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Abstract

The aim of this thesis was to provide methods of correlation and co-localization to investigate element
compositions of human bone sample. The µ-XRF generated images were collected at the ESRF and
Diamond synchrotron radiation facilities and depict the distributions of the elements Ar, Ca, Cr, Fe,
Co, Ni, Cu, Zn, Gd and W which are given with an approximated image size between 10 µm (ESRF)
and 500 µm (Diamond) and a resolution of 50 nm and 500 nm respectively. The whole data set consists
of 31 single scan locations on the bone samples, taken from five patients suffering from tumorous or
osteoporotic diseases.

The main elements of interest are Ca, Cr, Fe, Ni, Cu, Zn and Gd where the origin is very well known.
Ca, Cr, Fe, Ni, Cu and Zn are natural or age-related (due to the environment in the life of the patient)
elements of bone tissue. Possible Gd accumulations are explored about used Gd based contrast agents
for magnetic resonance imaging investigations during patient treatments.

The investigated methods are based on image correlation and overlap measurements. To obtain a value
quantifying the correlation, the Pearson’s Correlation Coefficient (linear correlation) and the Spearman’s
Correlation Coefficients (monotonic correlation) were determined. Furthermore, the Manders Overlap
Coefficient was determined as a measure of the overlap between two element distributions.

Furthermore, to get a qualitative overview, correlation graphs and overlap images are presented for
better interpretations. Statistical methods were used to show element correlations and co-localizations
for the whole data set. Finally, the statistical methods are applied to compare two different patients and
extract differences between them for the correlation and overlap coefficients.

Not surprisingly, Ca was found in each pixel for all samples. Between Ca and Zn, a high correlation
and high overlap was found. Regarding GD1 (osteoporotic) and GD5 (tumorous), the Ca-Fe relationship
for overlap measurements shows less Fe for patient GD1 compared to GD5. Due to the small number of
samples (n= 7) for patient GD1 and n= 15 for patient GD5, more data would be required to solidify the
results.

Concerning the overlap coefficients M1 and M2, the following element combinations are significant differ-
ent between patient GD1 and GD5:
-) For GD5, Ca overlaps Fe to 53% more (median), in compare to GD1. Fe overlaps Ca to 100% for GD1
and GD5. The co-localization is significant higher for GD5 in compare to GD1.
-) For GD5, Fe overlaps Ni to 71% less (median), in compare to GD1. The co-localization is significant
higher for GD1 in compare to GD5.
-) For GD5, Gd overlaps Fe to 55% more (median), in compare to GD1. The co- localization is significant
higher for GD5 in compare to GD1.
-) For GD5, Gd overlaps Ni to 44% less (median), in compare to GD1. The co-localization is significant
higher for GD1 in compare to GD5.
-) For GD5, Zn overlaps Fe to 51% more (median), in compare to GD1. The co-localization is significant
higher for GD5 in compare to GD1.

2



3



Kurzfassung

Das Ziel dieser Arbeit soll Methoden ausfindig machen, damit Korrelationen und Co-Lokalisationen für
die Untersuchung von menschlichen Knochen und deren Elementzusammensetzungen gemessen werden
können. Die durch µ-XRF erzeugten Bilder wurden am ESRF Synchrotron und am Diamond Synchrotron
erzeugt und geben die Elemente Ar, Ca, Cr, Fe, Co, Ni, Cu, Zn, Gd und W wieder. Die Bildgröße befindet
sich im Bereich zwischen 10 µm (ESRF) und 500 µm (Diamond), beziehungsweise die Auflösung befindet
sich zwischen 50 nm und 500 nm. Der Datensatz umfasst 31 einzelne Messpositionen von fünf verschiede-
nen Patienten, bei denen eine Tumorerkrankung oder Osteoporose bekannt ist.

Die Elemente auf denen das Hauptaugenmerk liegt und deren Herkunft bekannt ist, sind Ca, Cr, Fe,
Ni, Cu, Zn und Gd. Ca, Cr, Fe, Ni, Cu und Zn sind natürliche oder altersbedingte (aufgenom-
men durch Umwelteinflüsse während der Lebenszeit eines Patienten) Elemente, die möglicherweise im
Knochengewebe gefunden werden. Mögliche Gd-Ansammlungen können über verwendete Kontrastmit-
tel, die während einer Magnetresonanzbildgebung verabreicht wurden, erklärt werden.

Die untersuchten Methoden basieren auf Korrelations- und Überlappungsmessungen. Die Korrelation-
smessungen bestehen aus folgende Koeffizienten: Pearson’s correlation coefficient (lineare Korrelation)
und Spearman’s correlation coefficient (monotone Korrelation). Der Mander’s overlap coefficient wurde
verwendet, um Überlappungen zwischen zwei Elementverteilungen zu bestimmen.

Des Weiteren geben Korrelationsgraphen und Überlappungsbilder eine Übersicht und sorgen für eine
einfache Interpretationsmöglichkeit. Statistische Methoden machen Korrelationen und Co-Lokalisationen
für den gesamten Datensatz sichtbar. Schließlich ermöglichen die statistischen Methoden, Unterschiede
in den Korrelationen und Co-Lokalisationen zwischen zwei Patienten sichtbar zu machen.

Wenig überraschend konnte das Element Ca in jedem Bildpunkt für sämtliche Proben gefunden werden.
Zwischen Ca und Zn wurde eine hohe Korrelation und eine hohe Überlappung gemessen. In der Betra-
chtung des Patientenvergleichs zwischen GD1 (Osteoporosepatient) und GD5 (Tumorpatient), zeigte die
Ca-Fe-Beziehung für die Überlappungsergebnisse weniger Fe-Vorkommen in GD1 (Osteoporosepatient),
verglichen zu GD5 (Tumorpatient). Aufgrund der kleinen Probengröße von n= 7 für Patient GD1 und
n= 15 für Patient GD5 sind mehr Daten (Messpositionen und Patienten) notwendig, um die Ergebnisse
zu untermauern.

Betreffend der Überlappungskoeffizienten M1 und M2 zeigen die folgenden Elementkombinationen zwis-
chen GD1 und GD5 signifikante Unterschiede auf:
-) Für GD5, Ca überlappt Fe zu 53% mehr (median), verglichen zu GD1. Fe überlappt Ca zu 100% für
GD1 und GD5. Die Co-Lokalisation ist signifikant höher für GD5, verglichen zu GD1.
-) Für GD5, Fe überlappt Ni zu 71% weniger (median), verglichen zu GD1. Die Co-Lokalisation ist
signifikant höher für GD1 im Vergleich zu GD5.
-) Für GD5, Gd überlappt Fe zu 55% mehr (median), verglichen zu GD1. Die Co-Lokalisation für GD5
ist signifikant höher, verglichen zu GD1.
-) Für GD5, Gd überlappt Ni zu 44% weniger (median) im Vergleich zu GD1. Die Co-Lokalisation ist
signifikant höher für GD1, verglichen zu GD5.
-) Für GD5, Zn überlappt Fe zu 51% mehr (median), verglichen zu GD1. Die Co-Lokalisation ist sig-
nifikant höher für GD5 im Vergleich zu GD1.
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1 Introduction

The aim of this work is to find suitable assessment methods for image correlation and co-localization to
investigate element distributions of bone tissue. The founded methods should help to understand which
element correlations and co-localizations can be typically found for a defined patient group where the
medical past (diseases) is known.
The µ-XRF generated images for the elements Ar, Ca, Cr, Fe, Co, Ni, Cu, Zn, Gd and W are given with
an approximated size between 10µm and 500µm. The whole data set consists of 31 single scan locations.
The original use for the generated data set was the investigation of Gd occurrences, corresponding to
known magnetic resonance imaging investigations in combination for used Gd based contrast agents
during patient treatments.
Normally the data output is taken for interpretations, where single scan locations can be used to compare
element distributions. This qualitative view for data evaluation can generate basic statements about
the localization and occurrence of main elements and trace elements. To develop the data evaluation,
alternative methods are needed. The implemented methods are very well established in the field of
biological histology. The proposed methods are based on correlation and overlap measurements. To
measure the correlation, the Pearson’s Correlation Coefficient (linear correlation) and the Spearman’s
Correlation Coefficients (monotonic correlation) were taken. The Manders Overlap Coefficient was used
to measure the overlap between two element distributions seen in the images. Furthermore, to get a
qualitative overview correlation graphs and overlap images are also presented. Statistical methods are
used, to show element correlations and co-localizations for the whole data set. Finally, the statistical
methods are applied to compare two different patients and extract those differences for the correlation
and overlap coefficients.[1]
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2 Theoretical Background

The following chapter describes the theoretical background which is needed to understand how the data
was generated. Furthermore, the theoretical knowledge for the data evaluation process is also described.

2.1 µ-XRF

X-Ray fluorescence is nowadays a well established analytical method to measure the elemental composi-
tions of solid materials, bulk materials, powdered and liquid specimens and further coating systems. The
measurement technique itself is non-destructive and the sample can be reused for further studies. How-
ever, the smooth and even surfaces of the sample is desirable. This is achieved by grinding or polishing
the sample which makes the method partly destructive.
µ-XRF compared to XRF, provides a sufficient method to investigate the inhomogeneous composition of
a specimen and for getting informations about the element distribution in two dimensions and for special
specimens even in three dimensions.
To get a sufficient signal intensity, the excitation radiation has to be concentrated to a small area. The
availability of X-Ray optics makes it possible to reach the required characteristics of an intense and
satisfying signal. The X-Ray optics must be chosen in a prudent way, because of the given beam shape
functions and in addition the optics are also influences the spectral distribution of the X-rays.
Furthermore the positioning of the sample must also be observed.[2]

2.2 Interaction Between X-rays and Matter

The principle of the XRF technique is to excite the atoms of the analyzed matter (sample). The sample
is exposed to sufficiently energetic X-rays/gamma-rays or charged particles which is shown in Figure 1
(image a) and the photo ionization process (Figure 1 image b) being the desired effect for XRF analysis.
In short, this effect removes an inner electron from an atom of interest, frequently an electron from an
outer shell takes up the free position. Through the fact of higher binding energies for inner electrons in
comparison to outer electrons, the energy difference devolve into X-rays which are different between all
the elements and discrete energy transitions.
Image d in Figure 1 shows the electron transfer from the LII shell to the K shell represents the Kα2

transition and creates a photon with the energy of the different binding energies between the outer LII

shell and the inner K shell. Image c in Figure 1 describes the Auger Emission, which is described in
section 2.2.2 in more detail.

[3]

Figure 1: a) How photon emission principle works. b) The ionization process creates a vacancy by kicking out inner shell electron.
c) Auger emission process. d) KαII emission process.[3]
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At the end, the spectrum should represent the investigated elements. Figure 2 shows an example for the
measured energy [keV] distribution in counts per 100 seconds. One can see a peak of nearly 550 counts/
100 seconds for the Ca − Kα transition, which is the energy transition for the L shell to the K shell.
Furthermore, the element Ca shows a lower peak representing the energy transition between the M shell
and the L shell (nearly 100 counts/ 100 seconds), which is called Ca−Kβ transition.

Figure 2: Generic spectrum. X-Axis: Energy [keV] and Y-Axis: Intensity [counts/100 seconds].[4]

Due to the short wavelength (X-rays: 10 pm - 10 nm ), in the range of atomic distances in solid and liquid
material, X-rays can be used for material investigations. Absorption, scattering, diffraction, refraction
and emission form the physical explanations. To show the different phenomena, Figure 3 is given and a
general overview of the interactions is described in the following chapters.[3, 2]

Figure 3: Interaction phenomena between X-rays and Matter.[2]

2.2.1 Absorption

To describe the absorption of X-rays in matter the Lambert-Beer-law is used (equation 1). This law
describes an exponential function, which gives the intensity (I) of X-rays after passing a material layer
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with the defined density (ρ) and the layer thickness (t). The absorption also depends on the mass
attenuation coefficient (µ). I0 sets the initial intensity for the X-rays.

I = I0 ∗ exp(−µ ∗ ρ ∗ t) (1)

Lambert-Beer-law for the intensity I with I0: initial intensity, µ: mass attenuation coefficient, ρ: density, t: layer thickness.

The coefficient µ normally consists of the absorption (τ) and the scattering (σ) (equation 2). If we
compare τ with σ, we can determine σ is significantly smaller than τ . The approximated relationship is
shown in equation 3.

µ = τ + σ (2)

Mass attenuation µ with τ : absorption and σ: scattering.

which can be approximated to:

µ ≈ τ (3)

Approximation of the mass attenuation µ with τ : absorption.

2.2.2 Emission

The absorption of X-rays in matter can conduct to phonons. It is due to the mechanism of enhance the
oscillation for the lattice or over excite atoms by the emission of photo electrons. Due to the high energy
of the absorbed X-rays, this electron can even escape from the inner shells of the atom. If the hole in
this shell is filled by an outer electron, the atom enters the ground state and energy can be emitted in
condition to electromagnetic radiation, shown in Figure 4.

Figure 4: Photo effect as absorption of X-rays by bound atom-electrons. [5]

If the inner shell of the atom is filled up by an outer electron, the atom (which is presently in the ground
state) emits the resulting energy differential via a photon. This radiation can be normally located in
the range of X-rays. Due to the discrete energy levels the X-rays are called characteristic radiation
or fluorescence. The Moseley’s law, which is a relation between the energy E (characteristic radiation
energy) and the atomic number Z (the atom which is emitting the energy), is given in equation 4. The
constants C1 and C2 are dependent on the affected electron shell.

E = C1 ∗ (Z − C2)
2 (4)

Moseley’s Law for the characteristic radiation energy E with C1: constant 1, Z: atomic number and C2: constant 2.

The characteristic radiation can be divided into different radiation expressions: The first three series are
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the K-, L- and M-radiation, beginning from the highest frequency. The schematic expression is given in
Figure 5.

Figure 5: Exploring characteristic radiation for the K, L, M and N shell.[6]

The different Energy-Atomic number dependencies can be shown in Figure 6 where the graph presents
the energy series for the inner shells, where the K transition defines the highest frequency or energy
(energy-frequency relation: E = h ∗ υ [7]) depending on the atomic number Z.

Figure 6: Relation between atomic number Z and energy E.[2]

The characteristic radiation caused by the energy differences (Ediff = Evacancy − Eouter) is one source
of energy emission. Another source of energy emission is the Auger-electron where the emitted radiation
caused by the photo effect removes an other electron of the same atom. The Auger-electron has the
energy: EAuger = Ediff − Ebinding. Only one process is possible for energy emission: Characteristic
radiation or Auger-electron.[2]
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Figure 7: The emergence of an auger-electron. [8]

The sum of the probability between Auger-electron and characteristic radiation is defined as follows:
pAuger + pR−ray = 1. The fluorescence yield (ω) gives the probability of characteristic radiation. In
Figure 8, the dependency between the fluorescence yield and the atomic number is illustrated. The
emitted characteristic radiation will be used to investigate the element composition of samples. Also
coating systems in reference to their thickness and composition can be determined.[2]

Figure 8: Fluorescence yield ω (Y-Axis) for the shells: K,L and M depending on the atomic number Z (X-Axis). [2]

13



The spectrum for wavelengths distribution consists of the characteristic spectrum and the continuous
spectrum which is shown in Figure 9. The continuous spectrum is called bremsstrahlung, which is
generated by decelerated electrons in matter, shown in Figure 10.[7, 2]

Figure 9: Characteristic (74Wtarget) and continuous spec-
trum, emitted by X-ray tube. [3]

Figure 10: The emergence of bremsstrahlung. [7]

2.2.3 Elastic Scattering

Elastic scattering is described in equation 5 where it is shown that the intensity of the scattered photons
depends on the angle υ.

Iscat = I0
1

r2

�
e2

m0c2

�2

∗

�
1 + cos2υ

�
(5)

Scattered intensity IScat with I0: primary intensity, r: distance to the observation point, e: charge of an electron, m0: mass of an
electron, υ: scatter angle.

Figure 11: Incidence beam and scattered intensity, which depends on angle υ. [2]

The interaction is without a change in energy, this type of scattering is also called Rayleigh or coherent-
scattering. The elastic scattering shows the maximum at 0° and 180° and the minimum at 90° and 270°,
which is shown in Figure 11.[2]

2.2.4 Inelastic Scattering

For inelastic scattering phenomena the dependency of the scattering angle υ can be described in equation 6
(wave length shift) and in equation 7 (energy transfer) and it can also be known as Compton or incoherent-
scattering.
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λScatt = λ0 + λC ∗ (1− cosυ) (6)

Scattered wave length λScatt with λC = h/mc: Compton wavelength, m: mass of the scattering particle(electron), λ0: wavelength
of the incident photon, υ: scatter angle

EScatt =
E0

1 + E0

mc2 ∗ (1− cosυ)
(7)

Energy of the scattered photon EScatt with E0: The energy of the incident radiation, m: mass of the scattering particle(electron)
and υ: scatter angle.

Figure 12: Dependence of the scattered wave length on the angel υ. [2]

According to the loss of energy an increase of the wave length for the scattered photon follows. The
energy change, which depends on the angle υ is displayed in Figure 12. For the scattering angle 0°, the
loss of energy is 0 i.e. the photons do not hit the electron. By increasing the scattering angle υ, the loss
of energy also rises, at 180° the transferred energy reaches the maxima.
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2.3 General Design of SR µ-XRF Synchrotrons

The necessary analytical procedure defines the chosen components of the SR-µ-XRF, which are presented
in the following chapter. A general overview is shown in Figure 13. The description will follow the course
of the beam line.[2]

Figure 13: Setups at synchrotron radiation facilities. [9]

2.3.1 Excitation Source

A synchrotron is a highly sophisticated device to generate X-rays. The place of X-Ray production in the
synchrotron is the bending magnet, wiggler or undulator, where the accelerated particles (e.g. electrons)
moving at a speed close to that of light, emit energy in the form of X-rays.

