
D I S S E R T A T I O N

Parallel Velocity Extension and
Load-Balanced Re-Distancing

on Hierarchical Grids for
High Performance Process TCAD

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Betreuung von
Assistant Prof. Privatdoz. Dipl.-Ing. Dr.techn. Josef Weinbub, BSc

O.Univ.Prof. Dipl.-Ing. Dr.techn. Dr.h.c. Siegfried Selberherr

eingereicht an der Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik

von

Dipl.-Ing. Michael Quell, BSc

Matrikelnummer 01226394

Wien, im November 2021

Abstract

The continuous developments and miniaturization of manufacturing
processes for semiconductor devices require physical simulations to reduce
the number of costly conventional experiments involved in the design and
production processes. Most prominent are physical simulations which model
individual physical processing steps like etching or deposition. These
topography-changing simulations are commonly based on the level-set
method, because of its capability to efficiently represent complex three-
dimensional device structures. High accuracy demands of those simulations
require the application of complex and, therefore, computationally expensive
physical models.

In this work, three parallel algorithms belonging to two computational
steps of the level-set method are introduced. The algorithms significantly
reduce overall run-time and improve accuracy. The algorithms are tailored to
simulations using adaptive discretizations with hierarchical grids to efficiently
handle sharp features, e.g., corners and edges. The focus of the presented
research is to efficiently utilize shared-memory parallel computing systems to
stem the increasingly demanding level-set based physical simulations.

The first algorithm belongs to the computational step Velocity Extension
which extends the velocity describing the deformation of an arbitrary
structure from the structure’s surface to the entire computational domain.
The developed velocity extension algorithm is based on the fast marching
method. The fast marching method allows to extend the velocity in a single
pass through the computational domain by means of a strict ordering of
the computations. The key advantage of the developed velocity extension
algorithm is a relaxed ordering of the computations. This not only reduces
the computational complexity but also enables parallelism. Different stages
of the developed algorithm are evaluated by comparing run-times measured
on representative computing systems. A run-time reduction by a factor of
18.5 using 10 threads has been achieved.

The second algorithm belongs to the computational step Re-Distancing
which creates or restores a numerically stable representation of the structure
by computing the signed-distance field relative to the surface of the structure.
This algorithm is also based on the fast marching method, but because of self-
referred data dependencies a different parallelization strategy was developed.
A domain decomposition is introduced to increase the granularity of the
parallel tasks. This enables a better implicit load-balancing compared to
the native decomposition provided by the given hierarchical grid. A speedup
of more than 17.4 has been achieved when using 24 threads.

Finally, a bottom-up correction algorithm was developed, also belonging
to the computational step Re-Distancing, which increases the accuracy of
the signed-distance field computed by the second algorithm. This correction
algorithm utilizes the signed-distance field on higher resolved regions of
hierarchical grids to also reduce the error in lower resolved regions. The
developed algorithm adds negligible computational overhead to the second
algorithm, yet reduces the error around corners by a factor of up to 2.7.

Combining all developed algorithms, it is shown that the run-time of a
representative physical simulation is more than halved whilst the accuracy is
further improved.

i

Kurzfassung

Die kontinuierlichen Entwicklungen und die Miniaturisierung der
Herstellungsprozesse für Halbleiterbauelemente erfordern physikalische
Simulationen, um die Zahl der kostspieligen konventionellen Experimente in
den Entwurfs- und Produktionsprozessen zu verringern. Am bekanntesten
sind physikalische Simulationen, die einzelne physikalische Prozessschritte
wie Ätzen oder Abscheiden modellieren. Diese topografieverändernden
Simulationen basieren gewöhnlich auf der Level-Set-Methode, da sie komplexe
dreidimensionale Bauelementstrukturen effizient darstellen kann. Die hohen
Genauigkeitsanforderungen dieser Simulationen erfordern die Anwendung
komplexer und daher rechenintensiver physikalischer Modelle.

In dieser Arbeit werden drei parallele Algorithmen eingeführt, die
zu zwei Rechenschritten der Level-Set-Methode gehören. Die Algorithmen
verringern die Gesamtlaufzeit erheblich und verbessern die Genauigkeit. Die
Algorithmen sind an Simulationen angepasst, die adaptive Diskretisierungen
mit hierarchischen Gittern verwenden, um spitze Geometrien, z.B.
Ecken und Kanten, effizient zu behandeln. Der Schwerpunkt der hier
vorgestellten Forschung ist die effiziente Nutzung paralleler Rechensysteme
mit gemeinsamem Speicher, um die immer anspruchsvolleren Level-Set-
basierten physikalischen Simulationen zu bewältigen.

Der erste Algorithmus gehört zum Rechenschritt Velocity Extension, der
die Geschwindigkeit, die die Verformung einer beliebigen Struktur beschreibt,
von der Oberfläche der Struktur auf das gesamte Simulationsgebiet ausdehnt.
Der entwickelte Algorithmus zur Geschwindigkeitserweiterung basiert auf
der Fast-Marching-Methode. Die Fast-Marching-Methode ermöglicht es, die
Geschwindigkeit in einem einzigen Durchgang durch das Simulationsgebiet
zu berechnen, indem die Berechnungen in einer strengen Reihenfolge
durchgeführt werden. Der Hauptvorteil des entwickelten Algorithmus ist
eine relaxierte Reihenfolge der Berechnungen. Diese reduziert nicht nur
die Komplexität der Berechnungen, sondern ermöglicht auch Parallelität.
Verschiedenen Entwicklungsstufen des Algorithmus werden durch den
Vergleich der auf repräsentativen Rechensystemen gemessenen Laufzeiten
bewertet. Eine Laufzeitverkürzung um den Faktor 18.5 wurde bei der
Verwendung von 10 Threads erreicht.

Der zweite Algorithmus gehört zum Rechenschritt Re-Distancing, der
eine numerisch stabile Repräsentation der Struktur durch Berechnung des
vorzeichenbehafteten Abstandsfeldes relativ zur Oberfläche der Struktur
erzeugt oder
wiederherstellt. Dieser Algorithmus basiert ebenfalls auf der Fast-Marching-
Methode, aber wegen der selbstbezogenen Datenabhängigkeiten wurde eine
andere Parallelisierungsstrategie entwickelt. Es wird eine Gebietszerlegung
eingeführt, um die Granularität der parallelen Aufgaben zu erhöhen. Dies
ermöglicht einen besseren impliziten Lastausgleich im Vergleich zur nativen
Gebietszerlegung, die durch das gegebene hierarchische Gitter bereitgestellt
wird. Eine Geschwindigkeitssteigerung von mehr als 17.4 wurde bei der
Verwendung von 24 Threads erreicht.

Schließlich wurde ein Bottom-up-Korrekturalgorithmus entwickelt, der
ebenfalls zum Rechenschritt Re-Distancing gehört und die Genauigkeit des
vom zweiten Algorithmus berechneten vorzeichenbehafteten Abstandsfeldes
erhöht.

ii

Dieser Korrekturalgorithmus benutzt das vorzeichenbehaftete Abstandsfeld in
höher aufgelösten Gebieten des hierarchischen Gitters, um auch den Fehler in
niedriger aufgelösten Gebieten zu reduzieren. Der entwickelte Algorithmus
fügt dem zweiten Algorithmus einen vernachlässigbaren Rechenaufwand
hinzu, reduziert aber den Fehler bei Ecken um einen Faktor von bis zu 2.7.

Durch die Kombination aller entwickelten Algorithmen wird gezeigt, dass
sich die Gesamtlaufzeit einer repräsentativen physikalischen Simulation mehr
als halbiert, während die Genauigkeit weiter verbessert wird.

iii

Acknowledgement

First, I want to thank the whole Institute for Microelectronics and all its
members, for their welcoming support, when I started my journey in 2018.

Especially, I want to thank my supervisor Josef Weinbub, who is also the
head of the Christian Doppler Laboratory for High Performance Technology
Computer-Aided Design, for his continuous support and encouragement for
my scientific path. He not only provided necessary guidance, but also excelled
with personal wisdom.

I also want to thank my secondary supervisor Siegfried Selberherr, for
providing excellent feedback content wise and grammatical. His eyes neither
missed a single punctuation mark, nor a wrongly sized white space.

Additional thanks is directed to Andreas Hössinger from Silvaco Europe
Ltd. who fueled the research with interesting questions and practical issues
stemming from real world problems. I am grateful for his insights providing
feedback and the valuable discussions.

From my colleagues, I would like to thank Alexander Toifl, for answering
and explaining questions related to semiconductor devices to great detail,
which lead to fruitful scientific collaborations. Also Paul Manstetten deserves
my gratitude, because he provided me with high quality discussions and
precise feedback especially related to high performance computations and
presenting scientific results. I want to thank Luiz Felipe Aguinsky and
Christoph Lenz, because our shared office lead to many insightful discussions
on the chalkboard, leading to full blown research ideas and papers.

My thank is also directed towards the remaining present and former
members of the Christian Doppler Laboratory for High Performance TCAD
and the Institute for Microelectronics, Vito Simonka, Xaver Klemenschits,
Georgios Diamantopoulos, Lukas Gnam, Alexander Scharinger, and Francio
Rodrigues. The discussions with them during lunch widened my view on
almost all topics concerning mankind.

Finally, I would like to thank my parents and siblings for their
unconditional support during my journey, their nice words and encouragement
on my goals. Only their altruistic deeds enabled me to pursue my career as a
scientist.

iv

Contents

Abstract i

Kurzfassung ii

Acknowledgement iv

Contents v

List of Acronyms vii

1 Introduction 1
1.1 Motivational Example: Thermal Oxidation 6
1.2 Research Goals . 12
1.3 Outline . 12

2 Hierarchical Grids 14
2.1 Discretization . 15
2.2 Refinement . 17
2.3 Nesting Criteria . 21

3 Parallelization and Hardware 23
3.1 General Parallelization Strategies . 23
3.2 Benchmark Systems . 27

4 The Level-Set Method 28
4.1 Theoretical Background . 28

4.1.1 Level-Set Function . 28
4.1.2 Signed-Distance Function . 30
4.1.3 Interface Movement . 32

4.2 Reference Simulation Workflow . 33
4.2.1 Initial Interfaces . 33
4.2.2 Process Model . 38
4.2.3 Interface Velocity . 38
4.2.4 Velocity Extension . 39
4.2.5 Advection . 40
4.2.6 Re-Distancing . 41
4.2.7 Re-Gridding . 42

v

4.2.8 Interface Extraction . 44
4.3 Software . 45

5 Parallel Velocity Extension 46
5.1 General Ideas . 48
5.2 Extension from Cross Points to Close Points 49
5.3 Fast Marching Method . 51
5.4 Data Structures . 54
5.5 Parallelization . 59
5.6 Hierarchical Grids . 63
5.7 Benchmark Examples and Analyses 67

5.7.1 STT-MRAM . 67
5.7.2 Thermal Oxidation . 73

5.8 Summary . 76

6 Load-Balanced Parallel Re-Distancing 78
6.1 Eikonal Equation . 80
6.2 Block Decomposition . 83
6.3 Benchmark Examples and Analyses 89

6.3.1 Point Source . 89
6.3.2 Mandrel . 92
6.3.3 Quad-Hole . 97

6.4 Summary . 99

7 Bottom-Up Correction for Re-Distancing 102
7.1 Algorithmic Implementation . 102
7.2 Benchmark Examples and Analyses 106

7.2.1 Corner . 106
7.2.2 Two-Dimensional Trench . 108
7.2.3 Three-Dimensional Trench . 109

7.3 Summary . 113

8 Conclusion and Outlook 115

Bibliography 119

Own Publications 136

Curriculum Vitae 139

vi

List of Acronyms

2D two-dimensional 4
3D three-dimensional 1
AMR adaptive mesh refinement 4
API application programming interface 26
CFL Courant-Friedrichs-Lewy 41
CMOS complementary metal-oxide semiconductor 67
CPU central processing unit 5
CSG constructive solid geometry 7
EQ exchange queue 66
FEM finite element method 15
FIM fast iterative method 80
FMM fast marching method 11
FSM fast sweeping method 80
FVM finite volume method 15
HRLE hierachical run length encoding 45
IBE ion beam etching 47
LSM locked sweeping method 82
MOSFET metal-oxide semiconductor field effect transistor 7
MTJ magnetic tunnel junction 67
NUMA non-uniform memory access 24
PDE partial differential equation 3
RAM random access memory 67
RK Runge-Kutta 40
STT spin-transfer torque 67
STT-MRAM spin-transfer torque magnetoresistive random

access memory
47

TCAD technology computer-aided design 1
TMR tunneling magnetoresistance 67
TVD total variation diminishing 40
WENO weighted essentially non-oscillatory 16
WQ work queue 59

vii

Chapter 1

Introduction

The manufacturing of semiconductor devices takes place in reactor chambers where
the environment (pressure, temperature, chemicals) is strictly controlled, allowing
precise fabrication of device-relevant structures in the nanometer range. The
devices are fabricated starting from a plane wafer which typically is a thin slice
of monocrystalline silicon. Ongoing advances of semiconductor device design have
lead to complex three-dimensional (3D) designs and expensive manufacturing steps.
This also manifests in shrinking admissible tolerances and increased development
cost.

The high development costs and expensive experiments in the development
cycle iterating between design and verification of new semiconductor devices are
pushing the usage of predictive simulations for the manufacturing and operation
of semiconductor devices. Those simulations, known as technology computer-aided
design (TCAD) [1, 2] support the fabrication development by reducing the need for
time-consuming and expensive experiments (costly materials and equipment). This
accelerates the development cycle and reduces development costs.

TCAD simulations are divided into three categories: process TCAD, device
TCAD, and circuit TCAD.

Process TCAD models the manufacturing processes of a semiconductor device
by simulating processes which change the structure and/or topography (material
layout) of the wafer, thus forming the individual devices [3]. The manufacturing
processes include:

• etching (material is removed)
• deposition (material is added)
• oxidation (materials are oxidized, turning them into an oxide, which often

have properties of insulators)
• ion implantation (dopants/impurities are implanted to change electrical

material properties)
• annealing and diffusion (repairing crystal lattice defects and relocating

dopants)
Device TCAD on the other hand uses the final generated structure to simulate the
operation of a semiconductor device and calculate the electrical properties [4].

1

Circuit TCAD uses the device characteristics (electrical properties) provided by
device TCAD to simulate the interaction of several devices, i.e., a simulation of an
integrated circuit.

The context of this work is process TCAD simulation, which is further subdivided
into two subcategories: Reactor scale and feature scale simulations.

Reactor vs. Feature Scale Simulations

Reactor scale simulations investigate the manufacturing process on a macroscopic
scale, i.e., how chemicals (liquids or gases) enter the reactor chamber and how to
ensure an equal distribution onto a wafer [5, 6]. Typically, all to-be-built devices on
a wafer are processed simultaneously together, e.g., a wafer is exposed to oxygen at
high temperatures, which results in oxidizing the surface. Reactor scale simulations
are useful to model and analyze processing variations in different regions of the wafer.
Minimizing those variations is essential to ensure a high device yield1. They are also
used to predict variations between devices located on different wafers, in case several
wafers are put into the reactor chamber at the same time, or in case processing
several wafers subsequently before the reactor chamber is reset (extensively cleaned)
to its initial condition.

Feature scale simulations, the focus of this work, describe the actual structural
(potentially topographical) changes of the wafer. Feature scale simulations operate
on the scale of a single device, or even on a sub-part of a device. The size of a
device ranges from nanometers for logic devices to millimeters for power devices.
Figure 1.1 shows a schematic of a typical simulation domain for a feature scale
simulation, which represents a small part of a wafer with appropriate boundary
conditions for the structure and other parameters, e.g., temperature or particle flux.
The boundary conditions are potentially set by a previous reactor scale simulation.

The core of a feature scale simulation is the process model. The process model
is the (simplified) physical description of the modeled manufacturing process. For
example a process model for an etching process determines the etch rates for each
material: The process model of a silicon oxidation process determines the rate at
which silicon is transformed into silicon dioxide. Thus it is of utmost importance
for feature scale simulations to have a high accuracy representation of the material
regions (volumes or structure) of the device. Especially, the boundaries of material
regions are important, because those are the areas which are directly affected by
the process model, e.g., exposed silicon surfaces which directly interact with the
available oxygen in the reactor chamber.

The following paragraphs introduce the numerical methods and algorithms2 used
in the context of this thesis to track the topographical changes of these material
regions.

1Percentage of devices fulfilling the admissible tolerances in relation to all devices on a wafer.
2An algorithm is a finite sequence of instructions used to solve a problem, i.e., complete a task.

2

Figure 1.1: Simulation domain for a typical process TCAD simulation on the feature scale. The
domain boundaries on the sides are often chosen as symmetric or periodic. The boundary on the
top of the simulation domain (Reactor Scale) couples the simulation domain to the reactor scale.
The level-set method tracks only the boundaries of material regions (darker outline of material
regions). Only parts of the simulation domain (red rectangles) employ a fine spatial resolution.

Level-Set Method

The level-set method (cf. Chapter 4) tracks the material regions via the so-called
level-set function [7]. The level-set function implicitly represents the boundary
of a material region (interface between two materials regions, e.g., the outline of
Material 1 and Material 2 in Figure 1.1) as the zero-level-set of the level-set function.
By changing the zero-level-set of the level-set function the interface position is
modified (material regions grow, shrink or deform). The implicit representation
enables a robust handling of topological changes. The interface changes are
prescribed by the process model which is typically defined via a partial differential
equation (PDE), the level-set equation. The description of complex material regions
using a level-set function is typically done on a discretized simulation domain. The
considered rectilinear simulation domain is often discretized by a Cartesian grid,
because it is convenient as derivatives used in process models as well as in the
interface propagation can straight-forwardly be approximated by finite differences.

The level-set method is able to only track the boundary of material regions,
which is computationally efficient compared to tracking the full volumes of material
regions.

3

In this case only a narrow-band of grid points adjacent to the interface is used
for interface tracking, giving the name narrow-band level-set method [8]. Those
grid points have to be stored efficiently, which is achieved using a sparse volume
data representation, e.g., [9, 10]. Additionally, the level-set method allows
straightforward extension of a simulation to higher dimensions, i.e., switching from
two-dimensional (2D) to 3D simulations. The same algorithms are employed but
need to process an additional coordinate. The application of the level-set method in
process TCAD simulations is a well-established method for feature scale simulations,
e.g., [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

The above discussed benefits have led to a widespread use of the level-set method
(spanning several research disciplines) for tracking moving interfaces. Application
areas include computational fluid dynamics [22, 23, 24, 25, 26, 27, 28, 29, 30, 31],
shape optimization [32, 33, 34, 35, 36, 37], computer graphics [38, 39, 40, 41, 42],
image processing [43, 44, 45], and computational biophysics [46, 47, 48].

Explicit interface3 tracking approaches in the context of process TCAD
simulations are described in [49, 50, 51]. Currently, explicit approaches are not
further pursued, because of issues with respect to rarefaction or accumulation of
polygons and with self-intersection of polygons representing the interface, which is
especially a challenge for 3D simulations.

The discussion continues with a more detailed view on the discretization scheme
used in this work.

Hierarchical Grids

The goal to achieve high accuracy in level-set process TCAD simulations forced the
usage of fine spatial discretizations. However, fine spatial resolutions, especially for
engineering-relevant 3D simulations, significantly increase the memory requirements
and the run-time. On a Cartesian grid the run-time scales with the third power of
the spatial discretization for a 3D simulation, easily and thus gets impractical.

A strategy to reduce the run-time is to employ high spatial resolutions only
in some regions of the simulation domain. This strategy is known as adaptive
mesh refinement (AMR). There are various approaches to AMR, where in this work
the focus is on hierarchical grids. A hierarchical grid consists of several nested
rectangular domains (blocks) each using a Cartesian discretization with varying
spatial resolutions. Their possible placement in also indicated in Figure 1.1. The
details of the used hierarchical grid are presented in Chapter 2. The approach using
hierarchical grids based on Cartesian grids is convenient, because the same numerical
schemes to approximate derivatives as on a Cartesian grid can be employed.

Time Stepping

The time evolution of the material regions is typically described by a PDE.

3The interface is represented as a set of polygons, segments or triangles, depending on the
spatial dimensions.

4

Typically, the PDE is discretized in time and advanced in time steps until the
final simulation time is reached. Combined with the spatial discretization using
hierarchical grids the computational steps4 of the level-set method in every time
step are:

• Interface Velocity: Coupling the process (physical accurate) model, describing
the deformation of the interface, to the level-set representation of the material
regions.

• Velocity Extension: Extending a velocity field from an interface (i.e., surface of
a material region) to the entire computational domain. In particular, velocity
refers to the physically determined velocity prescribing the movement of the
interface.

• Advection: Using the previously extended velocity field to solve the advection
equation of the interface, actually changing the interface position.

• Re-Distancing: Re-normalizing the signed-distance field to an interface.
This step is essential for a robust interface representation and a geometric
interpretation of the level-set function away from the interface.

• Re-Gridding: Adapting the hierarchical grid structure to fit the blocks of a
fine spatial resolution to the deformed and displaced interfaces describing the
material regions.

The computational steps (and algorithms used to solve the computational steps) of
the level-set method are presented and discussed further in Chapter 4.

In addition to AMR this work also uses parallelization approaches to accelerate
some key algorithms for process TCAD simulations. Therefore, the following section
provides a motivation regarding the importance of parallelization.

Parallelization

While early research on parallel computations dates back to the 1960s, starting in the
early 2000s the number of cores on a central processing unit (CPU) increased as the
frequency wall was hit5, limiting the exponential growth of serial performance (cf.
Figure 1.2). This trend continues until today where top CPUs can offer over 100
logical cores, e.g., an AMD Ryzen Threadripper 3990X offers 128 logical cores [52],
or an Intel Xeon Platinum 9282 has 112 logical cores [53]. Thus, to utilize the
gain in available computing power the developed algorithms must be parallel: This
work focuses on shared-memory parallel approaches to utilize the high degree of
parallelism provided by the discussed high core counts of modern CPUs. Computer
programs6 implementing parallel algorithms on shared-memory systems use threads7

to distribute their computations among the available CPU cores.
4A computational step is a task for which one ore more algorithms may be employed, e.g.,

Sorting is a computational step: Any sorting algorithm is a valid choice to complete the task.
5The frequency of CPUs could not be reliably increased further, due to power and heat

limitations.
6A computer program is a set of instructions describing a specific implementation of an

algorithm to a computer.
7A thread is the smallest set of instructions managed and independently scheduled by the

operating system for execution on a CPU core. Each thread has access to the entire system
memory.

5

100

101

102

103

104

105

106

107

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 103)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

Year

48 Years of Microprocessor Trend Data

Figure 1.2: Key data for central processing units from the beginning until 2020.
Reprinted from https://github.com/karlrupp/microprocessor-trend-data, © CC 4.0, http:
//creativecommons.org/licenses/by/4.0/.

Hierarchical grids provide an inherent potential for parallelism: Parallelization
of algorithms on hierarchical grids is often implemented so that on each block
the algorithm is performed independently in parallel. Obviously, this requires a
synchronization step to align the parallel calculated results. However, this approach
delivers only good parallel efficiency, if multiple blocks per thread are available,
allowing for load-balancing to counter imbalances imposed by strongly varying block
sizes and numbers. Load imbalances happen, if some threads have completed their
task (share of computations), but have to wait for other threads to finish their task
before they may proceed with their next task (synchronization barrier).

A concrete feature scale simulation example is presented in the next section to
show the capability of current process TCAD simulations and to establish a baseline
for the computational performance via benchmarking the simulation.

1.1 Motivational Example: Thermal Oxidation
Thermal oxidation is a fundamental processing step in the manufacturing of
semiconductor devices [54]. It is used to create an insulating or protective layer
of silicon dioxide (SiO2), by exposing a silicon (Si) surface to oxygen gas (O2) or
water vapor (H2O) at temperature ranges from 800 ◦C to 1400 ◦C in an oxidation
reactor chamber (furnace). The oxidation furnace is usually operated using heating
coils in combination with a temperature measurement and control system.

6

https://github.com/karlrupp/microprocessor-trend-data
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

(a) (b) (c) (d)

(e) (f)

Figure 1.3: Process steps from bulk silicon (a) to the initial structure (e) for the thermal oxidation
process presented in Section 1.1 using geometrical process models. The thermal oxidation process
itself is simulated using a physically accurate process model leading to the final structure (f).
The magnified inset shows the deformation of the materials on top of the oxide. Adapted with
permission from Quell et al., IEEE Transactions on Electron Devices 68.11 (2021), pp. 5430–5437
[55], © 2021 IEEE.

Thermal oxidation is also used to grow gate oxides insulating the gate from the
source and drain of metal-oxide semiconductor field effect transistors (MOSFETs),
which are among the basic building blocks for microelectronic circuits in the
semiconductor industry.

For the thermal oxidation process a rectilinear simulation domain with
symmetric (reflective) boundary conditions is considered. Figure 1.3 shows all
process steps of a thermal oxidation simulation example. The initial material layout
of the thermal oxidation simulation example is created using constructive solid
geometry (CSG) operations. On the bulk silicon (cf. Figure 1.3a) several materials
are deposited (in layers covering the whole simulation domain) (cf. Figure 1.3b –
Figure 1.3d) and then parts of the deposited materials are geometrically etched (one
could consider this as a very rudimentary process model based on simplified physics)
using an L-shaped mask (cf. Figure 1.3e). In particular, the deposited material layers
from bottom to top (in order of deposition) are silicon dioxide8 (SiO2), polysilicon
(Polysilicon), and silicon nitride (Si3N4). This represents the starting point of the
physically accurate simulated thermal oxidation process.

8In semiconductor manufacturing this is often called just oxide, because silicon is the
predominantly oxidized material.

7

Figure 1.4: Representation of the initial material layout of the thermal oxidation example in
the level-set method (for each material a dedicated level-set function is used). The computational
domain is shown by the outermost black box. The placement of the refined grid regions (blocks)
of the hierarchical grid are shown by the black boxes located around the edges and corners of the
level-sets.

Figure 1.3e and Figure 1.3f show the material regions before and after the 15 min
thermal oxidation process at 1000 ◦C. The silicon and polysilicon material regions
shrink, because they are turned into oxide. The process expands the created oxide
compared to the previously present material (silicon and polysilicon) and deforms
the silicon nitride on top9.

The investigation continues on the level-set method specifics of the example
thermal oxidation simulation such as the material representation and the structure
of hierarchical grids.

Level-Set Method on Hierarchical Grids

Figure 1.4 shows the interfaces represented by the four level-set functions (one for
each material) used for the initial material layout of the thermal oxidation simulation
shown in Figure 1.3e. The interfaces do not enclose a material region directly, but are
selected so that they avoid material region overlaps and enable best computational
performance. The level-set used to represent the silicon nitride material region is
identical to the surface of the structure (surface visible form the outside). This
is beneficial to the simulation, because the surface of the structure is the area of
exchange of the structure with the reactants from the reactor chamber.

9The characteristic emergence of features resembling a bird’s beak [51, 56] is observed between
the silicon dioxide and the polysilicon.

8

Figure 1.5: Comparison of the level-set representation of the silicon nitride of the thermal
oxidation simulation using two different spatial resolutions, on the left using a coarse discretization
and on the right using a fine one, which uses four times as many grid points in each spatial
dimension. As expected, the corners are significantly better resolved by a higher spatial
discretization, underlining the importance of feature resolution for simulation accuracy.

Additionally, Figure 1.4 also shows the layout (placement and size) of the blocks
used on the hierarchical grid. Those blocks (rectangular domains) are shown by
their outline colored in black. The outermost block covers the full simulation domain
with a low spatial resolution, its boundaries are identical to the boundaries of the
simulation domain. The remaining blocks which employ a higher spatial resolution
are located around corners and edges of material regions (interfaces).

Figure 1.5 shows the zero-level-set of the level-set function used for representing
the silicon nitride for a low (coarse) spatial resolution and a four times increased
(finer) spatial resolution. The difference between those two spatial resolutions is
striking at the edges and corners. The level-set inherent rounding of analytic sharp
corners is directly related to the spatial resolution, affecting one to two grid points
around the corner. Thus if only those corners are resolved by a grid with a higher
finer spatial resolution the same accuracy for the interface is achieved, favoring an
approach based on hierarchical grids (cf. Figure 1.6).

In the thermal oxidation example comparing the approach based on hierarchical
grids (using 664 704 grid points) to a reference discretization using a single Cartesian
grid with an uniform high spatial resolution (using 8 192 000 grid points) shows that
the number of grid points is reduced by a factor of 12.

A key aspect of a hierarchical grid is to utilize the gained accuracy on the
finer spatially resolved regions also on the coarse grid. Typically, this is done
via an interpolation of the grid points of the coarse grid. The gained accuracy
is especially beneficial for features for which the coarse grid is not able to resolve
them correctly. Such features are in particular corners (cf. Figure 1.6) and thin
trenches. The problem is that a straightforward interpolation does not affect grid
points which are not covered by finer spatial resolutions. The coupling of the grids
(the interpolation) is mainly performed in the Re-Distancing step, therefore, an
improvement in this computational step has the greatest impact on the overall
accuracy (cf. Section 4.2.6).

9

Figure 1.6: Slice of the interface shown in Figure 1.5 highlighting a corner (edge). There are two
blocks where a four times increased spatial resolution is employed. The interface (turquoise line)
extracted solely from the coarse grid (black points) shows a rounded corner. The interface (red
line) extracted from the finer grid (gray points) shows that the rounding is directly proportional to
the spatial resolution. In areas where there is no curvature the interfaces of both spatial resolutions
match.

Benchmark Baseline

To analyze where the computational bottlenecks of the level-set method are, the
thermal oxidation process is benchmarked using a reference simulator: Victory
Process (cf. Section 4.3). The compute system used for the benchmark is a
representative industrial compute server (ICS) (cf. Section 3.2).

The measured run-times for the computational steps of the level-set method
(ordered chronologically) are shown in Figure 1.7 for every time step of the
simulation separately. There are a total of 27 time steps involved in the considered
oxidation simulation. The run-time for each time step increases during the
simulation, because the regions where a high spatial discretization is required to
sustain an accurate simulation increase in size, thus more grid points are present
which in turn require more computations.

Each of the computational steps contributes to the total run-time. The three
computational steps, which are the main contributors to the total run-time, are:

1. Advection (35.9 %),
2. Re-Distancing (30.7 %), and
3. Velocity Extension (22.1 %).
The biggest contributor – the Advection – is out of scope of the conducted

research, because it has already been extensively studied [57, 58, 59]. Typical
employed parallel algorithms allow for independent computations for each grid point
enabling a straightforward parallelization.

This thesis, however, focuses on the computational steps Velocity Extension and
Re-Distancing, because as can clearly be seen they are key contributors to the
overall simulation run-time. Together they are responsible for more than half of
the serial run-time, demanding efficient parallelization approaches to mitigate the
serious performance hit.

10

0 5 10 15 20 25
Time Step

0

10

20

30

40

50

60

70

80

R
u

n
-T

im
e
 [

s
]

Interface Velocity

Velocity Extension

Advection

Re-Distancing

Re-Gridding

Figure 1.7: Serial run-time of the considered computational steps of the level-set based simulation
for the thermal oxidation process shown for individual time steps, measured on the ICS.

The task for both computational steps is similar: Each has to extend a given
field (either a velocity field or a signed-distance field) from the interface to the
computational domain. However, the difference is whether the to-be-extended field
influences the control flow of the extension, i.e., the order in which the values for
the grid points are computed. In case of Velocity Extension the to-be-extended
field (the interface velocity) does not influence the control flow, i.e., for different
velocity fields at the interface, the order of the computations stays the same (the
extended velocity values are obviously different). However, in case of Re-Distancing
the to-be-extended field (the signed-distance10) does influence the control flow. The
algorithmic solution for both computational steps is based on the fast marching
method (FMM) [60].

The FMM finds wide spread use and parallel solution approaches are available
(in cases where the control flow is influenced by the field) [61]. These approaches
typically consider only Cartesian grids. A parallel algorithm considering hierarchical
grids was developed albeit offering limited scalability due to load-balancing issues
rooted in a non-optimal dependency on the number and dimension variations of
hierarchical grid blocks [62]. For example using 10 threads for the previously shown
thermal oxidation example leads to load-imbalances, because the hierarchical grid
consists (depending on the time step) of 17 blocks only: In this case, three threads
would only process a single block, preventing the compensation of varying run-times
between blocks.

Hierarchical grids require data exchange between levels of different spatial
resolution. Especially, for Re-Distancing high accuracy schemes are desired to fully
utilize the advantages of hierarchical grids.

10The signed-distance field is typically zero at the interface.

11

For the Velocity Extension the same algorithm (the FMM) can theoretically be
applied. The nature of an unchanged control flow of computations for the FMM
should allow for higher optimizations of the computations. The dependencies of
the computations could be determined beforehand, enabling shorter run-times and
yielding opportunities for advanced parallelization.

1.2 Research Goals
The main goal of the conducted research is to reduce the turnaround time of 3D
feature scale process TCAD simulations using the level-set method on hierarchical
grids. The focus is to accelerate two of the key computational steps of the level-set
method: 1) Velocity Extension and 2) Re-Distancing. These computational steps are
selected because they significantly contribute to the overall run-time as previously
discussed (cf. Figure 1.7).

The acceleration should be achieved by first parallelizing the Velocity Extension
on a single Cartesian grid exploiting the computation order and then tailoring the
developed parallel algorithm to hierarchical grids.

For the Re-Distancing an advanced block decomposition has to be developed for
the FMM, which in principle allows for efficient parallelization on hierarchical grids
by putting emphasis on load-balancing.

A further important goal is to increase the numerical accuracy of Re-Distancing
for hierarchical grids, especially in cases where only the higher grid resolutions enable
the representation of a feature like a thin trench. The computational overhead shall
be minimized.

Research Setting
The research presented in this work was conducted within the scope of the
Christian Doppler Laboratory for High Performance TCAD. The Christian Doppler
Association funds cooperations between companies and research institutions
pursuing application-orientated basic research. In this case, the research was lead
by Josef Weinbub and involved the Institute for Microelectronics at the TU Wien
and Silvaco Inc., a company developing and providing electronic device automation
and TCAD software tools.

1.3 Outline
Chapter 2 presents an overview of spatial discretization methods, adaptive mesh
refinement, and the implementation of the hierarchical grid used in the reference
simulation software.
Chapter 3 presents an overview of the terms used in parallelization and gives context
with respect to the compute systems used for evaluating the performance of the
algorithmic developments.

12

Chapter 4 portrays the level-set method with a special focus on process TCAD
simulations. The mathematical background for the level-set method is given and
all computational steps are discussed which have already been shown in Figure 1.7.
The numerical implementation of the computational steps in the reference simulator,
i.e., the reference simulation workflow, is discussed. Available simulation software
for process TCAD simulations is listed.
Chapter 5 presents the newly developed parallelized velocity extension algorithm,
which is first introduced for operating on a single Cartesian grid. Subsequently, an
extension tailored towards the use on hierarchical grids is presented. The FMM,
because it is the foundation of the improved computational steps, is presented. The
parallelized velocity extension algorithm is analyzed and evaluated based on two
representative process TCAD simulation examples for scalar and vector velocity
fields, discussing run-time performance metrics.
Chapter 6 proposes an advanced parallelization algorithm for the FMM used in the
Re-Distancing step. The key contribution is a novel domain decomposition approach
to enable better load-balancing during the execution of the FMM, resulting in a
shorter run-time for high core count CPUs. The granularity of the decomposition
and the frequency of synchronizations is particularly focused on in the analysis.
The parallel performance is evaluated based on representative interfaces (level-set
functions) taken from typical process TCAD simulations.
Chapter 7 presents an algorithm to increase the accuracy of the signed-distance field
on coarser levels of the hierarchical grid, by using a bottom-up correction algorithm.
The algorithm is evaluated on generic test cases resembling geometries occurring
in process TCAD simulations. This enables to compute the exact solution as a
reference solution and, therefore, an accurate comparison of the corrected signed-
distance field to the exact solution is possible.
In the last chapter, Chapter 8 the key findings of this thesis are summarized, the
motivational example is revisited, and new ideas are proposed for future research.

13

Chapter 2

Hierarchical Grids

Numerical treatment of PDEs, e.g., the level-set equation, prescribing the time
evolution of the interfaces, typically requires a discretization of the domain, the
computational grid. The two approaches to discretization are structured (regular)
grids and unstructured (irregular) grids.

Figure 2.1 shows some examples for structured and unstructured grids in two
spatial dimensions. The representative for a structured grid is the Cartesian grid
(cf. Figure 2.1a), where the grid points are located on a regular lattice and the
cells (for a formal definition, see Section 2.1) are squares or cubes depending on
the number of spatial dimensions. The connectivity of grid points is implicitly
defined via their indexes on the regular lattice. The width along a spatial direction
of such a cell is called grid resolution and is identical in all spatial dimensions.
A rectilinear grid (cf. Figure 2.1b) allows different distances between grid points,
thus the cells are rectangles or rectangular cuboids, in two dimensions and three
dimensions, respectively. Rectilinear grids allow for a limited spatial adaptivity, by
adapting the distance between grid points locally. The grid resolution is typically
stored as a dedicated array of the distances between the grid points along each
spatial dimension. A curvilinear grid (cf. Figure 2.1c) is often employed, if the PDE
is formulated in curvilinear coordinates, i.e., in spherical or cylindrical coordinates,
allowing for the spatial discretization to fit the PDE.

(a) Cartesian grid (b) Rectilinear grid (c) Curvilinear grid (d) Irregular grid

Figure 2.1: Four domains discretized by different grids, where the outline of the cells are colored
in black, the corresponding grid point colored blue is located in the center of the cell, and the
grid lines connecting the grid points are colored gray: (a)-(c) Examples of structured grids and
(d) example of an unstructured grid.

14

Cartesian grids and rectilinear grids enable a straightforward computation of
derivatives using finite difference methods [63, 64]. The main disadvantage of
structured grids is that the discretized domain has to be regular, e.g., a rectangle or
a cylinder. Nevertheless, for process TCAD simulations on the feature scale, where
typically a rectangular domain of the wafer is considered, this is no disadvantage.

In contrast, unstructured grids (cf. Figure 2.1d) are not restricted to regular
domains as their cells are typically polytopes, e.g., triangles or tetrahedra. The
usage of polytopes allows for the discretization of arbitrarily shaped domains. The
drawback is the irregular connectivity of the grid points which has to be stored
explicitly. PDEs discretized on unstructured grids are typically solved using the
finite element method (FEM) [65] or the finite volume method (FVM) [66], which
involve explicitly stored large sparse matrices in the solving procedure.

This thesis does not investigate the level-set method applied on unstructured
grids and, therefore, the reader is referred to [67, 68, 69, 70, 71, 72] for details on
this matter.

The discussion continues with the discretization of a domain using a Cartesian
grid.

