
Streaming and Quantitative
Extensions of Answer Set

Programming

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

MSc. Rafael Kiesel
Registration Number 11840527

to the Faculty of Informatics

at the TU Wien

Advisor: O.Univ.Prof. Dipl.-Ing. Dr.techn. Thomas Eiter
Second advisor: Univ.Prof. Dr. Ezio Bartocci

The dissertation has been reviewed by:

Fabrizio Riguzzi Pedro Cabalar

Vienna, 1st September, 2023
Rafael Kiesel

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

MSc. Rafael Kiesel

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. September 2023
Rafael Kiesel

iii

The natural numbers? That semi-ring’s a bell.

Acknowledgements

First and foremost, I would like to express great thanks to my supervisor Thomas Eiter.
He was and is everything one could hope for in a mentor. Not only did he take all the
time needed to have in depth discuss and guide me in my research - he at the same time
left me the freedom to study, learn, and dive deep into topics that interested me. With
this self-study and discussion feedback loop he patiently both taught me what constitutes
good research and lead me to develop an understanding which stones should be turned
towards it and which to leave unturned so as not to get stuck under them. In short, I am
very grateful for the extraordinarily pleasant and fruitful experience of his supervision.

Furthermore, I want to thank Fabrizio Riguzzi and Pedro Cabalar for the many insightful
comments that helped me improve this thesis.

My experience as a PhD student was further delighted by a vast number of people:

• Alexandra Pavlova, for lighting up my days no matter how cloudy, with inspiring
conversations, stupid jokes, and an open ear for even the least interesting of my
stories.

• André Schidler, for his company during breaks and the invitation into the world
of scientific programming challenges. His incredible dedication and insightful
discussions paired with his chill personality made me realize how much fun playing
with daggers can be.

• Markus Hecher, for making work meetings feel like a hangout among friends that
just casually lead to cool results.

• Anna Rapberger, for teaching me Tarock, accepting me even though I keep on
saying “laufen”, and the countless hours spent during breaks.

• Sanja Lukumbuzya, for the deep conversations over lunch, the joy she radiates,
when she’s in the room, and the countless hours spent during breaks.

• Kees van Berkel, for amazing conversations, where nothing is serious but also for
serious conversations with advice that is amazing.

• Thekla Hamm, for letting us move her stuff to Germany.

vii

• Peter Skocovsky, for being an even greater friend than coworker.

• David Cerna, for inviting me to the first and most cited paper of my PhD.

• My short-term colleagues in Belgium, for welcoming me with open arms.

• Kilian Rückschloßand Felix Weitkämper, for the productive collaboration that felt
more like friendship.

• Anna Prianichnikova, for caring not only for me but the whole LogiCS DK, as well
as hopefully soon to be repeated conversations over lunch.

• All the other members of the LogiCS DK that these acknowledgments are way to
short to mention in the manner they deserve.

• My friends in Germany, with whom a few days of moving are more fun than weeks
of vacation anywhere else. I have more pleasant memories with them than there
are words in this thesis.

• My family, who are like family to me.

• Rafael Kiesel, without whom I would have never managed to finish this thesis.

Abstract

Stream reasoning allows us to draw conclusions in a temporal domain with data that can
change at different time points. By using a stream reasoning framework with syntax and
semantics based on that of Answer Set Programming (ASP), one obtains an intuitive
and declarative formalism.

However, while there are vast possibilities to perform quantitative reasoning over static
data, the same does not hold in the streaming context. Additionally, (i) there are many
different forms quantitative reasoning that (ii) are not trivially integrated into to the
temporal setting.We therefore investigate the combination of streaming and quantitative
extensions of ASP.

First, we introduce two highly general quantitative extensions of ASP by defining an
algebraic semantics for quantitative aspects that is based on semirings. These extensions
add on the one hand quantitative reasoning capabilities over the set of models and on
the other hand succinct specifications of quantitative constraints within the program.
For both, we analyze their relation to previous formalisms with similar features mostly
showing that ours are a conservative extension. Finally, we combine the quantitative
extensions with a temporal framework called LARS to obtain a general framework for
quantitative stream reasoning.

Apart from their definition, we study the extensions and the general framework in terms
of their theoretical properties, including the complexity of typical reasoning tasks, safety
of fragments, and expressivity.

Second, we notice that reasoning in both extensions involves solving weighted model
counting problems over semirings. Interestingly, the complexity of the problem depends
on the semiring. However, this dependence has not been characterized. We provide a
characterization using a family of novel complexity classes and relate them to well-known
classical complexity classes.

Last but not least, we consider how reasoning in practice. For this, we only consider a
limited fragment, omitting quantitative constraints and temporal aspects but focusing on
general quantitative reasoning over the set of models. By a mixture of known results from
the literature and novel findings we provide an implementation that at least keeps up with
the state of the art in probabilistic reasoning and even provides improved performance
on cyclic instances.

ix

Zeitliche und Quantitative
Erweiterungen der Answer Set

Programmierung

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

MSc. Rafael Kiesel
Matrikelnummer 11840527

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: O.Univ.Prof. Dipl.-Ing. Dr.techn. Thomas Eiter
Zweitbetreuung: Univ.Prof. Dr. Ezio Bartocci

Diese Dissertation haben begutachtet:

Fabrizio Riguzzi Pedro Cabalar

Wien, 1. September 2023
Rafael Kiesel

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Kurzfassung

Stream Reasoning ermöglicht es uns, Schlussfolgerungen in einem zeitlichen Bereich
mit Daten zu ziehen, die sich zu verschiedenen Zeitpunkten ändern können. Durch
die Verwendung eines Stream-Reasoning-Frameworks mit Answer Set Programmierung
(ASP)-basierter Syntax und Semantik, erhält man einen intuitiven und deklarativen
Formalismus.

Obwohl es im statischen Fall weitreichende Möglichkeiten gibt quantitative Schlussfolge-
rungen zu ziehen ist dies im Zeitlichen nicht der Fall. Darüber hinaus gibt es (i) viele
verschiedene Formen quantitativer Schlussfolgerungen, die (ii) nicht trivial in den zeitli-
chen Kontext integriert werden kn̈nen, da das zum komplexen Zusammenspiel zwischen
zeitlichen und quantitativen Schlussfolgerungen kommen kann. Wir untersuchen daher
die Kombination zeitlicher und quantitativer Erweiterungen ASPs.

Zunächst führen wir zwei sehr allgemeine quantitative Erweiterungen von ASP ein, indem
wir eine algebraische Semantik für die quantitativen Aspekte definieren, die auf Halbrin-
gen basiert. Diese Erweiterungen fügen einerseits quantitative Aggregationsfähigkeiten
über die Menge der Modelle und andererseits präzise Spezifikationsmöglichkeiten für
quantitativen Bedingungen innerhalb des Programms hinzu. Für Beide analysieren wir
ihre Beziehung zu früheren Formalismen mit ähnlichen Möglichkeiten und zeigen, dass
Unsere eine konservative Erweiterung ist. Schließlich kombinieren wir die quantitativen
Erweiterungen mit einem zeitlichen Ansatz namens LARS, um allgemeines quantitatives
Stream Reasoning zu ermöglichen.

Abgesehen von ihrer Definition untersuchen wir die Erweiterungen und den allgemeinen
Ansatz im Hinblick auf ihre theoretischen Eigenschaften, einschließlich der Komplexität
typischer Schlussfolgerungsaufgaben, der Variablensicherheit von Fragmenten und der
Ausdrucksstärke.

Zweitens stellen wir fest, dass beide Erweiterungen das Lösen gewichteter Modellzäh-
lungsprobleme über Halbringen beinhalten. Interessanterweise hängt die Komplexität
des Problems vom jeweiligen Halbring ab. Diese Abhängigkeit ist jedoch noch nicht
charakterisiert worden. Wir liefern eine Charakterisierung anhand einer Familie neuer
Komplexitätsklassen und setzen diese in Verbindung zu bekannten klassischen Komplexi-
tätsklassen.

xiii

Zu guter Letzt betrachten wir wie man unseren Ansatz in der Praxis anwenden kann.
Dabei betrachten wir nur einen begrenztes Fragment, indem wir quantitative Bedingungen
und zeitliche Aspekte auslassen und uns auf die Aggregation von Informationen über die
Menge der Modelle konzentrieren. Durch eine Mischung aus bekannten Ergebnissen aus
der Literatur und neuen Erkenntnissen liefern wir eine Implementierung, die mindestens
mit dem Stand der Technik im probabilistischen Schließen mithält und sogar eine bessere
Leistung bei zyklischen Instanzen bietet.

Contents

Abstract ix

Kurzfassung xiii

Contents xv

1 Introduction 1
1.1 Declarative Programming with Answer Set Programming 2

1.1.1 Extensions of ASP . 2
1.1.2 State of the Art . 4

1.2 Problem Statement . 6
1.2.1 Approach . 8
1.2.2 Research Questions . 9

1.3 Contributions and Thesis Structure . 11

2 General Quantitative Stream Reasoning 19
2.1 Preliminaries . 19
2.2 Model Level Quantitative Reasoning 27

2.2.1 Algebraic Measures . 27
2.2.2 Relation to Similar Formalisms 29

2.3 Truth Level Quantitative Reasoning 38
2.3.1 Preliminaries . 39
2.3.2 ASP(AC): ASP with Algebraic Constraints 40
2.3.3 Language Aspects . 47
2.3.4 Relation to Similar Formalisms 51
2.3.5 Complexity . 58
2.3.6 Summary & Open Issues . 64

2.4 Combining Stream Reasoning and Quantitative Reasoning 64
2.4.1 LARS . 65
2.4.2 Algebraic LARS . 74
2.4.3 Relation to Weighted MSO and Automata 80
2.4.4 Computation and Complexity 83
2.4.5 Conclusion . 88

xv

3 Complexity of Counting over Semirings 91
3.1 Introduction . 91
3.2 Preliminaries . 93
3.3 Semiring Paradigm . 95
3.4 Semiring Complexity Classes and a Complete Problem 98

3.4.1 Weighted Quantified Boolean Formulas and SAT(R) 99
3.4.2 Semiring Turing Machines and NP(R) 101

3.5 Completeness Results for Semiring Frameworks 109
3.5.1 Sum-Of-Products Problems . 109
3.5.2 Algebraic Constraints . 111
3.5.3 Semiring-based Constraint Satisfaction Problems 112
3.5.4 Algebraic Model Counting . 112
3.5.5 Algebraic Measures . 113
3.5.6 Datalog Semiring Provenance 113
3.5.7 Semiring-induced Propositional Logic 116
3.5.8 Other Frameworks . 117

3.6 Relation to Well-Known Complexity Classes 117
3.6.1 Encoding Semirings . 118
3.6.2 Results for Specific Semirings 120
3.6.3 Results for Classes of Semirings 121

3.7 Related Works . 136
3.8 Discussion . 139
3.9 Conclusion . 141

4 Efficient Algebraic Answer Set Counting 145
4.1 Preliminaries . 148

4.1.1 Logic Programming . 148
4.2 Algebraic Answer Set Counting . 151
4.3 Applications . 155

4.3.1 #P-hard Problems . 156
4.3.2 OptP-hard Problems . 160
4.3.3 Harder Problems . 161

4.4 Solving AASC Problems . 162
4.4.1 Overall Workflow . 162
4.4.2 Knowledge Compilation . 163
4.4.3 Different Approaches to the Knowledge Compilation Step . . . 168

4.5 Clark’s Completion . 170
4.5.1 Primal Tree Decomposition Guidance 172
4.5.2 Incidence Tree Decomposition Guidance 173

4.6 Cycle Breaking . 176
4.6.1 Necessity of Cycle Breaking . 177
4.6.2 The MJ(.) Cycle Breaking [MJ10] 178
4.6.3 The JN(.) Cycle Breaking [JN11] 181

4.6.4 TP -Unfolding . 184
4.7 Implementation . 193

4.7.1 Input Specification . 193
4.7.2 Grounding & Simplification . 195
4.7.3 Cycle Breaking . 196
4.7.4 Clark’s Completion . 197
4.7.5 Knowledge Compilation . 198
4.7.6 Evaluation . 199

4.8 Experimental Evaluation . 200
4.8.1 Questions & Hypotheses . 200
4.8.2 Setup . 201
4.8.3 Results & Discussion . 204

4.9 Discussion . 215
4.9.1 Summary & Findings . 215
4.9.2 Outlook . 217

5 Conclusion 219
5.1 Conclusion . 219
5.2 Open Issues . 221

A Full Proofs: General Quantitative Stream Reasoning 223
A.1 Encoding Provenance of Non-ground Positive Datalog Programs

�→ Theorem 26 . 223
A.2 Domain Independence and Safety

�→ Theorem 29 and 31 . 227
A.3 Strong Equivalence Using Finite Programs

�→ Theorem 33 . 229
A.4 Complexity of Reasoning with AC-Programs

�→ Theorem 37 . 231
A.5 Equivalence of the Expressiveness of LARS Measures and Weighted Au-

tomata
�→ Theorems 64 and 65 . 232

A.6 Computational Complexity of LARS Measures Over Propositional Vari-
ables
�→ Lemma 67 and Theorem 68 . 238

B Full Proofs: Complexity of Counting over Semirings 243
B.1 Prefix Normal Form

�→ Lemma 81 . 243
B.2 NP(R)-completeness and Karp reducibility 244

B.2.1 NP(R)-completeness of SAT(R)
�→ Theorem 88 . 244

B.2.2 Complexity of SAT(R), SumProd(R), AMC, Algebraic Mea-
sure Evaluation, SCSP, ΣFO-Eval(R), mrg(F), Datalog Semiring
Provenance
�→ Theorems 90, 93 to 96 and 100 249

B.3 Relation to classical complexity classes 266
B.3.1 FPSpace(poly)-membership of SAT(R) for efficiently encoded

semirings
�→ Proposition 103 . 266

B.3.2 NP, #P, GapP, OptP-completeness of SAT(B), SAT(N), SAT(Z),
SAT(Rmax,+)
�→ Theorem 104 . 266

B.3.3 Results for classes of semirings 268
B.3.4 Derived results

�→ Theorem 123 . 279

C Full Proofs: Efficient Algebraic Answer Set Counting 281
C.1 Proofs Regarding Clark’s Completion

�→ Theorem 149 . 281
C.2 Proofs Regarding Cycle Breaking

�→ Lemmas 151, 157, 159, Theorems 153, 155, 154, 162 282

D Implementation Details 291
D.1 Knowledge Compilation Settings . 291
D.2 Dtree and Vtree Generation . 293

List of Figures 295

List of Tables 297

List of Algorithms 299

Bibliography 301

CHAPTER 1
Introduction

We as humans face and routinely solve problems that involve reasoning in a multitude of
domains. Consider for example the following question:

If I leave now and take a given series of metro connections, how likely is it that I will
arrive at the store before it closes?

This question concerns a temporal domain and involves quantitative reasoning both in the
form of handling the uncertainty that arises from possibly delayed metros as well as the
numeric calculations necessary to calculate the time necessary for the trip in dependence
on estimated metro departure times.

We can quickly come up with an approximate answer based on experience, intuitions, and
rules of thumb and this suffices for the typical questions of minor importance that we are
faced with in everyday life. The same cannot be said for many industrial problems - they
can be very hard to solve or approximate even given years of experience but mistakes
can have detrimental effects. Thus, it is desirable to be able to solve such problems in an
automated manner with computers.

Naturally, letting computers solve any kind of problem in any combination of domains
is unrealistic. We focus instead on the temporal and quantitative domain, as well as
their combination. In order to bridge the gap between how humans think and how
computers work, we use declarative programming in the form of Answer Set Programming
(ASP) [EIK09; Lif08] as the basis of our investigations and consider how it can be
extended to provide temporal and quantitative reasoning capabilities.

1

1. Introduction

1.1 Declarative Programming with Answer Set
Programming

In order to solve problems using declarative programming, contrary to solving them
with imperative programming, one does not need to specify explicitly which steps are
performed in order to obtain a solution. Instead one states, using a logical theory, which
axioms a solution to a given problem has to fulfill.

A prominent declarative programming method is Answer Set Programming (ASP) [EIK09;
Lif08], where the logical theory consists of rules of the form

r = a ← b1, . . . , bn, not c1, . . . , not cm.

Such a rule can be intuitively read as “If b1 to bn are known to be true and c1 to cm are
not known to be true, then we know that a is true”. Observe that instead of requiring c1
to cm to be “known to be false” we only required that we do not know them to be true.
This is because ASP uses a Closed World Assumption (CWA) meaning that propositions
which are not known to be true are assumed to be false. The negation not c is interpreted
as failure to derive c. Therefore, the models, so called answer sets, of programs are such
that if there is no reason to believe that something is true, then it will not be asserted
by the answer set.

The fact that ASP uses a CWA makes it similar to intuitive human reasoning which may
derive information like “Edward is not far- or nearsighted” from the fact that “Edward
does not wear glasses” and retract it when it becomes clear that “Edward forgot his
glasses at home”. This could be captured in the program

impaired_sight(Edward) ← glasses(Edward)
glasses(Edward) ← wears_glasses(Edward)
glasses(Edward) ← forgot_glasses(Edward)

It may be due to this similarity that declarative programming with answer set semantics
has been used in many industrial applications [EGL16; Fal+18].

1.1.1 Extensions of ASP
While propositional ASP is already NP-hard and therefore powerful enough to express
many challenging problems, their specification can be somewhat tedious and complicated.
Further, some relevant problems have higher complexity than those expressible in ASP
or require reasoning over dynamic data, i.e. data that changes with time. The practical
usage of ASP gave rise to a need for extensions of the specification language making
programs simpler, more expressive and more concise [AF18; Del+03]. Thus, ASP was
extended in multiple dimensions.

Figure 1.1 visualizes some of the many ways ASP was extended. The directions we
consider and refer to in the figure are the following:

2

1.1. Declarative Programming with Answer Set Programming

ASP

LPMLN

LARS

Weight Constraints

1. Time

2. Q. Reasoning over Models

3. Q. Constraints

Figure 1.1: (Some of the) directions that ASP was extended along.

1. Time Domain: In [Bec14; BDE18] ASP-semantics were combined with a temporal
context resulting in the Logic-based framework for Analytic Reasoning over Streams
(LARS). Here, one does not consider a static set of fact but considers interpretations
that assign each considered timepoint a possibly different set of facts. Furthermore,
operators to capture temporal aspects were added. For example the operator ✸

corresponds to existential quantification over the time points. Apart from LARS,
there are also many other prominent temporal extensions of ASP, such as Temporal
Equilibrium Logic (TEL) [Cab+18; CV07; Agu+13; Agu+17], Metric Equilib-
rium Logic (MEL) [Cab+20a; Cab+22], Temporal Answer Sets (TAS) [GMD13],
Temporal Datalog [Ron+18], and DatalogMTL [Wal+19; Wal+21].

2. Quantitative Reasoning over Models: Given an answer set program, we may not
only be interested in its answer sets but also some quantities associated with them.
Extensions of ASP in this direction led, among others, to semantics that enable:

2.1 Probabilities of Models [BGR09; NM14; LY17; NM15; DKT07];
2.2 Quantitative Queries [FFP10];
2.3 Preferences over Models [LY17; BLR97; Leo+06];
2.4 Weighted Model Counting [KVD11].

3. Quantitative Constraints: Much research has gone into simplifying the specification
language of ASP and improving its succinctness. A common strategy is to add
more elaborate constraints over some quantity as basic language elements. Among
others, the following constructs were introduced:

3.1 Aggregates [Fer11; Del+03; EPS04; Gre99; Leo+06];
3.2 Weight Constraints [FL05; SNS02; NSS99];
3.3 Arithmetic Operations [Leo+06; Lie14];
3.4 Guessing in Rule-Heads [NSS99; Lie14].

This significantly enhanced the expressive power of programs and facilitated their specifi-
cation. Naturally, we would like to use combinations of these enhancements. For example,

3

1. Introduction

to answer the question of the timely arrival given a series of metro connections, we need
to employ probabilistic reasoning (2.1) over temporal data (1.), while adhering to a set
of complex constraints over quantities (3.2).

1.1.2 State of the Art
In short, our goal is to enable reasoning that is (1.) temporal and quantitative (2. and
3.) at the same time in a common unified framework with ASP semantics. To the best
of our knowledge such a framework does not exist yet. We instead discuss here existing
work that is either (a) a highly general extension along direction 2. or 3. that captures
many of the features in that direction or (b) a framework that combines quantitative
and temporal features.

The state of the art regarding extensions that focus on extending a particular aspect
are discussed in the sections they are relevant to (see Section 2.4, Section 2.2.2, and
Section 2.3.4 for extension in direction 1., 2., and 3., respectively).

Highly General Quantitative Extensions

ASP with CLP [EPS04] (direction 3.) Elkabani et al. connected ASP with support
for generic constraint domains and instantiate this framework with constraints involving
aggregates. The framework is mostly practically oriented and includes an implementation
with commonly used aggregates which can arbitrarily extended to further aggregates.
While the level of generality is quite high, the two variants of the answer set semantics
which were introduced are not entirely satisfactory. The first variant ignores constraints
completely when checking whether asserted facts are supported by some derivation,
the second requires the translation of the program into one without constraints and
aggregates, which may end up being exponential in the size of the original program.

Nested Expressions [Fer11] (direction 3.) Ferraris’ approach of adding the possi-
bility to have nested constraints on aggregates is quite general, not only with respect to
the aggregates that can be used but also with respect to expressing other quantitative
extensions in it. There is one restriction on aggregates, namely that they have to be
over the real numbers. Three other quantitative extensions have been shown to be partly
subsumed by the approach.

Hybrid ASP [Cab+20b; Cab+20c] (direction 3.) Cabalar et al. defined a extension
of HT Logic that includes highly general constraints and multi-valued interpretations
and allows for handling numerical values in ASP. The approach integrates conditionals
and aggregates. The definition of constraints is general enough to fit many specific
features that were introduced in previous extensions, such as aggregates, weight or choice
constraints. However, it requires extra definitions on the meta level (contrary to only
definitions in a predefined language used to specify answer set programs) to enable
the usage of such constraints in the specification of programs. While these necessary

4

1.1. Declarative Programming with Answer Set Programming

definitions are given for constraints over the real numbers they are left open for quantities
that are not reals.

LPMLN [LY17] (direction 2.) Lee and Yang’s extension of logic programming with
probabilistic reasoning has been shown to subsume two other model level reasoning
extensions, namely ASP with weak constraints [BLR97] and P-log [BGR09]. This shows
that with LPMLN one is not only capable of drawing probabilistic inferences in a general
way, but also to formulate optimization problems over answer sets as with ASP with
weak constraints. It however completely neglects quantitative queries. Furthermore, it is
only possible to specify optimization problems where the objective function is mapping
to the reals.

Algebraic Prolog [KVD11] (direction 2.) Kimmig et al.’s extension of Prolog
defines an algebraic semantics that makes use of semirings. Here, by choosing a suitable
semiring we are able to perform probabilistic queries, preferential reasoning, parameter
learning and much more. Thus, this extension offers all the capabilities along direction
2. that we desire to have. However, it is defined not for ASP but Prolog. While the
semantics of the two declarative reasoning frameworks are arguably similar there are still
notable differences.

Semiring-based Constraint Satisfaction Problems (SCSPs) [BMR97] (direction
2.) Similarly to algebraic Prolog, SCSPs have highly general semantics that capture
many other previous quantitative extensions of CSPs. Again, this is enabled by using
semirings. However, the semantics is for CSPs and not ASP. Additionally, only restricted
semirings are allowed such that for example probabilistic inference is not possible with
SCSPs. Semiring-based Constraint Logic Programming [BMR01] is related but uses
multi-valued interpretations to assign variables a numerical value rather than enabling
quantitative reasoning over the set of models.

Combining Frameworks

telingo [Cab+18] Telingo is a solver from the Potassco family [Geb+11], which solves
a fragment of TEL. It combines temporal reasoning (direction 1.), quantitative reasoning
over the set of models (direction 2.), and quantitative constraints (direction 3.), however
it does not yet incorporate the temporal aspects fully in the quantitative constraints.
Additionally, its capabilities in direction 2. are limited to preferential reasoning and
model enumeration, rather than supporting probabilistic reasoning and other tasks.

General Annotated Logic Programs (GALP) [KS92] GALPs have multi-valued
interpretations and allow for the specification of values using arbitrary monotone functions
and for limited temporal reasoning. But, while they are also quantitative and temporal
they perform a different kind of quantitative reasoning than that of both direction 2. and

5

1. Introduction

3. Furthermore, they are less expressive when it comes to temporal reasoning compared
to other temporal extensions of ASP such as LARS or TEL.

Semantic Stream Reasoning (SSR) [PE20; PET21] SSR combines the temporal
domain and quantitative reasoning over the set of models, specifically to enable parameter
learning and prediction tasks over temporal streams. While the semantics are not explicitly
discussed it also allows for quantitative constraints in the program. This work focuses on
solving a specific type of problem by combining capabilities of the directions 1., 2., and
3. rather than introducing a general framework for solving different kinds of reasoning
tasks that need features from all the different directions.

Probabilistic ASP (PrASP) [NM14] PrASP allows for probabilistic reasoning
(direction 2.) in the context of web stream reasoning (direction 1.). However, its
semantics do not consider the handling of quantitative constraints in the temporal
context. Additionally, the focus here is only on probabilistic inference rather than general
quantitative reasoning over the set of models.

Summary

There are other extensions with similarly strong capabilities, however, the main strengths
and shortcomings are similar to the ones of the extensions presented above. Overall, we
see that there are some quite general extensions, which are able to subsume many others
in them. Even further, there are even some frameworks that support reasoning that
combines the capabilities of the three direction. Nevertheless, the combined capabilities
are all limited in some way or the other. The proper strategy of completely incorporating
the temporal domain into quantitative reasoning over the set of models and quantitative
reasoning is not yet clear.

1.2 Problem Statement
We are interested in a general framework which combines 1., 2., and 3., that is, we want
to

Find and analyze a general framework that allows for succinct specifications
and reasoning over answer sets in a streaming context.

When finding such a general framework we are faced with the following two main
challenges. On the one hand, we have seen that Figure 1.1 oversimplifies the different
directions: there are many extensions along 2. and 3. that actually tackle different
sub-problems. They still go in the same general direction but the specific purposes do
not coincide exactly. We adapt the approximate visualization of Figure 1.1 to reflect this
in Figure 1.2.

6

1.2. Problem Statement

ASP
3.1
. . .

3.n

2.m. . .2.1

Figure 1.2: Multiple extensions 2.i and 3.j along the directions 2. and 3.

This entails that we need to find a reasonable way to capture all the capabilities introduced
along 2. and 3. Reasonable here meaning a strategy different from simply taking an
unstructured “union” of the extensions 2.1 to 2.m and 3.1 to 3.n, respectively, and
different from a restriction to a significantly less powerful subset of features by choosing
2.i, 3.j and extending them to the stream reasoning context.

On the other hand, we need to incorporate the temporal domain. For this purpose
one can not reuse previous definitions in a straight forward way. Consider for example
constraints on aggregates in a temporal context. Here, one needs to be able to specify
whether the aggregation should consider only the values at the current time point or at
any time point. Further, one needs to be able to specify how duplicate occurrences of a
value at different time points should be handled. Similar problems occur also with other
capabilities along the directions 2. and 3.

In summary, we need to find frameworks ?2. and ?3. that can be combined with a suitable
temporal extension of ASP, such as LARS, resulting in ?1.+2.+3., as is visualized in
Figure 1.3.

ASP

?2.

LARS

?3.

?1.+2.+3.

3.1
. . .

3.n

2.m. . .2.1

Figure 1.3: “Questionmarks” that need to be filled in.

7

1. Introduction

Given that we find appropriate answers for the questionmarks, we further need to analyze
the resulting framework with respect to different aspects. This is necessary in order to
make the framework practically useful. An implementation and its application to real
world use cases require an analysis of efficiently solvable and safe fragments of the general
framework.

Detailed research questions that need be answered in the process of finding and analyzing
such a framework are given after a discussion of the methodology we use.

1.2.1 Approach
Both the extensions along 2. and the ones along 3. are quantitative, i.e. involve some
form of calculations.

A semiring R is an algebraic structure of the form R = (R, ⊕, ⊗, e⊕, e⊗) where one
has some form of addition ⊕ and multiplication ⊗ with neutral elements e⊕ and e⊗
respectively. Using semirings one can capture various modes of computation rang-
ing from the Boolean semiring B = ({⊥, ⊤}, ∨, ∧, ⊥, ⊤) over the min-plus semiring
Rmin,+ = ([0, ∞], min, +, ∞, 0) to the well known semiring over the real numbers
R = (R, +, ·, 0, 1). In their seminal paper [DG07], Droste and Gastin found a way
to connect calculations in semirings and logical formulas, introducing weighted logics. In
weighted logics, formulas over some semiring R can contain elements of the semiring
as subformulas in addition to their normal syntax. Instead of Boolean semantics, the
semantics of weighted formulas is their interpretation as algebraic expressions over a
semiring. This is achieved by interpreting disjunctive connectives as addition ⊕ and
conjunctive connectives as multiplication ⊗. In line with this, atomic formulas which are
false with respect to a given interpretation are interpreted as e⊕ corresponding to the
empty disjunction or sum and true atomic formulas are interpreted as e⊗. Negation is
similar to the complement of the truth value in the sense that the negation of e⊕ is e⊗
and negation of any other value is e⊕. Consider for example the weighted formula

α = 15 ∗ Circus + 20 ∗ Restaurant

over the semiring R encoding the amount of money spent on an evening depending on
which places are visited. With respect to an interpretation satisfying Restaurant but not
Circus the formula has semantics

15 · 0 + 20 · 1 = 20.

If we, however, interpret α as a formula over the min-plus semiring Rmin,+ encoding
that the cheapest prize possible when one wants to plan an evening, depending on which
activities are possible, we obtain under the same interpretation

min(15 + ∞, 20 + 0) = 20.

Semirings have already previously been successfully applied in situations where one
may need to perform calculations using different operations and objects but of similar

8

1.2. Problem Statement

structure. Examples range from parsing [Goo99] to weighted model counting [KVD11]
and weighted abstract argumentation [BRS18]. In another work, Green, Karvounarakis,
and Tannen [GKT07] used them to define provenance semantics for database queries.
Here, Green et al. showed that different kinds of quantitative settings can all be expressed
using relational algebra queries with provenance semirings. Namely, they showed that bag
semantics, probabilistic databases and why-provenance as well as the classic relational
algebra queries can all be defined using the same semantics over different semirings.

We aim to use the same idea to capture directions 2. and 3. For direction 2., the
quantitative reasoning over models, it is sufficient to use the classical weighted semantics
of formulas over semirings. When it comes to 3., the quantitative constraints, it is
necessary to define answer set semantics that are in line with the closed world assumption
of ASP also for weighted formulas. This is because for quantitative constraints the
weighted formulas are part of the program and influence which atomic formulas are
asserted in answer sets.

There are many common approaches for the definition of answer set semantics. In general,
these approaches have to ensure that the CWA used in ASP is captured correctly, meaning
that one should only satisfy atomic formulas in an answer set if one is forced to do so by
the program. The first approach we consider uses the notion of reducts [Lif08]. There
are different kinds of reduct-based approaches; we focus on the Gelfond-Lifschitz reduct.
Here one defines that for programs without negation the (unique) answer set Cl(Π) is
the interpretation that satisfies the program Π and is the subset minimal one among the
interpretations doing so. An interpretation I that satisfies a program Π with negation is
then an answer set of Π if it is the answer set of Cl(ΠI). Here ΠI is the reduct of Π with
respect to I where all negated formulas are replaced by their truth value with respect to
I. This results in a program without negation, where the operation Cl is again defined.

We also consider the answer set semantics defined using Here-and-There (HT) Logic
[Pea06]. In this approach, which can be seen as a fragment of intuitionistic logic or the
multi-valued logic N5 [PV04], one considers two worlds H and T having one interpretation
each, viz. - here IH and there IT , respectively, where IH is a subset of IT . The truth
value of a formula with respect to (IH , IT) is then defined in such a way that negated
formulas are assigned the truth value that they have with respect to T . This leads to a
semantics that is equivalent to the reduct-based semantics on classic answer set programs.

HT Logic has the benefit that its definition is rather generic and can thus be generalized
to logics that are different from propositional logic easily. In fact, multiple extensions of
ASP are based on HT Logic [Cab+22; Cab+18; ES22; FL10; Lif21; LTT99]. Thus, it is a
more promising starting point for the definition of an answer set semantics of weighted
formulas.

1.2.2 Research Questions
Weighted logic combines Boolean logic and algebraic expressions leading to the possibility
to specify calculations dependent on the satisfaction of logical formulas with ease. In

9

1. Introduction

Weighted HT Logic, this dependency can be adapted to follow the intuition of answer set
semantics. On the one hand, Weighted Logic allows many different modes of calculation
due to the variability of the underlying semiring. On the other hand, its syntax and
semantics is homogeneous for each of those modes. This makes Weighted (HT) Logic a
promising approach to formalize many quantitative extensions of ASP along both 2. and
3. using a common homogeneous language which is still simple enough both for practical
applications (i.e. actual usage) and theoretical analysis (i.e. the study of properties and
algorithms).

Furthermore, Weighted Logic is rather generic in the sense that for many Boolean logics
it is possible to define a weighted version, by using the strategy described in Section 1.2.1
(i.e. conjunction is multiplication, disjunction is addition). This is beneficial when it
comes to the combination with the temporal domain.

We aim at a solution of the problem stated in Section 1.2 using Weighted (HT) Logic.
Thus, we consider the following research questions, visualized in Figure 1.4:

(i) Generalization & Faithfulness

(Q1) Can we use Weighted Logic for General Quantitative Reasoning over Models?
(Q2) Can we use Weighted HT Logic for General Quantitative Constraints?
(Q3) Can we capture temporal aspects using Weighted (HT) Logic?

The questions under (i) ask whether we can use Weighted (HT) Logic to successfully fill
in the questionmarks in Figure 1.3. Q1 asks whether ASP in combination with Weighted
Logic can take the place of ?2.. Q2 asks whether ASP in combination with Weighted HT
Logic can take the place of ?3.. Q3 asks whether lifting the combination of ASP and
Weighted (HT) Logic to a combination of a temporal logic such as LARS or TEL and
Weighted (HT) Logic is sufficient to capture the additional temporal aspects that are
relevant in the streaming domain.

Successfully means two things here. The first is Generalization, i.e., the capabilities of
previous extensions are subsumed (to a reasonable degree). The second is Faithfulness,
i.e., the semantics is a conservative extension of the semantics of previous works (to a
reasonable degree), such that features of previous extensions have the meaning that is
expected of them.

If questions Q1 to Q3 are answered positively, we have completed the finding part of our
problem in Section 1.2. What is left is a thorough analysis.

(ii) Theoretical Analysis

(Q4) What does the complexity of reasoning depend on?
(Q5) Which properties of programs carry over and which new ones can be found?

10

1.3. Contributions and Thesis Structure

Weighted (HT) Logic for Answer Stream Programming

Generalization & Faithfulness
Which capabilities from previous extensions can and
cannot be expressed faithfully using Weighted (HT)

Logic?
Theoretical Analysis

Complexity: Properties:
Dependence on

semiring/language
fragment

Lift old and find new
properties that are useful

Empirical Analysis
Implementation: Use Cases:

Extend a solver to our
framework

Try the solver on real
world applications

Figure 1.4: The research questions and their division into subquestions.

(iii) Empirical Analysis

(Q6) To what extent can we efficiently implement our framework?
(Q7) How can our framework be employed in real world applications?

1.3 Contributions and Thesis Structure
The contributions in this thesis and the structure of it closely follow the research
questions posed in Section 1.2.2. Therefore, we discuss them together in this subsection.
Furthermore, we indicate which parts of the contents of this thesis are based on which
publications.

Generalization & Faithfulness. The most important aspect of using Weighted (HT)
Logic for quantitative capabilities is the question of generalization and faithfulness. If we
were unable to express the desired capabilities faithfully, a further consideration would be
pointless and we would need to start from scratch. Therefore, this topic is discussed first.

These aspects are considered in Chapter 2 of this thesis, which is on “General Quantitative
Stream Reasoning”. The contents of this chapter are mostly based on previously published
conference papers. That is, Section 2.2 on “Model Level Quantitative Reasoning” is based
on [EK20b], Section 2.3 on “Truth Level Quantitative Reasoning” is based on [EK20a]
and only Section 2.4 on “Combining Stream Reasoning and Quantitative Reasoning” is

11

1. Introduction

mostly novel and but draws inspiration from [EK20b] for the definition of weighted LARS
formulas and the complexity and expressivity results.

In Chapter 2, we first discuss preliminaries such as ASP, Semirings and Weighted Logic.
Based on this, in Section 2.2, we introduce a general framework for quantitative model
level reasoning (direction 2.) called algebraic measures. Intuitively, algebraic measures
combine a logical specification of a background theory, in our case an answer set program,
that specifies which interpretations are models with a quantitative specification, in the
form of a weighted formula, which assigns each model a weight over a semiring. As
the following comparison with related formalisms shows, we can use these measures for
probabilistic reasoning, preferential reasoning, quantitative queries and weighted model
counting by employing an appropriate semiring. Namely, this is achieved by respectively
normalizing, optimizing, simply used to retrieving a quantity or summing up their value
over all answer sets of a program. Most importantly, we see that algebraic measures are
a suitable solution to capture extensions along direction 2., since they are both highly
general as well as uniform due to the parameterization of their definition by semirings.

Next, in Section 2.3, we introduce a general framework for quantitative constraints
(direction 3.) called algebraic constraints. Here, we switch from ground ASP to programs
with variables, since these are typical and often intertwined with the specification of
quantitative constraints or aggregates. Since we want to make use of Here-and-There
Logic, we introduce their semantics via the HT semantics of first-order formulas. Similarly
to algebraic measures, algebraic constraints are also based on Weighted Logic, however,
like our programs, they are not propositional but first-order and have HT semantics. The
resulting first-order Weighted Here-and-There formulas allow us to specify quantitative
computations with variables elegantly and in non-monotonic dependency on the truth
of atomic formulas. By allowing constraints of the form α ∼R k for a weighted formula
α, relation ∼, semiring R and semiring value k the extension to answer set programs
with algebraic constraints (ASP(AC)) can express quantitative constraints over different
domains and semirings with ease. Indeed, the definitions are followed by an analysis of
the expressivity of ASP(AC) compared to other extensions of ASP with quantitative
constraints. This analysis reveals that and how well-known constructs, such as aggregates,
weight constraints, different forms of conditionals and choice constraints, are subsumed
by algebraic constraints. Apart from the subsumption of previous construct we also find
that so called minimized constraints are a novel construct that can be expressed with
algebraic constraints.

A practical example confirming the benefit of ASP(AC) is its capability to model prove-
nance queries, which is demonstrated in Section 2.3.2. In order to allow for an informed
usage of ASP(AC), we consider some aspects of its language in Section 2.3.3 such as
safety and strong equivalence. Notably, safe programs are domain independent and thus
guarantee intuitive behavior that does not depend on the set of constants we assume to
exist. Last but not least, we provide an analysis of the computational complexity that
comes with algebraic constraints in Section 2.3.5. This analysis shows that when the
considered program is essentially propositional (i.e. ground), the complexity of disjunctive

12

1.3. Contributions and Thesis Structure

logic programs is retained and model checking (MC) and strong equivalence (SE) are
coNP-complete while answer set existence (SAT) is Σp

2-complete, provided the semirings
that are used satisfy a practically mild encoding condition. For safe non-ground programs,
MC is feasible in EXPTIME at most, while SAT and SE are undecidable in general. A
more in depth consideration however reveals that there are expressive decidable fragments.
The latter two subsections go beyond the scope of generalization and faithfulness and
instead are part of the theoretical analysis.
Sections 2.2 and 2.3 answer the questions (Q1) and (Q2) regarding generalization and
faithfulness positively. Accordingly, Section 2.4 combines algebraic measures and con-
straints with the temporal reasoning capabilities in the form of the LARS framework
resulting in Algebraic LARS. For this, we first recall the standard semantics for LARS
as well as its HT-semantics in Section 2.4.1. Notably, we define the HT-semantics by
introducing a temporal extension of the first-order sorted Here-and-There Logic that
we used for the definition of ASP(AC) and embedding LARS formulas into such Timed
first-order sorted Here-and-There formulas. This makes the lifting of algebraic constraints
to LARS, which follows in Section 2.4.2, straightforward. Here, we also give a final version
of the running example regarding metro connections, which highlights the strengths
of the combination of algebraic constraints, algebraic measures and LARS. Since the
complexity of Algebraic LARS is strictly higher than that of ASP(AC), which is already
undecidable in the non-ground case, we only consider the expressivity and complexity of
LARS measures over ground programs without algebraic constraints. For the expressivity,
we show equivalence to Weighted Automata and weighted Monadic Second-Order Logic
in Section 2.4.3. For the complexity in Section 2.4.4, we show FPSPACE-completeness
for the evaluation problem over a specific semiring and FPSPACE-membership under
restrictions on the semiring. Furthermore, we show a range of completeness results
for preferential reasoning with LARS measures. Finally, we conclude this section in
Section 2.4.5.
A visual overview of the results obtained in this thesis towards a general framework for
quantitative stream reasoning under answer set semantics is given in Figure 1.5.
We direct our attention to the follow up questions.

Theoretical Analysis. Given that we have established a faithful and general framework
for the combination of quantitative and temporal reasoning aspects, we are of course
interested in its properties in the next step. For ASP, the following properties are known
to be of interest from previous work.

• Safety, a property necessary for ASP with variables that ensures that programs do
not have unintended consequences but only those envisioned by the “programmer”.
Safety was considered, inter alia, in [Geb+15; Lif16; CPV09; Eit+13b; Cab11;
LLP08; Eit+08].

• Finite Groundability, a stronger restriction than safety that entails that there is
a finite domain that can be used to evaluate programs. Without this restriction

13

1. Introduction

ASP

Measures

LARS

LARS-Measures

ASP(AC)

telingo

Algebraic LARS

1.

2.

3.

Figure 1.5: Overall structure of the generalization and faithfulness results. Vertices
correspond to frameworks that have the capabilities added by each edge pointing to them.
Dashed edges indicate previous work of other authors that we know of, solid arrows
correspond to a contribution in our work (novel or improved extension in this direction).

practical reasoning problems are often undecidable. Even if they are decidable,
matters are complicated since one needs to draw conclusions about programs with
infinitely many rule. Finite groundability was considered, inter alia, in [LL09;
Eit+13a; BL10; Red17; AZZ17; Eit+16; Cal+08b].

• Program Equivalence, a property that guarantees that programs can be replaced
with one another without changing their consequences. It is used for example in the
simplification of answer set programs. Program equivalence was considered, inter
alia, in [NL15; LPV01; BDE16; CNR22; Lie22; Wan+21; FMW19; CD14; Fin11].

• Computational Complexity, i.e., a characterization of the theoretical hardness
of a computational problem, such as checking whether a program has an answer
set, finding out whether two programs are equivalent or in our context computing
the value of an algebraic measure. Knowing the computational complexity is useful,
since it provides a way of judging how hard it is to solve a problem and whether a
given algorithm is suitable for the solution of a problem. Furthermore, its analysis is
often based on problem reductions and, thus, can be used as a basis for algorithms
that reduce the problem to another for which an efficient algorithm is known or
an implementation exists. Computational complexity was considered, inter alia,
in [Eit+04; Dan+01; CM20; AL15; Blo+14; AF13; FPL11; Eit+07].

Especially the computational complexity that comes from working with semirings is
of interest for us. Therefore, we discuss the other properties in close vicinity of the
introduction of our extension(s) of ASP but dedicate a separate chapter to the complexity
of counting over semirings.

14

1.3. Contributions and Thesis Structure

Therefore, these aspects are considered partially in Chapter 2, which is on “General
Quantitative Stream Reasoning” and partially in Chapter 3, which is on “Complexity of
Counting over Semirings”. As discussed above, the content of Chapter 2 is mostly based
on previously published conference papers. That is, Section 2.2 is based on [EK20b],
Section 2.3 is based on [EK20a] and only Section 2.4 is novel although it draws inspiration
from [EK20b]. The contents of Chapter 3 are mostly based on [EK21] and the journal
article [EK23].

Safety conditions for ASP(AC) as well as the strong equivalence of ASP(AC) programs
are considered in Section 2.3.3. Furthermore, for finite groundability of ASP(AC) pro-
grams, we also provide an appropriate definition by combining the concept of domain
restrictedness from [NSS99] and argument restrictedness from [LL09], resulting in a class
of finitely ground programs, for which deciding membership is tractable. This can be
found in Section 2.3.5. There, we also discuss the computational complexity of different
reasoning tasks for ASP(AC) that are not related to counting over semirings.

For the computational complexity associated with counting over semirings, as it happens
when we evaluate algebraic measures, we do not restrict ourselves to the counting problems
we introduced but also consider a wide range of other problems [KVD11; KVD17; SI96;
GKT07; BMR97] from the literature that are also defined over semirings. Here, the
complexity is also unknown but of general interest to the scientific community, which is
why we proceed with an in depth complexity analysis as follows.

First, we go over the necessary preliminaries of propositional logic, semirings and their
properties, and classical complexity classes, which we use to characterize the hardness
of the counting problem over semirings in Section 3.2. After this, we provide a toolbox
for the complexity analysis of counting problems over semirings. For this, we generalize
the well-known complexity class NP to NP(R), which is an analogue of NP and #P
over a semiring R. We complement this by an NP(R)-complete problem that we
name SAT(R) defined as the evaluation problem of weighted existentially quantified
Boolean formulas. A final discussion of alternative definitions of NP(R) concludes the
introductory phase in Section 3.4. We immediately put the established toolbox to use in
Section 3.5 to show that a wide range of problems, including overall weight queries for
algebraic measures and the evaluation of the weighted formulas in algebraic constraints,
are NP(R)-complete. Interestingly, we also found one problem over semirings, namely
provenance queries [GKT07], that is NP(R)-hard but not complete in the general setting.
This provides the first complete characterization of the computational complexity of the
discussed problems. Since NP(R) is a new complexity class, it may give some insight
in the type of computations that the aforementioned problems require but does not
give much intuition for the actual algorithmic hardness. We therefore relate NP(R) to
well-known complexity classes from the literature in Section 3.6. An immediate problem
here is that semiring values need to be encoded in a finite alphabet and calculations with
them need to be performed in the alphabet representation. This is inconvenient, since
the complexity can be easily shown to depend on the encoding. We address this issue by
only considering efficiently encoded semirings. Our following analysis reveals that NP(R)

15

1. Introduction

is at least as powerful as NP or ModpP regardless of the semiring, for some semirings
we can even show that they require an exponential size output unless the polynomial
hierarchy collapses. Such a collapse is widely assumed to be unlikely. We can, however,
also give upper-bounds on the complexity showing that for many semirings access to
an NP-,ModpP- or #P-oracle suffices. Finally, we discuss related formalisms before
concluding and discussing future work in this direction.

Overall Chapter 3 provides a detailed account of the computational complexity of
counting problems over semirings, which is not only relevant for us but many other
semiring frameworks as well. Apart from this it also provides an approach that may
prove useful for exploiting semiring properties to design more efficient algorithms.

Empirical Analysis. In order to test the practical applicability of our approach, we
also perform an empirical evaluation. Naturally, this necessitates an implementation
of our approach. However, a complete implementation of the combination of algebraic
constraints, algebraic measures and the temporal aspect would be rather challenging, and
would go beyond the scope of this thesis. Since current implementations of ASP with
constraints and the possibility of covering temporal aspects at least partially are already
rather advanced [Cab+19], we focused on algebraic measures. While an implementation
in the probabilistic logic programming solver ProbLog [KVD11; Fie+15] exists, this
implementation does not cover general normal answer set programs.

These aspects are considered in Chapter 4, which is on “Efficient Algebraic Answer Set
Counting”. The content of Chapter 4 is mostly based on [EHK21] and the manuscript [EHK23].

Generally, in Chapter 4, we first discuss which aspects need to be taken into account in
an implementation. We then describe the implementation and finally provide an in depth
experimental evaluation, where we compare different configurations of our implementation
and other solvers that constitute the current state of the art in the area.

