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Logic S4 was among the first modal logics in the “modern” logical tradition, the fourth
system of C. I. Lewis. Its common axiomatic formulation is due to Gödel. The commonly
used semantics for it as the logic of all reflexive and transitive Kripke frames is also at least
half a century old. Little remains unknown about it, and it enjoys most properties desirable of
a well-behaved logic. In particular, its decidability was shown by Ladner (1977).

The propositional basis of S4 is classical, so it is natural to study what happens when
it is replaced by intuitionistic propositional logic (IPL). While the transition is not entirely
deterministic, we focus here on what eventually became known as intuitionistic modal logics in
the tradition of Fischer Servi (1984) and Plotkin and Stirling (1986), which were investigated
in detail by Simpson (1994). While it is reasonable to expect that intuitionistic reasoning
makes things more complex compared to classical one, this is a priori more likely to cause the
increase in complexity than to lead to an undecidable logic. Thus, it is all the more surprising
that the problem of decidability of IS4, i.e., of intuitionistic S4, remained open since it was
formulated by Simpson (1994). We finally solve this question positively: IS4 is decidable.

The langugage of logic IS4 is A ::= ⊥ | a | (A ∧A) | (A ∨A) | (A⊃A) | �A | ♦A
where a ∈ A is an atomic formula (note that, unlike for S4, modalities � and ♦ are indepen-
dent). Its axiom system is obtained by extending any standard axiom system for IPL with
k1 : �(A⊃B)⊃ (�A⊃�B) k2 : �(A⊃B)⊃ (♦A⊃ ♦B)
k3 : ♦(A ∨B)⊃ (♦A ∨ ♦B) k4 : (♦A⊃�B)⊃�(A⊃B) k5 : ♦⊥⊃⊥
4 : (♦♦A⊃ ♦A) ∧ (�A⊃��A) t : (A⊃ ♦A) ∧ (�A⊃A)

and the standard necessitation rule. As classical S4, Kripke frames of IS4 are reflexive and
transitive, but in the so-called birelational semantics:

A birelational modelM for IS4 is a quadruple 〈W,R,≤, V 〉 of a set W 6= ∅ of worlds
equipped with two preorders (i.e., reflexive and transitive relations) — an accessibility rela-
tion R and future relation ≤— and a valuation function V : W → 2A satisfying:
(F1) For all x, y, z ∈W , if xRy and y≤z, there exists u ∈W such that x≤u and uRz.
(F2) For all x, y, z ∈W , if x≤z and xRy, there exists u ∈W such that zRu and y≤u.
(M) If w≤w′, then V (w) ⊆ V (w′).

Forcing  for atomic formulas is determined by the valuation function: M, w  a iff a ∈
V (w), withM, w 6 ⊥. It is recursively extended to all formulas as follows:
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M, w  A ∧B iff M, w  A andM, w  B;
M, w  A ∨B iff M, w  A orM, w  B;
M, w  A⊃B iff for all w′ with w≤w′, ifM, w′  A, thenM, w′  B;
M, w  �A iff for all w′ and u with w≤w′ and w′Ru, we haveM, u  A;
M, w  ♦A iff there exists u such that wRu andM, u  A.

Theorem (Fischer Servi (1984); Plotkin and Stirling (1986)). A formula A is a theorem of IS4
if and only if A is valid in every birelational model for IS4.

Our proof of decidability of IS4 is proof-theoretical. A proof search is performed in a suit-
able analytic sequent-like calculus for IS4. If the proof search is successful in finding a proof,
the formula in question is derivable. Otherwise, a failed proof search provides sufficient in-
formation to construct a countermodel. The difficulties in applying this method to IS4 are not
new either. It is typical that a naive proof search for a logic with transitive Kripke frames does
not terminate. Thus, loop-checks are used for both S4 (w.r.t. transitive R) and IPL (w.r.t. tran-
sitive ≤) to stop the naive proof search. A non-terminating naive proof search is bound to
enter into a loop due to the subformula property, which ensures a global bound on the number
of sequents that can appear in a proof search. When that happens, a countermodel can be con-
structed by emulating the algorithm loop by an appropriate R-loop for S4 or ≤-loop for IPL.

The unique challenges of IS4 are due to the fact that the two sources of repetition can inter-
act, creating a possibility of a proof search neither terminating nor repeating any sequents. To
overcome this problem we use a fully labelled sequent calculus (see Maffeziolli et al. (2013);
Marin et al. (2021)) with relational atoms for both relations R and ≤, where R-loops can be
represented on a sequent level. Since labelled sequent rules do not ordinarily create such loops,
we incorporate several loop-checks into the proof search algorithm by adding new rules for
creating R-loops. This R-loop-enabled proof search still does not guarantee sequent repeti-
tion, forcing us to formulate a more complex loop-check condition with respect to≤-loops: the
proof search is stopped if the latest sequent can be emulated by an earlier sequent. The sound-
ness of the new R-loop-creating rules is proved by a non-trivial unfolding algorithm that con-
verts derivations with R-loops into proper loop-free derivations by creating multiple duplicates
of each loop. Thus, this loop-augmented proof search provides a decision procedure for IS4.

Theorem. Logic IS4 is decidable.
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