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Abstract

Deep neural networks are being increasingly utilized for making significant decisions.
Understanding these decisions can be required by the GDPR’s ”right to explain” or other
legal claims. It may be necessary to restore previously used versions as these neural
networks commonly require updating over time, e.g., due to data evolution. Tracking
versions in an online learning setting can be challenging as newer versions must be
frequently saved while minimizing their impact on the learning process. The optimization
and measurement of a version system for an online setting have yet to be explored.

This work proposes a novel Versioning System for Online Learning systems (VSOL) that
can be easily integrated into existing machine learning workflows without requiring a
modification of the learning process. The VSOL is integrated as a framework specific
callback for the Keras Machine Learning Framework, showcasing the effortless integration
into a ML Framework. Several compression approaches suitable for fast execution and
requiring minimal storage space were designed and contextualized, bringing together
different research fields addressing compression. The VSOL was tested under constant
virtual data drift, simulated through introducing an unseen label from a static, not online
specific data set. A convolutional as well as a long short-term memory neural network
were evaluated where their drift was aligned by using specific parameters and a novel
measurement unit.

While executing faster than the learning time of one data batch and without affecting the
accuracy, the resulting compression ratio lies between 12.5 to 30.0. Accepting a slower
execution and an accuracy decrease of 1% lead to a compression ratio between 52.2 and
129.7. This thesis shows that a versioning system can be easily integrated and achieve
a competitive compression ratio while satisfying the constraints of an online learning
setting.

Keywords Deep Learning · Model Versioning · Online Learning · Model Compression
· Drift Simulation · Traceability in Deep Learning · Model Deployment
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Kurzfassung

Mehrschichtige neuronale Netze werden zunehmend für wichtige Entscheidungen einge-
setzt. Die Nachvollziehbarkeit dieser Entscheidungen kann aufgrund des in der Datenschutz-
Grundverordnung verankerten ”Anspruchs auf Erläuterung von Entscheidungen” oder
anderer Rechtsansprüche erforderlich sein. Es kann sich die Notwendigkeit ergeben, zuvor
verwendete Versionen wiederherzustellen, da diese neuronalen Netze in der Regel im
Laufe der Zeit aktualisiert werden müssen, z.B. aufgrund einer Datenveränderung. Die
Versionsnachverfolgung in einer Online-Lernumgebung kann eine Herausforderung dar-
stellen, da neuere Versionen häufig gespeichert, ihre Auswirkungen auf den Lernprozess
jedoch minimiert werden müssen. Die Optimierung und Messung eines Versionssystems
für eine Online-Umgebung ist bisher unerforscht.

In dieser Diplomarbeit wird ein neuartiges ’Versionierungssystem für Online-Lernsysteme’
(VSOL) vorgeschlagen, das leicht in bestehende Workflows für maschinelles Lernen
integriert werden kann, ohne, dass eine Änderung des Lernprozesses erforderlich ist.
Das VSOL wird als frameworkspezifischer Callback für das Keras Machine Learning
Framework integriert, um die einfache Integration in ein ML Framework zu demonstrieren.
Verschiedene Kompressionsansätze, die für eine schnelle Ausführung geeignet sind und nur
minimalen Speicherplatz benötigen, wurden entworfen und angepasst, wobei verschiedene
Forschungsbereiche, die sich mit Kompression befassen, zusammengebracht wurden. Das
VSOL wurde unter konstantem virtuellen Datendrift getestet, der durch die Einführung
eines unbekannten Labels aus einem statischen, nicht online-spezifischen Datensatz
simuliert wurde. Es wurden sowohl ein faltendes neuronales Netzwerk als auch ein
neuronales Netzwerk mit langem Kurzzeitgedächtnis evaluiert, wobei deren Drift durch
die Verwendung spezifischer Parameter und einer neuartigen Messeinheit aneinander
angeglichen wurde.

Bei einer Ausführungszeit, die unter der Lernzeit eines Batches liegt, und ohne die
Genauigkeit zu beeinträchtigen, erzielt das VSOL eine Kompressionsrate zwischen 12,5
und 30,0. Wird eine langsamere Ausführung und eine Verringerung der Genauigkeit um
1% in Kauf genommen, ergibt sich eine Kompressionsrate zwischen 52,2 und 129,7. Diese
Diplomarbeit zeigt, dass ein Versionierungssystem leicht in Online-Lernumgebungen
integriert und dabei eine kompetitive Kompressionsrate erreicht werden kann, während
es gleichzeitig deren Einschränkungen berücksichtigt.
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CHAPTER 1
Introduction

1.1 Motivation & Problem Statement
As models in an online machine learning setting evolve continuously over time, it is
important to be able to restore earlier deployed versions. If a model degrades or errors are
detected, a rollback to an older version can be the only fast solution. This can be caused
by data meant to poison the model. In this case, such older saved versions can even help
to identify the bad data and exclude it for further training. Also, for compliance it is
important to be able to find out why a model came to a certain decision at a certain
point in time. Such compliance requirements can arise from GDPR’s ”right to explain” or
industries where products have to be traceable and follow strict transparency guidelines
judged by government institutions such as in the medical sector. Older model versions
can give an insight into how and to what degree which data impacted the model to what
degree. Such version control similar systems are therefore relevant for data scientists
creating the models as well as operations staff responsible for deploying such models.
All of the mentioned aspects gain in importance in an online learning setting. Firstly, the
new data is less controllable due to the fact that no human is manually evaluating the
used data in contrast to a pre-trained model setting where the training data is usually
carefully evaluated prior to use. Therefore, backtracking model issues becomes more
important. Additionally, the amount and frequency of new data and the resulting new
deployed model versions can be harder to manage then in an experimental environment
where the used data is fixed.
Current model saving systems described in the scientific literature (see Section 2.1), to
our knowledge, mostly describe their applicability before the deployment phase. Such
systems include documenting the experiment phase for finding a fitting model set-up or
archiving models to be redistributed over a website for further use. Hence, important
properties for an online learning setting are often disregarded, such as the execution
speed, the easy of integration and the memory impact.
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1. Introduction

The system proposed by this diploma thesis should be able to save all versions deployed
by an online learning system, if feasible. The most important aspect will be to impact
the learning process itself as little as possible when saving the individual versions, i.e.
states of the model. Otherwise, it affects its main purpose in the first place. This includes
not altering the model training process, which also reduces the effort for integration.
To measure these performance requirements and to demonstrate the ease of integration
into an actual learning flow, it should be integrated in an existing machine learning
framework and thus be implemented as a framework extension. However, the resulting
findings should be applicable for other frameworks. To be able to analyze a former
decision, it must be possible to reconstruct the used version at that point in time. From a
user’s perspective, recreating the version should be as easy as providing that timestamp.
Online learning systems can be heterogeneous e.g. having a changing model architecture.
Different to other systems meant to capture such diverse model layouts, this system
would only save the weights of an established and fixed model layout. Distributing a
saved version is a related topic when talking about versioning which will only be discussed
in theory and not implemented or evaluated. The source code of both the resulting
Versioning System for Online Learning systems (VSOL) and its evaluation is available on
GitHub1.

In summary, the main contributions of this thesis are the following:

• Designing and contextualizing different appropriate neural network compression
algorithms

• Implementing the designed compression algorithms

• Evaluating and combining implemented algorithms, resulting in fitting and pre-
configured combinations for different requirements

• Designing and implementing an automatic online learning drift simulation system
and a matching evaluation system

• Integrating the Versioning System for Online Learning systems and drift simulation
into the machine learning framework Keras to demonstrate the ease of integrated

• Bringing together several separate research areas in the context of online learning

1.2 Research Question
Main Research Question What is an appropriate way to store the sequence of states
of an evolving deep learning model in an online learning setting?
Saving the model state makes past model decisions traceable and old states can be reused
for other models. Current system such as [MLDD17a] or [CCD+20] focus on documenting

1https://github.com/christopheitenberger/VSOL
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1.2. Research Question

the model creation process during the initial model experimentation phase. Therefore,
they are not optimized or tested to be applied for or integrated into an online learning
process.

Finding an ’appropriate way to store ... the model in an online learning setting’, as
mentioned in the main research question, requires that characteristics specific to online
learning compared to offline learning are present in during evaluation of this ’way to
store the model’. As prerequisite, the online specific characteristics during the evaluation
are not treated as a separate research question, as the RQs only address the ’way to store
the model’ itself, but still will be addressed in this thesis.

Using such a State Saving Solution, as referred to in this section, is only feasible if the
learning process and therefore the main benefit of an online model is only mildly impacted.
’Appropriate’, in summary, means having minimal to no impact on the model’s error rate
(such as accuracy), on the duration of the training process and, on the storage overhead,
while requiring low effort for reconstructing a specific state. The following sub questions
will highlight these aspects and how they will be evaluated:

RQ1: Impact Reduction on Online Learning To what extent can the performance
impact of saving intermediate model states during online learning be minimized?
Saving the state is only feasible if the main benefit of having a model that can react
quickly to new data is not affected by the saving process. As mentioned above, most
systems focus on saving the state of models during the exploratory phase of creating a
model and are not deeply integrated in a machine learning framework. It remains unclear
wether they are suitable for such use.
To evaluate this question, the processing time for saving the models with the State Saving
Solution after each online learning iteration will be measured. An increased processing
time delays the training process which increases the reaction time to new data.
When loading each saved model through the State Saving Solution in a second evaluation
phase, which simulates the retrieval of the weights, after they have been stored in the
first phase, the error rate and decompression time will be measured. The results will be
compared against different baselines. Deviating from the baseline error rate would be the
most undesirable outcome. But to evaluate the full potential of the State Saving Solution,
different thresholds besides zero are evaluated. Although the decompression time is
mentioned in the description of the measurement above, it is captured by ’RQ4: Reduce
Retrieval Time’ (Section 1.2) since it is not as important as the error rate deviation or
processing time.

RQ2: Reduce Required Storage To what extent can the storage amount of the
saved model states be reduced?
Considering that a version of an already large model can be created every second, the
resulting storage costs can be significant and influence the decision on using such a tool.
[MLDD17a] already implements a difference-based saving system but it is not lossless

3



1. Introduction

and can be further improved to use even less storage. Other float compression algorithms
exist [CAB18] but besides the implementation in the former mentioned paper, none were
tested or deployed in this setting to our knowledge. Although this is not the first listed
research question, most of the effort will be invested in optimizing it while still fulfilling
’RQ1: Impact Reduction on Online Learning’ (Section 1.2).
This question is evaluated by measuring the size of the saved models through the State
Saving Solution, resulting from the evaluation process described in ’RQ1: Impact Reduc-
tion on Online Learning’ (Section 1.2). Different types of machine learning applications
will be evaluated to ensure that the State Saving Solution works for not just a specific
application, losing its general applicability. This compression ratio will be compared
against compressing the saved model from the framework with a lossless compression
algorithm like Zstandard and the results of [MLDD17a].

RQ3: Reduce Integration Effort To what extent can the integration process of such
a model state saving system for a concrete machine learning framework be simplified for
a data scientist?
To keep the difficulty threshold of integrating the State Saving Solution as low as possible
for the end user like a data scientist or an application developer, it should be easy to
add it to an existing project. Other systems mentioned in ’RQ1: Impact Reduction on
Online Learning’ (Section 1.2) need an extensive setup procedure such as managing an
associated database, or excluding the integration into the machine learning framework.
An additional database can also impact the performance of the learning process. The
learning process should also not be changed since this would require a more extensive
integration process and potential adaptions to the learning process itself from a data
science to handle the caused deviations. [PDMM21] for example changes the training
weights of each batch, as described for the specific compression approach ’Top-K’ (Sec-
tion 2.2.2). To the our knowledge, research about such kind extension system with low
setup effort does not yet exist besides the conventional snapshot system of the machine
learning framework. Also, the other systems can only be executed manually while the
State Saving Solution has to execute automatically.
The ease of use will be self assessed by commenting on a tutorial code section which
shows how to integrate the State Saving Solution into a machine learning pipeline. Be-
sides highlighting the benefits and drawbacks, the quantitative measures of additional
parameters and lines of code will be analyzed. Also, the requirements of not changing the
learning process and not requiring external resources, as listed in the paragraph above,
must be fulfilled.

RQ4: Reduce Retrieval Time To what extent can the execution time of the retrieval
process of a former saved model state be reduced?
Data scientists or other actors who need to retrieve a saved version, want this process to
happen in a timely manner since the State Saving Solution otherwise becomes unusable.

4



1.3. Methodology

This question is in direct conflict to ’RQ2: Reduce Required Storage’ (Section 1.2) since
a higher compression increases the retrieval time. RQ2 remains more important but this
measurement should not get out of hand and therefore also be evaluated. The papers
cited in RQ2 already highlight this tradeoff. [MLDD17a] mentions this tradeoff to be a
main concern. But since RQ2 will lean to a more compression emphasized implementation
and the mentioned paper did not explore this tradeoff combination, this question will be
new in the area of model compression.
The retrieval will be evaluated by measuring the time until the model is loaded from storage
and ready to be used, assessed for all saved models. This decompression measurement
will be compared to a fix maximum loading time.

1.3 Methodology
Literature Research A systematic literature research is conducted, as described below.
In the first step of the literature research, we acquire a broad overview to understand the
presented topics and to find a first set of appropriate words for a search query. This is
accomplished by reading overview papers and popular papers of the given fields and some
of their references. The resulting search queries of the first step are then used to find
new and more specific papers. They can the help to refine the given search queries. This
process is repeated until a saturation of high quality and recent set of papers is found.

Gaining an overview over current model versioning systems is important to assess how
they fulfill the research questions 1-4. This can help to improve on them or even show
how the proposed system is novel in this field.

Assessing the specifics of online learning and how online learning is accomplished is also
required to create a realistic evaluation conditions and an appropriate neural network
learning method. Hence, it is also required for all research questions since it is the basis
for any measurement and the proper integration into a machine learning system.

Finding existing methods to compress floats and especially neural networks in a continuous
setting helps to answer RQ 1, 2 and 4. Different to the previous research topics, this
should not be evaluated to the full extend since this is a very broad and extensive field
and the Versioning System for Online Learning systems should only include several
approaches to show how they could interact instead of featuring only the most cutting
edge approaches of all fields.

Since the topics ’online learning’ and ’compression of neural network’ are very broad,
the search queries should be broad and versatile to find the most promising papers of
the field instead of going in depth for a specific topic. The opposite is applied for the
research field ’model versioning systems’

Developing a Software Artifact One result of this thesis should be the Versioning
System for Online Learning systems, already described in more detail in ’Motivation &
Problem Statement’ (Section 1.1). In order to measure the degree to which it fulfills

5



1. Introduction

the requirements described in the research questions (see Section 1.2), it has to be
materialized as a software artifact.

Extending a Framework The software artifact should not impact the performance
of the learning process (RQ1) and should be easy to use (RQ3). Therefore, the software
artifact should be an extension of a framework.

Prototyping Different performance requirements (RQ 1,2,4) call for applicability of a
range of ideas, e.g., different compression algorithms mentioned in ’Compressing Model
Versions’ (Section 2.2). To evaluate the applicability of the ideas, prototyping will be
used during the software development process. This methodology strongly relates to
benchmarking since the performance of a prototype can only be evaluated through it.

Evaluation of the Framework Extension

The following methodologies show to which degree the resulting framework extension
fulfills the research questions.

Benchmarks Benchmarks are used to measure the degree of the fulfillment of several
research questions (RQ 1,2,4). Most of the documentation regarding the research questions
deals with the benchmarking details. For this thesis, it also enables the verification of
the prototype methodology.

Baselines for Benchmarking Baselines for benchmarking help to assess the impact
of an improvement (RQ 1,2,4). A baseline becomes especially important if there are no
other measurements from other scientific papers to compare it to (RQ1).

Simulation Simulation is used to mimic the process of online learning and ensures
that the benchmarks are comparable to a real-world setting (RQ 1,2,4). In an online
setting, the new data can diverge from the previous data. This is important to simulate
since more diverse data can change the model more strongly and lead to uneven changes
per batch which therefore also affects the compression (RQ2).

6



CHAPTER 2
Related Work

2.1 Model Recreation
The model recreation systems discussed in this section cover different use cases and
highlights how VSOL differs from them.

Metadata System A ’Metadata System’ tries to assist data scientists during the initial
experiment phase when trying to find the right model with the right hyper parameters
[MD18, SBK+17, VSL+16]. They have a variety of features such as storing the different
setups, models script, results and other settings and assist in finding old experiments.
The main difference to the proposed Versioning System for Online Learning systems
(VSOL) is that they are design to be used before deployment and support a variety of
setups. The VSOL should be used during the production phase, specialized for an online
setting and therefore, consider the performance impact on the training process. Since
recreating the model during the experiment phase is not time critical, this was no concern
in the existing systems and not treated in their design but is a relevant and therefore
considered metric for the proposed system. Furthermore, they are not easily integrable
and often require an extensive setup e.g. running a database or a running service. The
VSOL should be easily integrable into an existing machine learning framework with
minimal effort and therefore should improve the usability considerably.

Retraining for Model Recreation System A Retraining for Model Recreation
System (RMRS) combines a ’Metadata System’ with storing all the used training data
and any further information required to full reproduce the executed learning process. To
recreate a previous version, the training process between a saved version, referred to as
’reset point’, and the desired previous version is re-executed. Reset points are required to
cap the required training steps to the desired version and is similar to the ’Delta Reset
Point Creator’ (Section 3.2.8) of the VSOL. This most obvious alternative approach to

7



2. Related Work

the proposed VSOL has, to our knowledge, not been previously explored. Being able to
reproduce the learning process is not required by the VSOL since recreating a former
version with the used settings and data would require retraining the model for all steps
up to the version, which is time and energy-consuming, affecting ’RQ4: Reduce Retrieval
Time’ (Section 1.2). Since this would contain a ’Metadata System’ it additionally has it’s
drawbacks affecting ’RQ3: Reduce Integration Effort’ (Section 1.2). Further drawbacks
of this approach, according to the findings of this thesis, are discussed in ’Drawbacks of
Retraining for Model Recreation System’ (Section 4.10).

Storing Model Versions [MLDD17b] is the only paper that covers versioning with
compression of machine learning models. The used compression details will be depicted
in ’Compressing Model Versions’ (Section 2.2). It is similar to the proposed work of this
thesis in that it also versions different machine learning models and tries to compress
them. The paper also introduces a querying mechanism, enabling a SQL-like search for
metadata. This has an impact on the compression ratio which then can be improved.
Additionally, the paper focuses on lossy versions with a strong decline in the error rate.
The VSOL can be configured to be lossless and any lossy configurations should only have
a low impact on the error rate. The processing time of [MLDD17a] also remains unclear
for an online learning setting. An additional requirement of the paper was to support
changing model graphs. This is not in the scope of this thesis, focusing on the same
network structure could lead to further improvements.

[DMRM19] focuses on the deployment of the model and discusses state of the art systems
for model deployment. The VSOL does not implement or test the deployment of the
model but discusses how the deployment could be integrated in ’Weight Deployment
Scenarios’ (Section 3.3).

[CCD+20] discusses newly added features to the machine learning lifecycle platform
’MLflow’ such as a model registry. MLflow features a fairly easy integration to save model
versions but requires a running service, has an unclear impact on the runtime, does not
compress the versions and is not specialized for an online setting. Additionally, it does
not directly feature the possibility to load models through a timestamp.

[CLC+19] developed a model repository which focuses on discoverability, evaluation and
deployment. The authors of the paper acknowledge that such a system has to execute
fast to be sensible in a real time setting and therefore measures the deployment and
evaluation time of the models. To our knowledge, the performance impact of any of
the other versioning or metadata systems was not measured. The processing time when
saving a model was not measured and the integration process is more complex than for
example using ’MLflow’. Also, the models are not compressed. According to the vague
description, it should be possible to load models by the timestamp of the model.

8



2.2. Compressing Model Versions

2.2 Compressing Model Versions
To fulfill ’RQ2: Reduce Required Storage’ (Section 1.2) a 2.1 would be fitting but since
it affects the other RQs, as already discussed, only compressing the model is feasible to
reduce the size of the high number of versions in an online learning setting.

The following section discusses several different research fields which can be used for
compressing the model versions. Several of them will used and combined for the Versioning
System for Online Learning systems. They are selected and discussed by their effect on
’RQ1: Impact Reduction on Online Learning’ (Section 1.2) and ’RQ4: Reduce Retrieval
Time’ (Section 1.2).

2.2.1 General compression

To utilize the reduced entropy caused by some of the compression techniques, a general
compression scheme is required to reduce the storage amount. [DKS19, p.84] compared
the compression ratio and processing times of several popular compression libraries
on different scientific data types, including floats. [MLDD17b] only uses zLib without
considering its impact or other options.

2.2.2 Top-K

Top-K or gradient sparsification reduces the number of parameter changes of the weights
to only the top absolute k percentage. Section 3.2.2 describes Top-k in more detail.
Originally, it is used to reduce network traffic for training neural network in a distributed
training setting. [LHM+20] summarizes and combines four methods to reduce the
accuracy loss while using Top-k. [PDMM21] applied Top-k in an online learning setting
to distribute the weights to remote machines only responsible for classification.

[CCB+18] uses a dynamic weight selection technique to raise the selected number of
values depending on the Weight Change Degree and the former value on a per layer basis.

2.2.3 Float Compression

Quantization [AGL+17, SCG+22, PPA18, BNS19] describe the usage of quantization
to reduce network traffic when distributing weight updates to remote machines. Quan-
tization can increase the compression ratio drastically while still maintaining a high
accuracy. Besides Top-k, quantization is a widely discussed method to reduce the data
amount required to transmit a model.

Sparse Array Representation [SH15] developed a sparse array representation which
only requires two arrays to represent the index of the non zero decimal values. Since
Top-k deltas mostly consist of zeros, this algorithm can reduce the required memory
considerably.

9



2. Related Work

General Float Compression [KTF21, Lin14] and many others specialize on com-
pression of various scientific float data sets. To the best of our knowledge, only some
methods mentioned in these papers are combined with and adapted for neural networks.

Reduced Decimal Storage Formats [MLDD17b] compares several decimal storage
formats such as 16-bit precision floats and quantization not specialized for neural network.
Most of these formats have a high accuracy loss and are therefore unfitting due to ’RQ1:
Impact Reduction on Online Learning’ (Section 1.2). Fixed point encoding uses one
exponent per matrix while storing sign and mantissas separately per value. The test
results show only little impact on the accuracy while reducing the storage amount by
about 25%.

Bytewise Float Segmentation [MLDD17b] uses the lossy ”Bytewise Segmentation
for Float Matrices” compression algorithm which reorders segments of the float to group
lower entropy section together (see Section 3.2.6). This also enables offloading the byte
section featuring more precision while the first byte section is saved locally to be queried
with less precision.

2.2.4 Delta Encoding and Composition
Encoding the weight changes as a difference or delta reduces size of the decimal numbers
and hence the entropy. [Sik97] describes a delta encoding scheme for video frame with
different types of frames fulfilling different roles and requiring different amounts of storage.

[MLDD17b] compares different types of encoding a delta and introduces a novel delta
storage graphs creation algorithm between the matrices of the weights focusing on
compression and the recreation speed. The compression time is theoretically quadratic
and was not measured. [BCH+15] compares several delta storage graph algorithms for
data set versioning. All considered graph algorithms have at least a linear runtime,
are complex, require additional memory and also add a stronger dependency between
the deltas. Especially considering the additional compression time, a complex delta
storage graph algorithm will not be considered since other compression algorithms execute
quicker.

2.2.5 Matrix Compression
There exists a variety of papers which specialize on compressing matrixes which mostly
use matrix factorization [IKJS17, TMK16]. Since machine learning models are built up
by several matrixes, this approach can reduce the size of the saved models. The matrix
compression introduces by the mentioned papers only makes sense when values are not
removed from the matrices, as with ’Top-K’ (Section 2.2.2). Since Top-k features more
promising compression ratios and these algorithms must be further adapted to fit with the
other used compression algorithm while being similar to ’Quantization’ (Section 2.2.3), it
will not be used.
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2.3 Online Learning Setting
In online learning, a machine learning algorithm tries to adapt to newly incoming data.
While the characteristics of this data differ among publications, its size is commonly
large, it arrives continuously and its source concepts drifts over time. [PFG18, p. 282]
In most common settings, labels for data can arrive after the data itsself. According to
[PFG18, p. 294] it is still unclear how to handle such cases. Since this is not the main
topic for this thesis, it is assumed that the new data includes labels.

2.3.1 Neural Network Adaption
Adapting a model to new data can be mainly divided into two approaches. Changing
the models weights or parameters or changing the model network itself by removing or
adding nodes. [PFG18, pp. 283-284].
The proposed system concentrates on a fixed network architecture and tries to compress
the weights of the model and therefore, can only handle online learning systems of the
first kind with changing weights.

2.3.2 Data Instance Selection
Neural networks require a certain amount of data called ’batch’ for each learning iteration.
As new data instances arrive one after the other, a sampling method for selecting data
instances for one batch must be used. A selected batch of data in an online setting is
called ’window’ since the selection mechanism considers only a section of the infinite data
stream. According to [GŽB+14, GBEB18, pp. 11, pp. 21] there exists a wide range of
window types which vary in complexity of implementation and configuration. This can
include reusing older data samples, as also used in [PDMM21], having a trigger, such as
a certain amount of elapsed time, from which on old samples are discard or giving newer
data instances more importance when calculating the change of the weights.

2.3.3 Concept Drift
’Concept drift’ describes that data can change over time. ’Drift’ implies the change
while ’concept’ reflects that an underlying concept of the source of the data has changed.
Adapting to the ’concept drift’ is one of the main concerns to address in an online learning
setting since the model should adapt to those changes to accurately evaluate newer data
which also have the new concepts embedded. Distinguishing noise from a real drifting
concept is one of the challenges of online learning [PFG18]. [GBEB18, pp. 233-234]
describes several drifts, such as a changing distribution of the labels.

Drift Detection Drift detection mainly relies on either the statistical analysis of the
changing label distribution of incoming data or the error rate of an evaluating machine
learning system, according to the reviews [GŽB+14, BS18, LLD+19]. [LLD+19] concludes
that integrating drift detection into machine learning techniques required further research.
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[BM08] uses two naive bayes learners to detect a drift if their error rates deviate from
each other, exceeding a certain threshold. The ’recent’ learner was only trained on
the most recent data while the ’stable’ learner uses all data. When the recent learner
outperforms the stable learner it is replaced by the recent learner. Replacing the older
learner completely is uncommon for a drift detection algorithm.

2.3.4 Deployment
Important for this work is the frequency of deployment since this indicates the frequency
of saving the model as any deployed model must be saved to trace back past decisions.
More frequent deployments show a requirement for a faster saving method if the saving
method blocks the subsequent deployment. To our knowledge, none of the papers deal
with the concrete deployment frequency.

Some data selection mechanism such as a sliding window for data indirectly hint at an
update and therefore deployment [PFG18]. Since the sliding window mechanisms try
to somehow split the data into batches and then execute training, we assume that the
models should be deployed after each batch. In conclusion, the speed and amount of data
and window size impacts the time span between deployments. In [PDMM21, p. 201], a
scenario is calculated where a special distribution algorithm could deploy a new model
every 800ms. Although this should only show the capabilities of the algorithm, it can
still provide a rough idea which deployment scenarios the authors expect.

[DMRM19] have developed a continuous deployment platform, focusing on data man-
agement and proactive training. Their proposed training and deployment schedular
can either be static, triggered after a set time interval or dynamic, depending on the
classification time of the incoming unlabeled data and its prediction latency.

2.3.5 Performance Measurement
[PDMM21, GŽB+14, BS18, LLD+19, HSLZ21] agree that prequential measurements,
but especially prequential accuracy are mostly used for measuring the error rate and
the adaptability of an online learning algorithm. ’Prequential Accuracy’ (Section 4.3.1)
uses each data instance first for evaluation and then for training. [HSLZ21] summarizes
alternative measurements to prequential accuracy which also consider the cost of a false
classification. [LLD+19] comprehensively discusses alternative measurements addressing
class imbalance. None of the alternative measurements to ’Prequential Accuracy’ are
applicable for this thesis and hence, are excluded.

2.4 Traceability for Compliance
[DLF20] explains the setting and the legality of GDPR’s ”Right to Explain”. It highlights
the approaches and shortcomings of different companies in the insurance sector. The
proposed VSOL can help to accelerate and increase the accuracy of GDPR inquiries.
[RGZ+21] describes guidelines for implementing traceability in the realm of data, which
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can be translated and therefore followed by the VSOL. Re-executing the query or
classification to evaluate the fault of the used version during the query time requires the
timestamps of the query and of all versions to identify the timestamp of the used version.
Besides (a) the query timestamp and (b) the timestamps of all versions, (c) the used
version, (d) the data of the query, and (e) the model in which the version is loaded, are
required. The used version is then loaded into the model and the query is then classified,
comprehending the querying result transparently. This process can be divided into three
distinct parts, using the terminology of the paper:

1. The VSOL covers saving the versions and the deployment timestamp of the versions,
covering the described concepts of ’Data Versioning’ and ’Timestamping’.

2. ’Query Store Facilities’, which save all required information of the query to re-execute
it, are responsible for saving the query and the timestamp of the query.

