
D I P L O M A R B E I T

Erkennung und 3D Posenschätzung

Zusammengesetzter Objekte

ausgeführt am

Institut für

Diskrete Mathematik und Geometrie

TU Wien

unter der Anleitung von

Associate Prof. Mag.rer.nat. Dr.techn. Christian Müller

durch

Florian Wimmer

Wien, am 12.12.2023

D I P L O M A T H E S I S

Composite Object Detection

and 3D Pose Estimation

written at the

Institute of

Discrete Mathematics and Geometry

Vienna University of Technology

supervised by

Associate Prof. Mag.rer.nat. Dr.techn. Christian Müller

by

Florian Wimmer

Vienna, 12.12.2023

Kurzfassung

Die orthogonale Gruppe On ist definiert als die Gruppe aller regulären (n × n)-Matrizen
A, deren transponierte Matrix AT die Inverse von A ist. Die spezielle orthogonale Gruppe
SOn besteht aus allen orthogonalen (n×n)-Matrizen mit Determinante 1. Sie repräsentiert
Rotationen um den Ursprung in Rn. Die spezielle Euklidische Gruppe SEn besteht aus
allen Paaren (R, t), wobei R eine Rotation in SOn und t ein Vektor in Rn ist. Die Elemente
von SEn können die Posen von Objekten repräsentieren. Diese drei Untergruppen von GLn

sind differenzierbare Mannigfaltigkeiten.
Faktorgraphen sind bipartite Graphen mit Variablenknoten und Faktorknoten. Sie defi-

nieren die Faktorisierung einer Funktion und können die geometrischen Beziehungen ver-
schiedener Objekte zueinander darstellen. Zusätzlich können Faktorgraphen eine probabi-
listische Struktur tragen.
Eine Retraktion ist eine Abbildung vom Tangentialbündel TM einer glatten Mannigfal-

tigkeit M auf M , die bestimmte Eigenschaften hat. Auf SOn und SEn können mithilfe der
Exponentialfunktion für Matrizen Retraktionen definiert werden. Retraktionen ermöglichen
die Anwendung iterativer Optimierungsmethoden auf Mannigfaltigkeiten analog zu Vek-
torräumen.

Im folgenden konkreten Anwendungsszenario werden Relativpositionen teilweise beweg-
licher Teile geschätzt. Betrachtet man einen Lastwagen als zusammengesetztes Objekt be-
stehend aus einfacheren Komponenten, wie zum Beispiel den Rädern des Lastwagens, erhält
man eine Darstellung dieses zusammengesetzten Objekts als Faktorgraph. Die Variablenk-
noten des Faktorgraphen repräsentieren die verschiedenen Teile des Lastwagens, und die
Faktorknoten die relativen Posen der Teile zueinander. Durch die Einführung eines Sen-
sors, der einzelne Teile des Lastwagens beobachtet, erweitert sich dieser Faktorgraph. Für
jeden Zeitschritt wird ein neuer Variablenknoten in den Faktorgraphen eingefügt, der den
Sensor zu diesem Zeitpunkt repräsentiert. Die Beobachtungen des Sensors werden durch
neue Faktorknoten dargestellt. Die Faktorknoten erhalten Wahrscheinlichkeitsdichten, wo-
durch die Berechnung einer maximalen a posteriori-Schätzung der Posen X unter gegebe-
nen Beobachtungen Z möglich ist. Dabei wird die zusammengesetzte Wahrscheinlichkeits-
funktion p(X,Z) mithilfe von Optimierung auf Mannigfaltigkeiten maximiert. Man erhält
Schätzungen für die genaue Konfiguration des Lastwagens und die Pose des Sensors. Die-
ser Ansatz zur Posenschätzung zusammengesetzter Objekte kann mit dem Python-Paket
GTSAM umgesetzt und getestet werden.

Abstract

The orthogonal group On is defined as the group of all invertible (n×n)-matrices A whose
transposed matrix AT is the inverse of A. The special orthogonal group SOn consists of
all orthogonal (n × n)-matrices with a determinant of 1. It represents rotations around
the origin in Rn. The special Euclidean group SEn comprises all pairs (R, t), where R is
a rotation in SOn and t is a translation vector in Rn. An element of SEn can be used to
represent the pose of an object. These three subgroups of GLn are smooth manifolds.
Factor graphs are bipartite graphs with variable nodes and factor nodes and define the

factorization of a function. They can encode geometrical relations among certain objects.
Additionally, a factor graph can be equipped with a probabilistic structure.
A retraction is a mapping from the tangent bundle TM of a smooth manifold M to the

manifoldM that satisfies certain properties, such as the local rigidity condition. By utilizing
the exponential map for matrices, retractions can be defined on SOn and SEn. Retractions
allow simple implementations of iterative optimization techniques on manifolds.

In the following specific application scenario, the relative positions of partially movable
components are estimated. Considering a truck as a composite object composed of simpler
components, such as its wheels, leads to a representation of the truck as a factor graph.
Variable nodes in the factor graph represent different parts of the truck, while factor nodes
represent the relative poses of these parts to each other. Introducing a sensor observing
specific parts of the truck expands the factor graph by adding variable nodes for the sensor
at each time step and factor nodes for the observations. Equipping factor nodes with
probability densities enables the computation of the maximum a posteriori estimate of
some state X given observations Z by maximizing the joint probability function p(X,Z)
through optimization on manifolds. This approach provides estimates for the configuration
of the truck and the pose of the sensor. Implementation and testing of this pose estimation
method for composite objects can be achieved using the Python package GTSAM.

Acknowledgement

This thesis was developed in collaboration with the Austrian Institute of Technology (AIT)
as part of the project AWARD – All Weather Autonomous Real logistics operations and
Demonstrations. This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No. 101006817, see
https://award-h2020.eu/. I am grateful for the opportunity to gain insights into applied
research. I extend my thanks to my AIT supervisor, Markus Murschitz, and also to Katha-
rina Ölsböck, Matthias Schörghuber, and all colleagues of the Assistive and Autonomous
Systems research group at AIT.

A special expression of appreciation goes to Michael Schwingshackl, who invested count-
less hours in assisting me with every software problem, brainstorming new ideas, and
generating data according to my needs. I would also like to acknowledge Philipp Schiller,
who provided both moral and mathematical support during my time at AIT.
I wish to express my gratitude to Prof. Christian Müller, not only for supervising my

thesis but also for his numerous outstanding lectures that fueled my interest in various
fields of geometry.

Throughout my academic journey, I had the privilege of meeting a lot of amazing people.
We spent countless hours studying, solving exercises, and admiring the beauty of mathe-
matics. Thank you, Johanna, Christoph, Christian, Paul, Moritz, Konstantin, and others
who exemplified the true value of teamwork. Together, we not only solved problems that
none of us could understand individually, but we also made mathematics much more fun.

Lastly, I would like to thank my parents and my brother. From the very beginning, they
sparked and nurtured my interest in mathematics and have been persistent in their support
throughout my studies.

https://award-h2020.eu/

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 12.12.2023

Contents

1. Introduction 1

2. Mathematical Foundations 3
2.1. Geometry . 3

2.1.1. Matrix Groups and Poses . 4
2.1.2. Manifolds and Tangent Spaces . 13
2.1.3. The Special Orthogonal Group SOn 17
2.1.4. The Exponential Map for Quadratic Matrices 21

2.2. Factor Graphs . 28
2.2.1. Applications of Factor Graphs . 31

2.3. Optimization . 33
2.3.1. Levenberg-Marquardt Optimization 34
2.3.2. Optimization on Manifolds . 35
2.3.3. Optimization on SO2 and SO3 . 38
2.3.4. Optimization in SE3 . 41
2.3.5. Optimizing a Factor Graph . 43

2.4. Geometric Algorithms and Data Structures 44
2.4.1. Point Cloud Processing . 44
2.4.2. RANSAC . 47

3. Composite Object Detection in a Loading Scenario of a Truck 53
3.1. Loading Edge Detection . 54

3.1.1. Description of the Algorithm . 55
3.1.2. Parametrization and Analysis of the Algorithm 62

3.2. Part-Based Pose Estimation Using Factor Graphs 65
3.2.1. Composite Object as a Factor Graph and GTSAM 66
3.2.2. Description of the Algorithm . 68
3.2.3. Parametrization and Analysis of the Algorithm 71

3.3. Possible Improvements and Further Work 77

4. Conclusion 79

A. Code Loading Edge Detection 81

B. Code Pose Estimation 101

Bibliography 129

i

1. Introduction

Modern robot systems need robust and time-efficient techniques for detecting and locating
objects in their environment. In this thesis, we discuss a novel technique for the estimation
of the pose of composite objects, adapting existing methods used for related problems in
robotics like Simultaneous Localization and Mapping (SLAM). This new technique includes
the representation of composite objects as factor graphs and optimization on manifolds.
In cooperation with the Austrian Institute of Technology (AIT), this approach was imple-
mented and tested in an automated truck-loading scenario. Furthermore, we describe and
implement an edge detection algorithm to detect the loading edge of a truck. Dellaert and
Kaess present in [13] methods for modeling and solving problems in robotics with factor
graphs. Here, we examine some mathematical background, especially the geometric aspects
of the pose estimation problem.
The pose of an object in R3 is a distinguishable, static state of this object and can be

represented by a matrix T in the special Euclidean group SE3. It is commonly referred to
as the position and orientation of this object. A matrix T ∈ SE3 has the form

T =
R t
0 1

∈ R4×4

for a vector t ∈ R3 indicating the position and a rotation matrix R ∈ SO3 indicating the
orientation. The special orthogonal group SO3 is the subgroup of all matrices in O3 with
determinant 1. The orthogonal group O3 is the group of all matrices A ∈ R3×3 with

AAT = ATA = I3

where I3 denotes the identity matrix in R3×3.
The estimation of the pose of an object can result in an optimization problem. Given a

measurement z ∈ Rn and an estimation function h : SE3 → Rn that predicts measurements
for given poses, we search for the matrix T ∈ SE3 that best approximates the measurements
z under the function h. Hence, we have to solve

argmin
T∈SE3

∥h(T)− z∥.

For this optimization problem, simple iterative optimization techniques like gradient de-
scent fail. They rely on the updating rule

x(t+1) = x(t) + αδ(t)

leading from the estimate x(t) in the time step t to an improved estimate x(t+1) in the next
time step by taking a step in the direction of δ(t). The sum

R1 t1
0 1

+
R2 t2
0 1

=
R1 +R2 t1 + t2

0 2

1

1. Introduction

of two matrices T1 and T2 in SE3 is not in SE3 anymore. Even the sum R1 + R2 of two
rotation matrices R1, R2 ∈ SO3 is in general not in SO3. Therefore, we cannot expect
to receive a new valid estimate T (t+1) ∈ SE3 by adding some matrix δ(t) to T (t) ∈ SE3.
To work around this problem, we will exploit the structure of SO3 and SE3 as smooth
manifolds and use retractions. With the exponential map

eA =
k≥0

Ak

k!

for quadratic matrices A, we will define a retraction R that brings certain matrices back
onto the manifolds SO3 respectively SE3.
To estimate the poses of different parts of a composite object simultaneously while con-

sidering the geometrical relations of the different parts to one another, we will represent the
composite object as a factor graph. A factor graph is a bipartite graph with variable nodes
and factor nodes that defines a factorization of a function. The variable nodes represent
the different parts of the composite object and a factor node connected to two variable
nodes represents the geometric transformation between the respective parts. The variable
nodes define variables and the factor nodes are equipped with functions dependent on the
variables of the nodes they are connected to. The functions of the factor nodes will de-
fine probability densities dependent on variables X and observations Z. Consequently, the
pose estimation problem for a composite object represented with a factor graph reads as a
maximum a posteriori estimation problem of the joint probability function p(X,Z), which
can be reformulated as an optimization problem on the manifold SE3.
Dellaert and various contributors realized this factor graph and manifold optimization

in the Python and C++ package GTSAM [11]. We use GTSAM for the implementation of
the pose estimation of a truck viewed as a composite object.
This work consists of two main parts. In Chapter 2, we discuss the mathematical back-

grounds for the implemented solutions of the loading edge detection and the pose estima-
tion problem described in Chapter 3. The essential parts of the codes for our solutions
to the loading edge detection problem and the pose estimation problem can be found in
Appendix A and Appendix B.

2

2. Mathematical Foundations

On the surface, pose estimation as described and implemented in Section 3.2 looks like a
software engineering problem. However, various mathematical concepts and considerations
are necessary to enforce robust real-time pose estimation algorithms.

Here, the main mathematical concepts – either used implicitly as assumptions and foun-
dations for programming and utilized Python packages, or explicitly as geometrical relations
and algorithms in the implementation of this specific pose estimation problem – will be
established and summarized.

First and foremost, we take in Section 2.1 a look at the geometric aspects of this problem.
We define poses and pose spaces, mathematical groups and spaces related to this problem,
and smooth manifolds. Throughout this Section, we investigate the rotation group SO3

from several perspectives.

Next, an important class of graphs will be introduced in Section 2.2. Factor graphs are
the main idea of this pose estimation approach. Also, some common applications of factor
graphs will be briefly described.

In Section 2.3, the employed optimization techniques are presented. On the one hand,
we optimize on manifolds, in particular on SO3. This raises the issue of moving on the
manifold to reach better solutions. On the other hand, we will see how to optimize a factor
graph.

Finally, some standard algorithms and algorithmic concepts like RANSAC and point
cloud manipulation as well as geometric data structures used in this project are described
and analyzed in Section 2.4.

2.1. Geometry

The detection of objects in 3D space using traditional methods raises various geometric
issues. It starts with the reconstruction of a 3D scene from multiple images taken by one
or several cameras. Hartley and Zisserman describe in [29, Chapter 18] a few methods for
solving these problems such as bundle adjustment. The data for the loading edge detection
algorithm described in Section 3.1 and the pose estimation algorithm of a composite object
described in Section 3.2 was obtained by using a special stereo camera which uses bundle
adjustment to compute depth information.

Another issue is the processing of point clouds. Some aspects are covered in [16] and
their realizations in the C++ and Python library Open3D are briefly described in [64]. In
Section 3.1 we apply and discuss some point cloud processing techniques on the loading
edge detection problem.

To detect an object, for example in a point cloud, it can be useful to view it in a simplified
way as a geometric 3D shape that can easily be described mathematically. As a result, we

3

2. Mathematical Foundations

can exploit the well-known geometric properties in detection algorithms. For instance, the
wheels of a truck as well as tree trunks resemble a right circular cylinder.

Going deeper into differential geometry, Dellaert and Kaess describe in [13, Chapter 6]
methods for optimization on manifolds. Considering not only the position of an object in
3D space as a vector in R3, but also its orientation, raises the problem of how to search
the space of possible solutions efficiently. The geometric foundation for this issue will be
addressed in Section 2.1.2 and the actual optimization in Section 2.3.

These are just some of a variety of geometrical problems that arise in the surroundings
of the tasks of object detection and pose estimation. In this Section, we start in 2.1.1
with the descriptions of mathematical groups like On, SOn, and SEn. Different notions for
describing the position and orientation of objects (especially in R3) are reviewed. Then in
Section 2.1.2, we will dive into differential geometry to establish the basics for a geometric
understanding and structure for SOn, discussed in 2.1.3. Furthermore, the exponential map
for quadratic matrices is introduced and analyzed in 2.1.4, as we need it for optimization
on SOn.

2.1.1. Matrix Groups and Poses

Representing an object’s position and orientation is a crucial starting point for real-life
geometric considerations [5]. The orthogonal group On and the special orthogonal group
SOn are matrix groups, studied in linear algebra. Here, they are investigated to define
ways of denoting the orientation and therefore the pose of an object, especially in R3.

In the following, the definitions and properties of On and SOn are based on [32, Chapter
12] and [26, Chapter 1]. In order to formally define this so-called pose of an object, some
mathematical preparation is required. The general linear group GLn(R), or from now on
just GLn, is the group of all regular matrices in Rn×n with the usual matrix multiplication
as its group operation. Thus, these matrices represent all bijective linear maps from Rn to
Rn. Starting from GLn, we can define other matrix groups.

Definition 2.1.1. The orthogonal group On is the set of all matrices A in Rn×n that fulfill

AAT = ATA = I.

We have to check, whether the name group is justified for On. In the following theorem,
some basic properties of On are investigated.

Theorem 2.1.2 (Properties of On). Let n be a positive natural number. Then the following
properties of the orthogonal group On hold.

(i) The orthogonal group On is a subgroup of GLn.

(ii) The column vectors of any matrix A ∈ On are pairwise orthogonal with respect to the
Euclidean inner product ⟨·, ·⟩ on Rn.

(iii) The column vectors of any matrix A ∈ On have (Euclidean) norm 1.

(iv) The column vectors of any matrix A ∈ On form an orthonormal basis of Rn.

4

2.1. Geometry

(v) For all A ∈ On the determinant detA is either +1 or −1.

(vi) Any A ∈ On preserves the inner product on Rn, i.e. ⟨x, y⟩ = ⟨Ax,Ay⟩.

(vii) If λ is an eigenvalue of an A ∈ On, then |λ| = 1 holds.

Proof. (i) First, since for all A ∈ On the property AAT = ATA = I holds, the transposed
matrix AT is the inverse of A. Therefore, A is regular and On ⊆ GLn.

For the identity matrix I ∈ Rn×n, we see that I = IT and II = I. Thus, the
multiplicative identity I is in On. Since A

T = A−1 holds for all A ∈ On, each element
of On has its inverse element in On. Furthermore, for any A,B ∈ On the computation

(AB)(AB)T = ABBTAT B∈On= AIAT A∈On= I

shows the closure of On. Also, matrix multiplication is associative.

Thus, On is a group and because of On ⊆ GLn a subgroup of the general linear group.

(ii) Let Ai denote the i-th column vector of a matrix A and therefore also the i-th row
vector of the matrix AT . The equation I = ATA for an A ∈ On translates to

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 = I = ATA =

⟨A1, A1⟩ ⟨A1, A2⟩ · · · ⟨A1, An⟩
⟨A2, A1⟩ ⟨A2, A2⟩ · · · ⟨A2, An⟩

...
...

. . .
...

⟨An, A1⟩ ⟨An, A2⟩ · · · ⟨An, An⟩

 . (2.1)

Thus, the product ⟨Ai, Aj⟩ for i ̸= j equals 0, so the column vectors of A are pairwise
orthogonal.

(iii) From (2.1) directly follows ⟨Ai, Ai⟩ for any column Ai of an orthogonal matrix A.
Thus, the Euclidean norm of all columns of A is equal to 1.

(iv) From (i) we know that any A ∈ On is a regular matrix. Hence, the n columns of an
orthogonal matrix are linearly independent and therefore, they form a basis of Rn.
With (ii) and (iii), it follows that the columns of any A ∈ On form an orthonormal
basis of Rn.

(v) Since the determinant of a matrix is compatible with matrix multiplication and trans-
position, the equation I = AAT leads to

1 = det(I) = det(AAT) = det(A) det(AT) = det(A)2

and thus det(A) = ±1 for A ∈ On.

(vi) The Euclidean inner product ⟨x, y⟩ can be viewed as xT y with x and y being column
vectors in Rn. Then we have ⟨Ax,Ay⟩ = (Ax)T (Ay) = xTATAy = xT y = ⟨x, y⟩.

5

2. Mathematical Foundations

(vii) The eigenvalues of A ∈ On are the solutions λ of the equation Av = λv. First, we
take a look at the norm of the left side of the equation. In the following computation,
we use the property ⟨x, y⟩ = x̄T y for the inner product in Cn (because eigenvectors
of the real matrix A can be in C \ R) and AT = A−1 and get

∥Av∥2 = ⟨Av,Av⟩
= (Av)

T
(Av)

= v̄TATAv

= v̄T v

= ⟨v, v⟩ = ∥v∥2.

Thus, ∥v∥ = ∥Av∥ = ∥λv∥ = |λ|∥v∥ implies |λ| = 1. So we can conclude that all
eigenvalues of an orthogonal matrix have an absolute value of 1.

Remark 2.1.3. Property (vi) of the orthogonal group in Theorem 2.1.2 is widely used for an
alternative, more general way of defining On on any vector space V with an inner product
⟨·, ·⟩ on V : The orthogonal group On is the set of all automorphisms f : V → V that
preserve the inner product, i.e. ⟨v, w⟩ = ⟨f(v), f(w)⟩ [22, §0].

The automorphism Rn → Rn represented by a matrix A ∈ On is a reflection, a rotation,
or a combination of reflection and rotation [26, Chapter 1]. As seen in Theorem 2.1.2, it
preserves lengths and angles.

Example 2.1.4. The matrix

0 1
1 0

∈ O2

represents a reflection at the line with the equation y = x in R2. The matrix

0 −1
1 0

∈ O2

represents the rotation around the origin by an angle of π
2 . So the matrix

0 −1
1 0

0 1
1 0

=
−1 0
0 1

∈ O2

represents the linear transformation that first reflects points at the line y = x and then
rotates them by π

2 around the origin.

Definition 2.1.5. The special orthogonal group SOn is the set of all matrices A ∈ On with
det(A) = 1.

Theorem 2.1.6. The special orthogonal group SOn is a subgroup of On.

6

2.1. Geometry

Proof. The identity matrix I ∈ On has determinant 1 and is therefore in SOn. Since the
inclusion SOn ⊆ On holds per definition, it holds that AT = A−1 for A ∈ SOn, and since
det(AT) = det(A) = 1, the matrix A has its inverse in SOn. To show the closure of SOn,
we use the properties of determinants on A,B ∈ SOn to get

det(AB) = det(A) det(B) = 1.

Thus, SOn is a group and because of SOn ⊆ On a subgroup of the orthogonal group.

Lemma 2.1.7. For an odd n > 1, all A ∈ SOn have 1 as an eigenvalue.

Proof. The eigenvalues of a matrix A ∈ SOn are the zeros of the characteristic polynomial
χA(λ) = det(A− λI). It holds with AT = A−1, det(A) = 1, and det(B) = det(BT) for all
matrices B ∈ Rn×n

det(A− I) = det(A−AA−1)

= det(A(I −A−1))

= det(A) det(I −AT)

= (−1)n det(AT − I)

= (−1)n det((AT − I)T)

= (−1)n det(A− I).

For an odd n, the equation reads as det(A − I) = − det(A − I), so det(A − I) = 0 holds.
Therefore, λ = 1 is an eigenvalue of A.

For an even n, all eigenvalues have an absolute value of 1 (see Theorem 2.1.2(vii)).
However, a polynomial with an even degree does not even have to have real roots as, for
example, the characteristic polynomial of

0 −1
1 0

∈ SO2

shows.
The special orthogonal group SOn is also referred to as the rotation group. Geometrically,

the matrices in SO2 represent planar rotations around the origin, and the matrices in SO3

represent rotations in R3 around an axis through the origin [26, Chapter 1].

Example 2.1.8 (SO2). To get a matrix A ∈ SO2, the two column vectors (a11, a21)
T and

(a12, a22)
T of A have to be orthogonal, so

a11
a21

,
a12
a22

= a11a12 + a21a22
!
= 0.

Since the column vectors have norm 1, at least one of a11 and a21 has to be nonzero.
Without loss of generality, let a21 ̸= 0. The equation above translates to

a22 = −a11
a21

a12.

7

2. Mathematical Foundations

Therefore, the vector (a12, a22)
T is uniquely defined by (a11, a21)

T up to a scalar factor.
Since both vectors have the same norm, we get

a12
a22

= ± −a21
a11

.

To get unit length vectors, a211 + a221 = 1 has to hold. So, a11 ∈ [−1, 1] follows. Let
α be in {arccos a11,− arccos a11} to get a11 = cosα. With the well-known trigonometric
property cos2 α + sin2 α = 1 on the unit circle, we get a21 = sinα if the sign of α was
chosen accordingly. Furthermore, to get a positive determinant under these preconditions,
we have to set a22 = a11, because only then

det
a11 a12
a21 a22

= a11a22 − a21a12 = cos2 α− sinα(− sinα) = cos2 α+ sin2 α = 1

holds.
We conclude that all matrices A ∈ SO2 are of the form

A =
cosα − sinα
sinα cosα

for an α ∈ [−π, π], which is the range of ± arccos on the real interval [−1, 1]. Allowing only
angles α ∈ (−π, π] gives a one-to-one correspondence between SO2 and the respective α.

As seen in Example 2.1.8, any element of SO2 can be uniquely determined by one real
number in (−π, π], i.e. the angle of the corresponding planar rotation around the origin.
We say that SO2 has one degree of freedom.

Lemma 2.1.9. Applying two rotations from SO2 by angles α and β is the same as applying
one rotation from SO2 by the angle α+ β.
Especially, the group SO2 with the usual matrix multiplication is commutative.

Proof. Let A,B ∈ SO2 be two matrices in the special orthogonal group. We have seen that
there exist α, β ∈ (−π, π] such that

A =
cosα − sinα
sinα cosα

and B =
cosβ − sinβ
sinβ cosβ

.

Multiplying these two matrices yields

AB =
cosα − sinα
sinα cosα

cosβ − sinβ
sinβ cosβ

=
cosα cosβ − sinα sinβ − cosα sinβ − sinα cosβ
sinα cosβ + cosα sinβ − sinα sinβ + cosα cosβ

.

Using sum identities for trigonometric functions, results in

AB =
cos(α+ β) − sin(α+ β)
sin(α+ β) cos(α+ β)

which is the matrix for a rotation by the angle α+ β.
Analogous computations for the matrix product BA give the same result which shows

commutativity.

8

2.1. Geometry

The elements of SO3, the group of rotations in R3 [26, Chapter 1], do not behave as
nicely as those of SO2. A rotation in R3 around an axis through the origin can be viewed
as a planar rotation in the plane through the origin that is orthogonal to the rotation axis
when we use an orthogonal projection to project R3 onto this plane. Hence, in the simple
case of a rotation around a coordinate axis, we can use the representation of elements of
SO2 we have derived above [32, p. 12.4.14]:

rotation around the x-axis rotation around the y-axis rotation around the z-axis1 0 0
0 cosα − sinα
0 sinα cosα

 cosα 0 − sinα
0 1 0

sinα 0 cosα

 cosα − sinα 0
sinα cosα 0
0 0 1

The angle α gives the rotation in the mathematically positive direction when viewed

against the direction of the coordinate axis (e.g. rotations around the z-axis are viewed
from the top). The coordinate corresponding to the rotation axis is fixed.

In general, multiplication in SO3 is not commutative, as a simple calculation with two
rotation matrices around different axes shows.

To combine rotations with translations, we inspect two more groups.

Definition 2.1.10. The Euclidean group En is the set of all matrices of the form

R t
0 1

where R is a matrix in On and t is a translation vector in Rn.

This set is also called the set of rigid transformations [20].

Note that the elements of En are in R(n+1)×(n+1). A translation Rn → Rn is not a
linear transformation, thus it cannot be represented by an (n × n)-matrix. Working with
homogeneous coordinates (xT , 1)T of a point x ∈ Rn instead, allows us to represent rotation
and translation with one projective transformation [46].

Definition 2.1.11. The special Euclidean group SEn is the set of all matrices of the form

R t
0 1

(2.2)

where R is a rotation matrix in SOn and t is a translation vector in Rn.

This set is also called the set of proper rigid transformations [46].

Since SOn ⊆ On, it holds that SEn ⊆ En. Furthermore, the following theorem holds.

Theorem 2.1.12. The Euclidean group En and the special Euclidean group SEn are sub-
groups of the general linear group GLn+1.

Proof. The proof for En and SEn are completely analogous, so only the proof for SEn is
given.

9

2. Mathematical Foundations

First, we show that SEn is a subset of GLn+1. The determinant of the block diagonal
matrix A ∈ SEn of the form (2.2) can be computed as

det
R t
0 1

= det(R) det(1) = 1.

So, A is a regular matrix with the shape (n + 1) × (n + 1) and is therefore contained in
GLn+1.
We need to verify the group axioms for SEn next. For R = In ∈ SOn and t being the

zero vector in Rn, the matrix of the form (2.2) is the identity element in GLn+1. Let

A1 =
R1 t1
0 1

and A2 =
R2 t2
0 1

be elements of SEn. Then

A1A2 =
R1R2 R1t2 + t1
0 1

which is in SEn, since the product R1R2 of two rotation matrices is again a rotation matrix
and R1t2 + t1 ∈ Rn. If we want A2 to be the inverse matrix of A1, then R1R2 = I and
R1t2 + t1 = 0 must both be true. So R2 = R−1

1 , which exists since rotation matrices are
regular and their inverse is again a rotation matrix, and t2 = −R−1

1 t1. To check if this is
the inverse of A1 indeed, we compute

A2A1 =
R−1

1 −R−1
1 t1

0 1

R1 t1
0 1

=
R−1

1 R1 R−1
1 t1 −R−1

1 t1
0 1

= In+1.

As a result, SEn is a group and altogether a subgroup of GLn+1.

We can uniquely identify the elements of SEn with pairs in SOn × Rn if needed:

R t
0 1

←→ (R, t). (2.3)

On the one hand, a matrix A ∈ SEn is the transformation matrix of a linear mapping
from Rn+1 to Rn+1. On the other hand, the pair T = (R, t) ∈ SEn can be interpreted as
the function

T :
Rn → Rn

x → Rx+ t
. (2.4)

For an element of SE3, one can choose a rotation matrix R ∈ SO3 which has three degrees
of freedom, and a translation vector t ∈ R3 where three values can be chosen independently.
In total, SE3 has six degrees of freedom.
To illustrate SO3, we look at Euler’s Rotation Theorem or as it is called in German Satz

vom Fußball (theorem of the soccer ball) [18, Section 6.6].

Theorem 2.1.13 (Euler’s Rotation Theorem / Satz vom Fußball). In a soccer match, if
just one ball is used and it is placed at the beginning of the match and at the beginning of
the second half of the match exactly at the kick-off point, then there are at least two points
on the ball that are exactly in the same place both times.

10

2.1. Geometry

Proof. During the first half of the match, the ball was subject to rotations and translations.
Thus, the transformation of the ball can be represented as a product TnTn−1 . . . T1 of
transformations Ti ∈ SE3 for i = 1, . . . , n, where Tn denotes the last transformation of the
ball at the end of the first half back to the kick-off point. According to Theorem 2.1.12,
SE3 is a group and the product is, therefore, some transformation T = (R, t) ∈ SE3. Since
the ball is at the beginning of the second half at the same position as at the beginning of
the first half, the translation part t of T is (0, 0, 0)T ∈ R3. Thus, T represents a rotation
R ∈ SO3.

For simplicity, we assume the ball to be the unit sphere S2 ⊆ R3. To finish the proof, we
have to find fixed points of S2 under the rotation R, i.e. points v ∈ R3 with Rv = v. Since
n = 3 is an odd number, Lemma 2.1.7 states that R has an eigenvalue λ = 1. This implies
that there exists an (at least) one-dimensional subspace of R3 of eigenvectors v that fulfill
Rv = 1v. A one-dimensional subspace of R3 is a line through the origin. The intersection
of this line with S2 is two (antipodal) points. These are the fixed points of the rotation R
which finishes the proof.

Remark 2.1.14. The statement of Theorem 2.1.13 can be rephrased as follows: Every matrix
in SO3 represents a rotation in R3 around exactly one axis through the origin. Euler proved
this version of the theorem in his paper [17] because he published the paper in 1775 and
the game soccer in its now known form was invented in the 19th century [62].

According to this theorem, a rotation in R3 can be defined by an axis through the origin
and an angle α ∈ (−π, π]. The axis can be defined by a point in S2. So we can say that
SO3 has three degrees of freedom [13, Chapter 6].
Now we try to define how to represent the position and orientation of an object, namely

the pose of this object. Poses are frequently used in robotics and geometry but are rarely
ever formally defined. In [13, Appendix B], a pose of a robot in R2 is defined as an element
of SE2 with the respective rotation matrix in SO2 and a translation vector in R2. In [5,
Section 2] Brégier et al. choose a more formal way and define poses generally for rigid
objects. Our definition is based on [5, Section 2]. We will now focus on the typical use
cases of poses, that is R2 or R3. So from now on in this section, n ∈ {2, 3} if not stated
otherwise.

Definition 2.1.15. Given a rigid object in Rn, a pose of this object is a distinguishable,
static state of this object.
The pose space P of this object is the set of all possible poses P of this object.

This definition of poses seems unnecessarily abstract for the naive intuition of the position
and orientation of an object. This information could be described sufficiently by an element
of SE2 or SE3. Definition 2.1.15 has an advantage over defining the pose of an object
as an element of SEn: Distinguishable in our definition means that an object in a pose
P1 can somehow be differentiated from the same object in a different pose P2, which is
a reasonable condition. Viewing the pose of an object with proper symmetry (e.g. the
unit circle S1 ⊆ R2, a cube in R3, et cetera) as an element of SEn would violate the
condition of distinguishability since one pose can be represented by more than one element
of SEn. Nevertheless, working with an element of SEn seems to be easier than working with
Definition 2.1.15. So we will identify the pose P ∈ P with an equivalence class of elements

11

2. Mathematical Foundations

of SEn as in [5, Section 2.2]. For objects without proper symmetry these equivalence
classes contain for all poses exactly one element of SEn each. If an object is symmetric, the
equivalence classes for the object’s poses contain more than one element of SEn, depending
on the symmetry class of the object. For deeper insights into symmetry classes of objects,
we refer to the work of Schiller [52] that is related to this thesis.

We start with a reference pose P0 ∈ P for a rigid object in Rn that can be chosen
arbitrarily. Given a new valid pose P1 ∈ P of this object, there exists a proper rigid
transformation T ∈ SEn as stated in (2.4) transforming the object from the pose P0 to
the pose P1 in a way that every point x of the object in the reference pose is transformed
to a point T (x) = Rx + t of the object in the new pose P1. We will also denote this as
T (P0) = P1.

Definition 2.1.16. Given a rigid object in Rn for n ∈ {2, 3}, a reference pose P0 in the
object’s pose space P, and two transformations T, T ′ ∈ SEn, we say T and T ′ generate the
same pose if T (P0) = T ′(P0) ∈ P. We write

T ∼P0 T ′ ⇔ T (P0) = T ′(P0).

The relation ∼P0 is an equivalence relation since reflexivity, symmetry, and transitivity
are directly derived from “=”. Now we can properly identify a pose in the pose space with
a set of proper rigid transformations.

Definition 2.1.17. Given a rigid object in Rn for n ∈ {2, 3} and a reference pose P0 in
the object’s pose space P, we define the class of proper rigid transformations representing
a pose P1 ∈ P as

T P1
P0

:= {T ∈ SEn T (P0) = P1}.
The index P0 can be omitted if it is clear or irrelevant which (fixed) pose is currently
considered as the reference pose.

While a pose P ∈ P can refer to many elements of the special Euclidean group SEn, any
element of SEn belongs to exactly one pose P ∈ P and thus defines a pose of an object
uniquely.

After defining poses and pose spaces formally, we return to the actual usage of poses.
The translation part of a pose P is relatively easy to handle, since for (R, t) ∈ T P the
translation vector t is in Rn, a well-known vector space with the Euclidean inner product.
The rotation R – until now viewed as an element of SOn – is more challenging to manage.
The mathematical structure of SOn will be investigated in detail in Section 2.1.3. Del-
laert and Kaess propose in [13, Appendix B] the most common types of representations of
rotations in R2 and R3.

As stated above, an element of SO2 can be uniquely determined by a real number in
the interval (−π, π]. Moreover, every real number can be interpreted as the angle of the
rotation around the origin. By allowing every α ∈ R, we lose the uniqueness of identifying
a number with a rotation, since rotating by the angle α is the same as rotating by the angle
α + 2π. There is a homomorphism between the groups R and SO2 given by the function
that maps an α ∈ R to the rotation in SO2 by the angle α.

12

2.1. Geometry

Another useful way to represent rotations in R2 are complex numbers. In the usual way,
we identify C with R2 via

z = Re z + i Im z ∈ C ←→ Re z
Im z

∈ R2.

Translating in C can be done by adding a number z′ ∈ C. Rotating by an angle α can be
achieved by multiplying with the complex number cosα+ i sinα which has length 1. So the
group of rotations is the set of complex numbers with length 1 together with multiplication
in C. This gives the one-to-one identification between rotations represented by the unit
circle in C and rotations represented by SO2:

cosα+ i sinα ←→ cosα − sinα
sinα cosα

.

Rotations in R3 have various representations, too. The first way of representing a rotation
is to describe it with an element of SO3 as depicted above. According to Theorem 2.1.13,
each element of SO3 is a rotation around an axis through the origin. Therefore, we can
represent a rotation as a pair (a, α) ∈ S2 ×R of an axis a, given by a direction on the unit
sphere S2, and an angle α. While easy to imagine, the description of a rotation in this

way is not unique. For instance, the pairs (
√
2
2 , 12 ,−1

2)
T , π3 and (−

√
2
2 ,−1

2 ,
1
2)

T ,−π
3

describe the same rotation. Moreover, we know from Theorem 2.1.13 that some rotations
around different axes with different angles yield again a rotation around an axis through
the origin, but it is not as obvious as with matrices in SO3 how to combine the rotations.
The equivalent in R3 for complex numbers for 2D rotations are quaternions. There-

fore, three pairwise different square roots i, j, k of −1 are introduced. For more detailed
information about quaternions, see, for example, [23].
Lastly, another intuitive way of representing rotations that outlines the three degrees of

freedom of a 3D rotation is Euler angles. Often referred to as roll φ, pitch ϑ, and yaw ψ,
they compose a rotation as three consecutive rotations around different axes. There exist
different conventions on the order of axes around which rotations occur. Sometimes the
first rotation is around the x-axis, the second around the y-axis, and the third around the
z-axis. (Proper) Euler angles are given for rotations around the z-, then the (rotated) x-,
and then again the (rotated) z-axis. Also configurations like x, then y, then x or y, then
z, then y are possible [24, Section 4.4].

From now on, we view the orientation of an object in R3 as a rotation matrix R ∈ SO3

if not stated otherwise.

