
1.5

SAT-boosted Tabu Search for Coloring Massive Graphs

ANDRÉ SCHIDLER and STEFAN SZEIDER, TU Wien, Austria

Graph coloring is the problem of coloring the vertices of a graph with as few colors as possible, avoiding
monochromatic edges. It is one of the most fundamental NP-hard computational problems. For decades re-
searchers have developed exact and heuristic methods for graph coloring. While methods based on proposi-
tional satisfiability (SAT) feature prominently among these exact methods, the encoding size is prohibitive
for large graphs. For such graphs, heuristic methods have been proposed, with tabu search among the most
successful ones.

In this article, we enhance tabu search for graph coloring within the SAT-based local improvement (SLIM)
framework. Our hybrid algorithm incrementally improves a candidate solution by repeatedly selecting small
subgraphs and coloring them optimally with a SAT solver. This approach scales to dense graphs with several
hundred thousand vertices and over 1.5 billion edges. Our experimental evaluation shows that our hybrid
algorithm beats state-of-the-art methods on large dense graphs.

CCS Concepts: • Theory of computation→ Tabu search; Constraint and logic programming;

Additional Key Words and Phrases: Graph coloring, SAT encoding, tabu search, SAT-based local improvement,
massive graphs, experiments, cg:shop

ACM Reference format:
André Schidler and Stefan Szeider. 2023. SAT-boosted Tabu Search for Coloring Massive Graphs. ACM J. Exp.
Algor. 28, 1, Article 1.5 (July 2023), 19 pages.
https://doi.org/10.1145/3603112

1 INTRODUCTION
Graph coloring is the fundamental computational problem of coloring the vertices of a given undi-
rected graph with as few colors as possible, avoiding monochromatic edges, or, equivalently, par-
titioning the graph’s vertex set into as few independent sets as possible. Graph coloring arises
naturally in many applications, including scheduling, register allocation, pattern matching, and
computational geometry. The decision version of the problem—where the number of colors is
given, and one asks whether a coloring exists—can be naturally cast as a constraint satisfaction
problem: The graph’s vertices are variables that range over a finite domain of colors, and each
edge represents a binary inequality constraint. Graph coloring is one of Karp’s 21 fundamental
NP-hardproblems [20].

We acknowledge the support from the Austrian Science Fund (FWF), projects P32441, P36420, and W1255; and from the
Vienna Science and Technology Fund (WWTF), project ICT19-065.
Authors’ address: A. Schidler and S. Szeider, TU Wien, Favoritenstrasse 9-11, Vienna, Austria, 1040; emails: {aschidler, sz}@
ac.tuwien.ac.at.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
1084-6654/2023/07-ART1.5 $15.00
https://doi.org/10.1145/3603112

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

https://orcid.org/0000-0001-6790-7158
https://orcid.org/0000-0001-8994-1656
https://doi.org/10.1145/3603112
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3603112

1.5:2 A. Schidler and S. Szeider

For decades, much research has been devoted to developing algorithmic methods for graph
coloring. One can distinguish between exact methods that search for a coloring with the smallest
number of colors possible and heuristic methods that possibly yield suboptimal colorings.

Exact methods for graph coloring includeconstraint programming (CP), propositional sat-
isfiability (SAT), and integer linear programming (ILP) formulations [6, 16, 18]. Here, the
problem is expressed in terms of constraints, propositional logic, or linear constraints over integer
domains, respectively, and then solved by a general solver. Generally, these exact methods do not
scale to graphs with more than a few thousand vertices, as these encodings become prohibitively
large. In our experiments, the largest graph successfully colored by a SAT encoding had around
14,000 vertices and was comparatively easy to color due to the graph’s sparsity.

Heuristic graph coloring methods include various forms of greedy colorings combined with local
search, especially tabu search, reducing the number of colors used by the greedy coloring [4, 5, 17].
Such heuristic methods scale to very large graphs and find good colorings for sparse graphs but
struggle with large, dense graphs.

The CG:SHOP Challenge 20221 posed the Minimum Partition into Plane Subgraphs Prob-
lem (MPPS): the problem of finding the smallest number of classes we can partition a given set of
line segments into, such that line segments within the same class do not intersect. This problem is
reducible to graph coloring (see Section 2.2) and the competition instances were crafted such that
they are noticeably different from well-known graph coloring instances [10] and yield graph col-
oring instances that are comparatively large and dense graphs. Since the aforementioned methods
do not perform well on them,new approaches for graph coloring were developed, one of which is
this article’s subject.

In this article, we propose a hybrid approach between exact and heuristic techniques, follow-
ing the general framework of SAT-based Local Improvement Method (SLIM) that has recently
been successfully customized for various problems [13, 15, 21, 26, 27, 30, 31, 33]. Our idea is to
enhance tabu search by applying SAT encodings locally. Our hybrid algorithm GC-SLIM incre-
mentally improves a candidate coloring by repeatedly selecting small subgraphs (local instances)
and coloring them optimally with a SAT solver. The problem solved by the SAT solver is a list col-
oring problem, where each vertex has a list of available colors. The lists ensure that the subgraph’s
coloring is consistent with the colors of the vertices outside the selected subgraph. GC-SLIM’s
most essential ingredients include strategies for local instance selection, the SAT-based solution of
the local instance, and a technique called chain propagation.

GC-SLIM scales to dense graphs with several hundred thousand vertices and over 1.5 billion
edges. Our experimental evaluation shows that our hybrid algorithm beats state-of-the-art meth-
ods on large, dense graphs.

1.1 Related Work
Since the work on graph coloring is extensive, we discuss only the most relevant work for this arti-
cle. We refer to Sun’s dissertation [35] for a more exhaustive survey on graph coloring algorithms.

Greedy colorings are the most common and easy heuristics for graph coloring. Given an ordering
of the vertices, each vertex gets assigned the smallest color that avoids monochromatic edges in the
given order. Different heuristics use different orderings. DSatur [5] is one of the most successful
greedy heuristics, and we use it in our approach. DSatur always chooses as the next vertex one
that is most constrained, i.e., one with the fewest colors available.

Tabu search has been successfully used for graph coloring. Most relevant to this article is Par-
tialcol [4], which we discuss in more detail in Section 2.3.

1https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022/.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022/

SAT-boosted Tabu Search for Coloring Massive Graphs 1.5:3

Iterated-DSatur (I-DSatur) [19] is a SAT-based extension of DSatur that combines DSatur with
extensive pre-processing and SAT-solving to a new method that can compute optimal colorings for
small graphs. Used as a heuristic, it scales to sparse graphs with several million vertices. I-DSatur
adds a reordering mechanism to DSatur invoked whenever the current uncolored vertex v cannot
be colored with any of the existing colors, i.e., the current partialk-coloring would become a partial
(k + 1)-coloring. At this point, I-DSatur tries to find a better coloring for all the vertices colored so
far andv . If successful, then no new color is required; if unsuccessful, then the best lower bound on
the number of required colors known to I-DSatur can be increased. The main difference between
GC-SLIM and I-DSatur is that GC-SLIM tries to reduce the number of colors by improving several
smaller local instances, while I-DSatur tries to find improvements for a single local instance that
is as large as possible. The former scales better on dense graphs, while the latter performs better
on sparse graphs, as we will further discuss in our experimental evaluation.

Large graphs yield a prohibitively large encoding size when the standard SAT encodings for
graph coloring are used. Recently, a new approach based on clause learning has been proposed [16,
18], which can circumvent the size issue for many instances. Here, only those clauses required for
a correct solution are added iteratively. This approach is also used in I-DSatur [19].

Much research in recent years focused on very large and sparse graphs. The advantage of sparse
graphs is that they can often be colored with a small number of colors relative to their size and
are easily reducible to smaller graphs. State-of-the-art approaches use these and other structural
properties of sparse graphs to scale to graphs with millions of vertices [25, 32, 37]. We compare
GC-SLIM to the most recent such algorithms FastColor [25] and I-DSatur [19].

The top three submissions to the CG:SHOP Challenge 2022 used different variations of the same
idea. They perform local search guided by a conflict score, i.e., how often a vertex has been recol-
ored [8, 9, 14, 34]. This strategy performed better on the competition instances than other estab-
lished local search strategies. We will further discuss this strategy in Section 2.3.

