L)

Skt Software Rasterization of 2 Billion Points in Real Time

MARKUS SCHUTZ, BERNHARD KERBL, and MICHAEL WIMMER, TU Wien, Austria

Fig. 1. A point cloud grouped into batches. Individual batches (inset) are rendered by a GPU workgroup using
128 threads, and each thread renders 80 points for a total of 128 x 80 = 10 240 points per batch. Workgroups
utilize batch bounding boxes for frustum culling and to determine the suitable coordinate precision: 10-bit
fixed-precision integer coordinates (relative to the batch bounding box) provides sufficient precision for the
majority of visible batches. Additional bits—enabling up to 30-bit coordinates—are loaded on demand.

The accelerated collection of detailed real-world 3D data in the form of ever-larger point clouds is sparking a
demand for novel visualization techniques that are capable of rendering billions of point primitives in real-time.
We propose a software rasterization pipeline for point clouds that is capable of rendering up to two billion
points in real-time (60 FPS) on commodity hardware. Improvements over the state of the art are achieved
by batching points, enabling a number of batch-level optimizations before rasterizing them within the same
rendering pass. These optimizations include frustum culling, level-of-detail (LOD) rendering, and choosing the
appropriate coordinate precision for a given batch of points directly within a compute workgroup. Adaptive
coordinate precision, in conjunction with visibility buffers, reduces the required data for the majority of
points to just four bytes, making our approach several times faster than the bandwidth-limited state of the art.
Furthermore, support for LOD rendering makes our software rasterization approach suitable for rendering
arbitrarily large point clouds, and to meet the elevated performance demands of virtual reality applications.

CCS Concepts: » Computing methodologies — Rasterization.

Additional Key Words and Phrases: point cloud rendering, rasterization, real-time rendering, virtual reality

Authors’ address: Markus Schiitz, mschuetz@cg.tuwien.ac.at; Bernhard Kerbl, kerbl@cg.tuwien.ac.at; Michael Wimmer,
wimmer@cg.tuwien.ac.at, TU Wien, Austria.

This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.
© 2022 Copyright held by the owner/author(s).

2577-6193/2022/7-ART24

https://doi.org/10.1145/3543863

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022. 2 4

https://doi.org/10.1145/3543863
https://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543863&domain=pdf&date_stamp=2022-07-27

24:2 Schiitz et al.

ACM Reference Format:

Markus Schiitz, Bernhard Kerbl, and Michael Wimmer. 2022. Software Rasterization of 2 Billion Points in Real
Time. Proc. ACM Comput. Graph. Interact. Tech. 5, 3, Article 24 (July 2022), 17 pages. https://doi.org/10.1145/
3543863

1 INTRODUCTION

Modern hardware and software solutions are driving the collection of real-world geometry data—
so-called digital twins—at a staggering pace: ubiquitous mobile cameras, RGB-D sensors and laser
scanners can capture 3D point clouds of individual objects, or even entire buildings, within minutes.
However, the resulting raw data sets—which may contain billions of points—quickly prove too
demanding for viewing them at an interactive rate, even given the performance of modern-day
graphics processing units (GPUs), with their streamlined hardware rasterization pipeline. Especially
for virtual reality (VR) settings, the raised demands for visualization (stereoscopic rendering, high
resolution and refresh rate) quickly becomes a limiting factor. Thus, costly preprocessing routines
must be applied to the captured data sets prior to point cloud visualization, thereby inhibiting the
user’s abilities to preview, curate and edit captured data sets. In this paper, we introduce significant
improvements to the software rasterization of points, allowing applications to draw large amounts
of points in real time without the need for preprocessing routines.

With the introduction of hardware with dedicated triangle rasterization units, hand-crafting ras-
terization routines in software became largely obsolete. Custom-built rasterizers have nevertheless
remained an ongoing topic of research and some eventually managed to beat hardware rasteriza-
tion in specific scenarios [Liu et al. 2010]. But in general, dedicated hardware remains the fastest
approach. Unreal Engine’s Nanite is the first approach that promises far-reaching improvements
for 3D games via hybrid software and hardware rasterization [Karis et al. 2021]. They found that
rasterizing the fragments of pixel-sized triangles with atomic min-max operations is faster than
pushing them through the hardware pipeline.

Compared to triangle meshes, point cloud models offer additional opportunities for efficient
software rasterization, as the hardware rendering pipeline is largely dedicated to the rasterization
of triangles rather than points. Point clouds are usually static and lack connectivity, therefore
animation data, index buffers or vertex duplication are not required. The lack of a connected surface
also makes UV maps and textures irrelevant, which is why colors are typically directly stored
on a per-vertex basis. Point clouds acquired by laser scanners do not contain surface normals.
However, using point primitives to represent geometric details of all frequencies necessitates
ubiquitously high sampling density to obtain high-quality results. Rendering point clouds thus
demands processing of vast, simplistic data sets with straightforward shading and a low number
of touched fragments per point. By optimizing for these properties, we arrive at a tailor-made,
high-performance solution for point cloud rendering. Our approach builds on [Schiitz et al. 2021]
to further optimize several aspects of software rasterization of points, leading to a significant
increase in brute-force rendering performance. With these improvements, we aim to benefit fields
that regularly work with data sets comprising billions of points, e.g., surveying, archaeology and
architecture: they pave the way for instantly visualizing and interacting with captured data sets,
ideally on-site. Our contributions to the state of the art of software rasterization of point clouds are:

e Assigning larger workloads to workgroups to enable efficient batch-level optimizations.

e Adaptive coordinate precision, coupled with visibility-buffering for 3x faster performance.
e Fine-grained frustum culling on batches of about 10 240 points, directly on the GPU.

e Support for state-of-the-art level-of-detail structures for point clouds.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022.

https://doi.org/10.1145/3543863
https://doi.org/10.1145/3543863

Software Rasterization of 2 Billion Points in Real Time 24:3

In this paper, we will consider point clouds as 3D models made of colored vertices, where each
vertex is projected to exactly one pixel. Although this is a fairly strict limitation, it allows us to
devise algorithms that compete with graphics APIs that also only support one-pixel points, such
as DirectX (POINTLIST primitive) and all backends that use it (WebGL, WebGPU, ANGLE, MS
Windows games and applications, ...). We intend to use the evaluated performances of one-pixel
points as a baseline for comparisons and leave support for larger point-sprites to future work.

2 RELATED WORK
2.1 Software Rasterization of Triangle Meshes

Early CPU-side solutions for triangle rasterization in software were largely made obsolete in the
2000s by GPUs and their high-performance rasterization components. The continuously advancing
programmability of GPUs has given software rasterization its second wind: Freepipe demonstrated
that for scenes containing many, small triangles, GPU software rasterization with one thread per
triangle can outperform the hardware pipeline [Liu et al. 2010]. CudaRaster and Piko expanded on
this idea, introducing optimizations for hierarchical triangle rasterization, achieving competitive
performance with hardware rasterization even for larger triangles [Laine and Karras 2011; Patney
et al. 2015]. Complete software implementations of OpenGL-style streaming pipelines, including
sort-middle binning and hierarchical rasterization, have been presented for NVIDIA CUDA and
OpenCL [Kenzel et al. 2018; Kim and Baek 2021]. A comprehensive analysis of previous software
rasterization approaches and the challenges they tackle is found in [Frolov et al. 2020]. Most recently,
software rasterization has received increased attention due to the launch of the Unreal Engine 5
and its virtual geometry feature, Nanite [Karis et al. 2021]. Nanite provides both a hardware and a
software pipeline for rasterization geometry and selects the proper route for rendered geometry
dynamically. In scenes with mostly pixel-sized triangles, their software pipeline reportedly achieves
more than 3X speedup. Its striking success begs the question whether high-performance software
rasterization has not been overlooked as a viable method for other 3D representations as well.

