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Kurzfassung

Neuronale Netzwerke und maschinelles Lernen sind erfolgreich-verwendete Werkzeuge um Zeitrei-
hen zu analysieren und vorauszusagen. Neuronale Netze wie auch maschinelles Lernen sind
datenbasierte Algorithmen, d.h. sie erfordern Datensätze um ein bestimmtes Verhalten zu er-
lernen, und sind daher stark abhängig von den zugrundeliegenden Datensätzen. In den Agrar-
oder Umweltwissenschaften sind Datensätze oft sehr begrenzt, d.h. sie wurden nur über eine
kurze Zeit (z.B. wenige Jahre) aufgenommen oder sind lückenhaft. Zusätzlich ist die Vorhersage
dieser Datensätze oft sehr schwierig, da viele unterschiedlich Faktoren wie z. B. das Wetter diese
Datensätze verkomplizieren und ihnen daher eine gewisse Unvorhersehbarkeit innewohnt.

Das Problem fehlender oder weniger Datenpunkte kann durch die Verwendung von Interpo-
lationstechniken überwunden werden. Hierzu gibt es verschiedene Ansätze wie z. B. lineare,
polynomiale oder fraktale Interpolationstechniken.

Zusätzlich kann die Vorhersage von schwierigen Datensätze verbessert werden, indem man einen
Ensemble-Ansatz wählt, d.h. die Vorhersagen verschiedener Modelle und/oder Algorithmen
werden kombiniert.

Die hier präsentierten Ansätze verbinden Interpolationstechniken, datenbasierte Ensemble-Methoden
und Chaos-/Komplixtätsmetriken um die Vorhersage schwieriger Zeitreihendaten zu verbessern.

Hierzu wurden zwei, teils neue, Interpolationstechniken verwendet. Die erste ist eine Hurst-
Exponent-basierte Fraktal-Interpolation, welche die Fluktuationen von Zeitreihen berücksichtigt
und fortsetzt. Die zweite ist eine stochastische Interpolationsmethode, welche das Konzept
der Brownschen Brücken mit rekonstruierten Phasenräumen chaotischer Systeme verbindet, um
möglichst glatte Phasenraumtrajektorien zu erzeugen.

Die entwickelte Ensemble-Technik beruht auf zufällig parametrisierten neuronalen Netzen, deren
Vorhersagen dann bezüglich der Komplexität und Chaotizität der zugrunde liegenden Daten
gefiltert werden. Hierbei wurden neuronale Netze mit einer LSTM (Long short-term Memory)
Architektur gewählt.

Die Resultate zeigen, dass die Vorhersagen mittels neuronaler Netzen durch die verwendeten
Interpolationstechniken verbessert werden können. Weiters können Vorhersagen von neuronalen
Netzen basierend auf deren Komplexität und Chaotizität gefiltert werden.





Abstract

Many of today’s most successful approaches for predicting time series data use machine and/or
deep learning approaches such as different neural network architectures. These approaches
strongly depend on the data available to train the employed algorithm. For, e.g., agricultural
or environmental relevant applications, long-term data sets are rare and often sparsely sampled.
Apart from that are often difficult to predict because of numerous influences that affect these
data sets. Thus, these data sets have an inherent randomness to them.

The problem of sparsely sampled data can be overcome by employing different interpolation
techniques, such as linear, polynomial, or fractal interpolation. On the other hand, the inherent
randomness of difficult time series data can be treated by employing ensemble predictions.

This research attempts to combine interpolation techniques and neural network ensemble pre-
dictions and further improve these combined approaches by taking into account the complexity
and chaotic properties of the underlying data.

The presented research introduces two interpolation techniques. One is a Hurst-exponent-based
fractal interpolation considering the fluctuating nature of stochastic time series data. And the
other one is a stochastic interpolation method that considers the reconstructed phase space
properties of chaotic time series to produce an interpolation with a rather smooth phase space
trajectory.

Further, this research presents an ensemble technique that takes into account the complexity
and/or reconstructed phase-space properties of the data under study. This is achieved by ran-
domly parameterizing a multitude of long short-term memory neural networks (LSTM), having
them produce an autoregressive prediction, and afterward filtering this multitude of different
predictions based on their signal complexity and/or reconstructed phase space properties.

First, the results show that neural network time-series predictions can be improved by employing
the discussed interpolation techniques. And second, predictions can effectively be filtered based
on their inherent complexity and phase space properties to improve ensemble predictions.
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Chapter 1

Introduction

The rise of artificial intelligence, i.e., machine learning and deep learning, motivates
many researchers to make predictions and analysis based on historical data using these
methods rather than employing mechanistic expert models. The reason for making
predictions in the first place is to answer important questions, e.g., future population
estimates, predicting epileptic seizures, estimating future stock market prices. The out-
comes of these predictions are encouraging, e.g., in solid-state physics, first-principle
calculations can be sped up, [1], or solar radiation can be predicted using machine
learning methods, [2]. In biology, machine learning can be applied to, e.g., genomics,
proteomics, and evolution, [3]. When it comes to agriculture, one can use machine learn-
ing to predict yields and give estimates on the nitrogen status, [4]. Also, in medicine, one
can apply machine learning to improve diagnosis using collected information from the
past, [5]. In finance, the applications range from risk management or the construction
of portfolios to designing and pricing securities, [6].

Though these approaches work pretty well in some research areas, in some others, de-
pending on the available data and the system’s complexity, these techniques seem not to
work at all. Though it can not be generalized what sort of data is necessary to perform
machine learning successfully, the two main reasons, assuming one has optimized the
algorithm for the regarded task, for machine learning to fail are:

(i) Lack of data; meaning that the overall amount of data is not enough to train a
model properly.

(ii) Lack of good data; meaning that despite a sufficient amount of data available, the
inherent information is not enough to achieve good results.

1
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Complexity measures also feature a broad spectrum of applications. R/S analysis (i.e.
rescaled range analysis) and the corresponding Hurst exponent were invented for deter-
mining optimum dam sizes for the river of Nile, [7]. Since then, the Hurst exponent
was used for various applications such as financial market analysis, [8], characterizing
potentials in particle physics, [9], or to identify chaotic behaviors in the flow of alloys,
[10]. The Hurst exponent is not the only complexity measure capable of characterizing
time series and identifying random behavior. The fractal dimension, closely related to
the Hurst exponent, is also a valuable tool. In [11], the fractal dimension is used to
characterize environmental pollution. One can also define several types of entropy that
prove useful for identifying complex/chaotic behavior, e.g., approximate entropy, as used
in [12].

Though there are numerous applications of these methods, a combination of artificial
intelligence and complexity measures is not that common yet. There are some examples
where this has been done, e.g. a hybrid approach of fuzzy logic, fractal dimension, and a
neural network is used to make predictions of time series in [13]. In [14], several indices of
emerging economics are examined using the Hurst exponent and the fractal dimension of
a time series, thus indicating a long term memory in the time series data, and afterward
are forecast using machine learning methods. Ref. [15] examines several different time
series using R/S analysis to show the inherent long-term memory of the data. The next
step is to forecast the time series using recurrent neural networks (RNNs). The results
show that even though R/S analysis suggests a persistent behavior, the RNN cannot
forecast real-life time series with high accuracy. Given these examples, there is still
potential for future applications such as time series analysis/prediction in agriculture.

Another related discipline is chaos theory, or the study of nonlinear dynamics. Here,
the concept of reconstructed phase spaces of the system’s dynamics can be linked with
machine and deep learning approaches, as done in [16], where classical machine learning
approaches and neural networks are used to reconstruct a multi-dimensional phase space
from a univariate signal.

The previously mentioned phase space reconstruction, which is based on Takens’ the-
orem, [17], can be used for time-delayed neural networks, where the phase space em-
bedding of a time series is used to adapt the architecture of a neural network to the
reconstructed phase space, as done in [18], for predicting stock market data, and in [19],
for predicting wind speed. In Ref. [20] a phase space reconstruction is used to extract
features then to be used to detect ventricular fibrillation with a neural network.

The presented thesis aims to show ideas on how to combine machine learning, measures
of signal complexity, and reconstructed phase spaces. It is part of DILAAG (Digital-
ization and Innovation Laboratory in Agricultural Sciences). Therefore, the presented
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thesis has an aspect of applying the developed methods to agriculture and interdisci-
plinary research between the University of Natural Resources and Life Sciences Vienna,
the University of Technology Vienna, and the University of Veterinary Medicine Vienna.

1.1 Fundamental of the Problem

For machine learning to make good predictions, data of good quality is necessary. Here
a qualitative overview of the three main points that characterize good time series data
for machine learning applications are given:

(i) Long data sets: A long data set is usually an indicator for machine learning
algorithms to perform well.

(ii) Fine-grained data sets: As a rule of thumb, machine learning algorithms per-
form better the more fine-grained the data is. A very fine-grained data set features
a lot of information of inherent interactions of the observed system, and therefore
a machine learning algorithm can learn these interactions and behaviors. Whereas
data sets that are not fine-grained may provide a more random behavior.

(iii) Persistency/Antipersistency/Periodicity: There is a difference between a
random process and a process that features persistency, antipersistency, or period-
icity/seasonality. Where a random process cannot be forecast effectively, a process
that features persistency, antipersistency, and/or periodicity/seasonality can (as a
rule of thumb) be forecast more effectively.
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As this research is part of DILAAG, there is an aspect related to Austrian agricul-
ture in the presented research. Fine-grained and long-time series data sets in Austrian
agriculture are usually unavailable. The reasons for this are: 1

• Missing fine-grainedness:

Many data sets are collected annually or monthly; thus, many interactions are
meaned out because of the missing fine-grainedness. Further, many measurements
are not taken equidistantly.

• Experimental design in agricultural-related research:

Usually, experiments do not run for more than five years2. Further, as all measure-
ments in agriculture are expensive, the researchers cannot provide coherent fine-
grained measurements for their experiments, be it daily, weekly, or even monthly.

Exemplary for the problems mentioned above are the annual wheat yields data set and
the annual maize yield data set, which are described in Sections 7.6 and 7.7, respectively.

Complex and non-linear behavior is part of many real-life systems. The proposed re-
search focuses on merging ideas from chaos theory and complexity measures with ma-
chine/deep learning to perform time series predictions. This task is manifold and involves
several concepts that cannot be dealt with during the duration of the proposed research,
see Section 1.4. To ensure the presented research is focused and specifically targeted,
the following hypothesis and research question were employed as guidelines throughout
the whole research process.

Hypothesis

Real-life systems, as occurring in agriculture, are highly complex
and non-linear, therefore non-linear dynamics and the correspond-
ing complexity have an influence on the predictions of those sys-
tems [22–25]3.

1There are no references to support the following list. Instead, this list results from many discussions
and meetings with other researchers who are part of DILAAG.

2Of course, there are exceptions to this, e.g., the eternal rye experiment, [21].
3Note that, though the hypothesis is based on the cited books and articles, the hypothesis itself

does not occur in the references. Instead, these references provide evidence that one can find chaos and
complexity in various disciplines and systems.
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Research Question

To what extent can measures of signal complexity, the entropy of
time series data, and the concept of reconstructed phase spaces
be used to improve machine and deep learning predictions for uni-
variate and short/sparsely sampled time series data?

1.2 Solutions and Novel Research Contributions

The presented research is an attempt to give an answer to the research question and
solve the stated problem. Thus we sum up and dissect the stated problem and the
research question into several parts and answer them separately.

1.2.1 Sparsely Sampled Data and Data Scarcity:

When it comes to sparsely sampled time series data and, in general, data scarcity, we
suggest using interpolation techniques. However, we need to mention that interpolation
is not the only way to deal with sparsely sampled and short univariate time series data.
In general, the concept of increasing the amount of data from a certain given amount
of data is referred to as data augmentation. The basic idea is to generate slightly al-
tered/augmented or synthetic data, which is then added to the original data to increase
the overall amount of training data to improve a machine learning algorithm’s capa-
bility of learning the data’s inherent information. Here we take into account the work
done by Semenoglou et al. [26], where the researchers test various data augmentation
techniques for improving the accuracy of neural networks to predict univariate time
series data. The nine data augmentation techniques employed by the researchers are
vertical flipping, horizontal flipping, random noise injection, time series combinations,
magnitude warping, time series interpolation, bootstrapping, time series generation, and
upsampling. The general conclusion of the researchers is that the smaller the data set,
the more the employed data augmentation matters. However, given the multitude of
employed data augmentation techniques, the researchers cannot state which data aug-
mentation is best in general, but rather state that the difference in the performance of
the different data augmentation techniques can be attributed to the specific character-
istics of the data under study and the corresponding synthetic data created via data
augmentation. However, in the presented work, we restrict ourselves to only one data
augmentation technique, i.e., time series interpolation. However, we discuss different
interpolation techniques and emphasize those that consider the specific characteristics
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of the data under study. Thus, this research presents two interpolation techniques,
considering the complexity and/or underlying dynamics of the data under study.

• A Hurst Exponent Based Fractal Interpolation Method:

This technique is based on the fractal curve fitting method developed by [27]. The
basic idea is to use a fractal interpolation to increase the fine-grainedness of the
data. Further, the additional data points should fit the fluctuations of a given sub-
interval of the data to replicate multi-fractal data. This is achieved by measuring
the Hurst exponent of a sub-interval of a time series and then generating several
hundred different randomly parameterized fractal interpolations. Here, the one
with the Hurst exponent closest to the original one is used as the final interpolation.

This method is described and tested to what degree it can improve time series
predictions using LSTM neural networks in [28].

Section 5.1 introduces the concept of a fractal interpolation and Chapter 8 presents
the results of combining the developed interpolation technique with neural network
time series predictions.

• An Attractor-Based Stochastic Interpolation Method:

After using an interpolation technique based on the stochastic and multi-fractal
nature of real-life time series data, i.e., the previously mentioned fractal interpola-
tion approach, the author aimed to create an interpolation technique that considers
the phase-space properties of time series data. Here, phase space properties means
finding a smoothly interpolated trajectory in phase space. To achieve this, time
series are interpolated using multipoint fractional Brownian Bridges, [29]. Several
hundred interpolations with varying Hurst exponents are generated. These ran-
domly initialized interpolations then serve as a population for a genetic algorithm.
Piece by Piece, this algorithm picks interpolation intervals based on the smooth-
ness of the corresponding reconstructed phase space curve. The smoothness is esti-
mated using the variance of second derivatives along the reconstructed phase space
trajectory. For simplicity, we refer to the developed method as PhaSpaSto interpo-
lation, which is an abbreviation for phase-space-trajectory-smoothing stochastic
interpolation. The results show that this method is applicable to the Lorenz sys-
tem as it finds interpolations very close to the actual data points. Further, it
was tested on non-model data where it provides similar results as in the case of
the Lorenz system, i.e., the phase space trajectory was smoothed out, and other
interpolation methods are outperformed on reconstructing missing data points for
some data sets, [30].
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The developed interpolation technique is described in Section 5.2 and the results
are shown and discussed in Chapter 10. Further, it’s applicability to neural network
time series predictions is discussed in Chapter 11 and Ref. [31].

1.2.2 Autoregression and Machine Learning for Difficult Time Series
Data:

Given that one has found a good fitting machine learning model for a time series data,
i.e., the train and test fits have comparatively high accuracy/a low root mean squared
error (RMSE) and the corresponding plots suggest that the model has learned the in-
herent behavior of the data. Then this model may not be able to predict the learned
data autoregressivly, meaning multi-step ahead predictions where the output is used as
input for the next prediction will not reconstruct either the correct curve or the correct
behavior. Figure 1.1 illustrates this problem. Even though the neural network visibly
learned the training and test data of the fractal interpolated data set, the autoregressive
result, i.e., single step ahead predictions and then taking the output as the next input,
is still far off and does not at all reproduce the visible behavior of the original data.
This means the yellow and the green lines, i.e., the train and test fits are both close to
the original data and visibly reproduce the behavior of the learned data set. The red
line, i.e., the autoregressive prediction, merely gives the mean.4 Also, we consider the
annual maize yields data set to be a challenging data set to be predicted correctly for
three reasons: First, it is a very short time series, with only 57 data points and sec-
ond, the annual maize yield is affected by various factors, such as the weather, genetic
improvements of the plants, etc.

4Note that we will not discuss the interpolation of this time series here because this figure serves only
to illustrate the problem of autoregression.



Introduction Chapter 1 Introduction

0 10 20 30 40 50

years

40000

60000

80000

100000

120000

a
n
n
u
a
l 
m

a
iz

e
 y

ie
ld

 A
u
s
tr

ia
, 
in

 h
g
/h

a

original data fractal interpolated

single step prediction 

Test fit

Train fit

Figure 1.1: Plots for the fractal interpolated annual maize yields in Austria data
set. This data set is discussed in Section 7.7. Here a long short term memory (LSTM)
neural network with one hidden layer and 10 neurons in the hidden layer was used.

A solution to this is given by generating randomly parameterized neural networks. I.e.,
we do not observe the neural network’s performance but instead have many such ran-
domly parameterized neural networks produce autoregressive predictions of the data.
Next, we take this multitude and filter the predictions according to the original data’s
complexity and reconstructed phase space characteristics. Thus, the following two ap-
proaches were developed:

• Randomly Parameterized LSTM Neural Networks and Complexity-Based
Prediction Filters

Instead of parameterizing a neural network to predict time series as precisely as
possible autoregressively, the author developed a method using randomly param-
eterized neural networks to generate many predictions. In the next step, these
predictions are then filtered using measures of signal complexity to build an en-
semble consisting of forecasts that fit the complexity of the training data as close as
possible. The results show that this method can drastically improve the accuracy
of the so generated random ensemble.
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The randomly parameterized Neural Networks are described and first applied,
together with the complexity filters, in [32]. Chapter 6 describes all used neural
network architectures, and Chapter 9 shows the experimental results and explains
the whole approach.

• Predictions and Filters Based on Phase Space Properties

The previously mentioned attractor-based stochastic interpolation technique (PhaS-
paSto interpolation) is then tested with the (also previously mentioned) developed
randomly parameterized neural network approach. Further, instead of filtering
the predictions based on their inherent signal complexity, the predictions are then
filtered based on the variance of second derivatives along a phase space trajectory.
The results show that the variance of second derivatives along a phase space tra-
jectory can effectively filter predictions. Further, the attractor-based interpolation
technique can improve the predictability of univariate time series data. The ap-
plicability of the variance of second derivatives along a reconstructed phase space
trajectory for filtering ensemble predictions is discussed and first applied in [31].

Chapter 6 describes the used neural networks and Chapter 11 shows the experimen-
tal results and describes the whole approach. Further, these ideas are published
in [31].

However, we need to point out another way of dealing with the problem of autoregression
and neural networks. This would be to train a neural network not based on its data point
fits but on the performance of an autoregressive prediction of both, training and test
data set. This possible solution was discarded for two reasons. First, this research aims
to entwine neural networks and measures of signal complexity and build on existing
train and test frameworks to do so, but not to provide a completely new train and
test framework for neural networks and machine learning to deal with time series data.
Further, the latter would require restructuring existing machine learning frameworks
such as TensorFlow or scikit-learn on a fundamental level of the provided infrastructure.

1.3 Structure of this Thesis

This thesis is split into four main parts:

Part I. Methodology and Related Work, which contains an exhaustive list of re-
lated work which contributed to the presented research (Chapter 2). Further, it contains
the mathematical foundations of the employed measures of signal complexity (Chapter
3), the conceptual framework of reconstructed phase spaces (Chapter 4), and the em-
ployed and developed interpolation techniques (Chapter 5). Finally, this part contains
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all machine learning tools used for predicting and analyzing time series data with the
corresponding error metrics (Chapter 6) and a discussion of all data sets used in this
thesis (Chapter 7).

Part II. Applications and Results, contains the applications and the corresponding
results of the developed techniques and ideas. This part is arranged to fit already
published articles thematically. Here, the first presented applications and results are
on the applicability of the employed fractal interpolation for improving neural networks
time series predictions (Chapter 8). The next chapter then presents the results of the
developed random LSTM neural networks approach and the corresponding prediction
filters based on measures of signal complexity (Chapter 9). This is followed by the
experiments on the applicability of the developed PhaSpaSto interpolation (Chapter 10)
and the corresponding phase-space-based prediction approach (Chapter 11).

Part III. Discussion and Conclusion is the last part of the actual thesis. We
first collect our best prediction results and compare them to benchmark results from
the literature (Chapter 12). Next we discuss and summarize all featured results and
experiments (Chapter 13). At the end of the thesis, we provide a conclusion (Chapter
14) and a list of the author’s publications that are part of or influential to the presented
thesis in Chapter 15.

Part IV. Appendix collects additional results, tables and plots to the featured exper-
iments to keep the main text focused.

1.4 Limitations

The author wants to address some limitations of this work. First of all, this thesis, as
the TU Wien informatics Ph.D. college guidelines encourage students to do, is heavily
based on the author’s published articles and, wherever possible, provides additional
results and, to this date, not published results. Further, the presented research solved
some issues but opened up many more questions (As research tends to do), which could
not be addressed in the duration of the Ph.D. program. Therefore, to further ensure
the honesty of this research, the author wants the following points to be mentioned
beforehand.

This list may serve as a collection of ideas for new research and as evidence that incoher-
ences that the reader may come across are thought through but could not be addressed
due to the already extensive length of this thesis and the corresponding publications.

• Computational resources:
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One of the biggest issues to get this work done was the access to Computational
resources. Though the author had access to the TU Wien GPU cluster throughout
the whole duration of this project, which the author is very grateful for, many
aspects and permutations could not be shown simply due to the fact that it would
take more time to calculate all of the afterward mentioned ideas.

• Chronologic order of the developments and publications:

As Part II. Applications and Results features many already published results and
approaches, the reader has to take into account that Chapters 8 and 9 are prelim-
inary results to Chapters 10 and 11 and thus the later Chapters feature improved
ideas and analysis. Due to, as previously mentioned, limited computational re-
sources, the preliminary results were not reconstructed in the fashion of the later
results.

• Incoherence in data set choices:

As mentioned before, as many ideas take a long time to be calculated, this research
suffers from non-infinite computational resources. Thus the author could not per-
form all experiments with all featured data sets. Therefore the author sticks to the
published articles and, wherever possible, provides additional results, discussions,
and arguments for the choices of data sets.

• A variety of interpolation techniques to choose from:

As mentioned in Section 1.2.1, this thesis deals with interpolation techniques for
time series data. There exists a huge variety of different interpolation techniques
to choose from. However, as mentioned earlier, due to limited computational
resources, we could not test all possible interpolation techniques and different
numbers of interpolation points.

• Limitations on the discussed machine learning algorithms:

As mentioned in Section 1.2.2, this thesis deals with machine learning and, to be
precise, with neural network time series predictions. Many different neural network
cell architectures and/or comparable machine learning algorithms are capable of
predicting time series data. However, as mentioned earlier, due to limited compu-
tational resources, we could not test all machine learning techniques and employ
LSTM neural networks throughout this work. However, we still provide compar-
isons to basic implementations of simpler recurrent neural network architectures.





Part I. Methodology and Related
Work
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Chapter 2

Related Work

This chapter lists publications that are related to the presented work and thus influenced
the presented thesis. Many of the following publications feature combined approaches
of machine learning and measures of signal complexity. Another topic covered by the
following publications is "Combined approaches of machine learning and phase space
reconstructions." All publications not fitting in the two previously mentioned topics
provide research that heavily influenced the presented thesis in one way or another and
thus will be put into context in this chapter. In the later parts of this thesis, the
reader will encounter dozens of other publications that, though influencing this thesis,
are a more technical influence as they provide the employed techniques. In contrast, the
listing in this chapter mostly deals with articles that provide approaches of combined
techniques and/or rather niche ideas.

This thesis aims to provide combinations of machine learning, measures of signal com-
plexity, reconstructed phase spaces, and interpolation techniques to improve time series
prediction and analysis. Thus the following paragraphs will address aspects of these
concepts and provide ideas and justify hybrid approaches.

Data augmentation techniques, in general, can improve machine learning and neural
network time series predictions. An increased amount of data available for training
increases the accuracy of the employed algorithm on many data sets. Here the work by
Semonoglou et al. [26] is exemplary. The researchers list a variety of data augmentation
techniques such as time series flipping, random noise injection, time series combinations,
magnitude warping, and time series interpolation. These techniques can reportedly
improve the accuracy of neural network (in this case, a multi-layer perceptron) forecasts
on univariate time series data because of the increased amount of training data. This is
related to our work. We also employ neural networks to forecast univariate time series

15
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data and use data augmentation and interpolation to increase the amount of training
data.

Regarding our choices of interpolation techniques, we employed a simple linear interpola-
tion for reference for all of our experiments. Further, we employed a fractal interpolation
similar to the one developed by Manousopoulos et al. [27]. In this article, the researchers
present a fractal interpolation based on iterated function systems to interpolate arbi-
trary two-dimensional curves. We used the same iterated functions system, which can
be tailored to match specific requirements by adjusting a vertical scaling factor, which
significantly influences the y-coordinate of interpolated data points, and thus the Hurst
exponent of fractal interpolated time series data, as discussed in [33]. Thus one can take
into account the Hurst exponent when using fractal interpolation. The Hurst exponent
is an indicator for the predictability of a time series data as it is directly related to the
probability of fractional Brownian motions to change direction, [7, 34, 35].

However, if the Hurst exponent can be used to indicate predictability for machine learn-
ing models and/or identify regions of increased predictability is the subject of ongoing
research, and in the author’s opinion, the most popular combined approach of measure
of signal complexity and machine learning for time series analysis in the scientific com-
munity. Yao et al., [36] thus use a neural network and ARIMA models to forecast the
Kuala Lumpur composite index. The researchers also employ R/S analysis and thus
the Hurst exponent to analyze the data under study for featuring long-term memory.
Similar to this is the study by Yakuwa et al. [18], where fractal analysis, including the
Hurst exponent, is performed for the Nikkei stock prices for 1500 days. Here the Hurst
exponent suggests persistent behavior and can thus be forecast. Further, this knowledge
is then used to tailor the input window for a neural network to predict the data under
study. The results show that a neural network implementation can be improved using
knowledge obtained from fractal analysis.

Literature also supports the claim that time series or parts of a time series with a larger
Hurst exponent can be forecast more accurately than those with a Hurst exponent close
to 0.5. This is tested in the work by Qian et al., [8] for neural networks, thus showing
that the Hurst exponent can indicate time series and/or regions of increased neural
network predictability. Further, the research done by Selvaratnam et al. [37] shows
that neural networks can be improved by using R/S analysis to estimate a period of
increased persistency, which is then used to tailor the input window of a neural network.
A similar strategy is used in the work by Qian et al. from 2007, [38] where R/S analysis
is used to estimate regions of increased predictability for machine learning approaches.
Further, the researchers employ a phase space reconstruction to tailor the input nodes
of a neural network. However, the research done by Diaconescu,[15], also discusses the
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predictability of data with increased Hurst exponents, but in this case, compares model
data against real-life data. Though the Hurst exponent suggests that all of the time
series can be forecast theoretically, the employed neural networks perform significantly
worse on real-life stock market data. Thus suggesting a certain arbitrariness for the
interpretability of R/S analysis with respect to indicating the predictability of machine
learning approaches. However, it is common practice to do just that, i.e., indicating
persistency in time series data and then predicting it to state that it can be predicted.
This is done in the works by Ghosh et al. [14, 39], and in the work by De Mendonça
Neto et al. [40].

We conclude from the previous discussion on connections between the Hurst exponent
and the predictability of time series data that the Hurst exponent can characterize time
series and indicate predictability in time series data to enhance machine learning ap-
proaches. However, given the previously discussed data augmentation and interpolation
approaches to improve neural network time series predictions, a reasonable continuation
of this might be to consider the Hurst exponent when interpolating time series data
and/or performing data augmentation.

However, we can choose stochastic interpolation techniques where we can set a fixed
Hurst exponent for a whole time series data, e.g., the multipoint fractional Brownian
bridges discussed by Friedrich et al. [29]. Also, one can choose interpolation techniques
based on genetic algorithms and a certain loss function, as done in the work by Chang
et al. [41]. We used both of these ideas in this thesis for PhaSpaSto interpolation.

As already discussed regarding the applicability of the Hurst exponent for indicating
the predictability of machine learning algorithms and choosing a fractal interpolation,
we can employ complexity metrics to analyze time series data with respect to their
applicability for machine learning and/or use complexity metrics to improve machine
learning approaches. C continuation of these ideas is to exchange the Hurst for other
measures of signal complexity.

Here the work by Karaca et al. is exemplary, [42, 43], where stock market data is
analyzed and forecast using a variety of complexity metrics, e.g., the already discussed
Hurst exponent, Shannon’s entropy, Rényi entropy and wavelet entropy. These metrics
can be used as additional features for the machine learning algorithm to improve the
accuracy of the prediction. Also, one can use the fractal dimension of time series data,
which is closely related to the Hurst exponent, to analyze time series and/or improve
prediction approaches as done in the work by Ni et al. to select appropriate features to
predict stock market data [44].
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Finally, we mention an outstanding idea combining machine learning and Takens’ theo-
rem to reconstruct phase spaces from univariate time series data. The work of Gilpin [16]
introduces a machine-learning model to reconstruct phase spaces based on autoencoders
and a novel latent-space loss function. Further, this technique can create representations
of stochastic systems with increased predictability.



Chapter 3

Measuring Complexity and
Chaoticity

This chapter lists several measures for complexity and chaoticity of time series data.
These measures have been used throughout the presented research, and the underlying
ideas are discussed in this section.

3.1 Hurst Exponent, R/S Analysis, Hurst-Error

The Hurst exponent is a measure for the long-term memory of a time series data and is
calculated by R/S Analysis, [7]. Following [45] and [7]:

R/S analysis (Rescaled range analysis) identifies long-run correlations in time series,
yielding one parameter, the Hurst exponent "H".

Given a signal [x1, x2, . . . , xn], one finds the average over a period τ (a sub-interval of
the signal, i.e. 1 ≤ τ ≤ n), with k as 1 ≤ k ≤ n and elements i in this interval such that
k ≤ i ≤ k + τ :

⟨x⟩τ,k = 1
τ

k+τ∑
j=k

xj . (3.1)

Next, an accumulated departure δx (i, τ, k) over a period i ∈ 1, 2, . . . , τ is calculated as:

δx (i, τ, k) =
i∑

j=k

(
xj − ⟨x⟩τ,k

)
(3.2)
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The range R, which is the the difference between maximal and minimal values for all xi

in [k, k + τ ] is:

R (τ, k) = max [δx (i, τ, k)] − min [δx (i, τ, k)] ,

satisfying k ≤ i ≤ k + τ .
(3.3)

And finally, the standard deviation for each subinterval is:

S (τ, k) =

[||√ 1
τ

k+τ∑
i=k

[
xi − ⟨x⟩τ,k

]2
. (3.4)

The range and the standard deviation are then averaged over all possible 1 k such that:

R (τ) =
∑

k R (τ, k)
number of different ks

and

S (τ) =
∑

k S (τ, k)
number of different ks ,

(3.5)

where 1 ≤ k ≤ n and k ≤ i ≤ k + τ . The Hurst exponent H is then given by the
corresponding scaling properties:

R (τ)
S (τ) ∝ τH , (3.6)

We then find the asymptotic behavior for an independent random process with finite
variance as:

R (τ)
S (τ) =

(
π

2v
τ

) 1
2

, (3.7)

thus gives the Hurst exponent as H = 1
2 for random processes. For time series data

which are not completely random, e.g., non-random real-life data, we expect H ̸= 1
2 , as

real-life processes usually feature long-term correlations.

The range of H is 0 < H < 1. Here, a value H < 0.5 indicates anti-persistency, meaning
that it is heavily fluctuating but not completely random. Values close to 0 indicate strong
anti-persistency. Contrary to that, H > 0.5 indicates persistent processes. Further, it
indicates strong persistency for values close to 1. Also, given these ranges, time series
with H ̸= 0.5 can theoretically be forecast, [37].

R/S Analysis is plotted in Figure 3.1, i.e. the ratio on a logarithmic scale against the
intervals, also on a logarithmic scale. The Hurst exponent is the corresponding slope of
the fit.

1The algorithms that perform R/S analysis find a subset of possible intervals and do perform the
procedure on all possible intervals.
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Another parameter related to R/S analysis characterizing a process’s fractal and random
behavior can be found by measuring the distance of the actual data points to the Hurst-
fit, i.e., the residuals. This is measured using a root mean squared error. We refer
to this as Hurst-error. This Hurst-error can differentiate between mono-fractal and
multi-fractal time series data. Given two-time series with the same Hurst exponent but
different Hurst errors, we state that the time series with the larger Hurst error is a more
multi-fractal one, i.e., the range of the fluctuations differs for different scales. Contrary
to that, a time series with a Hurst-error of zero is a perfectly mono-fractal time series,
i.e., we find changes of the same range on all scales. The Hurst-fit and the corresponding
Hurst-error can be seen in Figure 3.12.
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Figure 3.1: Double logarithmic plot for the fit of the Hurst exponent for a random
walk with a probabilty of 0.5 and a length of 500 steps. The calculated Hurst
exponent is H = 0.57, and the corresponding Hurst-error is RMSEHurst = 5.229. This
results from different, i.e. larger, fluctuations for larger time intervals than for smaller
time intervals. This inability to give the correct Hurst epxonent, i..e to under- or
overestimate it is inherent to most algorithms and we discuss this issue in Section 13.4
and Appenidx E

3.2 Fractal Dimension

The basic idea of the fractal dimension of a time series is to consider the time series as
a two-dimensional plot lying on a grid of equal spacing and then count the number of
grid boxes covering the whole time series. This gives a ratio of the overall area and the
grid area of the time signal. This process is referred to as box-counting. Thus the fractal
dimension of a time series is a measure of the complexity of the signal, e.g., a straight

2Note that the test data for this fit was altered, such that the plot is explanatory and indicative.
This was done because a fractional Brownian motion would usually not give such a big Hurst-error.



Measuring Complexity and ChaoticityChapter 3 Measuring Complexity and Chaoticity

line would have a very low fractal dimensioan, i.e., 1, but this may vary depending on
the employed algorithm. The fractal dimension can have a non-integer value, i.e., the
fractal dimension D of a self-affine time series can have values 1 < D < 2.

One can choose between several algorithms to calculate the fractal dimension of a time
series. The following three concepts were employed in this research, i.e., the algorithm
by Higuchi [46], the algorithm by Petrosian [47], and the algorithm by Katz [48].

3.3 The Spectrum of Lyapunov Exponents

The spectrum of Lyapunov exponents measures the system’s predictability depending
on initial conditions. For experimental time series data, as we cannot choose between
different trajectories for different initial conditions, the spectrum of Lyapunov exponents
still serves as a measure for the predictability of the system, [49]. The corresponding
algorithm is too complex to be discussed here in length, and thus the interested reader
is referred to [49] for an in-depth discussion of the topic.

The largest Lyapunov exponent is always the first one in the spectrum. In general, a
positive Lyapunov exponent is a strong indicator for chaos [50]. In most cases, it is
therefore sufficient to calculate only the first Lyapunov exponent of the spectrum, hence
the largest Lyapunov exponent. Systems that possess more than one positive Lyapunov
exponents are referred to as hyperchaotic, [51, 52].

3.4 Shannon’s Entropy

Entropy is a measure of the unpredictability of a state or, equivalently, of its average
information content. Shannon’s entropy is the first of a family of entropy measures and
a foundational concept of information theory, [53, 54].

Shannon’s entropy of a signal can be understood as a measure of irregularity.

Note that the following entropy definition holds for any base b of the logarithm. Using
b = 2 returns information in bit, b = e (Eulers’ number) gives nat and for b = 10 the
unit is called digit.

This thesis uses the implementation provided by [55]. Shannon’s entropy is thought
initially to describe discrete signals and does not well for continuous signals. One way
to enhance the algorithm to deal with continuous data is to use binarization, where the
signal is cut into a number of bins, then used to determine Shannon’s entropy. Another
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option would be to fuzzyfy the signal and then apply Shannon’s entropy to the fuzzy
set, which is basically the idea of Fuzzy entropy, [56].

Still, we used the basic concept where one counts the frequency of reoccurring values. We
are aware that this does not provide a meaningful interpretation of Shannon’s entropy
as in a continuous signal, values are hardly ever reoccurring. However, it is useful in
differentiating between periodic and irregular/random signals. Thus Shannon’s entropy
is increased for, e.g., the Lorenz system and fractional Brownian motions compared to a
cosine function, as discussed in Appendix E. Also, the applicability of Shannon’s entropy
for our purposes is further discussed in Section 13.2.

Given a signal [x1, x2, . . . , xn], we find the set of unique values of this signal as {x̂1, x̂2, . . . , x̂m},
where the total number of unique values is bound by m ≤ n. For each unique value x̂i,
we count the number of occurrences within the signal and refer to this count as Ni ∈ N.
Finally, we obtain the corresponding probabilities as pi = Ni

n . This results in Shannon’s
entropy as:

HShannon = −pi

m∑
i

logb (pi) (3.8)

3.5 SVD Entropy

SVD entropy is an entropy measure based on the Singular Value Decomposition of a cor-
relation or embedding matrix, thus the name. It is known to be applicable for analyzing
univariate time series data such as stock market data, [57–59], or electroencephalography
(EEG) signals, [60] . Furhter, the idea behind SVD entropy is that systems of decreas-
ing complexity will yield decreasing entropy, [60]. It can be understood as indicating
the number of eigenvectors3 needed for explaining a dataset: I.e., the higher the SVD
entropy, the more orthogonal vectors are required to explain the space state.

Following [60]: SVD entropy of a signal [x1, x2, . . . , xn] is obtained by constructing an
embedding space for the signal with delay vectors as :

y⃗ (i) =
[
xi, xi+τ , . . . , xi+(dE−1)∗τ

]
, (3.9)

where τ is the time delay and dE is the embedding dimension. One constructs the
embedding space in matrix form as:

Y = [y⃗ (1) , y⃗ (2) , . . . , y⃗ (N − (dE − 1) τ)]T , (3.10)
3We will not dive into explaining the similarities and differences between singular values and eigen-

values here, instead, the interested reader is referred to [61].
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which is a real dE ×n matrix. Singular value decomposition then leads to a factorization
of the form:

Y = UΣV † (3.11)

Here U is a dE ×dE real unitary matrix. Further, for real matrices, unitary is the same as
orthogonal; thus, U is also orthogonal. V is an n × n unitary and real, thus orthogonal,
matrix. The conjugate transpose V † becomes V T, i.e., just the transpose. Here Σ is a
dE × n rectangular diagonal matrix. Further, this matrix has a diagonal of non-negative
real numbers. These diagonal entries of Σ, i.e., σi = Σii, are referred to as the singular
values of Y . We find r of these singular values for Y , where r is bound by the rank of
Y such that r ≤ min{m, n}. A spectrum of normalized singular values is then obtained
by:

σ̄i = σi∑r
j=1 σj

(3.12)

The basic concept of Shannon’s entropy (See Equation 3.8) then gives SVD entropy as:

HSVD = −
r∑

i=1
σ̄i log2 σ̄i (3.13)

Here, one might run into the problem of zero-valued singular values of a given matrix
and, consequently, the issue of calculating the logarithm of 0, which is not defined. Here,
Roberts et al., [60] argue that for real-life data, one will not run into this problem due
to noise, including quantization noise. However, we still need to mention that a solution
to this problem is to use the singular value decomposition for the symmetric covariance
matrix Ŷ = Y × Y T, thus Ŷ = UΣV T.

One can employ the concept of average mutual information to estimate the time delay.
One may use the false nearest neighbors algorithm to set the value for the embedding
dimension. However, Roberts et al., [60] suggest an embedding dimension of dE =
20 to characterize a given state. The concept of a phase space embedding and the
corresponding algorithms are discussed in Chapter 4.

3.6 Fisher’s Information

Fisher’s information gives the amount of information extracted from a set of measure-
ments, thus can be interpreted as the quality of the measurements, [62]. Similar to SVD
entropy (Section 3.5), it indicates the number of singular values needed for explaining
a dataset or a state, as Fisher’s information, the way we used it here, is also based on
a singular value decomposition. However, contrary to SVD entropy, Fisher’s informa-
tion depicts the difference between the individual singular values rather than employing
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Shannon’s entropy for analysis. An increased Fisher’s information thus depicts increased
variability of the singular values of a signal, i.e., the more random and noisy a signal, the
higher the corresponding Fisher’s information. We discuss these aspects in Appendix E.

One can find a discrete version of Fisher’s information suitable for analyzing univariate
time series data given as [x1, x2, . . . , xn]. Here we use the same construction based on a
singular value decomposition as for SVD entropy in Section 3.5. Thus we end up with
r singular values σi, which we normalize by:

σ̄i = σi∑r
j=1 σj

. (3.14)

Fisher’s information is then found by

IFisher =
r−1∑
i=1

[σ̄i+1 − σ̄i]2

σ̄i
(3.15)

.

The discussion on proper phase space embeddings for SVD entropy applies to Fisher’s
information as well.





Chapter 4

Reconstructed Phase Spaces

This chapter describes all used techniques for reconstructing phase spaces from univari-
ate time series data.

To reconstruct a phase space from a univariate time series data, one essentially requires
two parameters, the embedding dimension dE and the time delay τ . The embedding
dimension is the dimension of the reconstructed phase space, e.g., three dimensions.
And the time delay is the delay between two consecutive time steps to constitute the
embedding vectors. I.e., given a signal [x1, x2, . . . , xn], the corresponding phase space
vectors are obtained as:

y⃗ (i) =
[
xi, xi+τ , . . . , xi+(dE−1)τ

]
. (4.1)

Also known as Takens’ theorem, developed by [17] and [63].

One can choose several methods to determine the parameters τ and dE . We used the
method of average mutual information, selecting a time delay based on autocorrela-
tions, and the false nearest neighbors algorithm. One can find an in-depth discussion on
the chosen time delay, the chosen embedding dimension, and the corresponding recon-
structed phase space plots for each data set in Appendix A.

4.1 The Method of Average Mutual Information (AMI)

The following description is based on the work of [64, 65].

The concept of the average mutual information can be employed to determine a suitable
time delay for the embedding.

27
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Given a signal [x1, x2, . . . , xn−τ ], we first introduce a binning for the signal according to
[66]. We now denote the original time series data as signal A, and we find a-time-shifted
signal Bτ as [x1 + τ, x2 + τ, . . . , xn]. We now suppose that the distributions of A and
Bτ are approximated by histograms of NA = NB elements. These elements uniformly
divide the ranges (amin, amax) and (bmin, bmax), which are the same for time-shifted
signals. The corresponding distributions are denoted as PA and PBτ . Next, we find ai

and bj , which are ith and jth elements of the uniform partitions of the original and the
time-shifted signals A and Bτ respectively.

Next, the average mutual information between two signals A and Bτ is then defined as:

IABτ =
NA=NB∑

ai bj

PABτ (ai, bj) log2

[
PABτ (ai, bj)

PA (ai) PBτ (bj)

]
, (4.2)

where PA (ai) and PBτ (bi) are the probabilities of occurencies of ai and bi in A and Bτ ,
respectively. PABτ (ai, bj) is the probability of co-occurrence of ai in Bτ and bj in Bτ .

Then, to find a suitable time delay, one determines the first local minimum of this
function and takes the corresponding τ to construct the phase space.

Here, a recommendation to choose the number of bins is to set NA = NB = ⌊
√

n
5 ⌋.

4.2 Time Delay from the Autocorrelation Function

The autocorrelation of a time series can be used to identify periodicities in the time
series. Also, the autocorrelation function can be used to identify a time delay for a
phase space reconstruction. Here one chooses the value for which the autocorrelation
function first passes through zero as this provides linear independence, [64].