2 PRELIMINARIES
2.1 Graphs and Colorings
We consider a connected simple graph G with the set of vertices V (G) and set of edges E (G). We
will often assume without loss of generality thatV (G) = {1, . . . , |V |}. We denote the edge between
vertices v,w ∈ V (G) by vw or equivalently wv . For X ⊆ V (G), we denote by NG (X) = {u | uv ∈
E (G) with v ∈ X and u ! X } the neighborhood of X . We write NG (v) instead of NG ({v}) and drop
the subscript if G is clear from the context. G − X denotes the graph G ′ with V (G ′) = V (G) \ X
and E (G ′) = {uv ∈ E (G) | u,v ∈ V (G ′) }.

For an integer k ≥ 1, we denote the set {1, . . . ,k } by [k]. A partial k-coloring of a graph G is a
mapping c : V (c) → [k] defined on a set V (c) ⊆ V (G) such that c (u) " c (v) for every uv ∈ E (G)
with u,v ∈ V (c). If V (c) = V (G), then c is a full k-coloring or simply a k-coloring of G.2 The
chromatic number χ (G) of a graph G is the smallest k such that G has a k-coloring. We say a
k-coloring is optimal if k = χ (G).

For a (partial) k-coloring c of G, we call the integers [k] colors and the sets cℓ (G) = {v ∈
V (G) | c (v) = ℓ }, ℓ ∈ [k], the color classes of c . Observe that each color class is an independent
set of G and that color classes are pairwise disjoint. We also write c0 (G) = V (G) \ V (c) for the
set of uncolored vertices and write c (v) = 0 for a vertex v ∈ V (G) \V (c). We write cℓ , instead of
cℓ (G), ifG is clear from the context. Since its color classes uniquely determine a partial k-coloring,
we will often specify a k-coloring this way. Further, we write NG,c,ℓ (X) = NG (X) ∩ cℓ (G), the

2 Some authors use the term k-coloring to refer to a mapping c : V (G) → [k] that allows monochromatic edges (edges
uv ∈ E (G) with c (u) = c (v)) and call c a proper k-coloring if it has no monochromatic edges.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

1.5:4 A. Schidler and S. Szeider

Fig. 1. Tabu search example that shows how vertex x is colored through a series of swaps. Note that for the
last two graphs, two swaps are performed at once.

ℓ-colored neighborhood. Whenever G and c are clear from context, we drop the subscript and use
Nℓ (X). The prevalence of a color ℓ is |cℓ |, and the prevalence of a color ℓ with respect to a vertex
v is |NG,c,ℓ (v) |. Therefore, a least prevalent color of a k-coloring c in the neighborhood of v is
arg minℓ∈[k] |NG,c,ℓ (v) |.

The graph coloring problem takes an undirected graphG as input; the task is to produce a coloring
of G that uses the least possible number of colors. The decision version of the problem takes as
input G and an integer k ; the task is to decide whether G admits a k-coloring.

2.2 Minimum Partition into Plane Subgraphs Problem (MPPS)
The Minimum Partition into Plane Subgraphs Problem (MPPS) takes as an instance a geomet-
ric graphG, with verticesV (G) represented by points in the plane, and edges E (G) by straight-line
connections between vertices. The task is to finda partitioning of E into as few classes E1, . . . ,Ek
as possible, such that each subgraph Gi , with V (Gi) = V (G) and E (Gi) = Ei , is plane.

In this article, we consider the MPPS problem in terms of graph coloring. There is a natural
reduction from the MPPS problem to graph coloring, which reduces an MPPS instance G to the
conflict graph G ′, containing a vertex for each line segment and where two vertices are adjacent
if the corresponding line segments intersect. Evidently, G admits a partitioning into k plane sub-
graphs if and only if G ′ has a k-coloring.

2.3 Tabu Search
Tabu search is a very successful local search approach to graph coloring. We use Partialcol’s search
strategy [4]. Starting from a (non-optimal) (k+1)-coloring c of the given graphG, Partialcol selects
a color e ∈ [k+1] to eliminate. The vertices in ce are then removed from c and considered uncolored,
making c a partial k-coloring. Partialcol now tries to complete c and color the vertices in c0 by
performing swaps: For a partial k-coloring c , a vertex v∗ ∈ c0, and a color ℓ ∈ [k], a (color) swap
of v∗ to ℓ is obtained from c by setting c (v∗) := ℓ, and c (w) := 0 for all w ∈ Nℓ (v∗). The swap is
a p-swap if |Nℓ (v∗) | = p. Let u = |c0 | be the number of uncolored vertices before the swap, then
|c0 | = u + p − 1 after a p-swap.

In each iteration, the algorithm performs a p-swap with smallest p. The choice of color ℓ for the
p-swap is restricted by a tabu list for vertex v∗: a list of the colors assigned to v∗ in the last few
iterations. This mechanism ensures that vertices do not get re-assigned the same colors within a
certain number of iterations and forces the algorithm to explore more of the search space. Figure 1
shows how a series of swaps can empty c0.

Partialcol terminates if c0 = ∅, in which case c is now a full k-coloring, or when it reaches a
prescribed number of iterations. Usually, tabu search is run repeatedly, choosing different colors
to eliminate.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

SAT-boosted Tabu Search for Coloring Massive Graphs 1.5:5

Conflict Scores. The winning submissions [8, 9, 14, 34] to the CG:SHOP Challenge are based on
heuristic algorithms that utilize a different selection criterion based on the conflict count. For a
vertex v , the conflict count q(v) measures how often v has been removed from c0 by a swap, i.e.,
how oftenv has been colored. Initially, we set q(v) = 0 for all verticesv . The conflict count is then
used to calculate a conflict score that is used for picking the next swap. The different submissions
calculate the conflict score differently. We follow the approach by Spalding-Jamieson et al. [34]
due to its simplicity: For the next swap, the solver picks a random vertex v ∈ c0 and swaps it to
the color ℓ that minimizes ∑u ∈Nℓ (v) (1 + q(u)2).

3 SAT-BASED LOCAL IMPROVEMENT FOR GRAPH COLORING
The propositional satisfiability problem (SAT) asks whether a given propositional formula is
satisfiable. As the first problem to be shown to be NP-complete [7, 24], it forms a cornerstone
in computational complexity. In contrast to its theoretical hardness, SAT provides an important
framework for solving hard combinatorial problems in practice by encoding instances in proposi-
tional logic and solving them with a SAT solver [12]. Today’s SAT solvers are extremely efficient,
robust, and can routinely solve instances that encode real-world problems with hundreds of thou-
sands of variables. The progress achieved by algorithm engineering for SAT is “nothing short of
spectacular” [36]. SAT-based methods automatically benefit from further improvements to SAT
solvers, making them even more attractive.

SAT-based Local Improvement (SLIM) is an anytime meta-heuristic that embeds SAT encod-
ings into heuristic algorithms. It improves a given (sub-optimal) global solution through a series
of local improvements accomplished by a SAT solver. SLIM has been successfully utilized in sev-
eral applications [13, 26, 27, 30, 33] and allows us to apply the solving power of SAT to instances
that are too large to be encoded as a whole to SAT. Instead, we repeatedly choose smaller local
instances that can be quickly encoded and solved. SLIM is a special case of Large Neighborhood
Search [29], distinguishing itself by combining a structurally constrained notion of a neighborhood
with a complete method (SAT).

Our new SLIM approach to graph coloring, GC-SLIM, tries to eliminate one color at a time in
a fashion similar to Partialcol. Starting from a heuristically computed (k + 1)-coloring, GC-SLIM
selects a color e ∈ [k + 1], removes e from c , and tries to iteratively recolor subgraphs using a SAT
solver until all vertices are colored, and c gives rise to a k-coloring.

We first discuss the core of every SLIM algorithm: a method to extract local instances such
that their improvement eventually translates to an overall improvement. First, we discuss how we
define local instances, i.e., we show how we can color subgraphs of G with a SAT solver while
maintaining consistency with the coloring of the remaining graph. Then, we discuss how we find
good local instances. We also discuss further additions to GC-SLIM that enhance its performance.

3.1 Local Instances and SAT
Let G be the input graph and c a partial k-coloring of G. Since G is too large to be encoded as a
whole to SAT, we select a subset X ⊆ V (G), based on a process described in the next subsection,
limiting the size of X in terms of a budget parameter b. The goal is now to find a partial k-coloring
for the induced subgraph G ′, with V (G ′) = X and E (G ′) = {uv ∈ E (G) | u,v ∈ X }.

