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Abstract
In this cumulative thesis we develop a shell stress resultant plasticity model. This model
is designed for bending dominant applications and as particular use case we choose the
roll forming of sheet metals. Although tools to simulate the roll forming process exist,
they mainly make use of full continuum models with Lagrangian kinematic description
and therefore lack efficiency, which is highly unfavorable for the engineering practice from
the point of view of time consumption. Therefore, our motivation is to develop a fully
structural shell model in the mixed Eulerian–Lagrangian kinematic scheme, in which both
aspects significantly contribute to the efficiency and speed of the simulations. Such model
would pose a highly useful addition to the conventional time and labor extensive methods
(e.g. experiments) to analyze and optimize the roll forming process.

The ultimately desired model is obtained by incrementally increasing the model complex-
ity in three essential steps. We begin with the linear static plate bending model. For this
plate model we find a stress resultant plasticity formulation by exploiting known analytical
continuum solutions of simple bending experiments like uniaxial bending. By doing so
we identify functions which are meaningful for the structural plasticity formulation and
thus obtain a pure stress resultant plasticity formulation. Here we also make use of basic
principles like additive decomposition of strain measures and the associated flow rule. No
further nonlinearities, such as contact or large deformations, are considered at this stage.

In the second step the previous research is augmented such, that it is applicable for
the geometrically nonlinear scheme and also for applications with normal contact with
rigid bodies (the roll profiles) by means of the contact penalty approach. Therefore,
we now employ a nonlinear shell theory which is in line with the classical Kirchhoff–
Love shell theory. For the kinematic description we do not make use of the Lagrangian
formulation, but instead apply the mixed Eulerian–Lagrangian kinematic description,
which is numerically more efficient for the description of axially moving continua like
it is the case for roll forming. Thus, we are able to exploit an axial mesh refinement
scheme because the mesh is now fixed in axial direction. Furthermore, we avoid numerical
oscillations which are related to the pure Lagrangian kinematic description. The inelastic
material behavior is however treated in a continuum plasticity approach by virtue of
treating the flow rule in the integration points along the thickness and through-the-
thickness integration. This model is validated against reference computations with
commercial software Abaqus and also against physical experiments.

In the final step we extend previous research such, that it features a pure stress resultant
plasticity formulation in order to avoid the tedious through-the-thickness integration
and arrive at a multiple times more efficient simulation model. This stress resultant
shell plasticity formulation makes use of the previously developed plate stress resultant
plasticity model and extends it such, that membrane forces also enter the elastic-plastic
constitutive laws. The obtained yield criterion can also be thought as an extension of
the widely known Ilyushin and Crisfield yield criterions. We validate and compare the
obtained results against various other models and conclude that the newly proposed model
is advantageous from the point of view of efficiency and robustness of time integration.
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Kurzfassung
In dieser kumulativen Dissertation entwickeln wir ein anwendungsorientiertes und struktur-
mechanisches Schalenplastizitätsmodell für biegedominante Anwendungen. Als besonderen
Anwendungsfall wählen wir das Rollformen (Walzprofilieren) von Blechen. Obwohl es
Werkzeuge zur Simulation des Rollformprozesses gibt, basieren diese hauptsächlich auf
Kontinuumsmodellen mit Lagrangescher Beschreibung der Kinematik und sind daher sehr
ineffizient, was für die Ingenieurspraxis aus wirtschaftlicher Sicht höchst ungünstig ist.
Durch diese Aspekte motivieren wir die Entwicklung eines strukturmechanischen Scha-
lenmodells, welches außerdem auf der gemischt Euler-Lagrangeschen Kinematik basiert.
Beide Maßnahmen führen zur merklichen Steigerung der Effizienz und zur Reduktion
der Rechenzeit. Ein solches Modell würde sich daher als äußerst nützliche Ergänzung
zur Analyse und Optimierung des ansonsten sehr arbeits- und zeitintensiven (Aufbau,
Experimente, etc.) Rollformprozesses erweisen.

Das letztendlich gewünschte Modell wird durch schrittweise Erhöhung der Modellkomple-
xität erhalten, welche in drei wesentlichen Schritten passiert. Grundlage und erster Schritt
unserer Forschung ist ein Modell zur Simulation der inelastischen Biegung von geometrisch
linearen Platten. Für dieses Modell gelingt es uns eine strukturmechanische Formulierung
des inelastischen Materialverhaltens, basierend auf analytischen Kontinuumslösungen für
einfache Biegefälle, zu identifizieren. Hier werden außerdem grundlegende Konzepte wie
die additive Dekomposition der Verzerrungsmaße und die assoziierte Fließregel verwendet.
Zu diesem Zeitpunkt stellt die einzige Nichtlinearität im Modell das Materialverhalten
dar.

Im zweiten Schritt erweitern wir das vorherige Modell einerseits, dass es im geometrisch
nichtlinearen Rahmen, das heißt für große Verformungen, anwendbar ist und andererseits
durch Implementierung von reibungsfreiem Normalkontakt mit ideal starren Körpern
(Rollen) mittels des Penaltyverfahrens. Es wird nun eine nichtlineare Schalentheorie,
welche konform mit der klassischen Kirchhoff-Love Schalentheorie ist, zugrunde gelegt.
Anstatt der Lagrangeschen Beschreibung der Kinematik wird außerdem die gemischt Euler-
Lagrangesche Betrachtungsweise gewählt, welche für axial bewegliche Strukturen, wie es
im Rollformen der Fall ist, vorteilhaft ist. Dadurch sind wir auch in der Lage eine adaptive
Netzverfeinerung in axialer Richtung auszunutzen, weil das Netz axial unbeweglich ist
und außerdem vermeiden wir numerisch induzierte Oszillationen welche im Falle der
Lagrangeschen Betrachtungsweise auftreten würden. Das inelastische Materialverhalten
wird zum jetztigen Zeitpunkt durch die klassische kontinuumsmechanische Methodik durch
Einführung von Integrationspunkten über die Dicke der Schale aufgelöst. Dieses Modell
wird dann gegenüber Referenzlösungen welche mit der kommerziellen Software Abaqus
generiert werden und durch physikalische Experimente validiert.

Im finalen Schritt erweitern wir das Modell dahingehend, dass das inelastische Ma-
terialverhalten nun strukturmechanisch, das heißt durch die Spannungsresultanten der
Schale beschrieben wird. Dadurch ersparen wir uns die sehr ineffiziente Dickenintegrati-
on, welche in der kontinuumsmechanischen Plastizitätsmodellierung durchzuführen ist.
Das so entwickelte Schalenplastizitätsmodell basiert auf dem zuvor entwickelten Plat-
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tenplastizitätsmodell, allerdings erweitert auf den geometrisch nichtlinearen Fall, also
unter Berücksichtigung der Kopplung der Membrankräfte in den Materialgleichungen. Die
gefundene Fließfunktion kann auch als Erweiterung der weit bekannten Fließfunktionen
von Ilyushin und Crisfield angesehen werden. Letztendlich validieren wir und vergleichen
das Modell gegenüber diversen anderen Plastizitätsmodellen und stellen fest, dass es für
das Rollformen aufgrund der gesteigerten Effizienz und der Robustheit der Zeitintegration
von Vorteil ist.
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1. Introduction and scientific context
Roll forming is an industrial forming process, which allows the highly economical produc-
tion of various steel sections (profiles) in high quantity and quality. Here a coiled steel
sheet is uncoiled and fed through a roll forming line – a sequence of roll stands, which are
typically made up of upper and lower profiled rolls that constitute a roll gap. In each roll
stand the axially moving and initially flat, thin sheet metal is receiving an incremental
elastic-plastic bending deformation, which is kinematically imposed by the roll shapes
such, that in the end the desired profile is obtained. It is important to note that this
process must not be confused with rolling, as the deformation is bending dominant and
the thickness of the metal sheet does not change significantly [1]. Within this cumulative
thesis a non-material shell finite element model, featuring a novel description of inelastic
behavior of the sheet at the level of structural mechanics, is developed to simulate the
roll forming process.

State-of-the-art simulations for roll forming, typically make use of continuum elements
in a Lagrangian kinematic framework, see [2, 3]. The same approach is also implemented
in the commercial software COPRA FEA RF1, which possesses a leadership role for roll
forming simulations, see [4] for an application. For use cases with axially moving continua
the Lagrangian kinematic description is however computationally inefficient due to the
motion of the finite elements and problems associated with that, e.g. mesh refinement.
Furthermore, it gives cause to numerical oscillations, due to material particles entering or
leaving the contact zones repeatedly, see [5].

In order to remediate these drawbacks associated with the Lagrangian kinematic
description, the traditional Arbitrary Lagrangian Eulerian (ALE) formalism is used in
problems of axially moving continua, see e.g. [6] for application in roll forming. The
two-step solution scheme is comprised by a Lagrangian step, which is succeeded by a
Eulerian step, within a single time increment [7]. The latter step is used to transport all
mechanical fields, including material density and stresses to a new mesh. Therefore, the
approach becomes complicated and the risk of accuracy loss during the time integration
is elevated. In the present cumulative thesis we introduce a computational scheme for the
roll forming process with three novel features:

1. The mixed Eulerian–Lagrangian (MEL) kinematic description [8–10], representing a
sub-class of the ALE methods, exploits a special variable transformation and thus
makes it possible to only transport the inelastic (plastic) variables instead of all the
mechanical fields during the Eulerian step of a time increment. The finite element
mesh does not move in axial direction and may be refined in the vicinity of the roll
stands. Therefore, the accuracy of the time integration is improved and the model
complexity is reduced.

2. The discretization of the sheet metal in form of a nonlinear Kirchhoff–Love shell
finite element model, in which the number of degrees of freedom is reduced and the

1https://www.datam.de/en/products/software-division/fea-simulation
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treatment of the elastoplastic constitutive laws becomes more efficient in comparison
to a full 3D volumetric analysis.

3. The application specific shell stress resultant plasticity model for bending dominated
problems, which avoids the usually employed numerically expensive treatment of
plasticity on the continuum level by the introduction of integration points through
the thickness of the shell, hence the computational efficiency is further increased
here.

The metal sheet is modeled as a nonlinear Kirchhoff–Love shell (material surface) in
the spirit of the direct approach, see [11, 12]. The mesh of the numerical model is regular
and consists of rectangular C1 continuous four-node shell finite elements. These elements
represent an extension of the known Bogner-Fox-Schmit plate finite elements with bi-cubic
Hermitian shape functions [11, 13]. The transient simulation comprises a sequence of
statically and plastically admissible equilibrium states; inertia effects are negligible due to
the typically slow transport rates in roll forming. Hence, the simulation procedure follows
a quasistatic time-stepping scheme; in each time increment first the minimization of the
total potential energy is carried out and then the convective transport of plastic variables
along the streamlines of material flow concludes the time increment.

Regarding the contact interactions at the roll stands, we assume that the rolls are
rigid and that the contact is frictionless. Due to the lack of information on the elastic
stiffness of the roll stands and on the frictional conditions in the roll gaps, these simplifying
assumptions are the usually adapted ones in the open literature, see [14, 15]. The contact
interaction is implemented by the penalty regularization method and resolved in the
integration points of the finite elements.

Elastic-plastic behavior of structures, such as plates and shells, is a challenging topic
and various research articles regarding that can be found in the open literature, see [16–18].
Generally the continuum plasticity approach (through-the-thickness integration approach),
which evaluates the well-established relations of plane stress elastoplasticity in chosen
integration points through the thickness, is employed, see again [18]. And although this
approach accurately resolves the 3D plastic state, it is disadvantageous because it comes
at a significant computational cost. In order to mitigate this drawback, the so-called
stress resultant plasticity models were developed, see [16, 19–22]. In these models the
yield criterion as well as the elastoplastic constitutive laws are formulated purely on
the structural level, by means of stress resultants and further state variables. Several
approaches exist in the open literature and many make use of the classical Ilyushin yield
criterion [19], which corresponds to the plane stress von Mises yield criterion. As this yield
criterion can only distinguish between an elastic or fully plastic through-the-thickness
element and is unable to capture the gradual spreading of plastic zones along the thickness
during bending, Crisfield [16] augmented it with a pseudo-hardening variable. Similarly,
we develop our own shell stress resultant plasticity model, aimed at bending dominant
applications, by the introduction of an isotropic hardening function in the yield criterion,
which essentially determines the growth of the yield surface. This function is identified by
continuum reference solutions for simple cases such as uniaxial bending. We developed
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the stress resultant plasticity model first for linear plate bending and then extended it
to the case of nonlinear shell bending by augmenting it accordingly such that the yield
criterion and the constitutive laws also account for membrane forces and the coupling. It
should be noted that the actual production lines are designed such, that the membrane
forces remain possibly low to avoid extensive irreversible stretching of the sheet, which
may otherwise result into the buckling of the ready product. Nevertheless, experience
shows that the membrane forces still need to be taken into account in the flow rule of
the structural model to achieve better correspondence to the 3D simulations and physical
experiments.

Finally, various roll forming simulations with different models were carried out and
compared against each other, which lead to the conclusion that the newly proposed stress
resultant plasticity model produces convincing results at significantly reduced computation
times.

2. Problem statement and research goals
Within this cumulative thesis, the conducted research focuses on the development of an
efficient simulation tool for roll forming simulations, see Fig. 1 for an illustration of the
simulation with one roll stand. The motivation is rooted in the engineering practice of roll

φ

x

y

z

v

Figure 1: Visualization of roll forming simulation: As it passes through a single roll stand,
the flat sheet is bent into a symmetric V-shaped profile. At x = 0 (clamped
edge), material particles enter the control domain with the constant transport
rate v. The bending angle φ, at the opposite free end x = L of the domain, is
used as post-processing variable

forming, as currently the setup and control of the process mainly rely on experiments and
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the experience of the operator of the roll forming line and therefore an efficient simulation
tool is highly desirable. The scientific novelties and highlights of the carried out research
may be summarized as:

• The development of a novel (geometrically linear) plate bending stress resultant
plasticity model for bending dominant applications, see Paper A.

• The extension of that model to the geometrically nonlinear setting and augmentation
to problems with frictionless contact, see Paper B.

• The implementation of a finite element scheme for roll forming in the mixed Eulerian–
Lagrangian kinematic (MEL) framework, see Paper B.

• The development of a shell stress resultant plasticity model for bending dominant
applications, by appropriate extension of the previous research regarding the plate
model, see Paper C .

In the following sections we will methodically outline the fundamentals of this thesis
by briefly presenting the necessary theoretical background. Although we employ global
Cartesian coordinates x, y and z (see Fig. 1) for the mathematical description of this special
application oriented theory, the underlying general physical theory must be indifferent to
the chosen type of coordinates. Thus, wherever it is deemed to be purposeful and feasible,
the mathematical equations are presented in a concise, general and coordinate invariant
form utilizing the notation of the direct tensor calculus, see e.g. [23], which is conventional
in the theory of elasticity or in structural mechanics.

In Sect. 3 we address the nonlinear Kirchhoff–Love shell theory in the material (Lag-
rangian) description, which is commonly used in this form in solid mechanics. Then we
proceed with Sect. 4 where the particular form of the MEL kinematic description shall be
presented, which is specifically designed for roll forming simulations. We carry on with a
brief discussion of the treatment of frictionless contact with rigid rolls in Sect. 5. Further-
more, in Sect. 6 the theory regarding Kirchhoff–Love metal shells in the elastic-plastic
regime is discussed. Finally, a brief discussion about the underlying numerical solution
strategy and finite element scheme takes place in Sect. 7. In total, three publications
(scientific papers) comprise the thesis, see Sect. 8 for a brief summary of the papers and
the contribution of the author of this dissertation.

3. Geometrically nonlinear theory of Kirchhoff–Love shells
Here, we briefly recapitulate the essentials of the traditional nonlinear Kirchhoff–Love shell
theory, according to Paper C . The shell is viewed as a material surface in the framework
of the direct approach, we refer to [12, 24] for the derivation of the governing equations.

The Lagrangian kinematics of the Kirchhoff–Love shell is defined as a mapping between
the reference (undeformed) configuration of the material surface and its actual (deformed)
configuration: r(◦r). Here, ◦r and r correspond to the position vectors and are used to
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identify material particles for the reference and the actual state, respectively. Hence, two
corresponding differential operators

◦∇ and ∇ may be defined with the help of the total
differential of a field quantity ϕ (which can be of arbitrary tensor rank) on the surface:

dϕ = d◦r · ◦∇ϕ = dr · ∇ϕ. (1)

The material surface is typically parametrized by two material (Lagrangian) coordinates,
hence the planar operators of (1) implicitly contain the derivatives with respect to those
coordinates. The first metric tensors are then found as the gradients of ◦r and r:

◦a =
◦∇◦r, a = ∇r, (2)

which correspond to the in-plane metric and whose components define lengths and angles
of the surface in the two configurations. Evaluating (1) for ϕ = r, the deformation gradient
tensor F, which provides a mapping between the differential line elements, is identified:

dr = F · d◦r, F =
◦∇rT . (3)

The gradient (rate of change) of the unit normal vector to the deformed surface n
defines the bending deformation from a planar reference state in terms of the classical
(unshearable) Kirchhoff–Love theory and is expressed by the second metric tensor b:

b = −∇n, (4)

where n is orthogonal to the tangent plane a · n = 0. Using the principle of virtual work
one may show, that the internal forces and moments in the shell are work conjugate to the
changes of the components of both metric tensors from the reference state to the actual
one. This allows to identify the appropriate strain measures, namely the membrane strain
tensor E and the bending strain tensor K. Their invariant forms read:

E = 1
2

(
FT · F − ◦a

)
, K = FT · b · F, (5)

where a plane reference configuration is assumed in the definition of the curvature tensor
K. If the reference configuration in fact would be a curved one, the second metric tensor
of the undeformed state

◦
b = − ◦∇ ◦n would not vanish and (5) must be complemented

accordingly.
Since we aim to exploit a variational formalism within the framework of the finite element

analysis, see Sect. 7, we omit the discussion of the strong form of the equilibrium equations
and boundary conditions (see [24] for a detailed presentation), which are equivalent to
the variational problem statement and proceed directly to the constitutive equations of
the shell. The strain energy density (per unit reference area) of the elastic and isotropic
shell may be stated as a quadratic form in the elastic strain measures:

U = 1
2

(
A1 (trE)2 + A2 E··E + D1 (trK)2 + D2 K··K

)
, (6)
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in which Aα and Dα are the usual elastic stiffness coefficients, see [24]. Strictly speaking,
the quadratic form confines the here adopted theory to small local strains (small strain
assumption), otherwise the strain energy density must be complemented by higher order
terms, see again [24]. We remark, however, that the theory is nevertheless suited and
applicable in the geometrically nonlinear setting, as the small strain assumption does not
preclude large overall deformations. Finally, the shell stress resultants, in the form of
membrane forces N and bending moments M, follow as partial derivatives of the strain
energy density:

N = ∂U

∂E = A1
◦atrE + A2E, M = ∂U

∂K = D1
◦atrK + D2K. (7)

4. Mixed Eulerian–Lagrangian kinematic description of
Kirchhoff–Love shells in axial motion

In problems that treat continua, which are in axial motion (e.g. metal sheet in roll forming
mill), one is often only interested in what happens in a certain bounded and spatially
fixed control domain and does not need nor wish to track the motion of every material
particle in the classical sense. For such purposes, instead of the Lagrangian kinematic
formalism (see Sect. 3 and [12, 25]) the MEL kinematic formulation has been proposed in
[8]. Here we outline the essentials of the very same non-material kinematic description
and refer to Paper B and Paper C . We consider the special case of a planar and infinitely
long rectangular reference configuration, which corresponds to the initially flat metal sheet
and use global spatial Cartesian coordinates x, y and z with corresponding orthonormal
basis vectors i, j, and k. Instead of having a direct mapping from reference configuration
to the actual coniguration, the idea here is to isolate the axial motion by the introduction
of another configuration, namely the intermediate one, see Fig. 2. Thus, the intermediate
configuration is a spatially fixed domain with the spatial coordinate 0 ≤ x ≤ L in which L
is the length of the domain and the material coordinate −w/2 ≤ ◦y ≤ w/2, with w being
the width of the planar and rectangular intermediate state (width of the sheet metal).
Speaking in terms of the finite element method, this would translate to the fact that if we
discretize the metal sheet in the intermediate state, then the nodes of the finite element
mesh will not move in the axial direction, but will follow the deformation of the structure
in the lateral (horizontal) and the transverse (vertical) directions. This means, that we
now indeed employ a mixed kinematic description with the axial coordinate x as the
Eulerian one, whereas the other coordinates y and z remain Lagrangian.

We proceeed with the mathematical formulation of the previously verbally outlayed
idea; the material particles in the infinitely long reference configuration are identified by
their material coordinates ◦x and ◦y:

◦r = ◦xi + ◦yj, −w/2 ≤ ◦y ≤ w/2. (8)

The spatially fixed intermediate configuration, which occupies a planar rectangular domain,

6



is described by:
r̃ = x̃i + ỹj, 0 ≤ x̃ ≤ L, −w/2 ≤ ỹ ≤ w/2. (9)

As active material volume we denote the material particles that currently reside in the
control domain 0 ≤ x ≤ L. It is apparent that the active material volume changes during
the process, as material particles keep entering and leaving the control domain due to
the axial motion. The entire deformation is now decomposed into two steps, see Fig. 2.
First, to arrive at the intermediate state from the reference state, the axial displacement

Figure 2: Mixed Eulerian–Lagrangian kinematic description of the deformation of the
metal sheet, featuring the three different configurations and the multiplicative
decomposition of the deformation gradient tensor F

ux must be taken into account,

r̃ = ◦r + uxi, x̃ = ◦x + ux, ỹ = ◦y. (10)

Secondly, we need to amend for the two additional displacement components, which then
lead to the actual state with in-plane deformations and bending:

r = r̃ + uyj + uzk, x = x̃, y = ỹ + uy, z = uz. (11)

With the finite element implementation in mind (see Sect. 7), the aim of the MEL-
description is that all mechanical fields are considered as functions of the coordinates
in the intermediate configuration; the mapping from the reference configuration to the
actual state is defined implicitly as

◦r = ◦r(r̃), r = r(r̃). (12)

7



The displacement vector and its Cartesian components

u(x, ◦y, t) = ux(x, ◦y, t)i + uy(x, ◦y, t)j + uz(x, ◦y, t)k (13)

act as primary unknowns.
By adapting this mixed parametrization we essentially gain the ability of a spatial

resolution of the deformations imposed by the roll stands at given x-positions. This
translates to the fact that material particles are free to travel through the finite element
mesh, which is fixed in axial direction. Due to the use of new (mixed) coordinates a
corresponding transformation of the basic kinematic relations is necessary. In particular,
the material differential operator needs to be reformulated in terms of the partial derivatives
with respect to x and ◦y: ◦∇ = i (1 − ∂xux)−1 ∂x + j∂◦y, (14)

such that
◦∇◦r with ◦x = x − ux still yields the planar unit tensor ◦a = ii + jj. The first

coefficient in the brackets represents the derivative of the material coordinate ◦x with
respect to its Eulerian counterpart x, this essentially determines the Jacobian and is used
to transform the material area integral for the total strain energy:

UΣ =
∫∫

Ud ◦xd ◦y =
∫ L

0
dx

∫ w/2

−w/2
(1 − ∂xux) Ud ◦y. (15)

This transformation is necessary, because when speaking in terms of the finite element
method again, all the field variables and also the strain energy density are functions of the
coordinates of the intermediate configuration. The unknowns then constitute to the nodal
variables of a single four-node rectangular finite element, which resides in the intermediate
configuration. They comprise the displacements, their first derivatives and the mixed
second derivative with respect to the local finite element coordinates. This choice of
nodal degrees of freedom paired up with bi-cubic polynomial shape functions guarantees
a C1 continuous approximation of the position vector, which is the requirement of the
underlying shell theory.

Before we conclude this section, we need to address the Eulerian step within each time
increment, which succeeds the Lagrangian step and in which the plastic variables are
transported. This is necessary because the plastic variables are strictly attached to the
material particles, which in turn are in axial motion. Thus, the plastic states that are
stored in the axially fixed integration points must be updated accordingly. The total
(material) time derivative of a plastic variable (plastic strains and hardening variables) p
reads:

ṗ = ∂xp u̇x + ∂tp, (16)

where ṗ denotes the time rate of p, which is registered at a moving material particle; it
consists of a local change ∂tp at {x, ◦y} and a convective transport term. Since (16) is the
material derivative of any variable, regardless of what is substituted for p, we set p = ux

and rearrange (16) to find u̇x = v (1 − ∂xux)−1. Here, v is defined as the constant axial
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material transport rate v = ∂tux. We remark that stating v = ∂tux = const. is slightly
inaccurate during the transient phase of the simulation. Nevertheless, we accept v as a
constant model parameter and justify the approach by the fact that we are only interested
in the steady-state solution where the assumption is justified. The advection problem (16)
can now be reformulated as:

∂tp = ṗ − v (1 − ∂xux)−1 ∂xp. (17)

In order to solve the advection equation, a forward in time and backwards in space finite
difference method is used for the incremental time integration of this equation, which
mathematically represents the Eulerian step of the current time increment in the solution
scheme, see Sect. 7.

5. Frictionless contact with rolls

For the contact treatment and algorithm, we refer to Paper B. The penalty regularization
method is used to account for frictionless contact, the contact potential reads:

V Σ =
∫ L

0
dx

∫ w/2

−w/2
(1 − ∂xux)V d ◦y, (18)

where V is the contact potential per unit reference area and is accepted as a quadratic
form in the penetration depth γ:

V = 1
2P γ2. (19)

P denotes the contact penalty and essentially penalizes any penetration γ of the deformable
solid (shell) into the rigid counterpart (rolls); for the limiting case of P → ∞, the
impenetrability condition is exactly fulfilled. We note that the integral of (18) is in
principle of the same form as the one of the total strain energy (15); the material area
integral has been transformed in the same manner, by the use of the Jacobian, see Sect. 4.

The 3 × 3 Gaussian quadrature rule is used for the numerical integration of (18). For
that purpose the contact kinematics at each integration point must be resolved, see Fig. 3,
for an illustration. The penetration depth γ is essentially defined by the difference of the
profile radius R(y) and the radial distance |d| of the current integration point. Projecting
this difference in direction of the normal vector to the roll surface eγ , we obtain:

γ = max
{

0,
R(y) − |d|√
1 + R′(y)2

}
, d = r − r0 − r · jj, (20)

in which r and r0 denote the position vector (11) and the vector to the center of the roll
axis at y = 0, respectively. The factor with the square root ensures that the difference
R(y) − |d| is projected in normal direction eγ and thus amounts to the cosine of the
inclination angle of the roll profile R(y). γ is simply set to zero if there is no penetration,
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R(y)

y

eγ

r γ

r0

r · j

d

Figure 3: Visualization of the contact parameters, with: γ being the current penetration
depth at an integration point and eγ being the surface normal vector. The roll
geometry is described by the radial profile R(y).

which prevents the occurrence of non-vanishing contact forces in the event of no contact.
Upon established contact, the variation of γ is computed by the virtual displacement in
direction of the normal vector eγ :

δγ = −eγ · δr = −eγ · (δuyj + δuzk) , eγ = (d/ |d| − R′(y)j)
|d/ |d| − R′(y)j| , (21)

which does not contain a variation of the axial displacement ux owing to the mixed
kinematic description, as the integration points are axially fixed.

Since the rolls are axisymmetric bodies of revolution, their geometry can be fully defined
and implemented by means of discretizing their radial profile R(y) as a sequence of cubic
polynomials:

R(y) = pi(y), yi ≤ y < yi+1. (22)

At their boundaries these polynomials fulfill continuity conditions{
pi(yi), p′

i(yi), pi(yi+1), p′
i(yi+1)

}
=

{
Ri, R′

i, Ri+1, R′
i+1

}
. (23)

For simplicity sake, the radii and inclinations Ri and R′
i are defined on an equidistant grid

yi = −l/2 + i ∆y, ∆y = l

N
, 0 ≤ i ≤ N, (24)

in which l and N are the length of the roll axis and the total number of cubic polynomials,
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respectively.

6. Elastoplasticity of Kirchhoff–Love metal shells
In this section we briefly address the elastoplastic behavior of metal shells at bending. For
brevity sake and as this is not something essential for the applicability of the presented
theory (however, still essential for the process and simulation of roll forming) we omit
the consideration of material hardening and view elastic-ideal plastic material behavior.
Material hardening, see [26] for common strain hardening models, can however be easily
included within the presented theory, we refer to Paper A and Paper B for an elaborate
view. In the literature generally there are two different ways of treating elastoplastic
bending of shells:

1. The predominant and established continuum plasticity with the through-the-thickness
integration approach, for applications see [17, 18, 27].

2. The more efficient but in general still immature and therefore less common stress
resultant plasticity approaches, for applications see [21, 22, 28].

Within this cumulative thesis we gradually developed a novel shell plasticity model that
belongs to the latter class of the stress resultant plasticity approaches; we will discuss it
below, after the classical continuum plasticity approach is introduced as it is essential for
the theoretical foundation.

We start by discussing the first approach. In terms of the continuum plasticity with the
through-the-thickness integration approach, the shell is considered a continuum with non-
vanishing thickness, that however still obeys the structural kinematics of a Kirchhoff–Love
shell. By doing so, it is possible to accurately resolve the elastic-plastic rate equations
on the continuum level. The in-plane part of the strain tensor of the 3D body ε⊥ is,
according to the Kirchhoff kinematic hypothesis, a linear function of the material thickness
coordinate ζ:

ε⊥ = E − ζK. (25)

The small strain assumption allows us to additively decompose the total strains in elastic
and plastic parts:

ε⊥ = εe
⊥ + εp

⊥. (26)

We already made use of this assumption above by stating the strain energy density in its
quadratic form, see (6), of Sect. 3. Here, this implies that the membrane strains E must
remain small and the bending strains K may be moderate. This however, again does
by no means preclude large overall deformations, as the thickness coordinate is confined
to vary in the small range −h/2 ≤ ζ ≤ h/2 due to the thinness of the shell. For metal
plasticity it is common to use the (here for plane stress) von Mises yield criterion, which
in an invariant form reads:

fσ = 3
2σ··σ − 1

2(trσ)2 ≤ k2. (27)
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Since we omit material hardening, the yield strength k remains a constant value, the yield
surface does not change. For an elastic state fσ < k2 holds and plastic flow sets in at
fσ = k2. The planar stress tensor σ is connected to the elastic part of the planar strain
tensor by the elastic law for the plane stress assumption:

σ = E

1 + ν
εe

⊥ + Eν

1 − ν2
◦atrεe

⊥ = 4C··εe
⊥, (28)

with the elastic modulus E and the Poisson ratio ν. An alternative form of the elastic
law features 4C, the fourth rank plane stress elasticity tensor, that connects elastic strain
tensor to stress tensor by means of a double contraction. 4C can easily be derived from
(28) as 4C = ∂σ

∂εe
⊥

and reads:

4C = E

2(1 + ν) (eαeβeαeβ + eαeβeβeα) + Eν

1 − ν2 eαeαeβeβ

= E

2(1 + ν) (eαeβeαeβ + eα
◦aeα) + Eν

1 − ν2
◦a ◦a, (29)

here α and β are summation indices with e1 = i and e2 = j, hence the planar unit tensor
◦a can be identified as ◦a = eαeα = eβeβ = ii + jj, which allows to simplify the expression
as shown above. We note the slight inconsistency introduced through (28), as here the
Cauchy stresses σ are directly related to the strain measure, although the stress tensor
should be expressed on the deformed surface and the strains are referred to the reference
one. However, owing to the small strain assumption this subtle distinction is irrelevant;
see Paper B for a more detailed discussion. We close the system of equations by providing
the associated flow rule, which determines the evolution of the plastic strains and is a
consequence of the postulate of maximum plastic dissipation, see [29]:

ε̇p
⊥ = λ̇

∂fσ

∂σ
,

∂fσ

∂σ
= 3σ − ◦atrσ. (30)

The consistency parameter λ̇ is non-negative and either zero (elastic state, ε̇p
⊥ = 0) or

positive (elastic-plastic state, ε̇p
⊥ ̸= 0). At yield the stress state must remain on the

yield surface, which is ensured by the consistency condition ḟσ = 0. Evaluation of the
consistency condition, see e.g [29], yields the stress-strain relation in terms of time rates
for elastoplastic states:

σ̇ =
(

4C −
4C·· ∂fσ

∂σ
∂fσ

∂σ ··4C
∂fσ

∂σ ··4C·· ∂fσ

∂σ

)
·· ε̇⊥. (31)

The tensor (term in brackets) that connects strain and stress rates in the elastoplastic
regime, is called the fourth rank tangent stiffness tensor and is symmetric due to the use
of the associated flow rule, see [30]. Within this continuum plasticity approach, the strain
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energy density per unit reference area reads:

U =
∫ h/2

−h/2

1
2εe

⊥··4C··εe
⊥dζ, εe

⊥ = ε⊥ − εp
⊥. (32)

Since the energy density of the shell and also the shell stress resultants N and M are
obtained via a thickness integration (see Paper B), this continuum plasticity approach is
also referred as the through-the-thickness integration approach. The integration is carried
out numerically within the finite element scheme by means of a Gaussian quadrature
rule with several points ζi in thickness direction, see Paper B. This rate equation system
now fully describes the load history dependent stress and strain state of the shell without
material hardening.

