiking network on the brainscales wafer-scale system,” in 2017
International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK,
USA, May 14-19, 2017, pp. 2227–2234, IEEE, 2017.

[126] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. Chandrasekaran, J. Bussat,
R. Alvarez-Icaza, J. V. Arthur, P. Merolla, and K. Boahen, “Neurogrid: A mixed-
analog-digital multichip system for large-scale neural simulations,” Proc. IEEE,
vol. 102, no. 5, pp. 699–716, 2014.

[127] S. Moradi, Q. Ning, F. Stefanini, and G. Indiveri, “A scalable multicore architecture
with heterogeneous memory structures for dynamic neuromorphic asynchronous
processors (dynaps),” IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 1, pp. 106–122,
2018.

[128] C. Frenkel, M. Lefebvre, J. Legat, and D. Bol, “A 0.086-mm2 12.7-pj/sop 64k-
synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm
CMOS,” IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 1, pp. 145–158, 2019.

[129] J. Stuijt, M. Sifalakis, A. Yousefzadeh, and F. Corradi, “µbrain: An event-driven
and fully synthesizable architecture for spiking neural networks,” Frontiers in Neu-
roscience, vol. 15, 2021.

[130] C. Brandli, R. Berner, M. Yang, S. Liu, and T. Delbrück, “A 240 × 180 130 db 3 µs
latency global shutter spatiotemporal vision sensor,” IEEE J. Solid State Circuits,
vol. 49, no. 10, pp. 2333–2341, 2014.

[131] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leuteneg-
ger, A. J. Davison, J. Conradt, K. Daniilidis, and D. Scaramuzza, “Event-based vision:
A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 1, pp. 154–180,
2022.

330

[132] T. Finateu, A. Niwa, D. Matolin, K. Tsuchimoto, A. Mascheroni, E. Reynaud,
P. Mostafalu, F. T. Brady, L. Chotard, F. LeGoff, H. Takahashi, H. Wakabayashi,
Y. Oike, and C. Posch, “5.10 A 1280×720 back-illuminated stacked temporal contrast
event-based vision sensor with 4.86µm pixels, 1.066geps readout, programmable
event-rate controller and compressive data-formatting pipeline,” in 2020 IEEE
International Solid- State Circuits Conference, ISSCC 2020, San Francisco, CA,
USA, February 16-20, 2020, pp. 112–114, IEEE, 2020.

[133] S. Chen and M. Guo, “Live demonstration: Celex-v: A 1m pixel multi-mode event-
based sensor,” in IEEE Conference on Computer Vision and Pattern Recognition
Workshops, CVPR Workshops 2019, Long Beach, CA, USA, June 16-20, 2019,
pp. 1682–1683, Computer Vision Foundation / IEEE, 2019.

[134] Y. Suh, S. Choi, M. Ito, J. Kim, Y. Lee, J. Seo, H. Jung, D. Yeo, S. Namgung,
J. Bong, S. Yoo, S. Shin, D. Kwon, P. Kang, S. Kim, H. Na, K. Hwang, C. Shin,
J. Kim, P. K. J. Park, J. Kim, H. Ryu, and Y. Park, “A 1280×960 dynamic vision
sensor with a 4.95-µm pixel pitch and motion artifact minimization,” in IEEE
International Symposium on Circuits and Systems, ISCAS 2020, Sevilla, Spain,
October 10-21, 2020, pp. 1–5, IEEE, 2020.

[135] A. Amir, B. Taba, D. J. Berg, T. Melano, J. L. McKinstry, C. di Nolfo, T. K. Nayak,
A. Andreopoulos, G. Garreau, M. Mendoza, J. Kusnitz, M. DeBole, S. K. Esser,
T. Delbrück, M. Flickner, and D. S. Modha, “A low power, fully event-based gesture
recognition system,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 7388–7397,
IEEE Computer Society, 2017.

[136] P. Lichtsteiner, C. Posch, and T. Delbrück, “A 128×128 120 db 15 µs latency
asynchronous temporal contrast vision sensor,” IEEE J. Solid State Circuits, vol. 43,
no. 2, pp. 566–576, 2008.

[137] A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benosman, “HATS:
histograms of averaged time surfaces for robust event-based object classification,”
in 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 1731–1740, Computer Vision
Foundation / IEEE Computer Society, 2018.

[138] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143 db dynamic range frame-
free PWM image sensor with lossless pixel-level video compression and time-domain
CDS,” IEEE J. Solid State Circuits, vol. 46, no. 1, pp. 259–275, 2011.

[139] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu,
HI, USA, July 21-26, 2017, pp. 6517–6525, IEEE Computer Society, 2017.

331

[140] W. Cheng, H. Luo, W. Yang, L. Yu, S. Chen, and W. Li, “DET: A high-resolution
DVS dataset for lane extraction,” in IEEE Conference on Computer Vision and
Pattern Recognition Workshops, CVPR Workshops 2019, Long Beach, CA, USA,
June 16-20, 2019, pp. 1666–1675, Computer Vision Foundation / IEEE, 2019.

[141] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing machine
learning models via prediction apis,” in 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016 (T. Holz and S. Savage, eds.),
pp. 601–618, USENIX Association, 2016.

[142] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine learning,” in 2018
IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA, pp. 36–52, IEEE Computer Society, 2018.

[143] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks
against machine learning models,” in 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017, pp. 3–18, IEEE Computer Society,
2017.

[144] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, “Property inference
attacks on fully connected neural networks using permutation invariant represen-
tations,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018
(D. Lie, M. Mannan, M. Backes, and X. Wang, eds.), pp. 619–633, ACM, 2018.

[145] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and Ú. Erlingsson,
“Scalable private learning with PATE,” in 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings, OpenReview.net, 2018.

[146] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009 (M. Mitzenmacher, ed.), pp. 169–178, ACM, 2009.

[147] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,”
in Advances in Cryptology - EUROCRYPT ’99, International Conference on the
Theory and Application of Cryptographic Techniques, Prague, Czech Republic, May
2-6, 1999, Proceeding (J. Stern, ed.), vol. 1592 of Lecture Notes in Computer Science,
pp. 223–238, Springer, 1999.