2.1 Discretization
Let R3 be discretized by a Cartesian grid using the spatial resolution ∆x along
the x-axis, ∆y along the y-axis, and ∆z along the z-axis. The nodes (i, j, k) ∈ Z3

(triplets of indices) index all the grid points (i ∆x, j ∆y, k ∆z). This global indexing
enables a unique identification of every grid point. The volume surrounding a grid
point belonging to the node (i, j, k)

[(i − 0.5)∆x, (i + 0.5)∆x] × [(j − 0.5)∆y, (j + 0.5)∆y] × [(k − 0.5)∆z, (k + 0.5)∆z]

is called cell, which is the smallest unit in the computational domain. For a given
function Φ(x, y, z) defined on the domain, the function Φ (discretized on the grid)
is denoted by Φijk = Φ (i ∆x, j ∆y, k ∆z) for all grid points. Information associated
with a grid point is referred to as data, e.g., the discretized value of a function.
Computations typically involve more than a single grid point; consider, for instance,
the approximation of a derivative as discussed below. The collection of all grid
points necessary for such a computation is called stencil which typically involves the
neighboring grid points. The widely-known seven-point stencil in three dimensions
for a node (i, j, k) includes the node itself and all direct neighbors, i.e., nodes which
indices differs by at most one:

(i − 1, j, k), (i + 1, j, k),
(i, j − 1, k), (i, j + 1, k),
(i, j, k − 1), (i, j, k + 1).

(2.1)

15

The computation of derivatives on a computational grid is essential in the
context of solving PDEs. For first-order approximations finite difference schemes are
particularly convenient, as shown in the following. The first-order accurate forward
difference along the x-axis,

∂Φ
∂x

= lim
∆x→0

Φ(x + ∆x) − Φ(x)
∆x

≈ Φ(x + ∆x) − Φ(x)
∆x

= Φi+1jk − Φijk

∆x

, (2.2)

is referred to as D+x
ijkΦ. Similarly, the first-order accurate backward difference along

the x-axis,

∂Φ
∂x

≈ Φijk − Φi−1jk

∆x

, (2.3)

is referred to as D−x
ijkΦ. Consequently, the second-order accurate central difference

along the x-axis,

∂Φ
∂x

≈ Φi+1jk − Φi−1jk

2∆x

, (2.4)

is referred to as Dx
ijkΦ. The derivatives along other spatial dimensions such as y-axis

and z-axis are defined analogously.
Higher order approximations are possible (if Φ is smooth enough) by using higher

order finite difference schemes which, however, require a bigger stencil. In the here
considered case of the level-set method so-called weighted essentially non-oscillatory
(WENO) schemes are often employed [73, 74, 75, 76], if higher accuracies are desired.
WENO schemes compute the derivative on several sub-stencils of a large stencil.
Subsequently, the derivatives computed on the sub-stencils are combined through a
convex combination to minimize spurious oscillations. Spurious oscillations occur,
if the derived function lacks smoothness (differentiability) in the stencil considered
for the finite difference computation. Level-set functions are not smooth around
regions where the level-set function describes corners or edges of interfaces. This
is an inherent feature, because corners are exactly those points where the level-set
function is not differentiable. Edges and corners are typically present in interfaces
used to describe structures considered in process TCAD simulations, thus higher
order schemes are avoided, because they require more computational power and do
not yield increased accuracy around corners, where it is most needed. Therefore,
this thesis considers only first-order schemes.

If a higher resolution is required to better resolve a corner in a structured grid,
the entire grid has to be resolved with the desired higher spatial resolution. In case of
3D domains this quickly becomes unfeasible, because of high memory requirements
to store all grid points and the wasted computation power in irrelevant regions. As
hinted previously, local refinement, where only parts of the domain are resolved with
a higher spatial resolution, are a viable solution, to enable high spatial resolution
around corners, while keeping the overall computational effort feasible.

The discussion continues with approaches to local refinement of the spatial
resolution of a Cartesian grid to enable efficient application of computation power to
regions which have the highest potential for an overall increased solution accuracy.

16

(a) Level 0 (b) Level 1 (c) Level 2

Figure 2.2: A rectangular computational domain is discretized using different spatial resolutions
on different levels of the hierarchical grid.

(a) Ref. ratio 2 (b) Ref. ratio 3 (c) Ref. ratio 4 (d) Ref. ratio 5

Figure 2.3: A black cell with its corresponding grid point in the center (black point) is refined
using a refinement ratio of 2, 3, 4, and 5 (green cells; a-d). An uneven refinement ratio aligns the
grid point (center of a cell) from the coarse cell to the grid point of the central refined cell.

2.2 Refinement
Techniques to locally increase the spatial discretization for structured grids date
back to [77] and are referred to as adaptive mesh1 refinement (AMR). AMR was
first used to solve hyperbolic PDEs [77, 78, 79] in the context of compressible flows.
In the context of process TCAD simulations, fundamental basics are provided in [57].

In AMR the computational domain is discretized by several layers (levels) of
Cartesian grids. These grid layers cover the entire discretized domain, with different
spatial resolutions, hence the name hierarchical grid. The coarsest grid is referred to
as Level 0 , whilst consecutively spatially finer resolving grids have a higher level, e.g.,
Level 1 and Level 2 . In Figure 2.2 three grids on different levels of a schematically
depicted hierarchical grid are shown.

The ratio between the spatial resolutions of the levels is called refinement ratio.
The refinement ratio is a positive integer greater than one. A visualization of
the refinement of a single cell for some small integer refinement ratios is show in
Figure 2.3 for the 2D case. For uneven refinement ratios grid points of the coarser
grid are directly covered on a higher level. A high refinement ratio reduces the
number of levels needed to reach a certain spatial resolution, at the cost of less
gradual refinement. In [10] it is suggested to use different refinement ratios on
different levels.

1The computational grid is often named mesh.

17

Figure 2.4: The grid (thick black) covers the entire discretized domain, whilst the block (green)
covers only a sub-set. The cells directly neighboring the block cells are called ghost cells (blue).
The shown ghost cells allow the usage of the seven-point stencil at block boundaries (2.1). They
are used to exchange data with other blocks and to set boundary conditions.

However, all simulation examples presented in this thesis use a uniform refinement
ratio on all levels, which is set to four and is considered an industry standard
(cf. Figure 2.3c).

The goal of AMR is to increase the spatial resolution only locally, thus only
parts of the grids are used for the computation. The parts of a grid that are used
for computations (in process TCAD simulations those parts are regions around
interfaces, especially around corners and edges, and material region boundaries) are
defined by blocks.

A block is a rectilinear sub-domain of a grid consisting of a contiguous set of cells
(cf. Figure 2.4). A block is uniquely identified by specifying the corner (node with
the smallest indices in all spatial dimensions) and the size (number of grid points in
each spatial dimension). The cells directly neighboring a block are the ghost cells
of the block. Ghost cells enable the usage of the same stencil for computations
on all grid points of the block (even for grid points on the border, where parts of
the stencil in principle extend beyond the block boundaries). Depending on the
targeted stencil size more than one direct neighbor may be necessary for the ghost
cells. The usage of ghost cells has the cost of higher memory requirements, because,
as a consequence, some cells have to be stored multiple times (once in a block and
possibly several times in neighboring blocks as a ghost cell). The ghost cells are
used to set boundary conditions on the block and exchange data with neighboring
blocks.

A hierarchical grid is created in two steps:
• Flagging: The cells on a level are flagged (marked for refinement).
• Clustering: The flagged cells are clustered into blocks.

18

The flagging selects the cells on a level which have to be covered on the next
higher (finer) level of the hierarchical grid. As example, on Level 0 the cells which
shall be covered on Level 1 are flagged. In the context of process TCAD simulations
the cells are typically selected by their level-set value (closeness to the interface),
the local curvature (high curvature identifies corners), and distance to interfaces
of other level-set functions (relevant for simulations containing multiple material
regions). During a typical process TCAD simulation the regions where high spatial
resolution is necessary change over time. This change is due to material regions
(interfaces) being deformed, yielding different regions for high spatial resolution.
Therefore, the hierarchical grid has to be adapted several times (cf. Section 4.2.7)
during a process TCAD simulation.

There are three different approaches for clustering, depending on additional
requirements on the size and placement of blocks:

• Cell-based AMR
• Tree-based AMR
• Block-based AMR

The three approaches are portrayed in the following.

Cell-based AMR

Cell-based AMR allows for individual cells to be refined independently [80, 81].
This enables a perfect refinement efficiency (number of flagged cells divided by
number of refined cells), because only those cells which are flagged are refined.
However, high memory requirements for the hierarchical structure and specialized
stencil computations induce a non-negligible computational overhead. The typical
data structure used are quadtrees [82, 83, 84] and octrees [23, 85, 86, 87, 42], in
two dimensions and three dimensions, respectively. The refinement ratio is often
two, but other refinement ratios are also considered [88, 10]. Issues arising on
parallel systems, especially the even distribution of the data across the hardware
resources for tree-like data structures is investigated in [89, 59]: A Z-curve (linear
neighbor conserving traversal of space) is utilized to spread the data evenly across
the available hardware resources.

Tree-based AMR

In contrast to cell-based AMR, tree-based AMR requires that only similar blocks
(blocks of the same size) which are aligned to the grid are refined. The size of the
blocks has to be bigger than one, else it is equivalent to the cell-based approach. So,
if a single cell of a block is flagged all cells of the block are refined, thus the refinement
efficiency is lower, but the computational overhead for storing the structure is smaller
compared to the cell-based approach. Tree-based AMR is used for example in [10,
90, 91]. Parallelization of tree-based AMR is typically performed on a per block
basis (each block is processed by a dedicated thread).

19

Block-based AMR

Block-based AMR (also known as patch-based AMR) allows differently sized blocks,
thus allowing for a higher refinement efficiency. The cost of the higher refinement
efficiency is a larger computational overhead for each block, because the size and the
connectivity between blocks is not straightforward as in the tree-based approach [92,
93]. The connectivity (the neighboring blocks) is typically stored as a dedicated list
for best performance. In this case the clustering is performed using a signature-
inflection clustering method based on the approach presented in [94].

Starting from a single block covering the full domain, the block is iteratively
split and trimmed to remove most of the not flagged cells. Typically a minimum
size requirement is imposed on the blocks, which reduces the total number of blocks
(high overhead of small blocks, due to the ghost cells). However, no maximum size
for the blocks is set. Level-set simulations using this approach are presented by [95,
96]. Differently sized blocks (possible in this approach) have to be considered when
parallelizing computations, because they may cause load-imbalances (computations
on large blocks take usually significantly longer than on small ones).

In this thesis and in the presented reference simulation workflow (cf. Section 4.2)
the block-based AMR approach is considered for all simulations examples. The
reference simulation workflow always employs a single block on Level 0 covering
the full computational domain. On the higher levels of the hierarchical grid several
blocks are present, depending on the simulation problem at hand.

There are other approaches to AMR considered in level-set simulations, which
are portrayed shortly in the following for the sake of completeness.

Other Approaches

The approach to AMR considered in [97] employs, locally around the interface,
cells that contain a higher order approximation of the level-set function. The
approximation in those cells is based on Gauss-Lobatto quadrature nodes instead of
a single grid point per cell. This approach is conceptually similar to a higher spatial
discretization locally around the interface.

For level-set simulations, there are many approaches where only cells in a narrow-
band (several grid cells wide) around the interface are stored. Those approaches
typically consider only a single grid, which usually employs a high spatial resolution.
For example, in [98] the usage of a hash table data structure to store the narrow-
band is proposed, but the conducted performance comparison showed no advantage
to a reference cell-based AMR implementation.

The approach to only store grid points in a narrow-band around the interface is
taken to the extreme in [99]. This approach, named sparse field, stores only grid
points which are directly next to the interface (any computations typically requires
the extension of the band of stored grid points).

20

Figure 2.5: An exemplary hierarchical grid containing three levels with blocks. Blocks violating
the four discussed nesting criteria are crossed out in red. A refinement ratio of four is used in both
spatial dimensions. Adapted with permission from Springer Nature: Springer Cham, Quell et al.,
Studies in Computational Intelligence 902 (2021), pp. 438-451. [100], © 2021, under exclusive
license to Springer Nature Switzerland AG.

2.3 Nesting Criteria
As mentioned previously, this thesis considers a block-based AMR approach. As
such, the block placement and nesting criteria are essential and discussed in the
following.

Data exchange between blocks of a hierarchical grid is necessary to couple the
solution on different blocks. Data is exchanged between blocks on the same level, as
well as between blocks on different levels. Data exchange procedures are costly, if an
arbitrary relation between blocks has to be handled, because for each data exchange
all blocks on all levels have to be considered. Therefore, enforcing placement rules on
the blocks, i.e., restricting the possible relations between blocks, allows for optimized
data exchange procedures which only require the consideration of a small sub-set
of all blocks.

These placement rules are referred to as nesting criteria because they define how
blocks are nested on hierarchical grids. The nesting criteria structure hierarchical
grids and enable more efficient data exchange between blocks on different levels of a
hierarchical grid. Data exchange from a coarse level to the next finer level is usually
referred to as interpolation and conversely from a fine level to the next coarser level
as restriction. If two blocks on different levels overlap the term parent for the block
on the coarser level and the term child for the block on the finer level is used.

21

The four key nesting criteria considered in this work and representing an industry
standard are:

1. Blocks shall not overlap other blocks on same level.
2. Each block has a unique parent block on the next lower level, except for Level 0

where there is no parent block.
3. Blocks shall be aligned to the grid on the next lower level.
4. A block shall not border an area which is not refined on the next coarser level.
The first criterion excludes overlapping blocks which would otherwise cover cells

multiple times, resulting in computational overhead. Thus only ghost cells are stored
more than once on a level of a hierarchical grid.

The second criterion effects the interaction between blocks on different levels.
The main advantage having a unique parent block compared to approaches where
the parent block is not unique, is that for data exchange procedures between levels
of a hierarchical grid only two blocks have to be considered: The parent and its
child block. The drawback is that more blocks are created on higher levels of a
hierarchical grid, because the blocks have a maximum size imposed by their parent
blocks.

The third criterion is automatically fulfilled in case the refinement is based
solely on the flags of the coarser level. The underlying grids with different spatial
resolutions are inherently aligned. Thus a cell is always either fully covered by refined
cells or not covered at all, allowing for simplified exchange procedures between the
levels.

The fourth criterion avoids a harsh border in the spatial resolution: The so-
created gradual change in the spatial resolution, enables a stable solution.

In Figure 2.5 an example hierarchical grid in two dimensions with a total of
three levels is presented. The employed refinement factor is four. The single block
on Level 0 is outlined by a thick black line, whilst the block cells use a thin black
outline. On Level 1 the blocks (total of four valid blocks) are colored in shades of
green, and on Level 2 the blocks (total of seven valid blocks) are colored in shades
of blue. Examples of blocks violating the four required nesting criteria a marked
with respect to the violated nesting criterion list number (see list above) in red.

Collection of Terms

Analogously to [101] the terms used in this work to describe hierarchical grids are
summarized (ordered alphabetically):

• block: Axis-aligned collection of continuous cells of the same size
• block cells: Cells belonging to a block
• cell: Smallest unit of the computational domain
• ghost cell: Halo of cells surrounding the block cells
• ghost point: Grid point belonging to a ghost cell
• grid: Generic description of the computational domain
• grid line: Axis-aligned line connecting two grid points
• grid point: Location of the center of a cell
• level: Union of blocks that have the same spatial resolution
• node: Index of a cell

22

Chapter 3

Parallelization and Hardware

This chapter presents the basic concepts of parallelization and multiprocessor
programming [102, 103]. The subsequently established terminology allows for a
precise description and analysis of the developed algorithms. At the end of the
chapter the hardware resources used for the benchmarks presented in the remainder
of this work are listed.

3.1 General Parallelization Strategies
Parallelization is the transformation of an algorithm to be able to execute it in
parallel. The goal of parallelization is the reduction of the run-time required for
execution of an algorithm, because (some of) the instructions of the algorithm
are executed simultaneously. To be able to parallelize an algorithm there are
two prerequisites: 1) The instructions of the algorithm have to allow reordering
(concurrency) and 2) there must be hardware available to perform instructions
simultaneously (parallel execution).

Concurrency

Concurrency is the ability to execute instructions, e.g., of an algorithm, out-of-
order, without affecting the final outcome [102]. If a problem does not allow for
concurrency, the instructions are not parallelizable. To illustrate the difference two
situations are described in detail.

Consider two arrays storing a set of arbitrary numbers. The goal is to add
both arrays element wise together. In this case a serial algorithm may add the first
number of each array, then the second number and so forth. For the result (the
element wise sum of the array numbers) the order in which each element pair of the
arrays is added does not matter. Thus the example allows for concurrency and it is
possible to parallelize the algorithm and compute the sum of the individual element
pairs simultaneously.

Now consider the task to find the end of a linked list given its head (first element).
The only way to reach the end of a linked list is to follow the pointer to the next
element of the current element until there is no next element, thus the end is reached.

23

Figure 3.1: Schematic of an exemplary shared-memory parallel compute system which has two
sockets each equipped with a four core processor. The cores of a processor share the level 3 cache
(L3), but have dedicated level 2 (L2) and level 1 instruction and data (L1i and L1d) caches. Each
core has the capability to execute two threads (e.g., T0 and T1).

Because there is only a single way to reach the end of the linked list and the steps
require a definite ordering the task is unparallelizable.

Parallel Execution

To actually reduce the run-time of the concurrent instructions (the goal of
parallelization), the independent sets of instructions resulting from concurrency
considerations have to be executed simultaneously. As mentioned previously, in this
work only shared-memory compute systems are considered. The parallel execution
on shared-memory compute systems is typically achieved by scheduling threads to
different cores on a processor.

Figure 3.1 shows a schematic of a typical shared-memory parallel compute
system. On the depicted shared-memory parallel compute system there are two
sockets each equipped with a processor consisting of four physical cores each
supporting two-way simultaneous multithreading (i.e., support for executing two
threads per core): a total of eight logical cores is thus provided by each processor.

A processor has a hierarchy of caches to reduce the data access time from the
main memory. The size of a cache is indirectly proportional to the access time.

On a shared-memory parallel compute system, the main memory storing all data
of a program is split into memory domains, one for each socket. Each core has still
access to the entire main memory of the compute system. However, access to data
residing in another memory domain comes with the cost of higher access latencies
and lower bandwidths as data has to be transferred via an additional coherent link
connecting the processor sockets and the associated memory domains. Such systems
are labeled non-uniform memory access (NUMA) systems and are widely spread in
professional workstations and large-scale compute clusters/supercomputers.

24

Data exchange among threads being executed within the same process is
inherently possible due to shared access of the main memory. This data exchange
mechanism is considered low overhead, considering alternatives like pipes and
sockets offered by the operating system. However, the reading and writing to the
same memory location has to be carefully implemented, potentially requiring the
need for dedicated mechanisms (lock, or atomic operations) to get exclusive access
to a memory location. This avoids data races (non-synchronized accesses to the
same memory location), which may lead to unexpected results of the computation
(undefined behavior).

In this work, parallelism is classified into two types:
• Coarse-grained
• Fine-grained
Coarse-grained parallelism is characterized by a relatively large amount of

work per thread. Synchronization and data exchanges between threads are typically
costly, thus they have to be rare so that the overall created overhead is low. Coarse-
grained parallelization suits algorithms where the run-time of threads is predictable.
This enables the creation of threads which will have the same run-time, so that
scenarios where a single long-running thread blocks the continuation of execution
for other threads are mitigated.

Considering the previous example where two arrays are added element wise
together, the array could for instance be split into as many chunks of data as cores
are available. Data exchange has to be performed in the beginning, i.e., distributing
the chunks of the array to the threads, and in the end, i.e., synchronizing the
threads, to ensure all threads are finished. The so created chunks of data are coarse
(thus the name), because the number of instructions performed by a thread is high
compared to the number of data exchanges between threads. However, the splitting
of data creates additional computations (overhead), because determining the chunk
size also requires computations. If the number of computations per thread is low
(which of course is problem-specific), the overhead diminishes all gains from parallel
execution.

Within the context of hierarchical grids computations on a single block typically
correspond to a suitable chunk of data for a thread (balancing overhead and parallel
performance).

Fine-grained parallelism, on the contrary, is characterized by a relatively
small amount of work per thread before synchronization between threads is required.
Fine-grained parallelization suits algorithms where the run-time of threads is
unpredictable, but synchronization costs are low.

Again, considering the previous example where the two arrays are added element
wise together, the array is split into significantly more chunks of data than cores are
available. Thus a core is going to execute more than a single thread over the duration
of the program. If a core is assigned a new thread synchronization is involved, i.e.,
identifying the not processed threads. Thus the overall run-time is typically larger
compared to the coarse-grained parallelization approach for the considered example
adding two arrays element wise together.

25

However, in case the run-time of the operation performed on each array element is
unpredictable the fine-grained parallelization approach would be superior because
run-times of different threads are balancing each other. In the end the cores will
finish the execution of all threads almost at the same time (almost no idling).

Programming Model

The OpenMP application programming interface (API) specification [104] is widely
used to develop software for shared-memory systems and is also used in this work
OpenMP allows easy parallelization of existing programs, especially of for-loops, by
using standard compiler directives, e.g., #pragma omp parallel for. By setting
the number of threads the range of the for-loop is automatically divided into number
of threads chunks which are executed in parallel.

To handle more complex parallelization scenarios where a straightforward
parallelization of for-loops is not possible, OpenMP has the concept of OpenMP
tasks. Conceptually, a task is the same as a thread, however, a task is managed
by OpenMP, instead of the operating system. OpenMP internally utilizes a thread
pool to enable fast and low overhead parallel execution of tasks. A thread pool has
a fixed number of threads (managed by the operating system) which dynamically
execute scheduled tasks (managed by OpenMP).

To understand the viable performance gains from parallelization the theoretical
limits are explored in the next section.

Amdahl’s Law

The theoretical expected maximum speedup (run-time reduction factor) achievable
through parallelization is given by Amdahl’s law. Most algorithms consist of parts
which allow for concurrency and some parts which do not. Let the fraction (relative
to the full algorithm) which allows for concurrency of an algorithm be denoted by c
and the number of used threads (equal to the available cores) be t then the maximum
parallel speedup S (ignoring any introduced overhead by parallelization) is given by

S = 1
1 − c + c

t

. (3.1)

In the limit of an infinite number of available threads the parallel speedup is limited
by

S = 1
1 − c

, (3.2)

which is indirectly proportional to the fraction which does not allow for concurrency.
Considering an algorithm with c = 0.9, i.e., 10 % of the algorithm is serial, the
parallel speedup is limited by a factor of 10. Therefore, it is essential that even minor
parts of an algorithm are parallelized (minimizing the serial part limiting the parallel
speedup), if a highly parallel execution is targeted, i.e., multi-core processors.

In high performance computing the efficiency of parallel algorithms is evaluated
by two common analyses quantifying the scalability.

26

Strong scaling analysis is defined as how the run-time varies with the number of
threads for a fixed total problem size. The parallel speedup is defined as the single-
threaded run-time compared to the multi-threaded run-time. Ideally the run-time is
reduced linearly if more threads are used. The run-time reduction typically saturates
for a high number of threads due to Amdahl’s law.

Weak scaling analysis is defined as how the run-time varies with the number of
threads for a fixed problem size per thread. For example, if the number of threads
is doubled, the problem size is also doubled, but the run-time would be the same
in case of optimal weak scaling. Amdahl’s law is not applicable to the weak scaling
analysis, because the total problem size is not fixed, i.e., the problem size grows
with the number of used threads.

As will be shown in later chapters, this work primarily conducts strong scaling
analyses as they allow for intuitive interpretation regarding parallel speedup when
considering process TCAD simulation workflows.

The next section introduces the hardware used for benchmarking

3.2 Benchmark Systems
This section gives an overview of all the compute systems used for evaluating the
performance henceforth denoted as benchmark systems of the implementations of the
proposed algorithms. The benchmark systems are single compute nodes from two
generations of Vienna Scientific Cluster1 (VSC) supercomputers and an industrial
compute system. In Table 3.1 the key properties of the three available benchmark
systems are summarized.

Table 3.1: Summary and key properties of the used benchmark systems.

VSC3 VSC4 ICS
Frequency (GHz) 2.6 3.1 2.8

Sockets 2 2 2
Cores per CPU 8 24 10

Logical cores per CPU 16 48 20
L1i cache 32 KByte 32 KByte 32 KByte
L1d cache 32 KByte 32 KByte 32 KByte
L2 cache 256 KByte 1024 KByte 256 KByte
L3 cache 20 MByte 33 MByte 26 MByte

Main memory 64 GByte 96 GByte 226 GByte

1The VSC is a collaboration of several Austrian universities that provides supercomputer
resources and corresponding services [105].

27

Chapter 4

The Level-Set Method

This chapter starts with the theoretical (mathematical) background of the level-set
method (cf. Section 4.1), clearly defining the used terms such as level-set function
and signed-distance function. In Section 4.2, the reference implementation of the
level-set method within the context of a simulation tool is presented, providing a
detailed discussion of all the computational steps in dedicated subsections. The
computational steps range from the creation of the level-set function representing
the interface and the movement or deformation of said interfaces, and finally to the
extraction of an explicit representation of the interfaces from the full simulation
domain, which is then used for further process or device TCAD simulations. The
chapter concludes with a short overview of the available process TCAD simulators
which use the level-set method (cf. Section 4.3).

4.1 Theoretical Background
This section discusses the implicit representation of geometries using a function and
their movement (deformation).

4.1.1 Level-Set Function
For a given Ω ⊂ Rn (process TCAD simulations typically consider n = 2 or n = 3)
and an interface Γ ⊂ Ω separating the inside Ω− ⊂ Ω from the outside Ω+ = Ω\Ω−.
The level-set method describes the interface separating the inside from the outside
implicitly by a function Φ (x⃗). This function also known as the level-set function,
has to be continuous and fulfill

Φ (x⃗)

����
< 0 for x⃗ ∈ Ω−,

= 0 for x⃗ ∈ Γ,

> 0 for x⃗ ∈ Ω+.

(4.1)

Because this work only considers the 2D and 3D case, let x⃗ = (x, y, z), where the
z-component is only considered in the 3D case. Figure 4.1 shows a 2D example of an
interface. The choice on which side of the interface the sign is negative is arbitrary.
The convention in this thesis is that the inside shall have the negative sign.

28

Figure 4.1: Representation of a 2D region Ω− via the level-set function Φ (x⃗).

Also, the choice to select the zero-level-set as the interface is arbitrary (any other
value is possible as well), but by choosing zero the sign of the function is sufficient
to discriminate between inside and outside.

The gradient of Φ, if it exists (on corners and edges of Γ the gradient does not
exist), is given by

∇Φ =

∂Φ
∂x

,
∂Φ
∂y

,
∂Φ
∂z

�
, (4.2)

and is perpendicular to the iso-contours of Φ, including the special iso-contour for
the value zero (zero-level-set) of Φ. Therefore, normalizing the gradient yields the
normal vector1 of the interface

n⃗ = ∇Φ
|∇Φ| . (4.3)

The so defined normal vector points outwards because the gradient points in the
direction of increasing Φ. Φ is by definition (4.1) smaller on the inside than on
the outside. The definition of the normal vector via the normalized gradient allows
for a straightforward embedding of the interface normal vector n⃗ in Ω. Therefore
opening possibilities for a geometric interpretation of the level-set function off of
the interface, e.g., curvature in the entire domain Ω. Unfortunately, the minimal
requirements to the level-set function do not allow for a geometrical interpretation of
the normal vector at points which are not on the interface Γ. Thus, practical level-
set simulations typically require more properties of the level-set function, discussed
in the next section.

1The term normal vector in this thesis always implies the unit normal vector, i.e., its norm is
equal to one.

29

4.1.2 Signed-Distance Function
In practical applications the level-set function Φ is often chosen as a signed-distance
function relative to Γ

Φ (x⃗) =

����
−d(x⃗, Γ) for x⃗ ∈ Ω−,

0 for x⃗ ∈ Γ,

+d(x⃗, Γ) for x⃗ ∈ Ω+,

(4.4)

with d the Euclidean distance to the interface Γ. The Euclidean distance between
two points is given by

d (x⃗, y⃗) =
� �

i∈{x,y,z}
(x⃗i − y⃗i)2, (4.5)

with x⃗i the component of the vector x⃗ in the corresponding spatial direction. The
distance between a point and a set (i.e., the interface Γ) is given by the infimum of
the Euclidean distance over all points of the set

d (x⃗, Γ) = inf
y⃗∈Γ

d(x⃗, y⃗). (4.6)

The choice, to use a signed-distance function, allows for geometrical
interpretation of the normal even for points not on the interface. The normal points
away from the closest point on the interface on the outside, and to the closest point
on the interface on the inside. If Φ is a singed-distance function |∇Φ| = 1 holds.

This fact is easily reasoned by considering a point x⃗ and the corresponding
closest point on the interface x⃗Γ. All points y⃗ on the shortest path connecting x⃗
and x⃗Γ have the same point x⃗Γ as the closest point on the interface. This is due to
the triangle inequality. Thus the path connecting x⃗ and x⃗Γ is the path of steepest
descent for the level-set function Φ, evaluating to −∇Φ. Furthermore, because Φ is
scaled according to the Euclidean distance it follows that |∇Φ| = 1.

The representation using a signed-distance function allows for a faster
computation of the normal vector of the interface, because the normalization step
is dispensable

n⃗ = ∇Φ
|∇Φ|� �� �

=1

= ∇Φ. (4.7)

In Figure 4.2 two different level-set functions for the same interface (a circle)
are shown. Figure 4.2a shows an arbitrary level-set function whereas Figure 4.2b
shows the use of a signed-distance function. Figure 4.2c and Figure 4.2d show the
corresponding iso-contours. In case of the signed-distance function the iso-contours
are evenly spaced, whereas in the other case they tend to cramp up or spread out.
If the level-set method is solved analytically, this is not an issue, but in case of a
discretization and numerical procedures issues arise.

30

1.0
0.5

0.0
0.5

1.0 1.0

0.5

0.0

0.5
1.0

0.5

0.0

0.5

(a) Level-set function

1.0
0.5

0.0
0.5

1.0 1.0

0.5

0.0

0.5
1.0

0.5

0.0

0.5

(b) Signed-distance function

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) Iso-contours of the level-set function
1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d) Iso-contours of the signed-distance function

Figure 4.2: A circle with radius r = 0.5 is represented (a) using the level-set function
Φ(x, y) = x2 + y2 − r2 and (b) using the signed-distance function Φ(x, y) =

�
x2 + y2 − r. The

zero-level-set is drawn in red. Iso-contours (level-sets for other values) are irregular spaced in (c),
but in the case of a signed-distance function they are equidistantly spaced (d).

Numerical issues arising from such steep or flat gradients of the level-set function
are:

• Steep gradients may exceed the numerical representation of floating-point
numbers.

• Flat gradients are prone to distortions of the interface position (small
perturbations of the level-set function lead to enormous perturbations of the
interface position).

One point in the domain for the signed-distance function in Figure 4.2 is special,
i.e., the center of the circle (the apex of the cone), because it is the only point for
which |∇Φ| is undefined. Generally, for a signed-distance function the gradient for
all points on the skeleton of Γ is undefined. The skeleton of an interface Γ consists
of all points p⃗ ∈ Ω which have more than one closest point on Γ, e.g., for a circle
the center or for a square the diagonals [106].

31

This seems to be a critical drawback when using a signed-distance function, but
as the equations under consideration in this work are generally true, e.g., |∇Φ| = 1
holds almost everywhere (except for a negligible subset of Ω).

The advantages of the geometric interpretation of the level-set function and
its numerical robust gradient outweigh the drawback not being able to define the
gradient everywhere. An almost everywhere true equation, e.g., |∇Φ| = 1, may still
be approximated numerically, if the approximation ’Fails in a graceful way’ [18],
meaning that the failure does not cause a deterioration of the underlying numerical
method.

4.1.3 Interface Movement
Assume the velocity V⃗ is given for each point of the interface Γ. The movement of
the interface is given by the movement of all interface points, whereas the movement
for a single interface point x⃗ is described by

dx⃗

dt
= V⃗ (x⃗, t) . (4.8)

Such a description of the interface movement would require an explicit representation
of the interface, because the movement of individual points of the interface is
described. The level-set method is an implicit approach, therefore, the approach has
to be adapted. The level-set function Φ is used in the description of the interface
movement. For the interface movement a time dependency is introduced to the level-
set function Φ (x⃗, t). The movement of the interface is described by the advection
(convection) equation

∂Φ (x⃗, t)
∂t

= V⃗ (x⃗, t) · ∇Φ (x⃗, t) , (4.9)

where Φ is the well-known signed-distance function and V⃗ is a velocity field
describing the interface movement. Equation (4.9) is also known as the level-set
equation. The interface is moved because the zero-level-set of Φ changes over time.

In contrast to the formulation in (4.8), which presents the movement from
a Lagrangian specification (the observer follows points), (4.9) uses the Eulerian
specification (observer watches which points pass by). Both specifications are related
via the equation

Φ

X⃗ (x⃗0, t) , t

�
= ∂X⃗

∂t
(x⃗0, t) , (4.10)

where X⃗ (x⃗, t) is the position of the point x⃗ according to (4.8) at time t and x⃗0 is a
generic point on the interface.

In cases where strictly only the interface is of interest a scalar velocity field is
sufficient to prescribe the interface movement. The interface position is only affected
by the to the interface orthogonal component of the velocity field. Let V⃗ = vn⃗ + P⃗ ,
where ∇Φ ⊥ P⃗ holds and v is the scalar velocity in normal direction of the interface.

32

Then (4.9) simplifies to

∂Φ
∂t

= V⃗ · ∇Φ, (4.11)

=

vn⃗ + P⃗

�
· ∇Φ, (4.12)

= v n⃗ · ∇Φ� �� �
=|∇Φ|

+ P⃗ · ∇Φ� �� �
=0

. (4.13)

Additionally, in case of a signed-distance function, (4.9) simplifies further to

∂Φ
∂t

= v. (4.14)

This final formulation allows for a short and elegant way to describe the interface
movement for a given velocity field.

In the next sections the computational steps of the used reference simulator are
presented.

4.2 Reference Simulation Workflow
This section provides details of the considered reference process TCAD simulation
workflow which is based on the level-set method. In essence, the simulation workflow
consists of three main parts (cf. Figure 4.3):

• The initialization, in which the level-set functions are set up (Section 4.2.1).
• The main time loop (Section 4.2.2 – Section 4.2.7) where the device structure

(topography) is advanced in small time steps (solving the level-set equation
(4.9) in time steps of size ∆t).

• The finalization in which an explicit representation of the material regions is
extracted (Section 4.2.8).

The next sections provide a more in-depth overview of the individual steps shown
in Figure 4.3.

4.2.1 Initial Interfaces
The first step of a level-set simulation is to create the level-set functions to
represent the material regions. The spatial discretization approach considered here
(hierarchical grids) allows to discuss the implementation as if it would use as single
Cartesian grid, except for Re-Gridding which adapts the blocks on the hierarchical
grid in position and size to the changing material regions.

Figure 4.4 shows a discretized level-set function on a Cartesian grid. On each
grid point an approximation of the signed-distance to the interface is stored. Each
grid point is located in the center of a cell (black square). Such a level-set function
may be used to describe a single material region.

33

Main Time Loop

Process Model (Section 4.2.2)

Interface Velocity (Section 4.2.3)

Velocity Extension (Section 4.2.4)

Advection (Section 4.2.5)

Re-Distancing (Section 4.2.6)

Re-Gridding (Section 4.2.7)

In
it

ia
liz

at
io

n

In
iti

al
In

te
rfa

ce
(S

ec
tio

n
4.

2.
1)

Fi
na

liz
at

io
n

Ex
tr

ac
t

In
te

rfa
ce

(S
ec

tio
n

4.
2.

8)

re
pe

at
fo

r
ev

er
y

tim
e

st
ep

Figure 4.3: Simulation workflow of a level-set simulation, clustered into the three main parts.
The focus of this thesis is on the computational steps marked in red.

Figure 4.4: A level-set function for the interface (green curve) discretized on a Cartesian grid
with a grid resolution of one on all axis. The color of a level-set value (valid at the center of a box)
defines the sign of the level-set value, blue inside, red outside, and black directly on the interface.

34

(a) Material regions (b) Additive level-sets

Figure 4.5: In (a) three material regions are enclosed by three separate interfaces. In (b) the
same material regions are represented by additive level-sets and the domain boundary conditions
are taken into account. The interfaces Interface 1 and Interface 2 are overlapping (identical) on
the exposed area of Material 2. Adapted with permission from Quell et al., IEEE Transactions on
Electron Devices 68.11 (2021), pp. 5430–5437 [55], © 2021 IEEE.

Technically, a level-set function describes two regions: 1) A material region and 2)
the complement to the material region, e.g., the device structure and the void above
the device structure in the simulation domain.

The discuss continues with a detailed description of material representation
approaches.

Material Representation

As shown by the thermal oxidation example (cf. Section 1.1) device topographies
consist of more than a single material region. A level-set function may only model a
single material interface, thus several level-set functions are necessary to represent
multiple material regions (cf. Figure 4.5). There are different approaches how the
level-set functions are configured to achieve this goal. The straightforward approach
using a dedicated level-set function encapsulating the material region for each
material as shown in Figure 4.5a, has some drawbacks which are further illustrated
in Figure 4.6. At the interface between two material regions non-physical voids may
form (due to numerical inaccuracies of the level-set functions), because two level-
set functions represent the same material interface (cf. Figure 4.6a). Sometimes no
voids materialize, but the material regions defined by the level-set functions overlap.
However, typical process TCAD simulations do not consider (allow) alloys, i.e., the
material has to be unique at each point (cf. Figure 4.6b).

35

(a) Void (b) Overlap (c) Triple-junction

Figure 4.6: Drawback of the straightforward approach using a level-set function individually
encapsulating each material region.

Also triple-junctions (points where three material regions meet) are destined
to form non-physical voids, because a numerical implementation causes slight
unavoidable rounding of corners (cf. Figure 4.6c). The rounding is related to the grid
resolution, if the grid resolution approaches zero the rounding vanishes completely.

Several strategies to avoid the aforementioned voids were developed, primarily
driven by research on multiphase flows [107, 108, 109, 110]. The material-specific
level-set functions are either held together, e.g., deliberately changing the velocity
field before the Advection to avoid the forming of voids or forced together, e.g., using
Boolean operations after the Advection to remove overlap of the level-set functions.

In general, the focus of the various research strategies is on triple-junctions in 2D
fluid dynamic simulations. The previously discussed approaches all require M − 1
level-set functions for M different materials. A level-set function separates two
material regions, thus regions belonging to no level-set function are not explicitly
represented. In context of process TCAD simulations the void (vacuum or gas)
above the to-be-simulated structure is typically the material that is not explicitly
represented.

In [111] a conceptually different approach is presented, which uses for each
material pair interface a dedicated level-set function leading to a maximum number
of level-set functions of M(M − 1)/2 for M materials and all materials having a
pairwise interface. A sophisticated voting mechanism decides which of all these
level-set functions is used for the actual computations. This enables to represent
triple-junctions without voids and overlaps. However, the high number of level-set
functions required in this approach represents a computational burden. The most
widely-used approach in process TCAD simulations is to use additive level-sets [3,
20] (cf. Figure 4.5b). Instead of storing individual level-set functions representing a
dedicated material, the level-set functions store a union of materials. The approach
is considered in this work and further presented in the following paragraphs.

36

Material Representation in Process TCAD Simulations

In an additive level-set approach the first material (used in a simulation) is
represented with a single level-set function, as described in Section 4.1.1. Every time
a new material is added (can happen several times during a practical simulation
workflow) a new level-set function describing the union of all previously present
material regions and the new material is added. The defined level-set function
always represents the interface between the structure (device) and the vacuum or
gas region.

The additive level-set approach prevents the formation of non-physical voids,
because at a material boundary only a single level-set function defines the interface,
in contrast to the straightforward approach (cf. Figure 4.5a), where two level-sets
are present (one for each material).