We proceed with the discussion on the second method to handle shell plasticity, namely
the stress resultant plasticity approaches. Instead of carrying out the computationally
demanding time integration of the elastoplastic constitutive equations in multiple points
over the thickness, inherent to the continuum plasticity approach discussed above, we
propose to treat elastoplasticity directly in the framework of the direct approach featuring
the shell as material surface, see Paper C . The strain energy density of the shell is then
sought as a quadratic form in the elastic parts of the shell strain measures Ee and Ke, as
in (6), which stands in contrast to the definition (32) used in the through-the-thickness
integration approach. Similiar to (26) the additive decomposition of shell strain measures

E = Ee + Ep, K = Ke + Kp (33)

is based on the assumption of small local strains. In Paper A we derived a plate stress
resultant plasticity model for the geometrically linearized framework, where N can be
neglected and only the bending moments M need to be considered. Knowing that this
simplification is no longer reasonable in the context of the geometrically nonlinear shell
theory we amended the yield criterion accordingly in Paper C . In what follows we will
provide the governing equations of the theory and refer to Paper A and Paper C . First
we define invariants of the stress resultants as following:

IN = 1
N2

0

(3
2N··N − 1

2(trN)2
)

,

INM = 1
N0M0

(3
2N··M − 1

2trNtrM
)

, (34)

IM = 1
M2

0

(3
2M··M − 1

2(trM)2
)

.

The expressions are made dimensionless with the help of the membrane force N0 and the
bending moment M0 that correspond to first yield under the distinguished load cases of
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uniaxial tension and uniaxial bending, respectively:

N0 = kh, M0 = kh2

6 . (35)

After some theoretical considerations (see Paper C ), we propose the yield criterion of the
shell stress resultant plasticity in following form:

f = IN + 1√
3kM (Ap)

M0

|INM | + 1
k2

M (Ap)
M2

0

IM − 1, (36)

where the isotropic hardening function kM (Ap) is identified such, that it reproduces the
elastic-plastic response of a plate at pure uni-axial bending:

k2
M (Ap) = − 1

36h3
(

3EAp − 3
√

EAp
√

2hk2 + EAp

+2
√

3hk2 arctan
√

EAp
√

6hk2 + 3EAp

)
+ h4k2

36 ,

(37)

see Paper A. Here Ap is the dissipation work per unit reference area and is essentially used
to govern the structural hardening (not to be confused with material hardening, which is
independent thereof) effect of the shell, meaning that the gradual spreading of plastic zones
along the thickness of the shell can now be accounted for. This implementation in the
spirit of work hardening not only captures initial yield (k2

M = M2
0 , Ap = 0) and limit yield

(k2
M = M2

L, Ap → ∞) accurately for the case of pure bending, but also straightforwardly
enables the account of actual isotropic material hardening by means of augmentation
of k2

M (Ap), see Paper A. Moreover, the contribution of plastic membrane strains to the
strain hardening can be rigorously accounted for in the definition of the dissipation power:

Ȧp = N··Ėp + M··K̇p. (38)

We proceed with the statement of two equations of the associated flow rules with a single
consistency parameter λ̇ that govern the evolution of the plastic strain rates:

Ėp = λ̇
∂F

∂N , K̇p = λ̇
∂F

∂M , (39)

where instead of f = 0 we exploit a modified yield equation of the form F (N, M) = k2
M (Ap),

which reads:

F =
h4k2

(
|INM | +

√
12IM (1 − IN ) + I2

NM

)2

432(1 − IN )2 = k2
M (Ap). (40)

We note that the here defined yield criterion simplifies to the plate stress resultant
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plasticity yield criterion of Paper A for N = 0. Due to the now established separation of
yield criterion and effective yield strength, the consistency condition can be evaluated in
a straightforward manner:

Ḟ = ∂F

∂N ··Ṅ + ∂F

∂M ··Ṁ = 2kM k′
M Ȧp, (41)

which confines the stress state to the actual yield surface in case of plastic flow. Proceeding,
with the dissipation power given in (38), we evaluate the constitutive law (7) in order to
relate the rates of the stress and strain resultants:

Ṅ = A1
◦atrĖe + A2Ėe = ∂N

∂Ee ··
(
Ė − Ėp

)
,

Ṁ = D1
◦atrK̇e + D2K̇e = ∂M

∂Ke ··
(
K̇ − K̇p

)
,

(42)

here the elastic strain rates are replaced according to the additive decomposition (26).
We note that in analogy to the elasticity tensor 4C of the continuum theory of (28), the
tensor derivatives of N and M with respect to the corresponding elastic strain tensors
constitute two forth order tensors. By substituting the rates of the stress resultants (42)
as well as the dissipation power (38) written in terms of strain rates, into the flow rules
(39), we are able to solve (41) for the consistency parameter:

λ̇ =
∂F
∂N ·· ∂N

∂Ee ··Ė + ∂F
∂M ·· ∂M

∂Ke ··K̇
∂F
∂N ·· ∂N

∂Ee ·· ∂F
∂N + ∂F

∂M ·· ∂M
∂Ke ·· ∂F

∂M + 2kM k′
M

(
N·· ∂F

∂N + M·· ∂F
∂M

) . (43)

Similar to (31), backward substitution in (42) yields the tangential elastic-plastic con-
stitutive law in the framework of the shell stress resultant plasticity theory, which is
essential for the numerical implementation of the Newton method featuring tangent
stiffness matrix of the finite element model. The coupling of the membrane and bending
deformations in the elastoplastic regime, can be noticed by the fact that both of the
total strain rates Ė and K̇ contribute to (43). Thus, according to the flow rules of (39),
curvature rates will in general give rise to plastic membrane strains even when membrane
forces are small and vice versa.

Now the shell stress resultant theory is complete and can be implemented within a
numerical solution scheme, which features a return-mapping algorithm in the spirit of
Paper A, see also Sect. 7 for a brief discussion of the numerical implementation within
the framework of the finite element analysis.

7. Numerical solution scheme

Here we give a short overview of the implemented numerical solution scheme, that features
a finite element model within the mixed Eulerian–Lagrangian framework. The shell
is discretized using four-node rectangular finite elements, which reside in the axially
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fixed intermediate configuration (see Sect. 4). The nodal degrees of freedom contain the
displacements, their first derivatives and the mixed second derivative with respect to the
local finite element coordinates. We achieve the necessary C1 continuous approximation
of the position vector by the use of bi-cubic polynomial shape functions. The used kind of
element therefore is an extension of the well known Bogner-Fox-Schmit plate element, see
[11, 13], adapted to the case of a Kirchhoff–Love shell.

Since we view the whole process as quasistatic, we basically exploit the variational
principle of minimum potential energy as a part of the solution scheme within each time
increment, see Fig. 4. The total potential energy of the system comprises the sum of the
total strain energy (15) and the contact potential (18). In what follows we will highlight
the two-step solution procedure, algorithmically depicted in Fig. 4. The variables q and

equilibrium iteration{
q(i−1), p(i−1)

} → q(i)

update plastic variables{
q(i), p(i−1)

} → p(i)

check: q(i), p(i)

new deformed state

q(i) = qj

convective update

p(i) → pj

tj−1 = tend

initialize time increment j = 1
t0 = 0, q0 = 0, p0 = 0

proceed with
qj , pj

t
P (t)

return
qend, pend

inaccurate

i → i+ 1

fa
il
u
re
,
tr
y
:
t
→

t
−
∆
t/
2

no

i = 1

convergence

yes j → j + 1

re
tu
rn

m
ap

p
in
g

time increment j

Figure 4: Algorithmic visualization of the quasistatic time-stepping procedure, which
follows a two-step solution in each time increment by first invoking the return-
mapping scheme and then concluding by the convective update
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p comprise an array of all the nodal degrees of freedom and an array of all the plastic
variables (stored in integration points), respectively. The simulation is driven such, that
the rolls are in their final position, forming the desired roll gap from the very beginning,
while the contact penalty P is incremented in each time increment until at some time
value the desired contact penalty is reached. Therefore, the source of loading is the
incrementation of the contact penalty. In the first step of each time increment j we evoke
a return-mapping scheme (see Paper A and Paper B) in which within a Newton loop
first an equilibrium iteration (in which the plastic state is frozen) is carried out and then
since the newly obtained nodal state q(i) doubtlessly perturbs the previous frozen plastic
state, an update of the plastic variables is carried out to obtain new plastic variables
p(i), where i is the iteration index. Then, the newly obtained state {q(i), p(i)} is checked
whether it is a converged statically and plastically admissible state in order to determine
to proceed with the obtained state or to carry out another iteration. Failure, see Fig. 4,
occurs upon divergence or if the plastic flow exceeds a certain threshold value; since we
carry out the update of the plastic variables in a linearized manner, the yield surface must
not be exceeded by far for this algorithm (which is slightly different than the classical
return mapping scheme proposed by [31]) for the sake of accuracy of time integration,
see Paper B for a detailed discussion. In the second step of each time increment j, since
the material particles travel with an axial transport rate v, the plastic variables must
simply be transported forward by means of a convective update. Therefore, the advection
equation, see Sect. 4, is solved to transport the plastic variables according to the axial
motion increment v∆t. At this simulation stage there is no active plastic flow and the
only "source of loading" is the material motion, meaning that from the perspective of a
moving material particle no change of its plastic state is registered; this amounts to ṗ = 0
in (17). The repetition of this two-step sequence in each time increment effectively keeps
up the transient simulation. After a sufficient number of time increments, the stationary
state is obtained, in which no more changes can be detected within the control domain
from the perspective of a spatially fixed observer and the simulation is finished.

17



8. Summary of the journal articles
Paper A

Stress resultant plasticity for plate bending in the context of roll forming of sheet
metal
Emin Kocbay, Yury Vetyukov International Journal for Numerical

Methods in Engineering
https://doi.org/10.1002/nme.6760

In this first publication, with the aim of roll forming simulations in mind, we develop
a novel plate stress resultant plasticity model with isotropic material hardening for the
geometrically linear bending of plates, which stands in contrast to the usually applied
continuum plasticity with the through-the-thickness integration approach. The derivation
features the analytical identification of the isotropic hardening function, by means of
comparison against exactly available solutions for a continuum through-the-thickness
element for simple load cases like uniaxial bending. With the help of this function and
few additional steps, a complete formulation of the plate stress resultant plasticity model
is established. The model is first applied in local numerical experiments on a through-
the-thickness element and the responses are compared against numerical results of the
continuum plasticity approach. The comparison highlights very good correspondence
to the latter results. In order to further investigate the model as part of a structural
mechanics simulation, we implemented it in a plate finite element scheme and applied it
on some static benchmark problems, with mechanical loads. The results of comparison
against commercial software as well as against other models from the open literature were
convincing and in favor of the newly proposed plate stress resultant plasticity model.

Emin Kocbay is responsible for: writing of the original draft; derivation of the model
equations, numerical experiments and validation; comparative finite element computations;
visualization and presentation of the results.

Paper B
Mixed Eulerian–Lagrangian modeling of sheet metal roll forming
Emin Kocbay, Jakob Scheidl, Fabian Riegler,
Martin Leonhartsberger, Matthias Lamprecht,
Yury Vetyukov

Thin-Walled Structures
https://doi.org/10.1016/j.tws.2023.110662

In this second research paper we now take more concrete steps towards the goal of roll
forming simulations. This means, that we here extend the previous research of Paper A
and implement a simulation tool that features the geometrically nonlinear setting within
the framework of the mixed Eulerian–Lagrangian kinematic description. Furthermore,
we account for the contact interaction with the rigid rolls by means of the penalty
regularization method. We propose a quasistatic time-stepping procedure that comprises
a two-step solution within each time increment and utilizes the return mapping scheme.
Various parameter studies are carried out in order to gain a profound process knowledge
and furthermore we achieved to reproduce certain effects that are known to occur in the
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engineering practice of roll forming. Regarding the constitutive models; the previous plate
stress resultant plasticity model as well as the here (nonlinear case) more appropriate
continuum plasticity approach were implemented and tested. We found that the results
of the plate stress resultant plasticity model are not sufficiently accurate for the nonlinear
case in which membrane forces (albeit small in roll forming) should be introduced to the
elastoplastic constitutive equations. Finally, finite element results are validated against
commercial software as well as against physical experiments, which were carried out on
an industrial roll forming test rig.

Emin Kocbay is responsible for: writing of the original draft; development of software,
performing simulations, numerical validation and visualization of results.

Paper C
An enhanced stress resultant plasticity model for shell structures with application
in sheet metal roll forming
Emin Kocbay, Jakob Scheidl, Fabian Schwarzinger,
Yury Vetyukov

The International Journal of Advanced
Manufacturing Technology

https://doi.org/10.1007/s00170-023-12544-1

In this final publication, we build upon Paper A and Paper B and essentially extend
the plate stress resultant plasticity model to a bending dominant application oriented
nonlinear Kirchhoff–Love shell stress resultant plasticity model. In doing so, we derive a
yield criterion, which resembles the one previously proposed by Crisfield [16], in which
membrane forces are introduced. Thus, we obtain a generalization of the yield criterion
of Paper A. Furthermore, instead of using the hardening variable that Crisfield came up
with, we use the isotropic hardening function of Paper A. Subsequently we apply the
model in numerical experiments on a through-the-thickness element. The comparison of
the results between our model, the model of Paper A, the continuum plasticity model and
the Crisfield model demonstrates certain advantages of the here presented model in terms
of accuracy and numerical efficiency. Upon testing the model on practical finite element
simulations (using the same software as in Paper B but with replacing the constitutive
model) with one and three roll stands we ascertain a significant improvement against
the model of Paper A and furthermore an excellent correspondence in comparison to the
continuum plasticity model in regard of the predictivity of the final geometry of the sheet
metal profile and forces on the roll stands.

Emin Kocbay is responsible for: writing of the original draft; derivation of the model
equations, development of software, numerical experiments; finite element computations;
visualization and presentation of the results.
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9. Scientific impact
Within this cumulative thesis we were able to develop and introduce a novel simulation
strategy, developed for the purpose of roll forming simulations. The novelties comprise
the discretization of the sheet metal as a Kirchhoff–Love shell within a mixed Eulerian–
Lagrangian kinematic finite element framework. Furthermore, the description of the
inelastic constitutive equations features a new shell stress resultant plasticity model,
which is applicable for bending dominant applications. Thus, the usually employed
time consuming approaches that utilize classical Lagrangian kinematic formulation and
furthermore a finite element discretization on the continuum level are elegantly evaded.

During this research work we systematically developed the simulation tool and are able
to briefly summarize following scientific highlights and impacting factors in the order they
were implemented:

• The development of a new plate stress resultant plasticity finite element model for
the geometrically linear setting.

• The extension to the nonlinear Kirchhoff–Love shell theory within the mixed Eulerian–
Lagrangian kinematic formalism.

• The account for the contact interaction with the rigid rolls by means of the penalty
regularization method.

• The testing of the software with the previously developed and other constitutive
models (continuum plasticity approach) in practical roll forming simulations and
validations of those against commercial software results as well as physical experi-
ments.

• The extension towards a nonlinear Kirchhoff–Love shell stress resultant plasticity
formalism, building upon the previous research and finally obtaining an accurate
and still computationally efficient simulation tool for roll forming.
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Abstract
Modeling of roll forming process of sheet metal requires efficient treatment
of plastic deformations of thin shells and plates. We suggest a new gen-
eral approach toward constructing the governing equations of bending of an
elastic-plastic Kirchhoff plate on the structural mechanics level. The generic
function of the isotropic hardening law is formulated in terms of variables,
which aremeaningful for amaterial surface, namely resultant bendingmoments
and dissipative work. This function is then identified by comparison of the
exact solutions for a uni-axial or isotropic bending experiment within the struc-
tural model and with the continuummodel of a through-the-thickness element.
We validate the approach against both the fully three-dimensional simulations
as well as the results of the traditional elastic-plastic plate analysis, the latter
one featuring the continuum laws of plasticity treated in the integration points
along the thickness direction. We considered benchmark problems from the
literature as well as a prototype for the roll forming problem. Besides good agree-
ment regarding the shape of plastic zones and force-deflection characteristics,
experiments also demonstrate higher computational efficiency of the new stress
resultant model.

K E Y WO R D S
elastic-plastic plate, finite element analysis, roll forming, stress resultant plasticity

1 INTRODUCTION

In the present paper, we introduce a novel approach to modeling plasticity in thin plate- and shell-like structures at
bending, which is computationally more efficient than traditional ones. The ultimate aim of our simulations is set on the
roll forming of sheet metal, where the proposed model of thin elastic-plastic plates shall play a fundamental role.

Roll forming belongs to the class of cold forming manufacturing processes. The basic idea is that an initially flat sheet
metal strip is transformed to the desired product with a different profile (shape of the cross section), see References 1,2.
The strip is continuously fed through the consecutively arranged forming passes. Each forming pass consists of a set of
contoured rolls, which incrementally contribute to the finally obtained deformation, thus producing the desired shape
mainly by bending. Therefore, roll forming is essentially different to rolling: no significant thickness deformations occur,
the membrane strains remain small, and the final product shape is acquired by irreversible plastic bending deformations.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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Roll forming is a highly economical manufacturing process for the mass production of high-quality profiles. Their
complexity can vary from simple profiles (e.g., U-profiles) to highly sophisticated ones. While being very important for
practical applications, predicting the final shape for a given assembly and design of the forming passes is currently an
extremely time-consuming computational task, because traditionally continuummodels with Lagrangian kinematic for-
mulation of the finite element scheme are put into practice. Because of the axial motion of the deformable structure
through a series of contact zones, it is computationally more efficient to use the mixed Eulerian–Lagrangian kinematic
description with a nonmaterial finite element formulation as discussed in References 3-5. Previous attempts to apply
this approach for roll forming featured solid continuum elements2 and were not very successful from the point of view
of numerical efficiency. Faster simulations are expected with structural mechanics models of plates and shells, which
require a consistent and efficient treatment of elastic-plastic behavior at bending dominated deformations.

The proposed stress-resultant model of plasticity allows to reduce the computational complexity of this nonlinear
problem to a great extent.

In the present paper we consider static deformation of plates with the focus on the plasticity formulation. A widely
utilized approach to treat plasticity in thin bodies avoiding the full three-dimensional analysis are structural models of
beams, plates, and shells, in which the continuum mechanics laws of elastoplasticity are treated in chosen points of
a through-the-thickness element. The kinematic assumptions of the structural model relate the local strains with the
overall strain measures of the structure (e.g., curvature of a beam or of a plate), and the stress resultants (forces and
moments) follow by integration. A good correspondence to full three-dimensional solutions is usually observed for thin
structureswith sufficient number of integration points, see discussion inReference 6.A further step toward computational
efficiency can be taken, if the constitutive relations directly connect the stress resultants to the local strain measures of
the structural theory (e.g., a relation between the bending moments and curvature for a beam or for a plate) and thus the
through-the-thickness integration becomes obsolete.

In the literature, one finds several attempts to describe the elastic-plastic behavior of plates and shells completely on
the level of structuralmechanics,mainly in the view of computational aspects. Practically all formulationsmake use of the
associated flow rule and an extended form of the Ilyushin yield criterion.7 The differences lie in the underlying structural
plate model (with or without shear and membrane deformations), in the details of the finite element kinematic approxi-
mation and, what is most important, in the formulation of the isotropic and/or kinematic hardening law.8 Moreover, the
choice of the internal hardening variables, which enter the evolution law, is also not unique. Thus, Simo and Kennedy9
introduced a hardening potential that is quadratic in terms of the hardening variables, which implies linear hardening
behavior. Two hardening laws are obtained by using that potential. One for isotropic hardening, where the internal hard-
ening variable takes the form of a dissipative function, which is defined as a generalization of the equivalent plastic work.
The other introduced law considers kinematic hardening and is an extension to the Prager–Ziegler kinematic hardening
law of the classical J2-flow theory. The practical application of these laws requires, however, material parameters such as
isotropic and kinematic hardening moduli of the structural mechanics theory to be known. Ibrahimbegović and Frey10
considered the Ilyushin yield criterion adjusted by an additive hardening term in the form of a product of a constant
isotropic hardening modulus and the effective plastic strain as an internal variable within a kinematically simple model
of a Reissner–Mindlin plate.

While this yield criterion is simple and perfectly applicable, it does not account for the spreading of the plasticity
through the thickness of the plate and is useful only for the analysis of limit loads. Crisfield11 suggested an evolution law
for an additional state variable, which reflects the growth of the plastic zone in a through-the-thickness element. Dujc and
Brank implemented this strategy in Reference 12 and demonstrated satisfactory results for several benchmark problems,
one of which we also consider in the present work. The same authors further extend the approach toward more compli-
cated shell kinematics in Reference 13 making use of a yield criterion function that corresponds to the Ilyushin–Shapiro
multisurface flow criterion in three dimensions. Both isotropic and kinematic hardening are accounted for in the pro-
posed yield criterion. The internal hardening variables of their model feature the plastic strain, another scalar parameter
which controls the isotropic hardening mechanism and strain like parameters which control the kinematic hardening
mechanism.

A different approach of considering hardening in terms of hardening moduli (which are often constants) is pursued
by Chou et al.14 The Ilyushin yield criterion is again applied; however, upon initiation of plastic flow the yield criterion
function takes the value of a normalized equivalent stress resultant Σ, which is variable because isotropic hardening is
considered. Σ is handled as a function of the normalized equivalent generalized plastic strain and is formulated in terms
of a power law, where the exponent n is called hardening exponent, which is viewed as a material parameter and must be
known a priori in order to apply the structural model.
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In the present paper we focus on the Kirchhoff plate model with the associated flow rule and the Ilyushin yield cri-
terion, which is adjusted in order to account for isotropic hardening; see Reference 15 for a discussion of more general
plasticity models in application to sheet metal forming. Similar to Reference 14 we propose, that a through-the-thickness
element yields, when the yield criterion function equals a limiting value k2M , with kM being themaximal equivalent elastic
moment. In contrast to many other approaches, we consider the limiting value kM as a function of the dissipative work
Ap in the given point of the plate, which fully determines the isotropic hardening of the structural model. Furthermore
we do not assume any particular form (e.g., power law) for kM(Ap), but rather identify the analytic function by solving
simple problems like uni-axial bending. The identification relies upon the continuum model of a through-the-thickness
element: equations of the three-dimensional elastoplasticity are solved for the points on a line in the thickness direction
under the kinematic assumptions of the Kirchhoff plate theory. Integrating the three-dimensional stresses and dissipa-
tive work over the thickness, we finally obtain the sought for hardening function of the structural model. We do not
consider kinematic hardening and thus are not able to account for the Bauschinger effect.8 Because reverse plasticity is
usually avoided in the practice of roll forming, the present model shall be sufficient for this field of application. In numer-
ical experiments, we observe good agreement regarding the shape of plastic zones and force-deflection characteristics.
Moreover, the computational advantage compared to conventional plasticity models is pronounced.

2 GENERAL MODEL OF AN ELASTIC-PLASTIC KIRCHHOFF PLATE

A plate is considered as amaterial surface in the framework of the so-called direct approach.16,17 The absence of the thick-
ness coordinate makes it very easy to arrive at the complete theory. Formulating the constitutive conditions requires,
however, identification by comparison to three-dimensional solutions, which we will accomplish in the subsequent
sections.

The single strain measure for a linear Kirchhoff plate is the tensor of curvatures

𝛋 = ∇∇w, (1)

with ∇ being an in-plane differential operator and w being the transverse deflection. With Cartesian coordinates x, y in
the plane of the plate and corresponding basis vectors ex, ey the invariant differential operator takes the form

∇ = ex
𝜕
𝜕x + ey

𝜕
𝜕y , (2)

such that the symmetric in-plane curvature tensor

𝛋 = 𝜕2w
𝜕x2

exex +
𝜕2w
𝜕x 𝜕y (exey + eyex) +

𝜕2w
𝜕y2

eyey = 𝜅xexex + 𝜅xy(exey + eyex) + 𝜅yexex, (3)

is defined by three components. In the following we use the direct tensor notation with a dyadic product implied when
two vectors are written next to each other, thus omitting the symbol ⊗, which is sometimes used in the literature. This
utilized variant of the mathematical notation is common in the theory of elasticity and structural mechanics, see for
example, Reference 18.

The elastic law for the isotropic plate is given by

M = D𝜈 I tr𝛋e + D(1 − 𝜈)𝛋e, (4)

in which M is the plane tensor of moments acting in the plate, I is the plane identity tensor, 𝜈 is the Poisson ratio and D
is the flexural stiffness. Note that M shall be considered as one of the stress resultants in the three-dimensional body of a
plate. The tensor of elastic curvatures 𝛋e is identical to the total curvatures 𝛋 as long as the deformation is purely elastic.
Using the principle of virtual work, one obtains the equilibrium conditions in the form

∇ ⋅ M +Q = 0, ∇ ⋅Q + q = 0. (5)

Here Q is the vector of transverse forces and q is the external load per unit surface of the plate, which acts in the
transverse direction. The equilibrium equations and the corresponding boundary conditions for M and Q are equivalent
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KOCBAY and VETYUKOV 5147

to the variational principle of minimum of total potential energy of the plate, which we use below for the finite element
analysis.

We account for inelastic deformations by means of the additive decomposition of the total geometric curvature into
the elastic and the plastic parts,

𝛋 = 𝛋e + 𝛋p. (6)

An evolution law for 𝛋p is required to close the system of equations. Additional relations will need to be introduced
for this sake, namely: yield criterion, hardening law, and flow rule. Each of them is formulated in stress resultants which
leads to our general model of an elastic-plastic Kirchhoff plate. Furthermore we focus on a plate model with isotropic
hardening. Not taking the phenomenon of kinematic hardening into consideration, we will not be able to account for
the Bauschinger effect,8 which is important in case of reverse plasticity. Nevertheless, we decide that the consideration of
isotropic hardening is sufficient for our purposes in the field of roll forming, as typically in roll forming, the sheet metal is
bend progressively under several, subsequently acting, shaped roll pairs and thus no plastic reverse bending is expected.

We start by introducing the yield criterion function f (M) and its derivatives. Motivated by the consideration, that the
plane stress tensor in the three-dimensional body of the plate is proportional toM and making use of the von Mises yield
condition, we formulate the yield criterion function as an invariant quadratic form

f = 3
2M ⋅ ⋅M − 1

2 (trM)2, M ⋅ ⋅M ≡ tr(M ⋅ M); (7)

the double dot multiplication “⋅⋅” has a meaning of a full contraction of two tensors, see Reference 18. With Cartesian
components of the moment tensor Mx, My and Mxy we compute

M = Mxexex + Myeyey + Mxy(exey + eyex),
f = M2

x − MxMy + M2
y + 3M2

xy, (8)

which corresponds to the definition given by Ilyushin.7 The above expression differs from the conventional yield criterion
function in the three-dimensional plasticity at plane stress9,10,19 only by substituting the moment components instead of
the components of the stress tensor. We note that (7) describes the initial yield surface for the plane stress state, expressed
in stress resultant form. The yield surface corresponds to a ellipse. Both at the state of uni-axial bending M = M exex as
well as at isotropic bending M = M(exex + eyey) we obtain f = M2. The derivative ḟ with respect to time t follows as

𝜕f
𝜕M = 3M − I trM, ḟ =

𝜕f
𝜕M ⋅ ⋅Ṁ = 3M ⋅ ⋅Ṁ − trM tr Ṁ. (9)

In each point, the plate deforms elastically as long as f does not exceed certain threshold: f < k2M . This boundary is
determined by the maximal equivalent moment kM , at which plastic flow is initiated such that �̇�p ≠ 0. While the ideal
plasticity model with constant yield surface kM = const is perfectly valid in the three-dimensional case, it is inappropriate
for beams and plates because the actual plastic zones in a through-the-thickness element will grow as bending progresses,
as discussed in the subsequent sections. We describe this phenomenon by means of the isotropic hardening model: the
yield surface expands as plastic flow takes place and thus kM is a function of an internal hardening variable. The latter we
choose as the dissipative work Ap: kM = kM(Ap). The time rate of the dissipative work done in a given point of the plate
equals the dissipative power

Ȧp = M ⋅ ⋅�̇�p. (10)

Determining the specific form of the function kM(Ap) will be the main goal of the subsequent section.
The evolution law for the plastic curvature 𝛋p, which is needed to complete the general formulation of the

elastic-plastic model, is determined by the postulate of maximum plastic dissipation8 and is formulated as an associated
flow rule in the form

�̇�p = �̇�
𝜕f
𝜕M = �̇� (3M − I trM), (11)
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5148 KOCBAY and VETYUKOV

such that the flow direction is normal to the yield surface. The nonnegative time derivative of 𝜆 (which is sometimes called
the plastic consistency parameter) follows from Equations (7) to (11). First we reformulate (10) by using (11) and (7):

Ȧp = 2�̇�f = �̇�
(
3M ⋅ ⋅M − (trM)2

)
. (12)

During the active plastic flow process we remain on the yield surface, and the following relations are valid:

f = k2M(Ap), ḟ = 2kM(Ap)k′M(Ap)Ȧp. (13)

Substituting (7) and (12) into (13) we explicitly find �̇�:

�̇� = 3M ⋅ ⋅Ṁ − trM tr Ṁ
2kM(Ap)k′M(Ap)(3M ⋅ ⋅M − (trM)2)

. (14)

The expression is valid only if it is positive, otherwise the active plastic flow ends immediately and the plate keeps
deforming elastically in this point with the reached plastic curvature 𝛋p.

Assuming the time history of the moment tensorM(t) in a given point of the plate to be given, we can now determine
the kinematic response of the plate by taking the following steps:

1. We find the plastic work done by dissipative forces Ap(t) by solving the first-order differential equation, which results
after substituting �̇� from (14) into (12). In general, one needs to take the unloading condition into account: �̇� = 0 as
soon as the right-hand side of (14) becomes negative. Further plastic flow is initiated after an elastic phase as soon as
the first equality in (13) is again fulfilled and the yield surface is reached.

2. Now that �̇�(t) is known, we integrate the flow rule (11) over time.
3. The total geometric curvature (6) follows with the elasticity relation (4).

In a practical computation, neither M(t) nor the kinematics of deformation are known in advance. Moreover, the
problem becomes nonlocal as the moment distribution over the plate at static equilibrium depends both on the external
loads as well as on the distribution of plastic curvatures. The time integration scheme applicable in the framework of a
finite element simulation will be discussed below in Sect. 5.

3 IDENTIFICATION OF THE ISOTROPIC HARDENING FUNCTION BY
COMPARISON TO THREE-DIMENSIONAL SOLUTIONS

We complete the theory and identify the isotropic hardening function kM(Ap) by performing simple thought experi-
ments for a continuum model of a through-the-thickness element of a plate with thickness h, which features integrated
three-dimensional equations of elastoplasticity. At doing so, we tacitly assume that integral quantities, such as curvatures,
bending moments and dissipative work are equal in both, the structural and the continuum models.

We begin with the case of the uni-axial bending with the moment

M = M(t) exex. (15)

Now the plate behaves similar to a beam at pure bending and responds with the curvature

𝛋 = 𝜅x exex + 𝜅y eyey; (16)

the negative curvature in the transverse direction 𝜅y appears already during the elastic phase because of the Poisson effect.
Our aim is to obtain the moment–curvature characteristic with the structural model and using the continuum solution
to identify kM(Ap) by comparison. We assume the axial bending moment M(t) to be monotonously increasing in time,
such that no reverse bending occurs, and begin with the continuum solution for the three-dimensional body of the plate
under the assumptions of Kirchhoff’s theory regarding the kinematics of deformation and orders of magnitude of various
stress components, see Reference 20 for the asymptotic justification. While the simple theory of elastic-plastic bending of
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KOCBAY and VETYUKOV 5149

a beam can be found in the literature (see e.g. Öchsner21), here we briefly recall the key points, needed for the subsequent
analysis.