[148] K. Nandakumar, N. K. Ratha, S. Pankanti, and S. Halevi, “Towards deep neural
network training on encrypted data,” in IEEE Conference on Computer Vision and
Pattern Recognition Workshops, CVPR Workshops 2019, Long Beach, CA, USA,
June 16-20, 2019, pp. 40–48, Computer Vision Foundation / IEEE, 2019.

[149] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network predictions via
minionn transformations,” in Proceedings of the 2017 ACM SIGSAC Conference on

332

Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30
- November 03, 2017 (B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, eds.),
pp. 619–631, ACM, 2017.

[150] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “Deepsecure: scalable provably-
secure deep learning,” in Proceedings of the 55th Annual Design Automation Confer-
ence, DAC 2018, San Francisco, CA, USA, June 24-29, 2018, pp. 2:1–2:6, ACM,
2018.

[151] C. Juvekar, V. Vaikuntanathan, and A. P. Chandrakasan, “GAZELLE: A low
latency framework for secure neural network inference,” in 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018
(W. Enck and A. P. Felt, eds.), pp. 1651–1669, USENIX Association, 2018.

[152] S. Wagh, D. Gupta, and N. Chandran, “Securenn: 3-party secure computation for
neural network training,” Proc. Priv. Enhancing Technol., vol. 2019, no. 3, pp. 26–49,
2019.

[153] X. Liu, R. H. Deng, P. Wu, and Y. Yang, “Lightning-fast and privacy-preserving
outsourced computation in the cloud,” Cybersecur., vol. 3, no. 1, p. 17, 2020.

[154] Y. Kim, R. Daly, J. S. Kim, C. Fallin, J. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors,” in ACM/IEEE 41st International Symposium
on Computer Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014,
pp. 361–372, IEEE Computer Society, 2014.

[155] M. Agoyan, J. Dutertre, A. Mirbaha, D. Naccache, A. Ribotta, and A. Tria, “How
to flip a bit?,” in 16th IEEE International On-Line Testing Symposium (IOLTS
2010), 5-7 July, 2010, Corfu, Greece, pp. 235–239, IEEE Computer Society, 2010.

[156] Y. Liu, L. Wei, B. Luo, and Q. Xu, “Fault injection attack on deep neural network,”
in 2017 IEEE/ACM International Conference on Computer-Aided Design, ICCAD
2017, Irvine, CA, USA, November 13-16, 2017 (S. Parameswaran, ed.), pp. 131–138,
IEEE, 2017.

[157] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural network with
progressive bit search,” in 2019 IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pp. 1211–
1220, IEEE, 2019.

[158] J. Breier, X. Hou, D. Jap, L. Ma, S. Bhasin, and Y. Liu, “Practical fault attack
on deep neural networks,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018 (D. Lie, M. Mannan, M. Backes, and X. Wang, eds.), pp. 2204–2206,
ACM, 2018.

333

[159] J. Clements and Y. Lao, “Hardware trojan design on neural networks,” in IEEE
International Symposium on Circuits and Systems, ISCAS 2019, Sapporo, Japan,
May 26-29, 2019, pp. 1–5, IEEE, 2019.

[160] J. Li, A. S. Rakin, Y. Xiong, L. Chang, Z. He, D. Fan, and C. Chakrabarti,
“Defending bit-flip attack through DNN weight reconstruction,” in 57th ACM/IEEE
Design Automation Conference, DAC 2020, San Francisco, CA, USA, July 20-24,
2020, pp. 1–6, IEEE, 2020.

[161] K. Zhao, S. Di, S. Li, X. Liang, Y. Zhai, J. Chen, K. Ouyang, F. Cappello,
and Z. Chen, “FT-CNN: algorithm-based fault tolerance for convolutional neural
networks,” IEEE Trans. Parallel Distributed Syst., vol. 32, no. 7, pp. 1677–1689,
2021.

[162] B. Raghunathan, Y. Turakhia, S. Garg, and D. Marculescu, “Cherry-picking:
exploiting process variations in dark-silicon homogeneous chip multi-processors,” in
Design, Automation and Test in Europe, DATE 13, Grenoble, France, March 18-22,
2013 (E. Macii, ed.), pp. 39–44, EDA Consortium San Jose, CA, USA / ACM DL,
2013.

[163] R. Baumann, “Radiation-induced soft errors in advanced semiconductor tech-
nologies,” IEEE Transactions on Device and Materials Reliability, vol. 5, no. 3,
pp. 305–316, 2005.

[164] K. Kang, S. Gangwal, S. P. Park, and K. Roy, “NBTI induced performance
degradation in logic and memory circuits: how effectively can we approach a
reliability solution?,” in Proceedings of the 13th Asia South Pacific Design Automation
Conference, ASP-DAC 2008, Seoul, Korea, January 21-24, 2008 (C. Kyung, K. Choi,
and S. Ha, eds.), pp. 726–731, IEEE, 2008.

[165] R. Vadlamani, J. Zhao, W. P. Burleson, and R. Tessier, “Multicore soft error rate
stabilization using adaptive dual modular redundancy,” in Design, Automation and
Test in Europe, DATE 2010, Dresden, Germany, March 8-12, 2010 (G. D. Micheli,
B. M. Al-Hashimi, W. Müller, and E. Macii, eds.), pp. 27–32, IEEE Computer
Society, 2010.

[166] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to improve
computer reliability,” IBM J. Res. Dev., vol. 6, no. 2, pp. 200–209, 1962.

[167] V. Prasanth, V. Singh, and R. A. Parekhji, “Reduced overhead soft error mitigation
using error control coding techniques,” in 17th IEEE International On-Line Testing
Symposium (IOLTS 2011), 13-15 July, 2011, Athens, Greece, pp. 163–168, IEEE
Computer Society, 2011.

[168] M. A. Hanif and M. Shafique, “Salvagednn: salvaging deep neural network accel-
erators with permanent faults through saliency-driven fault-aware mapping,” Phil.
Trans. R. Soc. A., vol. 378, no. 2164, 2020.

334

[169] E. Ozen and A. Orailoglu, “Sanity-check: Boosting the reliability of safety-critical
deep neural network applications,” in 28th IEEE Asian Test Symposium, ATS 2019,
Kolkata, India, December 10-13, 2019, pp. 7–12, IEEE, 2019.