2.2 Software Raserization of Point Clouds

Giinther et al. proposed a GPU-based approach that renders points up to an order of magnitude
faster than native OpenGL point primitives [Glinther et al. 2013]. When a point modifies a pixel,
their busy-loop approach locks that pixel and updates depth and color buffers. Marrs et al. have
used atomic min/max to reproject a depth buffer to different views [Marrs et al. 2018]. Since only
depth values are needed, 32-bit atomic operations are sufficient. Schiitz et al. render colored point
clouds by encoding depth and color values of points into 64 bits, using 64-bit atomic min operations
to find points with the lowest projected depth value for each pixel in an interleaved depth and
color buffer [Schiitz et al. 2021]. Our paper is based on their approach, making it several times
faster while also adding support for frustum culling and LOD rendering. Recently, Riickert et al.
have presented their approach for a differentiable novel-view synthesis renderer based on the same
prior work, using their fast software rendering of one-pixel points to draw multiple resolutions of a
point cloud, followed up by neural networks to fill holes and refine the results [Riickert et al. 2022].

2.3 Level-of-Detail for Point Clouds

Rusinkiewicz and Levoy introduced QSplat, a point-based level-of-detail data structure, as a means
to interactively render large meshes [Rusinkiewicz and Levoy 2000]. They use a bounding-sphere
hierarchy that is traversed until a sphere with a sufficiently small radius is encountered, which is
then drawn on screen. Sequential Point Trees [Dachsbacher et al. 2003] are a more GPU-friendly

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022.

24:4 Schiitz et al.

[draw 12.8k points (50kb)]

(draw 12.8k points (100kb)]

load batch frustum LOD determine
metadata culling culling precision

{draw 12.8k points (150kb)]

(a) Processing flowchart for a single point cloud rendering workgroup.

Fig. 2. Each workgroup renders one point cloud batch. If its projected bounding box is small, fewer coordinate
bits are loaded per point, reducing memory bandwidth usage and boosting render performance accordingly.

approach that sequentializes a hierachical point-based representation of the model into a non-
hierarchical list of points, sorted by their LOD: from a distance, only a small continuous subset
representing a lower LOD needs to be rendered, without the need for costly traversal through a
dense hierarchical structure. Layered point clouds [Gobbetti and Marton 2004] were one of the most
impactful improvements to LOD rendering and are used to this day. The LPC constitutes a binary
tree that splits the 3D space in half at each level of the hierachy. The key difference to the bounding-
sphere hierarchy of QSPLATS is that each node itself is not a sphere, but a smaller point cloud
comprising thousands of randomly selected points. The large amount of geometry in each node
reduces the number of nodes required to store the full data set, leveraging the GPU’s ecfliciency at
rendering hundreds of batched primitives. Later work improved upon several aspects of layered
point clouds, e.g., the tree-structure, LOD generation times, and density-based subsampling to
properly support data sets with non-uniform density [Bormann and Kramer 2020; Elseberg et al.
2013; Goswami et al. 2010; Kang et al. 2019; Martinez-Rubi et al. 2015; Scheiblauer and Wimmer 2011;
Wand et al. 2008]. Section 3.5 describes the support for layered point clouds with our approach.
More specialized approaches have been proposed to extract several suitable LODs at once for
multiple views using point-based rendering, as done, e.g., by Hollander et al. [2011].

2.4 Coordinate Quantization

Quantization describes the conversion of a continuous signal to discrete samples. The uniform
precision and control over the supported range, precision, and number of bits makes quantization a
common method of coordinate compression schemes [Schuster et al. 2021], complemented by delta
and entropy encoding [Deering 1995; Isenburg 2013] or hierarchical encoding [Botsch et al. 2002].
In this paper, we use quantization to encode floating point input coordinates as fixed-precision
representations, such that their bits can be loaded adaptively (loading fewer bits if lower precision
is sufficient, and fetching additional bits to refine the previously loaded low-precision coordinates
on-demand).

3 METHOD

The core aspect of our rasterization method is the consideration and assignment of points as batches,
with each workgroup rendering a single batch over several iterations. Utilizing larger batches (e.g.,
10k points for work groups of 128 threads—80 points per thread) enables several optimizations
that would otherwise be too inefficient to amortize corresponding additional checks. In addition,
allowing for batches with varying amounts of points enables natural support for several widely
used LOD structures, as discussed in Section 3.5. Fig. 2 provides an overview of the main steps for
our approach, performed within each workgroup. In the following, we will first describe our basic
rendering pipeline, which we will then gradually expand by additional features and optimizations
that ultimately enable us to render point clouds several times faster than the state of the art.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022.

1
2

3

Software Rasterization of 2 Billion Points in Real Time 24:5

Ba&ch 0 Battih 1 Batfh 2 Batfh 3 Batch 0 Batch 1 Batch 2 Batch 3
o6 o DG @ oE)Sssse)asssssessessssssssssssssssee)
(a) Unstructured Point Clouds (b) LOD Batches / Nodes

Fig. 3. (a) For unstructured, Morton-code-ordered data sets, we group 10 240 consecutive points into a batch.
(b) For hierarchical (LOD) data, each node refers to a batch of variable size, potentially out of order.

(a) Point Cloud Data Set (b) Batches (c) Bounding Boxes (d) A single batch

Fig. 4. Morton-code ordered point cloud, grouped into batches of 10 240 consecutive points. The resulting
locality suffices for effective frustum culling and bounding box-based vertex compression/quantization.

3.1 Data Structure

We first build and maintain a list of batches and a list of points. A batch references a number of
consecutive points in the point list (see Fig. 3). Each batch stores the offset and number of points it
contains, and their bounding box. Each entry in the point list holds four attributes: low, medium,
and high precision parts of the coordinates, and color. Attributes are stored in a struct-of-arrays
fashion so that we may only load components from memory we actually need during rendering.
For regular, unstructured point cloud data sets, we suggest to simply group about 10k consecutive
points into batches and compute their bounding box while loading the points. To benefit from
batch-based culling and quantization, points in a batch should exhibit strong locality. In practice,
this was already the case for most data sets we encountered, particularly data sets generated
via aerial LIDAR or photogrammetry. Otherwise, sorting by Morton code (z-order) provides an
easy-to-implement and fast approach to introduce locality into data sets [Isenburg and Lindstrom
2005; Lawder and King 2000; Liu et al. 2020; Orenstein and Merrett 1984; Schiitz et al. 2021]. For
the remainder of this section, we assume that point clouds exhibit sufficient locality, either by
default or through sorting. We discuss the impact of poor locality in Section 4. Fig. 1 and Fig. 4 show
the results of grouping 10 240 consecutive points of a Morton-ordered point cloud into batches.
Although the locality is not optimal, most batches are sufficiently compact with only a few outliers.

