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ABSTRACT: Finite-temperature many-body perturbation theory in the
grand-canonical ensemble is fundamental to numerous methods for
computing electronic properties at nonzero temperature, such as finite-
temperature coupled-cluster. In most applications it is the average number
of electrons that is known rather than the chemical potential. Expensive
correlation calculations must be repeated iteratively in search for the
interacting chemical potential that yields the desired average number of
electrons. In extended systems with mobile charges the situation is
particular, however. Long-ranged electrostatic forces drive the charges such
that the average ratio of negative and positive charges is one for any finite
chemical potential. All properties per electron are expected to be virtually
independent of the chemical potential, as they are in an electric wire at
different voltage potentials. This work shows that per electron, the
exchange-correlation free energy and the exchange-correlation grand potential indeed agree in the infinite-size limit. Thus, only one
expensive correlation calculation suffices for each system size, sparing the search for the interacting chemical potential. This work
also demonstrates the importance of regularizing the Coulomb interaction such that each electron on average interacts only with as
many electrons as there are electrons in the simulation, avoiding interactions with periodic images. Numerical calculations of the
warm uniform electron gas have been conducted with the Spencer−Alavi regularization employing the finite-temperature Hartree
approximation for the self-consistent field and linearized finite-temperature direct-ring coupled-cluster doubles for treating
correlation.

1. BACKGROUND
In the warm-dense matter (WDM) regime a large number of
many-body states are thermalized. Also, the density is
sufficiently large to require a quantum mechanical treatment
of the electrons interacting with each other. WDM conditions
are found, for instance, during inertial confinement fusion
(ICF), in the metallic phase of hydrogen in gas giants, or in
matter interacting with high intensity laser fields.1 Even at room
temperature the thermal energy must be considered to be large
compared to the vanishing band gap of bulk metals.
The mobility of electrons at warm-dense conditions poses

challenges for ab initio simulations of extended systems that are
absent in zero-temperature calculations. Unlike at zero temper-
ature, the number of electrons in a volume of fixed shape
fluctuates. Periodic boundary conditions, usually employed in
extended systems, cannot model such fluctuations at length
scales beyond the size of the simulation cell. In reality, the
charges would move from one cell to the neighboring cell,
keeping the average charge constant. Under periodic boundary
conditions, on the other hand, charges can only appear or
disappear simultaneously in all periodic images of the simulation
cell. However, configurations of periodically repeating net-
charged cells are not allowed due to the diverging electrostatic

energy per volume. There are mainly two methods in current
state-of-the-art ab initio simulations at warm-dense conditions to
circumvent this difficulty: (i) The simulation is done in the
canonical ensemble where electrons are not permitted to enter
or leave the simulated volume. While this ensures charge
neutrality it also reduces the number of possible configurations,
affecting the system’s entropy.2 Path-integral quantum Monte
Carlo (PIQMC) calculations are usually conducted in the
canonical ensemble.3,4 (ii) Another possibility is to disregard the
parts of the electrostatic interaction stemming from the average
electron and background densities, thus removing the
divergence. This allows for grand-canonical simulations with a
fluctuating number of electrons including its effect on the
entropy. Perturbation-theory-related calculations usually apply
this method5,6 following the work of Kohn and Luttinger, in
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particular the assumption for arriving at eq 20 in ref 7. A physical
justification for this procedure would be if the fluctuations of the
positive background were fully correlated with the fluctuations
of the electrons. Different mobilities of electrons and ions,
however, question this assumption.
In this work, a third alternative is studied to treat long-range

electrostatic interactions under periodic boundary conditions.
Liang and co-workers8 have studied classical simulations of
mobile electrostatically interacting particles under periodic
boundary conditions. They look at the pair correlation function
and observe the theoretically expected Debey−Hueckel screen-
ing at long distances only under two conditions: (i) when
simulating in the grand-canonical ensemble, and (ii) when
limiting the range of the electrostatic interaction, such that the
particles do not interact with all of their own periodic images.
Here, the Coulomb interaction is truncated spherically such that
the sphere’s volume agrees with the volume of the simulation
cell. This modification is called regularization of the Coulomb
interaction and it turns divergent terms into finite terms. Care
must be taken that the infinite-size limits of the computed
quantities are not dependent on the details of the regularization
scheme, as discussed in section 2.
A spherical truncation scheme has already been developed by

Spencer and Alavi9 to avoid spurious Fock-exchange inter-
actions of the electrons with their periodic images for zero-
temperature calculations as an alternative to other methods
treating the occurring integrable singularity.10,11 This work
applies the truncation scheme to all parts of the electrostatic
interaction in the self-consistent field calculations, as well as in
the subsequent correlation calculation. Other regularization
schemes that limit the interaction range are also possible, such as
the minimal image convention (MIC) for atom centered
orbitals, or the Wigner−Seitz truncation scheme.12,13 For point-
like charges the spherical truncation is not continuous which
may pose difficulties when considering different atomic
configurations.
Related Work. Finite-temperature many-body perturbation

theory (FT-MBPT) offers an elementary framework for ab initio
calculations of WDM.5,6,14−16 Numerous approximation
schemes employ thermal MBPT, such as thermal second-
order MBPT,17−20 finite-temperature random phase approx-
imation,21−24 Green’s function based methods,25,26 as well as
some finite-temperature generalizations of coupled-cluster
methods.27−30 An alternative formulation of the coupled-cluster
methods has been brought forward recently in the framework of
thermo-field dynamics.31−33 Finite-temperature perturbation
theory is originally formulated in the grand-canonical ensemble;
however, formulations in the canonical ensemble exist.34,35

Equally, thermo-field dynamics can be employed in the
canonical ensemble.36

Analogous to ab initio calculations at zero-temperature,
thermal Hartree−Fock and density functional theory (DFT)
calculations are among the most widely used methods serving
also as self-consistent field (SCF) reference for FT-MBPT.37−39

For DFT it is in general not sufficient to use a zero-temperature
exchange-correlation functional and introduce temperature
merely by smearing. Temperature must be a parameter of the
exchange-correlation functional.40 At higher temperatures, a
large number of one-body states is occupied with non-negligible
probabilities. Orbital-free density functional theories (ofDFT)
aim at mitigating this with functionals that do not depend on the
usual Kohn−Sham orbital description of DFT.41,42 Canonical or
grand-canonical full configuration interaction methods can be

used for benchmarking more approximate theories.43 Finally,
various forms of Monte Carlo methods approach the finite-
temperature many-body problem in complementary ways as
they exhibit entirely different error sources. They include path-
integral Quantum Monte Carlo (PIQMC) calculations,3,4

Density Matrix Quamtum Monte Carlo (DMQMC) calcu-
lations,44−46 and Auxiliary Field Quantum Monte Carlo
(AFQMC) calculations.47−49 While PIQMC calculations are
usually conducted in the canonical ensemble, DMQMC and
AFQMC calculations have also been done in the grand-
canonical ensemble. High accuracy calculations of the warm
uniform electron gas are of particular interest since they can
serve for accurate temperature-dependent parametrizations of
DFT exchange-correlation potentials.50−52

The Kohn−Luttinger conundrum is also closely related to this
work. It states that the infinite-size zero-temperature limit of
finite-temperature many-body perturbation theory not neces-
sarily agrees with the infinite-size limit of zero-temperature
many-body perturbation theory. In the common approach
where the zero-momentum part of the electrostatic interaction is
disregarded, certain terms called anomalous diagrams affect both,
the chemical potential and the grand potential. It has been
shown that their contributions cancel in the zero-temperature
limit of the free energy under isotropic conditions7 and later
more generally.53,54 Hirata and co-workers developed a
perturbation theory that simultaneously produces order-by-
order corrections to the grand potential and the chemical
potential, while fixing the expected number of electrons.55,56

Employing the number-conserving perturbation theory and
treating possible degeneracies of the SCF reference in the low-
temperature limit,57 they overcome the conundrum.58 With the
method of this work the situation is different and will be
discussed at the end of subsection 2.4. Further discussions can
be found in refs 18−20 and 59.