[170] J. Zhang, K. Rangineni, Z. Ghodsi, and S. Garg, “Thundervolt: enabling aggressive
voltage underscaling and timing error resilience for energy efficient deep learning
accelerators,” in Proceedings of the 55th Annual Design Automation Conference,
DAC 2018, San Francisco, CA, USA, June 24-29, 2018, pp. 19:1–19:6, ACM, 2018.

[171] P. Pandey, P. Basu, K. Chakraborty, and S. Roy, “Greentpu: Predictive design
paradigm for improving timing error resilience of a near-threshold tensor processing
unit,” IEEE Trans. Very Large Scale Integr. Syst., vol. 28, no. 7, pp. 1557–1566,
2020.

[172] M. A. Hanif and M. Shafique, “Dnn-life: An energy-efficient aging mitigation frame-
work for improving the lifetime of on-chip weight memories in deep neural network
hardware architectures,” in Design, Automation & Test in Europe Conference &
Exhibition, DATE 2021, Grenoble, France, February 1-5, 2021, pp. 729–734, IEEE,
2021.

[173] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. C. Courville, and Y. Bengio, “Generative adversarial networks,” CoRR,
vol. abs/1406.2661, 2014.

[174] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and T. Gold-
stein, “Poison frogs! targeted clean-label poisoning attacks on neural networks,”
in Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada (S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, eds.), pp. 6106–6116, 2018.

[175] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating backdooring
attacks on deep neural networks,” IEEE Access, vol. 7, pp. 47230–47244, 2019.

[176] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural
networks,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 828–841, 2019.

[177] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks: Re-
liable attacks against black-box machine learning models,” in 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings, OpenReview.net, 2018.

[178] F. Khalid, H. Ali, M. A. Hanif, S. Rehman, R. Ahmed, and M. Shafique, “Fadec:
A fast decision-based attack for adversarial machine learning,” in 2020 International
Joint Conference on Neural Networks, IJCNN 2020, Glasgow, United Kingdom, July
19-24, 2020, pp. 1–8, IEEE, 2020.

335

[179] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” in 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Workshop Track Proceedings, OpenReview.net,
2017.

[180] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song, “Robust physical-world attacks on deep learning visual clas-
sification,” in 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 1625–1634, Computer
Vision Foundation / IEEE Computer Society, 2018.

[181] S. Thys, W. V. Ranst, and T. Goedemé, “Fooling automated surveillance cameras:
Adversarial patches to attack person detection,” in IEEE Conference on Computer
Vision and Pattern Recognition Workshops, CVPR Workshops 2019, Long Beach,
CA, USA, June 16-20, 2019, pp. 49–55, Computer Vision Foundation / IEEE, 2019.

[182] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016 (E. R. Weippl, S. Katzenbeisser, C. Kruegel,
A. C. Myers, and S. Halevi, eds.), pp. 1528–1540, ACM, 2016.

[183] A. Paudice, L. Muñoz-González, A. György, and E. C. Lupu, “Detection of adver-
sarial training examples in poisoning attacks through anomaly detection,” CoRR,
vol. abs/1802.03041, 2018.

[184] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against back-
dooring attacks on deep neural networks,” in Research in Attacks, Intrusions, and
Defenses - 21st International Symposium, RAID 2018, Heraklion, Crete, Greece,
September 10-12, 2018, Proceedings (M. Bailey, T. Holz, M. Stamatogiannakis, and
S. Ioannidis, eds.), vol. 11050 of Lecture Notes in Computer Science, pp. 273–294,
Springer, 2018.

[185] F. Nikfam, A. Marchisio, M. Martina, and M. Shafique, “Accelat: A framework
for accelerating the adversarial training of deep neural networks through accuracy
gradient,” IEEE Access, vol. 10, pp. 108997–109007, 2022.

[186] F. Khalid, H. Ali, H. Tariq, M. A. Hanif, S. Rehman, R. Ahmed, and M. Shafique,
“Qusecnets: Quantization-based defense mechanism for securing deep neural network
against adversarial attacks,” in 25th IEEE International Symposium on On-Line
Testing and Robust System Design, IOLTS 2019, Rhodes, Greece, July 1-3, 2019
(D. Gizopoulos, D. Alexandrescu, P. Papavramidou, and M. Maniatakos, eds.),
pp. 182–187, IEEE, 2019.

[187] A. Guesmi, I. Alouani, K. N. Khasawneh, M. Baklouti, T. Frikha, M. Abid, and
N. B. Abu-Ghazaleh, “Defensive approximation: securing cnns using approximate

336

computing,” in ASPLOS ’21: 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Virtual Event, USA,
April 19-23, 2021 (T. Sherwood, E. D. Berger, and C. Kozyrakis, eds.), pp. 990–1003,
ACM, 2021.

[188] A. Siddique and K. A. Hoque, “Is approximation universally defensive against
adversarial attacks in deep neural networks?,” in 2022 Design, Automation & Test
in Europe Conference & Exhibition, DATE 2022, Antwerp, Belgium, March 14-23,
2022 (C. Bolchini, I. Verbauwhede, and I. Vatajelu, eds.), pp. 364–369, IEEE, 2022.

[189] H. Ali, F. Khalid, H. Tariq, M. A. Hanif, R. Ahmed, and S. Rehman, “Sscnets:
Robustifying dnns using secure selective convolutional filters,” IEEE Des. Test,
vol. 37, no. 2, pp. 58–65, 2020.

[190] J. M. Cohen, E. Rosenfeld, and J. Z. Kolter, “Certified adversarial robustness
via randomized smoothing,” in Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA
(K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of Proceedings of Machine
Learning Research, pp. 1310–1320, PMLR, 2019.

[191] J. Gu, V. Tresp, and H. Hu, “Capsule network is not more robust than convolutional
network,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2021, virtual, June 19-25, 2021, pp. 14309–14317, Computer Vision Foundation /
IEEE, 2021.

[192] F. Michels, T. Uelwer, E. Upschulte, and S. Harmeling, “On the vulnerability of
capsule networks to adversarial attacks,” CoRR, vol. abs/1906.03612, 2019.

[193] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of neural net-
works,” in 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA,
USA, May 22-26, 2017, pp. 39–57, IEEE Computer Society, 2017.

[194] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple and accurate
method to fool deep neural networks,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pp. 2574–2582, IEEE Computer Society, 2016.