2.1.2. Manifolds and Tangent Spaces

Pose estimation is the task of finding the pose that best fits some objective function with
respect to certain preconditions and constraints [27]. As we know from above, the pose
of an object represents its position and orientation. Just searching for the position that
optimizes some (differentiable) function can be done with well-known methods such as
gradient descent (see Section 2.3.1 for a revision of gradient descent). In general, we want
to search in the neighborhood of a possible solution for a solution that is better with respect

13

2. Mathematical Foundations

to the objective function. On the one hand, getting a position in the neighborhood of the
position of an object in R3 can be done by adding some small vector v ∈ R3. Searching
for an orientation represented as a rotation matrix R ∈ SO3 that is somehow close to
another orientation, on the other hand, cannot be done by adding an arbitrary, “small”
matrix V ∈ R3×3 to the matrix R. We know from Theorem 2.1.6 that SOn with matrix
multiplication is a group. But in general, SOn is not closed with respect to matrix addition,
as for instance the properties for matrices in On stated in Theorem 2.1.2 are not closed
with respect to matrix or vector addition, so R+V will not be in SO3, typically. Thus, we
have to take a closer look at the geometrical structure of SO3 [13, Chapter 6]. The special
orthogonal group SOn is a manifold as we will see in 2.1.3. Here, we present the basics of
manifolds and tangent spaces from differential geometry.
After introducing some elementary definitions, we will discuss the concept of smooth

manifolds. First, we revise a few topological concepts.

Definition 2.1.18. (i) A Hausdorff space (X, T) is a topological space that fulfills the
T2 separation axiom. Thus, for all points x, y ∈ X with x ̸= y exist open neighbor-
hoods Ux of x and Uy of y with Ux ∩ Uy = ∅ [47, Chapter 2 §17].

(ii) Let X and Y be topological spaces. A homeomorphism f : X → Y is a continuous,
bijective function where the inverse function f−1 is continuous as well [47, Chapter
2 §18].

(iii) An n-dimensional topological manifold M is a topological space with a countable basis
that is Hausdorff and has the property that for every point x ∈ M there exists an
open neighborhood Ux of x and an open set V ⊆ Rn such that Ux is homeomorphic
to V [37, Section 2.2].

To properly define smooth manifolds on the basis of topological manifolds, we give some
notions from differential geometry. The definitions are based on [37, Section 2.2].

Definition 2.1.19. Let M be an n-dimensional topological manifold.

(i) Let U ⊆ M be an open subset of M . For a homeomorphism φ : U → V into an open
subset V ⊆ Rn, the pair (U,φ) is a chart of M .

For a point x ∈ U , we call φ(x) ∈ Rn the coordinates of x in (U,φ) [1, Section 3.1.1].

(ii) Let A = ((Ui, φi))i∈I be a family of charts of M for some index set I. The family A
is called an atlas of M if i∈I Ui ⊇ M holds.

(iii) The transition map between two charts (U1, φ1) and (U2, φ2) of M with U1 ∩U2 ̸= ∅
is the function

φ2 ◦ φ−1
1 : φ1(U1 ∩ U2) −→ φ2(U1 ∩ U2).

(iv) Two charts (U1, φ1) and (U2, φ2) are called Ck-compatible if their transition map is a
Ck-diffeomorphism, i.e. φ2 ◦ φ−1

1 is bijective, k times continuously differentiable and

its inverse function φ2 ◦ φ−1
1

−1
is in Ck as well.

If the transition map φ2 ◦ φ−1
1 is a C∞-diffeomorphism, we say the charts (U1, φ1)

and (U2, φ2) are C∞-compatible or just compatible.

14

2.1. Geometry

(v) A Ck-atlas A = ((Ui, φi))i∈I of M is an atlas where the charts (Ui, φi) and (Uj , φj)
are Ck-compatible for all i, j ∈ I with i ̸= j.

If the charts of A are pairwise compatible, we call A a C∞-atlas or smooth atlas.

(vi) A Ck- or C∞-atlas A of a topological manifoldM ismaximal if there is no chart (U,φ)
of M that is Ck- or C∞-compatible with all charts of A and not already contained
in A.

These definitions lead to smooth manifolds.

Definition 2.1.20. A Ck- or C∞-manifold is a topological manifold provided with a
maximal Ck- or C∞-atlas.
We call a C∞-manifold also a smooth manifold.

Example 2.1.21. Let’s take a look at the set Rm×n of all (m×n)-matrices with real entries
for m,n ∈ Z+ as in [1, Section 3.1.5]. Let φ : Rm×n → Rmn be the function defined by

φ

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 =

a11
...

am1

a12
...

amn

.

So φ(A) is obtained by stacking the column vectors of the matrix A on one another.
This is a linear function between the two vector spaces Rm×n and Rmn. In the sense
of Definition 2.1.18(ii), φ is a homeomorphism since it is continuous, bijective and the
inverse φ−1 is bijective as well. The matrix space Rm×n is an mn-dimensional topological
manifold, because the topology, the Hausdorff property, and the second-countability are
simply transferred via φ−1 from Rmn, and any open neighborhood UA of a point A ∈ Rm×n

is homeomorphic to the open set φ(UA) of Rmn. Furthermore, (Rm×n, φ) is a chart of
Rm×n, and since it covers the whole space, we already have an atlas A. We can add all
charts (U,ψ) to the atlas A that are compatible with the chart (Rm×n, φ). This gives us a
maximal smooth atlas. Thus, Rm×n with this structure is a (smooth) manifold.

Given two manifolds M1 and M2 of dimensions d1 and d2, the product space M1 ×M2

can be equipped with the product topology. For charts (U1, φ1) and (U2, φ2) of M1 and
M2, the function

ψ : U1 × U2 → Rd1 × Rd2 : (x1, x2) → (φ1(x1), φ2(x2))

is a chart of M1 × M2 since all properties directly transfer from φ1 and φ2. Thus, two
atlases A1 and A2 of M1 and M2 create an atlas A of M1 ×M2. So, the product M1 ×M2

is a manifold [1, Section 3.1.6].
In Section 2.3.2, we will make use of the tangent space TxM of a point x in a manifold

M to optimize a function on the manifold M . There are various equivalent ways to define
tangent vectors and spaces [40, Section 3.6], here we use smooth curves on the manifold as
in [37, Section 2.6]. A smooth curve is a smooth function γ : I → M for an interval I ⊆ R
(see [37, Chapter 2] for more about smooth functions on manifolds).

15

2. Mathematical Foundations

Definition 2.1.22. Let M be an n-dimensional smooth manifold, x ∈ M a point on M ,
and CM

x the set of all smooth curves γ : I → M on M with 0 ∈ I and γ(0) = x.

(i) Let γ1, γ2 ∈ CM
x be two curves through x ∈ M . They are called tangent at x if there

exists a chart (U,φ) of M with x ∈ U and (φ ◦ γ1)′(0) = (φ ◦ γ2)′(0). The function
φ ◦ γi is a mapping I ⊆ R → Rn, thus (φ ◦ γi)

′(0) is the ordinary derivative. This
definition does not depend on the choice of the chart (U,φ) (this can be verified
with the chain rule of differentiation for another chart (Ũ , φ̃) as in [37, Section 2.6]).
Therefore, being tangent at a point x defines an equivalence relation on CM

x .

(ii) A tangent vector to M at x is an equivalence class of the relation defined in (i).

(iii) The set of all tangent vectors to M at x is called the tangent space TxM to M at x.

(iv) The tangent bundle
TM := {(x, ξ) x ∈ M, ξ ∈ TxM}

of M is the disjoint union of all tangent spaces to M .

To establish a vector space structure on a tangent space TxM , we define a function ϑx,M
φ

between the tangent space and Rn similar to [37, Section 2.6.1].

Lemma 2.1.23. Let M be an n-dimensional smooth manifold, x a point on M , and (U,φ)
a chart of M with x ∈ U . The function ϑx,M

φ defined as

ϑx,M
φ : TxM → Rn : ξ = [γ] → (φ ◦ γ)′(0)

is a bijection.

Proof. First, we have to show that ϑx,M
φ is well-defined. According to Definition 2.1.22(i)

of the equivalence relation on the set CM
x of smooth curves, a different representative γ̃ ∈ ξ

gives the same value (φ◦ γ̃)′(0) as (φ◦γ)′(0). Thus, ϑx,M
φ (ξ) is independent of the choice of

a curve γ of ξ. Furthermore, φ ◦ γ has the codomain Rn. Therefore, ϑx,M
φ is well-defined.

For two tangent vectors ξ1, ξ2 ∈ TxM with representatives γi ∈ ξi for i ∈ {1, 2} and
ξ1 ̸= ξ2, it holds that (φ ◦ γ1)

′(0) ̸= (φ ◦ γ2)
′(0) since γ1 and γ2 would have been in the

same equivalence class otherwise. Thus, the function ϑx,M
φ is injective.

Let p ∈ Rn be an arbitrary element of the codomain of ϑx,M
φ . We have to find a curve

γ : I → M such that (φ ◦ γ)′(0) = p and γ(0) = x. Therefore, a reasonable ansatz is given
by φ ◦ γ(t) = tp+ φ(x). Indeed, the equivalence class ξ of the curve

γ(t) := φ−1(tp+ φ(x))

fulfills ϑx,M
φ (ξ) = p. So, ϑx,M

φ is surjective and in total bijective.

This function allows us to equip TxM with a vector space structure over the scalar field
R. Multiplication of a tangent vector ξ ∈ TxM with a scalar s ∈ R is defined by taking the
image of ξ in Rn under ϑx,M

φ , multiplying the result with s and bring it back to TxM with

the inverse of the bijection ϑx,M
φ , i.e.

sξ := (ϑx,M
φ)−1 sϑx,M

φ (ξ) . (2.5)

16

2.1. Geometry

The addition for ξ, η ∈ TxM is defined similarly over the addition in Rn via

ξ + η := (ϑx,M
φ)−1 ϑx,M

φ (ξ) + ϑx,M
φ (η) .

Remark 2.1.24. These two operations are well-defined, i.e. independent of the chart (U,φ).
To see this, let’s take a different chart (V, ψ) of M . According to [37, Section 2.6.1] the
function ϑx,M

ψ ◦ (ϑx,M
φ)−1 is linear (see also [37, Section 1.3]). So we can do the following

equivalence transformations omitting the indices x and M

ϑ−1
φ (ϑφ(ξ) + ϑφ(η)) = ϑ−1

ψ (ϑψ(ξ) + ϑψ(η))

ϑψ ◦ ϑ−1
φ (ϑφ(ξ) + ϑφ(η)) = ϑψ(ξ) + ϑψ(η)

ϑψ ◦ ϑ−1
φ (ϑφ(ξ)) + ϑψ ◦ ϑ−1

φ (ϑφ(η)) = ϑψ(ξ) + ϑψ(η)

ϑψ(ξ) + ϑψ(η) = ϑψ(ξ) + ϑψ(η)

that prove that this addition is independent of the chart. Analogously, scalar multiplication
as defined above is well-defined.
Furthermore, the vector space axioms transfer directly from Rn [37, Section 2.6.1].

2.1.3. The Special Orthogonal Group SOn

After the preparations of Section 2.1.2, we can investigate the geometric structure of the
special orthogonal group SOn. We will see that On is a submanifold of Rn×n and conclude
that SOn is a smooth manifold. Furthermore, we investigate the tangent space of SOn.

We start with a lemma about the representation of elements of SOn with orthogonal
matrices. The lemma is based on [21, Theorem 12.10] and parts of [21, Theorem 18.1], and
will be used later.

Lemma 2.1.25. Any matrix R ∈ SOn can be represented in the form R = PBP T with an
orthogonal matrix P ∈ On and a block diagonal matrix

B = diag(R1(α1), R2(α2), . . . , Rm(αm), 1, . . . , 1) (2.6)

where Ri(αi) ∈ SO2 for i = 1, . . . ,m denotes a rotation matrix

Ri(αi) =
cosαi − sinαi

sinαi cosαi
with 0 < αi ≤ π.

Proof. Let R ∈ SOn be a rotation matrix. The matrix R is orthogonal, so [21, Theo-
rem 12.10] states that there exist an orthogonal matrix P ∈ On and a block diagonal
matrix B = diag(B1, B2, . . . , Br) where the blocks Bj are either 1, −1, or of the form

Bj =
cos θj − sin θj
sin θj cos θj

with 0 < θj < π, (2.7)

with R = PBP T for j = 1, . . . , r. Since R ∈ SOn, the determinant

det(R) = det(PBP T) = det(P) det(B) det(P T) = det(P)2 det(B)
P∈On= det(B)

17

2. Mathematical Foundations

has to be +1. The determinant of the block diagonal matrix B is given by the product
det(B1) det(B2) · · · det(Br). Blocks of the form (2.7) are in SO2 and therefore have deter-
minant 1. Thus, there is an even number of blocks of B that are −1. Hence we can assume,
that B has the form diag(B̃1, B̃2, . . . , B̃r̃) with blocks B̃j that are either 1 or of the form

B̃j =
cos θ̃j − sin θ̃j
sin θ̃j cos θ̃j

with 0 < θ̃j ≤ π, (2.8)

for j = 1, . . . , r̃, where two −1 entries create such a (2 × 2)-block, since cosπ = −1 and
sinπ = 0. The blocks of B can be reordered by switching rows and columns with some
orthogonal matrix S similar to0 1 0

0 0 1
1 0 0

=S

1 0 0
0 a b
0 c d

0 0 1
1 0 0
0 1 0

=ST

=

a b 0
c d 0
0 0 1

at the correct positions. After that, B has the form (2.6), and the lemma is proven.

In the following, we want to show that On and consequently SOn are smooth manifolds.
Therefore we give a version of a statement of differential geometry known as rank theorem,
regular level set theorem, or as a theorem about implicitly defined manifolds that can be
found in various books on manifolds or calculus like [59, Theorem 9.9], [40, Chapter 5], and
[1, Proposition 3.3.3]. We refer to these sources for a proof of that statement.

Lemma 2.1.26. Let M and N be two smooth manifolds of dimensions m and n with
m ≥ n. Furthermore, let F : M → N be a smooth function and y ∈ N be a point on the
manifold N . The point y is called a regular value of F if F has full rank at every point
x ∈ F−1(y), i.e. if DF (x)[·] is surjective at every x ∈ F−1(y). If y ∈ N is a regular value
of F , the pre-image F−1(y) is a submanifold of M of dimension m− n.

Now we consider the orthogonal group On ⊆ Rn×n. Example 2.1.21 examined that
Rn×n is an n2-dimensional smooth manifold. Analogously, one can prove that any finite-
dimensional vector space V over R can be equipped with an atlas such that V is a smooth
manifold. In particular, the set Symn ⊆ Rn×n of symmetric (n× n)-matrices, i.e. A = AT ,
is a smooth manifold. The following considerations are based on [1, Section 3.3.2].

Theorem 2.1.27. The orthogonal group On is a smooth manifold of dimension n(n−1)
2 .

Proof. We will show that On is an embedded submanifold of Rn×n. Consider the function

F : Rn×n → Symn : A → ATA− In.

Since (ATA)T = ATA for all A ∈ Rn×n, the function F is well-defined. According to
Definition 2.1.1, it holds that On = F−1({0n}), where 0n denotes the zero matrix in Rn×n.

Consider the differential DF (A)[B] of F at A in the direction of B. With the Leibniz rule
for differentiation, it holds (see [1, Appendix A.5] for details about matrix differentiation)

DF (A)[B] = ATB +BTA.

18

2.1. Geometry

The mapping DF (A)[·] is surjective for every A ∈ On if for every C ∈ Symn there exists
a matrix B ∈ Rn×n with DF (A)[B] = C. For A ∈ F−1({0n}) = On and C ∈ Symn, let
B = 1

2AC, resulting in

DF (A)[
1

2
AC] = AT 1

2
AC + (

1

2
AC)TA =

1

2
(ATAC + CTATA) = C

with ATA = In, since A ∈ On, and C = CT , since C ∈ Symn. Thus, 0n is a regular value
of F and therefore On a submanifold of Rn×n with Lemma 2.1.26. The vector space Symn

is n(n+1)
2 -dimensional since for a symmetric matrix S, every element of the diagonal of S

and every element above this diagonal can be chosen independently. Hence, the dimension
of On is given by n2 − n(n+1)

2 = n(n−1)
2 .

It follows that SOn is a manifold as well if we can show that it is a connected component
of On. A connected component of a topological spaceX is a subset C ⊆ X that is connected
and there exists no larger connected set D ⊋ C in X [47, Chapter 3 §25].

Theorem 2.1.28. The special orthogonal group SOn is a smooth manifold of dimension
n(n−1)

2 .

Proof. We show that SOn is a connected component of On as in [61]. Let A be any
matrix in SOn. The goal is to find an arc in SOn that starts from In and ends in A. With
Lemma 2.1.25, the matrix A can be represented in the form A = PBP T with an orthogonal
matrix P ∈ On and a block diagonal matrix

B = diag(R1(α1), R2(α2), . . . , Rm(αm), 1, . . . , 1),

for rotations Ri(αi) ∈ SO2 by the angle αi ∈ (0, π]. For a λ ∈ [0, 1], let B(λ) define the
block diagonal matrix

B(λ) = diag(R1(λα1), R2(λα2), . . . , Rm(λαm), 1, . . . , 1).

and A(λ) = PB(λ)P T . Clearly, A(λ) ∈ SOn for all λ ∈ [0, 1]. Furthermore, this arc starts
at A(0) = PInP

T = In and ends at B(1) = A. So the special orthogonal group SOn is
connected. Furthermore, since the function det : On → {−1, 1} is continuous, there cannot
be a continuous path in On from a matrix C ∈ On with detC = 1 to a matrix D ∈ On

with detD = −1. Hence, SOn is a connected component of On and therefore open.
Thus, SOn is an n(n−1)

2 -dimensional topological manifold, since every point x ∈ SOn has
an open neighborhood Ux ⊆ On in On and therefore an open neighborhood Ux ∩ SOn in

SOn that is homeomorphic to some subset of R
n(n−1)

2 . In the same way, charts and atlases
transfer from the smooth manifold On to SOn. Consequently, SOn is a smooth manifold of
dimension n(n−1)

2 .

We want to investigate the tangent space to the manifold SOn as in [21, Section 14.7].
At the identity In, the tangent vectors are given by the curves γ : I → SOn with γ(0) = In,
w.l.o.g. let I = (−1, 1). Since γ(t) denotes a matrix in SOn, we know γ(t)γ(t)T = In. We
can differentiate γ with respect to t resulting in

γ′(t)γ(t)T + γ(t)γ′(t)T = 0n

19

2. Mathematical Foundations

with the product rule. Since γ(0) = In, this reduces to

γ′(0) + γ′(0)T = 0n.

Thus, γ′(0) is a skew-symmetric matrix. With Skewn we denote the set of all skew-

symmetric matrices in Rn×n. This is a n(n−1)
2 -dimensional vector space since every element

above the diagonal of a matrix can be chosen arbitrarily. We have seen above, that TInSOn

is a n(n−1)
2 -dimensional vector space over R as well. Hence, the spaces Skewn and TInSOn

are equal (more precisely, they can be identified).
At some arbitrary point B ∈ SOn, let’s consider some curve γB : (−1, 1) → SOn with

γB(0) = B. Then the curve γ̃B(t) := BTγB(t) passes through In at 0. So as seen above,
we can write

γ̃′B(0) = BTγ′B(0) ∈ TInSOn = Skewn

and therefore
TBSOn = {BS S ∈ Skewn}. (2.9)

We have seen above that for two manifoldsM1 andM2 the productM1×M2 is a manifold.
This directly implies the following theorem.

Theorem 2.1.29. The special Euclidean group SEn is a smooth manifold of dimension
n(n+1)

2 .

Proof. With (2.3) the special Euclidean group can be identified with SOn×Rn. According

to Theorem 2.1.28, SEn is the product of two manifolds of dimensions n(n−1)
2 and n. Thus,

SEn is a smooth manifold of dimension n(n+1)
2 .

In the analysis of the pose estimation algorithm, we want to measure the quality of the
estimation as the distance of the estimated poses to their ground truth. We will simplify
the regarded objects to points in R3 with an orientation in SO3. Thus, the representation
of the poses as elements of SE3 suffices since a point with an orientation has no symmetry.
We can define a simple metric on SOn and SEn according to [34, Section 3.5].

Lemma 2.1.30. The function

dSOn : SOn × SOn → R+
0 : (R1, R2) → ∥I3 −R1R

T
2 ∥F

defines a metric on SOn, where ∥A∥F denotes the Frobenius norm for quadratic matrices.

Proof. The Frobenius norm ∥A∥F of a matrix A ∈ Rn×n is defined as

∥A∥F :=

n

i,j=1

|aij |2 = tr (AAT)

and according to [58, Section I.3] a norm. Therefore, dSOn(R1, R2) = ∥In − R1R
T
2 ∥F is

positive or zero. In particular, ∥In − R1R
T
2 ∥F = 0 if and only if In − R1R

T
2 = 0n. This

is equivalent to In = R1R
T
2 , and, since R2 is in On, this is equivalent to R1 = R2. We

conclude that dSOn(R1, R2) = 0 if and only if R1 = R2.

20

2.1. Geometry

The computation

∥In −R1R
T
2 ∥F = ∥(In −R1R

T
2)

T ∥F = ∥In −R2R
T
1 ∥F

implies that dSOn(R1, R2) = dSOn(R2, R1).
To proof the triangle inequality dSOn(R1, R2) ≤ dSOn(R1, R3) + dSOn(R3, R2) for any

matrix R3 ∈ SOn, we start by proving ∥In −RST ∥F = ∥S −R∥F for all R,S ∈ SOn. With
∥A∥2F = tr AAT and RRT = SST = In, we compute

∥S −R∥2F = tr (S −R)(S −R)T

= tr SST −RST − SRT +RRT

= tr InI
T
n − (RST)ITn − In(RST)T + InI

T
n

= tr (In −RST)(In −RST)T

= ∥In −RST ∥2F .
Thus, we conclude

dSOn(R1, R2) = ∥In −R1R
T
2 ∥F

= ∥R2 −R1∥F
= ∥R2 −R3 +R3 −R1∥F
≤ ∥R2 −R3∥F + ∥R3 −R1∥F
= ∥In −R3R

T
2 ∥F + ∥In −R1R

T
3 ∥F

= dSOn(R1, R3) + dSOn(R3, R2).

So the triangle inequality holds for dSOn and therefore dSOn is a metric.

Theorem 2.1.31. The function

dSEn : SEn × SEn → R+
0 : (T1, T2) = ((R1, t1), (R2, t2)) → dSOn(R1, R2) + d2(t1, t2),

where d2 is the Euclidean metric on Rn, is a metric on SEn.

Proof. With Lemma 2.1.30, dSOn is a metric on SOn. Therefore, positivity, symmetry, and
the triangle inequality transfer from the metrics dSOn and d2 directly to dSEn .

In the following, we will omit the indices SOn and SEn if it is clear which metric is used.

2.1.4. The Exponential Map for Quadratic Matrices

As discussed at the beginning of Section 2.1.2, it is not possible to make “small steps”
towards an optimal solution on the SO3 manifold by adding an arbitrary small matrix
V ∈ R3×3 to a rotation matrix R ∈ SO3. But if V has a certain structure, it can easily be
brought back onto SO3 using the exponential map for quadratic matrices [13, Section 6.1].
This exponential map is defined analogously to the power series of the exponential func-

tion on C. Here the definition as well as the proof of the well-definedness and basic calcu-
lation rules are based on [21, Section 18.1]

21

2. Mathematical Foundations

Definition 2.1.32. The exponential eA (sometimes denoted as expA) of a quadratic ma-
trix A ∈ Cn×n is defined as

eA =
k≥0

Ak

k!
(2.10)

with the matrix powers Ak = Ak−1A and A0 := I for all A.

To prove that eA is well-defined, we first need a lemma about the powers of matrices.

Lemma 2.1.33. Let A ∈ Cn×n be a real quadratic matrix and let amax be the maximum
value of the absolute values |aij | of all entries of A. Then for a positive integer k ∈ Z+,

the absolute values of all entries a
(k)
ij of the matrix Ak are bounded by (namax)

k.

Proof. Let amax := max1≤i,j≤n |aij | be defined as stated above. We prove this lemma by

induction on the exponent k of A. For k = 1, this statement is trivially true since a
(1)
ij = aij .

Assuming |a(k)ij | ≤ (namax)
k is true for k ∈ Z+, consider Ak+1. Using Ak+1 = AkA, we

can conclude for an entry a
(k+1)
ij of Ak+1

|a(k+1)
ij | =

1≤m≤n

a
(k)
imamj

(1)

≤
1≤m≤n

|a(k)im ||amj |

(2)

≤
1≤m≤n

(namax)
kamax

= nk

1≤m≤n

ak+1
max

= nknak+1
max = (namax)

k+1.

For the inequality in (1), we use the triangle inequality and for the inequality in (2), we
use the induction hypothesis.

Thus, |a(k+1)
ij | ≤ (namax)

k+1 holds for all k ∈ Z+.

Lemma 2.1.34. The exponential map eA of a matrix A ∈ Cn×n as presented in Defini-
tion 2.1.32 is well-defined, i.e. the power series (2.10) converges absolutely for all A ∈ Cn×n.

Proof. We say the matrix power series (2.10) converges absolutely if each entry of the
matrix sequence

N

k=0

Ak

k!

converges for N → ∞. With the notation and result of Lemma 2.1.33 we can write for the
series of one entry

k≥0

|a(k)ij |
k!

≤
k≥0

(namax)
k

k!
= enamax

22

2.1. Geometry

and thus the series (2.10) converges absolutely due to the direct comparison test.

The exponential map has some interesting properties [21, Section 18.1].

Lemma 2.1.35. Let A ∈ Rn×n and B,C ∈ Cn×n be quadratic matrices.

(i) If B and C commute, i.e. BC = CB, then

eBeC = eB+C .

(ii) Let P be a regular matrix in GLn(R) or in GLn(C) and let D be a matrix in Rn×n

or Cn×n. Then, the equation

ePDP−1
= PeDP−1

holds.

(iii) For the determinant of eA holds

det(eA) = etrA,

where trA denotes the trace a11 + a22 + · · ·+ ann of A.

(iv) The exponential of A is regular, i.e. eA ∈ GLn.

(v) The inverse of eA is given by

(eA)−1 = e−A.

Proof. (i) To prove this property, consider the power series representations of eB and
eC and their Cauchy product. In the following computation, we use the binomial
formula for the equality in (1) which only holds since BC = CB, so

eBeC =

i≥0

Bi

i!

j≥0

Cj

j!

=

k≥0

k

l=0

Bl

l!

Ck−l

(k − l)!

=
k≥0

1

k!

k

l=0

k

l
BlCk−l

(1)
=

k≥0

1

k!
(B + C)k = eB+C .

This proves the statement.

23

2. Mathematical Foundations

(ii) Since PP−1 = I and (PDk−1P−1)(PDP−1) = PDkP−1, induction shows that

(PDP−1)k = PDkP−1

for every k ≥ 0. Thus, we see

ePDP−1
=

k≥0

(PDP−1)k

k!
=

k≥0

PDkP−1

k!
= PeDP−1.

So ePDP−1
= PeDP−1 is shown.

(iii) The characteristic polynomial χA of the matrix A decomposes into linear factors over
C due to the fundamental theorem of algebra. So according to [32, Satz 8.7.10] the
matrix A interpreted as an element of Cn×n is similar to a matrix J in Jordan normal
form, i.e. there exists a matrix P ∈ GLn(C) with A = PJP−1.

Part (ii) implies that

eA = ePJP−1
= PeJP−1.

The Jordan matrix J is an upper triangular matrix with the (complex) eigenvalues
λi for i = 1, . . . , n of A in its diagonal (according to their algebraic multiplicity).
Again, a simple induction shows that for any upper triangular matrix T = (tij) the
matrix eT is also an upper triangular matrix, with the diagonal entries etii . So the
main diagonal of eJ consists of the exponentials eλi of the eigenvalues λi of A.

The determinant of a triangular matrix is the product of its diagonal entries. To sum
up, the determinant of eA computes as

det(eA) = det(PeJP−1) = det(P) det(P)−1 det(eJ) = eλ1eλ2 · · · eλn = eλ1+λ2+···+λn ,

where the multiplicativity of the determinant and det(P−1) = det(P)−1 was used.

The trace trA of the matrix A is defined as the sum a11+a22+· · ·+ann of the diagonal
entries of A. Furthermore, the trace trA is equal to the sum of the eigenvalues of
A [33, Section 1.2]. This is no contradiction to complex eigenvalues: Since χA is a
polynomial with real coefficients, for every zero u = a + ib of χA that lies in C \ R,
the complex conjugate ū = a − ib is a zero of χA, too. The sum u + ū = 2a is in R,
therefore the sum of all eigenvalues of A is in R.
In total, we have

det(eA) = eλ1+λ2+···+λn = etrA,

which completes the proof.

(iv) According to (iii) the determinant of eA is equal to etrA which is positive. Therefore,
eA is regular for any A ∈ Rn×n.

(v) As we learned in (iv), the matrix eA is regular, which means that it has an inverse.
The matrices A and −A commute, since A(−A) = −A2 = (−A)A. Thus, with (i)
follows

eAe−A = eA−A = e0n = In.

24

2.1. Geometry

A similar computation delivers e−AeA = In which shows that e−A is the inverse
matrix of eA.

A matrix A ∈ Rn×n is skew-symmetric if A = −AT . We can derive an explicit formula
for eA if A is a skew-symmetric matrix in R2×2.

Theorem 2.1.36. Let A ∈ R2×2 be a skew-symmetric matrix of the form

A =
0 −θ
θ 0

.

Then the exponential of A is given by

eA =
cos θ − sin θ
sin θ cos θ

.

Thus, eA is in SO2 [21, Section 18.1].

Proof. First, we take a look at the skew-symmetric matrix

M :=
0 −1
1 0

.

By a simple induction with the induction start

M2 =
−1 0
0 −1

, M3 =
0 1

−1 0
, M4 =

1 0
0 1

,

and A = θM , we see for any integer k ≥ 0

A4k+1 = θ4k+1 0 −1
1 0

= θ4k+1M, A4k+2 = θ4k+2 −1 0
0 −1

= −θ4k+2I2,

A4k+3 = θ4k+3 0 1
−1 0

= −θ4k+3M, A4k+4 = θ4k+4 1 0
0 1

= θ4k+4I2.

In Lemma 2.1.34 we proved that the power series of eA converges absolutely. Thus, we can
rearrange the terms. So, rearranging and using the series expansions of sin θ and cos θ gives

eA =
k≥0

Ak

k!
= I3 +

A

1!
+

A2

2!
+

A3

3!
+

A4

4!
+

A5

5!
+ . . .

= I3 +
1

2!
A2 +

1

4!
A4 + . . . + A+

1

3!
A3 +

1

5!
A5 + . . .

= θ0I2 +
1

2!
(−θ2I2) +

1

4!
θ4I2 + . . . + θM +

1

3!
(−θ3M) +

1

5!
θ5M + . . .

=

k≥0

(−1)k
θ2k

(2k)!

 I2 +

k≥0

(−1)k
θ2k+1

(2k + 1)!

M

= cos θI2 + sin θM =
cos θ − sin θ
sin θ cos θ

.

This computation finishes the proof.

25

2. Mathematical Foundations

This proves that the exponential eA of a skew-symmetric matrix A ∈ R2×2 is a rotation
matrix in SO2. This even holds for skew-symmetric matrices in Rn×n for arbitrary n ≥ 2.
Gallier gives in [21, Theorem 18.1] the following statement.

Theorem 2.1.37. Let Skewn ⊆ Rn×n be the set of all real skew-symmetric (n×n)-matrices.

(i) For all A ∈ Skewn, the exponential eA is an element of SOn.

(ii) The exponential map
e· : Skewn → SOn (2.11)

with the domain Skewn and the codomain SOn is surjective.

Proof. (i) Let A ∈ Skewn be a skew-symmetric matrix. First, we show that A ∈ On.
Since A is skew-symmetric, we know AT = −A. Considering the power series repre-
sentation of eA, we see that (eA)T = eA

T
. With Lemma 2.1.35(v) follows

eA
T
eA = eA

T
eA = e−AeA = In

and eA(eA)T = In analogously. Thus, the matrix eA is orthogonal, i.e.

eA
−1

= eA
T
.

Second, we compute the determinant det(eA). The property AT = −A implies that
the diagonal entries of A are all equal to zero. Thus, trA = 0. With Lemma 2.1.35(iii)
follows

det(eA) = etrA = e0 = 1.

To sum up, from eA ∈ On and det(eA) = 1 follows that eA ∈ SOn.

(ii) Part (i) guarantees that the function (2.11) is well-defined. Let R ∈ SOn be a rotation
matrix. With Lemma 2.1.25, the matrix R can be represented in the form R = PBP T

with an orthogonal matrix P ∈ On and a block diagonal matrix

B = diag(B1, B2, . . . , Br, 1, . . . , 1).

The blocks Bj ∈ SO2 are of the form

Bj =
cos θj − sin θj
sin θj cos θj

with 0 < θj ≤ π.

We have to find a skew-symmetric matrix A with eA = R. Let’s define a block
diagonal matrix C = diag(C1, C2, . . . , Cr, 0, . . . , 0) as follows. For a block Bj let Cj

be the (2× 2)-matrix

Cj :=
0 −θj
θj 0

. (2.12)

The exponential eC of the block diagonal matrix C can be computed by taking the
exponential of the blocks separately as

eC = diag eC1 , eC2 , . . . , eCr , e0, . . . , e0 .

26

2.1. Geometry

The exponential eCj for j = 1, . . . , r equals Bj due to Theorem 2.1.36. Since e0 = 1,
we have eC = B.

Now, let A be the matrix PCP T with the orthogonal matrix P from above. The
matrix C consists of skew-symmetric blocks on its diagonal. So C is skew-symmetric,
implying C + CT = 0n. We can compute

A+AT = PCP T + (PCP T)T = PCP T + PCTP T = P (C + CT)P T = 0n,

which shows that A is skew-symmetric. The exponential of A can be rewritten as

eA = ePCPT 2.1.35(ii)
= PeCP T = PBP T = R

with the considerations above and Lemma 2.1.35(ii).

So, for an arbitrary rotation matrix R ∈ SOn, we found a skew-symmetric matrix
A ∈ Skewn such that eA = R. Thus, the exponential map is surjective with domain
Skewn and codomain SOn.

For n = 3, Rodrigues’ formula gives an explicit representation of eA for a skew-symmetric
matrix A, allowing an efficient computation of eA.

Theorem 2.1.38 (Rodrigues’ Formula). Let A ∈ R3×3 be a skew-symmetric matrix of the
form

A =

 0 −c b
c 0 −a

−b a 0

and θ :=

√
a2 + b2 + c2. Then, for A ̸= 03, Rodrigues’ formula

eA = I3 +
sin θ

θ
A+

1− cos θ

θ2
A2

holds [21, Lemma 18.6].

Proof. For a matrix A as given above, consider the matrix

Ã :=

a2 ab ac
ab b2 bc
ac bc c2

 .

The computation

AÃ =

 0 −c b
c 0 −a

−b a 0

a2 ab ac
ab b2 bc
ac bc c2

 =

−cab+ bac −cb2 + b2c −cbc+ bc2

ca2 − a2c cab− abc cac− ac2

−ba2 + a2b −bab+ ab2 −bac+ abc

 = 03

27

2. Mathematical Foundations

and an analogous computation for ÃA show that AÃ = ÃA = 03. Furthermore, we can
represent A2 by Ã and θ =

√
a2 + b2 + c2 via

A2 =

−c2 − b2 ba ca
ab −c2 − a2 cb
ac bc −b2 − a2

=

−c2 − b2 − a2 + a2 ab ac
ab −c2 − a2 − b2 + b2 bc
ac bc −b2 − a2 − c2 + c2

 = Ã− θ2I3.

Multiplying this equation by A gives

A3 = A(Ã− θ2I3) = −θ2A

since AÃ = 03. It follows A4 = −θ2A2. From these considerations, we can deduce for any
positive integer k by induction

A4k+1 = θ4kA | ·A
A4k+2 = θ4kA2 | ·A
A4k+3 = θ4kA3 = θ4k(−θ2A) = −θ4k+2A | ·A
A4k+4 = −θ4k+2A2

by assuming A4k = −θ4k−2A2 and using the identity shown above for A3.
As in the R2×2 case, we use the absolute convergence of eA to rearrange the terms of its

power series and the power series expansions of sin θ and cos θ. So we conclude

eA =
k≥0

Ak

k!
= I3 +

A

1!
+

A2

2!
+

A3

3!
+

A4

4!
+

A5

5!
+

A6

6!
+ . . .

= I3 + A+
1

3!
A3 +

1

5!
A5 + . . . +

1

2!
A2 +

1

4!
A4 +

1

6!
A6 + . . .

= I3 + θ0A+
1

3!
(−θ2A) +

1

5!
θ4A+ . . . +

1

2!
θ0A2 +

1

4!
(−θ2A2) +

1

6!
θ4A2 + . . .

= I3 +
1

θ
θ − 1

3!
θ3 +

1

5!
θ5 −+ . . . A+

1

θ2
1− 1 +

1

2!
θ2 − 1

4!
θ4 +

1

6!
θ6 −+ . . . A2

= I3 +
1

θ

k≥0

(−1)k
θ2k+1

(2k + 1)!

A+
1

θ2

1−
k≥0

(−1)k
θ2k

(2k)!

A2

= I3 +
sin θ

θ
A+

1− cos θ

θ2
A2.

This computation finishes the proof.

2.2. Factor Graphs

The idea of a complex object being composed of a few simpler objects directly translates to a
graph-theoretic representation of this object. Each considered part of the composite object

28

2.2. Factor Graphs

as well as each (geometrical) relation between these parts is represented by a vertex in the
object’s graph model. The edges of the graph connect a vertex representing a part with all
vertices representing the relations, that part is involved in. Since no two part-vertices and
no two relation-vertices are connected by an edge, we receive a bipartite graph.