3. Storing the model itself is referred to the ’Data Infrastructure’.

All three parts are required to comprehend a specific decision, but the VSOL covers,
fulfills, and measures only the first part since the RQs only addresses the impact on the
learning process which is tightly coupled to the first part while ’Query Store Facilities’
and ’Data Infrastructure’ are separate concerns that can be addressed independently
from the learning process. Only storing the timestamp in the ’Query Store Facilities’
without the query can reduce the storage and complexity of a it while a claim could still
evaluate the version to show that the version misclassifies specific queries in general.

2.5 Summary
The chapter has shown (a) which existing and possible model recreation systems there
are and how they are not sufficient for all RQs, (b) what compression methods exists and
how they are applicable for the RQs and how not, (c) what the characteristics of online
learning are to address them in the VSOL and its evaluation and (d) why traceability
matters, how it should be conducted and what parts it involves. The upcoming chapter
uses the gained knowledge and shows how the VSOL is built up, how the compression
algorithms are designed or contextualized, how it addresses online learning and highlights
its limitations.
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CHAPTER 3
Designing an Online Learning

DNN Versioning System

The following section will give a theoretical overview of the Versioning System for Online
Learning systems (VSOL). This includes an detailed explaination of the used compression
algorithms, a theoretical discussion of different deployment scenarios and the limitations
regarding measurement results and production usage including its consequential potential.

3.1 Overview of VSOL

Term Definitions for Neural Networks ’Weights’ of a neural network are essentially
a set of decimal numbers, represented as 32-bit floats in this thesis. The weights are
subdivided into layers, which correspond to the layers of the neural network. The floats
of each layer can be represented as a matrix. It is not possible to represent all the layers
as a single uniform matrix as each layer matrix has a different dimensions. Therefore, the
weights are represented as a list of float matrices. Each matrix is implementation as a
NumPy array. NumPy is a Python framework which is used for handling and computing
matrices. A ’Set of Weights’ refers to a specific version of a weight set with specified
values while ’Weights’ refers to the general concept. ’Parameters’ refers to the number of
floats in a set of weights or in one of its layers.

’Model Architecture’ refers to the buildup of the neural network model. This includes the
types of transformation functions and their in- and output dimensions per layer. ’Model’
or ’Neural Network’ refers to the combination of a ’Model Architecture’ and a specific
’Set of Weights’. Only a full model is able to classify data since only the weights miss
the transforming functions to use the weights while the architecture lacks the learned
weights holding the information required for the classification.
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VSOL Saving Process In a simple online machine learning setup, the neural network
receives a new batch of data and uses it to train on it. The result is a new set of weights
which are then deployed to production to evaluate newly incoming data. When a new
training data batch arrives, the just deployed weights are then overwritten by a new set
of weights and the old weights are lost. Hence, it is not possible to restore the weights
to check why the neural network came to the conclusion of the evaluation of any newly
incoming data.
The main task of the proposed VSOL is to save the deployed weights so that this set of
weights can be recovered. To achieve this, it saves the weights it receives from the neural
network and the deployment timestamp. Figure 3.1 shows an overview of this process.
On the left, the resulting ’training weights’ from the training model are handed over to
the VSOL to be compressed and stored with any additional information required for
restoring the weights. On the right, the saved weights are then deployed to a production
neural network. If the VSOL is configured to be lossless, iteration numbers and weights
of training and production would be the same. The training weights during processing
by the VSOL are referred to as ’processing weights’. The VSOL keeps the production
weights which were saved last in memory, referred to as ’previous weights’. Summarized
in terms of terminology, ’training weights’ of the training model become ’processing
weights’ during the processing by the VSOL. If the processing weights are saved, they
overwrite the ’previous weights’ in memory and are deployed and saved as ’production
weights’. The time at which the processing of the ’processing weights’ by the VSOL is
finished and are then referred to as ’production weights’ is the ’deployment timestamp’.
But to minimize the required storage even further, the VSOL can be configured to be
lossy, which leads to an alteration of the weights or skipping the deployment of a new set
of weights. In Figure 3.1, the different colors of the weights indicate the potential change
between the training and production weights. The dotted arrow shows which training
version resulted in which production version. Not all trained model weights have to lead
to a new deployment and thus, the saving of a new model version. This is visible in the
example where the second training weights never lead to production weights. Since in this
case the weights of the production model now differ from the training model, the training
model cannot also be used as a production model which halts the training process to
evaluate new data. Refraining from any changes to the training process is required for
an easy integration and for the training process to be unaffected by the VSOL.
There exist two iteration numbers, n for addressing the data batch Bn for the training
weights TWn and x for addressing the changed weights, if the VSOL is configured to be
lossy, processing weights PcWx, previous weights PvWx and production weights PWx.
The processing weights PcWx change during the processing of the VSOL and hence, are
not a fixed and concrete like the other described weights.
To fulfill the property of full traceability, the saved version should be the same as the
deployed version. Therefore, any deployment or save can only occur after any lossy
alterations in the VSOL are executed. Hence, any mentions in the text of saving the
model weights also entails their deployment to the production model and vice versa.
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Figure 3.1: Illustrating how training weights from the training model are processed by
the VSOL and deployed to the production model. The second training weight set does
not result in a production weight set.

Composition Overview of VSOL The composition of the VSOL responsible for
processing the weights is configured to be composed of a subset of a pool of different
algorithms or processing step, both referred to as ’Processing Step’. The Processing
Step can be grouped by their intention or output into Stages. Each Processing Step or
Stage can require a certain type of Processing Step or Stage to be its predecessor. E.g.,
’General Compression’ has to be applied before the compressed weights are saved since
otherwise the compression is not applied to the final saved weight file.

VSOL in Figure 3.1 depicts these Stages in order of execution. Figure 3.2 shows the
zoomed in version of the pipeline with the name of each proposed Stage.

The Processing Steps of each Stage are applied from top to bottom to compress the
given weights, as shown by the full arrow. Each Processing Step passes the changed or
compressed weights on to the next algorithm. Hence, the order of the Processing Steps
must be upheld since certain Processing Steps expect a certain change or format from
the former algorithm. Applying the Processing Steps in reverse order decompresses the
weights, as shown by the dashed line. Lossy Processing Steps are only executed during
saving since they only reduce the amount of saved information. The only exception would
be if a lossy Processing Step changes the saved format of the floats.

The idea is to show which fields of study can be applied in general and how they can
interact. The focus is not on finding the absolute optimal solution of each field for this
task. For some scenarios it could make sense to not use a certain Stage or algorithm.
’Evaluation’ (Chapter 4) evaluates which Stages/Processing Steps should be used for
which evaluation metric requirements.

’Processing Pipeline of the VSOL’ (Section 3.2) will explain each Stage in detail with its
containing algorithms.

A selected subset of all Processing Steps with specific ’Processing Step Parameter’ values
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is revered to as a ’configuration’ of the VSOL. Omitting or chosing a Processing Step for a
configuration depends on their properties and the resulting properties of the configuration.
E.g. if the weights should be deployed lossless, only lossless Processing Steps are chosen
for the configuration. The properties are the evaluation metrics, as discussed and listed
in ’Evaluation Metrics’ (Section 4.3), affecting the training processing unit, as discussed
in ’Classifying Data Impacting Training’ (Section 3.4.2) and being lossy. A configuration
can have several or zero Processing Steps of each Stage.

Figure 3.2: Illustrating the full Versioning System for Online Learning systems with all
possible Stages. The arrows depict the order for compression and decompression.

Entropy Reduction for General Compression Some of the Processing Steps in
the Stages above the compression Stage in Figure 3.2 do not have a direct compression
effect but reduce the entropy, whereby the compression Stage (see Section 3.2.7) then
can achieve a higher compression and execute faster. ’Entropy Reduction’ can either
entail the lossy change of values to reduce their precision and hence their complexity
or the context sensitive rearrangement of memory segments so that similar segments
are closer to each other in memory which makes it easier for the ’General Compression’
Processing Step to recognize and compress them. E.g., ’Top-K’ (Section 3.2.2) sets many
floats of the weights to zero. Since zeros are now predominant, the compression Stage
can then encode it by a shorter symbol through variable length encoding. Top-K only
replaced the values, reducing the entropy of the weights, which can then be utilized by
the compression Stage. But without the compression Stage, each zero would still require
the storage amount of any other float.

3.2 Processing Pipeline of the VSOL
The following section will describe the idea and purpose of each Stage and which Processing
Steps exist in each Stage from top to bottom, as shown in Figure 3.2. The given order
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should be upheld since some Processing Steps reorder the layout of the received weights
and others expect to receive a certain format. Not all suggested Processing Steps are
implemented or evaluated and are listed to show further options of each Stage.

3.2.1 Save Decision
This Stage can decide if the new weight set TWn of the training model should lead to a
save or not and hence, is lossy. Being able to avoid saving a set of weights all together
requires no additional memory. The basis for this decision can be the training data Bn,
the new training model TWn or just the iteration number n. In this Stage, none of the
Processing Steps are implemented and hence, evaluated. But since drift detection is an
important field in online learning, the process would be incomplete without this Stage
and hence, was added.

Iteration based

Skipping saving every y-th iteration can help to reduce the memory impact by 1/y. This
approach is easy to execute. Also, it can be used to simulate the impact of not saving
every incoming batch. After an evaluation not provided in this thesis this approach was
discarded because it lead to a high error rate increase.

Drift Detection based

’Drift Detection’ (Section 2.3.3) mechanisms could evaluate through the new data if a
drift has occurred and therefore the new batch must have had a strong impact on the
model and should therefore be saved. This is not implemented in this thesis and only
shows another mechanism for the save decision Stage. Section 6.3.1 describes the benefits
of such an algorithm.

3.2.2 Entropy Reduction before Delta Creation
This Stage is lossy and applies ’Entropy Reduction’ Section 3.1 to the weights. A
Processing Step in this Stage receives the processing weights as whole number, different
to the ’Entropy Reduction after Delta Creator’ were the weights are encoded as a xor
delta.

Top-K

’Top-K’ selects the k percent largest floats changes which should be kept and sets the rest
to zero. The idea of the ’Top-K’ approach is that only the higher weight changes mainly
impact the decision process and the rest can therefore be neglected. The resulting weight
changes now mostly consisting of zeros have a significantly lower entropy. ’Top-K’ only
works together with the ’Delta Creator’ (Section 3.2.3) since zero values changes are only
zeros as a delta and otherwise a full float. The Processing Step Parameter representing
the k value is referred to as ’Top-k-Percentage’ (TkP ).
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’Top-K’ implemented by the papers discussed in Section 2.2.2 uses the changed weights
for the next training step and hence, directly influence the training process. Since the
proposed system should not modify the training process, ’Top-K’ is applied only on the
processing weights and does not change the training weights.

The following process is executed per layer of the weights, as in [PDMM21], and broken
down into the following steps:

1. The absolute difference between the previous weights and processing weights is
calculated.

2. The ’Top k Absolute number of Parameters for Layer’ (TkAbP l) is calculated from
the total number of parameters for the layer and the given ’Top-k-Percentage’
(TkP ), rounded up.

3. The TkAbP l indices of the top values are selected through Numpy’s ’argpartition’
function.

4. The layer of the previous weights is copied and the parameters of the selected
indices are overwritten by the currently processed training weights. When the
resulting layer is processed by the ’Delta Creator’, the delta of the selected indices
is zero since they now have the same value as the previous weight. The original
changes which are now overwritten are preserved in the training model and could
be chosen during the next ’Top-K’ iteration.

Minimum per Layer As some of the test models have very few parameters for some
layers, we were concerned that too much information would be lost for them without
gaining a great amount of compression. Therefore, a second parameter ’Minimum per
Layer Percentage’ (minLP ) was used to guarantee a minimum parameter use per layer,
dependent on the ’number of Parameters of layer with the most parameters’ (Plmax).
Since most models have great parameter count differences per layer, those large layers
use up most of the storage and using a smaller percentage than its parameter count for
the other smaller layers should not affect the memory as much. This is an additional
functionality which can be omitted by setting the Processing Step Parameter to ’None’.

Equation 3.1 shows how the ’Top k Absolute number of Parameters for Layer Minimum
bounded’ (TkAbMin) is calculated from the Processing Step Parameter ’Minimum per
Layer Percentage’ (minLP ), which is broken down into the following steps:

1. The ’number of Parameters of layer with the most parameters’ (Plmax) is selected
from all ’number of Parameters per Layer’ (Pl)

2. ’Minimum number of Parameters per Layer’ (minP l) is calculated by multiplying
’number of Parameters of layer with the most parameters’ (Plmax) with minP l,
which creates a dependence on the model size.
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3. For each layer, ’Top k Absolute number of Parameters for Layer’ (TkAbP l) is
replaced by minP l if ’Top k Absolute number of Parameters for Layer’ (TkAbP l)
is smaller then minP l.

minP l must be significantly lower then ’Top-k-Percentage’ (TkP ) since otherwise it will
significantly increase the required storage amount when each layer uses the same amount
of parameters as the largest layer.

max(Pln) = Plmax

P lmax ∗ minLP = minP l

min{minP l, TkAbP ln} = TkAbMin

minP l ≪ TkP

(3.1)

The following example shows how this Processing Step Parameter affects the number of
selected parameters for a smaller layer: Let M be a Model with layermax and layermin

having 500.000 and 1.000 parameters each and kPercentage being 1% while
minPerLayerPercentage being 0.1%. Without minLP , 10 parameters are selected for
layermin. Using minLP results in a minP l of 500, calculated by multiplying 500.000
with 0.1%. Hence, 500 parameters are selected for layermin instead of 10.

All Layer Top-k For ’Top-K’ (Section 3.2.2), the ’Top-k-Percentage’ (TkP ) values
are selected for each layer. Hence, the relative number of selected parameters per layer is
about the same, excluding rounding. ’All Layer Top-k’ selects the TkP values over all
layers, leading to different relative numbers of selected parameters per layer and hence,
is an alternative implementation to ’Top-K’. The hypothesis is that this should work
better then ’Top-K’ since it can select higher and hence more important values from
layers which feature more of them.

’All Layer Top-k’ uses the same steps as ’Top-K’ but executing the steps for the full
weight set as if it was a layer. Since ’Minimum per Layer’ (Section 3.2.2) requires each
layer to be processes separately it is executed with the algorithm of ’Top-K’. The indices
of ’All Layer Top-k’ and ’Minimum per Layer’ are then combined after they are retrieved
in Step 3 of ’All Layer Top-k’.

Loss Adaptive TkP When ’Top-K’ is applied for a scenario were a drift occurs,
a mechanism for dealing with a higher ’learning effect’ could be required. The Top-
k-Percentage (TkP ) of Top-k would then adapt to change in the network which is
reflected by the loss value. I.e., the loss value is inserted into a function, mapping it
to a now fluctuating TkP . The ’Loss’ (Lo) value is the numerical difference between
the classification result from the model and the actual labels of the training data. It
is used to determine the degree of change for a neural network and hence, can be used
as an indicator of the amount of change in the network. Using the ’Loss’ (Lo) for this
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measure is computationally cheap since the value has to be calculated for the model
training anyways. A higher change of the weights is referred to as a higher ’Weight
Change Degree’. The ’Loss Upper Bound’ (LoUB) is a constant which bounds the used
loss value and is set once by examining the resulting loss values during the evaluation to
see which loss values are outliers and which are not. The value for LoUB is mentioned
in the evaluation section.
Equation 3.2 shows how ’Top k-Percentage loss adapted’ (TkPLoA) is calculated from
the ’Loss’ (Lo) of the current training weights in the following steps:

1. Bound the loss to the ’Loss Upper Bound’ (LoUB) to ensure that the range of the
loss is not distorted by one outlier and to normalize the resulting value to a 0 to 1
scale, resulting in ’Loss Bound and Normalized’ (LoBN).

2. Apply the ’Loss Transformation Function’ (fLoT rans) to in- or decrease the resulting
’Top k-Percentage loss adapted’ (TkPLoA) for middle loss ranges, resulting in
’loss bound normalized and transformed’ (LoBNT ). The hypothesis is that the
loss value of a mid-range Weight Change Degree can require a different ’Top-k-
Percentage’ (TkP ) value then when the change is at its maximum or minimum.
Several functions will be evaluated, including linear and several grades of convex
and concave curves, depicted in Figure 4.6.
Equation 3.3 shows how fLoT rans is applied to the Processing Step Parameter ’l’.
’Move to Axis’ (MtA) is an ’l’ dependent value to move the curve to the value +1
of the x and y axis. Different functions are applied if ’l’ is zero or above, being
convex, and otherwise being concave.

3. Map the LoBNT to the range between minP l as minimum and ’Top-k-Percentage’
(TkP ) as maximum to get the resulting ’Top k-Percentage loss adapted’ (TkPLoA),
replacing the TkP used in Top-k. I.e., the new TkPLoA, replacing the value of
TkP for the selection of weights, now lies between the values minP l and TkP .
minP l and TkP are reused to reduce the number of Processing Step Parameters.
Since minP l is used, ’Minimum per Layer’ must be used when using ’Loss Adaptive
TkP ’. Using separate parameters was evaluated briefly and omitted due increasing
the evaluation space significantly while not featuring any significant improvements.

∥min{Lo, LoUB}∥LoUB→1
0 = LoBN

fLoT rans(LoBN) = LoBNT

LoBNT ∗ (TkP − minP l) + minP l = TkPLoA

(3.2)

(1/2) ∗ ((1/
�

(|l|/(|l| + 4)) − 1) = MtA

l < 0 → 1 − (1/(|l| ∗ (x + MtA))) − MtA∧
l ≥ 0 → (1/(|1 − l| ∗ (x + MtA))) − MtA

(3.3)
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3.2.3 Delta Creator
The number of weights changed in a batch training and thus differing between the
processing weights and the previous weights should be significantly smaller than any
standalone set of weights, referred to as ’materialization’. This change set is referred
to as ’delta’, while combining deltas to a materialization is referred to as ’materializing
deltas’. As [MLDD17b] describes, a delta should have less entropy then a materialization
per step. To their measurements, this should lead to a 5% reduction in memory.

Additionally, delta creation mimics the update process of a remote delta update for
models, i.e., when only the delta of a model training iteration is broadcast to other
deployed models over a network. Therefore, further compression steps relying on a
delta can only be leveraged if only deltas are saved. This is especially important since
one might argue that a 5% reduction might not justify the additional processing time
and complexity of computing the delta and keeping the last weights in memory during
compression and loading several deltas to materialize them during decompression.

The ’Delta Creator’ internally has a save of the last deployed version PvWx of the last
weights, already defined as ’previous weights’. Combined with the processing weights
PcWn, a delta Dn,x can be created and is handed over to the next Processing Stepbelow.
This is depicted in Figure 3.3 in the ’Delta Creator’ Stage where PcW4 and PvW2 from
memory are combined to D4,2.

In a lossless configuration, all training, processing and production weights are equal,
and hence, the materialized processing weights the ’Delta Creator’ receives replaces the
previous weights instantly. This is shown in Figure 3.3, blending out the lossy layers,
TW4 could be saved directly as previous weights after the delta D4,2 is created. Since
in a lossless configuration all training and production weights are equal, and hence, the
same applies for n and x, the delta above should not have the missing iteration number
3 and the delta would be D4,3.

Replacing the previous weights with the materialized processing weights the ’Delta
Creator’ receives is not possible when the processing weights can be further altered by
the ’Entropy Reduction after Delta Creator’ or ’Delta Creator’ decides to discard the
processing weights and to rollback to the previous weights. The previous weights are a
materialization while the processing weights are a delta after the ’Delta Creator’ Stage.
Hence, the materialized processing weights are saved in memory when receiving them
together with the previous weights until the materialized processing weights can replace
the previous weights. This is depicted in Figure 3.3, where PvW2, the previous weights,
and PvW3, the materialized processing weights, are kept in memory until it becomes
clear that PvW3 is used. At that point, PvW2 can be deleted. Otherwise, if PvW3 is
rejected, PvW2 is kept in memory while PvW3 is deleted. Therefore, two materializations
are kept in memory for a short time.

In a lossy configuration using ’Entropy Reduction after Delta Creator’, changes to the
processing weights in delta format should be passed on to the materialized processing
weights. This is done by combining the previous weights with the delta processing
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weights to replace the materialized processing weights after the last Processing Step of
’Entropy Reduction after Delta Creator’ is finished. Since only the ’Delta Creator’ has
the ability to execute this delta operation, a callback is triggered together with the delta
processing weights to execute this delta operation by the ’Delta Creator’ after the last
’Entropy Reduction after Delta Creator’ Processing Step has finished. This is depicted
by Figure 3.3, where the ’Entropy Reduction after Delta Creator’ Stage altered the
delta processing weights D4,2 and they are combined with the previous weights PvW2
to replace the materialized processing wights PvW3. When the VSOL is finished and
the ’Save Decision through New Model’ decides to deploy the processing weights, PvW3
replaces PvW2. The VSOL is now ready for the next weight set PcW5.

Figure 3.3: Illustrating how processing weights are processed in the ’Delta Creator’ and
’Entropy Reduction after Delta Creator’ Stages and how they interact with the previous
weights and materialized processing weights in memory.

Delta Calculation: Byte-wise xor

For the delta value creation, a byte-wise xor calculation is used. As discussed in
[MLDD17b], a byte-wise xor approach not only has the highest entropy reduction but is
also lossless.

3.2.4 Entropy Reduction after Delta Creator
This Stage is lossy and applies ’Entropy Reduction’ Section 3.1 to the weights.

Entropy reduction Processing Step below the delta creator can change the final values
which are going to be saved and can directly evaluate through the xor format (see
Section 3.2.3) which parts of the float will change.

Reset Least Significant Bits when Most Significant Bits set

A float consists of a sign, an exponent and a fraction/significant. When the Most
Significant Bits of Fraction (MSBF) of the floats of the delta are set, we assumed
that the exact change of the Least Significant Bits of Fraction (LSBF) would not have
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a great effect and could therefore be set to zero. Setting the LSBF to zero yields
equally long low entropy zero blocks which then can be easily encoded by ’General
Compression’ (Section 3.2.7). ’Bytewise Segmentation for Float Matrices’ (Section 3.2.6)
partially lifts out the zero blocks out of the full float to be processed in succession by
’General Compression’. Consequently, ’General Compression’ should be able to more
easily recognize the pattern and require less memory to encode it.

This Processing Step uses the Processing Step Parameters Most Significant Bits of
Fraction to Assess (MSBFA) and Least Significant Bits of Fraction to Overwrite with
zeros (LSBFO) and is broken down into the following steps, which are executed per layer:

1. The indices where at least of the MSBF is set to true must be selected. Floats
where this is the case will have a value above zero while all others are set to zero.
Filtering out which floats are above zero and hence, identifying the indices, is done
in the next step. Most Significant Bits of Fraction to Assess (MSBFA) is the exact
number of MSBF that will be checked if they contain at least one true bit and is
passed as an integer parameter to the algorithm. The implementation details of
this process are described as follows: The processing weights are converted to a
byte format since Numpy can only execute bit operations on a byte format. A bit
mask, where the MSBFA are set to true, is combined with the processing weights
through a logical and-operation, setting any non-MSBFA to false. The resulting
floats either consist of only zeros if none of the MSBFA were true or have at least
one true bit.

2. It is evaluated if the resulting floats are above zero and its indices are selected for
the next step. Recall, only floats were one of the MSBFA were true are above zero.
This is done by the comparison operation ’> 0’ of Numpy. The selected indices
are stored as a Numpy boolean matrix with the dimensions of the weights, were
selected indices are represented as true and the non-selected as false and is referred
to as ’indices mask’.

3. For the selected floats, the Least Significant Bits of Fraction to Overwrite with
zeros (LSBFO) are then set to false. Least Significant Bits of Fraction to Overwrite
with zeros (LSBFO) is the exact number of LSBF that will be set to false and
is passed as an integer parameter to the algorithm. This is done by a bit mask
where all bits are set to true except the LSBFO, called ’bit selection mask’. The
bit selection mask is then combined with the processing weights selected by the
indices mask, representing the selected float values, through a logical and-operation.
Since the bit selection mask is only applied on the selected indices, the other values,
where the MSBFA were false, remain unchanged.

Hence, two bit operations and one value operation are required.

Reset Least Significant Bits Another variant is to overwrite the ’Least Significant
Bits of Fraction’ (LSBF) with zeros without checking the ’Most Significant Bits of
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Fraction’ (MSBF). This can reduce the processing time since only one masking operation
is required. It is implemented in the same way as Step 3 of ’Reset Least Significant
Bits when Most Significant Bits set’ (Section 3.2.4) but instead selects all floats to be
combined with the bit selection mask. Hence, ’Reset Least Significant Bits’ has only one
Processing Step Parameter, which is the Least Significant Bits of Fraction to Overwrite
with zeros (LSBFO).

To be noted, it would have been an option to reduce the size of the floats directly by
reducing the number of bits of the fraction, e.g. the resulting float would only have 24
bits instead of 32 if the lowest 8 bits were removed. It was decided against this change in
format since any Processing Steps below would have to be adapted to the new format.
Also, the change in format would have required additional processing time and the zero
blocks are also singled out, further reducing the required space, as discussed above.

Comparison to Quantization Quantization is widely used with neural networks,
as discussed in ’Float Compression’ (Section 2.2.3). It has a runtime complexity of at
least O(n) since every value must be considered individually to which value it will be
mapped, impacting the compression time and hence, ’RQ1: Impact Reduction on Online
Learning’ (Section 1.2). Lower Bits Reduction (see Section 3.2.4) only requires one bit
operation which is considerably faster. Additionally, the thesis tries to explore different
ideas. Hence, the Processing Steps above were used instead of quantization.

The future work Section 6.3.1 will compare both approaches after the Processing Steps
mentioned in this section were evaluated.

3.2.5 Save Decision through New Model
Executing this step after the lossy steps has the advantage that the lossy processing
weights are available and can be used to come to a decision. Besides the lossy processing
weights, any information mentioned in ’Save Decision’ (Section 3.2.1) can also be used.

As described in ’Delta Creator’ (Section 3.2.3), the materialized processing weights must
be already restored to be used in this step. Since evaluating the model’s error rate through
classification is executed on the same processing unit as the normal batch learning is
executed, this is the only step that can affect the training process, as mentioned in ’VSOL
Execution Blocks Training’ (Section 3.4.1).

Decide Save by Error rate Decay

Decide Save by Error rate Decay (DSED) bases the decision to save and deploy or to
discard the processing weights on the error rate measurement difference between the
model using the previous/deployed weights and processing weights. DSED can evaluate
if the error rate increase of not rolling out the processing weights would be acceptable.
In detail, models with the processing weights and the previous weights both evaluate the
data since the last save. If the error rate difference does not surpass the Processing Step
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Parameter ’Error Rate Bound’, the processing weights will not be saved and discarded.
In further steps, the previous performance measurement of the previous/deployed weights
can be reused and only the new data batch is then evaluated. This saves memory since
previous data does not have to be stored in memory. The same error rate is used as the
evaluation error rate, as described in ’Prequential Accuracy’ (Section 4.3.1), although
they do not have the same validity since future data cannot be used.

A bool Processing Step Parameter can be set to only use the new incoming data instead
of using all the data since the last saved model for evaluation.

Since this involves in the worst case loading two sets of weights and evaluating data
on two different models, this could have a great impact on the compression time. The
processing weights have to be recreated in memory for the evaluation while the previous
weights already are in memory since ’Delta Creator’ (Section 3.2.3) requires them. The
old and new weights are then loaded into the compiled model architecture one after the
other.

3.2.6 Format Rearrangement
Format rearrangement converts one format into another format. A ’format’ is the bit
representation of a specific type of information, in this case the weights. E.g., the initial
weight format is an array of 32-bit Numpy arrays, as described in Section 3.1.

Changing the format can reduce the required storage. This is achieved by directly
reducing the required storage, e.g. encoding reoccurring values through a special and
shorter representation. Alternatively, this is achieved by grouping similar information
in memory closer to each other in a context sensitive way which the (see Section 3.2.7)
Stage might not anticipate since it is not specialized on a specific format or context.

Bytewise Segmentation for Float Matrices

The weights of the neural network are floats which have a very high entropy. Some
segments of a float are more similar to each other then other segments, e.g., the exponent
bits since specific exponent ranges of the weights are used more frequently. ’Bytewise
Segmentation for Float Matrices’ rearranges these segments in memory to be sequential.
This allows the ’General Compression’ (Section 3.2.7) to identify similarities among
byte segments in corresponding positions, resulting in an increased compression ratio.
[MLDD17b, p. 581] has approximately measured a 10% compression ratio improvement
when using this compression approach.

Roughly speaking, before applying this approach, all of the floats are stored in memory
sequentially. As a first step, each float is split into byte long segments. These segments
are then reordered in memory to be in sequence. I.e., the first bytes of all of the floats
are now stored in sequence, followed by the second bytes of all off the floats and so forth.

This operation can potentially be slow since all weights have to be transformed. Therefore,
we implemented three different variants to reduce the potential impact:
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1. ’SplitFloatAndStack’ is executed per layer and the results are kept separately as
entries in an array. For each layer, the floats are splits into byte long segments and
reordered in memory to be in sequence, referred to as ’Bytewise Segmentation’. The
sequences of each byte segments are then also ordered in memory to be sequential
to form one value. During decompression, for each layer, the singular value is split
into the sequential byte segments. Each individual byte segment is the merged
with the correspondent other byte segments to again form a float.

2. ’SplitFloatAndStackByByteSegments’ executes ’Bytewise Segmentation’ like ’Split-
FloatAndStack’ but instead of combining the byte segment sequences per layer, the
same of a kind byte segment sequences are combined over all layers before ordering
them in memory to be sequential to form one value. Having all same of a kind byte
segments in one sequence can help ’General Compression’ to detect similar sections
more easily also across layers but could required more compression time to combine
the layer. The resulting value is then split back into layers during decompression
before the ’Bytewise Segmentation’ is reversed per layer.