[195] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversarial
perturbations,” in 2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 86–94, IEEE Computer
Society, 2017.

[196] J. Gugglberger, D. Peer, and A. J. Rodríguez-Sánchez, “Training deep capsule
networks with residual connections,” in Artificial Neural Networks and Machine
Learning - ICANN 2021 - 30th International Conference on Artificial Neural Net-
works, Bratislava, Slovakia, September 14-17, 2021, Proceedings, Part I (I. Farkas,

337

P. Masulli, S. Otte, and S. Wermter, eds.), vol. 12891 of Lecture Notes in Computer
Science, pp. 541–552, Springer, 2021.

[197] N. Frosst, S. Sabour, and G. E. Hinton, “DARCCC: detecting adversaries by
reconstruction from class conditional capsules,” CoRR, vol. abs/1811.06969, 2018.

[198] Y. Qin, N. Frosst, S. Sabour, C. Raffel, G. W. Cottrell, and G. E. Hinton, “Detecting
and diagnosing adversarial images with class-conditional capsule reconstructions,”
in 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020, OpenReview.net, 2020.

[199] Y. Qin, N. Frosst, C. Raffel, G. W. Cottrell, and G. E. Hinton, “Deflecting
adversarial attacks,” CoRR, vol. abs/2002.07405, 2020.

[200] J. Gu and V. Tresp, “Improving the robustness of capsule networks to image affine
transformations,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp. 7283–7291,
Computer Vision Foundation / IEEE, 2020.

[201] J. Gu, B. Wu, and V. Tresp, “Effective and efficient vote attack on capsule networks,”
in 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021, OpenReview.net, 2021.

[202] A. Bagheri, O. Simeone, and B. Rajendran, “Adversarial training for probabilistic
spiking neural networks,” in 19th IEEE International Workshop on Signal Processing
Advances in Wireless Communications, SPAWC 2018, Kalamata, Greece, June 25-28,
2018, pp. 1–5, IEEE, 2018.

[203] B. Paudel, A. Itani, and S. Tragoudas, “Resiliency of SNN on black-box adversarial
attacks,” in 20th IEEE International Conference on Machine Learning and Applica-
tions, ICMLA 2021, Pasadena, CA, USA, December 13-16, 2021 (M. A. Wani, I. K.
Sethi, W. Shi, G. Qu, D. S. Raicu, and R. Jin, eds.), pp. 799–806, IEEE, 2021.

[204] S. Sharmin, P. Panda, S. S. Sarwar, C. Lee, W. Ponghiran, and K. Roy, “A
comprehensive analysis on adversarial robustness of spiking neural networks,” in
International Joint Conference on Neural Networks, IJCNN 2019 Budapest, Hungary,
July 14-19, 2019, pp. 1–8, IEEE, 2019.

[205] L. Liang, X. Hu, L. Deng, Y. Wu, G. Li, Y. Ding, P. Li, and Y. Xie, “Exploring
adversarial attack in spiking neural networks with spike-compatible gradient,” CoRR,
vol. abs/2001.01587, 2020.

[206] S. Krithivasan, S. Sen, N. Rathi, K. Roy, and A. Raghunathan, “Efficiency attacks
on spiking neural networks,” in DAC ’22: 59th ACM/IEEE Design Automation
Conference, San Francisco, California, USA, July 10 - 14, 2022 (R. Oshana, ed.),
pp. 373–378, ACM, 2022.

338

[207] S. Kundu, M. Pedram, and P. A. Beerel, “HIRE-SNN: harnessing the inherent
robustness of energy-efficient deep spiking neural networks by training with crafted
input noise,” in 2021 IEEE/CVF International Conference on Computer Vision,
ICCV 2021, Montreal, QC, Canada, October 10-17, 2021, pp. 5189–5198, IEEE,
2021.

[208] L. Liang, K. Xu, X. Hu, L. Deng, and Y. Xie, “Toward robust spiking neural
network against adversarial perturbation,” CoRR, vol. abs/2205.01625, 2022.

[209] S. Sharmin, N. Rathi, P. Panda, and K. Roy, “Inherent adversarial robustness
of deep spiking neural networks: Effects of discrete input encoding and non-linear
activations,” in Computer Vision - ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XXIX, vol. 12374 of Lecture Notes in
Computer Science, pp. 399–414, Springer, 2020.

[210] Y. Kim, Y. Venkatesha, and P. Panda, “Privatesnn: Privacy-preserving spiking
neural networks,” in Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI
2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence,
IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pp. 1192–1200,
AAAI Press, 2022.

[211] K. Nagarajan, J. Li, S. S. Ensan, M. N. I. Khan, S. Kannan, and S. Ghosh,
“Analysis of power-oriented fault injection attacks on spiking neural networks,” in
2022 Design, Automation & Test in Europe Conference & Exhibition, DATE 2022,
Antwerp, Belgium, March 14-23, 2022 (C. Bolchini, I. Verbauwhede, and I. Vatajelu,
eds.), pp. 861–866, IEEE, 2022.

[212] A. Colucci, A. Steininger, and M. Shafique, “enpheeph: A fault injection framework
for spiking and compressed deep neural networks,” CoRR, vol. abs/2208.00328, 2022.

[213] T. Spyrou, S. A. El-Sayed, E. Afacan, L. A. Camuñas-Mesa, B. Linares-Barranco,
and H. Stratigopoulos, “Neuron fault tolerance in spiking neural networks,” in Design,
Automation & Test in Europe Conference & Exhibition, DATE 2021, Grenoble,
France, February 1-5, 2021, pp. 743–748, IEEE, 2021.

[214] R. V. W. Putra, M. A. Hanif, and M. Shafique, “Respawn: Energy-efficient
fault-tolerance for spiking neural networks considering unreliable memories,” in
IEEE/ACM International Conference On Computer Aided Design, ICCAD 2021,
Munich, Germany, November 1-4, 2021, pp. 1–9, IEEE, 2021.

[215] R. V. W. Putra, M. A. Hanif, and M. Shafique, “Softsnn: Low-cost fault tolerance
for spiking neural network accelerators under soft errors,” CoRR, vol. abs/2203.05523,
2022.