Example 2.2.1. Let’s consider a simplified model of a house and its corresponding factor
graph, constructed as described above. Let the house consist of four walls denoted as wi

for i = 1, 2, 3, 4, a roof r, and a door d. A graph displaying this house could look like in
Figure 2.1.

r

w1 w2 w4 w3

d

Figure 2.1.: Factor graph for a house viewed as a composite object

The round nodes represent the poses of the different parts of the house. The little
black squares connecting two nodes v1 and v2 indicate the transformation from the pose
of v1 to the pose of v2. These relative connections sufficiently describe the house as a
composite object. If we want to describe the house in some greater context, i.e. in some
world coordinate frame, we need some absolute conditions on a variable as well. In the
pose estimation problem of Section 3.2, this is solved with an additional node, connected
to only one node of a part of the composite object, called a prior factor.

This concept of representing a composite object with a graph is a key feature in our
solution method of the pose estimation problem of Section 3.2, where the pose estimation
scenario will be modeled with factor graphs as they are described in [36].

A factor graph consists of two disjoint sets of vertices, one referred to as variables and
the other one referred to as factors. This leads to the formal definition of factor graphs.

Definition 2.2.2. Let g : D → R be a function with domain D = A1 × A2 × · · · × An for
some sets Ai with i = 1, . . . , n and any semiring R as codomain. Suppose that there exist
a finite index set J and functions fj : Dj → R for j ∈ J with Dj = Aj1 × · · · × Ajk and
j1, . . . , jk ∈ {1, . . . , n} pairwise different, such that the function g factorizes as

g(x1, . . . , xn) =
j∈J

fj(Xj) (2.13)

29

2. Mathematical Foundations

with Xj = (xj1 , . . . , xjk) where fj(Xj) stands for fj(xj1 , . . . , xjk). A factor graph for this
factorization of g is a graph F = (V,E) with the set of vertices V = Vv ∪̇Vf and the set
of edges E that is based on the factorization (2.13). The function g is called the global
function of the factor graph F .

The nodes in Vv are called variable nodes and represent the variables x1, . . . , xn of
g(x1, . . . , xn), the nodes in Vf are called factor nodes and represent the factors fj for
j ∈ J of the factorization of g. The set E contains no edge between two variable nodes
respectively two factor nodes. The factor node for a factor fj is connected to the variable
node xi by an edge {fj , xi} ∈ E if and only if xi is an argument of fj .

So, every node in a factor graph is equipped with either a variable or a function. With
the set of variable nodes (equipped with variables) Vv and the set of factor nodes (equipped
with functions) Vf , we also write F = (Vv, Vf , E) for the factor graph F .

x1 x2 x3 x4 x5

fa fb fc fd

Figure 2.2.: Factor graph for the product fa(x1)fb(x2, x4)fc(x1, x2, x5)fd(x3, x4, x5).

Example 2.2.3. Let g : Z5
3 → Z3 be a function with the factorization

g(x1, x2, x3, x4, x5) = x21

=:fa(x1)

(2x2 + x4 + 1)

=:fb(x2,x4)

(x1 + x42 + x35 + 2)

=:fc(x1,x2,x5)

(x3 + x4 + x5)

=:fd(x3,x4,x5)

.

With the index set J = {a, b, c, d} and the respective factors, we can draw the factor graph
in Figure 2.2. If we change the split of the function g into factors to

g(x1, x2, x3, x4, x5) = x21(2x2 + x4 + 1)

=:fe(x1,x2,x4)

(x1 + x42 + x35 + 2)

=:fc(x1,x2,x5)

(x3 + x4 + x5)

=:fd(x3,x4,x5)

,

we receive a different factor graph. So, the factor graph depends on the factorization of
the function g.

We collect some simple properties of factor graphs.

Lemma 2.2.4. Considering factor graphs as given in Definition 2.2.2, the following prop-
erties hold.

(i) A factor graph is a bipartite graph.

(ii) For any simple bipartite graph G = (V1, V2, E) of vertices V = V1∪̇V2 and edges
E ⊆ V1 × V2, we can equip V1 with variables and V2 with factors such that G is a
factor graph.

30

2.2. Factor Graphs

(iii) For a function g : D → R with a factorization j∈J fj(Xj) as in (2.13) there exists
exactly one factor graph F representing this factorization.

Proof. (i) Follows directly from the split of the set of vertices in variable nodes and factor
nodes and that no two factor nodes and no two variable nodes are connected in the
graph.

(ii) For each node in Vv := V1, we introduce a variable xi together with a set of values
Ai as the domain of this variable and for each node in Vf := V2, we introduce a
function fj with a semiring R as common codomain. Let the function fj depend on
all variables, the respective node is connected to. The product of all these functions
gives a function g(x1, . . . , xn) with domain A1 × · · · ×An and codomain R. Thus, we
have created a function g with a factorization according to Definition 2.2.2 that has
the bipartite graph G as its factor graph.

(iii) This can be seen by introducing variable nodes for each variable xi of g and factor
nodes for each factor fj of g and connecting them accordingly.

So we have seen, how we can turn functions into factor graphs and factor graphs into
functions. This allows us to switch between factor graphs and functions easily.

2.2.1. Applications of Factor Graphs

Factor graphs offer a variety of applications. The most important one in our setting is prob-
abilistic modeling with factor graphs, used for example in certain navigation and location
tasks. Moreover, factor graphs are used for instance in robotics [10], coding theory [42],
and artificial intelligence [63].

In the pose estimation problem of Section 3.2, we search for an assignment of the different
parts of a truck to poses, that fits some prior information about relations between the parts
and the observations of the parts best. We can translate this in probability theoretical
terms: We search for the state X (a variable assignment) that is most likely under the given
preconditions, assumptions, and observations Z, thus, we want to maximize the posterior
density p(X|Z) [13, Section 1.6]. The following lemma can rephrase this maximization
problem.

Lemma 2.2.5. The maximum a posteriori estimate XMAP := argmaxX p(X|Z) is given
by the joint probability function p(X,Z) as

XMAP = argmax
X

p(X,Z)

Proof. Bayes’ law states in this context that

p(X|Z) =
p(Z|X)p(X)

p(Z)
.

31

2. Mathematical Foundations

The preconditions, assumptions, and observations Z are given, hence the term p(Z) is some
constant, positive factor, not influencing the maximal argument. Therefore, maximizing
the posterior p(X|Z) translates as

argmax
X

p(X|Z) = argmax
X

p(Z|X)p(X)

p(Z)
= argmax

X
p(Z|X)p(X).

The term p(Z|X)p(X) equals the joint probability p(X,Z) according to the definition of
conditional probability [6, Section 1.3]. Thus, the maximum a posteriori estimate XMAP

can be computed by maximizing the joint probability p(X,Z).

Remark 2.2.6. The term p(Z|X) is also called likelihood (function) in statistics and can be
denoted with L(X|Z), indicating, that this is seen as a function of X and not as a function
of Z [6, Section 6.3.1].

l1 l2 l3

x1

x2 x3

p(x1)

p(l1) p(l2) p(l3)

p(z
(1)
l1

|x1, l1)

p(z
(1)
l2

|x1, l2) p(z
(2)
l3

|x2, l3) p(z
(3)
l3

|x3, l3)

p(x2|x1)
p(x3|x2)

Figure 2.3.: Factor graph modeling a sensor observing landmarks over time

Example 2.2.7. Figure 2.3 shows a simple example of a factor graph F , similar to [13,
Chapter 1], modeling the situation of a sensor x moving past some landmarks l1, l2, l3 of
unknown poses, e.g. the three wheels on one side of a truck. The set of variable nodes V
of the factor graph F = (V, F,E) is given by V = {x1, x2, x3, l1, l2, l3} and the set F of the
factor nodes is visualized by the black squares. The variables xi for i = 1, 2, 3 denote the
sensor positions at three consecutive time steps. If the sensor detects at time step i the

landmark lj , the observation z
(i)
lj

is generated. These observations are seen as fixed given
values, so there are no variable nodes for them. A factor graph is undirected, the arrows
in the factor graph indicate that the poses of the landmarks and the sensor influence the

observations, resulting in the probability densities p(z
(i)
lj
|xi, lj).

With the definition of conditional probability [6, Section 1.3], the joint probability
p(x1, x2, x3) is given by

p(x1, x2, x3) = p(x3|x2, x1)p(x2|x1)p(x1) = p(x3|x2)p(x2|x1)p(x1)

where the last equality follows if we assume that the Markov property holds. The Markov
property states in this case that the pose of the sensor at time step 3 is just dependent

32

2.3. Optimization

on the pose of the sensor at time step 2 [6, Section 5.8.5]. Similarly, the joint probability
p(X,Z) of all sensor poses, landmarks, and observations is given by

p(X,Z) = p(x3|x2)p(x2|x1)p(x1)p(l1)p(l2)p(l3)
i,j

p(z
(i)
lj
|xi, lj),

which is exactly the global function f(X) defined as the product of all factors of the factor
graph F .

A common application of factor graphs among many other applications in robotics is
Simultaneous Localization and Mapping (SLAM) [13, Chapter 2]. It is similar to our pose
estimation approach and the scene displayed in Figure 2.3 is an instance of a SLAM prob-
lem. A robot tries to orient itself in an unknown environment. Equipped with some sensors,
the robot moves around and detects objects (here called landmarks) and their approximate
relative pose to the robot. These measurements are represented by factor nodes between
the variables xt of the robot’s pose at a time step t and variables li introduced for each
landmark. Furthermore, odometry measurements – information about the movement (e.g.
velocity and acceleration) of the robot [56, Section 5.4] – are taken into consideration. They
translate to factors between the variables (x1, x2, and x3 in the example above) denoting
the position of the robot at certain time steps. Prior factors on landmarks or the robot’s
starting pose enable absolute location in the environment.
Factor graphs can be used in coding theory to model and decode certain codes [42]. The

indicator function IC : An → {0, 1} for a code C over the alphabet A, that maps a word
c ∈ An to 1 if c is a code word and to 0 otherwise, is interpreted as the global function of a
factor graph. This factor graph allows efficient decoding, for instance with the sum-product
algorithm.
In artificial intelligence, factor graphs can be used to model neural networks. Zhang et

al. describe in [63] factor graph neural networks to model dependencies between different
variables.

2.3. Optimization

Optimization is the task of minimizing or maximizing a function f under certain con-
straints [25]. Finding a minimum of the function g(x) = x2 − 3x + 2 can be done by
exploiting the properties of continuously differentiable functions. In many real-life scenar-
ios, there is no explicit representation of a function that can easily be differentiated. Hence,
we need optimization methods to get as close as possible to a local or global optimum.
In Section 2.3.1, an optimization technique is introduced. Levenberg-Marquardt opti-

mization is used by GTSAM [11], the Python and C++ package employed in the solution
of the pose estimation problem, to optimize factor graphs.
Many optimization problems are set in a vector space, e.g. in Rn, where simple and

intuitive optimization techniques are applicable. However, there are problems where a
function f needs to be optimized on a (nonlinear) manifold M . There, we have to consider
the issue of moving on the manifold efficiently, which can be solved by retractions as
described in Section 2.3.2 and applied to SO2 and SO3 in Section 2.3.3. Section 2.3.4 deals
with optimization in SE3.

33

2. Mathematical Foundations

Furthermore, factor graphs can be optimized as well if they are equipped with some
probability structure. Section 2.3.5 deals with the optimization of factor graphs.

2.3.1. Levenberg-Marquardt Optimization

In Section 2.1, we have established the necessary geometric background for optimizing the
pose of an object. Now, we will briefly discuss the actual scheme for nonlinear optimization
used in this project. In particular, in Section 3.2 we describe the part of the project that
deals with pose estimation with factor graphs using the Python and C++ library GT-
SAM [11] which provides implementations of various optimization algorithms. We use the
Levenberg-Marquardt algorithm [45] that can be seen as a combination of gradient descent
and Gauss-Newton optimization [13, Section 2.5.3]. Marquardt describes this algorithm
and the theoretical background in [45].

Gradient descent, Gauss-Newton, and Levenberg-Marquardt optimization are iterative
algorithms to optimize (w.l.o.g. minimize) a function g, starting from an initial estimate
x(0) and updating an estimate x(t) by the rule

x(t+1) = x(t) + αδ(t) (2.14)

with α ∈ R and some update step δ(t) depending on the method. The scaling factor
α is chosen concerning the specific use case, ensuring that the convergence speed is fast
enough on the one hand and that the updates are safe, i.e. the steps are not too big to risk
divergence, on the other hand. This process continues until the solutions x(t) converge, i.e.
δ(t) is smaller than some threshold. The following considerations are based on [13, Section
2.5] where these three methods are discussed.
Gradient descent is a simple nonlinear optimization technique to minimize a differentiable

function g by taking steps in the direction of the steepest descent, given by the negative
gradient − grad g(x(t)) of the current guess x(t). Thus, the update rule for gradient descent
is given by

x(t+1) = x(t) + αδ
(t)
GD = x(t) − α grad g(x(t)).

Gradient descent has a slow convergence speed close to the minimum.
The Gauss-Newton method is a technique to minimize a sum of squared continuously

differentiable functions. This least squares problem is given by

min
x∈Rn

m

i=1

(gi(x))
2 (2.15)

with the function g = (g1, . . . , gm) and gi : Rn → R for each i = 1, . . . ,m. The idea is to
approximate g by a Taylor series of first order [45], thus

g(x) ≈ g(x0) +

n

j=1

gradj g(x0)(x− x0)j = g(x0) + J(x0)(x− x0) (2.16)

where J denotes the well-known Jacobian matrix

J(x) :=

∂g1
∂x1

(x) · · · ∂g1
∂xn

(x)
...

. . .
...

∂gm
∂x1

(x) · · · ∂gm
∂xn

(x)

 .

34

2.3. Optimization

Minimizing as in (2.15) with this linearization of g instead of g itself can be done by taking
the gradient of the squared norm of the right-hand side of (2.16) and setting it to zero.
This results in the equation

grad ∥g(x0) + J(x0)(x− x0)∥2 = 0 ⇒ JT (x0) (J(x0)(x− x0) + g(x0)) = 0.

Here, we take the linearization point x(t) and evaluate the Taylor series expansion at the

point x(t+1) = x(t) + δ
(t)
GN for some unknown δ

(t)
GN. Therefore, the update step δ

(t)
GN is

implicitly defined by the equation

JT (x(t))J(x(t))δ
(t)
GN = −JT (x(t))g(x(t)). (2.17)

Thus, the Gauss-Newton update rule is

x(t+1) = x(t) − α JT (x(t))J(x(t))
−1

JT (x(t))g(x(t))

=δ
(t)
GN

,

where α is again some scaling factor [45]. This method can have poor convergence behavior
if g is not nearly quadratic [13, Section 2.5.2].
In the Levenberg-Marquardt optimization, the Gauss-Newton update is modified by

introducing a real factor λ ≥ 0 in (2.17) to get the equation

JT (x(t))J(x(t)) + λ diag JT (x(t))J(x(t)) δ
(t)
LM = −JT (x(t))g(x(t)). (2.18)

where diag(A) denotes the diagonal matrix diag(a11, a22, . . . , all) consisting of the entries
of the diagonal of a quadratic matrix A ∈ Rl×l. This results in larger steps towards the
direction of the steepest descent if the gradient is small. If the gradient is big, the steps are
smaller to reduce the risk of divergence. Another modification can be made by rejecting
steps that lead to an increase in the value that should be minimized. If a step is rejected,
the value of λ is increased (e.g. in [13, Algorithm 2.1] λ is multiplied by 10) and the last
step is retaken with the new λ. If a step is accepted, λ is diminished again (e.g. λ is divided
by 10). Marquardt suggests in [45] that this algorithm combines the advantage of gradient
descent that it converges from rather far away, and the advantage of the Gauss-Newton
method that it converges rapidly when we are already close to a solution.

2.3.2. Optimization on Manifolds

Optimization methods like gradient descent, Gauss-Newton, and Levenberg-Marquardt rely
on the update rule (2.14) to gradually improve some estimate x(t). This works well in vector
spaces since δ(t) is rather easy to define and compute. On a manifold M , it is not that
easy to take a step and still stay on the manifold, thus, resulting in a new valid estimate
x(t+1) ∈ M . Absil, Mahony, and Sepulchre describe in [1, Section 4.1] a method to take a
step in a vector space and consequently bring the resulting point back onto the manifold.
A function that achieves this mapping from a vector space back to the manifold is called a
retraction.

35

2. Mathematical Foundations

In a topological sense, a retraction r is a continuous function from a topological space X
to a subspace Y of X with r(y) = y for all y ∈ Y [31, Chapter 0]. Clearly, r is idempotent,
i.e. r ◦ r = r, and therefore the topological analog to a projection in linear algebra. Here,
we need retractions on manifolds. The idea stays the same: A retraction brings a point
from the tangent space onto the manifold. The formal definition of retractions on manifolds
given in [1, Definition 4.1.1] is as follows.

Definition 2.3.1. Let M be a manifold. A retraction on M is a smooth function

R : TM → M

such that the following properties hold for the restriction Rx := R|TxM for every x ∈ M
(i.e. in Rx, we drop the first part of a pair (x, ξ) ∈ TM).

(i) Let 0x denote the zero vector of the vector space TxM , then Rx(0x) = x.

(ii) The differential DRx(0x)[·] is equal to the identity idTxM on the tangent space TxM .

These conditions ensure that the gradient at x is preserved under Rx [1, Section 4.1].
This can be visualized as in Figure 2.4.

Figure 2.4.: Visualization of a retraction taken from [1, Figure 4.1].

A deeper examination of differential geometry and the theory behind Definition 2.3.1
would be beyond the scope of this work. We will just make a brief remark and provide
references to the corresponding sources.

Remark 2.3.2. The zero element 0x of TxM in condition (i) of Definition 2.3.1 is according
to (2.5) the pre-image of 0n ∈ Rn under some ϑx,M

φ of Lemma 2.1.23. Thus, the tangent
vector 0x belongs to some (and therefore all) curve(s) γ with (φ ◦ γ)′(0) = 0n.

Part (ii) of Definition 2.3.1 is often referred to as the local rigidity condition [1, Sec-
tion 4.1]. The differential DRx(0x)[·] is a function that takes a tangent vector η of the
domain of Rx at 0x and maps it to the tangent vector DRx(0x)[η] in the tangent space of
the codomain of Rx. So to be precise, DRx(0x)[·] is a function T0x(TxM) → TxM and is
only equal to the identity on TxM if we identify T0x(TxM) and TxM as described in [1,
Section 3.5.2]. See [1, Section 3.5.6] for a more detailed description of this differential.

36

2.3. Optimization

Using a retraction R in an optimization problem on a manifold M offers two advan-
tages [1, Section 4.1]. First, R brings elements of tangent spaces TxM back onto the
manifold M . So starting from an x(t) ∈ M we can easily take steps in the tangent space
Tx(t)M since it is a vector space and, furthermore, closely related to Rn due to the map de-
fined in Lemma 2.1.23. The retraction R maps this new point in Tx(t)M onto the manifold
M and therefore delivers a new estimate x(t+1).

Second, in an optimization problem, there is usually a cost function c : M → R on the
manifold M that should be minimized. But when the steps are taken in the tangent space,
the cost function needs to be lifted to TxM as well. The function

cR := c ◦ R : TM → R

lifts the cost function to the tangent bundle. For a point x ∈ M , we denote the restriction
of cR to the tangent space TxM by

cRx := cR|TxM = c ◦ Rx : TxM → R

which is a function from a vector space to R. Due to the chain rule [1, Section 1.3] and
condition (ii) of Definition 2.3.1, the differential of cRx computes as DcRx (0x) = Dc(x).

Remark 2.3.3. Absil, Mahony, and Sepulchre state in [1, (4.4)] that even

grad cRx (0x) = grad c(x)

holds if the manifold M is endowed with a Riemannian metric (which is the case for SOn).
This would again go beyond the scope of this work. See [1, Section 3.6] for more information
about Riemannian metrics.

Example 2.3.4. There are several retractions for the special orthogonal group SOn. We will
focus on a retraction that uses the exponential map according to [2, Example 2]. For a
rotation R ∈ SOn a retraction is given by

RR : TRSOn → SOn : η → ReR
−1η. (2.19)

The tangent space TRSOn is given by (2.9), so η is of the form Rξ̂ for some ξ̂ ∈ Skewn (the
hat-operator is used for consistent notation with the next Chapter, see Definition 2.3.5).
Hence, RR(η) reduces to

RR(η) = ReR
−1η = ReR

−1Rξ̂ = Reξ̂.

The exponential eξ̂ of the skew-symmetric matrix ξ̂ is according to Theorem 2.1.37 in SOn.

Thus, the matrix product Reξ̂ is in SOn and the function RR well-defined.

To get a retraction in the sense of Definition 2.3.1, let R be the function that maps a
pair (R, η) ∈ TSOn to RR(η). Condition (i) holds due to the computation

RR(0R) = ReR
−10R = ReR

−1R0n = Re0n = RIn = R

37

2. Mathematical Foundations

with the zero element 0R of the tangent space TRSOn and the zero element 0n of the vector
space Skewn. For the second part of the definition, we have to compute the differential
DR(0R)[·]. Najfeld and Havel give in [48, Section 1.2] the general definition

DetA[V] = lim
h→0

1

h
et(A+hV) − etA

and an explicit way to calculate the directional derivative of the matrix exponential etA in
the direction V by

DetA[V] =
t

0
e(t−τ)AV eτAdτ.

Here, with η = Rξ̂η ∈ TRSOn and ζ = Rξ̂ζ ∈ TRSOn, this translates to

DRR(0R)[ζ] = lim
h→0

1

h
ReR

−1(η+hζ) −ReR
−1η

η=0R

= lim
h→0

1

h
ReR

−1(Rξ̂η+hRξ̂ζ) −ReR
−1Rξ̂η

Rξ̂η=0n

= R lim
h→0

1

h
eξ̂η+hξ̂ζ − eξ̂η

ξ̂η=0n

= R De0n [ξ̂ζ]

= R
1

0
e(1−τ)0n ξ̂ζe

τ0ndτ

= R
1

0
Inξ̂ζIndτ = Rξ̂ζ = ζ.

This shows that DRR(0R)[·] is the identity on TRSOn. Thus, R is a retraction.

2.3.3. Optimization on SO2 and SO3

After the preparations made in Section 2.1, we can formalize small steps on a rotation
manifold. Instead of adding an arbitrary, small matrix, we take small rotations in some
natural representation, translate that into a matrix, use the exponential map for quadratic
matrices as a retraction to get a rotation matrix, and then compose it with the base rotation.
In SO2, this process is quite straightforward as described in [13, Section 6.1.5]. The

special orthogonal group SO2 is according to Theorem 2.1.28 a (2(2−1)
2 = 1)-dimensional

manifold. The tangent space TBSO2 at some point B ∈ SO2, given by (2.9), is a 1-
dimensional vector space. A planar rotation around the origin can be uniquely defined by
a single number ξ ∈ R. In [13, Section 6.1.3], Dellaert and Kaess refer to this number and
its SO3-equivalent (see below), that represents a step in an incremental rotation, in this
context as local coordinates or a local parametrization. Here, we follow their proposed way
of optimizing on the rotation manifolds SO2 and SO3.
The special orthogonal group SO3 is a (

3(3−1)
2 = 3)-dimensional manifold with the tangent

space TBSO3 = {BS S ∈ Skew3}. As seen in Section 2.1.1, a rotation in R3 can be
represented by an axis a ∈ S2 and an angle α ∈ R. Since ∥a∥ = 1, the rotation is also
uniquely defined by the local coordinates ξ := αa ∈ R3.

38

2.3. Optimization

To use the retraction R given in example 2.3.4 for SO2 and SO3, we need tangent vectors
of these groups, i.e. skew-symmetric matrices, instead of the local coordinates stated above.
In [43, Section 3], this lifting from local coordinates in R3 to skew-symmetric matrices is
described by the matrix ξ̂ ∈ Skew3 that is the cross-product matrix of ξ, i.e. ξ̂c = ξ × c
for any c ∈ R3. The R2 equivalent is the function that maps a vector c = (c1, c2)

T to its
orthogonal vector (−c2, c1)

T . The matrix of this linear mapping is again skew-symmetric.
The hat-operator defines this mapping from local coordinates to cross-product matrices.

Definition 2.3.5. The hat-operator for planar rotations is the function defined as

:̂ R → R2×2 : ξ → ξ̂ :=
0 −ξ
ξ 0

.

The hat-operator for rotations in R3 is the function defined as

:̂ R3 → R3×3 : ξ =

ξx
ξy
ξz

 → ξ̂ :=

 0 −ξz ξy
ξz 0 −ξx

−ξy ξx 0

 .

Figure 2.5.: Visualization of ω⃗ and v⃗ as in [55, Figure 7-4].

We provide a physical interpretation of why it is reasonable to use the hat-operator here.
The velocity vector v⃗ of a point that rotates around an axis is given by the cross product
v⃗ = ω⃗ × s⃗ of the angular velocity ω⃗ and the position s⃗ of the object [38, Chapter VI §31].
This is visualized in Figure 2.5. The angular velocity ω⃗ refers to the local coordinates
ξ ∈ R3 defined by the product αa of the angle α and the axis a. The tangent vectors in the
tangent space TBSO3 can be seen as the speed vectors of any curves at the point B [40,
Section 3.5]. Thus, the velocity vector v⃗ refers to the tangent vectors in TBSO3 given by
the product of B with ξ̂.

So, when optimizing in SO2, the hat-operator transforms the rotation angle ξ into a
skew-symmetric (2 × 2) matrix ξ̂. Starting at a rotation Rθ, defined by the angle θ, the

39

2. Mathematical Foundations

retraction can be used to update this rotation by a local parametrization ξ as

RRθ
(Rθ ξ̂) = Rθe

R−1
θ Rθ ξ̂ = Rθe

ξ̂

2.1.36
=

cos θ − sin θ
sin θ cos θ

cos ξ − sin ξ
sin ξ cos ξ

2.1.9
=

cos(θ + ξ) − sin(θ + ξ)
sin(θ + ξ) cos(θ + ξ)

.

We introduce a notation for updating a base rotation R0 by local coordinates ξ.

Definition 2.3.6. Given a rotation R0 in SO2 or SO3 and local coordinates ξ in R respec-
tively R3 as described above, we can define the local update ⊕ of the rotation R0 by the
local coordinates ξ as

R0 ⊕ ξ := RR0(R0ξ̂).

Note, that the matrix eξ̂ for ξ = αa, that appears in a local update in SO3, has the
explicit representation

eξ̂ = I3 +
sinα

α
ξ̂ +

1− cosα

α2
ξ̂2

according to Rodrigues’ formula 2.1.38 and since

∥ξ∥ = (αax)2 + (αay)2 + (αaz)2 = |α|∥a∥ = |α|

holds. Hence, this retraction can be computed efficiently in SO2 and SO3.

Example 2.3.7. Let us examine how a simplified version of the pose estimation problem
of Section 3.2 would translate to an optimization problem on SO3. For now, we just
want to optimize for the orientation, so assume there is a camera on a pole at a fixed,
known position on one side of a truck. The camera can only rotate itself but cannot
change its position. It can detect the three wheels and the loading edge on the side of the
truck (the view of the camera might look like in Figure 3.12). Each detection generates
a vector z = (z(e), z(w1), z(w2), z(w3))T ∈ R12 where z(e), z(w1), z(w2), z(w3) ∈ R3 denote the
measurements of the loading edge and the three wheels as the direction vectors from the
camera to the respective parts of the truck (simplified as points) in the current camera
frame (i.e. the x-axis points in the direction the camera is looking at, the z-axis points
upwards, and the y-axis points to the left, such that all axes together create a right-handed
coordinate system).

Assume that a rough model of the relations between the different parts of the truck is
known and that we have access to an estimation function

h : SO3 → R12.

For a given rotation R ∈ SO3, this function h estimates the corresponding measurement
zR ∈ R12 based on the assumed model of the truck. This function is not surjective,
in particular, it does not have an inverse function. Furthermore, h might be way too
complicated to invert it even if the codomain were restricted to h(SO3) and h were injective.
On top of that, the measurements obtained by the camera are not exact but noisy and the

40

2.3. Optimization

model of the truck is not exact as well. Thus, a measurement obtained by the camera does
not have to be an element of h(SO3). For these various reasons, getting the rotation of
the camera from a given measurement z ∈ R12 is a challenging task that can be tackled by
optimizing

R∗ = argmin
R∈SO3

∥h(R)− z∥2.

In the following, we will examine, how ∥h(R)−z∥2 can be optimized similar to [13, Section
6.1.3] with Levenberg-Marquardt optimization discussed in Section 2.3.1.

Given an estimation function h : SO3 → Rn, the goal is to find

R∗ = argmin
R∈SO3

∥h(R)− z∥2.

Methods like gradient descent and Levenberg-Marquardt start at some initial estimate R(0)

and iteratively take steps δ(t) towards a new estimate R(t+1) for t ≥ 0 by minimizing

δ(t) = argmin
ξ∈R3

∥h(R(t) ⊕ ξ)− z∥2

to get R(t+1) = R(t) ⊕ δ(t). Let’s define gR(ξ) := h(R ⊕ ξ). An approximation of the
Jacobian GR of gR can be computed through, for instance, numerical differentiation or
automated differentiation. As in (2.16), we can approximate gR(ξ) by

gR(ξ) ≈ gR(0) +GR(0)(ξ − 0) = h(R) +GRξ.

Therefore, we can define the update step δ
(t)
LM as in (2.18).

2.3.4. Optimization in SE3

Until now, we just considered optimization of rotations. In the pose estimation problem
of Section 3.2, we search for optimal poses defined by elements of SE3 rather than just
optimal rotations. This is just a simple generalization from SO3 to SE3, analogously to [13,
Sections 6.2.2 and 6.2.3].

Local coordinates ξ in SO3 were given by the product of an axis a ∈ S2 and an angle
α ∈ R. For local coordinates in SE3, we simply expand the local coordinates of SO3 by a
vector v ∈ R3 modeling translations in R3. Thus, we receive 6-dimensional local coordinates
ξ of the 6-dimensional manifold SE3 (see Theorem 2.1.29).

The tangent space T(R,t)SE3 of the product manifold SE3 = SO3×R3 is according to [59,
solution to Problem 8.7] isomorphic to the product of the tangent spaces TRSO3 × TtR3.
Thus, we view tangent vectors to SE3 as a pair (η, s) ∈ TRSO3 × TtR3 or a matrix

η s
0 0

∈ R4×4

if necessary, with η ∈ RSkew3 according to (2.9) and s ∈ R3.

41

2. Mathematical Foundations

Therefore, we can define a retraction for the special Euclidean group SE3 as in Exam-
ple 2.3.4. For (R, t) ∈ SE3 and (η, s) = (Rξ̂SO3 , s) ∈ TRSO3 × R3, we define the retraction
as

R(R,t) : T(R,t)SE3 → SE3 : (η, s) → R t
0 1

eR
−1η R−1s
0 1

=
ReR

−1η s+ t
0 1

. (2.20)

We see thatR(R,t)(η, s) = (RSO3
R (η), s+t) ∈ SE3 with the retractionRSO3

R of Example 2.3.4.
At the zero element 0(R,t) of T(R,t)SE3, we compute

R(R,t)(0(R,t)) =
R t
0 1

eR
−10R R−10
0 1

=
R t
0 1

I4 = (R, t).

With the computation of the differential DRSO3
R (0R)[ζ] in Example 2.3.4 we conclude for

some tangent vector (ζ, u) = (Rξ̂ζ , u) ∈ T(R,t)SE3

DR(R,t)(0(R,t))[(ζ, u)] = lim
h→0

1

h
R(R,t)(η + hζ, s+ hu)−R(R,t)(η, s)

(η,s)=(0R,03)

=
R t
0 1

ξ̂ζ limh→0
1
hR

−1hu
0 limh→0

1
h

=
R t
0 1

ξ̂ζ R−1u
0 0

=
Rξ̂ζ RR−1u+ 0t
0 0

= (ζ, u).

This proves that the function defined in (2.20) is indeed a retraction for SE3 in the sense
of Definition 2.3.1. We can use this retraction to define local updates in SE3.

Definition 2.3.8. For T0 = (R0, t0) ∈ SE3 and local coordinates

ξ =
ω
v

∈ R6

with ω = αa ∈ R3 and v ∈ R3 as described above, we define the local update ⊕ of T0 by
the local coordinates ξ as

T0 ⊕ ξ := RT0 (R0ω̂, v)

Now we can proceed as in Section 2.3.3. Let h : SE3 → Rn be an estimation function.
To find

T ∗ = argmin
T∈SE3

∥h(T)− z∥2 (2.21)

for some measurement z, we compute the step

δ(t) = argmin
ξ∈R6

∥h(T (t) ⊕ ξ)− z∥2

to update the current estimate T (t) as T (t+1) = T (t) ⊕ δ(t).

42

2.3. Optimization

2.3.5. Optimizing a Factor Graph

Now that we know how to optimize for poses in SE3, we examine how to optimize a factor
graph. In the pose estimation problem described in Section 3.2, we will combine these
optimization approaches by optimizing for poses of different objects in SE3 that are linked
by a factor graph, simultaneously. This brief introduction to factor graph optimization is
based on [13, Sections 1.6, 1.7, and 2.2].

Let F = (V, F,E) be a factor graph with variables V , factors F and edges E ⊆ V × F .
Let furthermore f(X) = j fj(Xj) be the global function of the factor graph, defined by
the product of the factors fj ∈ F . In general, we can pose the question, which variable
assignment Xmax maximizes the global function f , i.e.

Xmax = argmax
X

f(X) = argmax
X j

fj(Xj).

Depending on the structure of F and the factors fj , we can make certain reductions to the
problem.

Let the factors of F denote probability densities as in Example 2.2.7. Thus, the global
function f(X) of this factor graph is some joint probability density p(X,Z) for unknown
states X and given observations and assumptions Z. Lemma 2.2.5 states that maximiz-
ing the joint probability density p(X,Z) gives the same argument X as maximizing the
posterior density p(X|Z). The maximum a posteriori estimate XMAP, in turn, is what we
are looking for if we search for the state X that is most likely under certain preconditions,
assumptions, and observations Z.

Let’s assume that the factors fj(Xj) are probability densities of some multivariate Gaus-
sian distribution. As a reminder, the multivariate Gaussian distribution N (µ,Σ) is given
by the density

f(x) =
1

(2π)n det(Σ)
e−

1
2
(x−µ)TΣ−1(x−µ),

where x, µ ∈ Rn and the covariance matrix Σ ∈ Rn×n [30, Chapter I, Section 5]. In
particular, the factors are proportional

fj(Xj) ∝ e−
1
2(h(Xj)−zj)

TΣ−1
j (h(Xj)−zj)) = e

− 1
2
∥h(Xj)−zj)∥2Σj (2.22)

with the notation (h(Xj)− zj)
TΣ−1

j (h(Xj)− zj) = ∥h(Xj)− zj)∥2Σj
from [13, Section 2.2].

The measurements zj and the estimation function h are used as in Section 2.3.3. Thus,
the error h(Xj)−zj of the estimation function h regarding the measurement zj is normally
distributed around the mean 0 with the covariance matrix Σj .

43

2. Mathematical Foundations

With the considerations above, we can compute

XMAP 2.2.5
= argmax

X
p(X,Z)

= argmax
X j

fj(Xj)

(1)
= argmax

X j

e
− 1

2
∥hj(Xj)−zj∥2Σj

(2)
= argmax

X
log

j

e
− 1

2
∥hj(Xj)−zj∥2Σj

= argmax

X
−1

2
j

∥hj(Xj)− zj∥2Σj

(3)
= argmin

X j

∥hj(Xj)− zj∥2Σj
.

The equality in (1) holds since the maximal argument does not change if the objective
function is multiplied by a constant positive factor. For the equality in (2), we used that
the natural logarithm is a strictly increasing function and, thus, preserves the maximal
argument. To obtain the equality in (3), we used that the argmax of some function g
multiplied with a negative constant factor changes to the argmin of g.
For Xj in some manifold, the resulting optimization problem

XMAP = argmin
X j

∥hj(Xj)− zj∥2Σj
(2.23)

can be solved with the methods discussed in Sections 2.3.1 and 2.3.4 similar to the opti-
mization problem (2.21).

Remark 2.3.9. The later used library GTSAM [11] uses this optimization scheme for opti-
mization on manifolds with factor graphs as documented in [12].

2.4. Geometric Algorithms and Data Structures

The loading edge detection problem, described in Section 3.1, raised various geometric
issues. The data generated by the sensors was given as point clouds. Section 2.4.1 discusses
point cloud manipulation techniques and a data structure that allows to efficiently store,
process, and find points in the point cloud.
In Section 2.4.2, we describe and analyze the classic geometric algorithm RANSAC in

detail. This algorithm is used several times in different variants in the implementation of
the loading edge detection problem.

2.4.1. Point Cloud Processing

The most common ways to represent a geometric object in computer vision, computer
graphics, or computer-aided geometric design are polygon meshes and point clouds [41].

44

2.4. Geometric Algorithms and Data Structures

For more information on polygon meshes and data structures to represent them, see for
instance [57]. In this project, we work with point clouds in the loading edge detection
problem and mainly with poses of objects represented by one element of SE3 in the pose
estimation problem.

Here, we focus on point clouds and their processing and manipulation. According to [41],
a point cloud is a set of points (in our case in R3) that represents the surface of one or
more objects. They can be generated using for example LiDAR sensors or ZED Cameras
(see Chapter 3). Sometimes, models of objects generate these data because they are easier
to obtain than real data.

In the preprocessing of point clouds, some kind of downsampling is used to reduce the
number of points and, consequently, increase the speed of computations on this point cloud.
There are several types of downsampling. Some libraries like the open-source Python and
C++ package Open3D provide a variety of point cloud manipulating functions, including
downsampling functions as described in [64].

(a) Original point cloud. (b) Downsampled point cloud with x = 0.009m.

(c) Downsampled point cloud with x = 0.018m. (d) Downsampled point cloud with x = 0.036m.

Figure 2.6.: Point cloud of a truck downsampled with voxel downsampling for different
voxel sizes x.

The first downsampling method discussed here is voxel downsampling. Voxel is short for
volumetric pixel and can be seen as a pixel in three dimensions [8]. When a point cloud
is downsampled by voxel downsampling, the considered space is subdivided into a grid of
voxels of some fixed size x (i.e. x gives the side length of the cubes representing the voxels),
and the points of the point cloud are assigned to the voxel they are located in. A voxel
V containing the points p1, p2, . . . , pm then generates one point in the new point cloud by

45

2. Mathematical Foundations

averaging its assigned points as

1

m

m

i=1

pi.