Additionally, the additive level-set approach allows representing material regions
with thicknesses less than the grid resolution. The union with the other materials
creates a thicker material region which can be represented by a level-set function.
The straightforward approach representing material regions individually is not able
to reliably store such thin material regions: Storing such thin material regions is
only possible, if the material region is aligned to the grid and has a symmetric
offset to the grid points it encloses. Thus, only planar structures are possible in the
straightforward approach, if thin layers are considered.

The additive level-set approach allows simulating physically accurate etching
processes where thin etch stop layers (a thin material region which is hardly affected
by the etching process) are employed, without the necessity for unfeasible high
spatial discretization. The material regions of the etch stop layers may then be
reconstructed via Boolean operations after an explicit interface representation has
been extracted (explicit interfaces are not bound to a grid and therefore have no
restriction originating from the grid resolution on their thickness).

A modification to the additive level-set approach to simulate deposition
processes, where the process model is highly dependent on the interface normals
(e.g., epitaxial crystal growth), is derived in [112]. There, a different strategy to
unionize the material regions is used, with the goal that the outer most level-
set, which is in this case not the wafer surface, has the correct local curvature
(convexity and concavity) enabling the formation of crystal facets. However,
Boolean operations allow a straightforward conversion to the additive level-set
approach.

The additive level-set approach heavily relies on Boolean operations, which are
straightforward for level-set functions and discussed in the following.

Boolean Operations

Boolean operations on level-set functions allow for efficient and high performing
implementations [106], because their computation is based on a point-wise
evaluation of minimum, maximum or multiplication by −1.

37

For two level-set functions Φ1 and Φ2 the operations are defined by

Φ1 ∪ Φ2 = min (Φ1, Φ2) , (4.15)
Φ1 ∩ Φ2 = max (Φ1, Φ2) , (4.16)
Φ1 \ Φ2 = max (Φ1, −Φ2) , (4.17)

Φc
1 = −Φ1. (4.18)

The union of those two level-set functions is given by (4.15), the intersection
by (4.16), the difference by (4.17), and the complement of a single level-set function
by (4.18). Boolean operations do not preserve the signed-distance property of the
level-set function.

4.2.2 Process Model
The process model is fully responsible to define the changes to the topography by
determining how the interfaces shall be transformed. In other words, the process
model captures all the physics behind the simulation.

The complexity of the chosen process model varies heavily depending on the
required accuracy and simulated process. The least complex process models are
Boolean operations (see Section 4.2.1) and uniform deposition or etching models
(equivalent to the computation of a constant offset of the zero-level-set). More
complex process models are interface normal dependent models [113, 114, 115,
116] modeling anisotropic etching processes or epitaxial growth processes. Material
flow processes, such as thermal oxidation [15], require the solution of a Navier-
Stokes equation. There are also process models which use visibility calculations (ray
tracing) to simulate direct particle transport [117, 118, 20, 13]. More sophisticated
models extend their particle transport process models further to also account for
an additional external flow [26, 119, 120]. The particle transport is essential for
so-called reactive ion etch processes, in which the wafer surface is bombarded with
ions, kinetically removing material and consequently realizing the creation of high
aspect ratio devices.

The usage of the level-set method strictly decouples the process model from
the interface advection. This decoupling enables a straightforward switching of
the process model, while still using the same material representation and interface
evolution. Therefore, comparing different process models of varying physical
complexity and accuracy for the same process step is viable, which is important for
practical process TCAD simulations to fine-tune predictions of fabrication processes.

In the scope of the reference simulation workflow the interaction of the process
model and the level-set method uses a standardized API, which is specified in the
next section.

4.2.3 Interface Velocity
The API between the process model and the level-set method is realized via Cross
Points. Cross Points are intersections of the interface with grid lines (cf. Figure 4.7).

38

Figure 4.7: Cross Points (red points) are points on the interface where the interface (green curve)
crosses the grid lines (gray lines). The grid lines connect the grid points (blue points) located in
the center of the corresponding cell (black square).

Cross Points are chosen because they are the minimal requirement to a process
model: A process model must be able to describe the movement of points on the
interface. Some process models (e.g., isotropic deposition) directly yield velocities
for all grid points, whilst others (e.g., models using visibility calculation) are not
able to provide meaningful velocities at grid points off the interface.

A velocity given only at Cross Points would enable solely a Lagrangian movement
of the interface (cf. Section 4.1.3). Thus, the velocity of the interface has to be
extended to enable the Eulerian movement necessary for the implicit interface
representation employed by the level-set method. This extension step is called
Velocity Extension and is discussed in the following.

4.2.4 Velocity Extension
The computational step Velocity Extension is used to extend the velocity from the
Cross Points to the grid points of the computational domain. This is necessary
because the solution of (4.9) requires the velocity to be defined not only directly
at the interface but also on the entire computational domain. The requirement
for this extended velocity is to describe the interface movement, therefore, at the
interface the extended velocity field and the interface velocity should match. If the
extended velocity and the interface velocity do not match at the interface, they
describe different interface movements.

To that end, Velocity Extension assigns each grid point the velocity of the closest
interface point [121]. A direct computation of the closest interface point and the
corresponding Cross Point on an implicit interface is prone to numerical errors.
The closest point on the interface x⃗Γ of x⃗ is computed by x⃗Γ = x⃗ − Φ(x⃗)∇Φ(x⃗)
(this holds only for a signed-distance function). Even minor deviations of Φ from
a signed-distance function are able to break the approach. Especially, near corners
of the interface (on different sides of a corner the velocities may differ by a large
margin, e.g., caused by a process model using visibility calculations and one side of
the corner is shadowed) and for points further away form the interface this approach
becomes very inaccurate due to numerical issues (the uncertainty of the computed
point scales with the distance to the interface).

39

An alternative to direct computation of the closest interface point is an extension
from the interface constant along the normal direction of the interface, in an
outwards marching manner. The approach is formulated by a PDE (a boundary
value problem) known as velocity extension equation [122]

∇Φ (x⃗, t) · ∇V (x⃗, t) = 0, x⃗ ∈ Ω, (4.19)
V (x⃗, t) = VI (x⃗, t) , x⃗ ∈ Γ. (4.20)

The given velocity on the Cross Points (interface) is denoted by VI whilst the
extended velocity, which is used for the advection is denoted by V .

The solution to this PDE is constant along the normal direction (∇Φ
approximates the normal direction) of the interface. Because the change of the
velocity (expressed by ∇V) is orthogonal to the normal direction (4.19) each point
gets the velocity of the closest point of the interface assigned by solving above
equations. Extending according to (4.19) has additional numerical benefits, such as
a reduced distortion of the signed-distance property, which is particularly relevant
for Advection, as discussed in the following. The details and proposed algorithms
for Velocity Extension (solving the PDE (4.19)) are presented in Chapter 5.

4.2.5 Advection
After Velocity Extension the level-set equation,

∂Φ (x⃗, t)
∂t

= V⃗ · ∇Φ (x⃗, t)� �� �
H(x⃗,Φ,∇Φ,t)

, (4.9 revisited)

is well-defined in the computational domain. The right-hand side H is called
Hamiltonian in the context of Hamilton-Jacobi equations [73, 18]. The level-set
equation is discretized in time2. For a time tn, let Φn = Φ (tn) be the description of
the interface at tn and let Φn+1 = Φ (tn+1) be the description of the interface after
a small time step ∆t = tn+1 − tn. A first-order accurate solution of (4.9) is given
by the forward Euler method

Φn+1 − Φn

∆t

= H(x⃗, Φn, ∇Φn, tn), (4.21)

with H the Hamilton evaluated at time tn.
Higher order schemes in time are the total variation diminishing (TVD) Runge-

Kutta (RK) schemes, introduced in [123] and further developed in [124]. The
schemes combine several sequential forward Euler steps effectively canceling low
order error terms, thus yielding a higher order in time. Those TVD RK schemes
avoid spurious oscillations as long as the underlying forward Euler scheme does
not introduce them. However, the numerical benefit of schemes of order four or
higher does not contribute significantly to the accuracy of practical simulation
problems [18].

2This constitutes the main time loop.

40

For the discretization of the Hamiltonian several schemes have been developed:
Lax-Friedrich [125], Godunov [126], and Roe-Fix with entropy correction [123]. They
all have in common that they make use of a numerical Hamiltonian H ′ which includes
artificial dissipation to damp spurious oscillations in the solution. This allows the
basic forward Euler step to be stable.

The typically used Lax-Friedrich scheme computes the artificial dissipation
globally giving high dissipation, but often lead to smoothed solutions. High
dissipation is not desirable, because the level-set method should not affect the
process model, e.g., smoothed structures. To counter the high dissipation, schemes
which compute the dissipation locally, like the Local-Lax-Friedrich scheme [127],
were developed. A recently developed scheme for anisotropic etching process TCAD
simulation considers more grid points than the the Local-Lax-Friedrich scheme to
determine the artificial dissipation [115, 112].

The numerical solution of the forward Euler method (4.9) is explicit, thus the
limit on the size of the time step is only given by the Courant-Friedrichs-Lewy (CFL)
condition

∆t <
∆x⃗

max
���V⃗ ��� , (4.22)

where the maximum over the computational domain is chosen and with ∆x⃗ a
measure for the grid resolution, e.g., the maximum of the grid resolution in all
spatial dimensions. Often the signed-distance property of the level-set function is
lost during the advection [128]. This is often the result of a bad velocity function
(i.e., a velocity not fulfilling (4.19)) or the result of accumulated numerical errors.

4.2.6 Re-Distancing
Re-Distancing restores the signed-distance property of a level-set function. This
is necessary because the signed-distance property is distorted by the previous
computational step, the Advection. Re-Distancing avoids numerical issues arising
from steep and flat gradients of Φ (cf. Section 4.1.2).

The approaches considered here to compute the signed-distance stem from an
generalized mathematical problem which is known as the Eikonal equation [129]

|∇Φ (x⃗) | = F (x⃗) x⃗ ∈ Ω, (4.23)
Φ (x⃗) = G (x⃗) x⃗ ∈ Γ. (4.24)

The Eikonal equation describes a wave front emerging from Γ and marching through
Ω. The wave speed is given by 1

F (x⃗) , which has to be positive to be well-defined
(negative or zero wave speed would not allow the wave front to reach the entire Ω).

The solution to Φ in this context describes the shortest travel time for the wave
emerging from Γ. The initial values given by G on Γ determine the departure time
from Γ. Early departures are given by G < 0 and late departures by G > 0.

41

If the wave speed is uniformly equal to one and the departure time is zero, the
travel time is equal to the traveled distance. Thus, for Re-Distancing the PDE

|∇Φ (x⃗) | = 1 x⃗ ∈ Ω, (4.25)
Φ (x⃗) = 0 x⃗ ∈ Γ, (4.26)

is solved. Note, this would just compute the distance field (not signed-distance as
both sides of the interface are positive), thus the computed values on Ω− have to
be multiplied by -1 to get the signed-distance function. The algorithmic details, the
implementation details, and the developed advanced parallelization strategies are
presented in Chapter 6.

4.2.7 Re-Gridding
Re-Gridding adapts the blocks on the hierarchical grid to fit the new interface
position (regions requiring fine spatial resolution). Re-Gridding is split into two
sub-steps:

• Flagging of the regions which need a higher spatial resolution.
• Clustering those regions (covering with blocks) in order to create the

hierarchical grid.
Figure 4.8 shows the interface displacement by the advection and the two sub-steps
of Re-Gridding.

Flagging

The flagging sub-step selects grid points based on the distance to the interface
(approximated by their level-set value Φ), the difference of normals on grid points
to normals on neighboring grid points (detecting regions with curvature, i.e., corners
and edges), and distance to other level-set functions present in the simulation domain
(detection of material borders and triple-junctions). Flagging of regions with high
curvature is particularly important, because the maximum representable curvature
is indirectly proportional to the spatial resolution [18]. This is essential because the
often present sharp corners in process TCAD simulations would otherwise become
artificially rounded.

Clustering

Clustering is important to efficiently transform the flagged points to actual blocks
of the hierarchical grid. The main challenges are to create as few blocks as possible
containing the least amount of grid points, whilst still covering all flagged grid
points. The run-time of a step in the main time loop almost linearly depends on
the number of discretized points, thus minimizing them is important for the overall
run-time efficiency of the overall simulation.

This concludes the computational steps of the main time loop, which are repeated
until the desired end time of the simulation is reached. After all time steps are done
the simulation results are ready to be transferred to the next process step of the
manufacturing of the device.

42

(a) Advection

(b) Flagging

(c) Clustering

Figure 4.8: The Re-Gridding step is schematically shown for two blocks on a single resolution
grid (blue rectangles) placed near a corner of the interface (green curve). The interface is moved
by the advection step from the dashed to the solid green curve (cf. Figure 4.8a). The blocks of
the hierarchical grid have to be adapted to fit the new interface position. Next, grid points are
flagged (red crosses), which shall be available for the next simulation step in the desired spatial
resolution (cf. Figure 4.8b). Finally, the flagged points are clustered (grouped together) to be
covered efficiently by blocks (cf. Figure 4.8c).

43

Figure 4.9: Selected templates for the marching cubes algorithm. The corners with opposing
signs are marked by a green dot and the corresponding polygon template by the blue triangles.

This could be starting a new time loop with a different process model or in case the
device manufacturing is completed the topography is extracted for the subsequent
device TCAD simulation. This latter step requires the interface to be extracted, as
is discussed in the following.

4.2.8 Interface Extraction
Device TCAD simulations require an explicit description of the materials regions,
thus the implicit interfaces are extracted to an explicit description of the material
regions. The preferred explicit representation of the material regions for device
TCAD simulations is a polygonal surface representation (e.g., triangle mesh). The
polygonal representation is reached by computing an explicit interface from the
implicit representation of the level-set function and then use Boolean operations to
restore the material regions from the additive level-sets. The dominant algorithm
for explicit interface extraction is the marching cubes algorithm [130] in three
dimensions, the analog algorithm in two dimensions is called marching squares.
Other approaches are for example the cut cell method [131], which is conceptually
similar to the marching cubes algorithm, but is tailored towards fluid dynamic
simulations. Because this thesis is not focused on this computational step the
reader is referred to [132] for an comprehensive overview of advancements to the
base marching cube algorithm presented in the following.

Starting from a Cartesian grid, chunks of eight neighbor points (corners of a
cube) are used to determine the polygonal representation of the interface passing
through the cube. The sign of the points determines which of the 28 possible polygon
templates is chosen. In Figure 4.9 eight different sign combinations with their
corresponding polygon templates are shown. The number of templates is reduced
through symmetry exploitations (reflection, rotation, and mirror) to a minimum of
14 cases. If not all symmetries are exploited the number of cases is higher. The
explicit vertices of the polygons are given by the zero-crossings along the edges of
the cube (they are identical to the Cross Points introduced earlier).

44

In a last step, the polygons of all chunks are merged together forming the
polygonal representation of the full interface. The so-created polygonal surface
representations are often of poor quality (e.g., triangles with high aspect ratios,
neighboring triangles with significant different diameters).

Therefore, the initially marching-cubes generated explicit polygonal surface
representations are typically optimized and consequently volume-meshed to enable
the full-range of subsequent device TCAD simulations (e.g., simulations of charge
carrier densities under bias conditions inside the device and at device contacts) [133].

In the next and final section of this chapter, an overview of software tools is
given, which implement level-set based process TCAD simulations.

4.3 Software
The advantages of the level-set method in tracking topography evolution lead to
the development of several commercial and open source software tools, referred to
as process TCAD simulators. They utilize the level-set method for 3D process
TCAD simulations on the feature scale. In the following, the two simulation tools
are shortly introduced. Note that other tools exist as well, e.g., Sentaurus Process
[134], but are not further discussed as they are out of scope.

Victory Process is a commercial process TCAD simulator developed by
Silvaco [135]. The simulator allows to create a digital twin of electronic device
manufacturing processes, such as etching, deposition, and oxidation. Victory
Process uses a level-set engine based on hierarchical grids, allowing to represent
different parts of material regions with varying spatial resolution. Details on the
hierarchical grid data structure are presented in Chapter 2. Victory Process is
written in C++ and pThreads and OpenMP are used for parallelization. The
underlying simulation framework of Victory Process is the basis for the developed
algorithms presented in Chapter 5, Chapter 6 and Chapter 7.

ViennaTS is a process TCAD simulator developed by the Institute for
Microelectronics at the TU Wien, focusing on processing challenges for micro-
and nanoelectronics [136]. It uses the level-set method on a hierachical run length
encoding (HRLE) [99] data structure in combination with a sparse field approach.
The open source topography simulator is written in C++ and uses OpenMP for
parallelization.

45

Chapter 5

Parallel Velocity Extension

This chapter presents the general details of the computational step Velocity
Extension and, in particular, the developed algorithmic advances enabling efficient
parallel execution on hierarchical grids.

Velocity Extension extends the given interface velocity (originating from a
process model) from the Cross Points (cf. Section 4.2.3, crossings of the grid lines
with the interface) to all grid points of the computational domain. Depending on the
process model the interface velocity may be a scalar or vector field. The extension
is necessary for the level-set equation to be well defined, because a velocity field is
required (due to the Eulerian formulation) in the entire computational domain.

First, the analytic requirements to the extended velocity field are precisely
defined, which is followed by a literature review of the previous approaches
(Section 5.1). The Velocity Extension typically consist of two phases:

The first phase is the extension from the Cross Points to the Close Points
(Section 5.2). Cross Points are located directly at the interface and do not belong
to the grid. Figure 5.1a schematically shows the Cross Points on which the velocity
is given. Close Points are grid points which have a neighboring grid point with
a different sign, thus the interface is next to them and as well as at least one
Cross Point. Figure 5.1b shows the extension of the velocity from the Cross Points
(along the arrows) to the Close Points. This phase is computationally negligible and
straightforward parallelizable. The second phase is the extension to the remaining
grid points (cf. Figure 5.1c), which is the computationally most intense part.

The extension in the second phase is based on the FMM; the fundamentals of the
FMM are presented in detail in Section 5.3. The bottleneck of the FMM is its usage
of a heap data structure to sort grid points by their distance to the interface. The
sorting determines the order in which the velocity is extended to the grid points.
The usage of a heap data structure is inherently serial, because only a single point
(the one with the smallest distance) is available for computation.

The core contribution presented in this chapter is to overcome this bottleneck
and parallelize the FMM for Velocity Extension. To that end, three advancements
were developed and evaluated [55, 137, 138]:

Advancement 1: Through an interpretation of the order of computations in
the context of graph theory, it is possible to relax the strict sorting employed by the
FMM.

46

(a) Given velocity (red dots on
interface, i.e., green line)

(b) Extension to Close Points (c) Extension to remaining grid
points

Figure 5.1: The velocity is given on the Cross Points (a). In the first phase the velocity is
extended to the Close Points (i.e., red grid points next to cross points) (b) and finally the velocity
is extended to the remaining grid points (c).

This enables the usage of alternative data structures compared to the inherently
serial heap employed by the FMM (Section 5.4).

Advancement 2: The change of the data structure allows for a straightforward
parallelization of the computations on a Cartesian grid (Section 5.5). The proposed
parallelization minimizes the number of explicit synchronization constructs, which
favors parallelism. This approach introduces limited redundant computations, i.e.,
velocity computed on a grid point multiple times. However, the redundancy has
negligible negative impact on the parallel performance.

Advancement 3: Finally, the algorithm is tailored to hierarchical grids by a
load-balancing approach (Section 5.6). The goal is to reduce global synchronization
barriers necessary in the exchange of data between blocks and considerations due to
data locality allowing better cache reuse. The different stages of the development of
the new algorithm are shown to specifically highlight the advances made and discuss
their impact. The performance is evaluated on two representative process TCAD
simulations (Section 5.7).

First, an ion beam etching (IBE) simulation, which is part of the fabrication
process of a novel device used in memory technology1 is considered (Section 5.7.1).
In this example the scalar velocity extension on a Cartesian grid is analyzed by
comparing the run-time of the velocity extension for three different data structures.
The parallelization is evaluated by measuring the parallel speedup and the ratio of
redundant computations (due to less explicit synchronization constructs).

Second, the thermal oxidation simulation from the motivational example in
Section 1.1 is used for analysis, because the process models require the extension of
a scalar and a vector velocity (Section 5.7.2).

1The spin-transfer torque magnetoresistive random access memory (STT-MRAM) uses
magnetism for permanent storage (without requiring constant supply of electricity, prevalent in
current random access memory devices) of information.

47

This simulation fully utilizes a hierarchical grid and, therefore, is suited to evaluate
the proposed load-balancing and reduced number of global synchronization barriers.
The evaluation is performed by measuring the run-time and parallel speedup of the
velocity extension step.

5.1 General Ideas
In a semiconductor process TCAD simulation the process model typically provides
the interface propagation velocity only for points on the interface. As previously
discussed, these points are computationally captured with Cross Points. However,
in order to advect the interface the velocities are necessary in the entire computation
domain (on the actual grid points). The formal mathematical requirement to an
extended velocity field is that it is continuous in regions close to the interface, i.e.:

lim
x⃗→Γ

V = VI . (5.1)

The continuity is achieved in practice by assigning each point the velocity of the
closest point on the interface. The velocity extension equation

∇Φ (x⃗, t) · ∇V (x⃗, t) = 0, (4.19 revisited)

is used to describe this. In case of a signed-distance field Φ it is equivalent to
constantly extend the velocity along interface normal vectors. Additionally, an
extension according to (4.19) avoids distortions of the signed-distance field (still
distortions occur due to numeric errors). This fact was first proven in [122] and
follows:

d|∇Φ (x⃗, t) |2
dt

= d

dt
(∇Φ (x⃗, t) · ∇Φ (x⃗, t))

= 2∇Φ (x⃗, t) · d

dt
∇Φ (x⃗, t)

= −2∇Φ (x⃗, t) · ∇V|∇Φ (x⃗, t) | − 2∇Φ (x⃗, t) · ∇|∇Φ (x⃗, t) |V.

For a signed-distance function (|∇Φ (x⃗, t = 0) | = 1), Φ stays a signed-distance
function. The changes to the last line result from swapping the time and spatial
derivative and using the level-set equation (4.9). The first term is zero because of
the choice for the extended velocity (4.19). The second term is zero due to starting
with a signed-distance function (gradient of a constant function is zero). In case
of a vector-valued velocity field (4.19) is solved for each component of the vector
velocity as in the scalar case.

The investigation starts with a review of approaches to solve the velocity
extension problem.

Literature Review

There are several strategies to solve the velocity extension problem, considering only
the basic case of a Cartesian grid.

48

The first attempt was made in [122] using the FMM which is based on Dijkstra’s
algorithm [139]. The FMM traverses the grid points of the computational domain
using a priority queue in ascending order visiting every grid point exactly once. The
computational complexity of this approach is O(n log(n)) with n the number of grid
points in the computational domain, due to the necessary sorting of the priority
queue (cf. Section 5.3).

In [140] the approach is further developed to yield higher accuracy for
characteristic curves2 at the cost of higher computational load. The higher accuracy
is especially important, if the velocity field shall be used for several time steps of a
simulation (reducing the number of evaluations of the process model), i.e., evaluating
the process model only every third time step. This is not used in the presented level-
set simulations, because the underlying velocities from the process model can change
significantly between two consecutive time steps.

In [141] an approach based on the fast scanning method is introduced. It
iteratively computes the velocity on all grid points of the computational domain
using several predefined stencil configurations. The run-time complexity is O(n)
with n the number of grid points in the computational domain. A drawback is that
the approach visits every grid point of the computational domain 2d times, with d
the number of spatial dimensions.

The velocity extension presented in [142] allows for faster convergence for shape
optimization simulations based on the level-set method, i.e., minimizing the volume
of a cantilever but maintaining a certain resistance to deformation. This approach
is not applicable to process TCAD simulations, because it requires an already
established velocity field for one side of the interface: In process TCAD simulations,
the velocity field is only available at the Cross Points directly at the interface.

An approach based on the biharmonic expansion is presented in [143], but is not
applicable because an already established velocity field for one side of the interface
is required. The same issue applies to the extrapolation approach based on fast
sweeping methods presented in [144].

In [145] an extension based on solving local Riemann problems is proposed. This
approach achieves a higher simulation accuracy compared to an approach based on
the FMM. For small time steps the asymptotic limit of the extension based on local
Riemann problems and the FMM are the same. Thus the simulation results are also
the same.

However, approaches for efficient parallelization of the velocity extension are
missing, in particular when considering hierarchical grids.

5.2 Extension from Cross Points to Close
Points

The first step for all reviewed velocity extension algorithms (which are applicable to
the process TCAD simulation setting) is to extend the velocity from Cross Points
to the Close Points.

2A curve describing the movement of a point driven by a PDE.

49

Figure 5.2: The velocity v of a Close Point (red) is computed using the velocities from the Cross
Points (blue). The Cross Point (green) is ignored as a closer Cross Point in the x-dimension is
available.

Let dx, dy, and dz be the distances from a Close Point to the Cross Points in x-
dimension, y-dimension, and z-dimension, respectively. The gradient of Φ computed
at the Close Point via first-order finite differences to the Cross Points is given by

d

dx

,
d

dy

,
d

dz

�
, (5.2)

with d the distance to the interface of the Close Point (Φ value).
The velocity at the Cross Points is vx, vy, and vz. Inserting the finite difference

approximations to the gradients into the velocity extension equation (4.19) yields

0 =

v − vx

dx

,
v − vy

dy

,
v − vz

dz

�
·

d

dx

,
d

dy

,
d

dz

�

= d

v − vx

d2
x

+ v − vy

d2
y

+ v − vz

d2
z

�
.

Solving for v gives

v =
d2

yd2
zvx + d2

xd2
zvy + d2

xd2
yvz

d2
xd2

y + d2
xd2

z + d2
yd2

z

. (5.3)

Thus the velocity on the Close Points is given as the weighted average of the
velocity of the closest Cross Point in each spatial dimension.

In case no Cross Point is available for a specific spatial dimension (5.3) a lower
dimensional computation is performed, e.g., if in z-dimension no Cross Point is
available, the formula is simplified to

v =
d2

yvx + d2
xvy

d2
x + d2

y

. (5.4)

Figure 5.2 shows the variables denoted above for the 2D case.
If a Cross Point is only available in a single spatial dimension, e.g., x-dimension,

no computation is necessary as the velocity from the Cross Point is directly assigned

v = vx. (5.5)

50

The distance d of the Close Point is not used in the computation of v and only the
velocities from Cross Points are used. The velocity is computed independently for
all Close Points, thus allowing for a straightforward parallelization of the extension
to the Close Points.

Now that the velocity is available for all Close Points, the FMM is used to
extend the velocity to the remaining grid points (computational domain). Due to
the data dependencies between the grid points this is more complicated than the
above discussed extension from Cross Points to Close Point and an ordering scheme
is required.

5.3 Fast Marching Method
The FMM assigns each grid point of the computational domain one of three exclusive
flags (states):

• Known: The grid point has its final velocity (value) assigned and no further
updates are necessary.

• Band: The grid point has a temporary velocity (value) assigned (the velocity
might be changed by a subsequent update).

• Unknown: The grid point has no velocity (value) assigned.
Based on these flags the FMM for the velocity extension is described as it is

presented in [122]. First, a set of initial grid points is chosen around the interface
(Close Points), and afterwards the velocity is extended to neighboring grid points
by solving the discretized version of (4.19) using an upwind scheme. This allows to
compute the solution in a from the interface outwards marching manner.

The computation of the velocity on a grid point is described in Algorithm 1.
It is similar to the computation used for the extension from the Cross Points
to the Close Points, but now all involved points are part of the grid. First,
the upwind neighbors are determined in each spatial dimension (neighboring grid
points with a smaller distance to the interface). The Φ values of the neighboring
grid points are compared based on considering three cases: In case the lower
neighboring grid point (neighboring grid point with the smaller index) is selected
(cf. Algorithm 1 Line: 5), in case the higher neighboring grid point (neighboring
grid point with a larger index) is selected (cf. Algorithm 1 Line: 9), and in case
none is selected the contribution from this spatial dimension is zero, subsequently
ignored. The selected neighbors are then used in the approximation to the gradient
by computing the forward/backward differences. Finally, the weighted average of
the velocities is computed (Algorithm 1 Line: 14) and the grid point is flagged Band
(Algorithm 1 Line: 15).

The computation of the velocity on a grid point is illustrated by a small example.

Example

In order to illustrate the update of a grid point P with its index ijk, the following
specific configuration is considered.

51

Algorithm 1: Procedure to update (compute) the velocity on the given
grid point P . First, the upwind neighbors of P are determined and then
the weighted average of their velocities is computed and the flag is set to
Band.
1 procedure Update(P):

/* Determine upwind neighbors of P */
2 for i ∈ {x, y, z} do
3 Di ← 0
4 Vi ← 0
5 if P −i.Φ < P +i.Φ and P −i.Φ < P.Φ then
6 Di ← P.Φ−P −i.Φ

∆2
i

7 Vi ← P −i.V

8 end if
9 if P −i.Φ > P +i.Φ and P +i.Φ < P.Φ then

10 Di ← P.Φ−P +i.Φ
∆2

i

11 Vi ← P +i.V

12 end if
13 end for

/* Compute velocity for P according to the upwind scheme */

14 P.V ←
�

i∈{x,y,z}
ViDi�

i∈{x,y,z}
Di

15 P.flag ← Band
16 end procedure

In x-dimension the lower neighboring grid point (P −x with index i − 1jk) is closer
to the interface, as well as in the y-dimension (P −y with index ij − 1k), but in the
z-dimension none of the neighboring grid points is closer to the interface, thus the
used first-order upwind scheme is given by

0 =

Vi−1jk − Vijk

∆x

,
Vij−1k − Vijk

∆y

, 0
�

·

Φi−1jk − Φijk

∆x

,
Φij−1k − Φijk

∆y

, 0
�

. (5.6)

Solving for the velocity in this case yields

Vijk =
Vi−1jk

Φi−1jk−Φijk

∆2
x

+ Vij−1k
Φij−1k−Φijk

∆2
y

Φi−1jk−Φijk

∆2
x

+ Φij−1k−Φijk

∆2
y

. (5.7)

In case the grid resolution is the same for all spatial dimensions ∆x = ∆y = ∆z, the
dependency of the solution on the grid resolution vanishes yielding

Vijk = Vi−1jk(Φi−1jk − Φijk) + Vij−1k(Φij−1k − Φijk)
Φi−1jk − Φijk + Φij−1k − Φijk

. (5.8)

The detailed discussion of the FMM as shown in Algorithm 2 follows.

52

Algorithm 2: The FMM used on a Cartesian grid for the velocity
extension.
1 procedure FastMarchingMethod():

/* Initialization - Grid points and Band */
2 foreach grid point [P] do // Initialize all grid points
3 P.flag ← Unknown
4 end foreach
5 foreach Close Points [CP] do
6 CP.V ← Velocity computed based on the Cross Points
7 CP.flag ← Known
8 end foreach
9 foreach Close Points [CP] do // Setup the priority queue

10 foreach CP.Neighbors [N] do
11 if N.flag = Unknown then
12 Update(N)
13 end if
14 end foreach
15 end foreach

/* Marching - Extend to the computational domain */
16 while Band ̸= ∅ do
17 P ← min Band // Main challenge for parallelization
18 P.flag ← Known
19 foreach P.Neighbors [N] do
20 if N.flag = Unknown then
21 Update(N)
22 end if
23 end foreach
24 end while
25 end procedure

FMM Algorithm

The FMM is initialized by first flagging all grid points Unknown
(Algorithm 2 Line: 3) and then the velocity on all the Close Points is computed
and they are flagged Known (Algorithm 2 Line: 7). The next step is to advance to
all the neighboring grid points of the Close Points and compute their velocity and
set their flag to Band. The computation of the velocity on a neighboring grid point
is performed using Algorithm 1.

The key idea of the FMM is that from all the grid points flagged Band the
one with the smallest distance to the interface is chosen and flagged Known
(Algorithm 2 Line: 17). This guarantees that for the immediately following update
of all neighboring grid points (Algorithm 2 Line: 21) the velocities on grid points
used in Algorithm 1 are already computed beforehand.

53

The updated neighboring grid points are flagged Band, thus they are also considered
when the next grid point is chosen to be flagged Known.

The step selecting the grid point flagged Band with the smallest distance to the
interface is repeated until no more grid point is flagged Band, thus all grid points are
flagged Known. The first part of Algorithm 2, in particular Lines: 2-15, is typically
referred to as initialization of the FMM, because it sets the stage for the second part,
the marching, in particular Algorithm 2 Lines: 16-24. The term marching originates
from the Eikonal equation (Section 6.1), where the solution process corresponds to
a front marching away from an interface.

The efficient selection of the minimum in Algorithm 2 Line: 17 is key to the
performance of the FMM, which is discussed in the next section.

5.4 Data Structures
For an efficient selection of the grid point (also flagged Band) with the smallest
distance to the interface all Band grid points are ordered by their distance to the
interface, which is implemented by a priority queue. To efficiently sort the grid
points in a priority queue a specialized data structure is employed. Typically a heap
data structure (Heap) is used [122, 67, 146]. From the available heap data structures
the binary heap (in form of a binary tree) is the most used implementation. The
data structure has to provide the following functionality:

• getFirst shall return the first point (for the FMM the first point is the
one with the smallest distance to the interface) and remove it from the data
structure.

• insert shall insert a grid point into the data structure. In case of a Heap
insert additionally verifies that no grid point is inserted twice, because, if a
grid point is already present in the Heap, only the position within the heap is
updated.

Figure 5.3 depicts the insert and getFirst operations. The insert operation
appends the new element to the binary tree (last position). Afterwards, the element
bubbles up (is swapped with its parent) until its current parent is smaller.

(a) insert (b) getFirst

Figure 5.3: insert and getFirst operations shown for a Heap data structure. The number in
the circles is the key (data responsible for the ordering, i.e., the distance to the interface) of an
element. The operations require several swaps (arrows) to ensure the heap property, if an element
is inserted or removed.

54

Figure 5.4: Graph interpretation of the velocity extension problem, circles are the nodes of the
graph (corresponding to the grid points) and the arrows the directed edges. The interface (black
curve) divides the graph into two disjunct partitions. Considering only one partition, the velocity
values are Known on the Close Points (green). The remaining grid points require the velocity on
all neighbors which have an arrow pointed to them to be computed.

The getFirst operation removes the smallest element and puts the last element
in the binary tree on its position. Afterwards, the last element (now on the first
place) bubbles down (is swapped with its children) until its current parent is smaller.
Thus, both operations require the swapping of several other elements of the heap to
ensure the correct ordering of the elements in the heap.

Inserting a grid point to the binary heap and removing the first grid point has the
computational complexity of O(log(n)). Removing the first grid point also has the
computational complexity of O(log(n)). In both cases several swaps are necessary
to keep the heap in order. Consequently, the FMM has a computational complexity
of O(n log(n)), because all n grid points of the computational domain have to be
inserted into and removed from the binary heap. The usage of a priority queue
in form of a Heap is counterproductive for parallelization, because only the single
element with the smallest key (distance to the interface) is eligible for an update.
The goal of the next paragraphs is to lay out the developed approach of relaxing the
strict ordering enforced by the binary heap to (i) enable a computational complexity
of O(n) and (ii) to enable parallelization of the algorithm.

Graph Theory

To relax the ordering enforced by the FMM, the problem is interpreted in the
context of graph theory. Let G(N, E) be an ordered graph, where the nodes N
are given by all the grid points and the edges E are given by the upwind neighbor
relationship. Figure 5.4 shows an exemplary graphical representation of such a
graph. The graph is divided into two independent partitions through the interface
(inside and outside). For simplicity’s sake only one of those partitions is considered
here, because the exact same algorithm is applied to the other partition.

55

(a) Stack (b) Queue

Figure 5.5: Simplicity of the insert and getFirst operations shown for a Stack and a Queue.

This enables a straightforward parallelization for up to two threads processing both
sides of the interface simultaneously.

The order in which the nodes are able to be computed is equivalent to the
topological sort problem, which is possible to be solved in linear O(|N | + |E|) time
as shown in [147]. Topological sort of a directed graph is a linear ordering of its
nodes such that every edge is directed the same, i.e., consider all nodes to be placed
on a straight line and all edges point to the right. The topological order of a graph
is not unique, if there is more than one source which is a node with no incoming
edge, i.e., in the context of the velocity extension all the Close Points are sources.

The computational complexity is also linear in the number of grid points in the
computational domain, because n = |N | and the number of edges |E| in the graph is
limited by the used stencil to approximate the gradients. The typically used stencil
contains the direct neighbors only, thus |E| ≤ 2d|N | with d the number of spatial
dimensions. For example, in three spatial dimensions the seven-point stencil yields
|E| ≤ 6|N |. Comparing the newly developed approach which requires in the worst
case only 2d visits of each grid point, to the fast scanning method approach which
requires always 2d visits, shows the advantage.

The topological sort problem is typically solved by a depth-first or breadth-first
traversal of the graph [148]. A depth-first traversal moves along an edge to the next
node before it returns to explore the other edges of a node. A breadth-first traversal
explores first all edges of a node before it moves to the next node.

Those algorithms can be adapted to the FMM based approach, as they influence
the ordering of the grid points in the Band. Using a Stack (first-in last-out queue,
Figure 5.5a) corresponds to a depth-first and using a Queue (first-in first-out queue,
Figure 5.5b) corresponds to a breadth-first traversal, respectively. The classic FMM
uses a Heap (binary heap) data structure. Figure 5.5 shows graphically that insert
and getFirst are less complex for the Stack and Queue compared to the Heap
(cf. Figure 5.3). The binary heap data structure performs insert and getFirst
operations in O(log(n)), whilst the Stack and Queue data structure perform those
operations in O(1).

The necessary changes to the algorithms are presented and discussed in the next
paragraphs.

56

Algorithm 3: First modification of the FMM (now just called Velocity
Extension), which enables the usage of different data structures for
the Band. The Update algorithm is also changed to use the modified
algorithm Update2. The blue colored lines are added/modified compared
to Algorithm 2.
1 procedure Velocity Extension():

/* Initialization - Grid points and Band */
2 foreach Points [P] do // Initialize all grid points
3 P.flag ← Unknown
4 end foreach
5 foreach Close Points [CP] do
6 CP.velocity ← Velocity computed based on the Cross Points
7 CP.flag ← Known
8 end foreach
9 foreach Close Points [CP] do // Setup the priority

queue/queue/stack
10 foreach CP.Neighbors [N] do
11 if N.flag = Unknown then
12 Update2(N)
13 end if
14 end foreach
15 end foreach

/* Marching - Extend to the computational domain */
16 while Band ̸= ∅ do
17 P ← getFirst Band // first (instead of smallest) grid point

is chosen
18 P.flag ← Known
19 foreach P.Neighbors [N] do
20 if N.flag = Unknown then
21 Update2(N)
22 end if
23 end foreach
24 end while
25 end procedure

Algorithmic Changes

The adaptions necessary to the FMM are shown in Algorithm 3 and the
changes to the Update algorithm are shown in Algorithm 4, which is extended
compared to Algorithm 1. A check whether the grid point is already computed
Algorithm 4 Line: 2 is added, because for a Stack and Queue a grid point might be
inserted multiple times into the data structure of the Band. Also, a check whether all
upwind neighbors have already a velocity assigned is necessary (Algorithm 4 Line: 9
and Algorithm 4 Line: 16).