However, a newly found k-coloring ofG ′ will, in general, not be compatible with the coloring c
of the vertices outside X . We consider the vertices adjacent to X as extra constraints by defining
the local instance in terms of the list coloring problem: Let L be a mapping that assigns each vertex
v ∈ X a set L(v) ⊆ [k], called the list of v . Here in particular, we let

L(v) = [k] \ { c (u) | u ∈ NG (v) \ X }.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

1.5:6 A. Schidler and S. Szeider

A partial list coloring of (G ′,L) is partial k-coloring c ′ of G ′ with the additional property that
c ′(v) ∈ L(v) for each v ∈ V (c ′). Let c ∪ c ′ denote the partial k-coloring obtained by composing c
and c ′:

(c ∪ c ′) (v) =
⎧⎪⎨⎪⎩
c (v) if v ∈ V (c) \ X ;
c ′(v) if v ∈ V (c ′).

The following lemma provides an important link between colorings and list colorings:

Lemma 3.1. Given a graph G and X ⊆ V (G), let c be a partial k-coloring of G, (G ′,L) be the local
instance for X , and c ′ be a partial list coloring of (G ′,L). Then, c ∪ c ′ is a partial k-coloring of G.

Proof. Consider an edgeuv ∈ E (G). Ifu,v ∈ V (c)\X , then (c∪c ′) (u) = c (u) " c (v) = (c∪c ′) (v).
If u,v ∈ X ∩ V (c ′), then (c ∪ c ′) (u) = c ′(u) " c ′(v) = (c ∪ c ′) (v). If u ∈ V (c) \ X and v ∈ V (c ′),
then c (u) ! L(v), since u ∈ NG (v), hence (c ∪ c ′) (u) = c (u) " c ′(v) = (c ∪ c ′) (v). !

We note in passing that the list coloring problem is a proper generalization of the graph coloring
problem. For instance, graph coloring is fixed-parameter tractable in the graph’s treewidth, while
list coloring is W[1]-hard when parameterized by treewidth [11].

Our general aim is to increase the number of colored vertices. Ideally, we would find a full
k-coloring for (G ′,L). While this is often not possible, it turns out that it is still useful to obtain a
partial list coloring c ′ of (G ′,L), which colors all previously uncolored vertices and minimizes the
number of newly introduced uncolored vertices.

We achieve this by a slight tweak of the local instance. For all v ∈ X \ c0, we add 0 to L(v)
and thereby allow them to become uncolored. The problem is now a minimization problem: find
a partial list coloring c ′ for (G ′,L) that minimizes |c ′0 |.

We encode the existence of a partial list coloring of G ′ that minimizes the number of uncolored
vertices. To this end, for r ≤ |X |, we define a propositional formula F (G ′,L, r) that is satisfiable
if and only if (G ′,L) has a partial list coloring c ′ where |c ′0 | ≤ r . We can minimize the number of
uncolored vertices by solving F (G ′,L, r) for different values of r .

The encoding requires one set of variables and two sets of clauses. For each v ∈ X and ℓ ∈ L(v),
the variable cv,ℓ is true if and only if v ∈ V (c ′) and c ′(v) = ℓ or v ! V (c ′) and ℓ = 0.

Hence, the first set of clauses encodes that each vertex v ∈ X is assigned at least one color
ℓ ∈ L(v) or is set to 0:

∧

v ∈X

∨

ℓ∈L(v)

cv,ℓ .

cv,0 is true if and only if v ! V (c ′).
The second set of clauses encodes that adjacent vertices in G ′ must not have the same color:

∧

vw ∈E (G′),v<w,
ℓ∈L(u)∩L(v),ℓ"0

¬cv,ℓ ∨ ¬cw,ℓ .

Note that cv,0 and cw,0 can both be true even if vw ∈ E (G). Finally, we use a totalizer encoding [2]
to express the cardinality constraint

|{v ∈ X | cv,0 = true }| ≤ r .

The constraint adds Θ(|X | · log |X |) many variables and Θ(|X |2) many clauses.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

SAT-boosted Tabu Search for Coloring Massive Graphs 1.5:7

Fig. 2. Example for local instance selection with branching factor 2 and a budget of 8. The selected component
is indicated by discolored (gray) vertices.

3.2 Local Instance Selection
In this section, we describe how GC-SLIM constructs local instances for the SAT encoding de-
scribed in the previous section. Let G be the input graph and c a partial k-coloring of G. Our goal
is to select a suitable subset X ⊆ V (G) that defines our local instance. The overall approach is
to start at a single uncolored vertex and perform a breadth-first search among the least prevalent
colors in the neighborhoods where the size of X is limited by a budget b and the breadth by a
branching factor f .

We first select an uncolored vertex v∗ ∈ c0. We initially put X0 = ∅, X1 = {v∗} and continue
computing a chain of setsX0 ! X1 ! · · · ! Xs as long as |Xs | ≤ b. If no further addition is possible,
then we stop, as we have found the set X = Xs .

Assume we have constructed Xi , i ≥ 1. We now construct Xi+1 by starting from Xi+1 := Xi and
incrementally extendingXi+1. Let S = Xi \Xi−1. For eachw ∈ S , we find the smallest non-empty set
Nℓ (w), ℓ ∈ [k] such that Nℓ (w)∩Xi+1 = ∅. If |Nℓ (w) |+ |Xi+1 | ≤ b, we add Nℓ (w) toXi+1 and in any
case, we proceed to the next vertex in S . We repeat this step at most f times, i.e., for each vertex
in S , we add at most f colors from the neighborhood of the vertex to finish constructing Xi+1.

We observe that X \ V (c) = {v∗}, i.e., v∗ is the only uncolored vertex in X . Figure 2 illustrates
local instance selection on a simple graph.

The goal of the budget b is to keep the size of the local instance small enough such that the SAT
solver can solve it within an expected timeout. In practice, the best budget varies greatly with the
instance, so we automatically adjust it. Whenever a specified number of consecutive SAT solver
calls time out, the budget is decreased, and conversely, whenever the same number of consecutive
SAT solver calls return a result, the budget is increased.

We described the process such that we always expand Xi+1 using the color ℓ such that Nℓ (w) is
minimal. Alternatively, we can also use the conflict score discussed in Section 2.3. We discuss both
options in our experimental section.

3.3 Chain Propagation
In this section, we describe chain propagation, which is a powerful technique that allows us to de-
termine whether we can quickly color a given uncolored vertexv∗ by using a chain, or sequence, of
swaps and propagating the impact of the swaps in the chain until hopefully finding a 0-swap. This
concept is inspired by s-chain tabu search [28], where chains up to a length s are explored, and by
the consideration of a single flat chain in I-DSatur [19], where a chain of 1-swaps is applied within
a single iteration whenever available. Another way to view chain propagation is as a lookahead
for the actions that Partialcol would perform.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

1.5:8 A. Schidler and S. Szeider

Fig. 3. Example of a chain propagation sequence coloring vertex x .

We start with the set of uncolored vertices U = {v∗} and try to empty this set by applying the
following rules until eitherU = ∅ or no rule is applicable. Whenever we find a chain of swaps that
emptiesU , we have found a chain that successfully colors v∗. Figure 3 illustrates these rules using
our running example.

Rule 1 (0-swap). Take a vertex w ∈ U and a color ℓ ∈ [k] such that Nℓ (w) = ∅. Swap the color of
w to ℓ and remove w from U .

The immediate goal of local search is finding a 0-swap, as a 0-swap decreases the number of un-
colored vertices. The problem with 0-swaps is that they only consider the immediate neighborhood
of the vertex.

Therefore, local search may miss possible 0-swaps if they are not included in our local instance
or hidden behind larger swaps. We remedy this issue by extending chain propagation beyond 0-
swaps and exploring all chains of limited complexity with the goal of coloring v∗.

A slightly more elaborate case prevails when we apply the following rule multiple times, keeping
the number of uncolored vertices constant, completed by a final application of Rule 1:

Rule 2 (1-swap). Take a vertex w ∈ U , such that for a color ℓ ∈ [k] and a vertex u, we have
Nℓ (w) = {u}. Swap the color of w to ℓ, make u uncolored, and replace w with u in set U .