The resulting point cloud consists of more uniformly distributed looking points that mit-
igate real data noise to some extent. Regions with a high point density are thinned out
compared to regions with a low point density. This new point cloud is highly dependent on
the parameter x of the size of a voxel. If x is too small, almost no downsampling happens
because there are no voxels with a high number of points in them. If x is too large, the
point cloud can lose some of its characteristic features as the extreme example of just one
big voxel shows. In Figure 2.6, a point cloud of a truck before and after downsampling is
shown.

Another way to downsample a point cloud is to randomly select every n-th point from
the original point cloud to create the downsampled point cloud. By using this method,
dense regions of a point cloud remain dense compared to sparse regions. It depends on the
actual use case whether this method is preferred over voxel downsampling.

Real data usually comes with unwanted noise. Sometimes the depth of a point computed
from camera images is too far away from the real depth due to some errors. Especially
points in the background of a scene are often poorly matched. To remove these outliers, one
can search the neighborhood of each point. If the number of points in the ball with radius
r around a point p is below a certain threshold N , the point is considered an outlier and
is removed from the point cloud. The parameters r and N have to be chosen according to
the point cloud, depending on how the point cloud was generated or already downsampled.

If we know which region of a point cloud contains the desired information, we can cut
the point cloud accordingly, for instance, remove all points that lie below a plane or outside
of a ball with a certain radius and center.

In practical applications, a combination of these methods is chosen to obtain a point cloud
in the desired format, ensuring that algorithms deliver correct results and work efficiently.
In Section 3.1.1, we explain the downsampling techniques employed in the loading edge
detection algorithm.

Some downsampling techniques as well as our implementation of the loading edge detector
need an efficient data structure for organizing point clouds. For example, if we want to
find all points in a point cloud C that lie within a certain distance from a reference point p
naively, we just iterate over all points in C, compute the distance, and check if this distance
is below a certain threshold. Computing the neighbors of all n points in C takes in total
Θ(n2) time, which is pretty bad. Thus, we use and briefly describe kd-trees, introduced by
Bentley in [4].

This is a data structure for k-dimensional data. Here, we deal with 3-dimensional points
p = (p1, p2, p3)

T ∈ R3, but this concept generalizes to k dimensions easily. First, we split
the set of points according to their first coordinate: We take a plane parallel to the second
and third axis such that there is approximately an equal number of points on both sides
of the plane. Then, we divide the set of points C into two sets C1, C2 for the two sides
of the plane. The set C1 is forwarded to the left child of the root and the set C2 to the
right child. We split C1 according to the second coordinate of the points (we divide the
space with a plane parallel to the first and third axis) into the sets C11 and C12. Then,

46

2.4. Geometric Algorithms and Data Structures

we split C11 according to their third coordinate (we divide the space with a plane parallel
to the first and second axis) into the sets C111 and C112. After that, we start again by
dividing the points according to their first coordinate. We continue for each set Cn1n2...nl

with this procedure until each point can be identified uniquely. This can be seen as a higher
dimensional generalization of binary search trees. Querying a kd-tree with an axis-aligned
search region takes O(n1− 1

k +m) time, where n is the number of points, k the dimension
of the data, and m the number of points in the output of the range query.
A kd-tree can be used to estimate the normal vectors of points in a point cloud. Assuming

that the points in the point cloud represent the surface of an object, it makes sense to equip
the points with the normal vector of the represented surface at the respective positions.
The Open3D function estimate_normals realizing these considerations, uses a kd-tree to
find all points that are close to the considered point p [64]. Let Np be the set of neighbors
of p found with the kd-tree. To compute the normal of that point, we first compute the
covariance matrix as

S =
1

n
x∈Np

(x− µ)(x− µ)T ,

where n denotes the number of points and µ = 1
n x∈Np

x the center of the points in
Np. The two eigenvectors v1 and v2 to the two largest eigenvalues of S define the two
principal components of Np [15, Section 10.13.1]. Thus, the normal vector np of the point
p is estimated as the cross-product v1 × v2 of the two principal directions.

2.4.2. RANSAC

The fitting of lines, planes, circles, parabolas, or many other simple geometric objects
is an important issue, that appears in many real-life applications. It is a geometric op-
timization problem: Fitting a parabola given by f(x) = ax2 + bx + c in a set of data
points {(xi, yi)Ni=1} ⊆ R2 using least-squares regression is the task of minimizing the sum
of squared errors

N

i=1

(yi − f(xi))
2

with respect to the parameters a, b, c ∈ R [49].
Fitting a plane given of the equation E : ax + by + cz + d = 0 in a set of data points

{(xi, yi, zi)Ni=1} ⊆ R3 using orthogonal regression is the task of minimizing the sum of
squared orthogonal distances

N

i=1

d(E, pi)
2

with respect to the parameters a, b, c, d ∈ R, where d(E, pi) denotes the orthogonal distance
of the point pi = (xi, yi, zi) to the plane E [29, Section 4.7.1].
These approaches as well as many other geometric estimation approaches consider outlier

points to some degree. In Section 3.1 we want to fit lines in a 3D point cloud of a scene
captured with sensors and processed with some functions. The line should estimate the
loading edge of a truck. In this scenario, the two approaches mentioned above could not
deliver a reasonable result since they try to minimize the error to points that have nothing

47

2. Mathematical Foundations

to do with the loading edge. Here we use the RANSAC algorithm proposed by Fischler
and Bolles in [19].
RANSAC stands for random sample consensus and is a model-fitting method that is

robust with respect to outliers. Contrary to the regression techniques described above,
outliers that do not resemble the optimal solution are eliminated instead of trying to adapt
the solution to them. We start with a geometric model that can be defined by at least m
points. Then, m points are randomly sampled from the data set. For the instance of the
model defined by these points, the total number of data points that lie close enough to
the model is counted. The algorithm repeats this process and keeps the best solution with
respect to the number of votes. Algorithm 1 shows a simple pseudo-code of this approach.

Algorithm 1 Random Sample Consensus (RANSAC)

Input: point cloud C, model tolerance ε, maximum number of iterations N
Output: best model parameters M

Mbest ← None
nbest ← 0
for i ← 1 to N do

randomly sample m points from C
M ← parameters for the model defined by the sampled points
n ← number of points in C with a distance < ε to the model with parameters M
if n > nbest then

nbest ← n
Mbest ← M

end if
end for
return Mbest

Examples of simple use-cases of RANSAC are line fitting, where a line is defined by
two points, plane fitting, where a plane is defined by three non-collinear points, and cir-
cle fitting, where a circle is defined by three non-collinear points. Some models underlie
restrictions regarding the defining points. There is the case of, for instance, a plane that
is not sufficiently defined by three collinear points. This can be fixed by sampling more
points until there are three non-collinear points given. A circle on the other hand cannot
be defined by adding more sample points if the initial three points are collinear (if no circle
of infinite radius, i.e. a line, is allowed). This situation could be handled by keeping two
points and resampling the third one until they are not collinear. These model-specific issues
can be addressed when the parameters for the model are computed.
We will choose the model tolerance ε as seen in Algorithm 1 according to the scene we

are working on. In particular, for the loading edge detection, ε is chosen with respect to the
accuracy of the generated point cloud. If the loading edge is nearly a straight line, ε can be
very small. Otherwise, ε has to be chosen bigger, such that all points on the loading edge
are considered for a good RANSAC approximation. In Section 3.1 we chose a tolerance of
0.08 meters.
The maximum number of iterations N is important for the running time of the algorithm.

48

2.4. Geometric Algorithms and Data Structures

For finding a line in a point cloud of 1000 points, there are already 1000
2 = 499500 possible

point pairs. This number grows like Θ(N2). So, N has to be chosen small enough for the
algorithm to run efficiently but big enough that a good approximation can be found.
Fischler and Bolles, who first described the RANSAC algorithm, propose in [19, Sec-

tion II.B.] a way of estimating the maximum number of iterations N required to get a
good solution with a certain probability. We adapt this approach here. Let us assume that
we have a set C of c points and the true optimal solution S ⊆ C contains n ≤ c points.
Furthermore, let m ≤ n be the number of model parameters of the model we try to fit into
the set C. We will call the n points in S inlier points or just inliers.
Let Km be the random variable giving the number of iterations of the for-loop of

RANSAC until we find a set of model parameters M defining the solution S. Let us
assume that this is achieved if and only if the m chosen points are in the solution set, i.e.
M ⊆ S. For a small tolerance ε, this gives a good approximation. Then the expected value
E(Km) of the number of trials is given by

E(Km) =
k≥1

P(Km = k)k,

where P(Km = k) denotes the probability that the correct solution is obtained in the k-th
trial for the first time. Let

qm :=
n
m
c
m

=
n!

m!(n−m)!

m!(c−m)!

c!
=

n!(c−m)!

c!(n−m)!
(2.24)

be the probability that m randomly chosen points in C lie in the set of S. Then the
probability P(Km = k) is obtained by k− 1 unsuccessful attempts followed by a successful
trial as

P(Km = k) = (1− qm)k−1qm.

Now we can compute the expected value as

E(Km) =
k≥1

(1− qm)k−1qmk

(1)
= qm

k≥1

kq̄k−1
m

(2)
= qm

k≥0

q̄km

′

(3)
= qm

1

1− q̄m

′

= qm(−1)
−1

(1− q̄m)2
=

qm
q2m

=
1

qm
.

In the above computation, the equality in (1) is obtained by defining q̄m := 1 − qm. The
equalities in (2) and (3) follow from the rules of differentiating formal power series and the
formal power/Laurent series identity i≥0X

i = 1
1−X [51, Section 8.4].

49

2. Mathematical Foundations

The variance V(Km) of the number of iterations till success is then given by

V(Km) = E(K2
m)− E(Km)2

=
k≥1

P(Km = k)k2 −

k≥1

P(Km = k)k

2

=
k≥1

(1− qm)k−1qmk2 − 1

qm

2

= qm
k≥1

k(k − 1 + 1)q̄k−1
m − 1

q2m

(4)
= qmq̄m

k≥2

k(k − 1)q̄k−2
m + qm

k≥1

kq̄k−1
m − 1

q2m

(5)
= qmq̄m

k≥0

q̄km

′′

+ qm

k≥0

q̄km

′

− 1

q2m

(6)
= qmq̄m(−1)

−2

(1− q̄m)3
+

1

qm
− 1

q2m

=
2− 2qm

q2m
− 1− qm

q2m
=

1− qm
q2m

.

In (4), the index can be shifted to k ≥ 2 since for k = 1 the summand k(k − 1)q̄k−2
m is 0.

The equalities in (5) and (6) work as in (2) and (3) above.
This gives just a rough idea of the magnitude of a reasonable number of iterations N .

We can also choose N such that all chosen points lie in the solution set S in at least one
of N iterations with a certain probability p as in [29, Section 4.7.1]. This is the same as
failing to choose all points in S in all N iterations with a probability of 1− p. Thus, with
the notation above, the equation

1− p = (1− qm)N

defines N for given p and qm. Taking the log of this equation and dividing by log(1− qm)
gives the equivalent equation (under the assumption p, qm /∈ {0, 1})

N =
log(1− p)

log(1− qm)
. (2.25)

Lastly, we can simplify the definition of qm as seen in (2.24). Usually, we do not know
the exact numbers c of total points and n of inlier points. Instead, we can estimate the
percentage of inlier points compared to the total number of points in C. Furthermore, m is
typically small (e.g. 2 for lines, 3 for planes) compared to the total number of points and
inliers. Thus, we can assume that the probability of choosing an inlier remains constant
for all chosen points. Let r be this probability (approximately n

c with the notation above),
then qm simplifies to

qm = rm.

50

2.4. Geometric Algorithms and Data Structures

Example 2.4.1. Let C ⊆ R2 be a point cloud as in Figure 2.7. We do not want to find a
regression line but rather the longest line of points in the point cloud. Thus, RANSAC
is an appropriate approach. About 1

3 of the points lie on the longest line. The expected
number of trials to success is then given by

E(K2) =
1
1
3

2 = 9

and the variance and standard deviation by

V(K2) =
1− 1

9

1
9

2 = 72 and V(K2) = 6
√
2 ≈ 8.49.

To get approximately this line with a probability of at least 99%, we perform RANSAC
with a maximum number of N = 40 iterations according to

log(1− 0.99)

log 1− 1
9

=
log(0.01)

log 8
9

≈ 39.10.

(a) Point cloud in R2. (b) Line containing the most points.

Figure 2.7.: RANSAC line detection example.

51

3. Composite Object Detection in a Loading
Scenario of a Truck

This thesis is part of a bigger project at the Austrian Institute of Technology (AIT), dealing
with the autonomous loading of trucks. Here, we address two specific problems of a loading
scenario.

The first issue is to detect the loading edge of a truck in a point cloud that is generated
by LiDAR sensors or depth cameras. Our solution method includes several geometric
considerations on these points and is presented and analyzed in Section 3.1. The essential
parts of the code of our implementation can be found in Appendix A.

In the second and central part of this chapter, we view the whole truck as an object that is
composed of simpler objects, namely wheels, lights, and the loading platform (respectively
the two loading edges on both sides). In a loading scenario, a forklift equipped with
sensors should be able to estimate its own pose relative to the truck, given only a rough
approximation of the configuration of the truck, i.e. the relative poses of the different parts
of the truck to one another. This pose estimation approach is examined in Section 3.2.
In Appendix B, we present the crucial parts of our implementation for solving this pose
estimation problem.

The algorithms and methods used in this chapter are based on the mathematical foun-
dation examined in Chapter 2. In Section 3.1, we use point cloud manipulation techniques
and the RANSAC algorithm of Section 2.4. The pose estimation problem of Section 3.2 is
based on factor graphs (see Section 2.2) and optimization on manifolds (see Section 2.3).

All data used in this work come from real recordings of a truck. We used a MAN TGS
26.440 truck [44], a PALFINGER BM 214 truck-mounted forklift (also called Crayler) [50],
and a ZED 2i Camera [54], all provided by Palfinger and the AIT. Figure 3.1 displays the
used equipment. The truck was used in both the loading edge detection of Section 3.1 and
the pose estimation problem of Section 3.2 as the composite object to be detected. The
ZED Camera was mounted on the top of the forklift and the forklift drove around the truck,
observing it with the camera. Above the ZED Camera, we installed a LiDAR sensor (short
for Light Detection and Ranging), which generates a point cloud of its surroundings with
laser scanning. The data obtained from the ZED Camera and the LiDAR sensor could be
combined to get better data. Here, we only used the ZED Camera for recording.

The ZED Camera is equipped with two cameras, recording at the same time. Thus,
it captures stereo images enabling depth perception. The depth data is computed by
bundle adjustment. This technique compares matching points in the left and right image
to compute the corresponding 3D point by optimizing a nonlinear least squares problem [7].
The internal coordinate system of the ZED Camera depends on the application and the
software used to generate the data. In Remark 3.1.1, we describe the two variants used in
this work. We refer to [53] for further information on the coordinate frames of this camera.

53

3. Composite Object Detection in a Loading Scenario of a Truck

(a) Truck and autonomous forklift.

(b) ZED Camera of Stereolabs [54].

Figure 3.1.: Truck, autonomous forklift, and ZED Camera used in our experiments.

3.1. Loading Edge Detection

When a truck is being loaded from the side, the essential part of the truck to detect is the
loading edge, i.e. the side boundary of the loading platform. In Figure 3.2 one can see a
point cloud of a truck recorded with a ZED Camera, where the loading edge is detected
with our proposed algorithm and marked in red.

The presented method of loading edge detection relies on the geometric properties of
points on the loading edge. Additionally, it uses initial estimates of the height of the
loading edge above the ground as well as the height and angle of the camera. These
parameters are usually easy to get before using the algorithm with some knowledge about
the setting of the camera attached to the autonomous forklift and the truck whose loading
edge has to be detected. The more accurate these estimates are, the faster the algorithm
gets, because the part of the point cloud where the loading edge could be located can be
restricted accordingly.

In light of the pose estimation task described in Section 3.2, we are not only interested in
the pose of the loading edge for the autonomous forklift to know where to place the load.
The beginning of the left loading edge will mark the origin of the world coordinate frame
in which the sensor should locate itself. The direction of the x-axis of the world frame will
be defined by the left loading edge and the z-axis will point upwards, orthogonal to the
loading platform. The y-axis will be chosen such that the world frame forms a right-handed

54

3.1. Loading Edge Detection

coordinate system. In Figure 3.12 the coordinate system of the world frame is marked with
three arrows defining the axes.

Thus, this algorithm also tries to find the edge between the loading platform and the
rear wall to get the beginning of the loading edge and to define the plane incident to the
loading platform and therefore the direction of the z-axis. In Appendix A the important
parts of the code of our approach to the loading edge detection problem can be found.

In Section 3.1.1 we describe how we solved and implemented the loading edge detection
problem and briefly discuss different approaches for edge detection algorithms. Then, we
analyze our code and the parameters of our code in Section 3.1.2.

Figure 3.2.: Point cloud of a truck with the detected loading edge marked in red.

3.1.1. Description of the Algorithm

The presented algorithm deals a lot with point cloud processing and manipulation. The
Python and C++ library Open3D [64] is specialized in 3D Data Processing and was used
in the version 0.17.0. It is compatible with the Python package NumPy [28] which speeds
up computation and makes arrays of any shape easy to handle. In addition to these two
packages, the python time package was used for measuring the performance of the algorithm
in terms of running time and comparing different parameter combinations.

We chose an object-oriented approach. For each point cloud, we want to find the loading
edge in, an instance of the class LoadingEdgeDetection is created and initialized with this
Open3D point cloud, an estimated height and angle of the sensor(s) (ZED Camera and/or
LiDAR sensor), and an estimated height of the loading platform. Furthermore, some other
parameters can be set optionally when initializing a class instance, otherwise, their default
values are used. They will be described below.

When an instance of the LoadingEdgeDetection class is initialized, the up-vector u∗

(z-axis of the world frame) of the scene is estimated in the sensor coordinate frame from
the given depth angle of the camera. This is equivalent to finding a rotation in SO3 that

55

3. Composite Object Detection in a Loading Scenario of a Truck

transforms the z-axis of the sensor frame to the z-axis of the world frame. Here, the
sensor frame is defined as a right-handed coordinate system with the x-axis pointing in the
direction the sensor is looking at, the y-axis pointing to the left, and the z-axis pointing
upwards. Since u∗ is only a rough estimation of the real up-vector of the scene, we assume
that the camera is just tilted to the front. Therefore, we only need a rotation around the
y-axis to rotate the z-axis of the sensor coordinate frame upwards. Thus, for a given depth
angle α of the camera, the up-vector is given by

u∗ =

cos(−α) 0 − sin(−α)
0 1 0

sin(−α) 0 cos(−α)

0
0
1

 =

− sin(−α)
0

cos(−α)

 .

Remark 3.1.1. The choice of the sensor frame is dependent on the hardware and software
used to obtain the data. There is no general convention for sensor coordinate frames. Here,
we obtained the data with a ZED Camera using the camera frame standard of the robot
operating system (ROS). In Section 3.2, we use a sensor frame where the sensor looks in
negative z-direction, the y-axis points upwards, and the x-axis to the right since the data
used in that algorithm are obtained by Blender which is based on the OpenGL standard
camera definition, where this is the standard sensor frame [53].

Working with real data presents some difficulties. First, we have only limited control over
the amount of data generated by the sensors. Here, with over 2.7 million points generated
by the ZED Camera, computation would take way too long for practical purposes. Thus,
we need to preprocess the point cloud with techniques described in Section 2.4.1. Figure 3.3
shows the downsampling process used here.

We start by performing voxel downsampling using a voxel size of 0.015 meters reducing
the point cloud to roughly 700,000 points. In the next step, outliers are removed, such that
around 600,000 points remain. For a point cloud generated by a ZED Camera, a point p is
considered an outlier if there are less than 30 points within a radius of 0.05 meters around
p. Lastly, we use the estimated height of the loading platform and the estimated direction
of u∗ to get an approximate pose of the plane L that is incident to the loading platform.
Then we cut the point cloud around this plane and remove every point that is too far away
from L. About 200,000 points remain. The parameter search_width defines the width
of the remaining strip of points. Besides lowering the number of points and thus lowering
the computation time, the last step has another effect: We cut away a lot of points of
the scene that could be detected as edge points by the algorithm, for instance, the edge
between the floor and a wall is an edge that could be declared as loading edge falsely. Thus,
search_width should especially be chosen small enough to cut the floor away. We refer to
the point cloud obtained after these downsampling steps as C.
Now the preprocessing of the point cloud is finished and the search for the loading edge

can start. As mentioned above, the goal is to find the beginning of the loading edge, i.e. the
loading edge el and the edge ew between the loading platform and the rear wall of the truck,
if possible. In Figure 3.2 these two edges are marked in green and red. The algorithm does
not work with semantic information about el, in particular, only the geometric properties
of the points are used to find the loading edge. To be precise, the algorithm first looks for
the longest edge e1 in the point cloud C that is approximately orthogonal to the estimated

56

3.1. Loading Edge Detection

up-vector u∗ with the function find_longest_edge(). In the second step, the function
find_orthogonal_line() searches for an edge e2 that is approximately orthogonal to e1
and u∗. Depending on the camera’s pose and the resulting perspective, either el or ew is
found first.

Let us assume that every edge detection and every estimation of angles and heights
works perfectly (or sufficiently well). Then the algorithm delivers the correct result or
approximation if the longest visible edge e1 in the point cloud is in {el, ew} and the longest
visible edge orthogonal to e1 and u∗ is also in {el, ew}.

To find the edge e1, we first compute possible edge points in C. The method that works
best among all methods considered here in this context uses the estimated normals of the
points in the point cloud. The normals of points in a point cloud can be estimated as
described in Section 2.4.1. Figure 3.4 shows the edge points detected by this method.
Alternative approaches to finding edge points are discussed at the end of this section.

To get edge points, we compute the kd-tree of the points in C (see Section 2.4.1 for more
about kd-trees) and estimate the normals of the points. To further accelerate the compu-
tation, the point cloud C is then downsampled one more time. Now, we use the uniform
downsampling method of Open3D with a downsampling factor of 40, which randomly se-
lects every 40-th point, to get the point cloud C′. The roughly 200,000 points in C reduce
to about 5,000 points in C′. Now we search for edge points in the point cloud C′.

(a) Original point cloud. (b) Voxel downsampling of the point cloud (a).

(c) Outliers of the point cloud (b) removed. (d) Point cloud cut to the interesting region.

Figure 3.3.: Downsampling process of a point cloud of a truck: First, we apply voxel down-
sampling, then we remove outlier points, and then we restrict the point cloud
to a small area around the loading platform.

57

3. Composite Object Detection in a Loading Scenario of a Truck

Figure 3.4.: The blue points are the edge points that are detected by using the estimated
point normals. For illustration purposes, the edge point detection was carried
out on C instead of C′.

For each point p in C′, let Np ⊆ C be the set of neighbors of p, i.e. all points in C that
lie within a radius of 0.1 meters around p. This set can be efficiently obtained by using
the kd-tree computed for C. Let Nup

p ⊆ Np be the set of all points whose normals are
(approximately) parallel to the up-vector u∗ and let N rest

p := Np \ Nup
p be the set of all

other points. In this approach, we call a point p an edge point as declared in the following
definition.

Definition 3.1.2 (Edge Points using Estimated Normals). Concerning the conditions and
definitions stated above, we call a point p an edge point if all of the following properties
hold.

(i) The normals of the points in Nup
p have (approximately) the same direction vupp .

(ii) The normals of the points in N rest
p have (approximately) the same direction vrestp .

(iii) The vectors vupp and vrestp are (approximately) orthogonal.

(iv) The sets Nup
p and N rest

p are (approximately) the same size.

All these conditions are just approximately because real data as well as the estimated
normals are not perfect. This is a reasonable way to define edge points because under these
conditions, a point p lies in the intersection of two planes (all points in a plane have the
same normal vector). Part (iii) of the definition ensures that the edge found is created by
two nearly orthogonal planes, just like the loading edge. This definition of edge points is
similar to the edge detection approach described in [60, Section 4.2].
Figure 3.5 visualizes this edge point definition. The arrows indicate the estimated nor-

mals for points close to the considered (orange) point p. If the neighbors of p lie in a
plane, all estimated normals are approximately parallel. If the points in Np lie on a curved

58

3.1. Loading Edge Detection

surface, the estimated normals point in various directions. In the last case, p is indeed
an edge point. The estimated normals cluster in two approximately orthogonal groups as
described above.

Figure 3.5.: Normals for points on planes, curved surfaces, and edges as [60, Figure 3].

We can define the vectors vupp and vrestp as

vupp =
1

|Nup
p |

q∈Nup
p

nq and vrestp =
1

|N rest
p |

q∈Nrest
p

nq,

where nq is the estimated normal vector of a point q. The normals nq in Nup
p have ap-

proximately the same direction if the length of vupp is close to 1. So, parts (i) and (ii) are
checked by computing vupp and vrestp and their lengths. Allowing shorter vectors leads to
more accepted edge points. So if (i) and (ii) hold, the points of Nup

p and the points of N rest
p

lie in a plane each.
Condition (iii) of Definition 3.1.2 is only checked if both vectors vupp and vrestp are not the

zero-vector. Thus, we can compute the inner product

1

∥vupp ∥v
up
p ,

1

∥vrestp ∥v
rest
p . (3.1)

If this inner product is 0, these vectors are orthogonal. Allowing inner products close
to 0 leads to more accepted edge points. This relaxation makes sense since the inner
product (3.1) relates to the angle α between the corresponding vectors by the formula [39,
Section 6.1 (2)]

cosα =
⟨vupp , vrestp ⟩
∥vupp ∥∥vrestp ∥ =

1

∥vupp ∥v
up
p ,

1

∥vrestp ∥v
rest
p .

If this condition holds, the edge is created by two (nearly) orthogonal planes.
Lastly, part (iv) of Definition 3.1.2 can easily be checked by comparing the number of

points in both sets. Allowing small differences in the number of contained points leads to
more accepted edge points. This condition ensures that the points accepted as edge points
lie sufficiently close to the edge. In an extreme case, the setN rest

p could, for example, contain
only one point with all other points belonging to Nup

p and thus, under condition (i), lying
in a horizontal plane, rather far away from the edge.

59

3. Composite Object Detection in a Loading Scenario of a Truck

The partition into the sets Nup
p and N rest

p as well as the checks of the conditions above
happen in the functions find_edge_points_normals() and cluster_normals().

Now, we have a set Cedge ⊆ C′ of edge points. The edge e1 is defined as the line passing
through the most points in Cedge, with a small tolerance allowing points to lie close to the
line. This is done by a RANSAC approach as described in Section 2.4.2. In Figure 3.4
about 1

3 of all edge points lie on the loading edge. Thus, with Formula (2.25), at least 40
iterations of RANSAC are required to find this edge with a probability of 99%.

To find e2, the function find_orthogonal_line() searches in Cedge for the longest
edge (approximately) orthogonal to e1, using a RANSAC approach. In particular, with
RANSAC the line with the most votes in Cedge is found. If this line is approximately or-
thogonal to e1 and u∗, it is accepted as e2. Otherwise, the points on this line are deleted
from Cedge and the process is started again. The parameter max_lines defines how often
this search is restarted. By doing this, we want to avoid accepting an edge orthogonal to
e1 that consists of too few points, because the edge between the loading platform and the
rear wall of the truck does not have to be visible in every analyzed scene. So if no second
edge e2 is detected within a few iterations, the algorithm just finds one edge.

If a second edge was found, we want to declare a point as the origin of the world frame.
Using perfect data, this would be the intersection point of e1 and e2. Generally, these two
lines do not intersect in practice. Let Ei for i = 1, 2 be the plane determined by ei and the
estimated up-vector u∗. Let S1 be the intersection point e1 ∩E2 and S2 be the intersection
point e2 ∩ E1. The origin is then defined as the midpoint 1

2(S1 + S2) between the two
intersection points.

In the next step, the directions of the x-axis and the y-axis are defined. The coordinate
frame should look as in Figure 3.12, so the loading edge and the edge between the loading
platform and the rear wall lie in positive x- respectively y-direction of the origin. Again
with a RANSAC-like approach, we look for the endpoints of the lines e1 and e2 in Cedge:
Two edge points are sampled and the pair of points with the greatest distance between
them is accepted as the pair of endpoints of the line. This does not have to be the very
best solution possible, some good approximation is sufficient. The vector from the origin
to the endpoint that is further away defines the direction of the corresponding axis.

As stated above, it is not clear if el or ew is the line e1 that is found first by the algorithm.
To differentiate el from ew, we look at a difference between these two edges, that can easily
be detected in a point cloud: Directly above the loading edge el are no points, while
directly above ew there are still many points of the rear wall. So both lines are lifted by
a few centimeters in the direction of u∗ and the number of points on the lines before and
after the lifting are compared. The line with the smaller quotient of the number of points
on the line after and before lifting is declared as the loading edge el.

Let vl and vw be the direction vectors of el and ew. If the truck is seen from the left side,
the direction vectors vleftx , vlefty , and vleftz are defined as

vleftx := vl, vleftz := vleftx × vw, vlefty := vleftz × vleftx .

The order of the factors of the cross-product is important and can be checked with the
right-hand rule. If the truck is seen from the right side, this process does not define the
origin of the world frame. But concerning the factor graph approach for the pose estimation

60

3.1. Loading Edge Detection

problem in Section 3.2, we define the pose of the right loading edge by the coordinate frame
where el defines the y-axis instead of the x-axis as above. So, let

vrighty := vl, vrightz := vw × vrighty , vrightx := vrighty × vrightz

be the direction vectors of the axes if the right loading edge was detected.

If only the loading edge el was detected, the origin is set to one endpoint randomly. The
z-axis is defined by the up-vector and the last axis is defined by the cross product of vl and
u∗. Whether the last axis is taken as vl × u∗ or as u∗ × vl is determined by moving the line
of the loading edge a bit to the side to detect on which side of the loading edge the loading
platform is located.

This is our approach to solving the loading edge detection problem. A different approach
to defining the edge points was attempted in this project: Instead of estimating the normals
of all points in the neighborhood Np of a potential edge point p, we compute the centroid
cp =

1
n p′∈Np

p′ of the neighbors of p and measure the distance d(p, cp). This edge detec-

tion method is also described in [3]. If this distance is larger than a certain threshold, the
point p is declared as an edge point. Figure 3.6 shows the edge points detected in that way.
We can see that a lot more points on edge-like structures in the point cloud (especially on
things lying on the loading platform) are declared as edge points. Furthermore, points on
borders of the point cloud fulfill this property too. Methods like this centroid approach
lack the possibility of considering previous knowledge about the edge direction, such as a
normal vector to that direction. A possible improvement would be to consider the vector
cp − p instead of just the distance d(p, cp) = ∥cp − p∥2. Du summarizes and compares
different edge detection techniques in his work [14], including the normal vector approach
and the centroid approach.

Figure 3.6.: The blue points are the edge points that are detected by using the centroids of
the neighbors.

61

3. Composite Object Detection in a Loading Scenario of a Truck

3.1.2. Parametrization and Analysis of the Algorithm

The quality of the result of the loading edge detection algorithm depends on the quality of
the data. For a perfectly generated point cloud and exact estimates of the height and angle
of the camera, this algorithm delivers the correct result efficiently. LiDAR sensors generate
point clouds of good quality. Therefore, a LiDAR sensor would work well together with the
loading edge detector. Since the necessary hardware was not yet installed properly, we only
have limited access to testing data. We will analyze the influence of different parameters
on the algorithm’s running time, using a point cloud generated with data from a ZED
Camera. The ground truth of the detected loading edge can be seen in Figure 3.7.

Figure 3.7.: Point cloud of the truck, where the right loading edge (green) is detected.

First, we analyze the used voxel size, i.e. the size of the voxel grid, that we use to
downsample the point cloud in the preprocessing step. Figure 3.8 displays the running time
of the algorithm, the error to the optimal solution, and the success rate for different voxel
sizes, where each parameter set was tested 100 times. The lines indicate the mean values
of the 100 trials and the shaded regions around the lines indicate the empirical standard
deviation. As the voxel size increases, fewer points remain in the point cloud, in which we
want to find the loading edge. The running time of operations like finding the neighbors of
all points in a kd-tree and computing the edge points depends on the number of points in
the point cloud. Additionally, the voxel downsampling is more computationally expensive
if the voxel size is smaller. Therefore, a larger voxel size results in a shorter running time
of the algorithm (as portrayed in Figure 3.8) and shorter preprocessing time. When point
clouds are downsampled, it results in a loss of information. The error in Figure 3.8 is
measured as

∥oest − otrue∥2 + ∥vesty − vtruey ∥2 + ∥vestx − vtruex ∥2
with the estimated origin oest ∈ R3, the estimated y- and x-axis vesty and vestx in S2, and their
ground truth counterparts otrue, vtruey , and vtruex . We see, that the error slightly increases
for increased voxel size. The error is only measured if the algorithm finds two orthogonal

62

3.1. Loading Edge Detection

edges. The success rate indicates how often two orthogonal edges could be found. For
a voxel size of about 0.020 and more, the algorithm does not find two edges in all trials
anymore. Similar results are found for other point clouds of the truck. To minimize the
running time of the algorithm while maintaining robust results, we choose a voxel size of
0.018 for the other testing trials. The optimal values for this and the other parameters
depend on the way, the investigated point cloud is recorded and generated. LiDAR point
clouds, for example, probably need a different voxel size.

Figure 3.8.: Running time, error, and success rate for different voxel sizes for 100 test trials.

Figure 3.9 shows the importance of restricting the edge search to a certain area in the
point cloud. The search width is the width of the strip around the estimated plane the
loading platform lies in, where we search for the loading edge. This plane is computed
with the estimated height and angle of the camera and is therefore not exact. Hence, if the
search width is too small, regions containing important information may be removed from
the point cloud, leading to a low success rate and high errors. If the search width is too
high, the investigated point cloud will contain too many potential edge points leading to
unpredictable behaviour in detecting two orthogonal edges.

The uniform downsampling step before computing the edge points has a great influence
on the running time of the algorithm. Figure 3.10 shows how the running time changes
with different uniform downsampling factors. Around a downsampling factor of 50, the
first signs of unwanted behavior of the algorithm appear. For point clouds with more noise,
this can happen more intensively. Throughout the few available testing point clouds, a
downsampling factor of 40 has proven to be effective.

63

3. Composite Object Detection in a Loading Scenario of a Truck

Figure 3.9.: Running time, error, and success rate for different search widths for 100 test
trials.

Figure 3.10.: Running time, error, and success rate for different uniform downsampling
factors for 100 test trials.

64

3.2. Part-Based Pose Estimation Using Factor Graphs

3.2. Part-Based Pose Estimation Using Factor Graphs

The second and central problem of this work deals with the location of a sensor through-
out the entire process of automated loading of a truck. The truck is viewed as an object
composed of some simpler objects like the wheels of the truck. Initially, the truck’s config-
uration is only roughly known. Throughout the loading process and with every analyzed
detection, this model of the truck is updated and improved such that the sensor pose can be
estimated even if only a small part of the truck is visible to the sensors. Figure 3.11 displays
this principle of collecting information from far away such that robust pose estimation is
possible when the sensor is close to the truck.

(a) Truck viewed from far away. (b) Close up of the truck.

Figure 3.11.: Depending on the position of the forklift, the sensors observe different sections
of the truck.

To estimate the truck configuration and the sensor pose simultaneously, this structure
of the truck as a composite object is modeled as a factor graph as described in Section 2.2.
The parts of the truck as well as the sensor in different time steps are represented by
variables. Approximate relations between the various parts translate to factors between
the respective variables and the observations of the parts of the truck in the sensor frame
are expressed as factors between the sensor and the corresponding parts. By optimizing
the factor graph as seen in Section 2.3.5, the model is updated and the pose of the sensor
in the world frame is estimated. The origin of the world coordinate frame is defined by
the beginning of the left loading edge and the axes by the loading edge, the edge between
the loading platform and the rear wall, and the vertical direction. Figure 3.12 shows this
world frame. Section 3.2.1 describes this translation to a factor graph in more detail.

This process is realized in an algorithm and tested on data obtained from videos of the
truck filmed by sensors attached to a forklift. The tool for detecting the parts of the truck
correctly is still in development, so the parts of the truck were manually annotated. We
use the library GTSAM [11] for factor graph modeling as it provides good ways of defining
and using factor graphs, particularly, it is equipped with efficient algorithms for optimizing
factor graphs. Section 3.2.1 also gives a brief introduction to the functionality and usage
of GTSAM and Section 3.2.2 describes the algorithm of our solution of the part-based
pose estimation problem. Finally, in Section 3.2.3, we analyze the algorithm and some
parameters. In Appendix B the important parts of the code of our solution can be found.

65

3. Composite Object Detection in a Loading Scenario of a Truck

Figure 3.12.: World coordinate frame for an instance of a truck.

3.2.1. Composite Object as a Factor Graph and GTSAM

Factor graphs as described in Section 2.2 are an elegant way of representing a composite
object. As they are used in the pose estimation problem, they combine the geometrical
structure of the considered object with probability theoretical relations. The Python and
C++ library GTSAM [11] (Georgia Tech Smoothing and Mapping) provides data structures
and functions for representing and optimizing factor graphs in a variety of applications.

L1

l1

W1

w1

G0

g0

W2

w2

W3

w3

L2

l2

Figure 3.13.: Factor graph representing the truck as a composition of wheels, lights, and
loading edges.

We view the truck that can be seen in Figure 3.11 as a composition of its six wheels,
two front lights, two rear lights, and the loading edges on both sides. In the code and the
following, we refer to the three wheels on the left side of the truck as wi, for i ∈ {1, 2, 3},
starting from the front wheel w1 back to the last wheel w3. On the right side, the wheels
are denoted with W1, W2, and W3. The front lights are named l1 and L1 and the rear
lights l2 and L2, where the lowercase letters denote the lights on the left side of the truck,
and the uppercase letters their counterparts on the right side. The (beginning of the) left

66

3.2. Part-Based Pose Estimation Using Factor Graphs

and right loading edges are symbolized as g0 and G0. The beginning of the left loading
edge denotes the origin of the world/global frame. These names can be realized in GTSAM
with symbols consisting of one letter and one number each.