3. ’SplitFloatAndStackByByteSegmentsSplitLater’ works like ’SplitFloatAndStack’
but instead of executing the ’Bytewise Segmentation’ per layer, all layers are treaded
as one. This yields the same result as ’SplitFloatAndStackByByteSegments’. Hence,
’Bytewise Segmentation’ is executed on all layers at once, resulting in one value
instead of an array. During decompression, the same is done in reverse, hence, the
merged layers must be separated to an array again.

GCXS

GCRS/GCCS [SH15], also referred to as GCXS, is a sparse array storage format which
can save memory by only storing non-zero values and their indices instead of each zero
value using the full float storage amount in memory. Sparse arrays arise when using
’Top-K’ (Section 3.2.2). Although ’General Compression’ (see Section 3.2.7) should be
able to encode zero values efficiently due to their low entropy, GCXS will be evaluated.

The python package ’sparse’ (see [spa21], version 0.13.0) implements GCXS and is used
for compressing and decompressing the Numpy array to the GCXS format. The GCXS
format in code is a class containing the values and indices in separate arrays as class
attributes.

Four combinable optimizations are implemented and applied after the library applied
GCXS which will be evaluated.

Combine Layers Since each layer of the neural network is encoded as a separate
Numpy array, one GCXS object is created per layer. Combining the layers to one Numpy
array before applying GCXS results in only one GCXS object were all of the values and
indices are stored closer to each other. Centralizing all similar value assists the general
compression in reducing the required memory since detected patterns can be applied
centrally to all values.
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Since the layers have different sizes, they first have to be flattened to a 1-dimensional array
to be concatenated since a Numpy array must have a uniform shape. The dimensions of
the layers are stored and the reapplied when reversing the combination step.

Index Differential Encoding The index values may reach high value ranges due to
the large number of weights. Hence, the increments between the indices ought to be
smaller than the index itself. Additionally, some increment intervals between indices may
be repeated, resulting in lower entropy. Thus, the indices will be differentially encoded
by subtracting the previous index. This compression algorithm, named ’index differential
encoding’, is implemented by using Numpys ’diff’ function for compression and ’cumsum’
function for decompression.

Bytewise Segmentation GCXS changes the weight representation to a class. Hence,
to use ’Bytewise Segmentation for Float Matrices’ on the attributes of the GCXS object, it
must be integrated directly into this implementation, wrapping GCXS. Besides applying
’Bytewise Segmentation for Float Matrices’ to the values array, it will be separately tested
if it is advantageous to also apply it to indices array which uses a 64-bit long, resulting
in two boolean Processing Step Parameter. The used variant of ’Bytewise Segmentation
for Float Matrices’ will be chosen in the evaluation section.

3.2.7 Compression
This lossless compression Stage consists of general or float specific compression algorithm
which uses entropy reduction (see Section 3.1) or similar approaches to reduce the files
size. This Stage is essential since most other steps do not reduce the file size directly but
only prepare the data for this Stage.

General Compression

General compression refers to a preexisting compression algorithm which is unspecific
regarding the type of data it is optimized for. Since the format of the weights passed
to this algorithm can vary depending on the Processing Steps used above it, a general
compression algorithm can help to iterate on different combinations more easily since no
further adaptions are required to the incoming data format due to its universality.

Most general compression algorithms have a ’compression level’ integer parameter which
can in- or decreases the required storage of the compressed data. The increased com-
pression is traded off against a higher compression and decompression time. Since this
tradeoff inversely affects RQ1, RQ2 and RQ3, it will be evaluated extensively. The
possible value range of this parameter varies per algorithm.

Section 2.2.1 discusses papers which evaluated different general compression algorithms
and their performance on float data. BZ2 (Python v3.10.11), ZLib (v1.2.13), Zstandard
(v1.5.2.6), Brotli (v1.0.9) and LZMA (Python v3.10.11) were selected for further evaluation
from these papers due to their high compression and speed on float data.
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Some general compression algorithms like Zstandard require the data to be in byte format
before compressing it. Therefore, any data handed over to one of the general compression
algorithms will be first converted to byte format. The methods ’tobytes’ and ’frombuffer’
from Numpy are used for byte format conversion for compression and decompression,
respectively.

3.2.8 Data Saver

This Stage saves any data required to restore the weights from a certain timestamp to
disk. Hence, during decompression, it is responsible for loading the files required for a
specific weight set. In the current implementation, the required metadata is only stored
in memory, hence lacking in ’Fail Safety’ (Section 3.4.4).

Enumerated File Saver

The ’Enumerated File Saver’ saves the compressed weights received from the Processing
Step above to storage as an individual file with the deployment timestamp. The files are
enumerated and retrieved by their sequence number.

When the weight set of a specific timestamp is requested, the given timestamp must
be mapped to the right sequence number. This is done by an array of deployment
timestamps where the position in the array represents the sequence number of the file.
The timestamp in the array before the specific timestamp is searched by binary search.

The data structure for this task only requires an insert at the end, since the timestamps
by design are already in order during insertion, and a search operation. An array is
already optimal since the insert at the end is executed in O(1) while the binary search
on the ordered array is executed in O(n ∗ log(n)).

Delta Reset Point Creator

The ’Delta Creator’ (Section 3.2.3) processes the processing weights to be encoded as the
difference to the previous weights, referred to as ’delta’. Hence, to recreate or materialize
a set of weights from a specific point in time, all proceeding deltas have to be reapplied,
linearly increasing the decompression time for each additional saved set of weights. To
cap the decompression time for any set of weight, the weights are saved with the actual
materialized values periodically, referred to as ’reset point’, additionally to the deltas.
This is required to bound the decompression time, as required by ’RQ4: Reduce Retrieval
Time’ (Section 1.2).

To guarantee that the decompression time stays below the Processing Step Parameter
’Maximum Decompression Time Threshold’ (MDTT ), a fitting ’Reset Point Interval’
(RPI) is calculated through Equation 3.4 in the following steps:
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1. In the first execution, the initial offline trained weights are saved as a reset point.
That guarantees that the production weights before the first regular reset point
have a prior reset point.

2. The decompression time for one delta is estimated by adding the measured com-
pression time of all lossless processing steps executed before the ’Delta Reset Point
Creator’. This value is referred to as ’Maximum Compression Time measured’
(max(tc)) and overwrites the currently saved max(tc) if it is higher. The execution
time of the lossy Processing Steps are ignored since all implemented lossy Processing
Steps are not executed for decompression as they do not change the format.

3. It is calculated if the Processing Step Parameter ’Maximum Decompression Time
Threshold’ (MDTT ) is exceeded during the processing of the upcoming processing
weights, as shown in the Equation 3.4. The max(tc) is multiplied with the highest
number of deltas that are required for the materialization that is the farthest away
from a reset point. This value is calculated by adding the current count of previously
saved deltas, referred to as RPI, and one to account for the upcoming execution.
The result is then divided by two since reset points can be used bidirectionally and
is rounded up to account for an uneven number of intervals.
The bidirectional delta materialization is explained by the following example:
Let RP0 and RP5 be two reset points saved at batch numbers 0 and 5 and let
Dx be a delta with the interval number x while ws3 is the weight set with the
batch number 3 that should be recreated. Materializing ws3 from RP0 requires
decompressing and combining RP0, D0, d1, and D2. Materializing ws3 from RP5
requires decompressing and combining RP5, D4 and D3, which is one delta less
and hence favorable.

4. If the MDTT is exceeded in the upcoming run, calculated in the last step, a reset
point has to be created to prevent this. In this case the ’Reset Point Interval’ (RPI)
is fixed and the current and previous step is skipped in upcoming executions.

5. If the RPI is fixed and the current interval number divided by the RPI results in
an even number, a reset point is created. Keeping a fixed interval length helps to
reduce the complexity of which full weight save and which deltas have to be loaded
to recreate the model weights of a point in time. Creating a reset point requires
executing all lossless steps for the previous weights to also compress them. The
VSOL executes slower when a reset point is created due to the compression of the
reset point.

max(tc) ∗ ⌈((RPI + 1)/2)⌉ ≤ MDTT (3.4)

Since each evaluation run can have different run times, the iteration number after which
a reset point is created is fixed to be comparable across different runs for the evaluation
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section. Hence, for the evaluation, only 1 and 5 are executed. The predetermined interval
number is a Processing Step Parameter which replaces the Processing Step Parameter
’Maximum Decompression Time Threshold’ (MDTT ).

This idea is similar to video encoding [Sik97] where the I-Frames are equivalent to the
delta reset points, which do not require additional information to be loaded, and the
deltas are equivalent to a B-Frame since they can be used bidirectionally. But removing
a reset point would not render all subsequent deltas useless since it does not contain any
additional information and could be recreated by applying all deltas up to this reset point
from another reset point. Hence, removing or adding reset points can be done afterwards,
depending on memory or decompression time requirements of past data. Dealing with
missing reset points is not implemented in the loading mechanism since it expects a reset
point every x iterations. Different consequent optimizations are discussed in ’Optimizing
Storage of saved Weight Sets’ (Section 6.3.2).

3.3 Weight Deployment Scenarios
Processing Time affecting Error Rate In the VSOL, the weights are deployed
after the VSOL has been compressed and saved, hence fully processed, the new training
weight set.

A deployment should lead to a lower error rate since fresher data is incorporated into the
model. This is especially time critical when the underlying concepts of the data changes,
described in ’Concept Drift’ (Section 2.3.3), and the currently deployed model version
would misclassify any new data with this changed concept.

Lets consider the error rate of an example concept drift scenario for a 10 second window
and the effect of a delayed deployment of an adapted model. In second 0, a new labeled
training data batch arrives, containing data with a new concept. If the old model in
second 0 is trained on the new training data batch, it can correctly classify any data with
the new concept, otherwise it will misclassify it. As of second 0, all of the arriving data
which should be classified arrives with the new concept. Optimally, the model would be
trained quickly and be deployed instantly after the training in second 1 and correctly
classifies all arriving data after second 1, leading to a error rate of 10% in the 10 second
window. Now lets consider a slow deployment process which requires 3 seconds to deploy
and correctly classifies all arriving data after second 4, leading to an error rate of 40% in
the 10 second window. The slow deployment process increased the error rate four fold
for the given time window.

It is unclear if this effect on the error rate is noteworthy in practice and depends on the
concept change rate, the percentage of affected data and the data arrival rate. The delay
to the deployment of the VSOL is indirectly measured as the compression time metric
(see Section 4.3.3).

Since this effect is not discussed in the literature, to our knowledge, and the thesis’ topic
is not to experiment with this effect, it will not be considered during the evaluation and
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its subsequent decisions.

’Measuring Error Rate Impact by Delayed Deployment’ (Section 6.3.3) describes how an
evaluation of this effect could be conducted.

Proposed Deployment Scenarios Reducing the time of deployment can decrease
the error rate, as described in Section 3.3. Hence, deploying the weights before the VSOL
finished processing the training weights, is desirable. The deployment of the production
weights is not implemented in the VSOL since this thesis focuses on impact of the VSOL
on the storage and learning process. The following paragraph will describe possible
deployment approaches for different circumstances. These approaches build upon the
Stagestructure of the Processing Steps of Figure 3.2

Figure 3.4 shows two deployment approaches, the first one without lossy Processing Steps
and the second one with lossy algorithms. They differ since the training weights are
changed in a lossy approach, hence any changes to the training weights have to be applied
before deployment to guarantee that the deployed and saved version of the weights are
the same.

Deployment can be handled asynchronously but should have a queue for the resulting
weights if ’Delta Creator’ or any other lossy Processing Steps are used, since the weights
only result in a materialization if all deltas are used in order. In other words, a new
training weight set has to wait in the queue until the previous training weights are fully
processed before it can be processed by the VSOL.

Figure 3.4: Points after which Stages the weights can be deployed. Each approach shows
the point for a local and remote deployment. Figure a shows the deployment of the
lossless approach, Figure b the lossy approach

For a deployment over the network, bandwidth is the main limitation of the deployment
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speed. Hence, in a remote deployment setting, it makes sense to execute all Processing
Steps to reduce the size of the weights to the maximum before sending it over the network.
The additional runtime of the Processing Steps is less than the additional time required by
the uncompressed weights to be transferred over the network compared to the compressed
weights, as discussed in [PDMM21]. The remote deployment point between Stages is
the same for both lossy and lossless versioning systems since both have to finish all
compression algorithm, as discussed above. This is depicted by the remote deployment
between the compression and ’Data Saver’ Stage on the bottom of the VSOL. The remote
weights receiver would then require the same pipeline setup to be able to decompress the
weights. ’Local deployment’ refers to a scenario in which the weights do not have to be
transferred over the network to be deployed.

In the lossless versioning approach, the weights can be deployed locally before the
versioning system is triggered since they will not be changed in the versioning system.
This is depicted at the top of figure in which the deployment executes while the weights
are added to the processing queue.

In the lossy versioning approach, the lossy steps have to be executed before the deployment
since the training weights are changed to the lossy production weights and only the
production weights should be deployed. Therefore, the local deployment is then executed
after the last lossy Stage in the middle of the versioning system. Hence, all lossy
Processing Steps have to be applied before the local deployment can be executed.

Deploying requires tracking the remote deployment timestamps, as discussed in ’Times-
tamp Inconsistency for Remote Deployment’ (Section 3.4.3).

3.4 Limitations of Implementation
Since the main focus of this work is the identification and evaluation of Processing Steps
that minimize the impact the Versioning System for Online Learning systems (VSOL) has
on the storage and learning process, the resulting code is not production ready and some
aspects are excluded. The following section mentions the most important shortcomings
which are relevant for a real-world application.

3.4.1 VSOL Execution Blocks Training
The implemented VSOL blocks the training process, i.e. the training process is halted
until the VSOL has finished processing the new training weights. A delay of the training
process should be minimized, as declared by ’RQ1: Impact Reduction on Online Learning’
(Section 1.2). Section 3.3 describes how the delay can impact the error rate. This VSOL
processing time is measured as the compression time, as mentioned in Section 4.3.3, and
hence, measures the extend of the impact not executing VSOL asynchronously.

Executing the VSOL synchronously was chosen to reduce the implementation complex-
ity since the asynchronous implementation would have required a queue and further
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unforeseeable adaptions for the remaining code to be asynchronously executable. An
asynchronous execution could have also slowed down the training when run in parallel
which is also undesirable according to ’RQ1: Impact Reduction on Online Learning’
(Section 1.2). The queue would have also required significantly more memory, depending
on how much slower the VSOL is compared to the training time of one batch. The
execution time deviation could also have been increased when both processes block each
other in an unfavorable way for some evaluation runs.

The ’Weight Deployment Scenarios’ (Section 3.3) describes what the same VSOL requires
to work asynchronously and how the deployment could also be executed asynchronously.

3.4.2 Classifying Data Impacting Training

Considering that the model training is executed on another more specific processing unit
like a GPU or TPU, the VSOL should have only minimal impact on the training process.
This does not hold for VSOL Processing Steps which require the model to classify data,
as described in Section 3.2.1 and Section 3.2.5, which also requires access to the neural
network processing unit. Executing the training and those Processing Steps in parallel
can impact the training time.

’VSOL Execution Blocks Training’ (Section 3.4.1) describes why a parallel execution was
not conducted and hence, the direct impact on the training process was not evaluated.
The effect will be indirectly measured by the additional compression time it takes to load
the model and the data for classification.

Since this effect would be hard to measure and should be not present due to the blocking
nature of the VSOL (see Section 3.4.1) it will be disregarded.

3.4.3 Timestamp Inconsistency for Remote Deployment

In a remote deployment, a set of production weights are distributed to remote computation
instance which only classifies newly incoming data, referred to as ’compute node’. The
time of the deployment for different compute nodes can vary. Hence, when a data instance
is classified by a compute node after a new set of weights is deployed but before it has
arrived at the compute node, it is classified by an outdated DNN model which does not
correspond to the timestamp saved at the deploying instance. In such a case, the arrival
timestamp of the data point and the timestamp of the deployment cannot be directly
mapped and a procedure has to implemented to deal with this timestamp inconsistency.
The compute node therefore also has to track the local deployment timestamps.

Since deployment is not a direct concern of this thesis, a solution for this issue will not
be considered. ’Weight Deployment Scenarios’ (Section 3.3) discusses how the VSOL
could be changed to support deployment.
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3.4.4 Fail Safety
Parameters of the VSOL that are set during the processing of a new weight set are not
saved when the versioning system is shut down, e.g. if an outage occurs. Correspondingly,
the versioning system has to be kept in memory to be functional. Although the deployed
weights are saved, the versioning system still requires those parameters to retrieve
previous weights from storage. Examples of such parameters are listed in the ’Memory
Impact’ (Section 3.4.5) as storage requirements and most importantly includes the array
dimensions per layer of the weights.

Fail safety is not implemented since is not required to measure the effect of the VSOL
which is the focus of this thesis.

The VSOL also does not save the model architecture or current training state. It only
provides the set of weights for the model.

3.4.5 Memory Impact
The Processing Steps are chosen by their speed and not by their small memory impact
since a smaller execution time leads to less blocking or interference with the training
process which, regarding to ’RQ1: Impact Reduction on Online Learning’ (Section 1.2),
is the main focus. This section will discuss the memory impact of the VSOL and its
individual compression algorithms.

Definition Memory Quantities and Allocation Timespans While the VSOL has
several values in memory which only have a small footprint, such as the iteration count,
there are two components which require the majority of the memory. These are the sizes
of one set of weights, referred to as ’weight set size’ and the size of one batch of the
training data, referred to as ’data batch size’. There are three different types of time
periods these memory sizes can be allocated. The first period is the ’VSOL running time’
which stretches from the initialization to the shutdown of the VSOL. The second is the
’VSOL execution time’ which stretches from the start of the invocation of the VSOL for
a new set of weights and ends when the set of weights is either saved to storage or is
finished with the processing of the set of weights since it did not lead to a deployment.
The third is the ’compression algorithm execution time’ which is the stretches from the
start of a specific compression algorithm during the execution of the VSOL and ends
with the start of the subsequent Processing Step or the end of the VSOL execution.

Memory Requirements When the VSOL processes the given training weight set,
their size in memory is only reduced by the lower Stages ’Format Rearrangement’ and
’Compression’ and hence one ’weight set size’ is present for the ’VSOL execution time’.

When using ’Delta Creator’ (Section 3.2.3), one ’weight set size’ is required to store the last
the previous for executing the diff for the ’VSOL running time’. An additional ’weight set
size’ is required during the ’VSOL exection time’ for the materialized processing weights,
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which keeps the current processing weights in memory, e.g., for replacing the previous
weights after the VSOL is finished. Since ’Delta Reset Point Creator’ (Section 3.2.8) is
required for ’Delta Creator’ to bound the decompression time, the memory requirement of
it has to be add to the ’Delta Creator’. When a reset point is created, during the ’execution
time’ of ’Delta Reset Point Creator’, the memory requirements for the ’execution time’
of all other used lossless Processing Steps is required since they are executed again in
sequence for the reset point.

During the ’execution time’ of ’Top-K’ (Section 3.2.2), one ’weights set size’ is required
to first calculate the diff between the last saved weight set and afterwards to retain the
indices which have to be reset to zero in memory.

During the ’execution time of ’Reset Least Significant Bits when Most Significant Bits
set’ (Section 3.2.4), up to one ’weight set size’ is required to save the indices which have
to be set to zero. This is not required if Reset Least Significant Bits is executed since all
indices are selected.

During the ’execution time’ of ’Decide Save by Error rate Decay’ (Section 3.2.5), an
additional ’weight set size’ is required for the training weights that are currently being
processed. This is necessary since after the 3.2.3, the format is changed and the weights
have to therefore be recreated. The last saved weights are already present to be used
by the ’Delta Creator’. One ’batch data size’ is required per data batch that is kept in
memory to be evaluated by the new set of weights. If the flag for evaluating all data
between the saved and the current weights is set, the number of required data batches
equals the number of weights that were not saved. This parameter is generally undesirable
from a memory perspective. Evaluating only the current data batch requires only one
batch in memory.

’GCXS’ (Section 3.2.6) and ’General Compression’ (Section 3.2.7) are not discussed in
theory since they are not implemented by us and a statement would require a code
analysis of the used packages.

If the asynchronous processing queue is implemented (see Section 3.3), each unprocessed
set of weights is also in memory.

Decision against Memory Measurement The memory usage is complex since some
allocations are only present during the execution of one Processing Step or during the
processing time of the VSOL while other allocations are present as long as the VSOL
is running. Consequentially, measuring the memory impact would be elaborate since
several distinct measurements in time would be necessary to reflect the variable allocation
periods described above while also excluding the memory usage of the machine learning
framework and the testing environment. Then again, the memory impact can be easily
estimated per Processing Step since the relative sizes such as ’weight set size’ and ’data
batch size’ are coupled and not dependent on other algorithms. In conclusion, since the
memory impact is not the main focus of the thesis and a measurement reflecting the true
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complexity is elaborate while it would only reflect the described relative sizes, a memory
measurement during the execution of the experiment is not conducted.

3.4.6 Retrieving Multiple Weights Sets
The VSOL is designed and optimized to retrieve the set of weights for one point in time
for one evaluation since understanding past classifications is the main focus, as declared
in ’Motivation & Problem Statement’ (Section 1.1).

Querying scenarios like finding out when a certain data point changes the evaluated
label for a certain time span would also be possible through the given retrieving system
but is time consuming since each set of weights is loaded individually. Such a system is
described in [MLDD17b].

3.4.7 Versioning opposes Privacy Concerns of Data Source
Neural Networks changes resulting from a data batch somewhat incorporate the used
data. In an online setting where previous versions are not versioned, the changes from a
certain batch would become diluted over time. Whereas when versioning the systems,
the exact changes of one batch are specifically recorded, indirectly and vaguely recording
the used data. This adds an additional privacy concern.

This can be counteracted by using lossy Processing Steps in the VSOL which dilute the
exact training weights not only for the saved versions but also by the deployed version by
design. The VSOL can also help to retrieve and remove several versions after data was
used which the data source requests to be removed if the data source has the timestamp
of the respective data. The next undeleted version incorporates the changes resulting
from the concerned data batch but is further anonymized since each additional deleted
version dilutes the changes of the respective batch by the changes of the deleted batch.

Since privacy is not considered as a research question, this topic will not be further
discussed.

3.4.8 Portability to other Frameworks
This section describes in detail what a machine learning framework has to provide for
VSOL to be integrable. ’Keras Usage and Integration’ (Section 5.2) describes in detail
how the VSOL is integrated into Keras architecturally and therefore acts as a showcase
for any other integrations.

The format of the model weights is expected to be a list of NumPy arrays where each
element in the list represents one layer. The data type of the NumPy arrays are expected
to be a float32/single precision float. The framework has to feature the possibility to
access the current set of weights, the used training data and the loss value and execute the
VSOL, all after each batch. With the three given parameters, the VSOL can then process
the weights. Requiring only weights and excluding the models architecture increases
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the ease of integration since the described weight format only requires one data type.
Metadata systems which focus on versioning other settings such as the model architecture
are described in ’Model Recreation’ (Section 2.1).

Additionally, there must exist an interface were the VSOL provides a set of weights and
data and receives the classification results for the given set of weights. This is currently
not decoupled through an interface in the VSOL and therefore the used Keras code
snippit executing this task has to be replaced. This is required to assess the quality of
the last deployed weights and the current weights which decides if the current weights
should be deployed, as described in ’Save Decision through New Model’ (Section 3.2.5).

The VSOL does not provide ’Fail Safety’ (Section 3.4.4) and hence, important parameters
like the weight dimensions are lost when shutting down the VSOL. To be failsafe, a file
saving these parameters is required to be restored the state of the VSOL, which is not
implemented.

39





CHAPTER 4
Evaluation

4.1 Online Learning Virtual Drift Simulation
The key aspect of any online learning system is to adapt to a change in the data
distribution as described in [PFG18, p. 285]. The versioning system should perform well
under the most extreme conditions, which is an occurring data drift. This is required
to fulfill the ’Main Research Question’ (Section 1.2) which states that the model which
should be versioned should be ’evolving’.

4.1.1 Virtual Drift
Drift can be categorized into two main types, a real concept drift where decision boundaries
can change, and virtual drift, where the distribution of the data changes but not the
decision boundaries. According to [HPC12, pp. 92], in practice, it mostly does not matter
for the mechanisms dealing with the drift if it is real or virtual. Since changing the data
distribution is easier then changing an underlying and unknown concept in the data, the
versioning system will be tested under a virtual drift. Drift can have several forms such
as a linear increase of a label, a sudden increase or several other forms as mentioned in
[GŽB+14, pp. 5]. Since the drift should affect every batch as an extreme measurement
and to capture if the versioning system can save the newly learned concept, a linear and
increasing percentage of the former underrepresented label guarantees a constant change
over time.
The code responsible for splitting the data and creating the appropriate batches can be
applied to any data set as long as the data has distinct labels.

4.1.2 Off- and Online Data Split
For a model to be trained offline and then experience a drift during online training, an
offline and online data set must exist. Figure 4.1 shows the offline data set on the left and
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the online dataset on the right. The x-axis represents batches, the y-axis the percentage
of the underrepresented label per batch.

Offline Split

Percentage Offline data (POff) represents the percentage of data used for the offline
training. This value should be at least 50% to ensure the offline model is properly trained.
Underrepresented label Percentage Offline data (UPOff) describes which percentage of
the underrepresented label data is used in the offline dataset. It should be very low to
ensure that the model has to learn the concept during drift but not 0 since the label
was anticipated during development of the model. Both percentages relate to the total
number of available data.

Online Split

The online training data set has the two parameters, Total Batches Online data (TBOn)
and Underrepresented label Percentage Maximum Online data (UPMOn), which are the
sides of the imaginary triangle of the underrepresented label linear increase. Since for
some cases the underrepresented label data is limited, for some dataset UPMOn cannot
reach 100%. Optimally, all data is used but if the underrepresented label data has a
high percentage, it is possible that not all of it can be used to uphold the two mentioned
parameters.

The underrepresented label percentage of batch n is calculated through evaluating the
area until n under the linear function minus the previous used values and then rounding
the value down. This guarantees that missing values from a previous batch are included
in the next. This is reflected in the small oscillating steps in the Figure 4.1

4.1.3 Optimal Split Settings
Optimally, the online split settings would be equal for all data sets while upholding the
restrictions described in the offline split settings. Since some compression techniques
differ for different number of batches, TBOn must be the same for all models to be
comparable. The prediction performance curve, which reflects the adaption to the drift,
should be similar for all used models. Similar curves should ensure a more homogeneous
drift behavior over all models. Since the maximum accuracy per model is different, only
the curves shape should be compared, not the direct absolute difference between the
curves. This is accomplished by using min-max normalization for accuracy, referred as
accuracy normalized from here on out.

Since the curve shape is different for each label, the curve of each label is compared to
the curve of each other label. When comparing two curves, the absolute difference of
accuracy normalized for each batch number pair is computed. The mean value of all
differences for all label pairs is then computed for comparison. A lower value should
represent more equal curves. This metric is references as mean curve difference. While
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Figure 4.1: Illustrating percentage of underrepresented label data per batch in percent
for off- and online datasets and the setting parameters.

this evaluation has a runtime of n2, this will not be relevant for this evaluation since only
two models with less then ten labels each are used.

Last Accuracy is chosen for the evaluation performance curve since it shows clearly how
the model adapts to new label and when a plateau is reached. The drawback is that Last
Accuracy is less stable the Next Accuracy since it only evaluates against one batch. For
this metric, the values of the curves are normalized to their minimum and maximum.
This yields a better comparability in figures since they then better align in hight and
in values since the value differences are smaller and are then also more comparable for
two different data sets. The resulting metrics is referred to as Normalized Last Accuracy
(NLAcc). The difference between the curves, calculated as the mean of the NLAcc per
batch is referred to as Normalized Last Accuracy mean Difference (NLAccDiff).

Additionally, the model should reach a evaluation performance plateau the earliest in the
last third of the drift to ensure that mostly the evaluation is executed under a drift. After
discussing the selected data and evaluation metrics, ’Determine Data Split Parameter
Settings for Virtual Drift Simulation’ (Section 4.5) will discuss the used settings per
model.

Also, due to the limitations in the data amount, not all parameter combinations can be
fulfilled. The automatic process will raise an error if a certain setting is not possible or
undesirable. Since the label proportion in the used datasets are equal, these settings can
remain the same for any other chosen label. Since the main focus of the split settings is
the online drift simulation and it is mostly influenced by the underrepresented label data,
all parameters regulating it are key. Hence, UPMOn, TBOn and UPOff must be selected
carefully while POff can be dynamically set to the maximum possible value and use any
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remaining non underrepresented label data for offline training. Some underrepresented
label data will surely be left over and hence, unused since its remaining data cannot be
used during offline training to retain the drift effect.

4.1.4 Comparison to other Drift Simulations
Other Drift Simulations

The most popular online drift data sets can be categorized into two distinct groups:

Data Set Generators Data set generators [BS18, LLD+19, pp. 352, pp. 12] mostly
generates real value data which it generates from an underlying reoccurring simulation
such as a math function. Due to the simulated source of the data it is easy to simulate
drift and creates an abundance of data but only features easy reoccurring concepts. Then
again, the resulting learning task does not require a large neural network for an accurate
prediction. A more complex task is to categorize the rotation of a rotating chess board
captured from above, which represents an image classification task.