We first discuss the necessary preliminaries about algebraic measures, semirings, propo-
sitional logic and knowledge compilation in Section 4.1. Next, we provide additional
motivation for an implementation by discussing applications of algebraic measures in
Section 4.3. Then, we discuss the state of the art and derive the possible performance
guarantees that current implementations could give and practically give in Section 4.4.
This allows us to make an informed decision regarding the strategy that we want to use
in our implementation. This investigation reveals that the most promising approach is to
use state of the art knowledge compilers [Dar04; OD15] by first translating programs
into Conjunctive Normal Form (CNF) formulas. One parameter that can lead to good
knowledge compilation performance, apart from small problem size, is the treewidth of
the formula [Dar04]. We therefore consider a way to translate any normal answer set
program into a CNF, while limiting the increase of the treewidth and the size of the
CNF compared to the program. This is discussed in Sections 4.5 and 4.6. Concretely, it
requires handling cyclic dependencies in Section 4.6 and a treewidth-aware version of
Clark’s Completion [Fag94] in Section 4.5.

16

1.3. Contributions and Thesis Structure

Next we explain how we get from these theoretical advances to a practically usable
implementation in Section 4.7 that we call aspmc, before we thoroughly evaluate aspmc in
Section 4.8. Here, we first consider aspmc’s different settings to find the best performing
approach. Secondly, we compare aspmc’s performance using the optimized settings to
other implementations that can be seen to evaluate algebraic measures. Last but not
least, we discuss our findings in Section 4.9 and mention some possible opportunities for
extending aspmc.

Conclusion Finally, in Chapter 5, we revisit the findings of the previous chapters and
put them into perspective. That is, we briefly summarize their main results and compare
what we aimed to achieve in this work with what we managed to. We end by pointing
out some open issues that would be interesting to consider in the future.

Proofs Short proofs are given in full after the statement of the result, long and
complicated proofs are only sketched but given in full in Appendix A, Appendix B, and
Appendix C for Chapter 2, Chapter 3, and Chapter 4, respectively.

17

CHAPTER 2
General Quantitative Stream

Reasoning

The general goal of this chapter is to find a general framework capable of quantitative
reasoning over the set of models, succinct quantitative specifications of the set of models,
and reasoning over a temporal domain. Notably, this framework should have a semantics
that is in line with the semantics of ASP. Furthermore, we will show that the semantics
of this framework is faithful to the semantics of other extensions of ASP, and analyze its
properties.

For this purpose, we start out by introducing the basic preliminaries necessary for all
the following sections in Section 2.1. This is followed by a general extension of ASP
with reasoning capabilities over the set of models in Section 2.2 and a general extension
of ASP with succinct quantitative constraint specifications in Section 2.3. Finally, in
Section 2.4, we combine the previous two extensions and LARS into a temporal reasoning
framework to obtain Algebraic LARS, a framework that satisfies our initial goal. All the
last three sections include not only the definition of the extensions but also examples and
an analysis of their properties such as safety, expressivity, faithfulness and complexity.

2.1 Preliminaries
At the basis of most of our considerations is Answer Set Programming (ASP). Formally,
answer set programs are defined as follows.

Definition 1 (Rule, Answer Set Program). A normal answer set program Π over a set
P of predicates, V of variables and D of domain elements is a finite set of rules r of the
form

a ← b1, . . . , bm, not c1, . . . , not cn,

19

2. General Quantitative Stream Reasoning

where a and all bj and ck are atoms of the form p(t1, . . . , tl) with p ∈ P, ti ∈ V ∪ D,
and l = arity(p) the arity of the predicate. Given such a rule r, we call H(r) = a,
B+(r) = {b1, . . . , bn}, B−(r) = {c1, . . . , cn} and B(r) = B+(r) ∪ B−(r) the head,
negative body, positive body and body of r, respectively.

Intuitively, such a rule r states that for each substitution of the variables in r by elements
of D the head follows from the body.

There are other answer set programs besides normal ones; however, for now, we do not
need them. Instead, we introduce them when they become relevant. Nevertheless, we
refer to normal answer set programs as answer set programs or simply as programs.

We slightly abuse notation and express constraints by using

← b1, . . . , bm, not c1, . . . , not cn

for
⊥ ← b1, . . . , bm, not c1, . . . , not cn, not ⊥,

where ⊥ is a nullary predicate that does not occur in programs otherwise.

Also, we allow choice constraints

{p(t1, . . . , tl)} ← B+(r), B−(r)

as a shorthand for the two rules

p(t1, . . . , tl) ← B+(r), B−(r), not np(t1, . . . , tl)

and
np(t1, . . . , tl) ← B+(r), B−(r), not p(t1, . . . , tl),

for an otherwise unused predicate np.

An example of an answer set program is the following.

Example 1 (Metro Connections). We consider the variations of following program Πm

throughout this chapter.

reach(S) ← start(S) (2.1)
reach(S) ← exit(M, S) (2.2)

{enter(M, S)} ← reach(S), depart(M, S) (2.3)
on_metro(M, S) ← enter(M, S) (2.4)

on_metro(M, S1) ← on_metro(M, S2), next_stop(M, S2, S1), not exit(M, S2) (2.5)
{exit(M, S)} ← on_metro(M, S) (2.6)

← enter(M, S), exit(M, S) (2.7)
← enter(M1, S), enter(M2, S), M1 ̸= M2 (2.8)

20

2.1. Preliminaries

← goal(S), not reach(S) (2.9)

This program models in which way it is possible to get from a starting station (start(S))
to a goal station (goal(S)), by using metros that depart at certain station (depart(M, S))
and visit one stop after the other (next_stop(M, S1, S2)). Note that in order for the
program to be applied the extension of the aforementioned predicates (start, goal, depart
and next_stop) need to be added as input to the program.

Given a reasonable input, Πm then works as follows: the rules in Equations (2.1) and (2.2)
tell us that we can reach a station by starting there or by exiting a metro there. To exit a
metro we need to enter it, which Equation (2.3) tells us is possible if we reach a station
at which the metro departs. When we enter a metro, we keep on being on the metro until
we exit it as the rules in Equations (2.4) to (2.6) specify. Finally, we want to ensure
that we do not exit and enter metros unnecessarily, using Equation (2.7), and prohibit
multiple metro rides at the same time, using Equation (2.8). The expression M1 ̸= M2
in Equation (2.8) is syntactic sugar for another extensional predicate that is true iff
M1 is not equal to M2. Last but not least, we want to reach our goal and, thus, add
Equation (2.9).

Answer set programs can be seen as a logical specification of a set of solutions. To make
the intuition of their meaning clear, we define their semantics, specifying their solutions
as so called answer sets:

Definition 2 (Interpretation, Answer Set, Reduct). We denote by HB(P, D) the Her-
brand base defined over a set P of predicates and a set D of domain elements.

HB(P, D) = {p(d1, . . . , dl) | l ∈ N0, p ∈ P, di ∈ D, l = arity(p)},

i.e., the set of all possible combinations of predicates p and with arity(p) arguments di

from the domain, where arity(p) denotes the arity of the predicate p.

For a program Π defined over P, V and D, we use HB(Π) as a shorthand for HB(P, D).

The semantics of programs is defined via grounding. The grounding ground(Π) of a
program Π over P, V and D is given by the set

ground(Π) = {rσ | r ∈ Π, σ : V → D},

where σ is called a substitution and rσ denotes the result of applying σ to r, which means
that every variable V that occurs in r is replaced by σ(V).

An interpretation I ⊆ HB(Π) satisfies Π, if for each rule r ∈ ground(Π) it holds that
H(r) ∈ I or there exists a ∈ HB(Π) s.t. a ∈ B+(r) \ I or a ∈ B−(r) ∩ I.

Furthermore, I is an answer set of Π if it is a ⊆-minimal satisfying interpretation of the
reduct ground(Π)I , which is given by

ground(Π)I = {r ∈ ground(Π) | B+(r) ⊆ I, B−(r) ∩ I = ∅}.

We denote the set of answer sets of a program Π by AS(Π).

21

2. General Quantitative Stream Reasoning

We restrict ourselves to finite domains D in this section. Sometimes, we refer to answer
sets also as stable models.

We consider the semantics again on our example.

Example 2 (cont.). Before we can ground the program and consider its answer sets, we
need to fix a domain and provide some input facts. For the input facts Πin, we use a
simplified version of the Viennese metro system:

start(bsgasse) ←
goal(tsgasse) ←

depart(“U4”, bsgasse) ←
depart(“U1”, kplatz) ←

next_stop(“U4”, bsgasse, kplatz) ←
next_stop(“U1”, kplatz, tsgasse) ←

Here, bsgasse, tsgasse, and kplatz are shorthands for the stations Braunschweiggasse,
Taubstummengasse, and Karlsplatz, respectively.

Accordingly, it suffices for us to use the domain

D = {bsgasse, tsgasse, kplatz, “U1”, “U4”}.

When grounding, we get for the rule

reach(S) ← exit(M, S)

among others, the rules

reach(bsgasse) ← exit(“U4”, bsgasse)
reach(tsgasse) ← exit(“U1”, tsgasse)
reach(kplatz) ← exit(“U4”, kplatz)

Note that the complete grounding ground(Πm ∪ Πin) contains more instantiations of this
rule such as

reach(“U1”) ← exit(“U1”, “U1”).

However, these rules are always trivially satisfied, since exit(“U1”, “U1”) is not satisfied
in any answer set, as can be easily seen. Thus, we do not need to consider them in the
grounding. For space reasons, we do not consider the whole grounding, even without rules
that are trivially satisfied.

Instead, we consider the answer sets of Πm ∪ Πin. Intuitively, given the input facts we
have, there is only one option to get from start to goal, in which we first enter the U4 at
bsgasse, then switch to the U1 at kplatzand finally arrive at our goal by exiting at tsgasse.

22

2.1. Preliminaries

We see that the program gives us exactly this unique solution as the answer set Iinitial

containing

enter(“U4”, bsgasse), exit(“U4”, kplatz),
enter(“U1”, kplatz), exit(“U1”, tsgasse),
on_metro(“U4”, bsgasse), on_metro(“U4”, kplatz),
on_metro(“U1”, kplatz), on_metro(“U1”, tsgasse),
reach(bsgasse), reach(kplatz),
reach(tsgasse),

in addition to the input facts.

Apart from answer set programs for the logical/qualitative reasoning, we make use of
semirings to allow different forms of quantitative reasoning uniformly. Semirings are
most easily defined by starting out with monoids.

Definition 3 (Monoid). A monoid M = (M, ⊗, e⊗) consists of an associative binary
operation ⊗ on a set M with neutral element e⊗, also called identity element. Here, a
binary operation on M is a function ⊗ : M × M → M that maps pairs of values from
M to a value in M . We write the application of such a binary operation ⊗ to a pair
(m1, m2) of values m1, m2 ∈ M in infix notation m1⊗m2.

A value e⊗ ∈ M is a neutral element for a binary operation ⊗ on M if for all values
m ∈ M it holds that

e⊗⊗m = m = m⊗e⊗.

Additionally, a binary operation ⊗ on M is

• associative, if for all m, m′, m′′ ∈ M it holds that

m⊗(m′⊗m′′) = (m⊗m′)⊗m′′;

• commutative, if for all m, m′ ∈ M it holds that

m⊗m′ = m′⊗m;

• idempotent, if for all m ∈ M it holds that

m⊗m = m;

• invertible, if for all m ∈ M there exists a unique m′ ∈ M such that

m′⊗m = e⊗ = m⊗m′.

23

2. General Quantitative Stream Reasoning

A monoid is respectively commutative, idempotent, and invertible if its binary operation
is.

Some examples of monoids are

• Strings = ({0, 1}∗, ⊙, ε), the set of binary strings with concatenation ⊙ and empty
string ε is a non-commutative, non-idempotent, and non-invertible monoid,

• P(A) = (2A, ∪, ∅), the set of subsets for a set A with union ∪ is a commutative,
idempotent and non-invertible monoid,

• P(A) = (2A, ∩, A), the set of subsets for a set A with intersection ∩ is a commutative,
idempotent and non-invertible monoid,

• Z = (Z, +, 0), the integers with addition + is a commutative, non-idempotent and
invertible monoid.

Based on monoids, we introduce semirings.

Definition 4 (Semiring). A semiring R = (R, ⊕, ⊗, e⊕, e⊗) is a nonempty set R equipped
with two binary operations ⊕ and ⊗, called addition and multiplication, such that

• (R, ⊕) is a commutative monoid with identity element e⊕,

• (R, ⊗) is a monoid with identity element e⊗,

• multiplication left and right distributes over addition, i.e., for all r, r′, r′′ ∈ R it
holds that

r⊗(r′⊕r′′) = r⊗r′⊕r⊗r′′

(r′⊕r′′)⊗r = r′⊗r⊕r′′⊗r

• and multiplication by e⊕ annihilates R, i.e., for all r ∈ R it holds that

r ⊗ e⊕ = e⊕ = e⊕ ⊗ r.

Furthermore, R is

• commutative, if (R, ⊗) is commutative, and

• idempotent, if (R, ⊕) is idempotent.

If (R, ⊕) or (R, ⊗) are invertible we define their inverse functions

−(·) : R → R such that r ⊕ −r = e⊕
resp. (·)−1 : R \ {e⊕} → R such that r ⊗ r−1 = e⊗

24

2.1. Preliminaries

Some examples of semirings are

• B = ({0, 1}, ∨, ∧, 0, 1), the Boolean semiring, with disjunction and conjunction as
addition and multiplication,

• F = (F, +, ·, 0, 1), for F ∈ {N,Z,Q,R} the semiring of the numbers in F with
addition and multiplication,

• N∞ = (N∪{∞}, +, ·, 0, 1), the extension of the natural numbers with infinity, where
∞ + n = ∞ and ∞ · m = ∞, for m ̸= 0,

• P(A) = (2A, ∪, ∩, ∅, A), the semiring over the powerset of A with union and
intersection,

• Rmax,+ = (N ∪ {−∞}, max, +, −∞, 0), the max-plus semiring,

• Rmin,+ = (N ∪ {∞}, min, +, ∞, 0), the min-plus semiring,

• Rmax,· = (N ∪ {−∞}, max, ·, −∞, 0), the max-times semiring,

• Rmin,· = (N ∪ {∞}, min, ·, ∞, 0), the min-times semiring,

• GRAD = ({(v, u) | v, u ∈ R}, +, ⊗, (0, 0), (1, 0)), the gradient/expectation semir-
ing [Eis02], where addition is coordinate-wise and

(a1, b1) ⊗ (a2, b2) = (a1 · a2, a2 · b1 + a1 · b2),

• P = ([0, 1], +, ·, 0, 1), the probability semiring,

• R[(xi)α] = (R[(xi)α], ⊕, ⊗, e⊕, e⊗), for α ∈ N (resp. α = ∞), is the semiring of
polynomials with variables x1, . . . , xα (resp. x1, x2, . . .) and coefficients from the
semiring R, and

• T = ({e}, ⊙, ⊙, e, e), the trivial semiring, where e ⊙ e = e.

Another list of semirings, which is annotated with applications, can be found in [KVD17].

In order to connect the quantitative aspects of semirings and the qualitative ones of logics
we use weighted logics. They were initially introduced by Droste and Gastin [DG07] in
the second order setting. Here, we only introduce the restricted version for propositional
logic.

Definition 5 (Syntax). Let V be a set of propositional variables and let R be a semiring
of the form (R, ⊕, ⊗, e⊕, e⊗). A weighted (propositional) formula over R is of the form
α given by the grammar

α ::= k | v | ¬v | α + α | α ∗ α

where k ∈ R and v ∈ V.

25

2. General Quantitative Stream Reasoning

We can evaluate weighted formulas with respect to an interpretation to obtain a value
from the semiring.

Definition 6 (Semantics). Given a weighted propositional formula α over a semiring
R = (R, ⊕, ⊗, e⊕, e⊗) and propositional variables, i.e., nullary predicates, from V as well
as an interpretation I ⊆ HB(V, ∅), the semantics �α�R(I) of α over R w.r.t. I is defined
as follows:

�k�R(I) = k

�v�R(I) =
�

e⊗ v ∈ I
e⊕ otherwise. (v ∈ V)

�¬v�R(I) =
�

e⊕ v ∈ I
e⊗ otherwise. (v ∈ V)

�α1 + α2�R(I) = �α1�R(I)⊕�α2�R(I)�α1 ∗ α2�R(I) = �α1�R(I)⊗�α2�R(I).

Example 3 (Weighted Formula). An example of a weighted formula is

α = reach(bsgasse) + reach(kplatz) + reach(tsgasse).

Intuitively, α interpreted over N counts how many stations we reach under a given
assignment. Accordingly, its semantics with respect to the interpretation

I = {reach(bsgasse), reach(tsgasse)}

is given by

�α�N(I) = �reach(bsgasse) + reach(kplatz) + reach(tsgasse)�N(I)
= �reach(bsgasse)�N(I) + �reach(kplatz)�N(I) + �reach(tsgasse)�N(I)
= 1 + 0 + 1 = 2,

as expected.

However, we can not only interpret α over the semiring N. Over another semiring, we
just might get a different result. For example, over the trivial semiring T, we get the
unique semiring value e as a result. Over the Boolean semiring B, α tells us whether we
reach any of the stations, since addition + corresponds to disjunction and e⊕ is falsum
and e⊗ is truth. Thus, over B for the same interpretation I we obtain

�α�B(I) = 1.

With this in mind, we can begin introducing our own extensions of answer set program-
ming.

26

2.2. Model Level Quantitative Reasoning

2.2 Model Level Quantitative Reasoning
The goal of this section is to find a general framework for quantitative reasoning over the
set of solutions in the context of ASP. That is, we want to be able to model

• probabilistic reasoning,

• preferential reasoning,

• quantitative queries, and

• (weighted) model counting.

Furthermore, we want to achieve this in a uniform manner.

In the following, we define algebraic measures, an extension of ASP that has the desired
properties. After the introduction, we compare it to other quantitative extensions of
ASP, for probabilistic reasoning, preferential reasoning, and weighted model counting to
show that algebraic measures are indeed not only a uniform framework but also general
enough.

2.2.1 Algebraic Measures
We define algebraic measures to combine the qualitative language of answer set programs
with the quantitative one of weighted logic.

Definition 7 (Algebraic Measure). An algebraic measure µ = ⟨Π, α, R⟩ consists of an
answer set program Π, a weighted formula α, and a semiring R. Then, the weight of an
answer set I ∈ AS(Π) under µ is defined by

µ(I) = �α�R(I).

Additionally, the result of an (atomic) query for an atom a ∈ HB(Π) is given by

µ(a) = �
I∈AS(Π),a∈Iµ(I),

and the result of the overall weight query of Π is

µ(Π) = �
I∈AS(Π)µ(I).

Intuitively, the idea here is that for an algebraic measure µ = ⟨Π, α, R⟩ the semiring R
determines the mode of quantitative computation, Π states the logical background theory
that determines which interpretations are solutions and α assigns each answer set I a
weight over the semiring, by performing a calculation over the semiring that depends on
the satisfaction of atomic formulas in the interpretation I.

Then, evaluating µ(I) for an answer set I allows us to perform quantitative queries.
Evaluating an atomic query µ(a) for an atomic formula a ∈ HB(Π) allows us to query

27

2. General Quantitative Stream Reasoning

for the aggregated weight of the answer sets that satisfy a. This enable for example
probabilistic inference, if µ is a probability measure, i.e., if µ(Π) = 1 and R is the
probabilistic semiring P . In this setting, the query µ(a) gives us the probability that a is
true in an answer set chosen according to the probability distribution defined by µ.

Last but not least, overall weight queries aggregate the weights of all answer sets, without
a query atom that needs to be satisfied. If µ is a probability measure, the overall weight
is not particularly interesting, as it is always one. However, over other semirings such
as N, Rmax,+ and GRAD the overall weight can provide us with interesting information
such as the number of answer sets, the weight of an optimal answer set or an expected
value, respectively.

We consider how each of the queries with algebraic measures can be used in the context
of our running example.

Example 4 (cont.). First, we consider quantitative queries over a single answer set.
For example, we can ask the question how many changes a given journey uses. For this,
let D denote the domain of our program. Then we can use the following weighted formula

αchange = −1 + Σm,s∈Denter(m, s),

which counts the number of times we enter a metro and subtracts one. If we use the
measure µchange = ⟨Πin ∪ Πm, αchange,N⟩ and evaluate it under the answer set Iinitial

from the previous example, we obtain

µchange(Iinitial) = �−1 + Σm,s∈Denter(m, s)�N(Iinital)

= −1 +
"

m,s∈D

�
1 if enter(m, s) ∈ Iinital,
0 otherwise.

= −1 + 3 = 2.

Second, we are interested in the probability of starting our journey with the “U4” metro, if
we select one answer set as a journey uniformly at random. Note that for the current input
facts Πin, this question can be answered very easily, since there is only one possible journey.
Assume therefore that we replace Πin by Πcomplete, which contains the complete information
about the Viennese public transport network. In either case, we can use an overall
weight query in combination with an atomic query to obtain the result using the measure
µcount = ⟨Πm ∪ Πcomplete, 1,N⟩. Namely, we can compute µcount(enter(“U4”, bsgasse))
the atomic query for enter(“U4”, bsgasse) and the overall weight µcount(Πm ∪ Πcomplete).
The former gives us the number of journeys in which we start with the U4 metro, the
latter gives us the total number of journeys. By computing their quotient, we thus obtain
the probability of starting our journey with the U4 metro, if we choose a possible journey
uniformly at random.

As a side product of the previous example, we observe that in order to count the answer
sets of a program we can perform an overall weight query using the weighted formula 1
over the semiring of the natural numbers.

28

2.2. Model Level Quantitative Reasoning

For more details on the possible applications of algebraic measures we refer the interested
reader to Section 4.3.

Having introduced algebraic measures, we can consider their expressivity in comparison
to other formalisms.

2.2.2 Relation to Similar Formalisms
As stated before the goal of the definition of algebraic measures is to introduce a
general quantitative framework that captures many of the different relevant quantitative
extensions of answer set programming and, furthermore, does so in a uniform manner.
The uniformity is given as a consequence of the parameterization of the definition with
semirings, which allows for a wide range of quantitative computations by using the
appropriate semiring. As for the generality, we investigate it in this subsection by taking
a close look at the expressivity of algebraic measures compared to other quantitative
extensions of ASP.

In our comparison, we include the related works of

• LPMLN [LY17];

• P-log [BGR09];

• ProbLog [DKT07] and its generalization to algebraic Prolog [KVD11];

• weak constraints [BLR00];

• asprin [Bre+15];

• and others [NM15].

In the following we compare them in the order specified in the itemization. Apart from
that, we give an overlook of other formalisms that we did not consider in detail and the
expected relation between them and algebraic measures. Finally, we discuss whether
the expressiveness of algebraic measures suffices for our needs, taking into account their
relation to the other quantitative reasoning extensions we considered.

LPMLN LPMLN concerns itself with probabilistic logic programming, more precisely in
LPMLN we assign interpretations a probability of being correct. For this, we consider a
set of weighted rules

Π = {w1 : r1, . . . , wn : rn}
where wi ∈ R or wi is the variable x and ri a rule. Note that we restrict ourselves to
normal rules here for sake of simplicity, whereas the definition in [LW16] also allows
disjunctions in the head. All the results hold for disjunctive rules in the same manner
though, if we allow disjunctive answer set programs in algebraic measures too.

29

2. General Quantitative Stream Reasoning

The weight scheme is the same as that of Markov Logic, i.e., the probability of a rule being
correct is log-linear in its weight, i.e., the logarithm of the probability grows linearly with
respect to the weight. If wi = x, the weight is interpreted to be arbitrarily large [LY17].
Due to this, the definition of answer sets is changed in such a manner that we can also
have answer sets that do not satisfy all rules of an LPMLN program. However, we still
need stability on the rules they satisfy. Therefore, the reduct of an LPMLN program with
respect to an interpretation I is defined as

ΠI = {r | w : r ∈ Π, I |= r}.

The set SM(Π) of models of an LPMLN program Π is then defined as

SM(Π) = {I ⊆ HB(Π) | I is a (classical) answer set of ΠI}.

With this in mind we can formally define the weight of an interpretation with respect to
Π.

Definition 8 (Weight Function WΠ, Probability). Let

Π = {w1 : r1, . . . , wn : rn}

be an LPMLN program and let I ⊆ HB(Π) be an interpretation of Π. Then the weight of
I with respect to Π in dependence on x, where x is the unique variable that occurs in
place of weights wi, is defined as

WΠ(I) = exp
�"

{w | w : r ∈ Π, I |= r}

,

if I ∈ SM(Π) and 0, otherwise.

Furthermore, the probability of an interpretation I is defined as

PrΠ(I) =

�� lim
x→∞

WΠ(I)#
J ∈SM(Π) WΠ(J) I ∈ SM(Π),

0 otherwise.

Note that in the definition of WΠ the value WΠ is still dependent on the variable x. Since
the meaning of x : r is that the weight of the rule r is arbitrarily large, we apply the
limit in the definition of the probability. This way, we obtain a real valued number.

The above can equivalently be modeled as an algebraic measure µ = ⟨Π′, α, R⟩, where

Π′ ={head(r) ← body(r), auxr | w : r ∈ Π} (2.10)
∪ {← head(r), not auxr | w : r ∈ Π} (2.11)
∪ {← not b, not auxr | w : r ∈ Π, b ∈ body(r)} (2.12)
∪ {{auxr} ←| w : r ∈ Π}, (2.13)

α =Πw:r∈Π,w ̸=x exp(w) ∗ auxr ∗ Πw:r∈Π,w=xx ∗ auxr, and (2.14)

30

2.2. Model Level Quantitative Reasoning

R =R[x]. (2.15)

The idea here is that we condition all rules on a new auxiliary choice atom auxr. This
choice atom intuitively chooses whether the rule r has to be satisfied. In order to be in
line with the LPMLN semantics, we furthermore require that when a rule r is satisfied,
then we also need to include it in our program, meaning the choice atom auxr needs to
be true.

Note that also here, the values of the algebraic measure are over R[x] and therefore
depend on x. Contrary to WΠ, the weighted formula α does not refer to exp(x) but to x.
However, while this makes a difference when comparing WΠ(I) and µ(I), it does not for
the final probability measure.

Theorem 9. Let Π be an LPMLN program, let I ⊆ HB(Π) be an interpretation of Π,
and let comp(I) = I ∪ {auxr | I |= r}. Then it holds that

1. I ∈ SM(Π) iff comp(I) ∈ AS(Π′);

2. WΠ(I) = µ(comp(I))[x/ exp(x)], where [x/ exp(x)] denotes that every occurrence
of x is replaced by exp(x); and

3.

lim
x→∞

µ(comp(I))
µ(Π) =

�� lim
x→∞

WΠ(I)#
J ∈SM(Π) WΠ(J) I ∈ SM(Π),

0 otherwise.
.

Proof. We start with 1. and consider an interpretation I. From the rules of the form (2.11),
(2.12) in the definition of Π′ it follows that if auxr is not included in an interpretation
I∗ of Π′, then the rule r cannot be satisfied. On the other hand, from the rules
of the form (2.10) it follows that if auxr is included in an interpretation I∗ of Π′,
then the rule r must be satisfied. Therefore, for the interpretations of I∗ of Π such
that I∗ ∩ {auxr | r ∈ Π} = comp(I) \ I it follows that I∗ is an answer set of Π′ iff
I∗ \ {auxr | r ∈ Π} is an answer set of {r | r ∈ Π, auxr ∈ I∗}. Since the interpretation
comp(I) contains exactly those atoms of the form auxr such that r is satisfied by I
the program {r | r ∈ Π, auxr ∈ I∗} is equal to the reduct ΠI . So, it holds that I is an
answer set of ΠI iff comp(I) is an answer set of Π′.

For 2. recall that
WΠ(I) = exp

�"
{w | w : r ∈ Π, I |= r}

,

if I ∈ SM(Π) and WΠ(I) = 0, otherwise. Second, recall that also µ(comp(I)) is zero
if comp(I) is not an answer set of Π′, which is the case iff I ̸∈ SM(Π) according to 1.
Thus, it only remains to verify that µ(comp(I)) takes the correct value when comp(I) is
an answer set. This is easy to see:

µ(comp(I)) = �α�R[x](comp(I))

31

2. General Quantitative Stream Reasoning

= �Πw:r∈Π,w ̸=x exp(w) ∗ auxr ∗ Πw:r∈Π,w=xx ∗ auxr�R[x](comp(I))
= �Πw:r∈Π,w ̸=x exp(w) ∗ auxr ∗ Πw:r∈Π,w=xx ∗ auxr�R[x](I ∪ {auxr | I |= r})
=

!
w:r∈Π|I|=r,w ̸=x

exp(w) ·
!

w:r∈Π|I|=r,w=x

x

By replacing x by exp(x) we get

exp
�"

{w | w : r ∈ Π | I |= r, w ̸= x} +
"

{x | x : r ∈ Π | I |= r}

,

which is equal to WΠ(I) as desired.

Last but not least, for 3. we first observe that from 1. and 2. it follows that

µ(Π)[x/ exp(x)] =
"

J ∈SM(Π)
WΠ(J).

Furthermore, from

lim
x→∞

µ(comp(I))
µ(Π) = lim

log(x)→∞
µ(comp(I))

µ(Π) = lim
x→∞

µ(comp(I))[x/ exp(x)]
µ(Π)[x/ exp(x)]

the previous observation and 2. it follows that the claim holds.

Overall, we see that algebraic measures subsume LPMLN on a very high level: not only
can we express all probability distributions that can be expressed using LPMLN, but
we can even capture the inner workings of its definitions. That is, (i) we can define
an algebraic measure over the polynomial semiring R[x] to model the weight function
WΠ and (ii) we can define it without the need for an adapted answer set semantics -
which LPMLN needs - by exploiting the intertwinedness of qualitative and quantitative
reasoning that is possible with algebraic measures.

P-log

In the probabilistic extension of logic programming by Baral, Gelfond, and Rush-
ton [BGR09] answer sets are assigned a probability, leading to the possibility do draw
probabilistic inferences. Here, one can specify that an attribute a(t) has a random value
X from p(X), i.e., the domain of values that satisfy the predicate p. This can further
be conditioned on the truth of a set of literals B. Such probabilistic choice rules are
specified in P-log syntax using a rule of the form

[r]random(a(t) : {X : p(X)}) ← B.

Furthermore, it is possible to model the probability that a random attribute a(t) has a
specific value y, when generated by rule r, given that a set B′ of literals is satisfied, using

prr(a(t) = y | B′) = v.

32

2.2. Model Level Quantitative Reasoning

The remainder 1 − P , where P is the sum of the already assigned probabilities, is
distributed uniformly among the possible values y whose probability is unspecified. More
details can be found in [BGR09].

Regarding the relation to algebraic measures, we can rely on existing results. In [LY17] it
was shown that LPMLN subsumes P-log. Thus, since algebraic measures subsume LPMLN,
also algebraic measures subsume P-log.

ProbLog and algebraic Prolog

In ProbLog, one is interested in the probability of a query succeeding, given a set of
probabilistic rules

Π = {p1 : c1, . . . , pn : cn}
where ci is a ProbLog rule and pi is the probability of being correct. ProbLog rules are
rules, that are either of the form

a ← (2.16)

or of the form
a ← b1, . . . , bn, \ + c1, . . . , \ + cm, (2.17)

where c1, . . . , cn occur in a rule of the form 2.16.

The probability of a query q, where q ∈ HB(Π) is an atom, is then given by

P (q | Π) =
"

Π′⊆Π

!
p:c∈Π′

p
!

p:c∈Π\Π′
(1 − p) ·

�
1 Π′ |= q,
0 otherwise. .

Again, we can rely on existing results for the expressiveness comparison between ProbLog
and algebraic measures. In [LY17] it was shown that LPMLN subsumes ProbLog. Thus,
since algebraic measures subsume LPMLN, also algebraic measures subsume ProbLog.

The current results for the expressiveness do not cover algebraic Prolog [KVD11] though,
which is very similar to ProbLog and can in fact be seen as a generalization of ProbLog
over general semirings.

The definition of algebraic Prolog is actually very similar to that of algebraic measures,
in the sense that quantitative and qualitative reasoning are somewhat separated. An
algebraic Prolog program [KVD11] consists of:

• a commutative semiring (A, ⊕, ⊗, e⊕, e⊗),

• a finite set of ground algebraic facts F = {f1, . . . , fn},

• a finite set BK of ProbLog rules, called background knowledge, and

33

2. General Quantitative Stream Reasoning

• a labeling function α : L(F) → A that labels literals from

L(F) = {a | a ∈ F} ∪ {¬a | a ∈ F}
to a semiring value in A.

Different from ProbLog programs, where all rules have a label, only the algebraic facts
have a label here and the rest of the rules are to be seen as strict, i.e., always true. Note
that this implies that for each interpretation I of the algebraic facts in F the program
BK ∪ I has exactly one answer set.

The label A(I) of an interpretation I is thus not defined for interpretations over all
atoms HB(BK) but for interpretations of the algebraic facts in F . Namely,

A(I) = �
a∈Iα(a)⊗�

a∈F \Iα(¬a).

This is lifted to query atoms q ∈ HB(BK) by defining

A(q) = �{A(I) | I ⊆ F, BK ∪ I |= q}.

We can model queries for labels of atoms with respect to an algebraic Prolog pro-
gram also using algebraic measures. Namely, given an algebraic Prolog program
⟨(A, ⊕, ⊗, e⊕, e⊗), F, BK, α⟩, we define µ = ⟨Π′, α′, (A, ⊕, ⊗, e⊕, e⊗)⟩ as the algebraic
measure, where

Π′ = {{a} ←| a ∈ F} ∪ BK, and
α′ = Πa∈F (a ∗ α(a) + ¬a ∗ α(¬a)).

Then the following holds:

Corollary 10. Given the above definition,

• for each interpretation I ⊆ F it holds that A(I) = µ(comp(I)), and

• for each atom q ∈ HB(BK) it holds that A(q) = µ(q).

where comp(I) = {a ∈ HB(BK) | BK ∪ I |= a}.

Weak Constraints

The idea of weak constraints [BLR00] is to an extend answer set program Π by a set C
of constraints of the form

: ∼b1, . . . , bn, not c1, . . . , not cm. [w],

where b1, . . . , bn and c1, . . . , cm are atoms and w is an integer weight specifying how
(un)desirable it is to satisfy the constraint. Additionally, we may in practice specify weak

34

2.2. Model Level Quantitative Reasoning

constraints with a priority level p, by replacing w with w@p, however, since it has been
shown that we can assume without loss of generality that the program is given without
priority levels, we restrict ourselves to this case.

The preferred answer sets of a program Π with respect to a set C of weak constraints is
then given by those answer sets that satisfy the most weak constraints, when counted
respectively to their weight w. Formally,

Definition 11. The penalty of an answer set I ∈ AS(Π) is defined as

pC(I) =
"

:∼B(r).[w]∈N(C,I)
w,

where

N(C, I) = {: ∼b1, . . . , bn, not c1, . . . , not cm.[w] ∈ C | b1, . . . , bn ∈ I, c1, . . . , cm ̸∈ I}
is the set of non-satisfied weak constraints.

Then an answer set I ∈ AS(Π) is preferred, if there does not exist an answer set
I ′ ∈ AS(Π) with a strictly lower penalty, i.e. with pC(I) > pC(I ′).

We can express the optimization problem associated with programs with weak constraints
also with algebraic measures. Note that this already follows from results in [LY17]
together with Theorem 9, since it was shown that LPMLN programs can also model the
penalty function specified by weak constraints. However, we can do even more: apart
form specifying the penalty function, we can also use overall weight queries in order to
compute preferred answer sets.

In a first step, we define the penalty function pC(.) by means of an algebraic measure.
For this, we make use of the min-plus semiring Rmin,+. Given a set C of weak constraints,
we can construct a corresponding weighted formula αC over Rmin,+ as

αC = Π:∼B(r).[w]∈CαB(r),w, where
αb1,...,bn,not c1,...,not cm,w = w ∗ Πn

i=1bi ∗ Πm
j=1¬cj + Σn

i=1¬bi + Σm
j=1cj

Using this weighted formula, we get the following result:

Corollary 12. Given the above definition of the weighted formula αC , it holds for
µ = ⟨Π, αC , Rmin,+⟩ that

• for any answer set I of Π the penalty pC(I) is equal to µ(I); and

• the overall weight of µ is

µ(Π) = �
I∈AS(Π)µ(I) = min

I∈AS(Π)
µ(I) = min

I∈AS(Π)
pC(I),

i.e. the minimum penalty that can be achieved.

35

2. General Quantitative Stream Reasoning

Arguably, computing the optimal penalty value is a different problem, from computing
a preferred answer set of a program and a set of weak constraints. However, assuming
w.l.o.g. that our Herbrand base HB(Π) is finite, we can also achieve the latter by using
a different weighted formula

αM
C = αC·2|HB(Π)| ∗ αM

αC·2|HB(Π)| = Π:∼B(r).[w]∈CαB(r),w·2|HB(Π)|

αM = Σa∈HB(Π)2idx(a) ∗ a + ¬a

Here, idx(a) assigns each atom a ∈ HB(Π) a unique index from {0, . . . , |HB(Π)| − 1}.

The idea behind the weighted formula αM
C is that we split the weight it computes into two

parts, one for the penalty and one for the assignment that was used. This is achieved by
multiplying every local penalty w of every weak constraint by 2|HB(Π)| and by intuitively
adding a penalty of 2idx(a) when the atom a holds. On the other hand, when the atom
a does not hold and ¬a is satisfied, we add the neutral element for the multiplication
of Rmin,+. Since the multiplication of Rmin,+ is +, the neutral element is 0, meaning
we do not change the penalty of ¬a is satisfied. Due to the factor 2|HB(Π)|, the original
penalties and the penalties for the atoms do not interact and we obtain the following
result:

Lemma 13 (Preferred Answer Set as Overall Weight). Given a program Π with a
finite Herbrand base and weak constraints C, the overall weight of the algebraic measure
µ = ⟨Π, αM

C , Rmin,+⟩ is equal to 2|HB(Π)| · p + b, where

• p is the optimal penalty and

• b is an integer smaller than 2|HB(Π)|

• b = #
a∈Imin 2idx(a), where Imin is the minimum lexicographical model (when the

atoms are indexed by idx(.)) that is preferred with respect to C.

This means that we can obtain the minimum lexicographical preferred answer set of a
program Π with weak constraints C by computing the overall weight of an algebraic
measure. We see that algebraic measures are not only suitable for the computation of
the optimal penalty value but also for the computation of preferred models themselves.
The use of algebraic measures for preferential reasoning is considered in more detail
in [BEK21].

asprin

The asprin framework allows for the optimization of sets {wi : αi | i = 1, . . . , n} of labeled
formulae with respect to arbitrary aggregates of the labels wi of the satisfied αi; it
subsumes most approaches for preferential reasoning in ASP [Bre+15]. We are bound to
aggregates expressible by semiring operations; those mentioned in [Bre+15], viz. union of

36

2.2. Model Level Quantitative Reasoning

sets, count of elements and sum of integers, are all captured by weighted formulae over
the semirings P(A),N, and Z respectively. Using semirings also has benefits: it allows
for complex expressions beyond an aggregation. In asprin, one can specify orders and
define composite orders for multiple objectives. While algebraic measures can be used
with any order, we do not provide a language for specifying and composing orders. A
complete comparison is hard due to the short format of the conference paper [Bre+15],
which does not admit space for all details.

Overall, asprin can handle any kind of preference, as long as the decision whether one
answer set is better than another can be uniformly expressed as an answer set program.
Algebraic measures, on the other hand, allow for the specification of measures that can
be evaluated over an answer set. Given an order relation on the semiring values we can
then check whether one answer set is preferred to another; however, the relation is not a
necessary part of the algebraic measure. As we have seen in the previous subsubsection
about weak constraints, we can sometimes compute a preferred answer set as the result
of an overall weight query. It is, however, unclear whether such a strategy is feasible in
general.

Others

There are further quantitative extensions for model level reasoning in the context of
answer set programming besides the ones we discussed above. Some of them are not
subsumed by algebraic measures.

One example is PrASP [NM14], which is a Nilsson-style probabilistic languages. Here,
probabilities are specified in an indirect manner. That is, the probabilities are required
to satisfy a set of (usually linear) inequalities. It follows, that instead of deriving exact
values during probabilistic inference, we only obtain a range of possible values. Thus, it
is unlikely that we can capture them with algebraic measures, where the specification is
direct and probability values are uniquely determined.

General Annotated Logic Programs (GALP) [KS92] have multi-valued interpretations
and allow for the specification of values using arbitrary monotone functions. Therefore,
only fragments of algebraic measures can be expressed in GALP and vice versa.

Summary

We have seen that many quantitative extensions are subsumed by algebraic measures.
Many probabilistic frameworks such as LPMLN, P-log and ProbLog can be easily captured.
Also optimization is possible and preferential reasoning with algebraic measures subsumes
ASP extended with weak constraints and covers a considerable fragment of asprin. Also,
highly general formalisms like algebraic Prolog, which themselves have been shown to be
useful for a wide variety of different tasks, are subsumed by algebraic measures.

Notably, like algebraic Prolog, also algebraic measures tackle all of the above problems
uniformly by a parameterization of the semantics with a semiring. Furthermore, by

37

2. General Quantitative Stream Reasoning

having both an answer set program and a weighted formula, it is possible to separate
the qualitative reasoning specification from the quantitative one. Algebraic measures
distinguish themselves from algebraic Prolog programs, by allowing

• a richer fragment for the specification of the logical background theory, and

• weighted formulas, which can assign an interpretation a weight that stems from
evaluating a complex expressions using both addition and multiplication of the
semiring, instead of just a product of semiring values, as it is the case with algebraic
Prolog’s labeling function.

Overall, we argue that algebraic measures are a notable addition to the landscape of
quantitative extensions of answer set programming as they are both highly general as
well as uniform. As such they also fulfill the requirements we pose for an extension to be
suitable for it to be lifted to the context of stream reasoning.

2.3 Truth Level Quantitative Reasoning
Apart from quantitative reasoning over the set of solutions, we also want to be able to
express succinctly and easily which interpretations of a program are solutions. That is,
we want to be able to use

• aggregates,

• weight constraints,

• arithmetic operations, and

• guessing in rule-heads.

As with the quantitative reasoning over the set of solutions, we want to achieve this in a
uniform manner.

In the following, we will show that all of these constructs can be seen as quantitative
constraints, again by introducing an algebraic semantics over semirings. For this, we
define algebraic constraints, based on a generalization of first-order Here-and-There Logic
over semirings. As in the previous section, this generalization allows us to specify weighted
formulas over a semiring, whose value is computed using the semiring operations and
depends on the given interpretation. However, contrary to the weighted formulas in the
previous section, this dependence is in a sense “non-monotonic”. This non-monotonicity
comes from the fact that we generalized Here-and-There Logic, which is the basis of
Equilibrium Logic [Pea06] that can be seen to capture the non-monotonicity of ASP.

We start off by giving the necessary preliminaries, namely sorted first-order Here-and-
There Logic. Based on this, we introduce its weighted generalization over semirings

38

2.3. Truth Level Quantitative Reasoning

and define algebraic constraints as well as the syntax and semantics of programs that
use algebraic constraints. After showing that these definitions satisfy some expected
properties, we give an example use case that shows that the provenance semantics of
Green, Karvounarakis, and Tannen [GKT07] can be computed with AC-programs. Next,
we consider properties such as safety, domain independence and strong equivalence in
the context of AC-programs, compare to other extensions of ASP that add constructs
to enhance the succinctness of ASP as a language. Furthermore, we investigate the
computational complexity of common reasoning tasks with AC-programs. Finally, we
conclude that algebraic constraints are indeed not only a uniform framework but also
general enough.

2.3.1 Preliminaries
We start by introducing classical programs and their semantics. We use a variant of
first-order HT semantics [PV08] as this facilitates the generalization of the semantics
later on and is useful for work on strong equivalence. The variant is that we assign
variables non-disjoint sorts, which lets us quantify over subsets of the domain.

We consider sorted first-order formulas over a signature σ = ⟨D, P, X , S, r⟩, where D is a
set of domain elements, P is a set of predicates, X is a set of sorted variables, S is a set
of sorts and r : S → 2D is a range function assigning each sort a subset of the domain.
When x ∈ X , we write s(x) for the sort of x. Then, σ-formulas are of the form

ϕ ::= ⊥ | p(x) | ϕ → ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃yϕ | ∀yϕ, (2.18)

where p ∈ P, x = x1, . . . , xn, with xi ∈ D or xi ∈ X and y ∈ X ; p(x) is called a σ-atom.
We define ¬ϕ = ϕ → ⊥. A σ-sentence is a σ-formula without free variables.

Definition 14 (HT Semantics). Let σ = ⟨D, P, X , S, r⟩ be a signature and IH , IT be
σ-interpretations, i.e. sets of σ-atoms without free variables over the predicates in P
and elements in D, s.t. IH ⊆ IT . Then I = (IH , IT) is a σ-HT-interpretation and
Iw = (IH , IT , w), for w ∈ {H, T}, is a pointed σ-HT-interpretation.

Satisfaction of a σ-sentence ϕ w.r.t. a pointed σ-HT-interpretation Iw = (IH , IT , w) is
defined as follows, where we have the reflexive order ≥ on {H, T}, with T ≥ H:

Iw ̸|=σ ⊥
Iw |=σ p(x) ⇐⇒ p(x) ∈ Iw

Iw |=σ ϕ → ψ ⇐⇒ Iw′ ̸|=σ ϕ or Iw′ |=σ ψ for all w′ ≥ w

Iw |=σ ϕ ∨ ψ ⇐⇒ Iw |=σ ϕ or Iw |=σ ψ

Iw |=σ ϕ ∧ ψ ⇐⇒ Iw |=σ ϕ and Iw |=σ ψ

Iw |=σ ∃xϕ(x) ⇐⇒ Iw |=σ ϕ(ξ), for some ξ ∈ r(s(x))
Iw |=σ ∀xϕ(x) ⇐⇒ Iw |=σ ϕ(ξ), for all ξ ∈ r(s(x))

When T is a set of σ-sentences, then Iw |=σ T if ∀ϕ ∈ T : Iw |=σ ϕ.

39

2. General Quantitative Stream Reasoning

The semantics of classical rules and programs is introduced as an instantiation of the
above semantics for restricted signatures. Let σ = ⟨D, P, X , S, r⟩ be a classical signature,
i.e. S = {D}, r(D) = D. Then a rule is of the form

r = H(r) ← B(r) = ϕ ← ψ1, . . . , ψn, ¬θ1, . . . , ¬θm,

where ϕ, ψi, θj are σ-atoms, with free variables x1, . . . , xk ∈ X . Its semantics is that of
the universal closure, which is the σ-formula ∀x1, . . . , xk B∧(r) → ϕ where B∧(r) is ψ1 ∧
· · · ∧ ψn ∧ ¬θ1 ∧ · · · ∧ ¬θm. Similarly, a program Π is a set of rules. And its universal
closure is the conjunction of the universal closures of its rules.

Definition 15 (Equilibrium Model). Given a signature σ, a σ-interpretation I is an
equilibrium model of a (set of) σ-sentence(s) ϕ if (I, I, H) |=σ ϕ and for all I ′ ⊊ I :
(I ′, I, H) ̸|=σ ϕ.

It is well-known that equilibrium semantics of programs and answer set semantics of
programs as defined in Section 2.1 align. Formally:

Proposition 16 ([PV06], Proposition 25). Let Π be a program. Then for every σ-
interpretation I it holds that I is an equilibrium model of the universal closure of Π with
respect to the classical signature σ = ⟨D, P, X , S, r⟩ iff it is an answer set of Π over the
predicates in P, variables in X and domain D.

2.3.2 ASP(AC): ASP with Algebraic Constraints
We start by introducing first-order Weighted HT Logic. Intuitively it generalizes first-
order HT Logic by replacing disjunctive connectives (∨, ∃) by additive ones (+, Σ),
conjunctive ones (∧, ∀) by multiplicative ones (∗, Π) and accordingly the neutral elements
⊥, ⊤ by “zero” and “one”.

Definition 17 (Syntax). For a signature σ = ⟨D, P, X , S, r⟩, the weighted σ-formulas
over the semiring R = (R, ⊕, ⊗, e⊕, e⊗) are of the form

α ::= k | x | ϕ | α →R α | α + α | α ∗ α | −α | α−1 | Σyα | Πyα,

where k ∈ R, x, y ∈ X s.t. r(s(x)) ⊆ R (i.e., x takes only values from R) and ϕ is a
σ-formula. The use of − and −1 require that ⊕ and ⊗ are invertible, the use of Πy
requires that ⊗ is commutative. We define ¬Rα = α →R e⊕. A weighted σ-sentence is a
variable-free weighted σ-formula.