The conventional Kirchhoff plate kinematics result into a linear distribution of the axial strain component 𝜀x over the
thickness:

𝜀x = −𝜅z, (17)

here z is the coordinate in the thickness directionwith the origin in themiddle of the plate. This linearity is the asymptotic
consequence of the three-dimensional equations of compatibility of strains20 and thus holds independently from the
material behavior. In the elastic range this also means a linear distribution of the stress tensor

𝝉 = 𝜎(z) exex, 𝜎 = E𝜀x = −E𝜅z, (18)

with E being Young’s modulus. All components of the stress tensor but the axial one vanish because of the plane stress
assumption of the plate theory and because the plate is free to bend in the transverse direction. Simple integration relates
the bending moment to the stress distribution:

M = −∫
h∕2

−h∕2
z𝝉 dz, M = −∫

h∕2

−h∕2
z𝜎(z) dz. (19)

Computing the integral in the elastic range, we find the elastic relation between themoment and the curvature, which
also provides us with the flexural stiffness coefficient in (4):

Me(𝜅) = ∫
h∕2

−h∕2
E𝜅z2 dz = Eh3

12 𝜅, D = Eh3

12(1 − 𝜈2)
. (20)

Plastic flow is initiated at the upper and lower surfaces as soon as the stress reaches the yield stress k by the absolute
value,

|𝜎(±h∕2)| = E𝜅h∕2 = k, (21)

from which we find the maximal elastic curvature and the maximal elastic moment to be

𝜅∗ =
2k
Eh , Me

∗ = Me|||𝜅=𝜅∗ = h2k
6 . (22)

Now we let the bending moment grow beyond the elastic limit, M(t) > Me
∗, when two plastic zones −h∕2 < z < −zp

and zp < z < h∕2 begin to develop and the elastic core −zp < z < zp starts shrinking, as the boundary between them

zp(t) = k
E𝜅 , (23)

progresses from h∕2 at 𝜅 = 𝜅∗ toward 0 at 𝜅 → ∞. The expression for zp follows from the conditions, that the elastic law
(18) holds in the elastic core and that |𝜎(zp)| = k, as plasticity is just being initiated in this fiber.

The distribution of 𝜎(z) in the plastic zones follows from the corresponding material characteristic. The analytic
derivation below makes use of the assumption of the ideal elastic-plastic continuum material behavior, we discuss the
implications of more realistic stress-strain curves in the end of this section. Under the stated assumption, the stress equals
the yield stress in the plastic zones, 𝜎 = ±k, and the total bending moment in the plastic regime is computed according
to (19) as

Mp(𝜅) = −2∫
zp

0
z𝜎(z) dz − 2∫

h∕2

zp
z𝜎(z) dz = 2∫

zp

0
E𝜅z2 dz + 2∫

h∕2

zp
zk dz = h2k

4 − k3
3E2𝜅2 , (24)

we used the symmetry of 𝜎(z) and substituted zp from (23). Themoment-curvature relationship is thus defined piecewise,

M(𝜅) =

{
Me(𝜅), 𝜅 ≤ 𝜅∗
Mp(𝜅), 𝜅 > 𝜅∗,

(25)

 10970207, 2021, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.6760 by Readcube (Labtiva Inc.), W
iley O

nline Library on [09/08/2023]. See the Term
s and Conditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable Creative Com
m

ons License



5150 KOCBAY and VETYUKOV

and it has a horizontal asymptote

lim
𝜅→∞

Mp = Mp
∗ = h2k

4 = 3
2Me

∗. (26)

While the traditional consideration of the elastic-plastic beam bending usually stops at this point, we keep on
computing and find an inverse relation to (25) for the total curvature as a function of the bending moment:

𝜅(M) =
⎧⎪⎨⎪⎩

12M
Eh3 , 0 ≤ M ≤ Me

∗
2k

3
2√

3
√

h2kE2−4ME2
, Me

∗ < M < Mp
∗

(27)

The total curvature 𝜅 = 𝜅e + 𝜅p is a sum of the elastic part 𝜅e = 12M∕(Eh3) and of the plastic curvature 𝜅p, see (6) and
(4). Further analysis requires 𝜅p being expressed as a function of the total curvature:

𝜅p(𝜅) =

{
0, 𝜅 ≤ 𝜅∗
(hE𝜅−2k)2(hE𝜅+k)

h3E3𝜅2 , 𝜅 > 𝜅∗.
(28)

Vanishing of 𝜅p in the elastic range is obvious, and the expression for 𝜅 ≥ 𝜅∗ follows after subtracting 𝜅e from both
sides of (27) and further substituting M = Mp(𝜅) from (24).

Nowwe proceed to compute the dissipative work per unit area of the plateAp done in the plastic zones. The dissipative
power of the internal forces is the product of the stress tensor with the time rate of the plastic part of the strains. This
power equals the time rate of the dissipative work Ap

3 per unit volume:

Ȧp
3 = 𝝉 ⋅ ⋅�̇�p = 𝜎�̇�px = −k�̇�px ⇒ Ap

3 = −k𝜀px . (29)

The computation is simple in the present case of ideal elastoplasticity, as the stress remains constant. For certainty we
consider the upper plastic zone zp < z < h∕2 with compression, 𝜎 = −k. At known stress and total strain it is easy to find
the plastic part using the elastic relation:

E(𝜀x − 𝜀px ) = 𝜎 = −k ⇒ 𝜀px = 𝜀x + k∕E, (30)

and with (17) the total dissipative work in a through-the-thickness element follows to

Ap = 2∫
h∕2

zp
Ap
3 dz = −2∫

h∕2

zp
k
(

k
E − 𝜅z

)
dz = k(hE𝜅 − 2k)2

4E2𝜅
. (31)

The expression makes only sense in the elastic-plastic region 𝜅 ≥ 𝜅∗. The function Ap(𝜅) vanishes together with its
first derivative at 𝜅 = 𝜅∗ and grows linearly at 𝜅 → ∞. The inverse relation 𝜅(Ap) is then found to be

𝜅(Ap) =
2
(
hk2E + ApE2 +

√
ApE3(2hk2 + ApE)

)
h2kE2 , 𝜅|||Ap=0

= 𝜅∗. (32)

Now we switch out attention to the structural plate model from Section 2 and evaluate it for the problem of uni-axial
bending at hand. Using the same Cartesian coordinate system as before, we write the elasticity law (4) for the bending
moment (15), invert it and find the total curvature in the axial direction to

𝜅x =
M

D(1 − 𝜈2)
+ 𝜅p

x , (33)

the other components are of little interest. As already stated above, the yield criterion function (8) takes now the simple
form:

f = M2. (34)
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KOCBAY and VETYUKOV 5151

The governing differential Equations (11), (12), and (14) result into

�̇�p
x = 2M�̇�, �̇�p

xy = 0, �̇�p
y = −M�̇�, Ȧp = 2M2�̇�,

�̇� =
2Ṁ + D(2 − 𝜈)�̇�p

x − D(1 − 2𝜈)�̇�p
y

M(4kM(Ap)k′M(Ap) + D(5 − 4𝜈))
. (35)

The component 𝜅p
xy vanishes.We furthermore eliminate �̇�p

y and solve for �̇�
p
x and Ȧp, thus obtaining expressions, which

correspond to our expectations in the simple case of beam bending:

�̇�p
x = Ṁ

kM(Ap)k′M(Ap)
, Ȧp = MṀ

kM(Ap)k′M(Ap)
. (36)

The denominator in both time derivatives is the same and contains the isotropic hardening function, which we seek
to identify. The expression in the denominator can be written more conveniently by introducing a new function

𝜑(Ap) = 2kM(Ap)k′M(Ap) =
(
kM(Ap)2

)′, (37)

which allows us to reformulate (36):

�̇�p
x = 2Ṁ

𝜑(Ap)
, Ȧp = 2MṀ

𝜑(Ap)
. (38)

Dividing Ȧp by �̇�p
x , we eliminate the explicit time derivatives and arrive at the differential relation, which will hold in

the structural model regardless of the choice of the functions kM and 𝜑:

Ȧp

�̇�p
x
= dAp

d𝜅p
x
= M; (39)

the relation makes sense only in the elastic-plastic range. Now the question arises whether this relation holds for the
continuummodel of a through-the-thickness element. Computing the derivatives ofAp and 𝜅p with respect to 𝜅 according
to (31) and (28), we find

dAp

d𝜅

( d𝜅p

d𝜅

)−1
= dAp

d𝜅p = h3kE𝜅(2k + hE𝜅)
4(4k2 + 2hkE𝜅 + h2E2𝜅2)

, (40)

which differs from the expression (24) for the bending moment in the plastic range Mp(𝜅). Although this observation
means that the exact correspondence of both models cannot be reached, we nevertheless continue the process of identi-
fication, such that the most important characteristic of the continuummodel, namely the moment–curvature relation, is
described by the structural model as accurately as possible. To this end we express the unknown function 𝜑 from the first
equality in (38):

𝜑(Ap) = 2Ṁ
�̇�p

x
= 2 dM

d𝜅p
x
. (41)

We evaluate the right-hand side in the elastic-plastic regime of the continuum model to

𝜑(Ap) = 2 dMp

d𝜅

( d𝜅p

d𝜅

)−1
(42)

according to (24), (28) and substitute 𝜅 = 𝜅(Ap) from (32), which finally results into the sought for expression

𝜑(Ap) = 1
36

√
E
(√

2hk2 + EAp√
Ap

+
4E

√
Ap

√
2hk2 + EAp

3hk2 + 2EAp

)
− E
12 . (43)
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5152 KOCBAY and VETYUKOV

Integrating (43) with respect to Ap and taking into account the initial yield condition k2M(0) = (Me
∗)2 at the beginning

of plastic deformation with Ap = 0, we obtain the yield criterion function to be

k2M(Ap) = − 1
36h3(3EAp − 3

√
EAp

√
2hk2 + EAp

+ 2
√
3hk2 arctan

√
EAp√

6hk2 + 3EAp
) + h4k2

36 . (44)

The obtained functions 𝜑 and kM determine the evolution of the yield surface and thus the growth of the values of
the yield criterion function f , see (8), (13), this corresponds to the isotropic hardening effect. As discussed earlier, the
continuum and the structural mechanics models cannot be identical, and the accuracy of the approximation depends
on the question, how well the differential equation for Ap is fulfilled. Before we answer this question in the subsequent
section with the help of simple numerical simulations, we shortly discuss the second option to identify the hardening
behavior based on the thought experiment of isotropic plate bending.

We follow the samemethodology as above, but the tensor of bending moments and the curvature tensor take now the
form

M = M(t)(exex + eyey), 𝛋 = 𝜅 (exex + eyey), 𝜅 = 𝜅e + 𝜅p; (45)

the same variables obtain a newmeaning now. The plane parts of the stress and the strain tensors in the continuum model
are isotropic,

𝝉 = 𝜎 (exex + eyey), 𝜺 = 𝜀 (exex + eyey) + 𝜀zezez, 𝜀 = −E𝜅z. (46)

In the elastic range holds

𝜎 = E𝜀
1 − 𝜈

. (47)

The yield condition at general plane stress is known to be7

𝜎2
x − 𝜎x𝜎y + 𝜎2

y + 3𝜏2xy = k2, (48)

which in our case 𝜎x = 𝜎y = 𝜎, 𝜏xy = 0 reduces to the same relation as above:

|𝜎| = k. (49)

The maximal elastic curvature and the height of the boundary between the elastic core and the plastic zone, after
plasticity is initiated, follow to

𝜅∗ =
2k(1 − 𝜈)

hE , zp = k(1 − 𝜈)
E𝜅 . (50)

The total bending moment again follows as (19). Knowing the stress distribution in the elastic core (47) and in the
plastic zones (49), we compute the integral and find

M(𝜅) =
⎧⎪⎨⎪⎩

Eh3𝜅
12(1−𝜈) , 0 ≤ 𝜅 ≤ 𝜅∗

h2k
4 + k3(1−𝜈)2

3E2𝜅2 , 𝜅 ≥ 𝜅∗.
(51)

The maximal elastic moment Me
∗ and the plastic one Mp

∗ are the same as above in the uni-axial case. The plas-
tic curvature as a function of the total one 𝜅p(𝜅) follows by inverting (51) and subtracting the elastic curvature 𝜅e =
12(1 − 𝜈)2M∕(Eh3).
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KOCBAY and VETYUKOV 5153

To compute the dissipative work in a through-the-thickness element Ap, we again begin with the dissipative work per
unit volume Ap

3 . According to the first equality in (29), it takes now the form

Ap
3 = −2k𝜀p, (52)

because both the stress tensor and the tensor of plastic strains have two identical components in the plane of the plate,
and 𝜎 = −k as we again focus on the upper plastic zone with uniform compression. The plastic strain follows from the
elastic relation (47), in which we now replace the total strain by its elastic part:

−k = E(𝜀 − 𝜀p)
1 − 𝜈

⇒ 𝜀p = 𝜀 + k(1 − 𝜈)
E . (53)

Acting further as when deriving (31) and (32), we first find Ap(𝜅) by integration over the upper plastic zone zp ≤ z ≤
h∕2, and then invert the relation to obtain the curvature as a function of the dissipative work 𝜅(Ap).

Proceeding, we treat the structural plate model in a full analogy to the above derivation of (33)–(36). The yield criterion
function f retains its form as in the uni-axial case, the differential relations for the plastic curvature and the dissipative
work look now

�̇�p = Ṁ
𝜑(Ap)

, Ȧp = 2MṀ
𝜑(Ap)

. (54)

Again, either the first relation or the second one may be made compatible with the continuum model by the
appropriate choice of 𝜑(Ap). We choose the differential relation for �̇�p and express

𝜑(Ap) = dM
d𝜅p = dMp

d𝜅

( d𝜅p

d𝜅

)−1
=

=
k3(1 − 𝜈)2

(
ApE +

√
ApE

(
ApE + 4hk2(1 − 𝜈)

)
+ 2hk2(1 − 𝜈)

)2

3E2𝜅3
(

ApE +
√

ApE
(
ApE + 4hk2(1 − 𝜈)

)) (
ApE + 3hk2(1 − 𝜈)

) . (55)

The analytic integration with respect to Ap is again possible. Accounting for the initial yield condition, we find a
lengthy expression for the square of the hardening function k2M(Ap). It is natural to expect, that the accuracy of solutions of
the structural plate model with each of the two hardening functions, identified, respectively, for the cases of uni-axial and
isotropic plate bending, shall depend on whether the actual bending state is closer to the uni-axial or to the isotropic one.

Finally, we emphasize the fact, that the previously followed procedure to identify kM(Ap) is not restricted to ideal
elastic-plastic continuum. Generally, empirically estimated isotropic hardening laws (see Reference 22) find use in roll
forming simulations (thus, the isotropic hardening law of Swift is applied in Reference 23). Hardening behavior of the
stress-strain characteristic of the material of the plate can also be incorporated in our model by virtue of certain modifica-
tions of the above procedure, which we now consider for the case of uni-axial bending. The stress tensor again takes the
simple form of (18). Subsequently we introduce an isotropic hardening law, for example a power law according to Swift:

𝜎(z) =
⎧⎪⎨⎪⎩
−E𝜅z, 0 ≤ z ≤ zp

−k
(

E𝜅z
k

)n
, zp < z ≤ h

2

, (56)

where n is a material parameter named strain hardening exponent, which is physically limited to only assume values in
the range of 0 ≤ n ≤ 1. The limiting case n = 0 corresponds to the ideal elastic-plastic material behavior, whereas n = 1
corresponds to purely elastic behavior. The moment–curvature relation of the continuum model follows with the same
procedure as before, simply by integration of the stress distribution along the thickness. In the general relation (25) we
thus find a new expression for the moment in the plastic range:

Mp(𝜅) = −2∫
h∕2

0
z𝜎(z) dz = 2∫

zp

0
E𝜅z2 dz + 2∫

h∕2

zp
zk
(E𝜅z

k

)n
dz =

k
(
2−nh2

(
hE𝜅

k

)n
− 4k2(1−n)

3E2𝜅2

)
2(2 + n) . (57)
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5154 KOCBAY and VETYUKOV

The expressions for the maximal elastic curvature 𝜅∗ and for the boundary between elastic and plastic region zp are
identical to the uni-axial case without hardening. Furthermore it is easy to verify that for the case of n = 0 all other
expressions will also be identical to the expressions above. At n > 0, however, closed form expressions for the sought
for functions kM(Ap) and 𝜑(Ap) are no longer available, because the moment-curvature relation (57) is not solvable ana-
lytically. Nevertheless it is still possible to find the plastic curvature and the dissipative work as functions of the total
curvature:

𝜅p(𝜅) =
⎧⎪⎨⎪⎩
0, 𝜅 ≤ 𝜅∗
8k3(1−n)−3k321−n

(
Eh𝜅
k

)n+2

E3h3𝜅2(n+2) + 𝜅, 𝜅 > 𝜅∗
. (58)

Ap = 2∫
h∕2

zp
Ap
3 dz = 2∫

h∕2

zp

k(E𝜅z − k)
(

E𝜅z
k

)n

E dz =

=
2−n−1

(
Eh𝜅k(Eh𝜅(n + 1) − 2k(n + 2))

(
Eh𝜅
k

)n
+ k32n+2

)
E2𝜅(n + 1)(n + 2)

. (59)

Equations of the general structural plate model remain unchanged. We again identify the function 𝜑 according to
(41), which is available in dependence on the total curvature:

𝜑(𝜅) =
Eh3k

(
3k2n

(
Eh𝜅
k

)n+2
+ k22n+3(1 − n)

)
3
(

E3h3𝜅32n(n + 2) − 6k3n
(

Eh𝜅
k

)n+2
− k32n+4(1 − n)

) . (60)

As our implementation rests upon the dissipative work Ap being the internal hardening variable, we deal with this
problem by first numerically solving the Equation (59) for 𝜅 and then substituting this numerically obtained characteris-
tic in (60), such that 𝜑(Ap) can be evaluated. The necessary isotropic hardening function kM(Ap) follows by integration,
which is now only numerically possible. However, as 𝜑(Ap) is singular in the vicinity of the initial state Ap = 0, numer-
ical integration proves to be challenging. We approach this issue by introducing the function d(k2M)

d𝜅 , which is available
analytically:

d
(
k2M

)
d𝜅 = 𝜑 dAp

d𝜅 , (61)

see (37). Subsequently, by the use of (59) and (60) it is possible to analytically derive the lengthy expression for the deriva-
tive (61). The thus gained function is valid for 𝜅 ≥ 𝜅∗ and is no longer singular. Therefore, numerical integration can
be carried out very easily and provides us with kM(𝜅). The sought for dependence kM(Ap) follows with the use of the
numerical characteristic 𝜅(Ap).

4 ELASTIC-PLASTIC RESPONSE OF A THROUGH-THE-THICKNESS
ELEMENT

Prior to proceeding to finite-element simulations for a whole plate, we validate the derived local constitutive relations
by comparing curvature-moment characteristics of a through-the-thickness element, computed for a particular parame-
ter set using both the structural mechanics equations as well as continuum mechanics solutions. The latter continuum
mechanics solutions are available analytically for simple cases of uni-axial and isotropic bending, but they result from
numerical integration of systems of differential equations when the direction of the bending moment is changing in
time. The used set of parameters for all subsequent comparisons is provided in Table 1; SI system of units will be used
throughout the paper.

We begin with a uni-axial bending experiment and use the previously derived continuum solution of (25). A solu-
tion for the structural plate model follows after the integration of the system of ordinary differential Equations (36).
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KOCBAY and VETYUKOV 5155

Amoment-driven simulation is considered, such that the bending moment M(t) is known and monotonously increasing
in time. Remaining with the assumption of ideal elastic-plastic continuum, we test both previously identified harden-
ing functions, derived respectively for uni-axial and isotropic bending. Subsequently we solve the system of differential
equations numerically and obtain 𝜅p

x (t) and Ap(t). Thus, by inverting the relation, and by considering the elastic range
by means of the elastic law, given in (4), we acquire the complete moment-curvature characteristic. Finally, all three
moment–curvature characteristics are depicted in Figure 1. Besides the general good correspondence of both structural
models to the continuum one, we also note that the solution with the hardening function, identified for the uni-axial
bending problem, expectedly shows slightly better correspondence, in particular in the beginning of the plastic stage.

We also perform a similar experiment for the case of isotropic bending. The continuum solution for the
moment–curvature characteristic is given by (51). And for the structural plate solution we need to solve the previously
introduced system of ordinary differential equations (54) under consideration of (37). The three moment–curvature
characteristics are plotted in Figure 2.

We again observe, that the solution with the corresponding hardening function, obtained for the isotropic bending
case, longer remains very close to the reference continuum solution.

To further support the conclusion, that the introduced structural plate model shows very satisfying results, we con-
sider a more complicated loading scenario. The loading is applied quasi-statically, the bending moment is now not only

TABLE 1 Sample model parameters in SI system of units Parameter E 𝝂 k h

Value 2.1 ⋅ 1011 0.3 250 ⋅ 106 0.01

F IGURE 1 Comparison of
moment–curvature characteristics for
uni-axial bending

F IGURE 2 Comparison of
moment–curvature characteristics for
isotropic bending
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5156 KOCBAY and VETYUKOV

increasing monotonously in time, but its direction is rotating, such that the assumption of proportional loading no longer
holds and the continuum solution is not directly available. The tensor of bendingmoment changes now in time according
to the law

M(t) = M(t)(cos2𝜃(t)exex + cos 𝜃(t) sin 𝜃(t)(exey + eyex) + sin2𝜃(t)eyey), (62)

with the magnitude of the bending moment M and its rotation angle 𝜃 varying linear in time:

M(t) = Me
∗ + (0.95Mp

∗ − Me
∗)t, 𝜃(t) = 𝜋

2 t, (63)

the dimensionless time variable changes from 0 to 1. Plasticity starts with the bending moment Me
∗ in x direction, and in

the end of the simulation we reach 95% of the maximal possible bending moment Mp
∗ in y direction.

We begin the analysis with the structural model. Equilibrating the externally imposed moments (62) with the elastic
response (4) and furthermore considering the additive decomposition of the total curvature (6), we obtain the components
of the tensor of total curvatures:

𝜅x =
12M(cos2𝜃 − 𝜈sin2𝜃)

h3E
+ 𝜅p

x ,

𝜅xy =
6(1 + 𝜈)M sin 2𝜃

h3E
+ 𝜅p

xy,

𝜅y =
6(1 − 𝜈 − (1 + 𝜈) cos 2𝜃)M

h3E
+ 𝜅p

y . (64)

We substitute these relations in the governing differential Equations (11), (12), and (14). The differential equations for
the plastic curvature components and the dissipative work follow after elimination of the plastic consistency parameter 𝜆:

�̇�p
x = 1 + 3 cos 2𝜃

2𝜑(Ap)
Ṁ, �̇�p

xy =
3 cos 𝜃 sin 𝜃

𝜑(Ap)
Ṁ,

�̇�p
y = 1 − 3 cos 2𝜃

2𝜑(Ap)
Ṁ, Ȧp = 2M

𝜑(Ap)
Ṁ. (65)

We restrict the consideration to the hardening function (43), identified for the case of uni-axial bending, and numer-
ically integrate the obtained system of differential equations. Using (64), we find the time histories of the components of
the total curvature tensor, which are plotted in Figure 3 in comparison to the purely uni-axial case 𝜃 = 𝜋∕2, that is, when
the bending moments acts along the y-axis all the time: M = M(t)eyey.

The final values at t = 1 with 𝜃 = 𝜋∕2, which correspond to the same bending moment M = 0.95Mp
∗eyey, are clearly

different. From these results we see, that the time history of the applied bendingmoment affects the current elastic-plastic

F IGURE 3 Comparison of time
histories of curvature components for
rotating bending moment versus uni-axial
moment
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KOCBAY and VETYUKOV 5157

response of the plate. A few other observations can be made. In the very beginning at t = 0 both solutions are yet purely
elastic and rotated with respect to each other, in the same way as the applied moments. Here we also notice that the
ratio between both diagonal components of the elastic curvature is exactly 𝜈. The non-diagonal curvature component 𝜅xy
becomes nonzero only when the moment is rotating.

Ultimately, we seek to validate the results against the continuummodel for the case of rotatingmoment. In the absence
of an analytical solution, we need to replace the integral for the total bending moment (19) by a sum using a quadrature
formula with discrete integration points. Each of the points contributes to M, and the local strain components in the
plane of the plate are determined by the total curvature similar to (17). This makes the moment-driven problem formula-
tion complicated, because the elastic-plastic deformation processes in all the integration points are coupled. We simplify
our task and use the previously obtained time history 𝛋(t) from the solution with the structural theory as an input for
the continuum model, which makes the computation straightforward. The plate kinematics provides us with the plane
part of the three-dimensional strain tensor −𝛋z. Presuming the plane stress state in the entire through-the-thickness
element and using the yield condition in the form (48), we integrate the local stress-strain relation over time in each
integration point, find stresses 𝝉(z, t) and then compute the time history of the resulting moments M(t) by integration
of (19) using five equidistant integration points in the upper half of the through-the-thickness element 0 ≤ z ≤ h∕2.
Time histories of the components of the computed moment tensor are compared against the originally imposed one
(62) in Figure 4. The observed correspondence convinces us, that the developed structural theory consistently describes
the constitutive behavior of the significantly more complicated continuum plate model in the broad range of loading
conditions.

5 STRUCTURAL PLASTICITY MODEL IN A FINITE ELEMENT
SIMULATION

We approximate the deflection field w(x, y) using C1-continuous four-node Bogner-Fox–Schmitt finite elements with
bi-cubic Hermitian shape functions.24,25 The functional of the elastic strain energy of the isotropic Kirchhoff plate

Ustrain[w(x, y)] = ∫Ω
U dΩ, U = 1

2
(
D𝜈(tr𝛋e)2 + D(1 − 𝜈)𝛋e ⋅ ⋅𝛋e

)
, (66)

which comprises the contribution of each finite element with the area Ωel,

Ustrain =
∑

Ustrain
el , Ustrain

el = ∫Ωel

U dΩel, (67)

becomes thus a function of the entire vector of nodal variablesW . In each node iwe have four degrees of freedom, namely
the deflection wi, its first derivatives (𝜕1w)i, (𝜕2w)i as well as the mixed second-order derivatives (𝜕1𝜕2w)i, in which 𝜕𝛼

F IGURE 4 Comparison of time
histories of moment components of
continuum versus structural theory
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5158 KOCBAY and VETYUKOV

stands for the derivative with respect to the local coordinate on the element q𝛼 , 𝛼 = 1, 2. Rectangular elements are used in
the following, such that the Cartesian coordinate x depends only on the local coordinate q1, and y only on q2. The variable
element size in the below considered examples and the requirement regarding continuity of the deflection gradient ∇w
imply, however, that the function x(q1) is nonlinear, such that the geometry is also smoothly approximated across the
element boundaries.

We seek the state of equilibrium by minimizing the total energy of the system

UΣ = Ustrain + Uext → min, (68)

with the potential energy of external distributed forces

Uext = −∫Ω
𝛾 q(x, y) w(x, y) dΩ; (69)

the load factor 𝛾 grows incrementally from 0 to 1. In the considered geometrically linear setting the energyUΣ is quadratic
in the kinematic variables W . For a given distribution of plastic curvatures 𝛋p(x, y), the energy is minimized by solving a
system of linear equations for W :

Ustrain = 1
2WTKW − WTFp, Uext = −𝛾WTFe ⇒ KW =

(
Fp + 𝛾Fe) . (70)

Here K is the stiffness matrix of the elastic plate, the force vector Fe is determined by the externally applied loading,
and the vector Fp depends on the distribution of the plastic curvature, because of 𝛋e = 𝛋 − 𝛋p in (66). The integrals (67)
are evaluated numerically using 3 × 3 Gaussian quadrature rule. Plastic curvature values need to be available in each
integration point of the model.

As soon as the yield criterion

f (M) ≤ k2M(Ap), (71)

is violated in at least one of the integration points, the rate Equations (11)–(14) need to be integrated over time. For
sufficiently small increments of the load factor 𝛾 , the yield criterion function of the newmoment tensor f (M) exceeds the
current value of k2M by just a small value, and we shall use linearized approximation of both terms in order to accurately
integrate the evolution law over time. The update of the local plastic variables 𝛋p and Ap within a load increment is
performed such, that both sides of the consistency condition (71) become equal for the new values. The flow rule (11)
closes the problem, making the solution for the local increments Δ𝛋p and ΔAp unique. This leads us to the following
formulation of the classical elastic predictor - plastic corrector return mapping algorithm26,27 for the structural plasticity
model.

From the differential relation for the dissipative work (12) we find

ΔAp = 2f Δ𝜆, Δk2M = 2kMk′M ΔAp = 2𝜑f Δ𝜆. (72)

Demanding the consistency condition f + Δf = k2M + Δk2M to be fulfilled after the update, we write

f + 𝜕f
𝜕𝜆

Δ𝜆 = k2M + 2𝜑fΔ𝜆 ⇒ Δ𝜆 =
f − k2M
2𝜑f − 𝜕f

𝜕𝜆

. (73)

Here the value of f is to be evaluated for the new deformed state with updated kinematic degrees of freedom W . Its
derivative with respect to the consistency parameter 𝜆 follows by first substituting the flow rule (11) into the additive
decomposition of the curvature tensor (6) considering the total curvature 𝛋 = const, then finding the time derivative of
the moment tensor Ṁ from the elastic law (4), and finally substituting the result into (9) and dividing by �̇�. In Cartesian
components the result of this computation reads

𝜕f
𝜕𝜆

= −D𝜈
(
Mx + My

)2 − D(1 − 𝜈)
(
5M2

x + 18M2
xy − 8MxMy + 5M2

y
)
. (74)
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KOCBAY and VETYUKOV 5159

Having computed Δ𝜆, we immediately obtain the increment of the dissipative work from (72) and that of the plastic
curvature from

Δ𝛋p =
𝜕f
𝜕MΔ𝜆 = (3M − I trM)Δ𝜆. (75)

Clearly, the update of the plastic variables changes the internal moments in the plate and results in the violation of
the equilibrium equation. Updating the kinematic degrees of freedom and thus the deformations according to (70) once
more, we again need to adjust the plastic variables, which results into a kind of fixed-point iterations, see Reference 28.
The iterations will in most cases converge to a state, in which all conditions are fulfilled and which is thus the solution of
the problem for the current value of the load factor 𝛾 . The next load increment shall be processed.

The algorithm is simple and each iteration is efficient, as the constant elastic stiffness matrix K can be decomposed in
advance. This advantage is, however, outweighed by the slow (linear) convergence rate of the iterations. The asymptotic
quadratic rate of convergence of the Newton method is achieved by using the elastoplastic tangent stiffness matrix Kt,
which is no longer amatrix of the quadratic form of the strain energy, but rather originates from the equilibrium condition
in form of the principle of virtual work. Thus, the virtual work of external forces is a linear form

𝛿Ae = ∫Ω
𝛾q 𝛿w dΩ = 𝛿WT𝛾Fe, (76)

the virtual work of internal forces reads

𝛿Ai = −∫Ω
M ⋅ ⋅𝛿𝛋 dΩ = 𝛿WTFi, (77)

and the principle of virtual work 𝛿Ae + 𝛿Ai = 0 leads to the equilibrium equation

𝛾Fe + Fi = 0. (78)

The variations of the nodal variables 𝛿W determine the virtual deflections 𝛿w and variations of total curvatures 𝛿𝛋 via
the finite element kinematics. The coefficients of the linear form of the virtual work of internal forces are

Fi
j = −∫Ω

M ⋅ ⋅
𝜕𝛋
𝜕Wj

dΩ. (79)

Here the derivative of the curvature tensor with respect to the degree of freedom Wj follows directly from the kine-
matics and does not depend on W in the geometrically linear model. In the absence of active plastic flow we obtain
Fi = Fp − KW and further again (70). TheNewtonmethod for the equilibriumEquation (78) features increments of nodal
variables ΔW , which result from the linear system of equations

KtΔW = 𝛾Fe + Fi, (80)

with the system matrix being

Kt = − 𝜕Fi

𝜕W ; (81)

the external forces are constant. Using (79), we compute the components of the tangent stiffness matrix:

Kt
ij = ∫Ω

𝜕M
𝜕Wi

⋅ ⋅
𝜕𝛋
𝜕Wj

dΩ. (82)

Finding the derivative of the tensor of moments is easy in the elastic zones,

𝜕M
𝜕Wi

= 𝜕M
𝜕𝛋e

⋅ ⋅
𝜕𝛋
𝜕Wi

, (83)
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5160 KOCBAY and VETYUKOV

because here the rates of the total curvature and of the elastic curvature are equal. The symmetric fourth rank tensor of
the derivative of themoment with respect to 𝛋e follows directly from the elasticity law (4). In the points with active plastic
flow, the derivative of the moment tensor in (82) must take into account the nonvanishing rate of plastic curvature, such
that d𝛋e = d𝛋 − d𝛋p, and

𝜕M
𝜕Wi

= 𝜕M
𝜕𝛋e

⋅ ⋅
(

𝜕𝛋
𝜕Wi

− 𝜕𝛋p

𝜕Wi

)
. (84)

Similar to the incremental form (73) and (75) we write

𝜕𝛋p

𝜕Wi
=

𝜕f
𝜕M

𝜕𝜆
𝜕Wi

, 𝜕𝜆
𝜕Wi

= 1
2𝜑f − 𝜕f

𝜕𝜆

𝜕f
𝜕Wi

,
𝜕f
𝜕Wi

=
𝜕f
𝜕M ⋅ ⋅

𝜕M
𝜕𝛋e

⋅ ⋅
𝜕𝛋
𝜕Wi

. (85)

Note that the derivative of the yield criterion function 𝜕f
𝜕Wi

is computed for constant plastic curvature 𝛋p. As it is always
the case when the associated flow rule is used, the tangent stiffnessmatrix is symmetric:Kt

ij = Kt
ji, which greatly simplifies

the implementation. This symmetry follows directly from the definition (82) and formulas (84), (85). In the numerical
experiments below, the Newton iterations with the updated matrix Kt converge rapidly as soon as the set of integration
points with active plastic flow is no longer changing significantly between the iterations.