In bending magnets, the trajectory of the electrons can be described as a circular path, which produces
a smooth X-Ray spectrum. The angular distribution ΔΦ is inversely proportional to the electron energy
γ (m ∗ c2) which is described in Figure 14.

Figure 14: The radiation angular distribution and spectral flux characteristics for bending magnets. [10]

Wigglers consist of periodic alternated magnets, which are designed to bend charged particles back
and forth over a nominally rectilinear trajectory. The radiation characteristics are similar to spectrum
produced by bending magnets. The intensity increment is proportional to the number of magnetic poles.
For 2 Nu poles, the intensity enhancement becomes 2 Nu-fold. The angular distribution is inversely
proportional to the electron energy γ (m ∗ c2), shown in Figure 15.
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Figure 15: The radiation angular distribution and spectral flux characteristics for wigglers. [10]

An undulator can be understood as an Nu-period magnetic structure which is able to produce a gentle,
periodic shell. Undulator radiation is characterised through a discrete spectrum where a narrow beam
angle is given. The angular distribution ΔΦ is described in Figure 16 by Nu for the number of magnetic
undulator periods and γ for the electron energy (m ∗ c2).[10]

Figure 16: The radiation angular distribution and spectral flux characteristics for undulators. [10]

2.3.2 Primary Optics

Primary optics are able to shape (collimators/cross slits) and focus the beam, in addition to a change of
the energy distribution by using filters, secondary targets or monochromators. The beam optics is able
to focus the beam to a small spot (for example 20 µm). The intensity of the incoming beam is monitored
by beam monitor 1 Figure 13.

2.3.3 Sample Stage

To investigate a small area of a sample which has to be positioned in the beam trajectory, the sample
stage is often motorized for the X and Y direction. To localize the position of the sample a microscope
is normally used.[11, 12, 10, 2, 9]
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2.3.4 Detectors

For detection of X-rays in terms of the energy and intensity diverse detector principles and designs are
available. Since the first usage of plates or film detectors a big development has been occurred, especially
for semiconductor based detectors. The following example (Figure 17) describes a SDD (Silicon Drift
Detector).

Figure 17: Schematic design of a Silicon Drift Detector. [13]

The entrance window in our example is doped with boron (heavily positive doped) and serves as the
income area for the X-rays. The anode at the opposite side of the detector is doped with phosphorus
(heavily negative doped). The substrate in the middle region is a lightly negative doped silicone wafer
with a resistance of approximately 3000 Ωcm. The centred anode is kept small in compare to the big
entrance window and is encircled of a series of drift rings. To create an electric field parallel to the
surface, a voltage has to be applied between the outer drift ring (high negative) and the inner drift rings
(less negative) which causes to a drift of electrons to the anode. To collect the electrons at the anode
efficiently, the concentric drift rings are connected over voltage dividers to generate a potential decrease
to the anode (Figure 18). The detected electrons are created by X-rays which strike the detector. The
energy of the X-rays lifts the electrons of the detector material from the valence band up to the conduction
band where the electrons, caused by the potential difference, drift to the anode and can be read out.

Figure 18: Potential curve in a SDD, caused by the drift ring design. [13]

[2, 13, 14]
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2.4 Quantitative Assessments of the Data

To measure the similarity of the images the Pearson’s Correlation Coefficient (PCC) and the Spearman’s
Correlation Coefficient (SCC) are used since they are suitable tools to quantify the correlation between two
data distributions. To describe the overlap (co-occurrence) numerically, the Manders Overlap Coefficient
(MOC) can be used. These methods (correlation and overlap) should not be confused with each other. To
measure the similarity of two images, it is necessary to use both methods for comprehensive data analysis.
To get reliable results pre operations have to be done, in relation to segmentation and thresholding.[15]
Correlation analysis can make the relationship between any pair of variables visible. Two commonly used
measurement techniques are the Pearson and Spearman correlation, which are explained in the next sub
chapters. In general, the output of these methods is a number between +1 and -1 which expresses a
perfect relationship between the variables. The value 0 indicates that there is no relationship between
the variables and +0.5 or -0.5 normally suggests a relationship.[16]
The Manders Overlap Coefficient (MOC) was introduced to avoid deficits in the PCC, principally because
the PCC is not sensitive enough in differences of the signal intensity between two images (background
sensitivity). In addition, the negative scale of the PCC is difficult to interpret, when the degree of overlap
is the pursued quantity to be measured. The coefficient for the MOC is used to limit the range between
0 and +1, where 0 means 0% overlap and 1 indicates a perfect 100% overlap.[17]

2.4.1 Pearson’s Correlation Coefficient (PCC)

The Pearson Correlation Coefficient (PCC) is a good method to show the degree of the linear correlation
between two data series. A PCC of +1 indicates a full positive linear correlation and a PCC of -1 is
defined for a perfect negative linear correlation. In general, the method is robust against background
signal. For example, the first data series (Figure 19) has a perfect linear correlation for the first 10 data
values. The background which is represented through the last five data values where the x-values are
zero, has entries between 0 and 5 (y-values randomly set). The correlation behaviour shows a robust
PCC of 0.9993.

Figure 19: The tables to the left show data pints for the X-Axis and Y-Axis for the graph to the right. The PCC of 0.9993 shows
a high robustness against background signal.

The second series has a step size of 10 (distance between the last five y-values) for the background, which
is shown in Figure 20. In this case The PCC of 0.8488 can be viewed as less robust against background.
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Figure 20: The tables to the left show data points for the X-Axis and Y-Axis for the graph to the right. The PCC of 0.8488 shows
less robustness against background signal in compare to Figure 19.

Under some circumstances, the PCC can not measure image characteristics at some points, which is
shown in Figure 21. The calculation of the PCC for these image series come out with no change, where
the background (green signal dots) increases.

Figure 21: The PCC are measured from image one to image four, where an increase of one signal (green dots) can be observed.
The graph plots the four images against the PCC’s. The change of image characteristics can not be made visible over the PCC.
[17]

[15, 17, 16]
In mathematical terms, the PCC sets the covariance between two images, normalized by the product of
their calculated standard deviations. Equation 8 uses the variables C1i and C1, which represent the ith

pixel intensity and the average pixel intensity of image 1. The variables C2i and C2 are the corresponding
pixel values of image 2. The total number of pixels is represented by the value of n. It has to be noted
that image 1 and image 2 needs the same number of pixels (data points).

PCC =

	
i

�
C2i − C2

�
· (C1i − C1)�	

i(C2i − C2)2 ·
	

i(C1i − C1)2
(8)

Pearson’s Correlation Coefficient (PCC)

[1]
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2.4.2 Spearman’s Correlation Coefficient (SCC)

The Spearman’s Correlation Coefficient (SCC) is used to measure correlations between two series, where
the scatter plot shows a monotonic function behaviour. This can help to make a relationship between two
series visible where the PCC gives unexpected results, which includes situations where two series show
a good correlated function but are not linearly correlated. The SCC is equivalent to the PCC, but the
SCC method is based on ranked pixel intensity and the intensities themselves.
If it is possible to arrange the measured series in serial order (ranks), we can implement the Spearman’s
Rank Difference Method, to get the SCC. For the following calculations, the SCC is defined by rs.

rs = 1−
6 ·

	
i ·D

2
i

N · (N2
− 1)

(9)

Spearman’s Correlation Coefficient (SCC) rs, with D = Rx - Ry : difference of ranks of two series, N: series size

The following example shows the working method of the SCC. X and Y stand for the existing values in
both data series. Rx and Ry build the rank for X and Y and D shows the calculated difference of the
rank. The rank sets for each X value an associated number, to get a descending sequence of numbers
where Rx= 1 is connected to the biggest value of X and Rx= 10 (N= 10) is connected to the smallest
value of X.

X= 1 Rx Y Ry D= Rx - Ry D2

20 10 16 9 +1 1
22 8 15 10 -2 4
24 7 20 6 +1 1
25 6 21 5 +1 1
30 3 19 7 -4 16
32 2 18 8 -6 36
28 4 22 4 0 0
21 9 24 2 +7 49
26 5 23 3 +2 4
35 1 25 1 0 0

N = 10 N = 10
	

D2 = 112

rs = 1−
6 ·

	
·D2

N · (N2
− 1)

= 1−
6 · 112

10 · (102 − 1)
= 0.32 (10)

Spearman’s Correlation Coefficient (SCC) rs, with D = Rx - Ry : difference of ranks of two series, N: series size

[18, 1]
For the calculation of a Spearman’s correlation, a complete monotonic relationship is not necessary. The
Spearman’s correlation can also be used to make monotonic components visible. It must be noted that a
full SCC value of +1 or -1 can only be reached if the function is hundred percent (strongly) monotonic.
(Figure 22) shows a perfect quadratic function where the SCC is 0 but a relationship clearly exists.
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Figure 22: Quadratic function, which shows a SCC(rs) = 0.[19]

The following Figures (Figure 23 and Figure 24) show examples for the SCC in comparison to the PCC.
Figure 23 presents a perfect monotonic function, where the SCC is exactly 1. The PCC shows also a
high correlation but also the disadvantage in comparison to the SCC. In Figure 24 an example is given
where the SCC shows a higher resilience against strong outliers compared to the PCC. The PCC of 0.67
is strongly impaired by the five outliers (5 data points around x=6) of the whole data set, the SCC of
0.84 is more undismayed of it.

Figure 23: The graph shows a 100% monotonic function, which
is shown by the SCC of 1. The corresponding PCC is 0.88 [20]

Figure 24: The graph shows a partly monotonic function, which
is shown by the SCC of 0.84. The corresponding PCC is 0.67
[20]

[19, 20]

2.4.3 Measuring Overlap by using Manders Overlap Coefficient (MOC)

The Manders overlap coefficient (MOC) is used to determine the overlapping of two images. The MOC
operates in a way where the pixel values are divided into two groups. Before the MOC equation can be
applied, the images have to be segmented. The pixel values under the threshold limit will be set to 0 and
the pixel values over the threshold limit will be set to 1 (or for the following equations ( 12 and 14) >
0 is also sufficient). The MOC consists of three coefficients. The first coefficient M1 shows the overlap
where the pixels of image one (xi values) overlap those of image two (yi values), given by equation 11.
The number of pixels is defined by the value n.
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M1 =

	n
i=1 = xi,coloc	n

i=1 = xi
(11)

with:

xi,coloc =

�
xi if yi > 0

0 if yi = 0
(12)

The second coefficient M2 shows the overlap where the pixels of image two (yi values) overlap those of
image one (xi values) presented by equation 13.

M2 =

	n
i=1 = yi,coloc	n

i=1 = yi
(13)

with:

yi,coloc =

�
yi if xi > 0

0 if xi = 0
(14)

The third coefficient is the combination of M1 and M2 and is called the overall Manders Overlap Coefficient
(MOC), where xi, yi and n are defined like before.

MOC =

	n
i=1 xi ∗ yi�	n

i=1 x
2
i

�	n
i=1 y

2
i

(15)

Both images consist of n pixels. xi,coloc and yi,coloc only have non-zero values if the corresponding xi and
yi values have a value which is higher than the set threshold. Normally, the MOC equation gives greater
importance to brighter pixels (high count rates) and lower weight to pale pixels (low count rates). It has
to be noted that our threshold mask sets the pixel value to 0 or to 1. That means, our pixel values are
weighted equally.
The following example (Figure 25) shows a plot for the MOC corresponding to four images where an
increase of one signal (green dots) can be observed. The change of image characteristics from image 1 to
image 4 can be measured with the MOC. For the PCC, it is not possible to make the change in these
image characteristics visible. [1, 17]
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Figure 25: The PCC and the MOC are measured about image one to image four, where an increase of one signal (green dots)
can be observed. The graph plots the four images against the PCC’s and MOC’s. The change of image characteristics can not be
made visible over the PCC. The MOC can measure the change of image characteristics.[17]
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3 Methods

The following chapter describes the data source and which data sets are selected for the investigations.
The methods show all tasks and calculations to get satisfactory results. Furthermore, all necessary steps
for the used software and programming are given. The scripts can be explored in section 7.1 (Python
code) and section 7.2 (ImageJ macro code).

3.1 Data Source

The data sets were produced by two synchrotrons. The ESRF (European Synchrotron Radiation Facility,
71 avenue des Martyrs, CS 40220 ,38043 Grenoble Cedex 9) and the Diamond synchrotron (Diamond
Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot ,Oxfordshire ,OX11
0DE). The following section should give an overview about the chosen adjustments and used beam lines.
The main information about the accelerators can be read up on their websites. The detailed adjustments
were taken from the log books of the measured data sets: Logbook ESRF 13-18 July 2017 Gadolinium
(Gd) in bone LS-262 and Logbook Diamond 6-12.9.2017.
The obtained data include a number of 31 single scan locations from 5 different patients (GD1, GD2,
GD3, GD4 and GD5). Some patients were measured in both synchrotrons, where different sample lo-
cations were investigated. The medical background is known for all patients. GD1 has a osteoporotic
background and GD2, GD3, GD4 and GD5 presented tumorous activity (osteosarcoma).
[21, 22]
The measured elements are separated in: elements of interest Ca, Cr, Cu, Fe, Gd, Ni and Zn and remaining
elements Ar, Co and W. The origin for those elements of interest can be explored as follows: Ca forms the
main element for bones, Zn and Fe serves as important components of bone tissue, which are natural pre-
sented. Cr, Cu and Ni can also be found and explored naturally or due to age-related behaviours through
environmental factors in the life of the patients. The occurrence of Gd can be explained by Gd based
contrast agents for magnetic resonance imaging investigations during patient treatments.[23, 24, 25, 26]

The remaining elements Ar, Co and W are present because of there known origins: Ar is out of the
surrounding air. Co and W comes from blade contaminations, during sample preparation.

3.1.1 ESRF

The data set was obtained between 13 and 18 July 2017 and investigated with the ID 13 microfocus
beamline (Figure 26). The excitation energy was set to 12.7 keV and the optics consists of multilayer-
Laue-lenses where the beam size was set to 50 nm furthermore, the detector Vortex (single element) was
a little bit declined (Angle Detector-Sample-Beam was more than 90°).

Figure 26: The synchrotron at the ESRF shows the used beam line ID 13 (micro focus) marked.[21]
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The collected data for the ESRF synchrotron are listed in Table 1, the total number of single scan
locations is n=13.

patient (disease)

GD1 (osteoporotic) scan10 scan22
GD4 (tumorous (osteosarcoma)) scan18 scan17 scan35
GD5 (tumorous (osteosarcoma)) scan18 scan21 scan27 scan28 scan32 scan34 scan37 scan38

Table 1: The patients are listed in combination to the single scan locations.

3.1.2 Diamond Light Source

The data set was obtained between 6 and 12 September 2017 at the test beam line B 16 (Figure 27)
where the excitation energy was set to 12.7 keV. The beam size was set to 500 nm. Furthermore, the
detector Vortex is defined by a single element and 150 eV @ Mn-Kα.

Figure 27: The accelerator at the Diamond shows the used beam line B 16 (Test Beamline) marked.[22]

The collected data for the Diamond synchrotron are listed in Table 2, the total number of single scan
locations is n=18.

patient (disease)

GD1 (osteoporotic) 183278 183279 183280 183242 183309
GD2 (tumorous (osteosarcoma)) 183287 183288 183247 183248
GD3 (tumorous (osteosarcoma)) 183270
GD4 (tumorous (osteosarcoma)) 183258
GD5 (tumorous (osteosarcoma)) 183293 183294 183297 183298 183300 183302 183303

Table 2: The patients are listed in combination to the single scan locations.

3.1.3 Spectrum Translation

The following graph in Figure 28 presents a sum spectrum which is defined as a summation of the whole
data output for one sample. The spectrum shows the characteristic energy transitions for the specific
elements, sum peaks (two energy events are measured as one event as they come within a time interval that
cannot be separated), escape peaks (the energy of one event minus the energy of fluorescence radiation
caused by the detector material, for Si= 1,74 keV). The background radiation is mainly caused by elastic
and inelastic scattering through the normal atmosphere.
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Figure 28: Sum spectrum GD5 scan 21 shows all the characteristic energies for the founded elements, sum peaks, escape peaks
and the peak for the inelastic and the elastic scattered peak of the excitation energy. For Gd-Lα the peak integration is shaded
and limited by the background correction appreciated for demonstrations.

To get the element maps in Figure 29, the spectrum for each pixel has to be evaluated. For the evaluation,
a fit has to be applied for the spectrum where a peak integration for each element peak brings the whole
number of counts. The graph in Figure 28 shows an example for Gd-Lα where the peak integration is
shaded and limited by the background correction approximated for demonstrations. It should be noted
that a total spectrum is only sufficient to get an overview of the possible element occurrences in a sample.
Overlapping peaks in the sum spectrum must be examined separately pixel by pixel in order to be able
to exclude any elements that may be found.
At the end, the element maps has to be normalized by the measuring time to get the counts per time
unit.