In our implemented solution of the pose estimation problem, we create a factor graph at
the beginning, representing the geometrical relations between the parts described above.
Figure 3.13 visualizes this factor graph. The round vertices depict the variables of the
factor graph that represent the parts of the truck. The factor nodes are symbolized by
the black squares that lie between pairs of variables. We do not connect each possible pair
of two variables, but just those that are somehow close to each other and/or related. For
example, the left front wheel w1 is connected to its counterpart W1 on the other side of the
truck, to the left front light l1, to the left loading edge g0 and to the wheel w2.

We realize the factors in GTSAM as BetweenFactorPose3-factors that can be defined by
the transformation T ∈ SE3 that relates the poses Pp1 and Pp2 of the parts p1 and p2 of the
truck as T (Pp1) = Pp2 . When viewing the wheels of the truck as right circular cylinders,

the class of proper rigid transformations T Pw′
Pw

for two wheels w and w′ of Definition 2.1.17
contains more than one element of SE3. Here, we ignore this problem of symmetry that
would result in transformations T, T ′ ∈ SE3 with T ̸= T ′ but T ∼P1 T ′ according to
Definition 2.1.16, i.e. T and T ′ both could define the factor possibly causing problems when
optimizing the factor graph since GTSAM has no functionality for handling symmetries
properly. This problem is considered in a different part of the project at AIT that is not
regarded in this work. Here, we assume that each object is given by one point in R3 (the
centers of the base circles of the wheels viewed as right circular cylinders, the centers of the
lights, and the beginnings of the loading edges), defining the position of this object, and a
coordinate frame, defining the orientation. Moreover, the notation T (Pp1) = Pp2 would not
be well-defined otherwise, since Pp1 and Pp2 denote elements of the pose spaces of objects
p1 and p2 that can only be compared by a transformation T ∈ SE3 if p1 and p2 are the
same geometric object.

Until now, we just use relative poses between different parts. Thus, the truck could
be anywhere in the world frame. But since we define the origin of the world frame at
the beginning of the left loading edge, the pose of the whole truck in the world frame
cannot be arbitrary. To solve this, we add a factor that is just connected to g0. In
GTSAM this is called PriorFactorPose3 and we initialize this factor with (R, t) ∈ SE3

with t = (0, 0, 0)T ∈ R3 and R = I3 ∈ SO3.

Later, the sensors start moving around the scene and observing some parts of the truck.
For each time step t, a new variable st is introduced, representing the pose of the sensor at

that time step. The observations o
(t)
p in the sensor coordinate frame at time step t define

the factor nodes between the sensor st and the respective part p of the truck. These factors
are also realized with BetweenFactorPose3 in GTSAM. After three time steps, the factor
graph could look like in Figure 3.14.

Roughly speaking, we start from a model of the truck that defines the factor nodes in
the factor graph F0 in Figure 3.13. In each time step t, a new sensor node st is introduced
with the observations as factors. The new factor graph Ft is then optimized as illustrated
in Section 2.3.5. The factors fj of Ft are defined as probability densities as in (2.22). For
more detailed information on how GTSAM defines the factors, see the documentation [12].

67

3. Composite Object Detection in a Loading Scenario of a Truck

L1

l1

W1

w1

G0

g0

W2

w2

W3

w3

L2

l2

s1
s2

s3

o
(1)
l1 o

(1)
w1 o

(1)
w2

o
(2)
w1

o
(2)
g0

o
(2)
w2

o
(3)
w2

o
(3)
w3

Figure 3.14.: Factor graph F3 for the parts of the truck after 3 time steps.

Subsequently, the model is updated according to the outcome of the optimization, i.e.
the poses of the parts of the truck in the world frame are being updated as described in
Section 3.2.2 in more detail. The model of the truck includes on one hand for each part the
estimated pose in the world frame represented as an element of SE3. On the other hand,
some dependencies between the different parts describe the configuration of the truck in
more detail. For instance, the wheels w1 and W1 have the same x-coordinate, the three
wheels on the left, respectively right side of the truck have (approximately) the same y-
coordinate, and all six wheels have the same height (z-coordinate). These special properties
of the truck have to be taken into account when updating the model. Furthermore, some
parts can have certain degrees of freedom regarding their pose: The steering angle of the
front wheels is not fixed, they can rotate around a vertical axis. Furthermore, the height
of the loading edge above the ground is dependent on the weight of the load that is placed
on the loading platform (and typically changes throughout the loading process). These
features describe the truck (for our purposes) sufficiently well.

3.2.2. Description of the Algorithm

Our solution to the pose estimation problem works with one class, keeping track of the
currently assumed model of the truck and the factor graph that is enlarged with every time
step. The code could be adapted to fit various other composite objects. For using this code
on other composite objects, the initial model, defined via the symbols of the different parts,
approximate poses of the parts in some world frame, and other object-specific settings, have
to be adapted.
The program starts with initializing the factor graph of the truck as well as some other

attributes. In each time step, we follow the same three phases. In the first phase, we
generate the data. The data consists of the poses of the observed parts. The loading edge
can be detected by the loading edge detector described in Section 3.1. The detection of the

68

3.2. Part-Based Pose Estimation Using Factor Graphs

other parts is not part of this work. The parts are now manually annotated and will be
automatically detected by a machine-learning approach once the whole project is finished.
The generated data is handed over to the pose estimator.

The second phase is the pose estimation itself. In particular, the pose of the sensor
in the world frame is estimated from the observations of the current time step, previous
observations, and the estimated model of the truck. Thus, the sensor tries to locate itself
relative to the truck. This is done with the factor graph approach described in Section 3.2.1.
The function estimate_sensor_pose() starts by defining initial guesses for the poses of
all variables in the factor graph to get a reasonable starting point for the optimization.
Using good starting points increases the convergence speed and results in a higher chance
of reaching a global optimum. The poses of the variables of the different parts are initialized
by their estimated pose in the world frame, given by the current model of the truck. The
sensor symbols from previous time steps remain for a certain amount of time steps in the
factor graph. Now, old sensor symbols are either deleted from the factor graph to keep the
factor graph efficient, or their initial guess is set to their estimated pose from the last time
step. The factor graph is expanded by the sensor variable st of the current time step. The
initial guess for the pose of st is either set randomly, if we are in the first time step, or
the pose is initialized by the estimated sensor pose of the last time step. Considering prior
knowledge about the starting point of the sensors or odometry information throughout
the loading process would give better initial guesses. Subsequently, we optimize the factor
graph with the GTSAM version of the Levenberg-Marquardt algorithm as explained in
Section 2.3.5.

The final phase of one step of the pose estimation algorithm consists of the model update.
The method update_truck_configuration() first updates the poses of all parts and all
variables st′ for t

′ < t0 with the current time step t0 that are not deleted from the graph.
For a part p with the old pose T old

p = (Rold
p , toldp) ∈ SE3, the translation toldp and the rotation

Rold
p are updated separately. Let toldp be the old position in the model, testp the position

that was estimated in phase 2 of this time step, and tnewp the position that will be the new
position of p in the model after this time step. Then we define

tnewp := wtestp + (1− w)toldp (3.2)

for some weight w ∈ [0, 1]. We take the weighted average of the old and the current estimate
of tp to consider the estimated or assumed model of the truck as well as the new estimation.
The estimation is based on observations that are noisy due to the restricted capabilities of
the sensors and errors in the detection and preprocessing algorithms. Thus, the estimated
position testp of p is in general not equal to the true position tp and is possibly even further

away from tp than toldp . On the other hand, the model of the truck, and therefore toldp ,
was initialized with a very rough approximation of the true, unknown configuration of the
truck, and then updated with noisy data. So the two positions are averaged by (3.2) to
hopefully compensate for each other’s errors to a certain degree.

The weighting factor w is reduced over time. In the beginning, the model of the truck
is assumed to be quite imprecise, so new estimations are weighted more. Throughout the
loading process, the truck is observed a lot of times, so the model of the truck gets better
over time. Therefore, the current model of the truck gets more weight compared to new

69

3. Composite Object Detection in a Loading Scenario of a Truck

estimations. The weight gets reduced by the function

w(n) = λn
w(w0 − c) + c, (3.3)

where w(n) is the value of the weight after n time steps. The value w0 ∈ (0, 1] is the
starting value of the function, λw is the reducing factor in (0, 1), and c ∈ [0, w0) the lower
bound of w. According to the computation

w(n) = λn
w(w0 − c) + c

λww(n) = λn+1
w (w0 − c) + λwc

λn+1
w (w0 − c) = λww(n)− λwc

the weight w(n+ 1) can be computed from w(n) as

w(n+ 1) = λww(n) + (1− λw)c.

The influence of this factor λw is displayed in Figure 3.18b.

Updating the rotation Rold
p is more complicated.

Remark 3.2.1. In [5, Section 7], Brégier et al. describe a method to average two rotations
in SO3. First, we take the naive weighted average

Q := wRest
p + (1− w)Rold

p .

Then, we compute a singular value decomposition Q = UDV T with U, V ∈ O3 and the
diagonal matrix D = diag(α1, α2, α3) with α1 ≥ α2 ≥ α3 ≥ 0. The averaged rotation is
then given by Rnew

p = USV T with S = diag(1, 1, sgn(det(U) det(V))). The matrix Rnew
p is

indeed in SO3.

The new poses T new
p = (Rnew

p , tnewp) for all parts p are saved in the model. Special
relations between certain parts, as outlined in Section 3.2.1, are considered in two ways.
First, GTSAM provides options to equip factors with noise models (e.g. in Section 2.3.5,
we modeled the noise of some estimation function h to measurements or assumed relations
as normally distributed around 0 with the covariance matrix Σ). The noise for respective
coordinates of the construction factors between dependent parts of the truck, e.g. the noise
for the x-coordinate of the factor between w1 and W1, is set to a small value by adapting
the covariance matrix Σ of the noise accordingly. Therefore, when optimizing the factor
graph, these relations are valued more than other factors like noisy observations since the
probability of lying far from the measurement z is low according to the probability density
functions of these construction factors defined via Σ. Nevertheless, this does not give
perfect alignments of dependent parts, so they have to be aligned explicitly every few time
steps. The poses of all parts of one dependency group are averaged as described above,
regarding their dependent coordinate to obtain a valid model of the truck.

Finally, the model is updated and we are ready for the next time step t + 1, where we
start by updating the factors in the factor graph Ft according to the new model of the
truck to get the factor graph Ft+1. With Ft+1, we continue as described above.

70

3.2. Part-Based Pose Estimation Using Factor Graphs

3.2.3. Parametrization and Analysis of the Algorithm

The proposed algorithm for the pose estimation of a composite object works in real-time,
due to efficient optimization algorithms for factor graphs provided by GTSAM. It is de-
signed to continually receive new observations from the sensors to improve the estimated
model of the truck and estimate the pose of the sensors relative to the truck to enable
autonomous loading. A limiting factor for realizing this approach is the correct detection
and classification of the different parts of the truck. The respective machine-learning tool,
that is planned to be employed in this project, is still in development. Since time is not
a crucial aspect of this approach, we want to analyze the influence of different parameters
on the outcome of the model.

(a) Phase I. (b) Phase II.

(c) Phase III. (d) Phase IV.

Figure 3.15.: Estimated sensor trajectories in four different phases: The yellow cubes indi-
cate the estimated sensor positions and the small red cubes indicate the true
sensor positions.

As stated above, there are still missing parts in the whole project of automated loading
of a truck. Therefore, it was not possible to generate the data under conditions that
replicate those present in a real-world deployment of the pose estimator. With a ZED
Camera attached to a forklift, we recorded four sequences of a truck while driving around
the truck. The blender model of the truck was then fitted with GeoTracker for Blender
from KeenTools [35] into the scene and tracked throughout the recordings. We define a

71

3. Composite Object Detection in a Loading Scenario of a Truck

time step as one second. For each time step, the poses of the different parts of the truck
that were visible for the sensor (i.e. within the field of view and not hidden by the rest of
the truck) in the respective sensor coordinate frames were extracted and used as the testing
data. Figure 3.15 shows the estimated trajectories of the four different loading scenarios.
In Phases II and ÍII, the truck was approached once from the back and once from the front.
In Phase I, the truck was viewed from the other side, and Phase IV simulated a loading
process.

But first, we want to see how our pose estimation approach updates the model of the
truck. Figure 3.16 shows some time steps in the pose estimation process. We start with
a very rough approximation of the model as displayed in Figure 3.16a. The reddish truck
pictures the assumed ground truth of the model, the blue cylinders portray the estimated
(or initial) poses of the wheels, the blue cuboids portray the estimated (or initial) poses
of the front and the rear lights, and the green cuboids picture the estimated (or initial)
poses of the loading platform and the driver’s cabin (for illustration purposes). The three
arrows at the beginning of the left loading edge visualize the origin of the world coordinate
frame. The other three arrows show the estimated pose of the sensor at that time step. As
usual, the red arrow denotes the x-axis, the green arrow denotes the y-axis, and the blue
arrow denotes the z-axis. Since the poses of the parts were annotated with Blender [9], the
camera looks in the negative z-direction. At time step 5 in 3.16c, the rear wheels and lights
are already approximately at the correct positions. Their positions become more accurate
when the sensor detects the rear lights again in Phase II as seen in 3.16e. In Phase III,
the front lights are observed for the first time, thus, Figure 3.16f already provides a good
model.

We analyze several different parameters and their influence on the model and the esti-
mation of the sensor pose. To measure the performance of the algorithm with a certain
parameter set, we use the metric d on SE3 defined in Theorem 2.1.31. We define the
cumulated model error err(t) in time step t as

err(t) :=
p∈P

d(T (t)
p , T true

p),

where P denotes the set of all parts of the truck, T
(t)
p ∈ SE3 defines the pose of part p ∈ P

at time step t, and T true
p defines the pose of the part p in the assumed ground truth. We

take a look at the initial weights for updating the translation and rotation of a part, at the
construction and observation noise, and at the factors for reducing the construction noise
and the weights. For further descriptions of these parameters, see Section 3.2.2.

For each parameter λ at a time, we analyze the cumulated model error err(t) for the test
data described above by setting λ to different values, assuming the rough initial model as in
the first picture of Figure 3.16, and passing the data to the pose estimator multiple times,
each time with some additional random noise on the initial model and the observations.
For the initial model, we add random numbers of the normal distribution N (0, 0.52) to
certain distances of parts of the model (e.g. the distance between wheels w1 and w2). To
add noise to the rotations, we take a vector ξ ∈ R3 with entries sampled from N (0, 0.022)
and update the rotation R with the local update R⊕ ξ of Definition 2.3.6. The standard
deviation for the rotation is rather small since the parts of trucks have fixed rotations to

72

3.2. Part-Based Pose Estimation Using Factor Graphs

(a) Initial Model. (b) Time Step 3 (Phase I).

(c) Time Step 5 (Phase I). (d) Time Step 25 (Phase I).

(e) Time Step 47 (Phase II). (f) Time Step 67 (Phase III).

Figure 3.16.: Estimated model (green and blue) and ground truth (reddish) of the truck
for a pose estimation run of Phases I to IV.

each other, regardless of the specific truck configuration, e.g. the two loading edges are
always parallel and the lights are always oriented directly to the front and the back. The
observations are treated similarly but with a standard deviation of 0.1 on the translation
and 0.05 on the rotation.

We start with the different noise models that are used here. In Section 2.3.5 it is stated
that the probability density of a factor in a factor graph can be interpreted as a noise model.

73

3. Composite Object Detection in a Loading Scenario of a Truck

(a) Model error.

(b) Sensor estimation error.

Figure 3.17.: Model and sensor estimation error depending on the noise for the translation
of the construction factors.

74

3.2. Part-Based Pose Estimation Using Factor Graphs

(a) Model error depending on the updating factor λc for the noise of the construction factors.

(b) Model error depending on the updating factor λw for the weight w of model updates.

Figure 3.18.: Model error for different values of the updating factors λc and λw.

75

3. Composite Object Detection in a Loading Scenario of a Truck

In GTSAM, each factor is initialized with a noise model. In the created factor graph (see
Figure 3.14), we distinguish among the construction factors between two different parts of
the truck, that are defined by the currently estimated model, and the observation factors

o
(t)
p defined by the observations of different parts.

The construction factors express in the beginning a rough model with additional noise.
Thus, we need higher values for the construction noise than the standard deviation of the
additional noise. Figure 3.17a displays the model error for a few different values of the
construction noise. The Regions I, II, III, and IV indicate the four different sequences of
the sensor movement around the truck as seen in Figure 3.15. First, the sensor approaches
the truck from the back right, then from the back left, then from the front left, and in Phase
IV, the forklift simulates the loading of a palette. This is a reasonable real-life scenario
since the forklift moves around near the truck before it starts loading stuff. Thus, the
model must be quite accurate in Phase IV, because when the forklift loads palettes onto
the truck, the sensors are too close to detect many parts.

For each parameter value, the computation was simulated 50 times. The lines display
the arithmetic mean of the model errors for a certain parameter value. The shaded areas
around the lines indicate the corresponding empirical standard deviations. We see that if
the construction noise is too small, the factor graph relies too much on wrong assumptions
and fails to optimize the model properly. If the construction noise is too high towards the
end, the model error rises again since the already well-adapted model is loaded with too
much uncertainty and new noisy observations make the model worse.

Figure 3.17b was created for the same situation but displays the error of the sensor
estimation measured as d(T est

st , T true
st) with the metric d on SE3 of Theorem 2.1.31, the

estimated sensor pose T est
st at time step t, and the corresponding ground truth T true

st . This
gives similar results on good values for the construction noise. In Region IV, around the
timesteps 105 to 110, we see a short rise in the estimation error. At that time, the forklift
placed the load on the truck and detected almost no parts of the truck.

These considerations indicate that the noise for the construction factors should change
over time. In the beginning, a high construction noise ensures a flexible model. Towards the
end, we already have a good approximation of the model, so a low construction noise ensures
that we consider this model enough. Therefore, we introduce an updating parameter λc

for the construction noise similar to the updating parameter λw in (3.3) and analyze λc in
Figure 3.18a. If this factor is too low, the construction noise gets too small too fast, and
the model does not update properly anymore. If λc is too high or even set to 1 on the other
hand, the effect of a rising model error towards the end, as described above, occurs. For
the updating factor λw of the weights for updating the model, we observe similar results
as displayed in Figure 3.18b.

We set the standard deviation of the artificial noise on the translation part of the obser-
vations to 0.1. Considering the noise occurring in the data generation process, this noise
is probably a bit higher than 0.1. Indeed, as seen in Figure 3.19, for a value of 0.17, the
model gets updated optimal. If the observation noise is too low, the noisy observations are
considered too much. If the observation noise is too high, at some point, the model cannot
be improved anymore.

76

3.3. Possible Improvements and Further Work

Figure 3.19.: Model error depending on the noise for the translation of the observation
factors.

3.3. Possible Improvements and Further Work

There are several directions, that go beyond the scope of this master’s thesis, to extend the
described workflow (especially the pose estimator). The greatest part is the integration of
the loading edge detector and the pose estimator in the bigger project at AIT. Once the
relevant tools, such as the machine-learning tool for detecting and classifying various parts,
are completed, the code and parameters must be adjusted to meet the requirements of the
new data and any downstream algorithms that rely on the pose estimator.

Furthermore, the pose estimator could be adapted to better fit real-life situations. For
instance, we could introduce and test objects with certain degrees of freedom. The orien-
tation of the front wheels depends on the current steering angle and is therefore flexible
throughout the algorithm. Additionally, the height of the loading platform depends on
the weight of the load placed on it. Degrees of freedom could be realized by special fac-
tors or noise models that express these specific properties. Likewise, the algorithm could
be adapted to accept incomplete poses, e.g. the loading edge is correctly detected, but
the beginning of the loading edge cannot be determined. Similar to poses with degrees
of freedom, this could be handled by adapting the observation noise in the corresponding
directions. Considering the short rise of the estimation error of the sensor pose when the
load is being placed on the truck (as seen between time steps 105 and 110 in Figure 3.17b)
one might pose the question of how to handle the situation if only little or no parts of the
truck can be detected. Here, we cut the parts of the video, where no parts of the truck

77

3. Composite Object Detection in a Loading Scenario of a Truck

were observed. In real applications, a system switching between this pose estimator and
other methods of navigating around the truck could be employed. For instance, GPS and
odometry measurements could be taken into account in the pose estimator as well as in
other methods. With all these improvement ideas, one has to be careful to maintain an
efficient algorithm.

With tools that generate data for this algorithm automatically, we are faced with the
problem of incorrect data. For example, the classification of the wheels could be mixed up,
mislabeling the front wheel as w3 or a wheel on the left side as W2. Moreover, one has to be
prepared for a completely wrong detection, where the data generating tool detects a street
lamp as some light of the truck or some circular load as a wheel of the truck. Since the
factor graph already carries a probability structure, we could estimate how likely certain
detections of different parts of the truck are, and consequently discard wrong detections
before estimating a new model. More comprehensive testing of various situations and
different trucks is necessary to ensure a responsible and practical implementation of this
technology in real life.
Lastly, one could test the concept of detection of composite objects on objects other than

the truck. A bicycle is composed of two wheels (one with a certain degree of freedom),
a handlebar, a saddle, a frame (consisting of cylinder-like shapes), pedals, lights, a chain,
and so on. Depending on the use case and available sensors, one could go into detail or
stick to fewer and simpler objects. A robot arm loading different kinds of bicycles in some
compartments might need to detect bicycles without knowing their specific configurations.
Thus, there are various related problems and use cases this work could be extended to.

78

4. Conclusion

In this thesis, we developed and analyzed two steps of an automated truck-loading process
and examined the mathematical foundations of the used methods.

The loading edge detection algorithm is based on the geometric properties of points in
point clouds. First, the point cloud is downsampled with voxel downsampling and outlier
removal. This downsampling process is a tradeoff between the efficiency and robustness of
the algorithm. For a small voxel size, the downsampling of the point cloud and all steps of
the algorithm that are executed on all points in the corresponding point cloud take a lot of
time. If the voxel size is too big, too much information about the truck gets lost and the
error of the detected loading edge to the ground truth rises, while the success rate of the
algorithm shrinks.

Then, the resulting point cloud is cut to the strip of points containing the loading plat-
form, using the estimated height and angle of the camera. A test on the width of this
strip showed the importance of this cutting step, and therefore the importance of accurate
estimates of the height and angle of the camera in this approach. The camera sensors
produce noisy data, forcing us to relax the conditions in the search for edge points. Subse-
quently, the risk of declaring points as edge points incorrectly rises. So, if the search width
is smaller, more edge-like structures in the point cloud are cut away.

The edge point detection is then executed on every n-th point in the remaining strip. This
random downsampling factor n has proven to have a great influence on the running time
of the algorithm. In real-life applications, this parameter has to be adapted to the density
of the point cloud (depending on the sensors and the previous downsampling steps). Some
testing under the actual circumstances is necessary to find the range of this parameter,
where the algorithm runs efficiently, but the success rate stays high and the error stays
low. This loading edge detection algorithm can be used in the data generation process for
the pose estimator.

The pose estimator takes observations of some parts of the truck and tries to reconstruct
the truck’s configuration from a rough initial model as well as the pose of the sensor relative
to the truck. Therefore, we considered the truck as a composite object, composed of its
wheels, lights, and loading edges, and represented this structure as a factor graph. A rough
initial approximation of the spatial relations of the different parts of the truck to each other
translated to the construction factors between the respective variables.

The spatial relations were given as rigid transformations in SE3. We have seen that SO3

and SE3 are smooth manifolds, allowing the use of manifold optimization techniques in this
pose estimation problem. The retraction for these manifolds was defined via the exponen-
tial map for matrices. The power series of the exponential map has for skew-symmetric
matrices in R3×3 an explicit representation as Rodrigues’ formula. For manifold optimiza-
tion problems on a higher dimensional manifold SOn for n > 3, either an approximation of
the exponential map has to be used or different retractions have to be considered to obtain

79

4. Conclusion

efficient optimization algorithms.
We visualized the updating process of the model. After a small number of time steps,

the estimated poses of the observed parts got close to the ground truth. To model certain
dependencies of parts on each other, the probability densities of the respective factors have
to be adapted accordingly. Due to this functionality, the estimations of the poses of the
wheels of the truck on both sides improved even while the camera stayed on one side of the
truck observing only the right wheels.

The uncertainty of the model was implemented via the construction noise. Tests on
this parameter showed that the construction noise has to be high enough to reflect the
uncertainties of the construction factors. Especially at the beginning of the pose estimation
process, the model is only a rough estimation of the real truck configuration. The model of
the truck improves with every step, therefore, the construction noise needs to be carefully
reduced throughout the loading process. If the construction noise is reduced too quickly
or too slowly, we receive high model errors towards the end of the optimization process as
the respective test showed.

The observations of the parts of the truck are represented by the observation factors
in the factor graph. The corresponding observation noise should reflect the errors of the
sensors and the preprocessing algorithms. For the construction and the observation noise,
more testing on real data in various scenarios is required. The estimation of the sensor pose
depends on the accuracy of the model and the number and quality of observations. We
have seen that during the actual loading process, the sensors get so close to the truck that
little to no parts can be observed. This leads to high sensor pose estimation errors during
this phase. For real-life applications, different methods or additional sensors pointing in
different directions have to be considered during the loading phase.

We presented a new application of factor graph modeling. The truck serves as an example
of this composite object detection approach. For a full proof of concept, more tests on
different composite objects have to be made.

80

A. Code Loading Edge Detection

1 import numpy as np

2 import open3d as o3d

3 import time

4 def run_loading_edge_detection(filename, inputs):

5 """

6 Run the loading edge detection.

7 Parameters

8 ----------

9 filename : str

10 Name of the file containing the point cloud.

11 inputs : dict

12 Dictionary containing some custom parameter values.

13 Returns

14 -------

15 loading_edge : ndarray of shape (2,3)

16 Two points that define the loading edge.

17 other_edge : ndarray of shape (2,3)

18 Two points that define the second edge.

19 running_time : float

20 Duration of the loading edge detection.

21 num_edges_found : int

22 0, 1, or 2, dependent on the number of edges found.

23 """

24 # read in the point cloud

25 pcd = o3d.io.read_point_cloud(filename)

26 # define an instance of the class with the desired parameters

27 led = LoadingEdgeDetection(o3d_cloud=pcd, **inputs)

28 # perform voxel downsampling

29 voxel_downsampled_pcd = led.voxel_downsample_pcd(led.pcd, voxel_size=0.015)

30 # remove the outliers

31 final_pcd = led.remove_outliers(voxel_downsampled_pcd, nb_points=30, radius=0.05)

32 # find the loading edge

33 loading_edge, other_edge, running_time, num_edges_found = led.find_two_edges(final_pcd)

34 return loading_edge, other_edge, running_time, num_edges_found

35 class LoadingEdgeDetection:

36 def __init__(

37 self,

38 o3d_cloud,

39 est_angle_camera=32.5,

40 est_height_camera=2.05,

41 est_height_loading_platform=1.35,

42 search_width=0.5,

43 tol_orthogonal=0.3,

81

A. Code Loading Edge Detection

44 max_lines=5,

45 uniform_downsample_factor=40,

46):

47 """

48 Constructor.

49 Parameters

50 ----------

51 o3d_cloud : open3d PointCloud

52 Point cloud, where the loading edge should be detected.

53 est_camera_angle : float, optional

54 Estimated camera angle in degree to the horizontal plane. The default is 32.5.

55 est_height_camera : float, optional

56 Estimated height of the camera above the ground in meters. The default is 2.05.

57 est_height_loading_platform : float, optional

58 Estimated height of the loading platform above the ground in meters. The default is 1.35.

59 search_width : float, optional

60 Width of the remaining point cloud, when cutting the pcd above and below

61 the estimated plane of the loading platform. The default is 0.5.

62 tol_orthogonal : float, optional

63 Tolerance when searching for orthogonal lines. Has to be between 0 and 1.

64 The default is 0.3.

65 max_lines : int, optional

66 Maximum number of lines to be found in 'line_ransac'. The default is 5.

67 uniform_downsample_factor : int, optional

68 Downsample factor when reducing the number of points for the edge point search.

69 The default is 40.

70 Attributes

71 ----------

72 pcd : open3d PointCloud

73 Original point cloud of the scene.

74 points : ndarray of shape (num_points, num_dimensions)

75 Points of the original point cloud as numpy array.

76 est_height_camera : float

77 Estimated height of the camera above the ground in meters. Used to estimate the pose

78 of the loading platform.

79 est_height_loading_platform : float

80 Estimated height of the loading platform above the ground in meters. Used to estimate

81 the pose of the loading platform.

82 up_vector : ndarray of shape (3,)

83 Estimated up-vector of the scenery. Computed with the estimated angle of the camera.

84 point_loading_platform_below_camera : ndarray of shape (3,)

85 Point in the estimated height of the loading platform, vertically below the camera.

86 Computed by the estimated up-vector and height of the camera and the loading platform.

87 search_width : float

88 Width of the remaining point cloud, when cutting the pcd above and below the estimated

89 plane of the loading platform. Smaller search width speeds up the computation and

90 eliminates other edge points. Can be decreased, if angle and height estimates are good.

91 tol_orthogonal : float in [0, 1]

92 Tolerance when searching for orthogonal lines. It holds:

93 v is orthogonal to w <=> v @ w = 0.

94 Normalized vectors v and w are approximately orthogonal, if v @ w < tol_orthogonal.

95 max_lines : int

96 Maximum number of lines to be found in 'line_ransac' before the algorithm stops.

97 Larger max_lines is more likely to find a second edge,

98 but also more likely to declare a line as an edge, that is not an edge.

99 origin : ndarray of shape (3,)

100 Origin of the world coordinate frame, defined in the method find_origin(). The origin of

101 the world frame is defined as the beginning of the left loading edge. If the truck is seen

102 from the right side, 'origin' states the beginning of the right loading edge.

103 coordinate_frame : dict

104 Contains the directions of the coordinate axes of the world frame, defined in the method

82

105 rotate_coordinate_frame(). The keys are 'x', 'y', and 'z'.

106 uniform_downsample_factor : int

107 The edge point detection is only performed on some points, to save computation time.

108 For a downsampling factor of n, every n-th point is investigated.

109 """

110 # define the point cloud

111 self.pcd = o3d_cloud

112 # define the estimated height of the camera and the loading platform

113 self.est_height_camera = est_height_camera

114 self.est_height_loading_platform = est_height_loading_platform

115 # compute the estimated up-vector of the scenery from the estimated camera angle

116 # and the point below the camera, in the estimated height of the loading platform

117 self.up_vector = self.get_up_vector(est_angle_camera)

118 self.point_loading_platform_below_camera = self.get_point_loading_platform_below_camera()

119 # define additional parameters

120 self.search_width = search_width

121 self.tol_orthogonal = tol_orthogonal

122 self.max_lines = max_lines

123 self.coordinate_frame = {}

124 self.uniform_downsample_factor = uniform_downsample_factor

125 ##

126 # Point Cloud Processing

127 ##

128 def cut_pcd_with_plane(self, pcd, weights, dist_to_original_plane=0.5, inside=False):

129 """

130 Cut a point cloud with a plane.

131 Use this function, to speed up computation by restricting the search space.

132 Parameters

133 ----------

134 pcd : open3d PointCloud

135 Point cloud to be cut.

136 weights : list of float

137 Weights a, b, c, d of the plane: a*x + b*y + c*z + d = 0.

138 dist_to_original_plane : float, optional

139 Distance of the planar cut to the original plane. The default is 0.5.

140 inside : bool, optional

141 If True, the points inside the cut region are returned.

142 If False, the points outside the cut region are returned.

143 The default is False.

144 Returns

145 -------

146 filtered_pcd : open3d PointCloud

147 Cut point cloud.

148 """

149 # get the indices of the points inside of the cut region

150 filtered_indices = self.cut_pcd_with_plane_indices(

151 self.pcd_to_np(pcd), weights, dist_to_original_plane, inside

152)

153 # select the points with the respective indices

154 filtered_pcd = pcd.select_by_index(filtered_indices)

155 return filtered_pcd

156 def cut_pcd_with_plane_indices(self, pcd_np, weights, dist_to_original_plane, inside):

157 """

83

A. Code Loading Edge Detection

158 Computes the indices of the points inside or outside the cut region for cut_pcd_with_plane().

159 Parameters

160 ----------

161 pcd_np : ndarray of shape (num_points, num_dimensions)

162 Point cloud as numpy array.

163 weights : list of float

164 Weights a,b,c,d of the plane: a*x + b*y + c*z + d = 0.

165 dist_to_original_plane : float

166 Distance of the planar cut to the original plane.

167 inside : bool

168 If True, the points inside the cut region are returned.

169 If False, the points outside the cut region are returned.

170 Returns

171 -------

172 list of int

173 Indices of the points inside or outside the cut region.

174 """

175 # transpose the array to ease computation (pcd_np[0] is a vector of all first coordinates)

176 pcd_np = pcd_np.T

177 # compute the values of the plane equation for all points as a numpy array

178 values = weights[0] * pcd_np[0] + weights[1] * pcd_np[1] + weights[2] * pcd_np[2] + weights[3]

179 # cut in both directions

180 above = values > np.abs(dist_to_original_plane)

181 below = values < -np.abs(dist_to_original_plane)

182 # return the indices of the points inside or outside the cut region

183 if not inside:

184 return [i for i in range(len(above)) if above[i] or below[i]]

185 else:

186 return [i for i in range(len(above)) if not above[i] and not below[i]]

187 """

188 Additional functions, not shown here:

189 def divide_inlier_outlier(self, pcd, inlier_ind, color)

190 def voxel_downsample_pcd(self, pcd, voxel_size)

191 def remove_outliers(self, pcd, nb_points, radius)

192 def pcd_to_np(self, pcd)

193 def draw_point_cloud(self, list_of_pcds, show_normals, estimate_normals)

194 """

195 ##

196 # Truck Specific Functions

197 ##

198 def get_up_vector(self, camera_angle):

199 """

200 Compute the estimated up-vector (up-direction of the scenery in the world frame) from the

201 estimated camera angle as np.array([np.sin(-camera_angle), 0, np.cos(-camera_angle)]).

202 Parameters

203 ----------

204 camera_angle : float

205 Estimated camera angle in degrees to the horizontal plane.

206 Returns

207 -------

208 up_vector : ndarray of shape (3,)

209 Approximate up-vector.

210 """

84

211 # z-axis goes up (x to the front, y to the side)

212 up_vector_camera = np.array([0, 0, 1])

213 # angles to rotate around (rotate around the y-axis) in radians

214 angles = np.deg2rad(np.array([0, -camera_angle, 0]))

215 # rotation matrix

216 rot_matrix = o3d.geometry.get_rotation_matrix_from_axis_angle(angles)

217 return rot_matrix @ up_vector_camera

218 def get_point_loading_platform_below_camera(self):

219 """

220 Computes the point below (in the direction of the estimated up-vector) the camera

221 that lies in the estimated height of the loading platform.

222 Returns

223 -------

224 point : ndarray of shape (3,)

225 Estimated position of the point in the height of the loading platform, below the camera.

226 Given in sensor frame coordinates.

227 """

228 # the camera defines the origin of the sensor frame

229 pos_camera = np.array([0, 0, 0])

230 # height difference between camera and loading platform

231 height_diff_camera_loading_platform = (

232 self.est_height_camera - self.est_height_loading_platform

233)

234 return pos_camera - height_diff_camera_loading_platform * self.up_vector

235 def cut_pcd_around_loading_platform(self, pcd):

236 """

237 Cuts a point cloud above and below the estimated loading platform. The normal vector of the

238 plane, the height of the plane, and the width of the cutted point cloud are set as attributes.

239 Parameters

240 ----------

241 pcd : open3d PointCloud

242 Input point cloud.

243 Returns

244 -------

245 open3d PointCloud

246 Output point cloud.

247 """

248 # equation of the plane: nX = nP -> nX - nP = 0

249 # the up-vector defines the normal vector n of the plane

250 weights = list(self.up_vector)

251 # append -nP to the weights

252 weights.append(-self.up_vector @ self.point_loading_platform_below_camera)

253 # cut the point cloud above and below the plane according to the search width

254 return self.cut_pcd_with_plane(pcd, weights, self.search_width / 2, True)

255 def find_origin(self, P_line1, P_line2):

256 """

257 Find the origin of the coordinate frame as the intersection point of two given lines.

258 These lines do not intersect exactly, so we intersect one of the lines with the plane that is

259 defined by the other line and the vertical direction.

85

A. Code Loading Edge Detection

260 Then we take the average of the two intersection points.

261 Parameters

262 ----------

263 P_line1 : ndarray of shape (2,3)

264 Two points that define the first line.

265 P_line2 : ndarray of shape (2,3)

266 Two points that define the second line.

267 set_origin : bool, optional

268 If True, the origin of the coordinate frame is set as an attribute of the class.

269 The default is False.

270 Returns

271 -------

272 origin : ndarray of shape (3,)

273 Found origin of the coordinate frame.

274 """

275 # get the intersection points

276 intersection_point1 = self.intersect_line_plane(

277 P_line1, np.array([P_line2[0], P_line2[1], P_line2[0] + self.up_vector])

278)

279 intersection_point2 = self.intersect_line_plane(

280 P_line2, np.array([P_line1[0], P_line1[1], P_line1[0] + self.up_vector])

281)

282 # compute the origin and set it as a class attribute

283 origin = (intersection_point1 + intersection_point2) / 2

284 self.origin = origin

285 return origin

286 def find_direction(self, edge_pcd, origin, P):

287 """

288 This function is used to find the true direction of an axis (deciding between vec and -vec)

289 to find the correct coordinate frame. The correct direction is the vector from the origin

290 to the endpoint of P that is further away from the origin. This is done by finding the

291 endpoints of the line and comparing the distances of these endpoints to the origin.