We call such a sequence of rule applications a 1-swap chain, sometimes called a flat chain [19].
Even more powerful but also more costly is a p-swap chain, where p > 1 is a fixed constant. It

uses the following generalization of Rule 2:

Rule 3 (p-swap). Take a vertex w ∈ X , such that for a color ℓ ∈ [k], we have |Nℓ (v) | ≤ p. Swap
the color of w to ℓ, make all the vertices in Nℓ (w) uncolored, and replace w with Nℓ (w) in X .

Chain propagation explores the possible chains exhaustively. Bookkeeping is necessary to avoid
re-applying the same series of swaps, as this leads to cycles, and consequently, chain propagation
may not terminate. Further, we apply the rules in order, as it is faster to explore chains without
p-swaps.

Two hyperparameters regulate the complexity of the chains. Since Rule 3 increases the number
of uncolored vertices, it is the main factor for the complexity of the chains explored and, therefore,
the main factor on the runtime of chain propagation. We limit the applications of the rule in two
ways: (i) We limit p and thereby how much the number of uncolored vertices can increase within
one rule application, and (ii) we limit how often Rule 3 can be applied within one chain for the
same reason. Together, the two hyperparameters regulate how much the number of uncolored
vertices can increase within a single chain.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

SAT-boosted Tabu Search for Coloring Massive Graphs 1.5:9

3.4 Putting It All Together
Algorithm 1 combines the main ingredients of GC-SLIM that we have discussed. Initially, we com-
pute a k-coloring c with a heuristic like DSatur and then repeatedly call GC-SLIM with different
colors as the elimination goal. Each call either succeeds, reducing the number of colors, or fails, in
which case, we restore c to the state it had before a color was removed. For each call, we pick the
least prevalent color we have not yet tried as the elimination goal, breaking ties arbitrarily.

ALGORITHM 1: GC-SLIM
1: iteration← 1
2: Remove color e from c .
3: while c0 " ∅ and iteration < iteration_limit do
4: Update tabu list.
5: Pick vertex v∗ ∈ c0 to color.
6: if chain propagation for v∗ is not successful then
7: m ← minℓ∈[k] |Nℓ (v) |
8: I ← construct_local_instance(v∗)
9: Changes← call_sat(I,m, sat_timeout)

10: if finding a list coloring I with at mostm uncolored vertices fails then
11: Performm-swap of v∗.
12: Check if budget should decrease.
13: else
14: Check if budget should increase.
15: end if
16: end if
17: end while
18: if c0 = ∅ then
19: return c
20: else
21: Restore c .
22: return Failed
23: end if

In Algorithm 1, GC-SLIM starts with adjusting c according to the given elimination goal and
then tries to complete c for a prescribed number of iterations. In each iteration, it picks a vertex
v∗ and first tries to color it using chain propagation. If this fails, then the algorithm creates a local
instance based onv∗ and tries to color it using the SAT encoding. The number of uncolored vertices
in the solution to the local instance is limited tom, wherem is the prevalence of the least prevalent
color in the neighborhood ofv∗. This limit ofm ensures that GC-SLIM will not perform worse than
ap-swap. If the local instance is (partially) colored successfully, then GC-SLIM proceeds to the next
vertex; otherwise, it defaults to a p-swap as Partialcol would perform.

The algorithm contains several hyperparameters, which we will discuss next.

3.5 Hyperparameters
The hyperparameters controlling Algorithm 1 are the iteration limit, the timeout for the SAT solver,
and the choice of SAT solver.

The iteration limit controls how much time the algorithm spends on eliminating a single color.
Lower iteration limits cause shorter runtimes. Therefore, one can try to eliminate more colors in

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

1.5:10 A. Schidler and S. Szeider

the same amount of time at the price of possibly missing some improvements: Sometimes GC-SLIM
will run many iterations with very few uncolored vertices until eventually finding the 0-swaps that
complete the coloring. A low iteration limit will miss these improvements. Omitted in the listing
is a mechanism that grants GC-SLIM an extra 10% of the iteration limit whenever the number of
uncolored vertices decreases. Thus, GC-SLIM runs as long as it reduces the number of uncolored
vertices, no matter the iteration limit.

The timeout for the SAT solver follows a similar tradeoff. Lower values lead to quicker search
space exploration by trying many different local instances, while larger values may discover new
improvements. While the iteration limit regulates how often GC-SLIM generates a local instance,
the timeout for the SAT solver strongly influences the budget for the local instances.

The SAT solver can also impact the performance of GC-SLIM, both in terms of memory usage
and speed, and different solvers may perform very differently for different instances.

The hyperparameters from this section, together with the branching factor, budget, and p-limit
for chain propagation as discussed above, control GC-SLIM. As we will discuss next, some further
options can severely impact GC-SLIM’s performance. We will further explore this impact in our
experiments.

3.6 Further Options
In this section, we discuss several minor options that can affect GC-SLIM’s efficiency positively or
negatively, depending on the instance. We will explore their effects further in the next section.

Prerun Tabu Search. Partialcol iterations are much faster than GC-SLIM iterations and can often
reduce the number of colors quicker, while GC-SLIM can find improvements that Partialcol misses.
Running Partialcol for several iterations before starting GC-SLIM tries to take the best from both
worlds.

Flexible Vertices. We say that a vertex v ∈ V (G) is flexible with respect to a (partial) k-coloring
c if v ∈ V (c) and there is a color ℓ ∈ [k] \ {c (v)} such that Nℓ (v) = ∅. Thus, we can change the
color of a flexible vertex and still have a (partial) k-coloring. We let Fc ⊆ V (G) be the set of all
vertices that are flexible w.r.t. c . Flexible vertices provide an additional option when choosing a
color: Instead of simply choosing the least prevalent color, we redefine the prevalence of a color
ℓ as |cℓ \ Fc | and the prevalence w.r.t. the neighborhood of a vertex analogously. This can lead to
a more accurate estimation, since flexible vertices allow immediate 0-swaps. This calculation is
heuristical, as adjacent flexible vertices can block each other’s color options, so we actually can
only change the color of one of them.

Parallelization. GC-SLIM can run in parallel with minimal synchronization: Each thread runs
GC-SLIM, and whenever one thread successfully eliminates a color, GC-SLIM is restarted in each
thread with the improved coloring. This introduces the new hyperparameter thread count. Gener-
ally, more threads are better, as they enable faster search space exploration. Threads can either try
to eliminate different colors, the same colors with different hyperparameter settings, or a mixture
of both.

4 EXPERIMENTS
The aim of this article is not to determine the fastest graph coloring method but to investigate how
SAT/CP methods can be utilized for the coloring of large, dense graphs.

We conduct three sets of experiments, one that evaluates the impact of the different hyperpa-
rameter settings and, by extension, the different features of GC-SLIM. The second experiment

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

SAT-boosted Tabu Search for Coloring Massive Graphs 1.5:11

compares GC-SLIM to the state-of-the-art graph coloring methods FastColor and I-DSatur.3 In the
last experiment, we look at GC-SLIM’s performance on the whole set of CG:SHOP instances.

Setup. We ran our experiments on a cluster where each server had two Intel Xeon E5-2640 v4
CPUs with 10 cores to 2.4 GHz for the first and second experiment, and two AMD EPYC 7402 CPUs,
each with 24 cores running at 2.8 GHz, for the last experiment. The servers ran on Ubuntu 18.04
and used gcc 7.5.0. The runs were limited to 64 GB of memory. We implemented our approach in
C++ and used Glucose 34 [1] and Cadical 1.5.05 [3] as SAT solvers.

Our implementation of DSatur [5] computes the initial colorings. We compare GC-SLIM against
FastColor6 [25] and I-DSatur7 [19], representing state-of-the-art methods for coloring massive
graphs. FastColor and I-DSatur runs were limited to 128 GB, as lower memory limits were insuffi-
cient for large and dense graphs.

We used an initial budget of 300 for the local instance. Whenever three consecutive SAT solver
calls times out, we decrease the budget by 60 vertices; whenever three consecutive calls succeeds,
we increase the budget by 60. In practice, the budget varied between 60 for very dense graphs and
over 2,000 for sparse graphs.