Example 5. Let σ = ⟨Q, {p}, {X}, {S}, {S .→ Q}⟩ and s(X) = S; thus, X ranges over
the rational numbers. Then ΣXp(X) ∗ X is a weighted σ-sentence over the semirings
Q,R but not over N.

Definition 18 (Semantics). Let σ = ⟨D, P, X , S, r⟩ be a signature. The semantics of a
weighted σ-sentence over semiring R w.r.t. Iw = (IH , IT , w) is inductively defined as
follows:

�k�σ
R(Iw) = k, for k ∈ R

40

2.3. Truth Level Quantitative Reasoning

�−α�σ
R(Iw) = −(�α�σ

R(Iw))�α−1�σ
R(Iw) = (�α�σ

R(Iw))−1

�ϕ�σ
R(Iw) =

�
e⊗, if Iw |=σ ϕ,
e⊕, otherwise. , for σ-formulas ϕ

�α + β�σ
R(Iw) = �α�σ

R(Iw)⊕�β�σ
R(Iw)�α ∗ β�σ

R(Iw) = �α�σ
R(Iw)⊗�β�σ

R(Iw)

�α →R β�σ
R(Iw) =

�
e⊗, if �α�σ

R(Iw′) = e⊕ or �β�σ
R(Iw′) ̸= e⊕ for all w′ ≥ w,

e⊕, otherwise.

�Σxα(x)�σ
R(Iw) =

� �
ξ∈supp⊕(α(x),Iw)�α(ξ)�σ

R(Iw), if supp⊕(α(x), Iw) is finite,

undefined, otherwise.

�Πxα(x)�σ
R(Iw) =

��
�

ξ∈supp⊗(α(x),Iw)�α(ξ)�σ
R(Iw), if supp⊗(α(x), Iw) is finite,

e⊕, if r(s(x)) \ supp⊕(α(x), Iw) ̸= ∅,
undefined, otherwise.

For the undefined value e−1
⊕ we use e⊕; here, supp⊙(α(x), Iw) is the support of α(x)

w.r.t. Iw and ⊙ ∈ {⊕, ⊗}, defined as

supp⊙(α(x), Iw) = {ξ ∈ r(s(x)) | �α(ξ)�σ
R(Iw) ̸= e⊙},

i.e., the elements ξ in the range of x with a non-neutral value α(ξ) w.r.t. ⊙.

Weighted HT Logic is a generalization of HT Logic in the following sense:

Proposition 19 (Generalization). Let ϕ be a σ-sentence and Iw be a pointed σ-HT-
interpretation. Then, for the weighted σ-sentence α over the Boolean semiring B, obtained
from ϕ by replacing ⊥, ∨, ∧, →, ∃, ∀ by 0, +, ∗, →B, Σ, Π, respectively, we have

�α�σ
B(Iw) = 1 iff Iw |=σ ϕ.

Proof. The claim can be easily verified by comparing the weighted semantics for R = B
and the unweighted semantics. We consider the case ϕ = ψ → θ in more detail. Then
α = β →B θ, where β and γ correspond to the rewritten versions of ψ and θ.

Iw |=σ ϕ ⇐⇒ Iw′ ̸|=σ ψ or Iw′ |=σ θ for w′ ≥ w

⇐⇒ �β�σ
B(Iw) ̸= 1 or �γ�σ

B(Iw) = 1 for w′ ≥ w

⇐⇒ �β�σ
B(Iw) = 0 or �γ�σ

B(Iw) ̸= 0 for w′ ≥ w

⇐⇒ �α�σ
B(Iw) = 1

The proof of the equivalence of → and →R works for arbitrary semirings R: for σ-formulas
ϕ, ψ the weighted formulas ϕ → ψ and ϕ →R ψ are equivalent. Thus, we can drop R
from →R.

41

2. General Quantitative Stream Reasoning

Apart from being an HT Logic, the main difference between ours and the Weighted Logic
introduced in [DG07] is that we allow for the additional connectives −,−1, and → and
that ours is first-order over infinite domains instead of second-order over finite words.
Another smaller difference is that we allow also unweighted formulas as subformulas of
weighted formulas.

Defining a reasonable semantics for the case of infinite support seems challenging in
general. For example, Q is neither closed under taking the limit of sequences, nor does
every infinite sum of numbers converge, even in R. For ω-continuous semirings such as
N∞, where both conditions above are satisfied, a definition would be possible. We omit
this but refer the interested reader to [GKT07], where this is done in a similar context.

Intuitively, weighted formulas specify calculations over semirings depending on the truth
of formulas. The quantifier Σ allows us to aggregate the values of weighted formulas for
all variable assignments using ⊕ as the aggregate function.

Example 6 (cont.). The semantics of ΣX p(X) ∗ X over Rmax,+ is the maximum value
x s.t. p(x) holds. As �p(x) ∗ x�σ

Rmax,+(Iw) ̸= e⊕ = −∞ iff p(x) ∈ Iw, we see that for
finite Iw

�ΣX p(X) ∗ X�σ
Rmax,+(Iw) = max{�p(x) ∗ x�σ

Rmax,+(Iw) | p(x) ∈ Iw, x ∈ N}
= max{0 + x | p(x) ∈ Iw, x ∈ N} = max{x | p(x) ∈ Iw}.

The semantic of weighted formulas is multi-valued in general. In order to return to the
boolean semantics for programs, we define algebraic constraints, which are (in)equations
between a semiring value and a weighted formula.

Definition 20 (Algebraic Constraints). Let σ = ⟨D, P, X , S, r⟩ be a signature. An
algebraic constraint is an expression k ∼R α or x ∼R α, where

• (R, >) is an ordered semiring, i.e., R is a semiring and > is a strict total order
on R,

• α is a weighted σ-formula over R,

• k ∈ R or x ∈ X such that r(s(x)) ⊆ R, and

• ∼ is a comparison operator from {>, ≥, =, ≤, <, ̸>, ̸≥, ̸=, ̸≤, ̸<}.

A sentence k ∼R α is satisfied w.r.t. Iw, denoted Iw |=σ k ∼R α, if

k ∼ �α�σ
R(Iw′) for all w′ ≥ w.

The semantics for x ∼R α where the semiring value k is replaced by a variable x is left
out intentionally since we only cover the semantics for sentences.

42

2.3. Truth Level Quantitative Reasoning

The syntax of σ-formulas in Section 2.3.1 is extended to include algebraic constraints
in (2.18) as a further case. The definitions of satisfaction (Defn. 14) and equilibrium
model (Defn. 15) are amended in the obvious way. However, as the semantics of weighted
formulas is undefined for infinite supports, there are two variants of interpreting the
condition I ′ ⊊ I : (I ′, I, H) ̸|=σ ϕ in defining equilibrium models. If we adopt that
|̸=σ holds when the semantics is undefined, we end up with weak equilibrium models,
otherwise with strong equilibrium models.

To verify that the semantics of algebraic constraints is in line with the intuition of HT
logic, we show that the persistence property is maintained for sentences that include
algebraic constraints.

Proposition 21 (Persistence). For any σ-sentence ϕ and σ-HT-interpretation (IH , IT),
it holds that IH |=σ ϕ implies IT |=σ ϕ.

Proof. It is know that the proposition holds for formulas ϕ without algebraic constraints
[PV06]. We can use the same proof by structural induction, given that we can prove that
the claim holds for the additional base case ϕ = k ∼R α.

In this case however, the definition of satisfaction tells us that

Iw |=σ k ∼R α ⇐⇒ k ∼ �α�σ
R(Iw′), for all w′ ≥ w.

So, since T ≥ H from IH |=σ k ∼R α follows IT |=σ k ∼R α.

Note that this also entails that one can not support atoms by using constraints ⊥ ←
k ∼R α. E.g. ⊥ ← 0 =N a does not have {a} as a stable model.

Having established that the semantics behaves as desired, we formally define programs
that can contain algebraic constraints in terms of a fragment of the logic over semiring
signatures.

Definition 22 (Semiring Signature). A signature σ = ⟨D, P, X , S, r⟩ is a semiring
signature for semirings R1, . . . , Rn, where Ri = ⟨Ri, ⊕i, ⊗i, e⊕i , e⊗i⟩, i = 1, . . . , n, if

1. S is a superset of 2{1,...,n},

2. D contains Ri, for all i = 1, . . . , n, and

3. r : S → 2D maps {i1, . . . , im} to �m
j=1 Rij .

Intuitively, if a variable x has sort {i1, . . . , im}, then we only want to quantify over those
domain-values that are in every semiring Ri1 to Rim . Imagine for example that a variable
x is used as a placeholder for a semiring value in two algebraic constraints, one over
N and one over Q. Then it only makes sense to quantify over domain-values that are
contained in N.

43

2. General Quantitative Stream Reasoning

Definition 23 (AC-Rules, AC-Programs). Let σ = ⟨D, P, X , S, r⟩ be a semiring signature
for R1, . . . , Rn. Then an AC-programs is a set of AC-rules r of the form

r = H(r) ← B(r) = ϕ ← ψ1, . . . , ψn, ¬θ1, . . . , ¬θm, (2.19)

where each ϕ, ψi and θj is either a σ-atom or an algebraic constraint over Ri for some
i = 1, . . . , n, in which no quantifiers or nested constraints occur. Furthermore, we require
for each variable x occurring in r that i ∈ s(x) iff x occurs in place of a value from the
semiring Ri.

Example 7 (Rules). The following are examples of AC-rules:

loc_sum(Y) ← Y =Q ind(I) ∗ loc_weight(I, W) ∗ W (2.20)
glob_sum(Y) ← glob_weight(W), Y =Q ind(I) ∗ W (2.21)

Note that in AC-rules quantifiers occur neither in weighted nor in unweighted formulas.
Variables are quantified implicitly, depending on their scope defined as follows.

Definition 24 (Local & Global). A variable x that occurs in an AC-rule r is local, if it
occurs in r only in weighted formulas, and global otherwise. A atom, rule or program is
locally (resp. globally) ground, if it has no local (resp. global) variables.

Example 8 (cont.). In the previous example Y and I are respectively global and local in
both rules, whereas W is local in rule (2.20) and global in rule (2.21).

We then quantify global variables universally and local variables “existentially” (i.e. using
Σ).

Definition 25 (Program and Rule Semantics). Let r be an AC-rule of the form (2.19)
that contains global variables x1, . . . , xk. Its semantics is that of the σ-formula

∀x1, . . . , xk (B∧(r) → ϕ)Σ, where B∧(r) = ψ1 ∧ · · · ∧ ψn ∧ ¬θ1 ∧ · · · ∧ ¬θm

and (·)Σ replaces every weighted formula α with local variables y1, . . . , yl by Σy1, . . . , yl α.

Example 9 (cont.). Consequently, the AC-rules from above correspond to the formulas

∀Y (Y =Q ΣI ΣW ind(I) ∗ loc_weight(I, W) ∗ W) → loc_sum(Y)
∀Y ∀W glob_weight(W) ∧ (Y =Q ΣI ind(I) ∗ W) → glob_sum(Y).

We see that rule (2.20) calculates the sum over all indices {i | ind(i)} weighted locally with
w when loc_weight(i, w) holds. Rule (2.21) calculates the sum over all indices {i | ind(i)}
where all of them are weighted with the same weight w when glob_weight(w) holds.

44

2.3. Truth Level Quantitative Reasoning

Note that we strongly restricted the weighted formulas that are allowed in AC-programs.
The quantifier Π and nested algebraic constraints are unavailable and Σ quantifiers
can only occur as a prefix. Removing these restrictions would lead to a much higher
complexity. Already constraint evaluation would be PSPACE-hard for any non-trivial
semiring. In addition, our choice allows us to keep the syntax of AC-programs closer to
the one of other programs with constraints.

In the sequel, we drop AC from AC-rules and AC-programs if no ambiguity arises.

Example 10 (Metro Connections). We reconsider the metro connections example. We
can use the following weighted formula αenter to simplify the program Πm:

¬¬depart(M, S) ∗ ¬exit(M, S) ∗ ((depart(M, S) ∗ ¬exit(M, S)) → enter(M, S)).

See 2.3.4 for a general explanation of formulas of this form.

We use the rule

1 =N αenter ← reach(S), not goal(S) (2.22)

to replace the rules

{enter(M, S)} ← reach(S), depart(M, S) (2.23)
← enter(M, S), exit(M, S) (2.24)
← enter(M1, S), enter(M2, S), M1 ̸= M2 (2.25)

from the previous example. The idea behind Rule 2.22 is the following: if we reach a
station S that is not the goal station, then we want to enter another metro. However,
we only want to enter metros that depart at station S and that we did not exit at S.
This covers the first two replaced rules. Moreover, since we assert that the value of the
weighted formula is equal to 1, there is exactly one metro that we enter at station S.
Thus, also the satisfaction of the last rule follows, making it redundant.

As a side note, in the syntax that is currently accepted by the clingo solver [Geb+14]
Rule 2.22 would take the form

1 = #count{M : enter(M, S) : depart(M, S), not exit(M, S)} ← reach(S), not goal(S).

Apart from this, we can model that only metro connections whose cost is within our avail-
able budget are possible. Without quantitative constraints this is complicated. However,
with algebraic constraints, given budget(b) and cost(m, c) as input predicates denoting a
budget of b and cost c for taking the metro m, we can use the following rule:

← budget(B), B <Q enter(M, S) ∗ cost(M, C) ∗ C.

Here, the weighted formula enter(M, S) ∗ cost(M, C) ∗ C sums up all the costs of metros
that we enter. Note that if we enter a metro twice at different stations, which might lead

45

2. General Quantitative Stream Reasoning

to a shorter connection, this formula obliges us to buy two separate tickets. If this is not
desired, we can use the following rules instead:

use(M) ← enter(M, S)
← budget(B), B <Q use(M) ∗ cost(M, C) ∗ C

The above example shows that algebraic constraints indeed facilitate the specification of
complicated programs, especially, when we want to reason with constraints on numeric
quantities. In the following, we consider a more advanced example use case of AC-
programs in the context of provenance.

Example Application: Provenance

Green, Karvounarakis, and Tannen [GKT07] introduced a semiring-based semantics that
is capable of expressing bag semantics, why-provenance and more. For positive logic
programs, their semantics over a semiring (R, ⊕, ⊗, e⊕, e⊗) is as follows: the label of a
query result q(x) is the sum (using ⊕) of the labels of derivation trees for q(x), where
the label of a derivation tree is the product (using ⊗) of the labels of the leaf nodes (i.e.
extensional atoms). As the number of derivation trees may be countably infinite, Green
et al. used ω-continuous semirings such as N∞ that allow to have countable sums.

Example 11 (Bag Semantics). For ease of exposition, consider the propositional program

r1: b ← e1, e2 r2: b ← e1 r3: c ← e2, b r4: c ← c, c

over N∞, which corresponds to bag semantics (cf. [GKT07]) and the extensional database
(edb) {(e1, 2), (e2, 0)}. The label of b under bag semantics is 2+0·2 = 2. Here 2 corresponds
to the derivation from r2, (e1, 2) and 0 · 2 to the derivation from r1, (e1, 2), (e2, 0). The
label of c is 0 as it can only be derived using e2.

We can model the semiring semantics in our formalism, by allowing operations over
countable supports supp⊙(α(x), Iw) for ω-continuous semirings. Over N∞ they always
have the value ∞.

Example 12 (cont.). The following AC-program calculates the provenance semantics
over N∞ for the above positive logic program, depending on the edb:

1 =B p(b, 1, 2, X) ∗ d(b, 2) ←p(e1, 1, X1), p(e2, 1, X2), X =N∞ X1 + X2 (2.26)
1 =B p(b, 2, 1, X) ∗ d(b, 1) ←p(e1, 1, X) (2.27)

1 =B p(c, 3, V, X) ∗ d(c, V) ←p(e2, 1, X1), p(b, V1, X2), V =N∞ V1 + 1, X =N∞ X1 + X2
(2.28)

1 =B p(c, 4, V, X) ∗ d(c, V) ←p(c, V1, X1), p(c, V2, X2), V =N∞ V1 + 1, X =N∞ X1 + X2
(2.29)

1 =B p(A, V, X) ←d(A, V), X =N∞ p(A, I, V, X∗) ∗ X∗ (2.30)

46

2.3. Truth Level Quantitative Reasoning

1 =B f(A, X) ←d(A, V), X =N∞ p(A, V ∗, X∗) ∗ X∗ (2.31)

Here p(A, V, X) represents that X is the sum of all labels of derivation trees for A
having exactly V many leaf nodes. We obtain this value first for all derivation trees that
apply rule ri last, in p(A, i, V, X), and sum them up in rule (2.30). Similarly the final
provenance value is obtained as the sum over the provenance values for each number of
leaf nodes V ∗ in rule (2.31); d(A, V) says that there is a derivation tree of A using V
leaf nodes and ensures safety (see next section).

We can apply this strategy in general: even for a non-ground positive logic program we
can give an AC-program that computes the provenance semantics in a similar fashion as
in the example above.

Theorem 26 (Provenance Encoding). Given a positive datalog program Π there is an AC-
program T (Π) that computes the provenance semantics over the ω-continuous semiring
R in the following sense. Let D be an edb and r(x) a query result of D ∪ Π with semiring
provenance v. Then the unique equilibrium model I of T (Π) ∪ {pe(x, v, 1) ←| (e(x), v) ∈
D} contains pr(x, v′) iff v′ = v. Where the predicates of the form ps(x, v, y) correspond
to original predicates s, with semiring label v and potential auxiliary parameters y.

Proof (Sketch, see Appendix A.1 for the full proof). Intuitively, the idea is that we can
define predicates that compute the provenance along hypothetical derivation trees, by
storing the rules that were used last and the number of extensional atoms that were
used.

This extended example of how provenance can be modeled using algebraic constraints
shows that they are quite powerful and flexible, when it comes to quantitative computa-
tions.

2.3.3 Language Aspects
In this subsection, we consider different aspects of the language of AC-programs. Namely,
we consider safety and program equivalence.

Domain Independence and Safety

We need to restrict ourselves to programs that are well behaved, i.e. independent of the
domain they are evaluated over.

Example 13. Consider the weighted formula α = Σx ¬q(x), which counts the elements
d in the domain s.t. q(d) does not hold. It is easy to see that if we consider the semantics
using the same interpretation but over different domains (or rather signatures) it can
vary.

We are interested in formulas that do not exhibit this kind of behavior, formalized as:

47

2. General Quantitative Stream Reasoning

Definition 27 (Domain Independence). A sentence ϕ (resp. weighted sentence α
over semiring R) is domain independent, if for every two semiring signatures σi =
⟨Di, P, X , S, ri⟩(i = 1, 2) s.t. ϕ is a σi-formula (resp. α is a weighted σi-formula) for
i = 1, 2 and every Iw = (IH , IT , w) that is a pointed σi-HT-interpretation for i = 1, 2 it
holds that

Iw |=σ1 ϕ iff Iw |=σ2 ϕ (resp. �α�σ1
R (Iw) = �α�σ2

R (Iw)).

Note that we restrict ourselves to semiring signatures, which implies that all semiring
values are elements of the domain.

We restrict ourselves to a fragment of weighted formulas. Intuitively, we need to ensure
that every variable X in α(X) is bound by a positive occurrence of a predicate p(X).

Definition 28 (Syntactic Domain Independence). A weighted formula α(X) over a
semiring R is syntactically domain independent w.r.t. X, if it is constructible following

ϕ(X) ::=⊥ | p(X) | ¬¬ϕ(X) | ϕ(X) ∨ ϕ(X) | ϕ(Y) ∧ ϕ(Z) | ϕ(X) ∧ ψ(X ′),
α(X) ::=k | ϕ(X) | ¬¬α(X) | α(X) + α(X) | α(Y) ∗ α(Z) | α(X) ∗ β(X ′)

| − α(X) | α−1(X),

where k ∈ R, p(X) is an atom, ψ(X ′) (β(X ′)) is any (weighted) formula, X ′ ⊆ X and
Y ∪ Z = X.

Intuitively, X can only occur in α, if it occurs in a non-negated or double negated
predicate in every branch of a sum or disjunction. To allow the usage of arbitrary
formulas ψ(X ′) (resp. β(X ′)) in the case α(X)∗β(X ′) (resp. ϕ(X)∧ψ(X ′)) the variables
in X ′ already need to be “guarded” by α(X) (resp. ϕ(X)).

Example 14 (cont.). While ¬q(Y) from Example 13 is not syntactically domain inde-
pendent w.r.t. Y , the formula p(Y) ∗ ¬q(Y), which counts the number d s.t. p(d) holds
but not q(d), is. It can be constructed using α(X) ∗ β(X ′).

Our syntactic criterion guarantees domain independence.

Theorem 29 (Formula Domain Independence). If a formula α(X) over semiring R is
syntactically domain independent w.r.t. X, then αΣ = ΣX α(X) is domain independent.

Proof (Sketch, see Appendix A.2 for the full proof). Invariance of supp⊕(α(x), Iw) w.r.t.
σi (or rather Di) is shown by structural induction. We show the invariance for one
interesting case, namely α = α1(x) ∗ α2. Note that:

{ξ ∈ r1(s(x)) | �α1(ξ) ∗ α2�σ1
R (Iw) ̸= e⊕} ⊆ {ξ ∈ r1(s(x)) | �α1(ξ)�σ1

R (Iw) ̸= e⊕}
Therefore, we obtain

{ξ ∈ r1(s(x)) | �α1(ξ) ∗ α2�σ1
R (Iw) ̸= e⊕}

48

2.3. Truth Level Quantitative Reasoning

={ξ ∈ {ξ ∈ r1(s(x)) | �α1(ξ)�σ1
R (Iw) ̸= e⊕} | �α1(ξ) ∗ α2�σ1

R (Iw) ̸= e⊕}

Next, we use the induction hypothesis on α1(x) to obtain

={ξ ∈ {ξ ∈ r2(s(x)) | �α1(ξ)�σ2
R (Iw) ̸= e⊕} | �α1(ξ) ∗ α2�σ2

R (Iw) ̸= e⊕}
={ξ ∈ r2(s(x)) | �α1(ξ) ∗ α2�σ2

R (Iw) ̸= e⊕}.

As the semantics of variable-free formulas is domain independent the claim follows.

Safety of programs is defined as follows.

Definition 30 (Safety). A program Π is safe, if each rule r ∈ Π of form equation (2.19)
is safe, i.e. fulfills that

(i) every weighted formula in r is syntactically domain independent w.r.t. its local
variables;

(ii) for every global variable X there exists some βi s.t. (1) βi is an atom and X occurs
in it, or (2) βi is X =R β′

i and X does not occur in any weighted formula in the
body of r.

The restriction in (ii) that X does not reoccur is necessary to prohibit p(X) ← X =R
Y, Y =R X. It could however be replaced by a more sophisticated acyclicity condition.

Example 15 (Safety). The rules (2.20) and (2.21) are safe. Without the predicate p the
rule

c(X) ← X =N p(X) ∗ ¬q(X)

would not be safe.

Theorem 31 (Program Domain Independence). Safe programs are domain independent.

Proof. Let σi = ⟨Di, P, X , S, ri⟩, i = 1, 2 be semiring signatures s.t. Π is a σi-formula for
i = 1, 2 and let Iw = (IH , IT , w) be a pointed σi-HT-interpretation for i = 1, 2.

Let r ∈ Π. If r does not contain global variables, the claim is evident. Otherwise
assume r = ∀x1, . . . , xn α(x1, . . . , xn). When ξj ∈ r1(s(xj))∩ r2(s(xj)) (j = 1, . . . , n), the
semantics of α(ξ1, . . . , ξn) does not depend on σi. Suppose that ξj ∈ r1(s(xj)) \ r2(s(xj)).
Then xj cannot occur in place of a semiring value as for semiring signatures, we have
r1(s(xj)) = �m

j=1 Rkj
= r2(s(xj)). Therefore, xj has to satisfy item (ii.1) of safety,

implying that some atom βk in the body of r is not satisfied by Iw and hence Iw |=σi

α(ξ1, . . . , ξn) for i = 1, 2.

49

2. General Quantitative Stream Reasoning

Not every domain independent program is safe. E.g. p(X) ← ⊤ =B q(X) is not safe but
is equivalent to the safe rule p(X) ← q(X) since X is a global variable and we can only
derive p(x) when �q(x)�B = 1, i.e. when q(x) holds. Domain independence is undecidable
but safety is sufficient, allows for complex rules like equation (2.20), equation (2.21), and
those in Example 12, and is easily checked.

In the rest of the section, we restrict ourselves to domain independent programs and
can therefore remove the annotation σ from |=σ and �·�σ

R and use |= and �·�R instead.
Accordingly, we do not need to specify the signature for AC-programs Π anymore, as any
semiring signature σ s.t. Π is an AC-program over σ suffices.

Program Equivalence

An additional benefit of HT-semantics is that we are able to characterize strong program
equivalence as equivalence in the logic of HT.

Definition 32 (Strong Equivalence). Programs Π1 and Π2 are strongly equivalent,
denoted by Π1 ≡s Π2, if for every program Π′ the equilibrium models of Π1 ∪ Π′ and
Π2 ∪ Π′ coincide.

Characterization results have already been proven for classical ASP programs with
[PV08] or without variables [LPV01] and many more. As for classical ASP programs,
the following characterization of strong equivalence holds:

Theorem 33 (Strong Equivalence). For any Π1, Π2 programs, Π1 ≡s Π2 iff Π1 has the
same HT-models, i.e. satisfying pointed HT-interpretations, as Π2.

Proof (Sketch, see Appendix A.2 for the full proof). The direction ⇐ is clear. For ⇒ we
can generalize the proof in [LPV01], by constructing Π′, which asserts a subset of the
interpretation IT that is ensured to be stable (IH), and a subset that if partly present is
ensured to be fully present (IT \ IH).

Let Π1 and Π2 have different HT-models. W.l.o.g. there must be at least one HT-
interpretation (IH , IT) that is an HT-model of Π1 but not of Π2. As in [LPV01] we
simply define

Π′ = {p(x) ←| p(x) ∈ IH} ∪ {p(x) ← q(y) | p(x), q(y) ∈ IT \ IH}
Then IT is an equilibrium model of Π2 ∪ Π′, but not of Π1 ∪ Π′ and therefore Π1 and Π2
are not strongly equivalent.

Note that since IH may be infinite, this may result in programs of infinite size. This can
be circumvented if auxiliary predicates are allowed in Π′. For example, in [LPV07] the
strong equivalence of arbitrary first-order formulas was considered and characterized as
equivalence in HT Logic. The proof however uses the fact that the strong equivalence
considered in their work is for any first-order sentence and not only for programs, which

50

2.3. Truth Level Quantitative Reasoning

Construct ASP(AC) Others

Nested Expressions
1 =B α ← 1 =B β

α ← β

Aggregates
T ∼Q (p(X) + q(X)) ∗ X

T ∼ sum{X : p(X), X : q(X)}

Choice
k ≤c

R ¬¬q(X, W) ∗ (q(X, W) → p(X)) ∗ W

k ≤ {p(X) : q(X, W) = W}

Minimized Choice
k ≤R ¬¬q(X, W) ∗ (q(X, W) → p(X)) ∗ W

n/a

Value Guess
k ≤R val(X) ∗ X

k ≤ val (CP+ASP)

Arithmetics
X =Q Y ∗ Z−1, s ≥2A X + Y

X = Y ÷ Z, s ⊇ X ∪ Y

Table 2.1: Constructs expressible in ASP(AC) and how they are expressed in other
formalisms.

are a syntactic fragment. A straight-forward way to reproduce their proof strategy in
our setting seems not to be apparent.

Nevertheless, it is possible to prove the statement when programs are finite sets of rules
in our setting, provided that auxiliary predicate symbols are available not occurring in
the program (which trivially holds if we have infinitely many predicates of each arity in
the underlying predicate signature P). This is described in detail in Appendix A.3.

2.3.4 Relation to Similar Formalisms

We consider several constructs that we can express in ASP(AC) and relate them to
constructs known from previous extensions of ASP; a summary is given in Table 2.1.

Nested Expressions The logic programs with arbitrary propositional formulas defined
in [LTT99] are modeled simply using constraints over the Boolean semiring B. As a
special case, this shows the expressibility of disjunctive logic programming rules

a1 ∨ · · · ∨ an ← B(r)

using
1 =B a1 + . . . + an ← B(r).

51

2. General Quantitative Stream Reasoning

Conditionals Cabalar, Fandinno, Schaub, and Wanko [Cab+20b] defined two semantics
for conditionals s = (s′|s′′ : ϕ), where s′, s′′ are terms and ϕ is a (quantifier-free) formula,
named vicious circle (vc) and definedness (df), respectively. Given an interpretation
(IH , IT),

vcIw(s) =

��
s′, if Iw |=σ ϕ,
s′′, if Iw |=σ ¬ϕ,

undefined, otherwise.
dfIw(s) =

�
s′, if Iw |=σ ϕ,
s′′, otherwise.

Syntax and semantics of weighted formulas could be readily extended to include these
constructs. We present instead an alternative evaluation of conditionals as formulas
s′ ∗ ϕ + s′′ ∗ ¬ϕ. Then

�s′ ∗ ϕ + s′′ ∗ ¬ϕ�σ
R(Iw) =

��
s′, if Iw |=σ ϕ,
s′′, if Iw |=σ ¬ϕ,
e⊕, otherwise.

(2.32)

The intuition here is that without a reason no effect should occur and thus none of the
two values should be taken. That is, when neither ϕ nor ¬ϕ is satisfied, we end up with
the neutral element e⊕. Therefore, if we do not have any information the conditional
has no effect, instead of leading to undefinedness or s′′. This combines, in a sense, the
strengths of both df and vc as the following example shows.

Example 16. Consider the following rules r1 and r2:

r1 = p ← ⊤ = (⊤ | ⊥ : p) ∨ ⊤ r2 = p ← ⊤ = (⊤ | ⊤ : p).

According to vc resp. df, they are equivalent: under vc, both have no stable model while
under df both have the stable model {p}. We may expect that r1 has the stable model {p}
as the formula s ∨ ⊤ is equivalent to ⊤ regardless of the value of s. Therefore, the value
of p should not influence the truth of the body of r1. On the other hand, the value of the
conditional in r2 influences the truth of the body of r2 and it depends on p. Therefore,
if {p} were a stable model of r2, we would arguably derive p using the truth value of p.
Accordingly, we may expect that r2 does not have a stable model. These expectations align
with the semantics for r1 and r2 from (2.32) above.

This evaluation combines the ideas behind the vc and the df principle: the value of a
conditional is always defined, but the vicious circle of deriving p by the truth value of p
is avoided.

Apart from that, we may express vc and df in our formalism. Since we do not capture
arbitrary constraints as Cabalar et al. do, we assume instead that conditionals in weighted
formulas are allowed and show that it is unnecessary to allow them explicitly. We start
with vc.

52

2.3. Truth Level Quantitative Reasoning

Let r(s) = H(r(s)) ← B(r(s)) be some rule containing a conditional s = (s′|s′′ : ϕ) which
is supposed to be evaluated under vc semantics. This means that

Iw |= r(s) ⇐⇒
��

Iw |= r(s′) if Iw |= ϕ
Iw |= r(s′′) if Iw |= ¬ϕ
IT |= r(s) otherwise.

.

Now if we simply replace s by ϕ ∗ s′ + ¬ϕ ∗ s′′ we get

Iw |= r(ϕ ∗ s′ + ¬ϕ ∗ s′′) ⇐⇒
��

Iw |= r(s′) if Iw |= ϕ
Iw |= r(s′′) if Iw |= ¬ϕ
IT |= r(s) and Iw |= r(e⊕) otherwise.

.

This is obviously different, however if we use instead the rule

r′(s) = H(r(s)) ← B(r(s)), 1 =B ϕ + ¬ϕ

we obtain

Iw |= r′(ϕ ∗ s′ + ¬ϕ ∗ s′′)

⇐⇒
��

Iw |= r′(s′) if Iw |= ϕ
Iw |= r′(s′′) if Iw |= ¬ϕ
IT |= r′(s) and Iw |= H(r(e⊕)) ← B(r(e⊕)), 1 =B ϕ + ¬ϕ otherwise.

⇐⇒
��

Iw |= r(s′) if Iw |= ϕ
Iw |= r(s′′) if Iw |= ¬ϕ
IT |= r(s) and Iw |= H(r(e⊕)) ← B(r(e⊕)), 1 =B 0 otherwise.

⇐⇒
��

Iw |= r(s′) if Iw |= ϕ
Iw |= r(s′′) if Iw |= ¬ϕ
IT |= r(s) otherwise.

as desired.

In order to model df, we further need that the addition ⊕ of the semiring R =
(R, ⊕, ⊗, e⊕, e⊗) is invertible, i.e. that we can use the connective −. Assume this
is the case and let s = (s′ | s′′ : ϕ) be a conditional over the semiring R that we want to
evaluate under df. Then its semantics is

dfIw(s) =
�

s′, if Iw |=σ ϕ,
s′′, otherwise.

We can use the weighted formula ϕ ∗ s′ + (e⊗ + −ϕ) ∗ s′′ and obtain

�ϕ ∗ s′ + (e⊗ + −ϕ) ∗ s′′�R(Iw) = �ϕ ∗ s′�R(Iw)⊕�(e⊗ + −ϕ) ∗ s′′�R(Iw)

=
�

e⊗⊗�s′�R(Iw)⊕(e⊗⊕ − e⊗)⊗�s′′�R(Iw) Iw |= ϕ
e⊕⊗�s′�R(Iw)⊕(e⊗⊕ − e⊕)⊗�s′′�R(Iw) otherwise

53

2. General Quantitative Stream Reasoning

=
�

s′⊕e⊕⊗s′′ Iw |= ϕ
e⊗⊗s′′ otherwise

=
�

s′ Iw |= ϕ
s′′ otherwise

Formally, this means that

Corollary 34. Let R be a semiring and r(s) be a rule that contains a conditional
s = (s′|s′′ : ϕ) in an algebraic constraint over R. Then

• we can model r(s) under vc semantics using the AC-rule

H(r(ϕ ∗ s′ + ¬ϕ ∗ s′′)) ← B(r(ϕ ∗ s′ + ¬ϕ ∗ s′′)), 1 =B ϕ + ¬ϕ.

• if ⊕ is invertible, then we can model r(s) under df semantics using the AC-rule

r(ϕ ∗ s′ + (e⊗ + −ϕ) ∗ s′′).

Summarizing, the possibility to express vc and df as well as to define other semantics of
conditionals exemplifies the power of FO-WHT Logic and AC-programs.

Constraints in the head for guessing In many ASP extensions, constraints in rule
heads and rule bodies behave differently; in heads, they are used as choice constraints.
Consider the rule

1 = #count{M : enter(M, S) : depart(M, S), not exit(M, S)} ← reach(S), not goal(S).

in lparse syntax from Example 10.

It specifies that, when we reach a station (reach(S)) that is not the goal station
(not goal(S)), then we must enter exactly one metro at that station (enter(M, S)) which de-
parts at that station (depart(M, S)) and which we did not exit at that station (exit(M, S)).

In order to express this constraint in the head in our semantics, we need to take care
that it may only assert enter(m, s) for m, s such that depart(m, s) was already derived in
another way and such that exit(m, s) was not derived. If we use the following algebraic
constraint in the head

1 =N enter(M, S) ∗ ¬exit(M, S)) ∗ depart(M, S),

it can also derive depart(m, s) instead of using it as a precondition.

We can prevent this by making use of double negation and implication. Namely, we can
instead use the following algebraic constraint

1 =N ¬¬(depart(M, S) ∗ ¬exit(M, S)) ∗ ((depart(M, S) ∗ ¬exit(M, S)) → enter(M, S)).

54

2.3. Truth Level Quantitative Reasoning

In classical logic this constraint would be equivalent to the previous one: we could cancel
the double negation and simplify the the implication as follows:

¬¬(depart(M, S) ∧ ¬exit(M, S)) ∧ ((depart(M, S) ∧ ¬exit(M, S)) → enter(M, S))
≡depart(M, S) ∧ ¬exit(M, S) ∧ ((depart(M, S) ∧ ¬exit(M, S)) → enter(M, S))
≡depart(M, S) ∧ ¬exit(M, S) ∧ enter(M, S)

In (weighted) HT Logic these simplifications are however not valid, since double nega-
tion does not cancel out. To see this, consider the formulas ¬¬depart(m, s) and
depart(m, s) with respect to the interpretation (∅, {depart(m, s)}). While it is true that
(∅, {depart(m, s)}, T) |= ¬¬depart(m, s) and also (∅, {depart(m, s)}, T) |= depart(m, s)
the equivalence does not hold for (∅, {depart(m, s)}, H). Namely, (∅, {depart(m, s)}, H) ̸|=
depart(m, s), since depart(m, s) is not included in the interpretation Here, which is the
empty set. On the other hand, (∅, {depart(m, s)}, H) |= ¬¬depart(m, s), since by def-
inition ¬¬depart(m, s) ≡ (depart(m, s) → ⊥) → ⊥ and for the implications it holds
that

IH |= (depart(m, s) → ⊥) → ⊥
⇐⇒ Iw ̸|= depart(m, s) → ⊥ or Iw |= ⊥ for all w ∈ {H, T}

Since Iw ̸|= ⊥ this is equivalent to

Iw ̸|= depart(m, s) → ⊥ for all w ∈ {H, T},

which we can further expand as follows

Iw ̸|= depart(m, s) → ⊥ for all w ∈ {H, T}
⇐⇒ IH ̸|= depart(m, s) → ⊥ and IT ̸|= depart(m, s) → ⊥
⇐⇒ IH ̸|= depart(m, s) → ⊥ and IT |= depart(m, s) and IT ̸|= ⊥
⇐⇒ IH ̸|= depart(m, s) → ⊥
⇐⇒ Iw |= depart(m, s) and Iw ̸|= ⊥ for some w ∈ {H, T}
⇐⇒ Iw |= depart(m, s) for some w ∈ {H, T}

Since as we have seen before IT |= depart(m, s) holds, the last expression evaluates to
true, meaning that IH |= (depart(m, s) → ⊥) → ⊥ holds, even though depart(m, s) is
not included in the interpretation for Here.

This explains not only why double negation does not cancel out but also why the adapted
algebraic constraint does not allow us to derive depart(m, s) but uses it as a precondition:
if depart(m, s) does not hold in the There interpretation, then

�¬¬(depart(m, s) ∗ ¬exit(m, s)) ∗ ((depart(m, s) ∗ ¬exit(m, s)) → enter(m, s))�N(IH)

evaluates to 0. However, if it does hold in the There interpretation, then it does not
matter whether it is included in the Here interpretation. Since we are interested in

55

2. General Quantitative Stream Reasoning

Equilibrium models, depart(m, s) must therefore have been derived by another rule and
only acts as a precondition in our constraint.

Note, however, that ¬¬¬a is equivalent to ¬a even in (weighted) HT Logic. Thus, we
can optionally simplify our constraint to

1 =N ¬¬depart(M, S) ∗ ¬exit(M, S) ∗ (depart(M, S) → enter(M, S)).

More generally, we use the pattern

α(X, W) = ¬¬ϕ(X, W) ∗ (ϕ(X, W) → p(X)) ∗ W. (2.33)

Abstractly, it ensures that p(x) can only be asserted for x where we already know that
ϕ(x, w) holds, so we can not “invent” new constants or use the constraint to assert
ϕ(x, w).

The purpose of the variable W is to assign the addition of p(x) a weight w.

This covers the case, where we want to derive a minimal or exact quantity of atoms.
While such minimized constraints are useful, we also need to be able to specify choice
constraints in our language. That is, we may want to specify that for any tuple x the
atom p(x) may hold, if ϕ(x) holds as a precondition.

This can be achieved naturally without extending the semantics of our language, by
introducing a syntactic shorthand k ∼c

R α for algebraic choice constraints in rule-heads.
We define that

r = k ∼c
R α ← B(r) stands for k ∼R α ← B(r) and X =R α ← X =R α¬¬, B(r),

(2.34)

where α¬¬ is obtained from α by adding ¬¬ in front of each atom p(x). These algebraic
choice constraints behave as expected of choice constraints. (The next proposition
considers only globally ground rules in order to decrease the amount of syntactic noise.)

Proposition 35 (Choice Semantics). For any σ-HT-interpretation (IH , IT) and any
globally ground rule r = k ∼c

R α ← B(r), it holds that IH |=σ r iff

(i) IH |=σ k ∼R α ← B(r) and

(ii) if IH |=σ (B∧(r))Σ, then �(α)Σ�σ
R(IT) = �(α)Σ�σ

R(IH).

Proof. According to our definition

IH |=σ k ∼c
R α ← B(r)

⇐⇒ IH |=σ k ∼R α ← B(r) and IH |=σ X =R α ← X =R α¬¬, B(r)
⇐⇒ IH |=σ k ∼R α ← B(r) and IH |=σ ∀X X =R α¬¬, B(r) → X =R α

56

2.3. Truth Level Quantitative Reasoning

By the definition of α¬¬ we know that �α¬¬�R(IH) is equal to �α�R(IT). Therefore, we
only need to consider the grounding of the rule where X is replaced by �α�R(IT). Then

IH |=σ r

⇐⇒ IH |=σ k ∼R α ← B(r) and IH |=σ B(r) → �α�R(IT) =R α

Choice constraints are already well-known from previous ASP extensions, so we do not
explain them in more detail. The usefulness of the novel minimized choice constraints is
demonstrated in the following example.

Example 17 (Integer Subset Sum). Consider the following variation of the well-known
Subset Sum Problem [Alf98]: Given a set S ⊆ Z and two bounds l, u ∈ Z, determine a
⊆-minimal solution S′ ⊆ S such that l ≤ #

x∈S′ x ≤ u. This problem can be solved easily
using ASP(AC) when s(x) holds for x ∈ S:

l ≤Z ¬¬s(X) ∗ (s(X) → in(X)) ∗ X ←
u ≥Z ¬¬s(X) ∗ (s(X) → in(X)) ∗ X ←

For every equilibrium model I the set S′ = {x | in(x) ∈ I} is a ⊆-minimal solution
and for every ⊆-minimal solution S′ there exists an equilibrium model I such that
S′ = {x | in(x) ∈ I}.

Trying to use the choice constraint

k =c
Z ¬¬s(X) ∧ (s(X) → in(X)) ∧ X ←

instead, leads to solutions to the Subset Sum Problem but not necessarily to solutions of
the Minimal Subset Sum Problem.

Aggregates As can be seen in Example 6, we can model aggregates whose aggregation
function is the addition of some semiring. This restriction is mild in practice: The
aggregates min, max, sum, count are expressible using a single algebraic constraint.
times and avg are expressible using multiple algebraic constraints (e.g. avg is sum divided
by count).

Value Guessing and Arithmetic Operators Value guessing and arithmetic operators
are especially used in combinations of ASP and CP [Lie14]. We can guess a value from a
semiring, perform arithmetic operations over semirings and evaluate (in)equations on the
results. Again, we are mildly restricted as only semiring operations are available.

57

2. General Quantitative Stream Reasoning

2.3.5 Complexity
We consider the computational complexity of the following problems:

• Model Checking (MC): Given a safe program Π and an interpretation I of Π, is I
is an equilibrium model of Π?

• Satisfiability (SAT): Given a safe program Π, does Π have an equilibrium model?

• Strong Equivalence (SE): Given safe programs Π1, Π2, are Π1 and Π2 strongly
equivalent?

Compared to ordinary ASP programs, the main aspect that complicates these problems
is that we may have to evaluate weighted formulas over an arbitrary semiring. If we
want to prevent an increase in complexity, then we need to encode the elements of the
semiring in some way which allows for efficient calculations and comparison. To this end,
we use efficient encodedness.

Definition 36 (Encoding Function, Efficiently Encoded Semiring). Let R = (R, ⊕,
⊗, e⊕, e⊗) be a semiring. Then an injective function e : R → {0, 1}∗ is an encoding
function.

Given an encoded value e(r) we define ∥r∥e, the size of r w.r.t. e, as the length of the
bitstring e(r), i.e. |e(r)|.
Let R be a semiring and e : R → {0, 1}∗ an encoding function. Then R is efficiently
encoded by e, if there exists a polynomial p(x) s.t. for all e(r1), . . . , e(rn) ∈ e(R) it holds
that

1. ∥�n
i=1ri∥e ≤ p(n) maxi=1,...,n∥ri∥e,

2. ∥�n
i=1ri∥e ≤ p(log2(n)) maxi=1,...,n∥ri∥e,

3. max(∥−r∥e, ∥r−1∥e) ≤ min(∥−r∥e, ∥r−1∥e) + p(0),

4. e(r), e(r′) .→ e(r ⊙ r′) is in FP for ⊙ = ⊕, ⊗, and

5. e(r) .→ e(f(r)) is in FP for f(.) = −(.), (.)−1.

This restriction is mild in practice; for example B, N, Z, Q, Rmax,+, 2A are efficiently
encodable.

Theorem 37 (Ground Complexity). For variable-free programs over efficiently encoded
semirings

• MC and (propositional) SE are co-NP-complete, and

• SAT is Σp
2-complete.

58

2.3. Truth Level Quantitative Reasoning

Proof (Sketch, see Appendix A.4 for the full proof). The hardness parts are inherited
from disjunctive logic programs [Dan+01], cf. Section 2.3.4, resp. HT-Logic [LPV01].
The membership parts result by guess and check algorithms: for similar bounds as in
ordinary ASP, we just need that IH |= k ∼R α is polynomially decidable given (IH , IT)
and an algebraic constraint k ∼R α; as R is efficiently encoded, this holds.

The non-ground complexity is significantly higher.

Theorem 38 (Non-ground Complexity). Let Π be a safe program such that each semiring
in Π is efficiently encoded. Then

(i) MC is in PSPACE and co-NPNPPP-hard, and

(ii) SAT and SE are undecidable.

Proof. (i) Given the interpretation I (as set of ground atoms), we can iterate over all
I ′ ⊊ I and check (I, I, H) |= r′, as well as (I ′, I, H) |= r′ for each ground instance r′ of
a rule r ∈ Π in exponential time. The iteration and considering one ground instance r′

at a time is feasible in polynomial space; the evaluation of algebraic constraints k ∼R α
is feasible in polynomial space, since if α is of the form Σy1, . . . , ynα′(y1, . . . , yn) where
α′ is quantifier-free, by safety of the program each yi must occur in some atom p(x).
That is, to evaluate α, we only need to consider values ξ(yi) for yi, i = 1, . . . , n that
occur in the interpretation I. There are exponentially many such ξ; for each of them,
the value of α′(ξ(y1), . . . , ξ(yn)) can be computed in polynomial time given that R is
efficiently encoded, yielding a value rξ such that e(rξ) occupies polynomially many bits.
The aggregation Σξ rξ over all ξ is then feasible in polynomial space by the assertion that
∥�n

i=1ri∥e ≤ p(log2(n)) maxi=1,...,n∥ri∥e and that e(r1 ⊕ r2) is computable in polynomial
time given e(r1), e(r2).

The co-NPNPPP-hardness is due to a reduction from AE-Majsat [Wag86], which asks
whether for a Boolean formula ϕ(x1, . . . , xn) for all assignments to x1, . . . , xm a partial as-
signment to xm+1, . . . , xk exists s.t. more than 2n−k−1 of the assignments to xk+1, . . . , xn

satisfy ϕ(x). Then the program

e(0) ←
e(1) ←

1 =B a1(0) + a1(1) ←
. . .

1 =B am(0) + am(1) ←
1 =B a1(0) ∗ a1(1) ← a1(X1), . . . , am(Xm), e(Xm+1), . . . , e(Xk),

2n−k−1 <N e(Xk+1) ∗ . . . ∗ e(Xn) ∗ ϕ(X)
. . .

1 =B am(0) ∗ am(1) ← a1(X1), . . . , am(Xm), e(Xm+1), . . . , e(Xk),

59

2. General Quantitative Stream Reasoning

2n−k−1 <N e(Xk+1) ∗ . . . ∗ e(Xn) ∗ ϕ(X)

has an equilibrium model I = {a1(0), a1(1), . . . , am(0), am(1), e(0), e(1)} iff the answer
for AE-Majsat is yes.