The discussed backward time integration scheme produces accurate results for small load increments. In the numer-
ical examples below we applied an adaptive refinement scheme. The load increments Δ𝛾 are reduced, if in the course of
Newton iterations the intermediate value of f in (73) exceeded the current level of k2M bymore than 50%, which guarantees
accurate solution. From the point of view of implementation, it is efficient to store in each integration point the current
values of 𝜑 and kM along with the primary plastic variables and to keep them constant during the Newton iterations for
a given load increment. This greatly reduces the number of calls to the computationally expensive numerical solver for
the Equation (59), which is relevant if material hardening is taken into account.

For the sake of comparison, in the following we also present results of computations with the continuum plasticity
model, which features five equidistant integration points in the upper half of the plate 0 ≤ z ≤ h∕2. In each integra-
tion point the plane stress plasticity equations are integrated using the conventional return mapping algorithm with the
tangent stiffness matrix according to Reference 26.

6 BENCHMARK RESULTS FOR A SQUARE PLATE

We begin by considering the conventional numerical example of a simply supported square plate under uniformly dis-
tributed loading q = const, without material hardening (see Reference 10). Upon incrementally increasing the load, we
observe that the plastic deformation first appears in the corners of the plate. Because the bending moment tensor near
the edges of the plate cannot be isotropic we expect the hardening function kM , which is identified by uni-axial bend-
ing experiment, to be more appropriate in this case. Motivated by this consideration, we used the expression (44) for the
below simulations with the structural plate model. Themodel parameters are according to Reference 10 and are provided
in Table 2; 𝓁 = b is the length and the width of the plate.

Prior to comparing the results of the general structural plate model to the other simulation, we conduct a convergence
study by virtue of computing the inelastic response in form of the displacement of the center point of the plate wmid for
growing load values q. The results are provided in Figure 5 for various meshes.

Each marker in this load-displacement diagram corresponds to a certain load level q; note the uneven distribution of
load increments, which results from the limitation of the maximal plastic flow for the sake of accuracy of the numerical
integration. We observe that the deflections for the same load levels become barely distinguishable for the two finer finite
element discretization levels even in the higher range of q when the structure approaches the plastic collapse. Therefore,

Parameter 𝓵 b E 𝝂 k h

Value 10 10 10.92 ⋅ 108 0.3 1000 0.1

TABLE 2 Simulation parameters for the simply
supported square plate in SI system of units
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KOCBAY and VETYUKOV 5161

F IGURE 5 Uniform loading-center
displacement diagram for the middle point
of the plate at different meshes

we consider results for the 32 × 32 uniform mesh as converged and use this mesh for further simulations regarding the
square plate.

We proceed by comparing the obtained load-displacement diagram to a full continuum solution with a solid model of
the three-dimensional body of the plate computed in ABAQUS and to a continuum plasticity model of the plate, which
features five equidistant integration points in the upper half of the plate 0 ≤ z ≤ h∕2 and is handled by the classical
plasticity formulation with the return mapping algorithm according to Reference 26. Since the latter model is handled
within the same finite element discretization which is used for the structural plate model, the mesh and the type of
the elements are identical. As for the full continuum ABAQUS model, a uniform mesh of 100 × 100 C3D20 (20-noded
quadratic brick) elements in the plane and four elements over the thickness is used.

In Figure 6, very good compliance between the new general structural plate model and classical continuum
approaches is seen. Comparing to the solution results available in Reference 10 (dots in Figure 6), we notice certain dif-
ferences, although both solutions are obtained without the consideration of material hardening. Despite the use of the
shear-deformable Reissner–Mindlin plate theory by the authors of Reference 10 and the relatively high thickness of the
plate, the successful comparison against the full three-dimensional solution convinces us that the new structural plate
model is indeed sufficiently accurate. The observed lower accuracy of the results of Reference 10 is explained by the fact,
that this model does not take into account the spreading of plasticity through the thickness. Nevertheless, it is capable of
predicting the limit loads. The lower and upper bounds for the estimation of the limit load parameter (plastic collapse)
are analytically computed in Reference 10 according to the results of a limit analysis by the application of the yield-line
theory, see Lubliner:8

qL =
8Mp

∗
𝓁b

(
𝓁
b + b

𝓁
+ 1√

3

)
= 0.515, qU =

24Mp
∗

𝓁b
√
3

(
𝓁
b + b

𝓁

)
= 0.693. (86)

Here 𝓁 = b for the square plate (see Table 2) and Mp
∗ follows from (26). From Figure 6 we conclude that like in

Reference 10 our limit load (around q = 0.61) also falls within the given analytically estimated interval as it should.
In Figure 7 we demonstrate the results of a simple convergence study regarding the effect of the number of integration

points over the thickness in the continuum model. It justifies the necessity to use five equidistant integration points
over the upper half of the plate. The computationally cheaper models with just 2 or 3 integration points result into a
considerably less-accurate load-displacement diagram, which underlines the relevance of the present study.

The actual gain in the efficiency of the structural model is demonstrated by the comparison of computation times,
needed to obtain the results of Figure 6. From Table 3 we see, that the stress resultant model is almost twice as efficient as
the traditional continuum one. Similar relation of the efficiency was observed for further benchmark examples as well.

We proceed with the comparison of the growth of the plastic zones between the structural plate model and the
continuum plate model.

In Figure 8 the used uniform mesh and the boundaries of the developed plastic zones for three different load levels,
namely q = 0.40, q = 0.45, and q = 0.55 are shown. The closed boundary curves (dashed for continuum plate and solid
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5162 KOCBAY and VETYUKOV

F IGURE 6 Uniform
loading-displacement diagram: structural
plate versus. continuum plate versus full
continuum

F IGURE 7 Convergence study:
influence of the number of integration
points (IP) in the upper half of the
continuum plate on the load-displacement
diagram

Model
Structural
plate model

Continuum
plate model

Used CPU time in seconds 46 86

TABLE 3 Comparison of CPU times: structural plate model
versus continuum model with five integration points in the
upper half of the plate

(A) (B) (C)

F IGURE 8 Comparison of plastic zones of structural plate (solid line) versus continuum plate (dashed line). (A) q = 0.40; (B) q = 0.45;
(C) q = 0.55
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KOCBAY and VETYUKOV 5163

lines for structural plate) enclose areas with nontrivial plastic strains in the integration points. We observe that a fifth
plastic zone appears in the center of the plate as q is growing in addition to the four initiated in the corners. At some load
levels they all merge into a single large plastic zone. Again, good agreement between the structural mechanics and the
continuum plasticity models is observed.

We conclude this section by analyzing a loading—reverse loading—loading scenario for the here considered simply
supported square plate under uniformly distributed loading.Although it is theoretically clear, that the presented structural
model cannot accurately reflect reverse plasticity because of the purely isotropic hardening, the experimental demonstra-
tion sheds more light onto the issue. In Figure 9 we compare load-displacement diagrams with nonmonotonous loading
history for the continuum and the structural mechanics models.

Both solutions are very close during the initial loading. The maximal force levels in both models are slightly differ-
ent and chosen such, that the middle point deflections in the end of the initial loading stage are the same and equal
wmid = 5 ⋅ 10−4. Such displacement-controlled loading results in a more informative diagram.

During the reverse loading we steadily change the direction of the distributed force, while its magnitude in the end
of this stage is the same. The observed differences are explained by the Bauschinger effect in the continuum plate model,
in which yielding occurs earlier than in the structural plate model with just the isotropic hardening. The symmetric
hysteresis loop of the continuum model does better correspond to the theoretical expectations.8,29 Nevertheless, results
presented in Figure 4 support the conclusion, that the range of applicability of the structural model reaches far beyond
the purely proportional and monotonous loading scenarios.

7 BENCHMARK RESULTS FOR A RECTANGULAR PLATE

Another appropriate benchmark problem with simulation results available in the open literature is a rectangular plate
under uniformly distributed loading with ideal elastic-plastic material, considered by Dujc and Brank12 with the account
of gradual spreading of plasticity through the thickness. The model used in Reference 12 features an adapted Ilyushin
yield criterion with the time-varying yield moment m∗

0(𝛼) = 𝛼(t)m0 as proposed earlier by Crisfield.11 The time evo-
lution law for the field variable 𝛼(t) is designed such, that it matches the uni-axial bending experiment. This allows
capturing the mentioned effect of the development of plastic zones in a through-the-thickness element and results
in a good correspondence with continuum mechanics solutions. The degree of this agreement depends, however, on
the boundary conditions, as their choice determines the locations and shapes of the plastic zones in the plate. There-
fore we chose the case with simply supported edges, as it results into a slightly worse agreement between the stress
resultant and ABAQUS solutions in Reference 12. The parameters of the benchmark example are summarized in
Table 4.

We discretized the domain with 60 × 40 finite elements, which formally corresponds to the discretization used in
Reference 12—although with different shape functions. In Figure 10 we compare the results of our structural mechanics
model to the one from Reference 12 (obtained by sampling the graphical data of the published paper). We also plot the

F IGURE 9 Uniform
loading-displacement for the
loading—reverse loading—loading scenario:
structural plate versus continuum plate
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5164 KOCBAY and VETYUKOV

solution of the plate model with 60 × 40 S4R (quadrilateral shell) elements with 10 integration points over thickness,
computed in ABAQUS for the sake of reference.

We see, that the stress resultant plate model of Reference 12 tends to overestimate the deformation in the earlier
plastic phase and to underestimate it in the latter plastic state. The slight nonsmoothness of the respective curve is due to
the time integration strategy for the parameter 𝛼(t), which is considered constant within a time step. While the model12
shows much better correspondence to the reference ABAQUS solution for a clamped plate, the accuracy of the present
approach appears to be essentially less affected by the particular choice of the boundary conditions and loading.

8 BENCHMARK RESULTS FOR AN ELONGATED PLATE WITH
SELF-EQUILIBRATED LINE LOADING

In the last example problem we address an elongated rectangular plate (𝓁 > b) with loading, which resembles the force
distribution occurring during the roll forming process. The left boundary of the cantilever plate is clamped and all other
boundaries are free. The self-equilibrated loading is distributed along the line in the width direction in the middle of the
plate: q(x, y) = P(y)𝛿(x − 𝓁∕2) with 𝛿 being the Dirac impulse and the load intensity per unit length of the line is

P(y) = p
(
4|y|
b − 1

)
, for − b

2 ≤ y ≤ b
2 ; (87)

p is the amplitude of the load. Simulation parameters are provided in Table 5 and the distribution of the load along
the width of the plate is depicted in Figure 11.

Due to the fact that the considered plate problem shows similarity to a cantilever beam, again the hardening function
in the form (44), which is identified for uni-axial bending, is used for the structural plate model.

In the simulations we consider a mesh with 20 elements over the width, while the element size in the length direc-
tion is variable, such that finer discretization is reached in the middle of the plate, where the load is acting, see Figure

Parameter 𝓵 b E 𝝂 k h

Value 1.5 1.0 2.1 ⋅ 1011 0.3 400 ⋅ 106 5 ⋅ 10−3

TABLE 4 Simulation parameters for the
simply supported rectangular plate in SI
system of units

F IGURE 10 Uniform
loading-displacement diagram: two
structural plate models versus ABAQUS
plate

Parameter 𝓵 b E 𝝂 k h p

Value 0.3 0.04 1.9 ⋅ 1011 0.3 160 ⋅ 106 6 ⋅ 10−4 12,000

TABLE 5 Simulation
parameters for the elongated
plate in SI system of units
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KOCBAY and VETYUKOV 5165

15. We increased the loading factor in the model, until the specified load amplitude from Table 5 is reached. Afterwards
we fully unload the plate, in order to evaluate its new shape as a result of the residual plastic strains. The corre-
sponding deformed shapes of the structural plate model and of the classical continuum plasticity model are shown in
Figure 12.

At the edge x = 0 the plate is clamped and no deformation is visible there. The plotted configuration with the larger
deflection downwards at the right end corresponds to the residual deformation of the structural plate. This slight differ-
ence in the residual deflections far away from the location of the loading should be regarded as insignificant owing to the
two reasons:

• it is the shape of the residual deformation of the plate, at the location of action of the rolling forces, which is of actual
practical importance for modeling the rolling process and

• minimal differences in the deformed state in the middle of the plate, where plastic deformations are essential, would
result into noticeable change of the deflection of its right end because of the long lever arm.

The comparison of both solutions is better visible from the distributions of the deflection in the length directionw(x, 0)
provided in Figure 13 and in the width direction in the middle of the plate w(𝓁∕2, y) plotted in Figure 14, which further
underlines the similarity between the computed deformed shapes within themiddle cross-section as a result of the rolling
action.

Furthermore, we again highlight the development of the plastic zones, whose configurations for three levels of the
load amplitude p are depicted in Figure 15.

Three plastic zones are observable at lower values of p, while they later merge into a single one with two small elastic
“islands” at the middle transverse line near the points, where the line load intensity P(y) vanishes.

We conclude the analysis by discussing the results of the structural plasticity model with the account for material
hardening, which is important to consider in metal forming processes. Making use of the Swift law (56) with the strain
hardening exponent value n = 0.26, we obtain deflections, plotted by dotted lines in Figures 13 and 14.While the solution

F IGURE 11 Self-equilibrated line
load, which acts along the width, at the
center of the plate

F IGURE 12 Residual deformation of the
structural plasticity and of the continuum
plasticity plate models; note the scaling of the
deflections by the factor of 2 ⋅ 103, for the sake of
better visualization
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5166 KOCBAY and VETYUKOV

F IGURE 13 Distribution of the
residual transverse deflection w(x, 0) along
the center line of the plate in the length
direction, computed for three models of
plastic behavior

F IGURE 14 Distribution of the
residual transverse deflection w(𝓁∕2, y)
along the middle transverse line of the plate
in the width direction, computed for three
models of plastic behavior

does not change qualitatively, the magnitude of the residual deformations expectedly becomes smaller. The shapes of the
plastic zones for the same load values change slightly.

9 CONCLUSIONS

Presently, simulations of elastic-plastic response of structural members mostly make use of three-dimensional contin-
uum plasticity laws. Already published attempts to handle plasticity solely on the structural mechanics level and thus
to obtain a formulation based on stress resultants only, did not really make it into computational practice because of
the issues with reliability, convenience of use, and uncertainties regarding the parameters of the model. In this paper
we introduce a novel approach, which we expect to be convenient and efficient for practical applications because of
its simplicity, consistency and sound theoretical basis. Thereby, the treatment of the classical inelastic constitutive rela-
tions of continuummechanics in several integration points along the thickness becomes obsolete. This has a remarkable
positive impact on the computational efficiency of the simulation. Thus, the computations for above benchmark tests
took approximately half the CPU time with the new structural mechanics formulation. We expect the proposed model
to be particularly efficient in the field of roll forming simulations, which in their own turn need to be fast for the
practically relevant purposes of efficient development of the production process as well as of model-based controller
design.
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KOCBAY and VETYUKOV 5167

(A)

(B)

(C)

F IGURE 15 Comparison of plastic zones of structural plate (solid line) versus continuum plate (dashed line). (A) p = 8, 400; (B)
p = 10, 800; (C) p = 12, 000

The basic idea of the proposed structural mechanics plasticity model rests on the identification of a hardening func-
tion in the equations featuring curvatures and bending moments. We perform this identification using available analytic
solutions for simple loading cases, such as uni-axial or isotropic bending. We restrict the consideration to the isotropic
hardening law, because reverse plasticity is not common in roll forming processes. The formulation is presented for both
the ideal elastic-plastic material behavior, as well as for isotropic material hardening according to a power law, which
is conventionally used in the field of material forming. The finite element structural mechanics model is implemented
in the classical form of a return mapping algorithm with tangent stiffness matrix. The proposed approach is validated
by comparison against both the full three-dimensional solutions of a benchmark problem as well as against solutions,
obtained with the plate theory using integration over the thickness. The comparison results show good accuracy for
the considered class of benchmark examples. For future research, we aim at further extending the formulation towards
a geometrically nonlinear setting with nonmaterial Eulerian–Lagrangian kinematic description in the spirit of Refer-
ences 4,5. Along with the account for contact conditions, this would allow for realistic simulations of the roll forming
process.
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Paper B
Mixed Eulerian–Lagrangian modeling of sheet metal roll forming
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element analysis, Metal plasticity, Roll forming

Abstract: We propose a nonlinear shell finite element model to simulate sheet metal
roll forming, a continuous forming process to produce endless metal profiles. A mixed
Eulerian–Lagrangian kinematic description is employed to overcome the drawbacks
of the common Lagrangian parametrization. The finite element mesh is detached
from the particle motion in axial direction and, thus, facilitates a two-step solution
procedure to capture the continuous forming process: First, an equilibrium is sought
with the account for contact and plastic flow. Secondly, the material transport is
taken into account, which amounts to the integration of an advection problem for
the plastic variables. The continuum plasticity model with through-the-thickness
integration for the stress resultants guarantees a precise resolution of the forming
process in each cross section of the Kirchhoff–Love shell. A series of simulations is
carried out to ascertain the convergence of the numerical scheme, to highlight the
impact of characteristic parameters and to establish a correspondence to a reference
computation with the commercial software Abaqus in a simplified static setting. A
physical experiment is devised on an actual roll forming mill to assess the quality of
the current computational model.

References of Paper B
[1] G. T. Halmos, ed. Roll Forming Handbook. 0th ed. CRC Press, 2005. doi: 10.1201/

9781420030693.
[2] Y. Crutzen et al. Lagrangian and arbitrary Lagrangian Eulerian simulations of complex

roll-forming processes. Comptes Rendus Mécanique 344.4-5 (2016), 251–266. doi:
10.1016/j.crme.2016.02.005.

[3] M. S. Tehrani et al. Localised edge buckling in cold roll-forming of symmetric channel
section. Thin-Walled Structures 44.2 (2006), 184–196. doi: 10.1016/j.tws.2006.
01.008.

[4] F. Heislitz et al. Simulation of roll forming process with the 3-D FEM code PAM-
STAMP. Journal of Materials Processing Technology 59.1-2 (1996), 59–67. doi:
10.1016/0924-0136(96)02287-X.

51

https://doi.org/10.1016/j.tws.2023.110662
https://doi.org/10.1201/9781420030693
https://doi.org/10.1201/9781420030693
https://doi.org/10.1016/j.crme.2016.02.005
https://doi.org/10.1016/j.tws.2006.01.008
https://doi.org/10.1016/j.tws.2006.01.008
https://doi.org/10.1016/0924-0136(96)02287-X


[5] Q. Bui and J. Ponthot. Numerical simulation of cold roll-forming processes. Journal
of Materials Processing Technology 202.1-3 (2008), 275–282. doi: 10 . 1016 / j .
jmatprotec.2007.08.073.

[6] J. Cheng et al. The flower pattern and rolls design for ERW pipes with the different
specification in the flexible roll forming process. Thin-Walled Structures 154 (2020),
106809. doi: 10.1016/j.tws.2020.106809.

[7] E. Oborin, Y. Vetyukov and I. Steinbrecher. Eulerian description of non-stationary
motion of an idealized belt-pulley system with dry friction. International Journal of
Solids and Structures 147 (2018), 40–51. doi: 10.1016/j.ijsolstr.2018.04.007.

[8] J. Donea et al. Arbitrary Lagrangian-Eulerian Methods. Encyclopedia of Computational
Mechanics. Ed. by E. Stein, R. De Borst and T. J. R. Hughes. Chichester, UK: John
Wiley & Sons, Ltd, 2004, ecm009. doi: 10.1002/0470091355.ecm009.

[9] V. Longva and S. Sævik. A Lagrangian–Eulerian formulation for reeling analysis of
history-dependent multilayered beams. Computers & Structures 146 (2015), 44–58.
doi: 10.1016/j.compstruc.2014.09.002.

[10] E. Kuhl, H. Askes and P. Steinmann. An ALE formulation based on spatial and material
settings of continuum mechanics. Part 1: Generic hyperelastic formulation. Computer
Methods in Applied Mechanics and Engineering 193.39-41 (2004), 4207–4222. doi:
10.1016/j.cma.2003.09.030.

[11] A. Humer, I. Steinbrecher and L. Vu-Quoc. General sliding-beam formulation: A non-
material description for analysis of sliding structures and axially moving beams. Journal
of Sound and Vibration 480 (2020), 115341. doi: 10.1016/j.jsv.2020.115341.

[12] Y. Vetyukov, P. G. Gruber and M. Krommer. Nonlinear model of an axially moving
plate in a mixed Eulerian–Lagrangian framework. Acta Mechanica 227.10 (2016), 2831–
2842. doi: 10.1007/s00707-016-1651-0.

[13] Y. Vetyukov et al. Mixed Eulerian-Lagrangian description in materials processing:
deformation of a metal sheet in a rolling mill: Mixed Eulerian-Lagrangian description
in materials processing: deformation of a metal sheet in a rolling mill. International
Journal for Numerical Methods in Engineering 109.10 (2017), 1371–1390. doi:
10.1002/nme.5314.

[14] J. Scheidl et al. Mixed Eulerian–Lagrangian shell model for lateral run-off in a steel belt
drive and its experimental validation. International Journal of Mechanical Sciences
204 (2021), 106572. doi: 10.1016/j.ijmecsci.2021.106572.

[15] V. V. Eliseev and Y. M. Vetyukov. Finite deformation of thin shells in the context of
analytical mechanics of material surfaces. Acta Mechanica 209.1-2 (2010), 43–57. doi:
10.1007/s00707-009-0154-7.

[16] Y. Vetyukov. Nonlinear Mechanics of Thin-Walled Structures: Asymptotics, Direct
Approach and Numerical Analysis. Foundations of Engineering Mechanics. Vienna:
Springer Vienna, 2014. doi: 10.1007/978-3-7091-1777-4.

52

https://doi.org/10.1016/j.jmatprotec.2007.08.073
https://doi.org/10.1016/j.jmatprotec.2007.08.073
https://doi.org/10.1016/j.tws.2020.106809
https://doi.org/10.1016/j.ijsolstr.2018.04.007
https://doi.org/10.1002/0470091355.ecm009
https://doi.org/10.1016/j.compstruc.2014.09.002
https://doi.org/10.1016/j.cma.2003.09.030
https://doi.org/10.1016/j.jsv.2020.115341
https://doi.org/10.1007/s00707-016-1651-0
https://doi.org/10.1002/nme.5314
https://doi.org/10.1016/j.ijmecsci.2021.106572
https://doi.org/10.1007/s00707-009-0154-7
https://doi.org/10.1007/978-3-7091-1777-4


[17] F. K. Bogner, R. L. Fox and L. A. Schmit. The generation of interelement compatible
stiffness and mass matrices by the use of interpolation formulae. Proc. Conf. Matrix
Methods in Struct. Mech., Airforce Inst. Of Tech. Wright Patterson AF Base, Ohio.
1965.

[18] Y. Vetyukov. Finite element modeling of Kirchhoff-Love shells as smooth material
surfaces. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für
Angewandte Mathematik und Mechanik 94.1-2 (2014), 150–163. doi: 10.1002/zamm.
201200179.

[19] S. Kaczmarczyk. The Dynamic Interactions and Control of Long Slender Continua and
Discrete Inertial Components in Vertical Transportation Systems. Nonlinear Dynamics
of Discrete and Continuous Systems. Ed. by A. K. Abramian, I. V. Andrianov and
V. A. Gaiko. Vol. 139. Cham: Springer International Publishing, 2021, 117–128. doi:
10.1007/978-3-030-53006-8_8.

[20] K. Marynowski. Free vibration analysis of an axially moving multiscale composite plate
including thermal effect. International Journal of Mechanical Sciences 120 (2017),
62–69. doi: 10.1016/j.ijmecsci.2016.11.013.

[21] C. Mueller et al. Influence of Friction on the Loads in a Roll Forming Simulation
with Compliant Rolls. Key Engineering Materials 611-612 (2014), 436–443. doi:
10.4028/www.scientific.net/KEM.611-612.436.

[22] R. Safdarian and H. Moslemi Naeini. The effects of forming parameters on the cold
roll forming of channel section. Thin-Walled Structures 92 (2015), 130–136. doi:
10.1016/j.tws.2015.03.002.

[23] H. Hetzler. On moving continua with contacts and sliding friction: Modeling, general
properties and examples. International Journal of Solids and Structures 46.13 (2009),
2556–2570. doi: 10.1016/j.ijsolstr.2009.01.037.

[24] M. Crisfield. Finite element analysis for combined material and geometric nonlinear-
ities. Nonlinear Finite Element Analysis in Structural Mechanics: Proceedings of
the Europe-US Workshop Ruhr-Universität Bochum, Germany, July 28–31, 1980.
Springer. 1981, 325–338.

[25] J. Lubliner. Plasticity theory. Dover Publications, Inc., 2008.
[26] M. Bieniek and J. Funaro. Elasto-plastic behaviour of plates and shells. Techn. Rep.

DNA 3954 (1976), 261–2.
[27] A. Ibrahimbegović and F. Frey. An efficient implementation of stress resultant plasticity

in analysis of Reissner-Mindlin plates. International Journal for Numerical Methods
in Engineering 36.2 (1993), 303–320. doi: 10.1002/nme.1620360209.

[28] B. Skallerud, L. Myklebust and B. Haugen. Nonlinear response of shell structures:
effects of plasticity modelling and large rotations. Thin-Walled Structures 39.6 (2001),
463–482. doi: 10.1016/S0263-8231(01)00014-3.

53

https://doi.org/10.1002/zamm.201200179
https://doi.org/10.1002/zamm.201200179
https://doi.org/10.1007/978-3-030-53006-8_8
https://doi.org/10.1016/j.ijmecsci.2016.11.013
https://doi.org/10.4028/www.scientific.net/KEM.611-612.436
https://doi.org/10.1016/j.tws.2015.03.002
https://doi.org/10.1016/j.ijsolstr.2009.01.037
https://doi.org/10.1002/nme.1620360209
https://doi.org/10.1016/S0263-8231(01)00014-3


[29] J. Dujc and B. Brank. On stress resultant plasticity and viscoplasticity for metal plates.
Finite Elements in Analysis and Design 44.4 (2008), 174–185. doi: 10.1016/j.
finel.2007.11.011.

[30] J. Dujc and B. Brank. Stress resultant plasticity for shells revisited. Computer Methods
in Applied Mechanics and Engineering 247-248 (2012), 146–165. doi: 10.1016/j.
cma.2012.07.012.

[31] E. Kocbay and Y. Vetyukov. Stress resultant plasticity for plate bending in the context
of roll forming of sheet metal. International Journal for Numerical Methods in
Engineering 122.18 (2021), 5144–5168. doi: 10.1002/nme.6760.

[32] M. Ambati, J. Kiendl and L. De Lorenzis. Isogeometric Kirchhoff–Love shell formulation
for elasto-plasticity. Computer Methods in Applied Mechanics and Engineering 340
(2018), 320–339. doi: 10.1016/j.cma.2018.05.023.

[33] J. C. Simo and R. L. Taylor. A return mapping algorithm for plane stress elastoplasticity.
International Journal for Numerical Methods in Engineering 22.3 (1986), 649–670.
doi: 10.1002/nme.1620220310.

[34] M. Crisfield, J. Remmers and C. Verhoosel. Non-linear finite element analysis of solids
and structures. 1991.

[35] V. Eliseev. Mechanics of deformable solid bodies. St. Petersburg State Polytechnical
University Publishing House, St. Petersburg (2006).

[36] S. Eisenträger et al. Stability analysis of plates using cut Bogner-Fox-Schmit elements.
Computers & Structures 270 (2022), 106854. doi: 10.1016/j.compstruc.2022.
106854.

[37] P. G. Ciarlet. An Introduction to Differential Geometry with Applications to Elasticity.
Journal of Elasticity 78-79.1-3 (2005), 1–215. doi: 10.1007/s10659-005-4738-8.

[38] L. P. Lebedev, M. J. Cloud and V. A. Eremeyev. Tensor Analysis with Applications
in Mechanics. WORLD SCIENTIFIC, 2010. doi: 10.1142/7826.

[39] Y. Vetyukov, A. Kuzin and M. Krommer. Asymptotic splitting in the three-dimensional
problem of elasticity for non-homogeneous piezoelectric plates. International Journal of
Solids and Structures 48.1 (2011), 12–23. doi: 10.1016/j.ijsolstr.2010.09.001.

[40] Q. Hu, X. Li and J. Chen. On the calculation of plastic strain by simple method under
non-associated flow rule. European Journal of Mechanics - A/Solids 67 (2018), 45–57.
doi: 10.1016/j.euromechsol.2017.08.017.

[41] H. J. Kleemola and M. A. Nieminen. On the strain-hardening parameters of metals.
Metallurgical transactions 5.8 (1974), 1863–1866. doi: 10.1007/BF02644152.

[42] M. C. Butuc et al. Analysis of sheet metal formability through isotropic and kinematic
hardening models. European Journal of Mechanics - A/Solids 30.4 (2011), 532–546.
doi: 10.1016/j.euromechsol.2011.03.005.

[43] V. Eliseev and Y. Vetyukov. Effects of deformation in the dynamics of belt drive. Acta
Mechanica 223.8 (2012), 1657–1667. doi: 10.1007/s00707-012-0675-3.

54

https://doi.org/10.1016/j.finel.2007.11.011
https://doi.org/10.1016/j.finel.2007.11.011
https://doi.org/10.1016/j.cma.2012.07.012
https://doi.org/10.1016/j.cma.2012.07.012
https://doi.org/10.1002/nme.6760
https://doi.org/10.1016/j.cma.2018.05.023
https://doi.org/10.1002/nme.1620220310
https://doi.org/10.1016/j.compstruc.2022.106854
https://doi.org/10.1016/j.compstruc.2022.106854
https://doi.org/10.1007/s10659-005-4738-8
https://doi.org/10.1142/7826
https://doi.org/10.1016/j.ijsolstr.2010.09.001
https://doi.org/10.1016/j.euromechsol.2017.08.017
https://doi.org/10.1007/BF02644152
https://doi.org/10.1016/j.euromechsol.2011.03.005
https://doi.org/10.1007/s00707-012-0675-3


[44] U. Nackenhorst. The ALE-formulation of bodies in rolling contact. Computer Methods
in Applied Mechanics and Engineering 193.39-41 (2004), 4299–4322. doi: 10.1016/
j.cma.2004.01.033.

[45] J. Simo and R. Taylor. Consistent tangent operators for rate-independent elastoplasticity.
Computer Methods in Applied Mechanics and Engineering 48.1 (1985), 101–118. doi:
10.1016/0045-7825(85)90070-2.

[46] J. Scheidl and Y. Vetyukov. Steady Motion of a Slack Belt Drive: Dynamics of a
Beam in Frictional Contact With Rotating Pulleys. Journal of Applied Mechanics 87.12
(2020), 121011. doi: 10.1115/1.4048317.

[47] D. Bhattacharyya et al. The prediction of deformation length in cold roll-forming.
Journal of Mechanical Working Technology 9.2 (1984), 181–191. doi: 10.1016/0378-
3804(84)90004-4.

[48] M. Lindgren. An Improved Model for the Longitudinal Peak Strain in the Flange of a
Roll Formed U-Channel developed by FE-Analyses. steel research international 78.1
(2007), 82–87. doi: 10.1002/srin.200705863.