Figure 29: Element maps GD5 scan21 present the characteristic energy distributions for Ca-Kα, Gd-L, Zn-K, Co-K and Fe-K.

[27, 28, 29]
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3.2 Data Evaluation

In the following section the whole of image processing scheme and data evaluation is shown. To calculate
the correlations (PCC and SCC) Python is used to handle the data sets. For the overlap measurements,
ImageJ was defined as a suitable tool. The supplied macro language of ImageJ makes it possible to get
quick work-flows and out-puts, which is necessary for processing the whole data set in a manageable
period.

3.2.1 Correlation

To calculate the PCC and SCC between two images, python functions were used. The input data forms
two XRF images for example Ca and Gd, which is presented in Figure 30 and Figure 31 where the
intensity of the pixels reflects the count rats.

Figure 30: Ca distribution measured by µ-XRF imaging. Figure 31: Gd distribution measured by µ-XRF imaging.

To visualize the correlation, X-Y plots are implemented in combination to a linear fit, which is done by
the python function. To verify the relationship between two different elements, the slope is also calculated
using a python function. The output file is shown in Figure 32.

Figure 32: The headline of the correlation graph shows the first line the used synchrotron (Diamond), the patient (GD5), the
scan location (183300) and which normalized maps are used (maps_1s). The second line presents the PCC (0.322) and the SCC
(0.367) value. In the third line, the value for the slope (0.001) is set. The X axis and the Y axis show which elements are merged
for measuring correlations and how great the bandwidth is for the number of counts. Each data point of the graph presents one
pixel corresponding to the number of counts. Finally the correlation line to the corresponding slope is indicated.

The output file for the correlation coefficients presents the linear correlation (PCC) and the monotonic
correlation (SCC) between two element distributions in addition the slope is also stated.
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3.2.2 Overlap

The calculation of the overlap coefficients M1, M2, MOC and the overlap images are done via the program
ImageJ by the plugin JACoP. Before the overlap coefficients can be calculated, a threshold level (which
is equal for all element images) has to be set. The given example (Figure 33) shows the work flow for
adding the defined threshold level of 10 counts/second.

Figure 33: Work flow for adding threshold. Left: original Ca and Gd image. Right: processed images via threshold.

Due to the unknown exact noise level, which is estimated between 0 and 5 counts/second, it has to
be noted that a small amount of information gets lost when the threshold level is set to a level of 10
counts/second. Figure 34 presents an XRF image for Cu to the left and Ca to the right. Where the Ca
image presents a intuitive distributed structure, is the Cu image more than less randomly distributed.
Due to the small count rates, which are shown in the middle image in Figure 34, the Cu image could not
be taken as clear information. Therefore a threshold level of 10 counts/second keeps the results free of
noise approximately.

Figure 34: The XRF image to the left shows count rates under 5 counts/second. The XRF image to the right gives the corre-
sponding image for the Ca-K counts (around 10 000 counts/second max.)

After setting the threshold level, the pixel values consist of 0 (black/ no signal) and 1 (white/ signal).
That means, for the overlap calculations, that each pixel has the same weight of information. The
overlap is calculated by the ImageJ tool JacoP (Figure 35) where the generated out-put text file delivers
the coefficients M1, M2 and MOC (marked with a red box).
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Figure 35: Plug-in program JACoP (ImageJ). Left: windows for program settings. Right: Log file for out-put parameters: MOC,
M1 and M2 (marked by red rectangles).

Furthermore the program calculates the overlapping images for the intensity maps (Figure 36), without
added threshold and the overlap images, where the pixel values are set to 0 or 1 by the threshold of 10
counts/second (Figure 37). The overlapping images consist of the stand alone areas, where element 1
(red) is measured in absence of element 2 (blue) and the overlap areas, where both elements are measured
(magenta).

Figure 36: Top: Input images (left: Ca, right: Gd). Bottom:
Out-put image for the intensity overlap without threshold.

Figure 37: Top: Input images (left: Ca, right: Gd). Bottom:
Out-put image for the overlap with threshold.

The count rates are presented in the correlation graph, which are linked to the overlap images in the
multi plot slides (Figure 39). For the intensity maps the color intensity is independent of the chosen
element, which is important for interpretation. For the given example (Figure 36), the maximum counts
are detected for Gd by approximate 30 counts/second and for Ca approximate 20000 counts/second
(Figure 32).
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For the overlap images where the threshold is set, the whole element areas are visible and the interpre-
tation is more vivid corresponding to overlap informations. This circumstances are recognizable if the
comparison between Figure 36 and Figure 37 will be considered, where the presence of Ca is not fully
visible for the intensity images (Figure 36).

3.2.3 Output Example For Single Location Interpretation

To get an overview for one scan location, the following images are given (Figure 38): The qBEI (quan-
titative Backscattered Electron Imaging) image, where the surface of the bone sample is shown. The
orange rectangle shows the location for the rough XRF scan and the small green rectangles inside the
rough scan show the location for the µ-XRF images, which are presented for the locations # 183293 and
# 183294.

Figure 38: Original data overview, which shows the qBEI image (background image in a gray scale), the located rough scan
(orange rectangle), scan locations (# 183293 and # 183294) for µ-XRF images marked by green squares.
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The multi plot (Figure 39) provides an overview to interpret the correlation and overlap data in one
image. At the left side (correlation graph) of the y-axis (Gd counts) is the original Gd map located.
Under the x-axis of the correlation graph, the original Ca map is located. In the lower left corner, the
link between the colors and the elements is given. Furthermore, the overlap coefficients M1, M2 and MOC
(M) are given. The image to the right of the correlation graph presents the overlap intensity image, where
no threshold is set. Finally the right lower corner presents the overlap image, where the threshold of 10
counts/second is set.

Figure 39: First line from left to right: 1. original Gd map, 2. correlation graph and correlation coefficients, 3. overlap without
threshold. Second line from left to right: 1. Element-color legend and overlap coefficients, 2. original Ca map, 3. overlap with
threshold

32



3.2.4 Statistics

For statistic evaluations, all patients (GD1,GD2,GD3,GD4 and GD5) and scan locations (n=31) were
plotted in one distribution to calculate the PCC, SCC, Slope, M1, M2 and M for each element comparison,
the following example in Figure 40 is given for explanations.
The main title (Ca-Ka) sets the first element for correlation and overlap calculations. On the left side
of the graph, all elements are listed. The (SCC) degree of relationship between two elements, is defined
between -1 and +1 under the specific relationship coefficient for correlations. For the overlap coefficients,
the scale reaches from 0 to +1. Each element combination presents the mean value (mean), the standard
deviation (std) and the median. The box plots consist of the quartiles (inner 50% in total), the whiskers
(outer 50% in total), the marked median lines and outliers (small circles).

Figure 40: Monotonic correlation (SCC) between Ca (head line) and other elements. The mean value (mean), standard deviation
(std) and median is given for each element composition.

For statistical evaluations, in terms of comparing groups, only the patients GD1 (n=7) and GD5 (n=15)
were used. Due to the small sample sizes for GD2 (n=4), GD3 (n=1) and GD4 (n=4), those patients
could not be used for further comparison investigations.
The following figure (Figure 41) presents a box plot example to compare patient GD1 and GD5 via the
corresponding SCC.
The main title (Ca-Ka) sets the first element for correlation or overlap calculations. On the left side,
the graph all elements are listed. The (SCC) degree of the relationship between two elements is defined
between -1 and +1 under the specific relationship coefficient for correlation. For the overlap coefficients,
the scale reaches from 0 to +1. Each element combination presents two groups (GD1 and GD5). The
p-value, the mean value (mean) of GD5, the standard deviation (std) of GD5 and the median of GD5
are given in the first line under each element designation. The effect size Hedges’ g (hedges-g), the mean
value (mean) of GD1, the standard deviation (std) of GD1 and the median of GD1 are given in the second
line under each element designation. The box plots for the two groups (GD5: blue plot and GD1: green
plot) consist of the quartiles, the marked median lines and outliers (red crosses).
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Figure 41: Monotonic correlation (SCC) between Ca (head line) and other elements. The mean value (mean), standard deviation
(std) and median is given for each element composition. Furthermore the data set consists of two groups. The blue bar describes
GD5 and the green bar describes GD1. The two groups are compared to each other. The p-value and hedges-g are given for
comparison.

To get informations about significance, in terms of group comparison, the p-value and the hedges-g are
calculated. The p-value is calculated about the student t test, which is suitable for small sample sizes, the
significance level was set to α = 0,05 (p<= 0,05 means: The groups are significant different). Hedges-g
is a method for effect size measuring to underline significance and to make the distinction between two
groups visible. A high Hedges-g means great differences between two groups. A small Hedges-g means,
the two groups are still significantly different but the difference can be yet low. The definition of a
suitable Hedges-g value which interprets high, medium or low difference, is beyond the scope of this
work. Nevertheless, Hedges-g is an important basement in statistic works to compare similar studies
with each other. Hedges-g is the developed effect size for different sample sizes based on the effect size
Cohen’s-d. Cohen’s-d is defined as the difference between the mean values of two groups over the common
group standard deviation. The mathematical definition of Hedges-g is presented in 16 and 17.[30]

g =
M1 −M2

S
(16)

Hedges-g with M1: mean value of group 1, M2: mean value of group 2 and S: common group standard deviation.

with

S =

�
((n1 − 1) ∗ SD2

1 + (n2 − 1) ∗ SD2
2)

n1 + n2 − 2
(17)

Common group standard deviation S with n1: sample size of group 1, n2: sample size of group 2, SD1: standard deviation of
group 1 and SD2: standard deviation of group 2.
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4 Results

In the following chapter, the results obtained with the implemented methods will be presented.

4.1 Measurement for Single Scan Locations

The measurement for a single scan location gives a qualitative overview about the behaviour between
element combinations in one scan. Each one of the 31 scans can be interpreted separately. For that, images
are created which describe the comparison of two elements. For one scan, 21 element combinations are
possible for the elements of interest. To get the high correlated data, a filter was set by the PCC and
SCC value, if the PCC or the SCC value is greater then 0.65, the data is considered meaningful. The
value of 0.65 reduces the output data to a still manageable size and describes according to a rule of thumb
the beginning of high correlated data. The whole data set is presented in the appendix (section 7.3).
Nevertheless, the scan location # 183278 and its interpretation is given below as an example.
Figure 42 presents an overview image which shows the exact scan position of the µ-XRF image for the
scan number 183278.

[31]

Figure 42: Original overview image, which shows the qBEI image (left image in a gray scale), the located rough scan (orange
rectangle), scan locations (# 183278, # 183279 and # 183280) for µ-XRF images marked by green rectangles.

Around the zero position for the x-axis in the correlation graph (Figure 43), an accumulation of Gd
counts can be located alongside a small linear correlation region at the end is to be found. The PCC=
0.727 and the SCC= 0.732. The minor slope of 0.003 is caused by the huge difference between the Ca and
the Gd count rates. The M2 shows Gd overlaps Ca to 100%. Ca overlaps Gd to 42.1 %. The bilateral
(combined overlap of M1 and M2) overlap M in percentage is 64.9 %.
The intensity of the Gd signal increases from the outer to the inner region which can be explained by
the change of the color. The inner magenta region means a higher correlation between Ca and Gd in
compare to the outer region where the color is red which implies a weak correlation between Ca and Gd.
This behaviour is linked with the correlation graph.
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Figure 43: First line from left to right: 1. original Gd map, 2. correlation graph and correlation coefficients, 3. overlap without
threshold. Second line from left to right: 1. Element-color legend and overlap coefficients, 2. original Ca map, 3. overlap with
threshold

In Figure 44, a high linear correlation (PCC) of 0.929 can be observed and the SCC= 0.962 shows a small
non linear but nevertheless monotonic behaviour in addition to the PCC. The slope of 0.023 is caused
by the difference between the Ca and Zn count rates. Furthermore, Ca overlaps Zn to 100%, Zn overlaps
Ca to 69.7% and the bilateral overlap (M) is 83.5 %.
The intensity of the signal increases from the outer to the inner region, which is specially present in the
intensity overlap image.

Figure 44: First line from left to right: 1. original Zn map, 2. correlation graph and correlation coefficients, 3. overlap without
threshold. Second line from left to right: 1. Element-color legend and overlap coefficients, 2. original Ca map, 3. overlap with
threshold
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In Figure 45, the linear correlation (PCC) of 0.855 is high and around the zero position of the y-axis, a
small Gd spot without Zn can be shown which caused a lower SCC of 0.8 in related to the PCC. The
slope of 4.627 is caused by the higher count rate of Zn compared to Gd. Zn overlaps Gd to 57.4 %. Gd
overlaps Zn to 95.1 % which can be linked to the small Gd spot where no Zn is measured. Zn without
Gd can be located at the edge regions.

Figure 45: First line from left to right: 1. original Zn map, 2. correlation graph and correlation coefficients, 3. overlap without
threshold. Second line from left to right: 1. Element-color legend and overlap coefficients, 2. original Gd map, 3. overlap with
threshold
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4.2 Measurement for One Group

To make the distribution for the whole data set visible, box plots were created for data interpretation.
Each element is compared to all other elements for the coefficients: PCC, SCC, Slope, M1, M2 and
M, which forms an accumulation of 42 images. The distribution of one bar is created with n= 31 scan
locations (patients: GD1, GD2, GD3, GD4 and GD5). The main focus was set on the elements Ca, Zn,
Ni, Fe and Gd. The elements Ar, Co and W are also displayed for the box plots. Due to the known
source, those three elements are marked transparent. The elements Cr and Cu must be investigated
separately because of the small count rates and the suspected high noise level. To reduce the results only
the box plots for the SCC and M coefficient are shown, which present a good overview of the relations
between the elements. The whole box plot set can be found in the appendix (section 7.3).
The monotonic correlation (Figure 46) between Ca and Zn is 0.86 for the median and the standard
deviation is quite low (0.2) and even negative. Ca poorly correlates to all other elements. Compared to
the linear correlation (section 7.3), the deviation is marginally higher for the SCC.

Figure 46: Monotonic correlation (SCC) between Ca and other elements.
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In Figure 47, the overlap between Ca and Zn is very high, is 99% (median). The overlap between Ca and
Fe is 76% (median) and the standard deviation shows a value of 0.26. The overlap between Ca and Gd is
54% (median) and the standard deviation of 0.29 can be considered high. The overlap of 29% (median)
between Ca and Ni is low and the standard deviation of 0.29 is high. The overlap between Ca and Cr is
0% which can be explored by noise problems. The M1 (Ca overlaps Cr) coefficient shows a value of 0%
(found in section 7.3), which means an almost zero Cr amount in the Ca regions. However the M2 (Cr
overlaps Ca) coefficient gives a value of 31% and a deviation of 0.46 (found in section 7.3) which would
mean, that in an average Cr region of 69% no Ca is localized. This behaviour suggests a high noise level
for the count rates of Cr. The same noise explanation could be found for Cu.

Figure 47: Overlap coefficient (M) between Ca and other elements.
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The monotonic correlation in Figure 48 between Zn and Ca is 0.86 for the median (like for Figure 46).
For all other elements, the monotonic correlation is quite low, the deviation is high in general and also
negative.

Figure 48: Monotonic correlation (SCC) between Zn and other elements.
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The overlap between Zn and Ca in Figure 49 is 99% for the median (like for Figure 47) and the standard
deviation is only 0.1. The overlap between Zn and Fe is 75% and the standard deviation is 0.26. The
overlap between Zn and Gd is 58% (median) and the standard deviation is 0.3. The overlap between Zn
and Ni is 0.29% (median) and the standard deviation is 0.3. The overlap between Zn and Cr and Cu is
0% for the median. The 0% overlap behaviour can be shown for Zn and Cu as well.

Figure 49: Overlap coefficient (M) between Zn and other elements.
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In Figure 50, the monotonic correlation between Ni and other elements is very low, which is between 0
and 0.27 for the median. The standard deviation is very high. In general the medians and the deviations
are leaning over more to the positive side.

Figure 50: Monotonic correlation (SCC) between Ni and other elements.
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The overlap in Figure 51 between Ni and Ca, Fe, Gd and Zn is between 20% and 30% in the median and
the standard deviation is high. The overlap between Ni and Cr is 0% for the median, the same for Ni
and Cu.

Figure 51: Overlap coefficient (M) between Ni and other elements.
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The monotonic correlation between Fe and all other elements in Figure 52 is very low (between -0.04 and
0.2 for the median). The standard deviation is high and reaches the positive and the negative side. Gd
shows a small divergence about a higher correlation and a distribution more on the positive side.

Figure 52: Monotonic correlation (SCC) between Fe and other elements.
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The overlap between Fe and Ca in Figure 53 is 76% (median) and the standard deviation is 0.26. The
overlap between Fe and Zn is 75% (median) and the standard deviation is 0.26. The overlap between Fe
and Gd is 47% (median) and the standard deviation is very high (0.28). The overlap between Fe and Ni
is low (20% in median). The overlap between Fe and Cr and Cu is 0% (median), which indicates a high
noise level for the Cr and Cu signal.

Figure 53: Overlap coefficient (M) between Fe and other elements.
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In Figure 54, the monotonic correlation between Gd and Zn is 0.42 for the median and the standard
deviation is 0.39. The correlation between Gd and all other elements is very low (between 0.07 and 0.33)
and the deviation is very high and also negative (between 0.23 and 0.39). The data distribution is leaning
over more on the positive side.