339

[216] O. Nomura, Y. Sakemi, T. Hosomi, and T. Morie, “Robustness of spiking neural
networks based on time-to-first-spike encoding against adversarial attacks,” IEEE
Transactions on Circuits and Systems II: Express Briefs, pp. 1–1, 2022.

[217] W. Guo, M. E. Fouda, A. M. Eltawil, and K. N. Salama, “Neural coding in spiking
neural networks: A comparative study for robust neuromorphic systems,” Frontiers
in Neuroscience, vol. 15, 2021.

[218] Y. Kim, H. Park, A. Moitra, A. Bhattacharjee, Y. Venkatesha, and P. Panda,
“Rate coding or direct coding: Which one is better for accurate, robust, and energy-
efficient spiking neural networks?,” in IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2022, Virtual and Singapore, 23-27 May
2022, pp. 71–75, IEEE, 2022.

[219] J. Jiao, H. Huang, L. Li, Z. He, Y. Zhu, and M. Liu, “Comparing representations in
tracking for event camera-based SLAM,” in IEEE Conference on Computer Vision
and Pattern Recognition Workshops, CVPR Workshops 2021, virtual, June 19-25,
2021, pp. 1369–1376, Computer Vision Foundation / IEEE, 2021.

[220] J. Büchel, G. Lenz, Y. Hu, S. Sheik, and M. Sorbaro, “Adversarial attacks on
spiking convolutional networks for event-based vision,” CoRR, vol. abs/2110.02929,
2021.

[221] W. Lee and H. Myung, “Adversarial attack for asynchronous event-based data,” in
Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth
Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The
Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022
Virtual Event, February 22 - March 1, 2022, pp. 1237–1244, AAAI Press, 2022.

[222] A. Linares-Barranco, F. Perez-Peña, D. P. Moeys, F. Gomez-Rodriguez, G. Jiménez-
Moreno, S. Liu, and T. Delbrück, “Low latency event-based filtering and feature
extraction for dynamic vision sensors in real-time FPGA applications,” IEEE Access,
vol. 7, pp. 134926–134942, 2019.

[223] K. Bache, D. DeCoste, and P. Smyth, “Hot swapping for online adaptation of
optimization hyperparameters,” in 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track
Proceedings (Y. Bengio and Y. LeCun, eds.), 2015.

[224] Y. Bengio, “Practical recommendations for gradient-based training of deep archi-
tectures,” in Neural Networks: Tricks of the Trade - Second Edition (G. Montavon,
G. B. Orr, and K. Müller, eds.), vol. 7700 of Lecture Notes in Computer Science,
pp. 437–478, Springer, 2012.

[225] Y. Wu, L. Liu, J. Bae, K. H. Chow, A. Iyengar, C. Pu, W. Wei, L. Yu, and
Q. Zhang, “Demystifying learning rate polices for high accuracy training of deep
neural networks,” CoRR, vol. abs/1908.06477, 2019.

340

[226] L. N. Smith and N. Topin, “Super-convergence: Very fast training of residual
networks using large learning rates,” CoRR, vol. abs/1708.07120, 2017.

[227] I. Loshchilov and F. Hutter, “SGDR: stochastic gradient descent with warm restarts,”
in 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, OpenReview.net, 2017.

[228] A. Devarakonda, M. Naumov, and M. Garland, “Adabatch: Adaptive batch sizes
for training deep neural networks,” CoRR, vol. abs/1712.02029, 2017.

[229] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the 27th International Conference on Machine Learning
(ICML-10), June 21-24, 2010, Haifa, Israel (J. Fürnkranz and T. Joachims, eds.),
pp. 807–814, Omnipress, 2010.

[230] T. Glasmachers, “A fast incremental BSP tree archive for non-dominated points,”
in Evolutionary Multi-Criterion Optimization - 9th International Conference,
EMO 2017, Münster, Germany, March 19-22, 2017, Proceedings (H. Trautmann,
G. Rudolph, K. Klamroth, O. Schütze, M. M. Wiecek, Y. Jin, and C. Grimme, eds.),
vol. 10173 of Lecture Notes in Computer Science, pp. 252–266, Springer, 2017.

[231] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197,
2002.

[232] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel, “Detection of traffic
signs in real-world images: The german traffic sign detection benchmark,” in The
2013 International Joint Conference on Neural Networks, IJCNN 2013, Dallas, TX,
USA, August 4-9, 2013, pp. 1–8, IEEE, 2013.

[233] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “CACTI-P:
architecture-level modeling for sram-based structures with advanced leakage reduc-
tion techniques,” in 2011 IEEE/ACM International Conference on Computer-Aided
Design, ICCAD 2011, San Jose, California, USA, November 7-10, 2011 (J. R.
Phillips, A. J. Hu, and H. Graeb, eds.), pp. 694–701, IEEE Computer Society, 2011.

[234] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute for advanced
research),” 2009.

[235] G. N. Lewis, N. J. Boynton, and F. W. Burton, “Expected complexity of fast search
with uniformly distributed data,” Inf. Process. Lett., vol. 13, no. 1, pp. 4–7, 1981.

[236] M. Raghu, B. Poole, J. M. Kleinberg, S. Ganguli, and J. Sohl-Dickstein, “On the
expressive power of deep neural networks,” in Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017 (D. Precup and Y. W. Teh, eds.), vol. 70 of Proceedings of Machine Learning
Research, pp. 2847–2854, PMLR, 2017.

341

[237] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits
in natural images with unsupervised feature learning,” in NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

[238] H. Amin, K. Curtis, and B. Hayes-Gill, “Piecewise linear approximation applied to
nonlinear function of a neural network,” IEE Proceedings - Circuits, Devices and
Systems, vol. 144, no. 6, pp. 313–317, 1997.

[239] Y. Gao, W. Liu, and F. Lombardi, “Design and implementation of an approximate
softmax layer for deep neural networks,” in IEEE International Symposium on
Circuits and Systems, ISCAS 2020, Sevilla, Spain, October 10-21, 2020, pp. 1–5,
IEEE, 2020.

[240] M. Wang, S. Lu, D. Zhu, J. Lin, and Z. Wang, “A high-speed and low-complexity
architecture for softmax function in deep learning,” in 2018 IEEE Asia Pacific
Conference on Circuits and Systems, APCCAS 2018, Chengdu, China, October
26-30, 2018, pp. 223–226, IEEE, 2018.