Real-World Data Sets Real-world data sets [LLD+19, pp. 12] also feature complex
text classification or image classifications. The number of instances and the difficulty
of the classification tasks, varies strongly. The summary table of [LLD+19, p. 14] lists
a number of popular datasets for which the number of instances ranges from 1500 to
2219803 and the types of data are text (7), regression (6), images (1). The start and end
of the underlying drift in the data is not precisely known and it often features a variety
of drift types.

Advantages of Implemented Drift System

A larger network is required for testing the VSOL since smaller network pose less of
a storage problem which is part of the ’RQ2: Reduce Required Storage’ (Section 1.2).
Since any data with class labels can be used by the Implemented Drift System (IDS) (see
Section 4.1.2), a data set can be chosen which requires a large neural network to be solve
sufficiently and has a large number of instances. The mentioned ’Data Set Generators’
(Section 4.1.4) are insufficient since the tasks are to easy. The mention ’Real-World Data
Sets’ (Section 4.1.4) are only partially sufficient due to their variability of the size and
the difficulty of the task.
When only training on arriving online data without incorporating offline or past data, the
model prediction quality deteriorates and requires retraining, as measure by [PDMM21].
Since the used models will not be tuned for online learning, as mentioned in ’Model
Selection Process and Limitations’ (Section 4.4), only a small number can be handled
before the model quality deteriorates and the IDS only features a limited number of
batches, which is determined in ’Determine TBOn Setting’ (Section 4.5.1).
Additionally, the IDS specifies which data can be used for offline training. A neural
network requires more data and iterations to learn the original concepts before the online
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learning phase than other machine learning techniques and drift should not occur during
the offline training to keep the original concepts clear. Selecting the offline data becomes
more elaborate since finding a subset of a real-world data set with stable concepts is hard
since drift in the data sets is not clearly defined. Using an additional dataset without
drift would require to find such a dataset with similar properties. Also, due to the
artificial separation, one dataset can be easily divided several times and be randomized
to achieve more reliable results, as mentioned in ’Data Splitting with K-Label Cross-
Validation’ (Section 4.2.1). While the start and end of the drift in ’Real-World Data Sets’
(Section 4.1.4) is unclear, the drift of IDS is very precise since it is controlled artificially.

[PDMM21] for example solves those issues by splitting the dataset randomly without any
criteria for the offline and online set. This approach is similar to the IDS and solves all
of the issues mentioned above except that no clear drift arises during the online learning
phase which is required. In summary, due the requirement to have a dataset with a
hard task, a defined drift and sufficient data, only the IDS was sufficient and therefore
required.

Limitations of Implemented Drift System

Since the Implemented Drift System (IDS) only provides one hard drift period, the
VSOL is simulated exclusively under very hard conditions. Hence, it is unclear if the
compression ratio (see Section 4.3.2) would be significantly lower in a full simulation were
the weights change less since the underlying concepts of the drift are easier to learn. Due
to using only one type of drift, it remains unclear if VSOL only can handle the tested
type of drift and how the error rate would be affected by a different type of drift. Since
the VSOL is only tested under drift it remains unclear how the evaluation metrics would
change for a non drift period.

The drift of the IDS is limited by the instance number of the label with least instances
since the online simulation requires many instances. Such a limit could be either due to
too many labels in one data set or a limited number of instances in the data set. E.g.
a drift lasting 150 batches (Total Batches Online data (TBOn)) with 80 instances per
batch and a peak of 60% underrepresented labels in the last batch (Underrepresented
label Percentage Maximum Online data (UPMOn)) would require at least 3600 instances
per label, as shown by the Equation 4.1. A data set with 10 label would then require
36000 instances.

#batches ∗ TBOn = #instancesOnline

= 150 ∗ 80 = 12000
UPMOn ∗ 0.5(slopeOfLabelIncrease) = %Underrepr.LabelOnline

= 0.6 ∗ 0.5 = 0.3
#instancesOnline ∗ %Underrepr.LabelOnline = #minInstancesPerLabel

= 12000 ∗ 0.3 = 3600

(4.1)
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4.2 Evaluation Process
The evaluation process consists of splitting the data sets into an offline and online part,
as described in the previous ’Online Learning Virtual Drift Simulation’ (Section 4.1),
training the offline model, simulating the online learning with the VSOL and then loading
the saved weights for evaluating the evaluation performance. The following section will
describe each step in detail and the limitations of this approach. Before each step is
executed, the seed for all random functions involved is set. The seed creation is described
in the next section.

4.2.1 Data Splitting with K-Label Cross-Validation
Other machine learning evaluations use K-Fold Cross-Validation to ensure that the result
uphold under different validation splits. In this virtual drift section, the selected label
could also have an unaccounted affect. Therefore, using different labels for different
validation data sets of cross validation should be a good equivalent. To also apply a
different seed per cross validation and keeping one stable seed, the label number and the
seed are added to result in a different seed per label split. E.g. a dataset with ten labels
will result in ten different data splits with their own seed each.

If the number of k-labels is not high enough for the targeted number of cross validations
sets it would be possible to explicitly use the data from the offline split in the online split
and vice versa. Since the online split of the data functions also as a validation set, this
should have a similar affect. However, this approach was not implemented and therefore
not explained in detail.

Hence, the process described in the next sections is repeated for each label of the dataset
and the mean value of them is calculated.

4.2.2 Offline Training
The data for the offline training is chosen by the selected label, the described off- and
online parameters (see Section 4.1) and a seed parameter. The seed is also set for any
other random functions involved in the training process before this and any other step.
Through theses given parameters, the resulting model is reproducible. The offline model
is trained with the offline split of the data for several epochs.

The resulting model weights are saved so that all further tests on the VSOL do not have
to retrain the offline model.

4.2.3 Online Training with VSOL
Before the online training is executed, the offline model is trained or loaded, as described
in the section before. Then the online learning is executed with the online data set with
increasing drift. The last batch of the dataset is omitted since it is only used for the
evaluation. After each batch, the VSOL is executed synchronously, therefore blocking the
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next training step, with the newly trained weights TWn. After the VSOL was executed,
the deployment timestamp is saved to simulate an evaluation on the saved weights for
TWn. If the VSOL saved a new version, the timestamp is also saved in a separate list
for saved runs. When loading a saved run, the index of saved run list shows which run
number should be loaded.

4.2.4 Online Training Data Selection
In an online setting new training data with labels arrives and a system is then chosen
when and how the new data is used to train the online model. Several different data
chosing principles are explored, as mentioned in Section 2.3.2.

Since the envisioned online learning system should be easy to use and therefore only
require little configuration and the main focus lies in the Processing Steps rather than a
specific online learning adaption and the learning process such as the change calculation
of the weights should not be changed, the simplest windowing technique is selected.
This is a ’fixed landmark window’ (described in [GBEB18, p. 23]) which collects a fixed
number of new data instances. When this fixed number is reached, the data window is
used as one batch for a learning iteration. After the bach was processed, the data batch
is then discarded and the training process continues with a new batch when the fixed
number of data samples is collected. This window technique also used by [PDMM21] as
a baseline for online learning.

For simplification, it is assumed that the next batch can be executed immediately after
the previous one since a queue of new data is always filled and the training process
cannot keep up with the arriving data. Simulating time gaps between each batch has no
advantages for the measured evaluation metrics and only increases the required time for
evaluation.

Any further optimizations that leads to a better evaluation metrics can be integrated in
the given version saving system as long as the network structure is not changed. E.g.
chosing a different windowing technique for data selection can be used as long as it
upholds the static batch size. ’Keras Usage and Integration’ (Section 5.2) describes how
such a different technique can be integrated into the existing pipeline.

4.2.5 Evaluation of Saved Versions
For the evaluation run the first batch is skipped, as described in ’Prequential Accuracy’
(Section 4.3.1) in more detail. Then the simulation timestamp list is traversed and the
saved version for the given timestamp is loaded. Since not every training step leads to
a save, it is possible that the previous version is loaded again. Each version is loaded
separately to measure the decompression time. Both evaluation measurements mentioned
in Section 4.3 are evaluated while each version was loaded. Freshly loading the weights
from the saved files guarantees that only the saved weights are used to evaluate the
performance.
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4.3 Evaluation Metrics
According to the set research questions, upholding the evaluation performance, a low
compression time and a storage reduction is priority while the decompression time
should be acceptable. In the following section each metric will be discussed. For any of
the evaluation metrics, K-Label Cross-Validation is used. The results of each run are
summarized via mean.The mean of all results from all of the runs are used for comparison.
Also, mean is used to summarize the values of each individual run.

4.3.1 Prequential Accuracy
The standard error rate metric of an online learning algorithm is the prequential accuracy
(see Section 2.3.5). This involves using each online sample first to evaluate the current
model and then using it as the next training sample, i.e. after the model was trained with
batch 1, the resulting model evaluates the data of batch 2 and the resulting accuracy is
the computed. In a drifting scenario this helps to evaluate if the model is able to adapt
to the occurring drift which is in this case present in the current and upcoming batch
while also using data the model has not seen before. This is also very data saving since
any data batch can be used for training as well as evaluation. Only two batches can be
used for either evaluation and training. The first batch can only be applied for training
since the model first has to train on at least one batch with drift so that its adaptability
can be tested. One batch at the end can only be used for evaluation since using it also
as a training batch would then result in having no fresh data batch for the model trained
with it to be tested against. Hence, when n number of batches are available for online
learning, only n − 1 training batches are executed.

This metric reflects the ’RQ1: Impact Reduction on Online Learning’ (Section 1.2) since
a changing accuracy has a great impact on the model over all, as discussed.

Baseline The only baseline is using the weights of any system that preserves the
weights from the training process. Depending on the comparison to other metrics, this
can be just saving the weights directly or with any lossless Versioning System for Online
Learning systems configuration. Depending on the use case, the VSOL should not fall
too much below this metric.

Any accuracy measurement are given as a deviation from the lossless case since the
deviation shows how much accuracy reduction has to be accepted to achieve another
evaluation metric. This deviation is mentioned in several tables as ’Mean Diff to Lossless
Last Accuracy’ and in the text often abbreviated as ”accuracy” since it is mostly the only
accuracy measurement that was used. If a different accuracy measurement is used, it is
explicitly mentioned. Positive values represent an improvement while negative values a
loss in accuracy.

Drift Target Accuracy To clearly evaluate if the VSOL is adapting properly to the
drift, the last online batch with the highest percentage of former underrepresented label
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of the online run is used to retrace that the accuracy is rising steadily. It works like
prequential accuracy but instead of using the upcoming batch as validation data, the last
batch is used. This measure is very unstable since its size is only one batch but can be
used as a debugging measurement for lossy Processing Steps to see if this value steadily
rises, as it should, which is not always clear with prequential accuracy. This debugging
measurement is named ’Drift Target Accuracy’ by us.

4.3.2 Compression Ratio
All saved versions are saved in one folder. This includes Delta Reset Points (see Sec-
tion 3.2.8) which are used to save the start weights to include in the since there are
mandatory for further deltas besides any other reset points. When the size of a run is
evaluated, the folder size is measured. The in-memory data of the compression pipeline
is not included since this should not carry weight when the VSOL already save many
deltas. The compression ratio is the percentage of disk space the tested pipeline requires,
compared to the main baseline. Hence, a higher value is better and refers to a lower
file size. This measure directly corresponds to the ’RQ2: Reduce Required Storage’
(Section 1.2).

Baselines To show the compression ratio improvement an additional Processing Step
has on a configuration, a fitting baseline must be used.

1. The main baseline is using the ’General Compression’ to compress every produc-
tion weight set individually. It will be used for any lossless configurations and for
the final lossy configurations. Comparing other baselines to this one shows which
online learning specific measures had an additional effect to a trivial approach.

2. Since any lossy VSOL configuration builds upon the best lossless configuration and
the additional gains over only using the lossy VSOL should be shown, the best
lossless VSOL configuration is used as a baseline for any lossy evaluation runs.

3. This baseline for evaluating the best ’General Compression’ is saving each weight
without compression. This has about the same size as you would have if you
would use the checkpoint system of Keras. Since the checkpoint system of Keras is
not thought out for a timestamp approach it was easier to save the weights directly
instead of creating a wrapper code for it.

4.3.3 Compression Time
The compression time is measured during the online training run. Each step in the
compression pipeline is measured on its own and then added. Since steps of the pipeline
can be skipped, as described in ’Save Decision’ (Section 3.2.1), the compression time
can vary strongly from run to run. Therefore, the maximum compression time is also
evaluated.
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Baselines A upper bound baseline is the ’Batch Learning Time Baseline’. If the
compression time exceeds the ’Batch Learning Time Baseline’, the weights to deploy
become outdated before they can even be rolled out, as discussed in ’Processing Time
affecting Error Rate’ (Section 3.3). This value will not be listed in any table since it does
not have a running time. Some results will be close to this baseline or even above and
will be proclaimed as such.

As additional baselines, the same baselines are used as for the ’Compression Ratio’
(Section 4.3.2) to see how it increases compared to configurations with less steps.

4.3.4 Decompression Time
The decompression time is measured during the evaluation run where each saved set of
weights is loaded. Since all lossy steps are already executed, the decompression time
should be significantly lower then the compression time, excluding the load time if several
deltas have to be loaded, see ’Delta Creator’ (Section 3.2.3). Since the decompression
time can vary strongly, as with the compression time, the mean max value of all the runs
is reported additionally.

Baselines do not always make sense because the decompression time from some of the
Processing Steps of the other baselines are very low due to not using delta encoding.
As additional baselines, the same baselines are used as for the ’Compression Ratio’
(Section 4.3.2) to see how it increases compared to configurations with less steps.

4.4 Selected Models and Data Sets
Requirements for Chosen Models The chosen models for the evaluation run must
be implemented in Keras since it was preferred due do to the standardized interfaces
and training process. ’Keras Usage and Integration’ (Section 5.2) describes the reasons
for chosing Keras in detail. The chosen Keras model should be not too large so that
different ideas could be executed quickly on a consumer grade computer. They have very
different layers and architectures to guarantee that the VSOL works well for different
model and tasks. Both models have to be classifiers so that the chosen drift simulation
can be executed (see Section 5.2).

Model Selection Process and Limitations Since the main focus of this thesis was
not to have the best performing models but rather to keep up their performance, the
used models were obtained from Kaggle since most models from papers are implemented
in PyTorch and a translation to Keras would have been too elaborate and out of scope
of this thesis. The models were then slightly adapted and simplified. To ensure that
the chosen models are relevant, their size and accuracy are compared to other neural
networks from leading papers in the sections bellow. The neural networks to compare to
were selected from the website ’paperswithcode.com’ [pap23b, pap23a] which rank high
in accuracy and have a comparable architecture.
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Furthermore, no online specific configurations were added to the selected models. Since
the VSOL is only executed for a small number of batches, this should not be an issue, as
argued in ’Advantages of Implemented Drift System’ (Section 4.1.4). ’Neural Network
Adaption’ (Section 2.3.1) mentions several adaptions an online neural network could have.
Since the VSOL is capable of handling any model configuration as long as the model
architecture does not change, the chosen models can represent an online learning specific
model since they both are made up of floats which change over time. It remains unclear
how certain online learning specific configuration affects the degree and type of change in
the floats and hence, the ’Compression Ratio’ (Section 4.3.2).

Since only two types of neural networks are used for evaluation, it remains unclear if
other neural network types would significantly change the metrics when using VSOL.
Also, both networks have a smaller number of parameters compared to other models, as
shown in Table 4.1 and Table 4.2, to reduce the required time for evaluation. Hence, the
effect on the evaluation metrics of a model with significantly more parameters remains
unclear.

Accuracy of Models The accuracy of the used models when trained with training
data set is used to compare it state of the art models. The models were trained for 10
epochs with the full training data set. The Keras function ’Early Stopping’ saved the
weights and accuracy of the model with the best accuracy for the test data set from all
epochs. This differs from the offline model training for the online validation run.

4.4.1 Image Recognition

For Image Recognition, the Dataset MNIST was chosen which features 60,000 hand drawn
single digit numbers with a test set consisting of 10,000 pictures. The used convolutional
neural network [kag17], referenced as Conv in this thesis, has an Error rate of 0.51 and
887,530 parameters. It consists of two convolutional layers followed by a max pooling
and dropout layer. This sequence is repeated twice. The fully connected layer consists of
803,072 parameters which is over 90% of the overall number of parameters.

Table 4.1 shows the error rate and number of parameters for recent comparable neural
networks. Both neural networks besides CapNet feature similar architectures to the
chosen neural network Conv. While Conv’s error rate is notably higher, the difference
is not considerable. Additionally, the other training processes included additional steps
which were not applied to Conv, such as the augmentation of the training data like in
[Ass19]. Furthermore, the training of Conv did not include a learning rate annealer since
this would be an additional parameter which must have been adapted for the online
learning run. The number of parameters of Conv seems to be in the middle between
the smaller and larger models which were chosen for this data set. Hence, Convs Error
Rate, architecture and number of parameters seems to be close enough to represent other
convolutional models for the online evaluation run.
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Error Rate Number of Parameters
CapNet [BKD21] 0.13 1,514,187
SOPCNN [Ass19] 0.17 1,400,000

SimpleNet [HRFS16] 0.25 300,000
Conv (chosen for evaluation) 0.51 887,530

Table 4.1: Depicts error rate and number of parameters of current top image classification
neural networks and model used in the evaluation process. Best values are highlighted.

4.4.2 Text classification
For text classification, the dataset AG News was chosen. It has 120000 training and 7600
test text snippets with four different text type labels. The used LSTM neural network
[kag21], referenced as LSTM in this thesis, has an Error rate of 8.64 and 1,905,924
parameters. The embedding layer consists of 1,280,000 parameters, where 10,000 tokens
each consist of 128 dimensions. Two bidirectional LSTM layers are used in sequence.

Table 4.2 shows the error rate and the number of parameters for recent comparable
neural networks. LSTM has a large gap of 4.19 in the error rate compared to the best
methods but since it does not use a pretrained set of word embedding, this difference
should be explained by this and hence be tolerable. A pretrained embedding was omitted
to keep the setup of the model low. As already mentioned, additional measures like using
a learning rate annealer was omitted due to the online learning set. Since L MIXED
has a similar architecture and size to LSTM, excluding the embedding size, it should be
representative for other current neural networks tasked for text classification which are
not based on a order of magnitude larger model size like XLNet.

Error Rate # Parameters
XLNet [YDY+19] 4.45 ∼300,000,00 *
L MIXED [SZS19] 4.95 slightly more then LSTM **

LSTM (chosen for evaluation) 8.64 1,905,924

Table 4.2: Depicts error rate and number of parameters of current top text classification
neural networks and model used in the evaluation process. Best values are highlighted.
Obtaining the number of parameters for language models is not directly mentioned and hence harder to
obtain. All models use word embeddings which can make up a large portion of all parameters.

* Describe in experiment as having a similar number of parameters as Bert Large which has about the
shown number of parameters

** Not explicitly mentioned, excluding the very large embedding size due to similar architecture should
be close to LSTM
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4.5 Determine Data Split Parameter Settings for Virtual
Drift Simulation

In this section, the parameter settings for the off- and online data split (see Section 4.1.2)
will be determined through several sequential experiments evaluating different values per
parameter. The data split parameters are chosen so that the Normalized Last Accuracy
mean Difference (NLAccDiff) is minimized which ensures more comparability between
the drift of the two neural networks. The figures in this section show the Normalized
Last Accuracy (NLAcc) value which is closely related to NLAcc, as discussed in ’Optimal
Split Settings’ (Section 4.1.3) The chosen set of parameters will be used by all further
experiments.

The NLAcc figures in the following sections show the curves for the third label. It was
chosen to be representable for all other labels after looking at curves for labels. Selecting
only one label reduces the number of curves that have to be shown per parameter and
therefore reduce the complexity of the figures. The parameter POff is not mentioned in
the following section since it is set automatically depending on the other values. The
range of values for UPMOn and especially UPMOn are limited by the available data for
one label. This limitation partially explains the chosen value ranges.

4.5.1 Determine TBOn Setting

The total number of batches of the online run should tend to be higher so that the model
has more data to adapt to the drift. Processing Steps preventing saves, as described in
’Save Decision’ (Section 3.2.1), require more batches since they can skip several saves
which would distort the results if only a limited number of saves are executed since the
number of batches is also low. TBOn should be the same for both models since otherwise
compression techniques dependent on the number of saves lead to incomparable results.
Hence, the resulting table only has one setting for both models.

Table 4.3 shows the NLAccDiff for different TBOn settings. The other parameters are
set to fixed untested values and will be evaluated in the upcoming steps. UPMOn is set
to 0.5, UPOff is set to 0 and POff is dynamic and set to the remaining data. 150 batches
seems to be slightly better then 160 batches and clearly outperforming all other values.

TBonline Mean Curve Diff
100 0.176
125 0.145
150 0.122
160 0.122

Table 4.3: Depicting the Normalized Last Accuracy mean Difference between the models
Conv and LTSM for different TBOn settings.
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Figure 4.2 shows why the TBOn setting 100 has a significantly worse NLAccDiff then
150. This is mainly due to the fact that LSTM reaches its optimum not at the last batch
but in the last quarter and hence the normalized accuracy lines are more equivalent.

Figure 4.2: Depicts NLAcc during online training for the two used neural networks for
different TBOn settings for specific label. X-Axis different since number of online batches
change.

4.5.2 Determine UPOff Setting
UPOff is the percentage of the underrepresented label in the offline dataset. Having more
data of the underrepresented label in the offline data set should lead to a significantly
lower drift.

Table 4.4 shows the NLAccDiff for different UPOff percentage settings. TBOn is set to
150 from the last run and UPMOn is set to 0.5. Conv having a higher UPOff seems to
result a worse difference while the opposite seems to be true for LSTM. Hence, the best
UPOff settings seem to be 0.01% for Conv and 0.1% for LSTM.

Conv\LSTM 0.01 0.1
0.01 0.165 0.115
0.1 0.239 0.177

Table 4.4: Depicting the NLAccDiff between the models Conv and LTSM for different
UPOff settings.

Figure 4.3 shows that a higher UPOff value leads to an early increase of NLAcc. This is
expectable since the model was exposed to more data of the underrepresented label and
hence, has to adapt less to it during the online run. Since Conv reaches its accuracy peak
early it makes sense that the UPOff value is higher for LSTM then Conv. Both Conv and
LSTM have an accuracy drop after an short increase after about 10 batches for a UPOff
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value of 0.001, which is not present with a value of 0.0001. This could be because the
neural networks are over-fitted for the very small sample of the underrepresented label
and first have to escape a local optimum before correctly classifying the underrepresented
label data of the online data set. Hence, although a higher UPOff value can help to
increase the curvature, as discussed above, this accuracy drop has to be considered.

Figure 4.3: Depicts Normalized Last Accuracy during online training for the two used
neural networks for different UPOff settings for specific label.

4.5.3 Determine UPMOn Setting

UPMOn is the maximum percentage of the underrepresented label in the last online
batch after the linear increase from 0% at the beginning of the online data split. As with
TBOn, it would be desirable that both Neural Networks share the same UPMOn value
since otherwise each batch of data is not comparable and different accuracy values could
result from different underrepresented label percentages. But since it does not affect any
Processing Step directly, the comparison table will also feature combinations where the
value is different per neural network.

Table 4.5 shows the NLAccDiff for UPMOn settings. According the table, a higher
UPMOn for Conv seems to enlarge the difference between the NN while the opposite is
true for LSTM except for the LSTM 50% column. Compared to the other metrics, the
range of differences are not as great. Hence, having different UPMOn values per neural
network to reduce the NLAccDiff does not outweigh the drawback mentioned above.
Although having a UPMOn of 60% for both networks has the lowest NLAccDiff, 50%
was chosen since the upcoming experiments where already executed before this table was
created and since the difference is minimal, those experiments were not rerun with 60%
instead of 50%. Since 60% is lower then 50% it is possible that a value above 60% would
yield an even lower NLAccDiff value but the data amount for the LSTM is too low to
test this hypothesis.
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Conv\LSTM 40.0% 50.0% 60.0%
40.0% 0.107 0.115 0.095
50.0% 0.110 0.115 0.097
60.0% 0.119 0.126 0.102

Table 4.5: Depicting the NLAccDiff between the models Conv and LSTM for different
UPMOn settings.

Figure 4.3 shows that the UPMOn value does not seem to have a clearly visible effect on
the course of the curve. This could be explained by the fact that although the model now
has more data of the underrepresented label during online learning, the last accuracy
target batch has also a higher underrepresented label percentage and hence, the model
must have also adapted more strongly to the additional label to reach the higher accuracy
value.

Figure 4.4: Depicts Normalized Last Accuracy during online training for the two used
neural networks for different UPMOn settings for specific label.

4.5.4 Effectiveness of Virtual Drift Conversion

Considering the difference in data and architecture of the two neural networks and the
amount of data available, the accuracy curves were fitted very closely. The Normalized
Last Accuracy mean Difference (NLAccDiff) from all runs was improved to 0.115 from
the maximum value of 0.239 which is a decrease of 0.124 or 208%. The best value is 0.095
(252%) but was not used and could have even further been improved with more data,
as both discussed in ’Determine UPMOn Setting’ (Section 4.5.3). Figure 4.4 shows the
resulting NLAcc curves which are very close and also share a very similar curve shape.

Table 4.6 compares the improvement per data split parameter of the explored values. It
shows that UPOff is the most influential by fare, being 115% away from the next best
improvement, while TBOn and UPMOn only differ by 35%.
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Parameter Name Percentage improvement in % Minimum Maximum
UPOff 208% 0.115 0.239
TBOn 144% 0.176 0.122

UPMOn 117% 0.119 0.102

Table 4.6: Depicts improvement per data split parameter for virtual drift simulation in
descending order. The improvement percentage is calculated between the minimum and
maximum Normalized Last Accuracy of all explored parameter values.

4.6 Evaluation Concepts and Environment for
Configuration Scenarios

Description of Procedure of the Evaluation and Underlying Thoughts Finding
several usable and sensible configurations with the right settings should be the outcome
of this evaluation. This ensures that a user can quickly identify which preset combination
will fit their need. These scenarios will have different tradeoffs between the main metrics,
prequential accuracy, compression percentage, compression time and decompression time,
as discussed in ’Evaluation Metrics’ (Section 4.3).

Since one full evaluation of a configuration can take up to 25 minutes on the test
machine, testing all possible combinations is infeasible. Therefore, smaller portions of
each Processing Step or configuration will be tested in isolation. Firstly, a small set of
parameters featuring a good tradeoff must be found for each Processing Step to reduce
the overall search space. After testing each Processing Step in isolation, they will be
tested together and potentially adapted to work better together.

The main tradeoff is the prequential accuracy since it can affect the utility of the model
itself. Hence, the user first would have to decide if the combination should be lossless or
lossy. Since the lossy Processing Steps are added on top of the lossless algorithms, the
combinations of lossless Processing Steps will be evaluated first. When useful lossless
configurations are established, they can then be combined and tested in combination
with lossy algorithms. This should significantly reduce the search space when adding
even more algorithms.

Running the different configurations for two different neural networks with two different
tasks should show that the Processing Steps not just apply for a specific case and are not
tuned to be too specific. It is important that the evaluation metrics are stable for both
neural networks and hence, a more stable result from an Processing Step is preferred
over a great result for one neural network but performing poorly on the other.

Evaluation Metrics Calculation and Presentation For summarizing the results
from each run per label, the mean is calculated. The compression ratio is calculated from
the baseline of each table. Accuracies are given as deviation from the baseline of the
table. A positive deviation represents an improvement over the baseline and vice versa.
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The standard deviation of the accuracy per run was analyzed to ensure that none of the
Processing Steps have strong deviations which would result in an unremarkable mean.
Since none of the Processing Steps and their combination had a high standard deviation,
the value was omitted from all tables to reduce their size. Often the Processing Step
standard deviation was even smaller than the baseline.

Table row names contain an abbreviation of the used Processing Steps and Processing
Step Parameters which are described close to the table. Each Processing Step name starts
with a capital letter and followed by a number or capital letter for the set parameters.
E.g., Zstwm1c refers to the Zstandard compression algorithm, using the compression
rate of 1. To shorten the row names of the configuration, Processing Steps which are
used in each row are omitted and mentioned in the caption.

Undeterministic Learning Process Accuracies per run can vary since each run is
not absolutely deterministic although a seed was set and the offline model is reloaded per
executing. Tensorflow has a feature to only use deterministic algorithms, as mentioned
in the documentation [ten22]. But since it is still experimental, very slow and potentially
does not work for all of the used neural network layers, it will not be used and a small
amount of variability will be accepted. Without any exact measurements but from
observation the accuracy from the same run seems to deviate up to 0.04%, but this can
strongly vary when the accuracy drops in general.

Selection Accuracy Bounds Since there are no baselines for accuracy, meaningful
artificial boundaries must be chosen. Chosing boundaries significantly reduces the number
of configurations that are evaluated in the final run. This is due to the reduction in
the number of permutations when only a maximum of three parameters are selected per
algorithm. The most extreme boundary would be a deviation around 0% accuracy of
even a positive value. The next boundary was inspired by [LDG+17], which states that a
0.1% decrease of model accuracy can lead to signification loss in revenue. Hence, staying
above or close to 0.1% is the second boundary. To show the full potential of a lossy
configuration, the very high bound of 1% is used which is probably too high for most
use cases but does not reflect a complete degradation of the model. In summary, the
accuracy bounds are 0%, 0.1%, 1%

Batch Learning Time Baseline Table 4.7 shows the per batch learning time. This
is one of the baselines and will be used as a comparison to the compression time. It is
referred to as ’Batch Learning Time Baseline’. Since these values are static and do not
make sense in any of the tables, it will only be listed here once.