2. METHODS
Let us now develop the regularization approach for the
prototypical warm-dense system: the warm uniform electron
gas (UEG). The UEG is a model of a metal, where the positive
ions of the lattice are replaced by a static homogeneous positive
background charge. It has a vanishing band gap in the infinite-
size limit and thus qualifies for a warm-dense system at all
nonzero temperatures. All properties of the warm UEG depend
only on the thermodynamic state, specified by its density and
temperature. The density is usually given in terms of the
Wigner−Seitz radius rs in atomic units, such that the volume of a
sphere with radius rs corresponds to the average volume per
electron. It is also convenient to specify the temperature in terms
of the dimensionless ratio θ = kBT/εF, where kBT is the average
thermal energy and εF = kF2/2 is the Fermi energy of a free spin-
unpolarized (paramagnetic), infinite electron gas at the
corresponding density and at zero temperature with kF3 = 9π/
4rs3. This defines a natural temperature scale where different
densities can be compared to each other more directly.
The UEG is modeled by a finite cubic box of length under

periodic boundary conditions having the volume
= = r4 /33

s
3 . It contains a homogeneous positive

charge density with a total charge of elementary charges,
which is considered fixed. In the grand-canonical ensemble the
number of electrons in the system is not fixed but rather
fluctuates around its expectation value which depends on the
chemical potential μ. Later, μ will be chosen such that the
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expected number of electronsN N equals, or is close to, the
number of positive charges . To treat the diverging
electrostatic interaction, the Spencer−Alavi or the Yukawa
regularization of the electrostatic interaction is used. The
Spencer−Alavi interaction is given by the usual Coulomb
interaction 1/r12 for the distance between two electronic
coordinates <r12 that lie within a sphere of radius . The
interaction is zero otherwise. The truncation radius = rs

1/3

is coupled to the system size and the simultaneous limit
3 is studied. The kernel of this interaction within a

sum over momenta is =V q q q( ) 4 (1 cos )/ 2. For finite
the kernel is also finite at q = 0 and evaluates to 2 /2 .

With this choice the interaction “sees” on average electrons.
In the limit it reduces to the usual electrostatic
interaction 1/r12 for all distances.

9 The Yukawa regularization is
also studied for comparison. It is given by exp(−αr12)/r12 in real
space and by = +V q q( ) 4 / ( )2 2 in momentum space in a
sum over states. The regularization parameter α is chosen such
that the weighting function exp(−αr12) integrates to , which
means that each electron “sees” electrons. With this choice,
the regularization parameter is coupled to the system size
satisfying = r6/3

s
3 and the limit 3 is studied.

For numerical computations the Yukawa regularization is an
inefficient choice since asymptotic behavior usually only sets in
at impracticably large system sizes. While it is not useful for
retrieving absolute free energies, the difference between free
energies reaches asymptotic behavior for the system sizes
studied in this work. Figure 1 illustrates the regularized
electrostatic interaction energy between unit charges at a
distance r12 for the employed regularization schemes for
different system sizes.
All states are expanded in antisymmetrized products of one-

electron wave functions that are eigenfunctions of the single-
electron kinetic operator −∇2/2 under periodic boundary
conditions. The normalized eigenfunctions are the plane waves
commensurate with the box length

= ·r( , )
1

ek
k ri

(1)

with k 2 /3 and where σ, τ ∈ {↑, ↓} denote the spin
coordinate of the wave function and the electron, respectively.
With the operator †ck , creating an electron in the state k, σ and

ck , annihilating it, the electronic Hamiltonian of the modeled
UEG reads

= + +

=

+ | |

† †

+
† †

k

q

H T V V

c c V c c

V c c c c

2
(0)

1
2

( )

k
k k

k
k k

k k q
k q k q k k

ext

,

2

, ,
,

, ,

, , , ,
, , , ,

(2)

It consists of three terms: the kinetic term T̂, the electron−
background interaction Vext and the electron−electron inter-
actionV , respectively. Exact diagonalization of the Hamiltonian
is infeasible except for very limited system sizes. This work shall
employ the approximation approach of computational materials
science, where one first performs a self-consistent field
calculation, followed by an approximation of the correlation
based on the SCF result. In accordance with the common
workflow of random phase approximation (RPA) calculations
for low-band gap systems, the SCF only employs the Hartree
approximation rather than Hartree−Fock and exchange is
considered at first order non-self-consistently.60 The finite
temperature correlation contributions are estimated by a
linearized form of the direct-ring coupled-cluster doubles
approximation.
2.1. Self-Consistent Field in the Hartree Approxima-

tion. In the self-consistent field approach the two-body operator
in the electron−electron interactionV is partially contracted to a
one-body interaction.37 In the Hartree approximation only the
direct contraction is considered and the resulting one-body
operator is given by

= + + † †H T V V c c c c(0)
k k

k k k k0 ext
, , ,

, , , , 0
(3)

where A 0 denotes the one-body thermal equilibrium expect-
ation value of the operator A, defined by

=
{ }
{ }

A
Atr

tr0
0

0 (4)

with the (non-normalized) one-body density matrix

= { }H Nexp ( )0 0 (5)

Figure 1. Illustration of the Spencer−Alavi (red) and the Yukawa (orange) regularization of the electrostatic interaction for different system sizes .
The respective regularization parameter or α is coupled to the system size such that the scope of the interaction agrees with the system volume .
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All terms in eq 3 are diagonal in the chosen basis so we can
immediately write the equations for the eigenvalue of each state i
= (ki, σi)

= +
k

V N
2

(0)( )i
i
2

0 (6)

with = +N 1/(e 1)i0
( )i , Introducing the notation εi =

ki
2/2 + Δε, we have to find a shift of eigenenergies Δε, uniform
for all states, satisfying the nonlinear equation

i
k
jjjjjj

y
{
zzzzzz

Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

=
++

V
e

(0)
1

1k
i

N

( /2 )i
2

0 (7)

for the given thermodynamic state point ( , , ). So far, the
number of positive charges is an independent parameter. The
quantity ΔN0 denotes the net-negative charge of the system in
the noninteracting approximation. Note that it may differ from
zero for charge neutral systems as the fully interacting =N N
may differ from its noninteracting approximation =N N0 0.
Having solved eq 7 for Δε we can evaluate the noninteracting
grand potential

= +1
log(1 e )k

i
0

( /2 )i
2

(8)

with the ef fective chemical potential η ≔ μ − Δε. If we want to
compare energies per electron for different system sizes we also
need to account for the background−background interaction
energy, which is independent of the electronic degrees of
freedom. Furthermore, pairwise interactions in Ω0 are double-
counted in the SCF. Accounting for both contributions yields
the mean-field grand potential in the Hartree approximation

= + V N
1
2

(0)( )H 0
2

0
2

(9)

Note that the expected number of electrons in the Hartree
approximation NH = −∂μΩH equals the expected number of
electrons of the noninteracting system N0 = −∂μΩ0, which is
given by the sum ∑ini of noninteracting occupancies

= = +†n c c 1/(e 1)k
i i i 0

( /2 )i
2

The Hartree grand potential ΩH(μ) is a function of the
chemical potential μ. Of particular interest is the chemical
potential μH for which the expected number of electrons in the
Hartree approximation NH matches the number of positive
charges . This chemical potential is chosen for determining
the Hartree free energy from a Legendre transformation

= +F ( )H H H H . For this particular chemical potential,
the solution of the Hartree equationΔε = 0 follows trivially from
eq 7 and the effective chemical potential ηH = μH − Δε equals the
Hartree chemical potential.
A Rough Estimate of the Hartree Self-Consistent Field.

Before turning to the other contributions to the grand potential,
it is interesting to estimate the Hartree solution Δε for chemical
potentials μ close to the chemical potential μH, which satisfies

=NH . To this end, we expand the expected number of
electrons NH = −∂μΩ0 as a function of the effective chemical
potential η = μ − Δε at the Hartree effective chemical potential
ηH = μH, where Δε = 0. The expansion reads

= +N ( ) ( ) ( ) (( ) )H H
2

0 H H
2

(10)

where = n( ) ( )i i
i2

0 H H with the shorthand notation
=n n n(1 )i

i
i i . We can approximate the difference

=N N0 H between the expected number of electrons in
the SCF calculation and the number of positive charges to first
order in (η − μH) by

N ( ) ( )0 H
2

0 H (11)

We further assume that in the warm-dense-matter regime the
term∑ini(1− ni) scales linearly with system size. Together with
eq 7Δε = V(0)ΔN0 we are now in the position to approximately
solve eq 11 for ΔN0:

N
V(0) 1

( )0

2
0

2
0

H
(12)

Inserting ΔN0 into eq 7 and expanding in powers of for large
finally yields

i
k
jjjjjj

y
{
zzzzzz+ +

r
( ) 1

2
3

( )H
s

2
0

1/3 4/3

(13)

+N
r

( )
2
3

( )0 H
s 1/3 1/3

(14)

where we inserted =V(0) 2 /2 for the Spencer−Alavi
truncated Coulomb kernel. Interestingly, the ( )1/3 terms in
the above equations are exactly linear in (μ − μH), althoughΔN0
may have terms depending on higher orders of (μ − μH). This
stems from the relation N1/3