3.2 Basic Rendering Pipeline

The basic pipeline spawns a single compute workgroup for each batch to render its points. Each
workgroup comprises 128 threads and each thread renders n points. In practice, we found n between
60 to 200 to perform equally well on an NVIDIA RTX 3090, and will therefore assume n = 80 points
per thread (128 x 80 = 10 240 points per batch) throughout the paper. The rasterization process
of each individual point is based on prior art [Schiitz et al. 2021]: points are projected to pixel
coordinates, depth and color values are encoded into a single 64-bit integer, and atomicMin is used
after a cheap early-depth test to resolve visibility, as shown in Listing 1.

vec4 pos = worldViewProj * position;
int pixelID = toPixelID(pos);
int64_t depth = floatBitsToInt(pos.w);

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022.

24:6 Schiitz et al.

3 x 10 bit coordinates 2 bit padding
L

high [XolYoZo ||]]]]
med [Xoi¥roiZso]| [[[I

(x [vy [z [RGBA]
point[0] point[1] low (Xao¥YaoZao]]]] J
color | RGBA | l I I I
point[0] point[1] point[2] point[3] point[4]

(a) A commonly used array-of-structs memory layout (b) Splitting coordinate bits into separate low-,
for points using 16 bytes per point, with all point medium- and high-precision buffers. Each buffer
attributes stored side-by-side in a single buffer. stores 10 bits per axis, encoded as 4 bytes per point.

Fig. 5. (a) Point cloud renderers typically load at least 16 bytes per point during rendering. (b) Splitting
coordinate bits into three separate buffers allows loading just the required bits, depending on the viewpoint.

int64_t newPoint = (depth << 32) | pointIndex;

// Fetch previously written point

uint64_t oldPoint = framebuffer[pixellID];

// Early-depth test

if (newPoint < oldPoint)
atomicMin(framebuffer[pixelID], newPoint);

Listing 1. Software point rasterization via compute shaders, including an early-depth test.

A fundamental improvement over [Schiitz et al. 2021] is achieved with our approach due to issuing
fewer, larger workloads to exploit extended thread persistence and reducing the scheduling overhead
of the GPU. In addition, batching for unstructured point clouds enables efficient workgroup-wise
frustum culling at a granularity of 10 240 points: At the start of each invocation, we first load the
bounding box of the workgroup’s batch and immediately abort if it lies outside the view frustum.

3.3 Adaptive Vertex Precision

The primary bottlenecks in [Schiitz et al. 2021] is memory bandwidth usage. The authors reported a
peak performance of 50 billion points per second, using 16 bytes per point, exploiting ~85% of GPU
memory bandwidth in their experiments. Hence, although per-point data is already compact, any
significant improvement of rendering performance implies some form of attribute compression.
We propose an adaptive coordinate precision scheme that permits us to load only as many bits
as necessary for a given viewpoint. We achieve this by splitting coordinates into three separate
buffers, separating low, medium, and high precision bits of XYZ coordinates in an interleaved
layout, as shown in Fig. 5. The low-precision part always needs to be loaded, while medium- and
high-precision parts can be loaded on-demand to recover the remaining bits. The different precision
levels are established via coordinate quantization, i.e., by converting coordinates to fixed-precision
integers and splitting the so-quantized bits. To achieve a high coordinate precision with just a
few bits, we quantize point coordinates to 30 bit fixed-precision integers relative to each batch’s
bounding box, indicating the point’s position within the box. The X-coordinate, for example, is
computed as
X = min([2% « * LM gy 0
boxSize.x
These 30 bits are then split into three 10-bit components representing low-, medium- and high-
precision parts. The 10 most significant bits (indices 20 to 29) encode the coordinate of a point

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022.

Software Rasterization of 2 Billion Points in Real Time 24:7

within a batch at a precision of 2% = ﬁ of its size. Considering that the majority of rendered
batches in any given viewpoint are typically smaller than a couple of hundreds of pixels, and that
10 bits grant us 1024 different coordinate values, we find that 10 bits per axis are sufficient to
render most points with sub-pixel coordinate precision. Due to buffer alignment recommendations,
simplicity, and because the common minimum alignment on GPUs is 32 bits, we then pack the
10-bit x, y and z components into a single 32 bit integer with the remaining 2 bits used as padding,
as shown in Listing 2. The result is a 32-bit integer buffer where each 4-byte element contains the

10 lowest precision bits of the three coordinate axes of a single point.

uint32_t X = (X30 >> 20) & 1023;
uint32_t Y, = (Y3 >> 20) & 1023;
uint32_t Zj,,, = (Z3g >> 20) & 1023;
uint32_t encoded = Xjp1y | (Yiow << 10) | (Zpgw << 20)

Listing 2. Encoding the most significant 10 bits of each axis into a single 32 bit integer.

Likewise, we generate two more buffers for the medium (bits 10 to 19) and high precision bits
(bits 0 to 9). During rendering, each workgroup can now selectively load a single 4-byte integer
containing just the low precision bits, two (medium precision) or 3 such integers (full precision,
which allows for one 10° different coordinate values). We note that the usefulness of 30-bit precision
is limited in practice, as we still convert integers to floating-point coordinates during rendering,
resulting in a lossy conversion. This issue is not specific to our approach, however, as point clouds
are typically already stored in integer coordinates on disk and the conversion to floats for rendering
has always been an issue for point clouds with a large extent. Handling this issue is out of scope
for this paper, but note that storing coordinates as 30-bit fixed-precision integers would allow us
to convert them to highly accurate double-precision coordinates (e.g., for surveying applications),
while traditional floating point storage causes an irrecoverable loss of precision.

The required point coordinate precision for rendering is determined from the projected size of
the containing batch. If a batch projects to fewer than 500 pixels, we use 10-bit coordinates. The
reason for choosing 500 pixels as the threshold, even though 10 bits can represent 1024 different
coordinates values, is that quantization changes the distance between any two points by up to
the size of a quantization grid cell, i.e., points that were one grid cell’s size apart might now be
twice as far apart. Using half the size of the quantization grid as the pixel threshold ensures that
we do not introduce additional holes between rasterized points. Compared to [Schiitz et al. 2021],
this approach reduces the required memory bandwidth for most rendered points from 16 bytes
down to just 8. However, we can further cut this in half by using a visibility-buffer (item-buffer)
approach [Burns and Hunt 2013; Lopez et al. 2021; Weghorst et al. 1984], i.e., we render point
indices rather than colors into the framebuffer during the geometry pass, and transform the point
indices to vertex colors in a post-processing step. Doing so reduces the amount of memory accesses
to color values from the number of processed points to the number of actually visible points.

3.4 Optimizing Access Patterns

To identify performance bottlenecks of our approach, we performed a direct port of its GLSL shader
code to NVIDIA CUDA. This enabled the use of the Nsight Compute tool to pinpoint suboptimal
behavior in our routines. Dominant stall reasons revealed that performance is still governed by
memory operations, with approximately 70% of the total kernel run time spent on them.

Since we choose the batch size to be a multiple of the work group size, threads persist and
process multiple points in a loop before returning. Naively, the corresponding point data is fetched
and rasterized to the framebuffer in each iteration. Due to the structure-of-arrays approach, all
loading accesses target a linear range in memory, thus input data can be transferred by workgroups

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022.