4.6.1 Evaluation Machine
The machine used for evaluation has a NVIDIA GeForce GTX 970 graphics card, an Intel
i7-4790K processor, 32 GB of memory, a hard disk with a writing speed of 1000 MB/s
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’Batch Learning Time Baseline’ (in sec.) ’Batch Learning Time Max Baseline’ (in sec.)
Conv 0.033 0.074
LSTM 0.094 0.134

Table 4.7: Depicts the learning time of one batch for the selected neural networks in
seconds.

and Windows 10 as operating system. The versions of the most important packages are
11.3 for CUDA and 2.10.1 for Tensorflow

The evaluations were executed in an Jupyter Notebook environment to keep values in
memory such as the training data while experimenting with different settings for each
algorithm.

4.7 Evaluation Lossless Configurations
The following section will evaluate all lossless Processing Steps in isolation and finally
evaluate their combinations. Since the training weights are not changed by any of the
lossless configurations evaluated in this section, which was verified for all of them, the
accuracies are not impacted by the configurations and hence, will not be shown or
evaluated. A small accuracy deviation is discussed in ’Undeterministic Learning Process’
(Section 4.6) and hence, the Weight Change Degree can very slightly differ per evaluation,
changing the compression circumstances. If only one number is given in the text for an
evaluation metric, the rounded average between the values of the two neural networks
are used. Two values starting with ’C’ and ’L’ in braces refer to the the values of Conv
and LSTM each. ’Enumerated File Saver’ (Section 3.2.8) is used in any configuration
since saving the production weights to disk is required to archive them.

Although ’GCXS’ (Section 3.2.6) is lossless, it will not be evaluated since it only reduces
the compression ratio when the weights have a higher sparsity (>75%), which is only the
case for ’Top-K’ (Section 3.2.2), which resets several delta changes to zero. Otherwise it
just increases the compression and decompression time and even decrease the compression
ratio due to the additional indices array.

4.7.1 General Compression for Further Testing
In this section, one fast general compression algorithm should be chosen for any further
individual Processing Step evaluations to reduce the time of the evaluation. Additional
slower Processing Steps can be selected if they result in a significantly lower compression
ratio. They will be reevaluated in the ’Final Lossless Configurations with Different Reset
Point Interval Settings’ section. ’General Compression’ (Section 3.2.7) explains how the
selection of general compression algorithms were chosen. In the following text, a number
after the compression algorithm name refers to its compression level parameter setting.
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Table 4.8 shows the main evaluation metrics of all chosen general compression algorithms
with the highest and lowest compression setting, if available. If the compression setting
revealed to have a drastic effect of some of the performance criteria, a fitting setting
between the extremes was added, e.g. 9 for Brotli between 11 and 1.

The evaluation metrics between the two neural networks are comparable and none of
the chosen Processing Steps perform vastly better on only one of the neural networks.
Compared to [DKS19] the compression ratios are very low, e.g. Brotli has a compression
ratio of 14.88 on a generic float data set while only having 1.093 on the convolutional
neural network. Hence, the entropy of the neural network weights seems to be extensively
higher than a normal float dataset.

The compression ratios of Brotli 11 (1.09) and LZMA (1.086) are higher then Zstandard 5
(1.081), which is algorithm with the next best compression ratio, while their compression
time is at least 23 times higher and therefore unacceptable for the selection of the fast
general compression algorithm. Zstandard 1 always has the lowest compression time
(C: 0.017 | L: 0.024) while its compression ratio is maximally 0.001 less the any other
Zstandard compression level which have the highest compression ratio after Brotli 11
and LZMA. Zstandard 1 seems to have the right tradeoff between compression ration
and time and will therefore be used as general compression algorithm for any individual
compression algorithm evaluation.

Short Algorithm
Name Differences

Compression
Ratio

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Decompression
Time Max
(sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-NoCompression 1.000 1.000 0.004 0.007 0.021 0.017 0.002 0.004 0.003 0.011
Browm11c 1.093 1.091 7.209 16.362 9.109 20.165 0.038 0.081 0.048 0.101
Browm10c 1.093 1.091 3.731 8.614 4.675 10.960 0.040 0.080 0.058 0.094
Lzmwm 1.086 1.085 0.753 1.906 0.841 2.062 0.160 0.332 0.187 0.366
Zstwm5c 1.080 1.082 0.033 0.058 0.050 0.118 0.012 0.023 0.023 0.037
Zstwm15c 1.080 1.082 0.110 0.197 0.163 0.235 0.012 0.021 0.027 0.038
Zstwm10c 1.080 1.082 0.115 0.212 0.164 0.245 0.011 0.022 0.020 0.042
Zstwm1c 1.080 1.081 0.017 0.024 0.034 0.051 0.014 0.023 0.039 0.048
Browm9c 1.080 1.081 0.130 0.306 0.163 0.415 0.026 0.052 0.036 0.063
Browm1c 1.080 1.081 0.019 0.036 0.030 0.049 0.027 0.052 0.040 0.061
Zstwm22c 1.079 1.081 0.560 1.075 0.976 1.175 0.012 0.021 0.026 0.032
Zliwm9c 1.078 1.079 0.142 0.292 0.166 0.337 0.017 0.038 0.028 0.060
Zliwm1c 1.075 1.076 0.128 0.264 0.146 0.298 0.018 0.039 0.030 0.063
Bz2wm9c 1.053 1.053 0.360 0.734 0.430 0.795 0.191 0.374 0.242 0.426
Bz2wm1c 1.037 1.037 0.344 0.718 0.386 0.771 0.159 0.337 0.191 0.395

Table 4.8: Evaluation Metrics of General Purpose Algorithms. A higher compression
level of an algorithm leads to a higher compression ratio and compression time.
Row Names, Short Algorithm Names: Bz2wm = BZ2 + Zliwm = ZLib + Zst = ZStandard + Browm = Brotli,
Numer + ’c’ is compression level parameter, Lzmwm = LZMA , BL-NoCompression = No Compression Baseline -
saving weights without any compression
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4.7.2 Reset Point Frequency for Delta Creator
When using ’Delta Creator’ (Section 3.2.3), reset points must also be used to bound
the decompression time, as argued in ’Delta Reset Point Creator’ (Section 3.2.8). Reset
points therefore guarantee an upper limit of decompression time. When a reset point
has to be saved, the full lossless compression pipeline has to be executed a second time
for that save, increasing the compression time for that execution. Also, the compression
ratio is affected not only by the additional reset points but also by the larger size of the
weight matrix to be saved since they contain the materialization and not only a delta.
The range of the ’Reset Point Interval’ (RPI) parameter to test will span from 2 to 149.
2 is the lower limit since saving a reset point every save would exceed the memory the
delta compression saved. Using the Total Batches Online data (TBOn) as an upper limit
guarantees having one reset point at the first and last production weight set. This would
be the minimal numbers of saves compared to only one save at the beginning without
any additional reset points. Therefore, the upper limit is 148. The numbers in between
were chosen to be denser in more relevant regions and have no jumps.

Figure 4.5 shows the compression ratio and the maximum decompression time for different
RPI and the two used neural networks. The maximum time is used since the number
of deltas between the weight to be decompressed to the reset point can vary drastically
and therefore the worst case scenario should be evaluated. When the RPI decreases, the
disk space slowly decreases close to not having a reset point while the decompression
time increases linearly. The difference between the highest and lowest compression ratio
for Conv is ≈93% while it is only ≈37.5% for LSTM. The curve shape of both neural
networks seems to be similar. Since the maximum decompression time is still acceptable
for ’RQ4: Reduce Retrieval Time’ (Section 1.2), one setting would be to have a reset point
at the beginning and end which would be the setting 148. 28 seems to be a good tradeoff
since the decompression time is less then half of 148 but has a comparable compression
ratio. Since a higher RPI leads to a higher execution time during execution, 28 is used
for all further tests while 148 is only used for the final test.

Table 4.9 shows the chosen RPI 28 and 148. The compression times are still close but
higher then the baseline compression time (C: 0.005 | L: 0.008). The compression ratios
differ only slightly between the settings (C: ≈0.34%pt. | L: ≈0.05%pt.). This difference
can increase when the deltas are more compressed and the reset points then have a higher
impact. Although Delta Compression will enable more compression during the lossy
experiments, the compression ratio increases are so signification that is also necessary for
the lossless compression (C: 2.82 | L: 0.34). The compression ratios are vastly different
for the two chosen neural networks (28: 2.19 | 148: 2.48).

4.7.3 Different Bytewise Segmentation for Float Matrices Algorithms
Table 4.10 shows three different ’Bytewise Segmentation for Float Matrices’ (Section 3.2.6)
implementations, which move similar byte segments closer to each in memory, making
it easier for the ’General Compression’ to identify these similarities and hence, reduce
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Figure 4.5: Depicts comparison of Decompression Time Max and Compression Ratio of
different Reset Point Interval for both evaluated Neural Networks.

Short Algorithm
Name Differences

Compression
Ratio

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Decompression
Time Max
(sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-GeneralCompr 1.000 1.000 0.014 0.023 0.031 0.041 0.013 0.022 0.031 0.052
Difrs148f 3.824 1.340 0.019 0.031 0.040 0.060 0.446 1.089 0.948 2.637
Difrs28f 3.487 1.293 0.017 0.027 0.029 0.053 0.085 0.214 0.167 0.432

Table 4.9: Evaluation Metrics of chosen Reset Point Interval.
Row Names, Short Algorithm Names: Difrs = DifResetSaver (’Delta Reset Point Creator’) - Number + ’f’ is
Reset Point Interval , BL-GenComp = General Compression Baseline - Zstandard with compression level 1

the compression ratio. SplitFloatAndStackByByteSegmentsSplitLater leads to the same
output as SplitFloatAndStackByByteSegments will having a slightly higher decompression
time (C: 0.002 | L: 0.004) and is therefore excluded. SplitFloatAndStack has a lower
decompression time (C: -0.012 | L: -0.029) and maximum compression time (C: -0.003 | L:
-0.008) compared to the next lowest Processing Step SplitFloatAndStackByByteSegments.
SplitFloatAndStackByByteSegments has a higher compression ratio compared to the
next highest Processing Step SplitFloatAndStack (C: 0.011 (≈7%pt), L: 0.020 (≈6%pt)).
Since both SplitFloatAndStack and SplitFloatAndStackByByteSegments have
advantages and could interact differently with different general compression algorithms,
they both will be used in the final lossless run.

4.7.4 Combining Selected General Compression and Bytewise
Segmentation for Float Matrices Processing Steps for Full Run

To reduce the number of runs for the final run or rather execute the final run partially, the
used Processing Steps will be reevaluated together with the delta compressor and the float
split algorithms. This experiment should evaluate if maybe a former underperforming
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Short Algorithm
Name Differences

Compression
Ratio

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Decompression
Time Max
(sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-GeneralCompr 1.000 1.000 0.012 0.025 0.032 0.048 0.012 0.024 0.033 0.045
Splsl 1.095 1.097 0.017 0.029 0.033 0.048 0.023 0.051 0.038 0.068
Splbs 1.095 1.097 0.016 0.027 0.032 0.048 0.021 0.047 0.034 0.076
Splas 1.084 1.077 0.016 0.028 0.029 0.040 0.009 0.018 0.019 0.032

Table 4.10: Performance of different ’Bytewise Segmentation for Float Matrices’ imple-
mentations. All runs also use Zstandard with compression level 1.
Row Names, Short Algorithm Names: Splas = SplitFloatAndStack, Splbs = SplitFloatAndStackByByteSeg-
ments, Splsl = SplitFloatAndStackByByteSegmentsSplitLater, BL-GenComp = General Compression Baseline -
Zstandard with compression level 1

general compression algorithm can perform better together with ’Bytewise Segmentation
for Float Matrices’ and ’Delta Creator’ Processing Steps then in the general float
compression scenario.

Some of the fourteen general compression algorithms can be excluded for this run when
reevaluating the float compression comparison. Table 4.8 shows than BZ2 1 features a
considerably worse compression ratio (≈2%pt.) while being only slightly faster then BZ2
9 (-0.016). Hence, only BZ2 with the compression parameter of 9 will be considered. The
same applies for Zlib, although the compression difference is only minimal (≈0.0035%pt.).
Brotli with a compression parameter of 9 will be also removed since parameter 1 achieves
the same compression while being up to 7 fold faster and the higher compression parameter
of 10 will still be evaluated. Since 11 almost required double the compression time while
having the same compression ratio, 11 will also be omitted. The Zstandard parameters
1, 5, 10 and 15 had similar compression ratios while their compression times differed
according to their compression level. Therefore, only the extreme parameters 1 and 15
where used. Since Zstandard 22 is significantly slower compared to Zst 15 (+ C: 0.45 | L:
0.878) while having a similar performance as the rest of the Zstandard parameters and
the high compression level of 15 is still used, it will also be omitted.

In conclusion, 7 compression algorithms were remove while 7 will still be used for the run.

The Reset Point Interval of the ’Delta Reset Point Creator’ (Section 3.2.8) will be set
to 28 to execute the runs faster. To see if some general compression algorithms deliver
vastly different result depending on other used algorithms, the selected implementations
’SplitFloatAndStackByByteSegments’ and ’SplitFloatAndStack’ from the Processing Step
’Bytewise Segmentation for Float Matrices’ (Section 3.2.6) and omitting this Processing
Step will be evaluated in combination with the other selected general compression
algorithms.

Table 4.11 shows the chosen general compression algorithms with the ’Bytewise Segmen-
tation for Float Matrices’ Processing Steps chosen in Section 4.7.3. SplitFloatAndStack-
ByByteSegmentsSplitLater seems to always lead to better compression ratios regardless
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of the general compression algorithm although the total difference is now insignificant.
The compression ratio order of the table is the same as in Table 4.8 and hence, none
of the general compression algorithms could benefit from the output of any Processing
Step combination significantly, except Zstandard 1 which is now slightly better than
Zstandard 15 (≈0.01). Hence, the hypothesis of this test can be rejected.

Brotli 10 and LZMA have the highest compression ratio, being both close to 3.9 for Conv
and 1.545 fro LSTM while the next best compression ratios of Zstandard 1 are close to
3.7 and 1.50, but as before, LZMA only requires a third of the compression time while
having about double the decompression time and hence will be used in all other final
runs. Although SplitFloatAndStackByByteSegments has a very slight better compression
ratio (+ C: 0.011 | L: 0.003), SplitFloatAndStack will be used for LZMA since it is
always significantly faster, especially for the decompression time (- C: 0.1 | L: 0.08).
Zstandard 1 outperforms Zstandard 15 in any measurement except for the decompression
time of LSTM, hence Zstandard 1 will be used. SplitFloatAndStackByByteSegments for
Zstandard 1 seems to significantly outperform SplitFloatAndStack in all measurements
except the decompression time for LSTM, hence it will be used for the final run. All
other general compression algorithms seem to be too slow while also having a worse
compression ratio and are therefore excluded for the final run.

Resulting from this experiment, LZMA with SplitFloatAndStack and Zstandard
1 with SplitFloatAndStackByByteSegments will be used as a slower and faster
configurations for the final run.

4.7.5 Final Evaluation Lossless Configurations

For the final run, the slow LZMA and fast Zstandard combinations, selected from the
last section, will be combined with the two selected Reset Point Interval 28 and 148 from
’Reset Point Frequency for Delta Creator’ (Section 4.7.2):

Table 4.12 shows the results of the final run configurations. Any Zstandard confiugration
was able to stay well below the baseline of the ’Batch Learning Time Baseline’ (C: 0.033
| L: 0.094) while still having a compression ratio close to LZMA (max. - C: 0.24 | L:
0.03). Hence, any LZMA configuration is excluded from being a final recommended
configuration. The compression times are twice as much as the general compression
baseline although this only applies for LSTM while Conv is very close to the baseline
(-0.005). The compression ratio of 1.19 from [MLDD17b] for using delta compression
with ’Bytewise Segmentation for Float Matrices’ was vastly exceeded although the test
settings are very different and hence, the evaluation of the paper could have had more
different weights then in this online learning setting.

SplbsZstwm1cDifrs148f will be selected as the only preset lossless configuration for
the VSOL. The Reset Point Interval is not mentioned in the configuration name since it
will be selected during the runtime, based on the fixed decompression time threshold, as
described in ’Delta Reset Point Creator’ (Section 3.2.8). Since all other configurations
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Short Algorithm
Name Differences

Compression
Ratio

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Decompression
Time Max
(sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-GeneralCompr 1.000 1.000 0.017 0.024 0.039 0.043 0.014 0.024 0.032 0.043
SplbsBrowm10c 3.918 1.554 1.806 6.087 3.933 11.729 0.339 0.952 0.697 1.926
SplasBrowm10c 3.912 1.555 1.830 6.027 3.989 12.043 0.234 0.778 0.480 1.582
SplbsLzmwm 3.896 1.535 0.633 1.995 1.538 4.453 0.545 1.283 1.142 2.989
SplasLzmwm 3.885 1.532 0.629 1.986 1.533 4.254 0.446 1.205 0.961 2.733
SplbsZstwm1c 3.702 1.508 0.030 0.048 0.062 0.089 0.258 0.475 0.524 0.942
SplbsZstwm15c 3.680 1.504 0.224 0.658 0.481 1.333 0.257 0.713 0.518 1.465
SplasZstwm1c 3.668 1.495 0.070 0.050 0.129 0.093 0.371 0.299 0.729 0.612
SplasZstwm15c 3.646 1.497 0.225 0.649 0.600 1.402 0.154 0.544 0.326 1.103
SplbsBrowm1c 3.609 1.494 0.033 0.099 0.066 0.161 0.339 0.861 0.674 1.763
SplasBrowm1c 3.588 1.484 0.031 0.100 0.065 0.180 0.234 0.729 0.475 1.457
SplbsZliwm9c 3.571 1.497 0.784 1.735 1.638 3.687 0.322 0.830 0.648 1.660
SplasZliwm9c 3.550 1.490 0.781 1.659 1.596 3.465 0.216 0.679 0.435 1.380
SplbsBz2wm9c 3.466 1.470 0.148 0.603 0.513 1.343 0.803 2.651 1.552 5.279
SplasBz2wm9c 3.450 1.464 0.147 0.603 0.507 1.363 0.706 2.480 1.362 4.752

Table 4.11: Performance of different combinations of ’Bytewise Segmentation for Float
Matrices’ implementations and different general compression algorithms. All runs also
use Zstandard with compression level 1 and ’Delta Creator’ with a Reset Point Interval
of 28.
Row Names, Short Algorithm Names: Splas = SplitFloatAndStack, Splbs = SplitFloatAndStackByByte-
Segments, Splsl = SplitFloatAndStackByByteSegmentsSplitLater, Bz2wm = BZ2 + Zliwm = ZLib + Zst =
ZStandard + Browm = Brotli, Numer + ’c’ is compression level parameter, Lzmwm = LZMA , BL-GenComp =
General Compression Baseline - Zstandard with compression level 1

have signification drawbacks as described above, it will be the only selected lossless
configuration.

Short Algorithm
Name Differences

Compression
Ratio

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Decompression
Time Max
(sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-GeneralCompr 1.000 1.000 0.022 0.025 0.040 0.048 0.016 0.024 0.039 0.045
SplasLzmwmDifrs148f 4.200 1.591 0.582 1.907 1.591 4.046 1.985 6.065 4.089 12.529
SplbsZstwm1cDifrs148f 3.962 1.565 0.028 0.050 0.059 0.086 1.014 2.306 2.040 4.536
SplasLzmwmDifrs28f 3.796 1.531 0.617 1.990 1.515 4.238 0.404 1.198 0.866 2.732
SplbsZstwm1cDifrs28f 3.631 1.507 0.027 0.056 0.053 0.091 0.221 0.496 0.601 0.992

Table 4.12: Performance of final lossless run. Selected Processing Steps with settings are
the result of the past evaluations.
Row Names, Short Algorithm Names: Splas = SplitFloatAndStack, Splbs = SplitFloatAndStackByByteSeg-
ments, Splsl = SplitFloatAndStackByByteSegmentsSplitLater, Zst = ZStandard - Numer + ’c’ is compression
level parameter Lzmwm = LZMA , Difrs = DifResetSaver (’Delta Reset Point Creator’) - Number + ’f’ is Reset
Point Interval , BL-GenComp = General Compression Baseline - Zstandard with compression level 1
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4.7.6 Summary
For the chosen lossless configuration ’SplbsZstwm1cDifrs148f’, we can expect a compres-
sion time between 0.27 and 0.56, which is below the ’Batch Learning Time Baseline’ (C:
0.033 | L: 0.094), with a maximum of 0.091. The compression ratio is unstable and ranges
between 1.59 and 4.20. The decompression time ranges between 0.221 and 1.014 with a
maximum of 4.536. This configuration consists of SplitFloatAndStackByByteSegments,
Delta Creator and Zstandard 1. It will be used for all further lossy evlautions in the
upcoming section.

4.8 Lossy Algorithms
The baseline of all lossy evaluations is the chosen lossless configuration ’SplbsZstwm1cDifrs148f’,
mentioned in ’Final Lossless Configurations with Different Reset Point Interval Settings’
(Section 4.8.5). This helps to identify differences which only result from the additional
lossy algorithms. Table 4.12 shows that LSTM has a lower compression ratio compared
to Conv for the lossless baseline. Hence, LSTM requires ≈2.5 times higher compression
ratio then Conv in any of the tables to achieve an equal compression ratio compared to
the general compression baseline. This difference should be considered when LSTM has a
significantly higher value then Conv in the upcoming tables. ’Selection Accuracy Bounds’
(Section 4.6) argues and declares the accuracy bounds of 0%, 0.1% and 1%.

4.8.1 Top-K
’Top-K’ (Section 3.2.2) requires a fitting Top-k-Percentage (TkP ) Processing Step Param-
eter. Any result which deviates by more then 1% accuracy exceed the defined bounds.
But since it is expected that the next evaluation of ’Minimum per Layer’ (Section 3.2.2)
will increase the accuracy for any TkP , the cutoff value is doubled to 2% during this eval-
uation. The selected TkP to test includes the values 1%, 0.1% and 0.01% of [PDMM21],
although the application of the method differs and should therefore lead to different
results, together with additional complementary values. After testing the three values
from the paper, the TkP values were expanded up to 25% to achieve acceptable accuracy
results. The tested TkP values are 0.01%, 0.1%, 0.25%, 0.5%, 1%, 1.75%, 2.5%, 5%,
7.5%, 10%, 15% and 25%, expanding the values between 0.1% and 1% by two values and
the range between 1% and 25% by six values.

A small evaluation not depicted in this thesis showed that the accuracy is higher when
the selection of Top-K is applied on the real and not the xor difference (see Section 3.2.3).
It is faster since the changes to the xor difference values have to be reapplied to the
previous weights.

Table 4.13 shows the evaluation metrics for the selected TkP Processing Step Parameters.
The compression ratio of LSTM is always significantly higher then Conv. The accuracy
of Conv is always higher then for LSTM except for a TkP of 0.01%. A lower TkP
seems to have a slight positive effect on the compression and decompression time. E.g.,
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the compression time difference between TkP of 25% and 0.01% is (C: -0.023(≈33%)|
L: -0.072(≈%0.25)) while the decompression time difference is (C: -0.041(≈0.13%)| L:
-0.098(≈0.12)). All compression times exceed the ’Batch Learning Time Baseline’ (C:
0.033 | L: 0.094) and hence, the lossless compression baseline, especially LSTM. E.g.,
TkP of 5% exceeds the training baseline by (C: -0.026 | L: -0.158).

The results show that a post training Top-k requires a higher TkP than described in
[PDMM21] where a k of 0.01% still leads to almost the same accuracy. For the post
training Top-k, TkP below 10% already lead to a signification accuracy drop, being -0.1
for LSTM. Any TkP below 1.75 is below the set 2% accuracy, hence these TkP will not
be evaluated in further evaluations. Also, 25% seems to be too high since 15% has almost
the same accuracy and hence, can be excluded. This also applies to 10% being similar to
%7.5. Hence, the TkP values 15%, 7.5%, 5%, 2.5% and 1.75% will be used in further
evaluations.

Short Algorithm
Name Differences

Compression
Ratio

Mean Diff to
Lossless Last
Accuracy

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Decompression
Time Max
(sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-LosslessCompr 1.000 1.000 0.000 0.000 0.030 0.037 0.063 0.079 0.262 0.434 0.530 0.875
Topk25.0p 1.147 2.001 0.210 0.010 0.070 0.287 0.117 0.373 0.306 1.175 0.614 2.413
Topk15.0p 1.355 2.658 0.220 -0.010 0.066 0.274 0.115 0.360 0.302 1.169 0.603 2.377
Topk10.0p 1.626 3.348 0.170 -0.050 0.063 0.263 0.096 0.349 0.296 1.156 0.607 2.349
Topk7.5p 1.855 3.949 0.160 -0.100 0.062 0.258 0.101 0.341 0.299 1.157 0.612 2.344
Topk5.0p 2.241 4.976 0.060 -0.250 0.059 0.252 0.093 0.334 0.289 1.137 0.582 2.252
Topk2.5p 3.111 7.218 -0.350 -0.710 0.054 0.240 0.090 0.341 0.283 1.131 0.562 2.315
Topk1.75p 3.627 8.545 -0.670 -1.170 0.053 0.235 0.086 0.311 0.280 1.111 0.577 2.286
Topk1.0p 4.486 10.698 -1.420 -2.180 0.051 0.230 0.086 0.311 0.275 1.117 0.541 2.278
Topk0.5p 5.449 13.096 -2.990 -4.700 0.049 0.226 0.089 0.305 0.268 1.083 0.548 2.196
Topk0.25p 6.155 14.910 -5.650 -8.830 0.049 0.220 0.084 0.299 0.264 1.088 0.536 2.173
Topk0.1p 6.725 16.429 -11.900 -16.010 0.047 0.215 0.089 0.294 0.262 1.064 0.526 2.142
Topk0.01p 7.220 17.740 -27.890 -24.380 0.047 0.215 0.082 0.334 0.265 1.059 0.566 2.123

Table 4.13: Depicts Top-k with different ks. All evaluations also use SplitFloatAndStack-
ByByteSegments, Zstandard with compression level 1 and ’Delta Reset Point Creator’
with Reset Point Interval of 28
Row Names, Short Algorithm Names: Topk = Top-K - Number + ’p’ is Top-k-Percentage - Number + ’m’ is
’Minimum per Layer’ - Number + ’l’ is ’Loss Adaptive T kP ’ were ’l’ is the Loss Transformation Function (fLoT rans)
(see Figure 4.6) , BL-LosslessCompr = Lossless Compression Baseline - SplitFloatAndStackByByteSegments,
Zstandard with compression level 1 and ’Delta Reset Point Creator’ with Reset Point Interval of 28

Using GCXS for Spare Delta Weights

The compression ratio of the previous section falls behind the theoretical calculations of
[PDMM21]. This calculation assumes that only the indices with the values are transmitted
since most of the values are empty. ’GCXS’ (Section 3.2.6) uses exactly this encoding
and shows if such a scheme can help to reduce the memory to said minimum. To have
extreme and practical sparsity settings, the extremes of the TkP values of Table 4.13
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are used in the following experiments which are 15% and 1.75%. Since this is a lossless
algorithm, accuracy is not given in the tables.

Table 4.14 shows pure GCXS as well as applying ’Bytewise Segmentation’ (Section 3.2.6)
for the values and ’Combine Layers’ (Section 3.2.6). For 15%, where GCXS should have
the least positive effect, applying both ’Combine Layers’ and ’Bytewise Segmentation’
together can improve all metrics, especially for LSTM. For 1.75%, already raw GCXS
outperforms only using SplitFloatAndStackByByteSegments without GCXS in all metrics.
In general, applying either ’Combine Layers’ and ’Bytewise Segmentation’ improves any
metric compared to raw GCXS. Using both improves all metrics even further, although
the compression time is slightly slower then not using ’Bytewise Segmentation’ for 1.75%
(+0.001). ’Bytewise Segmentation’ on top of GCXS seems to have a larger effect on the
compression ratio than using ’Combine Layers’. Especially the decompression time seems
to benefit from GCXS and can even outperform the lossless baseline. Again, a smaller
TkP leads to overall lower metrics.

Seeing that using GCXS with both ’Combine Layers’ and ’Bytewise Segmentation’ only
has positive effects when using Top-k, it will be applied to all further Top-k evaluations.