0, which is exactly linear.
In case of the Yukawa regularization, V(0) is 4 / 2 which
gives a prefactor of 62/3rs/3 instead of 2rs/3 in both of the above
equations.
This is an essential result. For a finite deviation of the chemical

potential μ from the noninteracting chemical potential μH = μ0,
the expected number of excess electrons N 0 of the entire
system diverges as ( )1/3 . It grows proportionally to the range

of the regularized Coulomb interaction. However, the
expected number of excess electrons per positive charge always
converges to one as ( )2/3 and the electrostatic energy of the
system per electron Δε asymptotically reflects the change of the
chemical potential. When changing the chemical potential, the
relaxed self-consistent field eigenenergies asymptotically change
in the exact same way for large enough system sizes. The
numerical results in subsection 3.1 indicate that this behavior
already sets in for relatively low system sizes. Since only the
difference of the chemical potential μ and the eigenenergies εi =
ki
2/2 + Δε enter in subsequent calculations, size-intensive
observables will be asymptotically independent of the choice of
μ in the thermodynamic limit. At warm-dense conditions, any
finite choice is acceptable, including μ = 0, which is the classical
definition of the chemical potential of electrons in a grounded
conductor that can supply or absorb any number of electrons.

Decoupling the Infinite-Range Limit of the Coulomb
Interaction. Instead of the simultaneous limit of

3 , studied in this work, one could also perform
the infinite-range limit before performing the infinite-
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size limit . An estimate, analogous to eqs 13 and 14,
yields

+ +r( )(1 2 /3 ( ))H s
3 2 2

0
4

and

+N r( )2 /3 ( )0 H s
3 2 4

respectively. With increasing range , deviations become
increasingly expensive and one arrives asymptotically at the
canonical ensemble for exactly =N0 electrons, where the
chemical potential μ plays no role anymore. However, classical
systems of charged particles exhibit larger finite-size errors when
simulating in the canonical ensemble compared to simulating in
the grand-canonical ensemble with the range of the Coulomb
interactions coupled to the size of the simulation cell.8 Thus, this
work pursues the latter approach.
Using Fixed Instead of Relaxed Orbitals. If one chooses to

work with a fixed set of orbitals and eigenenergies for various
values of the chemical potential μ, the electron−background
interaction and the electron−electron density inter-
action do not cancel for μ deviating from μH. There are
terms of order n in the perturbation series whose contributions
scale as ( ( ) )n2/3 . They are not extensive for each n and
alternating in sign. This can be cured by summing the
interactions to infinite order, which is equivalent to performing
an SCF calculation at the modified chemical potential.61

Fluctuations of the Number of Electrons. From
= +N NH 0 we can also estimate the variance δNH

2 of the
fluctuations of the number of electrons in the SCF calculation
for large by

= +N
N r1 2

3
( )H

2 H s 1/3 1/3

(15)

This agrees qualitatively with classical charge fluctuations δNC
2

on the surface of a grounded conducting sphere of radius
= rs

1/3, found from the equipartition theorem

=
N 1C

2

(16)

Note that we need to consider the response of the one-body
energies to changes of the chemical potential for computing
derivatives of the grand potential beyond first order, such as
∂NH/∂μ = −∂2Ω0/∂μ2 in eq 15. For comparison, a fixed density
matrix 0 that separates into a product of one-body density
matrices is only capable of describing electron-number
fluctuations of the form =N n n(1 )i i i0

2 , which is propor-

tional to rather than to 1/3 at warm-dense conditions.
2.2. First-Order Exchange. The self-consistent field

approximation is crude but computationally efficient. To
improve on the approximation, finite temperature many-body
perturbation theory (FT-MBPT) offers an expansion of the
grand potential in powers of the difference =H H H1 0
between the true Hamiltonian Ĥ and the self-consistent field
Hamiltonian H0. Having employed the Hartree approximation
for the SCF, the leading order term is the first-order exchange
term

where we again use compound indices i = (ki, σi) and j = (kj, σj)
to denote the spatial and spin components of the respective spin-
orbitals. We also employ the shorthand notation nij... = ninj... for
products of one-body occupancies. Vsr

pq denotes the components
of the electron−electron interaction operator in the basis of the
plane-wave spin-orbitals such that

= † †V V c c c c
1
2 k k k k

pqrs
sr
pq

, , , ,p p q q r r s s

For a translationally invariant, isotropic interaction the
components read

= | |+ k kV V( )k k k ksr
pq

q rs
p

r
q

p q r s (18)

The first-order exchange term with non-Hartree−Fock orbitals
is often referred to as exact exchange (EE). It is given by

= | |k kn V1
2

( )
ij

ij i jx j
i

(19)

Adding the first-order exchange contributionΩx toΩH yields the
improved Hartree-exchange approximation ΩHx.
2.3. Linearized Direct-Ring Coupled Cluster. Let us now

turn to correlation and exchange effects beyond first order. Here,
it is treated at the level of linearized direct-ring coupled-cluster
doubles (ldrCCD) theory.30 A truncation of the perturbation
expansion at any finite order n diverges as T( )n( 1) for the
uniform electron gas for low temperatures T in the infinite-size
limit. On the other hand, summing over the so-called ring terms
up to infinite order n yields convergent results at zero
temperature in the limit after n → ∞.62,63 The
analogous ring-term summation of finite-temperature MBPT
also yields convergent results for all temperatures although its
limit T → 0 might differ from the result obtained from a zero-
temperature theory. We desire a theory with such a convergence
behavior for T → 0, at least in principle. ldrCCD is one of the
simplest theories providing this resummation of the ring terms.
It contains all ring terms that can be formed with exactly two
particle/hole pairs and additionally contains their corresponding
screened-exchange terms. It is determined by the finite-
temperature linearized direct-ring coupled-cluster amplitude
integral equations

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

=

+ +

T

V n V T n V T

( ) ( 1) d e

( ) ( )

ij
ab

ij
ab

ck
k
c

cj
kb

ik
ac

dl
l
d

id
al

lj
db

0

( ) ij
ab

(20)

withΔij
ab = εa − εi + εb − εj and where we now also need products

of vacancy and occupancy probabilities, denoted by
=n n n(1 )k

c
c k. eq 20 can also be given in terms of diagrams

With the solutions of the amplitude functions Tij
ab(τ), satisfying

eq 20 on the interval τ ∈ [0, β] with the initial conditions Tij
ab(0)

= 0, the ldrCCD grand potential can be evaluated from
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with =n n n n n(1 ) (1 )ij
ab

a i b j. All indices iterate in principle
over the infinite number of plane wave states. Practical
truncation schemes are discussed in section 3.3. The linear
system of coupled integral equations in eq 20 can be solved by
diagonalizing an effective particle/hole interaction H̃, analogous
to the Tamm−Dancoff approximation of the Casida equations
at zero temperature. The effective particle/hole interaction
reads

= + = *H n V U Uja
bi

a
b

j
i

j
b

ij
ab

ja
bi

jF
b

F
F

a
iF

(22)

which, interpreting the indices (b, j) as a compound row index
and the indices (a, i) as a compound column index, is a
hermitian matrix and thus permits a real-valued eigendecompo-
sition. We can then transform the electron repulsion integrals
with and without exchange into the space of eigenmodes

=W U U n V V( )FG
abij

iF
a

jG
b

ij
ab

ab
ij

ab
ji

(23)

=V U U n VFG
abij

iF
a

jG
b

ij
ab

ab
ij

(24)

and finally retrieve the ldrCCD approximation of the correlation
grand potential from

i
k
jjjjj

y
{
zzzzz= + *W V1 e 1 1

2FG FG FG
FG

FG
c 2

FG

(25)

with ΛFG = ΛF
F + ΛG

G and * =V VFG
FG denoting the conjugate

transpose.30

2.4. Free Energies. So far, we have discussed all considered
contributions to the grand potential

= + +( ) ( ) ( ) ( )Hxc H x c (26)

as a function of the thermodynamic state point in the grand-
canonical ensemble, in particular of the chemical potential μ.
The number of positive charges is merely a system parameter.
We are, however, interested in the free energy F ( )Hxc of the
charge-neutral system where the expected number of electrons
NHxc≔ −∂μΩHxc equals the fixed number of positive charges.
It is found from the Legendre transformation

= +F ( ) ( )Hxc Hxc Hxc Hxc (27)

where μHxc satisfies the charge-neutrality condition for the
Ha r t r e e - e x c h a n g e - c o r r e l a t i o n g r a n d po t e n t i a l