55

https://doi.org/10.1016/j.cma.2004.01.033
https://doi.org/10.1016/j.cma.2004.01.033
https://doi.org/10.1016/0045-7825(85)90070-2
https://doi.org/10.1115/1.4048317
https://doi.org/10.1016/0378-3804(84)90004-4
https://doi.org/10.1016/0378-3804(84)90004-4
https://doi.org/10.1002/srin.200705863


Thin-Walled Structures 186 (2023) 110662

Contents lists available at ScienceDirect

Thin-Walled Structures
journal homepage: www.elsevier.com/locate/tws

Full length article

Mixed Eulerian–Lagrangianmodeling of sheet metal roll forming
Emin Kocbay a, Jakob Scheidl a, Fabian Riegler a, Martin Leonhartsberger b,
Matthias Lamprecht b, Yury Vetyukov a,∗
a Institute of Mechanics and Mechatronics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
b IFT - Institute of Production Engineering and Photonic Technologies, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria

A R T I C L E I N F O
Keywords:
Mixed Eulerian–Lagrangian description
Kirchhoff–Love shell
Finite element analysis
Metal plasticity
Roll forming

A B S T R A C T
We propose a nonlinear shell finite element model to simulate sheet metal roll forming, a continuous forming
process to produce endless metal profiles. A mixed Eulerian–Lagrangian kinematic description is employed
to overcome the drawbacks of the common Lagrangian parametrization. The finite element mesh is detached
from the particle motion in axial direction and, thus, facilitates a two-step solution procedure to capture the
continuous forming process: First, an equilibrium is sought with the account for contact and plastic flow.
Secondly, the material transport is taken into account, which amounts to the integration of an advection
problem for the plastic variables. The continuum plasticity model with through-the-thickness integration for the
stress resultants guarantees a precise resolution of the forming process in each cross section of the Kirchhoff–
Love shell. A series of simulations is carried out to ascertain the convergence of the numerical scheme, to
highlight the impact of characteristic parameters and to establish a correspondence to a reference computation
with the commercial software Abaqus in a simplified static setting. A physical experiment is devised on an
actual roll forming mill to assess the quality of the current computational model.

1. Introduction

Roll forming is a highly efficient continuous production process
for steel profiles of various cross-sectional shapes. An initially flat,
thin metal sheet receives incremental bends at subsequent roll stands
as it travels through the rolling line, see [1,2]. Each stand typically
consists of a couple of profiled rolls, which form a complex-shaped
roll gap. Plastic deformations are accumulated at the individual roll
stands such that the desired shape of the profile is reached in the end.
The process is deliberately designed to be bending dominant, because
thickness deformations and residual membrane strains pose the risk
to deteriorate the final product with respect to its load capacity and
shape accuracy (straightness, local waviness). Thus, Tehrani et al. [3]
investigated the local edge buckling phenomena in cold roll-forming of
symmetric channel sections.

The accurate yet computationally efficient numerical simulation of
the roll forming process is a challenging task. Applied finite element
schemes are reported by Heislitz et al. [4] and Bui and Ponthot [5]
and implemented in the commercial software COPRA,1 see [6] for a
use case. These approaches still rely on the conventional Lagrangian de-
scription despite its deficiencies owing to the strict coupling of material
particles with finite element nodes. As a consequence, such models are
computationally expensive, due to the inability to use refined meshes

∗ Corresponding author.
E-mail address: yury.vetyukov@tuwien.ac.at (Y. Vetyukov).

1 https://www.datam.de/en/products/software-division/fea-simulation

over longer simulation times, and susceptible to spurious numerical
oscillations, due to material nodes entering or leaving the contact zones
repeatedly, see [7].

An effective alternative would be the application of the Arbitrary
Lagrangian Eulerian (ALE) formalism, see [2] for an extensive pre-
sentation of a 3D volumetric non-material finite element scheme. The
latter approach belongs to the class of traditional ALE schemes with
a Lagrangian step and a Eulerian step comprising a single time incre-
ment [8]. The necessity of transferring all mechanical fields, including
material density and stresses, to a new mesh during the Eulerian step
makes the approach complicated and increases the risk of accuracy loss
during the time integration. Different methods to remediate these draw-
backs are reported in the literature on modern ALE variants, see [9,10]
or Humer et al. [11], who propose a kinematic description featuring a
stretched coordinate to model axially moving one-dimensional continua
of variable length. In the present paper we introduce a computational
scheme for the roll forming process with two novel features:

1. The mixed Eulerian–Lagrangian (MEL) kinematic description
[12–14], belonging generally to the broad class of ALE methods,
alleviates the necessity to transfer the conventional mechanical
fields during the Eulerian step with the help of an appropriate
variable transformation. It improves the accuracy of the time
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Nomenclature

Geometry, material and numerical parameters
𝐿, 𝑤, ℎ length, width and thickness of the metal

sheet
𝐸, 𝜈 elastic modulus and Poisson ratio of the

metal sheet
𝜎0, 𝑘, 𝑛 nominal & actual yield strength and strain

hardening exponent
𝑃 , 𝛾 contact penalty factor and penetration

depth
Coordinates, kinematic description, differential operators
and strain measures
𝑥, 𝑦, 𝑧 global Cartesian coordinates of the actual

configuration
𝒊, 𝒋, 𝒌 global Cartesian basis
◦𝑥, ◦𝑦 material coordinates of the reference con-

figuration of the shell model
𝜁 material thickness coordinate in the 3D

body of the shell
◦𝒓, �̃�, 𝒓 position vector of the reference, the inter-

mediate and the actual configuration
𝒖, 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 displacement vector and its Cartesian com-

ponents
𝑣, �̇�𝑥 axial material transport rate and axial

material velocity
◦
∇, ∇̃, ∇ differential operators of the reference, the

intermediate and the actual configuration
�̃�, 𝐅 deformation gradient tensors between the

reference configuration and the intermedi-
ate configuration or the actual configura-
tion

𝜺⊥, 𝜺e⊥, 𝜺
p
⊥ in-plane parts of the total strain ten-

sor, elastic strain tensor and plastic strain
tensor in the 3D body of the shell

𝐄, 𝐊 membrane and bending strain tensor of the
shell

Forming parameters and measures of the forming process
𝜌, 𝛥𝑧, 𝜑 roll-gap-reduction, vertical offset and bend-

ing angle of the profile
𝑔, �̃� roll gap and profile opening angle (physical

experiment)
𝐹↑, 𝐹↓ roll forces on lower and upper rolls
𝐹1, 𝐹2 mean forces measured at lower rolls at first

and second roll stand (physical experiment)
𝐴p, �̇�p densities of plastic dissipation work and

dissipation power

integration and reduces the complexity of the model. Just the
inelastic (plastic) variables need to be transported.

2. The treatment of the inelastic constitutive laws within the shell
finite element model reduces the number of degrees of freedom
in comparison to a 3D volumetric analysis, which, in turn,
decreases the computational cost and accelerates the simulation.

Three sources of nonlinearity exist in the model: the geometric
nonlinearity because of large deformations, the contact between rolls
and metal sheet and the inelastic material behavior. In terms of the
first, the thin metal sheet is modeled as a material surface using

the Kirchhoff–Love shell theory in the form, proposed by Eliseev and
Vetyukov [15],Vetyukov [16]. This choice is justified by the observa-
tion, that the thickness remains practically unchanged during the roll
forming process, see [5]. A regular mesh of rectangular 𝐶1-continuous
four-node shell finite elements constitutes the numerical model. These
elements are essentially an extension of the Bogner–Fox–Schmit plate
finite elements with bi-cubic Hermitian shape functions [17,18].

In general, the imposed axial travel gives rise to inertia terms owing
to the motion of the structure’s material particles. These contributions,
though essential, e.g., for the dynamics of high-rise elevators or the
production of paper webs [19,20], are negligible in the present context
of the comparatively slow roll forming process. Hence, the simulation
procedure follows a quasistatic time-stepping scheme, where the min-
imization of the total potential energy is followed by the convective
transport of plastic variables along the streamlines of material flow.

Regarding the contact interaction at a roll stand, we employ the
usual simplifying assumptions that the rolls are rigid and that the
contact is frictionless [21,22]; see [23] with regard to the modeling
of frictional contact in problems of moving continua. These prereq-
uisites are necessary, because no reliable information on the elastic
compliance of the roll stand nor on the frictional conditions is available;
under production conditions, rolls are typically lubricated to minimize
tool wear. Doubtlessly, these simplifying assumptions may impede the
capability of the computational model to accurately mimic an actual
roll forming process, the comparison against physical experiments in
Section 9.5 shall highlight to what extent.

Elastic–plastic behavior of plates and shells is a classical topic in
the literature [24,25]. Past attempts to treat the plastic laws on the
level of structural mechanics in the form of the so-called stress resultant
theories, where plastic curvatures replace the distribution of plastic
strains over the thickness of the shell [26–30] are not sufficiently
mature and thus inapplicable in the present context. The stress resultant
plasticity model recently proposed by Kocbay and Vetyukov [31] is
computationally efficient but limited to pure bending deformations. In
comparison to the primarily applied continuum plasticity model it is
found, that even if bending deformations are predominant, as is the
case for roll forming, the applicability of this stress resultant model
quickly diminishes, see simulation results in Section 9.2. In contrast,
the continuum plasticity model evaluates the well-established relations
of plane-stress plasticity in chosen integration points through the thick-
ness coordinate, see e.g. [32]. It allows for an accurate resolution of the
3D plastic state, albeit at a significantly increased computational effort.

In what follows, we discuss the important features of the model
and the numerical algorithm, present results of parameter studies and
establish convergence of the proposed scheme with respect to the
primary numerical parameters. The finite element model is further
compared against a reference computation with Abaqus2 in a simplified
static setting and validated against physical experiments conducted on
an actual roll forming mill.

2. Mechanical simulation model for the process of roll forming

A schematic sketch of the simulation setup in the spatially fixed
control domain is depicted in Fig. 1. The part of the metal sheet currently
inside the control domain is called active material volume. The origin
of the Cartesian reference frame is situated at the center of the left
edge, where material enters the control domain at a constant rate.
The metal sheet is modeled as a nonlinear Kirchhoff–Love shell and
discretized with a regular mesh of rectangular four-node shell elements.
Bi-cubic Hermitian shape functions are used to achieve a 𝐶1-continuous
approximation of the displacement field. The axial mesh refinement
visualized in the sketch is made possible by the MEL kinematic formu-
lation. Theoretically speaking, an arbitrary number of forming stands,
each comprising a pair of rolls, can be incorporated in the simulation

2 https://www.3ds.com/products-services/simulia/products/abaqus/
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Fig. 1. Schematic sketch of the roll forming simulation topology.

model. The rolls are modeled as rigid bodies and the contact between
them and the metal sheet is assumed to be frictionless. Forming takes
place if the rolls of each stand are pushed against the metal sheet by
means of an appropriate vertical adjustment of the axes of the rolls.
Naturally, the outcome of the process largely depends on the vertical
positioning of the rolls with respect to the reference plane 𝑧 = 0 of the
flat metal sheet. During a simulation the impenetrability condition of
normal contact is enforced at the integration points of the shell finite
elements via the penalty regularization method.

The transient quasistatic evolution of the forming process is viewed
as a sequence of statically and plastically admissible equilibrium states,
which are computed with the help of a variant of the return map-
ping algorithm [33,34]. The intermediate transport of plastic variables
between two equilibrium iterations in account for the axial motion
of particles may be regarded as a ‘‘load-increment’’ that is needed to
sustain the simulation. Given enough simulation time a stationary state
is reached, whose outside appearance remains unchanged from the
perspective of a spatially fixed observer. Internally, the local time rates
of the plastic variables due to plastic flow and convective transport
compensate each other. This steady state possesses particular practical
relevance, because it directly corresponds to the operating conditions of
the continuous roll forming process. Such a stationary solution cannot
be reached within a conventional Lagrangian finite element simulation
because the elements would enter and leave the contact zones — in
contrast to the MEL approach.

3. Mixed Eulerian–Lagrangian description of axially moving
Kirchhoff–Love shells

The non-material model of an elastic shell, whose particles are
moving across the finite element mesh in the axial direction, has been
introduced and validated by Vetyukov et al. [12]. The same kinematic
description is used in the present research. Here, we recap the basic fea-
tures of the model. The key idea is that the nodes of the finite element
mesh do not move in the axial direction, but follow the deformation
of the structure in the lateral (horizontal) and the transverse (vertical)
directions. This allows to speak about the axial coordinate 𝑥 as the
Eulerian one, whereas the other coordinates 𝑦 and 𝑧 remain Lagrangian.

The mathematical description exploits an infinitely long reference
configuration, which corresponds to the initially flat metal sheet. The
particles are identified by the material coordinates ◦𝑥 and ◦𝑦. With 𝒊, 𝒋
and 𝒌 being the Cartesian unit base vectors, the position vector of the
reference configuration reads:
◦𝒓 = ◦𝑥𝒊 + ◦𝑦𝒋, −𝑤∕2 ≤ ◦𝑦 ≤ 𝑤∕2. (1)

In the actual state the particle is located at the position
𝒓 = 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌 with 𝑥 = ◦𝑥 + 𝑢𝑥, 𝑦 = ◦𝑦 + 𝑢𝑦, 𝑧 = 𝑢𝑧. (2)
In the simulation, we treat the part of the sheet in the control domain
0 ≤ 𝑥 ≤ 𝐿, whose pre-image in the reference configuration forms the
active material volume. The latter is changing in time, as new particles
enter the control domain and leave it because of the axial motion of
the metal sheet.

Conventional shell theory [15,35] is based upon a mapping 𝒓 =
𝒓(◦𝒓), which corresponds to the Lagrangian description and is inefficient
in the present case because of the axial motion. We overcome the
issue by introducing a spatially fixed intermediate configuration, which
occupies a planar rectangular domain
�̃� = �̃�𝒊 + �̃�𝒋, 0 ≤ �̃� ≤ 𝐿, −𝑤∕2 ≤ �̃� ≤ 𝑤∕2. (3)
The entire deformation is thus split into two steps, see Fig. 2. First, the
axial displacement 𝑢𝑥 transforms the reference state into the interme-
diate one,
�̃� = ◦𝒓 + 𝑢𝑥𝒊, �̃� = ◦𝑥 + 𝑢𝑥, �̃� = ◦𝑦. (4)
Secondly, the two additional displacement components result into the
actual state with in-plane deformations and bending:
𝒓 = �̃� + 𝑢𝑦𝒋 + 𝑢𝑧𝒌, 𝑥 = �̃�, 𝑦 = �̃� + 𝑢𝑦, 𝑧 = 𝑢𝑧. (5)

The key idea of the MEL-description is that all mechanical fields
are considered as functions of the coordinates in the intermediate
configuration, and also the mapping from the reference configuration
to the actual state is defined implicitly as
◦𝒓 = ◦𝒓(�̃�), 𝒓 = 𝒓(�̃�). (6)
In the numerical procedure, we introduce a finite element mesh in the
intermediate state and discretize the three displacement components as
functions
𝑢𝑥,𝑦,𝑧 = 𝑢𝑥,𝑦,𝑧(�̃�, �̃�), (7)
i.e. 𝒖 = 𝒖(�̃�). The necessary 𝐶1-continuity condition, which guarantees
the smoothness of the deformed surface as required by the Kirchhoff–
Love shell theory, is easily achieved with the help of the bi-cubic
approximation of all three displacement components. The respective
Bogner–Fox–Schmit-like four-node finite element was presented in de-
tail by Vetyukov [18] in the context of geometrically nonlinear theory
of shells; for the non-material shell finite elements this approximation
technique found use in [12,14]; see also [36] for the application in the
context of a fictitious domain approach. Each node 𝑖 thus features 12
degrees of freedom, namely the deflection 𝒖(𝑖), the derivatives (𝜕1𝒖)(𝑖),
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Fig. 2. Three configurations used for the mixed Eulerian–Lagrangian kinematic description of the deformation of the metal sheet and multiplicative decomposition of the deformation
gradient tensor 𝐅.

(𝜕2𝒖)(𝑖) with respect to the local element coordinates 𝑞1, 𝑞2 as well
as the mixed second-order derivative (𝜕1𝜕2𝒖)(𝑖). The geometry of the
finite element �̃�(𝑞1, 𝑞2) needs to be approximated smoothly as well. The
simulations below feature a regular mesh with �̃� = �̃�(𝑞1) being a cubic
polynomial on each finite element with 𝐶1 interelement continuity,
which is necessary to enable a local mesh refinement in the vicinity
of the roll stands. The mapping in the lateral direction �̃� = �̃�(𝑞2) is a
linear one, because all elements retain the same material width.

As shear is kinematically suppressed, the local deformed state of
the shell is determined by the membrane strain measure 𝐄 and by the
bending strain measure 𝐊:
𝐄 = 1

2
(
𝐅𝑇 ⋅ 𝐅 − 𝐈⊥

)
, 𝐊 = 𝐅𝑇 ⋅ 𝐛 ⋅ 𝐅. (8)

Here 𝐈⊥ = 𝒊𝒊 + 𝒋𝒋 is the in-plane unit tensor. The deformation gradient
tensor follows with
𝐅 =

◦
∇𝒓𝑇 ,

◦
∇ = 𝒊 𝜕

𝜕 ◦𝑥
+ 𝒋 𝜕

𝜕 ◦𝑦
≡ 𝒊𝜕◦𝑥 + 𝒋𝜕◦𝑦, (9)

and the curvature tensor is the negative gradient of the unit normal
vector to the actual surface 𝒏:
𝐛 = −∇𝒏, ∇ = 𝒊𝜕𝑥 + 𝒋𝜕𝑦, (10)
see [37].

With the finite element approximation bound to the intermediate
configuration, the derivatives ∇̃ = 𝒊𝜕�̃� + 𝒋𝜕�̃� are readily available. Be-
cause the above definitions feature the differential operators ◦

∇ and ∇,
certain mathematical transformations need to be taken (see again [12]),
which result into the following multiplicative decomposition of the
total deformation gradient:
𝐅 = ∇̃𝒓𝑇 ⋅ �̃�, �̃� =

◦
∇�̃�𝑇 =

(
𝐈⊥ − 𝒊∇̃𝑢𝑥

)−1 . (11)
The membrane strain measure 𝐄 from Eq. (8) can now be directly
computed. Additional derivations provide us with the expression for
the bending strain measure:

𝐊 = �̃�𝑇 ⋅
(
∇̃∇̃𝒓 ⋅ 𝒏

)
⋅ �̃�, 𝒏 =

𝜕�̃�𝒓 × 𝜕�̃�𝒓|𝜕�̃�𝒓 × 𝜕�̃�𝒓| . (12)

With given values of the nodal degrees of freedom of the entire model
𝒒, which determine the approximation of the displacement components
Eq. (7), the local strain measures of the shell can now be directly evalu-
ated in a given integration point within the intermediate configuration
�̃�.

The equilibrium would be obtained by minimizing the total strain
energy of the model 𝑈𝛴 under the inequality constraints imposed
by the kinematic contact conditions. In a purely elastic case, the
distributed strain energy per unit material area reads
𝑈 = 1

2
(
𝐴𝜈(tr 𝐄)2 + 𝐴(1 − 𝜈)𝐄 ⋅⋅𝐄 +𝐷𝜈(tr𝐊)2 +𝐷(1 − 𝜈)𝐊 ⋅⋅𝐊

)
, (13)

with 𝐴 = 𝐸ℎ∕(1 − 𝜈2) being the plane stress membrane stiffness, 𝐸 the
Young modulus, 𝜈 the Poisson ratio, ℎ the thickness of the plate and

𝐷 = ℎ2𝐴∕12 its bending stiffness. The double dot multiplication ‘‘⋅⋅’’
has a meaning of a double contraction of two tensors: 𝐀 ⋅⋅𝐁 = tr(𝐀 ⋅𝐁),
see [38]. Now, 𝑈𝛴 is the integral over the active material volume in
the reference configuration with the elementary surface area
d◦𝑥 d ◦𝑦 =

(
det �̃�

)−1 d�̃� d�̃�,
(
det �̃�

)−1 = 1 − 𝜕�̃�𝑢𝑥, (14)
and thus we arrive at the integral over the intermediate configuration

𝑈𝛴 = ∫
𝐿

0
d�̃�∫

𝑤∕2

−𝑤∕2
(1 − 𝜕�̃�𝑢𝑥)𝑈 d�̃�, (15)

which is directly available for the given finite element discretization
using a 3 × 3 Gaussian quadrature rule per element. The Newton
method for minimizing the energy requires first and second order
derivatives of the strain measures 𝐊 and 𝐄 with respect to the nodal
degrees of freedom 𝒒. The respective expressions were derived using
the computer algebra system Wolfram Mathematica3 and then exported
into the simulation software in the form of auto-generated code.

4. Contact with rolls

The frictionless contact between deformable shell and rigid rolls is
governed by the penalty potential

𝑉 𝛴 = ∫
𝐿

0
d�̃�∫

𝑤∕2

−𝑤∕2
(1 − 𝜕�̃�𝑢𝑥)𝑉 d�̃�, (16)

where the density 𝑉 per unit reference area is a quadratic form in the
penetration depth 𝛾:

𝑉 = 1
2
𝑃 𝛾2. (17)

Any penetration 𝛾 of the deformable solid into the rigid counterpart is
penalized with a large factor 𝑃 such that the impenetrability condition
is met exactly in the limiting case of 𝑃 → ∞.

Integration of the contact potential is done with a standard 3 × 3
Gaussian quadrature rule. This requires the processing of the contact
kinematics for each integration point as illustrated in Fig. 3. The actual
penetration depth 𝛾 is exaggerated strongly in the picture for the sake
of visualization. It is computed from the difference of the profile radius
𝑅(𝑦) and the radial distance of the current integration point. Taking the
component in direction of the normal vector to the roll surface 𝒆𝛾 , we
obtain:

𝛾 = max

{
0, 𝑅(𝑦) − |𝒅|√

1 + 𝑅′(𝑦)2

}
, 𝒅 = 𝒓 − 𝒓0 − 𝒓 ⋅ 𝒋𝒋, (18)

where 𝒓 and 𝒓0 denote the position vector Eq. (5) and the vector to the
center of the roll axis at 𝑦 = 0, respectively. The square root in the
denominator accounts for the cosine of the inclination angle of the roll

3 https://www.wolfram.com/mathematica/
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Fig. 3. Evaluation of the current penetration depth 𝛾 at an integration point and the
surface normal vector 𝒆𝛾 that determine the normal contact response in the penalty
model; the radial profile 𝑅(𝑦) describes the roll geometry.

profile 𝑅(𝑦). If there is no penetration, 𝛾 is simply set to zero, which
prevents unphysical pulling forces. In case of established contact, the
variation of 𝛾 is determined by the virtual displacement in direction of
the normal vector 𝒆𝛾 :

𝛿𝛾 = −𝒆𝛾 ⋅ 𝛿𝒓 = −𝒆𝛾 ⋅
(
𝛿𝑢𝑦𝒋 + 𝛿𝑢𝑧𝒌

)
, 𝒆𝛾 =

(
𝒅∕ |𝒅| − 𝑅′(𝑦)𝒋

)
|𝒅∕ |𝒅| − 𝑅′(𝑦)𝒋| , (19)

which does not feature a variation of the axial displacement 𝑢𝑥 owing
to the mixed kinematic framework (integration points do not move in
axial direction).

To implement the specific geometry of a given roll as a 3D body of
revolution, the radial profile 𝑅(𝑦) is provided as a sequence of cubic
polynomials:
𝑅(𝑦) = 𝑝𝑖(𝑦), 𝑦𝑖 ≤ 𝑦 < 𝑦𝑖+1. (20)
At their boundaries these polynomials obey the transition conditions{
𝑝𝑖(𝑦𝑖), 𝑝′𝑖(𝑦𝑖), 𝑝𝑖(𝑦𝑖+1), 𝑝

′
𝑖(𝑦𝑖+1)

}
=
{
𝑅𝑖, 𝑅

′
𝑖 , 𝑅𝑖+1, 𝑅

′
𝑖+1

}
. (21)

The radii and inclinations 𝑅𝑖 and 𝑅′
𝑖 are defined on an equidistant mesh

𝑦𝑖 = −𝑙∕2 + 𝑖 𝛥𝑦, 𝛥𝑦 = 𝑙
𝑁

, 0 ≤ 𝑖 ≤ 𝑁, (22)
where 𝑙 and 𝑁 denote the length of the roll axis and the total number
of cubic polynomials, respectively. The information concerning the
geometry of the rolls, in particular the sequence {

𝑅𝑖, 𝑅′
𝑖
}, is passed to

the program with one text file each. The files used for the simulations
presented in Section 9 are made available as supplementary material.

5. Elastic–plastic material behavior at bending of shells

The standard way to treat elastic–plastic behavior of shells is to for-
mulate the constitutive relations by means of the through-the-thickness
approach, see e.g. [32] for one variant of implementation. The basic
idea is to recover the in-plane part of the strain tensor 𝜺⊥ of the 3D
continuum by means of a proper evaluation of the shell kinematics.
In the Kirchhoff–Love theory specifically, the membrane and bending
strain tensors 𝐄 and 𝐊 of the shell result in a linear variation of
𝜺⊥ in the thickness direction 𝜁 . The corresponding stresses 𝝈 follow
from the material constitutive law by solving the respective differential
equations of the 3D theory of plasticity; 𝝈 is a planar tensor, as the
plane stress hypothesis holds regardless of the constitutive model [39].

Upon numerical integration through the thickness ℎ, one finally obtains
the stress resultants of the shell model, namely the bending moments
𝐌 and the membrane forces 𝐍:

𝐍 = ∫
ℎ∕2

−ℎ∕2
𝝈 d𝜁, 𝐌 = −∫

ℎ∕2

−ℎ∕2
𝜁𝝈 d𝜁. (23)

While this approach is straightforward and simple, the through-
the-thickness integration is computationally quite expensive. There are
attempts in the open literature [24,26–30] to resolve this issue and to
gain a computationally more efficient method by introducing a pure
stress resultant formulation. This requires the yield surface and the flow
rule to be expressed in terms of stress resultants of the shell model,
thus providing the time rates of plastic membrane and bending strains.
The mentioned approaches feature shear-deformable shell kinematics
and are thus hardly transferable to the model at hand. Moreover,
it would be difficult to adapt these models to a specific material
hardening law. A more appropriate model was developed by Kocbay
and Vetyukov [31] for the geometrically linear bending of plates using
special case solutions of three-dimensional equations as a reference.
This computationally efficient numerical scheme has successfully been
validated against reference 3D continuum solutions and is adaptable
to any form of isotropic material hardening law. It does, however, not
account for the coupling between membrane and bending deformations
in the elastic–plastic constitutive relations. Regarding the process of
roll forming, membrane stresses must remain small to prevent the
metal sheet from sustaining irreversible changes of the in-plane metric,
which can deteriorate the quality of the final product. For this reason,
we employ the proposed stress resultant model as well to judge its
applicability in comparison to the default continuum model.

In the following we elaborate on the latter and discuss the im-
plementation of the through-the-thickness integration approach in the
simulation tool. The asymptotic consequence of the 3D condition of
compatibility of strains [39] is that the leading order term of the in-
plane part of the strain tensor 𝜺⊥ is distributed linearly along the
thickness coordinate of the continuum of the shell independent of the
material behavior:
𝜺⊥ = 𝐄 − 𝜁𝐊. (24)
The membrane strains of the shell 𝐄 remain small and the thickness
coordinate 𝜁 varies in the narrow range −ℎ∕2 ≤ 𝜁 ≤ ℎ∕2. This
justifies the use of the relations of the geometrically linear theory of
elastoplasticity. We decompose the total in-plane strain into the elastic
and plastic parts in the usual manner:
𝜺⊥ = 𝜺e⊥ + 𝜺p⊥. (25)
The von Mises yield criterion function under plane stress conditions
reads:
𝑓 = 3

2
𝝈 ⋅⋅𝝈 − 1

2
(tr 𝝈)2, (26)

and the elastic law for isotropic bodies is given as:
𝝈 = 𝐸

1 + 𝜈
𝜺e⊥ + 𝐸𝜈

1 − 𝜈2
𝐈⊥ tr 𝜺e⊥ = 4C ⋅⋅ 𝜺e⊥, (27)

where 4C denotes the fourth rank plane stress elasticity tensor. Strictly
speaking, the Cauchy stress tensor 𝝈, which determines the stress
resultants Eq. (23), rotates together with the particle of the shell in
the geometrically nonlinear theory. We ignore this formal distinction
and proceed with the Cauchy stress tensor written in the basis of the
reference configuration:
𝝈 = 𝜎𝑥𝒊𝒊 + 𝜎𝑦𝒋𝒋 + 𝜎𝑥𝑦(𝒊𝒋 + 𝒋𝒊), (28)
This ‘‘pull-back’’ may be interpreted as the transition to the Piola
stress tensor, when the deformation gradient is approximated as a pure
rotation, which is justified by the smallness of 𝜺⊥. The yield criterion
function becomes:
𝑓 = 𝜎2𝑥 − 𝜎𝑥𝜎𝑦 + 𝜎2𝑦 + 3𝜎2𝑥𝑦. (29)
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The deformation remains purely elastic and no change in plastic
variables occurs, �̇�p⊥ = 0, as long as the stresses remain within the
yield surface: 𝑓 < 𝑘2(𝐴p). The yield strength value 𝑘, which determines
the boundary of the yield surface at the uniaxial stressed state, grows
monotonously with the locally performed dissipative work 𝐴p. Along-
side the three plastic strain components 𝜀p𝑥, 𝜀p𝑥𝑦 and 𝜀p𝑦, 𝐴p belongs to
the set of material state variables, or plastic variables. This isotropic
hardening model, in which the yield surface expands concentrically, is
suitable for the roll forming process, because neither cyclic loading nor
significant changes in the direction of the plastic flow are expected.

At yield the equality
𝑓 = 𝑘2(𝐴p) (30)
holds and the plastic variables change in time, irreversible plastic
strains are accumulated. Therefore, during the active plastic flow pro-
cess we remain on the yield surface, and
̇𝑓 = 2𝑘(𝐴p)𝑘′(𝐴p)�̇�p, (31)
in which ̇𝑓 is the derivative of 𝑓 with respect to time 𝑡. The rate
equation for the dissipative work in a given point follows the definition
of the dissipation power as:
�̇�p = 𝝈 ⋅⋅ �̇�p⊥. (32)
The system of rate equations is closed by the associated flow rule:

�̇�p⊥ = �̇�
𝜕𝑓
𝜕𝝈

,
𝜕𝑓
𝜕𝝈

= 3𝝈 − 𝐈⊥ tr 𝝈. (33)
This time rate equation for the plastic strains is a consequence of the
postulate of maximum plastic dissipation, see [25]. The non-negative
factor �̇� follows from the consistency condition, i.e. the time derivative
̇𝑓 in Eq. (31) must be equal to the time rate derived from Eq. (26):
̇𝑓 = 𝜕𝑓

𝜕𝝈
⋅⋅ �̇� = 3𝝈 ⋅⋅ �̇� − tr 𝝈 tr �̇�. (34)

Computing the time derivative of the stress tensor from the elastic law
Eq. (27) and accounting for the flow rule Eq. (33), we obtain:

�̇� = 4C ⋅⋅ (�̇�⊥ − �̇�p⊥) =
4C ⋅⋅

(
�̇�⊥ − �̇�

𝜕𝑓
𝜕𝝈

)
. (35)

Finally, equating Eq. (31) and Eq. (34) in their appropriately expanded
forms yields a rate equation for the consistency parameter:

�̇� =
𝜕𝑓
𝜕𝝈 ⋅⋅ 4C ⋅⋅ �̇�⊥

2𝑘(𝐴p)𝑘′(𝐴p)𝝈 ⋅⋅ 𝜕𝑓
𝜕𝝈 + 𝜕𝑓

𝜕𝝈 ⋅⋅ 4C ⋅⋅ 𝜕𝑓
𝜕𝝈

. (36)

This expression holds only if positive, otherwise the material is deform-
ing elastically and the plastic variables remain unchanged. Backward
substitution in Eq. (35) yields the incremental stress–strain relation of
the elastic–plastic state:

�̇� =
⎛⎜⎜⎝4C −

4C ⋅⋅ 𝜕𝑓
𝜕𝝈

𝜕𝑓
𝜕𝝈 ⋅⋅ 4C

2𝑘(𝐴p)𝑘′(𝐴p)𝝈 ⋅⋅ 𝜕𝑓
𝜕𝝈 + 𝜕𝑓

𝜕𝝈 ⋅⋅ 4C ⋅⋅ 𝜕𝑓
𝜕𝝈

⎞⎟⎟⎠ ⋅⋅ �̇�⊥, (37)

with the term in brackets representing the elastic–plastic tangent stiff-
ness tensor. Both this fourth rank tensor as well as the closely related
tangent stiffness matrix of the finite element scheme are symmetric
owing to the associated flow rule, see [40] for further discussion.