Short Algorithm
Name Differences

Compression
Ratio

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Decompression
Time Max
(sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-LosslessCompr 1.000 1.000 0.023 0.037 0.048 0.069 0.207 0.437 0.427 0.932
Topk15.0pGcxxsTsTcFsFd 1.418 3.377 0.039 0.071 0.069 0.115 0.087 0.173 0.171 0.338
Topk15.0pSplbs 1.326 2.664 0.040 0.249 0.063 0.320 0.211 1.092 0.453 2.230
Topk15.0pGcxxsTsFcFsFd 1.326 3.085 0.052 0.106 0.081 0.143 0.190 0.376 0.436 0.818
Topk15.0pGcxxsFsTcFsFd 1.288 3.020 0.040 0.078 0.075 0.103 0.098 0.205 0.208 1.071
Topk15.0pGcxxsFsFcFsFd 1.204 2.806 0.053 0.114 0.095 0.146 0.186 0.360 0.373 0.770
Topk1.75pGcxxsTsTcFsFd 4.432 11.241 0.028 0.050 0.060 0.099 0.068 0.123 0.134 0.235
Topk1.75pGcxxsTsFcFsFd 4.279 10.844 0.029 0.054 0.053 0.090 0.096 0.166 0.186 0.348
Topk1.75pGcxxsFsTcFsFd 4.144 10.456 0.027 0.049 0.047 0.076 0.069 0.129 0.138 0.263
Topk1.75pGcxxsFsFcFsFd 4.031 10.054 0.028 0.054 0.053 0.095 0.094 0.174 0.209 0.335
Topk1.75pSplbs 3.511 8.562 0.031 0.213 0.064 0.282 0.198 1.041 0.490 2.107

Table 4.14: Depicts GCXS raw and with compression of Top-k values with minimum and
maximum chosen TkP . All evaluations also use Zstandard with compression level 1 and
’Delta Reset Point Creator’ with Reset Point Interval of 28
Row Names, Short Algorithm Names: Topk = Top-K - Number + ’p’ is Top-k-Percentage - Number + ’m’
is ’Minimum per Layer’ - Number + ’l’ is ’Loss Adaptive T kP ’ were ’l’ is the Loss Transformation Function
(fLoT rans) (see Figure 4.6) , Gcxxs = GCXS - Bool + ’s’ is if apply SplitFloatAndStackByByteSegmentsto
full diff and values in GCXS - Bool + ’c’ is combine all layers before applying GCXS - Bool + ’s’ is if apply
SplitFloatAndStackByByteSegmentsto indices - Bool + ’d’ is if apply differential encoding for indices , Splbs =
SplitFloatAndStackByByteSegments, BL-LosslessCompr = Lossless Compression Baseline - SplitFloatAndStack-
ByByteSegments, Zstandard with compression level 1 and ’Delta Reset Point Creator’ with Reset Point Interval of
28
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Compressing GCXS Indices Table 4.15 shows the effect of applying ’Bytewise
Segmentation’ for indices and ’Index Differential Encoding’. Both ’Index Differential
Encoding’ and ’Bytewise Segmentation’ have a positive effect on the compression ratio
while ’Index Differential Encoding’ has a higher effect. Both methods increase the
decompression time, especially ’Index Differential Encoding’. For LSTM, both parameters
seem to have a negative effect on the compression time (≤ 0.009) while for Conv, their
effect on the compression time is inconclusive. When adding ’Bytewise Segmentation’
to ’Index Differential Encoding’, it can lower its effect on all of the time metrics. This
effect is lower with a lower TkP and Conv can even improve the compression time with
both compression technics. Generally, the improvement through the indices compression
seems to have a higher effect on Conv then on LSTM.

Since both ’Index Differential Encoding’ and ’Bytewise Segmentation’ on the indices have
a positive effect on the compression ratio and only a slight negative effect on the time
metrics, they will be used for all further Top-k evaluations.

Short Algorithm
Name Differences

Compression
Ratio

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Decompression
Time Max
(sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-LosslessCompr 1.000 1.000 0.023 0.037 0.048 0.069 0.207 0.437 0.427 0.932
Topk15.0pGcxxsTsTcTsTd 1.668 3.853 0.039 0.080 0.060 0.124 0.092 0.186 0.183 0.361
Topk15.0pGcxxsTsTcFsTd 1.621 3.779 0.041 0.080 0.062 0.120 0.091 0.203 0.192 0.411
Topk15.0pGcxxsTsTcTsFd 1.540 3.452 0.038 0.078 0.068 0.120 0.088 0.182 0.169 0.383
Topk15.0pGcxxsTsTcFsFd 1.418 3.377 0.039 0.071 0.069 0.115 0.087 0.173 0.171 0.338
Topk1.75pGcxxsTsTcTsTd 4.621 11.659 0.025 0.053 0.043 0.162 0.071 0.136 0.143 0.259
Topk1.75pGcxxsTsTcFsTd 4.553 11.560 0.027 0.056 0.046 0.090 0.071 0.147 0.150 0.285
Topk1.75pGcxxsTsTcTsFd 4.484 11.235 0.027 0.053 0.054 0.091 0.069 0.142 0.133 0.276
Topk1.75pGcxxsTsTcFsFd 4.432 11.241 0.028 0.050 0.060 0.099 0.068 0.123 0.134 0.235

Table 4.15: Depicts GCXS with compression of indices together with Top-k using
minimum and maximum TkP . All evaluations also use Zstandard with compression level
1 and ’Delta Reset Point Creator’ with Reset Point Interval of 28
Row Names, Short Algorithm Names: Topk = Top-K - Number + ’p’ is Top-k-Percentage - Number + ’m’
is ’Minimum per Layer’ - Number + ’l’ is ’Loss Adaptive T kP ’ were ’l’ is the Loss Transformation Function
(fLoT rans) (see Figure 4.6) , Gcxxs = GCXS - Bool + ’s’ is if apply SplitFloatAndStackByByteSegmentsto
full diff and values in GCXS - Bool + ’c’ is combine all layers before applying GCXS - Bool + ’s’ is if apply
SplitFloatAndStackByByteSegmentsto indices - Bool + ’d’ is if apply differential encoding for indices , BL-
LosslessCompr = Lossless Compression Baseline - SplitFloatAndStackByByteSegments, Zstandard with compression
level 1 and ’Delta Reset Point Creator’ with Reset Point Interval of 28

Minimum per Layer

Table 4.16 shows the selected TkP combined with fitting ’Minimum per Layer’ (Sec-
tion 4.8.1) values. Using the ’Minimum per Layer Percentage’ (minLP ) parameter seems
to have a positive effect on the accuracy, especially when TkP is lower, while having only
a minimal difference for the compression ratio, e.g., TkP of 5% with minLP of 0.1% for
LTSM decreases the compression ratio by ≈0.1 while increasing accuracy by ≈0.1. The
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minLP of 0.1 always has a better accuracy than 0.01, except for TkP 15%. Using this
parameter does not have an effect on the time metrics. ’Minimum per Layer’ seems to
work generally slightly better for Conv than for LSTM.

The following three configurations were chosen for the determined accuracy bounds: Top-
k 7.5% with minLP of 0.1% (accuracy bound 0%) is close to a 0 accuracy difference
for LSTM while having a strong positive impact on Conv. Top-k 5% with minLP of
0.1% (accuracy bound 0%) is close to a 0.1 accuracy difference for LSTM while still
having a positive impact for Conv. Top-k 1.75% with minLP of 0.1% (accuracy
bound 1%) was chosen over minLP of 0.01%, which has the best compression ratio
below 1%, since 0.1% minLP features a better accuracy, especially for Conv, while the
compression ratio is only less then 5% lower. These TkP and minLP value combinations
will be used in all further evaluation.

Short Algorithm
Name Differences

Compression
Ratio

Mean Diff to
Lossless Last
Accuracy

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Decompression
Time Max
(sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-LosslessCompr 1.000 1.000 0.000 0.000 0.030 0.037 0.062 0.079 0.258 0.434 0.524 0.875
Topk15.0p0.1m 1.697 3.840 0.240 0.050 0.060 0.187 0.094 0.241 0.153 0.489 0.321 1.003
Topk15.0p0.01m 1.709 3.856 0.280 0.030 0.060 0.184 0.103 0.251 0.154 0.488 0.317 1.001
Topk15.0p 1.711 3.860 0.260 0.010 0.059 0.185 0.091 0.245 0.151 0.490 0.312 1.017
Topk7.5p0.1m 2.542 5.991 0.240 0.000 0.056 0.174 0.090 0.238 0.145 0.478 0.303 0.974
Topk7.5p0.01m 2.576 6.039 0.230 -0.030 0.056 0.174 0.085 0.223 0.144 0.475 0.301 0.976
Topk7.5p 2.582 6.054 0.220 -0.080 0.055 0.170 0.088 0.223 0.141 0.468 0.289 0.942
Topk5.0p0.1m 3.077 7.445 0.180 -0.100 0.051 0.171 0.080 0.229 0.132 0.493 0.275 1.039
Topk5.0p0.01m 3.128 7.540 0.150 -0.110 0.052 0.170 0.084 0.225 0.134 0.495 0.282 1.042
Topk5.0p 3.137 7.567 0.120 -0.220 0.052 0.169 0.084 0.225 0.131 0.481 0.270 0.971
Topk2.5p0.1m 4.069 10.024 0.020 -0.370 0.044 0.158 0.075 0.216 0.124 0.465 0.265 0.960
Topk2.5p0.01m 4.201 10.270 -0.180 -0.420 0.045 0.159 0.080 0.216 0.128 0.479 0.269 0.987
Topk1.75p0.1m 4.540 11.140 -0.080 -0.590 0.041 0.148 0.073 0.199 0.111 0.460 0.236 0.946
Topk1.75p0.01m 4.750 11.589 -0.410 -0.690 0.040 0.148 0.068 0.200 0.109 0.460 0.226 0.950
Topk2.5p 4.220 10.329 -0.320 -0.710 0.042 0.155 0.079 0.209 0.114 0.456 0.236 0.929
Topk1.75p 4.782 11.674 -0.610 -1.120 0.039 0.145 0.070 0.214 0.109 0.458 0.234 0.936

Table 4.16: Depicts Top-k with different TkP and minium per layer values. All evaluations
also use Zstandard with compression level 1 , ’Delta Reset Point Creator’ with Reset
Point Interval of 28 and GCXS with all parameters set to true.
Row Names, Short Algorithm Names: Topk = Top-K - Number + ’p’ is Top-k-Percentage - Number + ’m’ is
’Minimum per Layer’ - Number + ’l’ is ’Loss Adaptive T kP ’ were ’l’ is the Loss Transformation Function (fLoT rans)
(see Figure 4.6) , BL-LosslessCompr = Lossless Compression Baseline - SplitFloatAndStackByByteSegments,
Zstandard with compression level 1 and ’Delta Reset Point Creator’ with Reset Point Interval of 28

All Layers Top-K

Table 4.17 compares ’All Layer Top-k’ (Section 3.2.2) and Top-k while using ’Minimum
per Layer’. A small evaluation showed that the accuracy of ’All Layer Top-k’ degrades
when not using ’Minimum per Layer’.

’All Layer Top-k’ is significantly slower during compression than Top-k since the Top-k
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selection has to be applied over all layers additionally to applying it to each layer (see
Section 3.2.2). ’All Layer Top-k’ accuracy seems to very slightly outperform Top-k for the
lower two TkP ’s and especially the lowest TkP (C: +0.05 | L: +0.09). The compression
ratios are very similar to each other while none of them are clearly superior to the other.
Since the difference is not very significant and reliable while increasing the runtime by
up to 50%, ’All Layer Top-k’ will not be evaluated in the final run.

Short Algorithm
Name Differences

Compression
Ratio

Mean Diff to
Lossless Last
Accuracy

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Decompression
Time Max
(sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-LosslessCompr 1.000 1.000 0.000 0.000 0.030 0.037 0.063 0.079 0.262 0.434 0.530 0.875
Topk7.5p0.1m 2.542 5.991 0.200 0.000 0.056 0.173 0.090 0.234 0.145 0.477 0.301 0.963
Topal7.5p0.1m 2.547 5.951 0.160 0.020 0.060 0.230 0.095 0.292 0.124 0.769 0.304 1.572
Topal5.0p0.1m 3.096 7.385 0.170 -0.100 0.040 0.076 0.072 0.145 0.068 0.148 0.141 0.296
Topk5.0p0.1m 3.078 7.445 0.150 -0.100 0.051 0.171 0.080 0.228 0.133 0.493 0.277 1.044
Topal1.75p0.1m 4.669 10.665 -0.070 -0.500 0.036 0.067 0.064 0.119 0.065 0.139 0.138 0.271
Topk1.75p0.1m 4.541 11.140 -0.120 -0.590 0.041 0.148 0.070 0.199 0.112 0.463 0.236 0.953

Table 4.17: Depicts Top-k and all Layers Top-k with selected k and minium per layer
values. All evaluations also use Zstandard with compression level 1 , ’Delta Reset Point
Creator’ with Reset Point Interval of 28 and GCXS with all parameters set to true.
Row Names, Short Algorithm Names: Topal = All Layers Top-k + Topk = Top-K - Number + ’p’ is
Top-k-Percentage - Number + ’m’ is ’Minimum per Layer’ - Number + ’l’ is ’Loss Adaptive T kP ’ were ’l’ is the
Loss Transformation Function (fLoT rans) (see Figure 4.6) , BL-LosslessCompr = Lossless Compression Baseline -
SplitFloatAndStackByByteSegments, Zstandard with compression level 1 and ’Delta Reset Point Creator’ with
Reset Point Interval of 28

Loss Adaptive TkP

Conv and LSTM have vastly different accuracy values which becomes clear when looking
at Table 4.17. This can origin from different loss values during the online training. A
higher Top-k-Percentage could be appropriate during phases of higher loss and vice versa.
Hence, it would be expected that ’Loss Adaptive TkP ’ (Section 3.2.2) would close the
accuracy gap between Conv and LSTM and feature a higher compression ratio with only
a minimum accuracy drop.

When a extreme drift occurs, loss is above 0.5 and slowly drops to about 0.1. When
the accuracy stabilizes, loss normally stays below 0.1. Hence, 0.5 is chosen as Loss
Upper Bound (LoUB) and is fixed for any execution. Figure 4.6 shows different Loss
Transformation Function (fLoT rans) which will be evaluated in this section. A convex
function was used to test higher or lower values closer to the extreme ends since especially
lower loss values occur more often.

Table 4.18 shows different Loss Transformation Function (fLoT rans) settings with Top-k.
The rows are grouped by TkP . Due to the lower accuracy when using loss adaptive k,
1.75% was removed while 10% was added to better reflect the desired accuracy range.
’Loss Adaptive TkP ’ seems to have a better accuracy to compression ratio tradeoff, e.g.,
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Figure 4.6: Depicts ’Loss Adaptive TkP ’ curve mapping function ’Loss Transformation
Function’ (fLoT rans) for different curve settings and a linear function. X axis shows Loss
Bound and Normalized input, Y axis shows loss bound normalized and transformed output.
The function of Loss Transformation Function (fLoT rans) is shown in Equation 3.3.

Topk7.5p0.1mTl has a better and more stable accuracy then Topk5.0p0.1m while also
having a better compression ratio. It shows that a curve featuring a lower overall Top
k-Percentage loss adapted (TkPLoA) directly correlates with a lower accuracy and higher
compression ratio since each decrease of the overall TkPLoA leads to a lower accuracy
and higher compression for both models and for any TkP setting. The accuracies of
Conv and LSTM for ’Loss Adaptive TkP ’ are closer together then for Top-k for a TkP
of 5 and 7.5, since all the differences for ’Loss Adaptive TkP ’ are ≤ 0.04 while it is ≥ 0.2
for Top-k.

All previous selected Top-k settings are replaced by a ’Loss Adaptive TkP ’ setting since
they are outperformed: Topk7.5p0.1m*0.5l (0% accuracy bound) outperforms
the former chosen Topk7.5p0.1m, especially regarding the compression ratio while also
featuring a more stable accuracy difference. Topk7.5p0.1mTl (0.1% accuracy bound)
is more stable in the accuracy drop compared to Topk5p0.1m and hence, will replace it.
Topk5.0p0.1m*0.5l and Topk10.0p0.1m2l both feature a better compression ratio but
considering that the accuracy difference is almost tripled compared to the final selection,
Topk7.5p0.1mTl was preferred. Topk5.0p0.1m2l (1% accuracy bound) has the
highest compression ratio while staying under an accuracy difference of 0.5% and having
a very stable accuracy drop and hence replaces Topk1.75p0.1m.

4.8.2 Reset Least Significant Bits

Table 4.19 shows Reset Least Significant Bits when Most Significant Bits set (RLSBMSB)
(see Section 3.2.4). Checking the Most Significant Bits of Fraction (MSBF) seems to not
have any effect since none of the Most Significant Bits of Fraction to Assess (MSBFA)
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Short Algorithm
Name Differences

Compression
Ratio

Mean Diff to
Lossless Last
Accuracy

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Decompression
Time Max
(sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-LosslessCompr 1.000 1.000 0.000 0.000 0.030 0.037 0.063 0.079 0.262 0.434 0.530 0.875
Topk7.5p0.1m 2.542 5.991 0.200 0.000 0.056 0.173 0.090 0.234 0.145 0.477 0.301 0.963
Topk7.5p0.1m*0.5l 3.727 6.838 0.020 -0.010 0.035 0.106 0.059 0.151 0.090 0.285 0.193 0.591
Topk7.5p0.1mTl 4.197 7.481 -0.050 -0.030 0.032 0.099 0.062 0.157 0.086 0.269 0.183 0.547
Topk7.5p0.1m0.1l 4.423 7.874 -0.100 -0.060 0.032 0.099 0.061 0.141 0.085 0.272 0.181 0.562
Topk7.5p0.1m2l 5.134 9.481 -0.260 -0.150 0.032 0.095 0.065 0.135 0.084 0.266 0.182 0.532
Topk5.0p0.1m 3.078 7.445 0.150 -0.100 0.051 0.171 0.080 0.228 0.133 0.493 0.277 1.044
Topk5.0p0.1m*0.5l 4.271 8.343 -0.100 -0.110 0.036 0.097 0.062 0.135 0.093 0.265 0.197 0.536
Topk5.0p0.1mTl 4.687 8.994 -0.170 -0.160 0.033 0.100 0.063 0.143 0.090 0.272 0.191 0.563
Topk5.0p0.1m0.1l 4.883 9.369 -0.210 -0.170 0.034 0.099 0.062 0.147 0.091 0.274 0.189 0.564
Topk5.0p0.1m2l 5.451 10.761 -0.380 -0.350 0.033 0.095 0.064 0.134 0.089 0.272 0.187 0.564
Topk10.0p0.1m*0.5l 3.338 5.829 0.210 -0.020 0.035 0.066 0.081 0.095 0.092 0.151 0.233 0.303
Topk10.0p0.1m 2.125 5.047 0.170 -0.020 0.038 0.067 0.068 0.102 0.087 0.155 0.181 0.312
Topk10.0p0.1mTl 3.839 6.431 0.130 -0.030 0.032 0.062 0.062 0.102 0.084 0.142 0.200 0.289
Topk10.0p0.1m0.1l 4.080 6.815 0.130 -0.040 0.034 0.061 0.079 0.095 0.088 0.141 0.201 0.299
Topk10.0p0.1m2l 4.876 8.450 -0.090 -0.100 0.031 0.057 0.073 0.095 0.085 0.132 0.201 0.265

Table 4.18: Depicts ’Loss Adaptive TkP ’ and Top-k grouped by k value. All evaluations
also use Zstandard with compression level 1 , ’Delta Reset Point Creator’ with Reset
Point Interval of 28 and GCXS with all parameters set to true
Row Names, Short Algorithm Names: Topk = Top-K - Number + ’p’ is Top-k-Percentage - Number + ’m’ is
’Minimum per Layer’ - Number + ’l’ is ’Loss Adaptive T kP ’ were ’l’ is the Loss Transformation Function (fLoT rans)
(see Figure 4.6) , BL-LosslessCompr = Lossless Compression Baseline - SplitFloatAndStackByByteSegments,
Zstandard with compression level 1 and ’Delta Reset Point Creator’ with Reset Point Interval of 28

values seem to have any correlation with the accuracy while the compression ratio
does increase with a higher MSBFA. The most extreme case is Remht23s16b, which
corresponds to removing the 16 LSBF, which has no signification accuracy difference to
any of the other parameter combinations. Hence, just removing a number of bits will be
evaluated in the next evaluation which also should decrease the compression time since
the starting bits do not have to be checked. Since there was no substantial difference
from removing 8 or 16 bits from the this evaluation, the upcoming evaluation will at
least remove 16 bits from the lower bit range.

Table 4.20 shows the ’Reset Least Significant Bits’ (Section 3.2.4). Setting Least Significant
Bits of Fraction to Overwrite with zeros (LSBFO) to 23 leads to a substantial accuracy
drop and is equivalent to removing all mantissis bits. Hence, at least a low number of
higher bits are required to prevent a substantial accuracy drop. 20 LSBFO seems to be
the only value which does not have any accuracy loss and hence is selected for the final
run.

4.8.3 Save Decision through New Model

Table 4.21 shows ’Save Decision through New Model’ (Section 3.2.5) with different
settings. The two bounds of 0% and 1% accuracy deviation from the model were chosen
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Short Algorithm
Name Differences

Compression
Ratio

Mean Diff to
Lossless Last
Accuracy

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Decompression
Time Max
(sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-LosslessCompr 1.000 1.000 0.000 0.000 0.025 0.037 0.059 0.081 0.222 0.434 0.440 0.886
Remht15s8b 1.222 1.559 0.050 -0.010 0.043 0.135 0.067 0.198 0.127 0.375 0.262 0.765
Remht19s8b 1.545 1.622 0.040 0.010 0.041 0.089 0.073 0.277 0.118 0.241 0.313 0.587
Remht23s8b 1.589 1.630 0.010 -0.010 0.043 0.108 0.082 0.159 0.120 0.333 0.278 0.725
Remht11s8b 1.161 1.404 0.000 -0.010 0.039 0.084 0.151 0.126 0.124 0.262 0.331 0.927
Remht11s16b 2.641 3.312 0.030 0.000 0.042 0.085 0.083 0.125 0.106 0.249 0.217 0.508
Remht23s16b 3.261 4.376 0.020 -0.010 0.042 0.112 0.133 0.161 0.105 0.298 0.282 0.595
Remht3s16b 1.035 1.029 0.010 -0.010 0.039 0.073 0.077 0.124 0.127 0.297 0.333 0.688
Remht7s16b 1.190 1.361 0.000 0.000 0.041 0.137 0.064 0.198 0.127 0.403 0.260 0.817

Table 4.19: Depicts Reset Least Significant Bits when Most Significant Bits set with
different lengths of bits to check and remove. All evaluations also use SplitFloatAndStack-
ByByteSegments, Zstandard with compression level 1 and ’Delta Reset Point Creator’
with Reset Point Interval of 28
Row Names, Short Algorithm Names: Remht = Remove higher fraction if lower true (’Reset Least Significant
Bits when Most Significant Bits set’) - Number + ’s’ is most significant bit to start the check (Most Significant Bits
of Fraction to Assess) - Number + ’b’ is lower bits to remove (Least Significant Bits of Fraction to Overwrite with
zeros) , BL-LosslessCompr = Lossless Compression Baseline - SplitFloatAndStackByByteSegments, Zstandard
with compression level 1 and ’Delta Reset Point Creator’ with Reset Point Interval of 28

Short Algorithm
Name Differences

Compression
Ratio

Mean Diff to
Lossless Last
Accuracy

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Decompression
Time Max
(sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-LosslessCompr 1.000 1.000 0.000 0.000 0.030 0.037 0.063 0.079 0.262 0.434 0.530 0.875
Flors20r32r 4.667 8.310 0.020 0.020 0.046 0.048 0.085 0.085 0.255 0.392 0.532 0.787
Flors16r32r 3.226 4.425 0.010 -0.030 0.046 0.053 0.084 0.083 0.254 0.402 0.517 0.825
Flors21r32r 5.133 9.807 -0.040 0.000 0.034 0.079 0.058 0.123 0.221 0.498 0.439 0.995
Flors22r32r 5.620 11.413 -0.090 -0.010 0.034 0.077 0.062 0.121 0.221 0.496 0.437 0.985
Flors23r32r 6.047 12.894 -0.320 -0.080 0.038 0.046 0.073 0.080 0.229 0.385 0.465 0.860

Table 4.20: Depicts ’Reset Least Significant Bits’ with different Least Significant Bits of
Fraction to Overwrite with zeros. All evaluations also use SplitFloatAndStackByByteSeg-
ments, Zstandard with compression level 1 and ’Delta Reset Point Creator’ with Reset
Point Interval of 28
Row Names, Short Algorithm Names: Remht = Remove higher fraction if lower true (’Reset Least Significant
Bits when Most Significant Bits set’) - Number + ’s’ is most significant bit to start the check (Most Significant Bits
of Fraction to Assess) - Number + ’b’ is lower bits to remove (Least Significant Bits of Fraction to Overwrite with
zeros) , BL-LosslessCompr = Lossless Compression Baseline - SplitFloatAndStackByByteSegments, Zstandard
with compression level 1 and ’Delta Reset Point Creator’ with Reset Point Interval of 28
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so that 0 and at least 1 sample could be classified wrongly, respectively. The bounds
are combined with the option to only evaluate the current data batch instead of using
the accuracy of all of the data. Since this Processing Step skips some saves and some
evaluations load the same reset point, the decompression times are somewhat skewed.
Since two models have to be loaded and executed, the compression runtime exceeds the
baseline by up to one order of magnitude which is unacceptable for many scenarios.

LSTM has a worse accuracy compared to Conv. This could be due to the fact that its
drift phase is longer than Conv and therefore skipping saves has a higher disadvantage
for LSTM. There seems to be only an insignificant difference in the evaluation metrics
between using only the current training batch and using all of the data batches for the
lower bound of 0%. This could be due to the fact that skipping several saves in a row
does not happen often when a 0% bound is set. Skisg1.0pTeTf seems to be very unstable
since the accuracies of the models differ strongly. The small accuracy degradation proves
that the error rate of the current training data can help to evaluate if the model has to
be deployed. For the final run, Skisg0pFeTf will be chosen for a 0% accuracy bound
option while Skisg1.0pFeTf was chosen for a 0.1% accuracy bound option and preferred
over Skisg0pTeTf since it is very unstable, as already mentioned.

Short Algorithm
Name Differences

Compression
Ratio

Mean Diff to
Lossless Last
Accuracy

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Decompression
Time Max
(sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-LosslessCompr 1.000 1.000 0.000 0.000 0.030 0.037 0.063 0.079 0.262 0.434 0.530 0.875
Skisg0pFeTf 1.508 1.136 0.220 0.000 0.180 0.224 0.284 1.362 0.327 0.488 0.779 1.075
Skisg0pTeTf 1.524 1.158 0.200 0.000 0.172 0.234 0.263 1.364 0.334 0.505 0.835 1.109
Skisg1.0pTeTf 1.629 2.778 0.210 -0.150 0.173 0.242 0.259 1.406 0.340 0.588 0.866 1.443
Skisg1.0pFeTf 4.383 2.013 -0.010 -0.050 0.323 0.273 0.771 1.392 0.438 0.637 0.819 1.496

Table 4.21: Depicts removal of lower fraction bits with different lengths of bits and
remove. All evaluations also use SplitFloatAndStackByByteSegments, Zstandard with
compression level 1 and ’Delta Reset Point Creator’ with Reset Point Interval of 28
Row Names, Short Algorithm Names: Skisg = Skip save when accuracy sill good (’Decide Save by Error rate
Decay’) - Number + ’p’ is the accuracy percentage difference at which the model has to be deployed (’Error
Rate Bound’)- Bool + ’e’ is if True only last batch data will be evaluated - Bool + ’f’ is always true and origins
from super class , BL-LosslessCompr = Lossless Compression Baseline - SplitFloatAndStackByByteSegments,
Zstandard with compression level 1 and ’Delta Reset Point Creator’ with Reset Point Interval of 28

4.8.4 Combine Top-k and Reset Least Significant Bits Parameters
Preliminary evaluations showed that the chosen Top-k-Percentage (TkP ) of Top-k com-
bined with the chosen Least Significant Bits of Fraction to Overwrite with zeros (LSBFO)
of ’Reset Least Significant Bits’ lead to a significantly lower accuracy. A reason could
be that when selecting less delta values from Top-k, their exact fraction must at least
be more detailed. This section determines if an additional value besides 20 LSBFO is
required in combination for Top-k.
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Table 4.22 shows a LSBFO of 18 and 20 in combination with the selected Top-k settings.
Using 18 LSBFO additional to Top-k leads to an inconclusive accuracy change across both
models, ranging from -0.05 to +0.09 while having a substantial impact on the compression
ratio (C: ≈+1.0–2.0 | L≈+3.3–4.7), especially for LSTM. Hence, additionally using 18
LSBFO with Top-k seems to be advantageous. The accuracy difference between 18 and
20 LSBFO combined with the same TkP is substantial (C: -0.29–0.75 | L: -0.16–0.32),
although less so for LSTM, therefore also destabilizing the accuracy difference between
the two networks. Using 20 LSBFO in isolation even had a positive effect (see Table 4.20).
The compression ratio difference between 18 and 20 LSBFO combined with the same
TkP is higher for LSTM than for Conv (C: ≈+0.5–1.0 | L: ≈+1.4–2.8). In conclusion,
the 20 LSBFO seems to work better for LSTM then for Conv.

For the final run, 18 LSBFO with Top-k will be used additionally since there is only
an inconclusive accuracy change while having a higher compression ratio and 20 LSBFO
with Top-k because the 1% accuracy bound was not exceeded greatly while having a
substantial impact on the compression ratio.