Figure 54: Monotonic correlation (SCC) between Gd and other elements.
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The overlap between Gd and Ca in Figure 55 is 54% (median) and the standard deviation is 0.29. The
overlap between Gd and Zn is 58% (median) and the standard deviation is 0.3. The overlap between Gd
and Fe is 47% (median) and the standard deviation is 0.28. The overlap between Gd and Ni is low (23%
in median, standard deviation = 0.23). The overlap between Gd and Cr respectively Cu is 0% (median),
which indicates a high noise level for the Cr and Cu signal.

Figure 55: Overlap coefficient (M) between Gd and other elements.
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4.3 Measurement for Two Groups (GD1 and GD5)

To make the deviations between two groups (GD1 and GD5) visible, box plots were set for data inter-
pretation. Each element is compared to all other elements for the coefficients: PCC, SCC, Slope, M1,
M2 and M, which forms a set of 42 images. The distribution of one element for group GD1 is built by 7
single scan locations (n=7) and for group GD5 by 15 single scan locations (n=15). The main results are
presented at the end of these chapter. The graphs for PCC, Slope, M1 and M2 are listed in section 7.3.
For the following explanations, the graphs for the coefficients SCC and M are presented.
The element combination Ca-Ni in Figure 56 shows a significant difference between GD1 and GD5 (p-
value= 0.01) where GD1 shows a significant higher monotonic correlation compared to GD5. For Ca and
Cu, GD1 shows also a higher monotonic correlation (p-value= 0.03) compared to GD5. For all other
elements, no significant differences could be identified.

Figure 56: Monotonic correlation (SCC) between Ca and other elements, for the groups GD1 and GD5 in comparison. The blue
bar describes GD5 and the green bar describes GD1.
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GD5 shows a significance difference (p-value= 0.01) to GD1 in Figure 57 for the element combination Ca
and Fe. GD5 shows a higher overlap than GD1. The Ca-Ni interaction shows a significant higher overlap
for GD1 compared to GD5 (p-value = 0.05). For all other elements, no significant differences between
GD1 and GD5 could be found.

Figure 57: Overlap coefficient (M) between Ca and other elements, for the groups GD1 and GD5 in comparison. The blue bar
describes GD5 and the green bar describes GD1.
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The element combination Zn and Ni in Figure 58 shows a significant difference between GD1 and GD5
(p-value= 0.03), where GD1 shows a higher monotonic correlation. For Zn and Cu, GD1 also shows
a higher monotonic correlation compared to GD5 (p-value= 0.01). The Zn and Fe ensemble shows an
indicated higher overlap for GD5 compared to GD1 (p-value = 0.08). For all other elements, no significant
differences were found.

Figure 58: Monotonic correlation (SCC) between Zn and other elements, for the groups GD1 and GD5 in comparison. The blue
bar describes GD5 and the green bar describes GD1.

50



In Figure 59 GD5 shows a significant difference (p-value= 0.04) to GD1, for the element combination Zn
and Ni, the overlap GD1 was located higher than that of GD5. The Zn-Fe interaction shows a significant
difference, which shows an higher overlap for GD5 compared to GD1 (p-value = 0.01). For all other
elements, no significant differences between GD1 and GD5 were found.

Figure 59: Overlap coefficient (M) between Zn and other elements, for the groups GD1 and GD5 in comparison. The blue bar
describes GD5 and the green bar describes GD1.
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The element combination Ni-Ca in Figure 60 shows a significant difference between GD1 and GD5 (p-
value= 0.01) where GD1 shows a significant higher monotonic correlation compared to GD5 (the same
in Figure 56). For Ni and Zn, GD1 shows also a higher monotonic correlation (p-value= 0.03) compared
to GD5. For all other elements, no significant differences were found.

Figure 60: Monotonic correlation (SCC) between Ni and other elements, for the groups GD1 and GD5 in comparison. The blue
bar describes GD5 and the green bar describes GD1.
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GD1 shows a significant difference (p-value= 0.04) to GD5 in Figure 61, for the element combination Ni
and Zn. GD1 shows a higher overlap compared to GD5. For the element ensemble Ni-Gd, a high leaning
overlap for GD1 compared to GD5 was observed. The Ni-Ca interaction shows a higher overlap for GD1
compared to GD5 (p-value = 0.05). For all other elements, no significant differences between GD1 and
GD5 were found.

Figure 61: Overlap coefficient (M) between Ni and other elements, for the groups GD1 and GD5 in comparison. The blue bar
describes GD5 and the green bar describes GD1.
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The element combination Fe-Zn in Figure 62 shows a suspected difference between GD1 and GD5 (p-
value= 0.08) where GD5 shows a higher monotonic correlation in compare to GD1. No significant
differences were found for the other elements.

Figure 62: Monotonic correlation (SCC) between Fe and other elements, for the groups GD1 and GD5 in comparison. The blue
bar describes GD5 and the green bar describes GD1.
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In Figure 63 GD1 shows a significant difference (p-value= 0.01) to GD5, for the element combination
Fe and Ca (same in Figure 57), where GD5 shows a higher overlap than GD1. The Fe-Gd combination
shows for GD5 a higher overlap than for GD1 (p-value= 0.02). GD5 has a higher overlap compared to
GD1, for the element ensemble Fe and Zn (p-value= 0.01). For the elements Cr and Cu no significant
differences between GD1 and GD5 were observed (Ar and Co are not investigated). The same behaviour
for Fe is shown in the appendix (section 7.3) for the Fe M2-coefficient.

Figure 63: Overlap coefficient (M) between Fe and other elements, for the groups GD1 and GD5 in comparison. The blue bar
describes GD5 and the green bar describes GD1.
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The ensemble in Figure 64 for Gd and Cu shows a higher overlap for GD1 in compare to GD5 (p-value
= 0.04). For all other elements, no significant differences could be shown.

Figure 64: Monotonic correlation (SCC) between Gd and other elements, for the groups GD1 and GD5 in comparison. The blue
bar describes GD5 and the green bar describes GD1.
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The Gd-Fe combination in Figure 65 shows a higher overlap for GD5 compared to GD1 (p-value= 0.02)
same in Figure 63. For the element ensemble Gd-Ni, a higher overlap for GD1 compared to GD5 could
be shown (same for Figure 61). For all other elements, no significant differences between GD1 and GD5
could be shown.

Figure 65: Overlap coefficient (M) between Gd and other elements, for the groups GD1 and GD5 in comparison. The blue bar
describes GD5 and the green bar describes GD1.
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The following graphs depict the overlap between element combinations by using the median values of
the box plots. The graphs show the correlation values and the overlap coefficients corresponding to the
median value. The presented images illustrate only the overlap coefficients. It should serve as a general
overview to see the approximated overlap behaviour in combination to all other coefficients. Only the
elements of interest Ca, Zn, Ni, Fe and Gd are shown. The red marked entries refer to a significant
difference between GD1 and GD5.
Figure 66 presents the overlap behaviour between Ca and other elements of interest. Ca is represented
by the color blue and the compared elements (Fe, Gd, Ni and Zn) are represented by the color red. The
overlap area between Ca and the compared elements is described through the color magenta.

Figure 66: Visualization of the overlap, to compare GD1 (right) and GD5 (left) by using the median value. The red marked
coefficients implement a significant difference between GD1 and GD5. Blue: pure Ca, red: pure Fe, Gd, Ni or Zn (up to down),
magenta: overlap region.

Figure 67 presents the overlap behaviour between Gd and other elements of interest. Gd is represented
by the color blue and the compared elements (Fe, Ni and Zn) are represented by the color red. The
overlap area between Gd and the compared elements is described through the color magenta.

Figure 67: Visualization of the overlap, to compare GD1 (right) and GD5 (left) by using the median value. The red marked
coefficients implement a significant difference between GD1 and GD5. Blue: pure Gd, red: pure Fe, Ni or Zn (up to down), magenta:
overlap region.
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Figure 68 presents the overlap behaviour between Fe and other elements of interest. Fe is represented
by the color blue and the compared elements (Ni and Zn) are represented by the color red. The overlap
area between Fe and the compared elements is described through the color magenta.

Figure 68: Visualization of the overlap, to compare GD1 (right) and GD5 (left) by using the median value. The red marked
coefficients implement a significant difference between GD1 and GD5. Blue: pure Fe, red: pure Ni or Zn (up to down), magenta:
overlap region.

Figure 69 presents the overlap behaviour between Ni and Zn. Ni is laid out by the color blue and Zn is
represented by the color red. The overlap area between Ni and Zn is described through the color magenta.

Figure 69: Visualization of the overlap, to compare GD1 (right) and GD5 (left) by using the median value. The red marked
coefficients implement a significant difference between GD1 and GD5. Blue: pure Ca, red: pure Zn, magenta: overlap region.
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5 Discussion

Interpretation

We only found one overlap image where Gd is located without Zn (Figure 45). It can be seen as abnormal
behaviour, because the statistic shows Gd overlaps Zn to nearly 100%.

For the PCC and the SCC the following statements can be made:

-) A high linear correlation, in average, between Ca and Zn (approximated 0.8) was found.
-) A small linear correlation, in average, between Gd and Zn (approximated 0.5) could be found.
-) A monotonic correlation, which is stronger than the linear correlation, could not be observed.

For the overlap coefficients M1, M2 and M the following conclusions could be found:

-) A high co-localization between the elements Ca and Zn could be found.
-) Ca overlaps Fe to nearly 60% but the deviations is also very high.
-) Fe, Gd, Ni and Zn overlap Ca to nearly 100%. Cr and Cu do not overlap Ca (perhaps noise).
-) Ca, Fe, Gd and Ni overlap Zn to nearly 100% in average. Cr and Cu do not overlap Zn (perhaps noise).
-) It could not be shown if Cr or Cu are really present in the samples. Noise can cause this behaviour.

For the PCC, SCC and slope results, following interpretations could be found between patient GD1 and
GD5:

-) Ca and Ni show a significant difference in the PCC (p = 0.05). GD1 has higher correlation compared
to GD5 between Ca and Ni.
-) Ca and Ni show a significant difference in the SCC (p = 0.01). GD1 has higher correlation compared
to GD5 between Ca and Ni.
-) Cr and Ni show a significant difference in the PCC (p = 0.05). GD5 has higher correlation compared
to GD1 between Cr and Ni.
-) Ca and Ni shows for the Slope a p-value of 0.04. The Ni increase with Ca is higher for GD1 compared
to GD5.
-) Ca and Cu show a significant difference in the SCC (p= 0.03). GD1 has higher correlation compared
to GD5 between Ca and Cu.
-) Cu and Zn show a significant difference in the PCC (p = 0.04). GD1 has higher correlation compared
to GD5 between Cu and Zn.
-) Cu and Zn show a significant difference in the SCC (p = 0.01). GD1 has higher correlation compared
to GD5 between Cu and Zn.
-) Cu and Gd show a significant difference in the PCC (p = 0.03). GD1 has higher correlation compared
to GD5 between Cu and Gd.
-) Cu and Gd show a significant difference in the SCC (p = 0.04). GD1 has higher correlation compared
to GD5 between Cu and Gd.
-) Cu and Ni show a significant difference in the Slope (p = 0.05). The Ni increase in combination to Cu
is higher for GD5 in compare to GD1.
-) Fe and Zn show a significant difference in the PCC (p= 0.03). GD5 has higher correlation compared
to GD1 between Fe and Zn.
-) Ni and Zn show a significant difference in the SCC (p= 0.03). GD1 has higher correlation compared
to GD5 between Ni and Zn.
-) Ni and Zn shows for the Slope a p-value of 0.01. The Zn increase with Ni is higher for GD5 compared
to GD1.
-) Ca and Zn shows for the Slope a p-value of 0.00. The Zn increase with Ca is higher for GD5 compared
to GD1.
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For the overlap coefficient M, the following element combinations are significant different between patient
GD1 and GD5:

-) Ca and Fe: For GD5, the bilateral overlap M is 43% higher in compare to GD1.
-) Ca and Ni: For GD5, the bilateral overlap M is 39% higher in compare to GD1.
-) Fe and Gd: For GD5, the bilateral overlap M is 21% higher in compare to GD1.
-) Ni and Gd: For GD5, the bilateral overlap M is 38% higher in compare to GD1.
-) Fe and Zn: For GD5, the bilateral overlap M is 41% higher in compare to GD1.
-) Ni and Zn: For GD5, the bilateral overlap M is 49% lower in compare to GD1. The co-localization is
significant higher for GD1 in compare to GD5.

For the overlap coefficients M1 and M2, the following element combinations are significant different be-
tween patient GD1 and GD5:

-) Ca overlaps Fe: For GD5, Ca overlaps Fe to 53% more (median), in compare to GD1. Fe overlaps Ca
to 100% for GD1 and GD5. The co-localization is significant higher for GD5 in compare to GD1.
-) Fe overlaps Ni: For GD5, Fe overlaps Ni to 71% less (median), in compare to GD1. The co-localization
is significant higher for GD1 in compare to GD5.
-) Gd overlaps Fe: For GD5, Gd overlaps Fe to 55% more (median), in compare to GD1. The co-
localization is significant higher for GD5 in compare to GD1.
-) Gd overlaps Ni: For GD5, Gd overlaps Ni to 44% less (median), in compare to GD1. The co-localization
is significant higher for GD1 in compare to GD5.
-) Zn overlaps Fe: For GD5, Zn overlaps Fe to 51% more (median), in compare to GD1. The co-localization
is significant higher for GD5 in compare to GD1.
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Implications

The abnormal occurrence of one single Gd spot, where no Zn is located could be found. The elements
Fe, Gd, Ni, Zn could not be measured without Ca, for the whole data set. The measurement for Cr and
Cu gives insufficient overlap results which would clarify the occurrences of those materials in general.
GD5 (tumorous) shows a significant higher co-localization for Ca-Fe in compare to GD1 (osteoporotic).
Which suggests less Fe occurrences for GD1 than for GD5, relative to the Ca occurrences, the relativity
of Ca occurrences can be ignored. Due to the special status of Ca compared to all other elements, which
is defined by the gapless existence of Ca in each measured pixel for all samples, a reversed interpretation
(Ca surfaces for GD1 are bigger than for GD5 and the Fe surfaces stays the same) can be discarded.
The same behaviour exists for the elements Zn and Gd compared to Fe, which supports the Fe absence
in GD1.
Furthermore, it has to be noted that no statements about the absolute element occurrences can be made.
This means that if an element is located somewhere, it can not determined if the amount of one element
is low or high in general. Recording the correlation comparison between GD1 and GD5, we are only
able to make difference between the amount of one element relative to other elements. In the case of Ca
and Fe, the correlation is not significant different between GD1 and GD5. In general, no correlation is
measured between Ca and Fe from a statistical point of view.

Limitations

Cr and Cu to Ca show a contradicting behaviour to that observed in the overlap, where Ca overlaps Cr
and Cu to 0% in the median, which represents a problem of Cr and Cu measurements. The problem could
be answered with the small count rates of Cr and Cu and the chosen threshold level (10 counts/second),
which could delete an important amount of informations. It has to be clarified that there are threshold
algorithms which are able to mange huge and small count rates in a effective way to minimize the
information loss.
To lend more expressive for the statistics results, the number for single scan locations per patient has
to be increased. For this reason, GD2, GD3 and GD4 could not be taken for statistics investigations.
Furthermore the localization for the single scans are not considered (type of bone tissue) which means, for
statistical evaluations the samples origin could be cortical bone as well as trabecular bone for example.
To make the characteristics between different groups more meaningful, a higher number of different
patients is necessary. In our study, we only used one patient for each group to represent a disease (GD1
represents osteoporotic tissue and GD5 represents tumorous tissue). Beyond diseased patient groups,
health tissue could serve as a control group for comparison which would improve the results. A further
important point is the incomplete data information about the patients (age, sex or how many magnetic
resonance imaging investigations are done by Gd based contrast agents) where only the diseases are
known.[23]
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7 Appendix

How To

The folder structure has to be adapted. The working folder is MA_ LW_ Gd data selection and the
original folder is labeled as MA_ LW_ Gd data selection_ orig. For data generation, execute the fol-
lowing programs in the right order.

1. set_ folders_ v1_ final.py
2. linear_ correlation_ plot_ master_ v5_ final.py
3. box_ plot_ PCC_ SCC_ Slope_ master_ v1_ final.py
4. box_ plot_ PCC_ SCC_ Slope_ GD1_ GD5_ compare_ master_ v1_ final.py
5. Overlap_ macro_ multi_ intensity_ normal_ master_ v4_ final.ijm
6. overlap_ data_ collector_ master_ M_ M1_ M2_ v1_ final.py
7. box_ plot_ MOC_ master_ M_ M1_ M2_ v1_ final.py
8. box_ plot_ MOC_ master_ M_ M1_ M2_ GD1_ GD5_ compare_ v1_ final.py
9. multi_ plot_ all_ data_ v4_ final.py

The whole program code can be considered in the following chapter section 7.1.