292 Parameters

293 ----------

294 edge_pcd : open3d PointCloud

295 Point cloud that contains the points on the edge.

296 This point cloud should already be the largest cluster of a found edge.

297 origin : ndarray of shape (3,)

298 Origin of the coordinate frame.

299 P : ndarray of shape (2,3)

300 Two points that define the line.

301 The line defined by P does not have to be parallel to the line defined by the endpoints.

302 The two endpoints might just give a rough approximation of the direction of the line.

303 Returns

304 -------

305 P : ndarray of shape (2,3)

306 Two points that define the line.

307 They are the same points as the input P, but the order of the points might be switched.

308 """

309 # direction vector of the line

310 vec = P[1] - P[0]

311 # get the approximate endpoints of the line

312 endpoint1, endpoint2 = self.find_endpoints(edge_pcd, max_iter=100)

313 # compare the distances of the endpoints to the origin

86

314 dist_origin_endpoint1 = np.linalg.norm(endpoint1 - origin)

315 dist_origin_endpoint2 = np.linalg.norm(endpoint2 - origin)

316 if dist_origin_endpoint1 > dist_origin_endpoint2:

317 # if endpoint1 is further away from the origin than endpoint2

318 # -> the correct approximate direction is the vector from the origin to endpoint1

319 correct_direction = endpoint1 - origin

320 else:

321 # otherwise the correct approximate direction is the vector from the origin to endpoint2

322 correct_direction = endpoint2 - origin

323 # compare the correct direction to the original direction

324 P_start = origin

325 correct_direction /= np.linalg.norm(correct_direction)

326 if correct_direction @ vec > 0:

327 # if their inner product is positive, the direction is correct

328 P_end = P[1]

329 else:

330 # otherwise the direction is wrong and has to be switched

331 P_end = P[0]

332 return np.array([P_start, P_end])

333 def rotate_coordinate_frame(self, vec_loading_edge, vec_other_edge):

334 """

335 Rotate the right-handed coordinate frame such that the loading edge is the x-axis (left

336 loading edge) or the y-axis (right loading edge). The vector of the loading edge defines its

337 axis exactly, the z-axis is then the cross-product of vec_loading_edge and vec_other_edge,

338 and the last axis is the cross-product of the z-axis and the axis of the loading edge.

339 We assume, that the coordinate frame is already centered at the correct origin.

340 Since we transform an orthonormal basis to another orthonormal basis,

341 the rotation matrix is given by the new axes as columns.

342 Parameters

343 ----------

344 vec_loading_edge : ndarray of shape (3,)

345 The direction vector of the detected loading edge.

346 vec_other_edge : ndarray of shape (3,)

347 The direction vector of the other edge.

348 Returns

349 -------

350 rot_matrix : ndarray of shape (3,3)

351 Rotation matrix to the new coordinate frame.

352 """

353 # check if the loading edge becomes the x- or the y-axis

354 if self.up_vector @ np.cross(vec_loading_edge, vec_other_edge) > 0:

355 # the loading edge is the x-axis

356 new_x_axis = vec_loading_edge

357 new_z_axis = np.cross(new_x_axis, vec_other_edge)

358 new_y_axis = np.cross(new_z_axis, new_x_axis)

359 else:

360 # the loading edge is the y-axis

361 new_y_axis = vec_loading_edge

362 new_z_axis = np.cross(vec_other_edge, new_y_axis)

363 new_x_axis = np.cross(new_y_axis, new_z_axis)

364 # normalize the new axes to get the rotation matrix

365 new_x_axis /= np.linalg.norm(new_x_axis)

366 new_y_axis /= np.linalg.norm(new_y_axis)

367 new_z_axis /= np.linalg.norm(new_z_axis)

368 rot_matrix = np.array([new_x_axis, new_y_axis, new_z_axis]).T

87

A. Code Loading Edge Detection

369 # set the axes and the rotation matrix as attributes of the class

370 self.coordinate_frame["x"] = new_x_axis

371 self.coordinate_frame["y"] = new_y_axis

372 self.coordinate_frame["z"] = new_z_axis

373 self.rot_matrix_to_coordinate_frame = rot_matrix

374 return rot_matrix

375 ##

376 # Edge Detection

377 ##

378 def find_two_edges(self, pcd):

379 """

380 Find two orthogonal edges in a point cloud. The first edge is found by 'find_longest_edge'.

381 Then, a second edge is found that is horizontal and orthogonal to the first edge. If two edges

382 are found, the function 'differentiate_edges' is used to distinguish the loading edge from

383 some other edge. If necessary, the two edges are switched. The origin of the coordinate frame

384 is set as the intersection point of the two edges. The orientation of the coordinate frame is

385 set such that the loading platform is located in the first quadrant of the xy-plane.

386 The two edges are then drawn together with the rest of the point cloud.

387 Parameters

388 ----------

389 pcd : open3d PointCloud

390 Point cloud, where the edges should be detected.

391 Returns

392 -------

393 edge1_P : ndarray of shape (2,3)

394 Two points that define the loading edge.

395 edge2_P : ndarray of shape (2,3)

396 Two points that define the second edge.

397 time : float

398 Duration of the loading edge detection.

399 num_edges_found : int

400 0, 1, or 2, dependent on the number of edges found.

401 """

402 # start the timer

403 start = time.time()

404 # find the longest edge in the point cloud

405 edge1_P, edge1_pcd, edge1_ind, edge_points_pcd, found_longest_edge = self.find_longest_edge(

406 pcd

407)

408 # if there are enough edge points to find an edge, we look for a second edge

409 if found_longest_edge:

410 # find a second edge that is orthogonal to the first edge

411 edge2_P, second_line_found = self.find_orthogonal_line(

412 edge_points_pcd, P_original=edge1_P, max_lines=self.max_lines

413)

414 # if a second edge is found, the coordinate frame can be set

415 if second_line_found:

416 num_edges_found = 2

417 origin = self.find_origin(edge1_P, edge2_P)

418 edge2_ind = self.get_points_on_line(pcd, edge2_P)

419 edge2_pcd, _ = self.divide_inlier_outlier(pcd, edge2_ind, color=[0, 1, 0])

420 edge1_P = self.find_direction(edge1_pcd, origin, edge1_P)

88

421 edge2_P = self.find_direction(edge2_pcd, origin, edge2_P)

422 # define the direction of the up-vector (currently it is up or down)

423 # the origin lies below the camera, so the angle between the up-vector

424 # and the vector world_origin -> sensor_origin should be smaller than 90°
425 # if the angle is larger than 90°, the up-vector is pointing downwards

426 if self.up_vector @ (np.array([0, 0, 0]) - origin) < 0:

427 self.up_vector *= -1

428 # check if edge1 or edge2 is the loading edge

429 _, _, correct_order = self.differentiate_edges(pcd, edge1_P, edge2_P)

430 # switch edge1 and edge2 if necessary

431 if not correct_order:

432 edge1_P, edge2_P = edge2_P, edge1_P

433 edge1_pcd, edge2_pcd = edge2_pcd, edge1_pcd

434 edge1_ind, edge2_ind = edge2_ind, edge1_ind

435 # get the rotation matrix to rotate the coordinate frame

436 rot_matrix, axis_loading_edge = self.rotate_coordinate_frame(

437 edge1_P[1] - edge1_P[0], edge2_P[1] - edge2_P[0]

438)

439 end = time.time()

440 # here would be the place to visualize the results

441 return edge1_P, edge2_P, end - start, num_edges_found

442 else:

443 num_edges_found = 1

444 # if only one edge is found,

445 # the second horizontal direction is determined by the first edge and the up-vector

446 edge1_P = self.find_endpoints(edge1_pcd)

447 # the origin is one endpoint of the first edge

448 origin = edge1_P[0]

449 # get the direction of the second axis

450 potential_second_axis = np.cross(edge1_P[1] - edge1_P[0], self.up_vector)

451 # the loading platform locates on the side of the first edge, where more points are

452 lifting_factor = 0.3

453 lift1 = lifting_factor * potential_second_axis

454 edge1_P_lifted1 = edge1_P + lift1

455 lift2 = lifting_factor * (-potential_second_axis)

456 edge1_P_lifted2 = edge1_P + lift2

457 num_votes_lifted_1 = len(

458 self.get_points_on_line(

459 pcd, edge1_P_lifted1, tol=0.1, cluster=False, between_points=True

460)

461)

462 num_votes_lifted_2 = len(

463 self.get_points_on_line(

464 pcd, edge1_P_lifted2, tol=0.1, cluster=False, between_points=True

465)

466)

467 if num_votes_lifted_1 < num_votes_lifted_2:

468 second_axis = -potential_second_axis

469 else:

470 second_axis = potential_second_axis

89

A. Code Loading Edge Detection

471 second_axis /= np.linalg.norm(second_axis)

472 # get the rotation matrix to rotate the coordinate frame

473 rot_matrix = self.rotate_coordinate_frame(edge1_P[1] - edge1_P[0], second_axis)

474 end = time.time()

475 # here would be the place to visualize the results

476 edge2_P = np.array([origin, origin + second_axis])

477 return (edge1_P, edge2_P, end - start, num_edges_found)

478 def find_longest_edge(self, pcd):

479 """

480 Find the longest edge in a point cloud. First we find the edge points and then a line that

481 contains many of these edge points.

482 Parameters

483 ----------

484 pcd : open3d PointCloud

485 Point cloud, where the edge should be detected.

486 Returns

487 -------

488 edge_P : ndarray of shape (2,3)

489 The endpoints of the dominant edge in the point cloud.

490 edge_pcd : open3d PointCloud

491 Point cloud that contains the points on the dominant edge.

492 edge_ind : list of int

493 Indices of the points on the dominant edge.

494 edge_points_pcd : open3d PointCloud

495 Point cloud that contains the edge points.

496 edge_found : bool

497 Indicates if the algorithm found an edge.

498 """

499 edge_found = True

500 # cut the point cloud above and below the estimated plane of the loading platform

501 pcd_cut = self.cut_pcd_around_loading_platform(pcd)

502 # find the edge points with the normals of the points

503 edge_points_ind = self.find_edge_points_normals(pcd_cut)

504 # check if enough edge points were found

505 if len(edge_points_ind) < 3:

506 edge_found = False

507 return None, None, None, None, edge_found

508 # divide the cut point cloud into edge points and non-edge points

509 edge_points_pcd, _ = self.divide_inlier_outlier(pcd_cut, edge_points_ind)

510 # find a line that contains many of these edge points

511 P, ransac_completed = self.line_ransac(edge_points_pcd)

512 if ransac_completed:

513 # find the points of the original point cloud on this line

514 edge_ind = self.get_points_on_line(pcd, P, between_points=False)

515 # divide the original point cloud into edge points and non-edge points

516 edge_pcd, _ = self.divide_inlier_outlier(pcd, edge_ind, color=[1, 0, 0])

90

517 edge_P = self.find_endpoints(edge_pcd)

518 return edge_P, edge_pcd, edge_ind, edge_points_pcd, edge_found

519 else:

520 edge_found = False

521 return None, None, None, None, edge_found

522 def find_edge_points_normals(self, pcd, radius=0.1):

523 """

524 Find edge points of a point cloud by computing the normals of the neighbors of each point.

525 If the normals can be clustered into two groups reasonably, such that the mean of one group

526 is nearly parallel to the vertical direction, and the mean of the other group is nearly

527 orthogonal to the vertical direction, the point is considered an edge point.

528 Uses the function 'cluster_normals' to cluster the normals.

529 Parameters

530 ----------

531 pcd : open3d PointCloud

532 Point cloud, where the edge points should be found.

533 radius : float, optional

534 Radius around a point, where the kd-tree looks for neighbors. The default is 0.1.

535 Returns

536 -------

537 edge_points : list of int

538 Indices of the edge points.

539 """

540 # compute the kd-tree of the point cloud to enable fast neighbor search

541 kdtree = o3d.geometry.KDTreeFlann(pcd)

542 # compute the normals of the point cloud

543 pcd.estimate_normals()

544 # downsample the point cloud to speed up computation

545 downsampled_pcd = pcd.uniform_down_sample(self.uniform_downsample_factor)

546 edge_points_ind = []

547 for i in range(len(downsampled_pcd.points)):

548 # find the neighbors of the point

549 _, point_indices, _ = kdtree.search_radius_vector_3d(downsampled_pcd.points[i], radius)

550 # get the point cloud of the neighbors

551 neighbor_pcd = pcd.select_by_index(point_indices)

552 # cluster the normals of the neighbors into two groups

553 orthogonal, _ = self.cluster_normals(neighbor_pcd)

554 # if the normals could be clustered into two groups that are approximately orthogonal,

555 # the point is considered an edge point

556 if orthogonal:

557 edge_points_ind.append(self.uniform_downsample_factor * i)

558 return edge_points_ind

559 def cluster_normals(self, pcd, tol_cluster=0.4):

560 """

561 Helper function for 'find_edge_points_normals'. Clusters the normals of a point cloud into

562 two groups. If the mean of one group is nearly parallel to the vertical direction, and the

563 mean of the other group is nearly orthogonal to the vertical direction, and there is

564 approximately an equal number of points in both groups, the point is considered an edge point.

565 Parameters

91

A. Code Loading Edge Detection

566 ----------

567 pcd : open3d PointCloud

568 Point cloud, where the normals should be clustered. Usually the neighbors of a point.

569 tol_cluster : float, optional

570 Tolerance of the inner product of the mean of the two clusters and the vertical direction.

571 If the inner product is 0, the rest is orthogonal to the up-vector. The default is 0.4.

572 Returns

573 -------

574 orthogonal : bool

575 The two clusters are approximately orthogonal to each other.

576 center_rest : ndarray of shape (3,)

577 Mean of the cluster that is that is not the vertical direction.

578 If the two clusters are not approximately orthogonal, None is returned.

579 """

580 # get the normals of the points in the point cloud

581 normals = np.asarray(pcd.normals)

582 # tolerance for the length of the difference of the normals and the vertical direction

583 tol_parallel = 0.3

584 # all normals that are NOT approximately vertical (parallel to up_vector)

585 rest = normals[

586 np.logical_and(

587 np.linalg.norm(normals - self.up_vector, axis=1) > tol_parallel,

588 np.linalg.norm(normals + self.up_vector, axis=1) > tol_parallel,

589)

590]

591 # if there are too little normals of one kind, this is not an edge point

592 if 4 * len(rest) > len(normals) and 4 * len(rest) < 3 * len(normals):

593 # compute the mean and the norm of the rest

594 center_rest = np.sum(rest, axis=0) / len(rest)

595 norm_rest = np.linalg.norm(center_rest)

596 # tolerance for the length of the mean of the rest

597 tol_norm = 0.4

598 # if the norm is too short, the normals are too far away from each other -> return False

599 if norm_rest > tol_norm:

600 # normalize the mean of the rest

601 center_rest /= norm_rest

602 # compute the inner product of the mean of the rest and the vertical direction

603 inner_product = center_rest @ self.up_vector

604 # if the inner product of the centers is close to zero,

605 # the clustered normals are nearly orthogonal

606 if np.abs(inner_product) < tol_cluster:

607 return True, center_rest

608 return False, center_rest

609 return False, None

610 def differentiate_edges(self, pcd, edge1_P, edge2_P, lifting_vector=None):

611 """

612 Differentiate between a loading edge and the edge between loading platform and rear wall.

613 Key difference: above the loading edge, there should be no points -> translate the edge a bit

614 in the direction of the up_vector and check, which line hits less points -> loading edge

615 Parameters

616 ----------

92

617 pcd : open3d PointCloud

618 Point cloud, where the edges should be differentiated.

619 edge1_P : ndarray of shape (2,3)

620 Two points that define the first edge.

621 edge2_P : ndarray of shape (2,3)

622 Two points that define the second edge.

623 lifting_vector : ndarray of shape (3,), optional

624 Vector in the direction of which the edges are translated. The default is None.

625 If None, the up_vector is used.

626 Returns

627 -------

628 loading_edge : ndarray of shape (2,3)

629 Two points that define the loading edge.

630 other_edge : ndarray of shape (2,3)

631 Two points that define the other edge.

632 correct_order : bool

633 True, if the loading edge is edge1_P, False if the loading edge is edge2_P.

634 """

635 # define the lifting vector

636 if lifting_vector is None:

637 lifting_vector = self.up_vector

638 # lift both edges by a certain factor

639 lifting_factor = 0.3

640 lift = lifting_factor * lifting_vector

641 edge1_P_lifted = edge1_P + lift

642 edge2_P_lifted = edge2_P + lift

643 # compute the number of points for both edges and both lifted edges

644 num_votes_lifted_1 = len(

645 self.get_points_on_line(pcd, edge1_P_lifted, tol=0.1, cluster=False, between_points=True)

646)

647 num_votes_lifted_2 = len(

648 self.get_points_on_line(pcd, edge2_P_lifted, tol=0.1, cluster=False, between_points=True)

649)

650 num_votes_1 = len(

651 self.get_points_on_line(pcd, edge1_P, tol=0.1, cluster=False, between_points=True)

652)

653 num_votes_2 = len(

654 self.get_points_on_line(pcd, edge2_P, tol=0.1, cluster=False, between_points=True)

655)

656 # compute the relative votes of the lifted edges compared to the original edges

657 rel_votes1 = num_votes_lifted_1 / num_votes_1

658 rel_votes2 = num_votes_lifted_2 / num_votes_2

659 min_rel = 0.0001

660 if rel_votes1 < min_rel and rel_votes2 < min_rel:

661 # if both edges have little to no points above them, we take the longer edge

662 if np.linalg.norm(edge1_P[1] - edge1_P[0]) > np.linalg.norm(edge2_P[1] - edge2_P[0]):

663 loading_edge = edge1_P

664 other_edge = edge2_P

665 correct_order = True

666 else:

667 loading_edge = edge2_P

668 other_edge = edge1_P

669 correct_order = False

670 elif rel_votes1 < rel_votes2:

671 # edge1 is the loading edge

672 loading_edge = edge1_P

93

A. Code Loading Edge Detection

673 other_edge = edge2_P

674 correct_order = True

675 else:

676 # edge2 is the loading edge

677 loading_edge = edge2_P

678 other_edge = edge1_P

679 correct_order = False

680 return loading_edge, other_edge, correct_order

681 ##

682 # Geometric Functions

683 ##

684 def line_ransac(self, pcd, tol=0.08, max_iter=100):

685 """

686 Find a line in a point cloud by RANSAC. Typical usecase: The given point cloud consists of

687 previously detected edge points, and we want to find the dominant edge, i.e. the edge

688 containing the most points.

689 Parameters

690 ----------

691 pcd : open3d PointCloud

692 Point cloud, where the line should be detected.

693 Usually this point cloud consists of previously detected edge points.

694 tol : float, optional

695 Tolerance of the distance between a point and the line. The default is 0.08.

696 max_iter : int, optional

697 Maximum number of iterations of the RANSAC algorithm. The default is 100.

698 Returns

699 -------

700 best_line : ndarray of shape (2,3)

701 Two points that define the line.

702 finished_ransac : bool

703 States if there are enough points in the point cloud to perform RANSAC.

704 """

705 if len(pcd.points) > 1:

706 # initialize the best line and the number of votes

707 best_votes = 0

708 best_line = None

709 for _ in range(max_iter):

710 # sample the points and get the votes for this line

711 P1, P2, votes = self.line_ransac_votes(pcd, tol)

712 # update the best line and the number of votes if necessary

713 if votes > best_votes:

714 best_votes = votes

715 best_line = np.array([P1, P2])

716 return best_line, True

717 else:

718 return None, False

719 def line_ransac_votes(self, pcd, tol, P=None):

720 """

721 Helper function for 'line_ransac'. Counts the number of points that lie within some small

722 tolerance around a line. If P is None, two random points are sampled from pcd.

723 Parameters

94

724 ----------

725 pcd : open3d PointCloud

726 Point cloud, where the line should be detected.

727 tol : float

728 Tolerance of the distance between a point and the line.

729 P : list of ndarray of shape (2,3) or None, optional

730 If None, two random points are chosen and the line between them is used.

731 If not None, the line between the two points is used. The default is None.

732 Returns

733 -------

734 P1 : ndarray of shape (3,)

735 First point of the line.

736 P2 : ndarray of shape (3,)

737 Second point of the line.

738 votes : int

739 Number of points that lie within the tolerance around the line.

740 """

741 # sample points if necessary

742 if P is None:

743 ind1, ind2 = np.random.randint(len(pcd.points), size=2)

744 P1 = pcd.points[ind1]

745 P2 = pcd.points[ind2]

746 else:

747 P1 = P[0]

748 P2 = P[1]

749 # compute the distance of each point to the line

750 vecs_to_points = pcd.points - P1

751 # get the vector of the line

752 vec_line = P2 - P1

753 # if the two points are too close to each other, we return zero votes

754 norm_line = np.linalg.norm(vec_line)

755 if norm_line < 1e-10:

756 return P1, P2, 0

757 # normalize the vector of the line

758 vec_line /= norm_line

759 # project the vectors to the points onto the line

760 projected_length = vecs_to_points @ vec_line

761 # to avoid numerical errors, we set negative values to zero

762 squared_dist = np.square(np.linalg.norm(vecs_to_points, axis=1)) - np.square(projected_length)

763 squared_dist[squared_dist < 0] = 0

764 dist_to_line = np.sqrt(squared_dist)

765 # we count the number of points that lie within some small tolerance around the line

766 votes = np.count_nonzero(dist_to_line < tol)

767 return P1, P2, votes

768 def get_points_on_line(self, pcd, P, tol=0.05, cluster=True, between_points=False):

769 """

770 Returns the indices of the points of a point cloud that lie on a given line.

771 If cluster=True, the indices of the largest cluster of points on the line are returned.

772 If between_points=True, only the points between the two given points are returned.

773 Parameters

774 ----------

95

A. Code Loading Edge Detection

775 pcd : open3d PointCloud

776 Point cloud, where the points on the line should be found.

777 P : ndarray of shape (2,3)

778 Two points that define the line.

779 tol : float, optional

780 Tolerance of the distance between a point and the line. The default is 0.05.

781 cluster : bool, optional

782 If True, the indices of the largest cluster of points on the line are returned.

783 If False, all the indices of the points on the line are returned.

784 Only relevant, if between_points=False. The default is True.

785 between_points : bool, optional

786 If True, only the points between the two given points are returned.

787 If False, all the points on the line are returned. The default is False.

788 Returns

789 -------

790 points_on_line_ind : list of int

791 Indices of the points on the line.

792 """

793 # get the two points that define the line

794 P1, P2 = P[0], P[1]

795 # get the distance of all points to the first point of the line

796 vecs_to_points = pcd.points - P1

797 # get the vector of the line and its length

798 vec_line = P2 - P1

799 original_len_line = np.linalg.norm(vec_line)

800 # normalize the vector of the line

801 vec_line /= original_len_line

802 # project the vectors to the points onto the vector of the line

803 projected_length = vecs_to_points @ vec_line

804 if between_points:

805 # consider only points between P1 and P2

806 # compute the distance of the points to the line with the Pythagorean theorem

807 squared_dist = np.square(np.linalg.norm(vecs_to_points, axis=1)) - np.square(

808 projected_length

809)

810 # avoid numerical errors and get the distance to the line

811 squared_dist[squared_dist < 0] = 0

812 dist_to_line = np.sqrt(squared_dist)

813 points_on_line_ind = []

814 for i in range(len(projected_length)):

815 if (

816 projected_length[i] > 0

817 and projected_length[i] < original_len_line

818 and dist_to_line[i] < tol

819):

820 points_on_line_ind.append(i)

821 return points_on_line_ind

822 else:

823 # consider all points

824 # compute the distance of the points to the line with the Pythagorean theorem

825 squared_dist = np.square(np.linalg.norm(vecs_to_points, axis=1)) - np.square(

826 projected_length

827)

96

828 # avoid numerical errors and get the distance to the line

829 squared_dist[squared_dist < 0] = 0

830 dist_to_line = np.sqrt(squared_dist)

831 # get the indices of the points that lie within the tolerance

832 points_on_line_ind = np.where(dist_to_line < tol)[0]

833 # return the indices of the largest cluster

834 if cluster:

835 return self.find_largest_cluster(pcd, points_on_line_ind)

836 else:

837 return points_on_line_ind

838 def find_largest_cluster(self, pcd, pcd_ind=None, eps=0.5, min_points=10):

839 """

840 Find the largest cluster of a point cloud.

841 Parameters

842 ----------

843 pcd : open3d PointCloud

844 Point cloud, where the largest cluster should be found.

845 pcd_ind : list of int or None, optional

846 Indices of the points in pcd that we want to find a cluster in.

847 If None, we search for the largest cluster in the whole point cloud, e.g. if we want to

848 find the largest cluster of a line in a point cloud, pcd_ind gives the indices of the

849 points of the line in pcd. The default is None.

850 eps : float, optional

851 Epsilon for the DBSCAN algorithm. The default is 0.5.

852 min_points : int, optional

853 Minimum number of points for a cluster. The default is 10.

854 Returns

855 -------

856 inlier_ind : list of int

857 Indices of the points of the largest cluster.

858 """

859 if pcd_ind is None:

860 # search for the largest cluster in the whole point cloud

861 pcd_ind = list(range(len(pcd.points)))

862 else:

863 # or just in the points with the given indices

864 pcd = pcd.select_by_index(pcd_ind)

865 # cluster the pcd using dbscan

866 cluster_labels = np.array(pcd.cluster_dbscan(eps=eps, min_points=min_points))

867 # points labeled -1: noise

868 # get a list of all cluster labels

869 unique_labels = np.unique(cluster_labels)

870 # count for each cluster label the amount of points in that label

871 num_points_per_cluster = [len(np.where(cluster_labels == i)[0]) for i in unique_labels]

872 # If the two largest clusters have the same amount of points, we have to decide somehow

873 # between them. Generally, this is bad, because then there is no unique 'largest' cluster

874 # just take the first cluster -> [0] at the end

875 # (the first [0] gives us the first entry of the tuple (array,) that we get from np.where)

876 max_points_per_cluster = np.max(num_points_per_cluster)

877 max_label = np.where(num_points_per_cluster == max_points_per_cluster)[0][0]

878 # get the label of the largest cluster

879 largest_cluster_label = int(unique_labels[max_label])

97

A. Code Loading Edge Detection

880 # get all the indices of pcd_ind that correspond to the points of the largest cluster

881 # in the larger point cloud that pcd is embedded in

882 inlier_ind = [pcd_ind[i] for i in list(np.where(cluster_labels == largest_cluster_label)[0])]

883 return inlier_ind

884 def find_orthogonal_line(self, edge_pcd, P_original, tol=0.08, max_iter=100, max_lines=5):

885 """

886 For a given line, find a line that is approximately orthogonal to it within a point cloud.

887 The line is found by a version of RANSAC. At most max_lines lines are found.

888 The first line that is orthogonal is returned.

889 If no orthogonal line is found, the original line is returned, together with False.

890 Parameters

891 ----------

892 edge_pcd : open3d PointCloud

893 Point cloud, where the line should be detected.

894 Usually this point cloud consists of previously detected edge points.

895 P_orthogonal : ndarray of shape (2,3)

896 Two points that define the line that is orthogonal to the line we are looking for.

897 tol : float, optional

898 Tolerance of the distance between a point and the line. The default is 0.08.

899 max_iter : int, optional

900 Maximum number of iterations of the RANSAC algorithm for one line. The default is 100.

901 max_lines : int, optional

902 Maximum number of lines that are tried to find. The default is 5.

903 Returns

904 -------

905 best_line : ndarray of shape (2,3)

906 Two points that define the line.

907 orthogonal : bool

908 True, if an orthogonal line was found.

909 """

910 # initialize the best line and the number of votes

911 best_votes = 0

912 best_line = P_original

913 # define the original line

914 line_original = P_original[1] - P_original[0]

915 line_original /= np.linalg.norm(line_original)

916 for j in range(max_lines):

917 for _ in range(max_iter):

918 # if the point cloud is too small, we cannot find a line

919 if len(edge_pcd.points) >= 2:

920 P1, P2, votes = self.line_ransac_votes(edge_pcd, tol)

921 else:

922 return P_original, False

923 # update the best line and the number of votes if necessary

924 if votes > best_votes:

925 best_votes = votes

926 best_line = np.array([P1, P2])

927 # compute the vector of the best line

928 vec_line = best_line[1] - best_line[0]

929 vec_line /= np.linalg.norm(vec_line)

930 # if the line is orthogonal to the other line and to the vertical direction,

931 # we have found the correct line

98

932 if (

933 np.abs(vec_line @ line_original) < self.tol_orthogonal

934 and np.abs(vec_line @ self.up_vector) < self.tol_orthogonal

935):

936 return best_line, True

937 else:

938 # delete the points on this line from the edge point cloud and start again

939 new_ind = self.get_points_on_line(edge_pcd, best_line, tol=0.05)

940 edge_pcd = edge_pcd.select_by_index(new_ind, invert=True)

941 best_votes = 0

942 best_line = P_original

943 # if no orthogonal line is found within the maximum number of iterations,

944 # return the original line and False

945 return P_original, False

946 def find_endpoints(self, edge_pcd, max_iter=100):

947 """

948 Find the endpoints of a line, i.e. the points on the line that are the furthest away from each

949 other. This is done by a variant of RANSAC. Usually a small number of iterations is enough,

950 since this does not have to be the best pair of points, a close approximation suffices.

951 If necessary, increase the number of iterations given by max_iter.

952 Parameters

953 ----------

954 edge_pcd : open3d PointCloud

955 Point cloud that contains the points on the edge.

956 This point cloud should already be the largest cluster of a found edge.

957 max_iter : int, optional

958 Maximum number of iterations. The default is 100.

959 Returns

960 -------

961 best_P1 : ndarray of shape (3,)

962 First endpoint.

963 best_P2 : ndarray of shape (3,)

964 Second endpoint.

965 """

966 # initialize best distance and best points

967 best_dist = 0

968 best_P1 = None

969 best_P2 = None

970 # find the best pair of points within max_iter iterations

971 for i in range(max_iter):

972 ind1, ind2 = np.random.randint(len(edge_pcd.points), size=2)

973 P1 = edge_pcd.points[ind1]

974 P2 = edge_pcd.points[ind2]

975 new_dist = np.linalg.norm(P2 - P1)

976 if new_dist > best_dist:

977 best_dist = new_dist

978 best_P1 = P1

979 best_P2 = P2

980 return best_P1, best_P2

981 """

982 Additional functions, not shown here:

983 def intersect_line_plane(self, P_line, P_plane)

984 def intersect_two_planes(self, weights1, weights2)

985 """

99

A. Code Loading Edge Detection

986 ##

987 # Alternative Approach

988 ##

989 def find_edge_points_centroids(self, pcd, radius=0.09, max_nn=40, tol=0.009):

990 """

991 Find edge points of a point cloud by computing the centroid of the neighbors of each point.

992 If the centroid is too far away from the point, the point is considered an edge point.

993 Problem of this method: Finds also points at the border of the point cloud.

994 Parameters

995 ----------

996 pcd : open3d PointCloud

997 Point cloud, where the edge points should be found.

998 radius : float, optional

999 Radius around a point, where the kd-tree looks for neighbors. The default is 0.09.

1000 max_nn : int, optional

1001 Maximum number of neighbors to be found. The default is 40.

1002 tol : float, optional

1003 Tolerance of the distance between the centroid and the point. The default is 0.009.

1004 If the distance is larger than tol, the point is considered an edge point.

1005 Returns

1006 -------

1007 edge_points_ind : list of int

1008 Indices of the edge points.

1009 """

1010 # compute the kd-tree of the point cloud to enable fast neighbor search

1011 kdtree = o3d.geometry.KDTreeFlann(pcd)

1012 # downsample the point cloud to speed up computation

1013 downsampled_pcd = pcd.uniform_down_sample(self.uniform_downsample_factor)

1014 edge_points_ind = []

1015 for i in range(len(downsampled_pcd.points)):

1016 # find the neighbors of the point

1017 _, point_indices, _ = kdtree.search_hybrid_vector_3d(

1018 query=downsampled_pcd.points[i], radius=radius, max_nn=max_nn

1019)

1020 # get the point cloud of the neighbors

1021 neighbor_pcd = pcd.select_by_index(point_indices)

1022 # compute the centroid of the neighbors

1023 sum_of_points = np.sum(np.asarray(neighbor_pcd.points), axis=0)

1024 centroid = sum_of_points / len(neighbor_pcd.points)

1025 # compute the distance between the centroid and the point

1026 dist_to_point = np.linalg.norm(centroid - downsampled_pcd.points[i])

1027 # if the distance is larger than tol, the point is considered an edge point

1028 if dist_to_point > tol:

1029 edge_points_ind.append(self.uniform_downsample_factor * i)

1030 return edge_points_ind

100

B. Code Pose Estimation

1 import gtsam

2 import numpy as np

3 import copy

4 import pickle

5 class Truck3D:

6 def __init__(

7 self,

8 observation_noise_translation_default=0.17,

9 observation_noise_rotation_default=0.14,

10 construction_noise_translation_default=12,

11 construction_noise_rotation_default=1.5,

12 updating_factor_noise=0.94,

13 updating_factor_weights=0.97,

14 initial_weights_translation=0.8,

15 initial_weights_rotation=0.8,

16 align_every_n_steps=32,

17 saving_old_factors_until_n_time_steps=50,

18 **truck_configuration,

19):

20 """

21 Constructor.

22 Parameters

23 ----------

24 observation_noise_translation_default : float, optional

25 Standard deviation of the noise for the translation of the observations.

26 The default is 0.17.

27 observation_noise_rotation_default : float, optional

28 Standard deviation of the noise for the rotation of the observations. The default is 0.14.

29 construction_noise_translation_default : float, optional

30 Default standard deviation of the noise for the translation of the construction factors.

31 Used for construction factors of parts that are in no special relation

32 (dependency group or degree of freedom) with each other. The default is 12.

33 construction_noise_rotation_default : float, optional

34 Default standard deviation of the noise for the rotation of the construction factors.

35 Used for construction factors of parts that are in no special relation

36 (dependency group or degree of freedom) with each other. The default is 1.5.

37 updating_factor_noise : float, optional

38 Factor to update the construction noise after each time step.

39 Update the default construction noise with this factor after each time step.

40 The default is 0.94.

41 updating_factor_weights : float, optional

42 Factor to update the weights of the factors after each time step.

43 The default is 0.97.

44 initial_weights_translation : float, optional

45 Initial weight for updating the translation of parts of the truck after a new observation.

46 The default is 0.8.

47 initial_weights_rotation : float, optional

48 Initial weight for updating the rotation of parts of the truck after a new observation.

49 The default is 0.8.

50 align_every_n_steps : int, optional

51 How often dependent parts of the model are aligned.

101

B. Code Pose Estimation

52 If 0, dependent parts are never aligned.

53 If 1, dependent parts are aligned after each time step.

54 The default is 32.

55 saving_old_factors_until_n_time_steps : int, optional

56 Number of time steps, old observation factors should stay in the graph.

57 The default is 50.

58 **truck_configuration : dict

59 Dictionary with the configuration of the truck. The keys of the dictionary are some

60 features of the truck (e.g. width of the loading platform). Not all features

61 have to be given (for the features that are not given, default values are used).

62 Attributes

63 ----------

64 graph : gtsam.NonlinearFactorGraph

65 Current factor graph.

66 updating_factor_noise : float in (0, 1]

67 Factor to update the construction noise after each time step.

68 The construction noise is updated with the function update_construction_noise().

69 updating_factor_weights : float in (0, 1]

70 Factor to update the weights for model updates after each time step.

71 The weights are updated with the function update_weights().

72 lower_bound_construction_noise : float >= 0

73 Lower bound for the construction noise in the updating function.

74 lower_bound_weights : float in [0, 1]

75 Lower bound for the weights in the updating function.

76 weight_rotation : float in (lower_bound_weights, 1]

77 Current weight for the updates of the rotation.

78 weight_translation : float in (lower_bound_weights, 1]

79 Current weight for the updates of the translation.

80 observation_noise_rotation_default : float >= 0

81 Standard deviation of the noise for the rotation of the observations.

82 observation_noise_translation_default : float >= 0

83 Standard deviation of the noise for the translation of the observations.

84 construction_noise_rotation_default : float

85 Default standard deviation of the noise for the rotation of the construction factors.

86 Used for construction factors of parts that are in no special relation to each other.

87 construction_noise_rotation_dependent : float

88 Standard deviation of the noise for the rotation of the construction factors between

89 dependent parts.

90 construction_noise_translation_default : float

91 Default standard deviation of the noise for the translation of the construction factors.

92 Used for construction factors of parts that are in no special relation to each other.

93 construction_noise_translation_dependent : float

94 Standard deviation of the noise for the translation of the construction factors between

95 dependent parts.

96 align_every_n_steps : int >= 0

97 How often dependent parts of the model are aligned.

98 If 0, dependent parts are never aligned.

99 If 1, dependent parts are aligned after each time step.

100 factors_to_reuse : list of gtsam.NonlinearFactorGraph

101 List of the observation factors that are saved to reuse them after each time step

102 in the recreation of the factor graph. Old observations stay the same each time

103 the factor graph is recreated and should be kept in the factor graph for some time.

104 saving_old_factors_until_n_time_steps : int > 0

105 Number of time steps, old observation factors should stay in the graph.

106 time_step_factors_to_reuse : list of int

107 List of the corresponding time step of the factors to reuse.

108 Used to check if observations are too old and therefore deleted from the list.

109 symbols_sensor : list of gtsam.Symbol

110 List of the symbols for the sensor in each time step.

111 sensor_trajectory : list of gtsam.Pose3

112 List of the estimated poses of the sensor in the world frame.

113 current_num_time_steps : int

102

114 Number of time steps that have already been processed.

115 g0, G0, w1, w2, w3, W1, W2, W3, l1, l2, L1, L2 : gtsam.Symbol

116 Symbols for the variables.

117 g0 ... origin of the world/global frame

118 G0 ... not any origin, but to stay consistent with the naming convention

119 w1, w2, w3 ... left wheels (one front wheel (w1) and two rear wheels (w2, w3))

120 W1, W2, W3 ... right wheels (one front wheel (W1) and two rear wheels (W2, W3))

121 l1, l2 ... left lights (one front light (l1) and one rear light (l2))

122 L1, L2 ... right lights (one front light (L1) and one rear light (L2))

123 symbols_parts : list of gtsam.Symbol

124 List of all symbols for the variables.

125 dependency_groups : dict

126 Dependency groups contain parts of the truck that have a fixed spatial relation

127 to each other, e.g. all wheels have the same z-coordinate in the world frame.