Following [67]: The autocorrelation function is the average value of the product x (t) ·
x (t + τ), with a varying time delay τ , for a given signal x (t). The autocorrelation
function Rx (τ) is formally defined as:

Rx (τ) ≡ E [x (t) · x (t + τ)] = lim
T →∞

∫ T

0
x (t + τ) dt (4.3)

4.3 The Method of False Nearest Neighbors

The following description is based on the work of [68, 69] and [70].
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We employ the method of false nearest neighbors to estimate the embedding dimension
of the data under study.

Given a signal [x1, x2, . . . , xn], with corresponding phase space vectors:

y⃗ (i) =
[
xi, xi+τ , . . . , xi+(dE−1)τ

]
. (4.4)

Suppose the number of dE time delay coordinates, i.e., the embedding dimension, is too
small. In that case, one expects two phase space vectors to be false neighbors, if they are
close to each other only because of the projection and not because of the data’s/systems’
inherent dynamics. Further, two false nearest neighbors have different time evolution and
belong to different regions of the underlying attractor. To determine the right embedding
dimension, one then analyzes the nearest neighbors of each vector. We denote the nearest
neighbor of each vector y⃗ (i) as y⃗ (N (i)). The next step is to compare the distances of
these points in dE and dE + 1 dimensions. If the distance in dE + 1 dimensions is large,
then the points are just neighbors by projection in dE dimensions and not true neighbors,
i.e., they will further separate with increasing embedding dimension dE . Thus, if the
distances |x (i + dE) − x (N (k) + dE)| are, and consequently, stay small, then only a
small amount of the neighbors are false, and the found embedding dimension is sufficient.

Thus we find the following criterion to determine if a neighbor is a false neighbor:

|x (i + dE) − x (N (k) + dE)|
∥y⃗ (i) − y⃗ (N (i))∥ > Rtot (4.5)

or if
∥y⃗ (i) − y⃗ (N (i))∥2 + [x (i + +dE) − x (N (i) + dE)]2

R2
A

> A2
tot , (4.6)

with the corresponding variance:

R2
A = 1

n

n∑
k=i

[x (i) − x̄]2 . (4.7)

Here Rtot is a beforehand set parameter and, in most cases, is set to be between 10 − 20.
The criterion (4.6) compensates for noise and usually Atot ≈ 2.

By using both criteria (4.5) and (4.6), one then checks all d-dimensional vectors in
the data set to compute the percentage of false nearest neighbors. This percentage
should drop to zero or a considerably low number with increasing dimension. Given
that the percentage of false nearest neighbors is zero or a low number, the corresponding
embedding dimension is found sufficient to represent the underlying dynamics.





Chapter 5

Interpolation Techniques

This chapter discusses the two employed interpolation techniques that take into account
the complexity and/or phase space characteristics of the data under study. First, a
fractal interpolation based on iterated functions systems, and second, a stochastic inter-
polation taking into account the properties of a reconstructed phase space of the studied
data set (PhaSpaSto interpolation).

5.1 Fractal Interpolation

The following discussion is based on the research presented in [27, 28, 71].

Traditional interpolation methods are based on elementary functions such as polynomi-
als. In contrast, fractal interpolation methods employ iterated functions systems. An
iterated functions system is a complete metric space X with a corresponding distance
function h and a finite set of contractive mappings, {wn : X → X for n = 1, 2, . . . , N}
[72].

A time series is given as a set of M data points as {(um, vm) ∈ R2} : m = 0, 1, . . . , M .
The interpolation is then applied to a subset of those data points, i.e., the interpolation
points {(xn, yn) ∈ R2 : n = 0, 1, . . . , N}. Both sets are linearly ordered with respect
to their abscissa, i.e., u0 < u1 < . . . < uM and x0 < x1 < . . . < xN . Therefore the
set of interpolation points dissects the set of data points into intervals to be interpolated
separately.

{R2; wn, n = 1, 2, . . . , N} is an iterated functions system (IFS) with affine transfor-
mations

wn

[|x

y

]| =

[|an 0
cn sn

]| [|x

y

]| +

[|dn

en

]| (5.1)
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which is constrained to satisfy

wn

[|x0

y0

]| =

[|xn−1

yn−1

]| and wn

[|xN

yN

]| =

[|xn

yn

]| (5.2)

for every n = 1, 2, . . . , N . As done in [27], solving these equations yields

an = xn − xn−1
xN − x0

,

dn = xN xn−1 − x0xn

xN − x0
,

cn = yn − yn−1
xN − x0

− sn
yN − y0
xN − x0

,

en = xN yn−1 − x0yn

xN − x0
− sn

xN y0 − x0yN

xN − x0
.

(5.3)

The real numbers an, dn, cn, en are determined by the interpolation points and sn is a
free parameter, the vertical scaling factor. To be hyperbolic with respect to an appro-
priate metric, sn is bound by |sn| < 1. For an in-depth discussion on the subject, the
reader is referred to [73].

As stated in [74], many records and time series do not exhibit a simple monofractal
scaling behavior. E.g., different scaling exponents are required for different parts or at
different scales of a time series. Thus we choose the fractal interpolation to reproduce
local scaling behavior, i.e., we want the fractal interpolation to match a local Hurst
exponent, e.g., for a chosen subinterval, as close as possible.

Here constructing an interpolation via fractal interpolation offers self-similarity in small
scales. The scaling factors sn link this self-similarity to the fractal dimension and con-
sequently the Hurst exponent of the data under study, [75], as they directly influence
the y-coordinate of an interpolation’s data point. Tihs relation to the Hurst exponent
is given by Df ≈ 2 − H , [76, 77].

5.1.1 Fractal Interpolation Applied

The following procedure was applied to find a suiting fractal interpolation of Nint ad-
ditional data points (x̂k, ŷk) , k = 1, 2, . . . , Nint for a time series data of the original
equidistant points: {(um, vm) ∈ R2} : m = 0, 1, . . . , M , where u0 < u1 < . . . < uM :

1. We pick a subset i of N data points from the original data points. In this subset
are the interpolation points {(xn, yn) ∈ R2 : n = 0, 1, . . . , N}.

For each of this subsets we find a number of affine transformations
wn, n = 1, 2, 3, . . . , N , according to Equation 5.1.
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Further, for each of these subsets we find a Hurst exponent Hi

2. For each subset i, the following routine is performed:

(a) For all pairs (xn−1, yn−1) , (xn, yn) of consecutive interpolation points, we find
Nint equidistant initial data points (xk, yk) from a linear interpolation between
(xn−1, yn−1) , (xn, yn) , where xn−1 < xk < xn.

Then for all pairs of consecutive interpolation points we perform the following
procedure until Nint new unique equidistantly distributed data points (x̂k, ŷk)
are found1, these are the new additional data points of the interpolant.

(i) We choose a random vertical scaling factor ŝ, where |ŝ| ≤ 1.

(ii) Then for each k we randomly choose one of the transformations wn and
calculate an, dn, cn, en from Equations 5.3.

(iii) We then apply wn on (xk, yk) I times, such that: x = xk, y = yk

y′ = cnx + sny + en, x′ = anx + dn and afterwards x = x′, y = y′. After
each execution of wn, for all k, if |x′ − xk| < ϵx we keep this data point
such that ŷk = y′ and x̂k = xk. and return to (i) .

(b) Calculate the Hurst exponent Hi,int,new for the interpolated time series.

(c) If there was Hi,int,old set beforehand, compare it to Hi,int,new. If Hi,int,new is
closer to Hi keep the corresponding fractal interpolation and Hi,int,old is set
to Hi,int,new.

(d) Repeat this routine, starting with (a) R times.

Remarks:

• The length N of the subset i can be the whole data set. If the choice of the subset
length does not fully cover the entire data set such that a full sub-length is not
available at the end of the time series, we then choose the last remaining data
points of length N, perform the whole procedure for this subset and keep only the
missing part. This is depicted in Figure 5.1. For our experiments, we chose the
length of the subsets, such that it divides the data set into ten subsets, where the
excess data points were treated in the previously described way.

• The presented procedure simplifies the fractal curve fitting method presented in
[27], such that our approach works only for time series data sorted with respect
to their abscissa, and such that we further reduced the number of vertical scaling

1Note that for equidistantly distributed data points and a fixed number of additional interpolated
data points x̂k = xk.
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factors as we set it constant for a whole subset i. Also, the above-presented proce-
dure could be extended to arbitrary curves in two dimensions using the projections
described in [27].

• The Hurst exponent is calculated using R/S Analysis, see Section 3.1.

• The randomly chosen vertical scaling factors sn impact the Hurst exponent by
influencing the y-component and thus the range and standard deviation in R/S
analysis, as discussed in Section 3.1. This is apparent as ŷk = cnx + sny + en.

• The number of iterations R is set to 500 for each data set.

• (iii) describes a random iteration algorithm according to [78].

• The difference between the abscissa ϵx is set to 10−4.

• The number of iterations I is set to 100.

• The larger the data set and the larger one chooses the subsets, the better this
method works, as the estimation of the Hurst exponent does not work well for
small data sets, as discussed in Appendix E.

• We provide a python implementation of this interpolation technique in [79].
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Figure 5.1: Schematic depiction of the slicing of the employed fractal interpolation.
1 , and 2 depict how the slicing is regularly performed throughout the whole time
series. 3 shows the interval on which the fractal interpolation is performed for the
left-over part. 4 is the left-over part that’s actually taken from 3 to complete the
interpolation for the whole data set.

5.2 PhaSpaSto Interpolation

The here described interpolation technique is based on the multipoint fractional Brow-
nian bridges, developed in [29], and a basic genetic algorithm to find the best possi-
ble interpolation that guarantees a smooth reconstructed phase space trajectory. For
simplicity, we refer to the developed method as PhaSpaSto interpolation, which is an
abbreviation for phase-space-trajectory-smoothing stochastic interpolation.

First, one generates a population of stochastically interpolated time series data, each
featuring a randomly assigned Hurst exponent, and then performs an optimization using
the presented genetic algorithm to improve the interpolation. The whole scheme is
depicted in Figure 5.2. We provide the program code for this interpolation technique in
[80].
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Figure 5.2: Schematic depiction of the PhaSpaSto interpolation.

5.2.1 Multipoint Fractional Brownian Bridges

As depicted in Figure 5.2, the employed genetic algorithm is fueled by a population of
stochastically-interpolated time series data, in our case multipoint fractional Brownian
bridges, [29]. Thus we briefly summarize this approach.

We consider a Gaussian random process X(t) whose covariance is defined as C(t, t′) =
⟨X(t)X(t′)⟩. In the following, we focus on fractional Browian motion where the covari-
ance is given according to ⟨X(t)X(t′)⟩ = 1

2

(
t2H + t′ 2H − |t − t′|2H

)
, where H is the

Hurst exponent. To better understand our interpolation strategy, we first define a frac-
tional Brownian bridge, which is a construction of a fractional Brownian motion (fBm)
starting from 0 at t = 0 and ending at X1 at t = t1, i.e., a fractional Brownian motion
that starts at 0 at t = 0 and ends at X1 at t = t1, i.e.,

XB(t) = X(t) − (X(t1) − X1)⟨X(t)X(t1)⟩
⟨X(t1)2⟩ . (5.4)

This construction ensures that XB(t1) = X1. This single bridge can now be generalized
to an arbitrary number of (non-equidistant) prescribed points Xi at ti by virtue of a
multipoint fractional Brownian bridge

XB(t) = X(t) − (X(ti) − Xi)σ−1
ij ⟨X(t)X(tj)⟩ , (5.5)

where σij = ⟨X(ti)X(tj)⟩ denotes the covariance matrix. Furthermore, we imply sum-
mation over identical indices.The bridge takes on exactly the values Xk at tk, as shown
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by the last linear operation on the Gaussian random process XB(tk) = X(tk)− (X(ti)−
Xi)σ−1

ij σkj = X(tk) − (X(ti) − Xi)δik = Xk , where δik denotes the Kronecker-delta.
As a result, this technique enables the reconstruction of a sparse signal in which the
selection of the Hurst exponent H determines the small-scale correlations. We built a
simple genetic algorithm to find the best possible interpolation given the data’s phase
space reconstruction using Taken’s theorem. We want our reconstructed phase space
curve to be as smooth as possible and thus define the trajectory’s fitness as follows

5.2.2 The Fitness of a Trajectory

The basic idea is to use a concept from image-processing, i.e., the blurriness of a picture,
and apply it to phase space trajectories. This is because we want our trajectory as blurry,
i.e., as smooth as possible. In image processing, the blurriness is determined via second-
order derivatives of grey-scale images at each pixel, [81]. We employ this concept, but
instead of using it at each pixel, we calculate the variance of second-order derivatives
along our phase space trajectories. Similar to the concept from image processing, where
the low variance of second-order derivatives implies more blurriness, curves with a low
variance of second-order derivatives exhibit comparatively smooth trajectories. The
reason here is intuitively clear. Whereas curves with a high variance of second-order
derivatives have a range of straight and pointy sections, curves with a low variance
of second-order derivatives have a similar curvature along the trajectory and thus are
smoother. Hence, in order to guarantee smoothness along the trajectory, we want this
variance to be as low as possible, which thus is our loss L. Concluding, our fitness is
maximal when our loss L is minimal.

Again we start with the phase space vector and the corresponding embedding dimension
dE and time delay τ (See Chapter 4) of each signal as

y⃗ (i) =
[
xi, xi+τ , . . . , xi+(dE−1)∗τ

]
. (5.6)

Thus we have one component for each dimension of the phase space. Consequently we
can write the individual components as:

yj (i) = xi+(j−1)∗τ , (5.7)

where j = 1, 2, . . . , dE . We then take the second-order finite difference central derivative
of a discrete function [82]:

u′′
j (i) = xi+(j−1)∗τ+1 − 2xi+(j−1)∗τ + xi+(j−1)∗τ−1 , (5.8)
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at each point, and for each component. Next we add up all the components as:

u′′ (i) =

[|||√ dE∑
j=1

u′′
j (i)2 . (5.9)

And finally, we use the variance of the absolute values of second derivatives along the
phase space curve as our loss L of a phase space trajectory:

L = Vari
[
u′′ (i)

]
. (5.10)

5.2.3 Genetic Algorithm Architecture

The employed genetic algorithm consists of the following building blocks:

A candidate solution is an interpolated time series using a random Hurst exponent H ∈
(0; 1). The corresponding population of candidates is, e.g., 1000 of these stochastically
interpolated time series data with random Hurst exponents. A population of interpolated
time series data is generated using the multipoint Brownian bridges such that, for each
member of the population, a random Hurst exponent with H ∈ ]0; 1[ is chosen, which
then defines the interpolation of the member of the population. After generating the
population, all members are sorted with respect to their fitness, i.e., the lower the loss L,
the better an interpolation is. The mating is implemented such that only the best 50%,
with respect to fitness, can mate to produce new offspring. The mating is done such
that, for every gene, i.e., each interpolation between two data points, there is a 50:50
chance to inherit it from either one of the parents. The mutation was implemented that,
in each generation, there is a 20% chance that a randomly chosen interpolated time series
is replaced with a new interpolated time series within a corresponding randomly chosen
new Hurst exponent. Also, we implemented a criterion for aborting the program, which
was fulfilled if the population fitness mean did not change for ten generations. This
described procedure is then performed for 1000 generations. But the 1000 generations
were never reached, as the criterion for abortion always triggered around 200 generations,
and the program was ended, thus yielding the best interpolation with respect to the
fitness of the phase space trajectories before reaching the 1000th generation.



Chapter 6

Neural Network Time Series
Prediction

This chapter lists all employed neural network architectures, such as long short-term
memory (LSTM), and gated recurrent unit (GRU) neural networks. We further discuss
the employed error metrics at the end of this chapter.

6.1 Artificial Neural Networks

The focus of this research and one of today’s most common approaches to predicting time
series are artificial neural networks (ANNs), [83]. Artificial neural networks (sometimes
just neural networks) are data-based learning algorithms that emerged from the idea
of human or animal brains. As such, they are constituted of connected neurons. Here,
how they are connected is crucial for the task at hand. Each neural network consists
of an input layer, hidden layers, and an output layer. We categorize the mentioned
applications into two types of neural networks for our research. First, feedforward neural
networks, i.e., neural networks connected in a non-cyclic way, and, second, recurrent
neural networks, which are connected cyclically, i.e., the input and output or sub-parts
of the network are connected such that the neurons form loops, [84].

Further, the neurons feature (non-linear) activation functions and are controlled by
adjusting weights for each neuron. Thus the learning process consists of adjusting and
readjusting the weights on each neuron, done via, e.g., backpropagation, [85].
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6.1.1 Feedforward Artificial Neural Networks

Feedforward neural networks are neural networks that are connected in a non-cyclic
manner, thus straightforward. The feedforward neural network and its prototype, the
multi-layer perceptron (MLP), are the most simple neural networks. Information prop-
agates in only one direction, i.e., from input to output nodes.

6.1.2 Recurrent Artificial Neural Networks:

Contrary to feedforward neural networks are recurrent neural networks (RNNs), where
information can propagate in loops in the network. This architecture was invented to
learn temporal dynamic behavior, e.g., speech recognition and time series prediction,
[86].

RNNs are capable of using feedback or recurrent connections to cope with time series
data. Though in principle designed for time series analysis and prediction, a standard
RNN suffers the problem that the influence of a given input on the neural network either
decays or blows up exponentially when passing through recurrent connections, known as
exploding or vanishing gradients. LSTMs are designed to solve this problem and learn
the inherent long-term dependencies.

LSTMs, [87], feature a component called memory block to enhance their capability to
model long-term dependencies. This memory block is a recurrently connected subnet
containing two functional modules, i.e., the memory cell and the corresponding gates.
The task of the memory cell is to remember the temporal state of the neural network.
On the other hand, the gates are responsible for controlling the information flow and
consist of multiplicative units. There are three types of gates: Input gates, output gates,
and forget gates. The input gates control the information flow into the cell, whereas
the forget gates control how information remains in the memory cell. The output gate
controls how much information is used for the output activation and decides what will
be returned to the rest of the neural network.

The gated recurrent unit (GRU) is another addition to RNNs. As the name says, it is
a gate mechanism, to be specific a forget gate, [88] [89]. Compared to the previously
mentioned LSTM neural network, the GRU has a forget gate but lacks an output gate,
thus having fewer parameters than LSTM neurons. In general, the architecture and
applications of GRU and LSTM are similar, i.e., GRUs are also used for time series
data. Compared to LSTMs, GRUs are shown to perform better on smaller and, thus,
less frequent data sets, [90].
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[91] gives an in-depth discussion on the different RNN architectures. An overview of
the different neural network block architectures is given in Figure 6.1, which is also
adapted from [91]. Here xt is always the input for each neuron, whereas ht is the output.
As an exemplary activation function, and because of its default status, the presented
scheme diagrams use a tangens hyperbolicus (tanh) activation function. The additional
activation functions of the GRU and LSTM blocks use a sigmoid activation function,
depicted as σ. All recurrent architectures feature a recurrent connection, depicted as
yellow ht−1 and ht inputs/outputs to the other recurrent cells. The LSTM cell features
another connection to other cells, depicted as the blue ct−1 and ct inputs/outputs.

Figure 6.1: Different artificial neural network architectures.
FFNN: Feed forward neural nework
RNN: Recurrent neural network
LSTM: Long short term memory neural network
GRU: Gated recurrent unit neural network.

6.1.3 Randomly Parameterized Neural Networks

This section explains the randomly parameterized neural networks used for all exper-
iments in Chapters 9 and 11. These randomly parameterized neural networks were
used to cope with the problem of autoregressive neural network predictions. I.e. good
train and test fits do not guarantee that the trained neural network can autoregressively
predict time series data.

The idea is to generate many randomly parameterized neural networks to build en-
semble predictions based on the inherent complexity or phase space properties of the
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autorgressively produced predictions. An autoregressive prediction is a one-step-at-a-
time prediction, whereas old outputs are used as inputs for the next step.

These randomly parameterized neural networks feature one to five hidden LSTM layers,
a hard sigmoid activation function in the hidden and input layers, and a rectified linear
unit (ReLU) as the output activation functions. No dropout criteria or regularizations
were used.

We used two different architectures for the randomly parameterized neural network
approach:

1. Architecture:

• Data scaled to [0, 1]

• Number of input nodes: 1 → size of the training data -1

• Number of neurons for each hidden layer: 1→30

• Batchsizes: 2 → 128

• Epochs: 1→30

2. Architecture:

• Data scaled to [0.1, 0.9]

• Number of input nodes: 1 → size of the training data -1

• Number of neurons for each hidden layer: 1→50

• Batchsizes: 2 → 128

• Epochs: 1→50

Though we used LSTM cells for our experiments, one can use any neural network cell
in the hidden layer.

6.2 Error Analysis

This section describes the error metrics used in the presented research. The error metric
applied to all predictions is the root-mean-square error (RMSE).

We further use the mean-square-error (MSE) to make our results comparable to bench-
mark results from the literature, see Chapter 12.

We also present an adaption to the ensemble predictions of the randomly parameterized
neural networks, i.e., many different predictions, explained in the previous Section 6.1.3.
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6.3 Mean-Square and Root-Mean-Square Error

In the presented research we used two different errors for all experiments. First the
mean-square-error:

EMSE = 1
S

S∑
t=1

[
X̂ (t) − X (t)

]2
, (6.1)

And second the root-mean-square error (RMSE):

ERMSE =
(

1
S

S∑
t=1

[
X̂ (t) − X (t)

]2
) 1

2

, (6.2)

where X (t) is the original data and X̂ (t) is the prediction, S is the number of predicted
data points.

6.4 Ensemble Error

For each ensemble prediction, i.e., consisting of Np different predictions labeled with i

for each time step t, we calculated the mean and the standard deviation as

X̂ (t) = 1
Np

Np∑
i=1

X̂i (t) , σ (t) =

[||√ 1
Np

Np∑
i=1

(X̂i (t) − X̂ (t))2 , (6.3)

where X̂i (t) is a single observation, X̂ (t) is the averaged observation for a single time
step, σ (t) is the corresponding standard deviation and Np is the number of different
predictions for each time step.

Next, to compare it to the validation dataset, we calculated the root-mean-square error
(RMSE) as

ERMSE =
(

1
Nt

Nt∑
t=1

[
X̂ (t) − X (t)

]2
) 1

2

, (6.4)

where X (t) are the data points of the validation dataset and Nt is the number of
validation data points. Using error propagation, the corresponding error of the root-
mean-square error was calculated as

∆ERMSE =

√(
∂ERMSE

∂X̂ (1)

)2

σ2 (1) +
(

∂ERMSE

∂X̂ (2)

)2

σ2 (2) + · · · , (6.5)

thus yielding:

∆ERMSE =

[||||√
∑Nt

t=1

[
X̂ (t) − X (t)

]2
σ2 (t)

(Nt) ∗ ∑Nt
t=1

[
X̂ (t) − X (t)

]2 . (6.6)





Chapter 7

Data Sets

For the conducted research, we used several univariate non-model time series data sets
and one model data set, i.e., the Lorenz system.

Similar to Brunton et al. [92], we chose the Lorenz system and the measles outbreaks in
NYC data sets, as these data sets feature a known attractor structure in reconstructed
phase space. Also, we selected some data sets similar to the research done by Domin-
gos et al. [93]. This was done to make our results comparable to state-of-the-art time
series forecasts, i.e., hybrid ARIMA and machine learning approaches. We added agri-
cultural relevant time series to our pool of data sets, as this research is part of DILAAG
(Digitalization and Innovation Laboratory in Agricultural Sciences). The agricultural
relevant data sets are the annual wheat and maize yields in Austria and the discharge
of the River Krems.

Further, the selection of data sets was decided such that we used several short (around
100 data points) time series data from the time series data library [94] to develop the
whole methodology, e.g., the monthly international airline passengers and the Perrin
Freres champagne sales data set. To further validate our results, we chose some (in this
context) data sets of intermediate length, around 200 to 300 data points. Also, we added
the yield data sets as examples for sparsely sampled and challenging data sets. We added
two financial time series, the Dow Jones Industrial Average and the USD/GBP exchange
rate, to increase the variability of our experiments. And lastly, the Lorenz system, a
model data set that we tailored to match our requirements for the task at hand.

We detrended several data sets by subtracting a linear fit to achieve a more confined
phase space structure and a more stationary time series. The detrending was done for
both the analysis and the actual predictions.

45
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This chapter lists and references all used data sets and shows the corresponding time
series plots. Further, the Lorenz system is briefly described at this chapter’s end.

7.1 Monthly International Airline Passengers

This is a data set from the Time Series Data Library, [94]. It depicts monthly interna-
tional airline passengers from January 1949 to December 1960, with an overall 144 data
points, given in units of 1000. This data set was detrended for analysis and prediction
tasks.

0 20 40 60 80 100 120 140

months

100

200

300

400

500

600

m
o
n
th

ly
 i
n
te

rn
a
ti

o
n
a
l 
a
ir

li
n
e
 p

a
s
s
e
n
g
e
rs

 i
n
 u

n
it

s
 o

f 
1

k

Figure 7.1: Plot for the monthly international airline passengers time series.

7.2 Monthly Mean Temperature in Nottingham Castle

This data set is from the Time Series Data Library, [94]. It depicts the mean monthly
temperature in Nottingham castle from January 1920 to December 1939 in degrees
Fahrenheit, with an overall 240 data points.
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Figure 7.2: Plot for the monthly mean temperature in Nottingham castle time
series.

.

7.3 Perrin Freres Champagne Sales

This is a data set from the Time Series Data Library, [94]. It depicts Perrin Freres
champagne sales from January 1964 to September 1972, with an overall 105 data points.
This data set was detrended for analysis and prediction tasks.
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Figure 7.3: Plot for the Perrin Freres champagne sales time series.

7.4 Car Sales in Quebec

This is a data set from the Time Series Data Library, [94]. It depicts monthly car sales
in Quebec from January 1960 to December 1968, with an overall 108 data points. This
data set was detrended for analysis and prediction tasks.
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Figure 7.4: Plot for the monthly car sales in Quebec time series.

7.5 NYC Measles Outbreaks

This data set is obtained from [92], where it is discussed and shown to feature an
attractor structure in the reconstructed phase space. The corresponding original source
is [95]. It depicts Measles outbreaks in New York City (NYC) from 1928 to 1964, binned
every two weeks, with an overall 432 data points.
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Figure 7.5: Plot for the NYC measles time series.

7.6 Annual Wheat Yields Austria

This is a data set of the annual wheat yields in Austria ranging from 1961 to 2017 with
an overall of 56 data points. This data set was detrended for analysis and prediction
tasks. The data set can be downloaded at http://www.fao.org/faostat/.

http://www.fao.org/faostat/
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Figure 7.6: Plot for the annual wheat yields in Austria time series.

7.7 Annual Maize Yields Austria

This is a data set of the annual yields of maize in Austria ranging from 1961 to 2017 with
an overall of 57 data points. This data set can be downloaded at http://www.fao.org/faostat/.
This data set was detrended for analysis and prediction tasks.

http://www.fao.org/faostat/
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Figure 7.7: Plot for the annual maize yields in Austria time series.

7.8 CFE Specialty Monthly Writing Paper Sales

This data set spans 12 years and three months with an overall of 147 data points and
describes the monthly CFE specialty writing paper sales. It is another data set from the
Time Series Data Library, [94]. This data set was detrended for analysis and prediction
tasks.
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Figure 7.8: Plot for the monthly writing paper sales time series data.

7.9 Shampoo Sales

This data set describes monthly shampoo sales over three years, i.e., 36 observations,
and is from [96]. This data set was detrended for analysis and prediction tasks.
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Figure 7.9: Plot for the monthly shampoo sales time series.

7.10 Canadian Lynx

This data set is the annual record of lynx trapped in the Mackenzie River district in
North-West Canada from 1821 to 1934 and consists of 114 data points. This data set is
part of the Time Series Data Library, [94].
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Figure 7.10: Plot for the Canadian lynx time series.

7.11 Dow Jones Industrial Average Daily Close in 2018

This data set describes the daily close value of the Dow Jones industrial average in 2018.
This data set can be obtained from the website of the Federal Reserve Bank of St. Louis,
[97].

https://fred.stlouisfed.org/series/DJIA
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Figure 7.11: Plot for the Dow Jones daily close 2018 time series.

7.12 Krems River Discharge in the 1980s

This data set describes the monthly discharge of the river Krems in Imbach, Lower
Austria, from January 1980 to December 1989, 120 data points in total. This data set
can be obtained from the homepage of the Global Runoff Data Centre, [98].

https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser#dataDownload/Home
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Figure 7.12: Plot for the river Krems discharge in the 1980s time series.

7.13 Sunspots

The sunspots data set are the annual records of spots on the sun’s surface between 1700
and 1987, with 288 data points in total. This data set is part of the Time Series Data
Library, [94].
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Figure 7.13: Plot for the sunspots time series.

7.14 British Pound/US Dollar Exchange Rate

This data set describes the weekly average of the British pound/US dollar exchange rate
from 1980 to 1993, 731 data points in total. This data set can be obtained from the
website of the Federal Reserve Bank of St. Louis, [97].

https://fred.stlouisfed.org/series/DEXUSUK
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Figure 7.14: Plot for the British Pound/US Dollar Exchange Rate time series.

7.15 The Lorenz System

The model data set that was employed for this research is the Lorenz model, [99].

The Lorenz system is a set of three nonlinear equations:

dx

dt
= 10 (−x + y)

dy

dt
= 28x − y − xz

dz

dt
= xy − 8

3z

(7.1)

We solved this system using a basic Runge-Kutta four approach, [100]. We chose the
step size and length of the simulation with respect to the number of interpolation points,
as we aim to show how good the system can be interpolated and predicted,

dt = 0.1
nint + 1 , L = 200 · (nint + 1) , (7.2)
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where dt is the step size and L is the length of the simulation. The initial conditions for
all experiments were chosen to be:

x = −8, y = 8 , z = 27 (7.3)

Finally, as we need a univariate signal for the phase space reconstruction and to test our
methods, we must choose one of the three variables. We chose x (t) for all experiments.
Figures 7.15 and 7.16 depict all coordinates of the Lorenz system and the corresponding
phase space portrait.
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Figure 7.15: Time series plot for the separate coordinates of the Lorenz system, we
generated 100000 time steps with dt = 0.01 and plotted the final 5000 data points.
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Figure 7.16: Attractor plot for the Lorenz system, we generated 100000 time steps
with dt = 0.01 and plotted the final 5000 data points.
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Chapter 8

Fractal Interpolation and Neural
Network Time Series Predictions

This chapter is a precursor to the later chapters, providing initial tests on a combined
approach of fractal interpolation and neural networks. The contents of this chapter are
published in [28]:

Sebastian Raubitzek and Thomas Neubauer. A fractal interpolation approach to im-
prove neural network predictions for difficult time series data. Expert Systems with
Applications, 169:114474, 2021. ISSN 0957-4174. doi: 10.1016/j.eswa.2020.114474. URL
http://www.sciencedirect.com/science/article/pii/S0957417420311234. Visited
on 2023-04-20.

The presented research discusses the applicability of fractal interpolation to improve
long short term memory (LSTM) neural network time series predictions. We chose an
LSTM neural network architecture because this type of neural network was invented
to deal with time series data, [87]. For the fractal interpolation, we used the method
described in Section 5.1.

We aim to show the applicability of fractal interpolation to neural network time series
predictions and test it against linear interpolation, [101]. Linear interpolation was used
in combination with measures of signal complexity and machine learning approaches for
time series data in work done by Karaca et al. [42, 43].

First, the procedure is to interpolate the discussed time series using fractal and linear
interpolation. Next, we analyze the data’s signal complexity. I.e., we discuss the original,
the fractal, and the linear interpolated data sets using R/S analysis, the fractal dimension
of a time series, and the spectrum of Lyapunov exponents for experimental data. Next,
we perform neural network train and test fits/predictions on the data.

65
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We are using the following four data sets in this chapter:

• Monthly international airline passengers, Section 7.1;

• Monthly shampoo sales, Section 7.9;

• Annual wheat yields, Section 7.6;

• Annual maize yields, Section 7.7;

We chose the data sets such that one is a known test data set with visible seasonality,
i.e., the monthly international airline passengers data set, and one is a test data set
without a visible seasonality, i.e., the shampoo sales data set. Additionally, we chose
two challenging data sets from Austrian agriculture, i.e., the annual maize and wheat
yield data sets. We consider the latter two data sets challenging because of their yearly
frequency and because these data sets are a whole country’s average. Thus, different
climate and regional differences are averaged out. Therefore we expect a somewhat
random behavior, i.e., future data points do not depend on past ones, similar to a
fractional Brownian motion.

The presented results show that fractal interpolation can effectively increase the ac-
curacy of the employed long short term memory neural networks on a given data set
compared to the non-interpolated case. Further, the results show that the discussed
fractal interpolation can, in some cases, outperform a basic linear interpolation as the
presented neural network predictions are slightly better for the fractal interpolated time
series data. However, given the results of the following chapters, we cannot find profound
evidence for fractal interpolation as the superior method to be used for neural network
time series predictions. Still we need to mention that there is, as of the writing of this
thesis, a very recent publication on data augmentation and neural network time series
predictions for univariate time series data by Semenoglou et al. [26]. Also, as stated
in [102], there are no comprehensive comparative studies on interpolation techniques.
Further, as far as the author knows, there are no comprehensive comparative studies on
the applicability of interpolation techniques for neural network time series predictions.
However, to avoid confusing the reader, machine learning and neural network techniques
are capable of interpolating data, [102], but we are explicitly talking about interpolation
techniques to be used for improving machine learning and neural network approaches.

The idea of the employed fractal interpolation is to perform different interpolations, i.e.,
introduce fluctuations with different magnitudes, for different subintervals of a single
interpolated time-series data. This means we want the interpolated time series data to
have larger fluctuations on smaller scales for intervals with overall larger fluctuations
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and smaller fluctuations on smaller scales for intervals with overall smaller fluctuations,
as we expect most non-model data sets to have multifractal characteristics, [74]. The
number of additional data points was set to 17. A discussion on choosing the right
number of interpolation points is given in Chapter 13.

The employed fractal interpolation approach is discussed in Section 5.1, all data sets
under study are linked above and a full description is given in Chapter 7.

Section 8.1 discusses the signal complexities of all data sets under study. Section 8.2
describes the employed neural network architectures, how the predictions are performed,
and shows the corresponding results. All findings are discussed in Section 8.3 and
summed up in Section 8.4.

8.1 Complexity Measurements

All calculated complexity properties for the discussed time series can be found in Table
8.1. Here we need to mention that measures of signal complexity cannot give meaningful
and/or interpretable results for such short time series as the non-interpolated time series
in this chapter. Still, we present the values that the employed algorithms give and
discuss these findings. The reader is referred to Section 13.4 and Appendix E, where we
discuss the problem of estimating the signal complexity of short time series data and
the corresponding findings in the context of the whole thesis.

When comparing the Hurst exponent and the fractal dimension of the original and the
interpolated time series, all interpolated time series have a higher Hurst exponent and
a lower fractal dimension. This results from the fact that both concepts can be linked
using R/S analysis by Df ≈ 2 − H , [76, 77], where Df is the fractal dimension, and
H is the Hurst exponent. Since we use different algorithms to calculate the fractal
dimension and the Hurst exponent, this identity is only approximately true. We use
R/S analysis to calculate the Hurst exponent and Higuchi’s algorithm to calculate the
fractal dimension, [7], [46].

Still, we must discuss this relation between the fractal dimension and the Hurst exponent.
Here we’re closely following the work by [103]. First, the original relation is given by

Df + H = n + 1 , (8.1)

for a self-affine surface in an n-dimensional space. However, as pointed out by [103]
this relation does not hold for non-self-affine models/data. Thus, as the real-life data
we discuss here is never truly self-affine, and because we’re using different algorithms
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to calculate the fractal dimension and the Hurst exponent, this linear relation can only
approximately be true. Thus we changed it to Df ≈ 2 − H. Where n = 1 for time
series data. Also, as recommended in [103], one should calculate fractal dimension and
Hurst exponent separately, using different algorithms, as the linear relation breaks down
if self-affinity is violated. Which we did for comparison. Finally, given that Equation 8.1
approximately holds for some of the interpolated data under study, one could conclude
that the interpolated data has some aspects of self-affinity to it. However, taking a
closer look at this shows that for the shampoo sales data, this relation is violated for the
non-interpolated time series data as Df + H = 2.3531 ̸≈ 2, for the fractal interpolated
time series data, we observe Df + H = 2.1315 ̸≈ and for the linear interpolated data
Df + H = 1.9991 ≈ 2, which makes no sense because we consider the linear interpolated
data to be not self-affine at all. We observe similar behavior for all data sets, i.e.,
that the linear interpolated time series best fulfills this relation. We conclude that, first,
interpolation changes the nature of the signal. And second, either or both, the employed
concepts and algorithms do not work for time series data of this length, and that fractal
interpolation does not generate a self-affine time series.

Still, both measures, show that all interpolated time series are more persistent ones, or
in terms of the Hurst exponent, data with more long term memory. It is expected that
time series with these characteristics, i.e., a lower fractal dimension and a higher Hurst
exponent, can be forecast with higher accuracy. However, for the non-interpolated time
series data, the presented results cannot be interpreted as the scaling behavior of the
time series, as one cannot identify a scaling behavior from time series data as short as
the presented ones. Again, Section 13.4 provides an in-depth discussion on this topic.

Still, this increased Hurst exponent is to some degree the result of interpolating two
consecutive data points. Persistent successive data points will likely hit a set endpoint
given a fixed start. Thus we expect this behavior is inherent to most interpolations.
This is shown for varying numbers of interpolation points for both the linear and the
fractal interpolation in Appendix B.2. It is apparent that both the fractal and the
linear interpolation increase the Hurst exponent with increasing numbers of interpolation
points for all data sets discussed in Chapter 9, see Figures 9.2, B.1, B.3, B.5 and B.7.

Regarding the difference between the linear and the fractal interpolated time series data,
one observes that the linear interpolated time series data have a lower fractal dimension
and a lower Hurst exponent than the fractal interpolated data, which is contradictory.
But, again, given that we calculated those measures with different algorithms, this again
proves the previous statement regarding the link between Hurst exponent and fractal
dimension. [15], [44].
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Finally, we cannot give a meaningful interpretation of the spectrum of Lyapunov ex-
ponents on the topic as the here non-interpolated times series data need to be longer
to do so. However, the interpolated time series data suggest that the fractal interpola-
tion produced highly chaotic data with two positive Lyapunov exponents referred to as
hyperchaos in the literature [52].

Table 8.1: Complexity measurements/properties

Data Hurst exponent Fractal Dimension
Lyapunov

spectrum

Shampoo

sales
0.5894 1.7637

-0.0262
-0.0545
-0.1633
-0.1738

Shampoo sales

fractal interpolated
0.9252 1.2063

0.0971
0.0102
-0.0784
-0.2158

Shampoo sales

linear interpolated
0.9009 1.0982

2.9902
0.9656
-0.2968
-2.0357

Airline

passengers
0.3996 1.7658

0.0160
0.0103
-0.0242
-0.0750

Airline passengers

fractal interpolated
0.9521 1.2401

0.0926
0.0162
-0.0746
-0.2317

Airline passengers

linear interpolated
0.9298 1.033

2.5814
0.7693
-0.3465
-1.8434

Wheat

yields
0.9063 1.7145

-0.0156
-0.0379
-0.0286
-0.2699

Wheat yields

fractal interpolated
0.8982 1.2269

0.0886
0.0099
-0.0589
-0.2374

Wheat yields

linear interpolated
0.8758 1.0921

2.5700
0.8839
-0.3784
-2.0337

Maize yields 0.8591 1.7556
-0.0260
-0.0263
-0.0969
-0.2620

Maize yields

fractal interpolated
0.8983 1.2050

0.0868
0.0061
-0.0671
-0.2182

Maize yields

linear interpolated
0.8809 1.0941

2.7797
0.9551
-0.3495
-2.0198
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8.2 LSTM Neural Networks Predictions

A long short term memory (LSTM) neural network [87] was applied to analyze the four
data sets. Each time series was split into two parts, one for training the data set and
one to test the performance on previously unknown data, whereas the training part
makes up two-thirds and the unknown part the last third of the data, chronologically.
The accuracy of the predictions is then for the interpolated and the non-interpolated
dataset, meaning that if a dataset was interpolated, we also take the interpolated data
set for reference. We admit that this is problematic in terms of the comparison of
predictions. However, the plots suggest that the neural networks do not only learn the
interpolation but also seem to depict the behavior of the original data. The results of
this chapter are to be understood as preliminary results for the advanced prediction
techniques discussed in later chapters. In later chapters, however, we only evaluate
non-interpolated data points.

8.2.1 Data Preprocessing

Since the performance of neural networks can be improved with proper data preparation,
the following procedures were applied to all data sets.

First, the data X(t) defined at discrete time intervals t = v, 2v, 3v, ..., kv, was scaled
so that X(t) ∈ [−1, 1] , ∀t1. This was done for all 4 data sets. Second, the performance
was increased when the data was stationary, i.e., a linear fit was subtracted at each time
step from the data. This was done for all data sets except the wheat yield data since it
worsened the results of the predictions.

8.2.2 LSTM Neural Networks

Fits on unknown data of the original and the fractal interpolated time series data was
done using a long short term memory (LSTM) neural network, see Section 6.1.2.

The algorithm was optimized by observing the training loss curve and the overall per-
formance. Further, we used a basic LSTM implementation with one hidden layer in
accordance with [104]. Using adam as an optimizer, we observed decaying learning rates
for all data sets. For the loss function we used mean_squared_error. The batch size
was set to 1, and verbose was set to 2.

1In this chapter we used the interval [−1, 1] because of the tanh activation function. The later
chapters are using varying intervals because of varying activation functions.
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An existing Keras 2.3.1 implementation was used for this research. The following list
describes in detail the architecture of the LSTM-layer:

• activation="tanh"

• recurrent_activation="sigmoid"

• use_bias=True

• kernel_initializer="glorot_uniform"

• recurrent_initializer="orthogonal"

• bias_initializer="zeros"

• unit_forget_bias=True

• kernel_regularizer=None

• recurrent_regularizer=None

• bias_regularizer=None

• activity_regularizer=None

• kernel_constraint=None

• recurrent_constraint=None

• bias_constraint=None

• dropout=0.0

• recurrent_dropout=0.0

• implementation=2

• return_sequences=False

• return_state=False

• go_backwards=False

• stateful=False

• time_major=False

• unroll=False

In Table 8.2 the varying parameters for the neural network for each data set can be
found.
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Table 8.2: LSTM architecture

Data Epochs Hidden Layers
Number of

input data points

Shampoo

sales
89 2 7

Shampoo sales

fractal interpolated
13 25 7

Shampoo sales

linear interpolated
13 25 7

Airline

passengers
50 10 15

Airline passengers

fractal interpolated
2 35 20

Airline passengers

linear interpolated
2 35 20

Wheat

yields
120 10 2

Wheat yields

fractal interpolated
15 25 100

Wheat yields

linear interpolated
15 25 100

Maize yields 100 10 2

Maize yields

fractal interpolated
5 30 70

Maize yields

linear interpolated
5 30 70

8.2.3 Error Analysis

For the error analysis all data was normalized so that all X(t), X̂(t) ∈ [−1, 1] when the
RMSE was calculted. The errors for all train fits and test fits can be found in Table 8.3.
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8.3 Results/Discussion

The results show that the accuracy of an LSTM neural network on difficult time series
data can significantly be improved using a fractal or a linear interpolation method.
We observed this regarding the predictions’ errors (Table 8.3). For all data sets, the
interpolated approaches outperformed the regular ones. On the training data, the linear
interpolated approach performed best for all data sets. The fractal interpolated approach
performed best for the unknown data except for the airline passengers data set.