57

Algorithm 4: Procedure to update (compute) the velocity on the given
grid point P , with additional checks compared to Algorithm 1 (blue colored
lines). The checks ensure that the velocity is computed on the upwind
neighbors.
1 procedure Update2(P):
2 if P.flag != Unknown then // Skip if already computed
3 return
4 end if

/* Determine upwind neighbors of P and their flag */
5 for i ∈ {x, y, z} do
6 Di ← 0
7 Vi ← 0
8 if P −i.Φ < P +i.Φ and P −i.Φ < P.Φ then
9 if P −i.flag = Unknown then

10 return // No update takes place
11 end if
12 Di ← P.Φ−P −i.Φ

∆2
i

13 Vi ← P −i.V

14 end if
15 if P −i.Φ > P +i.Φ and P +i.Φ < P.Φ then
16 if P +i.flag = Unknown then
17 return // No update takes place
18 end if
19 Di ← P.Φ−P +i.Φ

∆2
i

20 Vi ← P +i.V

21 end if
22 end for

/* Compute velocity for P according to the upwind scheme */

23 P.V ←
�

i∈{x,y,z}
ViDi�

i∈{x,y,z}
Di

24 P.flag ← Band
25 end procedure

Only the ordering of the computations by the Heap guarantees that all upwind
neighbors are computed beforehand. If not all upwind neighbors have already
a velocity assigned (one of them is flagged Unknown) then the velocity is not
computed. The grid point is again considered when the previously Unknown upwind
neighbor is computed and, therefore, it is guaranteed that all grid points are
computed when the algorithm terminates.

The impact of the different data structures on the performance is evaluated
in Section 5.7.1, however, first the parallelization of the Velocity Extension is
discussed.

58

5.5 Parallelization
The relaxation of the strict ordering of the FMM allows for a parallelization of
the velocity extension algorithm, which is shown in Algorithm 5. The for-loops in
Algorithm 5 Line: 2 and Line: 5 are straightforward parallelizable as all the iterations
are independent.

A single data structure storing the grid points flagged Band is not viable due
to the synchronization overhead, if all threads would operate on the same data
structure. Thus, for every Close Point a dedicated data structure called work queue
(WQ) is created (Algorithm 5 Line: 10). The WQ is a data structure that supports
the insert and getFirst operations. As the WQs track all the grid points flagged
Band the explicit label Band is not required anymore and only Known and Unknown
are used. Therefore, the initialization of the Band grid points is modified and the
Close Points are directly used for the WQ (Algorithm 5 Line: 11). The WQ data
structure is exclusive (in OpenMP terms: private) to the executing thread. The
block where all grid points (with their velocity and flag) are stored is shared between
all the threads.

In principle, explicit synchronization between the threads would be necessary
every time a grid point from the shared block is accessed. This is not required for
correctness of the velocity extension, but to avoid redundant computations, i.e., two
threads compute the velocity simultaneously for the same grid point. That being
said, Algorithm 5 deliberately re-computes the velocities, as the computational
overhead is negligible compared to an otherwise introduced synchronization
overhead. Both threads compute the identical velocity as the upwind grid points
and their velocity value used for the computations are the same. Access of a thread
to a grid point is required to be an atomic operation for read and write operations.
Atomicity is needed to ensure that values are read/written in a consistent manner.
Otherwise, writing identical values by two threads to the same grid point might
corrupt the data. The changes to Algorithm 5 also require changes to the update
algorithm shown in the next paragraph.

Final Update Algorithm

Also the Update2 algorithm is modified yielding the final version of the Update3
algorithm Algorithm 6. The algorithm returns a Boolean indicating whether the
update has been successful. The update is not successful, if the grid point is
already computed Algorithm 6 Line: 2, or any upwind neighbor is not computed
beforehand (Algorithm 6 Line: 9 and Algorithm 6 Line: 16). After the computation
of the velocity an additional check is introduced whether the grid point has not
been computed in the meanwhile by a different thread (Algorithm 6 Line: 25).
This check is not explicitly synchronized with other threads, but reduces redundant
computations, especially the otherwise following redundant insertion into the WQ
is avoided. To completely avoid the redundant computations an explicit locking
mechanism could be considered in principle, however, such an approach would
seriously deteriorate the performance.

59

Algorithm 5: Parallelized velocity extension, by creating an independent
WQ for each Close Point, allowing for parallel computations.
1 procedure Velocity Extension Parallel():

/* Initialization - Grid points */
2 foreach Points [P] do // In parallel
3 P.flag ← Unknown // Initialize all grid points
4 end foreach
5 foreach Close Points [CP] do // In parallel
6 CP.velocity ← Velocity computed based on the Cross Points
7 CP.flag ← Known
8 end foreach

/* Marching - Extend to the computational domain */
9 foreach Close Points [CP] do // In parallel

10 create WQ
11 WQ.insert(CP)
12 while WQ ̸= ∅ do // Extend velocity to entire domain
13 P ← WQ.getFirst
14 foreach Neighbors [N] of P do
15 if N.flag = Unknown then
16 if Update3(N) then
17 WQ.insert(N)
18 end if
19 end if
20 end foreach
21 end while
22 end foreach
23 end procedure

Only if the update is successful (Algorithm 6 returns true), the grid point is
inserted into the WQ (Algorithm 5 Line: 17). The algorithm terminates if all WQs
are empty, meaning all grid points have a velocity assigned.

Explanatory Example

To better illustrate the process of the newly developed algorithm an explanatory
example is discussed in the following. In Figure 5.6 an example for a parallel
execution of Algorithm 5 is shown using three threads. Three threads work in
parallel on the grid. The work completed by a thread is shown by the corresponding
color (red, green, blue). For this example it is assumed that each thread processes
one node (grid point) per step and is able to handle all neighbors. The edges (arrows)
to the neighbor are also colored using the thread color. The arrows are filled, if the
neighbor is successfully computed and inserted into a thread’s own WQ. In the first
step, each thread has a single WQ containing a single Close Point assigned (marked
with a white one in Figure 5.6a).

60

Algorithm 6: Final procedure to update (compute) the velocity on
the given grid point P , with additional checks and a Boolean return
value compared to Algorithm 4, to reduce the redundant computations
introduced by the parallelization.
1 procedure Update3(P):
2 if P.flag != Unknown then // Computed by another thread
3 return false
4 end if

/* Determine upwind neighbors of P and their flag */
5 for i ∈ {x, y, z} do
6 Di ← 0
7 Vi ← 0
8 if P −i.Φ < P +i.Φ and P −i.Φ < P.Φ then
9 if P −i.flag = Unknown then

10 return false // No update takes place
11 end if
12 Di ← P.Φ−P −i.Φ

∆2
i

13 Vi ← P −i.V

14 end if
15 if P −i.Φ > P +i.Φ and P +i.Φ < P.Φ then
16 if P +i.flag = Unknown then
17 return false // No update takes place
18 end if
19 Di ← P.Φ−P +i.Φ

∆2
i

20 Vi ← P +i.V

21 end if
22 end for

/* Compute velocity for P according upwind scheme */

23 P.V ←
�

i∈{x,y,z}
ViDi�

i∈{x,y,z}
Di

24 P.flag ← Band
25 if P.flag != Unknown then Redundant computation
26 return false
27 else
28 P.V ← V
29 P.flag ← Known
30 return true
31 end if
32 end procedure

61

1

1

1

1

1

1

(a) Step 1

1

1

1

1

1

1

1

1

1 22

2

(b) Step 2

1

1

1

1

1

1

1

1

1 22

2

1

1

1 22

2

1

1

1 22

2

3 3

3

(c) Step 3

1

1

1

1

1

1

1

1

1 22

2

1

1

1 22

2

1

1

1 22

2

3 3

3

1

1

1 22

2

3 3

3

1

1

1 22

2

3 3

3

4

4

4

1

1

1 22

2

3 3

3

4

4

4

1

1

1 22

2

3 3

3

4

4

4

5

5

5

1

1

1 22

2

3 3

3

4

4

4

5

5

5

1

1

1 22

2

3 3

3

4

4

4

5

5

5

6

6

6

1

1

1 22

2

3 3

3

4

4

4

5

5

5

6

6

6

1

1

1 22

2

3 3

3

4

4

4

5

5

5

6

6

67

7

7

1

1

1 22

2

3 3

3

4

4

4

5

5

5

6

6

67

7

7

1

1

1 22

2

3 3

3

4

4

4

5

5

5

6

6

67

7

7

8

8 8

1

1

1 22

2

3 3

3

4

4

4

5

5

5

6

6

67

7

7

8

8 8

1

1

1 22

2

3 3

3

4

4

4

5

5

5

6

6

67

7

7

8

8 8

8

9

9

9

1

1

1 22

2

3 3

3

4

4

4

5

5

5

6

6

67

7

7

8

8 8

8

9

9

9

1

1

1 22

2

3 3

3

4

4

4

5

5

5

6

6

67

7

7

8

8 8

8

9

9

9

10

10

1

1

1 22

2

3 3

3

4

4

4

5

5

5

6

6

67

7

7

8

8 8

8

9

9

9

10

10

1

1

1 22

2

3 3

3

4

4

4

5

5

5

6

6

67

7

7

8

8 8

8

9

9

9

10

10111213141516

(d) Step 16

Figure 5.6: Exemplary computation order for the velocity extension using three threads in
parallel using a heap. The nodes (grid points) are colored (red, green, and blue) by the thread
which processed them. Edges (arrows) are filled, if an Unknown upwind neighbor prevents
the computation. Adapted with permission from Quell et al., Proc. Int. Conf. Simulation
Semiconductor Processes Devices (SISPAD) (2019), pp. 1-4 [137], © 2019 IEEE.

The number on a node indicates the step in which a node has been processed. If
the WQ is empty a new WQ is assigned, by selecting a new Close Point, e.g., for
the blue thread this happens at step two (Figure 5.6b) and for the green one at step
three (Figure 5.6c).

Threads require different numbers of steps to finish, i.e., the green thread requires
nine steps whilst the blue thread requires 16 (Figure 5.6d). The green thread
is finished (out of work), because no more Close Points (WQs) are available to
be processed. This is a typical load-imbalance problem. The cause of this load-
imbalance is found in the structure of the given dependencies of the grid points.
The longest dependency chain is 10 grid points long.

62

Algorithm 7: The velocity extension algorithm tailored towards a
hierarchical grid, the changes colored in red are lines which are removed in
comparison to the multi-block FMM.
1 procedure Extension Hierarchical():
2 setBoundaryConditionsOnLevel 0()
3 foreach Levels do // From coarsest to finest
4 foreach Blocks on Level do // Parallel region
5 WQ ← InitialPoints // Create task
6 Velocity Extension(Blocks,WQ)
7 end foreach
8 Wait // Synchronization barrier
9 WQ ← Exchanged ghost points

10 while WQ ̸= ∅ do
11 foreach Blocks on Level do // Parallel region
12 Velocity Extension(Blocks,WQ) // Create task
13 end foreach
14 Wait // Synchronization barrier
15 WQ ← Exchanged ghost points
16 end while
17 setBoundaryConditionsOnNextLevel()
18 end foreach
19 end procedure

In practical applications, however, the load-imbalance is negligible due to the several
orders of magnitude higher number of Close Points compared to the number of used
threads.

The developed parallelization approach is evaluated in Section 5.7.1, on a
Cartesian grid3. The next section discusses adaptions of the parallel velocity
extension step to support hierarchical grids.

5.6 Hierarchical Grids
In the previous sections the velocity extension has been discussed within the context
of a single resolution Cartesian grid. This section extends the algorithms to be used
on hierarchical grids.

The hierarchical algorithm is given in Algorithm 7. The developed advancements
relative to the previously developed multi-block FMM [62] are highlighted.
Algorithm 7 operates in a top-down manner, starting the extension on Level 0 (the
coarsest level) and successively extending the velocity on finer (higher) levels. The
algorithm also explicitly sets the boundary conditions (cf. Algorithm 7 Line: 2 and
Algorithm 7 Line: 17) by involving ghost points.

3In the context of hierarchical grids, this is equivalent to a hierarchical grid containing only a
single level, hence, also only a single block.

63

Previous presented algorithms operating on a Cartesian grid ignored the boundary
conditions for reasons of a more accessible presentation, but in case of a hierarchical
grid setting this it not possible. Ghost points are either set via linear interpolation
of the velocity from a coarser level or, if they are covered by a block on the same
level, by a non-ghost point of the respective block.

After the boundary conditions are set, for each block on a level a parallel
OpenMP task (cf. Section 3.1) is created, allowing the computation of blocks on
the same level in parallel (Algorithm 7 Line: 4). Each task creates a dedicated
WQ using the Queue as underlying data structure. The union of the Close Points
and ghost points for which the velocity is known (InitialPoints) is inserted into
the WQ. Subsequently, Algorithm 8 is executed, which extends the velocity based
on the given WQ to the corresponding block. After that a global synchronization
barrier is enforced, waiting for all tasks to be finished before proceeding as otherwise
some ghost points are possibly exchanged before their velocity is computed. Global
synchronization barriers are detrimental to parallel performance, because they
require all threads to synchronize. This causes threads to idle until the last thread
reaches the synchronization barrier. Thus it is desirable to avoid global barriers as
proposed in the next paragraphs.

Reducing Global Synchronization

The former multi-block FMM [62] algorithm uses a synchronized exchange step.
The synchronized exchange step internally uses two global synchronization barriers.
In between the global synchronization barriers the ghost points of all blocks are
updated. The here proposed advanced algorithm does not need those synchronized
exchange steps anymore because the functionality was transferred into Algorithm 8.
This reduces the number of global synchronization barriers, except for one at
the end of each processed level. If the velocity for a ghost point is changed
by the synchronized exchange step, the ghost point is inserted into the WQ of
the corresponding block (Algorithm 7 Line: 9). As long as there is a non-empty
WQ, Algorithm 8 is executed again with the same synchronization barrier and
synchronized exchange step.

A level of the hierarchical grid is finished after the ghost points on the next level
are set (Algorithm 7 Line: 17), in which case the algorithm proceeds to the next
level. When all levels are finished Algorithm 7 terminates.

Algorithm 8 is an adapted version from Algorithm 5 introducing two main
enhancements which are discussed below:

• WQ splitting, enabling a better load-balancing.
• Localized exchange, reducing global synchronization barriers.

The initialization of the grid points (Algorithm 8 Lines: 2-8) is removed, because the
grid points (WQ) from which the velocity shall be extended are provided as input
to the algorithm.

64

Algorithm 8: Velocity extension on a block of hierarchical grid, with
the added capability of load-balancing through splitting the WQ and to
extend the velocity without synchronization barriers to the neighboring
blocks. Red colored lines are removed and blue colored lines are added in
comparison to Algorithm 5.
1 procedure Velocity Extension(Block, WQ):
2 foreach Points [P] do
3 P.flag ← Unknown // Initialize all grid points
4 end foreach
5 foreach Close Points [CP] do
6 CP.velocity ← Velocity computed based on the Cross Points
7 CP.flag ← Known
8 end foreach
9 while WQ ̸= ∅ do

10 if WQ.length > limit then
11 WQ1,WQ2 ← Split WQ
12 Velocity Extension(Block, WQ1) // Create Task
13 WQ ← WQ2
14 end if
15 P ← WQ.getFirst()
16 foreach Neighbors [N] of P do
17 if N.flag = Unknown then
18 if Update3(N) then
19 WQ.insert(N)
20 if Overlap(N) then

/* EQ gathers overlapping grid points in one local
queue per neighboring block */

21 EQ.insert(neighboring block, N)
22 end if
23 end if
24 end if
25 end foreach
26 end while
27 foreach neighboring block [NB] of Block do
28 Velocity Extension(NB, EQ(NB)) // Create Task
29 end foreach
30 end procedure

WQ Splitting

The splitting of a WQ (Algorithm 8 Lines: 10-14) takes place, if a WQ exceeds a
certain size. The size is chosen in order that the WQ and the required grid points
fits into the cache of the used CPU, e.g., for the compute system ICS it is set to
512.

65

The computation requires for each grid point the velocity V and the signed-
distance Φ (each a double requiring eight bytes) and the same values for the
remaining six grid points in the seven-point stencil. However, half of the grid points
in the stencil are shared by the grid points in the WQ, due to the WQs locality.
Thus, the estimated working set is about

512����
WQ size

× 8����
double size

× 2����
V and Φ

× 7����
stencil size

× 1
2����

WQ locality

= 28 672 Byte (5.9)

which is less than 32KByte and thus fits into the L1d cache of the CPU used in the
ICS. Additionally, the splitting reduces the load-imbalances between the threads as
WQs may vastly differ in size. The split inserts the first halve into a new WQ, which
is processed in a recursive execution of Algorithm 8 in parallel. The second halve
remains in place and is processed by the current execution of Algorithm 8. Splitting
the WQ in the proposed manner gives the WQs a better spatial locality (grid points
in the queue share their neighboring grid points), compared to an approach where
grid points are alternatingly inserted into the new WQs.

Localized Exchange

The second optimization is the localized data exchange from one block to another.
This reduces the global synchronization barriers to a single one, which is necessary
before continuing on the next level of a hierarchical grid). For the localized data
exchange an additional check is made after a successful update of the velocity for
a grid point. The check identifies whether the just updated grid point is a ghost
point for one of the neighboring blocks (Algorithm 8 Line: 20). If so, the grid
point is additionally inserted into a WQ called exchange queue (EQ). For each
neighboring block such an EQ collects all the grid points which shall be exchanged
(Algorithm 8 Line: 21). Once the WQ of the current block is empty the EQs are used
in a recursive execution of Algorithm 8. The algorithm is applied on the neighboring
block using the corresponding EQ (Algorithm 8 Line: 28). This allows to extend
the velocity to the neighboring blocks without a global synchronization barrier.

Those recursive executions may also be performed in parallel. The goal behind
collecting all the grid points belonging to a neighboring block is to reduce the
overhead introduced by creating WQs which contain only a single grid point and
forcing data locality, because grid points exchanged between blocks neighbor each
other.

The performance impact of the developed algorithms (Algorithm 7 and
Algorithm 8) is evaluated by considering a thermal oxidation example in
Section 5.7.2. The following section starts with the benchmark examples to evaluate
the presented algorithms used for Velocity Extension.

66

5.7 Benchmark Examples and Analyses
The performance of the individual variants of the developed velocity extension
algorithm, in particular concerning their parallel efficiency, is evaluated based on
a 3D example simulation of an IBE process for a STT-MRAM device and based on
the thermal oxidation simulation presented in the introduction Section 1.1. The
presented simulations were conducted using Silvaco’s Victory Process simulator
which was augmented with the new velocity extension algorithms for evaluation
purposes.

In Table 5.1 the presented velocity extension algorithms are summarized,
identifying the velocity extension algorithm, the utilized algorithm to compute the
update on a grid point, which levels of a hierarchical grid are applicable to the
algorithm, and a short comment of the algorithm.

Table 5.1: Summary of the presented algorithms used to extend the velocity.

Velocity Extension Utilized Update Level Comment
Algorithm 2 Algorithm 1 0 standard FMM
Algorithm 3 Algorithm 4 0 serially optimized FMM
Algorithm 5 Algorithm 6 0 parallelized FMM
Algorithm 7 Algorithm 6 All optimized multi-block FMM

5.7.1 STT-MRAM
The results presented in this section were published in [137, 138]. Recent
devices proposed in the field of emerging memory technologies [149] particularly
demand optimized nano-patterning to enable small feature sizes and high density
memory cells in order to replace conventional CMOS-based random access memory
(RAM) [150, 151, 152]. One of the key advantages of STT-MRAM memory cells
is non-volatility [153]. STT-MRAM memory cells consist of a magnetic tunnel
junction (MTJ) which in turn consist of a ferromagnetic layer with a reference
magnetization, a thin insulating barrier layer, and the ferromagnetic storage layer
where the magnetization is variable [154]. The functionality of the device is driven
by two physical phenomena: 1) the tunneling magnetoresistance (TMR) effect for
reading and 2) the spin-transfer torque (STT) effect for writing [155]. The latter
phenomena is responsible for the name of the device.

The most critical step in fabricating STT-MRAM devices is the creation of an
array of MTJ pillars. Those pillars are created by an IBE process which transfers
the pattern of the mask onto the underlying layers. In the IBE process ions are
accelerated to high velocities, hitting the interface and mechanically sputtering
material of the exposed surface. The corresponding process model uses a visibility
calculation of the interface to the ion source plane which is positioned on the top of
the simulation domain (above the structure). The IBE process is very anisotropic,
resulting in significantly larger vertical etch rates than lateral etch rates. The
velocities computed by the process model is a scalar field and is only well-defined
at the surface of the structure (interface).

67

2
0
0
n
m

10 nm
40 nm
10 nm

A B
Mask
Seed1
MTJ
Seed2
Bulk

(a) (b)

Figure 5.7: On the left (a) the initial structure topography of the STT-MRAM device is shown,
consisting of the MTJ layer and the two corresponding seed layers, all on top of the bulk silicon.
The right (b) shows the final pillars after the IBE process. Adapted with permission from Quell
et al., Proc. Int. Conf. Simulation Semiconductor Processes Devices (SISPAD) (2019), pp. 1-4
[137], © 2019 IEEE.

The proposed velocity extension algorithms Algorithm 3 and Algorithm 5 are
evaluated by simulating the discussed IBE process [156, 157].

Simulation Parameters

The considered simulation domain is 80 nm × 80 nm. The initial structure
topography consists (from bottom to top) of bulk silicon, followed by a seed layer
(combination of materials, e.g., hafnium and ruthenium, to protect the MTJ from
degradation in following process steps [158]) with a thickness of 10 nm, the MTJ
layer with a thickness of 20 nm, and a different seed layer with a thickness of 10 nm.
At the top is the patterned mask layer with a thickness of 200 nm. The structure
topography before and after the 6 min IBE process is shown in Figure 5.7.

The here discussed STT-MRAM example is used to evaluate the developed
velocity extension algorithms on a Cartesian grid to show the fundamental
capabilities without considering hierarchical grids. In the setting of hierarchical
grids this setup is equivalent to the hierarchical grid containing only Level 0 . The
simulation is carried out in two different spatial resolutions: The low resolution case
using a grid resolution of 2 nm and the high resolution case using a grid resolution
of 0.5 nm, allowing to investigate performance behavior for varying loads.

68

(a) t = 0 min (b) t = 3 min (c) t = 6 min

Figure 5.8: Extended velocity shown on a vertical slice (through A and B, cf. Figure 5.7) for
different times of the simulation. High etch rates are given by blue colors, whereas red colors
indicate a low etch rate. The interface representing the surface of the structure is drawn with a
white curve. Adapted with permission from Springer Nature: Springer Cham, Quell et al., Lecture
Notes in Computer Science 12043 (2020), pp. 348–358. [138], © 2020, under exclusive license to
Springer Nature Switzerland AG.

Table 5.2 summarizes the properties of the resulting discretization. The interface
geometry with its combination of flat, convex, and concave interface regions, leading
to shocks and rarefaction fans in the extended velocity field is a challenging and
representative test case for the developed velocity extension algorithms.

Table 5.2: Properties of the discretization for different resolutions for the example STT-MRAM
device geometry (cf. Fig 5.7).

Resolution # grid points # Close Points
Low Resolution Case 40 × 40 × 700 1 235 200 26 168
High Resolution Case 160 × 160 × 2800 73 523 200 411 896

In Figure 5.8 a slice of the extended velocity field is shown for three different
representative time steps during the simulation. The interface (surface of the
structure) is shown by the white curve. The extended velocity is constant along
the normals on the interface. The blue colors indicate a high etch rate, whereas red
colors indicate a low etch rate (nearly zero). The high etch rates are mostly present
in interface regions of the structure which face the top of the simulation domain
which is the source of the ions. The IBE is highly anisotropic, thus at the corners of
the MTJ pillars, the interface velocity abruptly changes, but are still well resolved.
The rarefaction fans (continuous extension of the velocity field in concave areas of
the interface) and the shocks (discontinuous extension of the velocity field in convex
areas of the interface) are clearly visible.

As a first step, the serial performance of the proposed algorithms and data
structures is evaluated, followed by the evaluation of the parallel performance.

69

Serial Performance Evaluation

The compute system VSC3 is used for the evaluation of this simulation example.
The first benchmark compares (cf. Table 5.3) the serial run-time of the algorithms
for both resolutions. The other metric shown in the table is the ratio of how often
at least a single upwind neighbor is in the state Unknown compared to the total
number of executions to the update algorithm (Un. up). This metric is a measure
for optimal traversal. A traversal of all grid points is optimal, if each grid point is
visited exactly once, yielding a ratio of zero. A ratio of 0.5 corresponds to visiting
every grid point twice.

Algorithm 2 achieves the optimum (the dependencies to compute the velocity are
always fulfilled). However, a disadvantage of the metric is that it neglects effects
on the performance caused by access times and cache misses, thus the run-times
do not correlate with the optimal traversal metric. Comparing the run-time for
Algorithm 3 using a Heap and Queue data structure shows that although they have
a similar ratio of Unknown upwind neighbors their run-times are vastly different.
This shows the superiority of the less complex insert and getFirst operations
of the Queue compared to the Heap. The Stack has the highest ratio of Unknown
upwind neighbors, because the Stack implements a depth-first traversal, which often
selects grid points further away from the interface first.

Table 5.3: Serial run-time (Run-Time) in seconds and the ratio of how often Unknown upwind
neighbors (Un. Up.) were encountered compared to the total updates. Bold numbers indicate
the fastest run-time for each resolution. The reference Algorithm 2 strictly requires a Heap to
be correct (compute consistently all grid points), thus no results are obtained for the other data
structures.

(a) Low Resolution Case

Algorithm 2 Algorithm 3 Algorithm 5
Data Structure Run-Time Un. up. Run-Time Un. up. Run-Time Un. up.
Heap 0.265 0.0 0.258 0.034 0.190 0.262
Stack 0.196 0.418 0.200 0.416
Queue 0.162 0.077 0.177 0.259

(b) High Resolution Case

Algorithm 2 Algorithm 3 Algorithm 5
Data Structure Run-Time Un. Up. Run-Time Un. Up. Run-Time Un. Up.
Heap 19.99 0.0 19.14 0.076 13.27 0.241
Stack 13.27 0.414 12.83 0.412
Queue 10.27 0.052 11.67 0.221

The run-times of Algorithm 2 are at least 1.3 times slower compared to
Algorithm 3 and Algorithm 5, if considering a Stack or Queue. The shortest run-
time is achieved using Algorithm 3 using a Queue data structure, yielding a serial
speedup of 1.6 and 2.0 for the low and high resolution case, respectively. The high
resolution case takes about 64 times longer than the low resolution case, which is
approximately the same factor as for the number of grid points those cases differ.

70

Thus a linear dependence of the run-time relative to the number of grid points is
shown.

The difference between Algorithm 3 and Algorithm 5, using the Stack, is a
reversed order of the grid points in the Band due to the stacks depth first traversal.
The run-time is barely affected, because the ratio of Unknown upwind neighbors is
about the same. For the Heap switching to Algorithm 5 is beneficial for the run-time,
as it reduces the heap size manifesting in insert and getFirst operations to require
a smaller share in run-time. The run-time of the Queue suffers from switching to
Algorithm 5 as the ratio of Unknown upwind neighbors increases by a factor of
four. The data structure used for the WQ (Band) in Algorithm 5 is less important
compared to Algorithm 3, as the size of the Band is small. In Algorithm 5 the Band
starts with a single grid point, compared to Algorithm 3 the Band contains about
halve the Close Points (the other halve is used on the other side of the interface).

Parallel Performance Evaluation

The parallelization is evaluated for Algorithm 5 on one node of VSC3 for up to 16
threads utilizing all available physical cores4. Thread-pinning was used to avoid
thread migration. The data is averaged over 10 iterations.

Figure 5.9 shows the run-time and parallel speedup of Algorithm 5. The shortest
run-times are obtained for eight and 16 threads for the low resolution case and
high resolution case, respectively. In both cases the Queue performed best, due
to its serial superiority. Starting from two threads the serial-superior algorithm
Algorithm 3 using a Queue is outperformed by the parallel algorithm regardless of
the used data structure.

The highest parallel speedup (not lowest run-time) is achieved using the Heap,
because using more threads further decreases the WQ size. Small WQ sizes are
essential for the Heap as the insertion scales with the WQ size (Stack and Queue
do not have this drawback).

The parallel speedup for the low resolution case using eight threads is 4.6 for
the heap and the queue and 4.9 for the stack. For eight threads, the high resolution
case has a parallel speedup of 4.5 for the stack, 5.3 for the queue, and 5.4 for the
heap.

Using more than eight threads, requires the threads to be distributed over two
memory domains (NUMA effects), leading to an increased run-time for the low
resolution case (parallel speedup of 4.0) and only marginal speedup for the high
resolution case (parallel speedup of 5.9) for all data structures. The memory is solely
allocated by the first thread which resides on core 0 (part of the first processor), thus
every thread running on the second processor has to indirectly access the memory.
Additionally, threads running on different processors do not have shared caches
further limiting speedup.

In Figure 5.10 the ratio of redundant computations and the ratio of Unknown
upwind neighbors are shown.

4Evaluations considering simultaneous multithreading showed no noticeable speedup and have
thus been excluded from presentation.

71

0 2 4 6 8 10 12 14 16
Number of Threads

10 1

100

101

R
u

n
-T

im
e
 [

s
]

Heap

Stack

Queue

High Resolution

Low Resolution

Heap

Stack

Queue

(a)

0 2 4 6 8 10 12 14 16
Number of Threads

0

2

4

6

8

P
a
ra

ll
e
l

S
p

e
e
d

u
p

L
in

ea
r
S
p
ee

d
u
p

Heap

Stack

Queue

High Resolution

Low Resolution

High Resolution

Low Resolution

(b)

Figure 5.9: Run-time (a) and parallel speedup (b) of Algorithm 5. For reference, the serial run-
time for Algorithm 3 is shown by dotted lines. Adapted with permission from Springer Nature:
Springer Cham, Quell et al., Lecture Notes in Computer Science 12043 (2020), pp. 348–358. [138],
© 2020, under exclusive license to Springer Nature Switzerland AG.

The ratio of redundant computations is investigated because Algorithm 5 does not
use explicit synchronization between threads. Consequently, there might be cases
where a grid point is computed more than once. As already mentioned in Section 5.5,
the involved threads compute the same values. Considering two threads the ratio of
redundant computations is below 0.01 %. For an increasing number of threads the
ratio of redundant computations saturates, i.e., in the low resolution case below 1 %
and high resolution case below 0.1 %. The ratio in the low resolution case is higher
than in the high resolution case, as the number of grid points computed by a thread
compared to the grid points where threads might interfere grow with different rates.
A similar situation is found for the ratio between the volume and the surface of a
sphere (square-cube law).

The ratio of Unknown upwind neighbors shown in Figure 5.10b declines slowly
for increasing number of threads. That is because, if more threads are available,
one of them might compute the Unknown upwind neighbors beforehand. The Queue
has in the high resolution case a lower rate than the Heap, because the WQ has a
better spatial locality.

Directly comparing the run-time of the serial execution of the FMM
(Algorithm 2) to the best parallel execution of Algorithm 5 using the Queue shows
that the run-time is reduced from 0.265 s to 0.038 s. The run-time reduction is
attributed to a serial speedup of 1.5 and a parallel speedup of 5.6 for eight threads
in the low resolution case. The high resolution case shows a reduction of the run-time
from 19.99 s to 1.975 s utilizing all 16 threads. The serial speedup’s contribution is
a factor of 1.7 and the parallel speedup’s contribution is a factor of 10.1.

In conclusion, for serial execution Algorithm 3 is the best choice and for parallel
execution Algorithm 5 is the best choice. In both cases the Queue is superior to
the other evaluated data structures, thus for the next benchmark example only the
Queue is considered.

72

2 4 6 8 10 12 14 16
Number of Threads

0.20

0.25

0.30

0.35

0.40

R
a
ti

o
 o

f
U
n
.
 U

p
.

Heap

Stack

Queue

High Resolution

Low Resolution

High Resolution

Low Resolution

(a)

0 2 4 6 8 10 12 14 16
Number of Threads

10 6

10 5

10 4

10 3

10 2

R
a
ti

o
 o

f
R

e
d

u
n

a
n

t
C

o
m

p
u

ta
ti

o
n

s

Heap

Stack

Queue

High Resolution

Low Resolution

High Resolution

Low Resolution

(b)

Figure 5.10: Ratio of Unknown upwind neighbors (a) and ratio of redundant computations (b)
for different thread numbers. Adapted with permission from Springer Nature: Springer Cham,
Quell et al., Lecture Notes in Computer Science 12043 (2020), pp. 348–358. [138], © 2020, under
exclusive license to Springer Nature Switzerland AG.

5.7.2 Thermal Oxidation
The results presented in this section were published in [55]. The developed velocity
extension algorithm optimized for the full hierarchical grid (cf. Algorithm 7) is
evaluated using the thermal oxidation example discussed in Section 1.1. The process
model for the oxidation step consists of two physical problems [15]: (1) The transport
and reaction of the oxygen (diffusion); and (2) the volume expansion due to the
chemical conversion, silicon to silicon dioxide, which is accompanied by the material
flow (displacement) of all materials above the reactive material (reaction). Each of
the physical problems yields a velocity field at the interface. A particular challenge
in this case is that one scalar and one vector velocity field has to be considered.
This scenario requires two separate velocity extensions and specialized advection
schemes for each extended velocity field.

The first physical problem (oxidant diffusing through the oxide), is
mathematically described by the Poisson equation

∂

∂xi

D

∂C

∂xi

�
= 0, (5.10)

−D
∂C

∂n⃗

�����
Si/SiO2

= kC, −D
∂C

∂n⃗

�����
SiO2/Si

= h(C0 − C), (5.11)

with C the oxidant concentration, D the diffusion coefficient, k the reaction rate,
h the gas-phase mass-transfer coefficient, C0 the equilibrium concentration in the
oxide, and n⃗ the normal to the corresponding material interface. This gives a
reaction rate at the silicon interface which is ultimately transformed to a scalar
velocity field v at the Cross Points of the gas interface (surface of the structure).

73

0
.1

5

0
.1

0.8

0
.0

2

0
.3

1.
6

0.15
0.15

0.4
0.8

Figure 5.11: Material regions representing the initial structure topography of the thermal
oxidation example on the left. On the right, a slice of the final material regions is shown including
the manifested bird’s beak. All lengths are given in µm.

The second physical problem (volume expansion from the chemical reaction and
displacement of materials) is mathematically described by a creeping flow

∂Sij

∂xi

= 0, (5.12)

with Sij = −p · δij + σij denoting the Cauchy stress tensor, p the pressure, and δij

the Kronecker delta. The shear tensor σij uses the Maxwell visco-elastic fluid model
which, combined with further simplifications, yields the system of Stokes equations

µ∆v⃗ = ∇p, (5.13)
∇ · v⃗ = 0, (5.14)

with v⃗ the vector velocity field and µ the dynamic viscosity. The vector velocity
field v⃗ is the second velocity field which needs an extension for this simulation.

Simulation Parameters

The simulation is performed on a rectilinear simulation domain with symmetric
boundary conditions, representing a unit domain of the full wafer. The simulation
domain covers a volume of 1.6 µm × 0.8 µm× 1.0 µm. The material stack consists
from bottom to top of: 0.3 µm bulk silicon, 0.02 µm padding silicon dioxide, 0.1 µm
buffer polysilicon, and 0.15 µm hard mask silicon nitride. Figure 5.11 shows the
detailed topography before the thermal oxidation step and a slice of the aftermath
of the 15 min thermal oxidation step at a temperature of 1000 ◦C. The bird’s beak
formed by the silicon oxide between the silicon and the polysilicon is well resolved.

The single block covering Level 0 contains 40×80×40 =̂ 128 000 grid points. The
data of the hierarchical grid on Level 1 is shown in Table 5.4. During the simulation
which requires a total of 27 time steps, every third time step the hierarchical grid
is re-gridded to fit the current topography of the structure. The number of blocks
varies between 17 and 34, with the general trend that the number goes up due to
an increased complexity of the material regions.

74

Table 5.4: Evolution of the number of blocks and total number of grid points on Level 1 of the
hierarchical grid shown for all time steps.

Time Step Number of Blocks Number of Grid Points
0 18 536 704
3 22 492 544
6 18 503 808
9 20 620 544
12 17 566 592
15 28 683 840
18 18 774 016
21 30 764 992
24 33 868 928
27 34 969 536

The number of blocks is important for the parallelization, because the unmodified
algorithm Algorithm 7 (using red parts) and the corresponding Algorithm 8 (not
using advances highlighted in blue) are directly limited by the number of blocks.

The number of grid points on Level 1 varies (between 492 544 at the beginning
and 969 536 grid points at the end of the simulation). There is no direct correlation
between the number of blocks and number of grid points. The general trend for
more grid points during the simulation, caused by the increased complexity of the
material regions, also holds for the number of grid points.

Performance Evaluation

In Figure 5.12 the run-time and parallel speedup are shown for the velocity
extension. The run-times were obtained using the ICS compute system utilizing
up to 10 cores. The run-times labeled new are based on using the new Algorithm 7
with all its changes once for the scalar velocity case and once for the vector velocity
case.

The run-times labeled Original are obtained from previous versions of the
velocity extension. For scalar and vector velocity cases different different algorithms
are used as base line. In particular Original Vector Velocity Extension uses the
original FMM (Algorithm 2). It employs a single global priority queue (implemented
via a heap) for all blocks on a level of the hierarchical grid. This does not allow
for any parallelization. The minor variations in the run-time for different number
of threads is created by noise, e.g., originating from the operating system.

The Original ScalarVelocity Extension uses Algorithm 7 without the proposed
changes and optimization for the hierarchical grid presented in Section 5.6. Thus, the
global Heap is replaced by the Queue on a per block basis. The proposed algorithm
has 4 % slower serial run-time, because the performance is impacted by the modified
exchange step and for a single-threaded execution global synchronization barriers
are irrelevant.

75

1 2 4 6 8 10
Number of Threads

100

101

R
u

n
-T

im
e
 [

s
]

New Vector Velocity Extension

New Scalar Velocity Extension

Original Vector Velocity Extension

Original Scalar Velocity Extension

(a)

1 2 4 6 8 10
Number of Threads

0

2

4

6

8

P
a
ra

ll
e
l

S
p

e
e
d

u
p

Lin
ea

r
Spe

ed
up

(b)

Figure 5.12: Averaged (over all 27 time steps) run-time (a) and parallel speedup (b) of
Algorithm 7 for the extension of the vector and scalar velocity field. Adapted with permission
from Quell et al., IEEE Transactions on Electron Devices 68.11 (2021), pp. 5430–5437 [55], ©
2021 IEEE.

The parallel speedup for the scalar velocity extension maxes out at 6.6 for
10 threads. Comparing this to the original implementation which only reached a
parallel speedup of 4.1, shows an improvement of 60 %. The parallel speedup of the
original implementation starts to saturate at four threads, because the implicit load-
balancing from the utilized thread pool deteriorates. The deterioration is caused by
the limited number of tasks which is directly related to the number of blocks on a
level, e.g., 17 blocks and 10 threads mean that three threads will get only a single
block to process thus balancing the different workloads per block is not possible.

The new vector velocity extension reaches a parallel speedup of 7.1 for 10 threads.
This is an improvement compared to the scalar case, which is caused by the three
times higher computational load at each grid point, because the vector velocity has
three components in a 3D simulation. The serial run-times for the scalar and vector
velocity extension differ only by 43 % instead of the 200 % (each component of the
vector adds 100 % run-time) expected from a three times as high workload per grid
point. This indicates that most of the run-time is spent on checks and ordering of
the grid points (memory intensive) rather than velocity computations. A further
extension of the proposed algorithms is to extend the scalar and vector velocity
together, if the process model allows it.