Assume the answer for AE-Majsat is yes. Then for every subset I ′ ⊆ I we have
(I ′, I, H) ̸|= Π. If we remove e(i) or both ai(0) and ai(1) for some i, this is clear. Other-
wise, we know that for each i some ai(ji) holds. Then for these values there exist values
jm+1, . . . , jk s.t.
ϕ(j1, . . . , jk, Xk+1, . . . , Xn) is a yes instance for Majsat. Therefore the body

a1(j1), . . . , am(jm), e(Xj+1), . . . , e(jk), 2n−k−1 <N e(Xk+1) ∗ . . . ∗ e(Xn) ∗ ϕ(X)

is satisfied and if (I ′, I, H) |= Π we know that I ′ = I.

On the other hand if the answer for AE-Majsat is no, due to the partial assignment
j1, . . . , jm to the variables x1, . . . , xm, for I ′ = {a1(j1), . . . , am(jm), e(0), e(1)} we have
(I ′, I, H) |= Π, and therefore I is not an equilibrium model.

(ii) The undecidable Mortal Matrix Problem (MMP) asks whether any product of matrices
in X = {X1, . . . , Xn} ⊂ Zd×d evaluates to the zero matrix 0d [Cas+14].

The semiring (Zd×d, +, ·, 0d, 1d) is efficiently encodable, and the program

p(Xi) ← (i = 1, . . . , n)
⊥ ← ¬p(0d)

p(Y) ← p(Z1), p(Z2), Y =Zd×d Z1 ∧ Z2

has an equilibrium model iff X is a yes-instance of MMP, as p(0d) needs to be supported.
This shows undecidability of SAT.

For undecidability of SE, let Π be the program from above and Π′ = Π \ {⊥ ← ¬p(0)d)}.
As Π′ has no negation, its HT-models are the interpretations (I ′, I) where both I ′

and I are closed under the rules of Π′, sets S such that p(X1), . . . , p(Xn) ∈ S and
whenever p(Y), p(Z) ∈ S then also p(Y ∗ Z) ∈ S. Similarly, the HT-models of Π are the
interpretations (I ′, I) where I ′ and I are closed under the rules of Π′ and in addition
p(0d) ∈ I ′.

Therefore, Π ≡s Π′ iff p(0d) ∈ L, where L is the least set closed under the rules of Π′,
which holds iff the answer for the mortal matrix problem on X is yes.

As NPPP contains the polynomial hierarchy (PH), this places MC between PH and
PSPACE.

For programs over the canonical semiring N, MC is co-NPC-complete for C = NPPP

(while SAT and SE are undecidable).

Corollary 39. Let Π be a safe program using only the semiring N of the natural numbers.
Then we have co-NPNPPP-completeness for MC.

60

2.3. Truth Level Quantitative Reasoning

Proof. The hardness is due to the proof of the previous theorem. The membership follows
from the fact that we can check the satisfaction of constraints over N using a PP oracle.

This can be seen as follows. We can evaluate weighted formulas over N of the form
Σy1 . . . Σynα where α is quantifier-free using a #P oracle: we can non-deterministically
choose an assignment ξ to y1, . . . , yn, calculate r = �α(ξ)�N(Iw) in polynomial time and
generate r accepting branches.

Since PPP is equal to P#P also co-NPNPPP is equal to co-NPNP#P .

As for the co-NPNP#P membership: Given a program Π and a potential equilibrium
model I we can guess a subset I ′ ⊊ I and check whether (I ′, I, H) |= Π. The latter
can be achieved in co-NP#P by guessing a rule r ∈ Π and an assignment ξ to its global
variables. Then we can check whether (I ′, I, H) |= r(ξ) in P#P by checking satisfaction
of each atom and constraint in r(ξ).

We note that while MC is decidable for AC-programs over the natural numbers, SAT
and SE are undecidable. This may not be very surprising given Theorem 38 and the fact
that the semiring Zd×d is similar to N. The undecidability can directly be shown by a
reduction from solving Diophantine equations, i.e., polynomial equations P (x1, ..., xn) = 0
in variables x1, . . . , xn over the integers, which by Matiyasevich’s celebrated result is
undecidable; this holds if the solutions are restricted to the natural numbers [Mat96].
We can equivalently consider polynomial equations P (x1, ..., xn) = Q(x1, ..., xn) where
all coefficients in the polynomial expressions P (x1, . . . , xn) and Q(x1, . . . , xn) are non-
negative. We then can write a program Π consisting of the rules

n(0) ← .

n(X) ← n(Y), X =N 1 + Y.

sol ← n(X1), ..., n(Xn), Y =N P (X1, ..., Xn), Y =N Q(X1, ..., Xn).
⊥ ← ¬sol.

The program Π is safe and it has a (unique) equilibrium model (in which sol is true)
iff a solution to P (x1, ..., xn) = Q(x1, ..., xn) exists. Furthermore, the existence of an
equilibrium model is equivalent to Π ≡s Π \ {⊥ ← ¬sol}.

We can retain decidability for SAT and SE when the programs considered are finitely
groundable.

Definition 40 (Finite Groundability). Let σ be some semiring signature and let Π
be an AC-program over σ. Then Π is finitely groundable if there is a signature σ′ =
⟨D, P, X , S, r⟩, where D is finite, such that the equilibrium models of Π over σ are the
same as the equilibrium models over σ′.

Let us call a semiring computable if all operators ⊕, ⊗, −,−1 , > are computable.

Theorem 41. For finitely groundable programs over σ′ = ⟨D, P, X , S, r⟩ (where D is
finite) that only use computable semirings, SAT and SE are decidable.

61

2. General Quantitative Stream Reasoning

Proof. In the general case, we can eliminate quantifiers by replacing universally quantified
formulas with finite conjunctions over all the substitutions and existentially quantifies
formulas with finite disjunctions over all the substitutions.

For ground programs we have decidability when all the semirings are computable.

We can ensure finite groundability by limiting value invention, i.e. constraints of the
form X =R α(Y), and value guessing. For the latter, we adapt domain restrictedness
from [NSS99].

Definition 42 (Domain Restrictedness). An algebraic constraint is domain restricted in
variables X, if it is of the form

k ∼R ¬¬α(X) ∗ (α(X) → β(X)) ∗ γ(X),

where α(X), β(X) are syntactically domain independent and all atoms in γ(X) are locally
ground.

Intuitively, only constants “known” by predicates in α can be “transferred” to predicates
in β, and γ assigns a weight to each substitution. The pattern is explained less generally
in Section 2.3.4.

Theorem 43. Let Π be a safe program over σ without value invention, where all
algebraic constraints in heads are domain restricted. Then Π is finitely groundable over
σ′ = ⟨D, P, X , S, r⟩, where D is the subset of domain values that occur in Π.

Proof. Let I be a σ-interpretation s.t. (I, I, T) |= Π. Then for I ′ obtained from I by
removing all atoms that contain constants not from D, we have (I ′, I, H) |= Π. This can
be seen as follows: Assume r ∈ Π with global variables x1, . . . , xn. Since r is safe and
does not contain value invention, the body of r can only be satisfied for substitutions
of the variables with elements from D. Therefore, if the head of r is an atom p(x), we
can only derive p(ξ) for substitutions from D and therefore, if the rule was satisfied
previously, it is still satisfied.

Otherwise, if the head of r is a constraint, we know that it is domain restricted, i.e. of
the form

k ∼R ¬¬α(X) ∗ (α(X) → β(X)) ∗ γ(X),

where α(X), β(X) are syntactically domain independent and all atoms in γ(X) are locally
ground.

Let ξ be some assignments to X over the original domain.

We consider first ¬¬α(ξ). It holds that

�¬¬α(ξ)�R(IH) = e⊕ ⇐⇒ �¬α(ξ)�R(IH) = e⊗ ∨ �¬α(ξ)�R(IT) = e⊗

62

2.3. Truth Level Quantitative Reasoning

⇐⇒ �α(ξ)�R(IH) = e⊕ ∧ �α(ξ)�R(IT) = e⊕ ∨ �α(ξ)�R(IT) = e⊕
⇐⇒ �α(ξ)�R(IT) = e⊕

Therefore this part of the formula is not influenced by I ′.

Secondly we consider α(ξ) → β(ξ). We only need to consider this value if �¬¬α(ξ)�R(IH)
is unequal to zero, i.e. if �α(ξ)�R(IT) is unequal to zero. Now if �α(ξ) → β(ξ)�R(IT) is
unequal to zero this implies that �β(ξ)�R(IT) is unequal to zero. If all the values in ξ are
from D, there is no change. Otherwise we know that �α(ξ)�R(IH) = �β(ξ)�R(IH) = e⊕
since α(X) and β(X) are syntactically domain independent and therefore have value e⊕
for values that are not mentioned in the interpretation I ′ (see proof of the invariance
of the support for syntactically domain independent weighted formulas). It follows that�α(ξ) → β(ξ)�R(IT) is also unequal to zero.

Since γ(X) contains only locally ground atoms, the restriction of the interpretation to I ′

does not change the value of γ(ξ).

Therefore

�¬¬α(X) ∗ (α(X) → β(X)) ∗ γ(X)�R(IH) = �¬¬α(X) ∗ (α(X) → β(X)) ∗ γ(X)�R(IT)

and

IH |= k ∼R ¬¬α(X) ∗ (α(X) → β(X)) ∗ γ(X)
⇐⇒ IT |= k ∼R ¬¬α(X) ∗ (α(X) → β(X)) ∗ γ(X).

We see that since (I, I, T) |= Π also (I ′, I, T) |= Π. Therefore I can only be an
equilibrium model if it contains only constants from D, which implies that Π is finitely
groundable over σ′

It follows that we can use domain restrictedness to retain decidability.

Theorem 44. Let Π be a safe program without value invention, where all algebraic
constraints in rule heads are domain restricted. If all semirings in Π are computable,
then both SAT and SE are decidable.

Proof. This result follows easily from Theorems 41 and 43.

However, prohibiting value invention entirely is unnecessarily strong. Weaker restrictions
like aggregate stratification [FPL11] or argument restrictedness [LL09] can be adapted to
ASP(AC). The resulting programs are also finitely groundable [Cal+08a] and therefore
decidable.

63

2. General Quantitative Stream Reasoning

2.3.6 Summary & Open Issues
We have seen that algebraic constraints unify many previously proposed constructs for
more succinct answer set programs, with low practical restrictions and no increase in
the ground complexity. Thus, algebraic constraints satisfy our requirements for being a
general uniform extension that allows for succinct specifications of quantitative constraints.
Even further than that, we can specify whether constraints in rule-heads are minimized
or guessed, can explicitly represent values from different sets and give an interesting
alternative semantics for conditionals.

We currently consider only a fragment of the weighted formulas. It would be interesting
to see in the future, if other new and useful constructs can be expressed with a different
fragment. Furthermore, an in-depth study of suitable conditions for finite groundability
and the non-ground complexity in this context are indispensable for possible future work
on an implementation. For this purpose an interesting problem needs to be solved: On
the one hand, we do not want to restrict the expressivity of our framework but, on the
other hand, we need to find conditions to ensure that a priori that we only need to
consider a finite, preferably small domain. Work from the field of finite groundability
[LL09; BL10] of programs with function symbols might be of use.

In terms of our main goal of finding a general framework for quantitative and temporal
reasoning, algebraic constraints are not only sufficiently general. They are also promising,
when it comes to an integration with algebraic measures and a temporal domain. We
can use the general applicability of HT and Weighted Logic and combine ASP(AC) with
temporal reasoning and algebraic measures, which should be much simpler for ASP(AC)
than for others since both Weighted and HT logic facilitate generalization. Furthermore,
since algebraic constraints and algebraic measures both make use of weighted logic, their
integration should go rather smoothly without much additional effort.

2.4 Combining Stream Reasoning and Quantitative
Reasoning

In the previous two sections, we introduced two general and uniform extensions of ASP
that allow us to express quantitative reasoning tasks over the set of answer sets and
quantitative constraints that enable the succinct specification of answer sets. These
extensions are algebraic measures and algebraic constraints, respectively. Recalling
our initial goal, we see that we need a general framework that extends ASP to the
temporal domain and subsequently its integration with algebraic measures and algebraic
constraints.

There already exist general frameworks for temporal reasoning with answer set semantics,
among them LARS [BDE18], a Logic-based Framework for Analytic Reasoning over
Streams, Temporal Equilibrium Logic (TEL) [CV07; Cab+18], and Metric Temporal
Equilibrium Logic (MEL) [Cab+20a]. All of these logics provide a suitable basis for an
general extension combining temporal and quantitative reasoning.

64

2.4. Combining Stream Reasoning and Quantitative Reasoning

TEL and MEL have the benefit of being defined as Equilibrium Logic on the basis of Here-
and-There semantics, which we also used in the definition of algebraic constraints, whereas
the answer set semantics of LARS is defined using the so called FLP-reduct [FLP04].
While these semantics align on normal answer set programs, this is not the case in general.
On the other hand, LARS has access to general window functions, which neither TEL
and MEL have. Window functions are intuitively interpretation modifiers that filter out
some of the true atoms in an interpretation. They allow LARS to capture not only many
of the temporal operators from MEL and TEL but also more advanced features that
cannot be expressed in MEL or TEL as succinctly. We, therefore, use LARS as the basis
for our extension and address the issue of the difference in non-monotonicity by using
a previously identified fragment of LARS [BDE16], where HT-semantics is defined and
aligns with the standard semantics.

In Section 2.4.1 we first introduce the standard semantics for LARS, recall the fragment
LARSHT , where it aligns with HT-semantics by restating the HT-semantics in terms
of sorted first-order HT Logic augmented with window functions. This enables the
integration of LARSHT with algebraic constraints as well as algebraic measures by
deriving the corresponding weighted version over semirings of sorted first-order HT Logic
augmented with window functions in Section 2.4.2. We follow up the definitions by an
extensive example, before we analyze the ground expressivity and complexity of LARS
measures without algebraic constraints in Section 2.4.3 and Section 2.4.4, respectively.
Finally, we conclude with a discussion and future perspectives in Section 2.4.5.

2.4.1 LARS
LARS [BDE18] is a stream reasoning framework, in which the observed data may vary
between the different time points in the considered, discrete interval. As previously, we
consider a first-order context, meaning we assume a set P of predicates, domain D and
set X of variables to be given. Then, an atom is of the form p(t1, . . . , tn) for p ∈ P,
ti ∈ D ∪ X , and n = arity(p), the arity of the predicate p. It is variable free if ti ∈ D for
all i = 1, . . . , n. As before, we denote by HB(P, D) the set of all atoms over predicates
in P and domain D. Furthermore, we use HB as a shorthand for a Herbrand base
HB(P, D), where P and D are left implicit.

Interpretations of LARS formulas are formalized by streams S, which are pairs (T, v),
where T = {t, t + 1, . . . , t + n} ⊆ N is the finite interval of discrete timepoints from t to
t + n, for some n ∈ N, and v : T → 2HB expresses that at time t′ ∈ T the atoms v(t′)
appear in the stream. We say a stream S′ = (T ′, v′) is a substream of S, if T ′ ⊆ T and
for all t′ ∈ T ′ : v′(t′) ⊆ v(t′), denoted S′ ⊆ S.

Definition 45 (Window Function). A window function ϖ given a stream S and time
point t restricts S to a substream ϖ(S, t) ⊆ S.

Intuitively such window functions filter the data in a stream and give a snapshot of the
data.

65

2. General Quantitative Stream Reasoning

Example 18 (Window Function). An example of a window function, is given by aroundn,
where for a stream S = (T, v) and t ∈ T

aroundn(S, t) = (T ′, v′),
T ′ = T ∩ {t − n, t − n + 1, . . . , t + n},

v′(t′) = v(t′) for t′ ∈ T ′.

I.e., aroundn restricts a stream to only n time points around t on both sides. Similarly,
the window functions future and past restrict a stream to the future and past time points,
respectively.

The above example is very specific, whereas the definition of window functions is very
general: it allows literally any function, as long as it always returns a substream of the
stream given as input. Other examples include restrictions to the data occurring in the
last three time points or the latest 20 atoms.

LARS formulas are defined by the grammar

α ::= p | ¬α | α ∧ α | α ∨ α | ✸α | ✷α | @tα | ⊞ϖα | ▷α,

where t ∈ N ∪ X , p is an atom and ϖ is a window function. A LARS formula is variable
free if all of its atoms are variable free.

Here, ▷ is the reset operator, which resets a stream S ⊆ S⋆ obtained by applying window
functions(s) to the original stream S⋆. It allows for more succinct program specifications.
We omit non-temporal quantifiers and use grounding semantics to introduce the standard
LARS semantics.

In the standard semantics, we use the shorthands ⊥ := p ∧ ¬p, ⊤ := ¬⊥ and α →
β := ¬α ∨ β. A (pointed) LARS interpretation is a tuple I = (S⋆, S, t) of streams
S⋆ = (T ⋆, v⋆), S = (T, v) and a time point t ∈ T ⋆, where S ⊆ S⋆. Satisfaction of a
variable free LARS formula α by I, in symbols I |= α, is inductively defined by

I |= p ⇐⇒ p ∈ v(t), for p ∈ HB
I |= ¬α ⇐⇒ I ̸|= α

I |= α ∧ β ⇐⇒ I |= α and I |= β

I |= α ∨ β ⇐⇒ I |= α or I |= β

I |= ✸α ⇐⇒ ∃t′ ∈ T : (S⋆, S, t′) |= α

I |= ✷α ⇐⇒ ∀t′ ∈ T : (S⋆, S, t′) |= α

I |= @t′α ⇐⇒ (S⋆, S, t′) |= α and t′ ∈ T

I |= ⊞ϖα ⇐⇒ (S⋆, ϖ(S, t), t) |= α

I |= ▷α ⇐⇒ (S⋆, S⋆, t) |= α

We identify the pair (S, t) with the LARS interpretation (S, S, t).

66

2.4. Combining Stream Reasoning and Quantitative Reasoning

Definition 46 (LARS Program). A LARS program is a finite set Π of rules r of the
form r = α ← β, where α, β are LARS formulas. We may write α and ¬β as a shorthand
for α ← ⊤ and ⊥ ← β, respectively.

The grounding ground(Π) of a program Π over P, V and D is given by the set

ground(Π) = {rσ | r ∈ Π, σ : V → D},

where σ is called a substitution and rσ denotes the result of applying σ to r, which means
that every variable V that occurs in r is replaced by σ(V).

A rule r = α ← β for variable free α and β, is satisfied at a time point t by a stream S
(written (S, t) |= r), if (S, t) |= β → α. Programs are seen as the conjunction of the rules
in their grounding; thus, a stream S satisfies a program Π at time t (written (S, t) |= Π),
if for all r ∈ ground(Π), it holds that (S, t) |= r.

We distinguish between extensional and intensional atoms contained in HBϵ and HBI

respectively. Extensional atoms represent the input data (and therefore do not occur in
rule heads).

Definition 47 (Data and Interpretation Stream). A data stream is a stream D = (T, v)
where v asserts only extensional atoms, i.e. ∀t ∈ T : v(t) ⊆ HBϵ. A stream S = (T, v′)
is an interpretation stream of D, if D ⊆ S and v, v′ agree on HBϵ.

Finally, the standard answer sets semantics is defined using the FLP-reduct [FLP04],
which for a program Π with respect to a pair (S, t), is given by

ΠS,t = {α ← β ∈ Π | (S, t) |= β} .

Definition 48 (Answer Stream). An interpretation stream S of D is an answer stream
for Π at t, if (S, t) satisfies Π and no interpretation stream S′ ⊊ S of D exists s.t. (S′, t)
satisfies ΠS,t. We denote the set of such streams by AS(Π, D, t).

Example 19 (Metro Connections). In the original metro connections example, we
assumed the predicate depart to be given in the form of input facts. It is, however, not
completely realistic in most cases that we know exactly when a given metro leaves. Instead,
we usually know a scheduled departure time and it is likely that the metro leaves around
that time.

Assuming we are given the metro schedule as input, we can model that there are different
possibilities for the actual departure time around the scheduled time by using the following
rule:

@T ⊞around3 ✸depart(M, S) ← @T scheduled(M, S) (2.35)

67

2. General Quantitative Stream Reasoning

Here, the at operators @T with variable time T are intuitively the same as universally
quantifying the rule

⊞around3✸depart(M, S) ← scheduled(M, S) (2.36)

over the temporal domain.

Note that in LARS the input predicates are explicitly separated from the rest: they are
the extensional atoms in HBϵ.

time

D

1 2 3 4 5 6 7 8 9 10

scheduled(“U1”, kplatz)

time

D

S1
1 2 3 4 5 6 7 8 9 10

scheduled(“U1”, kplatz)

depart(“U1”, kplatz)

time

D

S2
1 2 3 4 5 6 7 8 9 10

scheduled(“U1”, kplatz)

depart(“U1”, kplatz)
depart(“U1”, kplatz)

Figure 2.1: Different streams S1, S2 that extend a data stream D in the metro connections
example.

For illustration purposes, we consider the answer streams of the above rule given the
data stream D = (T, v), where T = {1, 2, . . . , 10} and v(t) = {scheduled(“U1”, kplatz)},
if t = 4 and v(t) = ∅, otherwise. It is graphically illustrated as the top-most stream in
Figure 2.1. Since scheduled(“U1”, kplatz) holds at time t = 4, we need to satisfy also
⊞around3✸depart(“U1”, kplatz) at time t = 4. This implies that depart(“U1”, kplatz) must
hold during at least one time point in {1, 2, . . . , 7}. Therefore, D is not an answer stream.
However, S1 and S2 in Figure 2.1 satisfy this requirement.

Furthermore, since we are not interested in streams that only satisfy the rule but are
answer streams of it, there cannot be more than one time point, where depart(“U1”, kplatz)

68

2.4. Combining Stream Reasoning and Quantitative Reasoning

holds. Accordingly, out of the streams S1 and S2 in Figure 2.1, only S1 is an answer
stream, since S2 is not minimal.

For more background on LARS and a study of properties see [BDE18].

LARSHT

As mentioned before, the standard semantics for LARS is unsuitable for an integration
with algebraic constraints, which are defined using Here-and-There semantics. We
therefore consider LARSHT , which is LARS under Here-and-There semantics as in
[BDE16] and show equivalence to the standard semantics on a fragment of LARS.

Algebraic constraints are defined for sorted first-order Here-and-There Logic. Since we
want to integrate LARSHT and algebraic constraints, we do not introduce Here-and-
There semantics directly for LARS formulas but extend the semantics of sorted first-order
Here-and-There Logic to include window functions and assign LARS formulas a semantics
via translation this logic.

This way we do not have to handle first-order and temporal quantifiers explicitly. Fur-
thermore, it allows us to give a simpler extension to semiring weighted logics in the next
section.

We start by adding window functions to our logic.

Definition 49 (Timed Signature, Syntax). A signature σ = ⟨D, P, X , S, r⟩ is a timed
signature, if

1. a distinguished time sort T is in S,

2. D contains N,

3. r : S → 2D maps T to N, and

4. a distinguished time interval predicate T is in P.

timed σ-formulas are of the form

ϕ ::= ⊥ | p(x, t) | ϕ → ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃yϕ | ∀yϕ | ⊞ϖ,tϕ | ▷ϕ, (2.37)

where p ∈ P, x = x1, . . . , xn, xi ∈ D ∪ X , t ∈ N or s(t) = T , y ∈ X , and ϖ is a window
function; p(x, t) is called a σ-atom. We define ¬ϕ as ϕ → ⊥. A (timed) σ-sentence is a
(timed) σ-formula without free variables.

To apply window functions on σ-interpretations, we need to ensure that they correspond
to streams. We thus introduce timed σ-interpretations and formalize the application of
window functions on them.

69

2. General Quantitative Stream Reasoning

Definition 50 (Timed σ-interpretation, Associated Stream/Interpretation). Let σ =
⟨D, P, X , S, r⟩ be a timed signature. A timed σ-interpretation is a σ-interpretation I s.t.

T (I) = {t ∈ D | T (t) ∈ I},

the time interval of I, is of the form T (I) = {t, t + 1, . . . , t + n} for some t, n ∈ N.

Given a timed σ-interpretation I, the associated stream S(I) = (T (I), v(I)), where

v(I)(t) = {p(x) | p(x, t) ∈ I}
is the valuation function of I.

Similarly, given a stream S = (T, v), the associated timed σ-interpretation I(S) is given
by

I(S) = {p(x, t) | p(x) ∈ v(t), t ∈ T} ∪ {T (t) | t ∈ T}.

Naturally, when we want to apply a window function ϖ at time t to a timed σ-
interpretation I, we instead apply it the associated stream S(I), resulting in ϖ(S(I), t),
and take the associated timed σ-interpretation, resulting in

ϖ(I) = I(ϖ(S(I), t)).

Using this correspondence it becomes clear how we can extend the HT Semantics to the
extended logic.

Definition 51 (Timed HT-σ-interpretation, HT Semantics). Let IH∗, IH , IT ∗, IT be
timed σ-interpretations, s.t. IH ⊆ IT and IH∗ ⊆ IT ∗. Then (I∗, I) = (IH∗, IT ∗, IH , IT)
is a timed σ-HT-interpretation and Iw = (I∗, I, w), for w ∈ {H, T}, is a timed pointed
σ-HT-interpretation.

Satisfaction of a timed σ-sentence ϕ with respect to a timed pointed σ-HT-interpretation
Iw = (IH∗, IT ∗, IH , IT , w) is defined as follows, where we have the reflexive order ≥ on
{H, T}, with T ≥ H:

Iw ̸|=σ ⊥
Iw |=σ p(x) ⇐⇒ p(x) ∈ Iw∗

Iw |=σ ϕ → ψ ⇐⇒ Iw′ ̸|=σ ϕ or Iw′ |=σ ψ for all w′ ≥ w

Iw |=σ ϕ ∨ ψ ⇐⇒ Iw |=σ ϕ or Iw |=σ ψ

Iw |=σ ϕ ∧ ψ ⇐⇒ Iw |=σ ϕ and Iw |=σ ψ

Iw |=σ ∃xϕ(x) ⇐⇒ Iw |=σ ϕ(ξ), for some ξ ∈ r(s(x))
Iw |=σ ∀xϕ(x) ⇐⇒ Iw |=σ ϕ(ξ), for all ξ ∈ r(s(x))

(IH∗, IT ∗, IH , IT , w) |=σ ⊞ϖ,tϕ ⇐⇒ (IH∗, IT ∗, ϖ(IH , t), ϖ(IT , t), w) |=σ ϕ

(I∗, I, w) |=σ ▷ϕ ⇐⇒ (I∗, I∗, w) |=σ ϕ

When T is a set of σ-sentences, then Iw |=σ T if ∀ϕ ∈ T : Iw |=σ ϕ.

70

2.4. Combining Stream Reasoning and Quantitative Reasoning

Clearly, this does not define a semantics for LARS formulas. However, we can obtain an
HT semantics for LARS formulas, by using the following embedding of LARS formulas
into σ-formulas.

Definition 52 (LARSHT -Embedding). We define the LARSHT -embedding E for a LARS
formula α and time point t ∈ N or time variable t ∈ X , s.t. s(t) = T , via structural
induction on the formula.

E(p(x), t) = p(x, t)
E(¬α, t) = ¬E(α, t)

E(α ∧ β, t) = E(α, t) ∧ E(β, t)
E(α ∨ β, t) = E(α, t) ∨ E(β, t)

E(✸α, t) = ∃t′T (t′) ∧ E(α, t′)
E(✷α, t) = ∀t′¬T (t′) ∨ E(α, t′)

E(@t′α, t) = T (t′) ∧ E(α, t′)
E(⊞ϖα, t) = ⊞ϖ,tE(α, t)

E(▷α, t) = ▷E(α, t)

Here, t′ is a new variable with s(t′) = T .

The LARSHT semantics is then simply given by the semantics of the embedded formula
over a suitable signature.

Definition 53 (LARSHT Semantics). Let Π be a LARS program over P, V, D and let
var(r) denote the variables of a LARS rule r. Furthermore, let σ be the timed signature
⟨D, P, V, S, r⟩. Then, given pointed LARS interpretations (SH∗, SH , t) and (ST ∗, ST , t),
where Sw∗ = (T w∗, vw∗) and Sw = (T w, vw) for w ∈ {H, T}, the satisfaction of Π with
respect to the pointed LARSHT -interpretation (SH∗, SH , ST ∗, ST , w, t) is defined by

(SH∗, SH , ST ∗, ST , w, t) |= Π
⇐⇒

(I(SH∗), I(ST ∗), I(SH), I(ST), w) |=σ

�
α←β∈Π

∀x∈var(α←β)E(β, t) → E(α, t),

where ∀x∈var(r) is stands for ∀x1∀x2 . . . ∀xn if var(r) = {x1, . . . , xn} and for xi it holds
that r(s(xi)) = D.

As before, the (HT) answer streams of a program are defined as the equilibrium models.

As already mentioned in the introduction, the LARSHT semantics and the standard
semantics do not align in general.

Example 20 (Semantic Difference). Consider the single rule program

Π = {a ← ¬¬a}.

71

2. General Quantitative Stream Reasoning

There are two possible streams which may be answer sets over the data stream D =
({1}, {1 .→ ∅}), namely S1 = ({{1}, {1 .→ ∅}) and S2 = ({1}, {1 .→ {a}}). The first is
clearly both an answer stream and its associated interpretation is an equilibrium model
at time t = 1, since it satisfies the rule and there is no substream of S1 that is an
interpretation stream of D.

On the other hand, for the second stream this is not so clear. Under the standard
semantics, we need to evaluate the FLP-reduct, resulting in

ΠS2,1 = Π,

since ¬¬a is satisfied. However, since S1 is a substream of S2 that satisfies the original
program and, therefore, also the reduct, this means that S2 is not an answer stream
according to the standard semantics.

Let Ii be the interpretation associated to Si. Then (I1, I2, I1, I2, H) does not satisfy the
formula

E(¬¬a → a, 1) = ¬¬a(1) → a(1),

since the truth of ¬¬a(1) at H is equal to the conjunction of the negations of ¬a(1) at H
and at T , which both evaluate to false. Thus, ¬¬a(1) is true at H, which implies that
also a(1) must be true at H. This is however not the case, since S1 = ({1}, {1 .→ ∅}).

There are fragments of LARS where the HT semantics and the standard semantics align.
We do not go into detail here but refer the interested reader to [BDE16], where such a
fragment is given. In the following, we will not restrict ourselves to such a fragment but
use the HT semantics regardless. This way, we obtain the semantics of the fragment as a
special case but allow more general LARS formulas, whose semantics may be different
from the standard semantics, allowing the definition of a semantics for the general logic.
Arguments for whether the standard semantics or the HT semantics should be preferred
can be found on both sides. We stick to the HT semantics simply for the sake of simplicity,
as it nevertheless illustrates the power of our approach.

Another problem that needs to be handled is that when general window functions are
allowed, we lose persistence, which is generally expected to hold in a Here-and-There
logic1. Persistence, says that if a formula holds at H, then it also holds at T .

Example 21. A counterexample for persistence can be constructed using the following
window function pick2(S, t), over the nullary predicates {a, b, c} (i.e., predicates without
inputs), which picks the first two atoms that hold in lexicographical order at time t and
restricts the time interval to {t}.

Consider the streams SH = ({1}, {1 .→ {a, c}}) and ST = ({1}, {1 .→ {a, b, c}}).
Since SH is a substream of ST for the associated interpretations IH , IT it holds that

1Additionally, one may argue that the semantics is not well defined, since the subset relation between
IH and IT is not preserved

72

2.4. Combining Stream Reasoning and Quantitative Reasoning

(IH , IT , IH , IT , w) is a pointed timed interpretation. However, while

(IH , IT , IH , IT , H) |= ⊞pick2,1c

holds,

(IH , IT , IH , IT , T) |= ⊞pick2,1c

does not hold, which contradicts persistence. This is the case since pick2(SH , 1) =
({1}, {1 .→ {a, c}}) but pick2(ST , 1) = ({1}, {1 .→ {a, b}}).

We could restore persistence by changing the definition of the HT logic, however, the
resulting behavior would be unintuitive regardless. Instead, we choose to restrict ourselves
to monotone window functions, as in [BDE16].

Definition 54 (Monotonicity). We call a window function ϖ monotone, if for all streams
S1 = (T1, v1) and S2 = (T2, v2) it holds that

S1 ⊆ S2 implies ϖ(S1, t) ⊆ ϖ(S2, t) for all t ∈ T1,

i.e., ϖ preserves substreams. If T1 = T2 , this extends to time intervals, i.e., ϖ(Si, t) =
(T ′

i , v′
i) implies T ′

1 = T ′
2 for all t ∈ T1.

If we only use monotone window functions, persistence is maintained.

Lemma 55 (Persistence). Let ϕ be a timed σ-sentence that only uses monotone window
functions and (IH∗, IT ∗, IH , IT) be a timed σ-HT-interpretation. Then it holds that

(IH∗, IT ∗, IH , IT , H) |= ϕ implies (IH∗, IT ∗, IH , IT , T) |= ϕ

Proof. The proof proceeds by structural induction on the formula ϕ. The result is
well-known, except for the cases where ϕ = ⊞ϖ,tψ and ϕ = ▷ψ. The latter case is clear.

For the case ϕ = ⊞ϖ,tψ we need to consider whether

(IH∗, IT ∗, ϖ(IH , t), ϖ(IT , t), H) |= ψ implies (IH∗, IT ∗, ϖ(IH , t), ϖ(IT , t), T) |= ψ.

This also immediately follows from the induction hypothesis, since ϖ is monotone.

This concludes the gathering of the prerequisites for a general framework for temporal
and quantitative reasoning under answer set semantics, which we introduce next.

73

2. General Quantitative Stream Reasoning

2.4.2 Algebraic LARS
In the following, we introduce algebraic LARS, a general framework capable of handling
quantitative reasoning both over the set of models as well as during the determinations
of models over a temporal domain.

As a basis, we use, on the one hand, LARSHT restricted to monotone window functions,
for the logical specification and weighted LARSHT for the quantitative specification.
Thus, we proceed by first introducing weighted LARSHT and finally algebraic LARS as
algebraic LARS measures over LARS programs with algebraic constraints and weighted
LARSHT formulas.

Definition 56 (Timed Syntax). For a timed signature σ = ⟨D, P, X , S, r⟩, the weighted
timed σ-formulas over the semiring R = (R, ⊕, ⊗, e⊕, e⊗) are of the form

α ::= k | x | ϕ | α →R α | α + α | α ∗ α | −α | α−1 | Σyα | Πyα | ⊞ϖ,tα | ▷α,

where k ∈ R, x, y ∈ X s.t. r(s(x)) ⊆ R (i.e., x takes only values from R, whereas y
may be a variable that takes values from the whole domain), t ∈ N or s(t) = T , y ∈ X ,
ϖ is a monotone window function, and ϕ is a timed σ-formula. The use of − and −1

requires that ⊕ and ⊗ are invertible; the use of Πy requires that ⊗ is commutative. We
define ¬Rα = α →R e⊕. A weighted timed σ-sentence is a variable-free weighted timed
σ-formula.

As with the unweighted version, the main difference between timed and untimed syntax
is the inclusion of the interpretation modifying operators ⊞ϖ,t and ▷. Apart from this,
the only change is that we allow unweighted timed formulas ϕ.

Accordingly, we only need to extend the definition of the weighted semantics (Definition 18)
by the semantics for the interpretation modifying operators:

Definition 57 (Timed Semantics). Let σ = ⟨D, P, X , S, r⟩ be a timed signature. The
inductive definition of the semantics of a weighted σ-sentence over semiring R w.r.t.
Iw = (IH∗, IT ∗, IH , IT , w) is given by

�k�σ
R(Iw) = k, for k ∈ R�−α�σ
R(Iw) = −(�α�σ

R(Iw))�α−1�σ
R(Iw) = (�α�σ

R(Iw))−1

�ϕ�σ
R(Iw) =

�
e⊗, if Iw |=σ ϕ,
e⊕, otherwise. , for timed σ-formulas ϕ

�α + β�σ
R(Iw) = �α�σ

R(Iw)⊕�β�σ
R(Iw)�α ∗ β�σ

R(Iw) = �α�σ
R(Iw)⊗�β�σ

R(Iw)

�α →R β�σ
R(Iw) =

�
e⊗, if �α�σ

R(Iw′) = e⊕ or �β�σ
R(Iw′) ̸= e⊕ for all w′ ≥ w,

e⊕, otherwise.

74

2.4. Combining Stream Reasoning and Quantitative Reasoning

�Σxα(x)�σ
R(Iw) =

� �
ξ∈supp⊕(α(x),Iw)�α(ξ)�σ

R(Iw), if supp⊕(α(x), Iw) is finite,

undefined, otherwise.

�Πxα(x)�σ
R(Iw) =

��
�

ξ∈supp⊗(α(x),Iw)�α(ξ)�σ
R(Iw), if supp⊗(α(x), Iw) is finite,

e⊕, if r(s(x)) \ supp⊕(α(x), Iw) ̸= ∅,
undefined, otherwise.

and extended to weighted timed σ-sentences via

�⊞ϖ,tα�σ
R(IH∗, IT ∗, IH , IT , w) = �α�σ

R(IH∗, IT ∗, ϖ(IH , t), ϖ(IT , t), w)�▷α�σ
R(IH∗, IT ∗, IH , IT , w) = �α�σ

R(IH∗, IT ∗, IH∗, IT ∗, w).

Again note that the semantics is the same as in Definition 18 except for the addition of
the interpretation modifying operators.

We define weighted LARS formulas by extending weighted timed σ-formulas with temporal
operators and assigning them a semantics by an embedding into weighted timed σ-formulas.

Definition 58 (Weighted LARS Syntax). For a timed signature σ = ⟨D, P, X , S, r⟩, the
weighted LARS formulas over the semiring R = (R, ⊕, ⊗, e⊕, e⊗) are of the form

α ::= k | x | ϕ | α →R α | α + α | α ∗ α | −α | α−1 | Σyα | Πyα

| @tα | ✸α | ✷α | ⊞ϖ,tα | ▷α,

where k ∈ R, x, y ∈ X s.t. r(s(x)) ⊆ R (i.e., x takes only values from R, whereas y may
be a variable that takes values from the whole domain), t ∈ N or s(t) = T , y ∈ X , ϖ is a
monotone window function, and ϕ is a timed σ-formula. The use of − and −1 requires
that ⊕ and ⊗ are invertible; the use of Πy requires that ⊗ is commutative. We define
¬Rα = α →R e⊕.

The embedding of LARS formulas is extended to weighted LARS formulas as follows.

Definition 59 (Weighted Embedding). We define the weighted embedding Ew of a
weighted LARS formula α and a time point t ∈ N or time variable t ∈ X , s.t. s(t) = T ,
via structural induction on the formula.

Ew(k, t) = k

Ew(x, t) = x

Ew(ϕ, t) = E(ϕ, t)
Ew(α →R β, t) = Ew(α, t) →R Ew(β, t)

Ew(α + β, t) = Ew(α, t) + Ew(β, t)
Ew(α ∗ β, t) = Ew(α, t) ∗ Ew(β, t)

Ew(−α, t) = −Ew(α, t)

75

2. General Quantitative Stream Reasoning

Ew(α−1, t) = (Ew(α, t))−1

Ew(Σyα, t) = ΣyEw(α, t)
Ew(Πyα, t) = ΠyEw(α, t)
Ew(✸α, t) = Σt′T (t′) ∗ Ew(α, t′)
Ew(✷α, t) = Πt′¬T (t′) + T (t′) ∗ Ew(α, t′)

Ew(@t∗α, t) = T (t∗) ∗ Ew(α, t∗)
Ew(⊞ϖα, t) = ⊞ϖ,tEw(α, t)

Ew(▷α, t) = ▷Ew(α, t)

Here, t′ is a new variable with s(t′) = T .

The rest of the definitions of programs with algebraic constraints are kept as they are in
Section 2.3, except that we now require signatures, interpretations, formulas and weighted
formulas to be timed. For algebraic constraints k ∼R α over weighted LARS formulas α,
we take the semantics of algebraic constraints over timed formulas and replace α by the
embedded formula Ew(α, t).

With this in mind, we define LARS AC-rules and AC-programs.

Definition 60 (AC-LARS Rule, AC-LARS Program). Let σ = ⟨D, P, X , S, r⟩ be a
timed semiring signature over semiring R1, . . . , Rk. An AC LARS program is a set of
AC-LARS rules of the form

r = H(r) ← B(r) = ϕ ← ψ1, . . . , ψn, ¬θ1, . . . , ¬θm,

where each ϕ, ψi, θj is either a LARS formula, whose embedding is a timed σ-formula, or
an algebraic constraint, whose weighted LARS formula’s embedding is a weighted timed
σ-formula. We require for each variable x occurring in r that i ∈ s(x) iff x occurs in
place of a value from the semiring Ri. Recall here that s assigns a variable its sort and
for a semiring signature r(s(x)) ⊆ Ri if i ∈ s(x).

The semantics of an AC-LARS program with respect to a pointed LARSHT -interpretation
(SH∗, SH , ST ∗, ST , w, t) is that of the program obtained by replacing every (resp. weighted)
LARS formula α by its (resp. weighted) embedding E(α, t) (resp. Ew(α, t)), when evaluated
under the pointed timed HT-interpretation (I(SH∗), I(SH), I(ST ∗), I(ST), w). Answer
streams are defined as previously.

The combination with measures is now rather easy.

Definition 61 (Algebraic AC-LARS Measure). Let σ = ⟨D, P, X , S, r⟩ be a timed
semiring signature over semirings R1, . . . , Rk. An algebraic AC-LARS measure over σ
is a tuple µ = ⟨Π, α, R⟩, where

• Π is an AC-LARS program over σ,

76

2.4. Combining Stream Reasoning and Quantitative Reasoning

• α(t) is a weighted LARS formula whose only free variable is t over the semiring R,
whose embedding is a timed weighted σ-formula, and

• R is a semiring from R1, . . . , Rk.

Let D be a data stream and let t be a time point. Then the weight of an interpretation
stream S of D is

µ(S, D, t) =
� �Ew(α, t)�R(S, S, S, S, H), if S ∈ AS(Π, D, t),

e⊕, otherwise.

Furthermore, let p(x) be a variable-free atom and suppose AS(Π, D, t) is finite, then the
result of the query µ(p(x), D, t) is given by

µ(p(x), D, t) = �
S∈AS(Π,D,t),(S,t)|=p(x)µ(S, D, t).

Last but not least, if AS(Π, D, t) is finite, then the overall weight µ(Π, D, t) is given by

µ(Π, D, t) = �
S∈AS(Π,D,t)µ(S, D, t).

This concludes the introduction of algebraic LARS, our general framework for quantitative
reasoning over a temporal domain.

Clearly, since LARS is an extension of non-ground ASP, we inherit both the previous
quantitative reasoning capabilities over the set of solutions that algebraic measures over
answer set programs had, as well as the quantitative reasoning capabilities used to
succinctly specify the set of solutions that we introduce by adding algebraic constraints
to answer set programs. Since algebraic LARS not only combines algebraic measures and
constraints but also adds and more importantly integrates the reasoning capabilities of
LARS in the temporal setting, we argue that algebraic LARS as a framework is uniform
and general enough. Thus, we have established our initial goal of finding a general
framework that combines expressive quantitative and temporal reasoning.

Example 22 (Metro Connections). We give a final version of the metro connections
example, where we make use of all the components of algebraic LARS to finally specify
a program that allows us to answer the initial question of how likely it is to arrive at a
store given that one leaves now and takes a specified series of metro connections.

We arrive at the algebraic AC-LARS measure µfin = ⟨Πfin, αfin, P⟩, where P is the
probability semiring, Πfin consists of the rules given in Figure 2.2. Here, we assume that
the following predicates are extensional and, thus, given in the data stream D:

• start(s), indicating the starting station s,

• goal(g), indicating the goal station g,

77

2. General Quantitative Stream Reasoning

@1location(S) ←start(S) (2.38)
@T location(S) ←@T ′ location(S), 0 =N @T ′enter(Id), T ′ =N T − 1 (2.39)

@T ϕdepart ←@T scheduled(Id, S), where
ϕdepart = ⊞around3 ✸depart(Id, S) (2.40)

@T location(S) ←@T exit(Id), @T depart(Id, S) (2.41)
1 =N @T ⊞future ✸αenter ←@T location(S), not goal(S), where

αenter =¬¬depart(Id, S) ∗ ¬ ▷ ⊞past✸exit(Id)
∗((depart(Id, S) ∗ ¬ ▷ ⊞past✸exit(Id)) → enter(Id)) (2.42)

@T on_metro(Id) ←@T enter(Id) (2.43)
@T on_metro(Id) ←@T ′on_metro(Id), not @T exit(Id), T ′ =N T − 1 (2.44)

{@T exit(Id)} ←@T on_metro(Id), @T depart(Id, S) (2.45)
←planned(M1, I1), planned(M2, I2), I2 =N I1 + 1,

id_of(M1, Id1), id_of(M2, Id2),
T1 =Rmax,+ T ∗ @T metro(Id1),
T2 =Rmin,+ T ′ ∗ @T ′metro(Id2), T1 <N T2 (2.46)

←✸metro(Id1), id_of(M, Id1),
@T 1enter(Id1), @T 1location(S),
1 <N id_of(M, Id2) ∗ ✸(location(S) ∗ depart(Id2, S))

(2.47)
←goal(S), not✸location(S) (2.48)

Figure 2.2: Rules of the final program for the metro connections example.

• id_of(m, id), indicating that the train with id id is driving the route of metro line
m,

• planned(m, idx), indicating that we plan to take the metro m as the idx-th connec-
tion, and

• scheduled(id, s), indicating that the train with id id is scheduled at station s

Specifically, the predicates start, goal, id_of and planned are static and only need to be
given for time point 1, whereas the predicate scheduled is dynamic, since it tells us at
each time point whether a train is scheduled at a station. Therefore, it may need to be
given at more than one time point.

Furthermore, we make the following assumptions:

1. We take each metro line at most once.

78

2.4. Combining Stream Reasoning and Quantitative Reasoning

2. If Id1, Id2 are two different metro lines, then there is at most one station S(Id1, Id2)
such that both lines connect to it. That is, when we swap from a metro with id Id1
to a metro with id Id2, then it must happen at station S(Id1, Id2).

1. and 2. together, imply that for a given (i) sequence of metro lines that we want to take,
(ii) a start station, and (iii) a goal station, there is exactly one sequence of stations that
we visit. Furthermore, for each station that we visit it is uniquely determined by which
metro(s) we are in, which we exit, and which we enter.
Note that the time interval T of a given data stream stream D = (T, v) limits the amount
of time we have to reach our goal. Alternatively, we could limit the time we have explicitly
by using a window function in the last rule.
The idea behind the program Πfin is that it determines from the given start station, goal
station and planned metro lines, when we are in which station/metro on our way to the
goal. Alternatively, the program may reject the given inputs, if a connection satisfying it
is impossible. Here, the rules in Equations (2.38), (2.39) and (2.41) determine that we
are at a location s at a given time point, if we start there, exit a train there or are there in
the previous time step and did not enter a train. Similarly, the rules in Equations (2.43)
and (2.44) state that we are on a metro, if we enter it or were on it previously and did
not leave it. The rules in Equations (2.42) and (2.45) tell us how we can enter and exit
trains. Namely, we can enter a train if it departs at the station we are at now, which
must not be the goal station. Furthermore, we must not have exited the train we enter
in the past. To exit a train we must be currently on it and at a station. Additionally,
the constraint in Equation (2.47) states that we need to enter the earliest possible train.
Last but not least, the constraints in Equations (2.46) and (2.48) ensure that we take the
planned route and end up at the goal station.
The interesting part is that the rule in Equation (2.40) encodes that scheduled trains
arrive at some time point around the time point where they are scheduled rather then
exactly when they are scheduled. This adds non-determinism to our program, which we
want to use to assign probabilities to answer streams. In order to assign the probabilities,
we use the weighted formula αfin, defined as follows:

αfin =✷ΠIdΠS¬scheduled(Id, S) + scheduled(Id, S) ∗ ⊞around3✸depart(Id, S) ∗ 1/7

This means that for each atom scheduled(id, s) at time t each of the seven time points
{t − 3, t − 2, . . . , t + 3} has the same probability that depart(id, s) holds.
Note that more complicated probability assignments would be possible, where we do not
have a uniform distribution or where we account for departure times at previous stations in
the specification of probabilities. We do not go into detail here in this illustrative example,
which should merely show the interplay of algebraic measures, algebraic constraints and
LARS.
Overall, given a data steam D that specifies the start, goal, the time interval we have,
the scheduled departures, and the planned route, we obtain the probability of reaching the
start from the goal as the result of the overall weight query µfin(Πfin, D, 1).