In metal forming simulations, material hardening is typically consid-
ered by a strain hardening power law, see [41,42], which is conven-
tionally formulated in the uniaxial form:

𝜎𝑥(𝜀𝑥) =

{
𝐸𝜀𝑥, 0 ≤ 𝜎𝑥 ≤ 𝜎0
𝑘, 𝜎𝑥 ≥ 𝜎0,

𝑘 = 𝜎0

(
𝐸𝜀𝑥
𝜎0

)𝑛
. (38)

Here, 𝜎𝑥(𝜀𝑥) is the uniaxial stress at monotonous loading, 𝜀𝑥 is the cor-
responding axial strain component, 𝑛 is the strain hardening exponent
and 𝜎0 is the nominal yield strength, which corresponds to the actual
yield strength 𝑘 only for the elastic-ideal plastic case (𝑛 = 0). As long as
0 ≤ 𝜎𝑥 ≤ 𝜎0 the material behaves purely elastic. To generalize this one

dimensional law for plane stress plasticity in terms of 𝑘(𝐴p), we first
invert Eq. (38) in the elastic–plastic regime:

𝜀𝑥(𝑘) =
𝜎0(

𝑘
𝜎0
)
1
𝑛

𝐸
, (39)

and use it together with 𝜀p𝑥 = 𝜀𝑥 − 𝜀e𝑥 and Hooke’s law 𝜀e𝑥 = 𝑘∕𝐸,
to evaluate the plastic dissipative work as 𝐴p(𝑘) = 𝑘𝜀p𝑥 in the simple
uniaxial case:

𝐴p(𝑘) = 𝑘
𝐸

⎛⎜⎜⎝𝜎0
(

𝑘
𝜎0

) 1
𝑛
− 𝑘

⎞⎟⎟⎠ . (40)

Naturally, plastic work requires plastic flow and evaluates to zero
otherwise. For a given value of 𝐴p the above nonlinear equation is
solved numerically for 𝑘(𝐴p), which in a second step is used to evaluate
the derivative:

𝑘′(𝐴p) =
(

d𝐴p

d𝑘

)−1
=

⎛⎜⎜⎜⎜⎝
𝜎0(1 + 𝑛)

(
𝑘
𝜎0

) 1
𝑛 − 2𝑘𝑛

𝑛𝐸

⎞⎟⎟⎟⎟⎠

−1

. (41)

With 𝑘(𝐴p) and 𝑘′(𝐴p) made available, the consistency parameter �̇� can
now be calculated according to Eq. (36).

The just established elastic–plastic constitutive relations allow us to
formulate the required update routines for the internal plastic variables.
In terms of the finite element scheme, the deformed configuration of the
shell model is defined by the nodal degrees of freedom, stored in the
matrix 𝒒. The plastic state on the other hand is stored in the matrix 𝒑,
which contains the components of the plastic strain tensor 𝜺p⊥ as well
as the accumulated plastic work 𝐴p for each integration point in the
continuum plasticity model. Together, 𝒒 and 𝒑 fully specify the current
state. With them at hand we are able to evaluate the strain energy
density per unit reference area:

𝑈 = ∫
ℎ∕2

−ℎ∕2

1
2
𝜺e⊥ ⋅⋅ 4C ⋅⋅ 𝜺e⊥ d𝜁, 𝜺e⊥ = 𝜺⊥ − 𝜺p⊥, (42)

which is the elastic–plastic extension of Eq. (13). The thickness inte-
gration is performed by means of an evaluation at several (usually 8)
integration points 𝜁𝑖 according to the Gaussian quadrature rule. The
total strain energy, as obtained through a second integration step of the
above density according to Eq. (15), and its derivatives up to second
order with respect to the nodal degrees of freedom 𝒒 enter the assembly
of the linear system for the equilibrium iterations within the Newton
solver. We account for the possible variation of the plastic strains 𝜺p⊥
as the nodal degrees of freedom change because of the plastic flow by
replacing the elastic stiffness tensor 4C with the tangent stiffness tensor
from Eq. (37), which relates the increment of the stress to the increment
of the total strain in the inelastic regime. The proposed variant of
the return mapping algorithm to reach a statically and plastically
admissible state, to be explained below in Section 7.2, facilitates a
simplified (linearized) update of the plastic variables 𝒑 as it requires the
trial stress state of the predictor step to remain in close proximity to the
yield surface. Consequently, an explicit plastic corrector step suffices
that does not require an iterative solution itself, see [31] for further
details.

6. Transport of inelastic variables for axially moving shells

As we apply the mixed Eulerian–Lagrangian kinematic formulation,
the mesh remains axially fixed, while material particles keep entering
and leaving the control domain, see Fig. 1. Therefore, in each time step
the necessity arises to update the inelastic variables, which are stored
in the integration points of the finite elements with �̃� = const, but which
should be considered as functions of the material coordinates ◦𝒓. For this
purpose, a 1D advection equation is solved at the concluding stage of
each time increment, which is similar to the Eulerian step in the general
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ALE formulation [8]. The algorithm described below was successfully
applied in the simplified setting of a plane problem by Vetyukov et al.
[13].

We begin by computing the material velocity of a particle in the
axial direction �̇� according to
𝑥 = ◦𝑥 + 𝑢𝑥 ⇒ �̇� = �̇�𝑥. (43)
Here ◦𝑥 is the material coordinate and 𝑢𝑥 is the axial displacement
component, see Eqs. (4) and (5). A dot denotes a total (material) time
derivative, computed in a moving material particle, while the notation
𝜕𝑡 will be used for the local time derivative from the perspective of a
spatially fixed observer:

(⋯)⋅ = 𝜕(⋯)
𝜕𝑡

||||◦𝑥=const , 𝜕𝑡(⋯) = 𝜕(⋯)
𝜕𝑡

||||𝑥=const . (44)

The local time derivative coincides with the time rate of a variable,
observed in a given integration point of a finite element, which is fixed
in the intermediate configuration. The material time derivative of any
field variable 𝜑(�̃�, 𝑡) thus results into a sum of the local time rate and
the convective term:
�̇� = 𝜕𝑡𝜑 + �̇�𝑥 𝜕𝑥𝜑. (45)
This also holds for 𝜑 = 𝑢𝑥, which allows to compute the axial compo-
nent of the material velocity of a particle in terms of the nodal degrees
of freedom:
�̇�𝑥 = 𝜕𝑡𝑢𝑥 + �̇�𝑥 𝜕𝑥𝑢𝑥 ⇒ �̇�𝑥 = 𝜕𝑡𝑢𝑥(1 − 𝜕𝑥𝑢𝑥)−1. (46)
The local time derivative of 𝑢𝑥 determines the ‘‘amount’’ of material
particles, which flow across a given spatial point per unit time and
is thus called the material transport rate 𝑣 = 𝜕𝑡𝑢𝑥. It is clear, that the
transport rate must remain constant in the entire model at stationary
motion, when neither the deformation nor the plastic variables change
from the perspective of a spatially fixed observer — because otherwise
the particles would move across the control volume with different
speeds and strains would accumulate, see [43] for further discussion.
Seeking the stationary motion of the kind

𝑢𝑥 = �̃�𝑥(�̃�) + 𝑣𝑡, 𝑢𝑦 = 𝑢𝑦(�̃�), 𝑢𝑧 = 𝑢𝑧(�̃�), 𝜺p⊥ = 𝜺p⊥(�̃�, 𝜁), 𝐴p = 𝐴p(�̃�, 𝜁),

(47)
which also implies the linear time dependence of the nodal variables 𝒒
and the constancy of the plastic variables 𝒑, is the main aim of the
simulation. Therefore we allow for a minor inaccuracy in resolving
the transient stage and assume 𝜕𝑡𝑢𝑥 = 𝑣 = const with 𝑣 being a
model parameter, which effectively scales the time variable 𝑡 to the
length dimension of the part of the metal sheet, which entered the
control domain (sometimes called running meter). As a consequence of
the geometric nonlinearity, the material velocity of particles remains
deformation dependent because of the inverse of the expression in
brackets in Eq. (46).

The total time rates of inelastic variables in a moving material par-
ticle are determined by the plastic flow terms, discussed in Section 5.
However, local time rates define the increments in the integration
points and thus the values in 𝒑 in the end of a specific time step. From
Eq. (45) follows
𝜕𝑡𝜺

p
⊥ = �̇�p⊥ − 𝑣(1 − 𝜕𝑥𝑢𝑥)−1𝜕𝑥𝜺

p
⊥, 𝜕𝑡𝐴

p = �̇�p − 𝑣(1 − 𝜕𝑥𝑢𝑥)−1𝜕𝑥𝐴p. (48)
We proceed to the incremental form and multiply the equations by the
time increment 𝛥𝑡. The material increments 𝛥𝜺p⊥ = �̇�p⊥𝛥𝑡 and 𝛥𝐴p =
�̇�p𝛥𝑡, obtained from the converged Newton equilibrium iterations need
to be augmented by additional terms to find the local changes in
the plastic variables 𝜕𝑡𝜺

p
⊥𝛥𝑡 and 𝜕𝑡𝐴p𝛥𝑡. These additional ‘‘transport’’

terms are computed and applied in the concluding part of the time
increment (Eulerian step), which reminds us of a single time step of
the 1D advection equation. During stationary motion, the local time
derivatives vanish, such that the increments because of the active
plastic flow should be exactly compensated by the ‘‘transport’’ terms.

The Eulerian step is completed using a set of so called stream-
lines [44], which comprise all integration points along the axial coordi-
nate with the same lateral coordinate ◦𝑦 and thickness coordinate 𝜁 . The
total number of streamlines is thus a product of the number of elements
in the lateral direction times the number of element integration points
in one direction (equals 3) times the number of through-the-thickness
integration points. The single explicit time step of the advection equa-
tion is performed for each transport line on the irregular 1D grid of the
axial coordinates 𝑥𝑖 using the backward-space finite difference scheme
for the approximation of 𝜕𝑥𝜺p⊥ and 𝜕𝑥𝐴p, which ensures the stability of
the time integration and accurate resolution of the stationary regime.
The local values 𝜕𝑥𝑢𝑥 are directly available from the finite element
approximation.

7. Simulation setup and time stepping procedures

In this section we shall first discuss the primary properties that
determine the roll forming solution and later touch on the algorithmic
steps involved in a simulation run.

7.1. Simulation setup and primary input-/output-variables

The simulation setup for the upcoming Section 9 is depicted in
Fig. 4. Material particles are transported with constant rate 𝑣 through
the control domain, entering at the left, clamped edge and exiting at
the right, free edge. In this regard ‘‘clamping’’ means that the transverse
deflections and their first derivatives must vanish. The roll-stand in the
middle forms the planar sheet into a symmetric V-shaped profile. We
actively enforce this symmetry by prohibiting lateral deflections 𝑢𝑦 at
the center fiber ◦𝑦 = 0, which effectively resolves stability issues due
to under-constraining owing to the assumption of frictionless contact.
This measure requires an element edge at the middle fiber and, thus, an
even number of elements in lateral direction. All kinematic constraints
are implemented via simple penalization of the corresponding nodal
degrees of freedom.

Three distinct factors determine the result of the forming process
for a given metal sheet, namely: the geometry of the roll pairings (i.e.:
the roll profiles), the size of the roll gap and its position with respect to
the reference height 𝑧 = 0 of the planar sheet. As for the roll profiles,
we simply duplicate the actual profiles used during the physical exper-
iments. We provide the corresponding files as supplementary material
and visualize the geometry in Fig. 5. It depicts the roll-stand in its
reference and actual configuration, as adjusted by means of the ‘‘roll-
gap-reduction’’ 𝜌 and the vertical offset 𝛥𝑧. The former decreases the
distance of the roll axes and, thus, determines the roll gap, while the
latter applies a common vertical shift to both roll axes in order to lower
or raise them with respect to the reference height 𝑧 = 0. Initially, at
𝜌 = 𝛥𝑧 = 0 the sheet barely passes through the roll stand without
forming.

For an actual roll-forming mill, the forming forces between rolls
and metal sheet are typically measured by load cells at the support
positions, see Section 8. These forces act predominantly in vertical
direction and are statically equivalent to the integrated normal contact
forces in the corresponding regions at the lower and upper roll. We
visualize them as external forces acting on the rolls in Fig. 5 and denote
them as 𝐹↓ for the upper roll and 𝐹↑ for the lower roll. In case of the
here considered simple V-shaped profile, the bending angle 𝜑 at the
free end, see Fig. 4, is used to measure the outcome of the roll-forming
process.

7.2. Algorithmic structure of a roll-forming simulation

The employed time-stepping procedure gradually approaches a
steady state as described in Section 6. In the simulations, we con-
sider a state to be quasi-stationary once the variations of the main
postprocessing variables 𝐹↓, 𝐹↑ and 𝜑 become insignificant.

7
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Fig. 4. Roll-forming simulation: As it passes through a single roll-stand, the flat sheet is bent into a symmetric V-shaped profile. The sheet is assumed to be clamped (no inclination,
no transverse deflections) at 𝑥 = 0, where particles enter the domain with the constant transport rate 𝑣. The bending angle 𝜑 is measured at the opposite free end.

Fig. 5. Transverse cut through the roll stand for two configurations; left: the rolls are just touching the metal sheet and no forming happens (reference configuration); right: the
distance between the rolls is reduced by 𝜌 and their axes are further offset in vertical direction by 𝛥𝑧 – actual forming requires roll forces 𝐹↑ and 𝐹↓.

We provide a flowchart in Fig. 6 to illustrate the proposed algo-
rithm. At 𝑡 = 0, the metal sheet is in its planar reference state (𝒒0 = 0,
𝒑0 = 0) and the rolls are already at their final positions as described by 𝜌
and 𝛥𝑧, see Fig. 5. This leads to a severe penetration of the contacting
parts, which is alleviated by a corresponding time-incrementation of
the contact penalty factor 𝑃 following the interpolation:

𝑃 (𝑡) =
⎧⎪⎨⎪⎩

𝑃max
exp

(
𝑏 𝑡
𝑡1

)
−1

exp(𝑏)−1 0 ≤ 𝑡 < 𝑡1
𝑃max 𝑡1 ≤ 𝑡

. (49)

Thus, the penalty vanishes initially, increases according to an exponen-
tial law with bias 𝑏 up to some point in time 𝑡1 and is then held constant
at its maximum value 𝑃max. The nonlinear growth promotes conver-
gence in the early phase of the simulation. This time-incrementation of
the penalty is a simple alternative to the kinematic loading by means
of an adjustment of the roll gap; the system approaches the same
stationary state regardless of the applied loading scheme.

The actual solution procedure for a given time step, again see
Fig. 6, is entered after the actual penalty has been calculated. At
heart, it contains a return-mapping scheme that features an elastic
predictor-step to update the deformed state 𝒒 followed by a corrector-
step to update the plastic variables 𝒑. Unlike standard procedures,
see [33], which perform the plastic correction only after the Newton
solver has obtained a statically admissible state, we employ a common

single Newton loop that features plastic updates already at the level of
equilibrium iterations. Although certain doubts were expressed in the
literature regarding the compliance of this procedure with the path-
dependent nature of the plastic material behavior, see remark 3.3 on
page 107 of [45], it has proven to be numerically robust, computa-
tionally efficient and sufficiently accurate for the present needs. The
measure undertaken to minimize the inconsistencies of the iterative
plastic update within a time step amounts to the monitoring of the trial
stress state 𝝈trial of the elastic predictor step with respect to its plastic
admissibility:

𝜖flow =
𝑓 (𝝈trial)

𝑘2
− 1, (50)

which features a comparison of the equivalent yield stress 𝑓 , see
Eq. (26), with the current yield strength 𝑘. The state at a particular
point is plastically inadmissible if the above measure is positive (𝜖flow >
0) and we make sure that this error remains small during the Newton
loop. As remarked earlier at the end of Section 5, one benefit of
this strategy is that all plastic states encountered while iterating are
confined to the close proximity of the actual yield surface, which facil-
itates the linearization of the update procedure for plastic states and,
thus, contributes to the accuracy of the solution of the path-dependent
problem. The numerical convergence study with respect to the time
step size, as presented in Table 6, as well as the successful validation
against reference computations with the commercial software Abaqus
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Fig. 6. Flowchart of the program to simulate the roll forming process: It features a return mapping scheme to obtain increments of the deformed state 𝒒 and plastic variables 𝒑.
The latter are further transported in accordance with the axial motion of the metal sheet. The forming forces are applied in an artificial manner by means of a time-incrementation
of the contact penalty 𝑃 .

in Section 9.1, dispel any doubt on the capability of the proposed
scheme.

The return mapping iteration proceeds until a both statically and
plastically admissible state is reached, which is judged by the maximum
absolute values detected for the residual vector of the Newton scheme
and the plastic error measure Eq. (50), respectively. Failure due to
divergence, non-convergence after a maximum number of iteration
steps or excessive plastic flow, when the plastic error measure 𝜖f low
exceeds a certain threshold, is addressed by restarting the solution
increment with a halved time step.

Once a converged solution is obtained, the time step continues
with the convective update of plastic variables in account of the axial
transport of particles, as described in Section 6. At this stage, the
accumulated plastic variables attached to the material particles are
simply transported in axial direction. The convective update concludes
the current time step. At constant penalty 𝑃 only the axial transport
of plastic variables 𝒑 persists as ‘‘source of loading’’. It effectively
sustains the simulation, disposes of possibly non-physical artefacts of
the load history along the way and ensures that the solution approaches
a steady-state.

7.3. Static simulation case without transport

In order to validate the here proposed scheme against reference
computations with conventional Lagrangian finite elements available

in the commercial software Abaqus, we also consider a static solution
case with no axial motion of particles (𝑣 = 0). This absence of material
transport requires some adaptions to the simulation scheme presented
in the flowchart of Fig. 6, because the just mentioned independence
of simulation results from the load history is lost. In particular, the
unphysical artefacts of the loading via incrementation of the penalty
factor 𝑃 will no longer be carried past the domain boundaries. The
modified scheme for these static simulations features two separate
stages:

1. Kinematic loading: With the contact penalty already at its max-
imum 𝑃max increase the roll-gap-reduction 𝜌 linearly from zero
to its final value.

2. Unloading: Keep 𝜌 and decrease the contact penalty from 𝑃max
to zero.

A vertical offset of the roll axes is not considered for this kind of
simulation (𝛥𝑧 = 0). The kinematic type of loading complies with
the procedure implemented in Abaqus, but the penalty-controlled un-
loading does not. This does however not impede the comparability of
results, as long as the unloading is primarily elastic. In conclusion, to
adapt Fig. 6 for the static solution case, the convective update of plastic
variables needs to be skipped and the load-scheme needs to be replaced
with the just described two-stage procedure.

9
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Fig. 7. Experimental setup to validate the simulation results; Roll forming mill — sideview.

Fig. 8. Main roll forming pass during an experiment.

8. Setup of physical experiments

For the sake of a validation of the simulation program a physical
experiment was carried out on an actual roll forming mill, see Fig. 7.
The metal sheet, continuously supplied by an uncoiler, is transported
continuously through the mill from left to right through a series of roll
forming passes. The first two stands serve as guides for the planar metal
sheet to center it laterally, the third is inactive and the actual forming is
performed at the last two stands. In this case pre-forming means, that
an initial bending is applied to the metal sheet to guarantee a stable
process. Nevertheless, the primary angle-change is caused by the main
pass, as depicted in Fig. 8. The roll profiles of this stand correspond
to those depicted in Fig. 5. In the experiment, the lower shafts of the
two forming passes are driven to transport the sheet in axial direction
and the forming process is carried out without lubrication at a low
feed speed of 2.13 m/min. The primary variables of measurement
are the roll force, the actual roll gap as well as the opening angle
of the profile after forming. The mean of each measured parameter
over the minimum produced profile length (6 m) per experiment under
quasi static process conditions is used to characterize the individual
experiments. To be able to make reliable statements, the experiments
were repeated several times. The roll force acting on the lower rolls is
measured by piezo-based load cells situated in the forming stands. Due
to its correspondence to the distance of the upper and lower rolls, the
roll gap can be accurately monitored by means of LVDT-based (Linear
Variable Differential Transformer) measuring probes. A couple of these
sensors are connected to the rotating surface of each roll; the ones in
touch with the lower shaft are visible in Fig. 8. The forming angle was
measured optically by a profile scanner every 10 mm on the cut pieces of
2 m length, with a distance to the profile ends of 300 mm to prevent the
influence of end flare and deformations induced by the cutting process,
see Fig. 9.

Two experiments (with ID ‘‘a’’ and ‘‘b’’) for different roll gap sizes
were conducted so far, which, nonetheless, should suffice to conclude
on the general applicability of the simulation model and aid in the
ongoing development of both the computational scheme as well as the

Fig. 9. Optical measurement unit to scan the profile geometry.

Table 1
Measurement results of the physical experiments conducted for two different roll gaps.

ID 𝐹1 𝐹2 𝑔 𝜌 𝜑
[N] [N] [mm] [mm] [◦]

a 11 876 11 654 7.719 10.622 17.9
b 11 892 12 544 5.547 12.794 20.9

experimental setup. The results of these measurements are collected
in Table 1, where 𝐹1 and 𝐹2 denote the measured mean roll forces
at the first pre-forming stand and the second main forming stand,
respectively.

For convenience, the optically measured opening angle of the profile
is presented in terms of the equivalent bending angle 𝜑. Likewise,
the equivalent roll-gap-reduction 𝜌 is provided alongside the actually
measured value of the roll gap 𝑔 for the sake of comparison against the
simulation results. Both quantities are connected linearly through the
conversion formula:
𝜌 = −𝑔 + ℎ + 𝜌∗, with 𝜌∗ = 15.34mm, (51)
which relates to the limiting situation of a minimal roll gap, where
the minimum distance of the rolls at the main forming stand equals
the thickness of the metal sheet ℎ = 3mm; the corresponding value
𝜌 = 𝜌∗ for this case was estimated geometrically based on the given
radial roll profiles, see Fig. 5. It is important to note that Eq. (51) rests
upon a simplification regarding the kinematic description of the contact
interaction, where the thickness ℎ of the metal sheet is disregarded;
i.e. the contact is resolved as if the metal sheet had thickness zero. The
thickness ℎ of the metal sheet is not yet accounted for in the kinematic
description of the contact interaction (as if the shell had zero thickness).
In reality, this prerequisite will be violated; to what extent shall be
revealed by the comparison of measured and simulated values for 𝜌.

9. Simulation results and validation

The formerly declared variables 𝐹↑, 𝐹↓ and 𝜑 shall serve as primary
measures to judge the accuracy or convergence for the numerical
studies ahead. For the sake of comparison, we introduce corresponding
relative error measures for each parameter:

𝜖𝐹↑ ,𝑖 =
𝐹↑,𝑖

𝐹↑,ref
− 1, 𝜖𝐹↓ ,𝑖 =

𝐹↓,𝑖

𝐹↓,ref
− 1, 𝜖𝜑,𝑖 =

𝜑𝑖
𝜑ref

− 1, (52)

which relate the individual values to an entitled reference solution.
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Table 2
The default parameters of the simulation model are provided in the SI-system of units.
Geometry Material
𝐿 𝑤 ℎ 𝐸 𝜈 𝜎0 𝑛
0.8 0.1 0.003 2.08 × 1011 0.3 362 × 106 0.012
Forming Transport Numerical
𝜌 𝛥𝑧 𝑣 𝛥𝑡 𝑁𝑥 𝑁𝑦 𝑁𝜁 𝑃
0.01 0 0.8 0.005 26 10 8 1 × 1013

In what follows, we shall first ascertain the convergence of the finite
element scheme itself, compare it briefly against reference computa-
tions with Abaqus for the static simulation case of Section 7.3, highlight
the limitations of the stress resultant plasticity model, present the
results of parameter studies and conclude with a first validation against
physical experiments. The corresponding studies emanate from the set
of default parameters presented in Table 2. The material parameters
𝜎0 and 𝑛 were experimentally identified by means of tension tests.
The newly introduced parameters 𝑁𝑥 and 𝑁𝑦 denote the number of
finite elements in axial and width direction, respectively, while 𝑁𝜁
stands for the number of Gauss-points for the thickness integration
of plastic states. The mesh is refined in axial direction such that the
largest elements at the outmost ends are 2.5-times larger than the finest,
which occupy the contact region. For the studies ahead the geometric
and material properties remain unchanged, but we will vary both the
numerical and the forming parameters.

9.1. Static comparison against abaqus

We consider the static simulation case as described in Section 7.3
and compare the simulation results of the proposed finite element
scheme with reference computations conducted with the commercial
software Abaqus. The default parameter set of Table 2 still applies,
but the material transport rate vanishes (𝑣 = 0) and the evolution
of solutions is studied by means of an incrementation of the roll-gap-
reduction 𝜌. In addition, we consider the elastic-ideal plastic case 𝑛 = 0
for simplicity.

The reference computations in Abaqus feature a very fine mesh with
5640 elements of the S4 type. The roll geometry needed to model the
solid-to-rigid contact interaction is imported using piecewise interpola-
tion in a similar manner as explained in Section 4. The correspond-
ing Abaqus input file for the smallest roll gap is made available as
supplementary material.

Since the bending angle 𝜑 at the free end, see Fig. 4, has little
meaning in the context of the static simulation, we instead compare
the persistent deformations after unloading by means of an angle 𝜑static,
which is constructed in the same way but measured directly at the roll
gap along the center line of the rolls in the lateral direction. Its plot with
respect to the roll gap reduction 𝜌 is accompanied by a corresponding
graph of the roll force 𝐹↑ in Fig. 10. The left plot covers the evolution of
the lower roll force as 𝜌 increases from zero to its final value (kinematic
loading). The right graphic, on the other hand, depicts the resultant
forming angle 𝜑static reached after unloading from particular values of
𝜌, that is to say: after elastic spring-back.

A kink is observed in the curve of 𝐹↑ at 𝜌 = 0.018 34m. This
corresponds to the minimal roll gap according to Eq. (51), as 𝜌(𝑔 =
0) = ℎ + 𝜌∗ = 0.018 34m. The fact that the plotted curve after the
kink is not perfectly vertical and even involves regions beyond 𝜌 =
0.018 34m is a consequence of the penalty contact formulation, which
merely approximates the impenetrability condition of perfectly rigid
rolls. However, the fact that the curve starts off in almost vertical
direction after the kink, indicates that the chosen contact penalty is
sufficiently large. The offset in the positions of the kinks and the
somewhat ‘‘wavy’’ characteristic of the curve of 𝐹↑ for the standard
model relates to the discrete resolution of the contact zone expansion; a
dense placement of integration points captures this continuous process

Table 3
Comparison of simulation results obtained for the stress resultant plasticity
model against a reference computation with the default continuum plasticity
approach; parameters according to Table 2.

Plasticity model 𝐹↑ 𝜖𝐹↑
𝐹↓ 𝜖𝐹↓

𝜑 𝜖𝜑
[N] [%] [N] [%] [◦ ] [%]

stress resultant 13 585 13.67 13 413 12.89 21.72 3.16
continuum 11 951 – 11 881 – 21.06 –

more accurately. Correspondence of 𝜑static between the two models is
good and the persistent discrepancies in 𝐹↑ obtained for the default
model clearly diminish for the second, refined mesh. Furthermore,
we note the development of a plateau in the curves of 𝜑static, after
the minimal roll gap at 𝜌 = 0.018 34m is reached. This observation
is according to expectation, as the maximum forming angle (in the
loaded and therefore also in the unloaded state) is limited by what is
kinematically prescribed by the roll profiles at the minimal roll gap.

9.2. Continuum vs. Stress resultant model

Here, we compare results of the continuum model which fea-
tures the classical continuum plasticity treatment with integration
points along the thickness against the stress resultant model introduced
by Kocbay and Vetyukov [31]. The parameters and also the mesh
are identical and correspond to Table 2; the number of thickness
integration points 𝑁𝜁 is meaningless for the stress resultant model,
as it avoids the computationally costly thickness integration of plastic
variables. We view the continuum model solution as the reference
solution and collect the results in Table 3. The plate is moving with
the transport rate 𝑣; the presented values correspond to the quasi-steady
state solution.

The bending angle agrees significantly better than the roll forces,
which exhibit an error of about 13%. This indicates that the roll
forming process is, as expected, bending-dominant meaning that the
sustained plastic deformations mostly relate to a pure bending of the
structure. However, the complete neglect of the membrane forces in
the elastic–plastic constitutive relations of the stress resultant model,
originally proposed for pure plate bending, leads to a pronounced
over-estimation of the required forming forces. Based on the through-
the-thickness resolution of plane-stress plasticity, the continuum model
takes the coupling of bending and membrane effects into account and,
consequently, achieves a similar persistent deformation at a lower force
level. Hence, in its current form, the stress resultant model is not
sufficiently accurate to resolve elastic–plastic bending of geometrically
nonlinear shells. Nevertheless, from a practical point of view, a further
development is worthwhile for the gain of computational efficiency,
as the stress resultant model needs approximately seven times less
computation time than the continuum model.4

9.3. Convergence of the finite element scheme

To verify the convergence of the proposed finite element scheme, we
present parameter studies for the purely numerical parameters, namely:
mesh discretization (𝑁𝑥×𝑁𝑦), time step 𝛥𝑡, thickness integration points
𝑁𝜁 and contact penalty 𝑃 . We treat each parameter individually, each
time using the last (finest) simulation conducted for the particular se-
quence as a reference for the evaluation of the error measures Eq. (52).
In every sequence we merely alter a single parameter of the default set
of Table 2.

The finite element mesh is regular in lateral direction, but refined
in axial direction 𝑥 with the finest elements at the roll gap. Hence,

4 Reaching a quasi-steady state solution for the default parameter set from
Table 2 takes about 1 week for the continuum model vs. 1 day for the stress
resultant model on a 16-core Intel(R) Xeon(R) CPU E5-2640 v3 at 2.60 GHz.
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Fig. 10. Comparison of simulation results against reference computations with the commercial software Abaqus for the static analysis case as specified in Section 7.3; evolution
of the roll force 𝐹↑ for kinematic loading with 𝜌; final forming angle 𝜑static after unloading from a state with roll-gap-reduction 𝜌.

Table 4
Convergence of finite element results with respect to the
number of elements in axial direction 𝑁𝑥.

𝑁𝑥 𝐹↑ 𝜖𝐹↑
𝐹↓ 𝜖𝐹↓

𝜑 𝜖𝜑
[N] [%] [N] [%] [◦ ] [%]

14 12 471 9.64 12 433 9.66 23.58 15.39
18 12 092 6.31 12 073 6.48 22.39 9.55
26 11 951 5.06 11 881 4.79 21.06 3.06
36 11 514 1.22 11 476 1.22 21.36 4.53
50 11 375 – 11 338 – 20.43 –

Table 5
Convergence of finite element results with respect to the
number of elements in width direction 𝑁𝑦.

𝑁𝑦 𝐹↑ 𝜖𝐹↑
𝐹↓ 𝜖𝐹↓

𝜑 𝜖𝜑
[N] [%] [N] [%] [◦ ] [%]

6 12 285 6.34 12 219 6.41 21.20 0.5
8 12 118 4.9 12 049 4.92 21.46 1.71
10 11 951 3.45 11 881 3.46 21.06 −0.17
14 11 641 0.76 11 570 0.76 21.45 1.67
20 11 552 – 11 483 – 21.10 –

the number of elements in axial direction 𝑁𝑥 is actually an incomplete
measure of mesh quality, but it remains adequate as long as the actual
refinement strategy is not altered. We collect the results of the simula-
tion sequences for 𝑁𝑥 and 𝑁𝑦 in Tables 4 and 5, respectively. Element
numbers are increased or decreased by scaling the standard parameters
of Table 2 with positive or negative powers of

√
2. However, 𝑁𝑥 scales

only roughly with this factor, as we actually modify internal mesh
parameters that relate to the element lengths at the left end, the right
end and the middle, where the roll-stand is situated. Furthermore, the
fulfillment of the symmetry constraint, see Section 7.1, requires the
scaled result for 𝑁𝑦 to be rounded to the next even number.

The maximum number of elements for the last simulation is 𝑁𝑥 ×
𝑁𝑦 = 1000. With a maximum relative error of ≈ 5% and only 260
elements, the default parameter set yields sufficient accuracy for a first
validation at reasonable computational cost. In both studies, conver-
gence of the error measures is clearly visible, but non-monotonous
in case of 𝜖𝜑. This kind of somewhat erratic convergence behavior
is common in problems of contact of structures, see [46]. Evidently,
the discretization and, thus, the actual integration point placement for
contact and plastic variables in relation to the roll geometry has a
significant impact on the quality of a particular simulation.

Table 6 covers the convergence study for the time-step size 𝛥𝑡; the
actual step sizes are halved sequentially. Owing to the accompanying
backward finite difference integration for the advection problem of
plastic variables, see Section 6, the maximum admissible time-step is
bounded. This upper limit depends on the transport velocity as well as
the discretization level in axial direction, because the finite differences

Table 6
Convergence of finite element results with respect to the time step size 𝛥𝑡.