=( )Hxc Hxc . The final quantity of interest is the
exchange-correlation (xc) free energy Fxc = FHxc − FH beyond
the free energy of the self-consistent field solution

= +F ( ) ( )H H H H , where μH satisfies the charge-
neutrality condition for the Hartree grand potential

=( )H H . Note that in general the Hartree-exchange-
correlation chemical potential μHxc differs from the Hartree
chemical potential μH, which is the noninteracting chemical
potential.
A Rough Estimate of the Exchange-Correlation Free

Energy. Let us now estimate the behavior of μHxc and Fxc for
large system sizes .We start by looking at the charge-neutrality
condition =( )Hxc Hxc , for the Hartree-exchange-

correlation chemical potential μHxc. From eq 26 we can
immediately write the expected number of electrons as −∂μΩH
− ∂μΩxc, where−∂μΩH =NH is the expected number of electrons
in the Hartree approximation at the interacting chemical
potential μHxc, which differs from for μ ≠ μH. At the end of
subsection 2.1 we have estimated that it behaves as

+ r( ) ( )Hxc H s
1/3 for sufficiently large , according

to eq 14. From eqs 19 and 25 it follows that the only terms that
depend on μ in the remaining contribution Ωxc are the
o c c u p a n c y a n d v a c a n c y e x p e c t a t i o n v a l u e s

= +n e1/( 1)i
( )i and na = 1 − na, respectively. The

expectation values ni depend only on the difference εi − μ
between the eigenenergies εi = ki

2/2 + Δε and the chemical
potential μ, whereΔε is the shift of eigenenergies, uniform for all
states i, found from the self-consistent field solution for the
interacting chemical potential μHxc. Using the notion of the
effective chemical potential η = μ − Δε introduced in subsection
2.1, we can write the derivative with respect to the chemical
potential in terms of a derivative with respect to the effective
chemical potential from the chain rule

=( ) ( )( ( ))xc xc (28)

We have already estimated the asymptotic behavior of Δε in eq
13 from which we can find the behavior of ∂μη(μ) for large :

+r
( )

2
3

( )s
2

0

1/3 4/3

(29)

Note that −∂ημ
2 Ω0 = β∑ini

i scales linearly with under warm-
dense conditions. Similarly, since ∂ηna = −βna

a, we can also
assume that −∂ηΩxc scales at most linearly with the system size

under these conditions. Collecting all contributions to the
expected number of electrons gives

i
k
jjjjjj

y
{
zzzzzz+ +

+

r
( )

2
3

( )

Hxc Hxc Hxc H
xc

2
0

s 1/3

1/3 (30)

where the fraction inside the parentheses does not depend on
asymptotically. Remarkably, this means that the expected
n u m b e r o f e l e c t r o n s p e r p o s i t i v e c h a r g e

+N / 1 ( )Hxc
2/3 converges asymptotically to one

for large system sizes for any choice of the chemical potential
μHxc. Still, the absolute deviation of NHxc from does depend
on μHxc and scales as ( )1/3 with the number of positive
charges . From this deviation we can approximately solve the
charge-neutrality condition to find the Hartree-exchange-
correlation chemical potential:

= N N
n

( )

( ) ( ) ( )i i
iHxc H

xc H
2

0 H

0

H (31)

Although the expected number of electrons per positive charge
converges to one for any chemical potential in the thermody-
namic limit, there is a nonvanishing deviation from the
noninteracting chemical potential μH required if also the
absolute expected number of electrons NHxc should match the
number of positive charges for large .
Knowing the asymptotic behavior of the interacting chemical

potential μHxc we can now estimate the free energy for large
system sizes. For that purpose, we expand the Hartree-exchange-
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correlation free energy at the noninteracting chemical potential
in eq 27 in powers of the difference (μHxc − μH), which we have
found to be finite but approximately independent of :

= +

+ +

F ( ) ( ) ( )

(( ) )

Hxc Hxc H Hxc H Hxc H

Hxc H
2

Hxc (32)

Subtracting the Hartree free energy = +F ( )H H H H we
arrive at an estimate of the exchange-correlation free energy
expansion

+

+

F ( ) ( ) ( )

(( ) )

xc xc H Hxc H xc H

Hxc H
2

(33)

Our estimate of ∂μη in eq 29 is approximately independent of μ.
Therefore, the higher derivatives of the exchange-correlation
grand potential occurring in the above expansion are estimated
to be of the form ( )( )n n n

... xc ... xc and they thus scale

at most as ( )1/3 .
Using eq 28 for ∂μΩxc and inserting the estimate for (μHxc −

μH) from eq 31 finally gives us an estimate of the exchange-
correlation chemical potential for large

+ +F
r

( ) ( )
2
3

( ) ( )xc xc H
s

Hxc H
2 1/3 1/3

(34)

In the thermodynamic limit the exchange-correlation grand
potential per electron, evaluated at the noninteracting chemical
potential, is estimated to agree with the exchange-correlation
free energy per electron =f Flim ( )/xc xc , found at the
interacting chemical potential. As for the SCF estimates, using
the Yukawa regularization yields a prefactor of 62/3rs/3 instead of
2rs/3 in the above equation.
This is the main result of this work, and the numerical studies

in the following section show that this asymptotic estimate
applies already at relatively small system sizes in the uniform
electron gas for the densities and temperatures considered. For
finite system sizes , eq 34 relates the difference between
Ωxc(μH) and F ( )xc to the difference between the interacting
and the noninteracting chemical potential. The latter converges
faster with system size and this relation permits an estimate of
the remaining finite-size error inΩc for the thermodynamic limit
extrapolation. One can also employ eq 31 to estimate the
interacting chemical potential μHxc from a correlation calculation
at a noninteracting chemical potential if the derivative with
respect to η can be found efficiently.
Comparison with the Madelung Technique and the

Kohn−Luttinger Conundrum. This work examines the
simultaneous limit of the interaction range and the system
size 3 . The scope of the electrostatic interaction is
limited to the size of the system . This is the key ingredient for
the free energy per electron to be asymptotically independent of
the chemical potential. A spherically truncated interaction and
the Yukawa regularized interaction are studied in detail in this
work. Other truncation schemes, such as the minimal image
convention or theWigner−Seitz truncation, are also expected to
yield this behavior, albeit with different prefactors. If the infinite-
range limit is taken before the thermodynamic limit

, the ensemble reduces to the canonical ensemble, as
discussed at the end of subsection 2.1, which is expected to
exhibit larger finite-size errors already in classical systems.8

A common alternative to limiting the scope of the electrostatic
interaction is the Madelung technique. It considers the
interaction energy ξ < 0 of an elementary point charge with its
own periodic images and a neutralizing background charge for
the zero-momentum part of the Coulomb interactionV(q = 0) =
−ξ. For other momenta qwith q = |q| > 0, the standard Coulomb
interaction =V q q( ) 4 / 2 is employed.64 This technique was
developed for Monte Carlo simulations in the canonical
ensemble and assumes a charge-neutral simulation cell under
periodic boundary conditions. However, it has also been applied
to finite temperature MBPT calculations in the grand-canonical
ensemble,28,49 where charge-neutrality occurs only on average
unless the fluctuations of electrons and positive charges are fully
correlated�an unlikely scenario considering their different
masses. Otherwise, this choice for the Hamiltonian is an
approximation. In the limit of infinitely large simulation cells, the
Madelung term vanishes ξ → 0 and one arrives at the
assumption V(q = 0) = 0 that Kohn and Luttinger make to
arrive at eq 20 in ref 7.
In this work they find that the infinite-size and zero-

temperature limit of the grand potential in metals depends on
the order of the limits and reduces to the value produced by
zero-temperatureMBPT only for afterT → 0 and if the
zero-temperature limit of the SCF reference is nondegenerate.
In the paramagnetic case, all orbitals of a common eigenenergy
must be asymptotically doubly occupied or not at all. For the
simple-cubic UEG this only applies to system sizes of