24:8 Schiitz et al.

with perfect coalescence. However, loading each processed point individually at the start of its
associated iteration still incurs a direct dependency of the steps in Listing 1 on global device
memory latency. Due to the early-depth test in its body and the parameterizable iteration count, the
compiler cannot trivially unroll the loop without creating secondary issues associated with complex
program flow (e.g., frequent instruction cache misses). Hence, we perform manual pre-fetching of
point data. Depending on the required precision, we can execute one to three vectorized 128-bit
loads in each thread to yield enough data for four successive iterations. This policy significantly
alleviates reported stalls due to memory latency and simultaneously reduces the number of memory
instructions, without compromising on coalesced accesses. Overall, we found pre-fetching to cause
~ 30% performance gain. A welcome side effect, though less impactful, is the reduction of updates
to the framebuffer, since the early-depth test has a higher chance of failing: threads are now more
likely to query (and find) information in the L1 cache for pixels they wrote to in a previous iteration.

With pre-fetching in place, the main remaining bottleneck is the code block for early-depth
testing and framebuffer updates. Although these accesses are somewhat localized if points are
spatially ordered, a residual irregularity remains in their access pattern. The coarse-grained memory
transfer policy of the GPU consequently causes more than 2x the amount of actually accessed
information to be transferred. However, this update pattern is inherent to the overall routine design,
and our attempts to further improve on it without extensive revision caused diminishing returns.

3.5 Adding Support for Level-of-Detail Rendering

In this section, we will describe how support for some of the most popular LOD structures for point
clouds—Layered Point Clouds (LPC) [Gobbetti and Marton 2004] and its variations—can be added
to our point rasterization approach. LPCs are a hierarchical, spatial acceleration structure, where
points with varying density are stored in the nodes of the tree, as shown in Fig. 6. Lower levels
contain coarse, low-density subsets of the whole point cloud. With each level, the size of the nodes
decreases, leading to an increase of the density of points as the number of points in each node stays
roughly the same. The structures are often additive, i.e., higher LODs complement lower LODs
instead of replacing them, but replacing schemes are also possible.

We implement and evaluate our support for LPC structures based on the Potree format, which
constitutes a variation of LPC based on octrees and populates nodes with subsamples of the point
cloud with a specific, level-dependant minimum distance. Each octree node comprises about 1k to
50k points, and Potree itself typically renders about 100 to 1000 nodes for any given viewpoint.
We can easily adapt our data structure to support the Potree format by allowing varying numbers
of points per batch, as shown in Fig. 3. The workgroup size of 128 threads remains the same, but
”luzrgp 9ints points instead of exactly 80. Fig. 6 depicts octree
nodes at several levels of detail. The Potree format is structured such that octree nodes whose
projected bounding boxes are small can be entirely ignored, because the points stored in their
parents will already provide sufficient detail. This means that the precision selection procedure
described in Section 3.3 can now be used to entirely cull the node. We suggest to cull the nodes
with the following conditions in mind: Each Potree node is cubic and stores a subsample of points
with a resolution that approximately matches a grid with 128° cells, while our rasterizer maps each
point to exactly 1 pixel. To avoid holes between rendered points, we therefore suggest to cull nodes
that are smaller than 100 pixels on screen. However, it is also viable to cull larger octree nodes on
lower-end GPUs to improve performance, and cover up the resulting holes in a post-processing
pass, e.g., via depth-aware dilation or sophisticated hole-filling approaches [Grossman and Dally
1998; Kivi et al. 2022; Pintus et al. 2011; Rosenthal and Linsen 2008; Riickert et al. 2022].

each thread will now render [b atch.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022.

Software Rasterization of 2 Billion Points in Real Time 24:9

/3 ;:l- & A
Py R o
oo N S R
o T L
(a) LOD 0 (b) LOD 1 (c) LOD 2 (d) LOD 3

Fig. 6. The Potree (layered point clouds) LOD structure is made up of cubic octree nodes, from coarse-to-fine
subsamples of the original point cloud. We treat each octree node as one workgroup batch with a variable
number of points; only octree nodes that encompass more than 100 pixels on screen are rendered.

3.6 Virtual Reality Rendering

Virtual reality usually implies stereo- or multi-view rendering, which greatly increases the perfor-
mance requirements—even more so for point clouds, as they typically suffer from aliasing artifacts
that detract from the VR experience. In addition to specific configurations of our pipeline (using
LOD rendering for performance and large framebuffers for supersampling), we can exploit specific
properties of VR rendering in our approach. First, scenes must be drawn at least twice—once for
each eye. Instead of duplicating the entire rasterization pipeline by calling the compute shaders
twice, we can modify our shaders to simply draw each point into both framebuffers. While this
does not double the performance, it provides a significant improvement, as discussed in Section 4.
Second, in a VR setup, details in the periphery do not provide the same fidelity as details in the
center of the view. This is partially because most details are perceived in the gaze direction, i.e.,
mostly straight ahead in VR, but also because the rendered image will be distorted before it is
shown inside the HMD to counter the lens distortion [Vlachos 2015]. We therefore suggest to
render peripheral regions of the framebuffer with reduced geometric complexity by raising the
threshold for LOD culling, e.g., culling nodes smaller than 300 pixels in the periphery, nodes smaller
than 100 pixels in the center of the view, and 200 pixels in between. The resulting holes between
points are then filled in post-processing, in our case via a simple depth-aware dilation shader that
increases point sizes to up to 7x7 in the periphery and 3x3 in the center.

4 EVALUATION

The proposed method has been implemented in C++ and OpenGL, using compute shaders for
parallel GPU execution. It was evaluated with the test data sets shown in Fig. 7. The smaller data
sets, Eclepens and Morro Bay, exhibit low depth complexity, i.e., the number of hidden surfaces
is typically small. Niederweiden and Banyunibo pose a bigger challenge due to the higher point
density and an interior room that is either occluded when viewed from the outside, or it occludes
everything else when viewed from the inside. The performance was computed through OpenGL
timestamp queries at the start and end of each frame. All durations represent the average time of all
frames over the course of one second. The evaluation was conducted on the following test systems:

e NVIDIA RTX 3090 24GB, AMD Ryzen 7 2700X (8 cores), 32GB RAM, running Windows 10.
e NVIDIA GTX 1060 3GB, AMD Ryzen 5 1600X (6 cores), 32GB RAM, running Windows 10.

Unless specified otherwise, all reported timings are from the RTX 3090 system. The GTX 1060
(3GB) was only capable of keeping the smallest test data set, Eclepens (68M points), in memory.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022.

24:10 Schiitz et al.

(a) Eclepens (b) Morro Bay (c) Banyunibo outs. (d) Banyunibo inside (e) Niederweiden

Fig. 7. Our test data sets used for evaluation. (a) A quarry captured with photogrammetry. (b) A coastal city,
captured with aerial LIDAR. (c+d) A candi in indonesia, captured with both photogrammetry and a terrestrial
laser scanner. (e) A manor captured with terrestrial laser scanning.

4.1 Rasterization Performance

Table 1 shows the results of rendering various data sets with our proposed basic approach (frustum
culling and adaptive precision; Sections 3.2, 3.3), prefetch (basic + prefetch 4 points at a time;
Section 3.4) and LOD (Section 3.5), compared with prior art [Schiitz et al. 2021] and GL_POINTS. For
unstructured point-cloud data, our approach with prefetching performs the fastest in all cases—up
to 3x faster than previous work in overview scenarios, and 5X faster for close-up viewpoints that
benefits from frustum culling.