Instances. We used four sets of instances: (i) instances from the CG:SHOP 2022 competition
(CG),8 (ii) large random graphs (Random), (iii) large graphs from the Snap repository (Snap)9 [22,
23, 38], and (iv) hard DIMACS instances (DIMACS).10 An overview of the number of vertices, edges,
and densities is given in Table 2.

The CG:SHOP competition instances are very dense and have more structure than random
graphs. The instances have up to 73,000 vertices and 1.5 billion edges. We picked 10 instances
of the 225 used in the competition for our second experiment: Five instances are from the largest
instances in the set with over 73,000 vertices; the other five were chosen such that density and size
vary.

We used random graphs, as it was hard to find large benchmark instances that were not also
very sparse. Therefore, we generated 14 Erdos-Renyi random graphs, which vary in size between
10,000 and 100,000 nodes and in density between 0.05 and 0.5.

The instances from the Snap repository and 10th DIMACS instances contain large graphs with
up to several million vertices and have been used in related work [19, 25]. We preprocessed the
instances by removing all vertices with degrees smaller than the lower bound on the chromatic
number, determined in related work [19]. We picked the 11 instances with more than 10,000 and
fewer than 280,000 vertices from these preprocessed instances. The 280,000 limit was due to mem-
ory constraints, since we focused on supporting dense graphs, and adjacency matrices become
very memory-intensive for larger graphs. The mentioned sizes refer to preprocessed instances.

The DIMACS instances have been used in many papers for graph coloring and are included for
reference, as GC-SLIM was not designed for such small instances. We used 10 instances that are
considered hard [17].

3Code is available at https://github.com/ASchidler/coloring/ and https://doi.org/10.5281/zenodo.7947477; and results at
https://doi.org/10.5281/zenodo.7787294.
4https://www.labri.fr/perso/lsimon/glucose/.
5http://fmv.jku.at/cadical/.
6https://lcs.ios.ac.cn/~caisw/Color.html.
7https://bitbucket.org/gkatsi/gc-cdcl/.
8https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022/.
9https://snap.stanford.edu/snap/.
10https://www.cc.gatech.edu/dimacs10/.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

https://github.com/ASchidler/coloring/
https://doi.org/10.5281/zenodo.7947477
https://doi.org/10.5281/zenodo.7787294
https://www.labri.fr/perso/lsimon/glucose/
http://fmv.jku.at/cadical/
https://lcs.ios.ac.cn/~caisw/Color.html
https://bitbucket.org/gkatsi/gc-cdcl/
https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022/
https://snap.stanford.edu/snap/
https://www.cc.gatech.edu/dimacs10/

1.5:12 A. Schidler and S. Szeider

Fig. 4. Comparison of how many colors are eliminated over time with different swap limits for chain tracing.
Time is in minutes on the x-axis and the number of colors is on the y-axis.

4.1 Hyperparameter Impact
We explore how the different hyperparameter settings change the results in the first set of experi-
ments. We use a base configuration and vary the setting of one parameter at a time. Each run for
each instance was limited to seven hours.

As the base configuration, we use a SAT solver timeout of 10 seconds, 300 iterations, no chain
propagation, a branching factor for local instances of 3, no multithreading, and no prerun tabu
search. We count the instances for which a hyperparameter value finds the best coloring. We also
count the instances where it does so uniquely, i.e., no other setting for this hyperparameter found
an equally good or better coloring.

SAT Solver Timeout. We try different values for the SAT solver timeout: 5, 10 (default), 30, and
60 seconds. A timeout of 5 seconds finds the best result for 37 of the 44 instances, where it reaches
the unique best result on 15 of the instances. The results quickly deteriorate with higher timeouts:
While a timeout of 10 seconds finds the unique best result for 4 instances, the higher timeouts
achieve the same for only one instance.

A closer look at the number of SAT calls and the size of the local instances explains the results.
While local instances contain 1,511 vertices on average with a 5 seconds timeout, they only increase
to 1,610 vertices on average with a 60 seconds timeout. This is in stark contrast to the number of
SAT calls, which decreases from 13,910 to 6,764. Depending on the instance, 25% to 50% of the SAT
calls eventually time out, leading to a significant decrease in the number of possible SAT calls with
higher timeouts. Therefore, higher timeouts should be reserved for later stages when lower values
fail to find improvements.

Chain Propagation. We use different limits for the maximum size of the swaps in the chains we
propagate. We use values of 0 (default), 1, 2, 3, and 5. A limit of 2 achieves the overall best result,
reaching the best result on 34 of the 44 instances and the unique best on 18 instances. Limiting
the chains to 1-swaps or using no chain propagation at all performs very poorly. Higher limits can
be beneficial for some instances, as, for example, a limit of 5 performs slightly better on the Snap
instances. This indicates that higher limits might be beneficial for large and very sparse graphs.

Figure 4 shows how chain propagation impacts GC-SLIM for large, dense instances. We can see
that the number of improvements over time speeds up significantly and becomes comparable to
Partialcol in terms of speed, sometimes surpassing it.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

SAT-boosted Tabu Search for Coloring Massive Graphs 1.5:13

Impact of the SAT solver. We consider Glucose and Cadical as SAT solvers due to good results and
their capability for incremental solving. Overall, Cadical achieves the unique best result on 19 of
the 44 instances and Glucose on 10. This makes Cadical the best default choice, while Glucose may
be better suited for individual instances. Glucose generally performs better on random instances
and worse on the other instances in our experiments.

Flexible Vertices. Using flexible vertices does not give a clear advantage in the number of best
results. Considering flexible vertices achieves the unique best result on 17 of the instances and not
considering them on 14. While this does not seem like a clear advantage, the reduction in colors
is significant, up to 100 colors for the instances where it performs better. For instances where it
performs worse, the increase in the number of colors is never worse than 6. Considering flexible
vertices performs consistently better for the CG instances.

Prerun tabu search. The benefits of running tabu search prior to GC-SLIM are very instance-
specific. It achieves consistently better results on the DIMACS and Snap instances and worse re-
sults on the random and CG instances. This indicates that this configuration is beneficial for small
and sparse graphs. One possible explanation is that the tabu search iterations become slower for
dense graphs, reducing the efficiency gain over GC-SLIM.

Conflict Score. Another option is using a conflict score to determine swaps and selecting local
instances instead of simply picking the smallest colored neighborhood. This achieves the unique
best result for 16 instances, while not using this option gives the unique best result on 15, making its
benefits very instance-specific. Using prerun tabu search with the conflict score gives the unique
best result on 19 instances, in contrast to 17 instances, where the basic configuration finds the
unique best result. It performs consistently bad for the random instances, mixed for the DIMACS
instances, and consistently good on the CG and snap instances.

Iteration Limit. We try iteration limits of 100, 300 (default), 500, 1,000, and 5,000. None of the
limits performs significantly better than the others, with 500 and higher performing better and
5,000 performing overall best with 7 uniquely best results. While 1,000 iterations is a good default
setting, different settings may perform better for different instances. Furthermore, higher itera-
tion limits may be necessary if the number of colors is close to optimal and it becomes harder to
eliminate a color.

Branching. We try branching factors of 2, 3 (default), 5, 10, and 15. The overall best is a branching
factor of 2, which achieves the best result on 31 of the 44 instances and finds 13 uniquely best
instances. The results worsen with higher branching factors, except for the Snap instances, where
a branching limit of 10 performs best. This matches the results for chain propagation, where higher
limits also perform better for the Snap instances, suggesting that a search focused on breadth over
depth may be a generally good strategy for sparse instances.

Initial Node Limit. When creating the local instance, we treat the initial vertex as a special case:
Instead of limiting the number of colors we choose, we limit the number of neighbors we add
for the initial vertex. This system chooses more different colors if there are many low-prevalence
colors and fewer if not. We try limits of 10, 25, 50 (default), 75, and 100.