[241] M. E. Celebi, F. Celiker, and H. A. Kingravi, “On euclidean norm approximations,”
Pattern Recognit., vol. 44, no. 2, pp. 278–283, 2011.

[242] G. A. Gillani, M. A. Hanif, M. Krone, S. H. Gerez, M. Shafique, and A. B. J.
Kokkeler, “Squash: Approximate square-accumulate with self-healing,” IEEE Access,
vol. 6, pp. 49112–49128, 2018.

[243] F. Rhodes, “On the metrics of chaudhuri, murthy and chaudhuri,” Pattern Recognit.,
vol. 28, no. 5, pp. 745–752, 1995.

[244] T. Tieleman, “The affnist dataset,” cs.toronto.edu, 2013.

[245] I. J. Goodfellow, N. Papernot, and P. D. McDaniel, “cleverhans v0.1: an adversarial
machine learning library,” CoRR, vol. abs/1610.00768, 2016.

[246] B. Luo, Y. Liu, L. Wei, and Q. Xu, “Towards imperceptible and robust adversarial
example attacks against neural networks,” in Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, Febru-
ary 2-7, 2018 (S. A. McIlraith and K. Q. Weinberger, eds.), pp. 1652–1659, AAAI
Press, 2018.

[247] L. Wang, S. Guo, W. Huang, and Y. Qiao, “Places205-vggnet models for scene
recognition,” CoRR, vol. abs/1508.01667, 2015.

[248] D. Willmott et al., “You only query once: Effective black box adversarial attacks
with minimal repeated queries,” arXiv, 2021.

342

[249] K. Pearson, “Note on regression and inheritance in the case of two parents,”
Proceedings of the Royal Society of London, vol. 58, pp. 240–242, 1895.

[250] C. Lin, A. Wild, G. N. Chinya, Y. Cao, M. Davies, D. M. Lavery, and H. Wang,
“Programming spiking neural networks on intel’s loihi,” Computer, vol. 51, no. 3,
pp. 52–61, 2018.

[251] C. Lin, A. Wild, G. N. Chinya, T. Lin, M. Davies, and H. Wang, “Mapping
spiking neural networks onto a manycore neuromorphic architecture,” in Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018 (J. S. Foster
and D. Grossman, eds.), pp. 78–89, ACM, 2018.

[252] B. Rueckauer, C. Bybee, R. Goettsche, Y. Singh, J. Mishra, and A. Wild, “Nxtf:
An API and compiler for deep spiking neural networks on intel loihi,” CoRR,
vol. abs/2101.04261, 2021.

[253] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart, D. Rasmussen,
F. Choo, A. Voelker, and C. Eliasmith, “Nengo: a python tool for building large-scale
functional brain models,” Frontiers Neuroinformatics, vol. 7, p. 48, 2013.

[254] D. Rasmussen, “Nengodl: Combining deep learning and neuromorphic modelling
methods,” CoRR, vol. abs/1805.11144, 2018.

[255] C. Michaelis, A. B. Lehr, W. Oed, and C. Tetzlaff, “Brian2loihi: An emulator
for the neuromorphic chip loihi using the spiking neural network simulator brian,”
CoRR, vol. abs/2109.12308, 2021.

[256] M. Stimberg, R. Brette, and D. F. Goodman, “Brian 2, an intuitive and efficient
neural simulator,” eLife, vol. 8, p. e47314, aug 2019.

[257] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeiffer, “Fast-classifying,
high-accuracy spiking deep networks through weight and threshold balancing,” in
2015 International Joint Conference on Neural Networks, IJCNN 2015, Killarney,
Ireland, July 12-17, 2015, pp. 1–8, IEEE, 2015.

[258] J. Kaiser, A. Friedrich, J. C. V. Tieck, D. Reichard, A. Roennau, E. Neftci,
and R. Dillmann, “Embodied event-driven random backpropagation,” CoRR,
vol. abs/1904.04805, 2019.

[259] X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. Benosman, “HOTS: A
hierarchy of event-based time-surfaces for pattern recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 7, pp. 1346–1359, 2017.

[260] A. C. Bovik, M. Clark, and W. S. Geisler, “Multichannel texture analysis using
localized spatial filters,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 1,
pp. 55–73, 1990.

343

[261] J. Tang, S. Li, and P. Liu, “A review of lane detection methods based on deep
learning,” Pattern Recognit., vol. 111, p. 107623, 2021.

[262] S. Chougule, N. Kozonek, A. Ismail, G. Adam, V. Narayan, and M. Schulze, “Reli-
able multilane detection and classification by utilizing CNN as a regression network,”
in Computer Vision - ECCV 2018 Workshops - Munich, Germany, September 8-14,
2018, Proceedings, Part V (L. Leal-Taixé and S. Roth, eds.), vol. 11133 of Lecture
Notes in Computer Science, pp. 740–752, Springer, 2018.

[263] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, “Spatial as deep: Spatial CNN for
traffic scene understanding,” in Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018
(S. A. McIlraith and K. Q. Weinberger, eds.), pp. 7276–7283, AAAI Press, 2018.

[264] S. Lee, J. Kim, J. S. Yoon, S. Shin, O. Bailo, N. Kim, T. Lee, H. S. Hong, S. Han,
and I. S. Kweon, “Vpgnet: Vanishing point guided network for lane and road marking
detection and recognition,” in IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017, pp. 1965–1973, IEEE Computer
Society, 2017.

[265] Y. Ho and S. Wookey, “The real-world-weight cross-entropy loss function: Modeling
the costs of mislabeling,” IEEE Access, vol. 8, pp. 4806–4813, 2020.

[266] S. Jadon, “A survey of loss functions for semantic segmentation,” in IEEE Confer-
ence on Computational Intelligence in Bioinformatics and Computational Biology,
CIBCB 2020, Viña del Mar, Chile, October 27-29, 2020, pp. 1–7, IEEE, 2020.

[267] F. Munir, S. Azam, M. Jeon, B. Lee, and W. Pedrycz, “Ldnet: End-to-end lane
marking detection approach using a dynamic vision sensor,” IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 7, pp. 9318–9334, 2022.

[268] S. Lu, Z. Luo, F. Gao, M. Liu, K. Chang, and C. H. Piao, “A fast and robust
lane detection method based on semantic segmentation and optical flow estimation,”
Sensors, vol. 21, no. 2, p. 400, 2021.