79

2. General Quantitative Stream Reasoning

2.4.3 Relation to Weighted MSO and Automata

We have established that algebraic measures over ASP are expressive enough to capture
many previous quantitative extensions of answer set programming. Since we can embed
LARS AC-programs into AC-programs in a mostly straightforward manner, we also do
not expect additional surprising changes in the expressivity here. However, we have yet to
consider the impact of adding a temporal domain to algebraic measures on the expressivity.
For the propositional fragment of LARS with time-based windows and no weights, we
know that its expressive power is exactly that of finite state automata [BDE18] and, thus,
also that of Monadic Second-Order Logic (MSO) due to the Büchi-Elgot-Trakhtenbrot
Theorem, which states equivalent expressive power of finite state automata and MSO.

Weighted (finite state) automata generalize finite state automata, just like the weighted
semantics for formulas generalizes the boolean semantics. Instead of just accepting words
like finite state automata, weighted automata associate a weight over a semiring to words.
A generalization of the Büchi-Elgot-Trakhtenbrot Theorem due to [DG07] states the
equivalence of the expressiveness of weighted automata and a fragment of weighted MSO.
It suggests itself to consider whether this result can also be lifted on the LARS side.

Weighted automata define a function from words over a finite alphabet to values in a
semiring as follows:

Definition 62 (Weighted Automaton [DG07]). A weighted automaton A over a finite
alphabet A and a semiring R = (R, ⊕, ⊗, e⊕, e⊗) is a quadruple ⟨Q, λ, δ, γ⟩, where

(i) Q is a finite set of states,

(ii) λ, γ : Q → R assign each state their respective initial and final weight, and

(iii) δ : A∗ → RQ×Q is a monoid homomorphism between (A∗, ⊙, ε) and (R, ⊗, e⊗),
where ⊙ is concatenation and ε is the empty word.

Here, RQ×Q denotes the set {(r(q1,q2))(q1, q2) ∈ Q × Q | r(q1,q2) ∈ R}, which contains
families of values from R indexed by elements from Q × Q.

Its behavior is defined as

∥A∥ : A∗ → R, w .→ �
q,q′∈Q λ(q) ⊗ δ(w)q,q′ ⊗ γ(q′).

Regarding the expressive power of LARS measures, we identify here a fragment that
can express the same functions as weighted automata. To this aim, we do not consider
general window functions, but only those definable in monadic second-order logic (MSO).
Furthermore, we consider only variable-free LARS measures that do not contain algebraic
constraints.

80

2.4. Combining Stream Reasoning and Quantitative Reasoning

Definition 63. A window function ϖ is MSO definable, if there exist MSO formulas
ϕϖ(P, P ′, x), ψϖ(xs, xe, x′

s, x′
e, x) s.t. for every stream S = (T, v), ϖ((T, v), t) = (T ′, v′)

and ts = min T, te = max T, t′
s = min T ′, t′

e = max T ′:

ϕϖ(P [v], σ(P ′), t) holds iff σ(P ′) = P [v′]
ψϖ(ts, te, σ(x′

s), σ(x′
e), t) holds iff σ(x′

s) = t′
s, σ(x′

e) = t′
e

where for a valuation v, P [v] is the vector of monadic predicates Pa[v] for a ∈ HB, s.t.
∀t′ ∈ T ′ : Pa[v](t′) ⇐⇒ a ∈ v(t′).

For example, the window functions aroundn, future and past defined in Example 18 are
all MSO expressible.

Furthermore, we restrict negation ¬ to only occur in front of atoms. Since our proofs
rely on the commutativity of multiplication we only consider commutative semirings in
this section.

In the following, we show that the expressivity of weighted automata is equivalent to
that of a restricted class of LARS measures.

Theorem 64 (Reduction of Weighted Automata to LARS Measures). Given a weighted
automaton A over a finite alphabet A and semiring R, there exists a LARS measure
µ = ⟨Π, α, R⟩, s.t.

∀w ∈ A∗ : ∥A∥(w) = µ(Π, τ(w)),

where τ(w) is a translation from words w to pairs of data streams and time points, defined
by

τ(w) =
��

[0, |w|], t .→
�

{wt+1} if t < |w|
∅ otherwise

�
, 0

�

Proof (Sketch, see Appendix A.5 for the full proof). We can prove the claim by construct-
ing a program Π that has as answer streams all possible paths through the weighted
automaton for the given word and a weighted LARS formula α, whose semantics for a
given answer stream is the weight of the path. By summing over all answer streams, one
obtains then the behavior of the automaton on the given word as µ(Π, τ(w)), i.e., the
overall weight with respect to τ(w).

We proceed to establish the other direction of encodability, by expressing LARS measures
via restricted weighted MSO formulas, which were shown to be equivalent to weighted
automata [DG07]. In such formulas, universal quantifiers are restricted to first-order
variables. Furthermore, the semantics of the quantified formula may only take finitely
many values [DG07]. We define restricted LARS measures analogously as LARS measures
µ = ⟨Π, α, R⟩, where ✷β can only be a subformula of α if β takes finitely many values.

81

2. General Quantitative Stream Reasoning

Theorem 65 (Reduction of LARS Measures to Weighted MSO). Let ⟨Π, α, R⟩ be a
restricted LARS measure over a semiring R. Then there exists a restricted weighted MSO
formula Ψ over R, s.t.

∀D, t : µ(Π, D, t) = �Ψ�R(σ(D, t)),

where for a data stream D and time point t, σ(D, t) = (σ1(D, t), σ2(D, t)) s.t. σ1 is
the word that the weighted MSO formula is interpreted over and σ2 corresponds to the
assignments of free variables in Ψ. That is,

σ1(D, t)i ={a | a ∈ v(i) ∩ HB(Π)ϵ},

σ2(D, t)(x0) =t for the non-quantified first-order variable x0,

σ2(D, t)(A) ={t ∈ N | a ∈ v(t)} for MSO variables A.
σ2((T, v), t)(T) =T for MSO variable T .

Proof (Sketch, see Appendix A.5 for the full proof). For the proof, we use a weighted
MSO formula

Ψ = ∃A.T (ΦΠ)(A) ∧ f(α)

such that

• f(α) is a faithful translation of α to weighted MSO,

• ∃A is the sum over all interpretation streams S of D,

• ΦΠ(A) is a MSO formula, which is satisfied by A iff A corresponds to an answer
stream. It can be obtained by extending the result in [BDE18] that, given a LARS
program Π, one can construct a MSO formula that is satisfiable iff Π has an answer
stream.

• T (.) is a translation to weighted MSO that preserves the boolean semantics, due
to [DG07].

By putting these things together we obtain the complete formula, which we can show to
have the same semantics.

Droste and Gastin [DG07] showed that restricted weighted MSO and weighted automata
are equally expressive; hence, it follows that also restricted LARS measures and weighted
automata are equally expressive. Notably, restrictedness is needed: the value 2|T |2 of the
formula α = ✷✷2 over N is inexpressible by weighted automata [DG07].

82

2.4. Combining Stream Reasoning and Quantitative Reasoning

2.4.4 Computation and Complexity
Apart from the expressivity of algebraic LARS, we are also interested in its computational
complexity. The full non-ground setting with algebraic constraints is already undecidable
when it comes to settling the existence of an answer stream due to Theorem 38 even
without temporal operators. We thus restrict ourselves on reasoning tasks over algebraic
LARS measures µ = ⟨Π, α, R⟩, where Π is a variable-free LARS program without algebraic
constraints and α is also variable-free.

In the light of our previous expressivity results, we first consider evaluating weighted
LARS formulas, by encoding them as weighted automata. This seems promising, as
weighted automata have polynomial data complexity when counting the arithmetic
operations. Unfortunately, any encoding is non-elementary in general.

Theorem 66. For every constant k, there is no translation of restricted weighted LARS
formulas of size n to weighted automata s.t. the size of the automaton can be bounded by
a function of the form exp(k), where exp(0) = n, exp(k + 1) = 2exp(k).

Proof. Towards a contradiction, assume such a translation τ exists.

Given an unweighted MSO formula ϕ over words in some alphabet A, we can consider
the MSO definable window function ϖϕ, given by

ϖϕ(S, t) =
�

S if |= ϕ(σ(S, t)),
(∅, ∅) otherwise.

and the formula

α = ⊞ϖϕ✸⊤.

Then α is a restricted weighted LARS formula over B and for the weighted automaton
A, which corresponds to the LARS measure α it holds that

∀w ∈ A∗ : ∥A∥(({w1}, . . . , {w|n|})) = ⊤ ⇐⇒ |= ϕ(w).

Note that the automaton is over the alphabet P(A), however we only use the singleton
letters {a} for a ∈ A. We can simply reduce the automaton to the alphabet A. The
specification of the new automaton is then single exponentially smaller. We can interpret
it as a non-deterministic finite state automaton and construct a deterministic version of
it. This version is only single exponentially larger than the non-deterministic one. This
is however a contradiction, since this entails the existence of a translation from MSO
formulas to finite state automata which can be bounded using a tower of exponentials
with finite height.

We see that the non-elementary complexity already follows from Meyer and Stockmeyer’s
result [SM73] that translating MSO to finite automata has non-elementary complexity.

83

2. General Quantitative Stream Reasoning

However, if we consider windows common in practice like time-based windows and restrict
rules to fragments like plain LARS [BDE18], we can obtain a translation from restricted
LARS measures to weighted automata that can be bounded double exponentially in size.

Alternatively, we can evaluate weighted LARS formulas using a Turing machine. For this
we consider as in [BDE18] window functions that can be evaluated in polynomial time.
We formally define the evaluation problem as follows:

• EVAL-wLARS: given a variable-free weighted LARS formula α over a semiring
R, a stream S, and a timepoint t in S, compute the value of �α�R(S, t).

The complexity of this problem may grow arbitrarily depending on the semiring and the
problem can be undecidable in general (unless R is explicitly represented and functions for
the arithmetic operations are provided in the input). Beck, Dao-Tran, and Eiter [BDE18]
showed that evaluating LARS formulas is PSPACE-complete; thus PSPACE-hardness
is a lower bound for any non-trivial semiring. In fact, there is even a semiring such
that EVAL-wLARS is FPSpace(poly)-complete, where FPSpace(poly) contains the
functions with polynomial output size computable by Turing machines in polynomial
space.

Lemma 67 (FPSpace(poly)-hardness). Let Q = (2N, min, ∪,N, ∅), where the minimum
is taken w.r.t. to the order ≻, where X ≻ Y holds iff

∃n ∈ X : (∀n′ < n : n′ ∈ X ⇐⇒ n′ ∈ Y) ∧ n ∈ X \ Y.

That is, X ≻ Y iff the smallest number that X and Y disagree on is in X.

The problem EVAL-wLARS over Q is FPSpace(poly)-hard.

Proof (Sketch, see Appendix A.6 for the full proof). We reduce the problem QBF-sat-
search of finding a satisfying assignment for the free variables of a QBF formula ϕ, given
that it is satisfiable to EVAL-wLARS over Q. Since it is known that QBF-sat-search is
FPSpace(poly)-complete [HSH12], this will establish the result.

Here, we use the idea of Beck, Dao-Tran, and Eiter [BDE18] who introduced window
functions of the form set : z for a propositional variable, which either remove or leave
z in the interpretation depending on the time point. This together with the temporal
operators ✸ and ✷ is enough to model quantifiers. The semiring Q then only gathers the
assignment.

We see that we cannot guarantee efficient evaluation in general. However, in the following
we give restrictions on formulas and semirings that allow for efficient evaluation.

84

2.4. Combining Stream Reasoning and Quantitative Reasoning

Efficiently Evaluable Fragments

The inefficiency of the evaluation of a weighted formula α under some stream is due
to the unrestricted use of quantifiers, i.e. ✷,✸ in α. If we bound the nesting depth of
quantifiers, denoted qdepth(α), by some constant k, we obtain that under reasonable
restrictions on the semiring, the time needed for evaluation of a formula given some
stream is polynomial in the size of the formula and the stream. The reasonable restriction
is the previously defined efficient encodedness. Recall:

Definition 36 (Encoding Function, Efficiently Encoded Semiring). Let R = (R, ⊕,
⊗, e⊕, e⊗) be a semiring. Then an injective function e : R → {0, 1}∗ is an encoding
function.

Given an encoded value e(r) we define ∥r∥e, the size of r w.r.t. e, as the length of the
bitstring e(r), i.e. |e(r)|.
Let R be a semiring and e : R → {0, 1}∗ an encoding function. Then R is efficiently
encoded by e, if there exists a polynomial p(x) s.t. for all e(r1), . . . , e(rn) ∈ e(R) it holds
that

1. ∥�n
i=1ri∥e ≤ p(n) maxi=1,...,n∥ri∥e,

2. ∥�n
i=1ri∥e ≤ p(log2(n)) maxi=1,...,n∥ri∥e,

3. max(∥−r∥e, ∥r−1∥e) ≤ ∥r∥e + p(0),

4. e(r), e(r′) .→ e(r ⊙ r′) is in FP for ⊙ = ⊕, ⊗, and

5. e(r) .→ e(f(r)) is in FP for f(.) = −(.), (.)−1.

Conditions 1) and 2) ensure that successive multiplications resp. additions do not cause
space explosion, even for sums with exponentially many terms. Similarly, 3) ensures that
inverting a value with respect to addition or multiplication may only lead to a constant
space increase. Conditions 4) and 5) are necessary since we at least need single operations
to be tractable if we want to solve problems over a semiring efficiently. The idea behind
these conditions is to separate encodings that behave “efficiently” both with respect to
space and time and those that do not. For this, we use restrictions that mirror and
slightly relax the properties that the prototypical binary encoding of integers satisfies.

The restriction on the encoding function is mild in practice, since most practically used
semirings, like Q,N,B, P(A), Rmax,+ satisfy it.

Theorem 68 (Complexity of Evaluation I). Let R be a fixed semiring that is efficiently
encoded by e, and let k ∈ N be a fixed constant. Then for any weighted LARS formula α
over R s.t. qdepth(α) ≤ k, we can calculate �α�R(S, t) in polynomial time in the size of
α and S.

85

2. General Quantitative Stream Reasoning

Notably, for this theorem, we could even weaken condition (2) on the addition of the
semiring to be the same as condition (2) on the multiplication of the semiring.

Proof (Sketch, see Appendix A.6 for the full proof). The proof is by structural induction
on the formula α, with the induction invariant that the time t(α) needed is in O(Nn·(k+1)),
where N is the size of the input, n ∈ N is a constant that is not depending on the input
and k = qdepth(α). Furthermore, the size s(α) of the representation of the obtained
value, i.e. log2(e(�α�R(S, t))), is in O(N · Nk).

This result is as expected from LARS, where under similar restrictions one can per-
form model checking in polynomial time [BDE18]. However the FPSpace(poly)-
membership does not seem to generalize to arbitrary formulas. If we consider the formula
✷k2 = ✷✷k−12, which is equal to 2|T |k when evaluated over N, we see that the binary
representation of the result has exponential size.

Similarly, we can lift the result to algebraic queries.

Theorem 69 (Complexity of Evaluation II). Let R be a fixed semiring that is efficiently
encoded by e which supports natural addition, and k ∈ N a fixed constant. Then for any
LARS measure µ = ⟨Π, α, R⟩ s.t. qdepth(α) ≤ k, stream S, data stream D and timepoint
t, computing µ(Π, D, t) and µ(S, D, t) are both in FPSpace(poly).

Proof. Deciding S ∈ AS(Π, D, t) is feasible in PSPACE [BDE18], and Π has at most
2|HB(Π)I ||T | ≤ 2N2 answer streams S for D, where N is the size of the input. For each of
them e(µ(S, D, t)) ∈ O(2Nk+1), thus e(µ(Π, D, t)) ∈ O(2Nk+3) as e supports natural addi-
tion; thus the binary representation of e(µ(S, D, t) resp. e(µ(Π, D, t)) has size polynomial
in N . Furthermore, iterating over all S to compute e(µ(D, t)) is doable in polynomial
space.

The problem is FPSpace(poly)-complete in general. For restricted classes of programs
Π or weighted formulas, we may end up with problems that are complete for classes
contained in FPSpace(poly). For example, when α = 1 and R =N, the evaluation of
µ(Π, D, t) amounts to model counting of programs, which is #P-complete for normal ASP
programs and #coNP-complete for disjunctive ASP programs, as follows from reducibility
to results for #SAT resp. #CIRC [DHK05].

Preferential Reasoning

Given a strict partial order > (or equivalently a strict preorder) defined on the set
R of elements of the semiring R, we can use any quantitative query defined by some
LARS measure µ as the objective function with respect to which streams are ranked in
preference based reasoning.

86

2.4. Combining Stream Reasoning and Quantitative Reasoning

Definition 70 (Preferred Stream). We say an answer stream S ∈ AS(Π, D, t) is a
preferred stream w.r.t. a LARS measure µ = ⟨Π, α, R⟩, data stream D, timepoint t, and
strict order > on R, if

∄S′ ∈ AS(Π, D, t) : µ(S′, D, t) > µ(S, D, t).

Given some LARS measure µ = ⟨Π, α, R⟩ with a strict partial order > on R, we consider
the following two problems:

• Preference Checking (PC): Given a stream S, LARS measure µ, data stream
D and time t, check whether S is preferred.

• Brave Preferential Reasoning (BPR): Given a LARS measure µ, data stream
D, time t and an atomic formulas a check whether there exists a preferred stream
S such that (S, t) |= a.

We obtain the following results:

Theorem 71. There are a semiring R efficiently encoded by e, > a strict order on R
such that r1 > r2 is decidable in polynomial time, and a fixed constant k ∈ N such that
for every LARS measure µ = ⟨Π, α, R⟩ such that qdepth(α) ≤ k, and it holds that

(i) PC and BPR are PSPACE-complete.

If in addition every α ← β ∈ Π fulfills max(qdepth(α), qdepth(β)) ≤ k, then

(ii) PC is Πp
2-complete, and

(iii) BPR is Σp
3-complete.

Proof. (i) PSPACE-hardness follows from the fact that already checking whether a
stream is an answer stream is PSPACE-hard for general LARS programs [BDE18]. For
membership we can use the fact that we can iterate over all answer streams in PSPACE
[BDE18].

(ii) Let Π some LARS program with bounded quantifier nesting. Satisfiability checking
for Π is Σp

2-complete [BDE18]. We consider the LARS measure

µ = ⟨{α ← β ∧ a | α ← β ∈ Π} ∪ {a ← ¬b, b ← ¬a}, b,B⟩

for some new variables a, b, order ⊥ < ⊤ and stream S = (T, v) s.t. v(t) = {a}. Since
this stream is an answer stream of the program used in µ we have that it is preferred
if there does not exist an answer stream that asserts b. This is the case iff the original
program Π does not have an answer stream.

87

2. General Quantitative Stream Reasoning

Membership in Πp
2 can be shown, by non-deterministically guessing S′ and checking

whether S′ ∈ AS(Π, D, t) and µ(S′, D, t) > µ(S, D, t).

(iii) We show Σp
3-hardness by a reduction of checking whether a QBF formula of the

form Φ = ∃X : ∀Y : ∃Z : ϕ(X, Y, Z) is true. We know that unsatisfiability checking for
LARS programs Π with depth(Π) ≤ k is Πp

2-complete. Thus, we can find a program
Π(X) with extensional atoms X, s.t. for any assignment x to the variables X it holds
∀Y : ∃Z : ϕ(x, Y, Z) is true iff Π(x) is unsatisfiable at time t. Consider now

Π∗ ={α ← β ∧ a | α ← β ∈ Π(X)}
∪ {a ← ¬b, b ← ¬a}

∪
n$

i=1
{Xi ← ¬Xi, Xi ← ¬Xi}.

The rules in the third line ensure a choice of the value of Xi. If for the given choice the
program Π(X) is unsatisfiable the only answer stream of Π∗ with those choices for X is
the one that does not contain a, essentially deactivating all the other rules of the original
program. Therefore, Φ is true iff there exist choices for X s.t. every answer set of Π∗(X)
contains b. Now consider the LARS measure�

Π∗, a ∧ {a} ∨
n�

i=1
Xi ∧ {Xi}, P({a, X1, . . . , Xn})

�
,

where intuitively, the semiring values {a}, {X1}, . . . , {Xn} record when the corresponding
variables are true. Let, furthermore, > be the order on P({a, X1, . . . , Xn}) s.t.

A1 > A2 ⇐⇒ a ∈ A1 ∧ a ̸∈ A2 ∧ A1 \ {a} = A2.

Then there exists a preferred answer stream S s.t. (S, t) |= b iff there is an assignment x
to the variables X s.t. ∀Y : ∃Z : ϕ(x, Y, Z) holds.

For membership, we can guess a interpretation stream S for D which contains a and do
(PC) on it.

We remark that BPR has a lower complexity, namely ∆p
3, when one considers only pairs

(R, >) such that efficient binary search is possible, as for BPR in the presence of weak
constraints [Leo+06].

2.4.5 Conclusion
Arguably, the definition of algebraic LARS is somewhat tedious and requires a lot of
steps. However, this seems hardly avoidable, since we require non-ground programs,
temporal operators, and a weighted version of Boolean logic that furthermore needs to
be in line with the non-monotonicity of answer set semantics.

Regardless of its perhaps alleged lack of elegance, algebraic LARS satisfies the goals we
initially stated: it is capable of expressive temporal as well as quantitative reasoning

88

2.4. Combining Stream Reasoning and Quantitative Reasoning

under answer set semantics. We have seen the quantitative reasoning capabilities without
the temporal domain separately in Sections 2.2 and 2.3 and shown that in this setting
the algebraic approach is general enough to cover existing quantitative extension and
even bring new possibilities. By lifting the definitions to the temporal setting using the
genericity of weighted (Here-and-There) Logic, we however do not only gain the three
different capabilities separately but also immediately their integration. That is, we can
specify quantitative constraints over a temporal domain natively and answer quantitative
queries over the set of answer streams by assigning each answer stream a complex weight
that depends on the true atoms at different time points in the stream in a non-trivial
manner. We have demonstrated this extensively in Example 22.
Having established this powerful theoretical framework, we are now left with the task
of its analysis and implementation. In terms of analysis we have already established a
number of results. We have safety properties and conditions for finite groundability for
AC-programs that give us decidable fragments. These properties only need to be lifted to
LARS AC-programs, which should work (we do not expect any technical difficulties) and,
thus, is not discussed in this thesis. Additionally, we showed that a restricted fragment of
variable-free LARS measures without algebraic constraints has the same expressivity as a
restricted fragment of weighted MSO and weighted automata. This correspondence allows
us to see LARS measures as a rule based specification language for weighted automata.
Apart from this, we considered the complexity of common reasoning tasks. We already
established many results in this direction, some of them even completeness results: for
preferential reasoning over variable-free LARS programs with bounded quantifier depth,
we obtained that checking preferredness and brave inference are Πp

2- and Σp
3-complete,

respectively, under reasonable restrictions on the semiring.
A big open question is how to properly handle semirings and what their influence on the
complexity is. Efficient encodedness of semirings allows us to give some upper bounds but
we are missing general lower bounds, and a more fine grained analysis of the complexity
in dependence of the semiring. This is the case both for the evaluation of algebraic
constraints as well as for the evaluation of algebraic measures. Since we consider these
questions to be highly important both from a theoretical point of view and for a possible
future implementation, we dedicate Chapter 3 to them.
In terms of complexity, it would also be interesting to see whether there are fragments of
lower complexity. This would also be interesting in terms of a possible implementation,
since for the general setting many of the typical reasoning tasks are undecidable. And even
in the decidable cases that we already know, we have to expect rather high intractability
due to our complexity results.
Towards an implementation, this chapter does not give any insights yet. However, in order
to fully make use of the benefits of this work in a practical setting an implementation is
desirable. As mentioned above, a full implementation requires an in depth analysis of
fragments with lower complexity. Apart from this, it is naturally quite challenging to
implement all the three aspects of Algebraic LARS, i.e., algebraic measures, algebraic
constraints and temporal reasoning, in the same solver. Since this would go beyond the

89

2. General Quantitative Stream Reasoning

scope of a doctoral thesis, we instead choose to focus on the arguably least explored
aspect. Given that there are already efficient implementations of LARS [BEF17; EOS19]
and other temporal frameworks [Cab+19], as well as support for many constructs
expressible with algebraic constraints in standard solvers [Geb+14; Leo+06], this means
we consider the practical evaluation of algebraic measures in more detail. Here, there
are implementations for some specific use cases such as probabilistic reasoning [Fie+15;
LTW17], and optimization [Geb+14]. The only implementation of the general algebraic
setting available is for a restricted language fragment [KVD11]. Thus, we consider in
Chapter 4 how we can efficiently evaluate algebraic measures over general semirings and
normal answer set programs.

90

CHAPTER 3
Complexity of Counting over

Semirings

3.1 Introduction
Our work to extend Answer Set Programming (ASP) with quantitative reasoning ca-
pabilities heavily relies on semirings to achieve a high level of generality in a uniform
manner. The algebraic structure of the semiring allows us, on the one hand, to restrict
computations to a reasonable setting, since the addition and the multiplication of the
semiring must satisfy certain axioms. On the other hand, by parameterizing definitions
with a semiring we become very flexible such that our definitions cover a manifold of
special cases, when they are instantiated with the correct respective semirings.

Unsurprisingly, we are not the first to find that semirings are a well-suited basis for defining
quantitative frameworks that uniformly capture a multitude of problems. For example,
Kimmig, Van den Broeck, and De Raedt [KVD17] and Belle and De Raedt [BD20]
provide an extensive list of problems that are easily formulated by instantiating a
semiring framework with different semirings. To name a few, SAT corresponds to the
Boolean semiring B; #SAT corresponds to the semiring of the natural numbers N;
parameter learning corresponds to the gradient semiring [Man+21]; and expected utility
computations are handled by the expectation semiring [Eis02].

Such semiring paradigms, which allow us to introduce a multitude of quantitative versions
of a qualitative problem in a uniform manner, are fruitfully used in a manifold of ways,
including but not limited to:

• Algebraic Measures Section 2.2, which encompass many quantitative reasoning
capabilities over the set of answer sets of a logic program;

91

3. Complexity of Counting over Semirings

• Algebraic Model Counting (AMC) [KVD17], which generalizes Weighted Model
Counting to work with semiring values as weights;

• Semiring-based Constraint Satisfaction Problems (SCSPs), which were shown
to encompass Fuzzy CSPs, Probabilistic CSPs, Weighted CSPs and more, each
corresponding to SCSPs over another semiring [Bis+99];

• Algebraic Constraints Section 2.3, which extend the specification language of ASP
to capture and generalize many previous quantitative constructs of ASP in a uniform
manner;

• Provenance Semirings [GKT07], which were shown to be a useful tool to express
which-, why- and bag-why-provenance in the context of positive relational algebra
queries, by employing polynomial semirings;

• Algebraic Problog [KVD11], which is not only available as an implementation for
probabilistic logic programming, but also capable of parameter learning and offers
most probable explanation inference by employing specialized semirings.

Of course, for us algebraic measures and algebraic constraints are the most important
concepts on this list. However, as we will argue also all the other problems fall into the
same class of problems computationally. As such, their computational aspects should be
treated together.

This long list naturally begs the question what the computational complexity of reasoning
in these frameworks is and, more importantly, how it depends on the semiring the
framework is instantiated with. While it is known that we face #P-hardness when
evaluating a problem over the semiring N of the natural numbers, and that the Boolean
semiring B leads to instances that are in NP, this does not give us fully satisfactory
insights. Indeed, these results are especially unsatisfactory in the light of Toda’s Theorem
[Tod89], which shows that not only NP but even the whole polynomial hierarchy PH is
contained in P#P[1], which means that each problem in PH can be solved in polynomial
time with a single call to an #P oracle (tantamount to solving a single #SAT instance).
This gives us the intuition that there is likely a large gap between NP and #P and, thus,
also between the semirings B and N.

We are thus interested in a fine grained analysis of the complexity depending on the
semiring parameter. Here, according to the best of our knowledge, current complexity
results for general semirings are still preliminary.1 Completeness results are only known
for a few specific semirings [SI96], NP-hardness is only known over idempotent semir-
ings [Bis+99] and the general EXPTIME upper bound that follows from the results
of Kimmig, Van den Broeck, and De Raedt [KVD17] assumes that multiplication and
addition can be done in constant time.

1This does not extend to the field of fixed-parameter-tractability. There is a wide range of results for
semiring frameworks in this area, cf. [Gan+22; FD16; BDP09]

92

3.2. Preliminaries

In this chapter, we therefore take a closer look at the computational complexity of
reasoning frameworks that depend on a semiring parameter such as the ones above. For
this, we first provide in Section 3.2 some necessary preliminaries. We then provide in
Section 3.3 some examples that motivate the paradigm of computations with semirings
as parameter and give some guidance for its development. Next, we lay in Section 3.4 the
basis of a methodical complexity analysis of semiring-based formalisms by introducing
NP(R), a semiring version of NP, and SAT(R) as a canonical complete problem.
Afterwards, we immediately employ in Section 3.5 the NP(R)-completeness result for
SAT(R), by providing a variety of NP(R)-completeness and -hardness results for different
semiring frameworks, including algebraic measures and algebraic constraints. In the
subsequent Section 3.6, we explore the relation of NP(R) to classical complexity classes
in the form of different upper and lower bounds. In Section 3.8, we consider related work
and discuss our results, while in the final Section 3.9 we conclude with issues for future
research.

3.2 Preliminaries
We start by giving the necessary preliminaries. We assume knowledge of the basics of
propositional logic. In this context, we consider propositional theories T over a set V of
Boolean variables (i.e., propositional atoms) using the Boolean connectives ∨, ∧, and ¬
for disjunction, conjunction, and negation, respectively; further connectives, e.g. material
implications →, may be defined as usual. Furthermore, ⊥ and ⊤ are shorthands for an
unsatisfiable (false) and a tautologic (true) formula, respectively. For interpretations of T ,
we consider subsets I of V , where v ∈ I indicates that v is satisfied and v ̸∈ I indicates
that ¬v is satisfied. Satisfaction of formulas, theories ϕ etc. by an interpretation I is
then defined as usual and denoted by I |= ϕ.

Furthermore, we make use of generated semirings.

Definition 72 (Generated Semiring). Let R = (R, ⊕, ⊗, e⊕, e⊗) be a semiring. For any
R⋆ ⊆ R, the semiring generated by R⋆, denoted ⟨R⋆⟩R, is the least (w.r.t. ⊆) semiring
(R′, ⊕, ⊗, e⊕, e⊗) s.t. R⋆ ⊆ R′.

Example 23. N, the semiring of the natural numbers, is generated by {1} or even by the
empty set. The same holds for the Boolean semiring. On the other hand, the semiring
Q of the rational numbers needs more elements to be generated. {1/n | n ∈ N} and
{1/p | p is prime} are possible generators.

For our complexity considerations we need problem reductions. Since we are studying
functional complexity, we use the following notions of reductions.

Definition 73 (Metric [Kre88], Counting [CKS01] & Karp Reduction [CKS01]). Let
fi : Σ∗ → Σ∗, i = 1, 2 be functions, then

93

3. Complexity of Counting over Semirings

• a metric reduction from f1 to f2 is a pair T1, T2 of polynomial time computable
functions T1 :Σ∗ → Σ∗, T2 :Σ∗ × Σ∗ → Σ∗ such that f1(x) = T2(x, f2(T1(x))) for
every x ∈ Σ∗.

• a counting reduction is a metric reduction such that T2(x, y) = T2(x′, y) for all
x, x′, y.

• a Karp reduction (or parsimonious reduction) is a metric reduction such that
T2(x, y) = y for all x, y.

The different reductions are differently restricted. Intuitively, we have a metric reduction
from f1 to f2, if we can compute f1(x) using polynomial time and access to one oracle
call that solves f2(x′). With counting reductions we still have polynomial time and one
oracle call but cannot use the original input in the reconstruction of the result for f1
from the result for f2. Karp reductions are even more restricted, since there we cannot
perform any reduction and the result for f1 must be the same as the one for f2 with the
modified input. Karp reductions typically allow us to prove that computing f2 is at least
as hard as computing f1, whereas the others give us slightly weaker results.

Also, we use some well-known complexity classes.

• #P [Val79] (resp. GapP [FFK94]): the functions definable as the number of
accepting paths (resp. minus the number of rejecting paths) of a nondeterministic
polynomial time Turing Machine (NTM);

• OptP [Kre88]: the functions definable as the maximum output of a polynomial
time NTM;

• FP: the functions computable in polynomial time;

• FPC
∥ [JT95]: the functions computable in polynomial time with parallel queries to

a C oracle, where C is a complexity class;

• FPSpace(poly) (resp. FPSpace(exp)): the functions computable in polynomial
space with polynomial (resp. unrestricted and thus exponential) size output;

• C/poly [KL82]: the problems solvable in C with polynomial advice, where C is a
complexity class, i.e., there is a function f such that we can solve the problem
for all inputs x in C given x, f(|x|), where |x| denotes the length of the input and
|f(x)| ∈ O(|x|k) for constant k ∈ N;

• ModpP [Her90]: the languages L described as x ∈ L iff f(x) ̸≡ 0 mod p for some
f in #P;

• CC2[f(n)]
1 : the problems solvable in C1 with at most f(n) calls to a C2 oracle, where

C1 and C2 are complexity classes. Here, C1 is a Turing machine based complexity
class (such that an oracle makes sense);

94

3.3. Semiring Paradigm

• BPP [Gil77]: the languages L for which some NTM T exists such that if x ∈ L at
least 2/3 of the computation paths of T on x accept and if x ̸∈ L at most 1/3 of the
computation paths of T on x accept.

The exact relationship between the different complexity classes is often unclear. However,
it is known that #P, OptP, ModpP and NP are contained in FPSpace(poly). Apart
from that, #P is considered to be at least as hard as NP and ModpP, as we can obtain
the solution of a problem in NP or ModpP via one #P-oracle call. As for the relationship
between NP and ModpP, it is known that NP ⊆ BPPModpP [BG81]. In regards to the
power of Turing machines with advice, we note that the advice function does not need
to be computable and thus, P/poly contains some undecidable problems. Nevertheless,
the power of advice is limited: if NP ⊆ P/poly or #P ⊆ FP/poly then the polynomial
hierarchy collapses to a finite level [KL80], which is considered to be unlikely. On the
other hand, it is known that BPP ⊆ P/poly [BG81].

Hardness and completeness are defined as usual:

Definition 74 (Hardness, Completeness). A problem P is C-hard for a complexity class
C under X-reductions, if every problem P ′ ∈ C can be reduced to P by some X-reduction;
P is C-complete under X-reductions, if in addition P ∈ C.

3.3 Semiring Paradigm
Before we introduce new complexity classes to capture the computational complexity
of frameworks that depend on a semiring parameter, we first introduce two additional
prominent examples of such frameworks. This, on the one hand, shows that an in depth
complexity study is not only useful for us in the context of algebraic measure and algebraic
constraints but that such frameworks are more widely spread. On the other hand, it
provides an insight into the structure that is shared by different such frameworks. The
latter is also important as it tells us more about the nature of the problems at hand
and thus guides us to an appropriate definition of a machine model for computations
involving semirings.

Algebraic Model Counting The first framework we consider is Algebraic Model
Counting (AMC), introduced by Kimmig, Van den Broeck, and De Raedt [KVD17].
Intuitively, it is a generalization of weighted model counting for propositional formulas,
with weights that can be values from a semiring.

Definition 75 (AMC). Given a propositional theory T over propositional variables V,
a commutative semiring R, and a labeling function α : L → R that maps the literals L
over V to R, AMC is to compute the value

A(T) = �
I, s.t. I|=T

�
v∈I α(v)⊗ �

v ̸∈I α(¬v).

95

3. Complexity of Counting over Semirings

That is, we take a sum over all interpretations that satisfy a propositional theory T ,
where each addend is a product of the weights of the literals satisfied by the interpretation.
Contrary to weighted model counting, where sum and product need to be the usual
addition and multiplication over the reals, they can be from any semiring here. The same
holds for the weights, which also do not necessarily need to be reals.

In a sense, AMC is to algebraic measures what SAT is to ASP. AMC is a special
case of algebraic measure evaluation, where the weighted formula does not contain
complex expressions but only a product of weights of literals. Furthermore, instead of a
propositional theory, we make use of an answer set program in the context of algebraic
measures.

Besides the standard applications in SAT, #SAT, and probabilistic inference, the authors
showed that AMC can be used to perform sensitivity analysis of probabilistic inference
w.r.t. a parameter by using the semiring of the polynomials with coefficients in [0, 1]. For
more semirings that allow additional applications, like the construction of tractable circuit
representations, we refer the reader to Kimmig, Van den Broeck, and De Raedt [KVD17].

We see that regardless of the specific semiring, some of the structure stays the same:
Similarly to SAT, MaxSAT and #SAT, we guess an interpretation, obtain a value
based on the truth of the literals and their relation to the propositional theory and in a
last step perform some form of aggregation operation over all interpretations. In the case
of SAT, this corresponds to checking whether a given assignment satisfies the theory
and aggregating these values by quantifying existentially over all possible interpretations.
For MaxSAT on the other hand, we associate a number with a given interpretation and
aggregate these values by taking the maximum.

Semiring-based Constrained Satisfaction Problems A similar structure can be
observed for Semiring-based Constrained Satisfaction Problems (SCSPs). Bistarelli,
Montanari, Rossi, Schiex, Verfaillie, and Fargier [Bis+99] introduced them as a gener-
alization of constraint satisfaction problems parameterised with c-semirings R, which
are idempotent commutative semirings such that the axiom ∀r ∈ R : r⊕e⊗ = e⊗ holds.
This restriction is due to the fact that SCSPs were defined to capture semantics for the
levels of consistency of Constraint Satisfaction Problems (CSPs), rather than semantics
for general quantitative reasoning.

Definition 76 (Constraint System, Constraint Problem). A constraint system is a
tuple CS = ⟨R, D, V ⟩, where R is a c-semiring, D is a finite domain, and V is an
ordered set of variables. A constraint over CS is a pair ⟨def , con⟩, where con ⊆ V and
def : Dcon → R, given explicitly as a set of key-value pairs, is the value of the constraint.
Here, Dcon denotes the set {(dx)x∈con | ∀x ∈ con : dx ∈ D}.

A constraint problem P over CS is a pair P = ⟨C, con⟩, where C is a multiset of
constraints over CS and con ⊆ V .

96

3.3. Semiring Paradigm

Using Dcon instead of D|con| is helpful, since it allows us to associate inputs and their
variable.

Bistarelli, Montanari, Rossi, Schiex, Verfaillie, and Fargier [Bis+99] showed that SCSPs
correspond to classical CSP, probabilistic CSP, weighted CSP and fuzzy CSP when the c-
semiring is respectively chosen as B, ([0, 1], max, ·, 0, 1), Rmin,+ and ([0, 1], max, min, 0, 1).

Example 24. The following are constraints over CS = ⟨Rmin,+, {a, b}, {x, y}⟩:

c1 =
� aa .→ 1

ab .→ 2
ba .→ 3
bb .→ 4

, {x, y}
�

, c2 =
�

a .→ 5
b .→ 6 , {y}

�
.

Together they define the constraint problem C = ⟨{c1, c2}, {x, y}⟩.

The two main operations on constraints are combination ∗ and projection ⇓.

Definition 77 (Combination, Projection). For t = (dx)x∈con and con′ ⊆ con the
projection t ↓con

con′ is equal to (dx)x∈con′.

The combination c1 ∗ c2 of two constraints ci = ⟨def i, coni⟩, i = 1, 2 is the constraint
c = ⟨def , con1 ∪ con2⟩, where

def (t) = def 1(t ↓con1∪con2
con1)⊗def 2(t ↓con1∪con2

con2)

and⊗ is the multiplication of the semiring.

The projection c ⇓con′ of a constraint c = ⟨def , con⟩ to con′ ⊆ con is ⟨def ′, con′⟩ with
def ′(t′) = �

{t∈Dcon|t↓con
con′ =t′}def (t), where � is the addition of the semiring.

Intuitively, combination ∗ is the product (⊗) of constraint values and projection ⇓con′

is the sum (⊕) over all assignments to the variables in con \ con′. Combination, as the
name says, combines multiple constraints into one, and projection partially evaluates a
constraint thus removing variables from the constraint.

Example 25. The combination c1 ∗ c2 of c1, c2 is

� aa .→ 1⊗5
ab .→ 2⊗6
ba .→ 3⊗5
bb .→ 4⊗6

, {x, y}
�

=
� aa .→ 1 + 5

ab .→ 2 + 6
ba .→ 3 + 5
bb .→ 4 + 6

, {x, y}
�

=
� aa .→ 6

ab .→ 8
ba .→ 8
bb .→ 10

, {x, y}
�

.

The projection c1 ⇓ {x} of c1 down to {x} is�
a .→ 1⊕2
b .→ 3⊕4 , {x}

�
=

�
a .→ min(1, 2)
b .→ min(3, 4) , {x}

�
=

�
a .→ 1
b .→ 3 , {x}

�
.

97

3. Complexity of Counting over Semirings

Using ∗ and ⇓, the consistency-level of an SCSP is defined as follows.

Definition 78 (Consistency-Level). Given an SCSP problem P = ⟨C, con⟩, the best
level of consistency of P is defined as blevel(P) = (Πc∈C c) ⇓∅. Here, Π in the expression
Πc∈C c is used for application of ∗ to all constraints c in C.

So the consistency level can be computed by first combining all constraints (using ∗) and
then projecting onto the empty set (using ⇓∅).

Example 26. The consistency level of C = ⟨{c1, c2}, {x, y}⟩ is (c1 ∗ c2) ⇓∅, i.e.,

� aa .→ 6
ab .→ 8
ba .→ 8
bb .→ 10

, {x, y}
�

⇓∅=
�

ε .→ min(6, 8, 8, 10) , ∅
�

.

Here, the last expression evaluates to 6, meaning that the consistency level blevel(C) is 6.

Again, we observe a similar structure regardless of the semiring: we can compute the
blevel of a constraint problem P = ⟨C, con⟩ by guessing an assignment to the variables
in con, by evaluating the constraints under the given assignment, taking the product,
⊗, of their values for that assignment and aggregating the results for each assignment
using the sum, ⊕, of the semiring. This structure is strikingly similar to the approach we
can use to evaluate AMC instances. While the guessed part here is an assignment to
multi-valued variables instead of an interpretation, for both frameworks, we can evaluate
an instance by

1. Guessing some form of assignment;

2. Evaluating the instance for the given assignment; and

3. Aggregating the values of all guesses.

Using this insight into the structure of the evaluation problems associated with semiring
frameworks, we can now approach the characterization of their complexity.

3.4 Semiring Complexity Classes and a Complete Problem
In this section, we develop a toolbox that first and foremost allows completeness results
for arbitrary commutative semirings for the first time. For this, we first introduce a
prototypical problem called SAT(R) using the insights from the previous sections on
what the evaluation problems over semiring frameworks typically look like. The reason
for introducing a new problem instead of using AMC or SCSPs as a canonical complete
problem is that SAT(R) in our opinion better shows the power of semiring frameworks.

98

3.4. Semiring Complexity Classes and a Complete Problem

Rather than only allowing that we compute the value of an assignment as a product
of weights, it allows us to specify the value of an assignment as a complex arithmetic
expression that depends on a propositional interpretation.

In order to capture this guess-evaluate-aggregate pattern over different semirings, we
introduce Semiring Turing Machines (SRTMs), a novel machine model that allows
restricted non-deterministic computation of a semiring value in a black box fashion,
whose final output is then defined as the sum of the values of all computation paths.
Based on SRTMs, we can then define NP(R), a generalization of NP over semirings.

Putting things together, we prove SAT(R) to be NP(R)-complete under Karp reductions,
thus allowing us to use it as a canonical problem to reduce from, for NP(R)-hardness
proofs.

Furthermore, we consider other alternative ways to generalize NP to a quantitative
setting. We highlight the differences in computational power caused already by small
changes to our model and, by this, justify the definition of NP(R) that we chose.

3.4.1 Weighted Quantified Boolean Formulas and SAT(R)
The most natural way to define SAT(R) is as a special case of weighted Quantified
Boolean Formulas (QBFs).

We define weighted QBFs similarly to other Weighted Logics [DG07; MR15] by slightly
extending our previous definition of propositional Weighted Logic in Definition 6.

Definition 79 (Syntax). Let V be a set of propositional variables and R = (R, ⊕, ⊗, e⊕, e⊗)
be a commutative semiring. A weighted QBF over R is of the form α given by the grammar

α ::= k | v | ¬v | α + α | α ∗ α | Σvα | Πvα

where k ∈ R and v ∈ V. A variable v ∈ V is free in a weighted QBF α, if there is an
occurrence of v in α that is not in the scope of a quantifier Σv or Πv. A weighted fully
quantified Boolean Formula is a weighted QBF without free variables.

Definition 80 (Semantics). Given a weighted QBF α over a commutative semiring
R = (R, ⊕, ⊗, e⊕, e⊗) and variables from V as well as a propositional interpretation I of
V, the semantics �α�R(I) of α over R w.r.t. I is defined as follows:

�k�R(I) = k

�a�R(I) =
�

e⊗ a ∈ I
e⊕ otherwise.

�¬a�R(I) =
�

e⊕ a ∈ I
e⊗ otherwise.�α1 + α2�R(I) = �α1�R(I)⊕�α2�R(I)�α1 ∗ α2�R(I) = �α1�R(I)⊗�α2�R(I)

99

3. Complexity of Counting over Semirings

�Σvα�R(I) = �α�R(Iv)⊕�α�R(I¬v)�Πvα�R(I) = �α�R(Iv)⊗�α�R(I¬v)

where Iv = I ∪ {v} and I¬v = I \ {v}.

Weighted QBFs generalize QBFs in negation normal form (NNF), as negation is only
allowed in front of variables. Intuitively, allowing negation in front of complex formulas
would add the ability to test whether the value of a weighted QBF is zero. We can only
test whether an atomic formula is false. Therefore, our variant is or at least seems less
expressive. However, it fits better into the context of the problems we consider, where it
also is not possible to perform such “zero-tests” for complex expressions.

Here, we further focus on ΣBFs, i.e., the weighted fully quantified BFs that contain only
sum quantifiers (i.e. Σv) and we introduce their evaluation problem as

Problem: SAT(R)
Input: A ΣBF α over the fixed semiring R
Output: The semantics �α�R(∅)

Even though we restrict ourselves to ΣBFs, they at first glance seem to be different from
the propositional formulas describing a SAT-instance. Namely, for SAT the quantifier Σ
is implicit since all variables that occur in the SAT-instance are existentially quantified.
For SAT(R), however, this is not the case. Here, we can quantify a variable using Σ
in subexpressions of + and ∗, e.g., formulas like α + Σvβ and Σvα ∗ Σwβ are allowed.
Requiring all quantifiers to occur outside of subexpressions of + and ∗ is not a semantic
restriction however:

Lemma 81 (Prefix Normal Form). For every ΣBF α over a semiring R there exists a
ΣBF β over R such that

(i) β = Σv1 . . . Σvnγ, where γ is quantifier free,

(ii) β can be constructed from α in polynomial time, and

(iii) �α�R(∅) = �β�R(∅), i.e., α and β evaluate to the same value.

Proof (Sketch, see Appendix B.1 for the full proof). This statement can be proved by
induction on the number of sum quantifiers Σ that occur in the subexpression of some
other connective + or ∗. The base case is clear, for the induction step, we show that
(Σvα1) ∗ α2 is equivalent to Σv(α1 ∗ α2) by assuming w.l.o.g. that α2 does not contain v
and that (Σvα1) + α2 is equivalent to Σv(α1 + α2 ∗ v) under the same assumption.

This way the connection between SAT and SAT(R) becomes clearer. In fact, as with
AMC, many versions of SAT can be seen as special cases of SAT(R) for different
semirings R.

100

3.4. Semiring Complexity Classes and a Complete Problem

Example 27. Over B, the Boolean semiring, SAT(B) is equivalent to SAT: On the one
hand, given a SAT(R)-instance β = Σv1 . . . Σvnγ, where γ is quantifier free, we see that�β�B(∅) = 1 iff the propositional formula ϕ obtained from γ by replacing every 0, 1, +, ∗
with ⊥, ⊤, ∨, ∧, respectively, is a yes instance of SAT, i.e., satisfiable.