5.8 Summary
In this chapter the computational step Velocity Extension has been discussed in
detail. First the extension from the Cross Points to the Close Points, which is
trivially parallelizable, was presented. Then the original FMM used for the velocity
extension was presented, because it is the basis and reference for the developed
algorithmic advancements.

76

The key challenge in parallelizing the FMM for the velocity extension was to
overcome the use of a heap data structure to determine the order in which the
velocity is extended to the grid points of a block.

Based on an interpretation of the FMM through graph theory a new approach
was developed where different data structures were employable to determine the
order of the extension. The algorithmic changes were evaluated on a Cartesian grid
using a single thread, where a serial speedup ranging from 1.6 to 2.0 for the velocity
extension was measured. In particular, three different data structures Heap, Stack,
and Queue were evaluated: The Queue performed best.

The changes to the data structure enabled a parallelization of the algorithm
on a Cartesian grid. The parallelization was performed without any explicit
synchronization constructs, thus redundant computations (points are computed
multiple times) manifested. However, redundant computations count less than 1 %
for 16 threads. Depending on the spatial resolution parallel speedups ranging from
4.9 to 5.3 using eight threads were achieved. Overall, a parallel speedup of 5.9 for
16 threads was achieved, further improvements being limited by NUMA effects.

Finally the proposed algorithm was adapted to a hierarchical grid, by
reducing global synchronization barriers present in the original algorithm. The
global synchronization barriers were reduced by developing a specialized exchange
mechanism between blocks, which does not require additional synchronization
barriers. This allowed for a parallel speedup of 7.1 for 10 threads, which is
60 % higher compared to the original algorithm. A direct comparison between the
extension of a scalar and a vector velocity field showed that most of the run-time is
spent on the checks and ordering and not on the computation of velocities.

77

Chapter 6

Load-Balanced Parallel
Re-Distancing

This chapter presents the details of the computational step Re-Distancing and the
developed load-balanced parallel FMM approach. Re-Distancing restores the signed-
distance property of the level-set function without altering the interface position.
Aside from discussing other approaches, the focus is on introducing the new block
decomposition for the FMM which allows for superior parallel efficiency compared
to previous approaches.

In principle, there are three strategies to compute the signed-distance function
relative to a given level-set function:

• Re-initialization, uses the level-set equation with a velocity field, which
converges to a signed-distance function.

• Direct computation of the signed-distance, which is based on finding the closest
point on the interface.

• Eikonal equation, considers the computation of the signed-distance as a special
case of the more general Eikonal equation.

The first two approaches are briefly discussed below, however, the focus is on
solving the Eikonal equation (see Section 6.1), because the FMM for which the block
decomposition was developed belongs to the class of Eikonal equation solvers.

Previous shared-memory parallelized approaches using the FMM suffer from
load-imbalances, if the ratio of blocks (on a level of a hierarchical grid) per thread
is low, e.g., below 10 [62]. Therefore, the core contribution presented in this chapter
and published in [159], is a block decomposition approach to enable load-balancing.
The developed block decomposition approach temporarily increases the number of
blocks on all levels of a hierarchical grid (Section 6.2).

In the last section, the developed block decomposition approach is evaluated via
a parameter study on the granularity of the decomposition and frequency of the
data exchange steps between blocks (Section 6.3). For the evaluation a generic test
case (a point source) for Eikonal solvers (Section 6.3.1) is considered, as well as,
two representative example interfaces stemming from process TCAD simulations
(Section 6.3.2 and Section 6.3.3).

The discussion continues with an overview of the strategies to compute the
signed-distance.

78

Re-initialization

Re-initialization strategies use the level-set equation itself, employing a specific
velocity function which ultimately leads to

∂Φ
∂t

= sgn

Φ0

�
(1 − |∇Φ|) , (6.1)

Φ (x⃗, 0) = Φ0 (x⃗) , (6.2)

where Φ0 is the given distorted level-set function and Φ is the desired signed-distance
function. The sgn term forces that the sign of the level-set function does not change
during the re-initialization, i.e., inside stays inside and outside stays outside.

Equation (6.1) is solved numerically to a steady state (advanced for some time
steps until the difference between two consecutive solutions Φ is below a threshold),
yielding the signed-distance function Φ [160]. The signed-distance property of Φ
follows directly from (6.1) by using ∂Φ

∂t
= 0 (due to the steady sate) and moving

|∇Φ| to the left hand side (compare (4.25)).
The drawback of this approach is that the interface is typically moved during the

process; this leads to smoothening of sharp features, e.g., corners, and is obviously
counterproductive in a process TCAD simulation setting as critical device features
would deteriorate. The movement of the interface is dependent on the number of
iterations necessary to reach the steady state, where a higher number of iterations
results in a bigger deviation of the interface position. The number of required
iterations increase the further the initial Φ0 deviates from a signed-distance function.

Improvements to this method were made by modifying the used velocity [161,
162, 163]. These advancements yield the same steady state solution, but allow for
a faster convergence to the steady state, as well as a smaller disturbance of the
interface position.

Direct Computation of the Signed-Distance

The methods belonging to this strategy compute the signed-distance by calculating
the closest point on the interface, i.e., minimizing the distance to the interface. The
methods are similar to a gradient descent algorithm [164]. The closest interface
point is computed by first using the gradient and the level-set value for an educated
guess of the interface location. The quality of the educated guess is high, if the
given level-set function is close to a signed-distance function.

The educated guess is then refined by directional optimization [165].
Conceptually similar methods based on the Hopf-Lax formula are presented in [166,
167].

Direct computation of the distance methods are easy parallelizable, because the
computations on different grid points are independent [168]. The main disadvantage,
however, is that the level-set function has to be close to a signed-distance function
for optimal efficiency. Achieving high accuracy at corners is challenging, because
the interface normals are ill-defined at those locations. The accuracy of methods
belonging to this class is bound by the interpolation scheme used by the directional
optimization to determine the exact interface position.

79

6.1 Eikonal Equation
The Eikonal equation is developed to describe a wave front emerging from Γ and
marching through Ω

|∇Φ (x⃗)| = F (x⃗) , x⃗ ∈ Ω, (4.23 revisited)
Φ (x⃗) = G (x⃗) , x⃗ ∈ Γ, (4.24 revisited)

with the given wave speed 1
F (x⃗) and departure time G. Using a wave speed of one

and a zero departure time the distance to the interface is computed.
The Eikonal equation has applications in various areas of science and engineering,

such as seismic processing [169, 170, 171], path-finding [172, 173, 146], and 3D
imaging [106]. Therefore, there are several available computational approaches
to solve the Eikonal equation. A short overview of the approaches to solve the
Eikonal equation on Cartesian grids is given in [146]1. The most widely-used solution
approaches are (further details provided in the following):

• Fast sweeping method (FSM)
• Fast iterative method (FIM)
• FMM
The methods use a set of seed points (representing the discretized interface

Γ on the grid). For Re-Distancing those seed points are the same as the Close
Points (cf. Section 5.2). It is possible to also re-compute the signed-distance on
the Close Points increasing the accuracy of the solution, but doing so alters the
interface position [162]. The change of the interface position is strictly unwanted
(see previous reasoning concerning the preservation of the process TCAD critical
geometrical features of the to-be-simulated devices), thus Close Points are never
modified.

All methods to solve the Eikonal equation have an Update algorithm
(cf. Algorithm 9) in common, which solves the discretized Eikonal equation

max

D−x

ijkΦ, D+x
ijkΦ, 0

�2
+

max

D−y

ijkΦ, D+y
ijkΦ, 0

�2
+

max

D−z

ijkΦ, D+z
ijkΦ, 0

�2

1
2

= Fijk, (6.3)

with D+x
ijkΦ the forward difference approximation and D−x

ijkΦ the backward difference
approximation to the spatial derivative ∂Φ

∂x
. The discretization by (6.3) is

establishing an upwind scheme, because it uses in each spatial dimension only
grid points with lower Φ values (Algorithm 9 Line: 5). The forward and backward
differences are typically computed using a first-order scheme (cf. Section 2.1), which
requires a stencil containing direct neighboring grid points (grid points for which
the sum over all spatial dimensions of the absolute index differences is equal to one).

1The methods to solve the Eikonal equation on unstructured grids are conceptually similar to
the ones discussed here, but due to the restriction of this thesis to structured grids the reader is
referred to [174, 175, 176] for implementation details.

80

Algorithm 9: The algorithm solves the discretized Eikonal equation on
a grid point. Its parameters are the P grid point on which it shall be
solved, N the neighboring grid points, which shall be considered, and F
the discretized speed.
1 procedure Update(P, N, F):

/* Collect upwind neighbors */
2 for i ∈ {x, y, z} do
3 Ti ← 0
4 hi ← 0
5 if P.Φ > Ni.Φ then
6 Tx ← Nx.Φ
7 hx ← ∆x

8 end if
9 end for

/* Solve quadratic */
10 a ← �

i∈{x,y,z}
h2

i

11 b ← −2 �
i∈{x,y,z}

h2
i T

2
i

12 c ← �
i∈{x,y,z}

h2
i T

2
i − F

13 if b2 − 4ac ≥ 0 then // Real solution exists
14 P.Φ ← −b+

√
b2−4ac

2a

15 return
16 else // Lower dimensional update
17 i ← max

i∈{x,y,z}
Ni.Φ

18 Ti ← 0
19 hi ← 0
20 goto Line: 10
21 end if
22 end procedure

Higher order schemes require a wider stencil (containing more grid points), a second-
order scheme for example is presented in [177]. The higher order schemes are out
of scope for process TCAD simulations: In case the interface is not smooth, e.g.,
at interface corners, the higher order of those schemes is reduced. In order to solve
(6.3) using the first-order scheme for Φijk, rearranging the terms of (6.3) reveals the
structure of a quadratic equation in Φijk�

i∈{x,y,z}
∆2

i� �� �
= a

Φ2
ijk + −2

�
i∈{x,y,z}

∆2
i T

2
i� �� �

= b

Φijk +
�

i∈{x,y,z}
∆2

i T
2
i − Fijk� �� �

= c

= 0, (6.4)

with Ti the Φ value of the chosen upwind neighbor in the corresponding spatial
dimension. This equation is solved in Algorithm 9 Line: 14.

81

In case no real solution exists (the quadratic has two complex roots)
the largest upwind neighbor is removed (its contributions are set to zero
cf. Algorithm 9 Lines: 17-19). Then the procedure to solve the quadratic equation
is restarted. If only a single dimension has nonzero contributions, a real solution to
the quadratic is guaranteed to exist.

FSM

The FSM [178], computes the solution by repetitively sweeping the computational
domain. A sweep computes for every grid point an Update by considering only
neighbors in, e.g., negative x/y/z-direction. For the next sweep the directions are
changed considering the previous example: positive x-direction and negative y/z-
direction. A full sweep consist of all the 2d (d is the number of dimensions) possible
combinations of sweep directions. Improvements to the FSM that lock some of the
grid points, i.e., locked sweeping method (LSM) such that not all grid points have
to be computed in a sweep, are presented in [179]. The FSM terminates, if the
difference of the solution between two consecutive full sweeps is below a threshold.
The threshold is selected based on the desired accuracy of the solution. In case of a
constant speed function F the solution is already reached after a single full sweep,
thus 2d sweeps are necessary for Re-Distancing.

The Eikonal equation is a minimization problem, therefore, the solution is given
by the smallest computed value at each grid point over all sweeps of a full sweep.
Therefore, the individual sweeps may be computed in parallel allowing up to 2d

threads simultaneously. If more threads are available, a sweep is additionally
parallelizable because all grid points with the same sum of their indices are
independently computable (a strict order applies to the order of the sum of the
indices) [180, 181].

FIM

The FIM [182, 183] (as its name suggest) iteratively uses the Update function on all
grid points. The FIM terminates when the difference of the solution between two
iterations falls below a threshold value. The threshold corresponds to the desired
accuracy of the solution. In comparison with the FSM the FIM considers always
all neighbors. Improvements to the FIM are that for an iteration only selected grid
points are computed again [184]. For a constant speed function F the iteration
terminates in a maximum number of iterations, which is equivalent to the diameter
of the domain in grid points. Parallelization for the FIM is straightforward, because
the update for all grid points is performed independently in each iteration [185, 186,
187].

FMM

The FMM as portrayed previously in Section 5.3 is unique in the sense that it is a
single pass algorithm (every grid point is computed only once).

82

The modifications presented in Chapter 5 for parallelizing the FMM are not
applicable to the FMM used in Re-Distancing, because the dependencies (upwind
neighbors) of the grid points are not known beforehand.

Thus the approaches for parallelizing the FMM for Re-Distancing (or more
generally the Eikonal equation) are based on domain decomposition. The domain
is decomposed and an instance of the FMM is performed independently on each
sub-domain. Consequently, this requires a merging of the solution from the different
sub-domains. The merging inevitably leads to iterative rollback mechanisms for any
domain decomposition approach. The role back mechanism invalidates the solution
on parts of the domain and initiates a re-computation of the solution, thus the single
pass property of the FMM is lost [188]. There are several approaches trying to limit
the number grid points affected by rollbacks [189, 190]. The approaches differ by
whether the sub-domains are overlapping, considered neighbors of the sub-domains,
and exchange frequency between the sub-domains.

The exchange frequency between sub-domains is controlled by a parameter called
stride width which limits how far the solution may advance before a mandatory data
exchange takes place [61, 171]. So far the effect on the performance of the stride
width has not been studied for hierarchical grids. Choosing a small stride width
reduces the by the rollbacks affected points, whilst a large value reduces the number
of synchronization barriers due to the reduced data exchanges.

An overview of available FMM approaches in a single block and multi-block
context is summarized in Figure 6.1.

In what follows, we consider the block decomposition to only apply to the
Re-Distancing and not interfere with the given hierarchical grid itself, which is
tailored to solution requirements of the physical simulation steps, i.e., optimal grid
resolution in areas of interest, such as corners, to optimize robustness, accuracy, and
computational complexity.

6.2 Block Decomposition
Previous analyses show that, if the number of blocks is about 10 times bigger
than the number of threads, the load-balancing is possible [62], increasing parallel
efficiency. To artificially increase the number of blocks on a level of a given
hierarchical grid, a decomposition of the available blocks into sub-blocks is necessary.
Sub-blocks are exactly like blocks, but to differentiate from the original blocks the
distinguishable descriptor, sub-blocks, is used.

The naive decomposition approach splits the largest block into two sub-blocks
along its longest side until the desired number of blocks is reached. This is not
a viable option because this approach is inherently serial due to the selection of
the largest block. Additionally, there is no lower bound on the block size, so
excess creation of tiny sub-blocks, e.g., one grid point wide blocks, will deteriorate
performance (as those blocks would still need a ghost layer, which would be bigger
than the actual block).

83

(a) Approach presented in [189]: Domain
decomposition of a single block using one created
sub-block per thread (four threads) is used,
leading potentially to load-balancing issues: The
thread processing the lower right sub-block is
initially idle as no interface is present.

(b) Approach presented in [171]: Domain
decomposition of a single block using multiple
sub-blocks per thread and dynamically assigning
the threads (i.e., four threads, but 16 blocks) is
used, tackling the load-balancing issue depicted
in (a).

(c) Approach presented in [62]: Load-balancing
if multiple blocks per thread are available. The
effectiveness of the parallelization depends on
the number and relative size of the given blocks.
The Eikonal equation is only solved in regions
covered by a block.

(d) The approach presented in this work:
Improved parallel
performance compared to approach shown in
(c) is achieved by automatically decomposing
the given blocks into significantly more sub-
blocks. This increases the block per thread ratio,
which leads to more efficient load-balancing and
ultimately increases parallel performance, also
presented in [159].

Figure 6.1: Approaches to parallelizing the FMM for a single block, e.g., Level 0 of a hierarchical
grid (top row) and multi-blocks, e.g., Level 1 or Level 2 of a hierarchical grid (bottom row).
The shape and position of the interface is inspired by a typical trench geometry in process TCAD
simulations [62]. Adapted with permission from Quell et al., Journal of Computational and Applied
Mathematics 392, (2021) p. 113488. [159], © CC 4.0, http://creativecommons.org/licenses/
by/4.0/.

84

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

(a) Level of a hierarchal grid consisting of two
non-overlapping blocks.

(b) Decomposition of the level shown in (a)
using a block size of 10.

Figure 6.2: In (a) the level of a hierarchical grid consisting of two blocks and their appropriate
ghost layer is shown: Grey cells in the ghost layer are given by interpolation or the domain
boundary, whereas the blue ones are covered by the neighboring block, which allows for seamless
propagation of information between the blocks. In (b) the blocks after the decomposition are
shown. Only the bigger block is split into four sub-blocks, as the other one is smaller than the
chosen block size of 10. The newly created grid points in the ghost layers of the sub-blocks are
colored differently. Adapted with permission from Quell et al., Journal of Computational and
Applied Mathematics 392, (2021) p. 113488. [159], © CC 4.0, http://creativecommons.org/
licenses/by/4.0/.

In contrast, a superior approach is developed and presented in the following. The
approach decomposes blocks only, if they are larger than a given block size into sub-
blocks smaller or equal in size of the block size (Figure 6.2). For a chosen block size
of 10, only the larger block (14×13) is split, whilst the smaller block (7×5) remains
unchanged. The larger block is simultaneously split into four sub-blocks, two with
a size of (7 × 7) and two with a size of (7 × 6). This approach favors parallelism,
because every block is split independently. Additionally, the block size parameter
allows to take cache sizes of the underlying hardware into account, because the block
size parameter gives tight control over the created sub-block sizes. The sub-block
size has direct influence on the required memory.

To deploy the decomposition onto a hierarchical grid the neighbor relations
between the (sub-)blocks have to be computed and the ghost layers have to be
checked for overlaps, identifying grid points which require a synchronized exchange.
During the preparation the blocks are split into sub-blocks, based on the proposed
block size. Finally, the multi-block FMM is applied [62]. In summary, the developed
advancements of the parallel FMM consist of three sub-steps: Block decomposition,
sub-block allocation, and ghost layer computation. Figure 6.3 illustrates the
algorithm via a flow chart and each step is discussed in the following.

Block Decomposition

The decomposition of a block is independent from the decomposition of other blocks,
thus decomposing the blocks is inherently parallel. Additionally, the decomposition
is also independently applicable to all spatial dimensions, therefore, it is sufficient
to present the one-dimensional case.

85

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Setup FMM

FMM

Block size < size

Compute # of
sub-blocks

Compute sub-
block size and
start index

Done

Y
es

N
o

Block Decomposition

Is sub-block?

Allocate φ-values

Allocate heap

Y
es

N
o

(Sub-)Block Allocation

Identify
sub-block
neighbors
of the same
original block

Identify
overlapping
grid points
from from
neighboring
sub-blocks

Store overlap
grid points in
an array

Ghost Layer Computation

Copy data to sub-blocks Multi-block FMM Copy data from sub-blocks

Figure 6.3: Flow chart of the setup of the FMM and execution of the FMM itself. Steps colored
in blue are new, their computational overhead vanishes, if the chosen block size is larger than the
block size. Green colored steps are modified compared to [62], whilst the black colored steps are
unchanged. Adapted with permission from Quell et al., Journal of Computational and Applied
Mathematics 392, (2021) p. 113488. [159], © CC 4.0, http://creativecommons.org/licenses/
by/4.0/.

For a given block by its start index S2, its original size N in grid points, and the
chosen block size B, the number of sub-blocks M is computed by

M =
�

N + B − 1
B

�
. (6.5)

Thus there are M sub-blocks necessary so that none of them has to be bigger than
B.

2The start index is later needed to compute the start indices of the sub-blocs

86

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616 1717

Original Block

Sub-block1

Sub-block2

Sub-block3

Original block size N
Block size B

N1

N2

N3

D
ecom

p
osition

S

S1 S2 S3

Figure 6.4: The global indexing scheme is given by the blue squares with their indices ranging
from 1 to 17. Above the original block (gray box) with its start index S = 4 and original block size
N = 11 spanning all grid points up to index 14 is shown. To the left and the right of the block the
one grid point wide ghost layer is shown in dark gray. Below the global indexing scheme the created
sub-blocks and their corresponding ghost layers are shown for the chosen block size B = 5. The
three sub-blocks, with their own start index Si and sub-block size Ni ≤ B (four or three) cover the
same grid points as the given block. None of the sub-blocks has a sub-block size of five, because
the decomposition strategy creates sub-blocks which may differ only by one grid point in size.
Adapted with permission from Quell et al., Journal of Computational and Applied Mathematics
392, (2021) p. 113488. [159], © CC 4.0, http://creativecommons.org/licenses/by/4.0/.

The individual starting index Si of the sub-blocks and the size Ni for the sub-block
i are computed using

N = M · q + r, (6.6)
with q the unique quotient and r the remainder. So, Si and Ni are given by

Si =
S + i(q + 1) for i < r

S + (i − r)q + r(q + 1) for i ≥ r
, (6.7)

Ni =
q + 1 for i < r

q for i ≥ r
. (6.8)

The created sub-blocks vary in size by at most a single grid point, because of
their definition. The case occurs, if N is not divisible by M . Figure 6.4 shows
an exemplary block decomposition, with all variables graphically shown.

Consider an alternative approach where the original block is cut into B sized sub-
blocks except for the last sub-block which is only r grid points wide. This alternative
approach is inferior to the proposed approach because in case the last sub-block
with size r is only one grid point wide requires frequent data exchange steps which
deteriorate the parallel performance or in case of infrequent data exchanges the
rollbacks affect many points.

In the higher dimensional case, the block size is equal in all spatial dimensions
for the standard case where the grid resolution (distance between two grid points)
is the same.

87

http://creativecommons.org/licenses/by/4.0/

If the grid resolution is different along spatial dimensions, different block sizes along
the different spatial dimensions are appropriate. If the sub-blocks are most similar to
a cube, the spatial locality of the blocks is increased. This is not further investigated
in this thesis, but might offer an interesting path for future research, especially for
high aspect ratios of the grid resolution along different spatial dimensions.

(Sub-)Block Allocation

After the sub-blocks are defined, memory for the grid points, ghost layer and, the
FMM’s binary heap has to be allocated (cf. Figure 6.3). The heap is preallocated
to avoid costly re-allocations during the execution of the FMM in case the heap
outgrows the initial chosen size. The preallocation size is chosen such that all
grid points of a block are able to fit, thus no re-allocations are necessary. The
preallocation allows to use an indexed lookup into the heap, if grid points are already
present, shortening the time required to update the priority (key) for a grid point.

Blocks which have not been decomposed require only the allocation of the heap
data structure. The whole process is parallelized over the sub-blocks, enabling the
parallel execution of up to the number of sub-blocks threads. If less threads are
available load-balancing takes place, because sub-blocks which do not require a
decomposition take significantly less time. A synchronization barrier is needed to
proceed to the next step.

Importantly, no data is copied during the block allocation to the sub-blocks.
Data is only copied directly before and after the FMM is executed. This enables
an efficient reuse of the sub-blocks over several time steps of a full process TCAD
simulation, as long as the underlying hierarchical grid does not change.

Ghost Layer Computation

The neighboring sub-blocks (in the following, referred to as neighbors) are computed
in two steps: 1) Neighbors from the same original block and 2) neighbors from
a different original block (cf. Figure 6.3). The neighbors from the same original
block are computed by index calculation, because the original block is regularly
decomposed. Those neighbors either share a full face (i.e., all grid points of one of
the axis-aligned sides) or no grid point at all. The neighbors from a different original
block, are computed with a pairwise overlap computation of their ghost layer, for
the sub-blocks. In the overlap computation only sub-blocks which originate from a
neighboring blocks of their original block are considered. Thus the performance is
increased, because not all sub-blocks have to be considered. The grid points in the
ghost layer are marked to belong to the externally set grid points3 or to the to-be-
synchronized grid points, i.e., they are covered by a neighboring sub-block. In the
latter case, the grid points are collected on a per block basis to allow for an efficient
data exchange with the neighboring sub-blocks. The parallelization strategy is the
same as the one employed for the sub-block allocation, allowing high parallelization.

3Grid points for which the signed-distance value is given by domain boundary conditions or
by interpolation from a coarser level of the hierarchical grid. Their signed-distance value is not
changed by the FMM.

88

6.3 Benchmark Examples and Analyses
The proposed block-based FMM is evaluated based on three benchmark examples.
The first example is a Point Source example. The other two (Mandrel and Quad-
Hole) examples are inspired by process TCAD simulations.

The results are obtained from the benchmark system VSC4 (cf. Section 3.2).
Different values for the parameter block size are compared as well as different values
for the parameter stride width.

6.3.1 Point Source
The Point Source example is a fundamental test case for benchmarking Eikonal
solvers [61, 146, 171]. The computational domain covers the cube [−0.5, 0.5]3 using
a Cartesian grid (Level 0 of a hierarchical grid). The spatial discretization has
256 grid points along each spatial dimension yielding a total of 16 777 216 grid
points. The domain boundary conditions are chosen to be symmetric in all spatial
dimensions. At the center ([0, 0, 0]) a single grid point is set to be the source point
(interface). The speed function is constant, F = 1. Thus the iso-contours of Φ are
spheres centered on the source point (cf. Figure 6.5a).

First, the modified step Setup FMM (cf. Figure 6.3) is analyzed and then the
performance of the FMM itself is analyzed.

Setup FMM

The measured run-times are shown in Figure 6.5b for block sizes ranging from
256 (a single block) down to eight (32 768 blocks). In case of block size 256 no
decomposition is performed, giving no parallelization possibilities. In the other
cases the block is decomposed, creating a significant serial overhead, due to memory
allocation and additional ghost point computations. Parallel execution on the
other had is now possible, yielding (depending on the chosen block size and used
number of threads) a shorter run-time than the base case without decomposition.
For block sizes of eight or 16 the break even point is never reached because the
enormous number of blocks (4 096 and 32 768, respectively), each with only a little
computational, load suffer from synchronization overhead which materializes with
more than four threads. Usage of computational resources from the second processor
(more than 24 threads) did in no case increase the performance as NUMA effects
add to the already memory-bound problem.

FMM

To analyze the run-time of the advanced FMM itself and the parallel speedup,
Figure 6.6 shows the run-time and speedup for block sizes from eight to 256 and for
different values of stride width measured in multiples of the grid resolution. In case
no decomposition takes place (block size 256), the run-time is hardly affected by the
used number of threads as well as from the stride width. The next finer block size
128, creates eight blocks.

89

(a) Isocontours of Φ from 0 to 0.8 in steps by
0.01. The domain is cut in half to provide an
inside view.

1 2 4 8 16 24 48
Number of Threads

10 1

100

R
u

n
-T

im
e
 [

s
]

Block Size

256

128

64

32

16

8

(b) Run-time to setup the sub-blocks.

Figure 6.5: (a) The iso-contours of Φ for the Point Source example. (b) The run-time to setup
the sub-blocks and to compute the neighbor relations for various block sizes and number of threads.
The gray shaded area indicates the use of the second processor, indicating NUMA effects. Adapted
with permission from Quell et al., Journal of Computational and Applied Mathematics 392, (2021)
p. 113488. [159], © CC 4.0, http://creativecommons.org/licenses/by/4.0/.

A serial speedup is measured for stride widths smaller than 20. The speedup ranges
from 1.01 (stride width of 0.5) to 1.14 (stride width of 3.5), the cause of the speedup is
the reduced number of grid points per block and smaller heap sizes and better cache
efficiency due to data locality. The parallel speedup saturates for eight threads,
because there are only eight blocks available. Small stride widths perform better,
because the source point is located on a single sub-block, allowing computations
on other sub-blocks only after the first exchange step, which is caused earlier by a
smaller stride width.

For smaller block sizes a serial speedup is observed for stride widths of less than
10, reaching the highest serial speedup of 1.21 for a block size of 64 and a stride
width of 3.5. If the used number of threads is high, large stride widths perform
better, because the computational load per sub-block is decreasing rapidly, but the
overhead caused by the synchronization decreases slower in comparison (following a
square-cube-law). The peak parallel speedup of 19.1 using all 24 threads of a single
processor is achieved with a block size of 32 and a stride width being equivalent to
infinity (i.e., 10 000).

Utilizing the second processor only gives a speedup for block sizes of 64 and
32 and large stride widths, bigger than (depending on the block size) 10 and 50,
respectively. The reason is that the typical computational load per task is to small
too compensate the synchronization overhead.

90

http://creativecommons.org/licenses/by/4.0/

1 2 4 8 16 24 48

of Threads

100

101

102

103

R
u

n
-T

im
e
 [

s
]

Block Size 256
 Blocks 1

1 2 4 8 16 24 48

of Threads

Block Size 128
 Blocks 8

1 2 4 8 16 24 48

of Threads

Block Size 64
 Blocks 64

1 2 4 8 16 24 48

of Threads

Block Size 32
 Blocks 512

1 2 4 8 16 24 48

of Threads

Block Size 16
 Blocks 4096

1 2 4 8 16 24 48

of Threads

Block Size 8
 Blocks 32768

Stride Width

0.5

1.5

2.0

2.5

3.5

5.0

10.0

20.0

50.0

10000.0

Level 0

1 2 4 8 16 24 48

of Threads

100

101

S
p

e
e
d

u
p

Block Size 256
 Blocks 1

1 2 4 8 16 24 48

of Threads

Block Size 128
 Blocks 8

1 2 4 8 16 24 48

of Threads

Block Size 64
 Blocks 64

1 2 4 8 16 24 48

of Threads

Block Size 32
 Blocks 512

1 2 4 8 16 24 48

of Threads

Block Size 16
 Blocks 4096

1 2 4 8 16 24 48

of Threads

Block Size 8
 Blocks 32768

Stride Width

0.5

1.5

2.0

2.5

3.5

5.0

10.0

20.0

50.0

10000.0

Level 0

Figure 6.6: Run-time of the advanced FMM (top graph) and parallel speedup (bottom graph)
for the Point Source example, using different values for the block size and stride width. The
parallel speedup is compared to the run-time of the serial execution using a block size of 256,
which is equal to the domain size. Adapted with permission from Quell et al., Journal of
Computational and Applied Mathematics 392, (2021) p. 113488. [159], © CC 4.0, http:
//creativecommons.org/licenses/by/4.0/.

91

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

(a) Interface extracted from Level 0 . (b) Block placement on Level 1 .

Figure 6.7: In (a) the interface of the Mandrel example is shown and in (b) the block placement
on Level 1 is shown. The blocks are colored from red to blue by their size from the smallest block
(size 12 × 12 × 12) to the biggest block (size 12 × 288 × 84). Adapted with permission from Quell
et al., Journal of Computational and Applied Mathematics 392, (2021) p. 113488. [159], © CC 4.0,
http://creativecommons.org/licenses/by/4.0/.

The same parameters of block size and stride width as for the usage of a single
processor yield the peak parallel speedup of 20.7 for 48 threads: NUMA effects
limit parallel performance, because frequent (especially for small stride width)
synchronization steps cause a task rescheduling. The task rescheduling in OpenMP
does not consider memory layout, resulting in many indirect memory accesses,
because a block may have been processed earlier by a thread located on a different
processor.

The next evaluation example is based on a process TCAD simulation and a
hierarchical grid.

6.3.2 Mandrel

The Mandrel benchmark example is taken from a representative process TCAD
simulation, where two trenches are etched into a silicon waver. One trench spans
the full width of the simulation domain, and the other only half. Again, symmetric
boundary conditions are used. Figure 6.7a shows the 0-level-set for which the signed-
distance function is computed (constant speed function F = 1). The hierarchical
grid consists of two levels. The block on Level 0 has a size of 84 × 72 × 312,
totaling about 1.8 million grid points. On Level 1 there are 78 blocks with their
sizes ranging from 12×12×12 to 12×288×84, totaling about 2.5 million grid points.
In Figure 6.7b the blocks on Level 1 are visualized: They are placed around the
trenches. The signed-distance field (computed relative to the interface) is visualized
via iso-contours, as shown in Figure 6.8a.

First, the Setup FMM is investigated and then the performance of the FMM
itself is analyzed on both levels of the hierarchical grid separately.

92

http://creativecommons.org/licenses/by/4.0/

(a) Isocontours of Φ from
−0.7 to 0.5 in steps by 0.1.

1 2 4 8 16 24 48
Number of Threads

10 1

3 × 10 2

4 × 10 2

6 × 10 2

2 × 10 1

R
u

n
-T

im
e
 [

s
]

Block Size

10000

200

100

75

50

40

30

20

(b) Run-time to setup the sub-blocks for various thread numbers.

Figure 6.8: In (a) the computational domain and the iso-contours of Φ are shown for the
Mandrel example. In (b) the time to setup the sub-blocks and to compute the neighbor relations
for various block sizes and number of threads is shown. Adapted with permission from Quell et
al., Journal of Computational and Applied Mathematics 392, (2021) p. 113488. [159], © CC 4.0,
http://creativecommons.org/licenses/by/4.0/.

Setup FMM

Figure 6.8b shows the measured run-time on VSC4. The setup time for the Mandrel
example profits from using more threads, even without the block decomposition,
because on Level 1 there are natively 78 blocks which may be processed in parallel.
The shortest run-time is achieved using eight threads. Considering also the run-
time with the block decomposition, a serial overhead materializes (due to memory
allocation) with the added benefit of a better parallel scalability. The shortest run-
time is achieved for a block size of 75 using 16 threads. Increasing the number
of threads beyond 16 increases the run-time, especially for 48, threads when both
processors are utilized. This is attributed to NUMA effects and the total lower
computational load (maximum 2.5 million grid points) compared to the Point Source
example (16 million grid points).

FMM Level 0

In Figure 6.9 the run-time and parallel speedup for the Level 0 of the Mandrel
example are shown. A larger stride width performs better in the case where the block
is not decomposed. Compared to the Point Source example where little influence
of the stride width has been found: The run-time is an order of magnitude shorter
and reveals that the introduced overhead by the restarts of a small stride width is
not negligible.

93

http://creativecommons.org/licenses/by/4.0/

1 2 4 8 1624 48

of Threads

10 1

100

101

R
u

n
-T

im
e
 [

s
]

Block Size 10000
 Blocks 1

1 2 4 8 1624 48

of Threads

Block Size 200
 Blocks 2

1 2 4 8 1624 48

of Threads

Block Size 100
 Blocks 4

1 2 4 8 1624 48

of Threads

Block Size 75
 Blocks 10

1 2 4 8 1624 48

of Threads

Block Size 50
 Blocks 28

1 2 4 8 1624 48

of Threads

Block Size 40
 Blocks 48

1 2 4 8 1624 48

of Threads

Block Size 30
 Blocks 99

Stride Width

0.5

1.5

2.0

2.5

3.5

5.0

10.0

20.0

50.0

10000.0

1 2 4 8 1624 48

of Threads

Block Size 20
 Blocks 320

Level 0

1 2 4 8 1624 48

of Threads

100

101

S
p

e
e
d

u
p

Block Size 10000
 Blocks 1

1 2 4 8 1624 48

of Threads

Block Size 200
 Blocks 2

Stride Width

0.5

1.5

2.0

2.5

3.5

5.0

10.0

20.0

50.0

10000.0

1 2 4 8 1624 48

of Threads

Block Size 100
 Blocks 4

1 2 4 8 1624 48

of Threads

Block Size 75
 Blocks 10

1 2 4 8 1624 48

of Threads

Block Size 50
 Blocks 28

1 2 4 8 1624 48

of Threads

Block Size 40
 Blocks 48

1 2 4 8 1624 48

of Threads

Block Size 30
 Blocks 99

1 2 4 8 1624 48

of Threads

Block Size 20
 Blocks 320

Level 0

Figure 6.9: Run-time and speedup compared to the serial execution using a block size of 10 000
of the FMM for the Mandrel example on Level 0 (coarse level) of the hierarchical grid. Adapted
with permission from Quell et al., Journal of Computational and Applied Mathematics 392, (2021)
p. 113488. [159], © CC 4.0, http://creativecommons.org/licenses/by/4.0/.

Choosing a block size of 200 creates two sub-blocks (the domain is split along
the z-axis). A serial speedup is not observed, because the split almost aligns with
the interface, which already partitions the domain in two independent sets. The
run-time is decreased for parallel execution only for a stride width from 10 to 50.
For the maximum stride width of 10 000 no parallel speedup is observed, because the
interface and thus all initial points are located in a single sub-block, which forces a
sequential computation of the sub-blocks.

94

http://creativecommons.org/licenses/by/4.0/

For stride widths smaller than 10 the restart overhead is too large to reach the
performance of the not decomposed case.

A block size of 100 still splits the block only along the z-axis, giving no run-time
reduction, because the solutions of the sub-blocks strictly depend on each other. The
only noticeable improvement is for a stride width 10 000, because now the interface
is present in two sub-blocks allowing for parallelization.

If the block size is 75 or smaller, the block is not only split along the z-axis, but
also along the x-axis and y-axis, allowing for a better parallel performance. The
sub-blocks created from splits along x-axis and y-axis are compared to the previous
splits along the z-axis are almost independent. Independently of the block size, the
shortest run-time is achieved with the largest stride width. The best speedup (7.5)
is achieved using a block size of 30 creating 99 blocks and using all 24 threads of a
single processor.

FMM Level 1

On Level 1 the run-time is about three times higher than on Level 0 , thus the
performance impact on the overall run-time of this level is bigger. The measured
run-time and speedup are shown in Figure 6.10.

A serial speedup is observed for stride widths from 1.5 to 10. The highest serial
speedup is of 1.21 is achieved for a stride width of five and a block size of 50. The
main reason for the serial speedup on this level is that the initial grid points in the
ghost layer, which are interpolated from the coarser blocks, are not immediately used
for the FMM (because their Φ value is beyond the current stride width). Ignoring
those ghost points generally is not a viable option, because some of them might
be essential for the correct solution. Ghost points are usually not source points for
the finally computed signed-distance field, except in cases of an unfortunate block
placement with respect to the interface.

Figure 6.11 shows such an unfortunate block placement (with respect to the
interface). The interface crosses the block but on one side it is outside the block
but still close. The yellow marked ghost cells are sources for the signed-distance
field (they are closer to the interface than their neighboring block cells), ignoring
them would create wrong results. The gray marked ghost cells are not sources, their
interpolated value does not influence the computation of the final signed-distance
field, they could be safely ignored. Differentiating between those two ghost cell
types before the computation of the signed-distance field is infeasible because the
to-be-computed signed-distance field has to be known on neighboring grid points.

The block size itself does not influence the serial speedup, because the serial
speedup is about 1.2 for a stride width of five, until a block size of 40. For smaller
block sizes the serial speedup is slightly less, because the synchronization overhead
impacts the performance.

The peak parallel performance of the FMM on Level 1 without any
decomposition is 7.4 using 16 threads and the maximum stride width. The proposed
block decomposition doubles the peak parallel speedup to 15.4 at 16 threads for a
block size of 50 and a stride width of five.