All fits on the training data, the test data for all data and the corresponding interpolated
data are depicted in Figures 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11 and 8.12.
The dashed purple line separates training data and test data.

Before further interpreting these results, we need to put them into perspective. First,
the prediction on the interpolated datasets is validated for different time steps as for the
non-interpolated time series data. This does not allow for a direct comparison of the
predictability. Still, our results show that interpolated time series data provide better
proximity fits than non-interpolated. This is primarily due to the fact that the majority
of the predicted data points are interpolated ones. These interpolated data points do
not provide meaningful results for the maize and wheat yield data sets. Still, data
augmentation, and in this case, data interpolation, can increase the accuracy of neural
networks on time series data as it increases the probability of predicting the correct
data point in the near vicinity of the input. Thus these errors are not direct accuracy
comparisons but compare different problems, and the reduced errors tell us that we
shifted the problem away from predicting the next data point. However, we then need
to find out if the data still depicts the information of the original time series, which is
addressed in the later chapters of this thesis and summarized in Chapters 13.

The plots show that the non-interpolated airline passengers data set can be reproduced
by the LSTM neural networks. However, The results for all other non-interpolated data
sets are far off, and we conclude that the neural network cannot reproduce the inherent
behavior of these data sets.

The fractal interpolated data set results are improved for all data sets. And for the
shampoo, wheat, and maize yields, we consider the prediction to be drastically improved.
However, to some degree, this results from increased persistency. We discussed this
previously in Section 8.1 for the Hurst exponent. The increased persistency, in this
case, means that consecutive interpolated data points are closer to each other. Thus
the neural network has increased accuracy for denser and more persistent data sets as
predicted data points for these data sets tend to be close to the previous data point. We



Fractal Interpolation and Neural Network Time Series PredictionsChapter 8 Fractal Interpolation and Neural Network Time Series Predictions

see this behavior for all interpolated data sets. The test fits are improved, i.e., closer to
the actual curve.

Table 8.3: RMSE for each data set

Data Train data error Test data error

Shampoo

sales
0.1860 0.5839

Shampoo sales

fractal interpolated
0.0236 0.0654

Shampoo sales

linear interpolated
0.0132 0.0899

Airline

passengers
0.0307 0.0566

Airline passengers

fractal interpolated
0.0120 0.0237

Airline passengers

linear interpolated
0.0058 0.0185

Wheat

yields
0.1957 0.3298

Wheat yields

fractal interpolated
0.0320 0.0849

Wheat yields

linear interpolated
0.0212 0.0892

Maize yields 0.1382 0.3062

Maize yields

fractal interpolated
0.0248 0.0558

Maize yields

linear interpolated
0.0177 0.0756
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Figure 8.1: Shampoo sales Figure 8.2: Shampoo sales, fractal
interpolated

Figure 8.3: Shampoo sales, linear
interpolated

Figure 8.4: Airline passengers

Figure 8.5: Airline passengers fractal
interpolated

Figure 8.6: Airline passengers fractal
interpolated
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Figure 8.7: Austrian wheat yields Figure 8.8: Austrian wheat yields,
fractal interpolated

Figure 8.9: Austrian wheat yields,
linear interpolated

Figure 8.10: Austrian maize yields

Figure 8.11: Austrian maize yields,
fractal interpolated

Figure 8.12: Austrian maize yields,
fractal interpolated
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8.4 Summary

This Section briefly summarizes all findings and results of this Chapter.

• The accuracy in terms of the RMSE of an LSTM neural network on short/sparsely
sampled data sets can drastically be improved using fractal or linear interpolation
to increase the overall amount of data. However, this shifts the problem to pre-
dicting interpolated data points. This direct comparison does not tell us if the
neural network learned the information in the original data set. We address this
problem in the following chapters by comparing only to actual data points using
autoregressive predictions; see Chapters 9 and 11.

• The developed fractal interpolation approach slightly outperformed the linear in-
terpolation approach in terms of a lower RMSE on unknown data. However, given
the experiments at the end of the presented thesis, we cannot identify fractal inter-
polation as the overall better interpolation technique to improve the predictability
of univariate time series data.

• The Hurst exponent (Table 8.1) for all time-series is increased when performing an
interpolation. This supports the findings of increased predictability, as a Hurst ex-
ponent of ≈ 0.5 indicates random behavior. An increased Hurst exponent indicates
a more persistent behavior of the underlying dynamics.

• The spectrum of Lyapunov exponents (Table 8.1) indicates chaotic behavior for
all interpolated data, contrary to the observed increase in predictability. However
we need to point out, that due to very low amounts of data points, the spectrum
of Lyapunov exponents is not applicable to the non-interpoalted data (See Section
13.4).

• Ref. [77] gives a relation between the fractal dimension and the Hurst exponent as
Df = 2 − H which is approximately true for the discussed data sets (Table 8.1).
This is because the concepts of the fractal dimension and the Hurst exponent are
similar for time series data, as both take into account the fluctuations present in
the data. Thus the fractal dimension also indicates a less complicated behavior
for the interpolated time series and thus increased predictability.

• Fractal and linear interpolation significantly change the nature of the interpolated
signal with respect to the Hurst exponent, fractal dimension, and the spectrum of
Lyapunov exponents.





Chapter 9

Randomly Parameterized Neural
Networks and Complexity
Prediction Filters

This chapter presents and sums up the findings of the author’s publication [32]:

Sebastian Raubitzek and Thomas Neubauer. Taming the Chaos in Neural Network Time
Series Predictions. Entropy, 23(11), 2021. ISSN 1099-4300. doi: 10.3390/e23111424. URL
https://www.mdpi.com/1099-4300/23/11/1424. Visited on 2023-04-20.

The publication and, consequently, this chapter provide results and a discussion on
the employed and developed randomly parameterized LSTM neural networks approach,
which is discussed in Section 6.1.3. We continue the work done in the previous chapter
(Chapter 8) such that we are using a fractal interpolation in combination with LSTM
neural networks. In contrast to the previous one, this chapter focuses on autoregressive
predictions. Thus we aim to show the applicability of fractal interpolation, the proposed
randomly parameterized neural network approach, and the corresponding prediction
filters. Also, similar to the previous chapter, we analyze the original and the interpolated
data sets using five measures of signal complexity, i.e., The largest Lyapunov exponent,
The Hurst exponent, Fisher’s information, SVD entropy, and Shannon’s entropy.

However, contrary to the previous chapter, we evaluate our results only on non-interpolated
data points to provide comparable results.

We chose five test data sets from the Time Series Data Library, [94], for this experiment:

1. Monthly international airline passengers, see Section 7.1
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2. Monthly car sales in Quebec, see Section 7.4

3. Monthly mean air temperature in Nottingham Castle, see Section 7.2

4. Perrin Freres monthly champagne sales, see Section 7.3

5. CFE specialty monthly writing paper sales, see Section 7.8

The chosen data sets differ in length and complexity. Each of these data sets has a
reoccurring seasonal behavior and, as the baseline predictions show (Section B.1), can
be reasonably predicted using a basic LSTM neural network with one hidden layer.
Here, we want to point out that, compared to a regular neural network implementation,
the randomly parameterized neural networks do not need to be parameterized to give a
prediction, hence randomly parameterized, but instead are filtered after producing many
forecasts.

The developed scheme consists of generating linear and fractal interpolated (Section
5.1) time series for each data set. Next, predicting these data sets using randomly
parameterized LSTM neural networks. And finally, filtering this multitude of predictions
based on their signal complexity to improve the overall accuracy.

For the fractal and linear interpolation, we use the following numbers of additional data
points, i.e., between each two original data points, NI = {1, 3, 5, 7, 9, 11, 13, 15, 17}. We
chose the numbers of interpolation points to multiply each data set’s data points to cover
a range of different interpolation points for both the complexity and the predictability
analysis. We use 17 as the upper threshold as the calculations start to get very expensive
with increasing numbers of interpolation points. A discussion on choosing the right
number of interpolation points is given in Section 13.1. Figure 9.1 depicts the whole
procedure.

Figure 9.1: Schematic depiction of the filtering process. The whole pipeline is
applied, first, to the original non-interpolated data, second, the fractal interpolated
data, and third, the linear interpolated.
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9.1 Signal Complexity

We applied five measures of signal complexity to the original data sets. The results can
be found in Table 9.1. We briefly discuss the complexities for each measure separately,
as an in-depth discussion with regards to their predictability can be found in Section
8.3:

• The Hurst exponent (Section 3.1): With a Hurst exponent of 0.7988, the
most persistent data set is monthly car sales in Quebec. According to [37], we
expected that time series with a Hurst exponent comparatively close to one can
be predicted with higher accuracy than ones with a value close to 0.5, as the later
ones are considered more random. The data sets under study are three persistent
ones, i.e., with a Hurst exponent larger than 0.5. Contrary to that, two are anti-
persistent ones with a Hurst exponent below 0.5.

• The largest Lyapunov exponent (Section 3.3): All largest Lyapunov expo-
nents of all time series data under study are positive, just as we would expect from
chaotic or complex real-life data. The data set with the highest value is monthly
car sales in Quebec. As the Lyapunov exponents of experimental time series data
serve as a measure for predictability, we suggest this data set, therefore, to be
forecast with low accuracy qualitatively, which is contradictory to the previous
discussion on the Hurst exponent.

• Fisher’s information (Section 3.6): Fisher’s information is expected to behave
contrary to entropy measures since it is a measure for order/quality, which we
observe when comparing Fisher’s information to SVD entropy, [62]. Thus we
expect data sets with a comparatively high value of Fisher’s information to be
forecast qualitatively more accurately. The data set with the highest value of
Fisher’s information is the monthly international airline passengers data set. The
lowest value is found for the Perrin Freres monthly champagne sales data set. Thus
Fisher’s information has the largest value for the monthly international airline
passengers data set, and the corresponding value for the SVD entropy is the lowest
among all data sets. This is because, just like Fisher’s information, SVD entropy is
based on Single Value Decomposition (SVD) [105]. In contrast, Shannon’s entropy,
which is also an entropy measure but not one based on Single Value decomposition,
differs in its behavior.

As Fisher’s information is based on SVD, we need to find two parameters before
applying it; the time delay τ and the embedding dimension dE . Here we used the
values obtained by the method of average mutual information and the false nearest
neighbors algorithm, which is discussed in Appendix A.
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• SVD entropy (Section 3.5): The largest value of SVD entropy is shown by the
Perrin Freres monthly champagne sales data set, which has, just as expected, the
lowest value of Fisher’s information. As it has a comparatively high SVD entropy
value, we expect the Perrin Freres champagne sales data set not to be predictable
very accurately qualitatively. Again, we chose the embedding dimension and time
delay using the method of mutual information and the false nearest neighbors
algorithm, as discussed in Appendix A.

• Shannon’s entropy (Section 3.4): Shannon’s entropy is based on the frequency
of occurrence of a specific value. As we deal with non-integer-valued complex data
sets, we expect Shannon’s entropy not to be of much use for analysis. Shannon’s
entropy’s highest value is found for the monthly mean temperature in Notting-
ham Castle data set. Since reoccurring temperature distributions possess a higher
regularity than, e.g., airline passengers, this explains the corresponding value.

Table 9.1: Complexities of the original data sets.

Hurst Exponent Largest Lyapunov
Exponent

Fisher’s Information SVDEntropy Shannon’s Entropy

Monthly international
airline passengers

0.4233 0.0213 0.7854 0.3788 6.8036

Monthly car sales
in Quebec

0.7988 0.0329 0.5965 0.5904 6.7549

Monthly mean
air temperature
in Nottingham

Castle

0.4676 0.0069 0.6617 0.5235 7.0606

Perrin Freres
monthly

champagne sales
0.7063 0.0125 0.3377 0.8082 6.6762

CFE specialty
monthly writing

paper sales
0.6830 0.0111 0.5723 0.6138 7.0721

9.1.1 Complexity Analysis

We compared the complexities of all time series data under study, i.e., for different
interpolation techniques and numbers of interpolation points.

The results are shown in Figures 9.2–9.4 for the monthly international airline passengers
data set. The plots for the other data sets are collected in Appendix B.2. Note that, in
each of the plots, the blue line, i.e., the complexity of the non-interpolated time series,
is not a plot depending on the number of interpolation points but a constant since there
is only one data set, the one with zero interpolation points, and plotted as a line for
reference. In addition, those original complexities are contained in Table 9.1.

For this study, we observe the following behavior:
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• The Hurst exponent of the fractal and the linear interpolated data sets behave
very similarly for the monthly international airline passengers data set, see Figure
9.2. We observe similar behavior for the other data sets as well, see Appendix B.2.
Though the Hurst exponent is initially lower for the fractal interpolated data for
some data sets, the Hurst exponent does not differ significantly between fractal
and linear interpolated time series data. In addition, adding more interpolation
points increases the Hurst exponent and makes the data sets more persistent.

• The Largest Lyapunov exponents of the fractal interpolated data are much closer
to the original data than those for the linear interpolated data; see Figure 9.3. We
observe the same behavior for all data sets; see Appendix B.2;

• Fisher’s information for the fractal interpolated data set is closer to that of the
original data set (see Figure 9.2). We observe the same behavior for all data sets,
as can be seen in Appendix B.2;

• Just as discussed in the previous section, SVD entropy behaves contrary to Fisher’s
information. In addition, SVD entropy of the fractal interpolated time series is
closer to that of the non-interpolated time series; see Figure 9.4. The same behavior
and, specifically, the behavior contrary to that of Fisher’s information can be
observed for all data sets under study; see Appendix B.2;

• Shannon’s entropy increases with the number of interpolation points. This can be
explained as follows: As more data points are added, the probability of hitting
the same value increases. However, this is just what Shannon’s entropy measures.
For small numbers of interpolation points, Shannon’s entropy of the fractal in-
terpolated time series data is closer to the original complexity than the linear
interpolated time series data. Shannon’s entropy performs very similarly for large
numbers of interpolation points, not to say overlaps, for the fractal and linear in-
terpolated time series data. This behavior can be observed for all data sets, see
Figure 9.3 and Appendix B.2.

Summing up our findings of the complexity analysis above, we find that:

• The fractal interpolation captures the original data complexity better than the
linear interpolation. We observe a significant difference in their behavior when
studying SVD entropy, Fisher’s information, and the largest Lyapunov exponent.
This is especially true for the largest Lyapunov exponent, where the behavior com-
pletely differs. The largest Lyapunov exponent of the fractal interpolated time
series data stays mostly constant or behaves linearly. The largest Lyapunov expo-
nent of the linear interpolated data behaves approximately like a sigmoid function
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and, for some data sets, even decreases again for large numbers of interpolation
points.

• Both Shannon’s entropy and the Hurst exponent seem not suitable for differenti-
ating between fractal- and linear interpolated time series data.
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Figure 9.2: Plots for Fisher’s information and the Hurst exponent depending on the
number of interpolation points for the non-interpolated, the fractal interpolated and
the linear interpolated data. Monthly international airline passengers data set.
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Figure 9.3: Plots for the Largest Lyapunov exponent and Shannon’s entropy
depending on the number of interpolation points for the non-interpolated, the fractal
interpolated and the linear interpolated data. Monthly international airline
passengers data set.
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Figure 9.4: Plot for the SVD entropy depending on the number of interpolation
points, for the non-interpolated, the fractal interpolated and the linear interpolated
data. Monthly international airline passengers data set.

9.2 LSTM Ensemble Predictions

For each data set, we employed ensembles of randomly parameterized LSTM neural
networks, see Sections 6.1.2 and 6.1.3. Here we use the first of the two described archi-
tectures. The idea is not to optimize the neural networks but to generate many different
ones. I.e., train and predict the data under study using many different neural networks
and then average them to obtain a final result/prediction. Five hundred of these net-
works were created, trained, and generated a prediction for the unknown data. In a
later step, these predictions are filtered based on their complexity. This filtering process
improves the predictions drastically.

9.2.1 Data Preprocessing

All data were preprocessed using the following two data manipulations:

First, all data were scaled to be within unit interval, i.e., [0, 1]. And some data sets were
detrended by subtracting a linear fit. This is noted for each data set in Chapter 7.

After preprocessing, all data sets were split to use the first 70% as a training data set
and the remaining 30% to validate/test the results for the monthly international airline
passengers data set and 80% to 20% for the remaining data sets.
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9.3 Complexity Filters/Data Postprocessing

As previously mentioned, the randomly parameterized LSTM neural networks produced
500 predictions for each time series data1 The results of the averaged non-filtered pre-
dictions can be found in Tables B.9 and B.10.

These unfiltered predictions are still far off a good forecast because many bad predictions
are among them. Here the hypothesis is that good predictions have a similar complexity
as the original (fractal or linear interpolated, respectively) time series. Thus the predic-
tions for each time series data are filtered regarding their complexity, i.e., only the top
1% with complexity close to that of the original data is kept. The filters reduced the
number of predictions from 500 to 5 for each data set.

All complexity measures are discussed in detail in Chapter 3. The complexity filters for
each measure of signal complexity are constructed as follows:

1. Hurst exponent filter: For each prediction, the Hurst exponent is calculated.
Next, we compare the so obtained Hurst exponent to the Hurst exponent of the
training data set such that:

∆H =
|||Ĥ − H

||| . (9.1)

Here H is the Hurst exponent of the training data set and Ĥ is the Hurst exponent
of a prediction. To improve the averaged predictions, only the ensemble predictions
with Hurst exponents close to that of to the training data set, i.e., with low ∆H

are kept, and the others are discarded.

2. Lyapunov exponents filter: We calculate the first four Lyapunov exponents of
each ensemble prediction and compare them with the Lyapunov exponents of the
training data set,

∆L =
4∑

i=1

|||L̂i − Li

||| . (9.2)

Here Li is the ith Lyapunov exponent of the training data set, and L̂i is the ith
Lyapunov exponent of a prediction. Finally, we discard all predictions with high
∆L and keep only the ones with low ∆L.

3. Fisher’s information filter: For each prediction, we compute Fisher’s informa-
tion. Next, we compare the outcome with the training data’s Fisher information:

∆IFisher =
|||ÎFisher − IFisher

||| . (9.3)
1I.e. For each number of different interpolation points and both the linear and fractal interpolated

data sets.
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Here IFisher is Fisher’s information of the training data set, and ÎFisher is Fisher’s
information of a prediction. Finally, we discard all predictions with high ∆IFisher

and keep the ones with the low ∆IFisher.

4. SVD entropy filter: For each prediction, the SVD entropy is calculated. Then,
we compare the obtained entropy with the entropy of the training set:

∆HSVD =
|||ĤSVD − HSVD

||| . (9.4)

Here HSVD is the SVD entropy of the training data set, and ĤSVD is the SVD
entropy of a prediction. Finally, we discard predictions with high ∆HSVD, and
keep only the ones with low ∆HSVD.

5. Shannon’s entropy filter: Each prediction’s Shannon’s entropy is calculated,
and it is then compared with the training data set’s entropy:

∆HShannon =
|||ĤShannon − HShannon

||| , (9.5)

where HShannon is Shannon’s entropy of the training data set, and HShannon is
Shannon’s entropy of a prediction. In the end, we discard all predictions with a
comparatively large ∆HShannon and keep only the ones with low ∆HShannon.

Additionally, we used all presented filters in combination with each other, e.g., first, a
filter based on the Hurst exponent, and second, a filter based on Fisher’s information.
Again, this was performed such that the remaining predictions make up to 1% of all 500
ensemble predictions. Therefore, the first filter reduces the whole ensemble to only 10%,
i.e., 50 predictions, and the second filter reduces the remaining predictions to 10%, i.e.,
five predictions, thus 1%.

Figure 9.5 explains the idea and shows a result for applied complexity filters. The
left plot is the whole ensemble without any filtering, and the right side is the filtered
ensemble prediction. Here a filter combining SVD entropy and Lyapunov exponents is
applied to the ensemble predictions.
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Figure 9.5: Plots for the unfiltered ensemble predictions (left plot) and the filtered
ensemble predictions (right plot). Here, first, an SVD-entropy-based filter and second,
a filter based on Lyapunov exponents were employed to improve the predictions. Also,
the training data was a fractal interpolated data set with six additional interpolation
points. The orange lines are different predictions constituting the ensemble. The red
lines are the averaged predictions.

9.4 Results/Discussion

First, all five discussed data sets are linear and fractal interpolated. Next, five hundred
predictions using randomly parameterized LSTM neural networks are made for each data
set and subcategory, i.e., non-interpolated, linear interpolated, and fractal interpolated.
The results are presented in Appendix B.6, in Tables B.9 and B.10.

Next, we employed filters based on the complexity of the data under study to reduce
the number of ensemble predictions from 500 to 5, i.e., to 1%.

The best five results for all data are listed in Table 9.2 for the monthly international
airline passengers data set. The results for the remaining data sets are collected in
Appendix B.3, in Tables B.5–B.8. The overall best three results are highlighted as bold
entries.

The results show that the interpolated approaches consistently outperformed the non-
interpolated ones regarding the lowest RMSEs. Further, the presented filter methods
can significantly improve the prediction, i.e., lower the RMSE.

9.4.1 Interpolation Techniques

Of all three best results for data sets, i.e., 15 best results overall, all best results are
interpolated in one way or another. Further, nine are fractal interpolated, and six
are linear interpolated predictions. In some cases, the linear interpolated predictions
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performed better than the fractal interpolated ones. Still, the conclusion is that fractal
interpolation provides a slight improvement. The reasons for this conclusion are:

The results in Figure 9.6 and Table 9.2 show that the RMSE of the linear interpolated
prediction is lower (best result, lowest RMSE) than that of the following two best results,
which are fractal interpolated ones. But the corresponding error of the RMSE, i.e., the
uncertainty of the prediction, is much higher for the linear interpolated case. A closer
look at Figure 9.6 supports this claim, i.e., the quality of the linear interpolated single
predictions is low in terms of how close the ensemble predictions resemble the actual
curve. Thus the author guesses that the advantages of the linear interpolated results will
vanish for increased statistics. This behavior is present for the monthly international
airline passenger data set, the monthly car sales in Quebec data set, and the CFE
specialty monthly writing paper sales data set.

Figure 9.6: Best result for the monthly airline passengers data set. The orange lines
are the remaining ensemble predictions after filtering. The red line is the averaged
ensemble prediction. Linear interpolated, three interpolation points, Shannon entropy
and SVD entropy filter, error: 0.03542 ± 0.00625
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Table 9.2: Error table for the monthly airline passengers data set. The bold results
are the three best ones for this data set.

Interpolation Technique # of Interpolation Points Filter Error
non-interpolated - fisher svd 0.04122 ± 0.00349
non-interpolated - svd 0.04122 ± 0.00349
non-interpolated - svd shannon 0.04122 ± 0.00349
non-interpolated - fisher 0.04166 ± 0.00271
non-interpolated - fisher shannon 0.04166 ± 0.00271

fractal interpolated 1 fisher hurst 0.03597 ± 0.00429
fractal interpolated 1 svd hurst 0.03597 ± 0.00429

fractal interpolated 5 hurst fisher 0.03980 ± 0.00465
fractal interpolated 5 hurst svd 0.03980 ± 0.00465
fractal interpolated 5 shannon 0.04050 ± 0.00633

linear interpolated 3 shannon svd 0.03542 ± 0.00625
linear interpolated 3 shannon fisher 0.03804 ± 0.00672
linear interpolated 5 fisher 0.04002 ± 0.00357
linear interpolated 5 fisher shannon 0.04002 ± 0.00357
linear interpolated 5 svd fisher 0.04002 ± 0.00357

9.4.2 Complexity Filters

Given the 75 best results regarding all interpolation techniques and different data sets, a
significant 62 are double-filtered predictions, meaning that we employed two consecutive
complexity filters. 13 are single-filtered, and not a single unfiltered prediction made it
into the top 75 predictions. Thus, we suggest using two consecutive complexity filters
to improve the presented ensemble approach.

When pinning down which filters perform best, a precise answer cannot be given for this
study. The reason is that within the best 15 results, only the combined filters consisting
of SVD entropy & Hurst exponent and Lyapunov exponents & Hurst exponent occur
more than once, i.e., each of them only two times.

Within the best 75 results, the situation looks different. The combined filters Shannon’s
entropy & Fisher’s information occur seven times, followed by six occurrences of Shan-
non’s entropy & SVD entropy. Here it’s interesting to note that Fisher’s information
and SVD entropy are complexity measures based on single value decomposition (SVD).
Thus a total of 57 of the best 75 results contain at least one SVD-based complexity
measure. Therefore, employing an SVD-based complexity measure in combination with
the Hurst exponent or Shannon’s entropy is suggested. The author recommends using
a combination of SVD-entropy and the Hurst exponent.

9.5 Remarks and Summary

The research presented in this chapter is a combined approach of two interpolation
techniques, randomly parameterized LSTM neural network ensembles and complexity
filters.
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Finally, we give a summary and some remarks on the presented experiments:

• The presented randomly parameterized ensemble predictions can significantly be
improved by employing fractal and linear interpolation techniques. The author
recommends a fractal interpolation approach as the fractal interpolated predictions
appear more stable with respect to the deviations of the errors.

• The presented randomly parameterized ensemble predictions can significantly be
improved using filters based on complexity measures. The basic idea here is to
only keep predictions with a signal complexity close to that of the training data.

The unfiltered and non-interpolated results from Tables B.9 and B.10 when com-
pared to the best results, shown in Tables 9.2 and B.5–B.8, show that the RMSE
was reduced by a factor of ≈ 10 on average.

• Given a baseline of single step-by-step predictions, Tables B.2–B.4, and Appendix
B.5, the filtered best ensemble predictions always outperformed the baseline pre-
dictions. One can probably find slightly better baseline predictions by further
optimizing the baseline neural networks. However, the presented baseline results
are still very reasonable and, in comparison, show the quality of the ensemble
predictions.

• On first grasp, the unfiltered results, Tables B.9 and B.10, suggest a trend for
the errors depending on the number of interpolation points. But when applying
complexity filters, this trend vanishes. Thus no recommendation can be given on
the optimal number of interpolation points.

• The Hurst exponent is increased for all interpolated data sets compared to the
non-interpolated case. The same is true for the largest Lyapunov exponent. But
whereas an increased Hurst exponent indicates increased predictability, an in-
creased largest Lyapunov exponent suggests a more chaotic and unpredictable
behavior. This is somewhat contradictory, and given that the interpolated ap-
proaches outperformed the non-interpolated ones, we conclude that the Hurst ex-
ponent is a better tool to assess predictability for non-model data sets. Still,
both the spectrum of Lyapunov exponents and the Hurst exponent are capable of
filtering and thus improving predictions.

• SVD entropy and Fisher’s information qualitatively depict the same characteris-
tics of a time series. We see this for all discussed data sets, which is discussed
and shown in Section 9.1. This is apparent as both measures of signal complexity
perform a single value decomposition for time series data. Single value decomposi-
tion requires two parameters, the time delay, and an embedding dimension, hence
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a phase space embedding. Both SVD entropy and Fisher’s information show the
same behavior for interpolated time series data differing in their numbers of inter-
polation points: Increasing the number of interpolation points increases Fisher’s
information and decreases SVD entropy. Thus both measures of signal complexity
indicate increased regularity and predictability for interpolated time series data.

The presented approach used only univariate time series data. One can achieve an
extension to arbitrary dimensional multivariate data by extending the neural networks to
multivariate data/predictions. The author expects the multivariate prediction approach
to benefit significantly from the presented ideas.

Different features may behave differently regarding their complexities when considering
multivariate time series data. A tool to cope with varying complexities for different
time series data is, e.g., transfer entropy, [106]. Transfer entropy and effective transfer
entropy are complexity measures that deal with multivariate problems.

The presented approach is limited by the parameter range of the neural network imple-
mentation. Though one can use arbitrary ranges for the neural network parameters, one
can significantly reduce computation costs if a good range is known.



Chapter 10

Interpolating Strange Attractors
via Fractional Brownian Bridges

This chapter provides an experimental setup and results for the attractor-based stochas-
tic interpolation approach, named PhaSpaSto interpolation. This method is described
in Section 5.2. Further, this chapter contains and follows closely the work published in
[30]:

Sebastian Raubitzek, Thomas Neubauer, Jan Friedrich, and Andreas Rauber. Interpolat-
ing strange attractors via fractional brownian bridges. Entropy, 24(5), 2022. ISSN 1099-
4300. doi: 10.3390/e24050718. URL https://www.mdpi.com/1099-4300/24/5/718.
Visited on 2023-04-20

This experiment aims to show the applicability of the developed PhaSpaSto interpola-
tion. I.e., we want to show that the developed method can reconstruct missing data
points better than comparable methods and that the proposed method gives a smoothly
interpolated phase space portrait. First, this is done by testing the method on model
data, i.e., the famous Lorenz system; second, by validating the presented approach on
non-model data sets; and third, presenting and discussing interpolated non-model data
sets.

To introduce this chapter we sum up PhaSpaSto interpolation, which is described in
Section 5.2: Multipoint fractional Brownian Bridges are employed to generate a popula-
tion of different interpolations with varying Hurst exponents of a single time series data.
Next, a genetic algorithm is used to improve this population in terms of the smoothness
of the reconstructed phase space trajectory. We achieve this by reducing the variance of
second derivatives along the reconstructed phase space trajectory.
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The idea behind this is the following: We expect real-life data sometimes to behave
like dynamical systems but only partially like data from a system of ordinary differen-
tial equations. Real-life data usually has some noise or some stochastic aspects to it.
To cope with both of these aspects, we developed PhaSpaSto interpolation. First, we
stochastically interpolated a given time series, then searched for the smoothest trajec-
tory in reconstructed phase space among these random interpolations. Thus we hope to
combine the stochastic aspects of real-life data and a corresponding smoothed-out phase
space trajectory.

We chose the Lorenz system as it is a well-known chaotic system that is known to have an
attractor structure in the reconstructed phase space. The Lorenz system is discussed in
Section 7.15. The corresponding results are shown in Section 10.1.1. We chose the other
data sets to have a selection of data sets with visible oscillatory regularities, which yield
an interpretable structure in reconstructed phase space. This means we see a somehow
concentric structure in the reconstructed phase space, which can be enhanced using the
developed technique. These data sets are the NYC measles outbreaks, the car sales
in Quebec data set, the Perrin Freres champagne data set, the monthly international
airline passengers data set, and the monthly mean temperature in Nottingham castle
data set. Further, we chose two data sets that behave more randomly, similar to a
fractional Brownian motion. These data sets are the shampoo sales data set and the
annual maize yields in Austria data set. All used data sets are discussed in Chapter 7
and the corresponding results are discussed in Section 10.1.2.

Finally the findings are summarized in Section 10.2

10.1 Experimental Results

Here we provide the results of the genetic algorithm for all data sets, first for the Lorenz
system and then for seven non-model data sets. For both cases, we validate the developed
method such that we delete data points from the original time series and reconstruct
the missing data points using PhaSpaSto interpolation. Further, we test PhaSpaSto
interpolation against the best random interpolation of the population, against a lin-
ear interpolation, and a cubic spline interpolation [101]. Both the linear and spline
interpolation were performed using the python package scipy [107]. The SciPy-spline-
interpolation is a piecewise cubic polynomial which is twice continuously differentiable
[108].

For the validation, we emphasize the Lorenz system, as the generated model data allows
us to test arbitrary settings, i.e., using varying numbers of missing data points per the
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number of chosen interpolation points. Contrary to that, for the non-model data sets,
we delete every second data point and reconstruct the missing data using PhaSpaSto
interpolation. For the non-model data sets, we additionally present actually interpolated
results, i.e., data sets with smoothed-out phase space trajectories.

10.1.1 Results for the Lorenz System

For more details on the Lorenz system, see Section 7.15. We performed our interpolation
for a range of interpolation points NI = {1, 2, 3, 4, . . . , 20}.

Further, we then developed an experimental setup to test the method’s applicability.

1. Generate a univariate time series from the Lorenz system.

2. Delete points from the data set to later be interpolated.
Given a time series data of the Lorenz system, [x1, x2, . . . , xn], we extracted data
points according to the number of interpolation points nI ∈ NI and then use the
proposed interpolation technique such that:

[x1, xnI +2, x2nI +2, . . . , xn] Original data points to be kept for interpolation,

[x1, x̂1, . . . , x̂nI , xnI +2, x̂nI +1, . . . , x̂2nI +1, x2nI +2, x̂2nI +2, . . . xn] Interpolated data,
(10.1)

where x̂i are the interpolated data points.

3. Perform Interpolation according to Section 5.2.

4. Calculate the RMSE for the interpolated data with respect to the original data
[x2, . . . , xnI+1, xnI+3, . . . , x2nI+1, . . . ]. Do the same for the average interpolation
of the whole population and each time series of the initial population.

Thus we get errors for the population mean, for all interpolated time series in the initial
population and the improved interpolation using the discussed genetic algorithm. The
corresponding RMSE is given as:

ERMSE =
(

1
n

n∑
i=1

[x̂i − xi]2
) 1

2

. (10.2)

Here xi are the original data points, x̂i are the newly interpolated values and n is the
length of the time series.

The presented results for the Lorenz system show that the algorithm can identify/gen-
erate the best interpolation in terms of a low RMSE on missing data points out of
the given initial population. This can be seen in Table 10.1, where we highlighted the
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results where the genetic-algorithm-improved-interpolation outperformed every random
interpolation of the population. Still, the spline interpolation outperforms the presented
approach. This is also depicted in Figure 10.1, where we plotted the RMSE on miss-
ing data points for varying interpolation points. This graphic shows that the presented
approach requires a certain amount of interpolation points, in this case, three, to be
close to the best random interpolation of the population. We assume that the reason
for this is that the variance of second derivatives along a phase space trajectory requires
a certain density of phase space points to differ between smooth and edgy phase space
trajectories. On the other hand, the spline interpolation performs well right from the
start.

The corresponding reconstructed phase space plots (Figure 10.3) show that both, the
best random interpolation (e) and the genetic-algorithm-improved interpolation (f), pro-
vide convincing phase space portraits. I.e., both are indeed close to the ground truth
(a). The population mean (b), on the other hand, is far off and has a lot of pointed
edges. The phase space picture produced by linear interpolation (c) is also quite angular,
as one would expect from linear interpolation. In contrast, the phase space portrait for
the spline interpolation (d) is the one that is the one closest to the original phase space
portrait.

We plotted all obtained results for 13 interpolation points as time series in Figure 10.2.
The results show that the population mean (a) is far off the ground truth and differs
drastically at the high and low peaks, as it does not reach the actual data points.
The genetic-algorithm-improved (b) and the best random interpolation of the initial
population (c) capture most of the high and low peaks compared to the population
mean. Further, when comparing the genetic-algorithm-improved and the population
mean (d), one can see that the improved interpolation provides a smoother curve when
depicted as a time series. In contrast, the population mean tends to produce sharp
peaks. Finally, we compare the linear interpolation (e) and the spline interpolation (f)
to the genetic algorithm improved interpolation. The linear interpolation here is far
off, but the spline interpolation reproduces the Lorenz system almost perfectly, thus
outperforming the genetic-algorithm-improved interpolation.
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Table 10.1: Errors for the interpolated data on the Lorenz system depending on the
number of interpolation points. The errors are shown for the mean interpolation of all
populations and improved interpolation using the presented genetic algorithm. Lowest
RMSE in population refers to the best randomly interpolated result, i.e., the one
interpolation from the population that produced the lowest error by chance. We also
featured the results for the linear and spline interpolation. We highlighted the
interpolations where the genetic-algorithm-based interpolation outperformed the
whole population of interpolations. Further, we give the percentage of how much of
the population is outperformed by the genetic algorithm improved interpolation. This
table is depicted in Figure 10.1.

nI 1 2 3 4 5 6 7 8 9 10
RMSE

population
mean

0.77419 0.88263 0.91026 0.89442 0.87013 0.86858 0.89120 0.84220 0.90323 0.88777

lowest
RMSE in

population
0.17939 0.18068 0.16757 0.19206 0.16126 0.18134 0.17782 0.17211 0.18216 0.19371

RMSE linear
interpolated

0.42534 0.44752 0.44179 0.44185 0.41574 0.42406 0.42894 0.40883 0.43263 0.43353

RMSE spline
interpolated

0.12263 0.11808 0.09968 0.12586 0.09678 0.12195 0.12280 0.10862 0.11554 0.13008

RMSE
gen. alg.
improved

1.03779 0.24381 0.17517 0.19488 0.16264 0.18182 0.17818 0.17121 0.18239 0.19374

below
best %

74.4% 21.6% 4.3% 2.2% 1.4% 1.1% 0.7% 0.1% 0.8% 0.3%

nI 11 12 13 14 15 16 17 18 19 20
RMSE

population
mean

0.90844 0.92145 0.91509 0.90686 0.91750 0.90326 0.90789 0.90080 0.88835 0.89651

lowest
RMSE in

population
0.18789 0.19238 0.18693 0.18632 0.19943 0.19640 0.19208 0.18449 0.18415 0.20291

RMSE linear
interpolated

0.43649 0.44211 0.43687 0.43423 0.44142 0.43534 0.43720 0.43170 0.42685 0.43398

RMSE spline
interpolated

0.12086 0.12646 0.11530 0.11765 0.12532 0.12873 0.13098 0.12581 0.11912 0.12581

RMSE
gen. alg.
improved

0.18816 0.19141 0.18670 0.18626 0.19943 0.19663 0.19215 0.18462 0.18441 0.20300

below
best %

0.8% 0.1% 0.1% 0.1% 0.1% 0.8% 0.6% 0.6% 0.8% 0.6%
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Figure 10.1: Shown in this Figure are the errors from Table 10.1 depending on the
different numbers of interpolation points.
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Figure 10.2: Original vs. interpolated time series data.
(a): Non-interpolated original data (i.e. the one the error’s are calculated with) and
population average;
(b): Genetic-algorithm-improved interpolation;
(c): The one interpolation of the population that has the lowest RMSE;
(d): Population average vs. genetic-algorithm-improved interpolation;
(e): Linear interpoaltion vs. genetic-algorithm-improved interpolation;
(f): Spline interpolation vs. genetic-algorithm-improved interpolation.
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Figure 10.3: Reconstructed attractors for the interpolated Lorenz system.
(a): Non interpolated original data (i.e. the one the errors are calculated with);
(b): The average interpolation of the whole population;
(c): The one interpolation of the population that has the lowest RMSE;
(d): Interpolation imrpoved by the presented genetic algorithm approach.

10.1.2 Results for Non-Model Data Sets

This section provides tests for PhaSpaSto interpolation on real-life data sets with only
a limited number of sampled data points. However, these data sets are the focus of the
proposed method, i.e., to increase the fine-grainedness of short, sparsely-sampled time
series data, e.g., agricultural data sets. Our approach is not restricted to equidistant
time series: Due to the general form of the bridge construction (Equation 5.5), non-
equidistant time series excerpts can be interpolated as well.

For this reason, we chose five data sets to demonstrate our method further, i.e., we vali-
date the interpolation with missing data points and then present an actual interpolation
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and the improved phase space trajectories for the featured time series data. We con-
sider a phase space trajectory to be improved if we achieve smoother trajectories, which
exhibit fewer edgy points in reconstructed phase space. Further, for the reconstructed
phase space plots, we rescaled every data set to the unit interval and subtracted a linear
fit from the data set if a linear trend was visible, which is noted in Chapter 7 for each
data set.

The validation on these non-model data sets is performed such that we delete every
second data point of the original time series. Then, we interpolate all the gaps to
reconstruct the missing data points. We present results for the average prediction of the
population, the random interpolation with the lowest RMSE, a linear interpolation, a
cubic spline interpolation, and the interpolation that was improved using the discussed
genetic algorithm. This section features only the errors for the validation. All validation
plots are collected in Appendix C.1 to keep the main text focused.
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10.1.2.1 NYC Measles Outbreaks

This data set is discussed in Section 7.5 and we obtained it from [92], where it is discussed
and shown to feature an attractor structure in reconstructed phase space. It depicts
measles outbreaks in New York City (NYC) from 1928 to 1964, binned every two weeks,
with a total of 432 data points. The data set depicts sharp, repetitive peaks, i.e., the
increase and decrease of measles cases in NYC.

The results on how well the presented interpolation can reproduce missing data points
of this data set are collected in Table 10.2 and depicted in Figure C.1 (a). These
results show that, though the genetic-algorithm-improved interpolation drastically out-
performs the average random interpolation, the algorithm did not once outperform the
best interpolation of the population. Still, starting with seven interpolation points, the
genetic-algorithm-improved interpolation performs well and is very close to the best of
1000 randomly interpolated results, i.e., always below or around the best 1% of the
population. Further, PhaSpaSto interpolation does outperform the cubic spline inter-
polation starting with five interpolation points. We thus conclude that the presented
interpolation technique captures the phase-space properties of this data set and effec-
tively can be used to interpolate this time series. Also, compared to the cubic and
linear interpolation, the proposed method takes at least seven interpolation points to
reach peak performance for this data set. All validation plots, are collected in Appendix
C.1.2.

An interpolation of the original data set is depicted in Figure 10.4. When comparing
the reconstructed phase space of the original data set, the population mean (c), and
the presented interpolation technique (d); we see that the phase space portrait of the
latter features a smoothed-out phase space trajectory compared to the original time
series (b) and the population mean (c), which are both pointy and have many sharp
edges. Further, considering the actual time series graph (a), we see that the presented
interpolation technique increases the major peaks, thus making extreme events more
prominent.
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Table 10.2: Errors for the interpolated data on the NYC measles data set
depending on the number of interpolation points. We show the errors for the mean
interpolation of all populations, the lowest error in the population, and the
interpolation improved using the presented genetic algorithm. We highlighted the
interpolation where the genetic-algorithm-based interpolation performed best. The
corresponding plots for the best interpolations are collected in Appendix C.1.2.
Further, we give the percentage of how much of the population is outperformed by the
genetic algorithm improved interpolation.

nI 1 3 5 7 9 11 13 15
RMSE

Population
Mean

860.56140 860.56165 860.56098 860.56235 860.56124 860.56210 860.56145 860.56220

Lowest
RMSE in

population
594.27833 594.27832 594.27832 594.27832 594.27748 594.27831 594.27832 594.27833

RMSE linear
interpolated

713.61079 713.61089 713.61089 713.61089 713.61089 713.61089 713.61089 713.61089

RMSE spline
interpolated

607.03778 607.03778 607.03778 607.03778 607.03778 607.03778 607.03778 607.03778

RMSE
gen. alg.
improved

1138.28460 621.70136 602.03361 594.36367 594.33054 594.34891 594.34819 594.34132

Below
Best %

75.3% 25.8% 13.4% 0.8% 0.8% 0.8% 0.8% 0.8%

nI 17 19 21 23 25 27 29 31
RMSE

Population
Mean

860.56196 860.56132 860.56168 860.56090 860.56153 860.56287 860.56138 860.56192

Lowest
RMSE in

population
594.27901 594.27750 594.27934 594.27834 594.28039 594.27831 594.28069 594.27833

RMSE linear
interpolated

713.61089 713.61089 713.61089 713.61089 713.61089 713.61089 713.61089 713.61089

RMSE spline
interpolated

607.03778 607.03778 607.03778 607.03778 607.03778 607.03778 607.03778 607.03778

RMSE
gen. alg.
improved

594.33772 594.33837 594.33400 594.35508 594.31806 594.36050 594.42183 594.39145

Below
Best %

0.8% 0.8% 0.8% 0.8% 0.6% 0.8% 1.1% 1.1%
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Figure 10.4: Interpolated data and reconstructed attractors for the NYC measles
outbreaks data set.
(a): The original and interpolated time series data;
(b): Phase space reconstruction of the original data;
(c): Phase space reconstruction of the average population data;
(d): Phase space reconstruction of the genetic-algorithm-improved data.
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10.1.2.2 Car Sales in Quebec

This data set is discussed in Section 7.4. This data set clearly shows an increasing linear
trend and oscillatory regularities, i.e., seasonal behavior.