7.1 Python Code

0

1 import os
2

3

4 os.mkdir("box_plot_MOC_M")
5

6 os.mkdir("box_plot_PCC_SCC")
7

8 os.mkdir("box_plot_MOC_M_GD1_GD5")
9

10 os.mkdir("box_plot_MOC_is_overlaped_M2_GD1_GD5")
11

12 os.mkdir("box_plot_MOC_overlaps_M1_GD1_GD5")
13

14 os.mkdir("box_plot_PCC_SCC_GD1_GD5")
15

16 os.mkdir("PCC_SCC")
17

18 os.mkdir("plots")
19

20 os.mkdir("plots_high_correlation")
21

22 os.mkdir("multi_plot")
23

24 os.mkdir("overlap_log")
25

26 os.mkdir("overlap_all_data_M2")
27

28 os.mkdir("box_plot_MOC_is_overlaped_M2")
29

30 os.mkdir("box_plot_MOC_overlaps_M1")
31

32 os.mkdir("overlap_all_data_M")
33

34 os.mkdir("overlap_all_data_M1")
35

36

37 \begin{lstlisting}[firstnumber=0]

0 #linear_correlation_plot_maaster_v5_final.py
1 #Lukas Warnung
2 import numpy as np
3 import matplotlib as mpl
4 import matplotlib.pyplot as plt
5 from scipy import stats
6 from scipy.stats import pearsonr
7 from scipy.stats import spearmanr
8 import seaborn as sns
9

10 d={}
11 x=0
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12 i=0
13 r=0
14 k=0
15 counter=0
16

17 synchrotronS = ["Diamond","ESRF"]
18

19 for synchrotron in synchrotronS:
20

21

22 if synchrotron == "Diamond":
23 specimens = ["GD1a","GD1b","GD1bsecond","GD2a","GD2b","GD3","GD4","GD5"]
24 elements = ["Ca-Ka","Ar-K","Co-K","Cr-K","Cu-K","Fe-K","Gd-L","Ni-K","W-L","Zn-K"]
25

26 if synchrotron == "ESRF":
27 specimens = ["GD1b2","GD4","GD5"]
28 elements =["Ca-Ka","Ar-K","Co-K","Cr-K","Cu-Ka","Fe-K","Gd-L","Ni-K","W-L","Zn-K"]
29

30 for specimen in specimens:
31 if specimen == "GD1a":
32 spots = ["183278","183279","183280"]
33 if specimen == "GD1b":
34 spots = ["183242"]
35 if specimen == "GD1bsecond":
36 spots = ["183309"]
37 if specimen == "GD2a":
38 spots = ["183287","183288"]
39 if specimen == "GD2b":
40 spots = ["183247","183248"]
41 if specimen == "GD3":
42 spots = ["183270"]
43 if specimen == "GD4" and synchrotron == "Diamond":
44 spots = ["183258"]
45 if specimen == "GD5" and synchrotron == "Diamond":
46 spots = ["183293","183294","183297","183298","183300","183302","183303"]
47 if specimen == "GD1b2":
48 spots = ["scan10","scan22"]
49 if specimen == "GD4" and synchrotron == "ESRF":
50 spots = ["18","scan17","scan35"]
51 if specimen == "GD5" and synchrotron == "ESRF":
52 spots = ["scan18","scan21","scan27","scan28","scan32","scan34","scan37","scan38"]
53

54

55 for spot in spots:
56

57 if spot == "scan10" or spot == "scan18" or spot == "scan21" or spot == "scan32":
58 maps = "maps"
59 elif spot == "scan17" or spot == "scan37" or spot == "scan38":
60 maps = "maps_20s"
61

62 else:
63 maps = "maps_1s"
64

65 print(spot)
66

67 counter = counter+1
68 x=0
69 counter_1=0
70

71 for element1 in elements:
72

73 counter_1=counter_1+1
74 counter_2=0
75

76 for element2 in elements:
77

78 counter_2=counter_2+1
79

80 collectn_1x = np.loadtxt("MA_LW_Gd data
selection/"+synchrotron+"/"+specimen+"/"+spot+’/’+maps+’/’+element1+".txt")

81 collectn_1x = collectn_1x.flatten()
82

83 collectn_1y = np.loadtxt("MA_LW_Gd data
selection/"+synchrotron+"/"+specimen+"/"+spot+’/’+maps+’/’+element2+".txt")

84 collectn_1y = collectn_1y.flatten()
85

86 corr,_ = pearsonr(collectn_1x, collectn_1y)
87 corr2, _ = spearmanr(collectn_1x, collectn_1y)
88

89 slope, intercept, r_value, p_value, std_err = stats.linregress(collectn_1x,collectn_1y)
90

91 plt.plot(collectn_1x, collectn_1y, ’o’, color="green", markersize = "1")
92

93 plt.plot(collectn_1x, slope*collectn_1x + intercept, color=’red’)
94
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95 plt.title(synchrotron+’, ’+specimen+’, ’+spot+’, ’+maps+"\n"+’PCC=%.3f ’ % corr+’SCC=%.3f’ %
corr2+"\n" +’Slope=%.3f’ % slope ,size=18)

96 plt.tight_layout()
97

98 plt.xlabel(element1+’ in counts [1/s]’,size=22)
99

100 plt.tight_layout()
101

102 plt.ylabel(element2+’ in counts [1/s]’,size=22)
103

104 plt.tight_layout()
105

106 plt.savefig(’plots/’+synchrotron+’_’+specimen+’_’+spot+’_’+element1+’_vs_’+element2+’_’+maps+’.png’)
107

108 if element1 == "Cu-Ka":
109 element1 = "Cu-K"
110

111 if element2 == "Cu-Ka":
112 element2 = "Cu-K"
113

114 file_PCC = open("PCC_SCC/PCC_all_data_"+element1+"_"+element2+".txt","a")
115 file_PCC.writelines(synchrotron+" "+specimen+" "+spot+" ")
116 file_PCC.writelines(’Pearsons correlation: %.3f’ % corr)
117 file_PCC.writelines("\n")
118 file_PCC.close()
119

120 file_PCC = open("PCC_SCC/Slope_all_data_"+element1+"_"+element2+".txt","a")
121 file_PCC.writelines(synchrotron+" "+specimen+" "+spot+" ")
122 file_PCC.writelines(’Slope: %.3f’ % slope)
123 file_PCC.writelines("\n")
124 file_PCC.close()
125

126 file_SCC = open("PCC_SCC/SCC_all_data_"+element1+"_"+element2+".txt","a")
127 file_SCC.writelines(synchrotron+" "+specimen+" "+spot+" ")
128 file_SCC.writelines(’Spearmans correlation: %.3f’ % corr2)
129 file_SCC.writelines("\n")
130 file_SCC.close()
131

132 if element1 == "Cu-K" and synchrotron == "ESRF":
133 element1 = "Cu-Ka"
134

135 if element2 == "Cu-K" and synchrotron == "ESRF":
136 element2 = "Cu-Ka"
137

138 if corr > 0.65 or corr2 > 0.65 or corr < -0.65 or corr2 < -0.65:
139

140 if element1 != element2 and counter_1<counter_2:
141

142 plt.savefig(’plots_high_correlation/’+synchrotron+
143 ’_’+specimen+’_’+spot+’_’+element1+’_vs_’+element2+’_’+maps+’.png’)
144

145 if element1 == "Cu-Ka":
146 element1 = "Cu-K"
147

148 if element2 == "Cu-Ka":
149 element2 = "Cu-K"
150

151 file_PCC_HIGH = open("PCC_SCC/PCC_all_data_high"+element1+"_"+element2+".txt","a")
152 file_PCC_HIGH.writelines(synchrotron+" "+specimen+" "+spot+" ")
153 file_PCC_HIGH.writelines(’Pearsons correlation: %.3f’ % corr)
154 file_PCC_HIGH.writelines("\n")
155 file_PCC_HIGH.close()
156

157 file_PCC = open("PCC_SCC/Slope_all_data_high"+element1+"_"+element2+".txt","a")
158 file_PCC.writelines(synchrotron+" "+specimen+" "+spot+" ")
159 file_PCC.writelines(’Slope: %.3f’ % slope)
160 file_PCC.writelines("\n")
161 file_PCC.close()
162

163 file_SCC_HIGH = open("PCC_SCC/SCC_all_data_high"+element1+"_"+element2+".txt","a")
164 file_SCC_HIGH.writelines(synchrotron+" "+specimen+" "+spot+" ")
165 file_SCC_HIGH.writelines(’Spearmans correlation: %.3f’ % corr2)
166 file_SCC_HIGH.writelines("\n")
167 file_SCC_HIGH.close()
168

169 if element1 == "Cu-K" and synchrotron == "ESRF":
170 element1 = "Cu-Ka"
171

172 if element2 == "Cu-K" and synchrotron == "ESRF":
173 element2 = "Cu-Ka"
174

175 plt.cla()
176 plt.clf()
177

178 print("------")
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179 print(counter)
180 print("------")
181

182 if counter == "31":
183 print("Done!")

0

1 #box_plot_PCC_SCC_Slope_master_v1_final.py
2 #Lukas Warnung
3 import numpy as np
4 import matplotlib as mpl
5 import matplotlib.pyplot as plt
6 from scipy import stats
7 from scipy.stats import pearsonr
8 from scipy.stats import spearmanr
9

10 d={}
11 x=0
12 i=0
13 r=0
14 k=0
15 collectn_1={}
16 mean_all = {}
17 std_all = {}
18 median_all = {}
19 parameters = ["PCC","SCC","Slope"]
20

21 for parameter in parameters:
22

23 elements = ["Ca-Ka","Ar-K","Co-K","Cr-K","Cu-K","Fe-K","Gd-L","Ni-K","W-L","Zn-K"]
24 x=0
25

26 for element1 in elements:
27

28 y=0
29

30 for element2 in elements:
31

32 y=y+1
33

34 print("-------------")
35 print(element1)
36 print(element2)
37 print("-------------")
38

39 i=0
40 DATA_array = []
41 DATA_float = 0
42

43 for i in range(31):
44 with open("PCC_SCC/"+parameter+"_all_data_"+element1+"_"+element2+".txt") as f:
45

46 DATA = f.readlines()[i]
47 DATA = DATA[-7:]
48 DATA_float = float(DATA)
49 DATA_array.append(DATA_float)
50

51 collectn_1[y] = DATA_array
52 mean_all[y] = np.mean(collectn_1[y])
53 std_all[y] = np.std(collectn_1[y])
54 median_all[y] = np.median(collectn_1[y])
55

56 mean_all[y] = (format(mean_all[y], ’f’))[:-4]
57 mean_all[y] = str(mean_all[y])
58

59 std_all[y] = (format(std_all[y], ’f’))[:-4]
60 std_all[y] = str(std_all[y])
61

62 median_all[y] = (format(median_all[y], ’f’))[:-4]
63 median_all[y] = str(median_all[y])
64

65 data_to_plot = collectn_1[1],collectn_1[2],collectn_1[3],collectn_1[4],
66 collectn_1[5],collectn_1[6],collectn_1[7],collectn_1[8],collectn_1[9],collectn_1[10]
67

68 fig = plt.figure(1, figsize=(12, 10))
69

70 ax = fig.add_subplot(111)
71

72 bp = ax.boxplot(data_to_plot)
73

74 bp = ax.boxplot(data_to_plot, patch_artist=True)
75

76 for box in bp[’boxes’]:
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77

78 box.set( color=’#7570b3’, linewidth=2)
79 box.set( facecolor = ’#1b9e77’ )
80

81 for whisker in bp[’whiskers’]:
82 whisker.set(color=’#7570b3’, linewidth=2)
83

84 for cap in bp[’caps’]:
85 cap.set(color=’#7570b3’, linewidth=2)
86

87 for median in bp[’medians’]:
88 median.set(color=’#b2df8a’, linewidth=2)
89

90 for flier in bp[’fliers’]:
91 flier.set(marker=’o’, color=’#e7298a’, alpha=0.5)
92

93 plt.title(element1,size=28)
94

95 labels_list = ["Ca-Ka","Ar-K","Co-K","Cr-K","Cu-K","Fe-K","Gd-L","Ni-K","W-L","Zn-K",
96 "Ca-Ka \n mean= "+mean_all[1]+" std= "+std_all[1]+" median= "+median_all[1],
97 "Ar-K \n mean= "+mean_all[2]+" std= "+std_all[2]+" median= "+median_all[2],
98 "Co-K \n mean= "+mean_all[3]+" std= "+std_all[3]+" median= "+median_all[3],
99 "Cr-K \n mean= "+mean_all[4]+" std= "+std_all[4]+" median= "+median_all[4],

100 "Cu-K \n mean= "+mean_all[5]+" std= "+std_all[5]+" median= "+median_all[5],
101 "Fe-K \n mean= "+mean_all[6]+" std= "+std_all[6]+" median= "+median_all[6],
102 "Gd-L \n mean= "+mean_all[7]+" std= "+std_all[7]+" median= "+median_all[7],
103 "Ni-K \n mean= "+mean_all[8]+" std= "+std_all[8]+" median= "+median_all[8],
104 "W-L \n mean= "+mean_all[9]+" std= "+std_all[9]+" median= "+median_all[9],
105 "Zn-K \n mean= "+mean_all[10]+" std= "+std_all[10]+" median= "+median_all[10],
106 ]
107

108 ax.set_xticklabels(labels_list, rotation=90, fontsize=15 )
109

110 plt.ylabel(parameter,size=22)
111 plt.yticks(size=22)
112

113 ax.get_xaxis().tick_bottom()
114 ax.get_yaxis().tick_left()
115

116 fig.savefig(’box_plot_PCC_SCC/’+element1+’_’+parameter+’.png’, bbox_inches=’tight’)
117 plt.cla()
118

119 plt.clf()

0

1 #box_plot_PCC_SCC_Slope_GD1_GD5_compare_master_v1_final.py
2 #Lukas Warnung
3 import numpy as np
4 import matplotlib as mpl
5 import matplotlib.pyplot as plt
6 from scipy import stats
7 from scipy.stats import pearsonr
8 from scipy.stats import spearmanr
9 from scipy import *

10

11 import pandas as pd
12 import researchpy
13 import math
14

15 d={}
16 x=0
17 i=0
18 r=0
19 k=0
20 collectn_1={}
21 collectn_2={}
22 pvalue = {}
23 hedgesg = {}
24 p_value = {}
25 hedges_g = {}
26 result = {}
27 stats_11 = {}
28 stats_12 = {}
29 stats_21 = {}
30 stats_22 = {}
31 stats_13 = {}
32 stats_23 = {}
33

34 parameters = ["PCC","SCC","Slope"]
35

36 for parameter in parameters:
37

38 elements = ["Ca-Ka","Ar-K","Co-K","Cr-K","Cu-K","Fe-K","Gd-L","Ni-K","W-L","Zn-K"]
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39 x=0
40

41 for element1 in elements:
42

43 y=0
44

45 for element2 in elements:
46

47 y=y+1
48 i=0
49 DATA_array = []
50 DATA_float = 0
51 DATA_array_2 = []
52 DATA_float_2 = 0
53

54 for i in range(31):
55 with open("PCC_SCC/"+parameter+"_all_data_"+element1+"_"+element2+".txt") as f:
56

57 DATA = f.readlines()[i]
58 patient = DATA.split(" ")
59 DATA = DATA[-7:]
60 DATA_float = float(DATA)
61 patient_x = str(patient[1])
62

63 if patient_x == " GD1a" or patient_x == " GD1b" or patient_x == " GD1bsecond" or
patient_x == " GD1b2":

64

65 DATA_array.append(DATA_float)
66

67 if patient_x == " GD5":
68 DATA_array_2.append(DATA_float)
69

70 collectn_1[y] = DATA_array
71

72 collectn_2[y] = DATA_array_2
73

74 mean_patient_1 = np.mean(collectn_1[y])
75 std_patient_1 = np.std(collectn_1[y])
76 n_patient_1 = len(collectn_1[y])
77 median_patient_1 = np.median(collectn_1[y])
78

79 mean_patient_2 = np.mean(collectn_2[y])
80 std_patient_2 = np.std(collectn_2[y])
81 n_patient_2 = len(collectn_2[y])
82 median_patient_2 = np.median(collectn_2[y])
83

84 Diff_mean = mean_patient_1-mean_patient_2
85

86 Z =
((n_patient_1-1)*std_patient_1*std_patient_1)+((n_patient_2-1)*std_patient_2*std_patient_2)

87 N = n_patient_1+n_patient_2-2
88

89 root = math.sqrt(Z/N)
90

91 Cohens_d = Diff_mean / root
92

93 Cohens_abs = abs(Cohens_d)
94

95 hedges_g = Cohens_abs * (1-(3/(4*(n_patient_1+n_patient_2-9))))
96

97 result, p_value = stats.ttest_ind(collectn_1[y], collectn_2[y], equal_var = False)
98

99 print("--------------")
100 print(collectn_1[y])
101 print(collectn_2[y])
102 print("--------------")
103 print("Welch-T-Test:")
104 print(p_value)
105 print("--------------")
106 print("hedges_g:")
107 print(hedges_g)
108 print("--------------")
109 print("--------------")
110 print(y)
111

112 pvalue[y] = (format(p_value, ’f’))[:-4]
113 pvalue[y] = str(pvalue[y])
114

115 hedgesg[y] = (format(hedges_g, ’f’))[:-4]
116 hedgesg[y] = str(hedgesg[y])
117

118 stats_11[y] = (format(mean_patient_2, ’f’))[:-4]
119 stats_11[y] = str(stats_11[y])
120

121 stats_12[y] = (format(std_patient_2, ’f’))[:-4]
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122 stats_12[y] = str(stats_12[y])
123

124 stats_13[y] = (format(median_patient_2, ’f’))[:-4]
125 stats_13[y] = str(stats_13[y])
126