On the other hand, given a SAT-instance ϕ, we see that a propositional formula ϕ in NNF
is satisfiable if the SAT(B)-instance β = Σv1 . . . Σvnγ fulfills �β�B(∅) = 1. Here, γ is
obtained from ϕ by replacing every ⊥, ⊤, ∨, ∧ with 0, 1, +, ∗, respectively, and {v1, . . . , vn}
is the set of variables occurring in ϕ.

Example 28. Another, more interesting example is LexMaxSAT, the problem of
obtaining the lexicographically maximum satisfying assignment for a propositional formula
ϕ. W.l.o.g. we assume that ϕ is in NNF. We can reformulate LexMaxSAT as a
SAT(Rmax,+)-instance β over the max-tropical semiring Rmax,+, where the corresponding
instance β is given by

Σv1 . . . Σvnγ ∗ (v1 ∗ 2n−1 + ¬v1) ∗ . . . ∗ (vn ∗ 20 + ¬vn).

As above, γ is obtained from ϕ by replacing every ⊥, ⊤, ∨, ∧ with −∞, 0, max, +, re-
spectively. Then �β�Rmax(∅) = e⊕ = −∞ iff ϕ is unsatisfiable and �β�Rmax(∅) = m =#n

i=1 bi2n−i iff the lexicographically maximum satisfying assignment for ϕ sets vi to true
whenever bi = 1.

These examples show that we can use SAT(R) over different semirings R to express
different versions of SAT. Moreover, we observe that problems described by a ΣBF of
the form

β = Σv1 . . . Σvnγ, where γ is quantifier free,
are again structurally similar to the other problems following the semiring paradigm. That
is, the value �β�R(∅) is obtainable by (i) guessing an interpretation I of the variables
v1, . . . , vn, (ii) evaluating γ using the interpretation, and (iii) aggregating the values�γ�R(I) using the sum, ⊕, of the semiring.

This guess-evaluate-aggregate pattern is also similar to definition of complexity classes
such as NP, #P and OptP in terms of non-deterministic Turing machines. Based on this
intuition we will next provide NP(R) a generalized version of NP, which also depends
on a semiring parameter, to abstractly characterize the complexity of SAT(R).

3.4.2 Semiring Turing Machines and NP(R)
We generalize NTMs to Semiring Turing Machines (SRTMs) to characterize the complexity
of SAT(R). At this point, we do not want the time and space needed to perform operations
on semiring values that are encoded in a finite alphabet to influence our definition. Thus,
we need SRTMs to be capable of

• performing semiring operations atomically in a black box manner, irrespective of
encodings of values;

101

3. Complexity of Counting over Semirings

• summing up values generated by nondeterministic computations; and
• using semiring values in the input in calculations.

On the other hand, too much power should be avoided; to this end, we relegate semiring
computations to weighted transitions.

Definition 82 (SRTM). A Semiring Turing Machine is a 7-tuple M = (R, R′, Q, Σ, ι, ⊔, δ),
where

• R is a commutative semiring,

• R′ ⊆ R is a finite set of semiring values, (intuitively, this is a set of fixed values
that are “known” to M)

• Q is a finite set of states,

• Σ is a finite set of symbols (the tape alphabet),

• ι ∈ Q is the initial state,

• ⊔ ∈ Σ is the blank symbol,

• δ ⊆ (Q × (Σ ∪ R)) × (Q × (Σ ∪ R)) × {−1, 1} × R is a weighted transition relation,
where the last entry of the tuple is the weight. For each ((q1, σ1), (q2, σ2), d, r) ∈ δ
the following holds:

1. M cannot write or overwrite semiring values:
if σ1 ∈ R or σ2 ∈ R, then σ1 = σ2,

2. M can only make a transition with weight r when r is from R′ or under the
head:
r ∈ R′ or r = σ1 ∈ R

3. M cannot discriminate semiring values:
if σ1 ∈ R, then
a) for all σ′

1 ∈ R we have ((q1, σ′
1), (q2, σ′

1), d, σ′
1) ∈ δ or

b) for all σ′
1 ∈ R we have ((q1, σ′

1), (q2, σ′
1), d, r) ∈ δ.

As usual, −1 and 1 move the head to the left and right. Intuitively, the combination of
the second and third condition ensures that when an SRTM reads a semiring value r
in a given state then it always, independently of the value at hand, makes a transition
with weight r or with a constant value from the finite set R′. Note that this “or” is not
exclusive. Having access to some constants is necessary, since every transition is assumed
to have a weight. Additionally, these constants allow us to use semiring values that do
not occur in the input. This is important since otherwise we cannot always multiply
partial solutions by constant factors or even return a constant value.

102

3.4. Semiring Complexity Classes and a Complete Problem

Importantly, this allows us to always represent the transition function finitely by grouping
the transitions at state q1 when a semiring value is read to

((q1, X), (q2, X), d, X) and ((q1, X), (q2, X), d, r),

where X is a placeholder representing any (although the same in all occurrences in the
expression) semiring value and r ∈ R′.

We remark that in terms of control flow, i.e., “if”-statements, loops, recursive definitions,
etc., SRTMs feature the same possibilities as non-deterministic Turing machines, since
the difference between the two models of computation regarding the transition function
δ is that for SRTMs it is weighted and has some restrictions on the weights. Therefore,
we can use the typical control flow instructions also with SRTMs.

The output of a computation is as follows.

Definition 83 (SRTM function). A configuration is a triple c = (q, x, n), where q ∈ Q
is a state, x ∈ (Σ ∪ R)∗ is the string on the tape, and n ∈ N is the head position.
The value v(c) of an SRTM M on configuration c = (q, x, n), is recursively defined
by v(c) = �

c
r→c′r⊗v(c′), where c

r→ c′ denotes that M can transit from c to the next
configuration c′ with weight r; the empty sum has value e⊗. The output of M on input x
is v(ι, x, 0), the value of the initial configuration.

In other words, this means that the output of an SRTM M is calculated by aggregating
the value vπ of each non-deterministic computation path π using the addition ⊕ of
the semiring R. Here, the value vπ of a non-deterministic computation path π along
configurations c1

r1→ . . .
rn(π)−1→ cn(π) is given by r1⊗ . . . ⊗rn(π)−1, i.e., by multiplying the

weights of the single transition steps.

Example 29 (SRTM Computation). Consider Algorithm 1, which sketches in pseudocode
the working of an SRTM that solves SAT(R). The computation tree2 of EvalN(α, ∅)
with α = Σvv ∗ 3 is given in Figure 3.1. Note that here we only consider configurations
abstractly in the sense that if we were to translate the pseudocode into an SRTM there
would be actual configurations to replace them.

The initial configuration c0 is the root node of the tree. Since the SRTM is over the
natural number semiring N, the leaves c5, c6, i.e., the configurations without a successor,
have the value e⊗ = 1.

The values of their predecessors c3 and c4 are both 3 · 1 = 3. It is calculated as the value
of their successor (1) and the weight of the transition, which is 3 in both bases since the
SRTM reads the subformula α = 3 in either case. At their predecessors c1 and c2, we
observe a difference in values, i.e., v(c1) = 0 and v(v0.1) = 3, since the SRTM reads the
subformula α = v here and thus transitions either with weight e⊗ or e⊕ depending on the
guess of the value of v in the respective branch. c1 and c2 have as a common predecessor

2Naturally, we left out transitions with weight 1 for the checks of the if and switch statements.

103

3. Complexity of Counting over Semirings

Algorithm 1 An SRTM algorithm for SAT(R)
Input A ΣBF α over semiring R and an interpretation I.
Output �α�R(I).

1: function EvalR(α, I)
2: switch α do
3: case α = k:
4: transition with k
5: case α ∈ {v, ¬v}:
6: if (α = v and v ∈ I) or (α = ¬v and v ̸∈ I) then:
7: transition with e⊗
8: else:
9: transition with e⊕

10: case α = α1 + α2:
11: Guess i ∈ {1, 2}
12: Execute EvalR(αi, I)
13: case α = α1 ∗ α2:
14: Execute EvalR(α1, I)
15: Execute EvalR(α2, I)
16: case α = Σvα′:
17: Guess I ′ ∈ {I ∪ {v}, I \ {v}}
18: Execute EvalR(α′, I ′)

the initial configuration c0. Here, a formula of the form α = Σvα is read and thus both
transitions from c0 to c1 and to c2, have weight 1. They correspond to guessing v to be
false and true, respectively. As such, the output value is given by 3.

As we can see, this definition of SRTMs also follows the aforementioned guess-evaluate-
aggregate pattern. With this in place, we define an analog of NP.

Definition 84 (NP(R)). NP(R) is the class of all functions computable in polynomial
time by an SRTM over R.

Here, we choose the name NP(R) to highlight the tight connection to NP, which stems
from the fact that (as we will see later) NP can be seen as NP(B). Indeed, the underlying
idea of SRTMs and NP(R) is to proceed in the same manner as when generalizing a
Boolean logic to a weighted logic. That is, we add weights and replace disjunction by
addition and conjunction by multiplication over the semiring. Since over the Boolean
semiring B the addition is disjunction and the multiplication is conjunction, solving a
problem in NP(B) is to check whether there exists a non-deterministic computation path
with non-zero weight, i.e., which accepts. The same holds for problems in NP.

Note that NP(R) as it follows from our definition of SRTMs is only some analog of NP
over semirings, and we do not claim that it is the only reasonable one. However, first and

104

3.4. Semiring Complexity Classes and a Complete Problem

c0

c1c2

c3c4

c5c6

11

10

33

v(c6) = 1 v(c5) = 1

v(c4) = 3 · 1 v(c3) = 3 · 1

v(c2) = 0 · 3 v(c1) = 1 · 3

v(c0) = 1 · 0 + 1 · 3

Figure 3.1: A computation tree over N. Each transition c
r→ c′ is annotated with its

weight r and each configuration c is annotated with its value v(c).

foremost, our goal with this definition is to obtain a complexity class that characterizes
the computational complexity of SAT(R) and other related problems. This succeeds, as
indeed SAT(R) is NP(R)-complete. However, in order to formally state the result we
first need to establish how reductions work in this context, given that we allow semiring
values on the tape explicitly.

Definition 85 (Surrogate Alphabet). Let R be a semiring and let Σ be some alphabet.
Then the surrogate alphabet sS,V,E(Σ) is set of words over Σ extended with surrogates
(for semiring variables) defined by

sS,V,E(Σ) = (Σ ∪ {SV nE | n ∈ N})∗,

where S, V, E ̸∈ Σ are distinguished letters such that in SV nE the letter S denotes the
start, the string V n denotes the index n, and E denotes the end of a surrogate (for a
semiring value). For a substitution σ : N → R and a word x ∈ sS,V,E(Σ), we denote by
σ(x) the word in (Σ ∪ R)∗ obtained by replacing SV nE with σ(n).

The idea here is that we refer to surrogates SV E, . . . , SV nE for variable semiring values
instead of actual semiring values r1, . . . , rn. Thus, we know of the presence of semiring
values but not which semiring value is represented exactly by the surrogate.

Using the surrogate alphabet, we adapt Karp reductions to the context of SRTMs.

Definition 86 (Karp Surrogate-Reduction). Let f1 and f2 be functions fi : (Σ ∪ R)∗ →
R, i = 1, 2. Then a Karp surrogate sS,V,E reduction from f1 to f2 is a polynomial time
computable function T : sS,V,E(Σ) → sS,V,E(Σ) with a finite set R′ = {r1, . . . , rk} ⊆ R,
k ≥ 0, of semiring values such that for all x ∈ sS,V,E(Σ) and σ : N → R such that
σ(i−1) = ri, 1 ≤ i ≤ k, it holds that f1(σ(x)) = f2(σ(T (x))).

105

3. Complexity of Counting over Semirings

Since we only use Karp surrogate sS,V,E reductions with surrogate alphabet S, V, E we
omit sS,V,E and write “Karp s-reduction”.

Intuitively, the idea behind surrogate-reductions is that as with SRTMs, we cannot
modify semiring values, make decisions based on them etc. Therefore, also surrogate
reductions must not be able to modify semiring values, produce different outputs based
on them etc., as this would mean that reductions would have more power than SRTMs,
which we need to avoid if NP(R) should be closed under reductions. The set R′ serves
to distinguish semiring values that should be constant. Instead we can only modify
the instance specification that tells us how we should combine (using sum and product)
the semiring values to obtain a solution from one that is expected by f1 to one that is
expected by f2.

Nevertheless, a reduction T at least needs to be able to transfer the semiring values that
are used in the original instance x to the instance T (x). For this reason, we give T access
to surrogates SV nE for semiring value occurrences such that T can intuitively “copy”
semiring values to another position but cannot do more.

While this is a strong restriction, we will show in Theorem 88 that this suffices to reduce
any problem in NP(R) to SAT(R) for any commutative semiring R.

Surrogate-reductions are appropriate for our setting:

Lemma 87. Let R be a semiring and fi : (Σ ∪ R)∗ → R, i = 1, 2. If f2 ∈ NP(R) and f1
is Karp s-reducible to f2 then f1 ∈ NP(R).

Proof. Let T be the reduction function and R′ = {r1, . . . , rk} the associated set of
semiring constants. Let M = (R, R′

M , Q, Σ, ι, ⊔, δ) be an SRTM that solves f2. We
construct an SRTM M ′ = (R, R′

M ∪ R′, Q′, Σ′, ι′, ⊔′, δ′) that solves f1. Note that we give
M ′ access to both R′

M , the set of semiring constants from M , and R′, the set of semiring
constants, fixed in the reduction.

While SRTMs cannot distinguish different semiring values, they can check whether
there is a semiring value on the tape in a given position. Thus, given some input
x ∈ (Σ ∪ R)∗ we can obtain in polynomial time a string x′ ∈ sS,V,E(Σ) from x by using
SV n+kE for the nth semiring value occurrence in x (from left to right). E.g. the string
x = x1x2x3r1x4x5r2 ∈ (Σ ∪ R)∗, where x1, . . . , x4 ∈ Σ and r1, r2 ∈ R, leads to the string
x′ = x1x2x3SV Ex4x5SV V E ∈ sS,V,E(Σ) when k = 0. Then, we can apply T to x′ in
polynomial time. Finally, we can execute the algorithm for f2 on T (x′). Here, we only
need polynomial extra time to look up the (n − k)th semiring value in the original input
when we need to make a transition with a semiring value under the head and read SV nE
for n > k. For n ≤ k we cannot transition with a weight under the head, since rn does
not necessarily occur in x. However, since we added R′ to the set of constants that M ′

has access to, we can simply specify a transition with weight rn directly.

With this in mind, we can finally state the main result of the section.

106

3.4. Semiring Complexity Classes and a Complete Problem

Theorem 88. SAT(R) is NP(R)-complete w.r.t. Karp s-reductions for every commuta-
tive semiring R.

Proof (Sketch, see Appendix B.2.1 for the full proof). We prove membership construc-
tively, using the SRTM Algorithm 1. We need to prove that EvalR(α, ∅) = �α�R(∅), for
any ΣBF α. When considering the formula α we could exhaustively apply the distributive
law for every addition (+, Σa) that occurs inside a multiplication (∗). Then one obtains a
sum of products of values from the semiring and literals. In general this would, however,
lead to a formula that is exponentially bigger than α. Instead, the idea of EvalR is to
non-deterministically generate every term s that we would have after having exhaustively
applied the distributive law. For each non-deterministically generated s consisting of
factors f1, . . . , fm, EvalR has a computation path that includes a transition with weight
fi for each i = 1, . . . , m. This happens in such a way that each sequence of choices leads
to a different s and such that every s is covered by a sequence of choices. Thus, the sum,
using ⊕, of the value of all execution paths for a call to EvalR(α, ∅) is equal to �α�R(I).

To prove the NP(R)-hardness, we can generalize the well-known Cook-Levin Theorem,
cf. [GJ79]. Here, we need to rewrite disjunctions a ∨ b into formulas a + ¬a ∗ b s.t. these
constraints can only be equal to either e⊕ or e⊗ but not e⊗⊕e⊗. Apart from that we
only need to add the weights of transitions to the formula.

Nevertheless, before we prove a wide range of semiring formalism to be NP(R)-complete,
we discuss in the following possible alternative choices in the definition of SRTMs and
their effect on the computational power of SRTMs.

Alternative SRTM Definitions

There are multiple possible small changes in the definition of SRTMs that would lead to
an alternative model of non-deterministic computations over semirings and therefore also
to an alternative complexity class NP(R). We discuss some of these possible changes
and their implications on the power of SRTMs, to explain our rationale for choosing this
definition of SRTMs.

Allowing Semiring Operations on the Tape One alternative would be to remove
the weights from the transition functions and instead to let the machine multiply and
add values on a tape explicitly. We see two main options that would enable this change.
The first is to depart from the idea to use semiring values on the tape and to encode
them in some finite alphabet instead. This would have the positive effect of getting a
definition that is very close to the definition of typical non-deterministic TMs. However,
this comes with two significant drawbacks.

First, it implies that we need to choose an encoding of the semiring values. As we will
see later on, in Examples 34 and 35, the choice of the encoding can strongly influence the
complexity of semiring operations. We want to avoid this, since we want to use SRTMs

107

3. Complexity of Counting over Semirings

to characterize the complexity associated with a semiring, rather than the complexity
associated with the encoding of its values.

Second, it would allow for the computation of functions that cannot be Karp-reduced to
SAT(R).

Example 30 (Separating Function I). The function f : {0, 1}∗ → N[(xi)∞], f(w) =
x1 + x2 + · · · + x2|w| cannot be Karp reduced to NP(N[(xi)∞]) using an encoding e :
N[(xi)∞] → Σ∗ in some appropriate alphabet Σ = {0, 1} ∪ {. . . }, where coefficients,
exponents and indices are encoded in binary, and a polynomial is encoded as a list of the
encodings of the monomials. Assume that on the contrary, αw is the SAT(N[(xi)∞])-
instance corresponding to input w to f . Then αw needs to contain each of the monomials
x1, . . . , x2|w| and is therefore necessarily of size exponential in |w|. Since Karp reductions
must be computable in polynomial time, this is impossible.

On the other hand, when we explicitly write semiring values in encoded form on the
alphabet of a TM, we can guess 1 ≤ i ≤ 2|w| and return xi. Then the sum of all
computation paths is f(w).

Alternatively, we could allow for the computation of sums/products of pairs of semiring
values, which can be written to the tape (e.g. using multiple tapes or heads). Without
additional restrictions, this would also give SRTMs more power than what can be
expressed using SAT(R).

Example 31 (Separating Function II). Consider the machine over the semiring N that
takes as input a pair (k, x), where k ∈ N and x ∈ {0, 1}∗ has length |x| = n, and computes
a semiring value as output as follows: first, it sets x1 = k and then iteratively sets
xi+1 = xi ∗ xi for i = 2, . . . , n. Then the output of the machine is xn = k2n. This
computation is possible if we allow computations on the tape as described above. On the
other hand, every Karp s-reduction from (k, x) to a SAT(N)-instance α satisfies that�α�N(∅), the result of evaluating α, is in O(kO(nc) · 2O(nc)), where c is a constant. This
is because we can only use the semiring value k in α when using s-reductions and since
we know that any SAT(N)-instance α has a value in O(maxr∈α r|α| · 2|α|).

Note that interestingly, in a circuit version of SAT(N) we are able to express the value
k2n for k ∈ N using an instance of size polynomial in n as they also allow reuse of partial
results multiple times. This also implies that even though CircuitSAT and SAT are
Karp-reducible to one another, the same is in general not the case for SAT(R) and its
circuit version.

Nevertheless, by restricting the semiring computations on the tape to be non-recursive,
i.e., by only allowing the use of intermediate results only once, this problem is avoided.
Note that as the above example shows allowing the use of intermediate results twice
already leads to a problem. But with this restriction in place the two definitions would
result in two machine models with the same power that can simulate each other. Since,

108

3.5. Completeness Results for Semiring Frameworks

however, the non-recursiveness restriction is a semantic rather than a syntactic one (and
thus harder to verify and enforce) we prefer our original definition.

Allowing Decisions Based on Semiring Values Recall that Condition 3. on the
weighted transition function δ requires that for each ((q1, σ1), (q2, σ2), e, r) ∈ δ,

σ1 ∈ R ⇒ [∀σ′
1 ∈ R : ((q1, σ′

1), (q2, σ′
1), e, σ′

1) ∈ δ] ∨ [∀σ′
1 ∈ R : ((q1, σ′

1), (q2, σ′
1), e, r) ∈ δ].

Therefore, we cannot distinguish different semiring values that are on the tape during
the computation. That is, we cannot draw conclusions about the semiring value on the
tape based on the state q2 we transition to or based on the symbols on the tape that
are non-semiring values. Furthermore, we cannot distinguish semiring values on the
tape based on the weight of the transitions they are involved in, if the weight is not the
semiring value itself but a constant from R′. SRTMs without this property may not
necessarily be finitely specified. Apart from that, having the ability to take different
transitions based on the semiring value would allow an SRTM over semiring values from
{0, 1}∗ to distinguish strings that encode halting Turing machines from strings that do
not, in constant time. This is obviously not desirable.

Allowing Semiring Values to be Written Also the first restriction on the weighted
transition relation, which constitutes that we cannot write new semiring values to the
tape or change existing ones, may seem questionable at first glance. Allowing to write or
change semiring values in an unrestricted manner would allow us to distinguish semiring
values. We already described previously why this would be undesirable. However, it is
possible to allow for writing and changing of semiring values on the tape under restrictions
such as only allowing to copy values or write values from a finite set. This would neither
lead to additional power nor would it make the specification of SRTM machines simpler.
Therefore, we chose this simpler version of the definition of SRTMs and only note that
this restricted form of writing semiring values can be simulated.

3.5 Completeness Results for Semiring Frameworks
SAT(R) and NP(R) generalize SAT and NP to the semiring setting. As we discussed
above their definitions equip SAT(R) and NP(R) with appropriate power. This is
underlined also by the fact that SAT(R) is NP(R)-complete as one might expect.
Therefore, we now have all the necessary prerequisites for a complexity analysis of
frameworks that are defined dependent on a semiring parameter.

In the following, we apply the results from above to different semiring formalisms in AI.

3.5.1 Sum-Of-Products Problems
Another prototypical problem that is similar to SAT(R) is the Sum-of-Products Problem
SumProd(R) [BDP09]. It is defined as follows

109

3. Complexity of Counting over Semirings

Definition 89 (SumProd(R)). Given a finite domain D and functions fi : Dji → R, i =
1, . . . , n, given explicitly as key-value pairs of variable assignments and semiring values,
compute �

X1,...,Xm∈D
�n

i=1fi(Y⃗i), (3.1)

where Y⃗i is a vector with entries from a set {X1, . . . , Xm} of variables.

To solve a problem instance, we need to compute the sum of the products of the functions
fi for all assignments of the variables Xi. Here, the “sum” and the “product” are the
addition ⊕ and multiplication ⊗ of the semiring R, respectively.

There are two main differences between SAT(R) and SumProd(R). The first is that
SumProd(R) does not admit sums that occur under products, whereas for SAT(R) sums
and products can alternate arbitrarily. Second, SumProd(R) is not propositional but
more related to first-order logic, since we are not summing up values using a quantifier
Σaα by evaluating α under both truth values of a. Instead, we are summing up values
over all assignments to variables over a finite domain.

Nevertheless, we obtain:

Theorem 90. SAT(R) is Karp s-reducible to SumProd(R) and vice versa for ev-
ery commutative semiring R. Thus, SumProd(R) is NP(R)-complete w.r.t. Karp
s-reductions.

In the Boolean case, i.e. R = B, SumProd(R) essentially corresponds to Constraint
Satisfaction Problems (CSP). Here, the reduction from SAT(R) to SumProd(R) borrows
from the fact that 3SAT is NP-complete. However, for semirings in general establishing
this result is more difficult, since the Tseitin-transformation [Tse83], which is used for the
proof that 3SAT is NP-complete, does not work anymore in the same way. The idea of
the Tseitin-transformation is to introduce a new variable aβ for a complex subformula β
such that aβ takes the value of β. In the Boolean case, we recall that this is established
by means of the formula aβ ↔ β. In our case, the value of a subformula β may not only
be ⊤ or ⊥ as in the Boolean case but can take one of exponentially many different values
in the size of β. So, while we could introduce variables aβ,r that are true iff β evaluates
to r, this would lead to an exponential explosion and is, thus, not helpful for proving the
existence of a Karp s-reduction.

Instead, we need to exploit the distributive law. While naive application of it also
leads to a formula of exponential size, we can avoid this by exploiting the distributivity
implicitly during evaluation as in Algorithm 1. Intuitively, the idea here is to introduce
new variables aβ1 , aβ2 for each non-deterministic choice introduced by a subformula
α = β1 + β2, which tell us whether we include β1 or β2. A detailed proof is given in
Appendix B.3.3.

Note that it is not strictly necessary that the functions fi are given explicitly as key-values
pairs. In fact, it suffices if fi is computable in polynomial time by an SRTM, since we

110

3.5. Completeness Results for Semiring Frameworks

can simulate this computation during SAT(R)-evaluation. On the other hand, it is not
clear whether it is sufficient that fi produces a binary representation of semiring values
since there is no straight-forward way of simulating this kind of manipulation during
SAT(R)-evaluation (or using SRTMs for that matter).

3.5.2 Algebraic Constraints
Weighted first-order logic was introduced by Mandrali and Rahonis [MR15] for expressivity
characterizations. We furthermore used them in Section 2.3 to define algebraic constraints
for a quantitative extension of ASP. For simplicity’s sake we reintroduce them here without
sorts and non-monotonicity through Here-and-There semantics.

It is defined over a signature σ = ⟨D, P, X ⟩ with predicates p ∈ P that have a fixed arity
arity(p) ∈ N over a domain D and variables in X .

Definition 91 (Syntax). Let σ = ⟨D, P, X ⟩ be a signature and R = (R, ⊕, ⊗, e⊕, e⊗) be
a commutative semiring. The weighted σ-formulas over R are of the form α given by the
grammar

α ::= k | p(x⃗) | ¬p(x⃗) | α + α | α ∗ α | Σxα | Πxα.

Here k ∈ R, p ∈ P, x⃗ ∈ (D ∪ X)arity(p) and x ∈ X . A weighted σ-sentence is a weighted
σ-formula that does not contain free variables.

Note that we again only allow for negation in front of atoms p(x⃗).

Definition 92 (Semantics). A σ-interpretation is a subset I of {p(x⃗) | p ∈ P and
x⃗ ∈ Darity(p)}. Given a weighted σ-sentence β and a σ-interpretation I, the semantics�β�R(I) of β over R w.r.t. I is defined as

�Σxβ�R(I) = �
d∈D�β{x .→ d}�R(I),�Πxβ�R(I) = �
d∈D�β{x .→ d}�R(I).

The rest of the cases are as in Definition 80, where we identify p(x⃗) with a propositional
variable vp(x⃗).

We consider the evaluation of ΣFO σ-formulas, which only use sum quantifiers (i.e. Σx):

Problem: ΣFO-Eval(R)
Input: A weighted ΣFO σ-sentence α over the fixed commutative semiring R

and a σ-interpretation I
Output: The semantics �α�R(I)

Quantitative first-order evaluation problems are present for example in probabilistic
inference from Bayesian networks [VMD14]; furthermore, when we want to evaluate an
algebraic constraint, over a given interpretation, we are faced with the same problem.

111

3. Complexity of Counting over Semirings

The ΣFO-Eval(R) problem is very similar to SAT(R). Indeed, under the assumption
that I is given explicitly as key-value pairs of predicates with variable assignments and
truth values, we obtain:

Theorem 93. Problem ΣFO-Eval(R) is Karp s-reducible to SAT(R), and vice versa,
and thus NP(R)-complete w.r.t. Karp s-reductions for every commutative semiring R.

Proof (Sketch, see Appendix B.2.2 for the full proof). ⇒: Let α be a ΣBF over R. We
choose σ = ⟨{⊥, ⊤}, {t(.)}, {xv1 , . . . , xvn}⟩ and I = {t(⊤)} and replace every proposi-
tional variable v in α by t(xv).

⇐: We replace p(x⃗) by Σ
p(d⃗)∈IΠxi∈x⃗vxi,di

, where x⃗ = x1, . . . , xarity(p), d⃗ = d1, . . . , darity(p),
and vx,d means that variable x has value d. We add constraints such that when both vxi,di

and vxi,d′
i

are true, then di = d′
i and add a quantifier Σvxi,di

for each pair (xi, di).

3.5.3 Semiring-based Constraint Satisfaction Problems
Recall the definition of SCSPs from Section 3.3. We see that the computation of blevel(P)
is a sum of the products of the values of the constraints in P over all possible variable
assignments. We obtain:

Theorem 94. Computing blevel(.) over R is Karp s-reducible to SumProd(R) and
vice versa, and thus NP(R)-complete w.r.t. Karp s-reductions for every commutative
semiring R.

Proof (Sketch, see Appendix B.2.2 for the full proof). As the variables of the constraint
problem we use the ones of SumProd(R) and for each constraint ⟨defi, coni⟩ we use the
function defi as a function fi in SumProd(R); blevel(.) is the solution of SumProd(R).

3.5.4 Algebraic Model Counting
Recall the definition of AMC from Section 3.3. Since AMC also follows the guess-evaluate-
aggregate pattern, we can show:

Theorem 95. AMC over R is Karp s-reducible to SAT(R) and vice versa, and thus
NP(R)-complete w.r.t. Karp s-reductions for every commutative semiring R.

The main differences between AMC and SAT(R) are that, on the one hand, in AMC the
logical part and the part that weights an interpretation are explicitly separated, whereas
for SAT(R) they are intertwined. Second, while AMC only allows for weight functions
that can be expressed as a product of weights, SAT(R) allows for complex arithmetic
expressions over the semiring.

112

3.5. Completeness Results for Semiring Frameworks

Proof (Sketch, see Appendix B.2.2 for the full proof). ⇒: Given an AMC instance as a
propositional theory T and a labeling function α : L → R over the semiring R, we can
translate T into a ΣBF β and weight it with α using the product of the weighted formulas
(vi ∗ α(vi) + ¬vi ∗ α(¬vi)) for vi ∈ V.

⇐: As we noticed before, if we were to apply the distributive law exhaustively on a
SAT(R)-instance α, then the expression would be a sum of products of the semiring
values r that occur in the input ΣBF and the literals. We add for each occurrence ri of r
a variable vi

r with α(vi
r) = r, α(¬vi

r) = e⊗. Then we use the propositional theory T of the
resulting AMC instance to specify which semiring values are included in the sum.

3.5.5 Algebraic Measures
Recall that algebraic measures µ are given by a tuple ⟨Π, α, R⟩, where Π is a normal
answer set program and α is a weighted QBF formula without quantifiers over the
semiring R. Note that in this chapter we restrict ourselves to ground programs Π. We
are mostly interested in two reasoning tasks that involve algebraic measures, namely:

Problem: AtomEval(R)
Input: An algebraic measure µ = ⟨Π, α, R⟩
Output: The weight of a, i.e., µ(a) = �

I∈AS(Π),a∈I�α�R(I)

Problem: OverallEval(R)
Input: An algebraic measure µ = ⟨Π, α, R⟩
Output: The overall weight, i.e., µ(Π) = �

I∈AS(Π)�α�R(I)

When comparing the evaluation of these queries with AMC and SAT(R), we see that
algebraic measures are in a sense a combination of the strengths of both AMC and
SAT(R). This is because α can be any weighted formula, instead of only a product of
literal weights, and since Π can represent any logical theory over propositional variables.

Unsurprisingly, since both AMC and SAT(R) are NP(R)-complete we obtain the same
for the reasoning tasks involving algebraic measures.

Theorem 96. AtomEval(R) and OverallEval(R) are Karp s-reducible to SAT(R)
and vice versa, and thus NP(R)-complete w.r.t. Karp s-reductions for every semiring R.

The proof uses the same ideas as that of Theorem 95 (see Appendix B.2.2 for the full
proof).

3.5.6 Datalog Semiring Provenance
Green, Karvounarakis, and Tannen [GKT07] introduced a semiring-based semantics
for relational algebra queries. Its main use case as described in the paper is to allow
queries for the provenance of answers to standard queries. The semantics is capable of

113

3. Complexity of Counting over Semirings

expressing bag semantics, why-provenance and more. Here intuitively, bag semantics
tell us not only whether we can derive a query but also how often we can derive it.
Why-provenance tells us instead the different reasons why we have to derive a query.
There are more possibilities but generally, the semiring semantics allows us to obtain
more, often quantitative, information about the derivations of a query.

For positive logic programs, i.e. datalog programs, their semantics over a commutative
semiring (R, ⊕, ⊗, e⊕, e⊗) is as follows: the label of a query result q(x) is the sum (using
⊕) of the labels of derivation trees for q(x), where the label of a derivation tree is the
product (using ⊗) of the labels of the leaf nodes (i.e. extensional atoms). As the number
of derivation trees may be countably infinite, Green, Karvounarakis, and Tannen [GKT07]
used ω-continuous semirings, where countable sums have a value. Examples of such
semirings are N∞ = (N ∪ {∞}, +, ·, 0, 1), the natural number semiring extended with
infinity, B, and other idempotent semirings.

Example 32 (Bag Semantics). Consider the program

r1: q(X, Y) ← r(X, Y) r2: q(X, Y) ← q(X, Z), q(Z, Y)

over N∞ and the semiring-weighted extensional database (edb)

{(r(a, b), 2), (r(b, c), 3), (r(b, a), 4)}.

Here, N∞ corresponds to bag semantics, which means that the label of a query q(x) is
the number of derivations of q(x). The labels of the atoms in the semiring-weighted edb
thus intuitively mean that there are 2, 3, and 4 ways to derive r(a, b), r(b, c), and r(b, a),
respectively.

It follows that the label of q(b, c) under bag semantics is 3 due to the derivation q(b, c) ←
r(b, c) from r(b, c), which itself has 3 derivations according to the edb, and the fact that
this is the only derivation for q(b, c). On the other hand, for q(a, a) the label under bag
semantics is ∞. This can be seen as follows: we can derive q(a, a) from r(a, b), r(b, a) in
2 × 4 ways according to their labels in the edb. But there exist infinitely many derivations
of q(a, a) from itself using rule r2 instantiated as q(a, a) ← q(a, a), q(a, a), leading to the
label ∞.

For the problem of computing the label of a query under provenance semantics it is not
immediately clear how it relates to the other problems discussed in this section. Kimmig,
Van den Broeck, and De Raedt [KVD17] touched upon the relation of this and other so
called Algebraic Derivation Counting (ADC) formalisms to AMC. They include not only
provenance queries but also semiring parsing [Goo99] and semiring-weighted dynamic
programming [EGS05]. They showed that it is possible to reduce an AMC-instance T, α
to ADC by computing all models of the theory T and viewing them as derivations. As
they noted, this is obviously ineffective in general as the number of models of T can be
exponential. The explicit computation of all the models is, however, not necessary for a
reduction.

114

3.5. Completeness Results for Semiring Frameworks

Theorem 97. Given a positive, single-rule datalog program

Π = {q ← r1(Y⃗1), . . . , rn(Y⃗n)}

and a semiring-weighted extensional database D over a commutative semiring R as input,
it is NP(R)-complete w.r.t. Karp s-reductions to compute the label of q.

We assume here, as usual, that the database D is stored explicitly as a set of tuples
(r(X), k), where r is a predicate and k is its semiring weight.

Proof. NP(R)-hardness: We provide a reduction from SumProd(R). Let D be a finite
domain, fi : Dki → R, i = 1, . . . , n be functions with the set of semiring values as
co-domain, and let �

X1,...,Xm∈D
�n

i=1fi(Y⃗i), (3.2)

be the SumProd(R)-instance at hand. Here, Y⃗i is a tuple consisting of ki elements from
{X1, . . . , Xm}, the set of variables of the SumProd(R)-instance, for i = 1, . . . , n.

Consider the following positive, single-rule datalog program

Π = {q ← r1(Y⃗1), . . . , rn(Y⃗n)}

and the semiring-weighted extensional database

D =
$

i=1,...,n

{(ri(y⃗i), fi(y⃗i)) | y⃗i ∈ Dki}.

Both D and Π can be constructed in polynomial time from the SumProd(R)-instance.
Furthermore, the label of the query q is equal to the result of evaluating the SumProd(R)-
instance. Since SumProd(R) is NP(R)-complete w.r.t. Karp s-reductions, also prove-
nance queries are NP(R)-hard.

NP(R)-membership: We can reduce computing the label of q for a provenance instance
to a SumProd(R)-instance analogously to obtain that provenance queries of the above
form over R are in NP(R). This implies NP(R)-completeness overall.

Note that we only showed NP(R)-completeness for a restricted case of provenance
computations here, where the datalog program has only one rule. In fact, it is not
possible to evaluate provenance queries in NP(R) in general. This is not because of
hard special cases caused by the possibility of countably infinite sums, as already Green,
Karvounarakis, and Tannen [GKT07] gave an algorithm to recognize this case. The
hardness comes from higher expressivity in two dimensions instead. On the one hand, in
the Boolean setting, it is known that the evaluation of a datalog program is EXPTIME-
complete, even for a fixed extensional database D [Dan+01]. Additionally, when the
extensional database is not fixed evaluating Boolean queries defined by a single rule is

115

3. Complexity of Counting over Semirings

also already EXPTIME-complete [GP03]. Thus, it seems unlikely that we can stay in
NP(R), even when R = B.

For other semirings, provenance queries are even provably more expressive than ΣBFs,
already for ground programs Π, i.e., programs where only nullary predicates are used.
The latter allow us to express circuit-like terms.

Example 33. Let n ∈ N and consider the positive datalog program

Π = {ai+1 ← ai, ai | i = 1, . . . , n − 1}
and the semiring-weighted extensional database D = {(a1, 2)}. Then the label li of ai is
given by the recurrence relation l1 = 2 and li+1 = a2

i for i > 0. Therefore, the label of an

is (. . . (22)2 . . .)2 = 22n, which is exponential in the size of the input.

3.5.7 Semiring-induced Propositional Logic
Larrosa, Oliveras, and Rodrıǵuez-Carbonell [LOR10] introduced an extension of propo-
sitional logic with a semiring-based semantics. They confined to CNF formulas and
associated a weight from the semiring with each of the clauses. Formally:

Definition 98 (SRPL). Given a semiring-labeled CNF F = {(C1, w1) . . . , (Cn, wn)}
over a commutative semiring R, where each Ci is a clause and wi ∈ R is a value from
R, the semantics ϕi(I) of clause Ci under interpretation I is

ϕi(I) =
�

wi if I ̸|= Ci

e⊗ otherwise. .

Here, |= is the satisfaction relation of classical propositional logic.

Furthermore, ϕF (I), the semantics of F under interpretation I is given by

ϕF (I) = �n
i=1ϕi(I).

This is reminiscent of the evaluation of a SumProd(R)-instance for one assignment x⃗
to the variables X⃗: both the term under the assignment x⃗ and ϕF (I) are products of
values functionally determined by x⃗ and I, respectively.

As with SumProd(R), one is not interested in the value for a single assignment but in
the sum over all assignments, called marginal here, which is defined as follows:

Definition 99 (Marginalization Problem). Given a semiring-labeled CNF F over a
commutative semiring R as input, the marginalization problem over R is to compute

mrg(F) = �
I∈Int(F)ϕF (I),

where Int(F) denotes for a semiring-labeled CNF F the set of all interpretations of
variables in F .

116

3.6. Relation to Well-Known Complexity Classes

Larrosa, Oliveras, and Rodrıǵuez-Carbonell [LOR10] noted that many typical problems,
like SAT, #SAT and MAX-SAT can be expressed as marginalization problems over
different semirings. We show that moreover the marginalization problem is NP(R)-
complete.

Theorem 100. The marginalization problem over R is NP(R)-complete w.r.t. Karp
s-reductions for every commutative semiring R.

Proof (Sketch, see Appendix B.2.2 for the full proof). NP(R)-membership is easy to es-
tablish by a simple guess and evaluate algorithm.

We can prove NP(R)-hardness by a reduction from AMC over R. W.l.o.g. we assume that
the propositional theory T of the given AMC instance is a CNF with clauses C1, . . . , Cn

and the labeling function is α. Then the result of the marginalization problem for

F = {(C1, e⊕), . . . , (Cn, e⊕)} ∪ {(¬v, α(v)) | v ∈ V } ∪ {(v, α(¬v)) | v ∈ V },

where V is the set of variables of T , is the algebraic model count of T with respect to
α.

3.5.8 Other Frameworks
There are also other frameworks, such as algebraic Prolog [KVD11], and semiring induced
valuation algebras [KW08] that we can show to be NP(R)-complete using our methodology
and the previous reductions. We refrain from doing so, since the corresponding evaluation
problems either already come with reductions to AMC [KVD17] or are very similar to
other frameworks as in the case of semiring induced valuation algebras and SCSPs.

3.6 Relation to Well-Known Complexity Classes
We were able to show in the previous section that NP(R) can be used to characterize
the complexity of many different semiring formalisms that each in a way use the guess-
evaluate-aggregate pattern. However, these results only characterize the complexity over
different semirings on a relatively abstract level by using SRTMs as a machine model. In
order to gain more tangible insights into their complexity in a usual setting, we relate
NP(R) to well-known classical complexity classes defined on Turing machines in this
section.

For this purpose, we must encode semiring values in a finite tape alphabet. As we will
see, the choice of encoding can strongly influence the complexity of computations over a
semiring. To address this, we introduce conditions for efficient encodings that we can
use to limit the influence of the encoding.

Equipped with this, we first link well-known complexity classes such as NP, #P, and
OptP with NP(R) for specific semirings, thus showing that NP(R) is in a sense a proper
generalization of existing quantitative complexity classes.

117

3. Complexity of Counting over Semirings

We then turn to the more general case of commutative semirings as a whole and subclasses
thereof. Here, we prove on the one hand general lower bounds, upper bounds and a
tetrachotomy result that separates the non-trivial semirings into four distinct types of
problems each of which is strongly connected to either NP, ModpP, NP ∪ ModpP or
#P.

3.6.1 Encoding Semirings
To represent semiring values on classical Turing machines, we need to encode their
values using an encoding function. We introduce the necessary notions and consider the
implications that the choice of the encoding has on the complexity.

Definition 101 (Encoding Function, Encoded Semiring). Let R = (R, ⊕, ⊗, e⊕, e⊗) be
a semiring. Then an injective function e : R → {0, 1}∗ is an encoding function.

We let e(R) = (e(R), ⊕, ⊗, e(e⊕), e(e⊗)) denote the encoded semiring given by e(R) =
{e(r) | r ∈ R} and ⊙ on e(R), s.t. e(r1) ⊙ e(r2) = e(r1 ⊙ r2) for ⊙ = ⊕, ⊗.

Given an encoded value e(r) we define ∥r∥e, the size of r w.r.t. e, as the length of the
bitstring e(r), i.e. |e(r)|.

Now, we can use classical machines to solve SAT(e(R)) and consider its complexity
in terms of classical complexity classes. Naturally, it depends on the complexity of
addition and multiplication. While for N and B these operations are “easy”, i.e., feasible
in polynomial time given a binary encoding, this is not the case for arbitrary semirings.
A single multiplication may even be undecidable.

Example 34 (Arbitrary Complexity Semirings). Given M ⊆ {0, 1}∗ and ≻, the lexico-
graphical order on {0, 1}∗, we define the semiring RM = ({0, 1}∗ ∪ {0, 1}, max≻, ⊗, 0, 1),
where 1 ≻ m ≻ 0 for m ∈ {0, 1}∗ and

m1 ⊗ m2 : =

������
min≻(m1, m2) m1, m2 ∈ M ∪ {0} = S
m1 m1 ∈ S, m2 /∈ S
m2 m2 ∈ S, m1 /∈ S
min≻(m1, m2) otherwise.

Then multiplication requires deciding mi ∈ M . When M corresponds to the Halting
problem, we have undecidability.

However, the difficulty stems from the encoding.

Example 35 (Example 34 cont.). If the encoding e maps m ∈ {0, 1}∗ to (m, 1) if m ∈ M
and to (m, 0) if m ̸∈ M , then multiplication and addition in e(RM) are computable in
linear time.

118

3.6. Relation to Well-Known Complexity Classes

Our intuition is that there are two sources of complexity. One is the encoding and the
other seems to be the amount of information that the weighted semantics gives us about
the formula. The latter is determined by the non-collapsing terms in the semiring. For
illustration purposes, consider that over N[(xi)k] the coefficients c1, c2 are retained by
the sum c1x1 + c2x2, over N only the sum c1 + c2 is retained after addition, and over
B the value c1 ∨ c2 only tells us if at least one of the values was 1. As a consequence
SAT(N[(xi)k])-instances are at least as hard as SAT(N)-instances, since N is a subset of
N[(xi)k] with the same addition and multiplication on N. Additionally, SAT(N)-instances
seem to be strictly harder than SAT(B)-instances as NP can easily be reduced to #P.

We focus on the second source of complexity and address the first by introducing the
notion of an efficient encoding.3

Definition 102 (Efficiently Encoded Semiring). Let e(R) be an encoded semiring. Then
e(R) is efficiently encoded if there exists a polynomial p(x) s.t. for all e(r1), . . . , e(rn) ∈
e(R) it holds that

1. ∥�n
i=1ri∥e ≤ p(n) maxi=1,...,n∥ri∥e,

2. ∥�n
i=1ri∥e ≤ p(log2(n)) maxi=1,...,n∥ri∥e, and

3. e(r), e(r′) .→ e(r ⊙ r′) is in FP for ⊙ = ⊕, ⊗.

Conditions 1) and 2) ensure that successive multiplications resp. additions do not cause
space explosion, even for sums with exponentially many terms. Condition 3) is necessary
since we at least need single additions and multiplications to be tractable if we want to
solve problems over a semiring efficiently. The idea behind these conditions is to separate
encodings that behave “efficiently” both with respect to space and time and those that
do not. For this, we use restrictions that mirror and slightly relax the properties that
the prototypical binary encoding “bin(.)” of integers satisfies.

As desired and expected, for integers, a binary representation satisfies the restrictions,
whereas a unary representation does not.

Example 36. With binary representation bin(n) = b0 . . . bm s.t. n = #m
i=1 bi2i, the

semiring N of the natural numbers is efficiently encoded. With the unary representation
unary(n), which represents a natural number as a string of n characters, the natural
numbers are not efficiently encoded and in fact do not satisfy any of the conditions 1)-3).

Furthermore, also N[(xi)∞] is not efficiently encoded when polynomials are encoded as
lists of monomials and every monomial of the form c⃗ix

ei1
i1 . . . x

ein
in

is encoded using a unary
or binary representation of the coefficients c⃗i, the exponents eij , and variable indices ij.

The conditions of Definition 102 are mild in practice, as besides N many common semirings,
e.g. Z,Q, and Rmax,+, are efficiently encodable. They remain so under sharpenings like
p(n) = O(n), but this may lead to less “natural” encodings.

3Compared to Definition 36 we restrict ourselves to the operations that exist in every semiring, here.

119

3. Complexity of Counting over Semirings

When a semiring is efficiently encoded, we can establish a polynomial space upper bound
on the complexity of ΣBF evaluation.

Proposition 103 (FPSpace(poly) Upper-Bound). If e(R) is an efficiently encoded
commutative semiring, then SAT(e(R)) is in FPSpace(poly).

Proof (Sketch, see Appendix B.3.1 for the full proof). As we have seen before, the value
of an SAT(e(R))-instance α can be expressed as a sum of products of the semiring values
in α by implicitly applying the distributive law on α during evaluation as in Algorithm 1.
The length of the encoding of each term of this sum is polynomially bounded in the size
of α due to condition 1 of efficient encodedness. Since there are only single exponentially
many such addends, it follows from condition 2 of efficient encodedness that the final
result also has polynomial size in the size of the biggest term and is therefore also
polynomial in the size of the input. By generating the terms one after the other we, thus,
stay in polynomial space.

3.6.2 Results for Specific Semirings
Before we consider the complexity in dependence on the semiring parameter in general,
we relate well-known classical complexity classes to NP(e(R)) by showing that they share
SAT(e(R)) as a complete problem for different specific semirings.

Theorem 104. For (R, C) = (B, NP), (N, #P), (Z, GapP), (Rmax,+, OptP) and the
binary representation bin of the integers, SAT(bin(R)) is C-complete w.r.t. Karp reduc-
tions.