The results on the reproducibility of missing data points for all interpolation techniques
are collected in Table 10.3, and depicted in Figure C.1 (b). The genetic-algorithm-
improved interpolation drastically outperforms the average random interpolation. Fur-
ther, PhaSpaSto interpolation always outperforms the cubic spline and linear interpo-
lation. A random interpolation mostly achieves the overall best performance. Still,
the PhaSpaSto interpolation performs best for one, three, and five interpolation points.
Overall, the genetic-algorithm-improved interpolation performs well and is very close to
the best of 1000 randomly interpolated results, i.e., for most cases below or around the
best 1% of the population. Thus, we conclude that the presented interpolation tech-
nique effectively captures the phase-space properties of this data set and can be used
to interpolate this time series data. We collect all additional plots for the validation
in Appendix C.1.3, where one can find the reconstructed attractors for all interpolated
validation sets and the corresponding time series plots.

An interpolation of the original data set is depicted in Figure 10.5. Here Figures 10.5
(c) and (d) present the population mean and the improved interpolation, respectively.
When comparing them, one can see that the genetic algorithm improves the phase
space portrait in terms of a smoothed-out phase space trajectory compared to the orig-
inal time series (b) and the population mean (c), which are both pointy and have many
sharp edges. When considering the actual time-series graph (a), the presented interpola-
tion technique increases the major peaks, thus making extreme events more prominent.
Further, it provides a rather smooth curve, i.e., no pointy edges, as depicted in the
zoomed-in plot in (a).
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Table 10.3: Errors for the interpolated data on the car sales in Quebec data set
depending on the number of interpolation points. The errors are shown for the mean
interpolation of all populations, the linear interpolation, the cubic spline
interpolation, as well as for the lowest error in the population, and for the
interpolation that was improved using the presented genetic algorithm. We
highlighted the interpolation where the genetic-algorithm-based interpolation
performed best. We show the corresponding plots for the best interpolation in
Appendix C.1.3. Further, we give the percentage of how much of the population is
outperformed by the genetic algorithm improved interpolation.

nI 1 3 5 7 9 11 13 15
RMSE

Population
Mean

2030.11005 2030.11166 2030.11148 2030.11230 2030.11030 2030.11138 2030.11106 2030.11110

Lowest
RMSE in

population
1954.95010 1954.95013 1954.95016 1954.95013 1954.95005 1954.95009 1954.95020 1954.95015

RMSE linear
interpolated

2017.79949 2017.79949 2017.79949 2017.79949 2017.79949 2017.79949 2017.79949 2017.79949

RMSE spline
interpolated

1971.23755 1971.23755 1971.23755 1971.23755 1971.23755 1971.23755 1971.23755 1971.23755

RMSE
gen. alg.
improved

1907.40084 1960.21475 1954.94790 1954.94792 1954.95375 1954.97452 1958.57232 1954.97468

Below
Best %

0.1% 17.2% 0.1% 0.1% 0.6% 1.01% 14.6% 1.01%

nI 17 19 21 23 25 27 29 31
RMSE

Population
Mean

2030.11260 2030.11057 2030.11226 2030.11047 2030.11078 2030.11105 2030.11171 2030.11013

Lowest
RMSE in

population
1954.95010 1954.95007 1954.95011 1954.95014 1954.95007 1954.95010 1954.95003 1954.95021

RMSE linear
interpolated

2017.79949 2017.79949 2017.79949 2017.79949 2017.79949 2017.79949 2017.79949 2017.79949

RMSE spline
interpolated

1971.23755 1971.23755 1971.23755 1971.23755 1971.23755 1971.23755 1971.23755 1971.23755

RMSE
gen. alg.
improved

1954.97730 1954.99153 1955.00052 1954.99273 1955.02450 1955.02418 1955.01367 1954.98108

Below
Best %

1.3% 1.4% 1.4% 1.4% 1.6% 1.6% 1.4% 1.4%



Interpolating Strange Attractors via Fractional Brownian Bridges 107

0 20 40 60 80 100

months

5000

10000

15000

20000

25000

c
a
r 

s
a
le

s

gen. alg. improved interpolation

original data

0 10 20

7500

10000

12500

15000

(a)

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6
0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b)

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6
0.8

1.0

0.2

0.4

0.6

0.8

1.0

(c)

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6
0.8

1.0

0.0

0.2

0.4

0.6

0.8

(d)

Figure 10.5: Interpolated data and reconstructed attractors for the car sales in
Quebec data set.
(a): The original and interpolated time series data;
(b): Phase space reconstruction of the original data;
(c): Phase space reconstruction of the average population data;
(d): Phase space reconstruction of the genetic-algorithm-improved data.



Interpolating Strange Attractors via Fractional Brownian BridgesChapter 10 Interpolating Strange Attractors via Fractional Brownian Bridges

10.1.2.3 Perrin Freres Champagne Sales

This data set is discussed in Section 7.3.

The validation results for this data set are collected in Table 10.4 and Figure C.1c.

Though the genetic-algorithm-improved interpolation drastically outperforms the aver-
age random interpolation, the algorithm did not once outperform the best interpolation
of the population. Still, starting with five interpolation points, the genetic-algorithm-
improved interpolation performs well and is very close to the best of 1000 randomly
interpolated results, i.e., consistently below or around the best 1% of the population.
Overall the cubic spline interpolation performed best on this data set. Though the linear
interpolation outperforms the population mean, it is still far off. We thus conclude that
the presented interpolation technique does capture the phase-space properties of this
data set from a given population and can be used to interpolate this time series data,
but the cubic spline interpolation is the better choice.

An interpolation of the original data set is depicted in Figure 10.6. We again show the
population mean (c) and the improved interpolation (d). The presented interpolation
technique improves the phase space portrait in terms of a smoothed-out phase space tra-
jectory (d) compared to the original time series (b) and the population mean (c), which
are both pointy and contain many sharp edges. Here the population mean increased
sharp edges drastically. Further, considering the graph of the actual time series (a),
the presented interpolation technique again increases the major peaks. We consider the
interpolated data set to be a rather smooth curve, as depicted in the zoom-in window
in (a).
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Table 10.4: Errors for the interpolated data on the Perrin Freres champagne sales
data set depending on the number of interpolation points. The errors are shown for
the mean interpolation of all populations, the lowest error in the population, linear
interpolation, cubic spline interpolation, and improved interpolation using the
presented genetic algorithm. We highlighted the interpolation where the
genetic-algorithm-based interpolation performed best. The corresponding plots for the
best interpolation are shown in Appendix C.1.4. Further, we give the percentage of
how much of the population is outperformed by the genetic algorithm improved
interpolation.

nI 1 3 5 7 9 11 13 15
RMSE

Population
Mean

2320.03501 2320.03532 2320.03403 2320.03366 2320.03524 2320.03333 2320.03195 2320.03301

Lowest
RMSE in

population
2144.04985 2144.05002 2144.04987 2144.05007 2144.04991 2144.04986 2144.04981 2144.04995

RMSE linear
interpolated

2264.24606 2264.24606 2264.24606 2264.24606 2264.24606 2264.24606 2264.24606 2264.24606

RMSE spline
interpolated

2099.58713 2099.58713 2099.58713 2099.58713 2099.58713 2099.58713 2099.58713 2099.58713

RMSE
gen. alg.
improved

2540.17542 2153.68153 2144.43642 2144.07624 2144.16502 2144.15580 2144.14292 2144.16357

Below
Best %

82.5% 6.9% 1.01% 0.3% 0.6% 0.6% 0.6% 0.6%

nI 17 19 21 23 25 27 29 31
RMSE

Population
Mean

2320.03312 2320.03073 2320.03244 2320.03250 2320.03279 2320.03565 2320.03406 2320.03476

Lowest
RMSE in

population
2144.04987 2144.04986 2144.04967 2144.04982 2144.04997 2144.04985 2144.04976 2144.04999

RMSE linear
interpolated

2264.24606 2264.24606 2264.24606 2264.24606 2264.24606 2264.24606 2264.24606 2264.24606

RMSE spline
interpolated

2099.58713 2099.58713 2099.58713 2099.58713 2099.58713 2099.58713 2099.58713 2099.58713

RMSE
gen. alg.
improved

2144.09078 2144.13364 2144.17573 2144.13637 2144.16380 2144.10973 2144.10709 2144.13681

Below
Best %

0.5% 0.6% 0.6% 0.6% 0.6% 0.6% 0.6% 0.6%
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Figure 10.6: Interpolated data and reconstructed attractors for the Perrin Freres
Champagne sales data set.
(a): The original and interpolated time series data;
(b): Phase space reconstruction of the original data;
(c): Phase space reconstruction of the average population data;
(d): Phase space reconstruction of the genetic-algorithm-improved data.
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10.1.2.4 Monthly Airline Passengers

This data set is discussed in Section 7.1. Again this data set shows a visible linear trend
and strong seasonal oscillatory regularities.

The results on how well the presented interpolation can reproduce missing data points
of this data set are collected in Table 10.5 and depicted in Figure C.1 (d). The results
show that, though the genetic-algorithm-improved interpolation drastically outperforms
the average random interpolation, the algorithm did not once outperform the best inter-
polation of the population. Still, starting with three interpolation points, the algorithm
outperformed the linear and the cubic spline interpolation. What’s curious is that, for
this data set, of all the non-model data sets, the linear interpolation outperforms the
cubic spline interpolation.

The genetic-algorithm-improved interpolation does not perform that well for this data
set compared to a random interpolation of the time series. The improved interpolation
is only around the best ≈ 40% of the initial population for this data set. We thus
conclude that the presented interpolation technique does not capture the phase-space
properties of this data set very well. Still, the genetic algorithm does improve the initial
population such that the population mean, the linear interpolation, and the cubic spline
interpolation are outperformed, starting with three interpolation points. All time series
and reconstructed attractor plots for this data set can be found in Appendix C.1.5.

An actual interpolation of the original data set is depicted in Figure 10.7. We again show
the population mean (c) and the improved interpolation (d). The presented PhaSpaSto
interpolation (d) improves the phase space portrait in terms of a smoothed-out phase
space trajectory, compared to the original time series (b) and the population mean (c),
which are both pointy and have many sharp edges. Further, considering the actual time
series (a) graph, the PhaSpaSto interpolation technique slightly increases the major
peaks. Also, compared to the other non-model data sets, the improved interpolation
does provide a relatively smooth curve, but it looks way sharper than for, e.g., the car
sales in Quebec data set (See Figure 10.5 (a)).
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Table 10.5: Errors for the interpolated data on the monthly airline passengers data
set depending on the number of interpolation points. The errors are shown for the
mean interpolation of all populations, the linear interpolation, the cubic spline
interpolation, as well as for the lowest error in the population, and for the
interpolation that was improved using the presented genetic algorithm. We
highlighted the interpolation where the genetic-algorithm-based interpolation
performed best. The corresponding plots for the best interpolation are shown in
Appendix C.1.5. Further, we give the percentage of how much of the population is
outperformed by the genetic algorithm improved interpolation.

nI 1 3 5 7 9 11 13 15
RMSE

Population
Mean

19.93996 19.93999 19.93841 19.94072 19.93976 19.93873 19.94070 19.93889

Lowest
RMSE in

population
16.55624 16.55779 16.55732 16.55753 16.55558 16.55836 16.55719 16.55776

RMSE linear
interpolated

17.39496 17.39496 17.39496 17.39496 17.39496 17.39496 17.39496 17.39496

RMSE spline
interpolated

18.33872 18.33872 18.33872 18.33872 18.33872 18.33872 18.33872 18.33872

RMSE
gen. alg.
improved

18.65257 16.81653 16.84539 17.02728 16.84536 16.84545 16.84540 16.84539

Below
Best %

59.4% 35.6% 38.0% 42.20% 38.1% 38.0% 38.1% 38.0%

nI 17 19 21 23 25 27 29 31
RMSE

Population
Mean

19.94029 19.94030 19.93985 19.93939 19.93659 19.94172 19.94023 19.93909

Lowest
RMSE in

population
16.55752 16.55730 16.55810 16.55715 16.55733 16.55603 16.55789 16.55741

RMSE linear
interpolated

17.39496 17.39496 17.39496 17.39496 17.39496 17.39496 17.39496 17.39496

RMSE spline
interpolated

18.33872 18.33872 18.33872 18.33872 18.33872 18.33872 18.33872 18.33872

RMSE
gen. alg.
improved

16.84546 16.84545 16.84548 16.84540 16.84535 16.84544 16.84544 16.84546

Below
Best %

38.1% 38.1% 38.0% 38.1% 38.1% 38.1% 38.2% 38.1%
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Figure 10.7: Interpolated data and reconstructed attractors for the monthly
international airline passengers data set.
(a): The original and interpolated time series data;
(b): Phase space reconstruction of the original data;
(c): Phase space reconstruction of the average population data;
(d): Phase space reconstruction of the genetic-algorithm-improved data.



Interpolating Strange Attractors via Fractional Brownian BridgesChapter 10 Interpolating Strange Attractors via Fractional Brownian Bridges

10.1.2.5 Monthly Mean Temperature in Nottingham Castle

This data set is discussed in Section 7.2. This time series shows strong seasonal regu-
larities and behaves stationary, as no linear increasing or decreasing trend is visible.

The results on how well the presented interpolation can reproduce missing data points
of this data set are collected in Table 10.6 and depicted in Figure C.1 (e). The results
show that, though the genetic-algorithm-improved interpolation drastically outperforms
the average random interpolation, the algorithm did not once outperform the best in-
terpolation of the population, although outperforming the linear and the cubic spline
interpolation. The genetic-algorithm-improved interpolation does not perform that well
for this data set compared to a random interpolation of the time series. The improved
interpolation is only around the best ≈ 34% for this data set. We thus conclude that
the presented interpolation technique does not capture the phase-space properties of this
data set very well. The corresponding time series and reconstructed phase space plots
are collected in Appendix C.1.6.

An interpolation of the original data set is depicted in Figure 10.8. We again show the
population mean (c) and the improved interpolation (d). The presented interpolation
technique improves the phase space portrait (d) in terms of a smoothed-out phase space
trajectory compared to the original time series (b) and the population mean (c), which
are both pointy and have many sharp edges. Also, given the time-series depiction of the
PhaSpaSto interpolation (Figure 10.8 (a)), we see the same behavior as for all the other
data sets; the major peaks are increased.
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Table 10.6: Errors for the interpolated data on the monthly mean temperature in
Nottingham castle data set depending on the number of interpolation points. The
errors are shown for the mean interpolation of all populations, the lowest error in the
population, and the interpolation improved using the presented genetic algorithm. We
highlighted the interpolation where the genetic-algorithm-based interpolation
performed best. The corresponding plots for the best interpolation are shown in
Appendix C.1.6. Further, we give the percentage of how much of the population is
outperformed by the genetic algorithm improved interpolation.

nI 1 3 5 7 9 11 13 15
RMSE

Population
Mean

3.09115 3.09170 3.09167 3.09055 3.09088 3.09055 3.09166 3.09165

Lowest
RMSE in

population
2.47879 2.47858 2.47910 2.47890 2.47886 2.47901 2.47900 2.47875

RMSE linear
interpolated

2.61279 2.61279 2.61279 2.61279 2.61279 2.61279 2.61279 2.61279

RMSE spline
interpolated

2.59028 2.59028 2.59028 2.59028 2.59028 2.59028 2.59028 2.59028

RMSE
gen. alg.
improved

2.48413 2.50179 2.50279 2.50406 2.50420 2.50521 2.50512 2.505089

Below
Best %

12.6% 31.3% 32.4% 33.5% 33.8% 34.4% 34.4% 34.1%

nI 17 19 21 23 25 27 29 31
RMSE

Population
Mean

3.09095 3.09177 3.09115 3.09122 3.09146 3.09143 3.09179 3.09023

Lowest
RMSE in

population
2.47887 2.47920 2.47925 2.47899 2.47867 2.47941 2.47885 2.47892

RMSE linear
interpolated

2.61279 2.61279 2.61279 2.61279 2.61279 2.61279 2.61279 2.61279

RMSE spline
interpolated

2.59028 2.59028 2.59028 2.59028 2.59028 2.59028 2.59028 2.59028

RMSE
gen. alg.
improved

2.50494 2.50541 2.50529 2.50552 2.50505 2.50547 2.50550 2.50533

Below
Best %

33.9% 34.6% 34.4% 35% 34.6% 34.6% 34.7% 34.7%
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Figure 10.8: Interpolated data and reconstructed attractors for the monthly mean
temperature in Nottingham castle data set.
(a): The original and interpolated time series data;
(b): Phase space reconstruction of the original data;
(c): Phase space reconstruction of the average population data;
(d): Phase space reconstruction of the genetic-algorithm-improved data.
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10.1.2.6 Shampoo Sales

This data set and the original source are discussed in Section 7.9. Although this data set
clearly shows a linear trend, no obvious regularities or seasonalities are apparent. Thus,
we consider this data set to be more stochastical rather than oscillatory. We expect
PhaSpaSto interpolation not to perform well on data sets like these.

Table 10.7 and Figure C.1 (f) both show the results on how well the employed interpo-
lation techniques can reconstruct missing data points on this data set. For this data set,
PhaSpaSto interpolation does not perform well at all. The best performance is achieved
by the random interpolation with the lowest error, followed by the population mean and
the linear interpolation. Spline interpolation performs worst on this data set. Because
of its stochastic nature and no apparent seasonalities, PhaSpaSto interpolation is not a
well-suited method for interpolating this data set. The corresponding time-series and
reconstructed phase space plots are collected in Appendix C.1.7.

An interpolation of the original data set is depicted in Figure 10.9. We again show the
population mean (c) and the improved interpolation (d). The presented interpolation
technique improves the phase space portrait (d) in terms of a smoothed-out phase space
trajectory compared to the original time series (b) and the population mean (c), which
are both pointy and have many sharp edges. Also, given the time-series depiction of the
PhaSpaSto interpolation (Figure 10.9 (a)), we see that PhaSpaSto interpolation slightly
increases some of the major peaks, but overall gives an interpolation which is similar to
what we would expect from a spline interpolation of the data set.
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Table 10.7: Errors for the interpolated data on the shampoo sales data set
depending on the number of interpolation points. The errors are shown for the mean
interpolation of all populations, the lowest error in the population, and the
interpolation improved using the presented genetic algorithm. We highlighted the
interpolation where the genetic-algorithm-based interpolation performed best. The
corresponding plots for the best interpolation are shown in Appendix C.1.7. Further,
we give the percentage of how much of the population is outperformed by the genetic
algorithm improved interpolation.

nI 1 3 5 7 9 11 13 15
RMSE

population
mean

93.77985 93.78096 93.77794 93.78474 93.78852 93.78078 93.78285 93.78171

Lowest
RMSE in

population
75.17553 75.01493 75.04488 75.13511 75.02854 75.20329 75.08445 75.12778

RMSE linear
interpolated

100.56301 100.56301 100.56301 100.56301 100.56301 100.56301 100.56301 100.56301

RMSE spline
inteprolated

108.02059 108.02059 108.02059 108.02059 108.02059 108.02059 108.02059 108.02059

RMSE
gen. alg.
improved

110.19816 105.25685 106.31509 105.51261 105.50765 103.98034 105.90568 105.86858

Below
Best %

99.5% 99.4% 99.5% 99.5% 99.5% 99.5 99.5% 99.5%

nI 17 19 21 23 25 27 29 31
RMSE

population
mean

93.78587 93.78108 93.77988 93.78166 93.78444 93.77972 93.78210 93.78348

Lowest
RMSE in

population
75.12903 75.08101 75.26534 75.15750 75.12706 75.17626 75.03625 75.05900

RMSE linear
interpolated

100.56301 100.56301 100.56301 100.56301 100.56301 100.56301 100.56301 100.56301

RMSE spline
inteprolated

108.02059 108.02059 108.02059 108.02059 108.02059 108.02059 108.02059 108.02059

RMSE
gen. alg.
improved

105.44456 105.51313 105.51292 103.69012 104.71252 104.01555 103.73095 103.88873

Below
Best %

99.5% 99.5% 99.5% 99.5% 99.5% 99.5 99.5% 99.5%
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Figure 10.9: Interpolated data and reconstructed attractors for the monthly mean
temperature in Nottingham castle data set.
(a): The original and interpolated time series data;
(b): Phase space reconstruction of the original data;
(c): Phase space reconstruction of the average population data;
(d): Phase space reconstruction of the genetic-algorithm-improved data.
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10.1.2.7 Annual Maize Yields in Austria

The original source and a discussion on this data set can be found in Section 7.7. Like
the shampoo sales data set, this data set does not provide us with visible seasonalities
but an overall random behavior and a visible increasing linear trend.

The results on how well the presented interpolation can reproduce missing data points
of this data set are collected in Table 10.8 and depicted in Figure C.1 (g). PhaSpaSto
interpolation performs second-worst on this data set. Spline interpolation performs
worst, and the random interpolation with the lowest error performs best. The second-
best is the average interpolation of all random interpolations. The third-best is the linear
interpolation, thus concluding that a random or a linear interpolation is a better choice
on data sets with no apparent trends. The corresponding time-series and reconstructed
phase space plots are collected in Appendix C.1.8.

An interpolation of the original data set is depicted in Figure 10.10. We again show
the population mean (c) and the improved interpolation (d). PhaSpaSto interpolation
improves the phase space portrait (d) in terms of a smoothed-out phase space trajectory
compared to the original time series (b) and the population mean (c), which are both
pointy and have many sharp edges. Also, given the time-series depiction of the PhaS-
paSto interpolation (Figure 10.10 (a)), we see similar behavior as for all the other data
sets, some major peaks are increased, and overall the interpolation is very much how
one would expect a spline interpolation to look like.
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Table 10.8: Errors for the interpolated data on the annual maize yields in Austria
data set depending on the number of interpolation points. The errors are shown for
the mean interpolation of all populations, the lowest error in the population, and the
interpolation improved using the presented genetic algorithm. We highlighted the
interpolation where the genetic-algorithm-based interpolation performed best. The
corresponding plots for the best interpolation are shown in Appendix C.1.8. Further,
we give the percentage of how much of the population is outperformed by the genetic
algorithm improved interpolation.

nI 1 3 5 7 9 11 13 15
RMSE

population
mean

9467.34946 9467.34909 9467.34932 9467.35117 9467.34672 9467.349182 9467.35129 9467.35127

Lowest
RMSE in

population
8552.33575 8552.40507 8552.33623 8552.26190 8552.26676 8552.30054 8552.37868 8552.27861

RMSE linear
interpolated

9641.12086 9641.12086 9641.12086 9641.12086 9641.12086 9641.12086 9641.12086 9641.12086

RMSE spline
inteprolated

10655.09616 10655.09616 10655.09616 10655.09616 10655.09616 10655.09616 10655.09616 10655.09616

RMSE
gen. alg.
improved

10204.70770 10400.17016 10404.69095 10401.94629 10401.12925 10401.11260 10400.83561 10401.01686

Below
Best %

96.0% 96.0% 96.0% 96.0% 96.0% 96.0% 96.0% 96.0%

nI 17 19 21 23 25 27 29 31
RMSE

population
mean

9467.35137 9467.35207 9467.34967 9467.34998 9467.35055 9467.35120 9467.35351 9467.35240

Lowest
RMSE in

population
8552.36502 8552.32328 8552.21861 8552.15975 8552.32538 8552.24323 8552.28914 8552.36142

RMSE linear
interpolated

9641.12086 9641.12086 9641.12086 9641.12086 9641.12086 9641.12086 9641.12086 9641.12086

RMSE spline
inteprolated

10655.09616 10655.09616 10655.09616 10655.09616 10655.09616 10655.09616 10655.09616 10655.09616

RMSE
gen. alg.
improved

10400.94068 10401.32128 10401.59039 10402.33613 10401.94342 10401.55254 10401.35126 10401.15196

Below
Best %

96.0% 96.0% 96.0% 96.0% 96.0% 96.0% 96.0% 96.0%
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Figure 10.10: Interpolated data and reconstructed attractors for the annual maize
yields in Austria data set.
(a): The original and interpolated time series data;
(b): Phase space reconstruction of the original data;
(c): Phase space reconstruction of the average population data;
(d): Phase space reconstruction of the genetic-algorithm-improved data.
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10.2 Summary

We briefly summarize this chapter and point out the main findings:

• We presented a genetic algorithm to improve a stochastic interpolation, i.e., multi-
point fractional Brownian bridges, to enhance the reconstructed phase space of any
given time series. For simplicity, we named this method PhaSpaSto interpolation.

• We presented a novel approach to measure the quality of a phase space reconstruc-
tion according to Takens’ theorem. Here we used an idea from image processing,
i.e., to identify blurry images via the variance of second derivatives. These second
derivatives are calculated along the reconstructed phase space curve for any given
reconstructed phase space. We use the variance of these second derivatives to mea-
sure the quality of our phase space reconstruction. Given two interpolated phase
space curves of the same time series, the one with the lower variance of second
derivatives along the curve is the better phase space reconstruction, as it is the
smoother one.

We further need to mention that the applied smoothness criterion provides a
smooth trajectory and curve for arbitrary embedding dimensions, which means
that, however we choose the embedding dimension, the resulting variability in the
actual 1-dimensional interpolated curve is minor. Thus, to the best of our knowl-
edge, these minor differences in the interpolations won’t matter for all applications
the author can think of. However, given the strong dependence on minor changes
in a chaotic system, we cannot exclude that one might come up with a scenario
where these differences matter. We discuss this issue in detail in Appendix C.4.

• We showed that the developed technique performed well in the case of a model
data set, i.e., one variable of the Lorenz system. Here we deleted data points
from the original time series data and were able to outperform, in some cases, any
best random interpolations of this time series data. Also, the presented method
outperformed linear interpolation when finding the missing data points. Still,
the proposed method did not outperform cubic spline interpolation on this task.
This was done to validate our method and to show its applicability. Further, the
presented reconstructed phase spaces plots show that the interpolated phase space
reconstruction is similar to the original reconstructed phase space. The results for
the Lorenz system are collected in Section 10.1.1.

However, PhaSpaSto-interpolation is a much more expensive way to interpolate
time series data than all other shown techniques. This issue is also discussed in
Appendix C.5, where we show the difference between calculation times in detail.
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however, we need to mention that it takes approximately 3.4 × 106 times longer
than linear interpolation and 6.7 × 106 longer than the employed cubic spline
interpolation to perform PhaSpaSto interpolation.

• We demonstrated the presented method using seven sparsely sampled non-model
data sets. The validation was done by removing every second data point from the
original time series and reconstructing these missing data points using the devel-
oped technique. For three out of seven data sets, the developed method effectively
can identify the interpolations or parts of it with low errors, i.e., the result is
around the best 1% of the population in terms of the RMSE for the reconstructed
data points. PhaSpaSto interpolation outperformed the spline interpolation for
six of seven non-model data sets and the linear interpolation on five non-model
data sets. Also, the best random interpolation beat the cubic spline interpola-
tion on six non-model data sets. For the monthly airline passengers data set, the
PhaSpaSto interpolation does not perform very well as it is only around the best
30 − 40% of all RMSEs of the population. And for the final two data sets, i.e., the
shampoo sales and maize yields data sets, PhaSpaSto interpolation cannot find a
meaningful interpolation and is outperformed by every other interpolation except
the cubic spline interpolation. The interpolation performed well for the measles
cases in NYC data set (Section 10.1.2.1), the car sales in Quebec data set (Section
10.1.2.2) and the Perrin Freres champagne sales data set (Section 10.1.2.3), which
are data sets that show regularities and oscillatory behavior. The cases where the
presented method did not perform well are the monthly international airline pas-
sengers data set (Section 10.1.2.4), the monthly mean temperature in Nottingham
castle data set (Section 10.1.2.5), the shampoo sales data set (Section 10.1.2.6) and
the annual maize yields in Austria data set (Section 10.1.2.7). We conclude that
PhaSpaSto interpolation can retrieve missing data points for time series with sea-
sonal behavior or oscillatory regularities better than for more stochastic/random
data sets.

• We also used the seven non-model data sets to show the applicability of the devel-
oped technique as an actual interpolation technique, i.e., no deleted data points.
The plots of the reconstructed phase spaces show that it softens the edges and
provides a smoother and cleaner reconstructed phase space trajectory. Therefore
the authors conclude that this technique applies to arbitrary univariate data sets.
All of these plots are collected in Section 10.1.2. We recommend it when deal-
ing with sparsely sampled seasonal time series or data sets that show oscillatory
regularities.



Chapter 11

Reconstructed Phase Spaces and
Neural Network Time Series
Predictions

This chapter, in addition to the previous Chapter 9, presents another method to filter
predictions, i.e., based on their phase space trajectories. This idea is based on the
findings of Chapter 10. To be specific, the variance of second derivatives along a phase
space trajectory can be used to identify good interpolation points, as shown in Chapter
10. We employ this idea to identify good predictions in an ensemble forecast. Further,
this chapter is a continuation of the methods presented in Chapter 9 and applies the
proposed ideas to new data sets, such as the Lorenz system or the annual yield data
sets. This chapter contains work and results published in [31]:

Sebastian Raubitzek and Thomas Neubauer. Reconstructed phase spaces and lstm neural
network ensemble predictions. Engineering Proceedings, 18(1), 2022. ISSN 2673-4591.
doi: 10.3390/engproc2022018040. URL https://www.mdpi.com/2673-4591/18/1/40.
Visited on 2023-04-20.

Figure 11.1: Schematic depiction of the filtering process. The whole pipeline is
applied, first, to the original non-interpolated data, second, the fractal interpolated
data, and third, the linear-interpolated.
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https://www.mdpi.com/2673-4591/18/1/40
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The presented experiments aim to show the applicability of PhaSpaSto interpolation to
improve neural network time series predictions and if the variance of second derivatives
along a reconstructed phase space trajectory can be used to filter ensemble predictions.
Further, the presented selection of time series data serves to understand for which kind
of time series data the developed randomly parameterized neural networks approach
works.

This chapter builds on the two previous Chapters 9 and 10, meaning that we are again
employing the randomly parameterized long short-term memory neural networks (Sec-
tion 6.1.3). And again, we are using different types of interpolated time series data,
just as in Chapter 9. Contrary to Chapter 9 we are using one additional interpolation
technique, i.e. the attractor-based stochastic interpolation method (the PhaSpaSto in-
terpolation) from Section 5.2. To save computational resources and to take into account
the results from Chapters 91 and 102 we chose the number of interpolation points to be
NI = {9, 11, 13, 15}. Further, this selection of interpolation points is motivated by the
fact that PhaSpaSto interpolation requires a certain amount of interpolation points to
increase the smoothness of a given phase space trajectory (Also discussed in Chapter
10). We discuss the right amount of interpolation points in Section 13.1. We filter the
multitude of predictions based on their reconstructed phase space properties using the
variance of second derivatives along a phase space trajectory, discussed in Section 5.2.2.
The whole scheme is depicted in Figure 11.1. Additionally, we provide the framework
from Chapter 9 as an additional baseline prediction, i.e., the multitude of autoregres-
sive predictions is also analyzed using the prediction filters based on measures of signal
complexity, discussed in Section 9.3.

11.1 Datasets

This prediction experiment uses a total of eleven different data sets, where ten of the
discussed data sets are not analyzed in Chapter 9 and Ref. [32]. The remaining data
set, i.e., the monthly international airline passengers data set (Section 7.1), which we
already analyzed in Chapter 9, is shown here for comparison. The discussed data sets
and the corrresponding train/test splits are:

1. The Lorenz system, see Section 7.15; Train/test-split: 80/20

2. Annual maize yields Austria, see Section 7.7; Train/test-split: 80/20
1This chapter did not find a trend for the best number of interpolation points to improve a neural

network time series prediction.
2This chapter suggests that ≈ 13 interpolation points provide a good phase space reconstruction
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3. Annual wheat yields Austria, see Section 7.6; Train/test-split: 80/20

4. Measles cases in NYC, see Section 7.5; Train/test-split: 80/20

5. Monthly international airline passengers, see Section 7.1; Train/test-split: 70/30

6. Canadian Lynx, see Section 7.10; Train/test-split: 88/12

7. River Krems discharge, see Section 7.12; Train/test-split: 80/20

8. USD/GBP exchange rate, see Section 11.4.9; Train/test-split: 93/07

9. Dow Jones Industrial Average daily close in 2018, see Section 7.11; Train/test-split:
80/20

10. Sunspots, see Section 7.13; Train/test-split: 77/23

11. Shampoo Sales, see Section 7.13; Train/test-split: 80/20

The data sets are chosen to cover a range of different problems. We chose the Lorenz
system as it is an example of a deterministic chaotic system. We included the annual
maize yields, the annual wheat yields, and the river Krems discharge data set to test
the applicability of the proposed approach to data related to Austrian Agriculture. The
Measles outbreaks in NYC data set was chosen as it is known to be a real-life data set
with an attractor structure in reconstructed phase space, [92]. The Canadian Lynx,
USD/GBP exchange rate, Monthly international airline passengers, and the sunspots
data set were chosen to compare our results to state-of-the-art time series prediction
approaches, [93]. We added the Dow Jones Industrial Average daily close in 2018 and
the shampoo sales data set to increase the amount of non-seasonal data sets.

11.2 LSTM ensemble predictions

For each time-series data, we employ ensembles of randomly parameterized LSTM neural
networks, see Sections 6.1.2 and 6.1.3. Here we use the second of the two described
architectures. The idea here is not to optimize the neural networks but to generate
many different ones. I.e., train and predict the data under study using many different
neural networks and then average them to obtain a final result/prediction. One thousand
of these networks are created and trained to predict the unknown data for the maize
and wheat yields. Because of limited computational resources, we create five hundred
of these neural networks and predictions for all other data sets. In a later step, these
predictions are filtered based on their phase space properties.
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11.2.1 Data preprocessing

The data was preprocessed using the following two data manipulations:

First, the data X(t) defined at discrete time intervals t = v, 2v, 3, ..., kv, was scaled to
X(t) ∈ [0.1, 0.9] , ∀t. Second, the maize yields, the wheat yields, the airline passengers,
and the shampoo sales data sets are detrended by subtracting a linear fit, thus making
the data stationary.

11.3 Ensemble Filters/Data Postprocessing

As previously mentioned, the randomly parameterized LSTM neural networks produced
many predictions for each time-series data. The results of the averaged non-filtered
predictions can be found in Appendix D.3.

These unfiltered predictions are still far off a good forecast because many wrong pre-
dictions are among them. Here the hypothesis is that good predictions have similar
phase space properties as the original data. Thus the predictions for each time series
data are filtered regarding their phase space properties, i.e., using the variance of second
derivatives along the reconstructed phase space trajectory to discard wrong predictions.
This is done in two ways, i.e., two filters are developed and employed:

• We randomly chose 1 to 10 predictions from the whole set of predictions. Next,
these predictions are averaged to form an ensemble prediction. This ensemble
prediction is merged with the training data. Then, we analyze the variance of sec-
ond derivatives along the phase space trajectory. We repeat this process 1 million
times. Then we keep the set of averaged predictions with the lowest variance of
second derivatives. On all plots, this procedure is referred to as loss_rand3.

• All predictions are merged with the training data. We calculate the variance of
second derivatives along the reconstructed phase space trajectory. The ten predic-
tions with the lowest variance are used to form an averaged ensemble prediction.
This filter is referred to as los2_rand.

For the phase space embeddings in this chapter, we use τ = 1 and dE = 3. This choice
of phase space embeddings is further discussed in Appendix A. We determined the time
delay for the Lorenz system using the method based on the average mutual information
and set dE = 3 because this is known from the literature; [92, 99].

3This name refers to the name used in the implementation
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11.4 Results

In this chapter, we test the applicability of the PhaSpaSto interpolation method and
the corresponding loss function, i.e. the variance of second derivatives along the phase
space trajectory, to the presented approach from Chapter 9. I.e. we generate randomly
parameterized long short term memory neural networks, train them with the original,
the corresponding linear, fractal and PhaSpaSto interpolated data sets and filter the
autoregressive predictions based on their complexity (As in Chapter 9) and based on their
phase space properties using the variance of second derivatives along the reconstructed
phase space trajectories. Also, the discussed model data, i.e. the Lorenz system, features
a fine-grained/original data set and a sparsely sampled data set. This sparsely sampled
data set is based on the fine-grained data set, but many data points were deleted with
resepect to the employed interpolation technique and interpolation points, as decscribed
in Section 10.1.1. The results are presented in Tables 11.4, 11.2, 11.3, 11.1 and 11.5.
Further, the plots for the best prediction for both, the phase-space-based and complexity-
based filters, are shown in Figures 11.5,11.3,11.4, 11.2 and 11.6. The plots for all results
not shown on this chapter but featured in the previously mentioned tables are collected
in Appendix D.1

We list the baseline predictions for all data sets, except for the Lorenz system and the
monthly international airline passengers, in Appendix D.2. The baseline predictions for
the monthly international airline passengers data set are listed in Appendix B.1. We do
not provide a baseline prediction for the Lorenz system. This is because of the chaotic
nature of the system. Given that we’re using different lengths of the data set with respect
to their interpolation points, the data sets for each number of interpolation points slightly
differ. Thus we cannot provide one baseline prediction for all data excerpts from the
Lorenz system. Further, as suggested in [109], a neural network with a single hidden
layer might not be able to predict the Lorenz system, as only sophisticated hybrid data
assimilation approaches, e.g., Kalman filters in combination with neural networks or
similar techniques seem to be capable of reproducing the Lorenz system.
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11.4.1 The Lorenz System

The results for the Lorenz system (Section 7.15), Tables 11.1 and the corresponding
Figures 11.2, D.1 and D.2 show that the presented approach can not predict the Lorenz
system. The predictions are completely off and only partially capture some of the
characteristic behavior of the Lorenz system. Still, the results where the prediction
did capture some of the characteristics suggest that there may be a way to improve
these predictions drastically. Two ways to do this would be to, first, improve the neural
network architecture, and second, to train on a longer data set. Overall, we conclude
that the Lorenz system can not be predicted using the presented ideas effectively.

Table 11.1: Best results for the Lorenz system.
Left: phase space filter predictions
Right: Signal complexity filter predictions

Filter
Interpolation

Technique
NI RMSE ∆RMSE

los2_rand
Fractal

Interpolated
13 0.20360 ±0.03985

loss_rand
Fine-Grained

Model
13 0.23426 ±0.01975

los2_rand
Not

Interpolated
- 0.24299 ±0.01864

los2_rand
Not

Interpolated
- 0.25770 ±0.01242

loss_rand
Stoch.

Interpolated
15 0.26656 ±0.02109

Filter
Interpolation

Technique
NI RMSE ∆RMSE

Hurst
Linear

Interpolated
13 0.19044 ±0.03529

Shannon
Linear

Interpolated
13 0.19102 ±0.01867

Hurst
Fisher

Stoch.
Interpolated

13 0.19122 ±0.02710

Hurst
SVD

Stoch.
Interpolated

13 0.19122 ±0.02710

Fisher
Hurst

Stoch.
Interpolated

13 0.19122 ±0.02710
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Figure 11.2: Best predictions for the Lorenz system.
Left: los2_rand-filter, fractal interpolated, 13 interpolation points,
RMSE=0.20360±0.03985
Right: Hurst-filter, linear interpolated, 13 interpolation points,
RMSE=0.19044±0.03529

11.4.2 Annual Maize Yields Austria

The results for the annual maize yields in Austria data set (Section 7.7) are shown in
Tables 11.2 and the corresponding Figures 11.3, D.3 and D.4.

The filters based on measures of signal complexity outperform the filters based on the
second derivatives of reconstructed phase space trajectories, as can be seen in Table
11.2. The left side shows the errors for phase-space-based filters, and the right side the
complexity-based filters. The best result is achieved using a linear interpolated data set
with 15 additional data points and filters based on the Hurst exponent and the spectrum
of Lyapunov exponents. Though this was overall the best prediction for this data set,
the error ∆RMSE indicates a higher variability than for the second-best results and the
best result for the phase-space-based filters. This is especially true because the phase-
space-based filter picked only one prediction out of 1000. Thus no variability is given for
this prediction. The corresponding plots in Figure 11.3 depicts the best results. Here
the left side shows the best result for the phase-space-based filters, whereas the right
side presents the best result for the complexity-based filters. The complexity-based-
filtered result also depicts the increased prediction variability in terms of the yellow
lines contributing to the ensemble prediction. Also, as shown on the right side of Figure
11.3 the best results reproduce a mean prediction. Thus we conclude that this data set
can effectively not be predicted. Still, given the left side of 11.3, we can see that the
presented approach somehow reproduces the first two peaks, and results on this data
sets might be improved in the future.
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The two best predictions, i.e. the predictions depicted in Figure 11.3, outperformed
all baseline predictions from Appendix D.2. The baseline RMSEs are 0.34020 for the
LSTM, 0.35033 for the GRU, and 0.38684 for the recurrent neural network.

Table 11.2: Best results for the annual maize yields in Austria data set.
Left: Phase space filter predictions
Right: Signal complexity filters predictions

Filter
Interpolation

Technique
NI RMSE ∆RMSE

loss_rand
Fractal

Interpolated
11 0.13939 ±0.00000

loss_rand
Stoch.

Interpolated
9 0.13961 ±0.01087

loss_rand
Stoch.

Interpolated
13 0.14022 ±0.00567

los2_rand
Stoch.

Interpolated
9 0.14320 ±0.00801

los2_rand
Stoch.

Interpolated
15 0.14414 ±0.00651

Filter
Interpolation

Technique
NI RMSE ∆RMSE

Hurst
Lyap

Linear
Interpolated

15 0.13385 ±0.04908

Fisher
Hurst

Stoch.
Interpolated

11 0.13511 ±0.03642

Lyap
Hurst

Stoch.
Interpolated

15 0.13654 ±0.03487

Fisher
Lyap

Linear
Interpolated

15 0.13759 ±0.04690

SVD
Lyap

Linear
Interpolated

15 0.13759 ±0.04690
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Figure 11.3: Best predictions for the annual maize yields in Austria data set.
Left: loss_rand-filter, fractal interpolated, 11 interpolation points,
RMSE=0.13939±0.00000
Right: Hurst-filter, linear interpolated, 13 interpolation points, RMSE=0.13385±
0.04908

11.4.3 Annual Wheat Yields Austria

The results for the annual wheat yields in Austria data set (Section 7.6) are shown in
Tables 11.3 and the corresponding Figures 11.4, D.5 and D.6.
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The filters based on measures of the second derivatives of reconstructed phase space
trajectories outperform the filters based on signal complexity, as can be seen in Table
11.3. Here the left side shows the errors for phase-space-based filters, and the right side
lists the complexity-based filters. The best result is achieved using a fractal interpolated
data set with nine additional data points and the los2_rand filter. The corresponding
plots in Figure 11.4 depict the best results. Here the left side shows the best result
for the phase-space-based filters, whereas the right side presents the best result for the
complexity-based filters. The complexity-based-filtered result also depicts the increased
prediction variability in terms of the yellow lines contributing to the ensemble prediction.
Also, as depicted in the left side of Figure 11.4, the best result is far off right from the
start but hits some right points later. Thus we conclude that this data set can not be
predicted accurately using the presented approach. Still, the presented approaches can
provide a rough estimate for future values of this data set.

The two best predictions, i.e., the predictions depicted in Figure 11.4, outperformed
all baseline predictions from Appendix D.2. The baseline RMSEs are 0.31402 for the
LSTM, 0.31784 for the GRU, and 0.28145 for the recurrent neural network.