Table 2 shows how many batches and points were rendered in a frame from the given viewpoint.
Processed batches include all batches/nodes of the data set, since we spawn one workgroup per
node. Rendered batches are those that pass the frustum and LOD culling tests. Frustum culling can
reduce the amount of rendered batches to < 50% for unstructured point clouds (Banyunibo, inside),
or down to several thousand out of hundreds of thousands in conjunction with LOD structures.
The throughput is computed by taking the number of processed points in Table 2 and dividing it by
the rendering time in Table 1. On the RTX 3090 system and with prefetching for unstructured data
sets, we get throughputs of 69, 126.8, 144.7, 97.5 and 142.3 billion points per second for the five
scenarios. Considering rendered points per 16 (x %) milliseconds, we can alternatively express
the throughput as renderable points at 60 FPS, which yields 1.1, 2.0, 2.3, 1.6 and 2.3 billion points
per 16 milliseconds. A detailed breakdown of benefits due to prefetching is provided for Banyunibo
(outside) in Fig. 8, based on the CUDA implementation of our approach.

» GPU Speed Of Light
SOL SM [%]

Fig. 8. Nsight Compute metrics for CUDA rasterization with prefetching disabled (green) and enabled (blue).

4.2 The Impact of Vertex Ordering

The disadvantage of our naive approach for generating batches by grouping 10 240 consecutive
points is that the resulting performances depend on the vertex order of the data set. Fig. 9 illus-
trates the vertex ordering of a terrestrial laser scanner that scans on two rotational axis, first

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022.

Software Rasterization of 2 Billion Points in Real Time 24:11

Table 1. Comparing rendering times (in milliseconds) with our new approach, GL_POINTS, and prior art
by Schiitz et al. [2021]. (pref.) uses the prefetch optimization in Section 3.4. (hgs) High-Quality Shading, as
described in [Schitz et al. 2021]. All experiments conducted on an RTX 3090, except Eclepens™ which was
benchmarked on a GTX 1060. Framebuffer size: 2560x1140 (2.9MP). All point clouds sorted by Morton code.

ours ours (LOD) prior art
Data Set points size GL | basic pref. hqgs | basic hgs | dedup hgs
Eclepens 69M 1.1GB | 349 1.1 1.0 28 07 14 1.9 76
Eclepens” 69M 1.1GB 72.2 6.5 51 16.7 2.1 5.3 9.5 26.2
Morro Bay 279M 4.4GB | 231.7 2.7 2.2 9.6 08 1.9 6.0 335

Banyunibo (out) 529M 8.5GB | 198.3 4.2 33 9.0 1.3 33 10.7 25.4
Banyunibo (in) 529M 8.5GB 67.9 2.6 22 6.1 21 4.6 11.1 244
Niederweiden 1000M 16GB | 873.9 8.2 64 209 1.9 45 19.8 69.1

Table 2. Statistics for processed (proc.) and rasterized (rast.) batches and points during a frame. Processed
batches: All fixed-size batches (unstructured) or variable-sized octree nodes (LOD). Rasterized batches: Batches
that passed frustum and LOD culling. Processed points: Points that are loaded by the shader. Rasterized points:
Points that pass point-wise frustum culling and early-depth, i.e., points attempting framebuffer updates.

unstructured LOD
batches points batches points
Data Set proc. rast. proc. rast. proc. | rast. proc. rast.
Eclepens 6.7k 6.7k 68.7M | 13.0M 235k | 422 3.9M 1.4M
Morro Bay 272k | 27.2k | 2785M | 12.2M 93.5k 577 5.6M 1.9M

Banyunibo (outside) | 51.7k | 46.6k | 477.6M | 13.7M | 195.7k | 3.3k | 26.9M 4.4M
Banyunibo (inside) 51.7k | 209k | 2145M | 19.1M | 195.7k | 8.2k | 67.1M | 12.5M
Niederweiden 97.7k | 889k | 910.7M | 51.6M | 346.6k 2.1k | 27.3M 6.4M

top-bottom (pitch) and then right-left (yaw). Consequently, 10 240 consecutive points usually form
a 3-dimensional curve along the surface of the scanned object. The resulting batch has a large
extent with mostly empty space. The next batch is formed by the next "scan-line", with an almost
identical bounding box. Fig. 9 also demonstrates the vertex order and the resulting batches after the
points are sorted by Morton order. The resulting batches are more compact with less empty space,
and therefore more suitable to frustum culling and rendering with lower coordinate precision.

We evaluated the performance differences between scan-order and Morton-order on a subset of
the Banyunibo data set comprising only of the laser scans. From an outside viewpoint, scan-order
requires 5.5 ms to render a frame and Morton-order requires 3.9 ms, which is mostly attributed to
the lower coordinate precision requirements of the compact batches. From an inside viewpoint, the
scan-order requires 7.8 ms to render a frame and Morton-order requires 2.1 ms. In this case, the
increased performance differences can further be attributed to frustum culling, which culls about
68% of all batches of the Morton-ordered data set, but only 35% of the scan-ordered data set.

4.3 Virtual Reality Performance

Virtual reality rendering requires significantly higher performance, since we need to render data
sets with higher frame rates, twice per frame, and in high quality. We evaluated the VR performance
of our approach on a Valve Index HMD (1440%1600 pixels per eye) with an RTX 3090 GPU. The
targeted framerate is 90fps, thus each frame needs to be finished in 11.1 ms, or closer to about 9 ms
to account for additional computations and overhead in the VR pipeline. The targeted resolution

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022.

24:12 Schiitz et al.

(a) Batches, Scan Order (b) Batch, Scan Order (c) Batches, Morton Order (d) Batch, Morton Order

Fig. 9. Terrestrial laser scanners typically scan along two rotation axes. (a+b) Poor locality in scan order
results in huge but mostly empty batches. (c+d) Morton order efficiently establishes locality and results in
compact batches. Both batches in (b) and (d) contain the same number of points.

is 2478%2740 (6.8MP) per eye, mandated by the 150% resolution setting in SteamVR. The high
resolution alleviates some aliasing issues, but high-quality shading [Schiitz et al. 2021] is also
required and used to avoid severe flickering artifacts.

We evaluated the VR performance with an outside-in view of the Candi Banyunibo data set,
comprising 529 million points in 195k octree nodes. 21.4 million points in 2k nodes passed the
frustum and LOD culling routines. After early-depth testing, 8 million points were drawn with
atomicMin. The total frame time was 8.3 ms, which provides sufficient reserves for additional
computations and overhead of the VR rendering pipeline. Rendering the depth buffer for the hqs
shader took 1.7 ms for both eyes, or 1.3 ms when rendering just a single eye, which demonstrates
the benefits of drawing each point to both render targets within a single compute shader invocation.
Similarly, drawing the color buffer of the hqs approach took 2.5 ms for both eyes and 1.5 ms for a
single eye. The resolve pass, which enlarges the more sparsely rendered points in the periphery
and stores the colors into an OpenGL texture, takes about 2.7 ms per frame for VR rendering, which
is mainly attributed to the large and dynamic dilation kernels of 3x3 (center) to 7x7 (periphery)
pixels. Finally, clearing the relatively large depth and color buffers (2468x2740 per eye) takes about
0.6 ms per frame.

4.4 Adaptive Precision

4.4.1 Quality. Reducing the point coordinate precision improves performance, but it may also
reduce the quality if the chosen precision is too low. Fig. 10 demonstrates this issue on the second-
largest batch of the Morro Bay data set, which has an extent of [3668.6, 166.4, 141.7] m. Dividing
the extents by 2!° yields the 10-bit-precision along each axis: [3.58,0.16, 0.14] m. Fig. 10d shows
a closeup of the insufficient precision along the x-axis that manifests as stripe patterns due to x
values being truncated. Similarly, y- and z-axis also have slightly insufficient precision, resulting in
a notable grid sampling pattern. Increasing the precision to 20 bits results in a coordinate precision
of [3.50,0.16, 0.14] mm for that batch, which is already more precise than the original data set. 30
bit precision is therefore unnecessary, even for the largest batches. However, the full version of the
Morro Bay data set—(CA13) [Pacific Gas & Electric Company 2013]—has a much larger extent with
18 billion points in total, and may therefore result in large batches requiring 30 bits.