= 2, 14, 38, 54, ... This discontinuity is called Kohn−
Luttinger conundrum, although the authors never used this
term. In the reverse order, the result differs by a non-zero value,
stemming from so-called anomalous terms.7 Such terms contain
orbitals that are simultaneously particles and holes and these
terms are nonvanishing if the density of states at the Fermi
surface is nonvanishing. For an electron−electron interaction
satisfying the assumption V(q = 0) = 0 they also show that the
correlation contribution of the anomalous terms to the chemical
potential exactly counteracts the anomalous terms in the grand
potential when regarding the Legendre transformed free energy
for isotropic systems.
With the method proposed in this work, the situation is

different. For a fixed finite T > 0, the free energy per electron is
asymptotically independent of the chemical potential for

according to eq 34. Correlation corrections to the
chemical potential play no role for the free energy per electron
and contributions from anomalous terms to the exchange-
correlation grand potential are not canceled. Taking the limit T
→ 0 after may yield a different result than
after T → 0 in metallic systems.
In this work, only finite systems have been considered that

have no partially occupied orbitals in the limit T → 0. For each
system size, the conventional closed-shell zero-temperature
ldrCCD calculation converges and agrees with theT → 0 limit of
the finite-temperature ldrCCD calculation at the respective
system size.30 If the finite-temperature SCF reference becomes
degenerate for T → 0, as in system sizes deviating from the
simple-cubic closed-shell numbers = 2, 14, 38, 54, ..., finite-
order thermal MBPT calculations diverge, as demonstrated by
Hirata.57 ldrCCD calculations have been shown to converge to a
finite value for such systems owing to the infinite-order
resummation.30 Still, it remains to be studied whether an
infinite-size extrapolation using degenerate system sizes, which
deviate from the above closed-shell numbers, yields the same
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result as the thermodynamic limit extrapolations from closed-
shell system sizes presented in this work. At zero temperature, it
is a common practice only to choose closed-shell sizes.
Extrapolations of finite-system calculations to the infinite-size
limit agree well with continuous momentum integration-based
methods that are in the thermodynamic limit by construc-
tion.65,66

At finite-temperature, only few resummed theories, such as
the random phase approximation (RPA),24 can be integrated in
momentum-space in practice, allowing the study of the T → 0
limit after the limit in metallic systems. However, the
only anomalous terms contained in direct-ring theories, such as
RPA and ldrCCD, are particle/hole rings with zero momentum
transfer q = 0. Including or excluding this point has no effect on
the integral. Yet, there are more anomalous terms and whether
their sum in other theories is zero, finite, or even diverging in the
grand potential is an open question and topic of ongoing
research. An alternative question is, how the number-conserving
perturbation theory of Hirata and co-workers55,56,67 can be
integrated in an infinite-order theory, such as RPA or coupled-
cluster.

3. NUMERICAL RESULTS
To assess the large system-size estimates in the previous section,
numerical calculations of the paramagnetic uniform electron gas
have been conducted for simple-cubic systems containing 38,
54, 66, 114, 162, 246, 294, 342, 358, and 406 electrons on
average. The system sizes have been chosen such that
degenerate spatial orbitals can be fully occupied at zero-
temperature in a closed-shell self-consistent field calculation.
3.1. Hartree Self-Consistent Field. Unlike in Hartree−

Fock, where exchange is included in the SCF calculation, the
metallic spectrum of the free uniform electron gas remains in the
Hartree SCF. No band gap forms since the eigenenergies of
mostly occupied and mostly unoccupied orbitals are affected in
the same way. At zero temperature this has been found to be
relevant for RPA-like calculations.60 Consequently, each
eigenvalue in eq 6 only depends on its kinetic energy and the
sum of all occupancies. A uniform shift of the eigenenergiesΔε is
the only number that needs to be found, although in a nonlinear
equation. At finite temperature, all orbitals contribute in
principle. In this work the number of spatial orbitals for the
closed-shell SCF calculation has been truncated at roughly 800
times the number of orbitals occupied at zero temperature. Sums

over the orbitals beyond this number occurring in Ω0 and NH
have been approximated by integrals. With this treatment, all
SCF quantities are well converged and the computation time for
the SCF calculation is still negligible compared to the correlation
calculations. Note that the SCF calculations have been repeated
to yield relaxed eigenenergies for each value of the chemical
potential in search for the chemical potential μHxc where the
expected number of electrons matches the number of positive
charges .
Only the difference between the eigenenergies εi = ki

2/2 + Δε
and the chemical potential μ occurs in the expressions of many-
body perturbation theory where Δε depends on μ. Thus, they
can be viewed rather as functions of the effective chemical
potential η = μ − Δε. Figure 2 shows how the effective potential
changes when the chemical potential is changed. It plots the
derivative ∂η/∂μ against 2/3 where is the system size. The
derivative has been evaluated at the fully interacting chemical
potential μHxc, except for the largest system size = 23674,
where no correlation calculation has been conducted and μH has
been used instead. Already for moderate system sizes, a change
of the chemical potential has about 2 orders of magnitude less an
effect on η and in consequence on the expressions of FT-MBPT.
For large the effect on η decreases, scaling as ( )2/3 , as
estimated in eq 29, and vanishes in the thermodynamic limit.
3.2. First-Order Exchange. The exchange contributions to

the grand potential Ωx have been evaluated according to eq 19
using all orbitals that have been considered in the SCF
calculation. The convergence with the number of closed-shell
orbitals is faster than for the SCF quantities and no analytic
treatment of the orbitals beyond 800 times the zero-temperature
orbitals is necessary. Although considerably more demanding
computationally than the SCF calculation, its evaluation is still
negligible compared to the correlation calculation. The
derivative of the exchange contribution with respect to η for
the expected number of electrons has been evaluated analyti-
cally.
3.3. Linearized Direct-Ring Coupled Cluster. The

correlation and exchange effects beyond first order have been
approximated on the level of closed-shell linearized direct-ring
coupled cluster doubles (ldrCCD) theory. It is one of the
simplest theories whose zero-temperature and infinite-size limit
exists. Still, it is expected to capture the dominant part of the
long-range correlation. The advantage of ldrCCD is that it can
be evaluated from a diagonalization of an effective particle/hole

Figure 2. The effective potential η = μ − Δε is a measure for how quantities in the perturbation expansion depend on μ. The figure shows that the
change of the effective potential η with respect to the chemical potential μ decreases with increasing system size. An extrapolation of the largest
calculations with 2/3 indicates that the effective potential η becomes independent of μ in the thermodynamic limit.
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Hamiltonian and consequently permits an analytic imaginary
time integration. Apart from numerical considerations, the
temperature can be arbitrarily low.
Let Np denote the number of spatial orbitals considered for

the ldrCCD calculation. The direct-ring structure of the effective
Hamiltonian in eq 22 is momentum conserving. In a uniform
system and due to point-group symmetry it is therefore sufficient
to consider independent Np × Np matrices for each momentum
difference vector q = kb − kj in the wedge 0≤ qx ≤ qy ≤ qz instead
of one Np

2 × Np
2 matrix. For the largest system size 114

independent 4385 × 4385 matrices have been diagonalized. The
matrices are real valued and symmetric and can be diagonalized
efficiently with standard linear algebra packages.
Unlike at zero-temperature, the spectrum of eachmatrix is not

necessarily positive-definite. Negative eigenvalues ΛF
F can occur

when eigenenergies of contributing hole-orbitals are above the
energies of contributing particle-orbitals, which is possible at
finite temperature. Negative eigenvalues pose numerical
difficulties occurring in the exponent of eq 25. However, the
final product with the square roots of the occupancy products

nij
ab in eqs 23 and 24 leads to a finite contribution. In practice,

the term δa
bδj

iΔj
b has been truncated to zero if the occupancy and

vacancy product nj
b was below 10−12.

For the ldrCCD calculation Np has been chosen about 20
times the number of zero-temperature occupied spatial orbitals.
The contribution from the orbitals beyond has been

extrapolated from the asymptotic behavior of RPA-like
correlation energies. The finite-basis-set error scales as

q( )max
3 , where qmax is the magnitude of the largest considered

plane wave momentum difference.68 A Hann window has been
used to obtain a soft cutoff for four different values of qmax to
smooth the samples for the qmax−3 extrapolation to the complete
basis set (CBS) limit.60 The correlation coefficients of the
regression curves range between 0.97 and practically 1. The 67%
confidence intervals of the CBS limits are given in the ±CBS
column in Table 1.
For each system size, multiple calculations of ΩHxc have been

conducted in search for the chemical potential μHxc whereNHxc =
−∂μΩHxc agrees with the number of positive charges . The
derivative of Ωc has been evaluated numerically from a
polynomial fit. The next estimate Hxc at the current chemical
potential μ has been found from the difference of NHxc
assuming that the dominant change in NHxc stems from the
change inNH = −∂μΩ0. This gives an equation for the dominant
change in the chemical potential

n N( ) ( ) ( )
i

i
i

Hxc Hxc
(35)

where all involved quantities can be readily evaluated at the
current chemical potential μ. This procedure has required about
8 iterations until convergence for each considered system size .