Table 11.3: Best results for the annual wheat yields in Austria data set.
Left: Phase space filter predictions
Right: Signal complexity filter predictions

Filter
Interpolation

Technique
NI RMSE ∆RMSE

los2_rand
Fractal

Interpolated
9 0.11377 ±0.02472

loss_rand
Stoch.

Interpolated
15 0.12246 ±0.01147

loss_rand
Stoch.

Interpolated
13 0.12544 ±0.00599

loss_rand
Linear

Interpolated
13 0.12657 ±0.00000

los2_rand
Stoch.

Interpolated
13 0.12662 ±0.02979

Filter
Interpolation

Technique
NI RMSE ∆RMSE

Lyap
SVD

Fractal
Interpolated

9 0.11517 ±0.04367

Fisher
SVD

Fractal
Interpolated

9 0.11517 ±0.04367

SVD
Fractal

Interpolated
9 0.11517 ±0.04367

SVD
Shannon

Fractal
Interpolated

9 0.11517 ±0.04367

Lyap
Fisher

Fractal
Interpolated

9 0.11517 ±0.04367
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Figure 11.4: Best predictions for annual wheat yields in Austria data set.
Left: los2_rand-filter, fractal interpolated, 13 interpolation points,
RMSE=0.11377±0.02472
Right: Hurst-filter, linear interpolated, 13 interpolation points,
RMSE=0.11517±0.04367

11.4.4 Measles Cases in NYC

The results for the measles cases in NYC data set (Section 7.5), Tables 11.4 and the
corresponding Figures 11.5, D.7 and D.8, show that the presented approach can predict
this data set.

The filters based on measures of signal complexity outperform the filters based on the
second derivatives of reconstructed phase space trajectories, as can be seen in Table 11.4.
The left side shows the errors for phase-space-based filters and the right side complexity-
based filters. The best result was achieved using a linear interpolated data set with 11
additional data points and filters based on SVD and Shannon’s entropy. Though this
was overall the best prediction for this data set, the error ∆RMSE indicates a higher
variability than for the second-best results and the best result for the phase-space-based
filters. The corresponding plots in Figure 11.5 depict the best results. The left side
shows the best result for the phase-space-based filters, whereas the right side presents
the best result for the complexity-based filters. The complexity-based-filtered result also
depicts the increased prediction variability in terms of the yellow lines, which contribute
to the ensemble prediction.

The two best predictions, i.e., the predictions shown in Figure 11.5, outperformed all
baseline predictions from Appendix D.2. The baseline RMSEs are 0.07488 for the LSTM,
0.06591 for the GRU, and 0.07964 for the recurrent neural network.
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Table 11.4: Best results for the measles cases in NYC data set.
Left: Phase space filter predictions
Right: Signal complexity filter predictions

Filter
Interpolation

Technique
NI RMSE ∆RMSE

los2_rand
Not

Interpolated
- 0.04881 ±0.00447

loss_rand
Linear

Interpolated
11 0.05415 ±0.01072

loss_rand
Linear

Interpolated
15 0.06033 ±0.00225

los2_rand
Fractal

Interpolated
9 0.06338 ±0.02327

loss_rand
Not

Interpolated
- 0.06445 ±0.00000

Filter
Interpolation

Technique
NI RMSE ∆RMSE

SVD
Shannon

Linear
Interpolated

11 0.02671 ±0.01023

Fisher
Hurst

Fractal
Interpolated

9 0.03242 ±0.00735

SVD
Hurst

Fractal
Interpolated

9 0.03242 ±0.00735

Hurst
SVD

Linear
Interpolated

13 0.03248 ±0.01705

Lyap
Shannon

Linear
Interpolated

9 0.03359 ±0.01122
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Figure 11.5: Best predictions for the measles cases in NYC data set.
Left: los2_rand-filter, not interpolated, RMSE=0.04881±0.00447
Right: SVD-Shannon filter, linear interpolated, 11 interpolation points,
RMSE=0.02671±0.01023

11.4.5 Monthly International Airline Passengers

The results for the monthly international airline passengers data set (Section 7.1) are
shown in Tables 11.5 and the corresponding Figures 11.6, D.9 and D.10.

The filters based on signal complexity outperform the filters based on measures of the
second derivatives of reconstructed phase space trajectories, as can be seen in Table
11.5. Here the left side shows the errors for phase-space-based filters, and the right side
lists the complexity-based filters. The best result is achieved using a linear interpolated
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data set with 13 additional data points and a filter based on Fisher’s information. The
corresponding plots in Figure 11.6 depict the best results. Here the left side shows
the best result for the phase-space-based filters, whereas the right side presents the
best result for the complexity-based filters. The complexity-filtered result also depicts
the increased prediction variability in terms of the yellow lines, which contribute to
the ensemble prediction. In contrast, the phase-space-filtered result has no variability
because the filter picked only a single prediction.

The two best predictions, i.e., the predictions presented in Figure 11.6, outperformed
all baseline predictions from Appendix B.1. The baseline RMSEs are 0.11902 for the
LSTM, 0.10356 for the GRU, and 0.10356 for the recurrent neural network.

Table 11.5: Best results for the monthly international airline passengers data set.
Left: phase space filter predictions
Right: Signal complexity filter predictions

Filter
Interpolation

Technique
NI RMSE ∆RMSE

loss_rand
Fractal

Interpolated
9 0.04619 ±0.00000

los2_rand
Fractal

Interpolated
11 0.04995 ±0.00534

los2_rand
Fractal

Interpolated
9 0.05111 ±0.00789

loss_rand
Fractal

Interpolated
13 0.06016 ±0.00795

loss_rand
Stoch.

Interpolated
11 0.06021 ±0.00627

Filter
Interpolation

Technique
NI RMSE ∆RMSE

Fisher
Linear

Interpolated
13 0.04450 ±0.00675

Fisher
Shannon

Linear
Interpolated

13 0.04450 ±0.00675

SVD
Fisher

Linear
Interpolated

13 0.04450 ±0.00675

Lyap
Fisher

Fractal
Interpolated

9 0.04465 ±0.00422

Shannon
Fisher

Fractal
Interpolated

9 0.04587 ±0.00476
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Figure 11.6: Best predictions for the monthly international airline passengers data
set.
Left: loss_rand-filter, fractal interpolated, 9 interpolation points,
RMSE=0.04619±0.00000
Right: Fisher-filter, linear interpolated, 13 interpolation points,
RMSE=0.04450±0.00675

11.4.6 Canadian Lynx

The results for the Canadian Lynx data set (Section 7.10) are shown in Tables 11.6 and
the corresponding Figures 11.7, D.11 and D.12.

The filters based on signal complexity outperform the filters based on the second deriva-
tives of reconstructed phase space trajectories, as can be seen in Table 11.6. Here the left
side shows the errors for phase-space-based filters, and the right side lists the complexity-
based filters. The best result is achieved using a linear interpolated data set with 11
additional data points and a filter based on Lyapunov exponents. The corresponding
plots in Figure 11.7 depict the best results. Here the left side shows the best result
for the phase-space-based filters, whereas the right side presents the best result for the
complexity-based filters. Given the presented results, we conclude that one can employ
both types of filters for this data set.

The two best predictions, i.e. the predictions depicted in Figure 11.7, outperformed
all baseline predictions from Appendix D.2. The baseline RMSEs are 0.15404 for the
LSTM, 0.17024 for the GRU, and 0.12847 for the recurrent neural network.
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Table 11.6: Best results for the Canadian lynx data set.
Left: phase space filter predictions
Right: Signal complexity filter predictions

Filter
Interpolation

Technique
NI RMSE ∆RMSE

loss_rand
Fractal

Interpolated
11 0.12280 ±0.10241

loss_rand
Linear

Interpolated
11 0.13442 ±0.00000

los2_rand
Linear

Interpolated
13 0.14205 ±0.04017

los2_rand
Fractal

Interpolated
15 0.14345 ±0.05349

loss_rand
Stoch.

Interpolated
13 0.14643 ±0.03443

Filter
Interpolation

Technique
NI RMSE ∆RMSE

Lyap
Linear

Interpolated
11 0.08327 ±0.04802

Shannon
Hurst

Linear
Interpolated

9 0.11037 ±0.05037

Lyap
Stoch.

Interpolated
9 0.11405 ±0.03110

Lyap
Shannon

Stoch
Interpolated

9 0.11405 ±0.03110

Fisher
Lyap

Fractal
Interpolated

11 0.11574 ±0.05229
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Figure 11.7: Best predictions for the Canadian lynx data set.
Left: loss_rand-filter, fractal interpolated, 11 interpolation points,
RMSE=0.12280±0.10241
Right: Lyap-filter, linear interpolated, 11 interpolation points,
RMSE=0.08327±0.04802

11.4.7 River Krems Discharge

The results for the River Krems discharge data set (Section 7.12) are shown in Tables
11.7 and the corresponding Figures 11.8, D.13 and D.14.

The filters based on signal complexity outperform the filters based on the variance of
second derivatives along a reconstructed phase space trajectory, as presented in Tables
11.7. The left table shows the errors for phase-space-based filters, and the right table
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lists the complexity-based filters. We achieve the best result using a fractal interpolated
data set with 13 additional data points and a filter based on Lyapunov exponents and
Shannon’s entropy. It’s noteworthy that the combined filter based on Shannon’s entropy
and Fisher’s information achieved the same results as the filter based on Shannon’s
entropy and SVD entropy. This is because Shannon’s entropy and Fisher’s information
are based on the same single value decomposition. The corresponding plots in Figure
11.8 depict the best results. Here the left side shows the best result for the phase-space-
based filters, whereas the right side presents the best result for the complexity-based
filters. Given the presented results, we conclude that neither the phase-space-based
nor the complexity-based filters provide convincing results. Still, the complexity-based
filters outperform the phase-space-based filters in terms of RMSE. Thus, we recommend
a filter based on Shannon’s entropy and the spectrum of Lyapunov exponents for this
data set.

For this data set, the LSTM-baseline-prediction has the lowest error overall, i.e., an
RMSE of 0.13502. The RMSE for the GRU is 0.14963 and for the recurrent neural
network 0.14961. All baseline predictions are collected in Appendix D.2.

Table 11.7: Best results for the river Krems discharge data set.
Left: phase space filter predictions
Right: Signal complexity filter predictions

Filter
Interpolation

Technique
NI RMSE ∆RMSE

los2_rand
Stoch.

Interpolated
11 0.15035 ±0.05047

los2_rand
Linear

Interpolated
9 0.15492 ±0.04948

los2_rand
Fractal

Interpolated
15 0.15943 ±0.05062

loss_rand
Linear

Interpolated
9 0.16651 ±0.01730

loss_rand
Not

Interpolated
- 0.16974 ±0.00000

Filter
Interpolation

Technique
NI RMSE ∆RMSE

Lyap
Shannon

Fractal
Interpolated

13 0.13678 ±0.02476

Shannon
Fisher

Not
Interpolated

- 0.13885 ±0.01845

Shannon
SVD

Not
Interpolated

- 0.13885 ±0.01845

Shannon
Fisher

Not
Interpolated

- 0.13900 ±0.01839

Shannon
SVD

Not
Interpolated

- 0.13900 ±0.01839
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Figure 11.8: Best predictions for the river Krems discharge data set.
Left: los2_rand-filter, stoch. interpolated, 11 interpolation points,
RMSE=0.15035±0.05047
Right: Lyap-Shannon-filter, fractal interpolated, 13 interpolation points,
RMSE=0.13678±0.02476

11.4.8 Dow Jones 2018

The results for the Dow Jones daily close in 2018 data set (Section 7.11) are shown in
Tables 11.8 and the corresponding Figures 11.9, D.15 and D.16.

The complexity and phase-space-based filters do not seem to work on this data set
as the best results merely predict the mean, depicted in Figure 11.8. As both best
predictions fail, we do not conclude any insights from these results, except that the
presented approaches cannot predict stock market data.

The two best predictions, i.e. the predictions depicted in Figure 11.9, outperformed
all baseline predictions from Appendix D.2. The baseline RMSEs are 0.25197 for the
LSTM, 0.18010 for the GRU, and 0.25112 for the recurrent neural network.
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Table 11.8: Best results for the Dow Jones daily close in 2018 data set.
Left: phase space filter predictions
Right: Signal complexity filter predictions

Filter
Interpolation

Technique
NI RMSE ∆RMSE

loss_rand
Stoch.

Interpolated
11 0.17417 ±0.02426

loss_rand
Stoch.

Interpolated
13 0.18660 ±0.05095

los2_rand
Fractal

Interpolated
13 0.21020 ±0.03887

loss_rand
Fractal

Interpolated
13 0.21218 ±0.04764

loss_rand
Fractal

Interpolated
11 0.25052 ±0.03035

Filter
Interpolation

Technique
NI RMSE ∆RMSE

Fisher
Hurst

Stoch.
Interpolated

13 0.17765 ±0.02802

SVD
Hurst

Stoch.
Interpolated

13 0.17765 ±0.02802

Shannon
Lyap

Fractal
Interpolated

15 0.18605 ±0.03950

Shannon
Stoch.

Interpolated
15 0.19022 ±0.01862

Hurst
Shannon

Not
Interpolated

- 0.19088 ±0.04289
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Figure 11.9: Best predictions for the Dow Jones daily close in 2018 data set.
Left: loss_rand-filter, stoch. interpolated, 11 interpolation points,
RMSE=0.17417±0.02426
Right: Fisher-Hurst-filter, stoch. interpolated, 13 interpolation points,
RMSE=0.17765±0.02802

11.4.9 USD/GBP Exchange Rate

The results for the USD/GBP exchange rate data set (Section 7.14) are shown in Tables
11.9 and the corresponding Figures 11.10, D.17 and D.18.

The results for this data set are similar to the results for the Dow Jones daily close
data set (Section 11.4.8). I.e., the best results are close to a mean forecast. Thus, we
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conclude that the presented approaches cannot predict this data set and subsequently
are not suitable for predicting stock market and/or financial data sets.

The two best predictions, i.e. the predictions depicted in Figure 11.10, outperformed
all baseline predictions from Appendix D.2. The baseline RMSEs are 0.19573 for the
LSTM, 0.21395 for the GRU, and 0.25613 for the recurrent neural network.

Table 11.9: Best results for the USD/GBP exchange rate in 2018 data set.
Left: phase space filter predictions
Right: Signal complexity filter predictions

Filter
Interpolation

Technique
NI RMSE ∆RMSE

loss_rand
Stoch.

Interpolated
11 0.02381 ±0.03396

loss_rand
Not

Interpolated
- 0.04050 ±0.00000

loss_rand
Linear

Interpolated
11 0.05147 ±0.00333

loss_rand
Linear

Interpolated
15 0.06343 ±0.02411

loss_rand
Stoch.

Interpolated
9 0.06592 ±0.03623

Filter
Interpolation

Technique
NI RMSE ∆RMSE

Lyap
Fisher

Fractal
Interpolated

9 0.02630 ±0.01617

Lyap
SVD

Fractal
Interpolated

9 0.02630 ±0.01617

Lyap
Fisher

Stoch.
Interpolated

15 0.02824 ±0.03077

Lyap
SVD

Stoch.
Interpolated

15 0.02824 ±0.03077

Hurst
Shannon

Linear
Interpolated

11 0.03012 ±0.01258
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Figure 11.10: Best predictions for the USD/GBP exchange rate data set.
Left: loss-filter, stoch. interpolated, 11 interpolation points, RMSE=0.02381±0.03396
Right: Lyap-Fisher-filter, fractal interpolated, 9 interpolation points,
RMSE=0.02630±0.01617
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11.4.10 Sunspots

The results for the sunspots data set (Section 7.13) are shown in Tables 11.10 and the
corresponding Figures 11.11, D.19 and D.20.

The filters based on signal complexity outperform the filters based on measures of the
second derivatives of reconstructed phase space trajectories, as can be seen in Table
11.10. Here the left side shows the errors for phase-space-based filters, and the right side
lists the complexity-based filters. We achieve the best result using a linear interpolated
data set with 15 additional data points and a filter based on the spectrum of Lyapunov
exponents. The corresponding plots in Figure 11.11 depict the best results. Here the
left side shows the best result for the phase-space-based filters, whereas the right side
presents the best result for the complexity-based filters. The plot for the overall best
result, i.e., the complexity-filtered prediction, shows that the presented approach can
somehow predict this data set as the oscillatory nature of the training data is reproduced.
However, as the first three peaks are approximately right in terms of frequency, we see
a slight phase shift of the predicted time series with respect to the ground truth. We
expect, if specifically targeted, a short-term prediction to have increased accuracy for
the major peaks, similar to the results for the monthly mean temperature in Nottingham
castle data set, which can be found in Appendix C.1.6. This assumption is supported
by the fact that some of the predictions, which constitute the ensemble, i.e., the yellow
lines in the plot, can reproduce the major peaks quite well in terms of amplitude. We
conclude that the presented approach can produce the behavior of this data set for
short-term predictions.

For this data set, the GRU baseline prediction performed best with an RMSE of 0.21395,
thus outperforming the two best ensemble predictions from Figure 11.11. The RMSE is
0.25354 for the LSTM baseline prediction and 0.29746 for the recurrent neural network,
see Appenidx D.2.
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Table 11.10: Best results for the sunspots data set.
Left: phase space filter predictions
Right: Signal complexity filter predictions

Filter
Interpolation

Technique
NI RMSE ∆RMSE

los2_rand
Linear

Interpolated
11 0.29198 ±0.01828

los2_rand
Linear

Interpolated
15 0.29878 ±0.02684

los2_rand
Fractal

Interpolated
15 0.29903 ±0.02257

loss_rand
Fractal

Interpolated
9 0.30431 ±0.02611

los2_rand
Linear

Interpolated
9 0.30706 ±0.01999

Filter
Interpolation

Technique
NI RMSE ∆RMSE

Lyap
Linear

Interpolated
15 0.25339 ±0.02052

Lyap
Shannon

Linear
Interpolated

15 0.25339 ±0.02052

Shannon
Hurst

Linear
Interpolated

11 0.25882 ±0.01969

Shannon
Hurst

Not
Interpolated

- 0.26277 ±0.02800

Hurst
Not

Interpolated
- 0.26397 ±0.01979
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Figure 11.11: Best predictions for the sunspots data set.
Left: los2_rand-filter, linear interpolated, 11 interpolation points,
RMSE=0.29198±0.01828
Right: Lyap-filter, linear interpolated, 15 interpolation points,
RMSE=0.25339±0.02052

11.4.11 Shampoo Sales

The results for the shampoo sales data set (Section 7.9) are shown in Tables 11.11 and
the corresponding Figures 11.12, D.21 and D.22.

Again, the presented approaches cannot reproduce the behavior of the training data for
this data set. Rather, the best ensemble predictions are approximately the mean, as
depicted in Figure 11.12. Here it’s noteworthy that the phase space trajectory filters
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provide a better mean prediction than the complexity-based filters. Overall we conclude
that the presented approaches cannot predict this data set.

The two best predictions, i.e. the predictions depicted in Figure 11.12, outperformed
all baseline predictions from Appendix D.2. The baseline RMSEs are 0.42425 for the
LSTM, 0.37911 for the GRU, and 0.38741 for the recurrent neural network.

Table 11.11: Best results for the shampoo sales data set.
Left: phase space filter predictions
Right: Signal complexity filter predictions

Filter
Interpolation

Technique
NI RMSE ∆RMSE

los2_rand
Not

Interpolated
- 0.17218 ±0.05066

loss_rand
Not

Interpolated
- 0.17243 ±0.00000

loss_rand
Fractal

Interpolated
11 0.18466 ±0.00000

los2_rand
Not

Interpolated
- 0.18723 ±0.06246

loss_rand
Not

Interpolated
- 0.19235 ±0.00000

Filter
Interpolation

Technique
NI RMSE ∆RMSE

Hurst
Not

Interpolated
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Fisher
Hurst
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- 0.20308 ±0.05084
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Hurst
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- 0.20308 ±0.05084
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Interpolated

11 0.20637 ±0.01597
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Figure 11.12: Best predictions for the shampoo sales data set.
Left: los2_rand-filter, not interpolated, RMSE=0.17218±0.05066
Right: Hurst-filter, not interpolated, RMSE=0.20308±0.05084
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11.5 Discussion and Summary

The research presented in this chapter is a continuation of the work presented in Chapter
9. It consists of interpolating data sets, generating a multitude of predictions using
randomly parameterized LSTM neural networks, and selecting a few of these predictions
using filters based on the phase space properties and/or the signal complexity of the
training data.

In addition to Chapter 9, this chapter tests the developed PhaSpaSto interpolation tech-
nique from Section 5.2 for its applicability to improve LSTM neural network predictions
and, further, the corresponding loss-function, as a prediction filter.

11.5.1 Prediction Filters

When it comes to identifying the best ensemble prediction filters, we see that for all data
sets, the signal-complexity-based filters performed best for a total of seven data sets.
The filters based on the second derivates along the reconstructed phase space trajectory
performed best for four data sets.

From the featured top five results for all data sets, the phase-space-based filters are
distributed such that 22 of the results use the los2_rand filter and 33 the loss_rand filter.
For all the top results of the signal-complexity-based filters, we find that Fisher/Hurst
is featured five times and Lyap/Fisher four times. Still, given the presented results,
different filters will perform best for different data sets. Further, just like in Chapter
9, the author recommends a combination of a complexity measure taking into account
the phase properties of a time series like Fisher’s information and/or SVD entropy and
a complexity measure taking into account the stochastic fluctuating nature of the data
set, e.g., the Hurst exponent. Additionally, we recommend using the loss_rand filter
based on the second derivatives along a reconstructed phase space trajectory.

11.5.2 Interpolation Techniques

We cannot give a clear answer when it comes to identifying the best interpolation tech-
nique to improve LSTM neural network time-series predictions. Again, for different data
sets, different interpolation techniques performed best. The best results are distributed
among interpolated and not interpolated data sets such that 31 of the top results are
fractal interpolated ones, 29 are linear interpolated ones, and 28 are PhaSpaSto inter-
polated ones; in contrast, only 21 are not interpolated results. Thus we recommend
using an interpolation technique. Still, the author recommends employing a fractal or
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the developed stochastic interpolation. These are conceptually more consistent than the
presented linear interpolation. This is because considering the phase space or stochastic
properties of a time series data is more reasonable than just drawing a straight line be-
tween two points. Further, given the results featured in Section 9.4, which recommend
the fractal interpolation because of their reduced error deviation, we can reiterate this
for the results of this chapter.

11.5.3 Key Findings

Finally, we highlight the key findings of this Chapter:

• The presented ideas can autoregressively predict time series with visible regulari-
ties. This is shown for the measles cases in NYC, the monthly international airline
passengers, the Canadian lynx, and the sunspots data set.

• Given the results of this chapter, we conclude that the presented approach cannot
accurately predict complex short/sparsely sampled data sets, such as the annual
maize and wheat yields in Austria. Still, the proposed ideas can provide rough
estimates and outperform standard neural network approaches like the featured
baseline predictions.

• The presented approach cannot predict the Lorenz system. Given that the ran-
domly parameterized LSTM neural network approach can occasionally reproduce
some of the behavior of the Lorenz system, the author concludes that more re-
search must be done to effectively predict chaotic model data with the presented
approach.

• The presented approach cannot predict the featured financial data sets effectively.
Given the results in Figures 11.9 and 11.10, we conclude that our approach, at it’s
best, can only predict the mean for financial time series.

• The presented randomly parameterized ensemble predictions can significantly be
improved by employing the presented interpolation techniques, discussed in Chap-
ter 5. The author recommends using the developed fractal or attractor-based
stochastic interpolation technique to consider the complexity and phase-space
properties of the data under study, respectively.

• The prediction filters based on the signal complexity of the data under study
outperformed the prediction filters based on the variance of second derivatives
along the reconstructed phase space trajectory for only one case. Thus the author
concludes that the prediction filters described in Section 9.3 are the best choice.
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Further, based on the results from Chapters 9 and Section 11.4, the author recom-
mends using a combination of SVD entropy or Fisher’s information and the Hurst
exponent for filtering random predictions. Still, the prediction filters based on
the loss function from Sections 11.3 can effectively filter predictions and improve
forecasts up to the point where they can, in some cases, outperform the presented
baseline predictions.
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Chapter 12

Benchmark Comparisons

This chapter contains benchmark results from the literature to compare the presented
results to state-of-the-art and related results. We present and discuss these benchmark
results for eight data sets. We split the comparison between two sources. We first discuss
the results for the analyzed sales data sets from the time series data library, [94]. Here
we compare our best results to the best results from Ref. [110]. In this case, our results
are compared to basic time series forecasts using methods such as the Holt-Winters
method, SARIMA, or an LSTM neural network implementation.

Second, we compare another four data sets with the results from Ref. [93]. In this case,
we compare our results to state-of-the-art hybrid models.

Our approach can outperform the forecasts for the sales data sets in three out of four
cases. Regarding the state-of-the-art hybrid approaches, our best predictions are far
off the best results from the literature. We thus conclude that, though the developed
methods can outperform basic implementations, they are no match for more advanced
state-of-the-art techniques, particularly hybrid ARIMA models.

SARIMA, ARIMA, various hybrid approaches, and everything else we compare our
results to are not directly part of this research and only serve as a benchmark comparison.
We will not discuss these techniques here. Instead, we refer to the results’ sources for
further reading and an in-depth discussion.

12.1 Sales Time Series Benchmark Results

In [110] time-series predictions are performed for many data sets from the Time Series
Data Library [94]. Part of this are four data sets which are presented in Chapters 9
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and 11. All of our best results, the corresponding baseline results, and the benchmark
results from the literature are collected in Table 12.1. The results for the Perrin Freres
champagne sales data set are from Chapter 9. The results for the shampoo sales data
set are from Chapter 11. The results for the remaining two data sets were produced
using the second neural network architecture discussed in Section 6.1.3 and a total of
500 different predictions, all featured interpolation techniques with the corresponding
interpolation points of NI ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17} and all discussed filters from
Chapters 9 and 11.

The results from the literature, the LSTM, GRU and RNN baseline predictions and the
best predictions using the randomly parameterized neural network architecture (Chap-
ters 9 and 11) are shown in Table 12.1. The results are discussed using, as in the other
parts of this research, the RMSE (Section 6.3) on rescaled data, i.e. the data is scaled
to the interval [0, 1], denoted as RMSE [0, 1].

The results show that the here presented approach, i.e., interpolated data sets, randomly
parameterized neural networks, and the corresponding prediction filters outperform the
results from the literature in three out of four cases, i.e., the monthly car sales in
Quebec, the CFE specialty writing paper sales and the shampoo sales data set. Still,
the employed GRU baseline prediction achieved the best performance for the shampoo
sales data set. In the case of the Perrin Freres champagne sales data set, the results
from the literature best our results.

Our presented LSTM baseline predictions outperformed the LSTM benchmark predic-
tions for the monthly car sales in Quebec and the CFE specialty writing paper sales
data set, thus showing that the chosen architecture is reasonable for our use case. We
conclude the same for the chosen GRU and RNN predictions, as these predictions are
within the range of the results from the literature for the featured data sets.
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Table 12.1: Benchmark results for the monthly car sales in Quebec, the Perrin
Freres champagne sales, the CFE spceialty writing sales and the shampoo sales data
set. The baseline predictions are taken from Appendices B.5 and D.2. The results for
Holt-Winters SARIMA, LSTM and Prophet are taken from the literature. The bold
marked results are the best results combining interpolation techniques randomly
parameterized neural networks and prediction filters.

Data Approach RMSE [0,1]
Monthly car sales in Quebec Additive Holt-Winters Method, [110] 0.08143
Monthly car sales in Quebec Multiplicative Holt-Winters Method, [110] 0.08452
Monthly car sales in Quebec SARIMA,[110] 0.08832
Monthly car sales in Quebec LSTM, [110] 0.11472
Monthly car sales in Quebec Prophet, [110] 0.09348
Monthly car sales in Quebec Baseline LSTM 0.11269
Monthly car sales in Quebec Baseline GRU 0.11170
Monthly car sales in Quebec Baseline RNN 0.11827

Monthly car sales in Quebec
Linear interpolated,

9 interpolation points,
Hurst-Fisher-filter

0.07549

Perrin Freres champagne sales Additive Holt-Winters Method, [110] 0.03634
Perrin Freres champagne sales Multiplicative Holt-Winters Method, [110] 0.04694
Perrin Freres champagne sales SARIMA, [110] 0.02758
Perrin Freres champagne sales LSTM, [110] 0.04894
Perrin Freres champagne sales Prophet, [110] 0.05457
Perrin Freres champagne sales Baseline LSTM 0.06915
Perrin Freres champagne sales Baseline GRU 0.06506
Perrin Freres champagne sales Baseline RNN 0.07313

Perrin Freres champagne sales
Fractal interpolated,

13 interpolation points,
Fisher-Hurst-filter

0.04968

CFE specialty writing paper sales Additive Holt-Winters Method, [110] 0.30322
CFE specialty writing paper sales Multiplicative Holt-Winters Method, [110] 0.31035
CFE specialty writing paper sales SARIMA, [110] 0.32729
CFE specialty writing paper sales LSTM, [110] 0.47528
CFE specialty writing paper sales Prophet, [110] 0.31567
CFE specialty writing paper sales Baseline LSTM 0.21541
CFE specialty writing paper sales Baseline GRU 0.21653
CFE specialty writing paper sales Baseline RNN 0.21086

CFE specialty writing paper sales
Stoch. interpolated,

13 interpolation points,
Hurst-Fisher-filter

0.17404

Shampoo sales Additive Holt-Winters Method, [110] 0.22766
Shampoo sales Multiplicative Holt-Winters Method, [110] 0.26784
Shampoo sales SARIMA, [110] 0.33741
Shampoo sales LSTM, [110] 0.20346
Shampoo sales Prophet, [110] 0.38605
Shampoo sales Baseline LSTM 0.42424
Shampoo sales Baseline GRU 0.16190
Shampoo sales Baseline RNN 0.38741

Shampoo sales Not interpolated,
los2-filter

0.17218

12.2 State-Of-The-Art Hybrid Model Benchmark Results

In this Section we compare our best results from Chapter 11 to state-of-the-art results
from the literature. We take into account all featured results, the corresponding tech-
niques and references from Domingos et. al. [93] and compare our results to them. We
provide results and a comparison for the monthly international airline passengers data
set, Section 7.1; the Canadian lynx data set, Section 7.10; the USD/GBP exchange rate
data set, Section 7.14; and the sunspots data set, Section 7.13.
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12.2.1 Monthly International Airline Passengers

The results from Chapter 9 are performed on a 70%/30% split. Thus, we present addi-
tional results using the first 80% as training data and the remaining 20% as a test data
set to validate our results. For the baseline predictions, we employ the same architecture
as in Section B.1 with 20 input nodes. Still, we use varying numbers of hidden layer
neurons and epochs. We use 30 hidden layer neurons and 40 training epochs for the
LSTM baseline prediction, 26 hidden layer neurons and 44 training epochs for the GRU
baseline prediction, and 100 hidden layer neurons and 60 training epochs for the RNN
prediction.

These results, the baseline predictions, and the best results combining interpolation
techniques, randomly parameterized neural networks, and prediction filters are collected
in Table 12.2. We highlight the best result from the literature and our best one with
a bold font type for better visibility. The best performing approach is the nonlinear
hybrid approach combining ARIMA and MLP, [93]. Our approach did not outperform
the best hybrid results from the literature. Still, it did outperform older ARIMA and
MLP approaches and even some of the featured hybrid approaches.
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Table 12.2: Benchmark, baseline, and randomly parameterized neural network
results for the monthly international airline passengers data set.

Approach RMSE MSE
ARIMA [111–113] 43.8 1918.6

MLP [111–113] 22.5 507.7
Hybrid ARIMA & ANN [111] 22.0 485.7
Hybrid ARIMA & SVR [114] 19.7 388.9

Hybrid ARIMA-ANN and
a moving-average filter[115]

28.2 793.3

Hybrid ARIMA & SVR [116] 20.1 405.4
ETS-ANN [117] 20.0 400.3

ANN [112] 15.9 253.3
Hybrid ARIMA & ANN [113] 16.1 258.8

NoLiC - MLP [118] 16.1 257.9
Nonlinear Hybrid model

ARIMA & MLP [93]
13.0 168.5

Nonlinear Hybrid model
ARIMA & SVR [93]

14.6 211.9

Baseline
LSTM

30.6 936,4

Baseline
GRU

27.6 761,8

Baseline
RNN

26.4 967,0

Fractal interpolated,
7 interpolation points,

loss_rand-filter
18.8 352.5

12.2.2 Canadian Lynx

For this data set, we take into account our best results from Chapter 11, but in contrast,
and in accordance with Domingos et al. [93], we need to transform our data using the
logarithm with base ten to make our results comparable. We do the same for the baseline
predictions and thus adapt our architecture to the transformation. We use 45 hidden
layer neurons and 25 training epochs for the LSTM baseline model, two hidden layer
neurons and 500 training epochs for the GRU baseline model, and 180 hidden layer
neurons and five training epochs for the RNN model.
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All benchmark results, the baseline predictions, and the best results for the randomly
parameterized neural networks are collected in Table 12.3. We highlight the best result
from the literature and our best one with a bold font type for better visibility. The best
result for the Canadian lynx data set is the one from the literature, i.e., the nonlinear
hybrid approach combining ARIMA and MLP [93]. Our approach did not outperform
any of the listed benchmark results but still did outperform all baseline predictions.

Table 12.3: Benchmark, baseline and our best results for the Canadian lynx data
set.

Approach RMSE MSE
ARIMA [111–113] 0.1428 0.0204

MLP [111–113] 0.1428 0.0204
Hybrid ARIMA & ANN [111] 0.1311 0.0172
Hybrid ARIMA & SVR [114] 0.1428 0.0204

Hybrid ARIMA-ANN and
a moving-average filter[115]

0.1367 0.0187

Hybrid ARIMA & SVR [116] 0.1200 0.0144
ETS-ANN [117] 0.1715 0.0294

ANN [112] 0.1166 0.0136
Hybrid ARIMA & ANN [113] 0.0995 0.0099

NoLiC - MLP [118] 0.1229 0.0151
Nonlinear Hybrid model

ARIMA & MLP [93]
0.0854 0.0073

Nonlinear Hybrid model
ARIMA & SVR [93]

0.1005 0.0101

Baseline
LSTM

0.4019 0.1615

Baseline
GRU

0.3478 0.1210

Baseline
RNN

0.3215 0.1034

Linear interpolated,
11 interpolation points,

lyap-filter
0.2746 0.0754
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12.2.3 USD/GBP Exchange Rate

For this data set, we take into account our best results from Chapter 11. In accordance
with Domingos et al. [93], we need to transform our data using the natural logarithm to
make our results comparable. We do the same for the baseline predictions and thus must
adapt our models to the transformation. The new LSTM baseline model uses 35 hidden
layer neurons and 60 training epochs. The GRU baseline model uses three hidden layer
neurons and 500 training epochs. The RNN model uses 180 hidden layer neurons and
five training epochs.

The benchmark results, the baseline predictions, and the best results for the randomly
parameterized neural networks approach are collected in Table 12.4. We highlight the
best result from the literature and our best one with a bold font type for better visibility.
The best model for the USD/GBP exchange rate data set is the nonlinear hybrid ap-
proach combining ARIMA and MLP [93]. Our approach and the baseline predictions are
far off the listed benchmark results. Still, the randomly parameterized neural networks
outperform our baseline predictions.
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Table 12.4: Benchmark, baseline and best results for the USD/GBP exchange data
set.

Approach RMSE MSE·105

ARIMA [111–113] 0.0067 4.5297
MLP [111–113] 0.0067 4.5265

Hybrid ARIMA & ANN [111] 0.0066 4.3590
Hybrid ARIMA & SVR [114] 0.0060 3.5183

Hybrid ARIMA-ANN and
a moving-average filter[115]

0.0061 3.7285

Hybrid ARIMA & SVR [116] 0.0060 3.5944
ETS-ANN [117] 0.0059 3.5313

ANN [112] 0.0061 3.7639
Hybrid ARIMA & ANN [113] 0.0060 3.6477

NoLiC - MLP [118] 0.0057 3.2641
Nonlinear Hybrid model

ARIMA & MLP [93]
0.0056 3.1904

Nonlinear Hybrid model
ARIMA & SVR [93]

0.0058 3.3783

Baseline
LSTM

0.3048 9290

Baseline
GRU

0.1741 3030

Baseline
RNN

0.1291 1670

Stoch. interpolated,
11 interpolation points,

loss_rand-filter
0.0582 338.7243

12.2.4 Sunspots

For this data set, we take into account our best results from Chapter 11.

The benchmark results, the baseline predictions, and the best results combining inter-
polation techniques, randomly parameterized neural networks, and prediction filters are
collected in Table 12.5. We highlight the best result from the literature and our best
one with a bold font type. The best result for the sunspots data set is obtained using
the nonlinear hybrid approach combining ARIMA and MLP [93]. Our approach did not
outperform any of the listed benchmark results.
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The sunspots data set shows strong seasonality and regularities. Our approach does
perform well on similar data sets. Still, our approach is far off from any of the featured
benchmark results. And our best result is the GRU baseline prediction.

Table 12.5: Benchmark, baseline and best results for the sunspots data set.

Approach RMSE MSE
ARIMA [111–113] 17.4 306.0

MLP [111–113] 18.7 351.1
Hybrid ARIMA & ANN [111] 16.7 280.1
Hybrid ARIMA & SVR [114] 17.5 306.8

Hybrid ARIMA-ANN and
a moving-average filter[115]

17.3 300.4

Hybrid ARIMA & SVR [116] 17.3 300.4
ETS-ANN [117] 17.7 312.0

ANN [112] 25.3 234.2
Hybrid ARIMA & ANN [113] 14.8 218.6

NoLiC - MLP [118] 17.6 308.8
Nonlinear Hybrid model

ARIMA & MLP [93]
14.9 222.4

Nonlinear Hybrid model
ARIMA & SVR [93]

14.6 213.4

Baseline
LSTM

68.3 4661.9

Baseline
GRU

51.5 2863.6

Baseline
RNN

80.1 6416.9

Linear interpolated,
15 interpolation points,

Lyap-filter
68.2 6178,0





Chapter 13

Summary and Discussion

This thesis presents concepts combining measures of signal complexity and reconstructed
phase spaces with neural networks to improve autoregressive time series predictions.
Though we used LSTM neural networks, the presented ideas apply to any algorithm
capable of predicting time series data. One can always interpolate the data under study
and filter differently parameterized model predictions.

We tested to what extent one can use interpolation techniques to improve neural net-
works time series predictions to deal with short and/or sparsely sampled time series
data. We developed a fractal interpolation method based on the ideas from the fractal
curve fitting technique, which was developed by Manousopoulos et al. [27]. However,
we incorporated knowledge about the local scaling behavior into the fractal interpola-
tion. Further, we developed an interpolation technique that considers the reconstructed
phase space of a time series and provides an interpolation that guarantees a smooth
phase space trajectory.

We further developed an autoregressive prediction approach based on randomly param-
eterized neural networks. I.e., we do not parameterize a neural network to achieve the
optimal performance for a single data set. Instead, we produce many autoregressive pre-
dictions using randomly parameterized neural networks and filter the predictions based
on their signal complexity and phase space properties.

To develop and test these ideas, we performed four experiments which are discussed in
Chapters 8, 9, 10 and 11. Prediction results from these chapters are compared to state-
of-the-art time series predictions and comparable results from the literature in Chapter
12.
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The first experiment, described in Chapter 8, tests the applicability of the previously
mentioned fractal interpolation and linear interpolation to improve LSTM neural net-
work time series predictions. The results show that both interpolation techniques can
increase the accuracy of the employed neural networks. Here, the fractal interpolation
performs slightly better on unknown data, whereas the linear interpolation provides
better results on the training data. This experiment is done for a single number of
interpolation points. We further analyze the original and the interpolated data’s signal
complexities. We find that both the Hurst exponent and the fractal dimension suggest
that interpolated data sets can be predicted with increased accuracy. In contrast, the
spectrum of Lyapunov exponents indicates the opposite.

Chapter 9 contains the results of the second experiment. This chapter introduces ran-
domly parameterized neural networks and filters based on measures of signal complex-
ity. These filters are used to improve autoregressive ensemble predictions by discarding
"bad" forecasts from the ensemble. I.e., we keep only predictions with a signal complex-
ity close to the complexity of the training data. We perform the prediction experiments
for non-interpolated, linear interpolated, and fractal interpolated time series data and
five different data sets. The errors of final forecasts are evaluated only for the actual
data points and the corresponding predicted data points. The results show that both
the fractal and the linear interpolation increase the accuracy of the prediction. Further,
the employed prediction filters can drastically improve these ensemble predictions. We
also analyzed the data’s complexity properties using five measures of signal complex-
ity. Again, an increasing Hurst exponent and a decreasing entropy suggest increased
predictability for interpolated time series data, whereas the largest Lyapunov exponent
indicates the opposite.

Chapter 10 discusses the applicability of the developed PhaSpaSto interpolation. We
test PhaSpaSto interpolation against linear interpolation, multi-point fractional Brow-
nian bridges, and spline interpolation for its ability to reconstruct missing data points.
The results show that cubic spline interpolation performs best for the Lorenz system,
whereas PhaSpaSto interpolation performs best for real-life data sets that show oscil-
latory behavior. However, for more random data sets, PhaSpaSto interpolation does
not perform well. We also present interpretable phase space portraits that depict the
increased smoothness of the reconstructed phase space trajectory when applying PhaS-
paSto interpolation.

Chapter 11 is the final experiment on the applicability of the developed methods. Here
we are using fractal, linear, and PhaSpaSto interpolated data sets, prediction filters
based on measures of signal complexity, and prediction filters based on the smoothness
of a reconstructed phase space trajectory. The results show that all tested interpolation
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techniques do increase the accuracy of the neural network time series predictions. Also,
depending on the time series data, different filters perform best. The results also show
that the developed approaches do not work for the Lorenz system and data sets that
behave randomly, e.g., financial or stock market data.

The benchmark comparisons discussed in Chapter 12 show that our best results can
outperform basic forecast implementations on data sets that show regularities and sea-
sonality. However, our results are far off for more random data sets compared to state-
of-the-art hybrid models.

13.1 Interpolation Methods and Neural Networks Time
Series Predictions

One aspect of this research is to improve time series prediction for sparsely sampled data
sets. For this reason, we employed a total of three different interpolation techniques.
We consider one of them an overall new development, i.e., the attractor-based stochastic
interpolation presented in Section 5.2, which was named PhaSpaSto interpolation for
simplicity. The other interpolation is a fractal interpolation, which is described in Section
5.1. We used the Hurst exponent to find the vertical scaling factors for this method.
The third employed technique is a basic linear interpolation, [101].