[269] J. Kim and M. Lee, “Robust lane detection based on convolutional neural network
and random sample consensus,” in Neural Information Processing - 21st International
Conference, ICONIP 2014, Kuching, Malaysia, November 3-6, 2014. Proceedings,
Part I (C. K. Loo, K. S. Yap, K. W. Wong, A. T. B. Jin, and K. Huang, eds.),
vol. 8834 of Lecture Notes in Computer Science, pp. 454–461, Springer, 2014.

[270] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, pp. 3431–3440, IEEE Computer
Society, 2015.

344

[271] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in 7th
International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019, OpenReview.net, 2019.

[272] J. Cook and V. Ramadas, “When to consult precision-recall curves,” The Stata
Journal, vol. 20, no. 1, pp. 131–148, 2020.

[273] R. Real and J. Vargas, “The probabilistic basis of jaccard’s index of similarity,”
Systematic Biology - SYST BIOL, vol. 45, pp. 380–385, 09 1996.

[274] L. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution
for semantic image segmentation,” CoRR, vol. abs/1706.05587, 2017.

[275] G. Lin, A. Milan, C. Shen, and I. D. Reid, “Refinenet: Multi-path refinement
networks for high-resolution semantic segmentation,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pp. 5168–5177, IEEE Computer Society, 2017.

[276] D. Neven, B. D. Brabandere, S. Georgoulis, M. Proesmans, and L. V. Gool,
“Towards end-to-end lane detection: an instance segmentation approach,” in 2018
IEEE Intelligent Vehicles Symposium, IV 2018, Changshu, Suzhou, China, June
26-30, 2018, pp. 286–291, IEEE, 2018.

[277] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, “Spatial as deep: Spatial CNN for
traffic scene understanding,” in Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018
(S. A. McIlraith and K. Q. Weinberger, eds.), pp. 7276–7283, AAAI Press, 2018.

[278] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training
of deep networks,” in Advances in Neural Information Processing Systems 19,
Proceedings of the Twentieth Annual Conference on Neural Information Processing
Systems, Vancouver, British Columbia, Canada, December 4-7, 2006 (B. Schölkopf,
J. C. Platt, and T. Hofmann, eds.), pp. 153–160, MIT Press, 2006.

[279] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[280] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, “Real-time classifica-
tion and sensor fusion with a spiking deep belief network,” Frontiers in Neuroscience,
vol. 7, p. 178, 2013.

[281] E. Romero, F. Mazzanti, J. Delgado, and D. B. Prats, “Weighted contrastive
divergence,” Neural Networks, vol. 114, pp. 147–156, 2019.

[282] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for deep
belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, 2006.

345

[283] A. J. F. Siegert, “On the first passage time probability problem,” Phys. Rev., vol. 81,
pp. 617–623, 1951.

[284] L. Holmström and P. Koistinen, “Using additive noise in back-propagation training,”
IEEE Trans. Neural Networks, vol. 3, no. 1, pp. 24–38, 1992.

[285] M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised learning,”
Neural Networks, vol. 6, no. 4, pp. 525–533, 1993.

[286] I. H. Abbassi, F. Khalid, S. Rehman, A. M. Kamboh, A. Jantsch, S. Garg, and
M. Shafique, “Trojanzero: Switching activity-aware design of undetectable hardware
trojans with zero power and area footprint,” in Design, Automation & Test in Europe
Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019 (J. Teich
and F. Fummi, eds.), pp. 914–919, IEEE, 2019.

[287] Y. Liu, S. Ma, Y. Aafer, W. Lee, J. Zhai, W. Wang, and X. Zhang, “Trojaning
attack on neural networks,” in 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018, The
Internet Society, 2018.

[288] C. Pehle and J. E. Pedersen, “Norse - A deep learning library for spiking neural
networks,” Jan. 2021. Documentation: https://norse.ai/docs/.

[289] J. Rauber, W. Brendel, and M. Bethge, “Foolbox v0.8.0: A python toolbox to
benchmark the robustness of machine learning models,” CoRR, vol. abs/1707.04131,
2017.

[290] G. Orchard, A. Jayawant, G. Cohen, and N. V. Thakor, “Converting static
image datasets to spiking neuromorphic datasets using saccades,” CoRR,
vol. abs/1507.07629, 2015.

[291] Y. Nozaki and T. Delbruck, “Temperature and parasitic photocurrent effects in
dynamic vision sensors,” IEEE Transactions on Electron Devices, vol. 64, no. 8,
pp. 3239–3245, 2017.

Acknowledgment
This work has been supported by the Doctoral College Resilient Embedded Systems,
which is run jointly by the TU Wien’s Faculty of Informatics and the UAS Technikum
Wien.

346

	Kurzfassung
	Abstract
	Publications of this PhD Work
	Other Co-Authored Publications
	List of Supervised MS Student Projects that Contributed to this Thesis
	Contents
	Introduction
	Optimization Objectives for DNN Models and Architectures
	Energy-Efficiency
	Robustness

	Summary of the State-of-the-art Challenges & Research Goals
	Limitations of the State-of-the-Art
	Scientific Objectives and Goals

	Thesis Contributions
	Thesis Outline

	Background and Related Work
	Deep Neural Networks
	Layers and Operations
	Training and Inference
	DNN Models
	DNN Hardware Architectures
	DNN Optimizations for Energy-Efficiency

	Capsule Networks
	Traditional DNNs vs. CapsNets
	CapsNet Models and Applications
	Summary of Challenges for Capsule Networks

	Spiking Neural Networks
	Spiking Neuron Models
	Spike Coding Techniques
	SNN Learning Techniques
	Neuromorphic Architectures
	Event-Based Cameras
	Example of Event-Based Datasets
	Summary of Challenges for SNNs

	Vulnerabilities of DL Systems
	Privacy Threats
	Fault Injection and Hardware Trojans
	Reliability Threats
	Adversarial Security Threats
	Vulnerability Studies for CapsNets
	Vulnerability Studies for SNNs

	Summary of Background and Related Work

	Hardware and Software Optimizations for Capsule Networks
	FasTrCaps: An Integrated Framework for Fast yet Accurate Training of CapsNets
	System Overview
	Overview of Learning Rate Policies
	Analysis of Learning Rate Policies on CapsNets
	Overview of FasTrCaps Framework
	Evaluation of the FasTrCaps Framework
	Summary