Table 1. Linearized Direct-Ring Coupled Cluster Doubles (ldrCCD) Exchange-Correlation Free Energies of the Spin-
unpolarized (Paramagnetic) Warm Uniform Electron Gas for Various Densities and Temperaturesa

rs θ f xcrs Ωxrs/ Ωcrs/ ±TDL ±CBS f xciSTLSrs Δf xcrs
2 0.125 −0.5421 −0.4278 −0.1143 ±0.0020 ±0.0010 −0.5444 +0.0023

0.5 −0.4528 −0.2789 −0.1739 ±0.0015 ±0.0014 −0.5150 +0.0628
1.0 −0.3852 −0.1739 −0.2113 ±0.0025 ±0.0014 −0.4650 +0.0789

8 0.125 −0.6186 −0.4279 −0.1907 ±0.0050 ±0.0041 −0.6304 +0.0118
0.5 −0.5163 −0.2789 −0.2374 ±0.0040 ±0.0045 −0.6265 +0.1102
1.0 −0.4522 −0.1739 −0.2752 ±0.0050 ±0.0046 −0.5992 +0.1470

aAll energies are given in Hartree. f xc is retrieved from the thermodynamic limit and complete-basis-set limit of Ωxc. Exchange and correlation
contributions have been extrapolated separately. The expected statistical errors from the infinite-size and infinite-basis-set extrapolations of the
correlation contributions are given in the ±TDL and ±CBS column, respectively. The TDL and CBS errors of the exchange contributions are
negligible. For comparison, the free energies obtained from the improved Singwi−Tosi−Land−Sjölander70 parametrization of Quantum Monte
Carlo results and the difference to ldrCCD are given in the columns f xciSTLS and Δf xc, respectively.

Figure 3. Left panel plots the contributions to the exchange-correlation grand potentialΩxc =Ωx +Ωcd +Ωcx as a function of the reduced temperature θ
for two system sizes = 162 and 246. Ωx is the first-order exchange energy of eq 17, while Ωcd and Ωcx refer to the direct and exchange term of Ωc,
stemming from the first and second diagram in eq 21, respectively. The right panel shows the chemical potentials satisfying the charge-neutrality
condition at various levels of theory as a function of θ for the same system sizes. The = 162 and = 246 results are denoted by pluses (+) and
crosses (×), respectively.
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The left panel of Figure 3 depicts how the various
contributions to the exchange-correlation grand potential Ωxc
depend on the reduced temperature for a fixed density of rs = 2
and two system sizes = 162 and = 246. The right panel
shows the temperature dependence of the chemical potentials
satisfying the charge-neutrality condition at increasingly
accurate levels of theory. The = 162 and = 246 results
are denoted by pluses (+) and crosses (×), respectively.
Deviations between these system sizes at low temperatures
originate from a partition of the orbitals into (almost) purely
occupied or purely unoccupied orbitals, occurring at lower
temperatures for larger systems. A T → 0 extrapolation has not
been conducted.
3.4. Free Energies in the Thermodynamic Limit.

Finding the thermodynamic limit poses a difficult task in the
calculation of extended systems. First, we assess whether the
asymptotic behavior estimated by eq 34 applies in the UEG as a

prototypical warm-dense system. Figure 4 plots the difference
between the exchange-correlation free energy per electron and
the exchange-correlation grand potential per electron, evaluated
at the Hartree chemical potential μH, against the system size

2/3. In this graph, an asymptotic behavior as estimated from
eq 34 is expected to appear as a line through the origin. As a
guide to the eye, the results are connected with dashed red lines.
The linear extrapolations from the largest system sizes are shown
as solid red lines. The 67%-confidence intervals of the
thermodynamic limits are indicated by the error bars on the
vertical axis. They confirm numerically that the two exchange-
correlation free energies agree in the thermodynamic limit of the
warm UEG for all densities and temperature considered.
The terms in Ωxc converge with different rates to the

thermodynamic limit. At the largest considered system sizes the
exchange contributions are almost converged. The remaining
correlation terms converge as ( )2/3 in the low temperature

Figure 4. Finite-size dependence of the difference between the exchange-correlation free energy per electron and the exchange-correlation grand
potential per electron for various densities and temperatures. The correlation contributions are approximated by the linearized direct-ring coupled
cluster doubles (ldrCCD) theory. The grand potential has been evaluated at the noninteracting chemical potential μH while the free energy requires the
correlated chemical potential μHxc. Extrapolations of the largest system sizes show that the two free energies coincide in the infinite-size limit.
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regime and as ( )1 otherwise.51 Also, the effective chemical
potential η, which Ωc depends on, converges as ( )2/3 .
Thus, Fxc and Ωxc are also individually expected to converge to
the thermodynamic as ( )2/3 . Figure 5 plots Fxc and Ωxc

individually against the system size 2/3, while Figure 4
showed only their difference. Unlike their difference, the two
energies suffer from shell effects. They could be alleviated by
twist averaging51,69 but this has not been done in this work. The
solid lines show the 2/3 fit for the largest system sizes of the
respective sets and the statistical error of the infinite-size
extrapolation for both energies is indicated by the error bars on
the vertical axes. Interestingly, in most cases the slope of the
grand potential extrapolation is flatter than that of the free
energy extrapolation, making the extrapolation of the grand

potential less dependent on the functional form of the
asymptotic behavior.
Table 1 summarizes the exchange-correlation free energies f xc

found in the thermodynamic limit and gives the 67% confidence
interval of the infinite-size extrapolation in the ± TDL column.
At low temperatures, the results compare well to the improved
Singwi−Tosi−Land−Sjölander parametrization70 of previous
Quantum Monte Carlo calculations despite the simple ldrCCD
theory employed. For zero-temperature this fortuitous agree-
ment of ldrCCD and also of drCCD has already been shown by
Freeman.65 Reference 51 gives an overview over other
parametrizations. At higher temperatures, however, the differ-
ence is sizable and ldrCCD underestimates the magnitude of the
negative exchange-correlation free energy considerably.

Figure 5. Finite-size dependence of the exchange-correlation grand potential Ωxc per electron in red and the exchange-correlation free energy Fxc per
electron in green for various densities and temperatures of the nonspin-polarized (paramagnetic) warm dense electron gas. The difference of the two
graphs does not exhibit shell effects and is shown in Figure 4. The finite-size error of the exchange contribution is negligible for the largest system sizes
and the remaining terms are expected to converge as ( )2/3 to the thermodynamic limit. The solid red and green lines show the extrapolations to
the thermodynamic limit of the grand potential and the free energy, respectively. The error bars on the vertical axes indicate the statistical error of the
extrapolations.
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All of the previous numerical results have been produced
employing the Spencer−Alavi spherical truncation scheme for
all electrostatic interactions: the background−background
interaction, the electron−background and the electron−
electron interaction in the Hartree SCF, as well as the
electron−electron interaction in the perturbation. To assess to
what degree the estimates of the asymptotic behavior depend on
the employed regularization scheme, the Yukawa regularization
has been implemented as well and calculations have been
conducted for various densities and temperatures. It can bee
seen in the lower two panels of Figure 6 that the exchange-
correlation free energy and the exchange-correlation grand
potential individually hardly converge to the asymptotic domain
using the Yukawa regularization. Note the different energy
scales. Although only small shell effects are present, as opposed
to the spherical truncation scheme, the Yukawa regularization is
not useful in practice for retrieving converged results in the
thermodynamic limit. In contrast, the difference of the two
energies already exhibits an asymptotic behavior that agrees with
the estimated behavior.