Proof (Sketch, see Appendix B.3.2 for the full proof). Membership holds as bin(n) satis-
fies Definition 102 and we can, thus, interpret Algorithm 1 as a non-deterministic Turing
machine algorithm that generates the correct polynomial size outputs. For hardness we
use reductions from SAT, #SAT, computing the permanent of an integer matrix, and
LexMaxSAT, respectively.

Note that even though every function in OptP can be reduced to a SAT(bin(Rmax,+)),
there are functions in OptP that cannot be computed in NP(Rmax,+) (or NP(bin(Rmax,+))
for that matter), e.g., x .→ 2|x|. The problem here is that SRTMs, contrary to classical
Turing Machines, cannot interpret bit-strings as the encodings of semiring values but
always store semiring values in a single cell on the tape. Therefore, if we first apply a
classical Karp reduction we can interpret bit-strings as the encodings of semiring values
and, thus, may give us more power than applying a Karp s-reduction. Without the power
of interpreting bit-strings, SRTMs can only generate semiring values by multiplying
numbers from a finite set R′ or the input. The fact that multiplication in Rmax,+ is +
implies that we can only generate numbers that are polynomial in the numbers in the
input and R′. For NP,#P and GapP this effect does not occur.

120

3.6. Relation to Well-Known Complexity Classes

3.6.3 Results for Classes of Semirings
Apart from completeness results for specific semirings, we also care about intuition on
why some semirings come with a higher complexity than others, and about results that
help to characterize new semirings based on their properties. Thus, we consider the
complexity of different classes of semirings that satisfy some property, which allows us to
make non-trivial claims about the complexity entailed by evaluating problems over them.

General Lower Bound and Tetrachotomy

First, we consider how hard SAT(R) has to be at least in general. For this we show the
following result:

Theorem 105 (General Lower Bound). Let e(R) be an encoded commutative semiring.
Then one of the following holds:

1. e(R) = T, i.e., the semiring is trivial

2. SAT(e(R)) is ModpP-hard with respect to counting reductions for some p ∈ N or

3. SAT(e(R)) is NP-hard with respect to counting reductions.

This means that the problem is either trivial (case 1), or expected not to be solvable
in FP under common complexity theoretic assumptions such as the Exponential Time
Hypothesis [IP01], otherwise.

Before we continue with the proof, we first make the following remark that we will use
throughout the rest of this chapter. Let C = l1 ∨ l2 ∨ l3 be a clause and let l for a literal l
denote the opposite of l, i.e., a = ¬a and ¬a = a for any propositional variable a. Then:

Lemma 106. For every non-trivial semiring R, an interpretation I satisfies C iff for

d(C) := l1 + l1 ∗ l2 + l1 ∗ l2 ∗ l3

it holds that �d(C)�R(I) = e⊗. Furthermore, if I does not satisfy C, then �d(C)�R(I) =
e⊕.

Proof of Lemma 106. We proceed by case distinction. Let I be an interpretation.

Case I |= l1: Then �d(C)�R(I) = e⊗⊕e⊕⊕e⊕ = e⊗

since �l1�R(I) = e⊗ and �l1�R(I) = e⊕.

Case I ̸|= l1, I |= l2: Then

�d(C)�R(I) = e⊕⊕e⊗⊕e⊕ = e⊗.

121

3. Complexity of Counting over Semirings

Case I ̸|= l1, I ̸|= l2, I |= l3: Then

�d(C)�R(I) = e⊕⊕e⊕⊕e⊗ = e⊗.

Case I ̸|= l1, I ̸|= l2, I ̸|= l3: Then

�d(C)�R(I) = e⊕⊕e⊕⊕e⊕ = e⊕.

This covers all cases and we see that when I |= C, then �d(C)�R(I) = e⊗ and otherwise�d(C)�R(I) = e⊕.

Furthermore, for n ∈ N and r ∈ R, we let

n · r =
�

e⊕ n = 0
((n − 1) · r)⊕r n > 0 .

Proof of Theorem 105. Assume e(R) ̸= T, since otherwise we are done.

We distinguish the following cases. If for all n ∈ N it holds that n · e(e⊗) = e(e⊕) implies
n = 0, then SAT(e(R)) is NP-hard with respect to counting reductions. For the proof,
consider a 3CNF ϕ = �n

i=1 Ci with variables v1, . . . , vm. Then ϕ is satisfiable iff for
α = Σv1 . . . ΣvmΠn

i=1d(Ci) it holds that �α�e(R)(∅) ̸= e(e⊕).

Otherwise, let M = ⟨e(e⊗)⟩ and

p = min{n ∈ N | n > 0, n · e(e⊗) = e⊕}.

We claim that M = {n · e(e⊗) | n ∈ N}. This can be seen as follows. By definition of
generated semirings, ⟨e(e⊗)⟩ is the smallest semiring with addition ⊕ and multiplication
⊗ that contains e(e⊗). We go over the relevant semiring axioms one by one. First,
e(e⊕) = 0 · e(e⊗) and thus of the desired form. Second, e(e⊗) = 1 · e(e⊗) and thus of the
desired form. Next, M must be closed under ⊕. So let n · e(e⊗), m · e(e⊗) ∈ M . Then,

(n · e(e⊗))⊕(m · e(e⊗)) = ((n + 1) · e(e⊗))⊕((m − 1) · e(e⊗)) = · · · = (n + m) · e(e⊗),

since ⊕ is commutative. Last but not least, M must be closed under ⊗. So let n ·
e(e⊗), m · e(e⊗) ∈ M . Then,

(n · e(e⊗))⊗(m · e(e⊗)) = (n · e(e⊗))⊗((m − 1) · e(e⊗)) ⊕ (n · e(e⊗))⊗e(e⊗)
= . . .

= (n · m) · e(e⊗)⊗e(e⊗)
= (n · m) · e(e⊗),

since ⊗ distributes over ⊕ and e(e⊗)⊗e(e⊗) = e(e⊗⊗e⊗) = e(e⊗). This proves the claim.

122

3.6. Relation to Well-Known Complexity Classes

Furthermore, for n ≥ p it holds that n · e(e⊗) = (n − p) · e(e⊗). Therefore,

M = {e(e⊕), 1 · e(e⊗), . . . , (p − 1) · e(e⊗)} ≡ Zp.

It follows that SAT(e(R)) is ModpP-hard with respect to counting reductions. We give
a reduction from Modp3CNF, which is the problem of deciding whether the number
of models N that a given 3CNF ϕ = �n

i=1 Ci with variables v1, . . . , vm has is not equal
to zero modulo p; this problem is ModpP-complete [BG92]. For the proof of hardness,
we again take α = Σv1 . . . ΣvmΠn

i=1d(Ci) and observe that �α�e(R)(∅) = n∗ · e(e⊗), where
n∗ ≡ N mod p. Since the cardinality of M is finite, we can decide in constant time what
the unique value n∗ ∈ {0, . . . , p − 1} is. The claim follows.

If we restrict ourselves to the case where we cannot have weights and consider an efficiently
encoded commutative semiring, we obtain a tetrachotomy result. This means, we split
the complexity associated with a commutative semiring into four distinct cases depending
on its properties. The properties we use are periodicity and offset of a periodic semiring.

Definition 107 (Periodic Semiring,Periodicity, Offset). A semiring R is periodic if for
all r ∈ R there exist n, m ∈ N such that �n

i=1r = �m
i=1r.

Let R be a periodic semiring. Then the periodicity of R is the smallest number p > 0
such that some o ≥ 0 with o · e⊗ = (o + p) · e⊗ exists. Let p be the periodicity of R. Then
the offset of R is the smallest number o ≥ 0 such that o · e⊗ = (o + p)e⊗.

Both periodicity and offset are well defined, i.e., there are unique numbers p, o that satisfy
the definition for periodic semirings.

Note that a periodicity of p does not imply that (p + 1) · e⊗ = e⊗.

Example 37. Consider the semiring

N≤o = ({0, 1, . . . , o}, +, ·, 0, 1),

where i + j := min(o, i + j) and i · j := min(o, i · j), i.e., the semiring over the natural
numbers less than or equal to o. N≤o is periodic with periodicity 1 but 1 + 1 ̸= 1 when
o > 1.

Corollary 108. Let R be a periodic semiring with periodicity p and offset o. Then for
all r ∈ R and o′ ≥ o it holds that o′ · r = (o′ + p) · r.

Proof. This can be shown by exploiting that e⊗ is the neutral element for multiplication
and the distributive law:�o′

i=1r = �o′
i=1r⊗e⊗ = r⊗�o′

i=1e⊗ = r⊗
��o′−o

i=1 e⊗⊕�o
i=1e⊗

= r⊗

��o′−o
i=1 e⊗⊕�o+p

i=1 e⊗

= r⊗�o′+p
i=1 e⊗ = �o′+p

i=1 r.

123

3. Complexity of Counting over Semirings

With this in mind, we can show that the complexity of evaluating SAT(e(⟨e⊗⟩e(R)))-
instances, i.e., instances over some efficiently encoded semiring e(R) that only use weights
of the form k · e(e⊗), falls into one of four distinct cases. Furthermore, we show that the
category a semiring falls into is determined by whether it is periodic, and if so, by its
periodicity and offset.

Theorem 109 (Tetrachotomy). Let e(R) ̸= T be an efficiently encoded commutative
semiring. Then we have exactly one of the four following situations:

• e(R) is periodic with periodicity 1 and SAT(e(⟨e⊗⟩)) is NP-hard w.r.t. counting
reductions and in FPNP[O(1)];

• e(R) is periodic with periodicity p ≥ 2 and offset 0 and SAT(e(⟨e⊗⟩)) is ModpP-
hard w.r.t. counting reductions and in FPModpP[O(1)];

• e(R) is periodic with periodicity p ≥ 2 and offset o > 0 and SAT(e(⟨e⊗⟩)) is
NP-hard, ModpP-hard w.r.t. counting reductions and in FP(NP∪ModpP)[O(1)];

• e(R) is not periodic and #SAT is in FNPSAT(e(⟨e⊗⟩))[1]. Furthermore, if addition-
ally there is a polynomial p such that for all k ≥ 0 it holds that 2p(∥k·e⊗∥) ≥ k, then
SAT(e(⟨e⊗⟩)) is in FP#P[1].

Note that practically for efficient evaluation also parallel oracle calls to NP and ModpP
could be used.

This result shows that if we only consider instances without semiring values, the already
known complexity classes NP, ModpP and #P suffice to bound the complexity in a
reasonable fashion, even if we allow general commutative countable semirings. Unfortu-
nately, the next subsection shows that this does not simply generalize to the case when
we have non-trivial weights.

We also would like to draw special attention to the last case, where e(R) is not periodic.
Here, the bounds we can give are weaker than in the other three cases. This is because
if a semiring is periodic, then e(⟨e⊗⟩) is finite, which implies that we can compute for
any r ∈ e(⟨e⊗⟩) in constant time a value k ∈ N such that r = k · e⊗. On the other
hand, if e(R) is not periodic, it is not clear whether given r ∈ e(⟨e⊗⟩) it is possible even
in polynomial time to compute k ∈ N such that r = k · e⊗. The restriction that e(R)
is efficiently encoded helps us, since it allows us to check in polynomial time whether
r = k · e⊗, given e(r) and k. However, as described by Sharma and Singh [SS16], it is an
open problem whether easy to compute functions (like f(k) = k · e⊗) have an easy to
compute inverse (like f−1(e(r))). This explains the weaker lower bound on the hardness
of SAT(e(⟨e⊗⟩)).
For the upper bound, our proof for the reduction of SAT(e(⟨e⊗⟩)) to #SAT requires that
for all r ∈ e(⟨e⊗⟩) it holds that the value k ∈ N such that r = k · e⊗ is single exponential
in the size of the encoding ∥r∥e. We leave the question of the existence of an efficiently
encoded semiring, where this does not hold open.

124

3.6. Relation to Well-Known Complexity Classes

Proof. Clearly, e(R) is exactly one of

1. periodic with periodicity 1

2. periodic with periodicity p ≥ 2 and offset 0

3. periodic with periodicity p ≥ 2 and offset o > 0

4. not periodic

What is left to show is the corresponding claim for the complexity of SAT(e(⟨e⊗⟩)).

Case 1. So let e(R) have periodicity 1 and let α = Σv1 . . . Σvlγ, where γ is quantifier-
free, be a SAT(e(⟨e⊗⟩))-instance. Since γ only contains weights from e(⟨e⊗⟩), we know
that for any interpretation I the semantics of γ is m · e(e⊗) for some m ≥ 0. Further, let
o be the offset of e(R). Then we know that (o+m) ·e(e⊗) = o ·e(e⊗) for all m ≥ 0. Thus,�γ�e(R)(I) ∈ {0 · e(e⊗), . . . , o · e(e⊗)} and also �α�e(R)(∅) ∈ {0 · e(e⊗), . . . , o · e(e⊗)}.

Thus, we can use o2 queries to an NP-oracle to determine for each value i = 1, . . . , o
whether there are 1, . . . , o or more interpretations with value i · e(e⊗). From this we can
derive the value of α. Thus, SAT(e(⟨e⊗⟩)) is in FPNP[O(1)], since o only depends on the
semiring and not on the instance. For NP-hardness we can use the same construction as
in the proof of Theorem 105.

Case 2. So let e(R) have periodicity p ≥ 2 and offset 0 and let α = Σv1 . . . Σvlγ, where
γ is quantifier-free, be a SAT(e(⟨e⊗⟩))-instance. Since γ only contains weights from
e(⟨e⊗⟩), we know that for any interpretation I the semantics of α is m · e(e⊗) for some
0 ≤ m < p.

Now, let f ∈ #P be a function that evaluates SAT(bin(N))-instances. We can use f on
α by replacing every value e(k · e⊗) by bin(k). Since k ≡ 0 mod p iff k · e(e⊗) = 0 · e(e⊗),
checking whether the semantics of α is 0 · e(e⊗) is in ModpP by definition.

Additionally, since f ∈ #P implies f + i ∈ #P, we can use p queries to a ModpP-oracle
to determine for each value i = 1, . . . , p whether the semantics of α is i · e(e⊗). Thus,
SAT(e(⟨e⊗⟩)) is in FPModpP[O(1)], since p only depends on the semiring and not on the
instance. For ModpP-hardness we can use the same construction as in the proof of
Theorem 105.

Case 3. So let e(R) have periodicity p ≥ 2 and offset o > 0 and let α = Σv1 . . . Σvlγ,
where γ is quantifier-free, be a SAT(e(⟨e⊗⟩))-instance. Since γ only contains weights
from e(⟨e⊗⟩), we know that for any interpretation I the semantics of α is i · e(e⊗) for
some 0 ≤ i < o + p.

The rest is a combination of case 1. and 2.: we first check whether i < o using o2 calls
to an NP-oracle. If i < o we are done, otherwise, we use p calls to a ModpP-oracle to

125

3. Complexity of Counting over Semirings

obtain the value i. For hardness we again use the same construction as in the proof of
Theorem 105.

Case 4. So let e(R) not be periodic and let α = Σv1 . . . Σvlγ, where γ is quantifier-free,
be a SAT(e(⟨e⊗⟩))-instance. Since γ only contains weights from e(⟨e⊗⟩), we know that
for any interpretation I the semantics of α is m · e(e⊗) for some m ∈ N. If we can find
out for each r that occurs in γ the natural number kr such that r = kr · e⊗, we can
reduce the evaluation of α to evaluating α over bin(N), as this will have result m. Given
m we can then compute m · e(e⊗) in polynomial time. This establishes the existence of a
counting reduction from SAT(e(⟨e⊗⟩)) to #SAT, if we can compute given r the natural
number kr such that r = kr · e⊗.

If we know that for k · e(e⊗) it holds that 2p(∥k·e⊗∥) ≥ k for some polynomial p, then,
given the encoding e(r) we can guess all numbers 0 ≤ k ≤ 2p(∥r∥e) and check whether
k · e(e⊗) = e(r) in non-deterministic polynomial time. By doing this for all weights e(r)
that occur in α before evaluating α non-deterministically over N and rejecting if a guess
was wrong, we can reduce SAT(e(⟨e⊗⟩)) to #SAT.

As for the containment of #SAT in FNPSAT(e(⟨e⊗⟩))[1], consider the following algorithm:
given a #SAT-instance ϕ construct a SAT(e(⟨e⊗⟩))-instance α such that the semantics
of α is m · e(e⊗), where m is the number of models of ϕ. This is possible in polynomial
time by first constructing a 3CNF ψ = �n

i=1 Ci with variables v1, . . . , vm and the same
number of models and using α = Σv1 . . . ΣvmΠn

i=1d(Ci), where d(Ci) is as in Lemma 106.
Then, evaluate α, guess 0 ≤ n ≤ 2|V ars(ϕ)|, where V ars(ϕ) denotes the set of variables in
ϕ, and compute n · e(e⊗). If n · e(e⊗) is equal to the semantics of α accept and return n,
otherwise reject.

Upper Bounds using Polynomial Semirings

We have seen results on the hardness of commutative semirings in general and some
containment results for the case when we only use weights of the form k · e⊗ for some
k ∈ N in the evaluation of an instance. In order to also obtain containment results for
the case when we do have arbitrary weights, we need to apply a different kind of strategy.

The problem with proper weights is that they intuitively allow us to preserve more
information when they are added or multiplied. We start with a formalization of this
intuition by showing that epimorphisms, which can be seen to map a semiring R1 to an
at most as informative semiring R2, can be used to reduce SAT(R2) to SAT(R1).

This makes polynomial semirings such as N[(xi)∞] very interesting for us since they are,
as we will see, the most information preserving countable commutative semirings and
can thus always be reduced to. We show that in some cases this strategy is unlikely to
work but also prove that there are still large subclasses of semirings where it does.

We start by defining epimorphisms.

126

3.6. Relation to Well-Known Complexity Classes

Definition 110 (Homomorphism, Epimorphism). Let Ri = (Ri, ⊕i, ⊗i, e⊕i , e⊗i), i = 1, 2
be two semirings. A homomorphism from R1 to R2 is a function f : R1 → R2 s.t. for
⊙ = ⊕, ⊗

f(r ⊙1 r′) = f(r) ⊙2 f(r′) and f(e⊙1) = e⊙2 .

If f is in addition surjective, then it is an epimorphism.

We can use them similarly to reduce problems over one semiring to problems over another
semiring. Formally:

Theorem 111. Let ei(Ri), i = 1, 2 be two encoded commutative semirings, such that

1. there exists a polynomial time computable epimorphism f : e1(R1) → e2(R2), and

2. for each e2(r2) ∈ e(R2) one can compute in polynomial time e1(r1) s.t. f(e1(r1)) =
e2(r2) from e2(r2).

Then SAT(e2(R2)) is counting-reducible to SAT(e1(R1)).

Proof (Sketch). Given a SAT(e2(R2))-instance α, we can replace all weights e2(r2) by
a weight e1(r1) such that f(e1(r1)) = e2(r2), which is possible in polynomial time
by condition 2. We can evaluate the resulting SAT(e1(R1))-instance and apply the
epimorphism f .

Theorem 111 formalizes the intuition which Green and Tannen [GT17] also discussed:
if a semiring R2 is the homomorphic image of another semiring R1, then it is at most
as information preserving as R1 and therefore at least as hard structurally. This is
because a homomorphism f may assign different values r ≠ r′ ∈ R1 the same value
f(r) = f(r′) ∈ R2. Then, while we could distinguish these values in the context of R1,
we cannot do the same in R2. However, clearly it cannot happen that f(r) ̸= f(r′) ∈ R2
but r = r′ ∈ R1.

Note that the existence of such an epimorphism does not necessarily mean that the
computational complexity of SAT(R2) is lower than SAT(R1) unless the other conditions
of Theorem 111 are also satisfied!

Example 38. The semiring RM from Example 34 is a homomorphic image of B[(xi)∞] us-
ing the epimorphism defined by f(xi) = bin(i). But SAT(B[(xi)∞]) is in FPSpace(exp),
while, as noted before already a single multiplication in RM may be undecidable. This
does not contradict Theorem 111 since we cannot apply it as computing f(xi · xj) is not
possible in polynomial time when M corresponds to the Halting problem.

127

3. Complexity of Counting over Semirings

#
P-

lik
e

M
od

p
P

∪NP-
lik

e
M

od
p
P-

lik
e

NP-
lik

e

N[
(x

i) ∞
]

Z p
× N

≤o
[(x

i) ∞
] Z p

[(x
i) ∞

]

N ≤o
[(x

i) ∞
]

B[
(x

i) ∞
]

N[
(x

i) k
]

Z p
× N

≤o
[(x

i) k
]

Z p
[(x

i) k
]

B[
(x

i) k
]

Q

Z

N

Z p
× N

≤o

Z p

R m
ax

,+R
m

in
,+

B

T

FP
Sp

ac
e(

po
ly

)-

mem
be

rsh
ip

im
pli

es

a co
lla

ps
e o

f P
H

FP
#

P
∥

-co
mple

te

FP
M

od
p

P∪
NP

∥

-co
mple

te

FP
M

od
p

P
∥

-co
mple

te

FP
NP

∥
-co

mple
te

G
ap

P-
co

mple
te

O
pt

P-
co

mple
te

#
P-

co
mple

te
M

od
p
P-

ha
rd

NP-
co

mple
te

O(1
)

Figure 3.2: Epimorphisms f : R1 → R2 between semirings, indicated by arrows R1 → R2.
Relation of complexity classes C and semirings R, indicated by dotted lines C R.

128

3.6. Relation to Well-Known Complexity Classes

Figure 3.2 depicts between which semirings we can hope to apply Theorem 111. There,
an arrow R1 → R2 indicates that there exist encoding functions e1, e2 such that the
conditions of Theorem 111 hold. In this map, we see that N[(xi)∞], N≤o × Zp[(xi)∞],
Zp[(xi)∞] and N≤o[(xi)∞] are the most information preserving and therefore in a sense
hardest #P-like, ModpP ∪ NP-like, ModpP-like and NP-like commutative countable
semirings, respectively. Among the four classes, we observe that the #P-like problems
are the hardest and that, naturally, the ModpP ∪ NP-like problems are harder than both
ModpP-like and NP-like problems. Furthermore, we see that by restricting ourselves to
polynomials with finitely many variables, the complexity decreases (presumably) a bit
for all types of problems. Finally, by further epimorphisms, we arrive at semirings that
are not over polynomials, which then often correspond to some classical complexity class,
as we already observed in Theorem 104.

In the following, we further formalize many intuitions, such as the C-likeness, presented
in Figure 3.2 and present further results on the complexity associated with semirings
and classes thereof, often by using the existence of epimorphisms.

We start by formalizing the intuition that the above mentioned polynomial semirings are
the hardest ones that satisfy a given set of properties.

Lemma 112 (Hardest Semirings). There exists an encoding e∗ for

1. N≤o[(xi)∞];

2. Zp[(xi)∞];

3. N≤o × Zp[(xi)∞];

4. N[(xi)∞]

such that for any commutative efficiently encoded commutative semiring e(R) that is in
addition

1. periodic with periodicity 1;

2. periodic with periodicity p ≥ 2 and offset 0;

3. periodic with periodicity p ≥ 2 and offset o > 0;

4. not periodic

it holds that SAT(e(R)) is counting reducible to

1. SAT(e∗(N≤o[(xi)∞]));

2. SAT(e∗(Zp[(xi)∞]));

129

3. Complexity of Counting over Semirings

3. SAT(e∗(N≤o × Zp[(xi)∞]));

4. SAT(e∗(N[(xi)∞])), respectively.

Proof (Sketch, see Appendix B.3.3 for the full proof). The idea is as follows. Instead of
performing the evaluation explicitly by performing all the semiring operations on the
input values immediately, we replace each semiring value e(r) in the given ΣBF α by
xe(r), where we associate the binary encoding of r with a natural number corresponding
to a variable index. Then we evaluate the transformed instance over the corresponding
polynomial semiring, where we obtain a polynomial as the result. Finally we use the
fact that we can encode the values of the polynomial semiring in such a way that there
exists a polynomial time computable epimorphism from the polynomial semiring to e(R),
which corresponds to evaluating the polynomial with xe(r) replaced by e(r).

Thus, if we find an efficient algorithm for SAT(e∗(S[(xi)∞])), with S ∈ {N≤o,Zp,N≤o ×
Zp,N} with the encoding function e∗ from the proof, we can use it to solve SAT(e(R))
for any efficiently encoded commutative semiring e(R) with the corresponding periodicity
and offset. Unfortunately, already the result of evaluating a SAT(e∗(B[(xi)∞]))-instance
α can be exponential in the size of α. Therefore, any algorithm for SAT(e∗(S[(xi)∞]))
necessarily has exponential running time.

One might be tempted to think that this can be avoided by choosing an encoding function
e that is better than e∗. However, such an encoding e is unlikely to exist, as the following
result shows.

Theorem 113. Let R = N[(xi)∞] (resp. R = B[(xi)∞]). If there is an encoding function
e for R s.t.

1) ∥�α�R(∅)∥e is polynomial in the size of α,

2) we can extract the binary representation of the coefficient n ∈ N (resp. b ∈ B) of
xj1

i1 ...xjm
im

from e(r) in time polynomial in ∥r∥e, and

3) ∥xi∥e is polynomial in i,

then #P ⊆ FP/poly (resp. NP ⊆ P/poly).

This would imply Σp
2 = PH [KL82], which is considered to be unlikely. Hence, for any

reasonable encoding e, SAT(e(N[(xi)∞]) and SAT(e(B[(xi)∞])) are unlikely to have
polynomial output and are, therefore, unlikely to be in FPSpace(poly).

Condition 3) of Theorem 113 allows that indices ik are encoded in unary and imposes no
restriction on the encoding of exponents jk. Requiring the exponents to be encoded in
binary puts even already SAT(e(B[x])) outside of FPSpace(poly), unless NP ⊆ P/poly.

130

3.6. Relation to Well-Known Complexity Classes

Theorem 114. Let R = N[x] (resp. R = B[x]). If there is an encoding function e for R
s.t.

1) ∥�α�R(∅)∥e is polynomial in the size of α,

2) we can extract the binary representation of the coefficient n ∈ N (resp. b ∈ B) of xi

from e(r) in time polynomial in ∥r∥e, and

3) ∥xi∥e is polynomial in log2(i),

then #P ⊆ FP/poly (resp. NP ⊆ P/poly).

Proof (Sketch, see Appendix B.3.3 for the full proofs) of Theorems 113 and 114. For each
n ∈ N, we can construct a ΣBF formula α of polynomial size s.t. the solution of every
#3SAT (resp. 3SAT)-instance with n variables is obtainable from ∥�α�R(I)∥e. By the
methodology of [CDS96] to assess compilability, we then infer #P ⊆ FP/poly (resp.
NP ⊆ P/poly).

Notably, the converse of Theorem 114 also holds:

Theorem 115. If #P ⊆ FP/poly (resp. NP ⊆ P/poly), then there exist encodings e∞
and e1 for N[(xi)∞] and N[x] (resp. B[(xi)∞] and B[x]) such that the preconditions 1) -
3) of Theorems 113 and 114 are satisfied.

Proof (Sketch). The idea here is as follows: we know that we can obtain the coefficient
of a monomial from �α�R(∅) in #P (resp. NP). Thus, if #P ⊆ FP/poly (resp. NP
⊆ P/poly), we can also obtain it in FP (resp. P) given polynomial advice.

Using this insight, we can construct an encoding that satisfies the desired properties,
by representing polynomials as a tuple consisting of a SAT(eb(R))-instance and the
polynomial advice(s) necessary to solve the queries for coefficients of monomials in
polynomial time. Here, we only need to make sure that the base encoding eb satisfies
condition 3). Such encodings are easy to find though.

Thus, the existence of an encoding e as in Theorem 114 for R = N[x] (resp. R = B[x]) is
equivalent to the pure complexity-theoretic question whether #P ⊆ FP/poly (resp. NP
⊆ P/poly), which is a well-known open problem in complexity theory.

We can obtain similar results to Theorems 113 and 114 in a more general setting for
polynomials with coefficients from any non-trivial commutative semiring.

Theorem 116. Let R ≠ T be a commutative semiring. If there is an encoding function
e for R[(xi)∞] s.t.

1) ∥�α�R[(xi)∞](∅)∥e is polynomial in the size of α,

131

3. Complexity of Counting over Semirings

2) we can extract the encoding e(r′) ∈ e(R) of the coefficient of xj1
i1 ...xjn

in
from e(r) in

time polynomial in ∥r∥e, and

3) ∥xi∥e is polynomial in i,

then either NP ⊆ P/poly or ModpP ⊆ P/poly for some p ∈ N.

Theorem 117. Let R ≠ T be a commutative semiring. If there is an encoding function
e for R[x] s.t.

1) ∥�α�R[x](∅)∥e is polynomial in the size of α,

2) we can extract the encoding e(r′) ∈ e(R) of the coefficient of xi from e(r) in time
polynomial in ∥r∥e, and

3) ∥xi∥e is polynomial in log2(i),

then either NP ⊆ P/poly or ModpP ⊆ P/poly for some p ∈ N.

As already mentioned before, if NP ⊆ P/poly, then the polynomial hierarchy collapses
to the second level. As a matter of fact, this also holds if ModpP ⊆ P/poly since:

Lemma 118. If ModpP ⊆ P/poly for p ∈ N, p > 1, then NP ⊆ P/poly.

Proof (Sketch, see Appendix B.3.3 for the full proof). We make use of the following prob-
lem:

Problem: Unique-SAT
Input: A propositional formula ϕ with at most one satisfying assignment.
Output: True, if ϕ is satisfiable, otherwise false.

Note that this is a promise problem: the input is guaranteed to have at most one satisfying
assignment, if this is not the case any output, including non-termination are allowed.
It follows, that for any p ∈ N, p > 1 we can solve Unique-SAT in ModpP by asking
whether the number of satisfying assignments of the input is not equivalent to zero
modulo p.

Valiant and Vazirani [VV86] showed that NP ⊆ RPUnique-SAT. Using RP ⊆ BPP we get
RPUnique-SAT ⊆ BPP Unique-SAT and from Unique-SAT ∈ ModpP for any p ∈ N, p > 1
it follows that NP ⊆ BPP ModpP.

It remains to show that BPP ModpP ⊆ P/poly follows from ModpP ⊆ P/poly. We
already know that BPP ⊆ P/poly [BG81], even without the assumption that ModpP ⊆
P/poly. We establish that PP/poly/poly ⊆ P/poly and BPP ModpP ⊆ PP/poly/poly ⊆
P/poly, which proves the result.

132

3.6. Relation to Well-Known Complexity Classes

It follows that if there is any non-trivial commutative semiring R with an encoding e as
required by Theorems 116 or 117 then NP ⊆ P/poly. This would imply a collapse of
the polynomial hierarchy and is therefore considered to be unlikely. The full proofs of
Theorems 116 and 117 are given in Appendix B.3.3.

Summing up, we see that reducing SAT(e(R)) to the polynomial semirings is not practical
for encoded semirings e(R) in general4. However, we can obtain positive results when
restricting ourselves to polynomials with a limited number of variables by using a different
encoding.

Theorem 119. Let e(R) be a commutative semiring that is efficiently encoded. Then
SAT(e(R[(xi)k])) is FPNP(e(R))

∥ -complete for metric reductions, if we extend e to R[(xi)k]
by representing polynomials as lists of monomials with exponents in unary and coefficients
encoded by e.

As mentioned before the semirings of polynomials with coefficients in e(R) allow one to
solve multiple SAT(e(R))-instances at the same time. Theorem 119 shows that when we
choose a specific encoding and allow at most k variables then the number of instances
that can be solved using one instance over the corresponding semiring e(R[(xi)k]) is
exactly polynomial.

Proof (Sketch, see Appendix B.3.3 for the full proof). We can obtain the coefficient of
the polynomially many monomials in the solution of an SAT(e(R[(xi)k]))-instance with
one independent query to an NP(e(R))-oracle each. On the other hand we can solve
n SAT(e(R))-instances at the same time by solving one SAT(e(R[(xi)k]))-instance, by
multiplying each of them with a different monomial xi

1.

As an immediate consequence, we see that SAT(bin(Q[(xi)k])) and SAT(bin(B[(xi)k]))
are metrically reducible to FP#P

∥ (which is equal to FP#P[1]) and FPNP
∥ , respectively,

and thus not significantly harder than #P and NP, respectively.

The same can be said when a SAT(e(R))-instance only contains few values from the
semiring.

Lemma 120. Let k ∈ N be fixed, e(R) be an efficiently encoded commutative semiring.
If e(R) is

1. periodic with periodicity 1;

2. periodic with periodicity p ≥ 2 and offset 0;

3. periodic with periodicity p ≥ 2 and offset o > 0;
4Note that Knowledge Compilation [DM02] intuitively does something very similar but optimizes the

size of the representation of the polynomials such that it can be bounded using the treewidth of a given
formula.

133

3. Complexity of Counting over Semirings

4. not periodic

then SAT(e(R)) for instances that contain at most k different semiring values is in

1. FPNP
∥ ;

2. FPModpP
∥ ;

3. FPModpP∪NP
∥ ;

4. FP#P
∥

respectively.

Proof. Let α be a SAT(e(R))-instance that contains at most k different semiring values
e(r1), . . . , e(rk). We define an epimorphism f : bin(N[(xi)k]) → e(R) by defining it on
the monomials xi1

1 . . . xik
k as f(xi1

1 . . . xik
k) = �k

j=1
�ij

lj=1e(rj). Since e(R) is efficiently
encoded, and the exponents ij are encoded in unary, f is computable in polynomial
time. We can thus apply Theorem 111 with semirings bin(N[(xi)k]) and e(R), since the
second condition is trivially satisfied by using xj as an element that maps to e(rj) for
j = 1, . . . , k.

Thus, we have a counting reduction from SAT(e(R)) to SAT(bin(N[(xi)k])). By applying
Theorem 119 we then obtain a metric reduction to a problem in FP#P

∥ . Since metric

reductions are polynomial time functions, we can derive that SAT(e(R)) is in FPFP#P
∥ [1],

which is equal to FP#P
∥ .

The proof for the semirings that are periodic is analogous by performing the same
reduction to

1. SAT(bin(N≤o[(xi)k])), when e(R) has periodicity 1 and offset o;

2. SAT(bin(Zp[(xi)k])), when e(R) has periodicity p ≥ 2 and offset 0;

3. SAT(bin(Zp × N≤o[(xi)k])), when e(R) has periodicity p ≥ 2 and offset o > 0.

However, not all relevant SAT(R)-instances have few different semiring values. We can
take this idea even further by considering instances that have many different semiring
values that can be expressed as “reasonably small” sums and products of few different
semiring values. For this, we consider finitely generated semirings.

134

3.6. Relation to Well-Known Complexity Classes

Definition 121 (Finitely Generated Semiring). Let R = (R, ⊕, ⊗, e⊕, e⊗) be a semiring.
We call R finitely generated, if R = ⟨R⋆⟩R for some finite R⋆ ⊆ R.

Commutative semirings that are finitely generated using k elements r1, . . . rk can be seen
as reduced versions of the semiring of polynomials with variables x1, . . . , xk. We thus
obtain:

Theorem 122. Let e(R) be an efficiently encoded commutative semiring that is generated
by {r1, . . . , rk}. Suppose every r ∈ R is of the form r = �n

i=1ai · �k
j=1r

ei,j

j for some
ai, ei,j ∈ N such that

• max{ei,j , log2(ai), n} is polynomial in ∥r∥e, and

• we can obtain ai, ei,j from e(r) in polynomial time.

If e(R) is

1. periodic with periodicity 1;

2. periodic with periodicity p ≥ 2 and offset 0;

3. periodic with periodicity p ≥ 2 and offset o > 0;

4. not periodic;

then SAT(e(R)) is in

1. FPNP
∥ ;

2. FPModpP
∥ ;

3. FPModpP∪NP
∥ ;

4. FP#P
∥ ;

respectively.

Note that k in Theorem 122 may be zero. For example, the natural number semiring
N is generated by the empty set, since every semiring over a subset over the natural
numbers with the same addition and multiplication needs to contain zero and one. Clearly,
N = ⟨0, 1⟩N. If indeed k = 0, the product �k

j=1r
ei,j

j takes values e⊗ and the Theorem
also holds.

135

3. Complexity of Counting over Semirings

Proof (Sketch, see Appendix B.3.3 for the full proof). As in the proof of Lemma 120, we
can find a polynomial time epimorphism from e(R) to bin(S[(xi)k]) for the semiring
S ∈ {N≤o,Zp,Zp × N≤o,N} with the same periodicity as e(R). However, contrary to
Lemma 120, we do not identify each semiring value in a given instance with a different
variable but identify the values r1, . . . , rk that the semiring is generated from with
the variables x1, . . . , xk. Due to the preconditions of the Theorem, we can then apply
Theorem 111 to show that we can counting-reduce SAT(e(R)) to SAT(bin(S[(xi)k)]).
By application of Theorem 119 we then prove our claim.

Again note that in case k = 0, the polynomial semiring bin(S[(xi)k]) is simply the
semiring over the constant polynomials, i.e., bin(S).

Note that when e(R) is periodic, we know that the coefficients ai can always be chosen
such that they are bounded by a constant.

Furthermore, compare Theorem 122 to Theorem 109 for the case when the encoded
semiring e(R) is not periodic. Clearly, for any semiring e(⟨e⊗⟩) is finitely generated.
Thus, one might be tempted to assume that one can always apply Theorem 122 to derive
that SAT(e(⟨e⊗⟩)) is in FP#P

∥ . This is not necessarily the case, however, since it is not
clear that the additional preconditions of Theorem 122 are given, even when the semiring
is efficiently encoded.

3.7 Related Works
In order to capture the complexity of quantitative reasoning frameworks that are defined
over semirings R, we introduced Semiring Turing Machines. SRTMs are non-deterministic
Turing machines whose result is determined by their transitions that are weighted with
semiring values; SAT(R) and NP(R), the versions of SAT and NP that are generalized
to semirings are in the expected relation, viz. that SAT(R) is NP(R)-complete with
respect to (adjusted) Karp-reductions.

In the literature, other extensions of machine models with means to deal with algebraic
structures have been considered. In this section, we consider these related models of
computation with algebraic structures.

Weighted Automata The machine model most related to our SRTMs is that of
weighted automata, which are finite state automata that have a (semiring)-weighted
transition function [DG07]. SRTMs are a generalization of weighted automata and can
simulate the latter with ease; informally, they equip weighted automata with memory
and the full computational power of a Turing machine under the restriction that semiring
values are opaque. The connection to weighted automata is especially of interest due
to their connection to descriptive complexity, which opens up future work on the same
topic for SRTMs.

136

3.7. Related Works

Blum-Shub-Smale Machines Next, our SRTMs are related to Blum-Shub-Smale
(BSS) machines, which were introduced by Blum, Shub, and Smale; Blum [BSS89; Blu98]
to model algebraic computation over the reals and general rings, respectively. Roughly
speaking, BSS machines operate over a tape whose cells can hold elements from a ring
R, and computation steps are performed by the evaluation of polynomials over R that
modify finite sequences of cells; a BSS machine is a connected directed graph which has
input, output, and computation nodes, and possibly shift and branching nodes, where
the former allow for shifting tape contents and the latter for testing a condition such as
r ≥ 0 (if the ring R is ordered) or r = 0 based on the ring elements on the tape. Notably,
Blum et al. remarked that a classical Turing machine is a BSS-machine over Z2 (using a
binary alphabet).

As for complexity, BSS studied in their model ring operations having unit cost, i.e.,
independent of the concrete ring elements used; merely for Z and Q, also bit cost, i.e.
log m where m is the largest number in the computation, was considered. Based on this
time measure, Blum et al. defined then polynomial (P-) time and NP computations over
rings, where in the latter a guess of values from R can be made; notably, over Z we have
P ̸= NP under unit cost.

Compared to SRTMs, BSS-machines do not operate over semirings, thus e.g. the natural
numbers N are not covered, as they do not form a ring. While the definition might be
adapted to semirings, a distinctive feature is that BSS-machines work over (strings of)
ring values only, while our SRTMs allow for semiring values in addition to a tape alphabet
as usual. The latter is convenient and provides flexibility for problem representation,
which the BSS model lacks. E.g., for solving the classical SAT problem in the BSS model,
propositional formulas must be first converted into an algebraic form over a ring that can
be processed by a BSS machine; to this end, Blum et al. use a transformation (assuming
that input formulas are already in CNF) into a system of polynomials over the ring Z2.

Furthermore, in order to ensure efficient (polynomial time) computation, the processing
of numbers must be controlled with additional restrictions, such that e.g. recursive
multiplication of values, as discussed in Section 3.4.2, is prohibited.

Summarizing, the BSS model has been devised with computations over algebraic structures
in mind, where the input is already in a specific form and the cost of algebraic operations
is disregarded respectively for Z and Q estimated by binary number size; semirings like
N are not covered. Efficient computation on classical Turing machines is hard to ensure,
and the linkage to conventional complexity classes is limited to few cases, and different
by missing or fixed encodings. This makes the use of BSS machines for problem solving
and complexity analysis in the context of AI reasoning frameworks as we consider less
attractive.

Real Counting Computations Major motivations of Blum et al. to develop their
machine model were to have an idealized computation model for scientific computation
with real numbers, in which the cost of multiplication is independent of the size of

137

3. Complexity of Counting over Semirings

numbers (which on a Turing machine depends on the encoding), and to bring the
theory of computation into the domain of analysis, geometry and topology, such that
the mathematics of these subjects can then be put to use in the systematic analysis
of algorithms [BSS89]. Building on the BSS machine model, Meer [Mee00] developed
a theory of counting problems over the real numbers. To this end, he introduced the
class #PR as the real analogue of #P, which also counts accepting paths but of a
non-deterministic BSS machine, and then embarked on giving a logical characterization
of #PR following descriptive complexity theory over the reals, which has been initiated in
[GM95]. Meer [Mee00]’s class #PR is different from our NP(R) instantiated for R = R,
in which we sum up (i.e., “count”) weighted acceptance paths. However, for SRTMs the
numbers involved in a computation are deliberately restricted compared to BSS machines,
in order not to produce large result values (which does not matter in the BSS-model)
such that space efficient storage on a conventional machine is feasible. Detailing the
relationship between NP(R) and an analogue class that combines weighted acceptance
counting with BSS machines is an interesting issue for future research, especially when it
comes to generalizations for other (semi)rings.

Real Counting with Arbitrarily Approximatable Weights A different definition
of #PR and #PS for S ⊆ R was provided by De Campos, Stamoulis, and Weyland (2020).
While they intuitively also define the output of a computation as the sum over weighted
computation paths like we do, they do not assume the values to be given explicitly but
require functions that compute them up to a variable precision of 2−p in polynomial time
in p. This allows them to work with a finite representation of real numbers. Interestingly,
this different way of encoding numbers leads to undecidability of the question whether a
computation in #PQ leads to a value greater than zero. Therefore, we argue that while
this matter of encoding numbers is interesting to allow computations with uncountable
semirings such as R on classical Turing machines, the explicit encoding in our setting is
of more interest when the semiring has only countably many values, as it leads to more
intuitive results.

Relational Machines SRTMs are further related to the relational machine of Abiteboul
and Vianu [AV91], which was introduced in order to compensate for a mismatch between
computations by a Turing machine and the evaluation of logical formulas over finite
relational structures, which is of central importance for query answering over relational
databases. The generic treatment of elements in such structures, which model relational
databases, by logic and the fact that relations are unordered sets of tuples is in contrast
to string-based representations where in an encoding elements might be distinguished
and by the inherent order of the string’s letter an order of tuples induced; the latter may
make it easy to answer certain queries (e.g., whether a database has an even number of
records) that can not be expressed in a query language without order information (e.g.,
pure SQL). To this end, Abiteboul and Vianu [AV91] extended Turing machines with
a “relational storage” and the ability to perform relational operations (which underlie
the evaluation of logical formulas) directly on the relational storage rather than on the

138

3.8. Discussion

encoding of a database on a machine’s tape. Emerging relational complexity classes and
their relationships allowed for a precise characterization of the expressive powers of certain
database query languages and to translate relationships of the latter into equivalent
questions in standard complexity theory. Notably, our notion of Karp surrogate-reduction
for problems over semirings aims at a genericity condition similar to the one for databases,
but it does not allow for exploiting in the reduction that different semiring surrogates
SV nE and SV mE (i.e., n ̸= m), which corresponds to having different elements in a
database, will amount to different semiring values.

3.8 Discussion
Just like the quantitative frameworks that are defined over semirings R capture many
different quantitative problems when instantiated with the correct semiring, we showed
that the same is the case on the complexity level. Theorem 104 showed that for
(R, C) = (B, NP), (N, #P), (Z, GapP), (Rmax,+, OptP) and the binary representation
bin of the integers, SAT(bin(R)) is C-complete w.r.t. Karp reductions. Thus, many well-
known complexity classes can be seen as instantiations of NP(R) with the appropriate
semiring under the usual representation of numbers.

Using NP(R), we are able to characterize the complexity of many semiring frameworks.
As our results show that

• Algebraic Measures Section 2.2,

• Sum-Of-Products Problems [BDP09],

• Weighted First-Order Logic Evaluation [MR15], Section 2.3,

• Semiring-based Constrained Satisfaction Problems [Bis+99],

• Algebraic Model Counting [KVD17], and

• Semiring-induced Propositional Logic [LOR10]

are all NP(R)-complete with respect to Karp-reductions. Furthermore, we saw that
Semiring Provenance [GKT07] for Datalog is NP(R)-hard but not complete and therefore
even harder than other semiring formalisms.

Applying our Results for Problem Analysis As showcases, we consider some
specific semirings to illustrate how our previous results can be used to analyze the
complexity of further specific semirings.

As a consequence of Theorems 111 and 119, or directly from Theorem 122 for the finitely
generated N,Z, we obtain:

139

3. Complexity of Counting over Semirings

Theorem 123. Let S = N,Z,Q. For Sn, n ∈ N, the semiring S over multiple dimensions,
we have that SAT(bin(S)n) is FP#P

∥ -complete with respect to metric reductions, where
bin(Q) represents r ∈ Q as pair (bin(p), bin(q)) such that p/q = r, p ∈ Z, q ∈ N and the
greatest common divisor of |p| and q is 1.

As promised in the introduction, we consider in more detail the semiring

GRAD = (Q≥0 × Q, +, ⊗, (0, 0), (1, 0)),

where addition is coordinate-wise and (a1, b1) ⊗ (a2, b2) = (a1 · a2, a2 · b1 + a1 · b2). It
was introduced by [Eis02] and shown to be useful for parameter optimization [KVD17;
Man+21]. Intuitively, we can compute gradient values with GRAD and for (a, b) the
value a corresponds to the computed result of some function and b corresponds to its
gradient with respect to some parameter.

There is an epimorphism f from Q[x] to GRAD, which can be seen by defining f on the
monomials qxi as

f(qxi) =
�

q(0, 1)i if i > 0,
|q| otherwise.

=

��
(0, q) if i = 1,
(0, 0) if i > 1,
(|q|, 0) otherwise.

This means that we can see the elements in GRAD as elements in Q[x] by identifying
(1, 0) and (0, 1) with 1 and x, respectively. The elements in GRAD are however only
reduced versions of the polynomials, i.e., there are additional equalities between values
in GRAD that do not hold in Q[x]. An example is x2, because (0, 1) ⊗ (0, 1) = (0, 0) but
x2 ̸= 0.

Theorem 124. SAT(GRAD) is FP#P
∥ -complete with respect to metric reductions.

Here, the membership follows from Theorems 119 and 122 while the hardness follows
from the FP#P

∥ -hardness of bin(N) and the fact that f : GRADN → N, (a, b) .→ a, where
GRADN is the semiring GRAD restricted to elements from N × N, is an epimorphism.
The latter implies that we can use Theorem 111 to prove the hardness part. The full
proof can be found in Appendix B.3.4.

Effects of the Encoding By considering the complexity of SAT(e(R)) for encoded
semirings e(R) in terms of classical complexity classes, we are able to gain a broad
overview of how the complexity depends on the semiring. The main intuition that we gain
is that the more information semiring values can preserve in addition and multiplication
the harder it is to evaluate SAT(e(R)), which we formalized using epimorphisms in
Theorem 111. In the simplest case, where we consider SAT(e(⟨e⊗⟩)), instances only have
weights of the form e(k · e⊗) and can thus only retain very limited information. Here,
there are exactly four different types of non-trivial problems that can occur. Namely,
NP-, ModpP-, ModpP ∪ NP- or #P-like problems, which are not only similarly hard

140

3.9. Conclusion

as the corresponding complexity class but can also be solved (under some additional
restrictions on the encoding function e) with a corresponding oracle.