95

1 2 4 8 1624 48

of Threads

10 1

100

101

R
u

n
-T

im
e
 [

s
]

Block Size 10000
 Blocks 78

1 2 4 8 1624 48

of Threads

Block Size 200
 Blocks 86

1 2 4 8 1624 48

of Threads

Block Size 100
 Blocks 102

1 2 4 8 1624 48

of Threads

Block Size 75
 Blocks 122

1 2 4 8 1624 48

of Threads

Block Size 50
 Blocks 189

1 2 4 8 1624 48

of Threads

Block Size 40
 Blocks 242

1 2 4 8 1624 48

of Threads

Block Size 30
 Blocks 321

Stride Width

0.5

1.5

2.0

2.5

3.5

5.0

10.0

20.0

50.0

10000.0

1 2 4 8 1624 48

of Threads

Block Size 20
 Blocks 586

Level 1

1 2 4 8 1624 48

of Threads

100

101

S
p

e
e
d

u
p

Block Size 10000
 Blocks 78

1 2 4 8 1624 48

of Threads

Block Size 200
 Blocks 86

1 2 4 8 1624 48

of Threads

Block Size 100
 Blocks 102

1 2 4 8 1624 48

of Threads

Block Size 75
 Blocks 122

1 2 4 8 1624 48

of Threads

Block Size 50
 Blocks 189

1 2 4 8 1624 48

of Threads

Block Size 40
 Blocks 242

1 2 4 8 1624 48

of Threads

Block Size 30
 Blocks 321

1 2 4 8 1624 48

of Threads

Block Size 20
 Blocks 586

Level 1

Figure 6.10: Run-time and speedup compared to the serial execution using a block size of 10 000
of the FMM for the Mandrel example on Level 1 (fine level) of the hierarchical grid. Adapted with
permission from Quell et al., Journal of Computational and Applied Mathematics 392, (2021) p.
113488. [159], © CC 4.0, http://creativecommons.org/licenses/by/4.0/.

If all cores of a single processor are used, the parallel speedup reaches 17.4 for the
same parameters of block size and stride width. The best performance with respect
to the stride width is achieved for a stride width of five, because the issue arising from
treating the ghost points as potential sources (necessary for algorithm correctness
and robustness) is mitigated.

96

http://creativecommons.org/licenses/by/4.0/

Figure 6.11: Interpolated ghost cells (yellow) are sources for the signed-distance field for the
interface (green curve). The red colored ghost cells are next to the interface. The gray colored
ghost cells are no sources, they do not influence the signed-distance field.

The investigation is concluded with the second example based on an interface
from a process TCAD simulation, demonstrating the applicability of the proposed
block decomposition on several interfaces.

6.3.3 Quad-Hole
The Quad-Hole example is also based on a process TCAD simulation [62]. The
interface domain has four regions of interest, two half holes and two quarter holes
(cf. Figure 6.12a). This example is also analyzed in [62], where the example with
48 blocks corresponds to Level 1 and the example with 303 blocks to Level 2 .

The only block on Level 0 has a size of 38 × 28 × 30. There are 48 blocks on
Level 1 , with their sizes ranging from 12 × 16 × 12 to 68 × 20 × 52. Their placement
is shown in Figure 6.12b. They cover the regions around the quad holes completely.
On Level 2 there are 303 blocks, with their sizes ranging from 12 × 12 × 12 to
164 × 20 × 12 and their placement is shown in Figure 6.12c. They cover only the
regions at the top and bottom of the quad holes where there are sharp edges.

The presentation of the results for the Setup FMM is omitted, because the results
are qualitatively the same to the ones obtained in the Mandrel example. No new
insights are provided: The decomposition introduces a run-time overhead, if only a
single thread is used, but by using a higher number of threads the increased parallel
efficiency outperform the approach without decomposition.

The single-threaded run-time on Level 0 with a block size and stride width of
10 000 is 0.0013 s. For comparison, the single-threaded run-time with the same
parameters on Level 1 is 0.402 s (30 times as long as Level 0) and on Level 2 is
1.568 s (120 times as long as Level 0). Thus, the discussion of Level 0 is skipped.

FMM Level 1

Figure 6.13 shows the gathered run-time data for Level 1 . The peak serial speedup
of 1.14 is achieved for a stride width of 3.5 and a block size of 75.

97

(a) Interface extracted
from Level 0 .

(b) Block placement on
Level 1 .

(c) Block placement on
Level 2 .

Figure 6.12: The interface of the Quad-Hole example is shown in (a), in (b) the block placement
on Level 1 , and (c) the block placement of Level 2 is visualized. The blocks are colored by
their size, from biggest (blue) to smallest (red). Adapted with permission from Quell et al.,
Journal of Computational and Applied Mathematics 392, (2021) p. 113488. [159], © CC 4.0,
http://creativecommons.org/licenses/by/4.0/.

The serial speedup decreases with smaller block sizes, because of growing overhead
introduced by the data exchange between blocks.

Considering parallelization, a stride width between two and 10 is beneficial for
the run-time for less than eight threads. The best performance is typically achieved
with a stride width of five. The worst performance is achieved with the stride width
of 0.5 in almost all cases (except block size 10 and using less than four threads). For
a high number of threads, e.g., 24 threads, the maximum stride width performs best.
The overall peak performance is achieved with a block size of 50 using 24 threads.

The impact of the block decomposition on the parallel speedup is clear when
the best parallel speedup without the developed decomposition (speedup of 8.2)
is compared to the best parallel speedup when the developed decomposition is
used (speedup of 12.5). Utilizing the second processor does not give any additional
performance.

FMM Level 2

On Level 2 the total run-time (cf. Figure 6.14) is four times as high as on Level 1 ,
thus a speedup here has a bigger impact on the overall level-set simulation. Again,
a serial speedup of up to 1.05 is observed, for a stride width between two and five,
for smaller block sizes the serial speedup declines. Beginning with block size 30 a
serial slowdown is measured, again due to the growing overhead introduced by the
data exchange between blocks. The peak parallel speedup of 16.6 is achieved for a
block size of 75 and a stride width of 20 on Level 2 . Comparing the parallel speedup
of the block decomposed FMM to the non-decomposed parallel speedup (which
reaches 16.5) shows that for an already high number of blocks the decomposition
barely effects the performance. The performance only deteriorates in cases with a
very small block size (less than 20) where many sub-blocks are created. This is due
to the additional overhead created by the synchronization of the sub-blocks.

98

http://creativecommons.org/licenses/by/4.0/

1 2 4 8 16 24 48

of Threads

10 1

100

R
u

n
-T

im
e
 [

s
]

Block Size 75
 Blocks 48

1 2 4 8 16 24 48

of Threads

Block Size 50
 Blocks 64

1 2 4 8 16 24 48

of Threads

Block Size 40
 Blocks 65

1 2 4 8 16 24 48

of Threads

Block Size 30
 Blocks 90

1 2 4 8 16 24 48

of Threads

Block Size 20
 Blocks 129

Stride Width

0.5

1.5

2.0

2.5

3.5

5.0

10.0

20.0

50.0

10000.0

1 2 4 8 16 24 48

of Threads

Block Size 10
 Blocks 966

Level 1

1 2 4 8 16 24 48

of Threads

100

101

S
p

e
e
d

u
p

Block Size 75
 Blocks 48

1 2 4 8 16 24 48

of Threads

Block Size 50
 Blocks 64

1 2 4 8 16 24 48

of Threads

Block Size 40
 Blocks 65

1 2 4 8 16 24 48

of Threads

Block Size 30
 Blocks 90

1 2 4 8 16 24 48

of Threads

Block Size 20
 Blocks 129

Stride Width

0.5

1.5

2.0

2.5

3.5

5.0

10.0

20.0

50.0

10000.0

1 2 4 8 16 24 48

of Threads

Block Size 10
 Blocks 966

Level 1

Figure 6.13: Run-time and speedup of the FMM, using different values for the block size
and stride width, compared to the serial execution using a block size of 10 000 for the Quad-
Hole example on Level 1 of the hierarchical grid. Adapted with permission from Quell et al.,
Journal of Computational and Applied Mathematics 392, (2021) p. 113488. [159], © CC 4.0,
http://creativecommons.org/licenses/by/4.0/.

6.4 Summary
This chapter presented a block decomposition to increase the parallel performance
of the FMM on a hierarchical grid. The block decomposition is applicable to all
levels of a hierarchical grid yielding a unified parallelization approach. The limited
parallel speedup (caused by load-imbalances) of the multi-block FMM on the given
blocks of a hierarchical grid are overcome by a novel decomposition strategy.

99

http://creativecommons.org/licenses/by/4.0/

1 2 4 8 1624 48

of Threads

10 1

100

101

R
u

n
-T

im
e
 [

s
]

Block Size 200
 Blocks 303

1 2 4 8 1624 48

of Threads

Block Size 100
 Blocks 305

1 2 4 8 1624 48

of Threads

Block Size 75
 Blocks 318

1 2 4 8 1624 48

of Threads

Block Size 50
 Blocks 351

1 2 4 8 1624 48

of Threads

Block Size 40
 Blocks 386

1 2 4 8 1624 48

of Threads

Block Size 30
 Blocks 494

1 2 4 8 1624 48

of Threads

Block Size 20
 Blocks 701

Stride Width

0.5

1.5

2.0

2.5

3.5

5.0

10.0

20.0

50.0

10000.0

1 2 4 8 1624 48

of Threads

Block Size 10
 Blocks 4882

Level 2

1 2 4 8 1624 48

of Threads

100

101

S
p

e
e
d

u
p

Block Size 200
 Blocks 303

1 2 4 8 1624 48

of Threads

Block Size 100
 Blocks 305

1 2 4 8 1624 48

of Threads

Block Size 75
 Blocks 318

1 2 4 8 1624 48

of Threads

Block Size 50
 Blocks 351

1 2 4 8 1624 48

of Threads

Block Size 40
 Blocks 386

1 2 4 8 1624 48

of Threads

Block Size 30
 Blocks 494

1 2 4 8 1624 48

of Threads

Block Size 20
 Blocks 701

1 2 4 8 1624 48

of Threads

Block Size 10
 Blocks 4882

Level 2

Figure 6.14: Run-time and speedup of the FMM, using different values for the block size
and stride width, compared to the serial execution using a block size of 10 000 for the Quad-
Hole example on Level 2 of the hierarchical grid. Adapted with permission from Quell et al.,
Journal of Computational and Applied Mathematics 392, (2021) p. 113488. [159], © CC 4.0,
http://creativecommons.org/licenses/by/4.0/.

The decomposition strategy splits the given blocks based on a threshold value (block
size) into smaller sub-blocks. Thus, the total block count is increased, enabling
the control of the number of blocks used in the multi-block FMM. The number of
enforced data exchange steps between the blocks based on another parameter (stride
width) is evaluated on a hierarchical grid.

100

http://creativecommons.org/licenses/by/4.0/

The performance of the proposed block decomposition and the parameter values
(block size and stride width) is evaluated using three examples. For the generic
point source example (a typical test case for benchmarking Eikonal equation solvers)
a parallel speedup of 19.1 is achieved using 24 threads. For interface geometries
based on process TCAD simulations, speedups of 17.4 for 24 threads are achieved.
The original approach without block decomposition achieved a parallel speedup
of only 7.4, which is not even half the parallel speedup obtained with the block
decomposition. As was shown, the block size shall not be chosen smaller than 30,
because for smaller block sizes the overhead usually deteriorate the performance.

The stride width should be chosen between 2.5 and 10 for less than eight
threads for best performance, because on a hierarchical grid this reduces the
unwanted computations from ghost cell sources. For more than eight threads the
maximum stride width (not introducing any additional data exchanges) performs
best (shortest run-time), because the computational load between two data
exchanges is insufficient otherwise little (the additional synchronization overhead
is bigger than the gained performance due to parallelism).

101

Chapter 7

Bottom-Up Correction for
Re-Distancing

The previous chapter presented an algorithm used in the Re-Distancing step in a
top-down manner (processing the levels of a hierarchical grid from coarsest to finest).
In contrast, this chapter proposes a bottom-up correction algorithm to increase the
accuracy of the signed-distance field on coarser levels of the hierarchical grid. This is
important to couple the levels of the hierarchical grid together, because Re-Gridding
may remove higher levels from the hierarchical grid. An additional goal is to keep
the computational overhead low with respect to the always necessary top-down re-
distancing algorithm. The developed algorithm does not only increase the accuracy
in regions covered by blocks on a higher level, as is possible through straightforward
interpolation, but also in regions not covered by blocks on higher levels.

First, the idea and the algorithmic implementation of the proposed bottom-up
correction algorithm, which is the core contribution of this chapter [100], is discussed
(Section 7.1). Then the proposed bottom-up correction algorithm is evaluated, by
two criteria (Section 7.2):

• Accuracy: Computing the errors (difference to an exact solution) of the signed-
distance field.

• Performance: Measuring the run-time compared to Re-Distancing without the
correction algorithm.

The evaluation examples consider interfaces representing typical challenges in
process TCAD simulations, i.e., corners and trenches. The examples are prepared
and chosen so as to allow for the exact computation of a signed-distance field as
explicit interface representations (e.g., triangles) are available.

7.1 Algorithmic Implementation
The core idea of the developed bottom-up correction algorithm is to process the
levels of a hierarchical grid in reversed order. The reversed order allows to
incorporate the solution from spatially fine resolved regions into coarse resolved
regions.

102

Algorithm 10: The bottom-up correction algorithm processes the
hierarchical grid in a bottom-up manner. First, the signed-distance field on
a level is interpolated based on the solution of the next higher level. Then
the FMM is initialized keeping the flags from the previous (top-down) re-
distancing. Finally, an unmodified marching (from the FMM) is used to
correct the solution also in unrefined regions.
1 procedure Correction():
2 l ← highest level -1
3 while l ≥ 0 do

/* Initialization Phase */
4 foreach Block on Level l do // Parallel region
5 foreach ChildBlock on Level l + 1 do // Nested parallel region
6 InterpolatedLists ← interpolateGridPoints() // Create task
7 end foreach
8 mergeInterpolatedLists()
9 initializeFMMCorrection()

10 end foreach
11 Wait // Synchronization barrier

/* Marching Phase */
12 foreach Block on Level l do // Unmodified marching
13 Marching() // Create task
14 end foreach
15 Wait // Synchronization barrier
16 l ← l − 1 // Move to next level
17 end while
18 end procedure

The algorithm (cf. Algorithm 10) operates in a bottom-up manner, starting from
the second highest level: The highest level may not be corrected, because there is
no higher level from which to derive a correction. First, the signed-distance field is
interpolated based on the solution on the higher level of the hierarchical grid and
then the FMM is used to improve the accuracy of the signed-distance field. The
usage of the FMM allows to improve the accuracy in regions which are not covered
by blocks on higher levels.

In a practical setting, the overhead of the bottom-up correction algorithm is
reduced by reusing the flags (adapting the initialization of the FMM) used by the
presented (top-down) algorithm in Section 5.3.

103

On every level the developed algorithm is split into two phases (same phases as
the FMM):

• Initialization: Interpolation of the signed-distance values based on the values
on higher levels and collect the corresponding grid points in block-specific lists.
Those lists are then used to initialize the Band data structure (Heap).

• Marching: Execute the core multi-block FMM. For efficiency purposes grid
points keep their signed-distance value and flag from the previous top-down
re-distancing algorithm.

Initialization
The initialization phase starts in Algorithm 10 Line: 4. All blocks on the current
level (Level l) are processed in parallel. For each block on the current level a nested
parallel region for all its child blocks is created. With the nested parallel region the
interpolation is able to utilize the usually higher number of blocks on higher levels
of a hierarchical grid (Level (l + 1)) for a better load-balancing and, therefore, a
better parallelization.

The Φ values of grid points covered by a block on the next higher level are
interpolated using a linear interpolation along all spatial directions. Thus, bilinear
interpolation in 2D simulations and trilinear interpolation in 3D simulations. In
Figure 7.1 a schematic representation of the interpolation cases is shown: The
interface is shown by the green curves on both levels (the higher spatial resolution on
the higher level allows for a more accurate, i.e., sharper, representation of corners).
The red dots mark grid points on the outside and blue ones on the inside. The grid
points on the lower level are labeled with a letter from A to L. Some of the cells on
the higher level are not marked with a colored point, because the signed-distance
field has been computed only in a narrow-band1. However, on a hierarchical grid
the blocks on levels higher than zero, typically already form a narrow-band like
structure. Thus, setting the narrow-band based on an explicit threshold value is
rarely encountered on block based AMR, nevertheless still possible, therefore the
case is also considered.

The grid points A, E, and I are not covered by a block on a higher level and,
therefore, not interpolated. The grid points G, H, J, K, and L have a neighboring
grid point with opposing sign. Thus, they are Close Points and must not be
modified. The grid point B is also not interpolated as it is not fully covered by
the computed values of the narrow-band on the higher level. The remaining grid
points C, D, and F are interpolated.

In case of parallelization, there are no restrictions with respect to
synchronizations (race conditions) because the nesting criteria of the hierarchical
grid enforce that grid points are uniquely refined, i.e., each grid point on the lower
level is interpolated by a dedicated set of grid points on the higher level. The
interpolated points are first collected in a separate list: One list per block on the
higher level.

1For the level-set method it is sufficient to solve the level-set equation only in a narrow-band
around the interface (on grid points where the absolute distance to the interface is less than a
given threshold); this is done for efficiency purposes

104

Figure 7.1: The interface (thick green curve) extracted on the lower level differs from the interface
on the higher level (thin green curve), because the higher spatial resolution allows for a more
accurate representation. Cells are drawn as squares and the corresponding grid points flagged
Known are in their center (not all grid points on the higher level are Known, because only a
narrow-band is computed). The points on the lower level are labeled by a letter from A to L. The
color of grid points indicates the sign. Adapted with permission from Springer Nature: Springer
Cham, Quell et al., Studies in Computational Intelligence 902 (2021), pp. 438-451. [100], © 2021,
under exclusive license to Springer Nature Switzerland AG.

The lists are then merged through a reduction operation, so that for each block on
the current level a single list is created containing all interpolated points on the
block (Algorithm 10 Line: 8).

Afterwards the merged list of interpolated grid points is used to initialize the
multi-block FMM [62]. The initialization is different compared to the multi-block
FMM, because all grid points keep their current Φ value and their current flag. Only
the grid points from the merged list are set to Known and inserted into the Heap.

Marching
Subsequently, the unmodified marching of the FMM is performed until all the
heaps are empty (cf. Algorithm 10 Line: 12). The specialized initialization avoids
the re-computation of all grid points, because a re-computation of all grid points
would result in an approximately doubled run-time per level compared to the
Re-Distancing step without correction algorithm. The main disadvantage of this
approach is that grid points for which the distance to the interface has been under-
estimated are not corrected. This is inherent to the FMM because grid points are
only processed, if their newly computed distance is lower than their current one.
However, this is only a minor issue because the FMM tends to over-estimates the
distance [169].

105

After a global synchronization barrier (ensuring all heaps are empty), the
algorithm eventually moves to the next level by decreasing the level counter l by
one Algorithm 10 Line: 16. The algorithm terminates when Level 0 is reached and
corrected.

7.2 Benchmark Examples and Analyses
The effect of the bottom-up correction algorithm on the accuracy is first analyzed on
2D examples. Additionally, a 3D example is used to study the performance impact.

The accuracy is measured by computing the error (difference of the signed-
distance field to an exact solution) in three discrete norms

L1-norm :
�
i∈I

|Φi − Φ|, (7.1)

L2-norm :
��

i∈I

(Φi − Φ)2, (7.2)

L∞-norm : inf
i∈I

|Φi − Φ|. (7.3)

Φ is the exact solution, while Φi is the discrete approximation and the index set I
is given by the considered grid points, i.e., all nodes on a level of the hierarchical
grid. The 2D examples consist of two corner examples (Corner and Sharp corner)
providing basic insights on the bottom-up correction algorithm and the 2D Trench
example (a typical geometry in process TCAD) highlights issues arising from thin
trenches. The 3D example 3D Trench is a combination of the trench and corner
geometries. Due to its higher computational load it is also used to evaluate the
performance impact of the bottom-up correction algorithm.

The domain for all benchmark examples is chosen as [−1, 1]d with d ∈ {2, 3}
with symmetric boundary conditions. For the 2D examples the domain is discretized
using 40 grid points in all spatial directions on Level 0 and a refinement factor of
four is used for both refinement level (Level 1 and Level 2). The 3D example has
higher spatial discretization (50 grid points) on Level 0 . The other grid settings are
the same as in the 2D examples. The accuracy is compared to the exact solution
computed using the explicit representations, i.e., triangles and lines for two and
three dimensions, respectively. The exact solution is also used as the initial data of
the Close Points utilized in the Re-Distancing step.

7.2.1 Corner
The Corner and Sharp corner examples have a corner located near the center of
the domain. The corner as well as the sides of the angle are purposely not aligned
to the computational grid to account for the generic case of a level-set simulation.
The angle of the Corner example is 110◦ and for the Sharp corner example 50◦.
Figure 7.2 shows the level-set values together with several iso-lines extracted form
Level 0 and the block placement (yellow rectangles) for both corner examples.

106

(a) Corner example (b) Sharp Corner example

Figure 7.2: Iso-lines on Level 0 (coarsest grid): The Black lines show the solutions based on
the top-down approach without the bottom-up correction algorithm, red lines with the bottom-
up correction algorithm, and white lines for the exact solution, showing an improvement to the
geometry representation. In the background, the green and blue background colors give the
distance to the interface. The yellow boxes show the outline of the blocks, there is only a single
block on each level. Adapted with permission from Springer Nature: Springer Cham, Quell et
al., Studies in Computational Intelligence 902 (2021), pp. 438-451. [100], © 2021, under exclusive
license to Springer Nature Switzerland AG.

On each level of the hierarchical grid only a single block is present, which is located
around the corner near the center of the domain. In regions with low curvature only
the black iso-line is visible, because all three solutions match and, therefore, their
iso-lines overlap.

The symmetric boundary conditions which are applied to the lateral domain
dimensions create additional corners at the domain boundary. Around these corners
purposely no refinement is made (no block placed), therefore, the signed-distance
field is not corrected around those corners: This allows for evaluating the effect
precisely for a single corner. Generally speaking, the first-order approximation
computed by the FMM over-estimates the distance to the interface for rarefaction
fans (reflex angle side) and under-estimates the distance to the interface for shock
waves (obtuse and acute angle side). The bottom-up correction algorithm increases
the accuracy of the signed-distance field on rarefaction fans even outside the refined
regions, due to the marching.

In Table 7.1 and Table 7.2 the error norms and the reduction by the proposed
bottom-up correction algorithm are shown. For the Corner example the L1-norm
and L2-norm errors are reduced by a factor of at least 2.1 on Level 0 and by a factor
of 1.8 on Level 1 . The Sharp Corner example shows an even higher reduction,
2.7 on Level 0 and 2.1 on Level 1 , because sharper corners benefit more from the
bottom-up correction algorithm. On Level 2 no correction is possible because it is
the highest level.

107

Table 7.1: Error norms for the Corner example, with and without the bottom-up correction
algorithm applied, and the corresponding factor by which the error norm is reduced. Adapted
with permission from Springer Nature: Springer Cham, Quell et al., Studies in Computational
Intelligence 902 (2021), pp. 438-451. [100], © 2021, under exclusive license to Springer Nature
Switzerland AG.

Level L1-norm L1-reduc. L2-norm L2-reduc. L∞-norm inf-reduc.

0 5.437e-3 3.260e-4 4.785e-2
0 corrected 2.491e-3 2.2 1.550e-4 2.1 3.079e-2 1.6
1 1.122e-3 5.101e-5 1.393e-2
1 corrected 6.035e-4 1.9 2.792e-5 1.8 8.541e-3 1.6
2 5.126e-4 1.819e-5 3.757e-3

Table 7.2: Error norms for the Sharp Corner example, with and without the bottom-up correction
algorithm applied, and the corresponding factor by which the error norm is reduced. Adapted
with permission from Springer Nature: Springer Cham, Quell et al., Studies in Computational
Intelligence 902 (2021), pp. 438-451. [100], © 2021, under exclusive license to Springer Nature
Switzerland AG.

Level L1-norm L1-reduc. L2-norm L2-reduc. L∞-norm inf-reduc.

0 9.110e-3 4.823e-4 6.212e-2
0 corrected 3.388e-3 2.7 1.812e-4 2.7 2.707e-2 2.3
1 1.894e-3 7.264e-5 1.753e-2
1 corrected 8.957e-4 2.1 3.484e-5 2.1 9.546e-3 1.8
2 8.866e-4 2.569e-5 4.661e-3

7.2.2 Two-Dimensional Trench
The 2D Trench is an axis-aligned thin trench on an otherwise flat surface. The
interesting fact about this trench is the small width of only 0.001, because the
Level 0 grid has only a spatial resolution of 0.05, thus is not able to resolve the
trench, because no grid points with opposing sign exist along the trench. There
are four blocks on Level 1 and six on Level 2 , covering the trench completely and,
therefore, enable the interface representation.

Such high aspect ratio trenches, are common
in semiconductor manufacturing [191, 120] and thus by extension also in process
TCAD simulations.

As shown in Figure 7.3 the Re-distancing step without the bottom-up correction
algorithm shows only a small dent of the level-set on Level 0 , while with the
bottom-up correction algorithm the trench is well-resolved and present. This yields
a significant reduction in the measured error norms (cf. Table 7.3): A reduction of
15.3 and 14.4, respectively for the L1-norm and L2-norm on Level 0 . The impact on
Level 1 is less (reduction of the error norms of 1.6) compared to the effect on Level 0 ,
because the trench is able to be resolved natively on this level. The accuracy on this
level is mainly increased at the rarefaction fans created by the two corners forming
the bottom of the trench. The reduction of the error norm is lower compared to the
Corner examples, because the rarefaction fans cover relatively (to the total number
of grid points on a level) a smaller number of grid points.

108

(a) Level 0 and Level 1 (b) Level 1 and Level 2

Figure 7.3: Iso-lines for Level 0 and Level 1 for the 2D Trench example. The Black lines show
the solutions based on the top-down approach without the bottom-up correction algorithm, red
lines with the bottom-up correction algorithm, and white lines for the exact solution. In the
background, the green and blue background colors give the distance to the interface. The yellow
rectangles show the outline of the blocks on Level 0 and Level 1 in (a) and Level 1 and Level 2
in (b). Adapted with permission from Springer Nature: Springer Cham, Quell et al., Studies
in Computational Intelligence 902 (2021), pp. 438-451. [100], © 2021, under exclusive license to
Springer Nature Switzerland AG.

Table 7.3: Error norms for the 2D Trench example, with and without the bottom-up correction
algorithm applied, and the corresponding factor by which the error norm is reduced. Adapted
with permission from Springer Nature: Springer Cham, Quell et al., Studies in Computational
Intelligence 902 (2021), pp. 438-451. [100], © 2021, under exclusive license to Springer Nature
Switzerland AG.

Level L1-norm L1-reduc. L2-norm L2-reduc. L∞-norm inf-reduc.

0 9.101e-2 4.539e-3 4.839e-1
0 corrected 5.941e-3 15.3 3.148e-4 14.4 4.005e-2 12.1
1 6.732e-4 5.222e-5 1.262e-2
1 corrected 4.129e-4 1.6 3.339e-5 1.6 8.398e-3 1.5
2 6.709e-5 4.236e-6 3.400e-3

7.2.3 Three-Dimensional Trench
The 3D example consists of (i) a step diagonal through the simulation domain
and (ii) a thin trench from the center of the domain to one corner. In Figure 7.4 a
rendering of the interface representing the trench is shown from the bottom (viewing
it from the top would only show the step and a thin line unable to visually grasp
the trench). Note that from the bottom perspective the trench looks like a thin fin
instead of a thin trench because the difference between a fin and trench is just the
viewpoint.

109

(a) Full view (b) Closeup of the dent

Figure 7.4: (a) Rendering of the 3D Trench example (view from the bottom). (b) The dent
is only visible from a particular angle. Adapted with permission from Springer Nature: Springer
Cham, Quell et al., Studies in Computational Intelligence 902 (2021), pp. 438-451. [100], © 2021,
under exclusive license to Springer Nature Switzerland AG.

The trench, as in the 2D Trench example, has a width smaller than the spatial
resolution of Level 0 . Additionally, the trench has a slight dent to avoid an
alignment with the computational grid, to provide a more challenging test case.
The dent is shown in Figure 7.4b, by a close up on the trench (also shown from the
bottom). The example is also inspired by the common high aspect ratio geometries
in microelectronic devices [192, 193].

Compared to the 2D examples there are significantly more blocks on Level 1 and
Level 2 , 107 and 591, respectively. Their placement is visualized in Figure 7.5, by
showing their individual contributions to the interface. All blocks on Level 1 have
combined 674 496 grid points and on Level 2 6 146 688 grid points.

Accuracy Evaluation

The measured error norms are shown in Table 7.4. On Level 0 the reduction for
any error norm is at least a factor of 4.2, because the trench is not resolved on this
level (cf. Figure 7.5a, where the extracted interface is based on Level 0 only). The
reductions in the error norm on Level 1 are similar to the 2D Trench examples for the
L1-norm and L2-norm, due to the same reasons (increased accuracy at rarefaction
fans at the bottom of the trench). In contrast, the L∞-norm for Level 1 is not
decreased by applying the bottom-up correction algorithm. The reason for this
is that the grid point causing the high L∞-norm is neither covered directly by a
block on the higher level nor in a region where the marching increases the accuracy.
Instead, the point is located on a shock wave. The proposed bottom-up correction
algorithm is not able to improve the accuracy there. The cause of such errors is
that the stencil used for calculating this grid point crosses the skeleton [194, 195].

110

(a) Level 0 (b) Level 1 (c) Level 2

Figure 7.5: Interface representation on the different grid levels (view from the bottom). On
Level 0 (red) the trench is too thin to be resolved by the spatial discretization. Level 1 (blue) and
Level 2 (green) show the placement of the blocks (small gaps in between). Adapted with permission
from Springer Nature: Springer Cham, Quell et al., Studies in Computational Intelligence 902
(2021), pp. 438-451. [100], © 2021, under exclusive license to Springer Nature Switzerland AG.

Table 7.4: Error norms for the 3D Trench example, with and without the bottom-up correction
algorithm applied, and the corresponding factor by which the error norm is reduced. Adapted
with permission from Springer Nature: Springer Cham, Quell et al., Studies in Computational
Intelligence 902 (2021), pp. 438-451. [100], © 2021, under exclusive license to Springer Nature
Switzerland AG.

Level L1-norm L1-reduc. L2-norm L2-reduc. L∞-norm inf-reduc.

0 1.853e-2 1.356e-4 4.593e-1
0 corrected 4.422e-3 4.2 2.644e-5 5.1 3.478e-2 13.2
1 2.426e-4 1.259e-6 1.418e-2
1 corrected 1.588e-4 1.5 8.429e-7 1.5 1.418e-2 1.0
2 3.165e-5 7.340e-8 3.017e-3

The skeleton is the union of all shock waves or, equivalently the skeleton is the
union of all points which do not have a unique closest point on the interface. In
[100] a skeleton aware approach is suggested (but not further investigated here),
which might overcome this issue, by adapting the FMM to only consider grid points
which are not separated by the skeleton in addition to the upwind direction.

Performance Evaluation

The 3D Trench example has a high computational load compared to the previously
considered 2D examples. This allows to evaluate the performance impact of the
bottom-up correction algorithm by measuring the run-time of the top-down re-
distancing algorithm and bottom-up correction algorithm on the compute system
VSC3. The block-decomposition proposed in Chapter 6 is not employed, because
the focus is on the effects of the proposed bottom-up correction algorithm.
Figure 7.6 shows the run-time and parallel speedup for the top-down re-distancing
algorithm (Re-Distancing), the bottom-up correction algorithm (Correction), and
both together (Total) for all three levels of the hierarchical grid combined. For
a single thread the run-time introduced by the additional correction algorithm is
increased by 4 % and for 16 threads (full utilization of the compute system) by 10 %.

111

2 4 6 8 10 12 14 16
Number of Threads

10−1

100

R
un

-T
im

e
[s

]

Re-Distancing
Correction
Total

(a)

2 4 6 8 10 12 14 16
Number of Threads

2

4

6

8

10

12

14

16

Pa
ra

lle
lS

pe
ed

up

Linear
Speed

up

Re-Distancing
Correction
Total

(b)

Figure 7.6: (a) Run-time and (b) parallel speedup (all levels combined) for the top-down re-
distancing algorithm and the bottom-up correction algorithm for up to 16 threads using a single
compute node of VSC3. Adapted with permission from Springer Nature: Springer Cham, Quell et
al., Studies in Computational Intelligence 902 (2021), pp. 438-451. [100], © 2021, under exclusive
license to Springer Nature Switzerland AG.

The overhead introduced by the by the additional correction algorithm is acceptable,
because it allows a proper signed-distance field for thin trenches.

A parallel speedup of 9.3 is achieved with 16 threads for the Re-Distancing with
the bottom-up correction algorithm, which is slightly below the parallel speedup for
the Re-Distancing without the bottom-up correction algorithm (parallel speedup
9.8). The inferior parallel speedup of 4.1 of the bottom-up correction algorithm
alone is caused by the non-parallelized marching on Level 0 (it contains only a single
block). Therefore, a level-by-level comparison is necessary to properly evaluate the
performance of the bottom-up correction algorithm.

Level-by-Level Comparison

Figure 7.7 shows the level-by-level comparison, except for Level 2 , because this is the
last level and, as previously mentioned, no correction is performed. The run-time
and parallel speedup depend strongly on the level, because the number of blocks
and the number of grid points differ significantly.

Starting the investigation on Level 1 , the bottom-up correction algorithm has
a parallel speedup of 7.5, which is similar to the top-down re-distancing algorithm
with a parallel speedup of 7.8. The reason for the slightly reduced parallel speedup
is the reduced computational load (not all grid points are re-computed). This leads
to a larger overhead of the synchronization tasks. Also, for more than eight threads
(fully utilizing one of the two processors of the single utilized node of VSC3) the
initialization shows no additional parallel speedup because of NUMA limitations
(interpolation between blocks occurs across memory domains).

Finalizing the investigation on Level 0 shows that practically no parallel speedup
is observed, because this level only contains a single block.

112

2 4 6 8 10 12 14 16
Number of Threads

10−2

10−1

R
un

-T
im

e
[s

]
Level 1
Level 2
Level 1 & 2

Correction
Initialization
Marching

Correction
Initialization
Marching

(a)

2 4 6 8 10 12 14 16
Number of Threads

2

4

6

8

10

12

14

16

Pa
ra

lle
lS

pe
ed

up

Linear
Speed

up

Level 1
Level 2
Level 3

Correction
Re-Distancing
Initialization
Marching

Correction
Re-Distancing
Initialization
Marching

(b)

Figure 7.7: (a) Run-time and (b) parallel speedup per level up to 16 threads using a single
compute node of VSC3. The parallel speedup on the same level is similar between the top-down
re-distancing algorithm and bottom-up correction algorithm. The initialization and marching
times are given for the bottom-up correction algorithm. The marching time dominates the total
run-time. Adapted with permission from Springer Nature: Springer Cham, Quell et al., Studies
in Computational Intelligence 902 (2021), pp. 438-451. [100], © 2021, under exclusive license to
Springer Nature Switzerland AG.

However, the block-decomposition proposed in Chapter 6 solves this issue but is not
further considered here. Only the initialization benefits slightly from the additional
threads, because the interpolation is parallelized on the blocks on Level 1 . The
minimum run-time is reached using eight threads. For more than eight threads
NUMA effects increase the run-time again.

7.3 Summary
In this chapter a bottom-up correction algorithm for the computational step Re-
distancing has been presented. This correction algorithm is tailored towards the
FMM and hierarchical grids. The signed-distance field is corrected by interpolation
from higher levels of the hierarchical grid and a specialized restarted FMM allows
for the bottom-up correction of the signed-distance field even in regions not covered
by blocks on higher levels.

The advantageous effect on the accuracy has been evaluated on 2D examples
as well on a 3D example. The accuracy of the signed-distance field is significantly
increased for a corner by a factor of up to 2.7 (depending on the angel enclosing the
corner). In a case where a feature is too small to be represented on a coarse level,
i.e., a trench thinner than the grid resolution, the correction algorithm ensures a
proper representation. The feature is now represented in the signed-distance field
on the coarser level.

113

For the 3D example the impact of the bottom-up correction algorithm on the
computational performance has been evaluated, yielding a run-time overhead
compared to the top-down re-distancing algorithm presented in Chapter 6 between
4 % and 10 %, which is an acceptable trade off for the proper representation for thin
trenches. The evaluation of the parallelization showed a parallel speedup of 9.3 for
16 threads for all levels combined and a similar parallel speedup as for Re-Distancing
without the bottom-up correction algorithm for a level-by-level comparison. The
block decomposition presented in Chapter 6, may also be employed for the bottom-
up correction algorithm to enable a better performance.

114

Chapter 8

Conclusion and Outlook

This work presents major contributions to accelerate key computational steps of
process TCAD simulations based on the level-set method. In particular, the focus
is on the computational steps Velocity Extension and Re-Distancing for which
three parallel algorithms, based on the FMM , were developed. Typically, process
TCAD simulations require an adaptive spatial discretization to be computationally
and practically feasible. The developed algorithms are, therefore, tailored towards
hierarchical grids, are able to utilize parallel computational resources, and are thus
able to reduce the turnaround time for a wide range of process TCAD simulations.
In the following, the key contributions of this work are summarized:

For the computational step Velocity Extension an algorithm employing a relaxed
computation order for the grid points reducing the computational complexity is
derived, resulting in a reduction of the serial run-time (Chapter 5). Three different
orders of computation based on different data structures are compared: The Queue
data structure performs best on a representative set of test cases.

In addition, the changes that enable the reordering of the computation also
provide the basis for parallelization of the algorithm on a Cartesian grid enabling a
parallel speedup of 5.8 for eight threads. Further optimizations, i.e., tailoring the
developed algorithm to hierarchical grids, increase the parallel speedup compared to
a previous strategy centered around the so-called multi-block FMM. The increased
parallel speedup of up to 7.1 for 10 threads is achieved by reducing global
synchronization barriers in the developed algorithm and thus enabling a better load-
balancing.

For the computational step Re-Distancing an algorithm utilizing block
decomposition, which only splits large blocks of a given hierarchical grid, is
developed to increase parallel scalability (Chapter 6). The decomposition enables
a better implicit load-balancing, by creating a relatively high number of blocks
compared to the used number of threads. Additionally, by optimizing the
frequency of synchronization steps between the sub-blocks, the overall performance
is increased. The so achieved parallel speedup is 17.4 for 24 threads. The
performance increase is caused by reducing the influence of ghost points which are
not sources for the final signed-distance field.

115

0 5 10 15 20 25
Time Step

0

20

40

60

80

R
u

n
-T

im
e
 [

s
]

Baseline

Interface Velocity

Velocity Extension

Advection

Re-Distancing

Re-Gridding

(a)

Orig
in

al

 1
 th

re
ad

Pro
pose

d

 1
0 th

re
ads

0

2

4

6

8

10

R
u

n
-T

im
e
 [

s
]

x
 1

8
.5

Velocity Extension

Orig
in

al

 1
 th

re
ad

Pro
pose

d

 1
0 th

re
ads

0

3

6

9

12

15

x
 5

.0

Re-Distancing

(b)

Figure 8.1: (a) Run-time of the level-set method utilizing the developed and presented
algorithms for the thermal oxidation process shown for individual time steps, measured on the
compute system ICS using 10 threads. The dashed line is the baseline (reference) run-time
(combining the run-time of all computational steps for each time step as shown in Figure 1.7).
(b) Highlighting the achievements for Velocity Extension and Re-Distancing.

The application of the decomposition algorithm prior to the setup of the FMM
enables a straightforward extension of this approach to other methods for computing
the signed-distance field, e.g., FIM and FSM. Another extension of the research
could be considering cases in which the grid resolution along different axes differs
strongly. In this case a dedicated block size along each axis might improve the
spatial locality of the created blocks, thus potentially further increasing parallel
performance.