127 stats_21[y] = (format(mean_patient_1, ’f’))[:-4]
128 stats_21[y] = str(stats_21[y])
129

130 stats_22[y] = (format(std_patient_1, ’f’))[:-4]
131 stats_22[y] = str(stats_22[y])
132

133

134 stats_23[y] = (format(median_patient_1, ’f’))[:-4]
135 stats_23[y] = str(stats_23[y])
136

137 data_group1 = collectn_1[1],collectn_1[2],collectn_1[3],collectn_1[4],
138 collectn_1[5],collectn_1[6],collectn_1[7],collectn_1[8],collectn_1[9],collectn_1[10]
139 data_group2 = collectn_2[1],collectn_2[2],collectn_2[3],collectn_2[4],
140 collectn_2[5],collectn_2[6],collectn_2[7],collectn_2[8],collectn_2[9],collectn_2[10]
141

142 labels_list = [
143 "Ca-Ka \n p-value= "+pvalue[1]+", mean= "+stats_11[1]+", std= "+stats_12[1]+", median=

"+stats_13[1]+"\n hedges-g= "+hedgesg[1]+", mean= "+stats_21[1]+", std=
"+stats_22[1]+", median= "+stats_23[1]

144 ,"Ar-K \n p-value= "+pvalue[2]+", mean= "+stats_11[2]+", std= "+stats_12[2]+", median=
"+stats_13[2]+"\n hedges-g= "+hedgesg[2]+", mean= "+stats_21[2]+", std=
"+stats_22[2]+", median= "+stats_23[2]

145 ,"Co-K \n p-value= "+pvalue[3]+", mean= "+stats_11[3]+", std= "+stats_12[3]+", median=
"+stats_13[3]+"\n hedges-g= "+hedgesg[3]+", mean= "+stats_21[3]+", std=
"+stats_22[3]+", median= "+stats_23[3]

146 ,"Cr-K \n p-value= "+pvalue[4]+", mean= "+stats_11[4]+", std= "+stats_12[4]+", median=
"+stats_13[4]+"\n hedges-g= "+hedgesg[4]+", mean= "+stats_21[4]+", std=
"+stats_22[4]+", median= "+stats_23[4]

147 ,"Cu-K \n p-value= "+pvalue[5]+", mean= "+stats_11[5]+", std= "+stats_12[5]+", median=
"+stats_13[5]+"\n hedges-g= "+hedgesg[5]+", mean= "+stats_21[5]+", std=
"+stats_22[5]+", median= "+stats_23[5]

148 ,"Fe-K \n p-value= "+pvalue[6]+", mean= "+stats_11[6]+", std= "+stats_12[6]+", median=
"+stats_13[6]+"\n hedges-g= "+hedgesg[6]+", mean= "+stats_21[6]+", std=
"+stats_22[6]+", median= "+stats_23[6]

149 ,"Gd-L \n p-value= "+pvalue[7]+", mean= "+stats_11[7]+", std= "+stats_12[7]+", median=
"+stats_13[7]+"\n hedges-g= "+hedgesg[7]+", mean= "+stats_21[7]+", std=
"+stats_22[7]+", median= "+stats_23[7]

150 ,"Ni-K \n p-value= "+pvalue[8]+", mean= "+stats_11[8]+", std= "+stats_12[8]+", median=
"+stats_13[8]+"\n hedges-g= "+hedgesg[8]+", mean= "+stats_21[8]+", std=
"+stats_22[8]+", median= "+stats_23[8]

151 ,"W-L \n p-value= "+pvalue[9]+", mean= "+stats_11[9]+", std= "+stats_12[9]+", median=
"+stats_13[9]+"\n hedges-g= "+hedgesg[9]+", mean= "+stats_21[9]+", std=
"+stats_22[9]+", median= "+stats_23[9]

152 ,"Zn-K \n p-value= "+pvalue[10]+", mean= "+stats_11[10]+", std= "+stats_12[10]+", median=
"+stats_13[10]+"\n hedges-g= "+hedgesg[10]+", mean= "+stats_21[10]+", std=
"+stats_22[10]+", median= "+stats_23[10]

153 ]
154 xlocations = range(len(data_group1))
155 width = 0.2
156 symbol = ’r+’
157

158 ax = plt.gca()
159 if parameter != "Slope":
160

161 ymin = -1
162 ymax = 1
163 ax.set_ylim(ymin,ymax)
164

165 ax.set_xticklabels( labels_list, rotation=90, fontsize=8 )
166

167 ax.grid(True, linestyle=’dotted’)
168 ax.set_axisbelow(True)
169 ax.set_xticks(xlocations)
170 plt.xlabel(’’)
171 plt.ylabel(parameter)
172 plt.title(element1, fontsize=20)
173

174 positions_group1 = [x-(width-0.5) for x in xlocations]
175 positions_group2 = xlocations
176

177 plt.boxplot(data_group1,
178 sym=symbol,
179 labels=[’’]*len(labels_list),
180 positions=positions_group1,
181 widths=width,
182

183 patch_artist=True,
184 boxprops=dict(facecolor=’g’),
185 )
186
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187 plt.boxplot(data_group2,
188 labels=labels_list,
189 sym=symbol,
190 positions=positions_group2,
191 widths=width,
192

193 patch_artist=True,
194 )
195

196 plt.savefig(’box_plot_PCC_SCC_GD1_GD5/’+element1+’_’+parameter+’.png’, bbox_inches=’tight’,
dpi=800)

197 plt.cla()
198 plt.clf()

0

1 #overlap_data_collector_master_M_M1_M2_v1_final.py
2 #Lukas Warnung
3 import numpy as np
4 import matplotlib as mpl
5 import matplotlib.pyplot as plt
6 from scipy import stats
7 from scipy.stats import pearsonr
8 from scipy.stats import spearmanr
9

10 d={}
11 x=0
12 i=0
13 r=0
14 k=0
15 parameters = ["M","M1","M2"]
16

17 for parameter in parameters:
18

19 if parameter == "M":
20 line = 8
21 if parameter == "M1":
22 line = 25
23 if parameter == "M2":
24 line = 26
25

26 synchrotronS = ["Diamond","ESRF"]
27

28 for synchrotron in synchrotronS:
29

30 if synchrotron == "Diamond":
31 specimens = ["GD1a","GD1b","GD1bsecond","GD2a","GD2b","GD3","GD4","GD5"]
32 elements = ["Ca-Ka","Ar-K","Co-K","Cr-K","Cu-K","Fe-K","Gd-L","Ni-K","W-L","Zn-K"]
33

34 if synchrotron == "ESRF":
35 specimens = ["GD1b2","GD4","GD5"]
36 elements =["Ca-Ka","Ar-K","Co-K","Cr-K","Cu-Ka","Fe-K","Gd-L","Ni-K","W-L","Zn-K"]
37

38 for specimen in specimens:
39 if specimen == "GD1a":
40 spots = ["183278","183279","183280"]
41 if specimen == "GD1b":
42 spots = ["183242"]
43 if specimen == "GD1bsecond":
44 spots = ["183309"]
45 if specimen == "GD2a":
46 spots = ["183287","183288"]
47 if specimen == "GD2b":
48 spots = ["183247","183248"]
49 if specimen == "GD3":
50 spots = ["183270"]
51 if specimen == "GD4" and synchrotron == "Diamond":
52 spots = ["183258"]
53 if specimen == "GD5" and synchrotron == "Diamond":
54 spots = ["183293","183294","183297","183298","183300","183302","183303"]
55 if specimen == "GD1b2":
56 spots = ["scan10","scan22"]
57 if specimen == "GD4" and synchrotron == "ESRF":
58 spots = ["18","scan17","scan35"]
59 if specimen == "GD5" and synchrotron == "ESRF":
60 spots = ["scan18","scan21","scan27","scan28","scan32","scan34","scan37","scan38"]
61

62 for spot in spots:
63

64 if spot == "scan10" or spot == "scan18" or spot == "scan21" or spot == "scan32":
65 maps = "maps"
66 elif spot == "scan17" or spot == "scan37" or spot == "scan38":
67 maps = "maps_20s"
68 else:
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69 maps = "maps_1s"
70

71 print(spot)
72

73 x=0
74 for element1 in elements:
75

76 for element2 in elements:
77

78 if element1 != element2:
79

80 with open(’overlap_log/’+synchrotron+’_’+specimen+’_’+
81 spot+’_’+element1+’_vs_’+element2+’_’+maps+’_Log.txt’) as f:
82

83 manders_data = f.readlines()[line]
84

85 if element1 == "Cu-Ka":
86 element1 = "Cu-K"
87

88 if element2 == "Cu-Ka":
89 element2 = "Cu-K"
90

91 file_PCC = open("overlap_all_data_"+parameter+
92 "/overlap_all_data_"+element1+"_"+element2+".txt","a")
93 file_PCC.writelines(synchrotron+" "+specimen+" "+spot+" ")
94 file_PCC.writelines(manders_data)
95 file_PCC.close()
96

97 if element1 == "Cu-K" and synchrotron == "ESRF":
98 element1 = "Cu-Ka"
99

100 if element2 == "Cu-K" and synchrotron == "ESRF":
101 element2 = "Cu-Ka"

0

1 #box_plot_MOC_master_M_M1_M2_v1_final.py
2 #Lukas Warnung
3 import numpy as np
4 import matplotlib as mpl
5 import matplotlib.pyplot as plt
6 from scipy import stats
7 from scipy.stats import pearsonr
8 from scipy.stats import spearmanr
9

10 import re
11

12 d={}
13 x=0
14 i=0
15 r=0
16 k=0
17 collectn_1={}
18 collectn_1={}
19 mean_all = {}
20 std_all = {}
21 median_all = {}
22 parameters = ["M","M1","M2"]
23

24 for parameter in parameters:
25

26 elements = ["Ca-Ka","Ar-K","Co-K","Cr-K","Cu-K","Fe-K","Gd-L","Ni-K","W-L","Zn-K"]
27

28 x=0
29

30 for element1 in elements:
31

32 x=x+1
33 y=1
34 x_label = []
35 r = [1]
36

37 for element2 in elements:
38

39 DATA_array = []
40 x_label.append(element2)
41

42 if element1 == element2:
43 collectn_1[y] = r
44

45 print(collectn_1[y])
46

47 if element1 != element2:
48
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49 i=0
50

51 head_label = []
52

53 for i in range(31):
54 with

open("overlap_all_data_"+parameter+"/overlap_all_data_"+element1+"_"+element2+".txt")
as f:

55

56 DATA = f.readlines()[i]
57 DATA = DATA[-38:]
58 new_DATA = DATA.split(’=’)
59 new_DATA_2 = new_DATA[1]
60 new_DATA = new_DATA_2.split(’ ’)
61 DATA_float = float(new_DATA[0])
62 DATA_array.append(DATA_float)
63

64 collectn_1[y] = DATA_array
65 mean_all[y] = np.mean(collectn_1[y])
66 std_all[y] = np.std(collectn_1[y])
67 median_all[y] = np.median(collectn_1[y])
68

69 mean_all[y] = (format(mean_all[y], ’f’))[:-4]
70 mean_all[y] = str(mean_all[y])
71

72 std_all[y] = (format(std_all[y], ’f’))[:-4]
73 std_all[y] = str(std_all[y])
74

75 median_all[y] = (format(median_all[y], ’f’))[:-4]
76 median_all[y] = str(median_all[y])
77

78 print(collectn_1[y])
79 y=y+1
80

81 print("--------------------")
82

83 data_to_plot = collectn_1[1],collectn_1[2],collectn_1[3],collectn_1[4],
84 collectn_1[5],collectn_1[6],collectn_1[7],collectn_1[8],collectn_1[9],collectn_1[10]
85

86 fig = plt.figure(1, figsize=(12, 10))
87

88 ax = fig.add_subplot(111)
89

90 bp = ax.boxplot(data_to_plot)
91

92 bp = ax.boxplot(data_to_plot, patch_artist=True)
93

94 for box in bp[’boxes’]:
95

96 box.set( color=’#7570b3’, linewidth=2)
97 box.set( facecolor = ’#1b9e77’ )
98

99 for whisker in bp[’whiskers’]:
100 whisker.set(color=’#7570b3’, linewidth=2)
101

102 for cap in bp[’caps’]:
103 cap.set(color=’#7570b3’, linewidth=2)
104

105 for median in bp[’medians’]:
106 median.set(color=’#b2df8a’, linewidth=2)
107

108 for flier in bp[’fliers’]:
109 flier.set(marker=’o’, color=’#e7298a’, alpha=0.5)
110

111 plt.title(element1,size=28)
112

113 labels_list = ["Ca-Ka","Ar-K","Co-K","Cr-K","Cu-K","Fe-K","Gd-L","Ni-K","W-L","Zn-K",
114 "Ca-Ka \n mean= "+mean_all[1]+" std= "+std_all[1]+" median= "+median_all[1],
115 "Ar-K \n mean= "+mean_all[2]+" std= "+std_all[2]+" median= "+median_all[2],
116 "Co-K \n mean= "+mean_all[3]+" std= "+std_all[3]+" median= "+median_all[3],
117 "Cr-K \n mean= "+mean_all[4]+" std= "+std_all[4]+" median= "+median_all[4],
118 "Cu-K \n mean= "+mean_all[5]+" std= "+std_all[5]+" median= "+median_all[5],
119 "Fe-K \n mean= "+mean_all[6]+" std= "+std_all[6]+" median= "+median_all[6],
120 "Gd-L \n mean= "+mean_all[7]+" std= "+std_all[7]+" median= "+median_all[7],
121 "Ni-K \n mean= "+mean_all[8]+" std= "+std_all[8]+" median= "+median_all[8],
122 "W-L \n mean= "+mean_all[9]+" std= "+std_all[9]+" median= "+median_all[9],
123 "Zn-K \n mean= "+mean_all[10]+" std= "+std_all[10]+" median= "+median_all[10],
124 ]
125

126 ax.set_xticklabels(labels_list, rotation=90, fontsize=15 )
127

128 print(x_label)
129

130 plt.ylabel(parameter,size=22)
131 plt.yticks(size=22)
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132

133 ax.get_xaxis().tick_bottom()
134 ax.get_yaxis().tick_left()
135

136 fig.savefig(’box_plot_MOC_’+parameter+’/’+element1+’_MOC.png’, bbox_inches=’tight’)
137 plt.cla()
138 plt.clf()

0

1 #box_plot_MOC_master_M_M1_M2_GD1_GD5_compare_v1_final.py
2 #Lukas Warnung
3 import numpy as np
4 import matplotlib as mpl
5 import matplotlib.pyplot as plt
6 from scipy import stats
7 from scipy.stats import pearsonr
8 from scipy.stats import spearmanr
9 from scipy import *

10

11 import pandas as pd
12 import researchpy
13 import math
14

15 d={}
16 x=0
17 i=0
18 r=0
19 k=0
20 collectn_1={}
21 collectn_2={}
22 pvalue = {}
23 hedgesg = {}
24 p_value = {}
25 hedges_g = {}
26 result = {}
27 stats_11 = {}
28 stats_12 = {}
29 stats_21 = {}
30 stats_22 = {}
31 stats_13 = {}
32 stats_23 = {}
33 parameters = ["M","M1","M2"]
34

35 for parameter in parameters:
36

37 elements = ["Ca-Ka","Ar-K","Co-K","Cr-K","Cu-K","Fe-K","Gd-L","Ni-K","W-L","Zn-K"]
38 x=0
39

40 for element1 in elements:
41

42 y=0
43 r = [1,1]
44

45 for element2 in elements:
46

47 y=y+1
48 print(y)
49 if element1 == element2:
50 collectn_1[y] = r
51 collectn_2[y] = r
52 pvalue[y] = "0"
53 hedgesg[y] = "0"
54 stats_11[y] = "0"
55 stats_12[y] = "0"
56 stats_13[y] = "0"
57 stats_21[y] = "0"
58 stats_22[y] = "0"
59 stats_23[y] = "0"
60

61 if element1 != element2:
62

63 i=0
64 DATA_array = []
65 DATA_float = 0
66 DATA_array_2 = []
67 DATA_float_2 = 0
68

69 for i in range(31):
70 with

open("overlap_all_data_"+parameter+"/overlap_all_data_"+element1+"_"+element2+".txt")
as f:

71

72 DATA = f.readlines()[i]

75



73 DATA_2 = DATA[-38:]
74 new_DATA = DATA_2.split(’=’)
75 new_DATA_2 = new_DATA[1]
76 new_DATA = new_DATA_2.split(’ ’)
77 DATA_float = float(new_DATA[0])
78 patient = DATA.split(" ")
79 patient_x = patient[3]
80

81 if patient_x == "GD1a" or patient_x == "GD1b" or patient_x == "GD1bsecond"
or patient_x == "GD1b2":

82

83 DATA_array.append(DATA_float)
84

85 if patient_x == "GD5":
86 DATA_array_2.append(DATA_float)
87

88 collectn_1[y] = DATA_array
89 collectn_2[y] = DATA_array_2
90

91 mean_patient_1 = np.mean(collectn_1[y])
92 std_patient_1 = np.std(collectn_1[y])
93 n_patient_1 = len(collectn_1[y])
94 median_patient_1 = np.median(collectn_1[y])
95

96 mean_patient_2 = np.mean(collectn_2[y])
97 std_patient_2 = np.std(collectn_2[y])
98 n_patient_2 = len(collectn_2[y])
99 median_patient_2 = np.median(collectn_2[y])