𝛥𝑡 𝐹↑ 𝜖𝐹↑
𝐹↓ 𝜖𝐹↓

𝜑 𝜖𝜑
[s] [N] [%] [N] [%] [◦ ] [%]

2.5e−2 11 951 −0.17 11 881 −0.18 21.06 0.31
5.0e−3 11 951 −0.17 11 881 −0.18 21.06 0.31
2.0e−3 11 971 1.52e−3 11 902 1.52e−3 20.99 7.44e−4
1.0e−3 11 971 1.86e−3 11 902 1.85e−3 20.99 5.27e−4
5.0e−4 11 971 – 11 902 – 20.99 –

Table 7
Convergence of finite element results with respect to the number of
Gauss-points for the thickness integration 𝑁𝜁 .

𝑁 𝐹↑ 𝜖𝐹↑
𝐹↓ 𝜖𝐹↓

𝜑 𝜖𝜑
[N] [%] [N] [%] [◦ ] [%]

4 11 916 −0.25 11 848 −0.25 20.95 −0.37
6 11 942 −3.23e−2 11 869 −7.79e−2 21.14 0.51
8 11 951 4.20e−2 11 881 2.50e−2 21.06 0.14
10 11 947 7.43e−3 11 879 1.10e−2 21.02 −5.23e−2
14 11 945 −5.60e−3 11 877 −5.20e−3 21.04 3.79e−2
18 11 946 – 11 878 – 21.03 –

Table 8
Convergence of finite element results with respect to penalty factor for
the contact model 𝑃 .

𝑃 𝐹↑ 𝜖𝐹↑
𝐹↓ 𝜖𝐹↓

𝜑 𝜖𝜑
[N∕m3 ] [N] [%] [N] [%] [◦ ] [%]

1e12 11 995 0.25 11 933 0.35 20.46 −3.09
1e13 11 951 −0.11 11 881 −8.80e−2 21.06 −0.27
1e14 11 964 −5.97e−3 11 891 −3.87e−3 21.11 −1.80e−2
1e15 11 964 – 11 891 – 21.12 –

are evaluated at sequential finite element integration points. In other
words: the traveled distance of a material particle per time step shall
not surpass the distance between two successive integration points.
Consequently, a finer discretization in axial direction also requires
finer time-steps; in the present case 𝛥𝑡 = 0.025 is close to this limit.
Emanating from this step size, the solution converges rapidly, which
demonstrates the robustness of the time integration scheme.

For the sake of completeness, we further consider the number of
thickness integration points 𝑁𝜁 and the penalty factor 𝑃 in Tables 7
and 8, respectively. While 𝑁𝜁 determines the resolution of the inner
variables in the thickness direction of the proposed continuum plastic-
ity model, the penalty factor 𝑃 should ensure a sufficient approximation
of the impenetrability condition of the solid-to-rigid contact model.

Convergence with respect to both parameters is rapid and monoto-
nous. Theoretically, the number of thickness integration points could
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Fig. 11. Evolution of the roll forces (𝐹↑ , 𝐹↓) and forming angle (𝜑) with respect to the roll-gap-reduction; the three small graphics depict the situation in the roll gap for: the
maximal, an intermediate and the minimal roll gap.

be increased further, albeit at diminishing gain and excessive compu-
tational cost. The maximum admissible penalty factor on the other hand
is bounded by numerical ill-conditioning of the system of equations.

9.4. Parameter studies

The roll-gap-reduction 𝜌 is the most influential parameter to deter-
mine the resultant profile of the metal sheet. The degree of roll forming,
measured in terms of the angle 𝜑, as well as the roll forces 𝐹↑ and 𝐹↓

increase as the roll gap is reduced. Naturally, the actual evolution of
these variables with respect to 𝜌 strongly depends on the roll geometry;
Fig. 11 depicts the corresponding graphs for the default parameter set
and roll profiles, see Table 2 and Fig. 5, respectively. The accompanying
small graphics illustrate the forming process in the roll gap for three
sample values of 𝜌. The initial almost linear growth of the variables
becomes degressive for the roll forces and progressive for the forming
angle for ever-increasing values of 𝜌. Since the forming process in the
roll gap is reminiscent of three-point-bending, this gradual loss of load
bearing capacity relates to the establishment of a kind of plastic joint
in the center, which cannot be compensated by the small parameter of
isotropic hardening.

If 𝜌 was increased even further, the upper and lower rolls would
eventually touch each other through the metal sheet, a situation not
accounted for in the program so far. Moreover, owing to the assumption
of rigid rolls, the reliability of simulation results diminishes as the
actual magnitude of elastic deformations of the rolls approaches the
size of the persistent roll gap.

To further illustrate the forming-process and visualize the regions
of plastic forming, Fig. 12 features a color-mapping of the plastic
dissipation power per unit surface area, which we denote as �̇�𝑝

⊥. To
compute it, we refer to Eq. (48) and make use of the fact that the
local time derivative 𝜕𝑡𝐴p tends to zero and only the convective part
persists as the simulation approaches a stationary state. Hence, we
merely need to integrate Eq. (48) for 𝜕𝑡𝐴p = 0 with respect to the
thickness coordinate:

�̇�𝑝
⊥ = ∫

ℎ∕2

−ℎ∕2

(
𝑣(1 − 𝜕𝑥𝑢𝑥)−1𝜕𝑥𝐴p) d𝜁. (53)

The color-mapping is overlaid on a plot of a part of the deformed
structure; black lines depict the edges of the axially refined Eulerian–
Lagrangian finite element mesh. As expected, most of the plastic work

is done at the center of the roll gap, where the sheet receives its primary
bend. The minor peaks on either side correspond to the contact with the
shoulders of the lower profile, which induces some counter-bending,
see Fig. 11 for comparison. Though most of the forming happens in
the contact region, plastic deformations also occur before contact with
the rolls is established, an observation well founded in engineering
practice, see [47,48].

We maintain all other parameters from Table 2 and focus the second
parameter study on the vertical offset 𝛥𝑧 of the roll gap. We vary the
parameter in the interval 𝛥𝑧 = ±0.05m and analyze its impact on the
roll forces and the forming angle in Fig. 13. The accompanying small
plots show the geometric proportions in the roll gap for three particular
cases. The offset induces a vertical bending of the sheet, which alters
the contact force distribution. Consequently, the roll forces, which were
almost indistinguishable earlier on in Fig. 11, separate from each other.
The effect of a vertical shift on the forming angle 𝜑, which relates
to the coupling of bending deformations in the geometrically nonlin-
ear theory, is minimal at first and pronounced at higher magnitudes
of 𝛥𝑧. Interestingly, since the mean of the two roll forces increases
monotonously with 𝛥𝑧 (except for the leftmost point), higher degrees
of forming may be reached at reduced force levels.

It is worth mentioning that the actual effect of the vertical off-
set depends on the global boundary conditions, which is important
in prospect of a future comparison against physical experiments. At
present the sheet is clamped at the left boundary (except for the axial
motion) and free to move at the right boundary.

Another outcome of the plastic forming process with vertical offset
𝛥𝑧, which is known to occur in practice and reproducible in our
simulations, is a pronounced bending deformation of the structure in
the 𝑥𝑧-plane after rolling, see Fig. 14. To better visualize the resultant
curvature, the center fiber ◦𝑦 = 0 is highlighted in the 3D picture
and plotted in Fig. 15, which features corresponding graphs for three
different values of the offset 𝛥𝑧. The curvature of the elastic bending
deformation changes its sign due to plastic deformations at the roll
stand. As illustrated in the picture, the persistent deformations of the
fiber past the roll gap may be approximated by quadratic parabolas. For
various values of 𝛥𝑧 the resultant curvatures of these fitting parabolas,
computed as second order derivatives with respect to 𝑥, are connected
in Fig. 16. The zero-point of this curve at 𝛥𝑧 ≈ −7.76 × 10−3 m marks
the optimal offset to obtain a straight profile after roll forming.
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Fig. 12. Dissipation power per unit of area �̇�𝑝
⊥ mapped over the deformed structure; black lines correspond to the axially refined finite element mesh.

Fig. 13. Evolution of the roll forces (𝐹↑ , 𝐹↓) and bending angle (𝜑) with respect to a vertical offset 𝛥𝑧; the small graphics visualize the magnitude of this shift in relation to the
roll gap geometry.

Fig. 14. A vertical offset 𝛥𝑧 induces a persistent axial curvature that points in opposite direction of the kinematically induced bend; the path of the center fiber ◦𝑦 = 0 is highlighted.

Fig. 15. Deflected paths of the axial fiber ◦𝑦 = 0 for various values of vertical offset
𝛥𝑧; a quadratic parabola fit is used to retrieve the persistent curvature of the right
segment.

9.5. Comparison against physical experiments

The modified simulation model for the comparison against the phys-
ical experiment is visualized in Fig. 17, which also provides a glance at

Fig. 16. Persistent curvatures of the center fiber ◦𝑦 = 0 after roll-forming as derived
from parabola fits of the deflected configuration (see Fig. 15) for several values of the
vertical offset 𝛥𝑧.

the roll geometry of the pre-forming stand. Most of the parameters of
Table 2 still apply, but, in order to accommodate two forming stands,
the total length of the spatial domain is extended to 𝐿 = 1.2m with the
pre-forming stand situated at 𝑥 = 0.4m and the main forming stand
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Fig. 17. 3D visualization of the finite element simulation model for comparison against the physical experiments.

Table 9
Validation of simulation results against the physical experiment: the roll-gap-reductions
for both roll stands are identified by fitting of 𝐹1 and 𝜑 to the measurements of Table 1,
which leaves the force 𝐹2 and the roll-gap-reductions 𝜌2 at the main forming stand for
the comparison.

Roll-gap-reductions Simulation results Deviations

ID 𝜌1 𝜌2 𝐹1 𝐹2 𝜑 𝐹2,sim
𝐹2,measure

− 1 𝜌2,sim
𝜌2,measure

− 1[m] [m] [N] [N] [◦]
a 4.895e−3 9.311e−3 11 832 10 143 17.9 −0.130 −0.123
b 4.895e−3 1.075e−2 11 863 10 928 21.0 −0.129 −0.160

at 𝑥 = 0.8m, i.e. 0.4m apart like in the experiment. Owing to this
extension and in account for the second roll stand, the corresponding
finite element mesh now consists of 𝑁𝑥 = 42 elements in axial direction,
while the number in width direction remains at 𝑁𝑦 = 10.

In principle, the primary variables to adjust to a particular ex-
periment of Table 1 are the roll-gap-reductions 𝜌1 and 𝜌2 as well as
the vertical offsets 𝛥𝑧1 and 𝛥𝑧2 at the first and second roll stand,
respectively. However, the current physical setup does not allow for
a measurement of the vertical positions of the roll gaps. Therefore, we
simply disregard the vertical offset and set 𝛥𝑧1 = 𝛥𝑧2 = 0 fully aware
of the fact that this choice might impact the results in the range of up
to ±5%, see Fig. 13.

The collected simulation results regarding the validation against the
measured data of Table 1 are presented in Table 9, which also features
the relative deviations of the force 𝐹2 and the roll-gap-reduction 𝜌2 at
the main roll stand with respect to the physical experiment.

For each experiment, the roll-gap-reductions are chosen such that
the measured force at the pre-forming stand 𝐹1 and the bending angle
𝜑 are reproduced accurately in the simulation. Hence, the force 𝐹2 and
the roll-gap-reduction 𝜌2 remain for comparison against the measure-
ments. Direct specification of the roll gap at the main forming stand
in the simulation by means of the experimentally identified values
according to Eq. (51) is not appropriate as the thickness ℎ of the metal
sheet is not yet consistently accounted for in the kinematic description
of the contact interaction. In this regard, the registered deviation for
𝜌2 shall be viewed as an error measure which highlights differences
between the actual contact interaction (contact at upper and lower face
of the shell, at 𝜁 = ±ℎ∕2) and the implemented contact interaction
(contact at the middle surface of the shell, at 𝜁 = 0). The discrepancy
increases alongside the force 𝐹2 in Table 9 as the roll gap gets smaller,
such that the distinction of the two contact interactions becomes more
pronounced at higher loads. The validation in terms of 𝐹2 yields a
relative error of 13% in both cases. Though still subject to uncertainties
as aforementioned, this result gives us confidence that the predictions
of the mathematical model at hand reflect the reality both qualitatively
and, to a good extent, quantitatively.

10. Conclusion

We considered the simulation of the sheet metal roll forming pro-
cess. The proposed novel simulation model features Kirchhoff–Love
shell finite elements in the mixed Eulerian–Lagrangian kinematic de-
scription, which efficiently resolves the major drawbacks of the estab-
lished Lagrangian finite element formulations. Primary variables are
parametrized with the coordinates of an intermediate configuration �̃�,
which amounts to a Eulerian description of the axial motion and a
Lagrangian one for the deflections in transverse and lateral direction.
Consequently, material flows through the finite element mesh in axial
direction, which facilitates a refined discretization for increased numer-
ical efficiency and, moreover, enables resolution of contact interactions
at fixed points in space, thereby preventing the occurrence of spurious
numerical oscillations. In this regard, classic Lagrangian finite elements
are clearly inferior owing to the strict attachment of nodal points to the
motion of material particles.

After a thorough theoretical derivation of the computational model,
we performed a series of tests and parameter studies to judge con-
vergence behavior and consistency as well as to identify potential
limitations, which shall guide the ongoing development of the scheme
towards an application-oriented simulation tool:

• The consistency of the scheme is established in comparison to a
reference computation with the commercial software Abaqus in
a simplified static setting. The stress resultant plasticity model,
reported in [31] and based on the formulation of the plastic
constitutive laws in terms of the stress resultants of an elastic–
plastic plate, is highly efficient but inaccurate for the purpose of
roll forming as compared to the standard continuum plasticity
approach. This is due to the complete neglect of membrane
stresses in the elastic–plastic constitutive relations of the stress
resultant model that are found to have significant effect on the
growth of plastic deformations, even though roll forming is a
bending-dominant forming process.

• Parameter studies demonstrate the impact of the primary system
parameters, which relate to the size and position of the roll gap,
on the outcome of the forming process. In addition, results known
from engineering practice are successfully reproduced with the
simulation model, namely: Plastic deformations already occur be-
fore the material establishes contact with the rolls and a vertical
offset of the roll gap with respect to the reference plane of the
metal sheet induces an axial curvature, i.e. it causes the axis of
the steel profile to bend.

• A physical experiment is devised at a roll forming mill to compare
the simulation results against actual measurements. This first
validation demonstrates the growing relevance of the accurate
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kinematic description of the contact interaction, as the roll forces
increase, which is not yet fully accounted for in the computational
model. The relative deviation in terms of the roll forces at the
main forming stand is approximately 13%. Two points to further
improve this promising yet not completely satisfactory result in
future are: the proper extension of the experimental setup (e.g.:
measurement of vertical positioning of the individual roll stands
with respect to the planar metal sheet) and the consistent account
for the finite thickness of the metal sheet in terms of the contact
kinematics.

Ultimately, the proposed finite element scheme is intended as an
efficient numerical tool to help improve the design process for roll
forming mills and to serve as a basis for model-based control designs.
In terms of numerical efficiency, it is worth pursuing the development
of the stress resultant plasticity model, which still awaits an appro-
priate extension regarding the inclusion of membrane effects in the
elastic–plastic constitutive relations.
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Abstract: The proposed Kirchhoff–Love shell stress resultant plasticity model
extends a previously reported model for plates by complementing the constitutive
law of elastoplasticity with membrane effects. This enhanced model is designed
for bending dominant settings with small to moderate membrane forces. It is thus
implemented in a purpose-built nonlinear mixed Eulerian–Lagrangian finite element
scheme for the simulation of sheet metal roll forming. Numerical experiments by
imposing artificial strain histories on a through-the-thickness element are conducted
to test the model against previously reported stress resultant plasticity models and
to validate it against the traditional continuum plasticity approach that features an
integration of relations of elastoplasticity in a set of grid points distributed over the
thickness. Results of actual roll forming simulations demonstrate the practicality in
comparison to the computationally more expensive continuum plasticity approach.
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Abstract
The proposed Kirchhoff-Love shell stress resultant plasticity model extends a previously reported model for plates by com-
plementing the constitutive law of elastoplasticity with membrane effects. This enhanced model is designed for bending
dominant settings with small to moderate membrane forces. It is thus implemented in a purpose-built nonlinear mixed
Eulerian–Lagrangian finite element scheme for the simulation of sheet metal roll forming. Numerical experiments by impos-
ing artificial strain histories on a through-the-thickness element are conducted to test the model against previously reported
stress resultant plasticity models and to validate it against the traditional continuum plasticity approach that features an
integration of relations of elastoplasticity in a set of grid points distributed over the thickness. Results of actual roll forming
simulations demonstrate the practicality in comparison to the computationally more expensive continuum plasticity approach.

Keywords Metal plasticity · Stress resultant shell plasticity · Kirchhoff–Love shell · Roll forming · Finite element analysis ·
Mixed Eulerian–Lagrangian formulation

Nomenclature
Geometry, material and numerical parameters
L, w, h length, width and thickness of the metal

sheet
E, ν elastic modulus and Poisson ratio of the

metal sheet
k yield strength
P contact penalty

Coordinates, kinematic description, differential
operators and strain measures

x, y, z global Cartesian coordinates of the actual
configuration

i, j , k global Cartesian basis
◦
x,

◦
y material coordinates of the reference con-

figuration of the shell model
ζ material thickness coordinate in the 3D

body of the shell

B Yury Vetyukov
yury.vetyukov@tuwien.ac.at

1 Institute of Mechanics and Mechatronics, Technische
Universität Wien, Getreidemarkt 9, Vienna 1060, Austria

◦
r, r position vector of the reference and the

actual configuration
u, ux , u y, uz displacement vector and its Cartesian com-

ponents
v, u̇x axial material transport rate and axial mate-

rial velocity
◦∇, ∇ differential operators of the reference and

the actual configuration
F deformation gradient tensors

ε⊥, εe⊥, ε
p
⊥ in-plane parts of the total strain tensor, elas-

tic strain tensor and plastic strain tensor in
the 3D body of the shell

E, K total membrane and bending strain tensor
of the shell

Ee, Ke elastic parts of membrane and bending
strain tensor of the shell

Ep, Kp plastic parts of membrane and bending
strain tensor of the shell

Stresses and related variables
σ , N, M tensors of stresses, membrane forces and

bending moments
IN , IN M , IM invariants of the stress resultants N and M
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Forming parameters and measures of the forming
process

ρ, ϕ roll-gap-reduction and bending angle of the
profile

RLi resulting contact force (roll force) on lower
roll i

Ap, Ȧp densities of plastic dissipation work and
dissipation power

1 Introduction

In this paper a stress resultant shell plasticity model for met-
als, which is suited for bending dominant applications such
as roll forming of sheet metal, is introduced. State-of-the-art
finite element schemes to model elastic-plastic forming of
thin sheet metal typically rely either on full 3D-continuum
elements or on continuum shell elements, where the shell
deformations, which obey the kinematic hypothesis of the
structural theory, are imposed on the 3D-body to treat plas-
ticity on the continuum level. This approach is accurate and
widely established [1–5], but computationally expensive in
general, because it requires a through-the-thickness integra-
tion of the 3D continuum elastic-plastic constitutive laws to
arrive at the stress resultants and the strain energy density of
the shell.

Consequently, so-called stress resultant plasticity models
are developed [6–12], where the elastic-plastic constitutive
laws are stated directly in the space of the stress resul-
tants, thus rendering the through-the-thickness integration
obsolete. Oftentimes, these publications make use of some
variants of the Ilyushin yield criterion [6]. This criterion
represents the von Mises yield surface in terms of stress resul-
tants, meaning bending moments and membrane forces. The
Ilyushin criterion is aimed at plastic limit load analysis and
merely detects elastic or fully plastic states, but does not
account for the gradual spreading of the plastic zone through
the thickness. Crisfield [8] augmented the Ilyushin yield cri-
terion by introducing a pseudo-hardening variable, namely
the effective plastic curvature, such that the yield criterion is
now able to approximate the plastification process through
the thickness. Applications of Crisfield’s model are available
in the open literature [9, 10].

Another attempt to augment the Ilyushin yield criterion
was carried out in [12] for geometrically linear plate bending,
meaning only the bending moments enter the yield criterion.
The evolution of the yield surface was described by means
of an isotropic hardening function, which uses the dissipa-
tion work as an internal hardening variable. This isotropic
hardening function was identified with the help of reference
solutions of a continuum through-the-thickness element and
by means of analytical solutions for simple cases like elastic-

plastic uniaxial bending. Results were convincing and in a
better agreement with continuum solutions when compared
to the yield criterion of [8].

To overcome certain limitations of the previously reported
stress resultant plasticity models, the plate model of [12] is
modifiedhere in an effort to treat large deformation problems
of Kirchhoff–Love shells. This enhanced shell stress resul-
tant model is obtained by appropriately pairing the isotropic
hardening law of [12] with the augmented yield surface pro-
posed by Crisfield [8]. The thus derived yield criterion is still
approximate, but in contrast to the plate-model of [12] fea-
tures an additional account for small to moderate membrane
forces. The two established stress resultant plasticity models
and the novel one are put to the test in a series of numeri-
cal experiments. The comparison against reference solutions
obtained with the continuum plasticity approach reveals the
capabilities of the enhanced model, which, as compared to
Crisfield’s approach, also exhibits an improved convergence
of the time integration scheme. Furthermore, the resolution of
the plastification process in terms of isotropic work harden-
ing facilitates the account for material hardening, which may
be achieved by simple extension of the hardening function
that is thus far limited to an elastic ideal-plastic material.

With regard to the aforementioned application of sheet
metal roll forming, the model is implemented in the mixed
Eulerian–Lagrangian (MEL) finite element framework pro-
posed in [13]. While there are various publications on roll
forming simulations [14, 15], most of them utilize a classical
Langrangian kinematic formulation. However, for processes
featuring axially moving continua such as a moving metal
sheet passing through a roll forming mill, the Lagrangian
kinematic formulation is inefficient and causes numerically
induced oscillations [16, 17]. An elegant way to mitigate
these drawbacks is the use of the Arbitrary Lagrangian
Eulerian (ALE) methods [18], where a Lagrangian step is
succeeded by a Eulerian step within a time increment. ALE
methods have successfully been applied in the context of roll
forming [19] and, more recently, in an investigation on con-
figurational forces in problems of sliding shells [20]. Here,
the efficient mixed Euerlian–Lagrangian (MEL) kinematic
description is employed [13, 21, 22], which – in contrast
to more traditional variants of ALE – allows for a solution
scheme that limits the Eulerian update step to the transport
of plastic variables.

Actual roll forming simulations are carried out to test the
proposed stress resultant plasticity model in an application
oriented context and to conclude on improvements over its
predecessors. The practical relevance of the enhanced model
for the simulation of the roll forming process lies in its use
as an auxiliary computational tool for the design and opti-
mization of roll forming lines. It is capable of producing
accurate results at significantly reduced computation time as
compared to the continuum plasticity model.
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2 Shell plasticity in the framework of the
through-the-thickness integration
approach

In the following, the essentials of the shell plasticity model
in the framework of the usually employed through-the-
thickness integration approach, are briefly recapitulated. For
the sake of generality, the governing equations of the theory
are all presented in invariant form.

The deformation of a Kirchhoff–Love shell is understood
as a mapping between the undeformed reference config-
uration of the material surface and its actual deformed
configuration [23, 24]. Material particles in each configu-
ration are identified with the position vectors ◦

r and r for the
reference and the actual state, respectively. Two correspond-
ing differential operators

◦∇ and ∇ may be defined with the
help of the total differential of a field quantity φ on the sur-
face:

dφ = d
◦
r · ◦∇φ = dr · ∇φ. (1)

These planar operators implicitly contain the derivatives with
respect to the two material (Lagrangian) coordinates that are
typically used to parametrize the surface. The gradients of ◦

r
and r are the first metric tensors:

◦a = ◦∇ ◦
r, a = ∇r, (2)

which define lengths and angles of the surface in the two
configurations. In accordance with (1), the deformation gra-
dient tensor F provides a mapping between the differential
line elements:

dr = F · d◦
r, F = ◦∇rT . (3)

The bending deformation in terms of the unshearable
Kirchhoff–Love theory is connected to the change of the unit
normal vector to the deformed surface n, which is expressed
through the second metric tensor b:

b = −∇n, (4)

where n fulfills the constraint of orthogonality a · n = 0.
The membrane and bending strain measures correspond to
the change of the components of the first and second metric
tensors, respectively. Their invariant forms read:

E = 1
2

(
FT · F − ◦

a
)

, K = FT · b · F, (5)

where a planar reference configuration is assumed in the def-
inition of the curvature tensor K.

In terms of the through-the-thickness approach, the
shell deformations are kinematically imposed on the three-
dimensional continuum, which allows to resolve the elastic-
plastic rate equations on the continuum level. In accordance
with the Kirchhoff kinematic hypothesis, the in-plane part of
the strain tensor of the 3D body ε⊥ varies linearly in thickness
direction ζ :

ε⊥ = E − ζK. (6)

The now employed additive decomposition of the planar
strain tensor into an elastic and a plastic part

ε⊥ = εe⊥ + ε
p
⊥ (7)

rests on the small strain assumption for ε⊥. This prerequi-
site does not preclude large overall deformations, but it does
require the membrane strains E to remain small and the thick-
ness coordinate to vary in a narrow range −h/2 ≤ ζ ≤ h/2.
An elastic-ideal plastic material behavior with constant yield
strength k is assumed for simplicity and the von Mises yield
criterion is adopted to distinguish elastic and elastic-plastic
states with the function

f = 3
2
σ · · σ − 1

2
(tr σ )2 ≤ k2. (8)

Elastic states are identified by f < k2 and yield happens at
f = k2.The planar stress tensor σ is connected to the elastic
part of the planar strain tensor according to Hooke’s law for
the plane stress assumption:

σ = E

1 + ν
εe⊥ + Eν

1 − ν2
◦
a tr εe⊥ = 4C · ·εe⊥, (9)

with the elastic modulus E and the Poisson ratio ν ; the fourth
rank plane stress elasticity tensor 4C provides a more concise
representation. It is important to acknowledge the incon-
sistency introduced through (9) that connects the Cauchy
stresses σ related to the actual state to the Green type of
strain measure ε⊥ related to the reference state. However,
owing to the small strain assumption this subtle distinction
is of little importance here [13]. The system of equations
is complemented by the associated flow rule, which deter-
mines the evolution of the plastic strains and follows from
the postulate of maximum plastic dissipation [25]:

ε̇
p
⊥ = λ̇

∂ f

∂σ
,

∂ f

∂σ
= 3σ − ◦

a tr σ . (10)

The consistency parameter λ̇ ≥ 0 is either zero (elastic state,
ε̇

p
⊥ = 0) or positive (elastic-plastic state, ε̇

p
⊥ /= 0). At yield

the consistency condition ḟ = 0 requires the stress state to
remain on the yield surface. It is evaluated in the usual way

1 3
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[25], to derive the stress-strain relation in terms of time rates
for elastic-plastic states:

σ̇ =
(

4C −
4C · · ∂ f

∂σ
∂ f
∂σ

· · 4C
∂ f
∂σ

· ·4C · · ∂ f
∂σ

)
· · ε̇⊥. (11)

The fourth rank tangent stiffness tensor in brackets is sym-
metric in consequence of the associated flow rule [26].
The strain energy density per unit reference area expressed in
terms of the through-the-thickness integration approach reads:

U =
∫ h/2

−h/2

1
2
εe⊥ · · 4C · · εe⊥dζ, εe⊥ = ε⊥ − ε

p
⊥. (12)

Since the energy density of the shell is obtained via a
thickness integration, this approach is henceforth referred
to as “continuum plasticity model” or “cp-model” in short.
Regarding the finite element implementation of Sect. 5, the
integration with respect to ζ is accomplished by means of a
Gaussian quadrature rule with several points ζi in thickness
direction.

3 Stress resultant model of elastic-plastic
Kirchhoff-Love shell for large overall
deformations

In order to avoid the computationally expensive time inte-
gration of the constitutive equations of elastoplasticity in
multiple points over the thickness, inherent to the cp-model
discussed above, a stress resultant model to treat elasto-
plasticity directly in the framework of the direct approach
featuring the shell as material surface is developed here. In
particular, a representation of the strain energy density in
terms of the elastic parts of the shell strain measures is sought:

U = 1
2

(
A1(tr Ee)2+ A2Ee · · Ee+D1(tr Ke)2+D2Ke · · Ke) , (13)

which stands in contrast to the definition (12) used in the
through-the-thickness approach. Like in (7) the additive
decomposition of shell strain components

E = Ee + Ep, K = Ke + Kp (14)

is based on the assumption of small local strains, which also
justifies the particular choice of the strain energy density as
a quadratic form in the elastic strain measures with the usual
stiffness coefficients: A1 = Eνh/(1 − ν2), A2 = Eh/(1 +
ν), D1 = A1h2/12 and D2 = A2h2/12. The tensors of
membrane and bending stress resultants follow from (13) by
means of partial differentiation:

N = ∂U

∂Ee = A1
◦
a tr Ee + A2Ee, M = ∂U

∂Ke = D1
◦
a tr Ke + D2Ke.

(15)

To close the formulation, the governing equations of plas-
ticity in terms of these stress resultants and a small number of
internal plastic variables are restated following the concept
developed in [12]. It features the plastic dissipation work Ap

as internal variable that governs the evolution law for the
effective yield stress. This approach is based on the observa-
tion that the yield progress in a thickness element from initial
yield up to limit yield (plastic hinge) resembles isotropic
hardening. This phenomenon of “structural hardening” is
not to be confused with actual material hardening, which is
neglected here owing to the elastic-ideal plastic material law.
The model proposed in [12] is limited to the geometrically
linearized framework of the plate bending problem, where N
can be neglected and only the bending moments M need to
be considered. This simplification is no longer feasible in the
present context of the geometrically nonlinear shell theory
owing to the inherent coupling of membrane and bending
forces. The enhanced stress resultant plasticity model for the
Kirchhoff–Love shell to be developed in the following shall
be addressed as “shell srp-model”, in contrast to the “plate
srp-model” model proposed in [12].

The derivation rests upon an augmentation of the von
Mises yield criterion (8), which is defined with respect to
the plane stress tensor σ . Provided the current state is purely
elastic, it is possible to reconstruct σ in terms of the stress
resultants:

σ = −12
h3 Mζ + 1

h
N, (16)

which can be easily verified by means of a substitution of (6)
in the elasticity law (9) and comparison to the constitutive
relation (15) for the stress resultants. Initial yield occurs in an
elastic limit state that is first reached at an outer fiber (upper
surface or lower surface of the shell) at ζ = ±h/2:

σmax = ∓ 6
h2 M + 1

h
N. (17)

Hence, the initial yield surface follows by substitution of (17)
in (8), which is rearranged to reach the convenient represen-
tation:

f0 = IN + 2|IN M | + IM − 1, (18)

with f0 = 0 corresponding to first yield; the absolute value
of |IN M | ensures positivity of the corresponding term. The
scalar variables IN , IN M and IM are invariants of the mem-
brane force tensor and the bending moment tensor:

IN = 1
N 2

0

(
3
2

N · · N − 1
2
(tr N)2

)
,
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IN M = 1
N0 M0

(
3
2

N · · M − 1
2

tr N tr M
)

, (19)

IM = 1
M2

0

(
3
2

M · · M − 1
2
(tr M)2

)
.

For later usage, the partial derivatives of these invariants
are also provided:

∂ IN

∂N
= 1

N 2
0

(
3N − ◦

a tr N
)

,

∂ IN M

∂N
= 1

N0 M0

(
3
2

M − 1
2

◦
a tr M

)
,

∂ IN M

∂M
= 1

N0 M0

(
3
2

N − 1
2

◦
a tr N

)
, (20)

∂ IM

∂M
= 1

M2
0

(
3M − ◦

a tr M
)

.

The expressions are normalized with respect to the membrane
force N0 and the bending moment M0 that correspond to first
yield under the distinguished load cases of uniaxial tension
and uniaxial bending, respectively:

N0 = kh, M0 = kh2

6
. (21)

The yield surface of (18) describes initial yielding exactly,
but is incapable of capturing the advancement of the plastic
zone in the thickness element beyond that.