For the computational step Re-Distancing an algorithm, which increases the
accuracy of the computed signed-distance field via a bottom-up approach, is
proposed (Chapter 7). The algorithm efficiently uses a previous top-down re-
distancing algorithm to only re-compute the distance at grid points where an
improvement of the accuracy is possible. The proposed bottom-up correction
algorithm has a low run-time overhead (between 4 % and 10 %). The accuracy
of the signed-distance field is significantly increased, e.g., around corners by a factor
of up to 2.7. In cases where features smaller than the grid resolution are present
on lower grid levels, e.g., a trench thinner than the grid resolution on Level 0 , the
proposed bottom-up correction algorithm enables correct representation of those
features.

Finally, all developed algorithms are applied in combination to the simulation
presented as the motivational example (cf. Chapter 1). Figure 8.1 shows a
comparison of the original run-time for each time step (cf. Figure 1.7) to the run-
time of the reference simulator using the new developed and parallelized algorithms.
The overall run-time of the simulation in each time step is more than halved.

Re-Distancing which has previously been the second biggest contributor to the
run-time in a time step is reduced to second or third biggest contributor, depending
on whether a Re-Gridding takes place in the specific time step.

116

The overall speedup of 5.0 (cf. Figure 8.1b) for Re-Distancing is in the expected
range. The blocks of the hierarchical grid are relatively small (about 45 grid points
wide). For such small blocks the gained parallel performance is only slightly larger
than the overhead from decomposition.

The leading contributor to the run-time in a time step is Advection, because
significant parts of this computational step are not parallelized (and out of scope of
this thesis) in the considered reference simulator.

It is especially important to point out that the contribution from Velocity
Extension, which originally has been the third highest contributor to the run-
time, is now the least contributor (using 10 threads). The serial and parallel
speedup combined reduced the run-time by a factor of 18.5 (cf. Figure 8.1b). A
further reduction of the run-time is possible, if the process model allows a combined
extension of the scalar and vector velocity.

117

Bibliography

[1] A. H. Gencer, A. Lebedev, and P. Pfäffli. “Efficient Full-Flow Process
Simulation for 3D Structures Including Stress Modeling”. In: Journal of
Computational Electronics 5.4 (2006), pp. 353–356. doi: 10.1007/s10825-
006-0024-7.

[2] C. K. Maiti. Introducing Technology Computer-Aided Design (TCAD):
Fundamentals, Simulations, and Applications. Boca Raton: Jenny Stanford
Publishing, 2017. doi: 10.1201/9781315364506.

[3] O. Ertl. “Numerical Methods for Topography Simulation”. Doctoral
dissertation. TU Wien, 2010. doi: 10.34726/hss.2010.001.

[4] S. Berrada, H. Carrillo-Nunez, J. Lee, C. Medina-Bailon, T. Dutta, O.
Badami, F. Adamu-Lema, V. Thirunavukkarasu, V. Georgiev, and A.
Asenov. “Nano-Electronic Simulation Software (NESS): A Flexible Nano-
Device Simulation Platform”. In: Journal of Computational Electronics 19.3
(2020), pp. 1031–1046. doi: 10.1007/s10825-020-01519-0.

[5] K. Nishi. “Design with Fluctuations of Device Characteristics - TCAD Can
Be of Any Help?” In: Proceedings of the International Conference on ASIC
(ASICON). Shanghai: IEEE, 2005, pp. 750–755. doi: 10 . 1109 / ICASIC .
2005.1611436.

[6] M. R. Shaeri, T.-C. C. Jen, C. Y. Yuan, and M. Behnia. “Investigating
Atomic Layer Deposition Characteristics in Multi-Outlet Viscous Flow
Reactors Through Reactor Scale Simulations”. In: International Journal
of Heat and Mass Transfer 89 (2015), pp. 468–481. doi: 10 . 1016 / j .
ijheatmasstransfer.2015.05.079.

[7] S. Osher and J. A. Sethian. “Fronts Propagating with Curvature-Dependent
Speed: Algorithms Based on Hamilton-Jacobi Formulations”. In: Journal
of Computational Physics 79.1 (1988), pp. 12–49. doi: 10 . 1016 / 0021 -
9991(88)90002-2.

[8] D. Adalsteinsson and J. A. Sethian. “A Fast Level Set Method for
Propagating Interfaces”. In: Journal of Computational Physics 118.2 (1995),
pp. 269–277. doi: 10.1006/jcph.1995.1098.

[9] M. Labschutz, S. Bruckner, M. E. Gröller, M. Hadwiger, and P. Rautek.
“JiTTree: A Just-in-Time Compiled Sparse GPU Volume Data Structure”.
In: IEEE Transactions on Visualization and Computer Graphics 22.1 (2016),
pp. 1025–1034. doi: 10.1109/TVCG.2015.2467331.

119

https://doi.org/10.1007/s10825-006-0024-7
https://doi.org/10.1007/s10825-006-0024-7
https://doi.org/10.1201/9781315364506
https://doi.org/10.34726/hss.2010.001
https://doi.org/10.1007/s10825-020-01519-0
https://doi.org/10.1109/ICASIC.2005.1611436
https://doi.org/10.1109/ICASIC.2005.1611436
https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.079
https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.079
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1006/jcph.1995.1098
https://doi.org/10.1109/TVCG.2015.2467331

[10] K. Museth. “VDB: High-Resolution Sparse Volumes with Dynamic
Topology”. In: ACM Transactions on Graphics 32.3 (2013), pp. 1–22. doi:
10.1145/2487228.2487235.

[11] D. Adalsteinsson and J. A. Sethian. “A Level Set Approach to a Unified
Model for Etching, Deposition, and Lithography II: Three-Dimensional
Simulations”. In: Journal of Computational Physics 122.2 (1995), pp. 348–
366. doi: 10.1006/jcph.1995.1221.

[12] D. Adalsteinsson and J. A. Sethian. “A Level Set Approach to a
Unified Model for Etching, Deposition, and Lithography III: Redeposition,
Reemission, Surface Diffusion, and Complex Simulations”. In: Journal of
Computational Physics 138.1 (1997), pp. 193–223. doi: 10 . 1006 / jcph .
1997.5817.

[13] J. A. Sethian and D. Adalsteinsson. “An Overview of Level Set Methods for
Etching, Deposition, and Lithography Development”. In: IEEE Transactions
on Semiconductor Manufacturing 10.1 (1997), pp. 167–184. doi: 10.1109/
66.554505.

[14] J. A. Sethian. “Evolution, Implementation, and Application of Level Set and
Fast Marching Methods for Advancing Fronts”. In: Journal of Computational
Physics 169.2 (2001), pp. 503–555. doi: 10.1006/jcph.2000.6657.

[15] V. Suvorov, A. Hössinger, Z. Djurić, and N. Ljepojevic. “A Novel Approach
to Three-Dimensional Semiconductor Process Simulation: Application to
Thermal Oxidation”. In: Journal of Computational Electronics 5.4 (2006),
pp. 291–295. doi: 10.1007/s10825-006-0003-z.

[16] B. Radjenovic, M. Radmilovic-Radjenovic, and M. Mitric. “Application of the
Level Set Method on the Non-Convex Hamiltonians”. In: Facta Universitatis
- Series: Physics, Chemistry and Technology 7.1 (2009), pp. 33–44. doi:
10.2298/FUPCT0901033R.

[17] B. Radjenović, M. Radmilović-Radjenović, and M. Mitrić. “Level Set
Approach to Anisotropic Wet Etching of Silicon”. In: Sensors 10.5 (2010),
pp. 4950–4967. doi: 10.3390/s100504950.

[18] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Vol. 153. New York: Springer, 2003. doi: 10.1007/b98879.

[19] A. S. Bahm. “Predictive Modelling of Gas Assisted Electron and Ion Beam
Induced Etching and Deposition”. PhD thesis. University of Technology
Sydney, 2016.

[20] P. Manstetten. “Efficient Flux Calculations for Topography Simulation”.
Doctoral dissertation. TU Wien, 2018. doi: 10.34726/hss.2018.57263.

[21] R. I. Saye and J. A. Sethian. “A Review of Level Set Methods to
Model Interfaces Moving under Complex Physics: Recent Challenges and
Advances”. In: Handbook of Numerical Analysis. 1st ed. Oxford: Elsevier,
2020, pp. 509–554. doi: 10.1016/bs.hna.2019.07.003.

120

https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1006/jcph.1995.1221
https://doi.org/10.1006/jcph.1997.5817
https://doi.org/10.1006/jcph.1997.5817
https://doi.org/10.1109/66.554505
https://doi.org/10.1109/66.554505
https://doi.org/10.1006/jcph.2000.6657
https://doi.org/10.1007/s10825-006-0003-z
https://doi.org/10.2298/FUPCT0901033R
https://doi.org/10.3390/s100504950
https://doi.org/10.1007/b98879
https://doi.org/10.34726/hss.2018.57263
https://doi.org/10.1016/bs.hna.2019.07.003

[22] H.-K. Zhao, B. Merriman, S. Osher, and L. Wang. “Capturing the Behavior
of Bubbles and Drops Using the Variational Level Set Approach”. In: Journal
of Computational Physics 143.2 (1998), pp. 495–518. doi: 10.1006/jcph.
1997.5810.

[23] F. Losasso, F. Gibou, and R. Fedkiw. “Simulating Water and Smoke with
an Octree Data Structure”. In: ACM Transactions on Graphics 23.3 (2004),
pp. 457–462. doi: 10.1145/1015706.1015745.

[24] F. Losasso, R. Fedkiw, and S. Osher. “Spatially Adaptive Techniques for
Level Set Methods and Incompressible Flow”. In: Computers & Fluids 35.10
(2006), pp. 995–1010. doi: 10.1016/j.compfluid.2005.01.006.

[25] M. Jemison, E. Loch, M. Sussman, M. Shashkov, M. Arienti, M. Ohta, and
Y. Wang. “A Coupled Level Set-Moment of Fluid Method for Incompressible
Two-Phase Flows”. In: Journal of Scientific Computing 54.2-3 (2013),
pp. 454–491. doi: 10.1007/s10915-012-9614-7.

[26] Y. F. Yap, F. M. Vargas, and J. Chai. “A Level-Set Method for Convective-
Diffusive Particle Deposition”. In: Applied Mathematical Modelling 37.7
(2013), pp. 5245–5259. doi: 10.1016/j.apm.2012.10.039.

[27] A. Sharma. “Level Set Method for Computational Multi-Fluid Dynamics:
A Review on Developments, Applications and Analysis”. In: Sadhana 40.3
(2015), pp. 627–652. doi: 10.1007/s12046-014-0329-3.

[28] V. T. Nguyen, V. D. Thang, and W. G. Park. “A Novel Sharp Interface
Capturing Method for Two- and Three-Phase Incompressible Flows”. In:
Computers & Fluids 172 (2018), pp. 147–161. doi: 10.1016/j.compfluid.
2018.06.020.

[29] K. Luo, C. Shao, M. Chai, and J. Fan. “Level Set Method for Atomization and
Evaporation Simulations”. In: Progress in Energy and Combustion Science
73 (2019), pp. 65–94. doi: 10.1016/j.pecs.2019.03.001.

[30] T. Du, K. Wu, A. Spielberg, W. Matusik, B. Zhu, and E. Sifakis. “Functional
Optimization of Fluidic Devices with Differentiable Stokes Flow”. In: ACM
Transactions on Graphics 39.6 (2020), pp. 1–15. doi: 10.1145/3414685.
3417795.

[31] M. L. Garzon and J. A. Sethian. “Droplet Pairs Electrical Computations
Using a Level Set Based Algorithm”. In: Journal of Electrostatics 106 (2020),
p. 103458. doi: 10.1016/j.elstat.2020.103458.

[32] M. Gao, A. P. Tampubolon, C. Jiang, and E. Sifakis. “An
Adaptive Generalized Interpolation Material Point Method for Simulating
Elastoplastic Materials”. In: ACM Transactions on Graphics 36.6 (2017).
doi: 10.1145/3130800.3130879.

[33] J. Liu, Q. Chen, Y. Zheng, R. Ahmad, J. Tang, and Y. Ma. “Level Set-
Based Heterogeneous Object Modeling and Optimization”. In: Computer-
Aided Design 110 (2019), pp. 50–68. doi: 10.1016/j.cad.2019.01.002.

121

https://doi.org/10.1006/jcph.1997.5810
https://doi.org/10.1006/jcph.1997.5810
https://doi.org/10.1145/1015706.1015745
https://doi.org/10.1016/j.compfluid.2005.01.006
https://doi.org/10.1007/s10915-012-9614-7
https://doi.org/10.1016/j.apm.2012.10.039
https://doi.org/10.1007/s12046-014-0329-3
https://doi.org/10.1016/j.compfluid.2018.06.020
https://doi.org/10.1016/j.compfluid.2018.06.020
https://doi.org/10.1016/j.pecs.2019.03.001
https://doi.org/10.1145/3414685.3417795
https://doi.org/10.1145/3414685.3417795
https://doi.org/10.1016/j.elstat.2020.103458
https://doi.org/10.1145/3130800.3130879
https://doi.org/10.1016/j.cad.2019.01.002

[34] H. Liu, Y. Hu, B. Zhu, W. Matusik, and E. Sifakis. “Narrow-band Topology
Optimization on a Sparsely Populated Grid”. In: ACM Transactions on
Graphics 37.6 (2019), pp. 1–14. doi: 10.1145/3272127.3275012.

[35] Y. Wang, Z. Kang, and P. Liu. “Velocity Field Level-Set Method for
Topological Shape Optimization Using Freely Distributed Design Variables”.
In: International Journal for Numerical Methods in Engineering 120.13
(2019), pp. 1411–1427. doi: 10.1002/nme.6185.

[36] S. Kambampati, C. Jauregui, K. Museth, and H. A. Kim. “Large-Scale
Level Set Topology Optimization for Elasticity and Heat Conduction”. In:
Structural and Multidisciplinary Optimization 61.1 (2020), pp. 19–38. doi:
10.1007/s00158-019-02440-2.

[37] M. Doškář, J. Zeman, D. Rypl, and J. Novák. “Level-Set Based Design of
Wang Tiles for Modelling Complex Microstructures”. In: Computer-Aided
Design 123 (2020), p. 102827. doi: 10.1016/j.cad.2020.102827.

[38] B. Wyvill, A. Guy, and E. Galin. “Extending the CSG Tree. Warping,
Blending and Boolean Operations in an Implicit Surface Modeling System”.
In: Computer Graphics Forum 18.2 (1999), pp. 149–158. doi: 10.1111/1467-
8659.00365.

[39] K. Museth, D. E. Breen, R. T. Whitaker, and A. H. Barr. “Level Set Surface
Editing Operators”. In: Proceedings of the Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH). New York: ACM Press, 2002,
p. 330. doi: 10.1145/566570.566585.

[40] K. Museth. “DB+Grid: A Novel Dynamic Blocked Grid For Sparse High-
Resolution Volumes and Level Sets”. In: Proceedings of the Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH). New York:
ACM Press, 2011, p. 1. doi: 10.1145/2037826.2037894.

[41] R. K. Hoetzlein. “GVDB: Raytracing Sparse Voxel Database Structures on
the GPU”. In: High Performance Graphics (2016). doi: 10 . 2312 / hpg .
20161197.

[42] F. Gibou, R. Fedkiw, and S. Osher. “A Review of Level-Set Methods
and Some Recent Applications”. In: Journal of Computational Physics 353
(2018), pp. 82–109. doi: 10.1016/j.jcp.2017.10.006.

[43] E. Sifakis, C. Garcia, and G. Tziritas. “Bayesian Level Sets for
Image Segmentation”. In: Journal of Visual Communication and Image
Representation 13.1-2 (2002), pp. 44–64. doi: 10.1006/jvci.2001.0474.

[44] L. A Vese and T. F Chan. “A Multiphase Level Set Framework for Image
Segmentation Using the Mumford and Shah Model”. In: International
Journal of Computer Vision 50.3 (2002), pp. 271–293. doi: 10.1023/A:
1020874308076.

122

https://doi.org/10.1145/3272127.3275012
https://doi.org/10.1002/nme.6185
https://doi.org/10.1007/s00158-019-02440-2
https://doi.org/10.1016/j.cad.2020.102827
https://doi.org/10.1111/1467-8659.00365
https://doi.org/10.1111/1467-8659.00365
https://doi.org/10.1145/566570.566585
https://doi.org/10.1145/2037826.2037894
https://doi.org/10.2312/hpg.20161197
https://doi.org/10.2312/hpg.20161197
https://doi.org/10.1016/j.jcp.2017.10.006
https://doi.org/10.1006/jvci.2001.0474
https://doi.org/10.1023/A:1020874308076
https://doi.org/10.1023/A:1020874308076

[45] H. Yang, M. Fuchs, B. Jüttler, O. Scherzer, Huaiping Yang, M. Fuchs,
B. Juttler, O. Scherzer, H. Yang, M. Fuchs, B. Jüttler, and O. Scherzer.
“Evolution of T-Spline Level Sets with Distance Field Constraints for
Geometry Reconstruction and Image Segmentation”. In: Proceedings of
IEEE International Conference on Shape Modeling and Applications (SMI).
Matsushima: IEEE, 2006, pp. 37–37. doi: 10.1109/SMI.2006.12.

[46] L.-T. Cheng, J. Dzubiella, J. A. McCammon, and B. Li. “Application of
the Level-Set Method to the Implicit Solvation of Nonpolar Molecules”. In:
The Journal of Chemical Physics 127.8 (2007), p. 084503. doi: 10.1063/1.
2757169.

[47] S. Zhou, L.-T. Cheng, H. Sun, J. Che, J. Dzubiella, B. Li, and J. A.
McCammon. “LS-VISM: A software Package for Analysis of Biomolecular
Solvation”. In: Journal of Computational Chemistry 36.14 (2015), pp. 1047–
1059. doi: https://doi.org/10.1002/jcc.23890.

[48] Z. Zhang, C. G. Ricci, C. Fan, L.-T. T. Cheng, B. Li, and J. A. McCammon.
“Coupling Monte Carlo, Variational Implicit Solvation, and Binary Level-Set
for Simulations of Biomolecular Binding”. In: Journal of Chemical Theory
and Computation 17.4 (2021), acs.jctc.0c01109. doi: 10.1021/acs.jctc.
0c01109.

[49] T. Thurgate. “Segment-Based Etch Algorithm and Modeling”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
10.9 (1991), pp. 1101–1109. doi: 10.1109/43.85756.

[50] M. E. Law. “Grid Adaption near Moving Boundaries in two Dimensions for
IC Process Simulation”. In: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 14.10 (1995), pp. 1223–1230. doi: 10.
1109/43.466338.

[51] M. E. Law and S. M. Cea. “Continuum Based Modeling of Silicon Integrated
Circuit Processing: An Object Oriented Approach”. In: Computational
Materials Science 12.4 (1998), pp. 289–308. doi: 10.1016/S0927-0256(98)
00020-2.

[52] AMD Ryzen Threadripper 3990X. https://www.amd.com/en/products/
cpu/amd-ryzen-threadripper-3990x. (accessed November 2, 2021).

[53] Intel Xeon Platinum 9282. https://www.intel.com/content/www/us/
en/products/sku/194146/intel-xeon-platinum-9282-processor-77m-
cache-2-60-ghz/specifications.html. (accessed November 2, 2021).

[54] B. El-Kareh. Fundamentals of Semiconductor Processing Technology. Boston:
Springer, 1995. doi: 10.1007/978-1-4615-2209-6.

[55] M. Quell, V. Suvorov, A. Hössinger, and J. Weinbub. “Parallel Velocity
Extension for Level-Set-Based Material Flow on Hierarchical Meshes in
Process TCAD”. In: IEEE Transactions on Electron Devices 68.11 (2021),
pp. 5430–5437. doi: 10.1109/TED.2021.3087451.

123

https://doi.org/10.1109/SMI.2006.12
https://doi.org/10.1063/1.2757169
https://doi.org/10.1063/1.2757169
https://doi.org/https://doi.org/10.1002/jcc.23890
https://doi.org/10.1021/acs.jctc.0c01109
https://doi.org/10.1021/acs.jctc.0c01109
https://doi.org/10.1109/43.85756
https://doi.org/10.1109/43.466338
https://doi.org/10.1109/43.466338
https://doi.org/10.1016/S0927-0256(98)00020-2
https://doi.org/10.1016/S0927-0256(98)00020-2
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3990x
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3990x
https://www.intel.com/content/www/us/en/products/sku/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz/specifications.html
https://doi.org/10.1007/978-1-4615-2209-6
https://doi.org/10.1109/TED.2021.3087451

[56] D. Guoy, A. H. Gencer, Z. Tan, S. Chalasani, M. Johnson, L. Villablanca,
and S. Simeonov. “3-D Simulation of Silicon Oxidation: Challenges, Progress
and Results”. In: Proceedings of the International Conference on Simulation
of Semiconductor Processes and Devices (SISPAD). Glasgow: IEEE, 2013,
pp. 196–199. doi: 10.1109/SISPAD.2013.6650608.

[57] W. Joppich and S. Mijalković. Multigrid Methods for Process Simulation.
Vienna: Springer, 1993. doi: 10.1007/978-3-7091-9253-5.

[58] O. Ertl and S. Selberherr. “A Fast Level Set Framework for Large
Three-Dimensional Topography Simulations”. In: Computer Physics
Communications 180.8 (2009), pp. 1242–1250. doi: 10.1016/j.cpc.2009.
02.002.

[59] M. Mirzadeh, A. Guittet, C. Burstedde, and F. Gibou. “Parallel Level-
Set Methods on Adaptive Tree-Based Grids”. In: Journal of Computational
Physics 322 (2016), pp. 345–364. doi: 10.1016/j.jcp.2016.06.017.

[60] J. A. Sethian. “A Fast Marching Level Set Method for Monotonically
Advancing Fronts”. In: Proceedings of the National Academy of Sciences 93.4
(1996), pp. 1591–1595. doi: 10.1073/pnas.93.4.1591.

[61] J. Yang and F. Stern. “A Highly Scalable Massively Parallel Fast Marching
Method for the Eikonal Equation”. In: Journal of Computational Physics 332
(2017), pp. 333–362. doi: 10.1016/j.jcp.2016.12.012.

[62] G. Diamantopoulos, A. Hössinger, S. Selberherr, and J. Weinbub. “A Shared
Memory Parallel Multi-Mesh Fast Marching Method for Re-Distancing”. In:
Advances in Computational Mathematics 45.4 (2019), pp. 2029–2045. doi:
10.1007/s10444-019-09683-z.

[63] J. F. Thompson, B. K. Soni, and N. P. Weatherill. Handbook of Grid
Generation. Boca Raton: CRC Press, 1998. doi: 10.1201/9781420050349.

[64] J. C. Strikwerda. Finite Difference Schemes and Partial Differential
Equations. Madison: Society for Industrial and Applied Mathematics, 2004.
doi: 10.1137/1.9780898717938.

[65] R. E. White. An Introduction to the Finite Element Method with Applications
to Nonlinear Problems. New York: Wiley, 1985.

[66] R. Eymard, T. Gallouët, and R. Herbin. “Finite Volume Methods”. In:
Handbook of Numerical Analysis. Oxford: Elsevier, 2000, pp. 713–1018. doi:
https://doi.org/10.1016/S1570-8659(00)07005-8.

[67] J. A. Sethian. “Fast Marching Methods”. In: SIAM Review 41.2 (1999),
pp. 199–235. doi: 10.1137/S0036144598347059.

[68] X. Yang, A. J. James, J. Lowengrub, X. Zheng, and V. Cristini. “An
Adaptive Coupled Level-Set/Volume-of-Fluid Interface Capturing Method
for Unstructured Triangular Grids”. In: Journal of Computational Physics
217.2 (2006), pp. 364–394. doi: 10.1016/j.jcp.2006.01.007.

124

https://doi.org/10.1109/SISPAD.2013.6650608
https://doi.org/10.1007/978-3-7091-9253-5
https://doi.org/10.1016/j.cpc.2009.02.002
https://doi.org/10.1016/j.cpc.2009.02.002
https://doi.org/10.1016/j.jcp.2016.06.017
https://doi.org/10.1073/pnas.93.4.1591
https://doi.org/10.1016/j.jcp.2016.12.012
https://doi.org/10.1007/s10444-019-09683-z
https://doi.org/10.1201/9781420050349
https://doi.org/10.1137/1.9780898717938
https://doi.org/https://doi.org/10.1016/S1570-8659(00)07005-8
https://doi.org/10.1137/S0036144598347059
https://doi.org/10.1016/j.jcp.2006.01.007

[69] M. A. Herrmann. “A Balanced Force Refined Level Set Grid Method
for Two-Phase Flows on Unstructured Flow Solver Grids”. In: Journal of
Computational Physics 227.4 (2008), pp. 2674–2706. doi: 10.1016/j.jcp.
2007.11.002.

[70] R. Abgrall, H. Beaugendre, and C. Dobrzynski. “An Immersed Boundary
Method Using Unstructured Anisotropic Mesh Adaptation Combined with
Level-Sets and Penalization Techniques”. In: Journal of Computational
Physics 257.PA (2014), pp. 83–101. doi: 10.1016/j.jcp.2013.08.052.

[71] N. R. Morgan and J. I. Waltz. “3D Level Set Methods for Evolving Fronts
on Tetrahedral Meshes with Adaptive Mesh Refinement”. In: Journal of
Computational Physics 336 (2017), pp. 492–512. doi: 10 . 1016 / j . jcp .
2017.02.030.

[72] M. Quezada de Luna, D. Kuzmin, and C. E. Kees. “A Monolithic
Conservative Level Set Method with Built-In Redistancing”. In: Journal of
Computational Physics 379 (2019), pp. 262–278. doi: 10.1016/j.jcp.2018.
11.044.

[73] G.-S. Jiang and D. Peng. “Weighted ENO Schemes for Hamilton–Jacobi
Equations”. In: SIAM Journal on Scientific Computing 21.6 (2000), pp. 2126–
2143. doi: 10.1137/S106482759732455X.

[74] S. Serna and J. Qian. “Fifth-Order Weighted Power-ENO Schemes for
Hamilton-Jacobi Equations”. In: Journal of Scientific Computing 29.1 (2006),
pp. 57–81. doi: 10.1007/s10915-005-9015-2.

[75] X.-D. Liu, S. Osher, and T. Chan. “Weighted Essentially Non-Oscillatory
Schemes”. In: Journal of Computational Physics 115.1 (1994), pp. 200–212.
doi: 10.1006/jcph.1994.1187.

[76] C.-W. Shu. “High Order Numerical Methods for Time Dependent Hamilton-
Jacobi Equations”. In: Mathematics and Computation in Imaging Science
and Information Processing. Singapore: National University of Singapore,
2010, pp. 47–91. doi: 10.1142/9789812709066_0002.

[77] M. J. Berger and J. Oliger. “Adaptive Mesh Refinement for Hyperbolic
Partial Differential Equations”. In: Journal of Computational Physics 53.3
(1984), pp. 484–512. doi: 10.1016/0021-9991(84)90073-1.

[78] M. J. Berger and P. Colella. “Local Adaptive Mesh Refinement for Shock
Hydrodynamics”. In: Journal of Computational Physics 82.1 (1989), pp. 64–
84. doi: 10.1016/0021-9991(89)90035-1.

[79] J. Bell, M. J. Berger, J. Saltzman, and M. Welcome. “Three-Dimensional
Adaptive Mesh Refinement for Hyperbolic Conservation Laws”. In: SIAM
Journal on Scientific Computing 15.1 (1994), pp. 127–138. doi: 10.1137/
0915008.

[80] K. G. Powell, P. L. Roe, and J. Quirk. “Adaptive-Mesh Algorithms for
Computational Fluid Dynamics”. In: Algorithmic Trends in Computational
Fluid Dynamics. New York: Springer, 1993, pp. 303–337. doi: 10.1007/978-
1-4612-2708-3.

125

https://doi.org/10.1016/j.jcp.2007.11.002
https://doi.org/10.1016/j.jcp.2007.11.002
https://doi.org/10.1016/j.jcp.2013.08.052
https://doi.org/10.1016/j.jcp.2017.02.030
https://doi.org/10.1016/j.jcp.2017.02.030
https://doi.org/10.1016/j.jcp.2018.11.044
https://doi.org/10.1016/j.jcp.2018.11.044
https://doi.org/10.1137/S106482759732455X
https://doi.org/10.1007/s10915-005-9015-2
https://doi.org/10.1006/jcph.1994.1187
https://doi.org/10.1142/9789812709066_0002
https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/10.1137/0915008
https://doi.org/10.1137/0915008
https://doi.org/10.1007/978-1-4612-2708-3
https://doi.org/10.1007/978-1-4612-2708-3

[81] W. J. Coirier and K. G. Powell. “Solution-Adaptive Cartesian Cell Approach
for Viscous and Inviscid Flows”. In: AIAA Journal 34.5 (1996), pp. 938–945.
doi: 10.2514/3.13171.

[82] J. Strain. “Tree Methods for Moving Interfaces”. In: Journal of
Computational Physics 151.2 (1999), pp. 616–648. doi: 10 . 1006 / jcph .
1999.6205.

[83] V. Sochnikov and S. Efrima. “Level Set Calculations of the Evolution of
Boundaries on a Dynamically Adaptive Grid”. In: International Journal for
Numerical Methods in Engineering 56.13 (2003), pp. 1913–1929. doi: 10.
1002/nme.641.

[84] N. Shervani-Tabar and O. V. Vasilyev. “Stabilized Conservative Level Set
Method”. In: Journal of Computational Physics 375 (2018), pp. 1033–1044.
doi: 10.1016/j.jcp.2018.09.020.

[85] C. Min and F. Gibou. “A Second Order Accurate Level Set Method on Non-
Graded Adaptive Cartesian Grids”. In: Journal of Computational Physics
225.1 (2007), pp. 300–321. doi: 10.1016/j.jcp.2006.11.034.

[86] H. Kim and M.-S. S. Liou. “Accurate Adaptive Level Set Method and
Sharpening Technique for Three Dimensional Deforming Interfaces”. In:
Computers & Fluids 44.1 (2011), pp. 111–129. doi: 10.1016/j.compfluid.
2010.12.020.

[87] S. Péron and C. Benoit. “Automatic Off-Body Overset Adaptive Cartesian
Mesh Method Based on an Octree Approach”. In: Journal of Computational
Physics 232.1 (2013), pp. 153–173. doi: 10.1016/j.jcp.2012.07.029.

[88] Q. F. Stout, D. L. De Zeeuw, T. I. Gombosi, C. P. T. Groth, H. G. Marshall,
and K. G. Powell. “Adaptive Blocks: A High Performance Data Structure”.
In: Proceedings of ACM/IEEE Conference on Supercomputing (SC). New
York: ACM Press, 1997, pp. 1–10. doi: 10.1145/509593.509650.

[89] M. Parashar and J. C. Browne. “On Partitioning Dynamic Adaptive Grid
Hierarchies”. In: Proceedings of the International Conference on System
Sciences. Wailea: IEEE, 1996, pp. 604–613. doi: 10.1109/HICSS.1996.
495511.

[90] F. Golay, M. Ersoy, L. Yushchenko, and D. Sous. “Block-Based Adaptive
Mesh Refinement Scheme Using Numerical Density of Entropy Production
for Three-Dimensional Two-Fluid Flows”. In: International Journal of
Computational Fluid Dynamics 29.1 (2015), pp. 67–81. doi: 10 . 1080 /
10618562.2015.1012161.

[91] K. Wu, N. Truong, C. Yuksel, and R. Hoetzlein. “Fast Fluid Simulations with
Sparse Volumes on the GPU”. In: Computer Graphics Forum 37.2 (2018),
pp. 157–167. doi: 10.1111/cgf.13350.

126

https://doi.org/10.2514/3.13171
https://doi.org/10.1006/jcph.1999.6205
https://doi.org/10.1006/jcph.1999.6205
https://doi.org/10.1002/nme.641
https://doi.org/10.1002/nme.641
https://doi.org/10.1016/j.jcp.2018.09.020
https://doi.org/10.1016/j.jcp.2006.11.034
https://doi.org/10.1016/j.compfluid.2010.12.020
https://doi.org/10.1016/j.compfluid.2010.12.020
https://doi.org/10.1016/j.jcp.2012.07.029
https://doi.org/10.1145/509593.509650
https://doi.org/10.1109/HICSS.1996.495511
https://doi.org/10.1109/HICSS.1996.495511
https://doi.org/10.1080/10618562.2015.1012161
https://doi.org/10.1080/10618562.2015.1012161
https://doi.org/10.1111/cgf.13350

[92] M. Adams, P. Colella, D. Graves, J. Johnson, N. Keen, T. Ligocki, D.
Martin, P. McCorquodale, D. Modiano, T. Schwartz, P.O. Sternberg, and
B. van Straalen. “Chombo Software Package for AMR Applications - Design
Document”. In: Lawrence Berkeley Natl. Lab. Tech. Rep. LBNL-6616E
(2015).

[93] B. T. Gunney and R. W. Anderson. “Advances in Patch-Based Adaptive
Mesh Refinement Scalability”. In: Journal of Parallel and Distributed
Computing 89 (2016), pp. 65–84. doi: 10.1016/j.jpdc.2015.11.005.

[94] M. J. Berger and I. Rigoutsos. “An Algorithm for Point Clustering and Grid
Generation”. In: IEEE Transactions on Systems, Man, and Cybernetics 21.5
(1991), pp. 1278–1286. doi: 10.1109/21.120081.

[95] M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L.
Welcome. “An Adaptive Level Set Approach for Incompressible Two-Phase
Flows”. In: Journal of Computational Physics 148.1 (1999), pp. 81–124. doi:
10.1006/jcph.1998.6106.

[96] R. R. Nourgaliev, S. Wiri, N. T. Dinh, and T. G. Theofanous. “On Improving
Mass Conservation of Level Set by Reducing Spatial Discretization Errors”.
In: International Journal of Multiphase Flow 31.12 (2005), pp. 1329–1336.
doi: 10.1016/j.ijmultiphaseflow.2005.08.003.

[97] O. Desjardins and H. Pitsch. “A Spectrally Refined Interface Approach for
Simulating Multiphase Flows”. In: Journal of Computational Physics 228.5
(2009), pp. 1658–1677. doi: 10.1016/j.jcp.2008.11.005.

[98] E. Brun, A. Guittet, and F. Gibou. “A Local Level-Set Method Using a Hash
Table Data Structure”. In: Journal of Computational Physics 231.6 (2012),
pp. 2528–2536. doi: 10.1016/j.jcp.2011.12.001.

[99] B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth.
“Hierarchical RLE Level Set: A Compact and Versatile Deformable Surface
Representation”. In: ACM Transactions on Graphics 25.1 (2006), pp. 151–
175. doi: 10.1145/1122501.1122508.

[100] M. Quell, G. Diamantopoulos, A. Hössinger, S. Selberherr, and J. Weinbub.
“Parallel Correction for Hierarchical Re-Distancing Using the Fast Marching
Method”. In: Advances in High Performance Computing. Cham: Springer,
2021, pp. 438–451. doi: 10.1007/978-3-030-55347-0_37.

[101] A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan, P. Colella,
D. Graves, M. Lijewski, F. Löffler, B. O’Shea, E. Schnetter, B. Van Straalen,
and K. Weide. “A Survey of High Level Frameworks in Block-Structured
Adaptive Mesh Refinement Packages”. In: Journal of Parallel and Distributed
Computing 74.12 (2014), pp. 3217–3227. doi: 10.1016/j.jpdc.2014.07.
001.

[102] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. 6th. San Francisco: Morgan Kaufmann Publishers Inc., 2017.

[103] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. 2nd.
Burlington: Elsevier, 2021. doi: 10.1016/C2011-0-06993-4.

127

https://doi.org/10.1016/j.jpdc.2015.11.005
https://doi.org/10.1109/21.120081
https://doi.org/10.1006/jcph.1998.6106
https://doi.org/10.1016/j.ijmultiphaseflow.2005.08.003
https://doi.org/10.1016/j.jcp.2008.11.005
https://doi.org/10.1016/j.jcp.2011.12.001
https://doi.org/10.1145/1122501.1122508
https://doi.org/10.1007/978-3-030-55347-0_37
https://doi.org/10.1016/j.jpdc.2014.07.001
https://doi.org/10.1016/j.jpdc.2014.07.001
https://doi.org/10.1016/C2011-0-06993-4

[104] L. Dagum and R. Menon. “OpenMP: An Industry Standard API for Shared-
Memory Programming”. In: IEEE Computational Science and Engineering
5.1 (1998), pp. 46–55. doi: 10.1109/99.660313.

[105] Vienna Scientific Cluster. https://vsc.ac.at/. (accessed November 2,
2021).

[106] M. W. Jones, J. A. Baerentzen, and M. Sramek. “3D Distance Fields:
A Survey of Techniques and Applications”. In: IEEE Transactions on
Visualization and Computer Graphics 12.4 (2006), pp. 581–599. doi: 10.
1109/TVCG.2006.56.

[107] H.-K. K. Zhao, T. Chan, B. Merriman, and S. J. Osher. “A Variational Level
Set Approach to Multiphase Motion”. In: Journal of Computational Physics
127.1 (1996), pp. 179–195. doi: 10.1006/jcph.1996.0167.

[108] S. J. Ruuth. “A Diffusion-Generated Approach to Multiphase Motion”. In:
Journal of Computational Physics 145.1 (1998), pp. 166–192. doi: 10.1006/
jcph.1998.6028.

[109] K. Smith, F. Solis, and D. Chopp. “A Projection Method for Motion of Triple
Junctions by Level Sets”. In: Interfaces and Free Boundaries 4.3 (2002),
pp. 263–276. doi: 10.4171/IFB/61.

[110] H. Li, Y. F. Yap, J. Lou, and Z. Shang. “Numerical Modelling of Three-
Fluid Flow Using the Level-Set Method”. In: Chemical Engineering Science
126 (2015), pp. 224–236. doi: 10.1016/j.ces.2014.11.062.

[111] D. P. Starinshak, S. Karni, and P. L. Roe. “A New Level Set Model for
Multimaterial Flows”. In: Journal of Computational Physics 262 (2014),
pp. 1–16. doi: 10.1016/j.jcp.2013.12.036.

[112] A. Toifl, M. Quell, X. Klemenschits, P. Manstetten, A. Hössinger, S.
Selberherr, and J. Weinbub. “The Level-Set Method for Multi-Material
Wet Etching and Non-Planar Selective Epitaxy”. In: IEEE Access 8 (2020),
pp. 115406–115422. doi: 10.1109/ACCESS.2020.3004136.

[113] Á. Montoliu, N. Ferrando, M. A. Gosálvez, J. Cerdá, and R. J. Colom.
“Implementation and Evaluation of the Level Set Method: Towards Efficient
and Accurate Simulation of Wet Etching for Microengineering Applications”.
In: Computer Physics Communications 184.10 (2013), pp. 2299–2309. doi:
10.1016/j.cpc.2013.05.016.

[114] Á. Montoliu, N. Ferrando, M. A. Gosálvez, J. Cerdá, R. J. Colom, C.
Montoliu, N. Ferrando, M. A. Gosálvez, J. Cerdá, and R. J. Colom. “Level
Set Implementation for the Simulation of Anisotropic Etching: Application
to Complex MEMS Micromachining”. In: Journal of Micromechanics and
Microengineering 23.7 (2013), p. 075017. doi: 10.1088/0960-1317/23/7/
075017.