Short Algorithm
Name Differences

Compression
Ratio

Mean Diff to
Lossless Last
Accuracy

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Decompression
Time Max
(sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-LosslessCompr 1.000 1.000 0.000 0.000 0.030 0.037 0.063 0.079 0.262 0.434 0.530 0.875
Topk7.5p0.1m*0.5lFlors18r32r 5.685 11.515 0.070 -0.080 0.037 0.098 0.067 0.131 0.068 0.177 0.148 0.344
Topk7.5p0.1m*0.5l 3.727 6.838 0.020 -0.010 0.035 0.106 0.059 0.151 0.090 0.285 0.193 0.591
Topk7.5p0.1mTlFlors18r32r 5.864 11.928 0.000 -0.080 0.036 0.098 0.059 0.135 0.068 0.176 0.140 0.346
Topk7.5p0.1mTl 4.197 7.481 -0.050 -0.030 0.032 0.099 0.062 0.157 0.086 0.269 0.183 0.547
Topk5.0p0.1m2lFlors18r32r 6.421 14.031 -0.300 -0.400 0.035 0.090 0.062 0.137 0.067 0.172 0.139 0.336
Topk7.5p0.1m*0.5lFlors20r32r 6.669 14.384 -0.360 -0.240 0.060 0.254 0.092 0.310 0.112 0.492 0.236 1.015
Topk5.0p0.1m2l 5.451 10.761 -0.380 -0.350 0.033 0.095 0.064 0.134 0.089 0.272 0.187 0.564
Topk7.5p0.1mTlFlors20r32r 6.745 14.568 -0.520 -0.270 0.065 0.263 0.097 0.361 0.117 0.482 0.258 1.012
Topk5.0p0.1m2lFlors20r32r 6.935 15.422 -1.050 -0.720 0.058 0.259 0.088 0.331 0.106 0.494 0.225 1.020

Table 4.22: Depicts the combination of selected Top-k settings with removing several lower
fraction bits. All evaluations also use SplitFloatAndStackByByteSegments, Zstandard
with compression level 1 and ’Delta Reset Point Creator’ with Reset Point Interval of 28
Row Names, Short Algorithm Names: Topk = Top-K - Number + ’p’ is Top-k-Percentage - Number + ’m’ is
’Minimum per Layer’ - Number + ’l’ is ’Loss Adaptive T kP ’ were ’l’ is the Loss Transformation Function (fLoT rans)
(see Figure 4.6) , Flors = Float remove section (’Reset Least Significant Bits’ )- Number + ’r’ is least significant
bit position to keep (Least Significant Bits of Fraction to Overwrite with zeros) - Number + ’r’ is most significant
bit position to keep , BL-LosslessCompr = Lossless Compression Baseline - SplitFloatAndStackByByteSegments,
Zstandard with compression level 1 and ’Delta Reset Point Creator’ with Reset Point Interval of 28

4.8.5 Selecting Fitting Lossy Configurations

For the final lossy evaluations, three Top-k, two Reset Least Significant Bits and two
’Save Decision through New Model’ Processing Steps are used in all configurations. In
the following section a maximum of six configurations will be chosen for three different
accuracy targets and two different compression time proportions. The section will be
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divided by the compression speeds, were the slower section will exclusively include ’Save
Decision through New Model’ since it increases the compression time significantly.

The decompression time max was omitted due to space restrictions of some of the tables
but was about double the listed mean decompression time for any of the rows.

Low Compression Time

Table 4.23 shows the configurations with lower compression times which only use Top-k
and Reset Least Significant Bits. The compression times are higher than the original
lossless configuration but still close enough to the ’Batch Learning Time Baseline’ (C:
0.033 | L: 0.094) and are therefore acceptable. Using Flors20r32rDifrs148f for 0%
accuracy bound features a significantly higher compression ratio and a low compression
time. Using Topk7.5p0.1mTlFlors18r32r for 0.1% accuracy bound leads to a
higher compression ratio compared to the former configuration (C: ≈+1.2 | L: ≈+3.6)
while having about the same compression time. Using Topk7.5p0.1m*0.5lFlors20r32r
for 1% accuracy bound leads to a higher compression ratio compared to the former
configuration (C: ≈+0.8 | L: ≈+2.5) while losing only about 0.36% accuracy and having
a very stable accuracy drop. All other configurations have a higher accuracy drop while
having almost no compression gains.

Short Algorithm
Name Differences

Compression
Ratio

Mean Diff to
Lossless Last
Accuracy

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-LosslessCompr 1.000 1.000 0.000 0.000 0.030 0.037 0.063 0.079 0.262 0.434
Topk7.5p0.1m*0.5lFlors18r32r 5.685 11.515 0.070 -0.080 0.037 0.098 0.067 0.131 0.068 0.177
Topk7.5p0.1m*0.5l 3.727 6.838 0.020 -0.010 0.035 0.106 0.059 0.151 0.090 0.285
Flors20r32rSplbs 4.667 8.310 0.020 0.020 0.046 0.048 0.085 0.085 0.255 0.392
Topk7.5p0.1mTlFlors18r32r 5.864 11.928 0.000 -0.080 0.036 0.098 0.059 0.135 0.068 0.176
Topk7.5p0.1mTl 4.197 7.481 -0.050 -0.030 0.032 0.099 0.062 0.157 0.086 0.269
Topk5.0p0.1m2lFlors18r32r 6.421 14.031 -0.300 -0.400 0.035 0.090 0.062 0.137 0.067 0.172
Topk7.5p0.1m*0.5lFlors20r32r 6.669 14.384 -0.360 -0.240 0.060 0.254 0.092 0.310 0.112 0.492
Topk5.0p0.1m2l 5.451 10.761 -0.380 -0.350 0.033 0.095 0.064 0.134 0.089 0.272
Topk7.5p0.1mTlFlors20r32r 6.745 14.568 -0.520 -0.270 0.065 0.263 0.097 0.361 0.117 0.482
Topk5.0p0.1m2lFlors20r32r 6.935 15.422 -1.050 -0.720 0.058 0.259 0.088 0.331 0.106 0.494

Table 4.23: Depicts the lower compression time final lossy Configurations. All eval-
uations also use GCXS with all parameters set to true if Top-k is used, otherwise
SplitFloatAndStackByByteSegments, Zstandard with compression level 1 and ’Delta
Reset Point Creator’ with Reset Point Interval of 28
Row Names, Short Algorithm Names: Topk = Top-K - Number + ’p’ is Top-k-Percentage - Number + ’m’ is
’Minimum per Layer’ - Number + ’l’ is ’Loss Adaptive T kP ’ were ’l’ is the Loss Transformation Function (fLoT rans)
(see Figure 4.6) , Flors = Float remove section (’Reset Least Significant Bits’ )- Number + ’r’ is least significant
bit position to keep (Least Significant Bits of Fraction to Overwrite with zeros) - Number + ’r’ is most significant
bit position to keep , BL-LosslessCompr = Lossless Compression Baseline - SplitFloatAndStackByByteSegments,
Zstandard with compression level 1 and ’Delta Reset Point Creator’ with Reset Point Interval of 28
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High Compression Time

Table 4.24 shows the configurations with higher compression times which all use ’Save
Decision through New Model’. Combining any Top-k and Skisg1.0pFeTf in any configura-
tion reduces the accuracy strongly. E.g. the comparing the configuration
’Topk7.5p0.1mTlFlors18r32r’ from the last section with
’Topk7.5p0.1mTlFlors18r32rSkisg1.0pFeTf’ shows that the accuracy drops significantly
(C: -0.46 | L: -0.12). This could be due to the fact that the used Loss (Lo) for Top-k
does not reflect the change in the network when a save is skipped several times which is
the case when using a 1% bound instead of 0%. Besides the mentioned configurations
above, adding ’Save Decision through New Model’ to the fast execution configuration (see
Table 4.23) seems to significantly affect the compression ratio (avg. C: ≈+5.7 | L: ≈+3.1,
min. C: +1.7 | L: +0.6) while almost not affecting the accuracy in any combination (avg.
C: ≈+0.03 | L: ≈0.03, max. C: -0.07 | L: -0.09).

The configurations Flors20r32rSkisg0pFeTfSplbs for 0% accuracy bound was
chosen since it is the only configuration fulfilling this bound. The configuration
Flors20r32rSkisg1 for 0.1% accuracy bound was chosen since it has by far the
hightest compression ratio below this bound will having a stable accuracy drop for both
models.
Topk7.5p0.1m*0.5lFlors20r32rSkisg1.0pFeTf for 1% accuracy bound was chosen
since it the option with the hightest compression ratio with an accuracy below the bound
with no other option having a comparable compression ratio while achieving a significantly
better accuracy.

Slower General Compression

This section will evaluate if a general compression algorithm with a higher compression
time has a larger impact on the compression ratio due to the used lossy compression
algorithms. To evaluate this hypothesis, the chosen configurations from the previous
sections with the two highest compression ratios are combined with the general compres-
sion algorithm LZMA which was also used in ’Final Evaluation Lossless Configurations’
(Section 4.7.5)

Table 4.25 shows the results when comparing ZStandard 1 with LZMA for different
combinations from the final selection of fast and slow algorithms. Mostly, using LZMA
increases the overall compression time strongly (C: ≈0.5–1.1 | L: ≈0.5–3.3), depending if
the overall runtime is already very slow. The compression ratio difference between LZMA
and Zst 1 is significantly higher (C: ≈0.1–1.4 | L: ≈0.4–2) then for ’Final Evaluation
Lossless Configurations’ (Section 4.7.5). Due to the increased compression times, especially
for fast configurations, LZMA will not be used in any configurations since the compression
ratio increases are not high enough to support justify its use.

78



4.8. Lossy Algorithms

Short Algorithm
Name Differences

Compression
Ratio

Mean Diff to
Lossless Last
Accuracy

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-LosslessCompr 1.000 1.000 0.000 0.000 0.030 0.037 0.063 0.079 0.262 0.434
Flors20r32rSkisg0pFeTfSplbs 7.706 9.425 0.290 0.030 0.193 0.424 0.277 1.775 0.297 0.959
Topk7.5p0.1m*0.5lSkisg0pFeTf 5.491 7.482 0.170 -0.050 0.189 0.383 0.271 1.669 0.141 0.530
Topk7.5p0.1m*0.5lFlors18r32rSkisg0pFeTf 9.870 13.143 0.080 -0.080 0.167 0.321 0.264 1.517 0.082 0.247
Topk7.5p0.1mTlSkisg0pFeTf 6.378 8.226 0.050 -0.080 0.194 0.398 0.276 1.746 0.152 0.508
Topk7.5p0.1mTlFlors18r32rSkisg0pFeTf 10.327 13.694 0.010 -0.110 0.171 0.326 0.241 1.493 0.085 0.254
Flors20r32rSkisg1.0pFeTfSplbs 19.801 14.435 -0.080 -0.050 0.295 0.453 0.680 1.781 0.368 0.903
Topk7.5p0.1m*0.5lSkisg1.0pFeTf 12.984 10.362 -0.240 -0.100 0.310 0.423 0.913 1.673 0.223 0.653
Topk7.5p0.1m*0.5lFlors18r32rSkisg1.0pFeTf 27.239 21.080 -0.280 -0.110 0.256 0.355 0.575 1.463 0.156 0.290
Topk5.0p0.1m2lSkisg0pFeTf 9.180 13.335 -0.300 -0.440 0.189 0.395 0.274 1.730 0.123 0.617
Topk5.0p0.1m2lFlors18r32rSkisg0pFeTf 11.797 19.407 -0.310 -0.420 0.164 0.331 0.369 1.528 0.072 0.285
Topk7.5p0.1mTlSkisg1.0pFeTf 14.770 11.696 -0.330 -0.180 0.331 0.443 0.952 1.763 0.278 0.586
Topk7.5p0.1m*0.5lFlors20r32rSkisg0pFeTf 13.745 18.328 -0.400 -0.260 0.200 0.459 0.318 1.783 0.122 0.514
Topk7.5p0.1mTlFlors18r32rSkisg1.0pFeTf 28.576 23.496 -0.460 -0.130 0.247 0.367 0.503 1.498 0.138 0.320
Topk7.5p0.1mTlFlors20r32rSkisg0pFeTf 14.013 18.580 -0.560 -0.300 0.208 0.475 0.297 1.821 0.123 0.594
Topk5.0p0.1m2lSkisg1.0pFeTf 21.994 20.171 -0.740 -0.550 0.319 0.455 0.729 1.715 0.231 0.530
Topk5.0p0.1m2lFlors18r32rSkisg1.0pFeTf 31.860 32.906 -0.760 -0.570 0.233 0.380 0.477 1.511 0.138 0.263
Topk7.5p0.1m*0.5lFlors20r32rSkisg1.0pFeTf 34.729 34.610 -0.850 -0.360 0.331 0.508 0.709 2.077 0.217 0.583
Topk7.5p0.1mTlFlors20r32rSkisg1.0pFeTf 35.867 35.425 -1.120 -0.410 0.354 0.537 0.743 1.822 0.213 0.542
Topk5.0p0.1m2lFlors20r32rSkisg0pFeTf 15.770 22.065 -1.120 -0.760 0.204 0.495 0.425 1.825 0.121 0.534
Topk5.0p0.1m2lFlors20r32rSkisg1.0pFeTf 38.085 39.735 -1.650 -0.930 0.317 0.559 0.619 1.840 0.157 0.441

Table 4.24: Depicts the higher compression time final lossy configurations. All eval-
uations also use GCXS with all parameters set to true if Top-k is used, otherwise
SplitFloatAndStackByByteSegments, Zstandard with compression level 1 and ’Delta
Reset Point Creator’ with Reset Point Interval of 28
Row Names, Short Algorithm Names: Topk = Top-K - Number + ’p’ is Top-k-Percentage - Number + ’m’
is ’Minimum per Layer’ - Number + ’l’ is ’Loss Adaptive T kP ’ were ’l’ is the Loss Transformation Function
(fLoT rans) (see Figure 4.6) , Flors = Float remove section (’Reset Least Significant Bits’ )- Number + ’r’ is least
significant bit position to keep (Least Significant Bits of Fraction to Overwrite with zeros) - Number + ’r’ is most
significant bit position to keep , Skisg = Skip save when accuracy sill good (’Decide Save by Error rate Decay’) -
Number + ’p’ is the accuracy percentage difference at which the model has to be deployed (’Error Rate Bound’)-
Bool + ’e’ is if True only last batch data will be evaluated - Bool + ’f’ is always true and origins from super class
, BL-LosslessCompr = Lossless Compression Baseline - SplitFloatAndStackByByteSegments, Zstandard with
compression level 1 and ’Delta Reset Point Creator’ with Reset Point Interval of 28

Final Lossless Configurations with Different Reset Point Interval Settings

Table 4.26 shows the selected configurations from the slower and higher compression time
section with the Reset Point Interval (RPI) of 148 compared to 28 which was used until
now. When combining ’Save Decision through New Model’ with the maximum RPI of
148, the reset point at the end of the run will be omitted since less saves in total are
executed. Hence, only one reset point at the start will be present for theses evaluations.
This somewhat skews the compression ratio and especially the decompression time since
all difference recreations have to be started from the first reset point. As the resulting
online training weights slightly deviate (see Section 4.6), the accuracy can deviate per run.
The results show that some configurations can have vastly different accuracies for the
different reset point settings. This is due to the fact that some Processing Steps are more
unstable than others. E.g. a rough analysis has shown that the skipped saves can vastly
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Short Algorithm
Name Differences

Compression
Ratio

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Decompression
Time Max
(sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-LosslessCompr 1.000 1.000 0.030 0.037 0.063 0.079 0.262 0.434 0.530 0.875
Topk7.5p0.1m*0.5lSkisg1.0pFeTfZstwm1c 34.729 34.610 0.331 0.508 0.709 2.077 0.217 0.583 0.331 1.307
Topk7.5p0.1m*0.5lSkisg1.0pFeTfLzmwm 33.322 35.244 0.248 0.373 0.886 2.575 0.151 0.277 0.234 0.554
Skisg1.0pFeTfSplbsLzmwm 20.524 16.419 0.281 0.892 1.193 3.739 0.508 0.660 0.825 1.437
Skisg1.0pFeTfSplbsZstwm1c 19.830 14.435 0.308 0.453 0.643 1.781 0.377 0.903 0.625 1.988
Topk7.5p0.1m*0.5lLzmwm 6.771 14.665 0.081 0.214 1.022 2.317 0.086 0.198 0.154 0.373
Topk7.5p0.1m*0.5lZstwm1c 6.669 14.384 0.060 0.254 0.092 0.310 0.112 0.492 0.236 1.015
SplbsLzmwm 5.010 9.569 0.301 1.220 1.171 3.398 0.275 0.607 0.548 1.173
SplbsZstwm1c 4.667 8.310 0.046 0.048 0.085 0.085 0.255 0.392 0.532 0.787

Table 4.25: Depicts all selected final evaluations with a higher compression ratio with
different compression algorithms. All evaluations also use GCXS with all parameters set
to true if Top-k is used, otherwise SplitFloatAndStackByByteSegments, ’Reset Least
Significant Bits’ with a LSBFO of 20, Zstandard with compression level 1 and ’Delta
Reset Point Creator’ with Reset Point Interval of 28
Row Names, Short Algorithm Names: Topk = Top-K - Number + ’p’ is Top-k-Percentage - Number + ’m’
is ’Minimum per Layer’ - Number + ’l’ is ’Loss Adaptive T kP ’ were ’l’ is the Loss Transformation Function
(fLoT rans) (see Figure 4.6) , Zst = ZStandard - Numer + ’c’ is compression level parameter Lzmwm = LZMA ,
Skisg = Skip save when accuracy sill good (’Decide Save by Error rate Decay’) - Number + ’p’ is the accuracy
percentage difference at which the model has to be deployed (’Error Rate Bound’)- Bool + ’e’ is if True only
last batch data will be evaluated - Bool + ’f’ is always true and origins from super class , BL-LosslessCompr =
Lossless Compression Baseline - SplitFloatAndStackByByteSegments, Zstandard with compression level 1 and
’Delta Reset Point Creator’ with Reset Point Interval of 28

differ per run and lead to a chain reaction also affecting all of the upcoming save decisions.
The great deviation can be seen for Flors20rSkisg1.0pFeTf where accuracy deviation
of Conv exceeds 0.1%. Configuration with ’Save Decision through New Model’ a high
compression ratio only slightly increases it with a higher RPI since they already have a
low number of reset points because they have a low number of saves in general. The real
effect of the higher RPI on the compression ratio can therefore only be analyzed if the
evaluation has more batches and hence, the number of skipped saves is less meaningful.
The metrics of the configurations using RPI of 148 will be used since all decompression
times are in an acceptable range.

4.9 Summary

This section will summarize which Processing Step Parameters to use, which Processing
Steps were unsuccessful and which configurations to use. All recommendations are
only based on the two used models. ’Summary of Utility of Assessed Processing Steps’
(Section 6.1.5) summarizes the most impactful Processing Steps.
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4.9. Summary

Short Algorithm
Name Differences

Compression
Ratio

Mean Diff to
Lossless Last
Accuracy

Compression
Time (sec.)

Compression
Time Max
(sec.)

Decompression
Time (sec.)

Conv LSTM Conv LSTM Conv LSTM Conv LSTM Conv LSTM

BL-GeneralCompr 1.000 1.000 0.000 0.000 0.012 0.024 0.035 0.043 0.011 0.024
Flors20rSkisg0pFeTfDifrs28f 28.523 14.208 0.190 0.010 0.193 0.424 0.277 1.775 0.297 0.959
Flors20rSkisg0pFeTfDifrs148f 46.197 21.856 0.130 -0.030 0.159 0.274 0.483 1.435 1.081 4.323
Flors20rDifrs148f 29.944 18.017 -0.020 -0.030 0.028 0.085 0.046 0.120 0.931 2.476
Flors20rDifrs28f 17.275 12.528 -0.080 0.000 0.046 0.048 0.085 0.085 0.255 0.392
Topk7.5p0.1mTlFlors18rDifrs148f 46.405 32.109 -0.080 -0.120 0.037 0.123 0.058 0.152 0.311 1.103
Topk7.5p0.1mTlFlors18rDifrs28f 21.704 17.981 -0.100 -0.100 0.036 0.098 0.059 0.135 0.068 0.176
Flors20rSkisg1.0pFeTfDifrs28f 73.293 21.762 -0.180 -0.070 0.295 0.453 0.680 1.781 0.368 0.903
Flors20rSkisg1.0pFeTfDifrs148f 82.877 29.074 -0.260 -0.100 0.236 0.297 0.473 1.387 0.458 2.516
Topk7.5p0.1m*0.5lFlors20rDifrs28f 24.685 21.684 -0.460 -0.260 0.060 0.254 0.092 0.310 0.112 0.492
Topk7.5p0.1m*0.5lFlors20rDifrs148f 62.550 46.195 -0.490 -0.330 0.039 0.094 0.066 0.140 0.326 0.774
Topk7.5p0.1m*0.5lFlors20rSkisg1.0pFeTfDifrs28f 128.547 52.176 -0.940 -0.380 0.331 0.508 0.709 2.077 0.217 0.583
Topk7.5p0.1m*0.5lFlors20rSkisg1.0pFeTfDifrs148f 129.692 76.917 -0.980 -0.400 0.243 0.334 0.426 1.466 0.121 0.579

Table 4.26: Depicts the final lossy configurations with different reset points frequencies.
All evaluations also use GCXS with all parameters set to true if Top-k is used, otherwise
SplitFloatAndStackByByteSegments and Zstandard with compression level 1
Row Names, Short Algorithm Names: Topk = Top-K - Number + ’p’ is Top-k-Percentage - Number + ’m’
is ’Minimum per Layer’ - Number + ’l’ is ’Loss Adaptive T kP ’ were ’l’ is the Loss Transformation Function
(fLoT rans) (see Figure 4.6) , Flors = Float remove section (’Reset Least Significant Bits’ )- Number + ’r’ is least
significant bit position to keep (Least Significant Bits of Fraction to Overwrite with zeros) - Number + ’r’ is most
significant bit position to keep , Skisg = Skip save when accuracy sill good (’Decide Save by Error rate Decay’) -
Number + ’p’ is the accuracy percentage difference at which the model has to be deployed (’Error Rate Bound’)-
Bool + ’e’ is if True only last batch data will be evaluated - Bool + ’f’ is always true and origins from super class ,
BL-GenComp = General Compression Baseline - Zstandard with compression level 1

4.9.1 Summary Processing Steps
’General Compression’: Zstandard 1 has proven have the best tradeoff between
compression ratio (-0.013 compared to best) while having the lowest compression time
(max. 0.024s). Others were repeatedly reassessed, especially LZMA, but everytime had a
high compression time while not improving the compression ratio considerably.

’Delta Creator’: It significantly improves the compression ratio (min. +0.3) while
almost having no effect on the compression time (max. +0.008). The ’Reset Point
Interval’ (RPI) can be set higher then the maximum of 148 since the decompression
time maximum over all runs was 2.64s.

’Bytewise Segmentation for Float Matrices’: SplitFloatAndStackByByteSeg-
ments is superior to SplitFloatAndStackByByteSegmentsSplitLater and has a higher
compression ratio (min. 0.011) compared to SplitFloatAndStack but featuring a higher
decompression time (max. diff of max. 0.044s (max. abs. 0.076)).

’Top-K’: It has a significant compression ratio increase (+1.5-10.8), can be adapted
to an accuracy bound and can have a noticable effect on the compression time (max.
+0.07). The range of ’Top-k-Percentage’ (TkP ) should be between 15% and 1.75% since
otherwise the accuracy difference is not noticable or too high. ’Minimum per Layer’ is
always recommended to improve accuracy and ’Minimum per Layer Percentage’ (minLP )
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should range for the recommended TkP between 0.1% and 0.01%. ’GCXS’ should be
used with all optimizations since all of them are benefitial for the given TkP range
and improve the compression ratio and compression speed. We partially recommend
’Loss Adaptive TkP ’ since it improves the accurcay and compression ratio but has to
be well chosen together with the two parameters TkP and minLP and hence, is harder
to configure. To reduce the search space, we recommend to use a linear function for
’Loss Transformation Function’ (fLoT rans) and to only adapt the other two parameters.
Combining it with ’Decide Save by Error rate Decay’ can lead to degredation of accuracy
due to the loss value is not summarized (see Section 6.3.1). We do not recommend ’All
Layer Top-k’ since it has almost no affect on the accuracy or compression ratio while
having a higher compression time.

’Reset Least Significant Bits’: It features a very significant compression ratio increase
(+3.7-7.3) without almost any accuracy deviation and a mild effect on the compression
time (max. +0.016). We recommend using a ’Least Significant Bits of Fraction to
Overwrite with zeros’ (LSBFO) between 18-20. A LSBFO value in the lower end of this
range is recommended by us when combining it with ’Top-K’.

’Decide Save by Error rate Decay’: Is only partially recommended by us since it
has a low compression ratio increase (+0.14-4.4) compared to the other lossy Processing
Steps and has substantial drawbacks like the very slow execution time (+0.196), requiring
a lot of memory and using the neural network processing unit but could be essential to
save storage space in a different scenario were there is only little drift. To reduce the
required memory, we recommend to only use the data of the current batch for evaluation.
The two used percentages values 0% and 1% should be optimal to reflect no and a little
change in the error rate.

4.10 Drawbacks of Retraining for Model Recreation
System

’Retraining for Model Recreation System’ (Section 2.1) shortly discussed the option to
instead retrain the model with the saved data instead of saving every deployed version.
This section compares it with the resulting VSOL from a standpoint of the given research
questions and gained insight of the research since it is the most obvious alternative to an
VSOL like system.

Having a deterministic learning process, which would be required for retraining a model
exactly, is either not implemented or can significantly increase the ’Batch Learning Time
Baseline’ which would strongly impact ’RQ1: Impact Reduction on Online Learning’
(Section 1.2) for the machine learning framework tensorflow, as discussed in ’Undeter-
ministic Learning Process’ (Section 4.6). This downside could become obsolete in the
future when more neural network layer functions are deterministic and the deterministic
implementations are as performant as the non-deterministic implementations.
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4.10. Drawbacks of Retraining for Model Recreation System

Storing one batch of online training data requires significantly more storage space (RQ2)
then storing one compressed weight delta of the models we have encountered during the
research. The large amount of data is explicitly listed as one of the limitations of online
learning, as described in ’Online Learning Setting’ (Section 2.3).

A Retraining for Model Recreation System (RMRS) would require tracking metadata
such as the model architecture. This system has the same requirements as a metadata
system, described in Section 2.1, which would increase the integration requirements (RQ3)
and overall complexity significantly. The VSOL integration requirements are discussed in
’Portability to other Frameworks’ (Section 3.4.8).

To keep the decompression time (RQ4) of a RMRS in an acceptable range, reset points
as with the VSOL discussed in ’Delta Reset Point Creator’ (Section 3.2.8) would be
required. Different to the VSOL, the weights cannot be loosely compressed since they
have to match the training weights exactly which would affect the compression ratio
(RQ2).

In conclusion, due to the limitations listed above, a RMRS would only be an option to
use instead of the VSOL when the listed downsides are addressed.
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CHAPTER 5
Versioning System for Online

Learning systems Architecture

5.1 Code for Integration to Training Pipeline with Final
Compression Ratios

Listing 5.1 shows the code for adding the Versioning System for Online Learning systems
(VSOL) to a training pipeline. Any of the depicted code is available on GitHub1. Line 8
shows how the preferences for chosing a certain configuration are set. A set of settings
is then mapped to a preselected configuration. Listing 5.3 shows the documentation of
the PerformanceRequirementSettingsData class. It shows in detail which configurations
have which affect on the compression ratio and describes each value in detail. A user
then can easily choose which tradeoffs are acceptable to reach a desired compression
ratio. The compression ratios from the tables result from the final runs of the lossless
(see Table 4.12) and the lossy (see Table 4.26) settings. Having a separate configuration
object helps to break down the integration process into smaller tasks were the user can
finish the configuration fully before having to deal with adding the rest of the required
objects for the VSOL. It also reduces the number of required input parameters for the
VSOL. The configuration is provided with defensive default settings, being the only lossy
option, which value consistency of results over compression ratio. A separate object
makes it also easily sharable across several VSOLs.

We recommend using the fast lossy configuration with zero accuracy drop shown in Listing
5.2 since it features a ≈7.5 times higher compression ratio then the lossy confiugration
but also has no accuracy degredation. It’s compression time is between 0.000 and 0.035s
slower then the lossy variant and it’s decompression time is about the same (-0.054-+0.17).

1https://github.com/christopheitenberger/VSOL
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The ’max_decompression_time_in_s’ should be set to the maximum acceptable
value to further increase the compression ratio.

Line 15 shows the creation of the VSOL. The model and the data sequence is required
for ’Save Decision through New Model’ (Section 3.2.5) to create models and evaluate the
data of the last batch since Keras does not provide the training data through another
interface. They are also used as is in the training step and should therefore already be
present. The default setting shown in Line 5 is set as default value for the VSOL so that
no configuration has be created separately, reducing the full configuration to one line
and three parameters.

Line 24 shows how the VSOL is integrated into the training process. It implements a
callback interface from Keras which is called before and after each batch. The training
data source ’data_seq_online_run’ is implemented to have one batch per epoch, hence
the number of batches are given as the number of epochs. This is valid in an online
learning setting since epochs are not used when only new data is ingested and not repeated.
The VSOL does not require this approach but it needs to be able to acquire the last used
batch from the data sequencer. When previously saved model weights are loaded, the
timestamp is then mapped to a run number through a list containing the timestamps
when each training run was saved. The position in the table then corresponds to the
run number of the saved weights. Through the run number, the differential files and the
nearest full save can be identified. Each differential and full save is then decompressed
through the pipeline to recreate the saved weights.