4.4.2 Performance. The isolated impact of adaptive precision was evaluated with the Banyunibo
data set with frustum culling disabled and a viewpoint in which all batches are outside the view
frustum. Due to this, all points are loaded and processed, but none are written to the framebuffer.
We also limited the measurements to the geometry pass, instead of the whole frame. We then took

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022.

Software Rasterization of 2 Billion Points in Real Time 24:13

Points
__ Small Jump

Points

o i worton €%

" Large U™

(a) Morro Bay (b) Bounding Boxes (c) 2nd largest batch

(d) Closeup - 10 bit (e) Closeup - 20 bit (f) Closeup - 30 bit

Fig. 10. Adaptive Precision. Top: Overview of the Morro Bay data set. Jumps in the Morton code can lead to
excessively large batches. Bottom: Closeup of one cluster inside the second-largest batch. 10 bits are insufficient
to display its points in a closeup viewpoint due to truncation, while 20 bits render it indistinguishable from
the 30-bit encoding. Stripe patterns in (e,) are due to line-wise scan pattern of the aerial LIDAR scanner.

three measures in which all batches were rendered with either 10, 20 or 30 bits for precision: [2.93,
5.23, 7.61] ms. These results indicate that 20- and 30-bit precision require about 1.75X and 2.6X as
much processing time as 10-bit precision, respectively. Table 3 shows the nodes rendered with a
precision of 10, 20 or 30 bits per coordinate axis. In Morton-ordered data sets, the vast majority of
batches are compact enough to be rendered with 10 bit precision, even in closeup viewpoints.

5 DISCUSSION AND CONCLUSION

In this section, we will discuss several issues and limitations, as well as potential improvements that
we have not evaluated, yet. For one, we believe that our approach yields a significant improvement
for point cloud rendering, but it is not useful for games in its current state. Point clouds require a
large amount of colored vertices to represent geometry without holes and sufficient color detail,
while meshes can use a single textured triangle in place of thousands of points. However, massive
amounts of point cloud data sets exist as a result of scanning the real world, and this paper provides
tools to render them faster without the need to process the data into LOD structures or meshes. We
hope that the presented approach might provide useful insights in future developments of hybrid
hardware/software rasterization approaches for triangle meshes.

The visual quality in VR applications currently suffers from lack of proper color filtering. Although
high-quality shading is applied and improves the results via blending, the issue is that the LOD
structure removes most of the overlapping points, thus the blended result is not representative
of the full point distribution. The results can be improved by applying color filtering to points in
lower levels of detail during the construction of the LOD structure [Rusinkiewicz and Levoy 2000;
Schiitz et al. 2019; Wand et al. 2008]. Furthermore, implementing continuous LOD could improve
the visual quality through a subtle transition in point density between LODs, eliminating popping
artifacts as details are added and removed while navigating through the scene [Liu et al. 2020;
Schiitz et al. 2019].

The adaptive coordinate precision approach leads to significant performance improvements
through a reduction in memory bandwidth usage, but it does not reduce storage requirements—
coordinates still use up 12 bytes of GPU memory. At this point in time, we deliberately did not

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022.

24:14 Schiitz et al.

Table 3. Precision of rendered nodes in several data sets using overview and closeup viewpoints. The more
nodes are rendered with 10 bit precision, the better. Morro Bay performs well even without sorting. The
original Banyunibo performs poorly due to large batches, which can be rectified by establishing Morton order.

number of rendered nodes
overview closeup
Data Set ordering | avg. batch size (m) | 10 bit 20 bit 30bit | 10 bit 20 bit 30 bit
Eclepens original 190.5 5842 869 0 1197 2217 275
morton 25.0 | 6708 3 0| 2494 104 6
Morro Bay original 164.2 | 27 198 4 0| 14340 943 12
morton 47.6 | 27197 5 0 | 14407 102 2
Banyunibo original 9.3 131410 17116 1008 | 2401 33372 1984
morton 0.4 | 46572 68 2| 20746 196 6

employ sophisticated compression approaches such as delta and entropy encoding [Deering 1995;
Isenburg 2013] or hierarchical encoding [Botsch et al. 2002] due to their additional computational
overhead and the inability to decode such coordinates individually in a straightforward manner:
Delta and entropy encoding require to decode the points sequentially, which could work on a
per-thread basis as each thread renders about 80 points sequentially. Generally, we expect that
compression could work on a per-batch (10 240 points) basis, a per-thread (80 points) basis and/or
a per-subgroup (32 or 64 cooperating threads) basis. Alternatively, fast (lossy) hardware encoding
schemes may be used to encode detailed information more compactly [Evans 2015]. Future work
could also build on learned approaches such as Schuster et al. who propose learned dictionaries to
achieve high compression rates for textured splats that are quickly decoded directly in the fragment
shader [Schuster et al. 2021].

There are several details in our proposed method and implementation that could still be improved
in future iterations. For example, instead of assigning 10 bits to each coordinate axis and leaving
2 bits for padding, we could distribute the full available 32 bits according to the relative lengths
of each axis of the bounding box, i.e., assigning more bits to the longest axis. This avoids huge
variations in precision among the x, y and z coordinates, as shown in Fig. 10d, and thereby allows
us to render larger batches with lower precision. Another potential improvement would be to split
batches whose size is governed by jumps in the Morton code, as seen in Fig. 10c. For each batch,
we could identify such jumps and, if they exceed certain thresholds, we could split them into two
compact batches. The point buffer would remain unmodified: the existing entry in the batch buffer
could be modified with the point index and number of points of one of the two resulting compact
batches, and the other batch that references the remaining points can be appended as a new entry
at the end of the batch buffer. A third potential improvement would be encoding values not just
within the bounding box of a batch, but the bounding box for points in a warp or loop iteration,
i.e., within the bounds of 32 or 128 consecutive Morton-ordered points.

We have shown that software rasterization, using standard OpenGL compute shaders, is capable
of rendering up to 144.7 billion points per second (Section 4.1), which translates to 2.3 billion points
at 60 frames per second (16 ms per frame). The data structure is simple and can be generated on-the-
fly during loading for unstructured point clouds, although LOD structures may also be generated
in a preprocessing step for further performance improvements. Peak performances were observed
in Morton ordered data sets, but many other orderings (e.g., according to tiling and timestamps for
aerial LIDAR scans) also generate substantial performance improvements, enabling us to exploit

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022.

Software Rasterization of 2 Billion Points in Real Time 24:15

the spatial locality between consecutive points in memory. Data sets without sufficient locality (e.g.,
terrestrial laser scans) can simply be sorted in Morton order in a low-overhead preprocessing step.
The source code to this paper is available at https://github.com/m-schuetz/compute_rasterizer.