128 Therefore, if the z-coordinate of one wheel is changed, the z-coordinates of all other

129 wheels have to change as well. Given as a dictionary with the axes as keys,

130 where the values are dictionarys with the dependency groups as values.

131 groups_with_degrees_of_freedom : dict

132 Some parts have certain degrees of freedom, e.g. the front wheels can be rotated

133 around the z-axis (but both front wheels are rotated the same amount). Given as

134 a dictionary with the axes as keys. The values are again dictionarys containing

135 groups of symbols that are in a fixed relation to each other. A group is given as

136 a dictionary containing "symbols" (list of symbols) and "std" (additional

137 standard deviation of the noise model). If a single element has a degree of freedom,

138 it can be added here as well (e.g. a wheel can be rotated around the y-axis).

139 symbols_info : dict

140 Dictionary with information about each symbol defining the model of the truck implicitly.

141 For each symbol, the following information is contained:

142 num_observed: integer, indicating how often the symbol has been observed.

143 pose_in_world_frame: dictionary with keys "x", "y", "z", "rotation_matrix".

144 dependency_groups: dictionary with keys "x", "y", "z", "roll", "pitch", "yaw"

145 and the symbols in their respective group as values.

146 groups_with_degrees_of_freedom: dictionary with only the necessary keys of "x", "y",

147 "z", "roll", "pitch", and "yaw" and the symbols in their respective group as values.

148 std_degrees_of_freedom: dictionary with the additional standard deviation for

149 the respective groups with degrees of freedom.

150 construction_noise_dictionary : dict

151 Dictionary with the standard deviations of the noise models for the construction factors.

152 This information is saved such that it does not have to be computed in each time step.

153 length_loading_platform : float

154 Length of the loading platform.

155 true_truck_configuration : dict

156 Dictionary that contains the ground truth of the truck configuration. Used for testing.

157 """

158 self.graph = gtsam.NonlinearFactorGraph()

159 # define input parameters for noise, weights, and updating factors as attributes

160 self.updating_factor_noise = updating_factor_noise

161 self.updating_factor_weights = updating_factor_weights

162 self.lower_bound_construction_noise = 0.1

163 self.lower_bound_weights = 0.1

164 self.weight_rotation = initial_weights_rotation

165 self.weight_translation = initial_weights_translation

166 self.observation_noise_rotation_default = observation_noise_rotation_default

167 self.observation_noise_translation_default = observation_noise_translation_default

168 self.construction_noise_rotation_default = construction_noise_rotation_default

169 self.construction_noise_rotation_dependent = 0

170 self.construction_noise_translation_default = construction_noise_translation_default

171 self.construction_noise_translation_dependent = 0

172 # define how often dependent parts of the model are aligned

173 self.align_every_n_steps = align_every_n_steps

103

B. Code Pose Estimation

174 # define empty lists for recreating the factor graph

175 self.factors_to_reuse = []

176 self.saving_old_factors_until_n_time_steps = saving_old_factors_until_n_time_steps

177 self.time_step_factors_to_reuse = []

178 # define empty lists for the symbols and the estimated poses of the sensor

179 self.symbols_sensor = []

180 self.sensor_trajectory = []

181 # define a counter for the number of time steps

182 self.current_num_time_steps = 0

183 # define all available symbols for the variables

184 (

185 self.g0,

186 self.G0,

187 self.w1,

188 self.w2,

189 self.w3,

190 self.W1,

191 self.W2,

192 self.W3,

193 self.l1,

194 self.l2,

195 self.L1,

196 self.L2,

197) = self.define_symbols()

198 self.symbols_parts = [

199 self.g0,

200 self.G0,

201 self.w1,

202 self.w2,

203 self.w3,

204 self.W1,

205 self.W2,

206 self.W3,

207 self.l1,

208 self.l2,

209 self.L1,

210 self.L2,

211]

212 # dictionary with symbols that are spatially dependent on each other in some way (i.e. axis)

213 self.dependency_groups = {

214 "x": {

215 0: [self.g0, self.G0],

216 1: [self.w1, self.W1],

217 2: [self.w2, self.W2],

218 3: [self.w3, self.W3],

219 4: [self.l1, self.L1],

220 },

221 "y": {

222 0: [self.w1, self.w3],

223 1: [self.W1, self.W3],

224 },

225 "z": {

226 0: [self.w1, self.w2, self.w3, self.W1, self.W2, self.W3],

227 1: [self.l1, self.L1],

228 2: [self.l2, self.L2],

229 },

230 }

231 # dictionary with symbols that have some degrees of freedom in their relation to other symbols

104

232 # and the parts that are in a fixed relation to them

233 # the additional uncertainty is given as the standard deviation of the noise model ("std")

234 self.groups_with_degrees_of_freedom = {

235 "yaw": {

236 # the yaw of the front wheels might change depending on the steering angle

237 0: {

238 "symbols": [self.w1, self.W1],

239 "std": 1.5 * np.pi,

240 "rotate_second_matrix": np.pi,

241 },

242 },

243 "z": {

244 # the height of the loading edge might change depending on the load

245 0: {"symbols": [self.g0, self.G0], "std": 2},

246 },

247 }

248 # dictionary with information about the variables

249 self.symbols_info = {}

250 self.build_symbols_info()

251 # get the construction noise model depending on the degrees of freedom and dependent parts

252 self.construction_noise_dictionary = {}

253 self.build_construction_noise_dictionary()

254 # define the approximate truck configuration

255 self.length_loading_platform = 5.87

256 self.define_estimated_truck_configuration(truck_configuration)

257 # define the ground truth configuration of the truck

258 self.true_truck_configuration = {}

259 self.define_ground_truth_truck_configuration()

260 ##

261 # Definition of the truck

262 ##

263 def build_symbols_info(self):

264 """

265 Build the symbols_info dictionary at the initialization of the class.

266 It contains for each symbol the number of times this symbol has been observed,

267 the poses of the parts in the world frame,

268 the dependency groups the symbol is involved in,

269 and the groups with degrees of freedom the symbol is involved in

270 with the respective standard deviation.

271 """

272 self.symbols_info = {

273 symbol: {

274 "num_observed": 0,

275 "pose_in_world_frame": {

276 "x": 0,

277 "y": 0,

278 "z": 0,

279 "rotation_matrix": gtsam.Rot3(),

280 },

281 "dependency_groups": {

282 "x": [],

283 "y": [],

284 "z": [],

285 "roll": [],

286 "pitch": [],

287 "yaw": [],

288 },

105

B. Code Pose Estimation

289 "groups_with_degrees_of_freedom": {},

290 "std_degrees_of_freedom": {},

291 }

292 for symbol in self.symbols_parts

293 }

294 # adapt the dependency groups and groups with degrees of freedom for each symbol

295 for symbol in self.symbols_parts:

296 for axis in self.dependency_groups:

297 for group in self.dependency_groups[axis]:

298 # if the symbol is in this specific group, we add all other symbols in this group

299 # to the dependency groups of the symbol

300 if symbol in self.dependency_groups[axis][group]:

301 for other_symbol in self.dependency_groups[axis][group]:

302 if other_symbol != symbol:

303 self.symbols_info[symbol]["dependency_groups"][axis].append(

304 other_symbol

305)

306 for axis in self.groups_with_degrees_of_freedom:

307 for group in self.groups_with_degrees_of_freedom[axis]:

308 if symbol in self.groups_with_degrees_of_freedom[axis][group]["symbols"]:

309 # if the symbol is in this specific group, we add all other symbols in this

310 # group to the dependency groups of the symbol, and we add the standard

311 # deviation of the degrees of freedom to the symbols_info dictionary

312 # gather all other symbols in this group

313 other_symbols = []

314 for other_symbol in self.groups_with_degrees_of_freedom[axis][group][

315 "symbols"

316]:

317 if other_symbol != symbol:

318 other_symbols.append(other_symbol)

319 self.symbols_info[symbol]["groups_with_degrees_of_freedom"][

320 axis

321] = other_symbols

322 self.symbols_info[symbol]["std_degrees_of_freedom"][

323 axis

324] = self.groups_with_degrees_of_freedom[axis][group]["std"]

325 def define_estimated_truck_configuration(self, truck_configuration={}):

326 """

327 Define the estimated configuration of the truck by defining the poses of all parts

328 in the world frame in the symbols_info dictionary.

329 Calls the function define_symbols_info_for_estimated_truck_configuration().

330 Parameters

331 ----------

332 truck_configuration : dict, optional

333 Dictionary with the configuration of the truck. The keys of the dictionary are some

334 features of the truck (e.g. width of the loading platform). Not all features have to be

335 given (for the features that are not given, default values are used). The default is {}.

336 """

337 # we have to check whether the length of the loading platform is given

338 if "length_loading_platform" not in truck_configuration:

339 self.length_loading_platform = 5.87

340 else:

341 self.length_loading_platform = truck_configuration["length_loading_platform"]

342 # define the poses of all parts in the world frame in the symbols_info dictionary

343 # pass the truck configuration with ''**'' to unpack the dictionary

344 self.define_symbols_info_for_estimated_truck_configuration(**truck_configuration)

106

345 def define_symbols_info_for_estimated_truck_configuration(

346 self,

347 rotation_matrix_right_loading_edge=None,

348 rotation_matrix_right_wheels=None,

349 rotation_matrix_front_lights=None,

350 rotation_matrix_rear_lights=None,

351 width_loading_platform=2.47,

352 height_loading_platform_above_wheels=0.70,

353 distance_g0_w1=0.79,

354 distance_w1_w2=3.84,

355 distance_w2_w3=1.35,

356 height_loading_platform_above_front_lights=0.38,

357 height_loading_platform_above_rear_lights=0.46,

358 distance_lights_in_front_of_loading_platform=2.19,

359 distance_lights_behind_loading_platform=0.79,

360 distance_front_lights=1.73,

361 distance_rear_lights=1.96,

362):

363 """

364 Define the poses of all parts in the world frame in the symbols_info dictionary.

365 This function is a helper function for define_estimated_truck_configuration().

366 Parameters

367 ----------

368 rotation_matrix_right_loading_edge : ndarray, optional

369 Rotation matrix for the right loading edge. The default is None.

370 rotation_matrix_right_wheels : ndarray, optional

371 Rotation matrix for the right wheels. The default is None.

372 rotation_matrix_front_lights : ndarray, optional

373 Rotation matrix for the front lights. The default is None.

374 rotation_matrix_rear_lights : ndarray, optional

375 Rotation matrix for the rear lights. The default is None.

376 width_loading_platform : float, optional

377 Width of the loading platform. The default is 2.47.

378 height_loading_platform_above_wheels : float, optional

379 Height of the loading platform above the wheels. The default is 0.70.

380 distance_g0_w1 : float, optional

381 Distance between the origin of the world frame and the left front wheel.

382 The default is 0.79.

383 distance_w1_w2 : float, optional

384 Distance between the left front wheel and the left rear wheel. The default is 3.84.

385 distance_w2_w3 : float, optional

386 Distance between the left rear wheel and the right rear wheel. The default is 1.35.

387 height_loading_platform_above_front_lights : float, optional

388 Height of the loading platform above the front lights. The default is 0.38.

389 height_loading_platform_above_rear_lights : float, optional

390 Height of the loading platform above the rear lights. The default is 0.46.

391 distance_lights_in_front_of_loading_platform : float, optional

392 Distance between the front lights and the loading platform. The default is 2.19.

393 distance_lights_behind_loading_platform : float, optional

394 Distance between the rear lights and the loading platform. The default is 0.79.

395 distance_front_lights : float, optional

396 Distance between the two front lights. The default is 1.73.

397 distance_rear_lights : float, optional

398 Distance between the two rear lights. The default is 1.96.

399 """

400 # if no rotation matrices are given, we use the default matrices

401 if rotation_matrix_right_loading_edge is None:

402 rotation_matrix_right_loading_edge = self.get_rotation_matrix(-np.pi / 2, axis="z")

403 if rotation_matrix_right_wheels is None:

404 rotation_matrix_right_wheels = self.get_rotation_matrix(np.pi, axis="z")

405 if rotation_matrix_front_lights is None:

107

B. Code Pose Estimation

406 rotation_matrix_front_lights = self.get_rotation_matrix(np.pi / 2, axis="z")

407 if rotation_matrix_rear_lights is None:

408 rotation_matrix_rear_lights = self.get_rotation_matrix(-np.pi / 2, axis="z")

409 y_middle = width_loading_platform / 2

410 # define the poses of all parts in the world frame in the symbols_info dictionary

411 self.symbols_info[self.g0]["pose_in_world_frame"] = {

412 "x": 0,

413 "y": 0,

414 "z": 0,

415 "rotation_matrix": gtsam.Rot3(),

416 }

417 self.symbols_info[self.G0]["pose_in_world_frame"] = {

418 "x": 0,

419 "y": width_loading_platform,

420 "z": 0,

421 "rotation_matrix": gtsam.Rot3(rotation_matrix_right_loading_edge),

422 }

423 self.symbols_info[self.w1]["pose_in_world_frame"] = {

424 "x": -distance_g0_w1,

425 "y": 0,

426 "z": -height_loading_platform_above_wheels,

427 "rotation_matrix": gtsam.Rot3(),

428 }

429 self.symbols_info[self.W1]["pose_in_world_frame"] = {

430 "x": -distance_g0_w1,

431 "y": width_loading_platform,

432 "z": -height_loading_platform_above_wheels,

433 "rotation_matrix": gtsam.Rot3(rotation_matrix_right_wheels),

434 }

435 self.symbols_info[self.w2]["pose_in_world_frame"] = {

436 "x": -distance_g0_w1 + distance_w1_w2,

437 "y": 0,

438 "z": -height_loading_platform_above_wheels,

439 "rotation_matrix": gtsam.Rot3(),

440 }

441 self.symbols_info[self.W2]["pose_in_world_frame"] = {

442 "x": -distance_g0_w1 + distance_w1_w2,

443 "y": width_loading_platform,

444 "z": -height_loading_platform_above_wheels,

445 "rotation_matrix": gtsam.Rot3(rotation_matrix_right_wheels),

446 }

447 self.symbols_info[self.w3]["pose_in_world_frame"] = {

448 "x": -distance_g0_w1 + distance_w1_w2 + distance_w2_w3,

449 "y": 0,

450 "z": -height_loading_platform_above_wheels,

451 "rotation_matrix": gtsam.Rot3(),

452 }

453 self.symbols_info[self.W3]["pose_in_world_frame"] = {

454 "x": -distance_g0_w1 + distance_w1_w2 + distance_w2_w3,

455 "y": width_loading_platform,

456 "z": -height_loading_platform_above_wheels,

457 "rotation_matrix": gtsam.Rot3(rotation_matrix_right_wheels),

458 }

459 self.symbols_info[self.l1]["pose_in_world_frame"] = {

460 "x": -distance_lights_in_front_of_loading_platform,

461 "y": y_middle - distance_front_lights / 2,

462 "z": -height_loading_platform_above_front_lights,

463 "rotation_matrix": gtsam.Rot3(rotation_matrix_front_lights),

464 }

465 self.symbols_info[self.L1]["pose_in_world_frame"] = {

466 "x": -distance_lights_in_front_of_loading_platform,

108

467 "y": y_middle + distance_front_lights / 2,

468 "z": -height_loading_platform_above_front_lights,

469 "rotation_matrix": gtsam.Rot3(rotation_matrix_front_lights),

470 }

471 self.symbols_info[self.l2]["pose_in_world_frame"] = {

472 "x": self.length_loading_platform + distance_lights_behind_loading_platform,

473 "y": y_middle - distance_rear_lights / 2,

474 "z": -height_loading_platform_above_rear_lights,

475 "rotation_matrix": gtsam.Rot3(rotation_matrix_rear_lights),

476 }

477 self.symbols_info[self.L2]["pose_in_world_frame"] = {

478 "x": self.length_loading_platform + distance_lights_behind_loading_platform,

479 "y": y_middle + distance_rear_lights / 2,

480 "z": -height_loading_platform_above_rear_lights,

481 "rotation_matrix": gtsam.Rot3(rotation_matrix_rear_lights),

482 }

483 """

484 Additional functions, not shown here:

485 def define_symbols(self)

486 def get_sensor_symbol(self, time_step)

487 def define_ground_truth_truck_configuration(self)

488 def symbols_info_to_pose_in_world_frame(self, symbol, truck_configuration, true_or_estimated)

489 """

490 ##

491 # Update of the truck configuration

492 ##

493 def update_truck_configuration(self, result):

494 """

495 Update the poses of the parts of the truck in the world frame according to the weights in the

496 symbols_info dictionary. The model of the truck is updated after each time step, when new

497 observations lead to new optimization results and a new estimation of the truck configuration.

498 If we want to align the dependent parts explicitly, we can set align_explicitly to True.

499 Parameters

500 ----------

501 result : gtsam.Values

502 Result of the optimization containing the new poses of the parts in the world frame.

503 """

504 for symbol in self.symbols_info.keys():

505 # for all variables (parts of the truck and recent sensors): get the new pose from the

506 # optimization result and update the pose in the symbols_info dictionary

507 new_pose = result.atPose3(symbol)

508 self.update_pose_in_world_frame(symbol, new_pose)

509 # update the length of the loading platform, which is dependent on the poses of some parts

510 self.update_dependent_parameters()

511 # align the dependent parts explicitly if desired

512 align_explicitly = False

513 if self.align_every_n_steps > 0 and self.current_num_time_steps > 0:

514 if self.current_num_time_steps % self.align_every_n_steps == 0:

515 align_explicitly = True

516 if align_explicitly:

517 self.align_dependent_parts()

518 # transform the whole model such that the origin of the world frame

519 # is at the beginning of the left loading edge

520 trafo_g0_to_origin = self.symbols_info_to_pose_in_world_frame(self.g0).between(gtsam.Pose3())

109

B. Code Pose Estimation

521 for symbol in self.symbols_info.keys():

522 new_pose = self.symbols_info_to_pose_in_world_frame(symbol).compose(trafo_g0_to_origin)

523 self.symbols_info[symbol]["pose_in_world_frame"] = {

524 "x": new_pose.translation()[0],

525 "y": new_pose.translation()[1],

526 "z": new_pose.translation()[2],

527 "rotation_matrix": new_pose.rotation(),

528 }

529 def update_pose_in_world_frame(self, symbol, new_pose):

530 """

531 Update the pose of a part in the world frame according to the updating weights.

532 Parameters

533 ----------

534 symbol : gtsam.Symbol

535 Symbol of the part.

536 new_pose : gtsam.Pose3

537 New estimated pose.

538 """

539 old_pose = self.symbols_info_to_pose_in_world_frame(symbol)

540 # update the rotation and translation according to the weights

541 updated_rotation = self.update_rotation(old_pose, new_pose, self.weight_rotation)

542 updated_translation = self.update_translation(old_pose, new_pose, self.weight_translation)

543 # update the pose in the symbols_info dictionary

544 self.symbols_info[symbol]["pose_in_world_frame"] = {

545 "x": updated_translation[0],

546 "y": updated_translation[1],

547 "z": updated_translation[2],

548 "rotation_matrix": updated_rotation,

549 }

550 def update_rotation(self, old_pose, new_pose, weight):

551 """

552 Update the rotation of a pose according to some weight.

553 Parameters

554 ----------

555 old_pose : gtsam.Pose3

556 Old pose.

557 new_pose : gtsam.Pose3

558 New pose.

559 weight : float

560 Weight for the update.

561 Returns

562 -------

563 gtsam.Rot3

564 Updated rotation.

565 """

566 rotation_matrix_new = new_pose.rotation().matrix()

567 rotation_matrix_old = old_pose.rotation().matrix()

568 # compute the naive weighted average

569 average_rotation_matrix = weight * rotation_matrix_new + (1 - weight) * rotation_matrix_old

570 # project this matrix onto SO(3)

571 # compute the singular value decomposition of the matrix

572 U, _, V_t = np.linalg.svd(average_rotation_matrix, full_matrices=False)

573 S = np.diag([1, 1, np.sign(np.linalg.det(U) * np.linalg.det(V_t))])

110

574 average_rotation_matrix = U @ S @ V_t

575 return gtsam.Rot3(average_rotation_matrix)

576 def update_translation(self, old_pose, new_pose, weight):

577 """

578 Update the translation of a pose according to some weight.

579 Parameters

580 ----------

581 old_pose : gtsam.Pose3

582 Old pose.

583 new_pose : gtsam.Pose3

584 New pose.

585 weight : float

586 Weight of the new pose.

587 Returns

588 -------

589 gtsam.Point3

590 Updated translation.

591 """

592 return weight * new_pose.translation() + (1 - weight) * old_pose.translation()

593 def update_dependent_parameters(self):

594 """

595 After changing the configuration of the truck by changing the poses of some parts

596 in the world frame, we have to update the parameters dependent on these poses,

597 i.e. the length of the loading platform. The new length is computed as the weighted average

598 of certain distances. Parts that have been observed more often get more weight.

599 """

600 weight_g0 = max(self.symbols_info[self.g0]["num_observed"], 1)

601 weight_G0 = max(self.symbols_info[self.G0]["num_observed"], 1)

602 weight_l2 = max(self.symbols_info[self.l2]["num_observed"], 1)

603 weight_L2 = max(self.symbols_info[self.L2]["num_observed"], 1)

604 x_front_end = (

605 weight_g0 * self.symbols_info[self.g0]["pose_in_world_frame"]["x"]

606 + weight_G0 * self.symbols_info[self.G0]["pose_in_world_frame"]["x"]

607) / (weight_g0 + weight_G0)

608 x_rear_end = (

609 weight_l2 * self.symbols_info[self.l2]["pose_in_world_frame"]["x"]

610 + weight_L2 * self.symbols_info[self.L2]["pose_in_world_frame"]["x"]

611) / (weight_l2 + weight_L2)

612 distance_lights_behind_loading_platform = 1.04

613 self.length_loading_platform = (

614 abs(x_rear_end - x_front_end) - distance_lights_behind_loading_platform

615)

616 def align_dependent_parts(self):

617 """

618 If the position of a part is updated, the positions of the dependent parts have to be updated

619 as well, e.g. if the x-coordinate of the wheel w2 is updated, the x-coordinate of the wheel W2

620 has to be updated as well. This is done according to the align_every_n_steps parameter.

621 """

622 # we iterate over all axes ...

623 for axis in self.dependency_groups.keys():

624 # ... and all groups to calculate the mean of the updated symbols in the current group

625 for group_list in self.dependency_groups[axis].values():

626 # average for translation axes

627 if axis in ["x", "y", "z"]:

628 average_translation = self.get_average_translation(group_list, axis)

111

B. Code Pose Estimation

629 for symbol in group_list:

630 self.symbols_info[symbol]["pose_in_world_frame"][axis] = average_translation

631 # average for rotation axes

632 else:

633 average_rotation_matrix, _ = self.get_average_rotation(group_list)

634 for symbol in group_list:

635 self.symbols_info[symbol]["pose_in_world_frame"][

636 "rotation_matrix"

637] = gtsam.Rot3(average_rotation_matrix)

638 # and do the same for the groups with degrees of freedom

639 for axis in self.groups_with_degrees_of_freedom.keys():

640 for group in self.groups_with_degrees_of_freedom[axis].values():

641 group_list = group["symbols"]

642 if axis in ["x", "y", "z"]:

643 average_translation = self.get_average_translation(group_list, axis)

644 for symbol in group_list:

645 self.symbols_info[symbol]["pose_in_world_frame"][axis] = average_translation

646 else:

647 # we have to check if the rotation should be the same or rotated by a fixed angle

648 average_rotation_matrix1, average_rotation_matrix2 = self.get_average_rotation(

649 group_list, axis, rotate_second_matrix=group["rotate_second_matrix"]

650)

651 self.symbols_info[group_list[0]]["pose_in_world_frame"][

652 "rotation_matrix"

653] = gtsam.Rot3(average_rotation_matrix1)

654 self.symbols_info[group_list[1]]["pose_in_world_frame"][

655 "rotation_matrix"

656] = gtsam.Rot3(average_rotation_matrix2)

657 def get_average_translation(self, list_of_symbols, axis):

658 """

659 Get the average translation of a list of symbols in a certain direction.

660 The poses are weighted according to how often they have been observed.

661 Parameters

662 ----------

663 list_of_symbols : list of gtsam.Symbol

664 The list of symbols, we want to find the average of.

665 axis : str

666 The axis for which we want to find the average. One of ["x", "y", "z"].

667 Returns

668 -------

669 weighted_pose_average : float

670 The average translation in the given direction.

671 """

672 sum_pose, sum_observed = 0, 0

673 for symbol in list_of_symbols:

674 obs = max(self.symbols_info[symbol]["num_observed"], 1)

675 sum_pose += self.symbols_info[symbol]["pose_in_world_frame"][axis] * obs

676 sum_observed += obs

677 weighted_pose_average = sum_pose / sum_observed

678 return weighted_pose_average

679 def get_average_rotation(self, list_of_symbols, axis=None, rotate_second_matrix=False):

680 """

112

681 Get the average rotation of a list of rotation matrices. If the rotations are dependent on

682 each other, but rotated by a fixed angle, one matrix is rotated by this angle,

683 then they are averaged, and then this matrix is rotated back.

684 Parameters

685 ----------

686 list_of_symbols : list of gtsam.Symbol

687 The list of symbols, we want to find the average of.

688 axis : str

689 The axis around which we want to find the average. One of ["roll", "pitch", "yaw"].

690 rotate_second_matrix : bool or angle, optional

691 If not False, this is the angle around which the second rotation matrix is rotated.

692 Returns

693 -------

694 average_rotation_matrix : ndarray

695 The average rotation around the given axis.

696 """

697 if rotate_second_matrix is not False:

698 rot_matrix1 = self.symbols_info[list_of_symbols[0]]["pose_in_world_frame"][

699 "rotation_matrix"

700].matrix()

701 rot_matrix2 = self.symbols_info[list_of_symbols[1]]["pose_in_world_frame"][

702 "rotation_matrix"

703].matrix()

704 angle = rotate_second_matrix

705 helper_rot_matrix = self.get_rotation_matrix(angle, axis)

706 rot_matrix2 = helper_rot_matrix @ rot_matrix2

707 # compute the naive average

708 average_rotation_matrix = (rot_matrix1 + rot_matrix2) / 2

709 else:

710 list_of_matrices = []

711 for symbol in list_of_symbols:

712 list_of_matrices.append(

713 self.symbols_info[symbol]["pose_in_world_frame"]["rotation_matrix"].matrix()

714)

715 # compute the naive average

716 average_rotation_matrix = np.sum(np.array(list_of_matrices), axis=0) / len(

717 list_of_matrices

718)

719 # project this matrix onto SO(3) and compute the singular value decomposition

720 U, _, V_t = np.linalg.svd(average_rotation_matrix, full_matrices=False)

721 S = np.diag([1, 1, np.sign(np.linalg.det(U) * np.linalg.det(V_t))])

722 average_rotation_matrix = U @ S @ V_t

723 if rotate_second_matrix:

724 return average_rotation_matrix, helper_rot_matrix.T @ average_rotation_matrix

725 else:

726 return average_rotation_matrix, None

727 ##

728 # Pose estimation

729 ##

730 def estimate_sensor_pose(self, observations, observations_info=None, random_guess=False):

731 """

732 Estimate the pose of the sensor in the world frame that fits the observations best.

113

B. Code Pose Estimation

733 Parameters

734 ----------

735 observations : dict

736 Dictionary with the symbols of the observed parts as keys and the observations as values.

737 observations_info : dict, optional

738 Dictionary with the symbols of the observed parts as keys and the information about the

739 observations as values. Such information is an axis with certain degree of freedom due to

740 incomplete observations, e.g. we only observe a part of the loading edge

741 but not its beginning. The default is None.

742 random_guess : bool, optional

743 If True or the sensor trajectory is empty, the initial guess for the optimization

744 of the sensor pose is a random pose.

745 Else, the initial guess for the optimization is the estimated pose of the sensor

746 in the previous time step.

747 The default is False.

748 Returns

749 -------

750 best_pose_new_sensor : gtsam.Pose3

751 Estimated pose of the sensor in the world frame.

752 best_error : float

753 Error of the optimization. Note: This is not the error of the estimated sensor pose

754 to the ground truth, but the error of the optimization.

755 result : gtsam.Values

756 Result of the optimization.

757 """

758 # define initial guess for the optimization

759 if random_guess or self.current_num_time_steps == 0:

760 initial_guess_sensor_pose = gtsam.Pose3(

761 gtsam.Rot3(), gtsam.Point3(np.random.rand(3) * 10)

762)

763 else:

764 initial_guess_sensor_pose = self.get_current_sensor_pose()

765 # insert the observations as factors in the factor graph

766 self.observe(observations, observations_info)

767 # get the initial values for all parts and previous sensor poses

768 initial = self.get_initial_values()

769 # estimate the pose of the sensor

770 best_pose_new_sensor, best_error, result = self.optimize_sensor_pose(

771 initial, initial_guess_sensor_pose

772)

773 # add the estimated pose to the sensor trajectory and the symbols_info dictionary

774 self.add_pose_to_trajectory(best_pose_new_sensor)

775 return best_pose_new_sensor, best_error, result

776 def observe(self, observations, observations_info=None):

777 """

778 First, we recreate the factor graph with the new estimated truck configuration.

779 Then, we add a new sensor to the factor graph.

780 Finally, add the observations as factors to the factor graph.

781 Parameters

782 ----------

783 observations : dict

784 Dictionary with the symbols of the observed parts as keys and the observations as values.

785 observations_info : dict, optional

786 Dictionary with the symbols of the observed parts as keys and the information about the

787 observations as values. Such information is an axis with certain degree of freedom due to

114

788 incomplete observations, e.g. we only observe a part of the loading edge

789 but not its beginning. The default is None.

790 """

791 # create the factor graph from scratch (this substitutes the old factor graph)

792 self.create_factor_graph()

793 # add the old observation factors

794 indices_to_delete = []

795 for i in range(len(self.factors_to_reuse)):

796 if (

797 self.time_step_factors_to_reuse[i]

798 < self.current_num_time_steps - self.saving_old_factors_until_n_time_steps

799):

800 indices_to_delete.append(i)

801 # the list is monotonically increasing, so we can break here

802 else:

803 break

804 # delete the old factors from the list of factors to reuse

805 for i in reversed(indices_to_delete):

806 del self.factors_to_reuse[i]

807 del self.time_step_factors_to_reuse[i]

808 # add the old factors to the new factor graph

809 for factor in self.factors_to_reuse:

810 self.graph.add(factor)

811 # we also have to remove the old sensor symbol from the dictionary of all variables

812 if self.current_num_time_steps - self.saving_old_factors_until_n_time_steps > 0:

813 self.symbols_info.pop(

814 self.get_sensor_symbol(

815 self.current_num_time_steps - self.saving_old_factors_until_n_time_steps - 1

816)

817)

818 # add a new sensor and the observations as factors to the factor graph

819 self.add_new_sensor(observations, observations_info)

820 def add_new_sensor(self, observations, observations_info):

821 """

822 Add a new sensor and the observations to the factor graph of the current time step.

823 Parameters

824 ----------

825 observations : dict

826 Dictionary with the symbols of the observed parts as keys and the observations as values.

827 observations_info : dict, optional

828 Dictionary with the symbols of the observed parts as keys and the information about the

829 observations as values. Such information is an axis with certain degree of freedom due to

830 incomplete observations, e.g. we only observe a part of the loading edge

831 but not its beginning. The default is None.

832 """

833 # get the symbol for the sensor in the next time step and add it to the list of sensor symbols

834 next_time_step = self.current_num_time_steps

835 symbol_new_sensor = self.get_sensor_symbol(next_time_step)

836 self.symbols_sensor.append(symbol_new_sensor)

837 # add the observations as factors to the factor graph

838 self.observations_to_factors(symbol_new_sensor, observations, observations_info)

839 def observations_to_factors(self, sensor_symbol, observations, observations_info):

840 """

115

B. Code Pose Estimation

841 Convert the observations to factors between the sensor and the parts and insert them into the

842 factor graph. Used in the function add_new_sensor(). The observations_info dictionary gives

843 additional information about the observations, i.e. uncertainty in certain directions,

844 e.g. observations_info = {w1: {"x": 2.4, "roll": 0.6*np.pi}}

845 ... if the observation of w1 is unsure in x-direction and roll rotation.

846 Parameters

847 ----------

848 sensor_symbol : gtsam.Symbol

849 Symbol of the sensor in the current time step.

850 observations : dict

851 Dictionary with the symbols of the observed parts as keys and the observations as values.

852 observations_info : dict

853 Dictionary with the symbols of the observed parts as keys and the information about the

854 observations as values. Such information is an axis with certain degree of freedom due to

855 incomplete observations, e.g. we only observe a part of the loading edge

856 but not its beginning. The default is None.

857 """

858 for symbol in observations:

859 # define the observation noise model

860 observation_noise_model = {

861 "roll": self.observation_noise_rotation_default,

862 "pitch": self.observation_noise_rotation_default,

863 "yaw": self.observation_noise_rotation_default,

864 "x": self.observation_noise_translation_default,

865 "y": self.observation_noise_translation_default,

866 "z": self.observation_noise_translation_default,

867 }

868 # adapt the observation noise model according to observations_info

869 if observations_info is not None:

870 if symbol in observations_info.keys():

871 for axis in observations_info[symbol].keys():

872 observation_noise_model[axis] = observations_info[symbol][axis]

873 # define the observation noise model

874 observation_noise_model = self.get_noise_model(**observation_noise_model)

875 # define the factor and add it to the graph

876 factor = gtsam.BetweenFactorPose3(

877 sensor_symbol, symbol, observations[symbol], observation_noise_model

878)

879 self.graph.add(factor)

880 # add the factor to the list of factors that should be reused in the next time step

881 self.factors_to_reuse.append(factor)

882 self.time_step_factors_to_reuse.append(self.current_num_time_steps)

883 # adapt the num_observed attribute of the observed part

884 self.symbols_info[symbol]["num_observed"] += 1

885 # adapt the weights for updating rotation and translation

886 self.update_weights("translation")

887 self.update_weights("rotation")

888 def optimize_sensor_pose(self, initial, initial_guess_new_sensor):

889 """

890 Find the pose of the sensor in the world frame that fits the observations and the assumed

891 model best. The initial guess is the estimated pose of the sensor in the world frame at the

892 beginning of the optimization.

893 Parameters

894 ----------

116

895 initial : gtsam.Values

896 Initial values of the variables except the new sensor.

897 initial_guess_new_sensor : gtsam.Pose3

898 Initial guess for the pose of the sensor in the world frame.

899 Returns

900 -------

901 best_pose_new_sensor : gtsam.Pose3

902 Pose of the sensor in the world frame that fits the observations best.

903 best_error : float

904 Optimization error of the best pose of the sensor in the world frame.

905 result : gtsam.Values

906 Optimized values of all variables.

907 """

908 # get the current sensor symbol

909 symbol_new_sensor = self.get_sensor_symbol(self.current_num_time_steps)

910 # insert the initial guess into the current result

911 initial.insert(symbol_new_sensor, initial_guess_new_sensor)

912 # optimize the graph with the current result

913 result = self.optimize_LM(initial)

914 error = self.graph.error(result)

915 new_pose_new_sensor = result.atPose3(symbol_new_sensor)

916 return new_pose_new_sensor, error, result

917 def add_pose_to_trajectory(self, pose):

918 """

919 Add the estimated pose of the sensor in the world frame to the sensor trajectory and to the

920 symbols_info dictionary, increase the number of time steps by one, and update the default

921 construction noise.

922 Parameters

923 ----------

924 pose : gtsam.Pose3

925 Estimated pose of the sensor in the world frame.

926 """

927 # add the pose to the sensor trajectory

928 self.sensor_trajectory.append(pose)

929 # add a new entry to the symbols_info dictionary for the sensor in the new time step

930 self.symbols_info[self.get_sensor_symbol(self.current_num_time_steps)] = {

931 "num_observed": 0,

932 "pose_in_world_frame": {

933 "x": pose.translation()[0],

934 "y": pose.translation()[1],

935 "z": pose.translation()[2],

936 "rotation_matrix": pose.rotation(),

937 },

938 "dependency_groups": {},

939 "groups_with_degrees_of_freedom": {},

940 "std_degrees_of_freedom": {},

941 }

942 # increase the number of time steps by one

943 self.current_num_time_steps += 1

944 # adapt construction noise

945 self.construction_noise_rotation_default *= self.updating_factor_noise

946 self.construction_noise_translation_default *= self.updating_factor_noise

947 """

117

B. Code Pose Estimation

948 Additional functions, not shown here:

949 def get_initial_values(self)

950 """

951 ##

952 # Factor graph

953 ##

954 def build_construction_noise_dictionary(self):

955 """

956 Build the construction noise dictionary. This function is called once in the beginning such

957 that the dictionary does not have to be rebuilt in each time step. The keys of the dictionary

958 are tuples of two symbols, e.g. (self.w1, self.L2). The values are dictionaries containing the

959 construction noise for each axis,

960 e.g. {"x": 0.1, "y": 0.1, "z": 0.1, "roll": 0.1, "pitch": 0.1, "yaw": 0.1}.