4. SUMMARY
This work shows that the infinite-size limit of finite temperature
many-body perturbation theory can be found efficiently with a
truncated Coulomb interaction. The truncation radius is chosen
such that the volume of the interaction agrees with the volume of
the simulated cell. Such schemes have previously been studied in
classical systems of electrostatically interacting particles, as well
as for the Fock-exchange contribution in zero-temperature

MBPT. Here, the truncation scheme is employed for all
electrostatic interactions in the uniform electron gas:
electron−electron, electron−background, and background−
background.
It is found that due to the long-ranged nature of the

electrostatic interaction the difference of the average number of
mobile electrons and fixed positive charges scales asymptotically
as ( ) ( )Hxc

1/3 for large system sizes where is the
number of positive charges and μHxc is the chemical potential
where the number of electrons equals the number of positive
charges, including exchange and correlation effects. Thus, the
ratio of the number of electrons and positive charges tends to
one for any finite choice of the chemical potential μ.
An important consequence is that also the exchange-

correlation grand potential per electron, evaluated at the
noninteracting Hartree self-consistent field chemical potential
μH, asymptotically agrees with the free energy per electron,
found from a Legendre transformation at the interacting
chemical potential μHxc:

F( ) ( )xc H xc

(36)

The latter requires multiple iterations of the expensive
correlation calculations during the nonlinear search for the
interacting chemical potential for each system size considered
for the thermodynamic limit extrapolation.
The above asymptotic behavior has been estimated in general

for matter under warm-dense conditions and it has been shown
explicitly for the warm uniform electron gas for various densities

Figure 6. Top panels show the finite-size dependence of the difference between the exchange-correlation free energy and the exchange-correlation
grand potential for θ = 0.5 and two densities employing the Yukawa regularization, rather than the Spencer−Alavi truncation. The bottom panels show
these free energies individually. Although neither the exchange-correlation free energy nor the exchange-correlation grand potential have reached the
asymptotic domain individually in case of the Yukawa regularization, their difference has�just barely: Only the largest 3 system sizes have been used
for the extrapolation.
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and temperatures employing the linearized direct-ring coupled
cluster doubles theory for approximating exchange-correlation
effects. The considered densities and temperatures cover the
region where FT-MBPT methods, such as finite temperature
coupled cluster, can complement other methods, such as
quantum Monte Carlo methods.52
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Grüneis for providing cpu time on its computational resources.

■ REFERENCES
(1) Graziani, F., Desjarlais, M. P., Redmer, R., Trickey, S. B., Eds.

Frontiers and Challenges in Warm Dense Matter; Springer International
Publishing, 2014.
(2) Iyer, D.; Srednicki, M.; Rigol, M. Optimization of finite-size errors
in finite-temperature calculations of unordered phases. Phys. Rev. E
2015, 91, 062142.
(3) Brown, E. W.; Clark, B. K.; DuBois, J. L.; Ceperley, D. M. Path-
Integral Monte Carlo Simulation of the Warm Dense Homogeneous
Electron Gas. Phys. Rev. Lett. 2013, 110, 146405.
(4) Militzer, B.; Pollock, E.; Ceperley, D. Path integral Monte Carlo
calculation of themomentum distribution of the homogeneous electron
gas at finite temperature. High Energy Density Physics 2019, 30, 13−20.
(5) Fetter, A. L.; Walecka, J. D. Quantum theory of many-particle

systems; Dover Publications: Mineola, N.Y, 2003.
(6) Thouless, D. J. The quantum mechanics of many-body systems, 2nd
dover ed.; Dover Publications, Inc, 2014.
(7) Kohn, W.; Luttinger, J. M. Ground-State Energy of a Many-
Fermion System. Phys. Rev. 1960, 118, 41−45.
(8) Liang, Y.; Xu, Z.; Xing, X. A multi-scale Monte Carlo method for
electrolytes. New J. Phys. 2015, 17, 083062.
(9) Spencer, J.; Alavi, A. Efficient calculation of the exact exchange
energy in periodic systems using a truncated Coulomb potential. Phys.
Rev. B 2008, 77, 193110.
(10) Gygi, F.; Baldereschi, A. Self-consistent Hartree-Fock and
screened-exchange calculations in solids: Application to silicon. Phys.
Rev. B 1986, 34, 4405−4408.
(11) Carrier, P.; Rohra, S.; Görling, A. General treatment of the
singularities in Hartree-Fock and exact-exchange Kohn-Sham methods
for solids. Phys. Rev. B 2007, 75, 205126.
(12) Irmler, A.; Burow, A. M.; Pauly, F. Robust Periodic Fock
Exchange with Atom-Centered Gaussian Basis Sets. J. Chem. Theory
Comput. 2018, 14, 4567−4580. PMID: 30080979.
(13) Sundararaman, R.; Arias, T. A. Regularization of the Coulomb
singularity in exact exchange by Wigner-Seitz truncated interactions:

Towards chemical accuracy in nontrivial systems. Phys. Rev. B 2013, 87,
165122.
(14) Matsubara, T. A New Approach to Quantum-Statistical
Mechanics. Prog. Theor. Phys. 1955, 14, 351−378.
(15) Bloch, C.; De Dominicis, C. Un dev́eloppement du potentiel de
gibbs d’un system̀e quantique compose ́ d’un grand nombre de
particules. Nucl. Phys. 1958, 7, 459−479.
(16) Bloch, C.; De Dominicis, C. Un dev́eloppement du potentiel de
Gibbs d’un system̀e compose ́ d’un grand nombre de particules (II).
Nucl. Phys. 1959, 10, 181−196.
(17) Nettelmann, N.; Redmer, R.; Blaschke, D. Warm dense matter in
giant planets and exoplanets. Physics of Particles and Nuclei 2008, 39,
1122−1127.
(18) Hirata, S.; He, X. On the Kohn−Luttinger conundrum. J. Chem.

Phys. 2013, 138, 204112.
(19) Son, S.-K.; Thiele, R.; Jurek, Z.; Ziaja, B.; Santra, R. Quantum-
Mechanical Calculation of Ionization-Potential Lowering in Dense
Plasmas. Phys. Rev. X 2014, 4, 031004.
(20) Santra, R.; Schirmer, J. Finite-temperature second-order many-
body perturbation theory revisited. Chem. Phys. 2017, 482, 355−361.
(21) Gupta, U.; Rajagopal, A. K. Exchange-correlation potential for
inhomogeneous electron systems at finite temperatures. Phys. Rev. A
1980, 22, 2792−2797.
(22) Perrot, F. Temperature-dependent nonlinear screening of a
proton in an electron gas. Phys. Rev. A 1982, 25, 489−495.
(23) Perrot, F.; Dharma-wardana, M. W. C. Exchange and correlation
potentials for electron-ion systems at finite temperatures. Phys. Rev. A
1984, 30, 2619−2626.
(24) Csanak, G.; Kilcrease, D. Photoabsorption in hot, dense
plasmas�The average atom, the spherical cell model, and the random
phase approximation. J. Quant. Spectrosc. Radiat. Transfer 1997, 58,
537−551.
(25) van Leeuwen, R.; Dahlen, N. E.; Stan, A. Total energies from
variational functionals of the Green function and the renormalized four-
point vertex. Phys. Rev. B 2006, 74, 195105.
(26) Welden, A. R.; Rusakov, A. A.; Zgid, D. Exploring connections
between statistical mechanics and Green’s functions for realistic
systems: Temperature dependent electronic entropy and internal
energy from a self-consistent second-order Green’s function. J. Chem.
Phys. 2016, 145, 204106.
(27) Mandal, S. H.; Ghosh, R.; Sanyal, G.; Mukherjee, D. A finite-
temperature generalisation of the coupled cluster method: a non-
perturbative access to grand partition functions. Int. J. Mod. Phys. B
2003, 17, 5367−5377.
(28) White, A. F.; Chan, G. K.-L. A Time-Dependent Formulation of
Coupled-Cluster Theory for Many-Fermion Systems at Finite Temper-
ature. J. Chem. Theory Comput. 2018, 14, 5690−5700.
(29) White, A. F.; Kin-Lic Chan, G. Finite-temperature coupled
cluster: Efficient implementation and application to prototypical
systems. J. Chem. Phys. 2020, 152, 224104.
(30) Hummel, F. Finite Temperature Coupled Cluster Theories for
Extended Systems. J. Chem. Theory Comput. 2018, 14, 6505−6514.
(31) Harsha, G.; Henderson, T. M.; Scuseria, G. E. Thermofield
theory for finite-temperature quantum chemistry. J. Chem. Phys. 2019,
150, 154109.
(32) Harsha, G.; Henderson, T. M.; Scuseria, G. E. Thermofield
Theory for Finite-Temperature Coupled Cluster. J. Chem. Theory
Comput. 2019, 15, 6127−6136.
(33) Harsha, G.; Xu, Y.; Henderson, T. M.; Scuseria, G. E. Thermal
coupled cluster theory for SU(2) systems. Phys. Rev. B 2022, 105,
045125.
(34) Schönhammer, K. Deviations from Wick’s theorem in the
canonical ensemble. Phys. Rev. A 2017, 96, 012102 DOI: 10.1103/
PhysRevA.96.012102.
(35) Jha, P. K.; Hirata, S. Finite-temperature many-body perturbation
theory in the canonical ensemble. Phys. Rev. E 2020, 101, 022106
DOI: 10.1103/PhysRevE.101.022106.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c01043
J. Chem. Theory Comput. 2023, 19, 1568−1581