ACKNOWLEDGMENTS

The authors thank Schloss Schénbrunn Kultur- und Betriebs GmbH, Schloss Niederweiden and Riegl
Laser Measurement Systems for providing the data set of Schloss Niederweiden; the TU Wien,
Institute of History of Art, Building Archaeology and Restoration for the Candi Banyunibo data
set [Herbig et al. 2019]; Open Topography and PG&E for the Morro Bay (CA13) data set [Pacific
Gas & Electric Company 2013]; Pix4D for the Eclepens quarry; Sketchfab user nedo for the old
tyres (CC BY 4.0); Keenan Crane for the Spot model; and the Stanford University Computer Graphics
Laboratory for the Stanford Bunny data set.

This research was funded by Osterreichische Forschungsforderungsgesellschaft (FFG) project
LargeClouds2BIM (3851914) and the Research Cluster “Smart Communities and Technologies (Smart
CT)” at TU Wien.

REFERENCES

Pascal Bormann and Michel Kramer. 2020. A System for Fast and Scalable Point Cloud Indexing Using Task Parallelism. In
Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference, Silvia Biasotti, Ruggero Pintus, and Stefano
Berretti (Eds.). The Eurographics Association. https://doi.org/10.2312/stag.20201250

Mario Botsch, Andreas Wiratanaya, and Leif Kobbelt. 2002. Efficient High Quality Rendering of Point Sampled Geometry.
In Proceedings of the 13th Eurographics Workshop on Rendering (Pisa, Italy) (EGRW °02). Eurographics Association, Goslar,
DEU, 53-64.

Christopher A. Burns and Warren A. Hunt. 2013. The Visibility Buffer: A Cache-Friendly Approach to Deferred Shading.
Journal of Computer Graphics Techniques (JCGT) 2, 2 (2013), 55-69. http://jcgt.org/published/0002/02/04/

Carsten Dachsbacher, Christian Vogelgsang, and Marc Stamminger. 2003. Sequential Point Trees. ACM Trans. Graph. 22,3
(2003), 657-662. https://doi.org/10.1145/882262.882321

Michael Deering. 1995. Geometry compression. In Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques. 13-20.

Jan Elseberg, Dorit Borrmann, and Andreas Nuchter. 2013. One billion points in the cloud - an octree for efficient processing
of 3D laser scans. ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013), 76 — 88. https://doi.org/10.1016/].
isprsjprs.2012.10.004 Terrestrial 3D modelling.

Alex Evans. 2015. Learning from failure: A Survey of Promising, Unconventional and Mostly Abandoned Renderers for
‘Dreams PS4’, a Geometrically Dense, Painterly UGC Game. In ACM SIGGRAPH 2015 Courses, Advances in Real-Time
Rendering in Games. http://media.lolrus.mediamolecule.com/AlexEvans_SIGGRAPH-2015.pdf [Accessed 7-June-2022].

V. A. Frolov, V. A. Galaktionov, and B. H. Barladyan. 2020. Comparative study of high performance software rasterization
techniques. Mathematica Montisnigri 47 (2020), 152-175. https://doi.org/10.20948/mathmontis-2020-47-13

Enrico Gobbetti and Fabio Marton. 2004. Layered Point Clouds: A Simple and Efficient Multiresolution Structure for
Distributing and Rendering Gigantic Point-sampled Models. Comput. Graph. 28, 6 (2004), 815-826.

P. Goswami, Y. Zhang, R. Pajarola, and E. Gobbetti. 2010. High Quality Interactive Rendering of Massive Point Models Using
Multi-way kd-Trees. In 2010 18th Pacific Conference on Computer Graphics and Applications. 93-100.

Jeffrey P Grossman and William J Dally. 1998. Point sample rendering. In Eurographics Workshop on Rendering Techniques.
Springer, 181-192.

Christian Giinther, Thomas Kanzok, Lars Linsen, and Paul Rosenthal. 2013. A GPGPU-based Pipeline for Accelerated
Rendering of Point Clouds. J. WSCG 21 (2013), 153-161.

U. Herbig, L. Stampfer, D. Grandits, I. Mayer, M. Pochtrager, Ikaputra, and A. Setyastuti. 2019. DEVELOPING A MONITORING
WORKFLOW FOR THE TEMPLES OF JAVA. The International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences XLII-2/W15 (2019), 555-562. https://doi.org/10.5194/isprs-archives-XLII-2-W15-555-2019

Matthias Hollander, Tobias Ritschel, Elmar Eisemann, and Tamy Boubekeur. 2011. ManyLoDs: Parallel Many-View Level-
of-Detail Selection for Real-Time Global Illumination. Computer Graphics Forum 30, 4 (2011), 1233-1240. https:
//doi.org/10.1111/j.1467-8659.2011.01982.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.01982.x

Martin Isenburg. 2013. LASzip: lossless compression of LiDAR data. Photogrammetric Engineering & Remote Sensing 79
(2013). https://doi.org/10.14358/PERS.79.2.209

M. Isenburg and P. Lindstrom. 2005. Streaming meshes. In VIS 05. IEEE Visualization, 2005. 231-238.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022.

https://github.com/m-schuetz/compute_rasterizer
https://doi.org/10.2312/stag.20201250
http://jcgt.org/published/0002/02/04/
https://doi.org/10.1145/882262.882321
https://doi.org/10.1016/j.isprsjprs.2012.10.004
https://doi.org/10.1016/j.isprsjprs.2012.10.004
http://media.lolrus.mediamolecule.com/AlexEvans_SIGGRAPH-2015.pdf
https://doi.org/10.20948/mathmontis-2020-47-13
https://doi.org/10.5194/isprs-archives-XLII-2-W15-555-2019
https://doi.org/10.1111/j.1467-8659.2011.01982.x
https://doi.org/10.1111/j.1467-8659.2011.01982.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.01982.x
https://doi.org/10.14358/PERS.79.2.209

24:16 Schiitz et al.

Lai Kang, Jie Jiang, Yingmei Wei, and Yuxiang Xie. 2019. Efficient Randomized Hierarchy Construction for Interactive
Visualization of Large Scale Point Clouds. In 2019 IEEE Fourth International Conference on Data Science in Cyberspace
(DSC). 593-597.

Brian Karis, Rune Stubbe, and Graham Wihlidal. 2021. A Deep Dive into Nanite Virtualized Geometry. In ACM SIGGRAPH
2021 Courses, Advances in Real-Time Rendering in Games, Part 1. https://advances.realtimerendering.com/s2021/index.html
[Accessed 10-September-2021].

Michael Kenzel, Bernhard Kerbl, Dieter Schmalstieg, and Markus Steinberger. 2018. A High-performance Software Graphics
Pipeline Architecture for the GPU. ACM Trans. Graph. 37, 4, Article 140 (2018), 15 pages.

Mingyu Kim and Nakhoon Baek. 2021. A 3D graphics rendering pipeline implementation based on the openCL massively
parallel processing. The Journal of Supercomputing 77, 7 (2021), 7351-7367. https://doi.org/10.1007/s11227-020-03581-8

Petrus E.J. Kivi, Markku J. Mikitalo, Jakub Zadnik, Julius Ikkala, Vinod Kumar Malamal Vadakital, and Pekka O. Jaaskelainen.
2022. Real-Time Rendering of Point Clouds with Photorealistic Effects: A Survey. IEEE Access 10 (26 Jan. 2022), 13151 —
13173. https://doi.org/10.1109/ACCESS.2022.3146768 Publisher Copyright: Author.