Our experiments demonstrated that all the employed interpolation techniques enhance
the performance of LSTM neural networks for time series predictions. This finding is
consistent with the work of Semenoglou et al. [26]. I.e., we observe that our applied
interpolation techniques can improve the predictability of a given time series. In contrast,
Semenoglou et al. focused on data augmentation in general and showed that all employed
methods can enhance the predictability of a dataset. The individual differences are
bound to varying data sets. Recalling our best results for the benchmark comparison in
the previous chapter, each of the three interpolation techniques is used once for three of
the four best results for the sales data sets, Section 12.1. Chapters 9 and 11 indicate the
same; the choice of the employed interpolation technique seems arbitrary, but one has to
use an interpolation technique to improve the forecasts. However, we must mention that
a non-interpolated data set occasionally provides the best forecast. This arbitrariness
regarding the choice of interpolation techniques is partially caused by the increase in
persistency when interpolating a data set, which means that with increased persistency,
i.e., an increased Hurst exponent and reduced fractal dimension, two consecutive data
points are closer to each other, i.e., more fine-grained. Thus a prediction is never too
far off, and consequently, a robust algorithm/model is better capable of reproducing the
learned behavior autoregressively. This is also discussed in Section 8.4.
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We performed our experiments with varying numbers of interpolation points. We used
only odd numbers of interpolation points for our prediction experiments as the obtained
and then altered fractal curve fitting implementation works with odd numbers of inter-
polation points only1. Also, as the best results from Chapter 9 show, we cannot find
a trend or an indicator for the number of interpolation points for different data sets.
Chapter 10 indicates that PhaSpaSto interpolation requires a certain amount of inter-
polation points to provide a smoothed-out phase space trajectory. Thus we chose the
numbers of interpolation points for the final prediction experiment in Chapter 11 to be
NI = {9, 11, 13, 15}. We had to reduce the number of interpolation points because of the
increased number of different data sets and limited computational resources. Further,
as Chapter 9 suggests, the number of interpolation points is rather arbitrary for the
randomly parameterized neural networks, and the best results, differing in their number
of interpolation points and the type of interpolation, show only minor deviations in the
errors for the best settings. Further, we want to point out that, as far as the author
knows, there’s no exhaustive comparative analysis on neural networks and time series
interpolation. As this wouldn’t be within the scope of this thesis, we didn’t aim to
provide a complete analysis of the topic. However, we need to mention again the work
by Semenoglou [26], which deals with a similar topic, i.e., how data augmentation can
improve the predictability of univariate time series data using neural networks. The
researchers present a variety of data sets and different methods used to increase the
amount of data for univariate time series data, e.g., interpolation similar to the work
presented here. One of the key findings is that the accuracy improvements provided by
data augmentation techniques decrease with the amount of data in the initial data set.
Roughly speaking, long data sets do not need to be augmented and/or interpolated.
We see a tendency towards this in some of our results, i.e., some of the best results for
the NYC measles outbreaks data set (Section 11.4.4), which is the second longest data
set discussed here, are found for the non-interpolated data set. We can only guess the
optimal number of interpolation points for a given data set or determine it by trial and
error. Still, for PhaSpaSto interpolation, we recommend ten interpolation points for
data sets with less than 100 data points to provide a smooth phase space portrait. Of
course, this can vary depending on the data set under study, but it should provide a
first guess on where to start.

1In the newest implementation of the discussed fractal interpolation, [79], we provide an updated
version of this fractal interpolation where one can choose arbitrary numbers of interpolation points.
This updated version was not available when the author performed all the experiments.
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13.2 Measures of Signal Complexity

Throughout our experiments, we employed several measures of signal complexity as
additional criteria for analysis and prediction filters.

When indicating increased predictability, the employed measures of signal complexity are
contradictory to our results. Thus we discuss all employed measures of signal complexity
with respect to our prediction results.

The Hurst exponent and the fractal dimension are similar concepts, such that they can
be linked using dF − 1 = H, [77]. Here dF is the fractal dimension, and H is the Hurst
exponent. The following discussion is on the Hurst exponent, but it approximately holds
for the fractal dimension as well. This connection is also discussed in Section 8.1.

One can use both concepts to analyze the fluctuations of time series. A Hurst exponent
close to one indicates a very persistent, i.e., straight behavior. In contrast, a Hurst
exponent close to zero indicates anti-persistent behavior, i.e., a signal tends to change
direction after each data point. A Hurst exponent close to 0.5 indicates random behavior,
i.e., there is only a 50 : 50 chance for consecutive data points to be in the same direction.
When analyzing the complexity of the employed data sets in Chapters 8 and 9, the
Hurst exponent indicates increased persistency and predictability for interpolated data.
I.e., the persistency increases with the number of interpolation points. This is true for
short-term predictions and linear interpolated time series data. A linear interpolated
time series with five additional data points can be predicted five steps ahead after each
original and first interpolated data point. The first two data points give the slope.
Consequently, the following five data points are in a straight line to the following original
data point. The same is approximately true for spline-interpolated data. We would need
three points to estimate the resulting curve for a quadratic polynomial, four for a cubic
polynomial, and so on. Given the results from Section 10.1.2, we conclude that the
same is approximately true for PhaSpaSto interpolation. This assumption is based on
the observation that PhaSpaSto interpolation performs similarly to the employed cubic
spline interpolation for many data sets.

However, increased predictability is not obvious for the fractal interpolated data. Still,
the employed fractal interpolation connects two consecutive points with data that, in
the end, is somewhat persistent. I.e., the fluctuations of subintervals are smaller than
the overall fluctuations of the data set. This is inherent in choosing the vertical scaling
factors for the fractal interpolation. We want the Hurst exponents of subintervals to
coincide with the Hurst exponent of the interpolated data. When we reduce the observed
time interval, the fluctuations also need to become smaller, similar to zooming in on a
fractal. As we observed increased predictability, i.e., lower errors, for most interpolated
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and filtered predictions, we conclude that the Hurst exponent does indicate increased
predictability. However, we do not observe a drastic increase or approximately functional
dependence on the number of interpolation as is depicted in Figures 9.2, B.1, B.3, B.5
and B.7.

Given that results that are filtered using the Hurst exponent are featured among the
best results in Chapters 9 and 11, we conclude that the Hurst exponent can be used to
characterize time series data such that it can be used as an ensemble filter.

We further need to mention that instead of the Hurst exponent one can choose detrended
fluctuation analysis [119], or wavelet-based methods [120], to measure the long-term
memory of times series data.

The complexity analysis in Chapter 9 shows that Fisher’s information and SVD entropy
depict the same information for time series data. We observe increasing information and
decreasing entropy for growing numbers of interpolation points. This is because both
measures use a single value decomposition and two parameters, i.e., dE and τ , which we
defined to be the data’s phase space embedding. Thus both of these tools, to a certain
extent, measure the density of the data’s phase space embedding. This density increases
with growing numbers of interpolated data points. Therefore, we conclude that both
concepts can indicate increased predictability, similar to the Hurst exponent. Still, we
cannot find this almost functional dependence on the number of additional interpolation
points.

Both SVD entropy and Fisher’s information are featured among the best results in
Chapters 9 and 11. Thus we conclude that both SVD entropy and Fisher’s information
can characterize time series such that we can use them to filter ensemble predictions.

We used the spectrum of Lyapunov exponents for analysis in Chapter 8 and the largest
Lyapunov exponent for analysis in Chapter 9. In both chapters, the largest Lyapunov
exponent, i.e., the first of the spectrum, indicates that linear interpolated data sets
behave more chaotic with increasing numbers of interpolation points. This effect is
diminished for the fractal interpolated data set as it appears to be only slightly more
chaotic than the non-interpolated data set. We interpret a more chaotic behavior with
reduced predictability, which we didn’t observe. In general, interpolation improves our
forecasts. Thus, we conclude that the spectrum of Lyapunov exponents does not in-
dicate the predictability of neural networks for non-model data sets. Still, prediction
filters based on the spectrum of Lyapunov exponents are frequently found among the
best results in Chapters 9 and 11. Thus we conclude that the spectrum of Lyapunov
exponents is capable of characterizing time series such that we can use it as an ensemble
filter.
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We use Shannon’s entropy for analysis in Chapter 9. Shannon’s entropy shows that
the fractal and linear interpolated data sets behave more unpredictably with increasing
numbers of interpolation points. I.e., the entropy increases, which is not what we observe
as interpolated data sets tend to be more predictable than non-interpolated ones. Thus
we conclude that Shannon’s entropy does not depict this behavior. This increase, though,
mainly results from the increase in data points. Because we used the plain version of
Shannon’s entropy, i.e., no binning involved, the probabilities for each occurring event
become less with increasing signal length, and thus Shannon’s entropy increases. This
is also shown in Appendix E.

Still, Shannon’s entropy, as a filter, is featured among the best filtered forecasts in
Chapters 9 and 11. The main reason Shannon’s entropy in its non-continuum adapted
version works well for specific data sets is that it can discard very regular signals with
reoccurring values, shown in Appendix E. However, as also shown in Appendix E, it
does not differentiate between fractional Brownian motions of different Hurst exponents
or the Lorenz system, as these data sets feature continuous data and do, per se, not
provide recurring values. This partially explains why Shannon’s entropy can give good
results in combination with other prediction filters. I.e., Shannon’s entropy discards
periodic and very constant forecasts, and another filter, which might get the periodic
and too-regular behavior wrong because it looks for small lengths like, e.g., a specific
Hurst exponent, will be presented only forecasts that behave in a non-recurring manner,
thus closer to what one would expect from real-life or continuous data. I.e., the randomly
parameterized neural networks produce very regular or even constant signals for certain
data sets. These predictions, in most cases, do not depict relevant information about the
original signal. These forecasts are discarded by the filter based on Shannon’s entropy,
and this consequently results in an improved prediction.

We employed the variance of second derivatives along a reconstructed phase space tra-
jectory for finding smooth phase space interpolations in Chapter 10. We also used this
idea to improve ensemble forecasts in Chapter 11. The ensemble results in Section 11.4
show that the variance of second derivatives can be used to filter ensemble predictions
and thus drastically reduce the errors compared to non-interpolated data sets. Though
this variance has not been used as a measure for predictability or complexity, we suggest
further exploring this in future research. The author guesses that only very similar data
sets can be analyzed using this tool, as it only yields relative values. We want to give two
examples of where one might use this tool. First, one might use this tool for different
excerpts from a long record of financial data and further relate the variance of second
derivatives to other variables and or/predictability. Second, one might use this tool to
compare different records of environmental or agricultural systems to, e.g., give esti-
mates on resilience. Additionally, as demonstrated in Appendix E, various phase space
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embeddings lead to subtle changes in the capability of the variance of second derivatives
to differentiate between distinct signals. Consequently, we recommend future research
to select the phase space embedding for the variance of second derivatives in a way that
ensures optimal separation. At present, we do not know the precise method for choosing
the variance of second derivatives to achieve this optimal separation. However, consid-
ering that separability varies across different signals, we anticipate that it is possible to
identify an ideal phase space embedding to accomplish this goal.

13.3 Computational Resources

The developed randomly parameterized neural networks approach is expensive. This is
due to the multitude of predictions and, consequently, many generated neural networks.

We compare the yield data sets to the USD/GBP exchange time series to estimate how
expensive the approach is. We calculated all neural network results on the TU Wien
GPU cluster. We performed all calculations on an Nvidia Gforce RTX 2080 GPU. It
takes approximately half a day to make 500 predictions for one run of the yield data sets.
I.e., predicting the original, the linear, the fractal, and the PhaSpaSto interpolated time
series data with a fixed number of interpolation points. In contrast, it takes roughly five
days to do the same for the USD/GBP exchange time series. Both time frames depend
slightly on the varying numbers of interpolation points. The yield data sets have 56 and
57 original data points, whereas the USD/GBP exchange data set has 731 data points.
It took approximately 80 days to calculate all results from Chapter 11 on a single GPU.

So, in the end, one can circumvent the problem of parameterizing neural networks by
using this very costly approach. Still, after generating many forecasts, one must choose
the best prediction filter for each problem.

13.4 Issues

We further need to discuss the problems, flaws and issues of the presented work.

Regarding the Applicability of Data Augmentation for Time Series Data:
First, interpolating annual yields and similar data sets does not provide meaningful in-
terpolated data points because a yearly yield can only be observed once a year. Still,
as discussed in [26], we often encounter univariate real-life time series data with low
amounts of data. Data augmentation helps in forecasting such data sets as data aug-
mentation techniques can increase the overall training data required to train machine
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and deep learning algorithms. Other augmentation techniques such as time series com-
binations, random noise injections, bootstrapping, and upsampling make more sense for
annual yield data sets, as they do not assume in-between time steps for yearly yields.
Still, to keep this thesis focused, we did not employ these techniques as we only deal
with univariate time series interpolation as the employed data augmentation technique.
The outcome of the experiments where we used interpolation techniques is similar to
the work presented in [26], as interpolation increases our predictions’ accuracy compared
to the presented baseline, non-interpolated and/or unfiltered results for the two annual
yield data sets. To avoid confusing these results, we need to mention that, though we
trained the employed neural network ensembles on the interpolated data, we evaluated
the predictions only on actual data points, e.g., the future annual yields.

In [121], the researchers argue that data augmentation, and consequently generating
synthetic data, is common in computer vision but less common when dealing with time
series data, e.g., time series classification. This is because time series data is particularly
vulnerable to data transformations, e.g., to distort specific data points or introduce
noise into a time series. Thus, the researchers are employing interpolation techniques
to increase the overall amount of data and show that this is beneficial for deep learning
time series classification, e.g., when dealing with simulated, ECG, and/or sensor data
time series data.

Thus, though it is inherently flawed and meaningless to interpolate annual yield and
similar data sets, data augmentation improves the accuracy of time series prediction in
our examples. Further, it should be tested if this can be extended to time series classi-
fication for such naturally annually occurring observations, whatever the experimental
design might be. We also want to mention that one can use Generative Adversarial Net-
works (GANs) for time series data augmentation [122]. In the author’s opinion, these
GAN-based techniques are promising to increase the amount of data for, e.g., annual
yield data sets, such that these methods can come up with additional data based on,
e.g., other annual yield series.

Regarding the Applicability of Measures of Signal Complexity for Short Time
Series Data: Second, we utilized measures of signal complexity throughout this work
for data sets of arbitrary length. However, this approach leads to challenges in terms of
interpretability and applicability. To numerically demonstrate these issues, we included
Appendix E. In this Appendix, we present the results of a range of experiments, including
all employed measures of signal complexity and five different signals of varying lengths.
This means that we analyze the result of the employed measures of signal complexity
depending on the length of the input data. Our experiments from Appendix E indicate
that all signal complexity measures suffer from significant errors and a strong bias for
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short signals. Consequently, the values of these measures depend on the signal’s length
and become unreliable for shorter signals. This issue is problematic as assigning mean-
ing to a Hurst exponent calculated for a data set with approximately less than 1,000
data points is difficult. Note that this number is a rough estimate based on our results
from Appendix E. At this stage, we cannot specify a reasonable amount of data required
for estimating the Hurst exponent. Our findings also reveal that larger Hurst exponents
tend to be underestimated, and lower Hurst exponents tend to be overestimated for frac-
tional Brownian motions, resulting in a deviation from theoretical predictions. However,
more data is always better for all employed signal complexity measures. Based on our
results, we assume that approximately 5,000 data points will provide reliable values for
all employed measures of signal complexity when comparing and interpreting different
data sets. Despite comparing different complexities throughout this work, each inter-
pretation is subject to significant bias due to small data sets. Therefore, we emphasize
that, within the developed techniques, we used these measures of signal complexity in a
relative manner rather than relying on their absolute interpretability.

Nevertheless, apart from the interpretability and theoretical correctness of the Hurst ex-
ponent and the employed measures of signal complexity in general, they can still enhance
our ensemble forecasts as filters. One evident reason is that our randomly parameterized
neural network predictions generate various forecasts that significantly deviate from the
original signal, often producing a mean or very smooth periodic signals. To some extent,
the employed measures of signal complexity can differentiate between a straight line, a
cosine, a segment from the Lorenz system, or a fractional Brownian motion. However,
distinguishing between fractional Brownian motions with different Hurst exponents of
short length remains challenging for all employed measures of signal complexity, as dis-
cussed in Appendix E. Considering that measures of signal complexity perform better
with increased amounts of data, it becomes clear why filtered interpolated data sets yield
better predictions rather than non-interpolated ones: interpolation expands the length
of the data under study, thus making the various predictions more distinguishable when
employing a prediction filter.

Additionally, it is worth mentioning that further research on this topic is needed. One
way to enhance the filtering process would be to reduce the inherent bias for short signals
within the algorithm used to estimate a signal’s complexity.

Regarding the Rather Minor Influence of Varying Phase Space Embeddings:
Third, PhaSpaSto interpolation provides similar results for different phase space embed-
dings. To illustrate this, we present a numerical experiment in Appendix C.4, showing
that PhaSpaSto interpolation provides very similar results for the Lorenz system for
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varying phase space embeddings. Further, the results are close to a cubic spline inter-
polation for the Lorenz system. Thus, roughly speaking, in this use case PhaSpaSto
interpolation is just a very expensive way to do a spline interpolation, which means
that the chosen phase space embedding does not matter for most problems. However,
when observing the errors on known data points for PhaSpaSto interpolation, we see
increasing errors for an increase in the embedding dimension. Further, we also observe
a decrease in SVD entropy for an increase in the embedding dimension. Thus we cannot
exclude that one might come up with a problem where the phase space embedding for
PhaSpaSto interpolation makes a significant difference.

Regarding the Evaluation of the Presented Prediction Experiments: Fourth,
we employed two approaches throughout this work to assess our results, specifically, to
investigate how interpolation can improve neural network time series predictions on in-
terpolated data. For the experiment from Chapter 8, we interpolated data sets, trained
a neural network on them, and evaluated the predictions for both the actual and the
supplementary data points generated by the interpolation. Further, in this preliminary
experiment, detailed in Chapter 8, we used test fits to assess our prediction outcomes,
meaning that we did not predict the full range of unknown data points but instead had
the neural network predict only the next data point using the original or interpolated
data sets. This experiment revealed that different interpolations contribute to varying
degrees of predictability for neural networks in time series data. However, these results
appear leveled, as later experiments showed that no single interpolation technique is
optimal for all data sets. Instead, different data sets require distinct interpolation tech-
niques for optimal performance and, consequently, various data augmentation techniques
for ideal results. In the subsequent chapters, we evaluated all prediction experiments
exclusively on actual data points without considering additional interpolated points.
Moreover, we assessed the remaining experiments solely for a comprehensive autoregres-
sive prediction of all unknown data.

13.5 Key-Findings

To further sum up this thesis we narrow down everything discussed above to the following
three key findings:

1. The variance of second derivatives along a phase space trajectory can be
used to interpolate univariate time series data and produces a smoother
reconstructed phase space reconstruction.
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This technique is described in Section 5.2 and it’s applicability is shown in Chapters
10, 11.However it’s dependence on the actual chosen phase space embedding is only
minor, as discussed in Appendix B.

2. Neural network time series predictions of short or sparsely sampled
data can be improved by employing linear, fractal, and PhaSpaSto in-
terpolation.

All interpolation techniques are described in Chapter 5 and their applicability to
neural network time series predictions is shown in Chapters 8,9 and 11.

3. Randomly parameterized long short term memory neural networks in
combination with prediction filters, based on reconstructed phase space
properties or measures of signal complexity, can be used to predict
univariate time series data autoregressively.

The randomly parameterized LSTM neural network approach is described in Sec-
tion 6.1.3 and it’s applicability is shown in Chapters Chapters 9 and 11.
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Conclusion

This chapter brings the research findings to a close by, firstly, addressing the research
question; secondly, outlining the author’s contributions; thirdly, discussing the limita-
tions and drawbacks of the developed approaches; and finally, offering suggestions for
future research and related problems.

14.1 Answering the Research Question

In order to answer the research question and provide a straightforward solution to the
stated problem, we first recall the research question and then dissect it into two parts:

To what extent can measures of signal complexity, the entropy of
time series data, and the concept of reconstructed phase spaces
be used to improve machine and deep learning predictions for uni-
variate and short/sparsely sampled time series data?

First, to what extent can the actual prediction of time series data, i.e. an autoregressive
prediction, be improved by using measures of signal complexity and the concept of
reconstructed phase spaces?

Here the answer is given by the developed randomly parameterized LSTM neural network
approach, see Section 6.1.3. We first produce a multitude of different autoregressive
predictions and then filter them based on their phase space (Section 11.3) or complexity
properties (Section 9.3). These ideas outperform the presented baseline predictions
and the corresponding unfiltered predictions. The results are shown and discussed in
Chapters 9 and 11.
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Second, how can be dealt with sparsely sampled data sets? Here the answer is given by
the employed and developed interpolation techniques (Chapter 5). I.e., a linear interpo-
lation, the developed fractal interpolation, and the developed PhaSpaSto interpolation
technique. Here, interpolating the data sets drastically improved the accuracy of the
predictions, Chapters 8, 9 and 11.

14.2 Author’s Contributions

To fully comprehend the author’s contributions and novel ideas within the presented
research, we have compiled a list that outlines the key concepts and the extent to which
the author has introduced new insights and approaches.

• Fractal Interpolation to Improve Neural Network Time Series Forecasts:

The author used the ideas from the work of Manousopolous et al. [27], i.e., to
use the discussed iterated functions system and adjust it using the vertical scaling
factors to interpolate time series data. Here the new contribution is to set these
vertical scaling factors such that it suffices the local scaling behavior of a time
series by taking into account the local Hurst exponent of a time series data, i.e.,
choosing the vertical scaling factors such that the deviation in the local scaling
behavior is minimal. This technique is discussed in Section 5.1.

Further, the author provided evidence that this interpolation technique can im-
prove a neural network time series forecast, which is discussed and shown in Chap-
ters 8, 9 and 11.

• PhaSpaSto Interpolation to Improve Neural Network Time Series Fore-
casts

The author developed an interpolation technique based on multi-point fractional
Brownian bridges, developed by Friedrich et al. [29]. However, the author de-
veloped a way to choose the smoothest of a population of multi-point fractional
Brownian bridges in reconstructed phase space by using a genetic algorithm and
the variance of second derivatives for optimization. This technique is described in
Section 5.2.

Further, the author showed that this interpolation technique can improve neural
network time series predictions, which is shown and discussed in Chapter 11.

• Randomly Parameterized Autoregressive Neural Network Time Series
Predictions and the Corresponding Prediction Filters:
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The author developed an idea to use LSTM neural networks as an ensemble where
each neural network was randomly parameterized and afterward forced to produce
an autoregressive prediction. These predictions are then filtered using a variety of
complexity metrics and the variance of second derivatives to optimize each of these
predictions. The corresponding prediction experiments are described in Chapters
9 and 11.

14.3 Drawbacks and Loose Ends

Concluding the presented research with all featured approaches on combining machine
learning, chaos theory, and measures of signal complexity for time series analysis, we
give a list of several drawbacks and loose ends that popped up during this research:

• We actually don’t know which interpolation technique is best suited to
improve neural network time series predictions.

Like choosing the best machine learning algorithm, it mostly depends on the data
set under study. Thus the author concludes that this might be related to the No
free lunch theorem, [123]. The same is true for the number of interpolation points.

Here the we want to mention that the fractal interpolation from Chapters 8, 9
and 11 produced slightly reduced ensemble errors. Given that, we expect that the
presented fractal interpolation and the multipoint fractional Brownian bridges,
[29], might be used to increase the robustness of autoregressive neural network
time-series predictions. One idea to do and test this assumption would be to
generate several slightly differently interpolated time series from one-time series
and train a neural network with these data sets.

Also, as discussed in [102] and researched by the author, there is no exhaustive
comparative analysis for interpolation techniques to this day. Further, there is
no exhaustive research on interpolation techniques and machine learning for time
series data. Thus many aspects of the connections between interpolation tech-
niques and machine learning and/or neural network time series predictions are not
discussed. Also, this thesis focuses on combining ideas from chaos theory, non-
linear dynamics, and measures of signal complexity with machine learning/neural
networks. We believe that it is evident from our results that one can interpolate
time series data using ideas from nonlinear dynamics and complexity. And con-
sequently, one can use the discussed interpolation techniques to enhance neural
network time series predictions.

• We cannot precisely pin down which prediction filter is the best.
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Though many prediction filters performed well, based on the presented results, the
author guesses that combining two complexity measures is best. One complexity
measure should consider the fluctuations and self-affinity of the data set, e.g., the
Hurst exponent. The other should consider some of its phase space properties,
such as, e.g., Fisher’s information or the SVD entropy, by using a single value
decomposition based on the reconstructed phase space of the data under study.
Another option, taking into into account the phase space properties of a time
series, would be to use the variance of second derivatives along a reconstructed
phase space trajectory.

• We cannot predict the Lorenz system.

Though the stochastic interpolation results for the Lorenz system (Section 10.1.1)
suggest that the right behavior might be found using the developed prediction
filters in Section 11.4, the results are still far off. Other research suggests that
chaotic data sets can to some degree be predicted using neural networks [124], so
the author concludes that the presented approach is best suited for small/sparsely
sampled data sets. Here the author’s guess is, in order to make the presented
ideas applicable to chaotic data, further research on the varying architectures of
randomly parameterized neural networks has to be done.

14.4 Future Research

Finally, given the presented research and the initially mentioned remarks, the author
gives a non-exhaustive list of possible related future research:

• Research on the Variety of Data a Neural Network can (Re-)Produce
and the Robustness of Autoregressive Predictions

It would be fascinating to explore the wide variety of time series data that neural
networks can generate from a trained dataset, i.e. similar to the proposed ran-
odmly parameterized neural networks from Section 6.1.3. For instance, one could
deconstruct the data into different wavelets or search for time series data in the
space of signal complexity that may be inaccessible to neural networks. The au-
thor believes that this might include fractional Brownian motions, which could be
characterized by a combination of a scaling metric, such as the Hurst exponent,
a metric based on singular value decomposition like SVD entropy and/or Fisher’s
information, or a smoothness criterion such as the variance of second derivatives.
However, in the author’s opinion, identifying such a class of time series data would
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require more than one complexity metric to achieve a state space diverse enough
to characterize any type of time series data through clustering.

Moreover, it would be valuable to analyze the robustness of autoregressive neu-
ral network predictions to understand how small deviations can lead to entirely
different behavior for an already trained neural network.

• Application to Sparse Agricultural or Environmental Data:

The concepts introduced in this thesis are applicable to any sparsely sampled uni-
variate non-model time series data. Consequently, when applied to agricultural or
environmental datasets, these methods have the potential to generate meaningful
predictions in cases where conventional neural network approaches may struggle to
capture the data’s inherent patterns. Notably, this includes annually or monthly
measured observables in these domains.

• Expanding Attractor-Based Stochastic Interpolation to Multivariate Data:

The attractor-preserving interpolation method described in Section 5.2, also known
as PhaSpaSto interpolation, can be adapted for multivariate time series data inter-
polation. To achieve this, considerations must be made regarding the time delay,
embedding dimension, and multivariate embedding to ensure compatibility with
the proposed interpolation technique. Since the variance of second derivatives is
utilized in the reconstructed phase space of the Lorenz system, it should, in theory,
be applicable to the actual phase space as well. Nevertheless, further exploration
and discussion on this topic are necessary in future research endeavors.

• Applicability to Diverse Randomly Parameterized Neural Network Ar-
chitectures:

In principle, the ideas presented in this thesis can be adapted to accommodate
various neural network architectures or cell types. Examples of such architectures
include gated recurrent units [89], simple recurrent neural networks, time-delayed
neural networks [18], or even an ensemble consisting of multiple neural network
types.

• A Comprehensive Survey on Time Series Interpolation Techniques, Their
Impact on Signal Complexity, and Their Potential to Enhance Machine
Learning-Based Prediction Approaches:

Despite the lack of a comprehensive comparative analysis for interpolation tech-
niques, as pointed out in [102], we suggest incorporating the complexity analysis of
varying numbers of interpolation points, as demonstrated in Section 9.1, into the
examination of a broad spectrum of interpolation methods. Furthermore, build-
ing on the work presented in [26], we encourage future research to investigate the
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effects of employing a diverse and extensive array of interpolation techniques on
the performance of neural network-based time series predictions.

• Alternative Measures of Signal Complexity:

The approaches presented in this thesis that utilize measures of signal complexity
can be adapted to incorporate different complexity metrics by altering the filtering
process or the fitness function of the two developed interpolation techniques. Some
potential alternatives include:

– Replacing the Hurst exponent with detrended fluctuation analysis (DFA [119])
or wavelet-based methods [120].

– Using the fractal dimension calculated via Higuchi’s algorithm as a poten-
tially useful prediction filter, particularly considering its ability to distinguish
between different signals, as discussed in Appendix E.

– Exploring autocorrelation functions, three-point correlations, and fractional
derivatives as additional options.

– Substituting the employed entropy measures with alternatives such as sample,
range, or approximate entropy, provided that the dataset is sufficiently long
[12, 125–127].
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Author’s Publications

During his research as a Ph.D. candidate, the author published several articles, which,
to some degree, are included in and/or constitute the presented thesis. The following
list gives an overview of the published articles, describes how they fit into the presented
research and/or extend it, and what the author’s role was in each of the publications.
In the following the author refers to the author of the presented thesis.

• Ref. [128], Sebastian Raubitzek and Thomas Neubauer. Machine Learning and
Chaos Theory in Agriculture. ERCIM News, 122, July 2020:

This article discusses how to use ideas from nonlinear dynamics and machine learn-
ing to analyze and predict short time series data as observed in Agriculture for,
e.g., annual yields or other annual or monthly sampled time series data. This
article sums up the initial ideas of the work presented in this thesis. As is often
the case in research, the author’s work developed in a slightly different direction
than initially proposed as it is difficult to obtain long-term time series data from
Austrian agriculture.

The author developed the presented concepts and wrote the first draft. The other
author helped in drafting and finalizing the article.

• Ref. [28], Sebastian Raubitzek and Thomas Neubauer. A fractal interpolation ap-
proach to improve neural network predictions for difficult time series data. Expert
Systems with Applications, 169:114474, 2021. ISSN 0957-4174. doi: 10.1016/
j.eswa.2020.114474. URL http://www.sciencedirect.com/science/article/
pii/S0957417420311234. Visited on 2023-04-20:

A fractal interpolation method is compared to a linear one to improve neural net-
work time series predictions. As described in Section 5.1, the fractal interpolation
method uses the Hurst exponent to match the complexities of given sub-intervals
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of the time series data under study. Further, the neural network architecture is an
LSTM neural network. Furthermore, all results and data are analyzed using the
Hurst exponent, the fractal dimension, and the spectrum of Lyapunov exponents.
The results show that linear and fractal interpolation techniques can significantly
improve neural network predictions. This article presents the results from Chapter
8.

The author developed the initial concept, built all programs, and performed all
experiments and the corresponding evaluation. Further, the author wrote the first
draft of the article. The other author helped in drafting and finalizing the article.

• Ref. [32], Sebastian Raubitzek and Thomas Neubauer. Taming the Chaos in
Neural Network Time Series Predictions. Entropy, 23(11), 2021. ISSN 1099-4300.
doi: 10.3390/e23111424. URL https://www.mdpi.com/1099-4300/23/11/1424.
Visited on 2023-04-20:

The fractal interpolation method from [28] and Section 5.1 is used on five datasets
with varying numbers of interpolation points. Further, these five data sets are
forecasted using randomly parameterized ensembles of LSTM neural networks.
These randomly parameterized ensemble predictions are then filtered using differ-
ent complexity measures: The Hurst exponent, the spectrum of Lyapunov expo-
nents, Fisher’s information, SVD entropy, and Shannon’s entropy. The predictions
can be improved by filtering the ensemble predictions. Further, the predictions
outperformed baseline predictions using LSTM, GRU, and RNN neural network
approaches with one hidden layer. Additionally, all interpolated data sets are an-
alyzed using the mentioned complexity measures. The results of this article are
collected in Chapter 9.

The author developed the original concept and program code and performed all
experiments, the validation, and the writing of the first draft. The other author
helped in drafting and finalizing the article.

• Ref. [129], Sebastian Raubitzek and Thomas Neubauer. Combining measures of
signal complexity and machine learning for time series analyis: A review. Entropy,
23(12), 2021. ISSN 1099-4300. doi: 10.3390/e23121672. URL https://www.mdpi.
com/1099-4300/23/12/1672. Visited on 2023-04-20:

This review article collects many of the publications collected in Chapter 2 to
outline the implications of a combined approach of machine learning and measures
of signal complexity.

The author developed the initial concept, performed the literature review, and the
writing of the first draft. The other author helped in drafting and finalizing the
article.

https://www.mdpi.com/1099-4300/23/11/1424
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• Ref. [130], Sebastian Raubitzek and Thomas Neubauer. An exploratory study on
the complexity and machine learning predictability of stock market data. Entropy,
24(3), 2022. ISSN 1099-4300. doi: 10.3390/e24030332. URL https://www.mdpi.
com/1099-4300/24/3/332. Visited on 2023-04-20:

This article is an exploratory study aiming to identify trends in signal complexity
and predictability in stock market data. Further, the influence of money supply on
stock market data and the corresponding change in signal complexity are discussed.
This article resulted from experimenting with various complexity metrics on how
they can indicate a machine learning algorithm’s accuracy on stock market data
and how the predictability and complexity of stock market data have changed over
the years. The results of this article are not directly part of this thesis, but the
performed research inherently influenced the development of the experiments in
this thesis as the author’s expertise on complexity metrics and the arguments on
the predictability of univariate time series data was partially accumulated during
the work of this article.

The author developed all experimental concepts, did all the coding, performed all
evaluations, and the writing of the first draft. The other author helped in drafting
and finalizing the article.

• Ref. [30], Sebastian Raubitzek, Thomas Neubauer, Jan Friedrich, and Andreas
Rauber. Interpolating strange attractors via fractional brownian bridges. Entropy,
24(5), 2022. ISSN 1099-4300. doi: 10.3390/e24050718. URL https://www.mdpi.
com/1099-4300/24/5/718. Visited on 2023-04-20:

This article introduces the developed PhaSpaSto interpolation from Section 5.2.
and presents all experimental results from Chapter 10. The idea is first to generate
a population of stochastically interpolated time series data using the multipoint
fractional Brownian Bridges from [29] and then apply a genetic algorithm to find
the pieces of the population that constitute a smooth phase space trajectory. Here
a smooth phase space trajectory is found by minimizing the variance of second
derivatives along a given phase space trajectory. The results are validated with
the Lorenz system and a selection of non-model time series data.

The multipoint fractional Brownian Bridges program code was developed by Friedrich
et al. [29]. The author used this program code to develop PhaSpaSto interpola-
tion. Further, the author built all program code, performed all experiments and
evaluations, and the writing of the first draft of the article. The other authors
helped in discussing the initial ideas, the experimental setup, the drafting, and in
finalizing the article.
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• Ref. [31], Sebastian Raubitzek and Thomas Neubauer. Reconstructed phase spaces
and lstm neural network ensemble predictions. Engineering Proceedings, 18(1),
2022. ISSN 2673-4591. doi: 10.3390/engproc2022018040. URL https://www.
mdpi.com/2673-4591/18/1/40. Visited on 2023-04-20:

This conference paper again presents the randomly parameterized neural network
ensemble predictions similar to Ref. [32]. However, we used PhaSpaSto interpola-
tion as an additional technique and filtered the predictions based on the smoothness
of their reconstructed phase space trajectories rather than their signal complexity.
The results show that PhaSpaSto interpolation can be used to improve neural net-
work time series predictions. Further, the second derivative along a reconstructed
phase space trajectory can be used to filter and thus improve ensemble predictions.

This article is an excerpt from Chapter 11 such that it features partial results and
the concepts on how to interpolate and filter predictions.

The author performed all coding, the experiments, and the writing of the first
draft, where the other author contributed to drafting and finalizing the article.

• Ref. [131], Kevin Mallinger, Sebastian Raubitzek, Thomas Neubauer, and Steven
Lade. Potentials and limitations of complexity metrics for the sustainable tran-
sition to Farming 4.0. Current Opinion in Environmental Sustainability, 2022.
Accepted, not yet published:

This publication reviews state-of-the-art research on complexity metrics and re-
constructed phase spaces for earth sciences and related fields. These ideas are
then discussed in the context of machine learning to provide a list of potential
applications to improve data analysis in agriculture and related fields.

The author’s contribution to this review resulted from the author’s research on
the applicability of machine learning methods and complexity in agriculture, as
the author was part of the DILAAG Ph.D. school, which focused on agriculture.
This review collects some initial but discarded ideas for the presented thesis.

The author contributed his expertise on the applicability of machine learning al-
gorithms and complexity in agriculture to the literature review, just as the other
authors contributed their expertise. Further, the author and the other authors
wrote, drafted, and finalized the article collectively.

• Ref. [132],Sebastian Raubitzek, Kevin Mallinger, and Thomas Neubauer. Com-
bining fractional derivatives and machine learning: A review. Entropy, 25(1),
2023. ISSN 1099-4300. doi: 10.3390/e25010035. URL https://www.mdpi.com/
1099-4300/25/1/35. Visited on 2023-04-20:
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This article reviews state-of-the-art combined approaches of fractional, i.e., non-
integer derivatives and non-neural network machine learning. The article catego-
rizes all relevant and referenced publications into three categories, i.e., preprocess-
ing, machine learning, and fractional dynamics, and provides ideas on extending
these ideas.

The reason for writing this article was to get an overview of the possibilities of
using fractional derivatives to improve machine learning approaches. Specifically,
we looked for ideas on extending the techniques presented in this thesis, e.g.,
to develop an interpolation technique taking into account the inherent memory
of a time series by analyzing its spectrum of fractional derivatives or creating a
prediction filter based on fractional derivatives.

For this article, the author of this thesis performed the literature review, the liter-
ature analysis, and the writing of the first draft. The other authors contributed to
improving the discussion on the topic, providing further ideas on the applicability,
and by finalizing and drafting the article.
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Appendix A

Phase Space Embeddings

We discuss the phase space reconstruction for each time series in addition to the theo-
retical foundations given in Chapter 4. We calculate the phase space embeddings using
the method of average mutual information for the time delay, calculating the time delay
based on the autocorrelations of a time series and the false nearest neighbors algorithm
for the embedding dimension; [64], [69]. For each time series, we first calculated the
time delay and afterward, based on the time delay, calculated the embedding dimension.
The results for all data sets are collected in Table A.1.

As these algorithms are considered to be estimates for real-life data sets, we also chose
a third phase space embedding to be τ = 1 and dE = 3, for each time series. The
reason for choosing the third phase space embedding is that this third phase space
embedding provided us with reasonable and interpretable phase space plots for all the
results presented in Chapter 10. Meaning that when we plotted the time series data in
the chosen phase space, we were able to identify smoothed out phase space trajectories
compared to edgy ones, as the plots, in many cases, provided us with sort of a round
attractor structure. All phase space embeddings for all data sets are depicted three
dimensions in the Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10, A.11, A.12,
A.13 and A.14. We did not depict redundant phase space portraits, i.e. if two phase
space portraits were identical we only depicted it once and referenced it twice. All data
sets were normalized to the unit interval for their phase space portraits. Also, data sets
that have a visible increasing trend were detrended by subtracting a linear fit.
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Table A.1: Time delay and embedding dimension calculated using the method of
average mutual information (AMI), the autocorrelation function (AC) and the
method of false nearest neighbors. Numbers in brackets are results where the
employed algorithms didn’t find a suitable time delay and we used the default, i.e.
τ = 1 and dE = 3.

Data τ (AMI) dE (AMI) τ (AC) dE (AC)
Monthly International

Airline Passengers
1 3 3 4

Monthly Mean
Temperature in

Nottingham Castle
2 3 3 4

Perrin Freres
Champagne Sales

1 7 2 5

Car Sales
in Quebec

1 6 2 4

NYC Measles
Outbreaks

7 1 4 1

Annual Wheat
Yields in Austria

1 1 11 1

Annual Maize
Yields in Austria

3 3 5 1

CFE specialty
monthly writing

paper sales
2 1 2 1

Shampoo
Sales

1 1 1 1

Dow Jones
daily close

2 4 (1) (3)

USD/GBP exchange 3 4 (1) (3)
Sunspots 2 1 3 1

Canadian Lynx 5 3 1 1
River Krems discharge 1 1 4 1

−100
−50

0
50

100
150 −100

−50

0
50

100
150

−50

0

50

100

150

(a)

−100
−50

0
50

100
150 −100

−50

0
50

100
150

−50

0

50

100

150

(b)

Figure A.1: Reconstructed phase space trajectories for different time delays for the
monthly international airline passengers data set.
(a): AMI and τ = 1time delay;
(b): ACF time delay;
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Figure A.2: Reconstructed phase space trajectories for different time delays for the
monthly mean temperature in Nottingham castle data set.
(a): AMI time delay;
(b): ACF time delay;
(c): τ = 1;
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Figure A.3: Reconstructed phase space trajectories for different time delays for the
Perrin Freres champagne sales data set.
(a): AMI time delay;
(b): ACF time delay;
(c): τ = 1;
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Figure A.4: Reconstructed phase space trajectories for different time delays for the
car sales in Quebec data set.
(a): AMI and τ = 1 time delay;
(b): ACF time delay;
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Figure A.5: Reconstructed phase space trajectories for different time delays for the
measles cases in NYC data set.
(a): AMI time delay;
(b): ACF time delay;
(c): τ = 1;
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Figure A.6: Reconstructed phase space trajectories for different time delays for the
annual wheat yields in Austria data set.
(a): AMI time delay;
(b): ACF time delay;
(c): τ = 1;
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Figure A.7: Reconstructed phase space trajectories for different time delays for the
annual maize yields in Austria data set.
(a): AMI time delay;
(b): ACF time delay;
(c): τ = 1;
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Figure A.8: Reconstructed phase space trajectories for different time delays for the
CFE specialty writing paper sales data set.
(a): AMI and ACF time delay;
(b): τ = 1;
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Figure A.9: Reconstructed phase space trajectories for the shampoo sales data set,
AMI, ACF and τ = 1 time delay, as all of them are the same for this data set.
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Figure A.10: Reconstructed phase space trajectories for different time delays for the
Dow Jones daily close in 2018 data set.
(a): AMI time delay;
(b): ACF and τ = 1;
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Figure A.11: Reconstructed phase space trajectories for different time delays for the
USD/GBP exchange rate data set.
(a): AMI time delay;
(c):ACF and τ = 1;
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Figure A.12: Reconstructed phase space trajectories for different time delays for the
sunspots data set.
(a): AMI time delay;
(b): ACF time delay;
(c): τ = 1;
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Figure A.13: Reconstructed phase space trajectories for different time delays for the
Canadian lynx data set.
(a): AMI time delay;
(b): ACF time delay;
(c): τ = 1;
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Figure A.14: Reconstructed phase space trajectories for different time delays for the
River Krems discharge data set.
a): ACF time delay;
(b): AMI and τ = 1;



Appendix B

Additional Material Chapter 9

This appendix provides additional material to Chapter 9. Further, as Chapter 9 is based
on [32], all material that is part of [32] but not of Chapter 9 is collected in this Appendix.

Thus, this Appendix provides plots on the varying complexities of interpolated time
series data B.2, and all prediction results that are not provided in Chapter 9.

B.1 Baseline Predictions

Baseline predictions, i.e. a simple RNN, LSTM and GRU (For a discussion of these
methods see Chapter 6), are used to be compared to the obtained randomly paramterized
LSTM ensemble predictions. All three types of neural network layers are reasonable tools
for predicting time series data.

Each baseline prediction was done using a neural network with one hidden layer contain-
ing varying numbers of neurons, i.e. LSTM, GRU or simple RNN neurons. Further, each
neural network was trained with a batch size of 2 and verbose was set to 2. For the ac-
tivation of the recurrent neural network, hard_sigmoid was chosen. And the activation
function of the output layer is relu. For the initialization,glorot_uniform was used for
the LSTM layer, orthogonal was used as the recurrent initializer and glorot_uniform
for the Dense layer. For the LSTM layer the bias was set to use_bias=True, with
a corresponding bias_initializer="zeros". Further, no constraints or regularizers
or drop out criteria were used for the recurrent and the Dense layers. As optimizer
rmsprop was used and, the loss was calculated using mean_squared_error. The output
node returned only one result, i.e., the next time step.
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Table B.1: [110]

Data Architecture Input nodes Hidden Layer Neurons Epochs
ailrine passengers LSTM 20 30 50
airline passengers GRU 20 30 50
airline passengers RNN 20 30 50

Monthly car sales in Quebec LSTM 20 30 45
Monthly car sales in Quebec GRU 20 26 55
Monthly car sales in Quebec RNN 20 30 45

Mean temperature LSTM 20 30 50
Mean temperature GRU 20 30 50
Mean temperature RNN 20 30 50

Perrin Freres champagne sales LSTM 25 33 105
Perrin Freres champagne sales GRU 25 20 55
Perrin Freres champagne sales RNN 20 100 60

CFE specialty writing paper sales LSTM 25 33 104
CFE specialty writing paper sales GRU 25 20 55
CFE specialty writing paper sales RNN 20 100 61

Table B.2: Baseline RMSE for all datasets, LSTM.