Each limit leads to the best result on about 16 to 21 instances and a unique best result on 4 to
5 instances. Therefore, there is no discernible good default and choosing the right value always
depends on the instance at hand. A pattern similar to chain propagation and the branching limit
emerges here: The lower the density, the better a higher initial limit, i.e., more focus on breadth,
works.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

1.5:14 A. Schidler and S. Szeider

Table 1. Best Hyperparameter Settings for Different Instance Sets

Instance Set TO Chain Flex Iterations Prerun TS Conflict Branching Initial Solver
CG 5 2 N 1,000 Y Y 2 75 Cadical
DIMACS 5 2 N 1,000 Y N 3 10 Cadical
Random 10 2 Y 1,000 N N 3 50 Glucose
Snap 5 5 Y 5,000 Y Y 10 100 Cadical

4.2 Comparison and Parallelism
We use the results from the first experiment to discern a best configuration for each of the four
sets of instances; the configurations are shown in Table 1. In our comparison, we use different
GC-SLIM configurations, FastColor, I-DSatur, and Partialcol. Each was run with a 24-hour time
limit. We additionally run other methods and use their output as GC-SLIM’s input, i.e., we prerun
our own implementations of I-DSatur (IS) and/or Partialcol (PC). Partialcol runs either 7 hours
alone or 4 hours together with I-DSatur. We also apply multithreading with 4 threads and varying
the configuration parameters using the values shown in Table 1. The multithreading runs for only
6 hours and has twice the memory. The results are in Table 2.

The results show how well GC-SLIM performs on large and dense graphs. On the CG and Ran-
dom instances, it significantly outperforms FastColor and I-DSatur. Interestingly, for random in-
stances, a Partialcol prerun performs consistently better than any other configuration. For the
CG instances, using a portfolio of varied configurations, combining the configurations in Table 1,
performs best, and the overall best configuration performs comparatively poorly.

While GC-SLIM also outperforms both algorithms on the small DIMACS instances, it does not
come close to reaching the best-known value on almost all instances. This shows that specialized
algorithms for these small instances work better.

FastColor and I-DSatur shine on the Snap instances where they benefit from the structure of
sparse graphs, which GC-SLIM does not particularly exploit. Still, FastColor, which performs better
than I-DSatur, finds the best solution for six of the instances, as does the varied configuration. Note
that our goal was not to compare FastColor and I-DSatur, but to compare these approaches to GC-
SLIM on various graphs.

The GC-SLIM configurations perform very differently. Figure 5 shows the progression over time
for selected instances.

Overall, the results show that a varied configuration is better than a single, tuned configuration.
This finding is strengthened by the fact that multithreading incurs an overhead, as each thread has
to restart once a color has been eliminated.

4.3 CG:SHOP Instances
The competition used 225 instances in total, separated in different classes, where instances into
each class are created by the same process but with different sizes and densities. The instances
were created such that then-available graph coloring solvers failed to produce good results. This
is supported by the fact that these solvers would have placed very low in the competition [10].

We started our submission by implementing Partialcol. This implementation was run for several
days for each instance, and we only started implementing GC-SLIM, when Partialcol failed to find
improvements. During that time, we varied and randomized every parameter and decision in our
implementation. This gives us the possibility to compare GC-SLIM to these long Partialcol runs in
Figure 6. The figure shows that GC-SLIM is able to significantly improve the colorings, even after
the long Partialcol runs.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

SAT-boosted Tabu Search for Coloring Massive Graphs 1.5:15

Table 2. Comparison of 24-hour Runs

Instance Nodes Edges Density DS Best Fast IS PC G GV GP GI GPI

CG

reecn56737 56k 308m 0.19 316 258 314 307 270 266 265 265 271 268
reecn73116 73k 610m 0.23 433 349 426 438 372 371 362 367 375 365
rvisp20601 20k 19m 0.09 99 81 93 115 85 87 86 85 87 99
sqrp49981 49k 621m 0.5 353 270 345 389 280 274 272 278 281 275
sqrp73525 73k 1,560m 0.58 418 329 451 504 352 348 343 341 356 342
sqrpecn71571 71k 1,272m 0.5 761 630 752 826 659 656 667 659 667 655
visp40191 40k 53m 0.07 125 104 119 130 110 113 110 110 115 125
visp70702 70k 192m 0.08 186 145 184 186 159 166 158 159 168 186
vispecn26914 26k 30m 0.08 264 176 234 243 195 207 190 190 195 191
vispecn74166 74k 205m 0.07 476 332 444 450 376 378 365 367 382 366

Ra
nd

om

rnd_100000_10 100k 499m 0.1 1247 – 1,256 1,247 1,089 1,091 1,112 1,081 1,096 1,097
rnd_100000_5 100k 250m 0.05 665 – 676 663 580 577 584 571 581 573
rnd_10000_10 10k 4,995k 0.1 169 – 171 170 145 144 145 142 145 142
rnd_10000_25 10k 12m 0.25 399 – 398 396 333 337 340 329 339 330
rnd_10000_5 10k 2,499k 0.05 93 – 94 93 80 79 93 78 80 78
rnd_10000_50 10k 24m 0.5 844 – 837 840 703 715 722 698 715 699
rnd_25000_10 25k 31m 0.1 371 – 377 371 319 317 321 314 321 315
rnd_25000_25 25k 29m 0.1 247 – 234 234 246 195 197 196 196 196
rnd_25000_5 25k 15m 0.05 202 – 204 200 173 172 173 170 173 170
rnd_25000_50 25k 156m 0.5 1,896 – 1,877 1,899 1,613 1,630 1,646 1,604 1,636 1,605
rnd_50000_10 50k 124m 0.1 679 – 687 677 585 586 592 578 590 579
rnd_50000_5 50k 62m 0.05 363 – 371 364 314 314 316 309 316 310
rnd_75000_10 75k 281m 0.1 968 – 975 968 839 842 852 830 847 834
rnd_75000_5 75k 140m 0.05 517 – 525 517 449 447 452 443 450 444

Sn
ap

G_n_pin_pout 99k 500k 0.0 6 5 6 6 6 5 5 6 5 6
HR_edges 23k 328k 0.0 14 13 13 14 13 13 13 13 13 14
WikiTalk 13k 728k 0.01 50 48 48 49 50 50 50 50 50 50
artist_edges 18k 606k 0.0 23 19 19 21 20 20 20 20 20 23
com-youtube 47k 670k 0.0 25 23 23 24 25 25 25 25 25 25
gplus_combined 13k 6,766k 0.08 326 326 327 337 346 326 326 326 326 326
kron_g500-simple-logn16 17k 1,495k 0.01 156 145 152 155 151 148 150 148 149 147
p2p-Gnutella31 24k 100k 0.0 5 5 5 5 5 5 5 5 5 5
smallworld 100k 499k 0.0 8 6 7 8 6 6 6 6 6 8
sx-stackoverflow 131k 10m 0.0 69 66 66 70 69 69 69 69 69 69
wave 155k 1,057k 0.0 9 7 8 9 8 8 7 8 8 9

DI
M

AC
S

C2000.5 2,000 999k 0.5 208 145 205 207 168 170 173 167 170 167
C2000.9 2,000 1,799k 0.9 555 408 534 547 429 425 441 429 423 428
C4000.5 4,000 4,000k 0.5 377 259 376 376 312 313 317 311 312 311
dsjc1000.1 1,000 49k 0.1 26 20 25 25 22 22 22 22 22 26
dsjc1000.5 1,000 249k 0.5 116 83 112 114 93 93 97 92 93 92
dsjc1000.9 1,000 449k 0.9 303 222 287 297 232 229 241 231 228 231
flat1000_50_0 1,000 245k 0.49 114 50 111 112 50 69 88 50 50 114
flat1000_60_0 1,000 245k 0.49 116 60 111 113 90 76 115 90 60 78
flat1000_76_0 1,000 246k 0.49 114 81 111 112 92 93 94 92 90 114
latin_square_10 900 307k 0.76 127 97 118 125 102 106 103 102 104 127
r1000.1c 1,000 485k 0.97 102 98 103 103 99 100 98 99 99 102
r1000.5 1,000 238k 0.48 242 234 235 240 245 236 235 239 236 236

DS shows the DSatur run used as input for GC-SLIM. Best shows the best known result for the instance from the
literature. For comparison, we list Fast Color, Iterated DSatur (IS), and our Partialcol (PC) implementation. GC-SLIM
configurations start with G, V denotes varying parameters, I indicates a I-DSatur Prerun, and P a Partialcol Prerun.