Samuli Laine and Tero Karras. 2011. High-Performance Software Rasterization on GPUs (HPG ’11). Association for Computing
Machinery, New York, NY, USA, 79-88. https://doi.org/10.1145/2018323.2018337

J. K. Lawder and P. J. H. King. 2000. Using Space-Filling Curves for Multi-dimensional Indexing. In Advances in Databases,
Brian Lings and Keith Jeffery (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 20-35.

Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu. 2010. FreePipe: A Programmable Parallel Rendering
Architecture for Efficient Multi-Fragment Effects (I3D ’10). Association for Computing Machinery, New York, NY, USA,
75-82. https://doi.org/10.1145/1730804.1730817

Haicheng Liu, Peter van Oosterom, Martijn Meijers, Xuefeng Guan, Edward Verbree, and Mike Horhammer. 2020. HistSFC:
Optimization for nD massive spatial points querying. International Journal of Database Management Systems (IJDMS) 12,
3 (2020), 7-28. https://doi.org/10.5121/ijdms.2020.12302

Alfonso Lopez, Juan Manuel Jurado, Emilio José Padrén, Carlos Javier Ogayar, and Francisco Ramoén Feito. 2021. Comparison
of GPU-based Methods for Handling Point Cloud Occlusion. In Spanish Computer Graphics Conference (CEIG), Lidia M.
Ortega and Antonio Chica (Eds.). The Eurographics Association. https://doi.org/10.2312/ceig.20211364

Adam Marrs, Benjamin Watson, and Christopher Healey. 2018. View-warped Multi-view Soft Shadows for Local Area
Lights. Journal of Computer Graphics Techniques (JCGT) 7, 3 (2018), 1-28.

Oscar Martinez-Rubi, Stefan Verhoeven, M. van Meersbergen, Markus Schiitz, Peter van Oosterom, Romulo Goncalves,
and T. P. M. Tijssen. 2015. Taming the beast: Free and open-source massive point cloud web visualization. https:
//doi.org/10.13140/RG.2.1.1731.4326/1 Capturing Reality Forum 2015, Salzburg, Austria.

J. A. Orenstein and T. H. Merrett. 1984. A Class of Data Structures for Associative Searching. In Proceedings of the 3rd ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems (Waterloo, Ontario, Canada) (PODS ’84). Association for
Computing Machinery, New York, NY, USA, 181-190. https://doi.org/10.1145/588011.588037

Pacific Gas & Electric Company. 2013. PG&E Diablo Canyon Power Plant (DCPP): San Simeon and Cambria Faults, CA,
Airborne Lidar survey. https://doi.org/10.5069/G9CN71V5 Distributed by OpenTopography.

Anjul Patney, Stanley Tzeng, Kerry A. Seitz, and John D. Owens. 2015. Piko: A Framework for Authoring Programmable
Graphics Pipelines. ACM Trans. Graph. 34, 4, Article 147 (2015), 13 pages. https://doi.org/10.1145/2766973

Ruggero Pintus, Enrico Gobbetti, and Marco Agus. 2011. Real-Time Rendering of Massive Unstructured Raw Point Clouds
Using Screen-Space Operators. In Proceedings of the 12th International Conference on Virtual Reality, Archaeology and
Cultural Heritage (Prato, Italy) (VAST’11). Eurographics Association, Goslar, DEU, 105-112.

Paul Rosenthal and Lars Linsen. 2008. Image-space point cloud rendering. In Proceedings of Computer Graphics International.
136-143.

Szymon Rusinkiewicz and Marc Levoy. 2000. QSplat: A Multiresolution Point Rendering System for Large Meshes. In
Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’00). ACM
Press/Addison-Wesley Publishing Co., USA, 343-352. https://doi.org/10.1145/344779.344940

Darius Riickert, Linus Franke, and Marc Stamminger. 2022. Adop: Approximate differentiable one-pixel point rendering. To
appear in ACM Transactions on Graphics 41, 4 (jul 2022).

Claus Scheiblauer and Michael Wimmer. 2011. Out-of-Core Selection and Editing of Huge Point Clouds. Computers &
Graphics 35, 2 (2011), 342-351.

Kersten Schuster, Philip Trettner, Patric Schmitz, Julian Schakib, and Leif Kobbelt. 2021. Compression and Rendering of
Textured Point Clouds via Sparse Coding. In High-Performance Graphics - Symposium Papers, Nikolaus Binder and Tobias
Ritschel (Eds.). The Eurographics Association. https://doi.org/10.2312/hpg.20211284

Markus Schiitz, Bernhard Kerbl, and Michael Wimmer. 2021. Rendering Point Clouds with Compute Shaders and Vertex
Order Optimization. Computer Graphics Forum 40, 4 (2021), 115-126. https://doi.org/10.1111/cgt.14345

Markus Schiitz, Katharina Krosl, and Michael Wimmer. 2019. Real-Time Continuous Level of Detail Rendering of Point
Clouds. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (Osaka, Japan). IEEE, 103-110.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022.

https://advances.realtimerendering.com/s2021/index.html
https://doi.org/10.1007/s11227-020-03581-8
https://doi.org/10.1109/ACCESS.2022.3146768
https://doi.org/10.1145/2018323.2018337
https://doi.org/10.1145/1730804.1730817
https://doi.org/10.5121/ijdms.2020.12302
https://doi.org/10.2312/ceig.20211364
https://doi.org/10.13140/RG.2.1.1731.4326/1
https://doi.org/10.13140/RG.2.1.1731.4326/1
https://doi.org/10.1145/588011.588037
https://doi.org/10.5069/G9CN71V5
https://doi.org/10.1145/2766973
https://doi.org/10.1145/344779.344940
https://doi.org/10.2312/hpg.20211284
https://doi.org/10.1111/cgf.14345

Software Rasterization of 2 Billion Points in Real Time 24:17

Alex Vlachos. 2015. Advanced VR Rendering. Game Developers Conference, industry talk. https://www.gdcvault.com/
play/1021771/Advanced-VR Accessed 2018.11.20.

Michael Wand, Alexander Berner, Martin Bokeloh, Philipp Jenke, Arno Fleck, Mark Hoffmann, Benjamin Maier, Dirk
Staneker, Andreas Schilling, and Hans-Peter Seidel. 2008. Processing and interactive editing of huge point clouds from
3D scanners. Computers & Graphics 32, 2 (2008), 204 — 220. https://doi.org/10.1016/j.cag.2008.01.010

Hank Weghorst, Gary Hooper, and Donald P. Greenberg. 1984. Improved Computational Methods for Ray Tracing. ACM
Trans. Graph. 3, 1 (1984), 52-69. https://doi.org/10.1145/357332.357335

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 24. Publication date: July 2022.

https://www.gdcvault.com/play/1021771/Advanced-VR
https://www.gdcvault.com/play/1021771/Advanced-VR
https://doi.org/10.1016/j.cag.2008.01.010
https://doi.org/10.1145/357332.357335

	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Rasterization of Triangle Meshes
	2.2 Software Raserization of Point Clouds
	2.3 Level-of-Detail for Point Clouds
	2.4 Coordinate Quantization

	3 Method
	3.1 Data Structure
	3.2 Basic Rendering Pipeline
	3.3 Adaptive Vertex Precision
	3.4 Optimizing Access Patterns
	3.5 Adding Support for Level-of-Detail Rendering
	3.6 Virtual Reality Rendering

	4 Evaluation
	4.1 Rasterization Performance
	4.2 The Impact of Vertex Ordering
	4.3 Virtual Reality Performance
	4.4 Adaptive Precision

	5 Discussion and Conclusion
	Acknowledgments
	References