	CapsAcc: An Efficient Hardware Accelerator for CapsNets
	Motivational Analyses of CapsNets Complexity and Execution Time
	CapsAcc Architecture Design
	Dataflow Design
	Synthesis Evaluation of the Complete CapsAcc Architecture
	Summary

	FEECA: A Methodology to design a Fast, Energy-Efficient CapsNet Accelerator
	Overview of the FEECA Methodology
	Optimization Problem
	Search Algorithms: Brute-Force vs. Heuristic Search
	Set of Internal Primitives
	Estimation of the Parameters of the Accelerator
	Evaluation of our FEECA Methodology
	Summary

	DESCNet: Developing Efficient Scratchpad Memories for CapsNet Hardware
	Overview of DESCNet Methodology
	Required Architectural Modification and Key Research Question
	Resource Analysis of CapsNet Inference
	DESCNet: Scratchpad Memory Design
	Our Methodology for the DSE of Scratchpad Memories
	Evaluation of the DESCNet Methodology
	Summary

	Q-CapsNets: A Specialized Framework for Quantizing CapsNets
	System Overview
	Analysis of Area and Energy Consumption for Reduced Wordlength
	Rounding Schemes
	Q-CapsNets Framework
	Evaluation of our Q-CapsNets Framework
	Summary

	ReD-CaNe: Resilience Analysis and Design of CapsNets under Approximations
	System Overview
	Modeling the Errors as Injected Noise
	ReD-CaNe Methodology
	Evaluation of the ReD-CaNe Methodology
	Summary

	Approximate Squash and Softmax Designs
	System Overview
	Approximate Computing for DNNs Nonlinear Operations
	Approximate Softmax Designs
	Approximate Squash Designs
	Evaluation of the Approximate Softmax and Squash Designs
	Summary

	Summary of Hardware and Software Optimizations for Capsule Networks

	Adversarial Security Threats for DNNs and CapsNets
	RobCaps: Evaluating the Robustness of CapsNets against Affine Transformations and Adversarial Attacks
	System Overview
	RobCaps Methodology
	Experimental Setup
	Robustness Against Affine Trasformations
	Robustness Against Adversarial Attacks
	Analyzing the Contribution of Dynamic Routing to the Robustness of the DeepCaps
	Summary

	CapsAttacks: A Study on the Security Vulnerabilities of CapsNets against Adversarial Attacks
	System Overview
	Generation of Targeted Imperceptible and Robust Adversarial Examples
	Evaluation of the CapsAttack Methodology
	Summary

	fakeWeather: Adversarial Attacks for DNNs Emulating Weather Conditions on the Camera Lens of Autonomous Systems
	System Overview
	fakeWeather Attacks Design
	Evaluation of the fakeWeather Attacks
	Summary

	Summary of Adversarial Security Threats for DNNs and CapsNets

	Integration of Multiple Design Objectives into NAS Frameworks for CapsNets and DNNs
	Flow for Designing Integrated Frameworks with Multiple Design Objectives
	NASCaps: A Framework for Neural Architecture Search for Optimizing Accuracy and Hardware Efficiency of Convolutional CapsNets
	System Overview
	NASCaps Framework
	Evaluation of the NASCaps Framework
	Summary

	RoHNAS: A NAS Framework with Conjoint Optimization for Hardware Efficiency and Adversarial Robustness of Convolutional and CapsNets
	System Overview
	RoHNAS Framework
	Evaluation of the RoHNAS Framework
	Summary

	Summary of Integration of Multiple Design Objectives into NAS Frameworks for CapsNets and DNNs

	Efficient Optimizations for Spiking Neural Networks on Neuromorphic Hardware
	Overview of the Loihi Neuromorphic Processor
	Neuron Model
	Chip Architecture
	Tools to Support Loihi Developers

	Efficient SNN for Recognizing Gestures on Loihi
	System Overview
	DNN-to-SNN Conversion
	Pre-Processing Method for the DvsGesture Dataset
	Evaluation of the Accuracy Results
	Summary

	CarSNN: An Efficient SNN for Event-Based Autonomous Cars on the Loihi Neuromorphic Processor
	System Overview
	Problem Analysis and General Design Decisions
	CarSNN Methodology
	Evaluation of our CarSNN Methodology
	Summary

	LaneSNNs: Spiking Neural Networks for Lane Detection on the Loihi Neuromorphic Processor
	System Overview
	Problem Analysis and General Design Decisions
	LaneSNNs Design
	Evaluation of LaneSNNs
	Summary

	Summary of Efficient Optimizations for Spiking Neural Networks on Neuromorphic Hardware

	Security Threats for SNNs on Discrete and Event-Based Data
	Security Evaluation of SNNs vs. DNNs
	System Overview
	Analysis: Applying Random Noise to SDBNs
	Our Novel Methodology to Generate Imperceptible and Robust Adversarial Examples
	Evaluation of our Attack Methodology
	Summary

	NeuroAttack: Externally Triggered Bit-Flips for SNNs
	System Overview
	Bit-Flip Resilience Analysis of SNNs
	NeuroAttack Methodology
	Evaluation of the NeuroAttack Methodology
	Summary

	Robust SNN Methodology through Inherent Structural Parameters
	System Overview
	Case Study Analysis: Comparison DNNs vs. SNNs with the same Architectural Model
	Threat Model
	Robustness Exploration Methodology
	Evaluation of the SNNs' Robustness
	Summary

	R-SNN: A Methodology for Robustifying SNNs through Noise Filters for DVS
	System Overview
	Case Study Analysis: SNN Robustness against Random Noise
	R-SNN Methodology
	Evaluation of the R-SNN Methodology
	Summary

	DVS-Attacks: A Set of Adversarial Attacks on Event-Based SNNs
	System Overview
	Case Study Analysis: SNN Robustness against Random Noise
	Noise Filters for Dynamic Vision Sensors
	Threat Model
	DVS-Attacks Methodologies
	Evaluation of the DVS-Attacks
	Summary

	Summary of Security Threats for SNNs

	Conclusion and Outlook
	Thesis Summary
	Role of the Proposed Techniques in the Evolving Field of ML
	Future Works

	Bibliography