In an attempt to resolve this issue, the limit yield surface is
considered as the second limiting case, which corresponds to
the fully plastified thickness element. Lacking exact means
of derivation for this case, it is assumed that the state of limit
yield can be mathematically described in the same way as
initial yield. Therefore, the limit yield surface is sought as a
linear combination of the invariants in the form of (18) but
with a-priori unknown coefficients a, b and c:

fL = aIN + b|IN M | + cIM − 1. (22)

Simple thought-experiments based on the general uniaxial
stress state N = Nx i i and M = Mx i i in direction i are
carried out to determine these constants. In the limit state,
the uniaxial stress distribution is piecewise constant and the
position of the neutral fiber is offset by an amount η owing
to the action of the tensile force Nx :

σx =
{

k, −h/2 ≤ ζ < η

−k, η < ζ ≤ h/2
, (23)

with the neutral fiberbeing located at ζ = η. The magnitudes
of the stress resultants follow by thickness integration to:

Nx (η) =
∫ h/2

−h/2
σx dζ = 2kη,

Mx (η) = −
∫ h/2

−h/2
ζσx dζ = 1/4k(h2 − 4η2). (24)

These distributions are evaluated for three distinguished
types of uniaxial stress states defined by:

η1 = h

2
, η2 = 0, η3 = h

2
√

3
, (25)

where the first corresponds to uniaxial tension, the second to
uniaxial bending and the third to the special state, where the
mixed invariant IN M becomes maximal:

∂ IN M

∂η
= 0 ⇒ η3 = h

2
√

3
. (26)

Evaluation of (22) for all three cases yields a system of linear
equations, with the solution:

a = 1, b = 2
3
√

3
, c = 4

9
. (27)

The resulting limit yield surface of (22) turns out to be
identical to the one proposed by Ilyushin [6]. In an effort
to represent states in-between initial and limit yielding,
Crisfield [8] augmented the Ilyushin yield criterion by intro-
ducing a dimensionless pseudo-hardening variable γ which
is identified by the uniaxial bending experiment:

fCr = IN + 1√
3γ

|IN M |+ 1
γ 2 IM−1, γ = 1

2

(
3 − e−4χp

)
.

(28)

Here, χp corresponds to the dimensionless effective plastic
curvature that is derived from the plastic curvature tensor Kp:

χp = Eh

3k

/
2
3

(
Kp · · Kp + (tr Kp)2

)
(29)

By comparison to (18) and (22) with constants according to
(27) one can observe that for pure bending the Crisfield yield
surface exactly captures the initial yield surface; χp = 0
and γ = 1 as well as the limit yield surface; χp → ∞ and
γ = 3/2.

Instead of γ , the newly proposed model makes use of the
isotropic hardening function of the dissipative work kM (Ap)
introduced for the plate srp-model developed in [12], which
was identified for the uniaxial bending continuum reference
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solution. This modification amounts to the replacement of γ

in (28) with kM (Ap)/M0:

f = IN + 1√
3 kM (Ap)

M0

|IN M | + 1
k2

M (Ap)

M2
0

IM − 1, (30)

where the hardening function is defined such, that it repro-
duces the elastic-plastic response of a plate at pure uni-axial
bending:

k2
M (Ap) = − 1

36
h3

(
3E Ap − 3

√
E Ap

√
2hk2 + E Ap

+2
√

3hk2 arctan
√

E Ap
√

6hk2 + 3E Ap

)
+ h4k2

36
.

(31)

In contrast to Crisfield’s approach, the dissipation work per
unit surface of the shell Ap appears as additional state vari-
able that determines the hardening behavior in terms of the
evolution of the effective yield strength k2

M (Ap). This imple-
mentation in the spirit of work hardening not only captures
initial yield (k2

M = M2
0 , Ap = 0) and limit yield (k2

M = M2
L ,

Ap → ∞) accurately for the case of pure bending, but also
facilitates the additional account for actual isotropic mate-
rial hardening by means of a proper augmentation of k2

M (Ap)
[12]. Moreover, the contribution of plastic membrane strains
to the work hardening can be consistently accounted for in
the definition of the dissipation power:

Ȧp = N · · Ė
p + M · · K̇

p
. (32)

The plate srp-model and the one suggested by Crisfield lack
this ability. Two associated flow rules with a single consis-
tency parameter λ are stated for the plastic strain rates:

Ė
p = λ̇

∂ F

∂N
, K̇

p = λ̇
∂ F

∂M
, (33)

where the original yield equation f = 0 has been replaced
with the modified one F(N, M) = k2

M (Ap), which in terms
of the stress invariants reads:

F =
h4k2

(
|IN M | +

/
12IM (1 − IN ) + I 2

N M

)2

432(1 − IN )2 = k2
M (Ap). (34)

The thus achieved separation of yield criterion and effective
yield strength is beneficial when it comes to the evaluation
of the consistency condition:

Ḟ = ∂ F

∂N
· ·Ṅ + ∂ F

∂M
· ·Ṁ = 2kM k,

M Ȧp, (35)

which binds the stress state to the actual yield surface in case
of plastic flow. Application of the chain rule of differentiation
yields:

∂ F

∂N
= ∂ F

∂ IN

∂ IN

∂N
+ ∂ F

∂ IN M

∂ IN M

∂N
,

∂ F

∂M
= ∂ F

∂ IM

∂ IM

∂M
+ ∂ F

∂ IN M

∂ IN M

∂M
, (36)

which, for the sake of conciseness, is not expanded further
with the help of (20). Likewise, the lengthy total deriva-
tive of k2

M (Ap) that follows from (31) is omitted. With the
dissipation power given in (32), it remains to evaluate the
constitutive law (15) to relate the rates of the stress and strain
resultants:

Ṅ = A1
◦
a tr Ė

e + A2Ė
e = ∂N

∂Ee · ·
(

Ė − Ė
p
)

,

Ṁ = D1
◦
a tr K̇

e + D2K̇
e = ∂M

∂Ke · ·
(

K̇ − K̇
p
)

,

(37)

where the elastic strain rates are replaced according to the
additive decomposition (7). The tensor derivatives of N and
M with respect to the corresponding elastic strain tensors
constitute two forth order tensors that resemble the elasticity
tensor 4C of the continuum theory (9). With the rates of the
stress resultants (37) as well as the dissipation power (32)
written in terms of strain rates, we utilize the flow rules (33)
to solve (35) for the consistency parameter:

λ̇ =
∂ F
∂N · · ∂N

∂Ee · ·Ė + ∂ F
∂M · · ∂M

∂Ke · ·K̇
∂ F
∂N · · ∂N

∂Ee · · ∂ F
∂N + ∂ F

∂M · · ∂M
∂Ke · · ∂ F

∂M + 2kM k,
M

(
N · · ∂ F

∂N + M · · ∂ F
∂M

) .

(38)

In analogy to (11), backward substitution in (37) reveals the
tangential elastic-plastic constitutive law in the framework
of the stress resultant plasticity theory. The appearance of
the total strain rates Ė and K̇ in (38) expresses the inher-
ent coupling of membrane and bending deformations in the
elastic-plastic regime. Therefore, curvature rates will in gen-
eral evoke plastic membrane strain rates according to the flow
rules (33) and vice versa.

Now that all prerequisites for the implementation of a
numerical solution scheme are met, the return mapping
algorithm from [12] is adapted by replacing the governing
equations of the original plate srp-model with the ones of the
enhanced shell srp-model.

4 Elastic-plastic response of a
through-the-thickness element

Here, all three previously mentioned stress resultant plas-
ticity models (Crisfield srp-model, plate srp-model, shell
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srp-model) are subjected to simple load cases and are com-
pared to the results of reference solutions obtained with the
continuum plasticity model (cp-model) of Sect. 2. Specifi-
cally, different kinds of kinematic loading are imposed on a
through-the-thickness element by means of a time incremen-
tation of the membrane strain and curvature tensor:

K=αK (t) Kmax (i i −ν j j) , E=αE (t) EmaxP · (i i −ν j j) · PT ,

(39)

where i and j denote the in-plane Cartesian basis vectors
of the element. The rotation tensor P is used to adjust the
relative angular alignment of the strain measures:

P = P(θ) = cos θ(i i + j j) − sin θ(i j − j i). (40)

The primary directions coincide for θ = 0, in which case
an uniaxial stress state in i-direction is obtained in the elas-
tic range; small additional components of membrane forces
and bending moments in the orthogonal direction arise once
plastic flow occurs. A multi-axial state may be enforced by
θ /= 0. Alternatively, a force driven approach that would
allow for a direct specification of stress states could be pur-
sued, but the deformation driven one is preferred for ease
of implementation. The kinematic loading (39) is biased
towards a bending dominant application (like roll forming)
with the maximum amplitudes:

Kmax = 4
12M0
Eh3 = 8k

Eh
, Emax = 1

2
N0
Eh

= 1
2

k

E
, (41)

that correspond to four-times the curvature of first yield for
pure bending and just half of the membrane strains required
for yielding in the state of pure tension, respectively. The
actual values are controlled with the load factors αK and αE

that range from zero to one and are defined as piecewise
linear functions in the timespan 0 ≤ t ≤ 1.

The rate equations of the particular plasticity models
under consideration are integrated numerically with a simple
explicit scheme and a sufficiently fine time discretization.
The parameters of the particular numerical experiments are
specifiedin Table 1; Nζ is the number of thickness integration

points that are used for the continuum plasticity model. The
element with the given material parameters and thickness h
is subjected to four different load histories that are stated in
terms of the angle θ and tabulated values for the load fac-
tors αE and αK , which are interpolated linearly between the
designated points t = {0.0, 0.5, 1.0}. Cases 1 and 2 feature a
simultaneous increase of the imposed strains (41) and differ
solely in the angle θ. The angular alignment is varied in cases
3 and 4 as well, but, more importantly, the kinematic loads
are applied sequentially, i.e.: first bending then tensioning
and vice versa.

The tabulated values for the load factors are indicated at
the top of the respective grid lines in the corresponding graphs
of Figs. 1, 2, 3 and 4 that depict the simulated time histories
of the primary invariants IN and IM . These variables are
bounded by their uniaxial limit yield values, namely: IN ≤ 1
and IM ≤ 9/4. An exception is the plate stress resultant
model of [12], which may be recovered from (30) by simply
setting IN = IM N = 0. Hence, the membrane stress resul-
tants do not enter the elastic-plastic constitutive of the plate
srp-model in any way and the invariant IN is unbounded
in consequence thereof. Analyzing the results presented in
Figs. 1 – 4, good agreement of the novel shell srp-model
with the exact continuum model is observed, which in terms
of IM also poses a slight improvement over the stress resultant
plasticity model of Crisfield; regarding IN , both models are
almost indistinguishable. The great importance of including
the membrane forces in the plasticity model is highlighted in
comparison to the plate srp-model, which produces the same
purely elastic response for IN regardless of the imposed load-
ing. This deficiency is most pronounced for the cases 1, 2 and
4, where the corresponding graphs of the plate srp-model for
IN deviate from the others as soon as plastic flow occurs and
the purely elastic regime, for which all models are equal, is
left. Interestingly, the coupling of membrane and bending
resultants in these cases primarily affects the distribution of
the membrane forces, but its impact on the bending behavior
is weak, such that the distributions for IM remain in close
proximity to the continuum reference model. In this respect
case 3 of Fig. 3 is different, because the late application of
the kinematic membrane loading must cause additional plas-

Table 1 Parameters and specific
load histories for the numerical
experiments on the
through-the-thickness element:
The angle θ determines the
angular alignment of the
prescribed strain states

E [N/m2] ν k [N/m2] h [m] Nζ

2.8 × 1011 0.3 362 × 106 0.003 50

load case θ [rad] αE (0) αE (0.5) αE (1.0) αK (0) αK (0.5) αK (1.0)

1 0 0.0 0.5 1.0 0.0 0.5 1.0
2 π/2 0.0 0.5 1.0 0.0 0.5 1.0
3 π/4 0.0 0.0 1.0 0.0 1.0 1.0
4 0 0.0 1.0 1.0 0.0 0.0 1.0

The time evolution of the load factors αE and αK is given by piecewise linear interpolation of the tabulated
values for t = {0.0, 0.5, 1.0}
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Fig. 1 Comparison of simulation results of the through-the-thickness element between the four different plasticity models for the load case 1 of
Table 1

Fig. 2 Comparison of simulation results of the through-the-thickness element between the four different plasticity models for the load case 2 of
Table 1

Fig. 3 Comparison of simulation results of the through-the-thickness element between the four different plasticity models for the load case 3 of
Table 1
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Fig. 4 Comparison of simulation results of the through-the-thickness element between the four different plasticity models for the load case 4 of
Table 1

tic curvature strains in the extended models owing to the
inherent coupling best illustrated by (38). Hence, the limited
capabilities of the plate srp-model show in the distribution
for IM in this special case. Evidently, the inclusion of plastic
membrane strains is crucial for an accurate resolution of the
stress resultants.

To investigate the essential differences of the novel shell
srp-model and the one proposed by Crisfield, comparisons of
the respective hardening functions kM (Ap)/M0 and γ (χp)
are presented in Figs. 5 and 6 for all considered load cases.
The values of both dimensionless hardening functions are
initialized with 1, which is the limit for initial yielding. Once
plastic flow occurs, the hardening functions grow towards the

limit yield value 3/2. Owing to the exponential law (28), the
Crisfieldmodel always saturates very quickly. In contrast, the
shell srp-model approaches the limit yield boundary slower
without ever reaching it. Being based on work hardening, this
model also accounts for the contribution of plastic membrane
strains to the plastic work Ap that determines the progres-
sion of plastic flow in the thickness element. However, the
impact is negligible in all cases, which is best illustrated by
the graphs corresponding to load case 3 in Fig. 6, where the
hardening function kM/M0 remains practically constant for
t > 0.5 after the curvature loading has been fully applied.

The results presented so far, demonstrate the obvious
advantages of the proposed shell srp-model over its prede-

Fig. 5 Comparison of the hardening functions for load case 1 (left) and load case 2 (right) of Table 1
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Fig. 6 Comparison of the hardening functions for load case 3 (left) and load case 4 (right) of Table 1

cessor for the plate bending problem discussed in [12]. The
primary benefits in comparison to the Crisfield stress resul-
tant model comprise:

• modest improvements of accuracy with respect to the
continuum reference solution

• the formulation in terms of a work hardening law that
facilitates the inclusion of isotropic material hardening

• a significantly better convergence of the numerical time
integration scheme

Regarding the last point, it is found, that the Crisfield model
requires about three times more time steps than the shell
srp-model in order to reach results of comparable numeri-
cal accuracy. An elaborate discussion on the time integration
scheme of the Crisfield model and related limitations of [10]
is available in [10]. Similar concerns regarding actual imple-
mentations of the Crisfield model were expressed in [27,
28]. Later in Sect. 7, the comparison of plasticity models by
imposing the results of actual roll forming simulations on a
through-the-thickness element is continued.

5 Mixed Eulerian–Lagrangian finite element
scheme

The different plasticity models, except for the one pro-
posed by Crisfield, are implemented in a mixed Eulerian–
Lagrangian shell finite element scheme that is designed for
the simulation of sheet metal roll forming. Since a detailed
discussion of this program is available [13], only a brief
explanation of the most essential aspects is provided, namely:

• the mixed Eulerian–Lagrangian kinematic description

• the contributions that constitute the total potential energy
in the weak formulation

• frictionless contact
• the convective transport of internal plastic variables in

the two-step solution procedure

Though purpose-built for the process of sheet metal forming,
the simulation framework is equally applicable to certain
static problems [13]; actual roll forming simulations are
addressed in Sects. 6 to 8.

Since the raw material of the roll forming process is a flat
metal sheet a rectangular reference configuration can now
explicitly be stated:

◦
r = ◦

x i + ◦
y j , −w/2 ≤ ◦

y ≤ w/2, (42)

where ◦
x and ◦

y denote the Lagrangian material coordinates
in axial direction and lateral (width) direction, respectively.
Originally, the undeformed sheet is aligned in the xy-plane
of the spatial Cartesian coordinate frame with the basis vec-
tors i and j ; the complementary vector k = i × j points
in z-direction. The lateral coordinate ◦

y is bounded by the
total width w of the metal sheet, but the axial coordinate ◦

x is
unbounded, because roll forming is viewed as a continuous
process in a spatial control domain 0 ≤ x ≤ L . There-
fore, as forming progresses the axially moving sheet (and its
material particles) will be continuously transported through
this domain, which renders the purely Lagrangian perspec-
tive inefficient and suggests a coordinate transformation to a
mixed set that decouples the actual deformations sustained
during the forming process from the axial travel of the struc-
ture. Thus, the position vector to a material particle r in the
actual configuration is parametrized in a mixed coordinate
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space that comprises the Eulerian axial coordinate x and the
Lagrangian lateral coordinate ◦

y:

r = x i +
(◦

y + u y

)
j + uz k,

◦
x = x − ux . (43)

Together the mixed pair {x,
◦
y} constitute a rectangular inter-

mediate configuration of the part of the metal sheet currently
enclosed by the boundaries of x ∈ [0, L] (active material vol-
ume). The Cartesian components of the displacement vector

u(x,
◦
y, t) = ux (x,

◦
y, t)i + u y(x,

◦
y, t) j + uz(x,

◦
y, t)k (44)

serve as primary unknowns. More specifically, the nodal vari-
ables of a single four-node rectangular finite element, which
resides in the intermediate configuration, comprise the dis-
placements themselves, their first derivatives and the mixed
second derivative with respect to the local finite element
coordinates. This choice of nodal degrees of freedom paired
up with bi-cubic polynomial shape functions ensures a C1

continuous approximation of the position vector. The used
finite elements are therefore an extension of the Bogner-Fox-
Schmit plate elements [29, 30].

The mixed parametrization is advantageous because it
enables a spatial resolution of the deformations imposed
by the roll stands at given x-positions. Consequently, mate-
rial particles are free to travel through the finite element
mesh that is fixed in axial direction. This change of per-
spective necessitates a corresponding transformation of the
basic kinematic relations. In particular, the material differ-
ential operator needs to be restated in terms of the partial
derivatives with respect to x and ◦

y:

◦∇ = i (1 − ∂x ux )
−1 ∂x + j∂◦

y
, (45)

such that its application to ◦
r with ◦

x = x − ux still yields the
planar unit tensor. The first coefficient represents the deriva-
tive of the Eulerian coordinate x with respect to its material
counterpart ◦

x . Consequently, its reciprocal value determines
the Jacobian determinant to transform the material area inte-
gral for the total strain energy:

U∑ =
∫∫

Ud◦
xd◦

y =
∫ L

0
dx
∫ w/2

−w/2
(1 − ∂x ux ) Ud◦

y, (46)

where either (13) or (12) need to be inserted for the strain
energy density U depending on the particular choice of plas-
ticity model.

The second contribution to the total potential energy is
attributed to the contact of the metal sheet with the rolls
that impose the plastic bending on the initially flat metal
sheet during the roll forming process. It is modelled as a
frictionless contact of a solid body (metal sheet) with rigid

bodies of revolution (rolls). The assumption of frictionless
contact is justified with the following reasoning:

• In reality, the interface between rolls and sheet metal is
lubricated to reduce tool wear, which reduces friction and
significantly complicates the identification of the friction
parameters [31].

• Friction seems to have no significant impact on resulting
geometry and contact normal forces [15, 31, 32].

The penalty-regularization method is employed to state the
contact potential as

V ∑ =
∫ L

0
dx
∫ w/2

−w/2
(1 − ∂x ux )

1
2

Pγ 2d◦
y, (47)

with a large factor P to penalize any penetration γ ≥ 0 of the
metal sheet into the roll surface; details are provided in [13].
The sum of U∑ and V ∑ constitutes the total potential energy,
which is minimized numerically to compute a quasistatic
equilibrium state in the first phase of the transient simulation
procedure.

Since the inner variables that identify the plastic state are
strictly attached to the material particles, their flow through
the Eulerian–Lagrangian finite element mesh in axial direc-
tion must be rigorously accounted for. This is done by means
of solving an advection equation, which constitutes the sec-
ond (Eulerian) step of the solution scheme and concludes the
time increment. A forward in time backwards in space finite
difference method is used to perform the incremental time
integration of this equation; its implemenation in the finite
element scheme is discussed in [13].

6 Roll forming simulation for a single roll
stand

In this section the enhanced shell srp-model is tested in an
actual roll forming simulation with a single roll stand and
its response is compared to corresponding simulations con-
ducted with the plate srp-model of [12] and the continuum
plasticity model. The same assumptions (rigid rolls, fric-
tionless contact etc.) and simulation procedure as described
in [13] is followed, which features the mixed Eulerian–
Lagrangian finite element scheme outlined in Sect. 5

A control domain 0 ≤ x ≤ 0.8 m with one roll stand act-
ing at x = 0.4 m is considered, with simulation parameters
according to Table 2; an axial mesh refinement (with Nx ele-
ments) such, that the elements at the contact region are half
the size of the elements in the outer regions is employed. The
edge at x = 0 corresponds to a fully (in-plane and out-of-
plane) clamped edge with material particles flowing through
at the constant transport rate v. The final (steady state) con-
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Table 2 Default parameters of
the simulation model with one
roll stand

Geometry Material

L [m] w [m] h [m] E [N/m2] ν k [N/m2]
0.8 0.1 0.003 2.08 × 1011 0.3 362 × 106

Forming Transport Numerical
ρ [m] v [m/s] Δt [s] Nx Ny Nζ P [N/m3]
0.004 0.8 0.005 26 10 8 1 × 1013

figuration with a cross-sectional view of the roll gap in the
center is depicted in Fig. 7.

It visualizes the symmetrical roll profiles and also shows
the forming angle ϕ as well as the roll-gap-reduction param-
eter ρ. The latter is used to position the rolls vertically by
means of a symmetrical shift of ρ/2 towards each other and
the angle ϕ corresponds to the tangential direction at the end
of the cross section. As postprocessing variables the resulting
contact force acting on the lower rolls RL and the bending
angle ϕ(x = 0.6 m) are viewed.The angle is evaluated at this
particular x-coordinate because the forming angle of an end-
less profile is best approximated about halfway between the
roll-stand and the free end, i.e.: sufficiently far away from the
rolls and the right boundary. A parameter study for varying
roll-gap-reduction ρ is carried out and the resulting force RL

and the bending angle ϕ(x = 0.6 m) are plotted in Fig. 8. Evi-
dently, the results produced by the proposed shell srp-model
are mostly in line with the ones of the reference computation
with the cp-model.
The good correspondence of all models regarding the bend-
ing angle is owed to the fact that the shape of the final cross
section is primarily determined by the kinematically imposed
roll profiles. However, the force distribution obtained for
the plate srp-model deviates significantly, which can be
attributed to the neglection of the membrane forces in the
elastic-plastic constitutive law. Hence, though the forming
operation is bending dominant, the impact of membrane
effects on the forming forces is not negligible. The slight
“waviness” of the curves in Fig. 8 is owed to the coarse dis-
cretization according to Table 2. This does not impede the
comparison of plasticity models, but could, in principle, be

resolved by a mesh-refinement to improve the contact reso-
lution [13].

To conclude this experiment the intensities of the mem-
brane forces represented by IN as a contour plot for the
cp-model, the novel shell srp-model and the plate srp-model
are plotted in Figs. 9, 10 and 11, respectively. Expectedly,
the proposed shell srp-model matches the continuum behav-
ior significantly better than the plate srp-model. It is also
noteworthy, that the largest intensities of IN occur at the
outermost fibers before entering the roll gap. This is a well
established fact in practice: Material particles moving along
the curved side edges are stretched as they must travel a
greater distance than particles following the shorter path in
the center.

7 Response of a through-the-thickness
element subjected to a roll forming strain
history

To facilitate a comparison of the shell srp-model with
Crisfield’s model in the practical scenario of roll forming,
the numerical experiments on the through-the-thickness ele-
ment of Sect. 4 are reconsidered, but this time the thickness
element is subjected to strain histories of actual roll forming
simulations. This presents an easy way to continue the vali-
dation without having to implement Crisfield’s model in the
finite element framework.

For this sake, the results obtained in Sect. 6, from the
reference simulations with the cp-model for the particular
choice ρ = 0.004m are taken. More specifically, the steady

Fig. 7 Final, steady state configuration of the roll forming experiment with one roll stand (left); annotated view of the cross section at the roll stand
showing the roll-gap-reduction parameter ρ and the bending angle ϕ (right)
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Fig. 8 Comparison of the different plasticity models in terms of the roll force on the lower roll RL and the bending angle ϕ(x = 0.6 m) for
increasing values of the roll-gap-reduction ρ

Fig. 9 Intensities IN of the shell
as obtained for the continuum
plasticity model of [13] in the
steady state configuration of the
roll forming experiment with
one roll stand and ρ = 0.004m

Fig. 10 Intensities IN of the
shell as obtained for the
proposed shell stress resultant
plasticity model in the steady
state configuration of the roll
forming experiment with one
roll stand and ρ = 0.004m

Fig. 11 Intensities IN of the
shell as obtained for the plate
stress resultant plasticity model
of [12] in the steady state
configuration of the roll forming
experiment with one roll stand
and ρ = 0.004m
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state strains E and K encountered by a material particle on
its way through the control domain 0 ≤ x ≤ L are imposed
on the through-the-thickness element by means of:

E(x(t), y*), K(x(t), y*), x(t) = t/L, (48)

where y* is the lateral position of an axial fiber and the load-
application is controlled with the pseudo-time 0 < t ≤ 1 in
resemblance of (39). The strain histories are evaluated for
the outermost line of integration points at y* = 0.049m and
the innermost line at y* = 0.0011m. A piecewise quadratic
interpolation is used to obtain a smooth strain history from
the discrete integration point values. The time-histories of
IN and IM as well as the hardening functions are depicted in
Figs. 12, 13 and 14.

It is important to note that the thus produced time histories
for the plate srp-model, the shell srp-model and the Crisfield
model are artificial to a varying degree. This is due to the fact,
that the strain history of the simulation with the continuum
plasticity model is imposed, which generally differs from
the corresponding strain histories obtained from simulations
with the stress resultant plasticity models.

From Fig. 12 it can be concluded that the shell srp-model
very closely replicates the reference solution of the cp-model
for the outermost fiber. The plate srp-model is equally accu-
rate with regard to the bending invariant IM but exhibits a
strong deviation in the membrane invariant IN . Crisfield’s
model produces reasonably accurate results, which are how-
ever harder to obtain numerically owing to the less favorable
convergence behavior of the time integration scheme already
noted in Sect. 4.

The time histories for the innermost fiber depicted in
Fig. 13 show, however, significant differences between the
continuum and the stress resultant plasticity models. In order
to investigate this discrepancy, the time history of the domi-
nant components of the bending moments Mx (t) and My(t)
are presented in Fig. 15. Here, the non-monotonous charac-
teristic of the axial bending moment Mx , which relates to
the axial curvature induced by the rolls, entails a significant
change of the load case that even induces reverse plasticity.
The stress resultant plasticity models fail to reproduce such
load histories accurately, because the employed isotropic
hardening functions that govern the progression of plastic
flow rest upon the assumption of a monotonously increasing
loading. However, for the considered type of profile geome-
try these discrepancies remain confined to the proximity of
the center fiber and, as depicted in Fig. 8, do not percep-
tively deteriorate the correspondence in terms of the primary
variables of the forming process.

Finally, Fig. 14 demonstrates, that plastic flow at outer-
and inner- fiber is initiated even before the sheet enters the
roll gap at x = 0.4m, which is a well established observation
in the engineering practice of roll forming [33, 34].

8 Practical example of U-shaped profile
formed by three roll stands

Here, a simulation with three roll stands in which a simple
U-shaped geometry with a final forming angle of ϕ = π/4 is
produced, is considered. The steady state configuration with
fully closed roll gaps is depicted in Fig. 16. The simulation
parameters are provided in Table 3. The edge at x = 0 is
again fully clamped (in- and out-of-plane) and the three roll
stands are positioned at xi = {0.39, 0.78, 1.17}m.

Table 4 presents the resulting forming forces RLi (resul-
tant contact forces) on the lower rolls as obtained from the
stress resultant plasticity models and the relative errors εLi

in comparison to the continuum plasticity approach, which
serves as reference solution. The shell srp-model provides
highly accurate results (at significantly lower computational
cost), whereas the plate srp-model significantly overesti-
mates these forces. This inability to produce accurate forming
forces is a consequence of the incomplete description of plas-
ticity with respect to the membrane forces. On the other hand,
the evolution of bending angles along the axis x as depicted in
Fig. 17 shows good correspondence of all three considered
models. Hence, in accordance with the observations made
for the experiment with a single roll stand in Sect. 6, the
estimated membrane forces have a strong influence on the
required forming forces to obtain a given profile geometry.

In comparison to the cp-model the primary advantage
of the shell srp-model is, that it produces practically accu-
rate results at approximately one-fifth of the total simulation
time.1

9 Conclusion

The proposed Kirchhoff–Love shell stress resultant plastic-
ity model is designed for a bending dominant framework
in which membrane forces remain small to moderate. The
derivation rests upon a proper combination of a previously
reported stress resultant plasticity model for elastic-plastic
plate bending and an augmented version of the Ilyushin
yield criterion proposed by Crisfield.The thus deduced stress
resultant plasticity formulation presents a computationally
more efficient alternative to the usually applied continuum
approach with a trough-the-thickness resolution of plastic
states. This advantage is of crucial importance since econ-

1 Reaching a quasi-steady state solution for the parameter set from
Table 3 takes about 45 days for the cp-model vs. 9 days for the shell
srp-model and vs. 8 days for the plate srp-model on a 6-core Intel(R)
Core(TM) i7-8850H CPU at 2.60GHz. This comparison of simulation
times stands regardless of the inherent inefficiency of the in-house finite
element code. In the latter respect, preliminary studies show, that limited
optimization measures are easily capable of reducing the simulation
time with the shell srp-model to less than a day.
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Fig. 12 Comparison of simulation results of the through-the-thickness element between the four different plasticity models with the strain history
of the outermost fiber; y* = 0.049m and ρ = 0.004m

Fig. 13 Comparison of simulation results of the through-the-thickness element between the four different plasticity models with the strain history
of the innermost fiber; y* = 0.0011m and ρ = 0.004m

Fig. 14 Comparison of the hardening functions for outermost fiber (left) and innermost fiber (right)
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Fig. 15 Comparison of simulation results of the bending moments of the through-the-thickness element for the innermost fiber with y* = 0.0011m
and for ρ = 0.004m

Fig. 16 Final, steady state configuration of the roll forming experiment with three roll stands

Table 3 Parameters of the roll
forming simulation with three
roll stands

Geometry Material

L [m] w [m] h [m] E [N/m2] ν k [N/m2]
1.56 0.12 0.0015 2.08 × 1011 0.3 362 × 106

Forming Transport Numerical
ρ [m] v [m/s] Δt [s] Nx Ny Nζ P [N/m3]
ρmax 0.8 0.005 56 20 8 1 × 1013

Table 4 Stationary forces and
relative errors with respect to
the continuum reference
solution for the simulation with
three roll stands

Model RL1 [N] RL2 [N] RL3 [N] εL1 [%] εL2 [%] εL3 [%]
cp-model 5396 7493 10710 - - -
shell srp-model 5480 7487 10491 1.56 −0.08 −2.05
plate srp-model 5838 10008 15607 8.19 33.57 45.72
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Fig. 17 Comparison of the
resulting stationary bending
angles ϕ(x) for the three
different plasticity models in the
simulation with three roll stands

omy of time is an important design goal when developing
simulation tools for industrial applications like the here con-
sidered process of sheet metal roll forming.

The proposed model is tested in a series of experiments
on a through-the-thickness element by imposing bending and
membrane strain histories. Moreover, it is implemented in an
existing mixed Eulerian–Lagrangian finite element scheme
that is designed for the simulation of the sheet metal roll
forming process. For the purpose of validation, reference
solutions are obtained with the established continuum plas-
ticity approach. In the considered scenarios, the new model
surpasses the previously reported stress resultant plasticity
models in terms of accuracy and computational efficiency.

Like its predecessors the model captures the evolution of
plastic zones through the thickness by means of a custom
isotropic hardening law. As such it is well applicable to cases
that feature a monotonous increase of a given type of loading,
whereas non-monotonous load histories that induce reverse
plastic bending cannot be captured accurately. It is interesting
to note that even in case of the roll forming process, which
features a progressive bending of an initially flat metal sheet,
the phenomenon of reverse plasticity may occur in certain
parts of the cross section. This is due to the curvature in axial
direction that the rolls impose on the sheet as it is passing
through the roll gap. Future research may focus on the res-
olution of this persistent limitation, which nonetheless does
not inhibit the usability of the proposed model as long as
reverse plasticity has no dominant impact on the outcome of
the forming process.

In the roll forming scenarios considered so far, which fea-
tured simulation models with one and three roll stands to
produce a V-shaped and a U-shaped profile, the novel shell
stress resultant plasticity model produces accurate results in
terms of contact forces and bending angles when compared to
reference simulations conducted with the continuum plastic-
ity approach. In contrast to the previously reported model for
elastic-plastic plate bending, the additional account for mem-
brane effects in the plasticity model significantly improves

the estimates of the forming forces. Ultimately, the enhanced
shell stress resultant plasticity model paired with the mixed
Eulerian–Lagrangian finite element framework presents a
major step towards a both computationally efficientand accu-
rate simulation of the sheet metal roll forming process.
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