100

101 Diff_mean = mean_patient_1-mean_patient_2
102

103 Z =
((n_patient_1-1)*std_patient_1*std_patient_1)+((n_patient_2-1)*std_patient_2*std_patient_2)

104 N = n_patient_1+n_patient_2-2
105

106 root = math.sqrt(Z/N)
107 Cohens_d = Diff_mean / root
108 Cohens_abs = abs(Cohens_d)
109 hedges_g = Cohens_abs * (1-(3/(4*(n_patient_1+n_patient_2-9))))
110 result, p_value = stats.ttest_ind(collectn_1[y], collectn_2[y], equal_var = False)
111

112 pvalue[y] = (format(p_value, ’f’))[:-4]
113 pvalue[y] = str(pvalue[y])
114

115 hedgesg[y] = (format(hedges_g, ’f’))[:-4]
116 hedgesg[y] = str(hedgesg[y])
117

118 stats_11[y] = (format(mean_patient_2, ’f’))[:-4]
119 stats_11[y] = str(stats_11[y])
120

121 stats_12[y] = (format(std_patient_2, ’f’))[:-4]
122 stats_12[y] = str(stats_12[y])
123

124 stats_13[y] = (format(median_patient_2, ’f’))[:-4]
125 stats_13[y] = str(stats_13[y])
126

127 stats_21[y] = (format(mean_patient_1, ’f’))[:-4]
128 stats_21[y] = str(stats_21[y])
129

130 stats_22[y] = (format(std_patient_1, ’f’))[:-4]
131 stats_22[y] = str(stats_22[y])
132

133 stats_23[y] = (format(median_patient_1, ’f’))[:-4]
134 stats_23[y] = str(stats_23[y])
135

136

137

138 data_group1 = collectn_1[1],collectn_1[2],collectn_1[3],collectn_1[4],
139 collectn_1[5],collectn_1[6],collectn_1[7],collectn_1[8],collectn_1[9],collectn_1[10]
140 data_group2 = collectn_2[1],collectn_2[2],collectn_2[3],collectn_2[4],
141 collectn_2[5],collectn_2[6],collectn_2[7],collectn_2[8],collectn_2[9],collectn_2[10]
142

143 labels_list = [
144 "Ca-Ka \n p-value= "+pvalue[1]+", mean= "+stats_11[1]+", std= "+stats_12[1]+", median=

"+stats_13[1]+
145 "\n hedges-g= "+hedgesg[1]+", mean= "+stats_21[1]+", std= "+stats_22[1]+", median=

"+stats_23[1]
146 ,"Ar-K \n p-value= "+pvalue[2]+", mean= "+stats_11[2]+", std= "+stats_12[2]+", median=

"+stats_13[2]+
147 "\n hedges-g= "+hedgesg[2]+", mean= "+stats_21[2]+", std= "+stats_22[2]+", median=

"+stats_23[2]
148 ,"Co-K \n p-value= "+pvalue[3]+", mean= "+stats_11[3]+", std= "+stats_12[3]+", median=

"+stats_13[3]+
149 "\n hedges-g= "+hedgesg[3]+", mean= "+stats_21[3]+", std= "+stats_22[3]+", median=

"+stats_23[3]
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150 ,"Cr-K \n p-value= "+pvalue[4]+", mean= "+stats_11[4]+", std= "+stats_12[4]+", median=
"+stats_13[4]+

151 "\n hedges-g= "+hedgesg[4]+", mean= "+stats_21[4]+", std= "+stats_22[4]+", median=
"+stats_23[4]

152 ,"Cu-K \n p-value= "+pvalue[5]+", mean= "+stats_11[5]+", std= "+stats_12[5]+", median=
"+stats_13[5]+

153 "\n hedges-g= "+hedgesg[5]+", mean= "+stats_21[5]+", std= "+stats_22[5]+", median=
"+stats_23[5]

154 ,"Fe-K \n p-value= "+pvalue[6]+", mean= "+stats_11[6]+", std= "+stats_12[6]+", median=
"+stats_13[6]+

155 "\n hedges-g= "+hedgesg[6]+", mean= "+stats_21[6]+", std= "+stats_22[6]+", median=
"+stats_23[6]

156 ,"Gd-L \n p-value= "+pvalue[7]+", mean= "+stats_11[7]+", std= "+stats_12[7]+", median=
"+stats_13[7]+

157 "\n hedges-g= "+hedgesg[7]+", mean= "+stats_21[7]+", std= "+stats_22[7]+", median=
"+stats_23[7]

158 ,"Ni-K \n p-value= "+pvalue[8]+", mean= "+stats_11[8]+", std= "+stats_12[8]+", median=
"+stats_13[8]+

159 "\n hedges-g= "+hedgesg[8]+", mean= "+stats_21[8]+", std= "+stats_22[8]+", median=
"+stats_23[8]

160 ,"W-L \n p-value= "+pvalue[9]+", mean= "+stats_11[9]+", std= "+stats_12[9]+", median=
"+stats_13[9]+

161 "\n hedges-g= "+hedgesg[9]+", mean= "+stats_21[9]+", std= "+stats_22[9]+", median=
"+stats_23[9]

162 ,"Zn-K \n p-value= "+pvalue[10]+", mean= "+stats_11[10]+", std= "+stats_12[10]+", median=
"+stats_13[10]+

163 "\n hedges-g= "+hedgesg[10]+", mean= "+stats_21[10]+", std= "+stats_22[10]+", median=
"+stats_23[10]

164 ]
165 xlocations = range(len(data_group1))
166 width = 0.2
167 symbol = ’r+’
168 ymin = -0.1
169 ymax = 1.1
170

171 ax = plt.gca()
172 ax.set_ylim(ymin,ymax)
173 ax.set_xticklabels( labels_list, rotation=90, fontsize=8 )
174

175 ax.grid(True, linestyle=’dotted’)
176 ax.set_axisbelow(True)
177 ax.set_xticks(xlocations)
178 plt.xlabel(’’)
179 plt.ylabel(parameter)
180 plt.title(element1, fontsize=20)
181

182 positions_group1 = [x-(width-0.5) for x in xlocations]
183 positions_group2 = xlocations
184

185 plt.boxplot(data_group1,
186 sym=symbol,
187 labels=[’’]*len(labels_list),
188 positions=positions_group1,
189 widths=width,
190

191 patch_artist=True,
192 boxprops=dict(facecolor=’g’),
193 )
194

195 plt.boxplot(data_group2,
196 labels=labels_list,
197 sym=symbol,
198 positions=positions_group2,
199 widths=width,
200

201 patch_artist=True,
202 )
203

204 plt.savefig(’box_plot_MOC_’+parameter+’_GD1_GD5/’+element1+’_’+parameter+’.png’,
bbox_inches=’tight’, dpi=800)

205 plt.cla()
206 plt.clf()

0

1 #multi_plot_all_data_v4_final.py
2 #Lukas Warnung
3 import numpy as np
4 import matplotlib as mpl
5 import matplotlib.pyplot as plt
6 import matplotlib.image as mpimg
7 from scipy import stats
8 from scipy.stats import pearsonr
9 from scipy.stats import spearmanr
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10

11 import matplotlib.pyplot as plt
12 import matplotlib.image as mpimg
13 import os
14

15 text_kwargs = dict(ha=’center’, va=’center’, fontsize=8, color=’C2’)
16

17 dirPath = "plots_high_correlation"
18

19 data_set = os.listdir(dirPath)
20 for png in data_set[:]:
21 if not(png.endswith(".png")):
22 data_set.remove(png)
23

24 i=0
25 for data in data_set:
26

27 img_correlation = mpimg.imread(’plots_high_correlation/’+data_set[i]+’’)
28

29 overlap_0_file = data_set[i]
30

31 overlap_0_file = overlap_0_file.replace(".png", "_overlap.png")
32

33 img_overlap_0_ = mpimg.imread(’overlap_log/’+overlap_0_file+’’)
34

35 overlap_file = data_set[i]
36

37 overlap_file = overlap_file.replace(".png", "_overlap_intensity.png")
38

39 img_overlap = mpimg.imread(’overlap_log/’+overlap_file+’’)
40

41 zerteilen = data_set[i].split("_",9)
42 print(zerteilen)
43

44 synchrotron = zerteilen[0]
45 specimen = zerteilen[1]
46 spot = zerteilen[2]
47 element_X = zerteilen[3]
48 element_Y = zerteilen[5]
49

50 if zerteilen[6] == "maps":
51 maps = zerteilen[6]+"_"+zerteilen[7]
52

53 else:
54 maps = zerteilen[6]
55

56 maps_2 = maps.split(".",2)
57 maps_2 = maps_2[0]
58

59 print(maps_2)
60

61 file_origin_X = mpimg.imread(’MA_LW_Gd data
selection/’+synchrotron+’/’+specimen+’/’+spot+’/’+maps_2+’/’+’PNG/’+element_X+’.png’)

62

63 zerteilen = data_set[i].split("_",9)
64 print(zerteilen)
65

66 synchrotron = zerteilen[0]
67 specimen = zerteilen[1]
68 spot = zerteilen[2]
69 element_X = zerteilen[3]
70 element_Y = zerteilen[5]
71

72 if zerteilen[6] == "maps":
73 maps = zerteilen[6]+"_"+zerteilen[7]
74 else:
75 maps = zerteilen[6]
76

77 maps_2 = maps.split(".",2)
78 maps_2 = maps_2[0]
79

80 print(zerteilen[2])
81

82 file_origin_Y = mpimg.imread(’MA_LW_Gd data
selection/’+synchrotron+’/’+specimen+’/’+spot+’/’+maps_2+’/’+’PNG/’+element_Y+’.png’)

83

84 text_file = data_set[i]
85

86 text_file = text_file.replace(".png", "_Log.txt")
87

88 with open(’overlap_log/’+text_file+’’) as f:
89 manders_data = f.readlines()[8]
90

91 with open(’overlap_log/’+text_file+’’) as f:
92 manders_data_pre_A = f.readlines()[1]
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93

94 with open(’overlap_log/’+text_file+’’) as f:
95 manders_data_pre_B = f.readlines()[2]
96

97 with open(’overlap_log/’+text_file+’’) as f:
98 manders_data_M1 = f.readlines()[25]
99

100 with open(’overlap_log/’+text_file+’’) as f:
101 manders_data_M2 = f.readlines()[26]
102

103 plt.subplot(231)
104 plt.imshow(file_origin_Y)
105 plt.axis(’off’)
106

107 plt.subplot(232)
108 plt.imshow(img_correlation)
109 plt.axis(’off’)
110

111 plt.subplot(233)
112 plt.imshow(img_overlap)
113 plt.axis(’off’)
114

115 plt.subplot(234)
116 plt.text(0.25, 0.25, ’(Red) ’+manders_data_pre_A+’(Blue) ’+manders_data_pre_B+
117 ’M=’+manders_data[2:]+’’+manders_data_M1+’’+manders_data_M2, **text_kwargs)
118 plt.axis(’off’)
119

120 plt.subplot(235)
121 plt.imshow(file_origin_X)
122 plt.axis(’off’)
123

124 plt.subplot(236)
125 plt.imshow(img_overlap_0_)
126 plt.axis(’off’)
127

128 print("-"+element_X+"-")
129

130 if element_X != "Co-K" and element_Y != "Co-K" and element_X != "W-L" and
131 element_Y != "W-L" and element_X != "Ar-K" and element_Y and "Ar-K":
132

133 plt.savefig(’multi_plot/multi_plot_’+data_set[i], dpi=500)
134

135 plt.close()
136

137 print(i)
138 print("-------")
139 print(data_set[i])
140 print("-------")
141 i=i+1
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7.2 ImageJ (Macro Language) Code

0 //Overlap_macro_multi_intensity_normal_master_v4_final.ijm
1 //Lukas Warnung
2

3 main_folder2 = getDirectory("main_folder");
4 save_folder = getDirectory("save_folder");
5

6 Threshold = "Percentile white";
7

8 synchrotronS = newArray("Diamond","ESRF");
9

10 synchrotronS_Length = synchrotronS.length;
11

12 for (i=0;i<=synchrotronS_Length-1;i++){
13

14 if (synchrotronS[i] == "Diamond")
15 {
16 specimens = newArray("GD1a","GD1b","GD1bsecond","GD2a","GD2b","GD3","GD4","GD5");
17 elements = newArray("Ca-Ka","Ar-K","Co-K","Cr-K","Cu-K","Fe-K","Gd-L","Ni-K","W-L","Zn-K");
18 }
19

20 if (synchrotronS[i] == "ESRF")
21 {
22 specimens = newArray("GD1b2","GD4","GD5");
23 elements = newArray("Ca-Ka","Ar-K","Co-K","Cr-K","Cu-Ka","Fe-K","Gd-L","Ni-K","W-L","Zn-K");
24 }
25

26 specimensLength = specimens.length;
27

28 for (h=0; h <= specimensLength-1;h++){
29 if (specimens[h] == "GD1a")
30 {
31 spots = newArray("183278","183279","183280");
32 }
33 if (specimens[h] == "GD1b")
34 {
35 spots = newArray("183242");
36 }
37 if (specimens[h] == "GD1bsecond")
38 {
39 spots = newArray("183309");
40 }
41 if (specimens[h] == "GD2a")
42 {
43 spots = newArray("183287","183288");
44 }
45 if (specimens[h] == "GD2b")
46 {
47 spots = newArray("183247","183248");
48 }
49 if (specimens[h] == "GD3")
50 {
51 spots = newArray("183270");
52 }
53 if (specimens[h] == "GD4" && synchrotronS[i] == "Diamond")
54 {
55 spots = newArray("183258");
56 }
57 if (specimens[h] == "GD5" && synchrotronS[i] == "Diamond")
58 {
59 spots = newArray("183293","183294","183297","183298","183300","183302","183303");
60 }
61 if (specimens[h] == "GD1b2")
62 {
63 spots = newArray("scan10","scan22");
64 }
65 if (specimens[h] == "GD4" && synchrotronS[i] == "ESRF")
66 {
67 spots = newArray("18","scan17","scan35");
68 }
69 if (specimens[h] == "GD5" && synchrotronS[i] == "ESRF")
70 {
71 spots = newArray("scan18","scan21","scan27","scan28","scan32","scan34","scan37","scan38");
72 }
73

74 spotsLength = spots.length;
75

76 for (s=0; s<=spotsLength-1;s++){
77

78 if (spots[s] == "scan10" || spots[s] == "scan18" || spots[s] == "scan21" || spots[s] == "scan32")
79 {
80 maps = "maps";
81 }
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82 else if (spots[s] == "scan17" || spots[s] == "scan37" || spots[s] == "scan38")
83 {
84 maps = "maps_20s";
85 }
86 else
87 {
88 maps = "maps_1s";
89 }
90

91 elementsLength = elements.length;
92

93 for (k=0;k<=elementsLength-1;k++){
94

95 Element_1=elements[k];
96

97 for (kk=0;kk<=elementsLength-1;kk++){
98

99 Element_2=elements[kk];
100

101 if(Element_1 != Element_2){
102

103 if(maps == "maps_20s")
104 {
105 min_threshold="200";
106 }
107 else
108 {
109 min_threshold="10";
110 }
111

112 main_folder = main_folder2+"/"+synchrotronS[i]+"/"+specimens[h]+"/"+spots[s]+"/"+maps;
113 File.makeDirectory(main_folder+"/PNG/");
114 File.makeDirectory(main_folder+"/"+Element_1+"_"+Element_2+"_plot");
115

116 run("Text Image... ", "open=["+main_folder+"/"+Element_1+".txt]");
117

118 run("Text Image... ", "open=["+main_folder+"/"+Element_2+".txt]");
119

120 selectWindow(""+Element_1+".txt");
121 //run("Threshold...");
122 setThreshold(min_threshold, 1000000000000000000000000000000000000000000.0000);
123 setOption("BlackBackground", true);
124 run("Convert to Mask");
125

126 saveAs("PNG", ""+main_folder+"/PNG/"+Element_1+"mask.png");
127

128 selectWindow(""+Element_2+".txt");
129 //run("Threshold...");
130 setThreshold(min_threshold, 1000000000000000000000000000000000000000000.0000);
131 setOption("BlackBackground", true);
132 run("Convert to Mask");
133

134 saveAs("PNG", ""+main_folder+"/PNG/"+Element_2+"mask.png");
135

136 close();
137 selectWindow(""+Element_1+"mask.png");
138 close();
139

140 open(""+main_folder+"/PNG/"+Element_1+"mask.png");
141

142 //run("Auto Threshold", "method="+Threshold+"");
143

144 open(""+main_folder+"/PNG/"+Element_2+"mask.png");
145

146 //run("Auto Threshold", "method="+Threshold+"");
147

148 run("JACoP ", "imga="+Element_1+"mask.png imgb="+Element_2+"mask.png thra=15 thrb=15 pearson overlap mm");
149 saveAs("Text", main_folder+"/"+Element_1+"_"+Element_2+"_plot/Log.txt");
150

151 selectWindow("Log");
152

153 path = save_folder+"/"+synchrotronS[i]+"_"+specimens[h]+"_"+
154 spots[s]+"_"+Element_1+"_vs_"+Element_2+"_"+maps+"_Log.txt";
155

156 saveAs("Text", path);
157 close("Log");
158

159 selectWindow(""+Element_1+"mask.png");
160 run("Red");
161 selectWindow(""+Element_2+"mask.png");
162 run("Blue");
163

164 selectWindow(""+Element_2+"mask.png");
165 run("Add Image...", ""+Element_2+"mask.png x=0 y=0 opacity=50");
166 //saveAs("PNG", main_folder+"/"+Element_1+"_"+Element_2+"_plot"+Element_1+"_"+Element_2+"_overlap.png");
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167

168 saveAs("PNG", save_folder+"/"+synchrotronS[i]+"_"+specimens[h]+"_"+
169 spots[s]+"_"+Element_1+"_vs_"+Element_2+"_"+maps+"_overlap.png");
170

171 close();
172 close();
173

174 run("Text Image... ", "open=["+main_folder+"/"+Element_1+".txt]");
175

176 run("Text Image... ", "open=["+main_folder+"/"+Element_2+".txt]");
177

178 selectWindow(""+Element_1+".txt");
179 run("Red");
180

181 selectWindow(""+Element_2+".txt");
182 run("Blue");
183

184 selectWindow(""+Element_2+".txt");
185 run("Add Image...", ""+Element_2+".txt x=0 y=0 opacity=50");
186

187 saveAs("PNG", save_folder+"/"+synchrotronS[i]+"_"+specimens[h]+"_"+
188 spots[s]+"_"+Element_1+"_vs_"+Element_2+"_"+maps+"_overlap_intensity.png");
189

190 close();
191 close();
192

193 run("Text Image... ", "open=["+main_folder+"/"+Element_1+".txt]");
194 selectWindow(""+Element_1+".txt");
195 saveAs("PNG", ""+main_folder+"/PNG/"+Element_1+".png");
196 close();
197

198 run("Text Image... ", "open=["+main_folder+"/"+Element_2+".txt]");
199 selectWindow(""+Element_2+".txt");
200 saveAs("PNG", ""+main_folder+"/PNG/"+Element_2+".png");
201 close();
202

203 }
204

205 }
206 }
207 }
208 }
209 }
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7.3 Data

Figure 70: The table describes an overview for all possible element combinations about the 31 single scan spots. The first column
describes the synchrotron, the second column shows the patient, the third column gives the scan spot number and from column
four the element combinations are set.
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Gd
spot w

ithout Ca

At the beginning of the correlation graph, a sm
all Gd

spot can be located and a sm
all linear correlation part at the end. The overlap show

s Gd
overlaps Ca to 

100%
.