Dataset Train Error Test Error Step-by-Step Error
Monthly international

airline passengers
0.04987 0.08960 0.11902

Monthly car sales
in Quebec

0.10666 0.11423 0.11269

Monthly mean
air temperature

in Nottingham Castle
0.06874 0.06193 0.05931

Perrin Freres monthly
champagne sales

0.05589 0.05978 0.06915

CFE specialty
monthly writing

paper sales
0.06282 0.20740 0.21451

Table B.3: Baseline RMSE for all datasets, GRU.

Dataset Train Error Test Error Step-by-Step Error
Monthly international

airline passengers
0.04534 0.07946 0.10356

Monthly car sales
in Quebec

0.10493 0.11166 0.11170

Monthly mean
air temperature

in Nottingham Castle
0.07048 0.06572 0.06852

Perrin Freres monthly
champagne sales

0.06276 0.05214 0.06506

CFE specialty
monthly writing

paper sales
0.06470 0.20859 0.21653
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Table B.4: Baseline RMSE for all datasets, RNN.

Dataset Train Error Test Error Step-by-Step Error
Monthly international

airline passengers
0.05606 0.08672 0.10566

Monthly car sales
in Quebec

0.08950 0.11585 0.11827

Monthly mean
air temperature

in Nottingham Castle
0.07467 0.07008 0.06588

Perrin Freres monthly
champagne sales

0.06178 0.05685 0.07313

CFE specialty
monthly writing

paper sales
0.06971 0.21610 0.21086

B.2 Complexity plots for all data sets
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Figure B.1: Plots for Fisher’s information, the Hurst exponent and SVD entropy
depending on the number of interpolation points for the non-interpolated, the fractal
interpolated and the linear-interpolated data, car sales in Quebec data set.
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Figure B.2: Plots for the Largest Lyapunov exponent and Shannon’s entropy
depending on the number of interpolation points for the non-interpolated, the fractal
interpolated and the linear-interpolated data, monthly car sales in Quebec data set.
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Figure B.3: Plots for Fisher’s information, the Hurst exponent and SVD entropy
depending on the number of interpolation points for the non-interpolated, the fractal
interpolated and the linear-interpolated data, monthly mean temperature in
Nottingham castle data set.
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Figure B.4: Plots for the Largest Lyapunov exponent and Shannon’s entropy
depending on the number of interpolation points for the non-interpolated, the fractal
interpolated and the linear-interpolated data, monthly mean temperature in
Nottingham castle data set.

2 4 6 8 10 12 14 16

number of interpolation points

0.4

0.5

0.6

0.7

0.8

0.9

F
is

h
e
r'

s
 i
n
fo

rm
a
ti

o
n

Fisher's information, not interpolated

Fisher's information, fractal interpolated

Fisher's information, linear interpolated

2 4 6 8 10 12 14 16

number of interpolation points

0.70

0.75

0.80

0.85

0.90

H
u
rs

t 
e
x
p
o
n
e
n
t

Hurst exponent, not interpolated

Hurst exponent, fractal interpolated

Hurst exponent, linear interpolated

2 4 6 8 10 12 14 16

number of interpolation points

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
V

D
 e

n
tr

o
p
y

SVD entropy, not interpolated

SVD entropy, fractal interpolated

SVD entropy, linear interpolated

Figure B.5: Plots for Fisher’s information, the Hurst exponent and SVD entropy
depending on the number of interpolation points for the non-interpolated, the fractal
interpolated and the linear-interpolated data, Perrin Freres monthly champagne sales
data set.
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Figure B.6: Plots for the Largest Lyapunov exponent and Shannon’s entropy
depending on the number of interpolation points for the non-interpolated, the fractal
interpolated and the linear-interpolated data, Perrin Freres monthly champagne sales
data set.
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Figure B.7: Plots for Fisher’s information, the Hurst exponent and SVD entropy
depending on the number of interpolation points for the non-interpolated, the fractal
interpolated and the linear-interpolated data, CFE specialty monthly writing paper
sales data set.
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Figure B.8: Plots for the Largest Lyapunov exponent and Shannon’s entropy
depending on the number of interpolation points for the non-interpolated, the fractal
interpolated and the linear-interpolated data, CFE specialty monthly writing paper
sales data set.
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B.3 Error Tables

Table B.5: Error table for the monthly car sales in Quebec dataset. The bold
results are the three best ones for this dataset.

Interpolation Technique # of Interpolation Points Filter Error

non-interpolated - shannon fisher 0.08814 ± 0.01496

non-interpolated - shannon svd 0.08814 ± 0.01496

non-interpolated - fisher hurst 0.09098 ± 0.01511

non-interpolated - svd hurst 0.09098 ± 0.01511

non-interpolated - fisher 0.09932 ± 0.00602

fractal-interpolated 13 shannon fisher 0.08099 ± 0.00961

fractal-interpolated 13 shannon svd 0.08099 ± 0.00961

fractal-interpolated 9 lyap hurst 0.08585 ± 0.01546

fractal-interpolated 17 fisher lyap 0.08659 ± 0.01869

fractal-interpolated 17 svd lyap 0.08659 ± 0.01869

linear-interpolated 11 lyap hurst 0.07567 ± 0.03563

linear-interpolated 7 fisher 0.08500 ± 0.02254

linear-interpolated 7 fisher svd 0.08500 ± 0.02254

linear-interpolated 7 fisher shannon 0.08500 ± 0.02254

linear-interpolated 5 svd 0.08500 ± 0.02254

Table B.6: Error table for the monthly mean air temperature in Nottingham
dataset. The bold results are the three best ones for this dataset.

Interpolation Technique # of Interpolation Points Filter Error

non-interpolated - shannon fisher 0.05728 ± 0.00418

non-interpolated - fisher svd 0.05877 ± 0.01496

non-interpolated - svd 0.05877 ± 0.01496

non-interpolated - svd shannon 0.05877 ± 0.01496

non-interpolated - shannon fisher 0.05901 ± 0.00263

fractal-interpolated 1 shannon svd 0.05724 ± 0.00495

fractal-interpolated 7 shannon hurst 0.05873 ± 0.00684

fractal-interpolated 5 shannon lyap 0.05943 ± 0.01648

fractal-interpolated 7 fisher hurst 0.05946 ± 0.00519

fractal-interpolated 3 hurst 0.05998 ± 0.00544

linear-interpolated 3 lyap hurst 0.05625 ± 0.00632

linear-interpolated 7 lyap fisher 0.05635 ± 0.00481

linear-interpolated 3 hurst 0.05742 ± 0.00623

linear-interpolated 7 lyap svd 0.05786 ± 0.00511

linear-interpolated 3 svd lyap 0.05862 ± 0.00416
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Table B.7: Error table for the Perrin Freres monthly champagne sales dataset. The
bold results are the three best ones for this dataset.

Interpolation Technique # of Interpolation Points Filter Error

non-interpolated - shannon fisher 0.06383 ± 0.02706

non-interpolated - shannon svd 0.06383 ± 0.02706

non-interpolated - hurst fisher 0.07245 ± 0.01571

non-interpolated - hurst svd 0.07387 ± 0.01695

non-interpolated - hurst lyap 0.07403 ± 0.01740

fractal-interpolated 13 fisher hurst 0.04968 ± 0.02155

fractal-interpolated 13 svd hurst 0.04968 ± 0.02155

fractal-interpolated 11 shannon hurst 0.05001 ± 0.01416

fractal-interpolated 17 hurst lyap 0.05166 ± 0.01066

fractal-interpolated 13 hurst 0.05386 ± 0.0154

linear-interpolated 17 hurst 0.05449 ± 0.0280

linear-interpolated 17 hurst shannon 0.05449 ± 0.0280

linear-interpolated 9 fisher 0.05730 ± 0.03250

linear-interpolated 9 fisher shannon 0.05730 ± 0.03250

linear-interpolated 9 svd fisher 0.05730 ± 0.03250

Table B.8: Error table for the CFE specialty monthly writing paper sales dataset.
The bold results are the three best ones for this dataset.

Interpolation Technique # of Interpolation Points Filter Error

non-interpolated - shannon fisher 0.18996 ± 0.00957

non-interpolated - shannon svd 0.19200 ± 0.01041

non-interpolated - hurst fisher 0.19314 ± 0.01057

non-interpolated - hurst svd 0.19314 ± 0.01057

non-interpolated - fisher hurst 0.19328 ± 0.01021

fractal-interpolated 5 fisher lyap 0.17685 ± 0.00601

fractal-interpolated 5 svd lyap 0.17685 ± 0.00601

fractal-interpolated 5 lyap hurst 0.18138 ± 0.00939

fractal-interpolated 1 hurst fisher 0.18332 ± 0.00751

fractal-interpolated 1 hurst svd 0.18332 ± 0.00751

linear-interpolated 7 hurst fisher 0.17651 ± 0.01096

linear-interpolated 7 hurst svd 0.17651 ± 0.01096

linear-interpolated 15 shannon lyap 0.18026 ± 0.00973

linear-interpolated 3 shannon hurst 0.18149 ± 0.01623

linear-interpolated 7 fisher lyap 0.18201 ± 0.00619
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B.4 Prediction Plots

Figure B.9: Best results monthly airline passengers dataset. The orange lines show
the remaining ensemble predictions after filtering, the red line is the averaged
ensemble prediction. Left to right: linear-interpolated, 3 interpolation points,
Shannon entropy and SVD entropy filter, error: 0.03542 ± 0.00625;
fractal-interpolated, 1 interpolation point, Fisher’s information and Hurst exponent
filter, error: 0.03597 ± 0.00429; fractal-interpolated, 1 interpolation point, SVD
entropy and Hurst exponent filter, error: 0.03597 ± 0.00429.

Figure B.10: Best results monthly car sales in Quebec dataset. The orange lines
show the remaining ensemble predictions after filtering, the red line is the averaged
ensemble prediction. Left to right: linear-interpolated, 11 interpolation points,
Lyapunov exponents and Hurst exponent filter, error: 0.097567 ± 0.03563;
fractal-interpolated, 13 interpolation points, Shannon’s entropy and Fisher’s
information filter, error: 0.08099 ± 0.00961; fractal-interpolated, 13 interpolation
points, Shannon’s entropy and SVD entropy filter, error: 0.08099 ± 0.00961.
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Figure B.11: Best results monthly mean temperatures in Nottingham castle
dataset. The orange lines show the remaining ensemble predictions after filtering, the
red line is the averaged ensemble prediction. Left to right: linear-interpolated, 3
interpolation points, Lyapunov exponents and Hurst exponent filter, error: 0.05625 ±
0.00632; linear-interpolated, 7 interpolation points, Lyapunov exponent and Fisher’s
information filter, error: 0.05635 ± 0.00481; fractal-interpolated, 1 interpolation
point, Shannon’s entropy and SVD entropy filter, error:0.05724 ± 0.00495.

Figure B.12: Best results for the Perrin Freres monthly champagne sales dataset.
The orange lines show the remaining ensemble predictions after filtering, the red line
is the averaged ensemble prediction. Left to right: fractal-interpolated, 13
interpolation points, Fisher’s information and Hurst exponent filter, error: 0.04968 ±
0.02155; fractal-interpolated, 13 interpolation points, SVD entropy and Hurst
exponent filter, error: 0.04968 ± 0.02155; fractal-interpolated, 11 interpolation point,
Shannon’s entropy and Hurst exponent filter, error: 0.05001 ± 0.01416.
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Figure B.13: Best results CFE specialty monthly writing paper sales dataset. The
orange lines show the remaining ensemble predictions after filtering, the red line is the
averaged ensemble prediction. Left to right: linear-interpolated, 7 interpolation
points, Hurst exponent and Fisher’s information filter, error: 0.17651 ± 0.01096;
fractal-interpolated, 7 interpolation points, Hurst exponent and SVD entropy filter,
error: 0.17651 ± 0.01096; fractal-interpolated, 5 interpolation points, Fisher’s
information and Lyapunov exponents filter, error: 0.17685 ± 0.00601.
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B.5 Baseline Predictions
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Figure B.14: Baseline predictions for each dataset, LSTM.
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Figure B.15: Baseline predictions for each dataset, GRU.
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Figure B.16: Baseline predictions for each dataset, RNN.

B.6 Unfiltered Ensemble Prediction Errors

Table B.9: Unfiltered ensemble prediction errors for all data sets, fractal
interpolated

# of
interpolation

points

Monthly
international

airline passengers

Monthly
car sales

in Quebec

Monthly mean
air temperature in
Nottingham Castle

Perrin Freres
monthly

champagne sales

CFE specialty
monthly writing

paper sales
0 0.16771±0.01537 0.20779±0.03961 0.28503±0.04816 0.20641±0.05741 0.38041±0.05203
1 0.16076±0.01917 0.20239±0.04121 0.31272±0.04877 0.19946±0.06391 0.38070±0.05338
3 0.16487±0.01758 0.18964±0.04448 0.30624±0.05029 0.18770±0.07113 0.38474±0.05309
5 0.15347±0.01988 0.18814±0.04654 0.30236±0.05090 0.18858±0.07011 0.37807±0.05443
7 0.15710±0.02002 018252±0.04657 0.30020±0.05112 0.18439±0.07311 0.37935±0.05479
9 0.14610±0.02088 0.17944±0.04784 0.29381±0.05185 0.17920±0.07327 0.39043±0.05280

11 0.15410±0.02082 0.18092±0.04787 0.30588±0.05123 0.18487±0.07284 0.36708±0.05583
13 0.15361±0.02014 0.17582±0.04781 0.30105±0.05151 0.18408±0.07380 0.39382±0.05228
15 0.15359±0.02091 0.17476±0.04773 0.31103±0.05033 0.17973±0.07522 0.39385±0.05276
17 0.16245±0.02004 0.17571±0.04754 0.30171±0.05125 0.18219±0.07404 0.37625±0.05515
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Table B.10: Unfiltered ensemble prediction errors for all data sets, linear
interpolated

# of
interpolation

points

Monthly
international

airline passengers

Monthly
car sales

in Quebec

Monthly mean
air temperature in
Nottingham Castle

Perrin Freres
monthly

champagne sales

CFE specialty
monthly writing

paper sales
0 0.16771±0.01537 0.20779±0.03961 0.28503±0.04816 0.20641±0.05741 0.38041±0.05203
1 0.16294±0.01917 0.20283±0.04332 0.26516±0.05052 0.21457±0.06303 0.36967±0.05309
3 0.15199±0.01758 0.19681±0.04584 0.29448±0.05088 0.19397±0.0691 0.37922±0.05435
5 0.15088±0.01988 0.17882±0.04761 0.27367±0.05107 0.19438±0.07132 0.35778±0.05520
7 0.14553±0.02002 0.17105±0.04771 0.28405±0.05130 0.18642±0.07327 0.37685±0.05533
9 0.15033±0.02088 0.18831±0.04813 0.28135±0.05186 0.20273±0.07183 0.35956±0.05501

11 0.15664±0.02082 0.18738±0.04832 0.28566±0.05130 0.18151±0.07370 0.38573±0.05557
13 0.15459±0.02014 0.17700±0.04855 0.30069±0.05168 0.19560±0.07281 0.38573±0.05504
15 0.15090±0.02091 0.18368±0.04825 0.30349±0.05114 0.19760±0.07235 0.38506±0.05515
17 0.15428±0.02004 0.18468±0.04903 0.28451±0.05208 0.18838±0.07347 0.36044±0.05591
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C.1 Additional Plots

This section provides additional plots for all data sets discussed in Section 10.1.2. As such
we plotted the evolution of errors for the validation depending on the varying number of
interpolation points, i.e. the errors from Tables 10.2, 10.3, 10.4, 10.5 and 10.6. Further,
we added each time series and the corresponding best validation interpolation, and the
corresponding phase space plots.

The last part of this appendix discusses how different phase space embeddings influence
PhaSpaSto interpolation.

207



Additional Material Chapter 10 Appendix C Additional Material Chapter 10

C.1.1 Evolution of Errors
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Figure C.1: Evolution of errors depending on the number of interpolation points for
the non-model data validation.
(a): Measles cases in NYC data set, results from Table 10.2;
(b): Car Sales in Quebec data set, results from Table 10.3;
(c): Perrin Freres champagne sales data set, results from Table 10.4;
(d): Monthly international airline passengers data set, results from Table 10.5;
(e): Monthly mean temperature in Nottingham castle data set, results from Table
10.6;
(f): Shampoo sales data set, results from Table 10.7;
(e): Annual maize yields in Austria data set, results from Table 10.8;
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C.1.2 NYC Measles Outbreaks
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Figure C.2: Interpolated validation data (25 interpolation points) for the measles
cases in NYC data set.
(a): Average population validation;
(b): Validation, linear interpolation;
(c): Validation, spline interpolation;
(d): Validation, best random interpolation;
(e): Validation, gen. alg. improved interpolation;
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Figure C.3: Reconstructed validation attractors (25 interpolation points) for the
measles cases in NYC data set.
(a): Reconstructed attractor, average population validation interpolation;
(b): Reconstructed attractor, linear interpolation;
(c): Reconstructed attractor, spline interpolation;
(d): Reconstructed attractor, best random validation interpolation;
(e): Reconstructed attractor, gen. alg. improved validation interpolation;
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C.1.3 Car Sales in Quebec
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Figure C.4: Interpolated validation data (one interpolation point) for the car sales
in Quebec data set.
(a): Average population validation;
(b): Validation, linear interpolation;
(c): Validation, spline interpolation;
(d): Validation, best random interpolation;
(e): Validation, gen. alg. improved interpolation;



Additional Material Chapter 10 Appendix C Additional Material Chapter 10

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6
0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6
0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b)

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6
0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c)

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6
0.8

1.0

0.0

0.2

0.4

0.6

0.8

(d)

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6
0.8

1.0

0.2

0.4

0.6

0.8

1.0

(e)

Figure C.5: Reconstructed validation attractors (one interpolation point) for the car
sales in Quebec data set.
(a): Reconstructed attractor, average population validation interpolation;
(b): Reconstructed attractor, linear interpolation;
(c): Reconstructed attractor, spline interpolation;
(d): Reconstructed attractor, best random validation interpolation;
(e): Reconstructed attractor, gen. alg. improved validation interpolation;
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C.1.4 Perrin Freres Champagne Sales
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Figure C.6: Interpolated validation data (seven interpolation points) for the Perrin
Freres champagne sales data set.
(a): Average population validation;
(b): Validation, linear interpolation;
(c): Validation, spline interpolation;
(d): Validation, best random interpolation;
(e): Validation, gen. alg. improved interpolation;
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Figure C.7: Reconstructed validation attractors (seven interpolation points) for the
Perrin Freres champagne sales data set.
(a): Reconstructed attractor, average population validation interpolation;
(b): Reconstructed attractor, linear interpolation;
(c): Reconstructed attractor, spline interpolation;
(d): Reconstructed attractor, best random validation interpolation;
(e): Reconstructed attractor, gen. alg. improved validation interpolation;
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C.1.5 Monthly Airline Passengers
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Figure C.8: Interpolated validation data (three interpolation points) for the
monthly international airline passengers data set.
(a): Average population validation;
(b): Validation, linear interpolation;
(c): Validation, spline interpolation;
(d): Validation, best random interpolation;
(e): Validation, gen. alg. improved interpolation;
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Figure C.9: Reconstructed validation attractors (three interpolation points) for the
monthly international airline passengers data set.
(a): Reconstructed attractor, average population validation interpolation;
(b): Reconstructed attractor, linear interpolation;
(c): Reconstructed attractor, spline interpolation;
(d): Reconstructed attractor, best random validation interpolation;
(e): Reconstructed attractor, gen. alg. improved validation interpolation;
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C.1.6 Monthly Mean Temperature in Nottingham Castle
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Figure C.10: Interpolated validation data (one interpolation point) for the monthly
mean temperature in Nottingham castle data set.
(a): Average population validation;
(b): Validation, linear interpolation;
(c): Validation, spline interpolation;
(d): Validation, best random interpolation;
(e): Validation, gen. alg. improved interpolation;
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Figure C.11: Reconstructed validation attractors (one interpolation point)for the
monthly mean temperature in Nottingham castle data set.
(a): Reconstructed attractor, average population validation interpolation;
(b): Reconstructed attractor, linear interpolation;
(c): Reconstructed attractor, spline interpolation;
(d): Reconstructed attractor, best random validation interpolation;
(e): Reconstructed attractor, gen. alg. improved validation interpolation;
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C.1.7 Shampoo Sales
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Figure C.12: Interpolated validation data (one interpolation point) for the monthly
mean temperature in Nottingham castle data set.
(a): Average population validation;
(b): Validation, linear interpolation;
(c): Validation, spline interpolation;
(d): Validation, best random interpolation;
(e): Validation, gen. alg. improved interpolation;
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Figure C.13: Reconstructed validation attractors (one interpolation point)for the
monthly mean temperature in Nottingham castle data set.
(a): Reconstructed attractor, average population validation interpolation;
(b): Reconstructed attractor, linear interpolation;
(c): Reconstructed attractor, spline interpolation;
(d): Reconstructed attractor, best random validation interpolation;
(e): Reconstructed attractor, gen. alg. improved validation interpolation;
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C.1.8 Annual Maize Yields
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Figure C.14: Interpolated validation data (one interpolation point) for the monthly
mean temperature in Nottingham castle data set.
(a): Average population validation;
(b): Validation, linear interpolation;
(c): Validation, spline interpolation;
(d): Validation, best random interpolation;
(e): Validation, gen. alg. improved interpolation;
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Figure C.15: Reconstructed validation attractors (one interpolation point)for the
monthly mean temperature in Nottingham castle data set.
(a): Reconstructed attractor, average population validation interpolation;
(b): Reconstructed attractor, linear interpolation;
(c): Reconstructed attractor, spline interpolation;
(d): Reconstructed attractor, best random validation interpolation;
(e): Reconstructed attractor, gen. alg. improved validation interpolation;

C.2 Failed Attempts

This section provides additional material for failed attempts to find a smooth phase
space trajectory. For this reason, we provide additional plots (Figure C.16) and the
corresponding errors for the Lorenz system in Table C.1. These attempts for different
loss functions include:
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• Minimizing the nearest neighbour distance between phase space points.

• Minimizing the mean of first-order derivatives along the phase space trajectory.

• Minimizing the variance of first-order derivatives along the phase space trajectory.

• Minimizing the mean of second order derivatives along the phase space trajectory.

Table C.1: Errors for the interpolated data on the Lorenz system for 14
interpolation points and different loss functions. The Errors are shown for the mean
interpolation of all populations, the lowest error in the population, and the
interpolation that was improved using the presented genetic algorithm. Further, we
give the percentage of how much of the population is outperformed by the genetic
algorithm improved interpolation. Here, one can see that only methods including the
second derivatives performed well. Further, the variance of second-order derivatives
along the phase space trajectory performed best.

Loss
Function

→
Nearest

Neighbour
Distance

First
Derivative

Mean

First
Derivative
Variance

Second
Derivative

Mean

Second
Derivative
Variance

RMSE
Population

Mean
0.90686

Lowest
RMSE in

population
0.18632

RMSE
gen. alg.
improved

1.13779 0.67649 0.54291 0.19274 0.18626

Below
Best %

73.9% 62.9% 55.5 4.2% 0.1%
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Figure C.16: Reconstructed attractors for the interpolated Lorenz system for
different loss functions.
(a): Nearest neighbour distance loss function;
(b): First derivative mean loss function;
(c): First derivative variance loss function;
(d): second derivative mean loss function;

C.3 Loss Surface

We present the loss surface for the Lorenz attractor in Figure C.17 from two perspectives.
The orange dot marks the actual embedding of the Lorenz system. The plot suggests
that the correct phase space embedding is located in an area where the loss surface
flattens out. At this point, we did not check for possible ways to locate the correct
phase space embedding in the loss surface. Future approaches might find ways to do so.
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(a) (b)

Figure C.17: Loss surface for the Lorenz attractor.
(a) and (b) both show the same surface from different angles. This is the employed
loss function (Section 5.2.2) depending on a varying embedding dimension and time
delay. The orange dot marks the correct embedding dimension and time delay.

C.4 Dimension and Time Delay Dependence

Our results show that PhaSpaSto interpolation provides results very close to a cubic
spline interpolation. However, these results are not exactly a cubic spline interpolation.
These interpolations differ slightly, not only from the cubic spline interpolation but
also from the actual data points. Further, they also vary depending on the embedding
dimension and the time delay. We depict this by the following experiment:

We take an excerpt from the Lorenz system (Section 7.15) with varying data points where
we delete data points according to different numbers of interpolation points so that we’re
left with 100 data points. These "gaps" are then filled using PhaSpaSto-interpolation.
We chose varying τ and dE , where τ, dE ∈ (1, 2, 3, 4, 5, 6, 7). Thus generated 49 dif-
ferent interpolations for the same data set. Additionally, we chose different numbers
of interpolation points to verify that our findings do not hold for only one case, i.e.,
NI ∈ {11, 13, 15, 17, 19, 21}. Finally, PhaSpaSto-interpolation was performed such that
we do not consider the artifacts at the end of each phase space embedding calculation and
evaluation, i.e., where the time series is periodically wrapped around, and deactivated
mutation, to see if different embeddings choose different interpolations.

First, as depicted in Figure C.18 we see that the original data (black dashed line) and
the cubic spline interpolation differ both differ from all PhaSpaSto-interpolation (the
remaining colorful lines). Further, we see that all the PhaSpaSto-interpolated data
sets also vary slightly. However, we cannot conclude how the different interpolations
differ based on this plot. To show how these interpolations differ from the original
data set and the employed cubic spline interpolation, we plotted the evolution of errors
depending on a varying embedding dimension, depicted in Figure C.19 for different time
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delays. We see that, though the cubic spline interpolation performs best, there is a
dependence on the embedding dimension for different time delays. Further magnifying
this makes this dependence obvious, which is on the right side of Figure C.19, i.e.,
the RMSE increases with increasing embedding dimension. Finally, we also calculated
SVD entropy for different interpolations, showing a decreasing entropy with increasing
embedding dimension for all tested time delays, which is depicted in Figure C.20.

98.0 98.5 99.0 99.5 100.0

t

4

5

6

7

8

x
(t

)

Figure C.18: Excerpt from the Lorenz system to show the difference between the
cubic spline and PhaSpaSto-interpolation; 15 interpolation points; The black dashed
line is the original data set, the red dot-dashed line is the cubic spline interpolation,
and the multitude of multi-colored lines depicts the 49 different
PhaSpaSto-interpolations. These lines are very close to each other, so depending on
the resolution of this thesis, they might give a thick purple line.
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Figure C.19: RMSE for varying time delay and embedding dimension for 15
interpolation points.
(a) and (b) both show the same PhaSpaSto-interpolation but (a) also shows cubic
spline interpolation as a baseline. This baseline does not depend on whether time
delay, or embedding dimension and was plotted as a constant for reference; tau
denotes τ
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Figure C.20: SVD entropy for varying time delay and embedding dimension for 15
interpolation points.
(a) and (b) both show the same PhaSpaSto-interpolation but (a) also shows cubic
spline interpolation and the original data set as baselines. These baselines do not
depend on time delay, or embedding dimension and were plotted as constants for
reference; tau denotes τ

We thus conclude that, though PhaSpaSto-interpolation provides results close to a cubic
spline interpolation, there is a small difference in these interpolations. Namely, the cubic
spline is closer to the original time series, and PhaSpaSto provides a sharper interpolation
as the curvature around peak points increases. Further, though different PhaSpaSto-
interpolations are very close to each other, they slightly depend on time delay and
embedding dimension. In the author’s opinion, this won’t matter for most use cases,
but given the sensitivity of chaotic systems to initial conditions, one might come up with
an example where these differences matter.

The plots for all other interpolation points are plotted in the following Figures C.21-C.30.
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Figure C.21: RMSE for varying time delay and embedding dimension for 11
interpolation points.
(a) and (b) both show the same PhaSpaSto-interpolation but (a) also shows cubic
spline interpolation as a baseline. This baseline does not depend on time delay or
embedding dimension and is plotted as a constant for reference; tau denotes τ
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Figure C.22: SVD entropy for varying time delay and embedding dimension for 11
interpolation points.
(a) and (b) both show the same PhaSpaSto-interpolation but (a) also shows cubic
spline interpolation and the original data set as baselines. These baselines do not
depend on time delay or embedding dimension and are plotted as constants for
reference; tau denotes τ
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Figure C.23: RMSE for varying time delay and embedding dimension for 13
interpolation points.
(a) and (b) both show the same PhaSpaSto-interpolation but (a) also shows cubic
spline interpolation as a baseline. This baseline does not depend on time delay or
embedding dimension and is plotted as a constant for reference; tau denotes τ
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Figure C.24: SVD entropy for varying time delay and embedding dimension for 13
interpolation points.
(a) and (b) both show the same PhaSpaSto-interpolation but (a) also shows cubic
spline interpolation and the original data set as baselines. These baselines do not
depend on time delay or embedding dimension and are plotted as constants for
reference; tau denotes τ
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Figure C.25: RMSE for varying time delay and embedding dimension for 17
interpolation points.
(a) and (b) both show the same PhaSpaSto-interpolations but (a) also shows cubic
spline interpolation as a baseline. This baseline does not depend on time delay or
embedding dimension and is plotted as a constant for reference; tau denotes τ
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Figure C.26: SVD entropy for varying time delay and embedding dimension for 17
interpolation points.
(a) and (b) both show the same PhaSpaSto-interpolation but (a) also shows cubic
spline interpolation and the original data set as baselines. These baselines do not
depend on time delay or embedding dimension and are plotted as constants for
reference; tau denotes τ
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Figure C.27: RMSE for varying time delay and embedding dimension for 19
interpolation points.
(a) and (b) both show the same PhaSpaSto-interpolation but (a) also shows cubic
spline interpolation as a baseline. This baseline does not depend on time delay or
embedding dimension and is plotted as a constant for reference; tau denotes τ
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Figure C.28: SVD entropy for varying time delay and embedding dimension for 19
interpolation points.
(a) and (b) both show the same PhaSpaSto-interpolation but (a) also shows cubic
spline interpolation and the original data set as baselines. These baselines do not
depend on time delay or embedding dimension and are plotted as constants for
reference; tau denotes τ
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Figure C.29: RMSE for varying time delay and embedding dimension for 21
interpolation points.
(a) and (b) both show the same PhaSpaSto-interpolation but (a) also shows cubic
spline interpolation as a baseline. This baseline does not depend on time delay or
embedding dimension and is plotted as a constant for reference; tau denotes τ .
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Figure C.30: SVD entropy for varying time delay and embedding dimension for 21
interpolation points.
(a) and (b) both show the same PhaSpaSto-interpolation but (a) also shows cubic
spline interpolation and the original data set as baselines. These baselines do not
depend on time delay or embedding dimension and are plotted as constants for
reference; tau denotes τ

C.5 Computation Time

This appendix shows the differences in computation time between the multi-point frac-
tional Brownian Bridges, PhaSpaSto interpolation, linear interpolation, and the em-
ployed cubic spline interpolation from Chapter 10. We experimented with an excerpt
from the Lorenz system with 100 data points and had this time series interpolated with
ten different numbers of interpolation points. We switched off mutation for the genetic
algorithm to obtain better comparable results; however, using the genetic algorithm with
mutation would, on average, slightly increase the computation time and the number of
generations until the algorithm terminates. However, this won’t matter much in this
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context, given the extremely long computation times of PhaSpaSto interpolation com-
pared to the other methods. Apart from that, we used the same setup as in Chapter 10
for generating the population and the genetic algorithm. The results, denoted in Table
C.2, show that PhaSpaSto interpolation, i.e., generating the population and running the
genetic algorithm, takes on average 3.4 × 106 times longer than linear interpolation and
6.7 × 106 longer than the employed cubic spline interpolation.

Table C.2

N_int
Multi-point frac.

Brownian
Bridge

Generate
Population

Genetic
Algorithm

#Generations Linear
Interpolation

Cubic Spline
Interpolation

Factor
PhaSpaSto
Linear Int.

Factor
PhaSpaSto
Spline Int.

1 00 : 00.242675 04 : 02.675073 09 : 48.721004 118 00 : 00.000301 00 : 00.000136 2.762 × 106 6.113 × 106

2 00 : 00.313547 05 : 13.547199 09 : 41.154012 111 00 : 00.000378 00 : 00.000176 2.367 × 106 5.084 × 106

3 00 : 00.360844 06 : 00.844346 10 : 07.320286 110 00 : 00.000340 00 : 00.000166 2.848 × 106 5.832 × 106

4 00 : 00.433789 07 : 13.789044 10 : 57.340219 111 00 : 00.000327 00 : 00.000165 3.337 × 106 6.613 × 106

5 00 : 00.528226 08 : 48.226845 12 : 46.217807 114 00 : 00.000329 00 : 00.000168 3.934 × 106 7.705 × 106

6 00 : 00.579014 09 : 39.014085 11 : 05.322099 111 00 : 00.000339 00 : 00.000172 3.671 × 106 7.235 × 106

7 00 : 00.689273 11 : 29.273492 10 : 51.783278 107 00 : 00.000447 00 : 00.000231 3 × 106 5.805 × 106

8 00 : 00.762853 12 : 42.856440 12 : 44.076810 107 00 : 00.000390 00 : 00.000218 3.915 × 106 7.004 × 106

9 00 : 00.780448 13 : 00.448667 13 : 17.423635 110 00 : 00.000351 00 : 00.000188 4.495 × 106 8.393 × 106

10 00 : 00.868501 14 : 28.501188 12 : 39.780835 105 00 : 00.000493 00 : 00.000232 3.303 × 106 7.018 × 106
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D.1 Additional Plots

This section collects the additional plots for the experiments conducted in Chapter 11.
We provide the remaining plots of the top five predictions for the complexity filters and
the filters based on the second derivative along the phase space trajectory.

235



Additional Material Chapter 11 Appendix D Additional Material Chapter 11

The Lorenz System
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Figure D.1: Best predictions for the Lorenz system, phase-space filtered.
(a): loss_rand, fine-grained-model, 13 interpolation points,
RMSE=0.23426±0.01975
(b):los2_rand-filter, not inteproalted,
RMSE=0.24299±0.01864
(c):los2_rand-filter, not inteprolated,
RMSE=0.25770±0.01242
(d): loss_rand-filter, stoch. interpolated, 15 interpolation points,
RMSE=0.26656±0.02109
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Figure D.2: Best predictions for the Lorenz system, signal-complexity filtered.
(a): Shannon-filter, linear interpolated, 13 interpolation points,
RMSE=0.19102±0.01867
(b): Hurst-Fisher-filter, stoch. interpolated, 13 interpolation points,
RMSE=0.19122±0.02710
(c): Hurst-SVD-filter, stoch. interpolated, 13 interpolation points,
RMSE=0.19122±0.02710
(d): Fisher-Hurst-filter, stoch. interpolated, 13 interpolation points,
RMSE=0.19122±0.02710
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(d)

Figure D.3: Best predictions for the annual maize yields in Austria data set,
phase-space filtered.
(a): loss_rand-filter, stoch. interpolated, 9 interpolation points,
RMSE=0.13961±0.01087
(b): loss_rand-filter, stoch. interpolated, 13 interpolation points,
RMSE=0.14022±0.00567
(c):los2_rand-filter, stoch. interpolated, 9 interpolation points,
RMSE=0.14320±0.00801
(d):los2_rand-filter, stoch. interpolated, 15 interpolation points,
RMSE=0.14414±0.00651
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(d)

Figure D.4: Best predictions for the annual maize yields in Austria data set,
signal-complexity filtered.
(a): Fisher-Hurst-filter, stoch. interpoalted, 11 interpolation points,
RMSE=0.13511±0.03642
(b): Lyap-Hurst-filter, stoch. interpolated, 15 interpolation points,
RMSE=0.13654±0.03487
(c): Fisher-Lyap-filter, linear interpolated, 15 interpolation points,
RMSE=0.13759±0.04690
(d): SVD-Lyap-filter, linear interpolated, 15 interpolation points,
RMSE=0.13759±0.04690
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(d)

Figure D.5: Best predictions for the annual wheat yields in Austria data set,
phase-space filtered.
(a): loss_rand-filter, stoch. interpolated, 15 interpolation points,
RMSE=0.12246±0.01147
(b): loss_rand-filter, stoch. interpolated, 13 interpolation points,
RMSE=0.12544±0.00599
(c): loss_rand-filter, linear interpolated, 13 interpolation points,
RMSE=0.12657±0.00000
(d):los2_rand-filter, stoch. interpolated, 13 interpoaltion points,
RMSE=0.12662±0.02979
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(d)

Figure D.6: Best predictions for the annual wheat yields in Austria data set,
signal-complexity filtered.
(a): Fisher-SVD-filter, fractal interpolation, 9 interpolation points,
RMSE=0.11517±0.04367
(b): SVD-filter, fractal inteprolated, 9 interpolation points,
RMSE=0.11517±0.04367
(c): SVD-Shannon-filter, fractal interpoalted, 9 interpolation points,
RMSE=0.11517±0.04367
(d): Lyap-Fisher-filter, fractal interpolated, 9 interpolation points,
RMSE=0.11517±0.04367
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(d)

Figure D.7: Best predictions for the measles cases in NYC data set, phase space
property filtered.
(a): loss_rand-filter, linear interpolated, 11 interpolation points,
RMSE=0.05415±0.01072
(b): loss_rand-filter, linear interpolated, 15 interpolation points,
RMSE=0.06033±0.00225
(c):los2_rand-filter, fractal interpolated, 9 interpolation points,
RMSE=0.06338 ±0.02327
(d): loss_rand-filter, not interpolated,
RMSE=0.06445±0.00000
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(d)

Figure D.8: Best predictions for the measles cases in NYC data set,
signal-complexity filtered.
(a): Fisher-Hurst-filter, fractal interpolated, 9 interpolation points,
RMSE=0.03242±0.00735
(b): SVD-Hurst-filter, fractal interpolated, 9 interpolation points,
RMSE=0.03242±0.00735
(c): Hurst-SVD-filter, linear interpolated, 13 interpolation points,
RMSE=0.03248±0.01705
(d): Lyap-Shannon-filter, linear interpolated, 9 interpolation points,
RMSE=0.03359±0.01122
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Monthly International Airline Passengers
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(d)

Figure D.9: Best predictions for the monthly international airline passengers data
set, phase space property filtered.
(a): los2_rand-filter, fractal interpolated, 11 interpolation points,
RMSE=0.04995±0.00534
(b): los2_rand-filter, fractal interpolated, 9 interpolation points,
RMSE=0.05111±0.00789
(c):loss_rand-filter, fractal interpolated, 13 interpolation points,
RMSE=0.06016 ±0.00795
(d): loss_rand-filter, stoch. interpolated,
RMSE=0.06021±0.00627
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(d)

Figure D.10: Best predictions for the monthly international airline passengers data
set, signal-complexity filtered.
(a): Fisher-Shannon-filter, linear interpolated, 13 interpolation points,
RMSE=0.04450±0.00675
(b): SVD-Fisher-filter, linear interpolated, 13 interpolation points,
RMSE=0.04450±0.00675
(c): Lyap-Fisher-filter, fractal interpolated, 9 interpolation points,
RMSE=0.04465±0.00422
(d): Shannon-Fisher-filter, fractal interpolated, 9 interpolation points,
RMSE=0.04587±0.00476
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Canadian Lynx
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(d)

Figure D.11: Best predictions for the Canadian Lynx data set, phase-space filtered.
(a): loss_rand-filter, linear interpolated, 11 interpolation points,
RMSE=0.13442±0.00000
(b):los2_rand-filter, linear interpolated, 13 interpolation points,
RMSE=0.14205±0.04017
(c):los2_rand-filter, fractal interpolated, 15 interpolation points,
RMSE=0.14345 ±0.05349
(d): loss_rand-filter, stoch. interpolated, 13 interpolation points,
RMSE=0.14643±0.03443
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(d)

Figure D.12: Best predictions for the Canadian lynx data set, signal-complexity
filtered.
(a): Shannon-Hurst-filter, linear interpolated, 9 interpolation points,
RMSE=0.11037±0.05037
(b): Lyap-filter, stoch. interpolated, 9 interpolation points,
RMSE=0.11405±0.03110
(c): Lyap-Shannon-filter, stoch. interpolated, 9 interpolation points,
RMSE=0.11405 ±0.03110
(d): Fisher-Lyap-filter, fractal interpolated, 11 interpolation points,
RMSE=0.11574±0.05229
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River Krems Discharge

0 20 40 60 80 100 120

months

0

1

2

3

4

5

6

m
e
a
n
 m

o
n
th

y
l 
d
is

c
h
a
rg

e
, 
[m

³/
s
]

original data

averaged predictions, linear interpolated
 los2 rand filter

(a)

0 20 40 60 80 100 120

months

0

1

2

3

4

5

6

m
e
a
n
 m

o
n
th

y
l 
d
is

c
h
a
rg

e
, 
[m

³/
s
]

original data

averaged predictions, fractal interpolated
 los2 rand filter

(b)

0 20 40 60 80 100 120

months

0

1

2

3

4

5

6

m
e
a
n
 m

o
n
th

y
l 
d
is

c
h
a
rg

e
, 
[m

³/
s
]

original data

averaged predictions, linear interpolated
 loss rand filter

(c)

0 20 40 60 80 100 120

months

0

1

2

3

4

5

6

m
e
a
n
 m

o
n
th

y
l 
d
is

c
h
a
rg

e
, 
[m

³/
s
]

original data

averaged predictions, not interpolated
 loss rand filter

(d)

Figure D.13: Best predictions for the river Krems discharge data set, phase-space
filtered.
(a):los2_rand-filter, linear interpolated, 9 interpolation points,
RMSE=0.15492±0.04948
(b):los2_rand-filter, fractal interpolated, 15 interpolation points,
RMSE=0.15943±0.05062
(c): loss_rand-filter, linear interpolated, 9 interpolation points,
RMSE=0.16651 ±0.01730
(d): loss_rand-filter, not interpolated,
RMSE=0.16974±0.00000
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(d)

Figure D.14: Best predictions for the river Krems discharge data set,
signal-complexity filtered.
(a): Shannon-Fisher-filter, not interpolated,
RMSE=0.13885±0.01845
(b): Shannon-SVD-filter, not interpolated,
RMSE=0.13885±0.01845
(c): Shannon-Fisher-filter, not interpolated,
RMSE=0.13900 ±0.01839
(d): Shannon-SVD-filter, not interpolated,
RMSE=0.13900±0.01839



Additional Material Chapter 11 Appendix D Additional Material Chapter 11

Dow Jones Daily Close
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Figure D.15: Best predictions for the Dow Jones daily close in 2018 data set,
phase-space filtered.
(a): loss_rand-filter, stoch. interpolated, 13 interpolation points,
RMSE=0.18660±0.05095
(b):los2_rand-filter, fractal interpolated, 13 interpolation points,
RMSE=0.21020±0.03887
(c): loss_rand-filter, fractal interpolated, 13 interpolation points,
RMSE=0.21218 ±0.04764
(d): loss_rand-filter, fractal interpolated, 11 interpolation points,
RMSE=0.25052±0.03035
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Figure D.16: Best predictions for the Dow Jones daily close in 2018 data set,
signal-complexity filtered.
(a): SVD-Hurst-filter, stoch. interpolated, 13 interpolation points,
RMSE=0.17765±0.02802
(b): Shannon-Lyap-filter, fractal interpolated, 15 interpolation points,
RMSE=0.18605±0.03950
(c): Shannon-filter, stoch. interpolated, 15 interpolation points,
RMSE=0.19022±0.01862
(d): Hurst-Shannon-filter, not interpolated,
RMSE=0.19088±0.04289
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USD/GBP Exchange Rate
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Figure D.17: Best predictions for the USD/GBP exchange rate data set,
phase-space filtered.
(a): loss_rand-filter, not interpolated,
RMSE=0.04050±0.00000
(b): loss_rand-filter, linear interpolated, 11 interpolation points,
RMSE=0.05147±0.00333
(c): loss_rand-filter, linear interpolated, 15 interpolation points,
RMSE=0.06343 ±0.02411
(d): loss_rand-filter, stoch. interpolated, 9 interpolation points,
RMSE=0.06592±0.03623
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Figure D.18: Best predictions for the USD/GBP exchange data set,
signal-complexity filtered.
(a): Lyap-SVD-filter, fractal interpolated, 9 interpolation points,
RMSE=0.02630±0.001617
(b): Lyap-Fisher-filter, stoch. interpolated, 15 interpolation points,
RMSE=0.02824±0.03077
(c): Lyap-SVD-filter, stoch. interpolated, 15 interpolation points,
RMSE=0.02824±0.03077
(d): Hurst-Shannon-filter, linear interpolated, 11 interpolation points,
RMSE=0.03012±0.01258
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Sunspots
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(d)

Figure D.19: Best predictions for the sunspots data set, phase-space filtered.
(a):los2_rand-filter, linear interpolated, 15 interpolation points,
RMSE=0.29878±0.02684
(b):los2_rand-filter, fractal interpolated, 15 interpolation points,
RMSE=0.29903±0.02257
(c): loss_rand-filter, fractal interpolated, 9 interpolation points,
RMSE=0.30431±0.02611
(d):los2_rand-filter, linear interpolated, 9 interpolation points,
RMSE=0.30706±0.01999
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(d)

Figure D.20: Best predictions for the sunspots data set, signal-complexity filtered.
(a): Lyap-Shannon-filter, linear interpolated, 15 interpolation points,
RMSE=0.25339±0.02052
(b): Shannon-Hurst-filter, linear interpolated, 11 interpolation points,
RMSE=0.25882±0.01969
(c): Shannon-Hurst-filter, not interpolated,
RMSE=0.26277±0.02800
(d): Hurst-filter, not interpolated,
RMSE=0.26397±0.01979
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Shampoo Sales
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Figure D.21: Best predictions for the shampoo sales data set, phase-space filtered.
(a): loss_rand-filter, not interpolated,
RMSE=0.17243±0.00000
(b): loss_rand-filter, fractal interpolated, 11 interpolation points,
RMSE=0.18466±0.00000
(c):los2_rand-filter, not interpolated,
RMSE=0.18723±0.06246
(d): loss_rand-filter, not interpolated,
RMSE=0.19235±0.00000
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Figure D.22: Best predictions for the shampoo sales data set, signal-complexity
filtered.
(a): Hurst-Shannon-filter, not interpolated,
RMSE=0.20308±0.05084
(b): Fisher-Hurst-filter, not interpolated,
RMSE=0.20308±0.05084
(c): SVD-Hurst-filter, not interpolated,
RMSE=0.20308±0.05084
(d): Lyap-Hurst-filter, linear interpolated, 11 interpolation points,
RMSE=0.20637±0.01597

D.2 Baseline Predictions

Baseline predictions, i.e. a simple RNN, LSTM and GRU (For a discussion of these
methods see Chapter 6), are used to be compared to the obtained randomly paramterized
LSTM ensemble predictions. All three types of neural network layers are reasonable tools
for predicting time series data.