Those weights are then either returned directly, as with in line 35, or loaded into the
cloned model, as in line 39. Either loading process only requires one line.

Since training and evaluation use different weights and probably are executed in parallel,
the saved weights have to be rolled out the the evaluating model. This is not integrated
since deployment is not a focus of this thesis. This could be implemented with the
callback pattern. A list of functions accepting the new model weights as parameters
could be handed over to the VSOL.

In conclusion, the VSOL can be easily integrated by a callback into a preexisting codebase
by only adding one argument. The setup requires at most two lines were the configuration
of the VSOL is separated and the class itself only requires values which are already
present for the learning process. Including the VSOL in the learning process and loading
the weights for a certain timestamp only requires one line and no additional objects.
Finally, answering ’RQ3: Reduce Integration Effort’ (Section 1.2), it can be said that
with Keras it is possible to integrate an VSOL with very little effort.

5.2 Keras Usage and Integration
Figure 5.4 shows a UML class diagram of how the Versioning System for Online Learning
systems (VSOL) is integrated and coupled with keras. All classes have several more

86



5.2. Keras Usage and Integration

parameters and methods but only the relevant ones for the integration into keras are
shown here.

The core VSOL is the ’CompressionPipelineRunner’ below. It wraps all of the used
Processing Steps called ’runners’ and conducts their interaction with each other. It exposes
all of the required functionality of the VSOL, namely processing the next trained weights
and loading the saved weights from a certain timestamp. Some of the runners required
the used keras model which is provided by the ’CompressionPipelineRunner’. They use
’get_weights’ to acquire the dimensions of each layer beforehand. The save decision
configurations (see Section 3.2.1) use a separate model to evaluate if the newer model
has to be saved. Hence, it needs to copy the training model architecture and evaluate
the given training data. It therefore requires the methods ’keras.model.clone_model’,
’Model.set_weights’ and ’Model.evaluate’.

’CompressModel’ integrates ’CompressionPipelineRunner’ with the keras training process
through a callback mechanism. It implements the before and after batch functions of
the ’keras.callbacks.Callback’ class as a subclass. It also exposes the used model of the
training run through a class attribute. After each batch it then calls the ’Compression-
PipelineRunner’ and passes on the new weights, the loss value of the training run and the
training data sample. To receive the later, ’__get_item__’ from ’keras.utils.Sequence’
is used which is an attribute of the class and is also used as a batch generator during
training. The implementation of ’Sequence’ for generating the online learning data
stream, not shown in this uml diagram, was implemented to return the last used data
sample when ’__get_item__’ is called with the current batch number. This must also
be guaranteed by any other implementation of ’Sequence’ to be used with this class. This
class is also mainly used be the evaluation process during the training evaluation.

’OnlineLearningVersionSaver’ then uses ’performance_requirement_settings’ to select
the runners the ’CompressionPipelineRunner’ object and hands them over to the base
class ’CompressionModel’. It also exposes the retrieval of weights of the ’Compression-
PipelineRunner’ object and streamlines creating an evaluation model with those weights.
In summary it acts as the callback function as well as a factory for the VSOL.

Keras was chosen since it has the well defined interfaces shown in the UML diagram
through which it is decoupled from the training implementation and can be added without
having to consider how and where to integrate it into an existing pipeline.
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1 model, data_seq_online_run, batch_size, number_of_online_batches = (
2 get_mnist_model_with_data_and_settings_for_online_run_example())
3
4 # choosing the default defensive settings to get started quickly
5 settings_default = PerformanceRequirementSettingsData()
6
7 # choosing a specific value for each type of setting
8 settings_for = PerformanceRequirementSettingsData(
9 max_decompression_time_in_s=15,

10 lossy=LossSetting.LOSSY,
11 compression_speed=CompressionSpeed.FAST,
12 accuracy_limit_percent=AccuracyLimitPercent.ZERO_POINT_ONE)
13
14 # creating online learning saver from chosen settings
15 saver = OnlineLearningVersionSaver(
16 model,
17 data_seq_online_run,
18 path_to_overall_model_folder,
19 settings_for)
20
21 # to simulate a classification timestamp, a timestamp during training is needed
22 # this is done by creating a timestamp before training and adding 5 seconds
23 timestamp_before_run = time.time_ns()
24
25 # using the online learning saver is as easy as adding
26 # it as a callback function with the learning function
27 # the 'saver' internally recorded the deployment timestamp
28 model.fit(data_seq_online_run,
29 batch_size=batch_size,
30 epochs=number_of_online_batches,
31 verbose=1,
32 shuffle=False,
33 callbacks=[saver]
34 )
35
36 # adding 5 seconds to the timestamp of the beginning of the training results
37 # in a timestamp during training, simulating a classification timestamp
38 # the deployment timestamp is recorded by the 'saver
39 simulated_classification_timestamp = timestamp_before_run + (5 * pow(10, 9))
40
41 # the weights can be loaded simply by using a timestamp
42 loaded_weights = saver.load_weights_at_timestamp(simulated_classification_timestamp)
43
44 # the model can be also cloned and loaded
45 # with the weights from the timestamp
46 model = saver.clone_model_and_load_weights_at_timestamp(
47 simulated_classification_timestamp, model)

Listing 5.1: The tutorial code for adding the Versioning System for Online Learning
systems to an existing online learning training pipeline.
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1 recommended_setting = PerformanceRequirementSettingsData(
2 # should be set by user as high as acceptable to increase compression ratio
3 max_decompression_time_in_s=15,
4 lossy=LossSetting.LOSSY,
5 compression_speed=CompressionSpeed.FAST,
6 accuracy_limit_percent=AccuracyLimitPercent.ZERO
7 )

Listing 5.2: The code for our recommended configuration.
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1 @dataclass
2 class PerformanceRequirementSettingsData:
3 """
4 The performance requirement settings for the
5 OnlineLearningVersionSaver class.
6 To try out the online version saver, no configuration is required since
7 all parameters have a default and preserve the trained values.
8
9 Changing the settings leads to a higher compression ratio

10 while effecting runtime and accuracy.
11
12 The table below shows which settings possibly lead to which compression ratios.
13 The values can differ since they result from testing
14 two different neural networks.
15 The values result from a very low max_decompression_time_in_s
16 and can be significantly higher with a higher value.
17
18 Compression Ratios for settings
19 -------------------------------
20
21 lossy=LOSSLESS:
22 -------
23 1.6-4.2
24 -------
25
26 lossy=LOSSY:
27 --------------------------------------------------------------
28 AccuracyLimitPercent\CompressionSpeed | FAST | SLOW
29 --------------------------------------------------------------
30 ZERO | 12.5-30.0 | 14.3-46.2
31 ZERO_POINT_ONE | 18.0-46.4 | 21.8-82.9
32 ONE | 21.7-62.6 | 52.2-129.7
33
34 Attributes
35 ----------
36 max_decompression_time_in_s: float
37 The maximum acceptable decompression time.
38 Effects after how many saves a reset point is generated.
39 A higher value leads to a higher compression ratio, has a high impact.
40 A large neural network requires a higher setting to achieve the same
41 compression ratio since compressing and decompressing requires
42 more time with an increasing size.
43 lossy: LossSetting
44 If the compression pipline should be lossless or lossy.
45 LOSSLESS saves the weights after each online batch as is.
46 LOSSY can alter weights before they are saved and rolled out
47 or even skip the rollout of a set of new weights.
48 The runtime of LOSSLESS is close to the training time of the executed batch.
49 LOSSY leads to a higher compression ratio. See table above for details.
50 The attributes compression_speed and accuracy_limit_percent
51 are only relevant if lossy is set to LOSSY.
52 compression_speed: CompressionSpeed
53 If the mean compression speed should be FAST or SLOW.
54 Only relevant if lossy=LOSSY.
55 SLOW leads to a higher compression ratio. See table above for details.
56 The runtime of FAST is close to the training time of the executed batch.
57 The runtime of SLOW is close to 3-5x the training time of
58 the executed batch.
59 accuracy_limit_percent: AccuracyLimitPercent
60 The acceptable average accuracy drop compared to a lossless run.
61 Only relevant if lossy=LOSSY.
62 A higher value leads to a higher compression ratio.
63 See table above for details.
64 """
65 max_decompression_time_in_s: float = 10
66 lossy: Lossy = Lossy.LOSSLESS
67 compression_speed: CompressionSpeed = CompressionSpeed.FAST
68 accuracy_limit_percent: AccuracyLimitPercent = AccuracyLimitPercent.ZERO

Listing 5.3: The code with documentation for the ’PerformanceRequirementSettingsData’.
Describes its attributes and their effect in detail and includes the final summary table
for the compression ratio.
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Figure 5.4: UML class diagram showing how the Versioning System for Online Learning
systems was integrated into the Keras learning flow.
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CHAPTER 6
Conclusion

6.1 Main Results
The final Versioning System for Online Learning systems (VSOL), discussed and developed
in this thesis, has seven different configurations designed for different processing time and
error rate requirements, as summarized in Listing 5.3. The configurations were tested
with the two neural networks Conv and LSTM (see Section 4.4) under a simulated drift.
The following section will summarize to which degree the different configurations met
the research questions (RQ).

6.1.1 Assessment of RQ1: Impact Reduction on Online Learning
RQ1 (see Section 1.2) concerns the performance impact of the VSOL on the training
process. Relevant metrics for assessing the impact are the error rate, measured by
the ’Prequential Accuracy’ (Section 4.3.1), and processing impact, measured by the
’Compression Time’ (Section 4.3.3). Table 4.7 shows the ’Batch Learning Time Baseline’
for the compression time. RQ1 and RQ2 are tradeoffs between each other, as discussed
in ’RQ2: Reduce Required Storage’ (Section 1.2). Hence, the following section split
the resulting configurations into fulfilling RQ1 fully and partially, whereat the latter is
required to excel in RQ2.

VSOL Configurations Fully Satisfying RQ1 Two of the seven configurations
fully satisfied RQ1. Table 4.12 shows the final selected lossless configuration ’Splb-
sZstwm1cDifrs148f’ with the compression time (C: 0.028 | L: 0.050), which is below the
’Batch Learning Time Baseline’ (C: 0.033 | L: 0.094) and saves the weights losslessly.
Table 4.26 shows the lossy configuration ’Flors20r32rDifrs148f’, which has no error rate
drop compared to the lossless baseline and is also is below the ’Batch Learning Time
Baseline’ (C: 0.033 | L: 0.094), having a compression time of (C: 0.028 | L: 0.085). In
conclusion, it is possible to reduce the impact on the learning process to a minimum.
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VSOL Configurations Partially Satisfying RQ1 Five of the seven VSOL configu-
rations do not satisfy the RQ since they exceed either the ’Batch Learning Time Baseline’
(C: 0.033 | L: 0.094) or the accuracy baseline of close to 0. As already mentioned in the
RQ1 (see Section 1.2), those configurations will still be considered to see how much the
configurations can excel in compression, relevant for ’RQ2: Reduce Required Storage’
(Section 1.2). ’Comparison to other Drift Simulations’ (Section 4.1.4) shows that the used
drift simulation has an overall higher degree of change and the measured error rate could
be on average considerably lower under less extreme circumstances. All of the following
scenarios are lossy and depicted in Table 4.26. The deviation of accuracy between the two
neural networks and between the configurations has no recognizable correlation. Hence,
the deviation is unpredictable for other neural networks. However, the maximum of the
two deviations has always been chosen to assume a worst-case scenario.

The lossy configurations are categorized into two groups, one with a slow compression time
and one with a fast compression time, as shown in the table in the Code Documentation
(5.3) .

One of the three fast configurations (’Flors20r32rDifrs148f’) has fully satisfied RQ1. The
accuracy of the two remaining faster configurations ’Topk7.5p0.1mTlFlors18r32r’ (compr.
time C: 0.037| L: 0.123) and ’Topk7.5p0.1m*0.5lFlors20r32r’ (compr. time C: 0.039| L:
0.094) stays below the accuracy drop thresholds of 0.1% and 1% respectively while only
exceeding ’Batch Learning Time Baseline’ (C: 0.033 | L: 0.094) of the compression time
by about 30ms (25%).

The slower configurations use a Processing Step (see Section 3.2.5) which decides if a
model is deployed based on classifing the current data. The higher processing time can
indirectly lead to a lower accuracy, as discussed in ’Processing Time affecting Error Rate’
(Section 3.3) while the usage of the neural network processing unit can increase the
processing time beyond the measured processing time, as discussed in ’Classifying Data
Impacting Training’ (Section 3.4.2).

The accuracy of the three slow configurations ’Flors20r32rSkisg0pFeTfSplbs’ (compr.
time C: 0.159 | L: 0.274), ’Flors20r32rSkisg1’ (compr. time C: 0.236 | L: 0.297) and
’Topk7.5p0.1m*0.5lFlors20r32rSkisg1.0pFeTf’ (compr. time C: 0.243 L: 0.334) stays below
the accuracy drop thresholds of 0%, 0.1% and 1%, respectively. Their maximum average
processing time exceeds the baseline average by about 250% while the highest value of
their maximum processing times exceeds the baseline maximum by 990%.

Depending on the requirements of the user, the configurations can be considered an
acceptable tradeoff and indirectly fulfill RQ1 since their training process is only affected
in an acceptable range.

6.1.2 Assessment of RQ2: Reduce Required Storage
RQ2 (see Section 1.2) concerns the storage amount used by VSOL. The relevant metric for
assessing the impact is the storage amount, measured by the
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’Compression Ratio’ (Section 4.3.2) compared to the baseline. Different measurements,
presented in Table 4.26, show that the compression ratio between the neural networks
Conv and LSTM can vary strongly. Their difference also depends on the chosen configu-
ration and hence, is very unstable and unpredictable for other neural networks, same
as with the accuracy deviation in ’Assessment of RQ1: Impact Reduction on Online
Learning’ (Section 6.1.1). The table in the Code Documentation (5.3) shows the range of
compression ratios for the different configurations.

The compression ratios of the lossless configurations are 1.6 and 4.2 for Conv and LSTM
respectively while those of the lossy configurations are 12.5 and 30.0. The compression
ratios of the configurations only partially fulfilling RQ1 range from 14.3 to 129.7.

Contextualizing the results is difficult since, to our knowledge, no other work considered
these tradeoffs and metrics. While [MLDD17b] does not change the training process
- like this thesis - it is not evaluated for online learning and though their results are
not clearly comprehensible, their best lossless compression ratio is 2.7. [PDMM21]
considers online learning with four major differences to this thesis while stating a
theoretical compression ratio of 4590. They change the learning process, have a setup
with considerably lower Weight Change Degree, us a considerably larger network which
could have more redundancy and only deploy the weights without saving them. While
both works can act as a lower and upper bound, [MLDD17b] is more comparable since
the given limitations are closer to this thesis while the online learning simulation of
[PDMM21] is limited. Considering the smaller sizes of the chosen neural networks, shown
in Table 4.1, the requirement to not change the training process, described in ’RQ3:
Reduce Integration Effort’ (Section 1.2), the stronger change of the neural network
due to the more extreme simulation compared to other drift simulations, described in
’Comparison to other Drift Simulations’ (Section 4.1.4), the required fast execution time,
described in ’RQ1: Impact Reduction on Online Learning’ (Section 1.2), the novelty
of the system, described in ’Model Recreation’ (Section 2.1) and additionally requiring
a materialization as reset point due to ’RQ4: Reduce Retrieval Time’ (Section 1.2),
described in ’Delta Reset Point Creator’ (Section 3.2.8), a compression ratio which fastly
exceeds [MLDD17b] is impressive.

6.1.3 Assessment of RQ3: Reduce Integration Effort
’RQ3: Reduce Integration Effort’ (Section 1.2) concerns the easy of integration. It
is assessed by the requirements listed in the RQ and an self assessed anaylsis of the
parameters and lines of code.

The designed and implemented VSOL does not change the learning process and does not
require any external resources besides a storage location and therefore fulfills all listed
requirements. ’Processing Pipeline of the VSOL’ (Section 3.2) lists all used Processing
Steps and explains how they only work on the post weight trainings.

’Portability to other Frameworks’ (Section 3.4.8) describes the prerequisits to integrate
the VSOL into another machine learning framework and
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’Keras Usage and Integration’ (Section 5.2) describes the implemented Keras integration
which together helps in comprehending how to integrate the VSOL into a different
machine learning framework besides Keras.
’Code for Integration to Training Pipeline with Final Compression Ratios’ (Section 5.1)
describes the integration process on the basis of the tutorial code and argues in detail
why the integration process is simple. Summarizing the code analysis, integration only
requires two to three lines. Settings have practical defaults, and parameters are adequately
explained in code comments and have practical defaults.
Hence, it was easy to integrate the VSOL into Keras and the VSOL Keras integration
can be easly added to a learning process by a user. In conclusion, it can be said that
RQ3 is fully satisfied.

6.1.4 Assessment of RQ4: Reduce Retrieval Time
’RQ4: Reduce Retrieval Time’ (Section 1.2) concerns the reduction of the model retrieval
time and should only bound it without optimizing for it. The relevant metric for assessing
the impact is the model retrieval time, measured by decompression time (see Section 4.3.4).
Different to RQ2, the decompression time is less affected by the lossy configurations since
the lossy precision reduction is executed during compression and only memory reordering
connected to the decompression have to be executed. The aimed for decompression time
can be configured, as described in ’Code for Integration to Training Pipeline with Final
Compression Ratios’ (Section 5.1). Table 4.12 and 4.26 show the measured decompression
times of the lossless and lossy configurations, respectively. The mean decompression time
is below 4.5s for any of the configurations while the maximum decompression time is
below 10s. In practice, these values should be considerably lower since they do not have a
reset point at the end, as mentioned in ’Final Lossless Configurations with Different Reset
Point Interval Settings’ (Section 4.8.5). This decompression time should be acceptable
when waiting for the recreation of the model.

6.1.5 Summary of Utility of Assessed Processing Steps
The following list, shows the Processing Steps with the most utility, according to our
weighting and in descending order:

• ’Reset Least Significant Bits’ features a very significant compression ratio
increase (+3.7-7.3) without almost any accuracy deviation and a mild effect on the
compression time (max. +0.016). It requires SplitFloatAndStackByByteSegments
to achieve these compression ratios.

• ’Top-K’ has a significant compression ratio increase (+1.5-10.8), can be adapted
to an accuracy bound and can have a noticable effect on the compression time
(max. +0.07). It should be used with a ’Minimum per Layer’ setting to increase the
accuracy and a ’Loss Adaptive TkP ’ setting to increase the speed and compression
ratio.
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• Zstandard 1 has repeatedly proven to be the fastests lossless general compression
algorithm (max. 0.024s) of the assessed general compression algorithms while also
almost having the best compression ratio (-0.013 compared to best). ’GCXS’ with
all optimizations should be used with it since it only features improvments of speed
and compression ratio

• SplitFloatAndStackByByteSegments is lossless, features a mild but stable
compression ratio improvement (min. +0.95), has almost no effect on the compres-
sion time (max. +0.004), is the best implementation of ’Bytewise Segmentation for
Float Matrices’ (Section 3.2.6) and enables a higher compression ratio when paired
with entropy reduction algorithms.

• ’Delta Creator’ is lossless, has a significantly improves the compression ratio
(min. +0.3), almost having no effect on the compression time (max. +0.008) and
being able to have a high Reset Point Interval (RPI) (>148) while retaining an
acceptable maximum decompression time for any run (max. 2.64s).

• ’Decide Save by Error rate Decay’ has a low compression ratio increase (+0.14-
4.4) compared to the other lossy Processing Steps and has substantial drawbacks
like the very slow execution time (+0.196), requiring a lot of memory and using
the neural network processing unit but could be essential to save storage space in a
different scenario were there is only little drift.

6.1.6 Online Learning Simulation

Since drift is the main aspect of online learning, it is required to check if the VSOL
can deal with it, as described in more detail in the intro of ’Online Learning Virtual
Drift Simulation’ (Section 4.1). ’Comparison to other Drift Simulations’ (Section 4.1.4)
describes why other used simulations or data sets are insufficient for simulating drift for
the VSOL. ’Online Learning Virtual Drift Simulation’ (Section 4.1) describes how the
drift can be automatically simulated for any dataset with classes and which parameters
it requires.

’Determine Data Split Parameter Settings for Virtual Drift Simulation’ (Section 4.5)
optimizes the drift simulation parameters to curve fit two drifts from different data sets
and concludes that it possible to reduce the suggested metric Normalized Last Accuracy
mean Difference to 0.102, which is close to optimal by our opinion. ’Effectiveness of
Virtual Drift Conversion’ (Section 4.5.4) summarizes the impact per parameter and
concludes that the given optimizations were limited by the availabile data of the data
sets.

In conclusion, it is possible to automatically simulate drift for any dataset with labels
and to fit the drift cureves of the given data sets for the given limitations.
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6.2 Limitations
The biggest limitation is how the Versioning System for Online Learning systems (VSOL)
would work in a production setting. ’Limitations of Implemented Drift System’ (Sec-
tion 4.1.4) states that the Implemented Drift System features a high Weight Change
Degree, decreasing the compression ratio compared to a real setting with less drift,
and a very specific simulation which can be different in a real setting, having unknown
consequences on the metrics of the VSOL. ’Model Selection Process and Limitations’
(Section 4.4) mentions the limitations of the chosen models, making it unclear how well
a model which has online specific settings, a larger size, a different or more complex
architecture would work with the VSOL. ’Evaluation Lossless Configurations’ (Section 4.7)
and ’Lossy Algorithms’ (Section 4.8) show that all evaluation metrics are unstable when
comparing them between the used models which indicates that the same is true for other
models.

Two configurations fully and five partially fulfill ’RQ1: Impact Reduction on Online
Learning’ (Section 1.2), as mentioned in ’Main Results’ (Section 6.1), impacting ’RQ2:
Reduce Required Storage’ (Section 1.2) to different extents. Hence, none of the config-
urations work well for both RQs, letting users decide what advantages and drawbacks
are more important for them. ’Limitations of Implementation’ (Section 3.4) lists several
limitations of the VSOL, most importantly the impact of the slower configurations on
the learning process.

In conclusion, the main limitations concern the unforeseeable consequences of a deviating
production setting on the evaluation metrics and the tradeoff between the two first RQs.

6.3 Future Works
6.3.1 Further Optimizations on VSOL
Increasing Accuracy for Combinations of Loss Dependent Top-K and Save
Decision through New Model

Section 3.2.2 explains loss adaptive Top-k while Section 3.2.5 explains ’Save Decision
through New Model’. When ’Save Decision through New Model’ prevents saving a version,
the loss or delta values between the last saved version and the next set of training weights
cumulate. For loss adaptive Top-k handle the increased delta values, the loss value
parameter handed over to Top-k should be appropriately adapted. This should incrase
the accuracy not only through the higher number of delta values selected by Top-k but
also due to the fact that the increased accuracy could lead to outperforming the last
saved version which leads to saved version since ’Save Decision through New Model’ has
detected the degredation of the last saved model.

Although this increases the storage amount for the configuration, it could be used for
lower accuracy cutoff requirements, e.g. when it can be used for a 0.1% accuracy decrease
requirement instead of a 1% requirement and therefore decrease the required memory
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since the former combination required even more storage. Table 4.26 shows that two of
the slow selected configurations use Top-k and ’Save Decision through New Model’ in
combination and could maybe replace the configuration with the next lower accuracy
threshold.

Since loss is not additive as the same weight between different runs can increase and
decrease, the weight of the loss values of the unsaved runs when adding them must be
tuned. Additionally, the upper k limit from Top-k must also be increased when several
versions have not been saved and therefore the buildup difference cannot be sufficiently
represented by a smaller k.

Increase all Metrics through Classification Independent Drift Detection

’Decide Save by Error rate Decay’ (Section 3.2.5) has shown to reduce the storage amount
and is used in three selected configurations as shown in Table 4.26 while only slightly
affecting the accuracy but was ruled out when fast executing is required.

Drift detection was discussed Section 2.3.3 and is broadly discussed in the scientific
literature. Implementing and using a drift detection method that only relies on the data
without any classification model could make the usage more viable since it executes fastly
and would also reduce the decision space of the configurations by one parameter since
a slower running configuration could then be unnecessary. This faster drift detection
would then be in the ’save decision’ Stage (see Section 3.2.1) of an online learning saving
system. Experimenting with other drift detection methods using classification could lead
to better decisions which could further increase the storage amount or accuracy when
the save decision is executed more precisely.

Reduce Decompression Time by Parallelizing File Retrieval

’Delta Creator’ (Section 3.2.3) describes how each delta is created while ’Delta Reset Point
Creator’ (Section 3.2.8) describes how resetpoints are created. Each delta is saved as a
separate file and the decompression process loads and decompresses them sequentially.

This process can be parallelized because each delta file is selfcontaining. Merging
uncompressed xor delta can even be executed out of order right after the decompression
has finished since the xor operation is associative which prevents several uncompressed
xor delta from remaining in memory. The reset point and xor deltas can also be combined
out of order.

This should significantly decrease the decompression time and can even be implemented
retroactively since no additional data is required during the saving process.

Quantization

’Float Compression’ (Section 2.2.3) describes the usage of quantization with neural
networks. Quantization approximates the weights by assigning each weight a single
value from a list of predetermined values which reduces the required memory since each
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value only needs to address the index of the list. Instead of using quantization, the
methods ’Bytewise Segmentation for Float Matrices’ (see Section 3.2.6) and ’Lower Bits
Reduction’(see Section 3.2.4) were used. Section 3.2.4 argues why this method was
preferred over quantization, mainly due to the processing speed.

Table 4.26 shows that some configurations reduce the precision by 20 bits, leaving only 12
bits. As seen in Table 4.20, in practice, the compression factor of reducing 20 bits is not
2.6 but between 4.6 and 8.3. [BNS19] shows that a 4 bit quantization reduces the accuracy
at least more the 0.1% and often more than 1%, hence, due to ’RQ1: Impact Reduction on
Online Learning’ (Section 1.2), a higher number of bits could be required. In conclusion,
trying quantization instead of the used Processing Steps mentioned above could, in theory,
reduce the required storage amount additionally two-fold if the quantization process can
be executed quick enough during compression and decompression.

6.3.2 Optimizing Storage of saved Weight Sets

The following section describes how the design of the Delta Creator (see Section 3.2.3)
and the Delta Reset Points (see Section 3.2.8) can be harnessed to retrospectively reduce
the storage amount or decrease the decompression time when loading a weight set. Deltas
are used in all resulting VSOL configurations. Delta Reset Points can be removed or
added since they are reproduceable by using another close reset point and the deltas
in between both reset points. The implemented VSOL does not support this since it
relies on its created reset point in a certain interval but it is retrospectively possible, as
described in ’Delta Reset Point Creator’ (Section 3.2.8).

Removing Reset Points

Reset Points are only used to reduce the decompression time. One reset point would
be enough to load any set of weights through other deltas. Hence, removing selected
reset points can be an acceptable trand-off between a lower storage amount and a higher
decompression time for the weights before or after the reset point. An example for a
selection technique is the prediction of the access frequency of its surrounding weights.
The age and the past access frequency can be used for such a prediction.

Removing Unused Weights

In a scenario where the usage of the deployed model is infrequent, versions which where
never used to process any data could be removed completely in hindsight. This must
involve the merger between the deleted delta and its successor. Since all timestamps of
when data instances were being classified have to be saved, all of the information should
be present to implement this later on.
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Adding Reset Points

If a certain set of weights in time or a certain time period is requested more often, reset
points can be recreated to reduce the decompression time in retrospective. A higher
storage amount would then justify the decreased decompression time.

6.3.3 Measuring Error Rate Impact by Delayed Deployment
’Processing Time affecting Error Rate’ (Section 3.3) discusses how delaying the deployment
of a newer and drift adapted model leads to data instances being misclassified which
affects the error rate. To our knowledge, this topic is not discussed although it remains
unclear if this is a real issue in practice. In the papers viewed by us and the simulation
conducted in this thesis, the prequential accuracy (see Section 4.3.1) measurements
assume that the upcoming batch can be delayed until the newer model is deployed and is
then processed. In a scenario where a delay cannot be accepted due to a time sensitive
task, the measurement must assume that the next test batch is classified by the old
model until the newer model is finally deployed. A real time simulation would involve
data were each instance has a classification and label arrival timestamp and two models,
one for training and one for classification. The classification model is then replaced by
the training model only when it has finished processing the labeled data and is ready to
be deployed. An upper limit baseline in this simulation would be to assume that the time
is halted when a new labelled data batch is read for training until the training model
has finished processing the batch and is deployed. This baseline is similar to the current
prequential accuracy simulations except that the datas timestamps could be out of order
whereas the prequential accuracy assumes the classification and arrival timestamp to be
after each other and no other timestamp of another data instance being inbetween.

6.4 Summary
It was shown that it is possible to generically create a virtual drift from labeled data and
align the drift curves of two different datasets with different neural networks to maintain
comparability.

This thesis has shown that it is possible to build an easily integrable Versioning System
for Online Learning systems (RQ3) bounded by limitations of not affecting the training
process (RQ1) and retaining an acceptable retrieval time (RQ4) while achieving a
compression ratio between 1.6 and 30.0 (RQ2). If compromises on the training process
are acceptable, the compression ratio can even range between 14.3 to 129.7.

The source code of both the VSOL and its evaluation is available on GitHub1.

1https://github.com/christopheitenberger/VSOL
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