128

https://doi.org/10.1109/99.660313
https://vsc.ac.at/
https://doi.org/10.1109/TVCG.2006.56
https://doi.org/10.1109/TVCG.2006.56
https://doi.org/10.1006/jcph.1996.0167
https://doi.org/10.1006/jcph.1998.6028
https://doi.org/10.1006/jcph.1998.6028
https://doi.org/10.4171/IFB/61
https://doi.org/10.1016/j.ces.2014.11.062
https://doi.org/10.1016/j.jcp.2013.12.036
https://doi.org/10.1109/ACCESS.2020.3004136
https://doi.org/10.1016/j.cpc.2013.05.016
https://doi.org/10.1088/0960-1317/23/7/075017
https://doi.org/10.1088/0960-1317/23/7/075017

[115] A. Toifl, M. Quell, A. Hössinger, A. Babayan, S. Selberherr, and J. Weinbub.
“Novel Numerical Dissipation Scheme for Level-Set Based Anisotropic
Etching Simulations”. In: Proceedings of the International Conference on
Simulation of Semiconductor Processes and Devices (SISPAD). Udine: IEEE,
2019, pp. 1–4. doi: 10.1109/SISPAD.2019.8870443.

[116] M. M. Smiljanić, Ž. Lazić, B. Radjenović, M. Radmilović-Radjenović, and V.
Jović. “Evolution of Si Crystallographic Planes-Etching of Square and Circle
Patterns in 25 wt % TMAH”. In: Micromachines 10.2 (2019), pp. 26–32. doi:
10.3390/mi10020102.

[117] H. Liao and T. S. Cale. “Three-Dimensional Simulation of an Isolation Trench
Refill Process”. In: Thin Solid Films 236.1-2 (1993), pp. 352–358. doi: 10.
1016/0040-6090(93)90695-L.

[118] X. Klemenschits, S. Selberherr, and L. Filipovic. “Modeling of Gate Stack
Patterning for Advanced Technology Nodes: A Review”. In: Micromachines
9.12 (2018), p. 631. doi: 10.3390/mi9120631.

[119] J.-C. Yu, Z.-F. Zhou, J.-L. Su, C.-F. Xia, X.-W. Zhang, Z.-Z. Wu, and
Q.-A. Huang. “Three-Dimensional Simulation of DRIE Process Based on
the Narrow Band Level Set and Monte Carlo Method”. In: Micromachines
9.2 (2018), p. 74. doi: 10.3390/mi9020074.

[120] A. Yanguas-Gil. Growth and Transport in Nanostructured Materials. Cham:
Springer, 2017. doi: 10.1007/978-3-319-24672-7.

[121] R. Malladi, J. A. Sethian, and B. C. B. Vemuri. “Shape Modeling with Front
Propagation: A Level Set Approach”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 17.2 (1995), pp. 158–175. doi: 10.1109/
34.368173.

[122] D. Adalsteinsson and J. A. Sethian. “The Fast Construction of Extension
Velocities in Level Set Methods”. In: Journal of Computational Physics 148.1
(1999), pp. 2–22. doi: 10.1006/jcph.1998.6090.

[123] C.-W. Shu and S. Osher. “Efficient Implementation of Essentially Non-
Oscillatory Shock-Capturing Schemes”. In: Journal of Computational Physics
77.2 (1988), pp. 439–471. doi: 10.1016/0021-9991(88)90177-5.

[124] R. J. Spiteri and S. J. Ruuth. “A New Class of Optimal High-
Order Strong-Stability-Preserving Time Discretization Methods”. In: SIAM
Journal on Numerical Analysis 40.2 (2002), pp. 469–491. doi: 10.1137/
S0036142901389025.

[125] M. G. Crandall and P.-L. Lions. “Two Approximations of Solutions of
Hamilton-Jacobi Equations”. In: Mathematics of Computation 43.167 (1984),
pp. 1–1. doi: 10.1090/S0025-5718-1984-0744921-8.

[126] S. K. Godunov. “A Finite Difference Method for the Computation of
Discontinuous Solutions of the Equations of Fluid Dynamics.” In: Sbornik:
Mathematics 47.8-9 (1959), pp. 357–393.

129

https://doi.org/10.1109/SISPAD.2019.8870443
https://doi.org/10.3390/mi10020102
https://doi.org/10.1016/0040-6090(93)90695-L
https://doi.org/10.1016/0040-6090(93)90695-L
https://doi.org/10.3390/mi9120631
https://doi.org/10.3390/mi9020074
https://doi.org/10.1007/978-3-319-24672-7
https://doi.org/10.1109/34.368173
https://doi.org/10.1109/34.368173
https://doi.org/10.1006/jcph.1998.6090
https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.1137/S0036142901389025
https://doi.org/10.1137/S0036142901389025
https://doi.org/10.1090/S0025-5718-1984-0744921-8

[127] S. Osher and C.-W. Shu. “High-Order Essentially Nonoscillatory Schemes for
Hamilton–Jacobi Equations”. In: SIAM Journal on Numerical Analysis 28.4
(1991), pp. 907–922. doi: 10.1137/0728049.

[128] M. F. Trujillo, L. Anumolu, and D. Ryddner. “The Distortion of the Level
Set Gradient Under Advection”. In: Journal of Computational Physics 334
(2017), pp. 81–101. doi: 10.1016/j.jcp.2016.11.050.

[129] L. C. Evans. Partial Differential Equations. Berkeley: Graduate Studies in
Mathematics, 1998. doi: 10.1090/gsm/019.

[130] W. E. Lorensen and H. E. Cline. “Marching Cubes: A High Resolution
3D Surface Construction Algorithm”. In: Proceedings of the Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH). New York:
ACM Press, 1987, pp. 163–169. doi: 10.1145/37401.37422.

[131] Y. Shen, Y. Ren, and H. Ding. “A 3D Conservative Sharp Interface
Method for Simulation of Compressible Two-Phase Flows”. In: Journal of
Computational Physics 403 (2020), p. 109107. doi: 10.1016/j.jcp.2019.
109107.

[132] T. S. Newman and H. Yi. “A Survey of the Marching Cubes Algorithm”.
In: Computers & Graphics 30.5 (2006), pp. 854–879. doi: 10.1016/j.cag.
2006.07.021.

[133] L. Gnam. “High Performance Mesh Adaptation for Technology Computer-
Aided Design”. Doctoral dissertation. TU Wien, 2020. doi: 10.34726/hss.
2020.76784.

[134] TCAD - Sentaurus Process. https://www.synopsys.com/silicon/tcad/
process- simulation/sentaurus- process.html. (accessed November 2,
2021).

[135] Silvaco Victory Process. https://silvaco.com/tcad/victory-process-
3d/. (accessed November 2, 2021).

[136] O. Ertl, L. Filipovic, P. Manstetten, X. Klemenschits, and J. Weinbub.
ViennaTS - The Vienna Topography Simulator. (accessed November 2, 2021).
url: https://github.com/viennats/viennats-dev.

[137] M. Quell, A. Toifl, A. Hössinger, S. Selberherr, and J. Weinbub.
“Parallelized Level-Set Velocity Extension Algorithm for Nanopatterning
Applications”. In: Proceedings of the International Conference on Simulation
of Semiconductor Processes and Devices (SISPAD). Udine: IEEE, 2019,
pp. 1–4. doi: 10.1109/SISPAD.2019.8870482.

[138] M. Quell, P. Manstetten, A. Hössinger, S. Selberherr, and J. Weinbub.
“Parallelized Construction of Extension Velocities for the Level-Set Method”.
In: Lecture Notes in Computer Science. Cham: Springer, 2020, pp. 348–358.
doi: 10.1007/978-3-030-43229-4_30.

[139] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In:
Numerische Mathematik 1.1 (1959), pp. 269–271. doi: 10.1007/BF01386390.

130

https://doi.org/10.1137/0728049
https://doi.org/10.1016/j.jcp.2016.11.050
https://doi.org/10.1090/gsm/019
https://doi.org/10.1145/37401.37422
https://doi.org/10.1016/j.jcp.2019.109107
https://doi.org/10.1016/j.jcp.2019.109107
https://doi.org/10.1016/j.cag.2006.07.021
https://doi.org/10.1016/j.cag.2006.07.021
https://doi.org/10.34726/hss.2020.76784
https://doi.org/10.34726/hss.2020.76784
https://www.synopsys.com/silicon/tcad/process-simulation/sentaurus-process.html
https://www.synopsys.com/silicon/tcad/process-simulation/sentaurus-process.html
https://silvaco.com/tcad/victory-process-3d/
https://silvaco.com/tcad/victory-process-3d/
https://github.com/viennats/viennats-dev
https://doi.org/10.1109/SISPAD.2019.8870482
https://doi.org/10.1007/978-3-030-43229-4_30
https://doi.org/10.1007/BF01386390

[140] D. L. Chopp. “Another Look at Velocity Extensions in the Level Set Method”.
In: SIAM Journal on Scientific Computing 31.5 (2009), pp. 3255–3273. doi:
10.1137/070686329.

[141] G. F. Ouyang, Y. C. Kuang, and X. M. Zhang. “A Fast Scanning Algorithm
for Extension Velocities in Level Set Methods”. In: Advanced Materials
Research 328.1 (2011), pp. 677–680. doi: 10.4028/www.scientific.net/
AMR.328-330.677.

[142] F. de Gournay and D. E. Gournay. “Velocity Extension for the Level-Set
Method and Multiple Eigenvalues in Shape Optimization”. In: SIAM Journal
on Control and Optimization 45.1 (2006), pp. 343–367. doi: 10 . 1137 /
050624108.

[143] T. J. Moroney, D. R. Lusmore, S. W. McCue, and D. L. McElwain.
“Extending Fields in a Level-Set Method by Solving a Biharmonic Equation”.
In: Journal of Computational Physics 343 (2017), pp. 170–185. doi: 10.1016/
j.jcp.2017.04.049.

[144] T. Aslam, S. Luo, and H. Zhao. “A Static PDE Approach for
MultiDimensional Extrapolation Using Fast Sweeping Methods”. In: SIAM
Journal on Scientific Computing 36.6 (2014), A2907–A2928. doi: 10.1137/
140956919.

[145] D. F. Richards, M. O. Bloomfield, S. Sen, and T. S. Cale. “Extension
Velocities for Level Set Based Surface Profile Evolution”. In: Journal of
Vacuum Science & Technology A: Vacuum, Surfaces, and Films 19.4 (2001),
pp. 1630–1635. doi: 10.1116/1.1380230.

[146] J. V. Gomez, D. Alvarez, S. Garrido, and L. Moreno. “Fast Methods for
Eikonal Equations: An Experimental Survey”. In: IEEE Access 7 (2019),
pp. 39005–39029. doi: 10.1109/ACCESS.2019.2906782.

[147] T. Hagerup and M. Maas. “Generalized Topological Sorting in Linear Time”.
In: Nordic Journal of Computing 1.710 (1993), pp. 279–288. doi: 10.1007/3-
540-57163-9_23.

[148] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. Cambridge: MIT Press, 2009.

[149] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. N.
Piramanayagam. “Spintronics Based Random Access Memory: A Review”.
In: Materials Today 20.9 (2017), pp. 530–548. doi: 10.1016/j.mattod.
2017.07.007.

[150] D. Apalkov, B. Dieny, and J. M. Slaughter. “Magnetoresistive Random
Access Memory”. In: Proceedings of the IEEE 104.10 (2016), pp. 1796–1830.
doi: 10.1109/JPROC.2016.2590142.

131

https://doi.org/10.1137/070686329
https://doi.org/10.4028/www.scientific.net/AMR.328-330.677
https://doi.org/10.4028/www.scientific.net/AMR.328-330.677
https://doi.org/10.1137/050624108
https://doi.org/10.1137/050624108
https://doi.org/10.1016/j.jcp.2017.04.049
https://doi.org/10.1016/j.jcp.2017.04.049
https://doi.org/10.1137/140956919
https://doi.org/10.1137/140956919
https://doi.org/10.1116/1.1380230
https://doi.org/10.1109/ACCESS.2019.2906782
https://doi.org/10.1007/3-540-57163-9_23
https://doi.org/10.1007/3-540-57163-9_23
https://doi.org/10.1016/j.mattod.2017.07.007
https://doi.org/10.1016/j.mattod.2017.07.007
https://doi.org/10.1109/JPROC.2016.2590142

[151] V. T. Nguyen, P. Sabon, J. Chatterjee, L. Tille, P. V. Coelho, S. Auffret,
R. Sousa, L. Prejbeanu, E. Gautier, L. Vila, and B. Dieny. “Novel Approach
for Nano-Patterning Magnetic Tunnel Junctions Stacks at Narrow Pitch: A
Route Towards high Density STT-MRAM Applications”. In: Proceedings of
IEEE International Electron Devices Meeting (IEDM). San Francisco: IEEE,
2017, pp. 38.5.1–38.5.4. doi: 10.1109/IEDM.2017.8268517.

[152] T. Endoh and H. Honjo. “A Recent Progress of Spintronics Devices for
Integrated Circuit Applications”. In: Journal of Low Power Electronics and
Applications 8.4 (2018), p. 44. doi: 10.3390/jlpea8040044.

[153] T. Hanyu, T. Endoh, D. Suzuki, H. Koike, Y. Ma, N. Onizawa, M. Natsui,
S. Ikeda, and H. Ohno. “Standby-Power-Free Integrated Circuits Using
MTJ-Based VLSI Computing”. In: Proceedings of the IEEE 104.10 (2016),
pp. 1844–1863. doi: 10.1109/JPROC.2016.2574939.

[154] M. Pak, W. Zanders, P. Wong, and S. Halder. “Comparison of Different
Lithography Approaches for STT-MRAM Orthogonal Array MTJ Pillars”.
In: Micro and Nano Engineering 10 (2021), p. 100082. doi: 10.1016/j.mne.
2021.100082.

[155] A. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R. S. Beach, A. Ong,
X. Tang, A. Driskill-Smith, W. H. Butler, P. B. Visscher, D. Lottis, E. Chen,
V. Nikitin, and M. Krounbi. “Basic Principles of STT-MRAM Cell Operation
in Memory Arrays”. In: Journal of Physics D: Applied Physics 46.7 (2013),
p. 074001. doi: 10.1088/0022-3727/46/7/074001.

[156] M. Gajek, J. J. Nowak, J. Z. Sun, P. L. Trouilloud, E. J. O’Sullivan,
D. W. Abraham, M. C. Gaidis, G. Hu, S. Brown, Y. Zhu, R. P. Robertazzi,
W. J. Gallagher, and D. C. Worledge. “Spin Torque Switching of 20 nm
Magnetic Tunnel Junctions with Perpendicular Anisotropy”. In: Applied
Physics Letters 100.13 (2012), p. 132408. doi: 10.1063/1.3694270.

[157] V. Ip, S. Huang, S. D. Carnevale, I. L. Berry, K. Rook, T. B. Lill, A. P.
Paranjpe, and F. Cerio. “Ion Beam Patterning of High-Density STT-RAM
Devices”. In: IEEE Transactions on Magnetics 53.2 (2017), pp. 1–4. doi:
10.1109/TMAG.2016.2603921.

[158] J. Chatterjee, T. Tahmasebi, J. Swerts, G. S. Kar, and J. De
Boeck. “Impact of Seed Layer on Post-Annealing Behavior of Transport
and Magnetic Properties of Co/Pt Multilayer-Based Bottom-Pinned
Perpendicular Magnetic Tunnel Junctions”. In: Applied Physics Express 8.6
(2015), p. 063002. doi: 10.7567/APEX.8.063002.

[159] M. Quell, G. Diamantopoulos, A. Hössinger, and J. Weinbub. “Shared-
Memory Block-Based Fast Marching Method for Hierarchical Meshes”. In:
Journal of Computational and Applied Mathematics 392 (2021), p. 113488.
doi: 10.1016/j.cam.2021.113488.

132

https://doi.org/10.1109/IEDM.2017.8268517
https://doi.org/10.3390/jlpea8040044
https://doi.org/10.1109/JPROC.2016.2574939
https://doi.org/10.1016/j.mne.2021.100082
https://doi.org/10.1016/j.mne.2021.100082
https://doi.org/10.1088/0022-3727/46/7/074001
https://doi.org/10.1063/1.3694270
https://doi.org/10.1109/TMAG.2016.2603921
https://doi.org/10.7567/APEX.8.063002
https://doi.org/10.1016/j.cam.2021.113488

[160] M. Sussman, P. Smereka, and S. Osher. “A Level Set Approach for
Computing Solutions to Incompressible Two-Phase Flow”. In: Journal of
Computational Physics 114.1 (1994), pp. 146–159. doi: 10 . 1006 / jcph .
1994.1155.

[161] L.-T. Cheng and Y.-H. Tsai. “Redistancing by Flow of Time Dependent
Eikonal Equation”. In: Journal of Computational Physics 227.8 (2008),
pp. 4002–4017. doi: 10.1016/j.jcp.2007.12.018.

[162] G. Russo and P. Smereka. “A Remark on Computing Distance Functions”.
In: Journal of Computational Physics 163.1 (2000), pp. 51–67. doi: 10.1006/
jcph.2000.6553.

[163] T. Wacławczyk. “A Consistent Solution of the Re-Initialization Equation in
the Conservative Level-Set Method”. In: Journal of Computational Physics
299 (2015), pp. 487–525. doi: 10.1016/j.jcp.2015.06.029.

[164] H. B. Curry. “The Method of Steepest Descent for Non-Linear Minimization
Problems”. In: Quarterly of Applied Mathematics 2.3 (1944), pp. 258–261.
doi: 10.1090/qam/10667.

[165] M. Elsey and S. Esedoḡlu. “Fast and Accurate Redistancing by Directional
Optimization”. In: SIAM Journal on Scientific Computing 36.1 (2014),
A219–A231. doi: 10.1137/120889447.

[166] M. W. Royston. “A Hopf-Lax Formulation of the Eikonal Equation for
Parallel Redistancing and Oblique Projection”. PhD thesis. University of
California, 2017.

[167] B. Lee, J. Darbon, S. Osher, and M. Kang. “Revisiting the Redistancing
Problem Using the Hopf–Lax Formula”. In: Journal of Computational
Physics 330 (2017), pp. 268–281. doi: 10.1016/j.jcp.2016.11.005.

[168] M. Royston, A. Pradhana, B. Lee, Y. T. Chow, W. Yin, J. Teran, and S.
Osher. “Parallel Redistancing Using the Hopf–Lax Formula”. In: Journal of
Computational Physics 365 (2018), pp. 7–17. doi: 10.1016/j.jcp.2018.
01.035.

[169] J. A. Sethian and A. M. Popovici. “3-D Traveltime Computation Using the
Fast Marching Method”. In: Geophysics 64.2 (1999), pp. 516–523. doi: 10.
1190/1.1444558.

[170] A. M. Popovici and J. A. Sethian. “3-D Imaging Using Higher Order Fast
Marching Traveltimes”. In: Geophysics 67.2 (2002), pp. 604–609. doi: 10.
1190/1.1468621.

[171] J. Yang. “An Easily Implemented, Block-Based Fast Marching Method
with Superior Sequential and Parallel Performance”. In: SIAM Journal
on Scientific Computing 41.5 (2019), pp. C446–C478. doi: 10 . 1137 /
18M1213464.

[172] J. N. Tsitsiklis. “Efficient Algorithms for Globally Optimal Trajectories”. In:
IEEE Transactions on Automatic Control 40.9 (1995), pp. 1528–1538. doi:
10.1109/9.412624.

133

https://doi.org/10.1006/jcph.1994.1155
https://doi.org/10.1006/jcph.1994.1155
https://doi.org/10.1016/j.jcp.2007.12.018
https://doi.org/10.1006/jcph.2000.6553
https://doi.org/10.1006/jcph.2000.6553
https://doi.org/10.1016/j.jcp.2015.06.029
https://doi.org/10.1090/qam/10667
https://doi.org/10.1137/120889447
https://doi.org/10.1016/j.jcp.2016.11.005
https://doi.org/10.1016/j.jcp.2018.01.035
https://doi.org/10.1016/j.jcp.2018.01.035
https://doi.org/10.1190/1.1444558
https://doi.org/10.1190/1.1444558
https://doi.org/10.1190/1.1468621
https://doi.org/10.1190/1.1468621
https://doi.org/10.1137/18M1213464
https://doi.org/10.1137/18M1213464
https://doi.org/10.1109/9.412624

[173] J. Gomez Gonzalez and S. Engineering. “Fast Marching Methods in Path and
Motion Planning: Improvements and High-Level Applications”. PhD thesis.
Universidad Carlos III Madrid, 2015.

[174] F. Mut, G. C. Buscaglia, and E. A. Dari. “New Mass-Conserving Algorithm
for Level Set Redistancing on Unstructured Meshes”. In: Journal of Applied
Mechanics 73.6 (2006), pp. 1011–1016. doi: 10.1115/1.2198244.

[175] J. Qian, Y.-T. Zhang, and H.-K. Zhao. “Fast Sweeping Methods for Eikonal
Equations on Triangular Meshes”. In: SIAM Journal on Numerical Analysis
45.1 (2007), pp. 83–107. doi: 10.1137/050627083.

[176] Y. Wu, J. Man, and Z. Xie. “A Double Layer Method for Constructing Signed
Distance Fields from Triangle Meshes”. In: Graphical Models 76.4 (2014),
pp. 214–223. doi: 10.1016/j.gmod.2014.04.011.

[177] V. Ramanuj and R. Sankaran. “High Order Anchoring and Reinitialization of
Level Set Function for Simulating Interface Motion”. In: Journal of Scientific
Computing (2019). doi: 10.1007/s10915-019-01076-0.

[178] H. Zhao. “A Fast Sweeping Method for Eikonal Equations”. In: Mathematics
of Computation 74.250 (2004), pp. 603–628. doi: 10.1090/S0025-5718-04-
01678-3.

[179] S. Bak, J. McLaughlin, and D. Renzi. “Some Improvements for the Fast
Sweeping Method”. In: SIAM Journal on Scientific Computing 32.5 (2010),
pp. 2853–2874. doi: 10.1137/090749645.

[180] M. Detrixhe, F. Gibou, and C. Min. “A Parallel Fast Sweeping Method for
the Eikonal Equation”. In: Journal of Computational Physics 237 (2013),
pp. 46–55. doi: 10.1016/j.jcp.2012.11.042.

[181] A. A. Nikitin, A. S. Serdyukov, and A. A. Duchkov. “Cache-Efficient Parallel
Eikonal Solver for Multicore CPUs”. In: Computational Geosciences 22.3
(2018), pp. 775–787. doi: 10.1007/s10596-018-9725-9.

[182] W.-K. Jeong and R. T. Whitaker. “A Fast Iterative Method for Eikonal
Equations”. In: SIAM Journal on Scientific Computing 30.5 (2008), pp. 2512–
2534. doi: 10.1137/060670298.

[183] J. Weinbub and A. Hössinger. “Accelerated Redistancing for Level Set-
Based Process Simulations with the Fast Iterative Method”. In: Journal of
Computational Electronics 13.4 (2014), pp. 877–884. doi: 10.1007/s10825-
014-0604-x.

[184] T. Gillberg. “A Semi-Ordered Fast Iterative Method (SOFI) for Monotone
Front Propagation in Simulations of Geological Folding”. In: Proceedings of
the International Congress on Modelling and Simulation (MSSANZ). Perth:
Modelling, Simulation Society of Australia, and New Zealand, Inc., 2011,
pp. 641–647. doi: 10.36334/modsim.2011.A9.gillberg.

134

https://doi.org/10.1115/1.2198244
https://doi.org/10.1137/050627083
https://doi.org/10.1016/j.gmod.2014.04.011
https://doi.org/10.1007/s10915-019-01076-0
https://doi.org/10.1090/S0025-5718-04-01678-3
https://doi.org/10.1090/S0025-5718-04-01678-3
https://doi.org/10.1137/090749645
https://doi.org/10.1016/j.jcp.2012.11.042
https://doi.org/10.1007/s10596-018-9725-9
https://doi.org/10.1137/060670298
https://doi.org/10.1007/s10825-014-0604-x
https://doi.org/10.1007/s10825-014-0604-x
https://doi.org/10.36334/modsim.2011.A9.gillberg

[185] J. Weinbub, F. Dang, T. Gillberg, and S. Selberherr. “Shared-Memory
Parallelization of the Semi-Ordered Fast Iterative Method”. In: Proceedings
of the Symposium on High Performance Computing (HPDC). Alexandria:
ACM Press, 2015, pp. 217–224.

[186] J. Weinbub and A. Hössinger. “Comparison of the Parallel Fast Marching
Method, the Fast Iterative Method, and the Parallel Semi-Ordered Fast
Iterative Method”. In: Procedia Computer Science 80 (2016), pp. 2271–2275.
doi: 10.1016/j.procs.2016.05.408.

[187] S. Hong and W.-K. Jeong. “A Group-Ordered Fast Iterative Method for
Eikonal Equations”. In: IEEE Transactions on Parallel and Distributed
Systems 28.2 (2017), pp. 318–331. doi: 10.1109/TPDS.2016.2567397.

[188] M. A. Herrmann. “A Domain Decomposition Parallelization of the Fast
Marching Method”. In: Center for Turbulence Research (2003), pp. 213–225.

[189] J. Weinbub and A. Hössinger. “Shared-Memory Parallelization of the Fast
Marching Method Using an Overlapping Domain-Decomposition Approach”.
In: Proceedings of the High Performance Computing Symposium (HPC). San
Diego: Society for Computer Simulation International, 2016, pp. 1–8. doi:
10.22360/SpringSim.2016.HPC.052.

[190] G. Diamantopoulos, J. Weinbub, A. Hössinger, and S. Selberherr.
“Evaluation of the Shared-Memory Parallel Fast Marching Method for Re-
Distancing Problems”. In: Proceedings of the International Conference on
Computational Science and Its Applications (ICCSA). Trieste: IEEE, 2017,
pp. 1–8. doi: 10.1109/ICCSA.2017.7999648.

[191] E. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer.
“Fabrication of Microstructures with High Aspect Ratios and Great
Structural Heights by Synchrotron Radiation Lithography, Galvanoforming,
and Plastic Moulding (LIGA Process)”. In: Microelectronic Engineering 4.1
(1986), pp. 35–56. doi: 10.1016/0167-9317(86)90004-3.

[192] B. Radjenović, J. K. Lee, and M. Radmilović-Radjenović. “Sparse Field Level
Set Method for Non-Convex Hamiltonians in 3D Plasma Etching Profile
Simulations”. In: Computer Physics Communications 174.2 (2006), pp. 127–
132. doi: 10.1016/j.cpc.2005.09.010.

[193] P. Liu, D. Zhang, J. Guo, W. Wang, and F. Yang. “Optimization of
Photoresist Development and DRIE Processes to Fabricate High Aspect
Ratio Si Structure in 5 nm Scale”. In: Journal of Micromechanics and
Microengineering 29.3 (2019), p. 035006. doi: 10.1088/1361-6439/aaf940.

[194] A. Belyaev and P.-A. Fayolle. “An ADMM-Based Scheme for Distance
Function Approximation”. In: Numerical Algorithms 84.3 (2020), pp. 983–
996. doi: 10.1007/s11075-019-00789-5.

[195] N. Cornea, D. Silver, and P. Min. “Curve-Skeleton Applications”. In:
Proceedings of IEEE Visualization (VIS). Minneapolis: IEEE, 2005, pp. 95–
102. doi: 10.1109/VISUAL.2005.1532783.

135

https://doi.org/10.1016/j.procs.2016.05.408
https://doi.org/10.1109/TPDS.2016.2567397
https://doi.org/10.22360/SpringSim.2016.HPC.052
https://doi.org/10.1109/ICCSA.2017.7999648
https://doi.org/10.1016/0167-9317(86)90004-3
https://doi.org/10.1016/j.cpc.2005.09.010
https://doi.org/10.1088/1361-6439/aaf940
https://doi.org/10.1007/s11075-019-00789-5
https://doi.org/10.1109/VISUAL.2005.1532783

Own Publications

Journal Articles

[1] M. Quell, V. Suvorov, A. Hössinger, and J. Weinbub. “Parallel Velocity
Extension for Level-Set-Based Material Flow on Hierarchical Meshes in
Process TCAD”. In: IEEE Transactions on Electron Devices 68.11 (2021),
pp. 5430–5437. doi: 10.1109/TED.2021.3087451.

[2] M. Quell, G. Diamantopoulos, A. Hössinger, and J. Weinbub. “Shared-
Memory Block-Based Fast Marching Method for Hierarchical Meshes”. In:
Journal of Computational and Applied Mathematics 392 (2021), pp. 113488-
1–113488-15. doi: 10.1016/j.cam.2021.113488.

[3] W. Auzinger, H. Hofstätter, O. Koch, and M. Quell. “Adaptive Time
Propagation for Time-Dependent Schrödinger Equations”. In: International
Journal of Applied and Computational Mathematics 7.1 (2021), pp. 6-1–6-14.
doi: 10.1007/s40819-020-00937-9.

[4] A. Toifl, M. Quell, X. Klemenschits, P. Manstetten, A. Hössinger, S.
Selberherr, and J. Weinbub. “The Level-Set Method for Multi-Material
Wet Etching and Non-Planar Selective Epitaxy”. In: IEEE Access 8 (2020),
pp. 115406–115422. doi: 10.1109/ACCESS.2020.3004136.

[5] W. Auzinger, I. Brezinova, H. Hofstätter, O. Koch, and M. Quell. “Practical
Splitting Methods for the Adaptive Integration of Nonlinear Evolution
Equations. Part II: Comparison of Local Error Estimation and Step-Selection
Strategies for Nonlinear Schrödinger and Wave Equations”. In: Computer
Physics Communications 234 (2019), pp. 55–71. doi: 10.1016/j.cpc.2018.
08.003.

[6] W. Auzinger, H. Hofstätter, O. Koch, M. Quell, and M. Thalhammer.
“A Posteriori Error Estimation for Magnus-Type Integrators”. In: ESAIM:
Mathematical Modelling and Numerical Analysis 53.1 (2019), pp. 197–218.
doi: 10.1051/m2an/2018050.

[7] W. Auzinger, O. Koch, and M. Quell. “Adaptive High-Order Splitting
Methods for Systems of Nonlinear Evolution Equations with Periodic
Boundary Conditions”. In: Numerical Algorithms 75.1 (2017), pp. 261–283.
doi: 10.1007/s11075-016-0206-8.

136

https://doi.org/10.1109/TED.2021.3087451
https://doi.org/10.1016/j.cam.2021.113488
https://doi.org/10.1007/s40819-020-00937-9
https://doi.org/10.1109/ACCESS.2020.3004136
https://doi.org/10.1016/j.cpc.2018.08.003
https://doi.org/10.1016/j.cpc.2018.08.003
https://doi.org/10.1051/m2an/2018050
https://doi.org/10.1007/s11075-016-0206-8

Book Contributions

[8] M. Quell, G. Diamantopoulos, A. Hössinger, S. Selberherr, and J.
Weinbub. “Parallel Correction for Hierarchical Re-Distancing Using the Fast
Marching Method”. In: Advances in High Performance Computing, Studies in
Computational Intelligence. Cham: Springer International Publishing, 2020,
pp. 438–451. doi: 10.1007/978-3-030-55347-0_37.

[9] M. Quell, P. Manstetten, A. Hössinger, S. Selberherr, and J. Weinbub.
“Parallelized Construction of Extension Velocities for the Level-Set Method”.
In: Parallel Processing and Applied Mathematics, Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2020, pp. 348–358. doi:
10.1007/978-3-030-43229-4_30.

[10] W. Auzinger, H. Hofstätter, O. Koch, M. Quell, and M. Thalhammer. “A
Posteriori Error Estimation for Magnus-Type Integrators”. In: ASC Report
1/2018. Wien: Vienna University of Technology, 2018, pp. 1–19.

[11] W. Auzinger, I. Brezinova, H. Hofstätter, O. Koch, and M. Quell. “Practical
Splitting Methods for the Adaptive Integration of Nonlinear Evolution
Equations. Part II: Comparison of Local Error Estimation and Step-Selection
Strategies for Nonlinear Schrödinger and Wave Equations”. In: ASC Report
14/2017. Wien: Vienna University of Technology, 2017, pp. 1–40.

[12] W. Auzinger, O. Koch, and M. Quell. “Adaptive High-Order Splitting
Methods for Systems of Nonlinear Evolution Equations with Periodic
Boundary Conditions”. In: ASC Report 41/2015. Wien: Vienna University
of Technology, 2015, pp. 1–29.

[13] W. Auzinger, O. Koch, and M. Quell. “Splittingverfahren für die Gray-
Scott-Gleichung”. In: ASC Report 07/2015. Wien: Vienna University of
Technology, 2015, pp. 1–11.

Conference Contributions

[14] C. Lenz, A. Scharinger, M. Quell, P. Manstetten, A. Hössinger, and
J. Weinbub. “Evaluating Parallel Feature Detection Methods for Implicit
Surfaces”. In: Proceedings of the Austrian-Slovenian HPC Meeting (ASHPC).
Maribor: University of Ljubljana, 2021, p. 31. doi: 10.3359/2021hpc.

[15] M. Quell, G. Diamantopoulos, A. Hössinger, and J. Weinbub. “Shared-
Memory Block-Based Fast Marching Method for Hierarchical Meshes”.
In: Proceedings of the European Seminar on Computing (ESCO). Pilsen:
University of West Bohemia, 2020.

[16] M. Quell, G. Diamantopoulos, A. Hössinger, S. Selberherr, and J. Weinbub.
“Parallelized Bottom-Up Correction in Hierarchical Re-Distancing for
Topography Simulation”. In: Procedings of the High Performance Computing
Conference (HPC). Borovets: Bulgarian Academy of Sciences, 2019, p. 45.

137

https://doi.org/10.1007/978-3-030-55347-0_37
https://doi.org/10.1007/978-3-030-43229-4_30
https://doi.org/10.3359/2021hpc

[17] M. Quell, P. Manstetten, A. Hössinger, S. Selberherr, and J. Weinbub.
“Parallelized Construction of Extension Velocities for the Level-Set Method”.
In: Proceedings of the International Conference on Parallel Processing
and Applied Mathematics (PPAM). Bialystok: Czestochowa University of
Technology, 2019, p. 42.

[18] M. Quell, A. Toifl, A. Hössinger, S. Selberherr, and J. Weinbub.
“Parallelized Level-Set Velocity Extension Algorithm for Nanopatterning
Applications”. In: Proceedings of the International Conference on Simulation
of Semiconductor Processes and Devices (SISPAD). Udine: IEEE, 2019,
pp. 335–338. doi: 10.1109/SISPAD.2019.8870482.

[19] A. Toifl, M. Quell, A. Hössinger, A. Babayan, S. Selberherr, and J. Weinbub.
“Novel Numerical Dissipation Scheme for Level-Set Based Anisotropic
Etching Simulations”. In: Proceedings of the International Conference on
Simulation of Semiconductor Processes and Devices (SISPAD). Udine: IEEE,
2019, pp. 327–330. doi: 10.1109/SISPAD.2019.8870443.

[20] G. Diamantopoulos, P. Manstetten, L. Gnam, V. Simonka, L. F. Aguinsky,
M. Quell, A. Toifl, A. Hössinger, and J. Weinbub. “Recent Advances in
High Performance Process TCAD”. In: Proceedings of the SIAM Conference
on Computational Science and Engineering (CSE). Spokane: Society for
Industrial and Applied Mathematics, 2019, p. 335.

[21] L. Gnam, P. Manstetten, M. Quell, K. Rupp, S. Selberherr, and J. Weinbub.
“A Flexible Shared-Memory Parallel Mesh Adaptation Framework”. In:
Proceedings of the International Conference on Computational Science and
Its Applications (ICCSA). Saint Petersburg: IEEE, 2019, pp. 158–165. doi:
10.1109/ICCSA.2019.00016.

[22] A. Hössinger, P. Manstetten, G. Diamantopoulos, M. Quell, and J.
Weinbub. “High Performance Computing Aspects in Semiconductor Process
Simulation”. In: Proceedings of the Workshop on High Performance TCAD
(WHPTCAD). Chicago: Institute for Microelectronics, TU Wien, 2019,
pp. 3–4.

[23] P. Manstetten, G. Diamantopoulos, L. Gnam, L. F. Aguinsky, M. Quell,
A. Toifl, A. Scharinger, A. Hössinger, M. Ballicchia, M. Nedjalkov, and J.
Weinbub. “High Performance TCAD: From Simulating Fabrication Processes
to Wigner Quantum Transport”. In: Proceedings of the Workshop on High
Performance TCAD (WHPTCAD). Chicago: Institute for Microelectronics,
TU Wien, 2019, p. 13.

138

https://doi.org/10.1109/SISPAD.2019.8870482
https://doi.org/10.1109/SISPAD.2019.8870443
https://doi.org/10.1109/ICCSA.2019.00016

Curriculum Vitae

Personal Information
Name Michael Julian Augustus Quell

Nationality Austrian

Place of Birth Vienna, Austria

Education
06/2018 - present Doctoral Program, Electrical Engineering,

Institute for Microelectronics,
Technische Universität (TU) Wien

04/2016 - 04/2018 Graduate Studies (MSc), Technical Mathematics,
TU Wien, Faculty of Mathematics and Geoinformation

10/2012 - 04/2016 Graduate Studies (BSc), Technical Mathematics,
TU Wien, Faculty of Mathematics and Geoinformation

09/2011 - 09/2012 Active Reserve Officer Training, Signaling,
Fernmeldetruppenschule, Wien

09/2003 - 06/2011 Matura, Majors: Mathematics, German, Applied
Computer Aided Geometry, English(FL)
BRG 8 Albertgasse, Wien

Research Positions
06/2019 - present University Assistant,

Institute for Microelectronics, TU Wien
06/2018 - present Project Assistant, Christian Doppler Laboratory for

High Performance TCAD,
Institute for Microelectronics, TU Wien

10/2014 - 10/2016 Study Assistant, Institute for Analysis and Scientific
Computing, TU Wien

139

	Abstract
	Kurzfassung
	Acknowledgement
	Contents
	List of Acronyms
	Introduction
	Motivational Example: Thermal Oxidation
	Research Goals
	Outline

	Hierarchical Grids
	Discretization
	Refinement
	Nesting Criteria

	Parallelization and Hardware
	General Parallelization Strategies
	Benchmark Systems

	The Level-Set Method
	Theoretical Background
	Level-Set Function
	Signed-Distance Function
	Interface Movement

	Reference Simulation Workflow
	Initial Interfaces
	Process Model
	Interface Velocity
	Velocity Extension
	Advection
	Re-Distancing
	Re-Gridding
	Interface Extraction

	Software

	Parallel Velocity Extension
	General Ideas
	Extension from Cross Points to Close Points
	Fast Marching Method
	Data Structures
	Parallelization
	Hierarchical Grids
	Benchmark Examples and Analyses
	STT-MRAM
	Thermal Oxidation

	Summary

	Load-Balanced Parallel Re-Distancing
	Eikonal Equation
	Block Decomposition
	Benchmark Examples and Analyses
	Point Source
	Mandrel
	Quad-Hole

	Summary

	Bottom-Up Correction for Re-Distancing
	Algorithmic Implementation
	Benchmark Examples and Analyses
	Corner
	Two-Dimensional Trench
	Three-Dimensional Trench

	Summary

	Conclusion and Outlook
	Bibliography
	Own Publications
	Curriculum Vitae