Each baseline prediciton was done using a neural network with one hidden layer contain-
ing a varying number of neurons in the hidden layer and 20 input nodes. Each neural
network was trained with a batch size of 2 and varying epochs. Further verbose was set
to 2. The corresponding varying parameters are listed in D.1. the baseline predictions
for the monthly international ailrine passengers data set can be found in Appendix B.5.
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For the activation of the recurrent neural network, hard_sigmoid was chosen. And the
activation function of the output layer is relu. For the initialization,glorot_uniform
was used for the LSTM layer, orthogonal was used as the recurrent initializer and
glorot_uniform for the Dense layer. For the LSTM layer the bias was set to use_bias=True,
with a corresponding bias_initializer="zeros". Further, no constraints or regular-
izers or drop out criteria were used for the recurrent and the Dense layers.

As optimizer rmsprop was used and, the loss was calculated using mean_squared_error.
The output node returned only one result, i.e., the next time step.

Table D.1: Varying parameters for the baseline predictions for Chapter 11.

Data Set NN Hidden Layer
Neurons

Training
Epochs

Measles Cases
in NYC

LSTM 30 30

Measles Cases
in NYC

RNN 100 23

Measles Cases
in NYC

GRU 3 20

Annual Maize
Yields in Austria

LSTM 30 18

Annual Maize
Yields in Austria

RNN 100 23

Annual Maize
Yields in Austria

GRU 3 20

Annual Wheat
Yields in Austria

LSTM 30 18

Annual Wheat
Yields in Austria

RNN 100 15

Annual Wheat
Yields in Austria

GRU 3 20

Canadian
Lynx

LSTM 39 25

Canadian
Lynx

RNN 180 5

Canadian
Lynx

GRU 2 1000

River Krems
Discharge

LSTM 35 50

River Krems
Discharge

RNN 180 300

River Krems
Discharge

GRU 4 100

Dow Jones
Daily Close

LSTM 39 100

Dow Jones
Daily Close

RNN 180 100

Dow Jones
Daily Close

GRU 4 500

USD/GBP
Exchange Rate

LSTM 35 73

USD/GBP
Exchange Rate

RNN 180 100

USD/GBP
Exchange Rate

GRU 4 500

Sunspots LSTM 35 100
Sunspots RNN 180 100
Sunspots GRU 4 350
Shampoo

Sales
LSTM 30 100

Shampoo
Sales

RNN 100 100

Shampoo
Sales

GRU 4 400
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Table D.2: Errors LSTM baseline prediction

Data Set Train Error Test Error Single Step Error
Measles

Cases NYC
0.05550 0.03217 0.07488

Annual Maize
Yields Austria

0.16193 0.33421 0.34020

Annual Wheat
Yields Austria

0.17554 0.29980 0.31402

Canadian
Lynx

0.13710 0.12441 0.15404

River Krems
Discharge

0.12783 0.17909 0.13502

Dow Jones
Daily Close

0.05064 0.08201 0.25197

GBP/USD
Exchange Rate

0.02429 0.01797 0.19573

Sunspots 0.08483 0.09009 0.25354
Shampoo

Sales
0.04558 0.47413 0.42425

Table D.3: Errors RNN baseline prediction

Data Set Train Error Test Error Single Step Error
Measles

Cases NYC
0.05636 0.03623 0.07964

Annual Maize
Yields Austria

0.17665 0.37444 0.38684

Annual Wheat
Yields Austria

0.15702 0.27265 0.28145

Canadian
Lynx

0.14979 0.12722 0.12847

River Krems
Discharge

0.12104 0.22524 0.14961

Dow Jones
Daily Close

0.06641 0.08133 0.25112

GBP/USD
Exchange Rate

0.02113 0.01672 0.25613

Sunspots 0.08452 0.09540 0.29746
Shampoo

Sales
0.02264 0.44773 0.38741

Table D.4: Errors GRU baseline prediction

Data Set Train Error Test Error Single Step Error
Measles

Cases NYC
0.06680 0.03713 0.06591

Annual Maize
Yields Austria

0.17058 0.35390 0.35033

Annual Wheat
Yields Austria

0.18228 0.30498 0.31784

Canadian
Lynx

0.08873 0.12513 0.17024

River Krems
Discharge

0.12653 0.18888 0.14963

Dow Jones
Daily Close

0.04833 0.07671 0.18010

GBP/USD
Exchange Rate

0.01791 0.01484 0.21395

Sunspots 0.07582 0.09127 0.21851
Shampoo

Sales
0.00464 0.41179 0.37911
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Figure D.23: Baseline predictions for the measles cases in NYC data set. From left
to right: LSTM, RNN, GRU.
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Figure D.24: Baseline predictions for the annual maize yields in Austria data set.
From left to right: LSTM, RNN, GRU.
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Figure D.25: Baseline predictions for the annual wheat yields in Austria data set.
From left to right: LSTM, RNN, GRU.
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Figure D.26: Baseline predictions for the Canadian Lynx data set. From left to
right: LSTM, RNN, GRU.
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Figure D.27: Baseline predictions for the River Krems Discharge data set. From left
to right: LSTM, RNN, GRU.
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Figure D.28: Baseline predictions for the Dow Jones daily close in 2018 data set.
From left to right: LSTM, RNN, GRU.
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Figure D.29: Baseline predictions for the USD/GBP exchange rate data set. From
left to right: LSTM, RNN, GRU.
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Figure D.30: Baseline predictions for the sunspots data set. From left to right:
LSTM, RNN, GRU.
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Figure D.31: Baseline predictions for the Shampoo Sales data set. From left to
right: LSTM, RNN, GRU.

D.3 Unfiltered Results

Table D.5: Lowest errors unfiltered predictions measles cases in NYC data set.

Interpolation
Technique

Interpolation
Points

RMSE ∆RMSE

Not
Interpolated

- 0.09549 ±0.01408

Fractal
Interpolated

9 0.09984 ±0.01414

Linear
Interpolated

13 0.10962 ±0.01439

Stoch.
Interpolated

13 0.10020 ±0.01376

Table D.6: Lowest errors unfiltered predictions annual maize yields in Austria data
set.

Interpolation
Technique

Interpolation
Points

RMSE ∆RMSE

Not
Interpolated

- 0.23536 ±0.05217

Fractal
Interpolated

9 0.20009 ±0.05822

Linear
Interpolated

15 0.20328 ±0.05924

Stoch.
Interpolated

15 0.20499 ±0.05895
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Table D.7: Lowest errors unfiltered predictions annual wheat yields in Austria data
set.

Interpolation
Technique

Interpolation
Points

RMSE ∆RMSE

Not
Interpolated

- 0.23043 ±0.06444

Fractal
Interpolated

11 0.20101 ±0.07067

Linear
Interpolated

15 0.19550 ±0.07183

Stoch.
Interpolated

15 0.20007 ±0.07381

Table D.8: Lowest errors unfiltered predictions Lorenz system.

Interpolation
Technique

Interpolation
Points

RMSE ∆RMSE

Not
Interpolated

- 0.27121 ±0.04107

Fractal
Interpolated

13 0.23399 ±0.04499

Linear
Interpolated

13 0.25545 ±0.04430

Stoch.
Interpolated

13 0.26880 ±0.04626

Fine-Grained
Model

13 0.24652 ±0.04509
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Table D.9: Lowest errors unfiltered predictions monthly international airline
passengers data set.

Interpolation
Technique

Interpolation
Points

RMSE ∆RMSE

Not
Interpolated

- 0.19841 ±0.01819

Fractal
Interpolated

9 0.17977 ±0.02318

Linear
Interpolated

11 0.18050 ±0.02323

Stoch.
Interpolated

15 0.18152 ±0.02410

Table D.10: Lowest errors unfiltered predictions Canadian lynx data set.

Interpolation
Technique

Interpolation
Points

RMSE ∆RMSE

Not
Interpolated

- 0.23546 ±0.05737

Fractal
Interpolated

13 0.21280 ±0.06480

Linear
Interpolated

9 0.21808 ±0.06587

Stoch.
Interpolated

11 0.20803 ±0.06419

Table D.11: Lowest errors unfiltered predictions river Krems discharge data set.

Interpolation
Technique

Interpolation
Points

RMSE ∆RMSE

Not
Interpolated

- 0.24145 ±0.04504

Fractal
Interpolated

15 0.22149 ±0.04967

Linear
Interpolated

11 0.21869 ±0.04915

Stoch.
Interpolated

13 0.23205 ±0.04894
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Table D.12: Lowest errors unfiltered predictions Dow Jones daily close in 2018 data
set.

Interpolation
Technique

Interpolation
Points

RMSE ∆RMSE

Not
Interpolated

- 0.19841 ±0.01819

Fractal
Interpolated

9 0.17977 ±0.02318

Linear
Interpolated

11 0.18050 ±0.02323

Stoch.
Interpolated

15 0.18152 ±0.02410

Table D.13: Lowest errors unfiltered predictions USD/GBP exchange rate data set.

Interpolation
Technique

Interpolation
Points

RMSE ∆RMSE

Not
Interpolated

- 0.18917 ±0.03998

Fractal
Interpolated

13 0.17199 ±0.04100

Linear
Interpolated

11 0.18017 ±0.03993

Stoch.
Interpolated

15 0.14846 ±0.04195

Table D.14: Lowest errors unfiltered predictions sunspots data set.

Interpolation
Technique

Interpolation
Points

RMSE ∆RMSE

Not
Interpolated

- 0.37310 ±0.02605

Fractal
Interpolated

15 0.36459 ±0.02755

Linear
Interpolated

9 0.36820 ±0.02727

Stoch.
Interpolated

9 0.38972 ±0.02599
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Table D.15: Lowest errors unfiltered predictions shampoo sales data set.

Interpolation
Technique

Interpolation
Points

RMSE ∆RMSE

Not
Interpolated

- 0.30154 ±0.04203

Fractal
Interpolated

13 0.29453 ±0.03971

Linear
Interpolated

11 0.29291 ±0.04031

Stoch.
Interpolated

11 0.29473 ±0.03951



Appendix E

On the Applicability of Measures
of Signal Complexity

This appendix discusses the dependence of signal complexity measures on the length of
the signal under study. This discussion serves to understand the results and drawbacks
of Chapters 8, 9 and 11.

To better understand the dependence of the employed complexity metrics under study,
we performed an experiment involving four types of time series data of variable length,
first, a constant function, i.e., f1(t) = 1 ∗ t0, second a periodic process, i.e., f2(t) =
cos(2000 ∗ πt), three fractional Brownian motions with three different Hurst exponents,
i.e., H ∈ {0.333, 0.5, 0.666} and finally an excerpt from the Lorenz system, (Section
7.15). We then calculated the discussed complexity measures employed for filtering and
analysis, i.e., the Hurst exponent, Shannon’s entropy, the largest Lyapunov exponent,
Fisher’s information, SVD entropy, and the fractal dimension for varying signal lengths,
i.e., {50, 100, 200, 500, 1000, 1500, 2000, 5000, 10000}. All signals were transformed to
the unit interval. Here the procedure included generating a signal with 100000 data
points and then choosing 1000 times 50, 100, 200, ... consecutive data points to calculate
the signal complexity. This resulted in an average complexity and a corresponding
standard deviation shown in the following. Note that we left out f1(t) when the employed
algorithm didn’t give results, i.e., produced nan. The following plots (Figures E.1 - E.6)
show the results of these experiments. We plotted the results for all the varying time
steps, and a close-up of the interval [0; 1000]. The corresponding actual values can be
found in Tables E.1 - E.6.

We observe for all employed measures of signal complexity that they converge towards a
particular value with increasing signal length and that all employed complexity metrics,
except for Shannon’s entropy, are capable of differentiating between fractional Brownian

267
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motions of different Hurst exponents, the Lorenz system and a cosine function at a signal
length of 10000. However, we cannot give a meaningful interpretation of these metrics
for small signal lengths but rather explore their potential to differentiate between various
signals. Also, the previously mentioned convergence towards a particular value for long
signals means that these metrics give values that do not coincide with theory, e.g., the
Hurst exponent is too large for small signals. Further, except for Shannon’s entropy,
these metrics produce large errors for small signal lengths. Also, as depicted in the
following plots, all of these complexity metrics suffer from a length dependence/bias for
small signal lengths.

For the Hurst exponent, we observe the value for all Brownian motions is approximately
the same within errors for a signal length of 50 data points. Thus, we conclude that
the Hurst exponent cannot give interpretable results for data sets of this length. Asides
from interpretability, the Hurst exponent can differentiate between the cosine and the
Lorenz system for all discussed signal lengths. Separating the different Brownian motions
becomes possible only at ≈ 1000 data points (Figure E.1 and Table E.1). We can then
justify the use of the Hurst exponent as a filter because the randomly parameterized
neural networks are never producing truly random behavior but rather reproduce some
aspect of the data, often resulting in sort of a periodic oscillation, a periodic dampened
oscillation, or a too-smooth representation of the data, see Appendix D. This is why
the Hurst exponent as a filter can give good results even for small signal lengths. It
can exclude behavior that looks more like a random walk and not like regular and/or
irregular/chaotic behavior.

Given the actual values of the calculated Hurst exponent, we see that the results are
different from the theory, as the employed algorithm overestimates the Hurst exponent of
the simulated random walks, except for the fractional Brownian motion with H = 0.666,
where the algorithm produced a very good and even lower estimate on average at around
100 and 200 data points. Still, the corresponding errors for the average are comparatively
large at these signal lengths.

Similar to the Hurst exponent, Fisher’s information can also differentiate between the
cosine function and the Lorenz system, Figure E.2 and Table E.2, except for a signal
length of 50, where we observe comparatively large errors for the Lorenz system. Also,
starting at around 1500 data points, Fisher’s information can distinguish between the
random walks of different Hurst exponents. Our conclusion is similar to that of the
Hurst exponent because of the behavior of the predictions of the randomly parameter-
ized neural networks. Fisher’s information can differentiate between regular oscillations
and more irregular behavior. Thus it can be employed as a filter for the multitude of
predictions.
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As SVD entropy and Fisher’s information depict very similar behavior because both are
based on singular value decomposition (Chapters 9 and 11), our conclusion about why
SVD entropy works for filtering predictions holds just the same, Figure E.3 and Table
E.3. However, SVD entropy can better differentiate between the Lorenz system and
the discussed cosine function, even for the smallest discussed signal lengths. We further
expected the number of dynamic components to be constant for the Lorenz system and
the cosine function for increasing signal lengths, which is just what we observed, as
SVD entropy provides constant values except for minor deviations. Also, the expected
hierarchy, i.e., the Lorenz system has increased values compared to the cosine function,
is visible in our results. However, this does not hold for fractional Brownian motion,
such that the value of SVD entropy depends on the length of the signal. However, the
more fluctuating fractional Brownian motion with a Hurst exponent of 0.333 has an
increased SVD entropy compared to the smoother fractional Brownian motion with a
Hurst exponent of 0.666, meaning that it requires more singular values above the noise
floor to adequately describe the states of a fractional Brownian motion with increased
Hurst exponent. On the other hand, SVD entropy provides similar results for both
the Lorenz system and the cosine function at varying signal lengths, which is evident
from Figure E.3 as the lines for the Lorenz system and the cosine function intersect
the curves of the fractional Brownian motions. We chose the embedding for Fisher’s
information and SVD entropy in accordance with [60] as de = 20 and τ = 1 to have a
range of singular values to depict the orthogonal vectors required to adequately explain
the space-state. Also, intuitively, one would expect an increasing SVD entropy for
increasing signal lengths, requiring more and more singular values to describe a certain
state adequately. However, we observe the SVD entropy decreases with increasing signal
length for the fractional Brownian motion, which results from the averaging present in
the SVD from choosing a finite embedding dimension of dE = 20.

For the largest Lyapunov exponent, we see similar behavior to the previously discussed
complexity metrics, i.e., it can differentiate between cosine and Lorenz system for small
signal lengths, Figure E.4 and Table E.4. Also, it can differ between the Lorenz system
and fractional Brownian motions for all signal lengths. What is strange is that, with
increasing signal length, the largest Lyapunov exponent of the cosine becomes larger
and, at one point, turns from negative to positive. Still, we conclude that the largest
Lyapunov exponent can differentiate between periodic functions and irregular signals.
Still, this increase for the cosine lacks a meaningful interpretation but points toward a
flaw in the employed algorithm.

The behavior of Shannon’s entropy (Figure E.5 and Table E.5) shows that it can differ-
entiate between a constant function, the cosine, and irregular behavior and gives only
negligible errors. However, it cannot distinguish between non-repeating signals, such as
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the Lorenz system, and the fractional Brownian motions. Again, being able to differ-
entiate between regular functional and irregular behavior is the reason why Shannon’s
entropy can, as a filter, provide good results for specific data sets. However, Shannon’s
entropy suffers from a strong bias with respect to the length of the signal, i.e., short
signals have a smaller entropy.

The last complexity metric discussed here is the Fractal dimension, calculated using
Higuchi’s algorithm, Figure E.6 and Table E.6. We did not use this metric as a filter
but only for discussion in Chapter 8. The fractal dimension again shows that it can
differentiate between the Lorenz system and the cosine function. However, in the au-
thor’s opinion, one might be able to choose the cosine function such that the fractal
dimension for these two time series is the same, or very similar. The fractal dimension
can differentiate between the discussed random walks of different Hurst exponents at
approximately 1500 data points for the fractional Brownian motion. If we take into ac-
count the relation from Section 8.1, i.e., H ≈ 2 − dF , where dF is the fractal dimension,
then we see that Higuchi’s algorithm can give a better estimate for the Hurst exponent
for the fractional Brownian motion with Hurst exponent H = 0.5. However, this ap-
proach overestimates the Hurst exponent for H = 0.333 and underestimates the Hurst
exponent for H = 0.666. Though we did not use the fractal dimension for filtering, one
might test this in future research.
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Figure E.1: Hurst exponent for different time series data and varying input
windows. Left: full range of the experiment; Right: Close up on smaller input window
sizes.
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Figure E.2: Fisher’s information for different time series data and varying input
windows. Left: full range of the experiment; Right: Close up on smaller input window
sizes.
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Figure E.3: SVD entropy for different time series data and varying input windows.
Left: full range of the experiment; Right: Close up on smaller input window sizes.
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Figure E.4: Largest Lyapunov exponent for different time series data and varying
input windows. Left: full range of the experiment; Right: Close up on smaller input
window sizes.
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Figure E.5: Shannon’s entropy for different time series data and varying input
windows. Left: full range of the experiment; Right: Close up on smaller input window
sizes.
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Figure E.6: Fractal dimension for different time series data and varying input
windows. Left: full range of the experiment; Right: Close up on smaller input window
sizes.

Table E.1: Table containing the averaged results and errors for the Hurst exponent
depending on the input window size for different time series data.

Window
Size

Cosine Cosine
Error

Lorenz Lorenz
Error

fBm
H=0.333

fBm
H=0.333

Error

fBm
H=0.5

fBm
H=0.5
Error

fBm
H=0.666

fBm
H=0.666

Error
50 0.89757 0.01182 0.84433 0.01747 0.74661 0.08133 0.76695 0.07728 0.77802 0.06766

100 0.15176 0.01845 0.63362 0.07876 0.51397 0.09819 0.61238 0.10059 0.67307 0.11288
200 0.12086 0.03307 0.50048 0.03206 0.47456 0.07239 0.59279 0.08134 0.65654 0.09961
500 0.10715 0.01370 0.39970 0.02850 0.43222 0.04861 0.57809 0.05564 0.68134 0.09415

1000 0.07050 0.01348 0.33547 0.02302 0.40724 0.03682 0.56781 0.04240 0.72125 0.08183
1500 0.05106 0.01295 0.29651 0.02137 0.39272 0.03269 0.55973 0.04003 0.75188 0.07157
2000 0.05387 0.01566 0.26636 0.01842 0.38242 0.02923 0.55438 0.03811 0.77603 0.05859
5000 0.03687 0.00684 0.22715 0.01431 0.37281 0.02294 0.54806 0.03026 0.79412 0.03004

10000 0.04341 0.01609 0.20130 0.01282 0.36887 0.01924 0.54291 0.02422 0.79474 0.02291
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Table E.2: Table containing the averaged results and errors for Fisher’s information
depending on the input window size for different time series data.

Window
Size

Cosine Cosine
Error

Lorenz Lorenz
Error

fBm
H=0.333

fBm
H=0.333

Error

fBm
H=0.5

fBm
H=0.5
Error

fBm
H=0.666

fBm
H=0.666

Error
50 0.36775 0.00000 0.34683 0.07766 0.26107 0.06176 0.27299 0.06984 0.28515 0.07981

100 0.37203 0.00000 0.37497 0.07897 0.31976 0.05728 0.35122 0.06861 0.37748 0.08276
200 0.37364 0.00000 0.38666 0.06575 0.38077 0.06000 0.45720 0.07300 0.50084 0.09153
500 0.37448 0.00000 0.39605 0.04307 0.45978 0.05801 0.59645 0.06559 0.69091 0.09803

1000 0.37474 0.00000 0.40199 0.03091 0.52111 0.05946 0.68760 0.05726 0.81998 0.07744
1500 0.37483 0.00000 0.40518 0.02555 0.55882 0.05445 0.73031 0.05303 0.87598 0.05213
2000 0.37487 0.00000 0.40729 0.02206 0.58792 0.05302 0.76259 0.04866 0.90353 0.03619
5000 0.37494 0.00000 0.41198 0.01343 0.67426 0.04801 0.83984 0.03542 0.95116 0.01366

10000 0.37497 0.00001 0.41423 0.00991 0.73391 0.04338 0.88272 0.02529 0.96800 0.00844

Table E.3: Table containing the averaged results and errors for SVD entropy
depending on the input window size for different time series data.

Window
Size

Cosine Cosine
Error

Lorenz Lorenz
Error

fBm
H=0.333

fBm
H=0.333

Error

fBm
H=0.5

fBm
H=0.5
Error

fBm
H=0.666

fBm
H=0.666

Error
50 1.49962 0.00000 2.16044 0.20162 3.19798 0.23869 3.06992 0.27143 2.96720 0.31438

100 1.49994 0.00000 2.15697 0.18139 3.00599 0.23571 2.79096 0.27224 2.64799 0.32158
200 1.49999 0.00000 2.13759 0.14517 2.78718 0.23740 2.42499 0.27786 2.22174 0.35704
500 1.49999 0.00000 2.11432 0.09372 2.50928 0.21942 1.92286 0.25328 1.50341 0.40878

1000 1.49999 0.00000 2.09978 0.06805 2.28893 0.22490 1.57200 0.23158 0.95685 0.34989
1500 1.49999 0.00000 2.09204 0.05616 2.15117 0.20934 1.39848 0.22300 0.70022 0.24869
2000 1.49999 0.00000 2.08695 0.04843 2.04151 0.20609 1.26222 0.21043 0.56704 0.18023
5000 1.49999 0.00000 2.07560 0.02877 1.70092 0.19886 0.91624 0.16671 0.31723 0.07638

10000 1.49999 0.00000 2.07017 0.02088 1.44970 0.18943 0.70876 0.12700 0.22031 0.05035

Table E.4: Table containing the averaged results and errors for the largest
Lyapunov exponent depending on the input window size for different time series data.

Window
Size

Cosine Cosine
Error

Lorenz Lorenz
Error

fBm
H=0.333

fBm
H=0.333

Error

fBm
H=0.5

fBm
H=0.5
Error

fBm
H=0.666

fBm
H=0.666

Error
50 -0.00401 0.01599 0.15121 0.07074 0.02436 0.02992 0.02679 0.03102 0.02854 0.03221

100 -0.02031 0.04452 0.19983 0.04028 0.04969 0.01971 0.05332 0.02026 0.05400 0.02246
200 -0.04022 0.02932 0.20111 0.02560 0.06900 0.01386 0.07032 0.01509 0.06990 0.01539
500 -0.02391 0.02388 0.20713 0.01889 0.09139 0.00941 0.08708 0.01050 0.08080 0.01359

1000 -0.01453 0.01028 0.21069 0.01417 0.10668 0.00719 0.09866 0.00850 0.08275 0.01315
1500 -0.00212 0.02257 0.21088 0.01124 0.11455 0.00629 0.10443 0.00786 0.08319 0.01124
2000 0.01062 0.02007 0.21112 0.01009 0.12001 0.00595 0.10850 0.00750 0.08435 0.01034
5000 0.11313 0.01970 0.21167 0.00649 0.13483 0.00516 0.12095 0.00664 0.09077 0.00770

10000 0.25905 0.01003 0.21273 0.00575 0.14459 0.00514 0.12995 0.00601 0.09838 0.00675

Table E.5: Table containing the averaged results and errors for Shannon’s entropy
depending on the input window size for different time series data.

Window
Size

Const. Const.
Error

Cosine Cosine
Error

Lorenz Lorenz
Error

fBm
H=0.333

fBm
H=0.333

Error

fBm
H=0.5

fBm
H=0.5
Error

fBm
H=0.666

fBm
H=0.666

Error
50 0 0 5.13870 0.07511 5.64385 0 5.64385 0 5.64385 0 5.64385 0

100 0 0 5.90223 0.08951 6.64385 0 6.64385 0 6.64385 0 6.64385 0
200 0 0 6.62910 0.08842 7.64385 0 7.64385 0 7.64385 0 7.64385 0
500 0 0 7.40990 0.14190 8.96578 0 8.96578 0 8.96578 0 8.96578 0

1000 0 0 7.90332 0.13580 9.96578 0 9.96578 0 9.96578 0 9.96578 0
1500 0 0 8.20617 0.11387 10.55074 0 10.55074 0 10.55074 0 10.55074 0
2000 0 0 8.46953 0.15246 10.96578 0 10.96578 0 10.965784 0 10.9657 0
5000 0 0 9.37903 0.07216 12.28633 0.01647 12.28771 0 12.28771 0 12.28771 0

10000 0 0 10.13963 0.01500 13.18841 0.15046 13.28771 0 13.28771 0 13.28771 0
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Table E.6: Table containing the averaged results and errors for the fractal
dimension calculated using Higuchi’s algorithm depending on the input window size
for different time series data.

Window
Size

Cosine Cosine
Error

Lorenz Lorenz
Error

fBm
H=0.333

fBm
H=0.333

Error

fBm
H=0.5

fBm
H=0.5
Error

fBm
H=0.666

fBm
H=0.666

Error
50 1.25470 0.01533 1.12839 0.02795 1.60218 0.11503 1.53992 0.11772 1.48706 0.11023

100 1.25416 0.00722 1.12713 0.01402 1.57471 0.07952 1.51589 0.07692 1.46833 0.07598
200 1.25400 0.00355 1.12689 0.00729 1.56085 0.05710 1.50792 0.05459 1.46341 0.05763
500 1.25395 0.00140 1.12667 0.00378 1.55395 0.03546 1.50309 0.03393 1.44979 0.04034

1000 1.25394 0.00070 1.12655 0.00246 1.55034 0.02447 1.50133 0.02330 1.43721 0.03145
1500 1.25394 0.00046 1.12655 0.00191 1.54996 0.01953 1.50132 0.01879 1.43109 0.02623
2000 1.25394 0.00035 1.12655 0.00166 1.54935 0.01738 1.50101 0.01612 1.42751 0.02296
5000 1.25394 0.00014 1.12651 0.00104 1.54882 0.01158 1.50026 0.01029 1.42051 0.01209

10000 1.25394 0.00003 1.12650 0.00082 1.54886 0.00824 1.49994 0.00735 1.41839 0.00819

E.1 Variance of Second Derivatives

We also test the variance of second derivatives along a reconstructed phase space tra-
jectory in the experimental setup from the previous section. We also try different phase
space embeddings to show how the variance of second derivatives can differentiate be-
tween various signals depending on the chosen phase space embedding. We chose five
different phase space embeddings, i.e., pairs of embedding dimension and time delay as
(dE ; τ) = {(1; 0), (3; 1), (3; 5), (5; 1), (5; 5)}.

The results (Tables E.7 - E.11) are depicted in Figures E.7 - E.11.

Similar to the previous section’s results, we observe that the variance of second deriva-
tives converges towards certain values for the different types of time series data under
study for increasing signal length. Fractional Brownian motion with Hurst exponents
of ≥ 0.5 seem difficult to distinguishable, given our results. However, our signal with a
Hurst exponent of 0.333 can be distinguished quite well from all other fractional Brow-
nian motions for all phase space embeddings. The reason here is that signals with a
Hurst exponent of below 0.5 are considered antipersistent, thus, do not provide linear
behavior for long or at all. Therefore these signals produce an increased variance of the
second derivatives in reconstructed phase space, compared to a signal with an increased
Hurst exponent of, e.g., 0.9, which will provide a very linear signal. The const. function
has a zero variance of second derivatives for all phase space embeddings because it’s
not changing. The variance of second derivatives for the cosine function, though staying
mostly constant for all phase space embeddings, shifts its relative position with respect
to the other data for different phase space embeddings. We see the best separation
for (dE = 3; τ = 5). The cosine shows a similar behavior as the fractional Brownian
motions with different Hurst exponents and negligible errors for (dE = 5, τ = 1), as the
curve is decreasing and converging towards a certain value, in this case very close to
zero (We didn’t print out values lower than 10−5). Thus, we assume that one can choose
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an embedding that is beneficial for separating good and bad predictions. In the case
of the cosine, the reason is that one can choose a phase space embedding such that the
reconstructed phase space of the cosine is (almost) a circle, thus we observe a vanishing
variance of second derivatives. This is due to the periodicity/autocorrelations of the
cosine function. One can exploit this to find an optimal separation between different
signals, i.e., by taking into account a signal’s autocorrelations and using this for a phase
space embedding that provides an optimal separation from, e.g., chaotic or random sig-
nals. Thus this applies to some degree to the Lorenz system as well. Given that one can
choose a phase space embedding where the variance of second derivatives is increased
or decreased (We show this for the Lorenz system in Section C.3), one might achieve
an optimal separation from other signals. This should be considered for future research
regarding the filtering of forecasts.

Overall the results show that the variance of second derivatives is capable of differenti-
ating between different types of time series data. Still, for short signals, this is a difficult
task due to the large errors and/or artifacts of the phase space embedding.
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Figure E.7: Variance of second derivatives along a reconstructed phase space
trajectory for different time series data and varying input windows. The time delay
embedding was chosen as τ = 1, dE = 1 Left: full range of the experiment; Right:
Close up on smaller input window sizes.
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Figure E.8: Variance of second derivatives along a reconstructed phase space
trajectory for different time series data and varying input windows. The time delay
embedding was chosen as dE = 3, τ = 1 Left: full range of the experiment; Right:
Close up on smaller input window sizes.
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Figure E.9: Variance of second derivatives along a reconstructed phase space
trajectory for different time series data and varying input windows. The time delay
embedding was chosen as dE = 3, τ = 5 Left: full range of the experiment; Right:
Close up on smaller input window sizes.
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Figure E.10: Variance of second derivatives along a reconstructed phase space
trajectory for different time series data and varying input windows. The time delay
embedding was chosen as dE = 5, τ = 1 Left: full range of the experiment; Right:
Close up on smaller input window sizes.
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Figure E.11: Variance of second derivatives along a reconstructed phase space
trajectory for different time series data and varying input windows. The time delay
embedding was chosen as dE = 5, τ = 5 Left: full range of the experiment; Right:
Close up on smaller input window sizes.

Table E.7: Table containing the averaged results and errors for the variance of
second derivatives along the curve, depending on the input window size for different
time series data. No embedding, dE = 1.

Window Size Const. Const.
Error

Cosine Cosine
Error

Lorenz Lorenz
Error

fBm
H=0.333

fBm
H=0.333

Error

fBm
H=0.5

fBm
H=0.5
Error

fBm
H=0.666

fBm
H=0.666

Error
50 0 0 0.00244 0.00021 0.00065 0.00030 0.00295 0.00148 0.00221 0.00130 0.00173 0.00104

100 0 0 0.00243 0.00011 0.00044 0.00009 0.00153 0.00074 0.00096 0.00050 0.00073 0.00046
200 0 0 0.00243 0.00005 0.00040 0.00005 0.00089 0.00038 0.00044 0.00023 0.00031 0.00020
500 0 0 0.00242 0.00002 0.00037 0.00003 0.00049 0.00017 0.00016 0.00007 0.00008 0.00007

1000 0 0 0.00242 0.00001 0.00036 0.00003 0.00032 0.00011 0.00008 0.00004 0.00002 0.00003
1500 0 0 0.00242 0.00001 0.00035 0.00002 0.00025 0.00008 0.00005 0.00002 0.00001 0.00001
2000 0 0 0.00242 0.00001 0.00035 0.00002 0.00020 0.00007 0.00004 0.00002 0.00000 0.00001
5000 0 0 0.00242 0.00000 0.00033 0.00001 0.00011 0.00004 0.00002 0.00001 0.00000 0.00000

10000 0 0 0.00242 0.00000 0.00033 0.00001 0.00006 0.00002 0.00001 0.00000 0.00000 0.00000

Table E.8: Table containing the averaged results and errors for the variance of
second derivatives along the curve in reconstructed phase space, depending on the
input window size for different time series data. Embedding: dE = 3, τ = 1.

Window Size Const. Const.
Error

Cosine Cosine
Error

Lorenz Lorenz
Error

fBm
H=0.333

fBm
H=0.333

Error

fBm
H=0.5

fBm
H=0.5
Error

fBm
H=0.666

fBm
H=0.666

Error
50 0 0 0.00207 0.00012 0.00138 0.00060 0.00415 0.00238 0.00311 0.00213 0.00253 0.00171

100 0 0 0.00190 0.00007 0.00096 0.00019 0.00216 0.00113 0.00135 0.00076 0.00107 0.00073
200 0 0 0.00181 0.00003 0.00087 0.00010 0.00128 0.00058 0.00064 0.00034 0.00046 0.00031
500 0 0 0.00176 0.00001 0.00082 0.00006 0.00071 0.00026 0.00023 0.00011 0.00012 0.00011

1000 0 0 0.00175 0.00001 0.00079 0.00005 0.00046 0.00016 0.00011 0.00005 0.00003 0.00004
1500 0 0 0.00174 0.00000 0.00077 0.00004 0.00036 0.00012 0.00008 0.00004 0.00001 0.00002
2000 0 0 0.00174 0.00000 0.00076 0.00004 0.00029 0.00010 0.00006 0.00003 0.00001 0.00001
5000 0 0 0.00173 0.00000 0.00074 0.00003 0.00015 0.00005 0.00002 0.00001 0.00000 0.00000

10000 0 0 0.00173 0.00000 0.00072 0.00002 0.00009 0.00003 0.00001 0.00000 0.00000 0.00000
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Table E.9: Table containing the averaged results and errors for the variance of
second derivatives along the curve in reconstructed phase space, depending on the
input window size for different time series data. Embedding: dE = 3, τ = 5.

Window Size Const. Const.
Error

Cosine Cosine
Error

Lorenz Lorenz
Error

fBm
H=0.333

fBm
H=0.333

Error

fBm
H=0.5

fBm
H=0.5
Error

fBm
H=0.666

fBm
H=0.666

Error
50 0 0 0.00729 0.00055 0.00090 0.00055 0.00353 0.00223 0.00272 0.00199 0.00219 0.00158

100 0 0 0.00731 0.00023 0.00062 0.00015 0.00184 0.00095 0.00117 0.00066 0.00089 0.00059
200 0 0 0.00729 0.00010 0.00056 0.00005 0.00109 0.00049 0.00055 0.00030 0.00039 0.00027
500 0 0 0.00727 0.00004 0.00053 0.00003 0.00061 0.00022 0.00020 0.00009 0.00010 0.00009

1000 0 0 0.00727 0.00002 0.00051 0.00002 0.00040 0.00014 0.00010 0.00005 0.00003 0.00003
1500 0 0 0.00727 0.00001 0.00050 0.00002 0.00031 0.00010 0.00007 0.00003 0.00001 0.00002
2000 0 0 0.00726 0.00001 0.00049 0.00001 0.00025 0.00008 0.00005 0.00002 0.00001 0.00001
5000 0 0 0.00726 0.00000 0.00047 0.00001 0.00013 0.00005 0.00002 0.00001 0.00000 0.00000

10000 0 0 0.00726 0.00000 0.00047 0.00001 0.00008 0.00003 0.00001 0.00000 0.00000 0.00000

Table E.10: Table containing the averaged results and errors for the variance of
second derivatives along the curve in reconstructed phase space, depending on the
input window size for different time series data. Embedding: dE = 5, τ = 1

Window Size Const. Const.
Error

Cosine Cosine
Error

Lorenz Lorenz
Error

fBm
H=0.333

fBm
H=0.333

Error

fBm
H=0.5

fBm
H=0.5
Error

fBm
H=0.666

fBm
H=0.666

Error
50 0 0 0.00081 0.00000 0.00176 0.00079 0.00489 0.00314 0.00368 0.00283 0.00300 0.00229

100 0 0 0.00038 0.00000 0.00127 0.00025 0.00256 0.00145 0.00159 0.00093 0.00129 0.00090
200 0 0 0.00019 0.00000 0.00116 0.00013 0.00152 0.00072 0.00076 0.00042 0.00056 0.00039
500 0 0 0.00007 0.00000 0.00109 0.00007 0.00085 0.00032 0.00028 0.00013 0.00014 0.00013

1000 0 0 0.00004 0.00000 0.00105 0.00005 0.00055 0.00019 0.00014 0.00006 0.00004 0.00005
1500 0 0 0.00002 0.00000 0.00103 0.00004 0.00043 0.00014 0.00009 0.00004 0.00002 0.00002
2000 0 0 0.00002 0.00000 0.00102 0.00004 0.00035 0.00012 0.00007 0.00003 0.00001 0.00001
5000 0 0 0.00001 0.00000 0.00098 0.00003 0.00018 0.00006 0.00003 0.00001 0.00000 0.00000

10000 0 0 0.00000 0.00000 0.00096 0.00002 0.00011 0.00004 0.00001 0.00001 0.00000 0.00000

Table E.11: Table containing the averaged results and errors for the variance of
second derivatives along the curve in reconstructed phase space, depending on the
input window size for different time series data. Embedding: dE = 5, τ = 5

Window Size Const. Const.
Error

Cosine Cosine
Error

Lorenz Lorenz
Error

fBm
H=0.333

fBm
H=0.333

Error

fBm
H=0.5

fBm
H=0.5
Error

fBm
H=0.666

fBm
H=0.666

Error
50 0 0 0.00634 0.00197 0.00057 0.00064 0.00455 0.00488 0.00344 0.00416 0.0028 0.0032

100 0 0 0.01220 0.00049 0.00072 0.00023 0.00189 0.00108 0.00120 0.00075 0.0009 0.0006
200 0 0 0.01215 0.00019 0.00067 0.00008 0.00113 0.00053 0.00057 0.00032 0.0004 0.0003
500 0 0 0.01212 0.00007 0.00063 0.00004 0.00063 0.00024 0.00021 0.00010 0.0001 0.0001

1000 0 0 0.01211 0.00003 0.00061 0.00002 0.00041 0.00014 0.00010 0.00005 0.0000 0.0000
1500 0 0 0.01211 0.00002 0.00060 0.00002 0.00032 0.00011 0.00007 0.00003 0.0000 0.0000
2000 0 0 0.01211 0.00002 0.00059 0.00002 0.00026 0.00009 0.00005 0.00002 0.0000 0.0000
5000 0 0 0.01210 0.00001 0.00057 0.00001 0.00014 0.00005 0.00002 0.00001 0.0000 0.0000

10000 0 0 0.01210 0.00000 0.00056 0.00001 0.00008 0.00003 0.00001 0.00000 0.0000 0.0000
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