1580

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Felix+Hummel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-1941-3385
mailto:felix.hummel@tuwien.ac.at
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01043?ref=pdf
https://gitlab.cc4s.org/cqt/weg-ldrccd.git
https://gitlab.cc4s.org/cqt/weg-ldrccd.git
https://doi.org/10.1103/PhysRevE.91.062142
https://doi.org/10.1103/PhysRevE.91.062142
https://doi.org/10.1103/PhysRevLett.110.146405
https://doi.org/10.1103/PhysRevLett.110.146405
https://doi.org/10.1103/PhysRevLett.110.146405
https://doi.org/10.1016/j.hedp.2018.12.004
https://doi.org/10.1016/j.hedp.2018.12.004
https://doi.org/10.1016/j.hedp.2018.12.004
https://doi.org/10.1103/PhysRev.118.41
https://doi.org/10.1103/PhysRev.118.41
https://doi.org/10.1088/1367-2630/17/8/083062
https://doi.org/10.1088/1367-2630/17/8/083062
https://doi.org/10.1103/PhysRevB.77.193110
https://doi.org/10.1103/PhysRevB.77.193110
https://doi.org/10.1103/PhysRevB.34.4405
https://doi.org/10.1103/PhysRevB.34.4405
https://doi.org/10.1103/PhysRevB.75.205126
https://doi.org/10.1103/PhysRevB.75.205126
https://doi.org/10.1103/PhysRevB.75.205126
https://doi.org/10.1021/acs.jctc.8b00122?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00122?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevB.87.165122
https://doi.org/10.1103/PhysRevB.87.165122
https://doi.org/10.1103/PhysRevB.87.165122
https://doi.org/10.1143/PTP.14.351
https://doi.org/10.1143/PTP.14.351
https://doi.org/10.1016/0029-5582(58)90285-2
https://doi.org/10.1016/0029-5582(58)90285-2
https://doi.org/10.1016/0029-5582(58)90285-2
https://doi.org/10.1016/0029-5582(59)90203-2
https://doi.org/10.1016/0029-5582(59)90203-2
https://doi.org/10.1134/S1063779608070277
https://doi.org/10.1134/S1063779608070277
https://doi.org/10.1063/1.4807496
https://doi.org/10.1103/PhysRevX.4.031004
https://doi.org/10.1103/PhysRevX.4.031004
https://doi.org/10.1103/PhysRevX.4.031004
https://doi.org/10.1016/j.chemphys.2016.08.001
https://doi.org/10.1016/j.chemphys.2016.08.001
https://doi.org/10.1103/PhysRevA.22.2792
https://doi.org/10.1103/PhysRevA.22.2792
https://doi.org/10.1103/PhysRevA.25.489
https://doi.org/10.1103/PhysRevA.25.489
https://doi.org/10.1103/PhysRevA.30.2619
https://doi.org/10.1103/PhysRevA.30.2619
https://doi.org/10.1016/S0022-4073(97)00060-5
https://doi.org/10.1016/S0022-4073(97)00060-5
https://doi.org/10.1016/S0022-4073(97)00060-5
https://doi.org/10.1103/PhysRevB.74.195105
https://doi.org/10.1103/PhysRevB.74.195105
https://doi.org/10.1103/PhysRevB.74.195105
https://doi.org/10.1063/1.4967449
https://doi.org/10.1063/1.4967449
https://doi.org/10.1063/1.4967449
https://doi.org/10.1063/1.4967449
https://doi.org/10.1142/S021797920302048X
https://doi.org/10.1142/S021797920302048X
https://doi.org/10.1142/S021797920302048X
https://doi.org/10.1021/acs.jctc.8b00773?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00773?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00773?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0009845
https://doi.org/10.1063/5.0009845
https://doi.org/10.1063/5.0009845
https://doi.org/10.1021/acs.jctc.8b00793?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00793?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.5089560
https://doi.org/10.1063/1.5089560
https://doi.org/10.1021/acs.jctc.9b00744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevB.105.045125
https://doi.org/10.1103/PhysRevB.105.045125
https://doi.org/10.1103/PhysRevA.96.012102
https://doi.org/10.1103/PhysRevA.96.012102
https://doi.org/10.1103/PhysRevA.96.012102?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevA.96.012102?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevE.101.022106
https://doi.org/10.1103/PhysRevE.101.022106
https://doi.org/10.1103/PhysRevE.101.022106?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c01043?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(36) Harsha, G.; Henderson, T. M.; Scuseria, G. E. Wave function
methods for canonical ensemble thermal averages in correlated many-
fermion systems. J. Chem. Phys. 2020, 153, 124115.
(37)Mermin, N. Stability of the thermal Hartree-Fock approximation.

Ann. Phys. (N. Y.) 1963, 21, 99−121.
(38) Mermin, N. Thermal Properties of the Inhomogeneous Electron
Gas. Phys. Rev. A 1965, 137, 1441.
(39) Pittalis, S.; Proetto, C. R.; Floris, A.; Sanna, A.; Bersier, C.; Burke,
K.; Gross, E. K. U. Exact Conditions in Finite-Temperature Density-
Functional Theory. Phys. Rev. Lett. 2011, 107, 163001.
(40) Karasiev, V. V.; Calderín, L.; Trickey, S. B. Importance of finite-
temperature exchange correlation for warm dense matter calculations.
Phys. Rev. E 2016, 93, 063207.
(41) Karasiev, V. V.; Sjostrom, T.; Chakraborty, D.; Dufty, J. W.;
Runge, K.; Harris, F. E.; Trickey, S. B. In Frontiers and Challenges in
Warm Dense Matter; Graziani, F., Desjarlais, M. P., Redmer, R., Trickey,
S. B., Eds.; Springer International Publishing, 2014.
(42) Luo, K.; Karasiev, V. V.; Trickey, S. B. Towards accurate orbital-
free simulations: A generalized gradient approximation for the
noninteracting free energy density functional. Phys. Rev. B 2020, 101,
075116.
(43) Jha, P. K.; Hirata, S. In Chapter One - Numerical evidence
invalidating finite-temperature many-body perturbation theory. Annual
Reports in Computational Chemistry; Dixon, D. A., Ed.; Elsevier, 2019;
Vol. 15, pp 3−15.
(44) Blunt, N. S.; Rogers, T. W.; Spencer, J. S.; Foulkes, W. M. C.
Density-matrix quantum Monte Carlo method. Phys. Rev. B 2014, 89,
245124 DOI: 10.1103/PhysRevB.89.245124.
(45)Malone, F. D.; Blunt, N. S.; Shepherd, J. J.; Lee, D. K. K.; Spencer,
J. S.; Foulkes, W. M. C. Interaction picture density matrix quantum
Monte Carlo. J. Chem. Phys. 2015, 143, 044116.
(46) Petras, H. R.; Ramadugu, S. K.; Malone, F. D.; Shepherd, J. J.
Using Density Matrix QuantumMonte Carlo for Calculating Exact-on-
Average Energies for ab Initio Hamiltonians in a Finite Basis Set. J.
Chem. Theory Comput. 2020, 16, 1029−1038.
(47) Blankenbecler, R.; Scalapino, D. J.; Sugar, R. L. Monte Carlo
calculations of coupled boson-fermion systems. I. Physical Review D
1981, 24, 2278−2286.
(48) Scalapino, D. J.; Sugar, R. L.Method for PerformingMonte Carlo
Calculations for Systems with Fermions. Phys. Rev. Lett. 1981, 46, 519−
521.
(49) Lee, J.; Morales, M. A.; Malone, F. D. A phaseless auxiliary-field
quantumMonte Carlo perspective on the uniform electron gas at finite
temperatures: Issues, observations, and benchmark study. J. Chem. Phys.
2021, 154, 064109.
(50) Sjostrom, T.; Dufty, J. Uniform electron gas at finite
temperatures. Phys. Rev. B 2013, 88, 115123 DOI: 10.1103/
PhysRevB.88.115123.
(51) Dornheim, T.; Groth, S.; Bonitz, M. The uniform electron gas at
warm dense matter conditions. Phys. Rep. 2018, 744, 1−86.
(52) Karasiev, V. V.; Trickey, S. B.; Dufty, J. W. Status of free-energy
representations for the homogeneous electron gas. Phys. Rev. B 2019,
99, 195134 DOI: 10.1103/PhysRevB.99.195134.
(53) Luttinger, J. M.; Ward, J. C. Ground-State Energy of a Many-
Fermion System. II. Phys. Rev. 1960, 118, 1417−1427.
(54) Balian, R.; Bloch, C.; De Dominicis, C. Formulation de la
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