We also have results from a more controlled experiment, where GC-SLIM runs for 24 hours us-
ing the best configuration. Figure 7 shows that the final GC-SLIM implementation achieves almost
the same results as the results from the long runs of Partialcol and GC-SLIM during development
as described above. Our final implementation achieves these results in a fraction of the time. This

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

1.5:16 A. Schidler and S. Szeider

Fig. 5. Comparison of how many colors are used by different configurations over time. The x-axis shows the
time in minutes and the y-axis the number of colors. The vertical dotted line indicates when Partialcol preruns
end and for multithreaded runs, the times are multiplied by the number of threads. PC refers to running
Partialcol on the instance before GC-SLIM. IS refers to running I-DSatur to obtain the initial coloring.

Fig. 6. The CG:SHOP 2022 instance results. For each instance, we show the initial solution using DSatur,
the long-term improved coloring using Partialcol, and the eventually submitted solution obtained using GC-
SLIM.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

SAT-boosted Tabu Search for Coloring Massive Graphs 1.5:17

Fig. 7. The results from a 24-hour run of GC-SLIM com-
pared to Partialcol and GC-SLIM as used in the competition
and Figure 6.

Fig. 8. Comparison between the best GC-
SLIM and the best CG:SHOP 2022 colorings.
Each mark is an instance, and the position
indicates the number of colors used.

further shows how well GC-SLIM performs on these instances. Finally, Figure 8 shows the com-
parison between the best GC-SLIM run and the best results from the competition.

5 CONCLUSION
With GC-SLIM, we have presented a new hybrid approach to graph coloring that enhances tabu
search with SAT-based local improvement. Key elements of this combination are the selection
method for local instances, the SAT-based solution for local instances, and chain propagation. Fur-
ther improvements are due to hyperparameter tuning, the prerunning of tabu search, and different
metrics for selecting vertices for color elimination. We also proposed and tested a parallel version
of GC-SLIM. Our experimental evaluation shows that GC-SLIM complements existing methods
and can find colorings with significantly fewer colors than other methods on large dense graphs.

For future work, we see two main paths. The first one is improving the selection of local in-
stances, as we expect a better criterion than using the least prevalent color. The other path is
adapting GC-SLIM to more general graphs. We have seen that FastColor excels even for large ran-
dom graphs and can handle even larger graphs. GC-SLIM can be adapted to handle large and sparse
graphs. This would also require implementing features from FastColor and I-DSatur that exploit
the structural properties of sparse graphs, as well as preprocessing. Integrating these features may
also lead to a better method for local instance selection.

REFERENCES
[1] Gilles Audemard and Laurent Simon. 2009. Predicting learnt clauses quality in modern SAT solvers. In IJCAI 2009,

Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11–17,
2009, Craig Boutilier (Ed.). 399–404. Retrieved from http://ijcai.org/Proceedings/09/Papers/074.pdf.

[2] Olivier Bailleux and Yacine Boufkhad. 2003. Efficient CNF encoding of Boolean cardinality constraints. In Principles
and Practice of Constraint Programming - CP 2003, 9th International Conference, CP 2003, Kinsale, Ireland, September
29–October 3, 2003, Proceedings (Lecture Notes in Computer Science), Francesca Rossi (Ed.), Vol. 2833. Springer, 108–122.
DOI:https://doi.org/10.1007/978-3-540-45193-8_8

[3] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. 2020. CaDiCaL, KISSAT, PARACOOBA,
PLINGELING and TREENGELING entering the SAT competition 2020. In Proc. of SAT Competition 2020 – Solver and
Benchmark Descriptions (Department of Computer Science Report Series B), Tomas Balyo, Nils Froleyks, Marijn Heule,
Markus Iser, Matti Järvisalo, and Martin Suda (Eds.), Vol. B-2020-1. University of Helsinki, 51–53.

[4] Ivo Blöchliger and Nicolas Zufferey. 2008. A graph coloring heuristic using partial solutions and a reactive tabu scheme.
Comput. Oper. Res. 35, 3 (2008), 960–975. DOI:https://doi.org/10.1016/j.cor.2006.05.014

[5] Daniel Brélaz. 1979. New methods to color the vertices of a graph. Commun. ACM 22, 4 (Apr. 1979), 251–256. Retrieved
fromhttps://dl.acm.org/doi/10.1145/359094.359101

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

http://ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1016/j.cor.2006.05.014
https://dl.acm.org/doi/10.1145/359094.359101

1.5:18 A. Schidler and S. Szeider

[6] Edmund K. Burke, Jakub Marecek, Andrew J. Parkes, and Hana Rudová. 2010. A supernodal formulation of vertex
colouring with applications in course timetabling. Ann. Oper. Res. 179, 1 (2010), 105–130. DOI:https://doi.org/10.1007/
s10479-010-0716-z

[7] Stephen A. Cook. 1971. The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual ACM Sympo-
sium on Theory of Computing, May 3–5, 1971, Shaker Heights, Ohio, USA, Michael A. Harrison, Ranan B. Banerji, and
Jeffrey D. Ullman (Eds.). ACM, 151–158. DOI:https://doi.org/10.1145/800157.805047

[8] Loïc Crombez, Guilherme Dias da Fonseca, Florian Fontan, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafourcade,
Luc Libralesso, Benjamin Momège, Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng. 2023. Conflict opti-
mization for binary CSP applied to minimum partition into plane subgraphs and graph coloring. J. Experim. Algor. 28
(2023). This issue.

[9] Loïc Crombez, Guilherme Dias da Fonseca, Yan Gerard, and Aldo Gonzalez-Lorenzo. 2022. Shadoks approach to
minimum partition into plane subgraphs (CG challenge). In 38th International Symposium on Computational Geome-
try, SoCG 2022, June 7–10, 2022, Berlin, Germany (LIPIcs), Xavier Goaoc and Michael Kerber (Eds.), Vol. 224. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 71:1–71:8. DOI:https://doi.org/10.4230/LIPIcs.SoCG.2022.71

[10] Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Stefan Schirra. 2023. Minimum partition into plane sub-
graphs: The CG:SHOP challenge 2022. J. Experim. Algor. 28 (2023). This issue.

[11] Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket Saurabh, Stefan Szeider, and
Carsten Thomassen. 2011. On the complexity of some colorful problems parameterized by treewidth. Inf. Comput.
209, 2 (2011), 143–153. DOI:https://doi.org/10.1016/j.ic.2010.11.026

[12] Johannes K. Fichte, Markus Hecher, Daniel Le Berre, and Stefan Szeider. 2023. The silent (r)evolution of SAT. Commun.
ACM 66, 6 (2023), 64–72. https://doi.org/10.1145/3560469

[13] Johannes Klaus Fichte, Neha Lodha, and Stefan Szeider. 2017. SAT-based local improvement for finding tree decom-
positions of small width. In Theory and Applications of Satisfiability Testing - SAT 2017 - 20th International Conference,
Melbourne, VIC, Australia, August 28–September 1, 2017, Proceedings (Lecture Notes in Computer Science), Serge Gaspers
and Toby Walsh (Eds.), Vol. 10491. Springer, 401–411. DOI:https://doi.org/10.1007/978-3-319-66263-3_25

[14] Florian Fontan, Pascal Lafourcade, Luc Libralesso, and Benjamin Momège. 2022. Local search with weighting schemes
for the CG: SHOP 2022 competition (CG challenge). In 38th International Symposium on Computational Geometry, SoCG
2022, June 7–10, 2022, Berlin, Germany (LIPIcs), Xavier Goaoc and Michael Kerber (Eds.), Vol. 224. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 73:1–73:6. DOI:https://doi.org/10.4230/LIPIcs.SoCG.2022.73

[15] Robert Ganian, Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. 2019. SAT-encodings for treecut width and
treedepth. In Proceedings of ALENEX 2019, the 21st Workshop on Algorithm Engineering and Experiments, Stephen G.
Kobourov and Henning Meyerhenke (Eds.). SIAM, 117–129. DOI:https://doi.org/10.1137/1.9781611975499.10

[16] Gael Glorian, Jean-Marie Lagniez, Valentin Montmirail, and Nicolas Szczepanski. 2019. An incremental SAT-based
approach to the graph colouring problem. In Principles and Practice of Constraint Programming - 25th International
Conference, CP 2019, Stamford, CT, USA, September 30–October 4, 2019, Proceedings (Lecture Notes in Computer Sci-
ence), Thomas Schiex and Simon de Givry (Eds.), Vol. 11802. Springer, 213–231. DOI:https://doi.org/10.1007/978-3-
030-30048-7_13