Linear correlation area: Gd
is increasing relatively 

m
ore than Ca in that region. 

Ca w
ithout Zn

86



A high linear correlation can be observed. The Intensity of the signal is increasing from
 the outer to the inner region. Zn overlaps Ca to 

100%
.

Linear correlated  part

Ca w
ithout Zn
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The correlation is high and from
 0 to 80 Gd

counts a sm
all Gd

spot w
ithout Zn can be show

n. The overlap for Gd
is near to 1.  

Zn w
ithout Gd

can be located at the edge regions. 

Gd
w

ithout Zn
Zn w

ithout Gd
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Ca w
ithout Gd

The linear correlation is show
n in the m

iddle area. A region (left low
er corner) show

s Ca w
ithout Gd. Gd

overlaps Ca to 100%
.

Linear part
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Ca w
ithout Ni

The linear correlation is low. Ni overlaps Ca to 100%
.
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Ca w
ithout Zn can be determ

ined. Zn overlaps Ca to 100%
.  

Ca w
ithout Zn
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Zn w
ithout Gd

The tw
o linear parts of the X-Y plots can be localized in the overlap im

age. Zn w
ithout Gd

can be determ
ined. Gd

w
ithout Zn can not be 

detected in the X-Y plot. Gd
overlaps Zn to 100%

.

Linear part
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The linear correlation is nearly 0.7 and the non linear correlation is approx. 0.8. Zn w
ithout Ni can be determ

ined. Ni overlapsZn to 100%
.  

Zn w
ithout Ni

M
aybe noise
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Fe overlaps Ca near to 100%
. 

Ca w
ithout Fe
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The linear correlation is approx. 0.8. Gd
overlaps Ca to 100%

Ca w
ithout Gd
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The linear correlation is approx. 1. Ca w
ithout can be determ

ined. Zn overlaps Ca to 100%
.

Ca w
ithout Zn
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Zn w
ithout Gd

The non linear correlation is approx. 0.8. Gd
w

ithout Zn can not be determ
ined. Zn w

ithout Gd
can be show

n. Gd
overlaps Zn to 100%

.
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# 183242

GD1

98



M
aybe noise

The non linear correlation is approx. 0.8, but Fe is under the threshold level and it can not be show
n if Fe is present.

99



Ca w
ithout Zn

The linear correlation is approx. 0.8. Ca w
ithout Zn can be show

n. Zn overlaps Ca to 100%
. 
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# 183309

GD1
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Full overlap in both directions

The non linear correlation is approx. 0.8. The full overlap can be show
n in both directions.
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Zn w
ithout Gd

The linear correlation is approx. 0.7. Zn w
ithout Gd

can be determ
ined. Gd

overlaps Zn to 100%
.
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# 183287
GD2
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Full overlap in both directions

The non linear correlation is approx. 1. The full overlap can be show
n in both directions.
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# 183248

GD2

106



Full overlap in both directions

The linear correlation is approx. 0.9. The full overlap can be show
n in both directions.
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The linear correlation is approx. 1, but Cr is under the threshold level, and it can not be show
n if Cr is present.

Fe w
ithout Cr
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Ni w
ithout Cr

The linear correlation is approx. 0.9, but Cr is under the threshold level, and it can not be show
n if Cr is present.
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Ni w
ithout Fe 

The linear correlation is approx. 0.9. The overlap regions are very low, in both directions.

Fe w
ithout Ni
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GD3

#183270
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The linear correlation is approx. 0.7. Gd
is under the threshold level, and it can not be show

n if Gd
is present.

Fe w
ithout Gd
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#183258

GD4
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The linear correlation is approx. 1. The full overlap in both direction could be show
n.Full overlap in both directions
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The linear correlation is approx. 1. Fe w
ithout Gd

can be show
n. Gd

overlaps Fe to 100%
.

Fe w
ithout Gd

115



The non linear correlation is approx. 0.7. Zn w
ithout Fe can be show

n. Fe overlaps Zn to 100%
.

Zn w
ithout Fe
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#183293

GD5
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The non linear correlation is approx. 0.9. Fe overlaps Ca near to 100%
.

Ca w
ithout Fe
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The non linear correlation is approx. 0.7. Gd
overlaps Ca to 100%

.

Ca w
ithout Gd
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The linear correlation is approx. 1. The full overlap in both directions can be show
n.

Full overlap in both directions
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The linear correlation is approx. 0.9. Fe w
ithout Gd

can be show
n. Gd

overlaps Fe to 100%
.

Fe w
ithout Gd
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The non linear correlation is approx. 0.9. Zn w
ithout Fe can be show

n. Fe overlaps Zn to 100%
.

Zn w
ithout Fe
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The linear correlation is approx. 0.7. Zn w
ithout Gd

can be show
n. Gd

overlaps Zn to 100%
.

Zn w
ithout Gd
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#183294

GD5
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The non linear correlation is approx. 0.7. Fe overlaps Ca near to 100%
.

Ca w
ithout Fe
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The linear correlation is approx. 1. The full overlap in both directions can be show
n.

Full overlap in both directions

126



The non linear correlation is approx. 0.8. Gd
overlaps Fe to 100%

.

Fe w
ithout Gd
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The non linear correlation is approx. 0.8. Fe overlaps Zn to 100%
.

Zn w
ithout Fe
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#183297

GD5
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The linear correlation is approx. 0.7. The full overlap in both directions can be show
n.

Full overlap in both directions
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#183298

GD5
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The non linear correlation is approx. 0.8. Fe overlaps Ca approx. to 100%
.

Ca w
ithout Fe
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The linear correlation is approx. 1. The full overlap in both directions can be show
n.

Full overlap in both directions
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The non linear correlation is approx. 0.9. Fe overlaps Zn to 100%
.

Zn w
ithout Fe
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#183298

GD5
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The linear correlation is approx. 0.9. The full overlap in both directions can be show
n.

Full overlap in both directions
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#183302
(#183302)

GD5
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The linear correlation is approx. 0.7. The full overlap in both directions can be show
n.

Full overlap in both directions
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The linear correlation is approx. 0.7. The full overlap in both directions can be show
n.

Full overlap in both directions
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GD1

No Data for M
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ages

No Data for Rough Scans

# GD1b2 scan10
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The non linear correlation is approx. 0.8. Zn overlaps Ca to 100%
.

Ca w
ithout Zn
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The non linear correlation is approx. 0.7. Cr overlaps Gd
approx. to 90%

. A lot of the Cr signal is under the threshold level.

Gd
w

ithout Cr

M
aybe noise
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GD4No Data for Rough Scans
# GD4 scan18
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The linear correlation is approx. 0.9. Gd
overlaps Ca to 100%

Ca w
ithout Gd
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The linear correlation is approx. 0.9. Zn overlaps Ca to 100%

Ca w
ithout Zn
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The linear correlation is approx. 0.8. Ni overlaps Cu to approx. 80%
. A lot of the Ni and Cu signal is under the threshold level.

Ni w
ithout Cu

M
aybe Noise

146



The linear correlation is approx. 0.9. Zn w
ithout Gd

can be show
n. Gd

overlaps Zn to 100%
.

Zn w
ithout Gd
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Scan 17

GD4
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The non linear correlation is approx. 1. Zn overlaps Ca to 100%
.

Ca w
ithout Zn
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The linear correlation is approx. 1. Gd
overlaps Fe to 100%

.

Fe w
ithout Gd
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Scan 35

GD4

No Data for M
icroscopic Im

ages
# GD4 scan35
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Pixel error

The non linear correlation is approx. -0.8. The full overlap in both directions can be show
n.

Full overlap in both directions
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The linear correlation is approx. -0.8. Gd
overlaps Ca approx. to 100%

Ca w
ithout Gd

Pixel error
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The linear correlation is approx. 0.8. Ni overlaps Ca approx. to 100%

Ca w
ithout Ni

Pixel error
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The linear correlation is approx. 1. The full overlap in both directions can be show
n.

Full overlap in both directions
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The linear correlation is approx. 1. Gd
overlaps Fe to 100%

.

Fe w
ithout Gd

Pixel error
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Pixel error

The linear correlation is approx. -0.7. The full overlap in both directions can be show
n.

Full overlap in both directions
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The linear correlation is approx. 1. Gd
overlaps Fe to 100%

.

Pixel error
Gd

w
ithout Ni
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The linear correlation is approx. -0.8. Zn w
ithout Gd

can be show
n. Gd

overlaps Zn approx. to 100%
.

Zn w
ithout Gd
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The linear correlation is approx. 0.8. Ni overlaps Zn to 100%
.

Zn w
ithout Ni

Pixel error
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Scan 18

GD5
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The linear correlation is approx. 0.8. Zn overlaps Ca to approx. 100%
.

Ca w
ithout Zn
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The non linear correlation is approx. 0.7. Cr overlaps Gd
approx. to 90%

.

Gd
w

ithout Cr
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Scan 21

GD5
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The linear correlation is approx. 1. Zn overlaps Ca to approx. 100%
.

Ca w
ithout Zn

165



Scan 27

GD5

No Data for M
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ages
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Ca w
ithout Zn

The linear correlation is approx. 0.8. Zn overlaps Ca to 100%
.
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The non linear correlation is approx. 0.8. Zn w
ithout Gd

can be show
n. Gd

overlaps Zn to 100%
.Zn w

ithout Gd
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Scan 28

GD5
No Data for M
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ages
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The non linear correlation is approx. 0.6. Gd
overlaps Ca to 100%

Ca w
ithout Gd
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The linear correlation is approx. 1. Zn overlaps Ca to approx. 100%
.

Ca w
ithout Zn
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The non linear correlation is approx. 0.7. Zn w
ithout Gd

can be show
n. Gd

overlaps Zn to 100%
.Zn w

ithout Gd
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Scan 32

GD5
No Data for M
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ages
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The linear correlation is approx. 1. The full overlap in both directions can be show
n.

Full overlap in both directions
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Scan 34

GD5

No Data for M
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ages
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The linear correlation is approx. 0.8. Cr overlaps Ca to 100%
.

Ca w
ithout Cr
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The linear correlation is approx. 0.7. Gd
overlaps Ca approx. to 100%

Ca w
ithout Gd
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The linear correlation is approx. 1. The full overlap in both directions can be show
n.

Full overlap in both directions
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The linear correlation is approx. 0.7. Cr overlaps Zn to 100%
.

Zn w
ithout Cr
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The linear correlation is approx. 0.7. Zn w
ithout Gd

can be show
n. Gd

overlaps Zn and Zn overlaps Gd
approx. to 100%

.

Zn w
ithout Gd

180



GD5

No Data for M
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ages

No Data for Rough Scans

# GD5 scan37
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The non linear correlation is approx. 1. Gd
overlaps Ca to 100%

Ca w
ithout Gd
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Full overlap in both directions

The linear correlation is approx. 1. The full overlap in both directions can be show
n.
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The non linear correlation is approx. 1. Zn w
ithout Gd

can be show
n. Gd

overlaps Zn to 100%
.

Zn w
ithout Gd
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GD5

No Data for M
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ages

No Data for Rough Scans

# GD5 scan38
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The linear correlation is approx. 1. The full overlap in both directions can be show
n.

Full overlap in both directions
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The linear correlation is approx. 0.7. Fe overlaps Gd
to approx. 70%

.Gd
w

ithout Fe
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Data Interpretation
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and

Fe
isapprox.

80%
butthe

deviation
isvery

high.The
overlap
betw

een
Ca

and
Gd

isapprox.
50%

and
the

deviation
isalso

high.The
deviation
betw

een
Ca

and
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and
the

deviation
is

also
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overlap
betw

een
Ca

and
Crand

Cu
is

nearly
0%

.
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elem

entsis
nearly

0%
.

229



The
overlap

betw
een

Cu
and

allother
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0%
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The
overlap

betw
een

Fe
and

Ca
and

Zn
is

approx.80%
and

the
deviation

isvery
high.The
overlap
betw

een
Fe

and
Gd

isapprox.
50%

butthe
deviation
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very

high.The
overlap
betw

een
Fe

and
Niisapprox.
20%

.The
overlap
betw

een
Fe

and
Crand

Cu
is

nearly
0%

.

231



The
overlap

betw
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Gd
and

Ca,Fe
and

Zn
isveryhigh

and
the

deviation
isalso

very
high.The

overlap
betw

een
Gd

and
Niis

approx.10%
but

the
deviation

is
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high.The
overlap
betw

een
Gd

and
Crand

Cu
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nearly
0%

.
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The
overlap

betw
een

Niand
Ca,Fe,Gd

and
Zn

isapprox.
30%

and
the

deviation
is

high.The
overlap
betw

een
Niand

Crand
Cu

is
nearly

0%
.
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The
overlap

betw
een

Zn
and

Ca
isapprox.

100%
and

the
deviation

islow.
The

overlap
betw

een
Zn

and
Fe

isapprox.
70%

butthe
deviation
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high.The
overlap
betw

een
Zn

and
Gd

isapprox.
60%

and
the

deviation
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high.The
deviation
betw

een
Zn

and
Niisapprox.
30%

and
the

deviation
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high.The
overlap
betw

een
Zn

and
Crand

Cu
is

nearly
0%

.
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Data Interpretation
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Nishow
sa

significance
difference

(p-value=
0.05).

Forallelem
ents,no

significantdifferencescan
be

show
n.

Source:https://w
w

w
.statisticshow

to.com
/hedges-g/

GD5
(blue

left)tum
orous

GD1
(green

right)osteoporotic

Significance
Level

p
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(GroupsUnequal)

Hedges-g
(effectsize)

.)Sm
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naked
eye)=

0.2
.)M
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Effect=

0.5
.)Large

Effect(can
be

seen
bythe

naked
eye)=

0.8
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Nishow
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significance
difference

(p-value=
0.01).

Forallotherelem
ents,no

significantdifferencescan
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show
n.

GD5
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left)tum
orous

GD1
(green

right)osteoporotic
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Ni(p-value=
0.04)and

Zn
(p-value=

0.00)show
a

significance
difference.

Forallotherelem
ents,no

significantdifferencescan
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left)tum
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GD1
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significance
difference

(p-value=
0.06).

Forallotherelem
ents,no
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(p-value=

0.03)and
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ents,no
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Ca
(p-value=

0.01)and
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0.03)show

a
significance

difference.
Forallotherelem

ents,no
significantdifferencescan
be

show
n.

GD5
(blue

left)tum
orous

GD1
(green

right)osteoporotic

252



Fe
(p-value=

0.04)and
Zn

(p-value=
0.01)show

a
significance

difference.
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ents,no
significantdifferencescan
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n.

GD5
(blue

left)tum
orous

GD1
(green

right)osteoporotic

253



Fe
show

sa
significance

difference
(p-value=

0.03).

Forallotherelem
ents,no

significantdifferencescan
be

show
n.

GD5
(blue

left)tum
orous

GD1
(green

right)osteoporotic

254



Cu
(p-value=
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significance
difference

(p-value=
0.04).

Forallotherelem
ents,no

significantdifferencescan
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Data Interpretation
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Data Interpretation
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Forallelem
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(p-value=
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Data Interpretation
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(p-value=
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For Motivation

"Where we’re going we don’t need roads"

-Dr Emmett Brown
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