961 """

962 # define which variables are connected by factors

963 self.define_used_factors()

964 # the order of the symbols stays the same, so we do not have to check each pair twice

965 for tuple_of_symbols in self.construction_noise_dictionary.keys():

966 first_symbol = tuple_of_symbols[0]

967 second_symbol = tuple_of_symbols[1]

968 # initialize the construction noise with "default"

969 # this stays the same if the parts are not dependent on each other

970 construction_noise = {

971 "roll": "default",

972 "pitch": "default",

973 "yaw": "default",

974 "x": "default",

975 "y": "default",

976 "z": "default",

977 }

978 # adapt the construction noise according to the dependency groups

979 for axis in self.symbols_info[first_symbol]["dependency_groups"].keys():

980 if second_symbol in self.symbols_info[first_symbol]["dependency_groups"][axis]:

981 construction_noise[axis] = "dependent"

982 # adapt the construction noise according to the degrees of freedom

983 for axis in self.symbols_info[first_symbol]["groups_with_degrees_of_freedom"]:

984 new_construction_noise = self.get_construction_noise_with_degrees_of_freedom(

985 first_symbol, second_symbol, axis

986)

987 construction_noise[axis] = new_construction_noise

988 # add the construction noise to the dictionary

989 self.construction_noise_dictionary[tuple_of_symbols] = copy.deepcopy(construction_noise)

990 def define_used_factors(self):

991 """

992 Define which parts of the truck should be connected with factors.

993 The variables have a fixed order, so each combination of symbols appears exactly once.

994 Define the construction noise dictionary.

995 """

996 # define the keys in the form of a dictionary (if w1 is in factors[g0], [(g0, w1)] is a key)

997 factors = {

998 self.g0: [self.l1, self.w1, self.w2, self.G0],

999 self.G0: [self.L1, self.W1, self.W2],

1000 self.w1: [self.l1, self.w2, self.W1],

1001 self.w2: [self.w3, self.W2],

1002 self.w3: [self.l2, self.W3],

118

1003 self.W1: [self.L1, self.W2],

1004 self.W2: [self.W3],

1005 self.W3: [self.L2],

1006 self.l1: [self.L1],

1007 self.l2: [self.L2],

1008 self.L1: [],

1009 self.L2: [],

1010 }

1011 # build the structure of the construction noise dictionary

1012 for symbol in factors.keys():

1013 for other_symbol in factors[symbol]:

1014 self.construction_noise_dictionary[(symbol, other_symbol)] = {}

1015 def create_factor_graph(self):

1016 """

1017 (Re-)Create the factor graph and add the prior and construction factors to the graph.

1018 """

1019 # create an empty graph

1020 self.graph = gtsam.NonlinearFactorGraph()

1021 # the world origin is exactly at the start of the left loading edge

1022 # therefore, we set the respective noise to zero

1023 world_origin_noise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0] * 6))

1024 # define the prior factor and add it to the graph

1025 factor_prior = gtsam.PriorFactorPose3(self.g0, gtsam.Pose3(), world_origin_noise)

1026 self.graph.add(factor_prior)

1027 # add the construction factors

1028 self.add_construction_factors()

1029 def add_construction_factors(self):

1030 """

1031 Function to add the construction factors to the graph. Since these factors depend on

1032 the model of the truck, we have to add them after each time step (after recreating the graph).

1033 The values of the BetweenFactorPose3 are based on the transformation between the poses of

1034 two parts in the world frame (as stated in symbols_info). The noise model is based on

1035 the construction noise dictionary.

1036 """

1037 # define the factors between all pairs of parts (order as stated in self.symbols_parts)

1038 for tuple_of_symbols in self.construction_noise_dictionary.keys():

1039 first_symbol = tuple_of_symbols[0]

1040 second_symbol = tuple_of_symbols[1]

1041 # get the transformation between the two parts

1042 trafo_first_to_second_symbol = self.symbols_info_to_pose_in_world_frame(

1043 first_symbol

1044).between(self.symbols_info_to_pose_in_world_frame(second_symbol))

1045 construction_noise_model = copy.deepcopy(

1046 self.construction_noise_dictionary[tuple_of_symbols]

1047)

1048 # substitute the entries in the construction noise model by their corresponding values

1049 for axis in construction_noise_model.keys():

1050 if construction_noise_model[axis] == "default":

1051 if axis in ["x", "y", "z"]:

1052 construction_noise_model[axis] = self.construction_noise_translation_default

1053 else:

1054 construction_noise_model[axis] = self.construction_noise_rotation_default

1055 elif construction_noise_model[axis] == "dependent":

119

B. Code Pose Estimation

1056 if axis in ["x", "y", "z"]:

1057 construction_noise_model[axis] = self.construction_noise_translation_dependent

1058 else:

1059 construction_noise_model[axis] = self.construction_noise_rotation_dependent

1060 # if it is not "default" or "dependent", it gives the additional noise for this factor

1061 else:

1062 if axis in ["x", "y", "z"]:

1063 construction_noise_model[axis] += self.construction_noise_translation_default

1064 else:

1065 construction_noise_model[axis] += self.construction_noise_rotation_default

1066 # get the noise model for the factor

1067 construction_noise_model = self.get_noise_model(**construction_noise_model)

1068 # define the factor and add it to the graph

1069 factor = gtsam.BetweenFactorPose3(

1070 first_symbol, second_symbol, trafo_first_to_second_symbol, construction_noise_model

1071)

1072 self.graph.add(factor)

1073 def update_construction_noise(self):

1074 """

1075 Update the default construction noise for rotation and translation according to the number of

1076 steps. The construction noise follows the function

1077 c(n) = lambda^n * (c(0) - lower_bound) + lower_bound,

1078 thus we compute the new construction noise as

1079 c(n+1) = lambda * c(n) + (1-lambda)*lower_bound.

1080 """

1081 self.construction_noise_translation_default = (

1082 self.updating_factor_noise * self.construction_noise_translation_default

1083 + (1 - self.updating_factor_noise) * self.lower_bound_construction_noise

1084)

1085 self.construction_noise_rotation_default = (

1086 self.updating_factor_noise * self.construction_noise_rotation_default

1087 + (1 - self.updating_factor_noise) * self.lower_bound_construction_noise

1088)

1089 def update_weights(self, update_type):

1090 """

1091 Update the weights of a part according to how often it has been observed.

1092 The weights follow the function

1093 w(n) = lambda^n * (w(0) - lower_bound) + lower_bound,

1094 thus we compute the new weight as

1095 w(n+1) = lambda * w(n) + (1-lambda)*lower_bound.

1096 Parameters

1097 ----------

1098 update_type : str

1099 Either "translation" or "rotation".

1100 """

1101 if update_type == "translation":

1102 self.weight_translation = (

1103 self.updating_factor_weights * self.weight_translation

1104 + (1 - self.updating_factor_weights) * self.lower_bound_weights

1105)

1106 elif update_type == "rotation":

1107 self.weight_rotation = (

1108 self.updating_factor_weights * self.weight_rotation

1109 + (1 - self.updating_factor_weights) * self.lower_bound_weights

1110)

120

1111 def optimize_LM(self, initial):

1112 """

1113 Optimize the factor graph using Levenberg-Marquardt optimization of gtsam.

1114 Parameters

1115 ----------

1116 initial : gtsam.Values

1117 Initial values of all variables.

1118 Returns

1119 -------

1120 result : gtsam.Values

1121 Optimized values of all variables, including the estimated sensor pose.

1122 """

1123 # define the optimizer

1124 params = gtsam.LevenbergMarquardtParams()

1125 params.setVerbosityLM("ERROR")

1126 optimizer = gtsam.LevenbergMarquardtOptimizer(self.graph, initial, params)

1127 # optimize the graph

1128 result = optimizer.optimize()

1129 return result

1130 ##

1131 # Helper functions

1132 ##

1133 def get_construction_noise_with_degrees_of_freedom(

1134 self, first_symbol, second_symbol, axis_first_symbol

1135):

1136 """

1137 Get the the construction noise for a part in a group with degree of freedom to other parts.

1138 Parameters

1139 ----------

1140 first_symbol : gtsam.Symbol

1141 Currently investigated symbol.

1142 second_symbol : gtsam.Symbol

1143 Symbol of the part we want to investigate the connection to first_symbol with.

1144 axis_first_symbol : str

1145 Respective axis for the group with an degree of freedom.

1146 Returns

1147 -------

1148 construction_noise : str or float

1149 "dependent" if the two symbols are in the same group,

1150 otherwise the additional standard deviation for the noise is returned.

1151 """

1152 if (

1153 second_symbol

1154 in self.symbols_info[first_symbol]["groups_with_degrees_of_freedom"][axis_first_symbol]

1155):

1156 return "dependent"

1157 else:

1158 return self.symbols_info[first_symbol]["std_degrees_of_freedom"][axis_first_symbol]

1159 def get_noise_model(self, roll=0.1, pitch=0.1, yaw=0.1, x=0.3, y=0.3, z=0.3, rot=None, pos=None):

1160 """

1161 Get a noise model for the observations.

1162 The noise model is a diagonal matrix with the given standard deviations as entries.

1163 Parameters

121

B. Code Pose Estimation

1164 ----------

1165 roll : float, optional

1166 Standard deviation of the noise in the rotation around the x-axis. The default is 0.1.

1167 pitch : float, optional

1168 Standard deviation of the noise in the rotation around the y-axis. The default is 0.1.

1169 yaw : float, optional

1170 Standard deviation of the noise in the rotation around the z-axis. The default is 0.1.

1171 x : float, optional

1172 Standard deviation of the noise in the x-coordinate. The default is 0.3.

1173 y : float, optional

1174 Standard deviation of the noise in the y-coordinate. The default is 0.3.

1175 z : float, optional

1176 Standard deviation of the noise in the z-coordinate. The default is 0.3.

1177 rot : float, optional

1178 Standard deviation of the noise in the rotation around all axes.

1179 If rot is given, roll, pitch and yaw are set to rot. The default is None.

1180 pos : float, optional

1181 Standard deviation of the noise in the translation in all directions.

1182 If pos is given, x, y and z are set to pos. The default is None.

1183 Returns

1184 -------

1185 noise_model : gtsam.noiseModel

1186 Noise model for the observations.

1187 """

1188 if rot is not None:

1189 roll, pitch, yaw = rot, rot, rot

1190 if pos is not None:

1191 x, y, z = pos, pos, pos

1192 return gtsam.noiseModel.Diagonal.Sigmas(np.array([roll, pitch, yaw, x, y, z]))

1193 def get_rotation_matrix(self, angle, axis="x"):

1194 """

1195 Get the rotation matrix for a rotation around the x, y, or z axis.

1196 Parameters

1197 ----------

1198 angle : float

1199 Angle of the rotation in radians.

1200 axis : str, optional

1201 Axis of the rotation ("x", "y", or "z"). The default is "x".

1202 Returns

1203 -------

1204 rotation_matrix : np.array

1205 Rotation matrix.

1206 """

1207 if axis == "x" or axis == "roll":

1208 return np.array(

1209 [

1210 [1, 0, 0],

1211 [0, np.cos(angle), -np.sin(angle)],

1212 [0, np.sin(angle), np.cos(angle)],

1213]

1214)

1215 elif axis == "y" or axis == "pitch":

1216 return np.array(

1217 [

1218 [np.cos(angle), 0, np.sin(angle)],

1219 [0, 1, 0],

1220 [-np.sin(angle), 0, np.cos(angle)],

1221]

122

1222)

1223 elif axis == "z" or axis == "yaw":

1224 return np.array(

1225 [

1226 [np.cos(angle), -np.sin(angle), 0],

1227 [np.sin(angle), np.cos(angle), 0],

1228 [0, 0, 1],

1229]

1230)

1231 else: # incorrect input

1232 print("Incorrect input for axis, please use x, y, or z!")

1233 return None

1234 def get_joint_rotation_matrix(self, angles, axes="xyz"):

1235 """

1236 Get the rotation matrix for a rotation around the x, y, and/or z axis, angle in radians.

1237 Parameters

1238 ----------

1239 angles : list of float

1240 Angles of the rotation in radians around the axes specified in "axes".

1241 axes : str, optional

1242 Axes of the rotation (sequence of "x", "y", and "z"). The default is "xyz".

1243 Returns

1244 -------

1245 rotation_matrix : np.array

1246 Rotation matrix.

1247 """

1248 rotation_matrix = np.eye(3)

1249 for i in range(len(angles)):

1250 rotation_matrix = np.dot(self.get_rotation_matrix(angles[i], axes[i]), rotation_matrix)

1251 return rotation_matrix

1252 """

1253 Additional functions, not shown here:

1254 def get_dominant_part(self, list_of_parts)

1255 def get_width_loading_platform(self)

1256 def get_current_sensor_pose(self)

1257 """

1258 ##

1259 # Visualization

1260 ##

1261 """

1262 Visualization functions, not shown here:

1263 def plot_sensor_trajectory(...)

1264 def plot_truck(...)

1265 def create_cuboid(...)

1266 def create_cylinder(...)

1267 def create_coordinate_frame(...)

1268 """

1269 ##

1270 # Exemplary Test

1271 ##

1272 def test_model_error_construction_noise(

1273 data_file, obs_noise_sd, constr_noise_sd, parameter_values, repeat_test

1274):

123

B. Code Pose Estimation

1275 """

1276 Test how fast and well the model of the truck is updated in dependence of the construction noise.

1277 Parameters

1278 ----------

1279 data_file : pickle file

1280 Pickle file containing the observed data in form of a dictionary.

1281 obs_noise_sd : float

1282 Standard deviation of the additional artificial noise for the observations.

1283 constr_noise_sd : float

1284 Standard deviation of the additional artificial noise for the construction of the truck.

1285 parameter_values : list of float

1286 Different values of the construction noise used for testing.

1287 repeat_test : int

1288 States how often the test should be repeated.

1289 Returns

1290 -------

1291 means : ndarray of shape (len(parameter_values), num_timesteps)

1292 Means of the model error for the different parameter values of all test trials.

1293 std_devs : ndarray of shape (len(parameter_values), num_timesteps)

1294 Standard deviations of the model error for the different parameter values of all test trials.

1295 """

1296 # set a seed to get reproducible results

1297 np.random.seed(11)

1298 # get the observations from the data file

1299 observation_list = data_to_observations(data_file)

1300 # basic parameter settings

1301 observation_noise_translation_default, observation_noise_rotation_default = 0.17, 0.14

1302 construction_noise_rotation_default = 1.5

1303 updating_factor_noise, updating_factor_weights = 0.94, 0.97

1304 weight_translation, weight_rotation = 0.80, 0.80

1305 align_every_n_steps = 32

1306 # create a basic instance of the class Truck3D with the parameters defined above

1307 Truck_basic = Truck3D(

1308 observation_noise_translation_default=observation_noise_translation_default,

1309 observation_noise_rotation_default=observation_noise_rotation_default,

1310 construction_noise_rotation_default=construction_noise_rotation_default,

1311 updating_factor_noise=updating_factor_noise,

1312 updating_factor_weights=updating_factor_weights,

1313 initial_weights_translation=weight_translation,

1314 initial_weights_rotation=weight_rotation,

1315 align_every_n_steps=align_every_n_steps,

1316)

1317 # list that will contain the model errors for all test trials

1318 results = []

1319 for _ in range(repeat_test):

1320 # copy the instance of the Truck3D class

1321 Truck_imprecise_configuration = copy.deepcopy(Truck_basic)

1322 # define an imprecise truck configuration with additional random noise

1323 constr_noise = np.random.normal(0, constr_noise_sd, 11)

1324 Truck_imprecise_configuration = get_imprecise_truck_configuration(

1325 Truck_imprecise_configuration, constr_noise

1326)

1327 # list that will contain the model errors for one test trial

1328 model_errors = []

124

1329 # add random noise to the observations

1330 noisy_observations = add_noise_to_data(observation_list, obs_noise_sd)

1331 # run the sensor pose estimations for all parameter values

1332 for j in range(len(parameter_values)):

1333 # copy the imprecise Truck3D object

1334 Truck = copy.deepcopy(Truck_imprecise_configuration)

1335 # set the value of the construction noise

1336 parameter = parameter_values[j]

1337 Truck.construction_noise_translation_default = parameter

1338 # run the sensor pose estimation on these observations

1339 model_error, _ = simulate_sensor_trajectory_model_error(Truck, noisy_observations)

1340 model_errors.append(model_error)

1341 results.append(model_errors)

1342 means = np.mean(results, axis=0)

1343 std_devs = np.std(results, axis=0)

1344 return means, std_devs

1345 def data_to_observations(data_file):

1346 """

1347 Get the observations saved in a data file.

1348 Parameters

1349 ----------

1350 data_file : pickle file

1351 Opened pickle file containing the data.

1352 Returns

1353 -------

1354 all_observations : list of dict

1355 List containing the observations for each time step.

1356 """

1357 data_dict = pickle.load(data_file)

1358 all_observations = []

1359 for frame in data_dict.values():

1360 current_observation = {}

1361 for symbol in frame.keys():

1362 pos, rot = frame[symbol]["pos"], frame[symbol]["rot"]

1363 current_observation[symbol] = gtsam.Pose3(gtsam.Rot3(rot), pos)

1364 all_observations.append(current_observation)

1365 return all_observations

1366 def add_noise_to_data(data, noise_sd):

1367 """

1368 Add random additional noise to data.

1369 Parameters

1370 ----------

1371 data : list of dict

1372 Data of gtsam poses, where we want to add noise.

1373 noise_sd : float

125

B. Code Pose Estimation

1374 Standard deviation of the normally distributed noise.

1375 Returns

1376 -------

1377 noisy_data : list of dict

1378 Data of gtsam poses with random noise.

1379 """

1380 noisy_data = copy.deepcopy(data)

1381 for frame in noisy_data:

1382 for symbol_string in frame.keys():

1383 # get random numbers for the noise of position and orientation

1384 noise_pos = np.random.normal(0, noise_sd, 3)

1385 noise_rot = np.random.normal(0, min(noise_sd, 0.05), 3)

1386 # create a rotation matrix from the local coordinates noise_rot of SO(3)

1387 noise_rot_matrix = local_update_SO3(np.eye(3), noise_rot)

1388 # transform the noise to a gtsam pose

1389 noise_pose = gtsam.Pose3(gtsam.Rot3(noise_rot_matrix), noise_pos)

1390 # add the noise to the data

1391 frame[symbol_string] = frame[symbol_string].compose(noise_pose)

1392 return noisy_data

1393 def local_update_SO3(rotation_matrix, vector):

1394 """

1395 Local update on SO(3) using the hat-operator and the matrix exponential as a retraction.

1396 Parameters

1397 ----------

1398 rotation_matrix : ndarray of shape (3,3)

1399 Original rotation matrix R0.

1400 vector : ndarray of shape (3,)

1401 Vector xi of the local coordinates on SO(3).

1402 Returns

1403 -------

1404 ndarray of shape (3,3)

1405 Local update of the original rotation matrix R0.

1406 """

1407 return rotation_matrix @ matrix_exp(vector)

1408 def matrix_exp(vector):

1409 """

1410 Matrix exponential for a skew-symmetric matrix.

1411 Uses the hat-operator on SO(3) and computes the resulting matrix with Rodrigues' forumla.

1412 Parameters

1413 ----------

1414 vector : ndarray of shape (3,)

1415 Vector xi of the local coordinates on SO(3).

1416 Returns

1417 -------

1418 exp(hat(vector)) : ndarray of shape (3,3)

1419 The matrix exponential of hat(vector).

1420 """

1421 theta = np.linalg.norm(vector)

1422 if theta == 0:

1423 return np.eye(3)

126

1424 else:

1425 return (

1426 np.eye(3)

1427 + np.sin(theta) / theta * hat_operator(vector)

1428 + (1 - np.cos(theta)) / theta**2 * hat_operator(vector) @ hat_operator(vector)

1429)

1430 def hat_operator(vector):

1431 """

1432 Implementation of the hat-operator for SO(3).

1433 Parameters

1434 ----------

1435 vector : ndarray of shape (3,)

1436 Vector xi of the local coordinates on SO(3).

1437 Returns

1438 -------

1439 hat(vector) : ndarray of shape (3,3)

1440 Skew-symmetric matrix, output of the hat-operator.

1441 """

1442 return np.array(

1443 [

1444 [0, -vector[2], vector[1]],

1445 [vector[2], 0, -vector[0]],

1446 [-vector[1], vector[0], 0],

1447]

1448)

1449 def simulate_sensor_trajectory_model_error(Truck, observations):

1450 """

1451 Simulate a run of the sensor pose estimation for given observations.

1452 Parameters

1453 ----------

1454 Truck : Truck3D

1455 Instance of the Truck3D class with the respective parameters.

1456 observations : list of dict

1457 List of the noisy observations.

1458 Returns

1459 -------

1460 model_error : list of float

1461 List of the model errors for each time step.

1462 """

1463 # list containing the model errors for each time step

1464 model_error = []

1465 # get the initial model error

1466 model_error.append(evaluate_model_error(Truck))

1467 for i in range(len(observations)):

1468 # estimate the sensor pose

1469 _, _, result = Truck.estimate_sensor_pose(observations[i])

1470 # update the truck configuration according to the results of the previous estimation

1471 Truck.update_truck_configuration(result)

1472 # evaluate the current error of the estimated model

1473 model_error.append(evaluate_model_error(Truck))

127

B. Code Pose Estimation

1474 return model_error

1475 def evaluate_model_error(Truck):

1476 """

1477 Evaluate the model error of the truck. The model error is defined as the distance between

1478 the poses of the parts in the model and the poses of the parts in the ground truth.

1479 The distance in the position is computed as the norm of the difference between the positions.

1480 The distance in the rotation R1, R2 is computed as the Frobenius norm of I-R1R2^T.

1481 Parameters

1482 ----------

1483 Truck : Truck3D

1484 Truck, where we look for the error between the assumed model and the ground truth.

1485 Returns

1486 -------

1487 cumulated_distance : float

1488 Model error cumulated for all parts of the truck.

1489 """

1490 cumulated_distance = 0

1491 for symbol in Truck.symbols_info:

1492 if symbol not in Truck.symbols_sensor:

1493 # compute the distance between the model and the ground truth

1494 pose_difference = Truck.symbols_info_to_pose_in_world_frame(

1495 symbol, true_or_estimated="estimated"

1496).between(Truck.symbols_info_to_pose_in_world_frame(symbol, true_or_estimated="true"))

1497 cumulated_distance += pose_norm(pose_difference)

1498 return cumulated_distance

1499 def pose_norm(pose):

1500 """

1501 Norm of the pose used to measure the model error. The norm of the position is computed as the

1502 Euclidean norm. The norm of the rotation R is computed as the Frobenius norm of I-R.

1503 Parameters

1504 ----------

1505 pose : gtsam.Pose3

1506 Pose to compute the norm.

1507 Returns

1508 -------

1509 norm : float

1510 Norm of the given pose.

1511 """

1512 pose_norm_position = np.linalg.norm(pose.translation())

1513 R = pose.rotation().matrix()

1514 I = np.identity(3)

1515 pose_norm_rotation = np.linalg.norm(I - R)

1516 return pose_norm_position + pose_norm_rotation

1517 """

1518 Additional functions, not shown here:

1519 def get_imprecise_truck_configuration(Truck, noise)

1520 visualization functions

1521 """

128

Bibliography

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Man-
ifolds. 1st ed. Princeton: Princeton University Press, 2008. isbn: 978-0-691-13298-3.

[2] R. Adler et al. “Newton’s Method on Riemannian Manifolds and a Geometric Model
for the Human Spine”. In: IMA Journal of Numerical Analysis vol. 22 (2002), pp. 359–
390. doi: 10.1093/imanum/22.3.359.

[3] S. Ahmed et al. “Edge and Corner Detection for Unorganized 3D Point Clouds with
Application to Robotic Welding”. In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2018, pp. 7350–7355. doi: 10.1109/IROS.
2018.8593910.

[4] J. Bentley. “Multidimensional Binary Search Trees Used for Associative Searching”.
In: Communications of the ACM vol. 18, no. 9 (1975), pp. 509–517. doi: 10.1145/
361002.361007.

[5] R. Brégier et al. “Defining the Pose of Any 3D Rigid Object and an Associated
Distance”. In: Int J Comput Vis vol. 126 (2018), pp. 571–596. doi: 10.1007/s11263-
017-1052-4.

[6] G. Casella and R. Berger. Statistical Inference. 2nd ed. Belmont CA: Duxbury, 2002.
isbn: 978-8-131-50394-2.

[7] Y. Chen, Y. Chen, and G. Wang. “Bundle Adjustment Revisited”. In: ArXiv (2019).
doi: 10.48550/arXiv.1912.03858.

[8] S. Chmielewski and P. Tompalski. “Estimating Outdoor Advertising Media Visibility
with Voxel-Based Approach”. In: Applied Geography vol. 87 (2017), pp. 1–13. doi:
10.1016/j.apgeog.2017.07.007.

[9] Blender Online Community. Blender - a 3D Modelling and Rendering Package. Blen-
der Foundation. Stichting Blender Foundation, Amsterdam, 2018. url: http://www.
blender.org.

[10] F. Dellaert. “Factor Graphs: Exploiting Structure in Robotics”. In: Annual Review
of Control, Robotics, and Autonomous Systems vol. 4 (2021), pp. 141–166. doi: 10.
1146/annurev-control-061520-010504.

[11] F. Dellaert and GTSAM Contributors. borglab/gtsam. Version 4.2a8. May 2022. doi:
10.5281/zenodo.5794541. url: https://github.com/borglab/gtsam.

[12] F. Dellaert and GTSAM Contributors. GTSAM: Georgia Tech Smoothing and Map-
ping library. https://gtsam.org/doxygen. Accessed: 2023-11-11.

[13] F. Dellaert and M. Kaess. Factor Graphs for Robot Perception. Foundations and
Trends in Robotics, Vol. 6, 2017. url: http://www.cs.cmu.edu/~kaess/pub/
Dellaert17fnt.pdf.

129

https://doi.org/10.1093/imanum/22.3.359
https://doi.org/10.1109/IROS.2018.8593910
https://doi.org/10.1109/IROS.2018.8593910
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1007/s11263-017-1052-4
https://doi.org/10.1007/s11263-017-1052-4
https://doi.org/10.48550/arXiv.1912.03858
https://doi.org/10.1016/j.apgeog.2017.07.007
http://www.blender.org
http://www.blender.org
https://doi.org/10.1146/annurev-control-061520-010504
https://doi.org/10.1146/annurev-control-061520-010504
https://doi.org/10.5281/zenodo.5794541
https://github.com/borglab/gtsam
http://www.cs.cmu.edu/~kaess/pub/Dellaert17fnt.pdf
http://www.cs.cmu.edu/~kaess/pub/Dellaert17fnt.pdf

Bibliography

[14] L. Du. Edge Detection in 3D Point Clouds for Industrial Applications. 2020.

[15] R. Duda, P. Hart, and D. Stork. Pattern Classification. 2nd ed. New York: Wiley,
2001. isbn: 978-0-471-05669-0.

[16] J. Elseberg, D. Borrmann, and A. Nüchter. “Efficient Processing of Large 3D Point
Clouds”. In: 2011 XXIII International Symposium on Information, Communication
and Automation Technologies. 2011, pp. 1–7. doi: 10.1109/ICAT.2011.6102102.

[17] L. Euler. “Formulae Generales pro Translatione Quacunque Corporum Rigidorum”.
In: Novi Commentarii Academiae Scientiarum Petropolitanae vol. 20 (1775), pp. 189–
207.

[18] G. Fischer and B. Springborn. Lineare Algebra: Eine Einführung für Studienanfänger.
19th ed. Munich: Springer Spektrum, 2020. isbn: 978-3-662-61644-4.

[19] M. Fischler and R. Bolles. “Randum Sample Consensus: A Paradigm for Model Fit-
ting with Applications to Image Analysis and Automated Cartography”. In: Com-
munications of the ACM vol. 24 (1981), pp. 381–395. doi: 10.1145/358669.358692.

[20] A. Galarza and J. Seade. Introduction to Classical Geometries. 1st ed. Basel: Birk-
häuser, 2007. isbn: 978-3-764-37517-1.

[21] J. Gallier. Geometric Methods and Applications: For Computer Science and Engi-
neering. 2nd ed. Philadelphia: Springer, 2011. isbn: 978-1-441-99960-3.

[22] D. Ginzburg, I. Piatetski-Shapiro, and S. Rallis. “L Functions for the Orthogonal
Group”. In: Memoirs of the American Mathematical Society vol. 128, no. 611 (1997).

[23] R. Goldman. “Understanding Quaternions”. In: Graphical Models vol. 73 (2010),
pp. 21–49. doi: 10.1016/j.gmod.2010.10.004.

[24] H. Goldstein, C. Poole, and J. Safko. Classical Mechanics. 3rd ed. USA: Pearson,
2001. isbn: 978-0-201-65702-9.

[25] B. Guenin, J. Könemann, and L. Tuncel. A Gentle Introduction to Optimization.
1st ed. Waterloo: Cambridge University Press, 2014. isbn: 978-1-107-05344-1.

[26] B. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction.
2nd ed. Springer, 2015. isbn: 978-3-319-37433-8.

[27] R. Haralick et al. “Pose Estimation from Corresponding Point Data”. In: IEEE Trans-
actions on Systems, Man, and Cybernetics vol. 19, no. 6 (1989), pp. 1426–1446. doi:
10.1109/21.44063.

[28] C. Harris et al. “Array Programming with NumPy”. In: Nature vol. 585 (2020),
pp. 357–362. doi: 10.1038/s41586-020-2649-2.

[29] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. 2nd ed.
New York: Cambridge University Press, 2004. isbn: 978-0-521-54051-3.

[30] J. Hartung and B. Elpelt. Multivariate Statistik: Lehr- und Handbuch der Ange-
wandten Statistik. 7th ed. München/Wien: R Oldenbourg Verlag, 2007. isbn: 978-3-
486-58234-5.

[31] A. Hatcher. Algebraic Topology. 1st ed. Cambridge University Press, 2002. isbn: 978-
0-521-79540-1.

130

https://doi.org/10.1109/ICAT.2011.6102102
https://doi.org/10.1145/358669.358692
https://doi.org/10.1016/j.gmod.2010.10.004
https://doi.org/10.1109/21.44063
https://doi.org/10.1038/s41586-020-2649-2

Bibliography

[32] H. Havlicek. Lineare Algebra für Technische Mathematiker. 3rd ed. Berlin: Helder-
mann Verlag, 2012. isbn: 978-3-885-38116-7.

[33] R. Horn and C. Johnson. Matrix Analysis. 2nd ed. New York: Cambridge University
Press, 2013. isbn: 978-0-521-54823-6.

[34] D. Huynh. “Metrics for 3D Rotations: Comparison and Analysis”. In: J Math Imag-
ing Vis vol. 35 (2009), pp. 155–164. doi: 10.1007/s10851-009-0161-2.

[35] KeenTools.GeoTracker. 2023. url: https://keentools.io/products/geotracker-
for-blender.

[36] F. Kschischang, B. Frey, and H. Loeliger. “Factor Graphs and the Sum-Product
Algorithm”. In: IEEE Transactions on Information Theory vol. 47, no. 2 (2001),
pp. 498–519. doi: 10.1109/18.910572.

[37] J. Lafontaine. An Introduction to Differential Manifolds. 2nd ed. Montpellier: Sprin-
ger, 2015. isbn: 978-3-319-20734-6.

[38] L. Landau and E. Lifshitz. Mechanics. 3rd ed. Moscow: Elsevier, 1976. isbn: 978-0-
750-62896-9.

[39] D. Lay, S. Lay, and J. McDonald. Linear Algebra and its Applications. 5th ed. Wash-
ington: Pearson, 2016. isbn: 978-0-321-98238-4.

[40] J. Lee. Introduction to Smooth Manifolds. 2nd ed. Seattle: Springer, 2013. isbn: 978-
1-441-99981-8.

[41] L. Linsen. Point Cloud Representation. Technical Report. Faculty of Computer Sci-
ence, University of Karlsruhe, 2001. 18 pp.

[42] H. Loeliger. “An Introduction to Factor Graphs”. In: IEEE Signal Processing Maga-
zine vol. 21 (2004), pp. 28–41. doi: 10.1109/MSP.2004.1267047.

[43] J. Mäkinen. “Rotation Manifold SO(3) and its Tangential Vectors”. In: Computa-
tional Mechanics vol. 42 (2008), pp. 907–919. doi: 10.1007/s00466-008-0293-z.

[44] MAN. Der MAN TGS: Am Liebsten am Limit. Accessed: 2023-11-11. url: https://
www.man.eu/de/de/lkw/alle-modelle/der-man-tgs/uebersicht/uebersicht-

tgs.html.

[45] D. Marquardt. “An Algorithm for Least-Squares Estimation of Nonlinear Parame-
ters”. In: Journal of the Society for Industrial and Applied Mathematics vol. 11, no.
2 (1963), pp. 431–441. doi: 10.1137/0111030.

[46] J.M. McCarthy. Introduction to Theoretical Kinematics. 1st ed. Irvine: MIT Press,
1990. isbn: 978-0-262-13252-7.

[47] J. Munkres. Topology. 2nd ed. Edinburgh: Pearson, 2014. isbn: 978-1-292-02362-5.

[48] I. Najfeld and T. Havel. “Derivatives of the Matrix Exponential and Their Comm-
putation”. In: Advances in Applied Mathematics vol. 16 (1995), pp. 321–375. doi:
10.1006/aama.1995.1017.

[49] E. Ostertagova. “Modelling Using Polynomial Regression”. In: Procedia Engineering
vol. 48 (2012), pp. 500–506. doi: 10.1016/j.proeng.2012.09.545.

131

https://doi.org/10.1007/s10851-009-0161-2
https://keentools.io/products/geotracker-for-blender
https://keentools.io/products/geotracker-for-blender
https://doi.org/10.1109/18.910572
https://doi.org/10.1109/MSP.2004.1267047
https://doi.org/10.1007/s00466-008-0293-z
https://www.man.eu/de/de/lkw/alle-modelle/der-man-tgs/uebersicht/uebersicht-tgs.html
https://www.man.eu/de/de/lkw/alle-modelle/der-man-tgs/uebersicht/uebersicht-tgs.html
https://www.man.eu/de/de/lkw/alle-modelle/der-man-tgs/uebersicht/uebersicht-tgs.html
https://doi.org/10.1137/0111030
https://doi.org/10.1006/aama.1995.1017
https://doi.org/10.1016/j.proeng.2012.09.545

Bibliography

[50] Palfinger. BM 214. Accessed: 2023-11-11. url: https://www.palfinger.com/de/
produkte/mitnahmestapler/modelle/bm-214_p_562.

[51] K. Rosen. Discrete Mathematics and its Applications. 7th ed. New York: McGraw-
Hill, 2012. isbn: 978-0-073-38309-5.

[52] P. Schiller. “Robust Pose Estimation of 3D Objects with Symmetries in Point Clouds”.
Personal Communication. 2024.

[53] Stereolabs. Coordinate Frames: Selecting a Coordinate Frame. Accessed: 2023-11-11.
url: https://www.stereolabs.com/docs/positional-tracking/coordinate-
frames/.

[54] Stereolabs. ZED 2i. Accessed: 2023-11-11. url: https://www.stereolabs.com/zed-
2i/.

[55] K. Symon. Mechanics. 2nd ed. Massachusetts: Addison-Wesley Publishing Company,
Inc., 1960. isbn: 978-0-014-04666-9.

[56] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. Cambridge: The MIT
Press, 2005. isbn: 978-0-262-20162-9.

[57] R. Tobler and S. Maierhofer. “A Mesh Data Structure for Rendering and Subdivi-
sion”. In: The 14-th International Conference in Central Europe on Computer Graph-
ics, Visualization and Computer Vision 2006. WSCG ’2006. Pilsen, 2006, pp. 157–
162. isbn: 978-8-086-94305-3.

[58] L. Trefethen and D. Bau. Numerical Linear Algebra. Philadelphia: Society for Indus-
trial and Applied Mathematics, 1997. isbn: 978-0-898-71487-6.

[59] L. Tu. An Introduction to Manifolds. 2nd ed. Medford: Springer, 2011. isbn: 978-1-
441-97399-3.

[60] C. Weber, S. Hahmann, and H. Hagen. “Methods for Feature Detection in Point
Clouds”. In: Visualization of Large and Unstructured Data Sets - Applications in
Geospatial Planning, Modeling and Engineering (IRTG 1131 Workshop). Vol. 19.
Open Access Series in Informatics (OASIcs). Dagstuhl, Germany, 2011, pp. 90–99.
isbn: 978-3-939-89729-3. doi: 10.4230/OASIcs.VLUDS.2010.90.

[61] Y. Wong and Y. Au-Yeung. “An Elementary and Simple Proof of the Connectedness
of the Classical Groups”. In: The American Mathematical Monthly vol. 74, no. 8
(1967), pp. 964–966. doi: 10.2307/2315278.

[62] K. Zeyringer. Fußball: Eine Kulturgeschichte. Frankfurt am Main: Fischer Taschen-
buch, 2016. isbn: 978-3-596-03587-8.

[63] Z. Zhang, F. Wu, and W. Lee. “Factor Graph Neural Network”. In: Proceedings of the
34th International Conference on Neural Information Processing Systems. NIPS’20.
New York, 2020, pp. 8577–8587. isbn: 978-1-713-82954-6.

[64] Q. Zhou, J. Park, and V. Koltun. “Open3D: A Modern Library for 3D Data Process-
ing”. In: arXiv (2018). doi: 10.48550/arXiv.1801.09847.

132

https://www.palfinger.com/de/produkte/mitnahmestapler/modelle/bm-214_p_562
https://www.palfinger.com/de/produkte/mitnahmestapler/modelle/bm-214_p_562
https://www.stereolabs.com/docs/positional-tracking/coordinate-frames/
https://www.stereolabs.com/docs/positional-tracking/coordinate-frames/
https://www.stereolabs.com/zed-2i/
https://www.stereolabs.com/zed-2i/
https://doi.org/10.4230/OASIcs.VLUDS.2010.90
https://doi.org/10.2307/2315278
https://doi.org/10.48550/arXiv.1801.09847

	Introduction
	Mathematical Foundations
	Geometry
	Matrix Groups and Poses
	Manifolds and Tangent Spaces
	The Special Orthogonal Group SOn
	The Exponential Map for Quadratic Matrices

	Factor Graphs
	Applications of Factor Graphs

	Optimization
	Levenberg-Marquardt Optimization
	Optimization on Manifolds
	Optimization on SO2 and SO3
	Optimization in SE3
	Optimizing a Factor Graph

	Geometric Algorithms and Data Structures
	Point Cloud Processing
	RANSAC

	Composite Object Detection in a Loading Scenario of a Truck
	Loading Edge Detection
	Description of the Algorithm
	Parametrization and Analysis of the Algorithm

	Part-Based Pose Estimation Using Factor Graphs
	Composite Object as a Factor Graph and GTSAM
	Description of the Algorithm
	Parametrization and Analysis of the Algorithm

	Possible Improvements and Further Work

	Conclusion
	Code Loading Edge Detection
	Code Pose Estimation
	Bibliography