[17] Jin-Kao Hao and Qinghua Wu. 2012. Improving the extraction and expansion method for large graph coloring. Discret.
Appl. Math. 160, 16-17 (2012), 2397–2407. DOI:https://doi.org/10.1016/j.dam.2012.06.007

[18] Emmanuel Hebrard and George Katsirelos. 2019. Clause learning and new bounds for graph coloring. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10–16,
2019, Sarit Kraus (Ed.). ijcai.org, 6166–6170. DOI:https://doi.org/10.24963/ijcai.2019/856

[19] Emmanuel Hebrard and George Katsirelos. 2019. A hybrid approach for exact coloring of massive graphs. In Integration
of Constraint Programming, Artificial Intelligence, and Operations Research - 16th International Conference, CPAIOR 2019,
Thessaloniki, Greece, June 4–7, 2019, Proceedings (Lecture Notes in Computer Science), Louis-Martin Rousseau and Kostas
Stergiou (Eds.), Vol. 11494. Springer, 374–390. DOI:https://doi.org/10.1007/978-3-030-19212-9_25

[20] Richard M. Karp. 1972. Reducibility among combinatorial problems. In Proceedings of a Symposium on the Complexity
of Computer Computations, Held March 20–22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights,
New York, USA (The IBM Research Symposia Series), Raymond E. Miller and James W. Thatcher (Eds.). Plenum Press,
New York, 85–103. DOI:https://doi.org/10.1007/978-1-4684-2001-2_9

[21] Alexander S. Kulikov, Danila Pechenev, and Nikita Slezkin. 2022. SAT-based circuit local improvement. In 47th Inter-
national Symposium on Mathematical Foundations of Computer Science, MFCS 2022, August 22–26, 2022, Vienna, Austria
(LIPIcs), Stefan Szeider, Robert Ganian, and Alexandra Silva (Eds.), Vol. 241. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 67:1–67:15. DOI:https://doi.org/10.4230/LIPIcs.MFCS.2022.67

[22] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. Retrieved from
http://snap.stanford.edu/data.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

https://doi.org/10.1007/s10479-010-0716-z
https://doi.org/10.1145/800157.805047
https://doi.org/10.4230/LIPIcs.SoCG.2022.71
https://doi.org/10.1016/j.ic.2010.11.026
https://doi.org/10.1145/3560469
https://doi.org/10.1007/978-3-319-66263-3_25
https://doi.org/10.4230/LIPIcs.SoCG.2022.73
https://doi.org/10.1137/1.9781611975499.10
https://doi.org/10.1007/978-3-030-30048-7_13
https://doi.org/10.1016/j.dam.2012.06.007
https://doi.org/10.24963/ijcai.2019/856
https://doi.org/10.1007/978-3-030-19212-9_25
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.4230/LIPIcs.MFCS.2022.67
http://snap.stanford.edu/data

SAT-boosted Tabu Search for Coloring Massive Graphs 1.5:19

[23] Jure Leskovec and Rok Sosic. 2016. SNAP: A general-purpose network analysis and graph-mining library. ACM Trans.
Intell. Syst. Technol. 8, 1 (2016), 1:1–1:20. DOI:https://doi.org/10.1145/2898361

[24] Leonid Levin. 1973. Universal sequential search problems. Prob. Inf. Transmiss. 9, 3 (1973), 265–266.
[25] Jinkun Lin, Shaowei Cai, Chuan Luo, and Kaile Su. 2017. A reduction based method for coloring very large graphs. In

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19–25, 2017, Carles Sierra (Ed.). ijcai.org, 517–523. DOI:https://doi.org/10.24963/ijcai.2017/73

[26] Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. 2017. SAT-encodings for special treewidth and pathwidth. In
Theory and Applications of Satisfiability Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia,
August 28–September 1, 2017, Proceedings (Lecture Notes in Computer Science), Serge Gaspers and Toby Walsh (Eds.),
Vol. 10491. Springer, 429–445. DOI:https://doi.org/10.1007/978-3-319-66263-3_27

[27] Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. 2019. A SAT approach to branchwidth. ACM Trans. Comput. Log.
20, 3 (2019), 15:1–15:24. DOI:https://doi.org/10.1145/3326159

[28] Craig A. Morgenstern. 1993. Distributed coloration neighborhood search. In Cliques, Coloring, and Satisfiability, Pro-
ceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, October 11–13, 1993 (DIMACS Series in Discrete
Mathematics and Theoretical Computer Science), David S. Johnson and Michael A. Trick (Eds.), Vol. 26. DIMACS/AMS,
335–357. DOI:https://doi.org/10.1090/dimacs/026/16

[29] David Pisinger and Stefan Ropke. 2010. Large neighborhood search. In Handbook of Metaheuristics. Springer Verlag,
399–419. DOI:https://doi.org/10.1007/978-1-4419-1665-5_13

[30] Vaidyanathan Peruvemba Ramaswamy and Stefan Szeider. 2021. Turbocharging treewidth-bounded Bayesian network
structure learning. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on
Innovative Applications of Artificial Intelligence, IAAI 2021, the Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021, Virtual Event, February 2–9, 2021. AAAI Press, 3895–3903.Retrieved from https://ojs.aaai.org/
index.php/AAAI/article/view/16508.

[31] Franz-Xaver Reichl, Friedrich Slivovsky, and Stefan Szeider. 2023. Circuit minimization with QBF-based exact synthe-
sis. In Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023. AAAI Press. To appear.

[32] Ryan A. Rossi and Nesreen K. Ahmed. 2014. Coloring large complex networks. Soc. Netw. Anal. Min. 4, 1 (2014), 228.
DOI:https://doi.org/10.1007/s13278-014-0228-y

[33] André Schidler and Stefan Szeider. 2021. SAT-based decision tree learning for large data sets. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelli-
gence, IAAI 2021, the Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2–9, 2021. AAAI Press, 3904–3912. Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/16509.

[34] Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng. 2022. Conflict-based local search for minimum partition
into plane subgraphs (CG challenge). In 38th International Symposium on Computational Geometry, SoCG 2022, June
7–10, 2022, Berlin, Germany (LIPIcs), Xavier Goaoc and Michael Kerber (Eds.), Vol. 224. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 72:1–72:6. DOI:https://doi.org/10.4230/LIPIcs.SoCG.2022.72

[35] Wen Sun. 2018. Heuristic Algorithms for Graph Coloring Problems. (Algorithmes heuristiques pour des problèmes de
coloration de graphes). Ph.D. Dissertation. University of Angers, France. Retrieved from https://tel.archives-ouvertes.
fr/tel-02136810.

[36] Moshe Y. Vardi. 2014. Boolean satisfiability: Theory and engineering. Commun. ACM 57, 3 (2014), 5. DOI:https://doi.
org/10.1145/2578043

[37] Anurag Verma, Austin Buchanan, and Sergiy Butenko. 2015. Solving the Maximum Clique and Vertex Coloring Prob-
lems on very large sparse networks. INFORMS J. Comput. 27, 1 (2015), 164–177. DOI:https://doi.org/10.1287/ijoc.2014.
0618

[38] Marinka Zitnik, Rok Sosič, Sagar Maheshwari, and Jure Leskovec. 2018. BioSNAP Datasets: Stanford Biomedical Net-
work Dataset Collection. Retrieved from http://snap.stanford.edu/biodata.

Received 25 November 2022; revised 28 April 2023; accepted 13 May 2023

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.5. Publication date: July 2023.

https://doi.org/10.1145/2898361
https://doi.org/10.24963/ijcai.2017/73
https://doi.org/10.1007/978-3-319-66263-3_27
https://doi.org/10.1145/3326159
https://doi.org/10.1090/dimacs/026/16
https://doi.org/10.1007/978-1-4419-1665-5_13
https://ojs.aaai.org/index.php/AAAI/article/view/16508
https://doi.org/10.1007/s13278-014-0228-y
https://ojs.aaai.org/index.php/AAAI/article/view/16509
https://doi.org/10.4230/LIPIcs.SoCG.2022.72
https://tel.archives-ouvertes.fr/tel-02136810
https://doi.org/10.1145/2578043
https://doi.org/10.1287/ijoc.2014.0618
http://snap.stanford.edu/biodata