Interestingly, the separation by problem type is already determined by the periodicity
and offset of the semiring and also applies to the case where general weights are allowed, if
the semiring is efficiently encoded. Namely, there exists an encoding e∗ such that all NP-,
ModpP-, ModpP ∪ NP- and #P-like problems can, respectively, be counting reduced
to SAT(e∗(R[(xi)∞])) for R ∈ {N≤o,Zp,N≤o × Zp,N}. This means that these semirings
are in a sense the hardest ones in this class of problems. In terms of information, the
values of these polynomial semirings intuitively carry the results of multiple C-queries,
by handling one C-query per monomial, where C is the corresponding complexity class of
the problem type.

Unfortunately, this is likely too much information to store in a “reasonable” polynomial
size output. For each n ∈ N we are able to construct a SAT(e(⟨e⊗⟩R[(xi)∞]))-instance
of size polynomial in n, whose result contains as information the solution of every
SAT(e(⟨e⊗⟩R))-instance without weights of size at most n. Since there are exponentially
many such instances, this would mean we would need to compute in some way the solution
of exponentially many C-instances. Using this insight we showed that the existence of a
“reasonable” encoding e such that SAT(e(R[(xi)∞])) is in FPSpace(poly) would imply
a collapse of the polynomial hierarchy and is, thus, considered to be unlikely.

While this strategy of reducing all C-like problems to the corresponding polynomial
semiring e(R[(xi)∞]) does not seem recommendable, we see that with appropriate
encodings e the semiring e(R[(xi)k]) of the polynomials with at most k variables only
allows us to retrieve information about polynomially many calls to a C-oracle. We can
exploit this result to show that all C-like problems with few weights from the semiring as
well as all C-like problems over a finitely generated semiring with a suitable encoding can
be solved in FPC

∥ .

Summing up, our results can be interpreted to give the following intuition: Putting aside
the difficulties caused by the encoding e, the non-deterministic evaluation problems over
non-trivial semirings R are generally hard, as they are strongly intertwined with one of
NP, ModpP, ModpP∪NP and #P based on the periodicity and the offset of R. Within
the class of C-like problems P the number of queries to an C-oracle, whose results can be
obtained from the solution of P , in relation to the size of the P -instance, seems to be
crucial. When it is polynomial an FPC

∥ -computation is sufficient, when it is exponential,
an FPSpace(exp)-computation seems to be necessary.

3.9 Conclusion
In this chapter, we have presented a model of computation that equips Turing machines
with weighted transitions using values from a semiring, and we have defined with
NP(R) an analogue of NP over generic semirings R ; specific instances can be used to
characterize the complexity of a number of problems in quantitative reasoning frameworks

141

3. Complexity of Counting over Semirings

in AI. Furthermore, we have linked the novel semiring complexity classes to standard
complexity classes, by looking into the encoding of a semiring for conventional, string-
based computing.

Our investigation of semiring complexity motivated by AI problems is by no means
exhaustive. On the contrary, there are a number of further research issues that emerge
from it that remain for future work.

Other Classes of Semirings In this work, we have focused on commutative semirings
and restrictions on the addition of the semiring. Dropping commutativity should lead
to problems that are at least as hard as in presence of commutativity according to
Theorem 111, since we can find epimorphisms from non-commutative to commutative
semirings but in general not the other way around. While some of our results do not make
use of commutativity, others such as Theorem 122 rely on it. Furthermore, periodicity and
offset are properties of the addition of the semiring. If we impose additional conditions on
multiplication, we may be able to exploit them for better upper bounds on the complexity
of the evaluation problem.

BSS Machines and SRTMs BBS machines and SRTMs both provide a way to perform
computations over algebraic structures but SRTMs are more restricted. A characterization
of when the machine models differ in power depending on which additional restrictions
are put on the BSS machines will help us better understand the effect of limitations on
the computational model. Especially, a closer look at the difference in power attained
by allowing SRTMs to perform recursive computations with semiring values on the tape
is of interest. While we have seen that over natural numbers N this leads to strictly
more powerful machines –as we can compute a value that is double exponential in the
size of the input– this is not clear for other semirings in general. For example, over the
Boolean semiring B recursive reuse of semiring values in computations does not increase
the hardness since CircuitSAT is Karp-reducible to SAT and vice versa. This begs
the question of which properties a semiring has to satisfy such that recursive semiring
computations are harder than non-recursive ones.

Semiring Counting Hierarchy Another issue of computational models over algebraic
structures that would deserve investigation is an analogue of the polynomial hierarchy for
general semirings, going beyond the one for counting problems over the natural numbers
as in the work of Allender and Wagner [AW93]. For example, the problem MajMajSAT
requires the solution of a counting problem over the natural numbers N on the second
level, cf. [OCD16a]. Further problems such as computing the maximum expected utility
of a logical theory, probabilistic reasoning over stable models, Maximum A Posteriori
(MAP) inference and some decision theoretic problems are also intrinsically second-level
problems [KTK22] but use different semirings at the different levels. The FAQ problem
[KNR16] lifts this to problems at an arbitrary level, by allowing for sequences of semiring
aggregates. It would thus be interesting to enhance the power of SRTMs such that we can
solve and characterize the complexity of such multi-level semiring reasoning frameworks.

142

3.9. Conclusion

A promising starting point for this direction of research is the approach of Ladner [Lad89]
who introduced a counting version of the polynomial hierarchy based on alternating
Turing Machines.

Descriptive Complexity Apart from the computational complexity of logics over
semirings, there is also the question of descriptive complexity. Here, Droste and
Gastin [DG07] showed that a fragment of weighted monadic second order logic was
shown to capture the sentences recognizable by weighted automata over semirings. This
result is a generalization of the Büchi, Elgot-Trakhtenbrot Theorem [Büc60], which states
the same in the unweighted (i.e. Boolean) case. This suggests that we may be able to
do the same for Fagin’s seminal theorem [Fag74] in descriptive complexity, which states
that the existential fragment of second-order logic characterizes the complexity class NP.
Recently, second-order logics over specific semirings were already used to capture the
complexity of quantitative complexity classes such as FP and #P [AMR20]. A general
theorem that relates NP(R) and second-order logic over semirings R would be suggestive.
Given that SRTMs generalize weighted automata with their semiring weighted transition
functions, our work provides a basis for a generalized version of Fagin’s Theorem over
arbitrary semirings. Such a result and others on descriptive complexity would be valuable
to assess the expressiveness of AI reasoning frameworks over varying input data when
formulas respectively queries are fixed.

Polynomial Semirings for Knowledge Compilation Another interesting avenue
of research is the application of polynomial semirings in the context of Knowledge
Compilation. Intuitively, many contemporary approaches in that area compile a circuit
that represents a value from B[(xi)∞] as succinctly as possible without losing information,
cf. [DM02; KVD17; DPV20]. In an application setting such as probabilistic reasoning or
most probable explanation inference, this however may be way more information than
necessary. A way to mitigate this problem may be given by semirings R[(xi)k] with
finitely many variables, which our results suggest may allow for representations that are
lot smaller. This would not only be of theoretical benefit but may even lead to more
efficient inference in practical applications.

143

CHAPTER 4
Efficient Algebraic Answer Set

Counting

In this chapter, we consider the task of efficiently performing quantitative reasoning over
the set of models in ASP.

In the theoretical analysis of the computational complexity of counting problems over
semirings, we have seen that the most rewarding strategy to tackling Algebraic Answer
Set Counting (AASC), i.e., the evaluation of queries with algebraic measures, over general
semirings is likely to adapt the used tools to the specific semiring. Thus, we are faced
with a dilemma: on the one hand, we aim to provide an implementation that works for
general semirings, on the other hand, we want to improve the performance of reasoning.
Doing both to the fullest extent would imply finding more efficient strategies for each
of the different settings that we identified above. We consider this infeasible within the
scope of this thesis.

We compromise and study strategies applicable to general semirings in the hope to provide
improved performance when AASC over the given semiring is #P-hard. The latter can be
achieved in an implementation for AASC over general semirings, since current strategies
for the #P-hard setting naturally generalize to the general setting [KVD17].

Notably, the #P-hard setting includes many relevant and recent frameworks for probabilis-
tic reasoning, including LPMLN [LY17], P-log [BGR09], ProbLog [DKT07], PITA [RS11],
CP-logic [VDB09], SMProbLog [TKR23] but also many others [NM14; RC22; dMF13].
Going beyond probabilistic inference for a fixed distribution features Neuro-Symbolic Rea-
soning, for example in NeurASP [YIL20], SLASH [Skr+22], or DeepProbLog [Man+21].

Since there already exists a wide range of implementations and diverse approaches to
AASC and especially probabilistic inference [Fie+15; Fie+11; RS11; LTW17; Hah+22;
Fic+17; Vla+16; Vla+14] it makes sense to improve upon an existing idea. However,

145

4. Efficient Algebraic Answer Set Counting

there is no consensus regarding which evaluation strategy is generally favorable.Thus, it
is initially unclear which approach to choose as the basis of our work.

In enumeration-based approaches [YIL20; Hah+22; LTW17] one enumerates all the
answer sets one after the other and sums up their weights one by one. While the idea
is simple, it works well for “few” (less than a billion) answer sets. However, it does
not scale when there are many answer sets, even for structurally very simple programs.
Knowledge Compilation-based [DM02; Men21] approaches [Fie+11; Vla+14; RS11] are
more sophisticated and produce a so called tractable circuit representation of a given
program. They represent the answer sets of a program in a manner that can be vastly more
succinct than an explicit representation of all the answer sets but still allow us to perform
AASC using linearly many semiring operations in the size of the resulting circuit [KVD17].
Apart from that, there is also the option to perform dynamic programming [Fic+17],
when the treewidth of the program is low enough. Here, treewidth is a parameter that
intuitively gives an upper-bound on how complex the structure of a program (or more
generally a graph) is by measuring how “treelike” the shape of rule dependencies is, which
determines how expensive it is to decompose the problem into smaller ones in a recursive
manner.

However, there are not only different basic approaches, but for example for Knowledge
Compilation there are different classes of tractable circuits to compile to, we can compile
some circuits either in a “bottom up” [Dar11; Som12] or in a “top down” [OD15; Dar04;
KJ21] manner, and we can either compile the program directly or convert it into a
propositional formula in Conjunctive Normal Form (CNF) first.

In a first step, we therefore investigate different strategies in depth from a theoretical
point of view using recent results from the field of parameterized complexity [OD14;
BS17; FPV05; JS12; Ama+20]. While these results do not give us general lower bounds
they do give us upper bounds in terms of structural parameters, such as treewidth
or pathwidth, which we can use to derive performance guarantees for the considered
strategies. Based on this analysis, we conclude that the most promising strategy is to
first translate programs into CNFs and compile them using one of the highly advanced
tools from the SAT community [Dar04; OD15; LM17; KJ21].

Naturally, this CNF translation should be chosen in such a manner that it leads to good
Knowledge Compilation performance. From the previous theoretical analysis, we know
that small CNFs of low treewidth allow for good worst case guarantees. In fact, there is
even recent empirical evidence that shows that explicitly exploiting the treewidth of CNFs
during Knowledge Compilation can lead to significantly improved performance [KJ21].
Apart from the size and treewidth, we assume that it is beneficial if the CNF encoding
is not very “semantically complex” such that intuitively the knowledge compiler can
easily identify parts of the search space that it may discard. This last measure is rather
imprecise, nevertheless, we try to use it by drawing intuition from known rules of thumb
from CNF encodings for SAT.

The translation of answer set programs to CNFs usually proceeds in two steps. First the

146

cyclic positive dependencies in the program need to be taken care of in Cycle Breaking.
Only then, in the second step, Clark’s Completion [Fag94] is guaranteed to produce
a CNF that correctly captures the semantics of the program. For Clark’s Completion
itself, we consider it rather unlikely that there is a way to significantly reduce the size or
semantic complexity of the resulting CNF. However, previous work by Hecher [Hec22]
has shown that we can modify the completion to limit the treewidth increase compared
to the primal treewidth of the program to a low constant factor. We improve this result
to use the incidence treewidth of the program [JPW09], which provides bounds that are
better or equal.

As for Cycle Breaking, we again need a more in depth analysis. There already exists
a wide range of approaches [JN11; Jan04; MJ10; LZ03; Hec22]. We need to discard
some of them, since they do not preserve answer sets in a bijective fashion [LZ03; Hec22]
and examine encoding properties of the rest. Here, we see that while the “semantic
complexity” of Janhunen and Niemelä’s [JN11] work may prove to be problematic, due
to the use of binary counters, its asymptotic guarantees for CNF size and treewidth are
far better than that of Mantadelis and Janssens’ [MJ10] work. Nevertheless, previous
empirical results showed that the asymptotic guarantees do not necessarily translate to
better performance, presumably due to high constant factors hidden by the BigO notation
and the high “semantic complexity” [Fie+11]. We thus introduce a novel strategy for
Cycle Breaking called TP -Unfolding, where we aim to reach a middle ground between
the previous approaches. That is, we obtain similarly low “semantic complexity” and
constant factors as Mantadelis and Janssens’ [MJ10] approach but only moderately higher
asymptotic size and treewidth guarantees than Janhunen and Niemelä’s [JN11] approach.
In order to achieve this, we resort not only to the number of atomic formulas that are
involved in cyclic dependencies but a novel more sensitive measure of the cyclicity of
the positive dependencies, related to the notions of backdoors into acyclicity [FS15]
that intuitively asks how many atoms we would need to remove to obtain an acyclic
(dependency) graph.

Apart from our theoretical advancements, we implement our findings in the open source
AASC solver aspmc and use it to verify that our theoretical considerations indeed result
in an increased performance in practice. For this, we conduct a thorough empirical
evaluation on typical benchmarks from the probabilistic logic programming community,
which confirms previous expectations regarding the CNF sizes and treewidths as well as
the performance increase.

In the following, we first introduce the necessary preliminaries, in Section 4.1, and AASC,
in Section 4.2. After this, we shortly go over some instantiations of AASC highlighting its
broad applicability for quantitative inference, in Section 4.3, before directing our attention
to AASC evaluation, in Section 4.4, giving special attention to different approaches for
the Knowledge Compilation step. We finish the theoretical considerations with a study
of Clark’s Completions and Cycle Breakings, in Section 4.5 and Section 4.6, respectively.
Based on this, we outline the practical realization in our solver aspmc, in Section 4.7,
which we evaluate empirically, in Section 4.8. Finally, we conclude and highlight possible

147

4. Efficient Algebraic Answer Set Counting

further points of attack for improved performance, in Section 4.9.

4.1 Preliminaries
We recall the background on ASP, graph representations of programs, and their associated
structural parameters.

4.1.1 Logic Programming
A (normal) answer set program Π is a finite set of rules r of the form

a ← b1, . . . , bm, not c1, . . . , not cn,

where a and all bj , ck are propositional atoms. Given such a rule r, we let

H(r) = a, B+(r) = {b1, . . . , bn},

B−(r) = {c1, . . . , cn}, B(r) = {b1, . . . , bn, not c1, . . . , not cn}.

We slightly abuse notation and write

← b1, . . . , bm, not c1, . . . , not cn

for
⊥ ← b1, . . . , bm, not c1, . . . , not cn, not ⊥,

where ⊥ is a propositional atom that otherwise does not occur in Π.

Furthermore, we allow choice rules {a} ← B+(r), B−(r) as a shorthand for the two
rules a ← B+(r), B−(r), not na and na ← B+(r), B−(r), not a, where na is a fresh
propositional atom. We denote by A(Π) the set of propositional atoms that occur in Π.

An interpretation, denoted I, is a subset of A(Π); it satisfies an atom a ∈ A(Π) (resp.
literal not a for a ∈ A(Π)), written I |= a (resp. I |= not a), if a ∈ I (resp. a ̸∈ I). It
satisfies Π (is a model of Π), if for each rule r ∈ Π it holds that either I |= H(r) or
I ̸|= B(r), i.e., there exists some l ∈ B(r) such that I ̸|= l. Furthermore, I is an answer set
of Π if it is a ⊆-minimal model of the reduct1 ΠI = {r ∈ Π | B+(r) ⊆ I, B−(r) ∩ I = ∅},
of Π with respect to I,i.e., the set of rules r in Π where B(r) is satisfied. We denote the
set of answer sets of a program Π by AS(Π).

As usual the schematic rules with variables X, Y, . . . are implicitly universally quantified
and their semantics is given by grounding (instantiation) with concrete values (constants).

Example 39 (Smokers). We consider the smokers program, which is a standard example
from probabilistic logic programming [DKT07].

{stress(X)} ← person(X)
1All our results hold for both the FLP-reduct [FPL11] and GL-reduct [GL88]

148

4.1. Preliminaries

smokes(X) ← stress(X)
{inf(X, Y)} ← friend(X, Y)
smokes(Y) ← smokes(X), inf(X, Y)

This encodes that for each person it is randomly determined whether they are stressed.
Stressed persons smoke may influence friends, which is again random, to also smoke. We
shall abbreviate stress(.) and smokes(.) by st(.) and sm(.), respectively.

Propositional Logic We aim to translate programs into formulas of propositional
logic.

We use propositional formulas in Conjunctive Normal Form (CNF). A CNF C, defined
for a set V of variables, is a finite conjunction of clauses Ci, where each clause consists
of a finite disjunction of literals l ∈ {v, ¬v} for some v ∈ V .

We use the standard satisfaction relation and call an interpretation I ⊆ V that satisfies
a formula a model.

Graphs and Digraphs Especially in Section 4.6.4 we will consider graphs and digraphs,
using the following notation. The vertex- and edge-set of a (di)graph G = (V, E) is
denoted by V (G) and E(G), respectively. For V ⊆ V (G) we let G[V] be the (di)graph
obtained by removing all vertices not in V from V (G) (i.e. V (G[V]) = V (G) ∩ V) and
removing all edges which use a vertex not in V (i.e. E(G[V]) = E(V) ∩ V × V). Further,
we define G \ V as G[V (G) \ V]. The subgraph C = G[V] is strongly connected if every
vertex in C is reachable from any other vertex in C. We denote by SCC(G) the set
of strongly connected components (SCC) of G, which are strongly connected subgraphs
G[V], where V is subset-maximal.

The (positive) dependency graph DEP(Π) of a program Π is the digraph G with V (G) =
A(Π) and (b, a) ∈ E(G) if there is a rule r ∈ Π such that a ∈ H(r) and b ∈ B+(r). The
primal graph PRIM(Π) of Π is the graph G with V (G) = A(Π) and {x, y} ∈ E(G) if
there is a rule r ∈ Π such that x, y ∈ {H(r)} ∪ B+(r) ∪ B−(r). The incidence graph
INC(Π) of Π is the graph G with V (G) = A(Π) ∪ Π and {a, r} ∈ E(G) if there is a rule
r ∈ Π such that a ∈ {H(r)} ∪ B+(r) ∪ B−(r).

Example 40 (cont’d). Given the input data person(i) for i = 1, . . . , 3 as well as
friend(i, j) for (i, j) = (1, 2), (2, 3), (3, 1), we can ground and reduce (by omitting facts
and removing them from the bodies of rules, etc.) the smokers program to Πsm

{st(1)} ← {st(2)} ← {st(3)} ←
{inf(3, 1)} ← {inf(1, 2)} ← {inf(2, 3)} ←

r1 = sm(1) ← st(1) r2 = sm(1) ← inf(3, 1), sm(3)
r3 = sm(2) ← st(2) r4 = sm(2) ← inf(1, 2), sm(1)
r5 = sm(3) ← st(3) r6 = sm(3) ← inf(2, 3), sm(2)

149

4. Efficient Algebraic Answer Set Counting

sm(1) sm(2)

sm(3)

st(1)

st(2)

st(3)

inf(3, 1)

inf(1, 2)

inf(2, 3)

(a) Dependency graph of Πsm restricted to non-
choice rules.

sm(1) sm(2)

sm(3)

st(1) st(2)

st(3)

inf(3, 1)

inf(1, 2)

inf(2, 3)

(b) Primal graph of Πsm restricted to non-choice
rules.

sm(1) sm(2) sm(3)

st(1) st(2) st(3)

inf(3, 1) inf(1, 2) inf(2, 3)

r1

r2

r3

r4

r5

r6

(c) Incidence graph of Πsm restricted to non-choice rules. Vertices for rules are circles, vertices
for atoms are rectangles

Figure 4.1: Different graphs associated with the running example program Πsm for
simplicity restricted to non-choice rules (i.e., with rules of the form {stress(x)} ← etc.).

The dependency, primal, and incidence graph of the resulting program Πsm without choice
rules is given in Figure 4.1a, Figure 4.1b, and Figure 4.1c, respectively.

Next, we recall the definition of treewidth.

Definition 125 (Tree Decomposition, Treewidth). A tree decomposition of a graph G
is a pair (T, χ), where T is a tree and χ is a labeling of V (T) by subsets of V (G) s.t.

• for all nodes v ∈ V (G) there is t ∈ V (T) s.t. v ∈ χ(t);

• for every edge {v1, v2} ∈ V (E) there exists t ∈ V (T) s.t. v1, v2 ∈ χ(t);

• for all nodes v ∈ V (G) the set of nodes {t ∈ V (T) | v ∈ χ(t)} forms a (connected)
subtree of T .

150

4.2. Algebraic Answer Set Counting

sm(1), sm(2), sm(3)

sm(1), sm(3), inf(3, 1) sm(2), sm(3), inf(2, 3) sm(1), sm(2), inf(1, 2)

sm(3), st(3) sm(2), st(2) sm(1), st(1)

Figure 4.2: An optimal tree decomposition of the graph in Figure 4.1b. Each vertex is
labeled by the vertices in the corresponding bag.

The width of (T, χ) is maxt∈V (T) |χ(t)| − 1. The treewidth of a graph is the minimal
width of any of its tree decompositions.

Intuitively, treewidth is a measure of the distance of a graph from a tree. It is motivated by
the fact that many computationally hard problems are tractable on trees. Correspondingly,
trees are the only graphs that have treewidth 1. Given low treewidth it is then often
possible to generalize tractability results by decomposing problems recursively into smaller
subproblems using a tree decomposition witnessing the low width.

A more restricted parameter than treewidth is pathwidth.

Definition 126 (Path Decomposition, Pathwidth). Let G be a graph. Then a path
decomposition is a tree decomposition (T, χ), where T is a path.

The pathwidth of a graph is the minimal width of any of its path decompositions.

Pathwidth is more restricted than treewidth but has similar properties, i.e., it allows for
the generalization of tractability results on graphs that are paths. Notably, when the
treewidth of an n-vertex graph G is k, then the pathwidth of G is in O(k · log(n)) [Bod98].

Then the primal (resp. incidence) treewidth of a program is the treewidth of its primal
(resp. incidence graph). The applies to pathwidth.

Example 41 (cont’d). The treewidth of the graph in Figure 4.1b is 2, as its tree
decomposition in Figure 4.2 which has width 2 shows. A smaller width is not possible
here, since the graph contains a clique over three vertices (e.g. sm(1), sm(2), sm(3)).
The treewidth of the graph in Figure 4.1c is also 2, since it is not a tree as the cycle
r2 → sm(3) → r6 → sm(2) → r4 → sm(1) → r2 shows.

4.2 Algebraic Answer Set Counting
We now reintroduce ASP with algebraic measures as a basic formalism for Algebraic
Answer Set Counting (AASC).

We use a variant of weighted logics [DG07] restricted to propositional formulas.

151

4. Efficient Algebraic Answer Set Counting

Definition 127 (Weighted Logic). Let R = (R, ⊕, ⊗, e⊕, e⊗) be a semiring. A weighted
formula α over R is of the form

α ::= k | v | ¬v | α + α | α ∗ α

where k ∈ R and v is a propositional atom. The semantics of α w.r.t. an interpretation
I, denoted �α�R(I), is

�k�R(I) = k,

�v�R(I) =
�

e⊗ v ∈ I
e⊕ otherwise ,

�¬v�R(I) =
�

e⊕ v ∈ I
e⊗ otherwise ,

�α1 + α2�R(I) = �α1�R(I)⊕�α2�R(I),�α1 ∗ α2�R(I) = �α1�R(I)⊗�α2�R(I).

We can use weighted formulas to express calculations over a semiring, depending on the
truth values of atoms with respect to an interpretation.

Example 42 (cont’d). As mentioned before, the smokers program is a typical example
from the probabilistic domain. Using weighted formulas, we can introduce probabilities.
We define

α =Π3
i=1st(i) ∗ 0.4 + ¬st(i) ∗ 0.6 (4.1)

∗ Πi,j=1,2,3,i+1≡j mod 3inf(i, j) ∗ 0.3 + ¬inf(i, j) ∗ 0.7. (4.2)

The first line 4.1 tells us that every person i is either stressed, with probability 0.4, or not
stressed, with probability 0.6. With the second line (4.2) we capture that for (i, j) = (1, 2),
(2, 3), (3, 1) person i is influenced by person j with probability 0.3 and not influenced with
probability 0.7.

Using weighted formulas, we define algebraic measures as follows:

Definition 128 (Algebraic Measure). An algebraic measure µ = ⟨Π, α, R⟩ consists of
an answer set program Π, a weighted formula α, and a semiring R. Then, the weight of
an answer set I ∈ AS(Π) under µ is defined by

µ(I) = �α�R(I).

Additionally, the result of an (atomic) query for an atom a ∈ A(Π) is given by

µ(a) = �
I∈AS(Π),a∈Iµ(I),

and the result of the overall weight query of Π is

µ(Π) = �
I∈AS(Π)µ(I).

152

4.2. Algebraic Answer Set Counting

Example 43 (cont’d). Using algebraic measures, we perform probabilistic reasoning. We
combine the weighted formula α, which handles the probabilities, and the program Πsm,
which handles the logical background theory, to the measure µsm = ⟨Πsm, α, P⟩. Then the
answer set I = {st(1), sm(1)} has weight µsm(I) = 0.4 · 0.62 · 0.73.

The query µ(sm(1)) corresponds to the probability that sm(1) holds. To evaluate it, we
need to perform AASC, i.e., sum up the probabilities of all answer sets s.t. sm(1) holds.
Since Πsm has 26 answer sets out of which 25 + 23 + 2 include sm(1), we refrain from
computing µ(sm(1)) naïvely by considering all the answer sets separately. Instead, we
consider the following three disjoint cases in which sm(1) holds:

1. st(1) is true and the other probabilistic atoms take an arbitrary truth value;

2. st(1) is false, inf(3, 1) and st(3) are true and the other probabilistic atoms take an
arbitrary truth value;

3. st(1) and st(3) are false, inf(3, 1), inf(2, 3) and st(2) are true, and inf(1, 2) takes an
arbitrary truth value.

These three cases are exclusive, i.e., no answer set falls in any two of the cases, and
furthermore, they cover all the answer sets in which sm(1) is true. Thus, we can compute
the probability of sm(1) as a sum of the probabilities of the three cases. These are
0.4, 0.6 ∗ 0.3 ∗ 0.4(= 0.072) and 0.6 ∗ 0.6 ∗ 0.3 ∗ 0.3 ∗ 0.4(= 0.01296), respectively, since
it is enough to take the product of the probabilities of the atoms whose truth values we
assert as the other atoms that are left arbitrary only contribute a factor of 1. Thus,
µ(sm(1)) = 0.48496.

Following the conventions of [BD20], we also introduce factorized measures.

Definition 129 (Factorized Measure). Let µ = ⟨Π, α, R⟩ be an algebraic measure and
F ⊆ A(Π). Then µ is factorized w.r.t. F , if there is a weight function β : F ∪ {¬f | f ∈
F} → R s.t. for all I ∈ AS(Π) it holds that

µ(I) = �
f∈F ∩Iβ(f)⊗�

f∈F \Iβ(¬f).

The difference between factorized and non-factorized measures is intuitively how compli-
cated the weight function is. The former must be expressible as a product of weights of
literals that are true in a given interpretation, whereas the latter allow complex arithmetic
expressions using both the addition and multiplication of weights in dependence on the
true literals in the interpretation.

The motivation behind considering factorized measures is that current frameworks, such
as ProbLog and algebraic Prolog only use factorized measures. This raises the question
of whether this covers everything we need.

153

4. Efficient Algebraic Answer Set Counting

Example 44 (cont’d). The measure µsm is factorized over st(i), i = 1, 2, 3 and inf(i, j), i+
1 ≡ j mod 3, by letting β(st(i)) = 0.4, β(¬st(i)) = 0.6 and β(inf(i, j)) = 0.3, β(¬st(i, j)) =
0.7.

Not every measure is factorized however.

Example 45 (Non-factorized). For an example of a non-factorized measure, consider
the measure µw = ⟨Π, a + b + (−1 ∗ ¬a ∗ ¬b),Z⟩. It has value 2 if both a and b hold, 1 if
one of them holds and −1 otherwise. This measure is not factorized over F = {a, b} as
there are no values β(a), β(b), β(¬a), β(¬b) ∈ Z, s.t.

β(a) · β(b) = 2 β(a) · β(¬b) = 1
β(¬a) · β(b) = 1 β(¬a) · β(¬b) = −1

Note that there are also no such values in R.

While not every algebraic measure is factorized, there always exists a factorized measure
that preserves weights of queries. To establish this, we need some notation for sets of
indexed subformulas of a weighted formula α.

Definition 130 (Subformulas). Let α be a weighted formula. Then S(α) is the set of
pairs (i, β), where β is a subformula of α indexed by a position-string i ∈ {0, 1}∗ in the
syntax-tree of α, that is:

• For α ∈ {p(x⃗), ¬p(x⃗), k} we let S(α) = {(ϵ, α)}.

• For α ∈ {α1 + α2, α1 ∗ α2} we let S(α) = {(ϵ, α)} ∪ {(0r, β) | (r, β) ∈ S(α1)} ∪
{(1r, β) | (r, β) ∈ S(α2)}.

Theorem 131 (Factorization). Let µ = ⟨Π, α, R⟩ be an algebraic measure. Then we can
construct a factorized algebraic measure µ′ = ⟨Π′, α′, R⟩ s.t. for a ∈ A(Π) : µ(a) = µ′(a)
in linear time.

Proof (sketch). Intuitively, we implicitly apply the distributive law. For this, we introduce
a new atom αi for every indexed subformula (i, β) ∈ S(α), which is true if the value of
the subformula β at index i is included in the current product. To implement this, we let
Π′ = Π ∪ Πroot ∪ Π∗ ∪ Π+ ∪ Πleaf, where Πroot = {← not αϵ} ensures that the value of
the formula at the root is included.

Π∗ =

��
αi ← αi.0, αi.1
← αi.0, not αi.1 (i, β1 ∗ β2) ∈ S(α)
← not αi.0, αi.1

��
154

4.3. Applications

ensures that a subformula that uses multiplication is only included if both subformulas
are included. Further, we ensure that either both or none of the subformulas are included.

Π+ =

��
αi ← αi.1
αi ← αi.0 (i, β1 + β2) ∈ S(α)

← αi.0, αi.1

��
ensures that a subformula that uses addition is only included if one of the subformulas is
included. Furthermore, we ensure that at most one of the subformulas is included.

Πleaf ={{αi} ← a | (i, a) ∈ S(α)} ∪
{{αi} ← not a | (i, ¬a) ∈ S(α)} ∪
{{αi} ← | (i, k) ∈ S(α), k ∈ R}.

Formally, we define
α′ = Π(i,k)∈S(α),k∈R αi ∗ k + ¬αi.

Then µ′ = ⟨Π′, α′, R⟩ is factorized, by choosing F = {αi | (i, k) ∈ S(α), k ∈ R} and
β(αi) = k, β(¬αi) = e⊗.

Furthermore, along a similar line of reasoning as in [EK21] it follows that µ(Π) =
µ′(Π′).

Hence, any AASC instance given as an algebraic measure can be reduced to AASC for a
factorized measure. Thus, we can focus on factorized measures.

4.3 Applications
We covered the introductory theory necessary when dealing with AASC and algebraic
measures. In the following, we shortly reiterate some of the prominent applications of
AASC via instantiation with fixed semirings.

The idea behind AASC is ubiquitous in quantitative reasoning: one takes a Boolean
logic and turns it into a weighted logic, by replacing conjunctions by multiplications and
disjunctions by additions over a semiring. Other such semiring reasoning frameworks
are for example Semiring-based Constraint Satisfaction Problems [Bis+99], provenance
semantics for datalog [GKT07], and Algebraic Model Counting (AMC) [KVD17], to
name only a few. Due to this, a wide range of applications of the semiring semantics
are already known. Kimmig, Van den Broeck, and De Raedt [KVD17] give an extensive
list of different reasoning tasks that can be performed using the semiring semantics and
discuss the appropriate semirings for it.

We therefore do not extensively list all the different possibilities here but focus on some
that relate to existing extensions of ASP and, thus, have higher relevance for our setting.
Namely, we focus on two different classes of problems and touch upon a third. First,
we consider problems that are #P-hard, i.e., at least as hard as counting the number

155

4. Efficient Algebraic Answer Set Counting

of satisfying assignments of a propositional formula. For these problems knowledge
compilation is a well-established and competitive technique [Dar04; OD15]. Second, when
we work over idempotent semirings, algebraic measure evaluation is often equivalent to
OptP-hard problems. Here, at least in the area of Weighted MaxSAT, a prototypical
OptP-hard problem, knowledge compilation does not seem to be a good strategy,
given that none of the solvers of the recent MaxSAT Evaluation [Bac+20] is knowledge
compilation based. Thus, while we relate AASC to OptP-hard problems here and
cover their solution also with our implementation (which works for general commutative
semirings) we do not expect performance improvements compared to specialized tools
such as clingo [Geb+14] here.

We note that there are relevant problems that are in a complexity class above #P.
Recent work [KTK22] showed that many such problems can be solved by AASC over
two semirings but not over one of them. Here, the problems are typically harder
than AASC over one semiring, since they remain NP-hard on the usual tractable
circuit representations [OCD16b]. Note that as with the OptP-hard problems, an
implementation that works for general general semirings is available but not further
considered here, since we focus on the evaluation of problems that are #P-hard but
solvable on typical tractable circuit representations. For details we refer the interested
reader to [KTK22].

4.3.1 #P-hard Problems
Probabilistic Reasoning The most common application that involves weighted model
counting over the answer sets, in the typical sense, is probabilistic inference as in ProbLog,
LPMLN, or P-log. The specification and semantics of probabilistic programs as well as
the allowed class of programs varies between the languages.

The main difference is that ProbLog uses Sato’s distribution semantics [Tai95], which
assumes that the only non-determinism in the program is due to a set of probabilistic facts
and that the program has no constraints. This means that any given truth assignment to
the probabilistic facts can be uniquely extended to a stable model of the program. The
benefit of this restriction is that the program directly specifies a probability measure,
meaning the sum of the weights of all answer sets adds up to one. On the other hand,
LPMLN and P-log do not impose such a restriction, thus allowing for a broader class of
programs. Here, in order to obtain a probability measure, the probability of an answer
set is not its weight but its normalized weight. That is, its weight is divided by the sum
of the weights of all answer sets.

Apart from that, LPMLN features another property. Namely, while ProbLog and P-log
only allow for weights of atoms or rules that are between 0 and 1, LPMLN allows for any
real number as a weight.

For probabilistic inference by means of AASC, both of these differences are not significant.
We can perform probabilistic inference in any of the three languages by evaluating an
algebraic measure over an answer set program. For ProbLog programs, it is sufficient to

156

4.3. Applications

evaluate µ(a) for the algebraic measure µ corresponding to the program to obtain the
probability that the query atom a is true according to the program. In the ProbLog case,
we can use the probabilistic semiring P since only weights in [0, 1] occur. For LPMLN

and P-log programs, we can compute the probability of a query atom a by evaluating
µ(a) and µ(not a) over the semiring R of the real numbers. Then Pr(a), the probability
of a, is µ(a)/µ(a)+µ(not a). For a closer look at the relationship of the different probabilistic
logic programming languages we refer to [RS18; LY17; Hah+22].

Neuro-Symbolic Reasoning Neuro-symbolic reasoning, as for example in Deep-
ProbLog [Man+21], takes the idea of probabilistic reasoning with programs one step
further. Here, instead of assuming that the probabilities of rules and facts are given,
they are determined by a machine learning model that predicts the probability of a fact
or rule for a given ground instantiation of it. Instead of having the same probability of
stress for each person

0.4 :: stress(X) : - person(X).

we might have a neural predicate nn-stress(Age, Employment) that models the probability
of a person being stressed based on age and employment. In the DeepProbLog language,
this would be expressed as

nn-stress(A, E) :: stress : - person(X), age(A, X), employment(E, X).

We consider two tasks in neuro-symbolic reasoning that need to be solved.

(T1) Determine the probability of a query, given a neuro-symbolic program.

For DeepProbLog, this again corresponds to a query using an algebraic measure: when
the machine learning model that predicts the probabilities of facts and rules is fixed we
can see DeepProbLog programs as ProbLog programs and, thus, evaluate probabilistic
queries using algebraic measures. Here, we can again use the probabilistic semiring P.

(T2) Train the model to predict the correct probabilities.

Usually, this is done using gradient descent to minimize some error function err that
depends on the output of the neural networks. In order to use gradient descent, it is
necessary to compute the derivative of err. In the DeepProbLog setting, this can be
rather complicated, as err is not limited to measuring whether the predicted value was
correct. Instead, the error can also be determined by the probability of a derived atom.
E.g. in the smokers setting, we may have data about whether a person smokes but not
about a persons stress. Thus, applying gradient descent to the error function of the
smokers model involves obtaining its derivative in terms of the output of the neural
network.

157

4. Efficient Algebraic Answer Set Counting

Manhaeve, Dumancic, Kimmig, Demeester, and Raedt [Man+21] showed that we can
compute this gradient by weighted model counting over the gradient semiring GRAD.
Therefore, we can also model this task using an algebraic measure over

GRAD = ([0, 1] × R, ⊕, ⊗, (0, 0), (1, 0)),

where

(p1, d1)⊕(p2, d2) = (p1 + p2, d1 + d2)
(p1, d1)⊗(p2, d2) = (p1p2, d1p2 + d2p1).

Intuitively, the first entry corresponds to the probability, as before, whereas the second
entry computes the derivative of the first with respect to some parameter.

Knowledge Compilation Using the AASC approach we may further obtain a tractable
circuit representation of the program. This may seem counterintuitive, since we said
in the Introduction that we use knowledge compilation to perform AASC and not the
other way around. However, it shows that when we can do weighted model counting over
semirings, then we can also do knowledge compilation.

For knowledge compilation, we need a somewhat non-standard semiring similar to the
provenance semirings of Green, Karvounarakis, and Tannen [GKT07]. Given a semiring
R and a set of propositional atoms V, we define the knowledge compilation semiring of
algebraic circuits over V and R as

KC(V, R) = (AC(V, R), +, ∗, ⊥, ⊤)
AC(V, R) = {α | α is an algebraic circuit over V and R}

α + β = α + β

α ∗ β = α ∗ β

Here, an algebraic circuit over V and R is a directed acyclic graph (DAG), where each
vertex is labeled by either +, ∗, a literal l ∈ Lit(V) with Lit(V) = V ∪ {¬v | v ∈ V},
or a semiring value r ∈ R, in such a manner that vertices without incoming edges are
either labeled by a literal or a semiring value and vertices with incoming edges are either
labeled by + or ∗. Furthermore, there must be exactly one vertex that does not have
outgoing edges, which we refer to as the output.

Clearly, using the standard equality in the sense of syntactical equality is inadequate,
since KC(V, R) is not commutative:

a + b ̸=syntax b + a.

We instead use semantic equality, i.e., two algebraic circuits α, β ∈ AC(V, R) are seman-
tically equal if for every weight assignment σ : Lit(V) → R it holds that

�α[σ]�R = �β[σ]�R,

158

4.3. Applications

Here, α[σ] denotes that we replace every literal l in α by σ(l) its semiring value under
σ. Then �α[σ]�R corresponds to evaluating the circuit by inductively defining the value
of a node with a semiring label r as r and the value of a node labeled by + (resp. ∗)
with incoming nodes with values r1, . . . , rn as �n

i=1ri (resp. �n
i=1ri. The final value of�α[σ]�R is then given by the value of the output of the circuit.

Note that this idea is not new: Kimmig, Van den Broeck, and De Raedt [KVD11] intro-
duced a BDD semiring, where conjunction and disjunction correspond to the respective
operation on BDDs, thus, allowing knowledge compilation to a BDD. However, in contrast
to the BDD semiring, our semiring allows any kind of algebraic circuit, even those that
classically do not correspond to a tractable circuit class such as BDD, SDD, or d-DNNF.

Apart from this, we may obtain syntactically different results depending on how we
evaluate a query over KC(V, R). This, however, is of no concern to us. We can show that
given any such syntactic representation of the result, we can evaluate meaningful queries.

Lemma 132 (Semiring Knowledge Compilation). Let µ = ⟨Π, α, R⟩ be a factorized
algebraic measure with weight function β that factorizes µ. Furthermore, let

µKC = ⟨Π, αKC , KC(A(Π), R)⟩
αKC = Πv∈A(Π)(v ∗ v + ¬v ∗ ¬v),

where we write atoms in italics v and semiring values in boldface v.

Then given any algebraic circuit γ that represents the result of µKC(Π), we have that
µ(Π) = �γ[σβ]�R(∅), where σβ : Lit(A(Π) → R is given by σβ(l) = β(l).

Thus, given any algebraic circuit γ that corresponds to the result of the knowledge
compilation query µKC(Π), we can evaluate any factorized measure query over R using
γ in linearly many semiring operations in the size of γ. Thus, the key is to compute a
small circuit γ and the latter efficiently. It is well-known that such arithmetic circuits
can easily be obtained from BDDs, SDDs, or d-DNNFs [DD20], by replacing disjunctions
and conjunctions by additions and multiplications, respectively.

For us the algebraic circuit semirings are not only of theoretical but also of practical
interest. Namely, as we describe in more detail later in the section on implementation,
we use sharpSAT-TD [KJ21], which enables weighted model counting over semirings.
Thus, we can use it for knowledge compilation using the idea of the algebraic circuit
semirings. This again shows the power of the semiring paradigm. Since sharpSAT-TD
is implemented in such a manner that it works for general commutative semirings, we
can solve a variety of different interesting tasks by performing a minor modification.
In fact, the adaptation of sharpSAT-TD to enable knowledge compilation to smooth
d-DNNF was possible in less than 500 lines of code, including the parsing of additional
input arguments and the adaptation of the preprocessor to handle weights over general
semirings.

159

4. Efficient Algebraic Answer Set Counting

4.3.2 OptP-hard Problems
The applications discussed above share the fact that they are Weighted Model Counting
problems in the strict sense, i.e. they are #P-hard. We thus expect that they are
practically harder to solve using current implementations than other AASC problems
which are not #P-hard. For example, AASC over the Boolean semiring B corresponds
to checking the consistency of an answer set program and is therefore NP-complete.
Arguably, it makes sense to consider such problems which are practically easier to solve
separately.

Another class of problems that are affected by this reasoning are optimization problems.
There is a broad variety of extensions of ASP that introduce different ways to add
preferences to programs [Bre+15; BLR97]. We focus instead on theMost Probable
Explanation (MPE) task from the probabilistic logic programming literature [Sht+14],
which also fits into the context of optimization problems.

Most Probable Explanation The Most Probable Explanation (MPE) task is to
determine the most likely probabilistic choices that led to a set of observed facts. We
consider it in the setting of ProbLog programs.

Definition 133 (MPE). Given a ProbLog program Π and a set E = {e1, . . . , en} of
atoms called evidence, MPE is to determine the most likely assignment to the probabilistic
facts such that E is entailed. That is compute

p∗ = argmaxI∈AS(Π),E⊆I
!

p::f∈Π,f∈I
p ·

!
p::f∈Π,f ̸∈I

(1 − p). (4.3)

As we have seen before, we can define a measure µ over the probabilistic semiring P such
that

µ(I) =
!

p::f∈Π,f∈I
p ·

!
p::f∈Π,f ̸∈I

(1 − p).

Naturally, we could use µ as a function to optimize for modeling MPE. However, it
would be desirable to have an algebraic measure whose overall weight corresponds to the
solution of MPE.

Indeed, we can construct such a measure based on the max-times semiring Rmax,·.
Recall that the multiplication of Rmax,· corresponds to the usual product and that the
addition corresponds to taking the maximum. Then, we can use the following formula
αL over Rmax to compute the likelihood, i.e. the probability of a given assignment to the
probabilistic facts:

Πp::f∈Π(f ∗ p + ¬f ∗ (1 − p)).

Lemma 134 (MPE as AASC). Given a ProbLog program Π and evidence E, the overall
weight of the algebraic measure µ = ⟨Π ∪ { : - not e | e ∈ E}, αL, Rmax,·⟩ is equal to p∗

160

4.3. Applications

in Equation (4.3), the maximum likelihood of any assignment to the probabilistic facts in
Π such that E is entailed.

Notably, this does not solve MPE strictly speaking, since we do not know the assignment
that leads to the maximum probability. However, we can extend the max-times semiring
Rmax,· to perform bookkeeping that tracks which interpretation was used. For this, we
use pairs (p, I), where p ∈ R and I is a partial interpretation. Then addition of two such
pairs (pi, Ii), i = 1, 2 takes that pair, where pi is maximal, breaking ties with an arbitrary
but fixed order on the partial interpretations. Multiplication of two such pairs results
in (p1 · p2, I1 ∪ I2). By changing the probabilistic facts f with weight p to have weight
(p, {f}) instead, we obtain the desired output.

4.3.3 Harder Problems
There are also problems harder than #P, i.e., problems that stay hard on d-DNNFs
without additional restrictions. Such problems frequently occur in probabilistic logic
programming. Some examples are Maximum A Posteriori (MAP) problems, probabilistic
inference using the semantics for general answer set programs of Totis, Kimmig, and
Raedt [TKR23] and Skryagin, Stammer, Ochs, Dhami, and Kersting [Skr+22], and
Maximum Expected Utility (MEU) problems [DD20; Van+10].

What all these problems share is that they come with a partition XO, XI of the variables
and two semirings RO, RI such that their final result can be expressed as�O

IO⊆XO

�I
l∈lit(XO),I|=lαO(l)⊗It (AASC(IO)) , where (4.4)

AASC(IO) = �I
II⊆XI ,IO∪II∈AS(Π)

�I
l∈lit(XI),I|=lαI(l), (4.5)

for functions αO and αI that assign the literals over XO and XI a weight from RO and
RI , respectively, and a transformation function t that maps semiring values from RI to
RO. Intuitively, this means that we have to solve one AASC instance AASC(IO) for
each assignment IO to the outer variables XO and sum up the results, i.e., we need to
perform nested AASC.

Consider for example the MAP problem. It is similar to MPE in the sense that both
problems we ask for the most likely assignment to a set of variables XO, given some
evidence. However, while for MPE the probability of the most likely assignment is
determined as the product of the probabilities of the assignments to the variables in
XO, in MAP this product is multiplied by the marginal probability over the remaining
probabilistic variables in the set XI . Thus, for MAP the expression in (4.5) corresponds
to

argmaxIO⊆XO

!
l∈lit(XO),I|=l

αO(l) ·
"

II⊆XI ,IO∪II∈AS(Π)

!
l∈lit(XI),I|=l

αI(l)

= argmaxIO⊆XO
Pr(IO) · Pr(E | IO),

161

4. Efficient Algebraic Answer Set Counting

where Pr(IO) and Pr(E | IO) denote the probability of IO and the probability of the
evidence E given IO, respectively. The inner sum computes Pr(E | IO), the conditional
probability of E given the assignment IO to the outer variables XO and the outer sum
takes the maximum over all assignments to the outer variables. Here, we assume that Π
includes the constraints that the evidence should hold, as in Lemma 134.

Since all these problems are also definable algebraically and can be solved by compilation
to constrained tractable circuits instead of arbitrary tractable circuits, the results of the
rest of the paper are also relevant for this setting. Again, we see the flexibility of the
algebraic approach that allows us to consider a large variety in the same manner. For
more details, including the adaptations that are necessary in the knowledge compilation
step to allow for constrained knowledge compilation we refer to [KTK22].

4.4 Solving AASC Problems

The main goal of our work is to solve AASC problems more efficiently. In order to do
so, we need to aggregate the values associated with each answer set of a program by
the weighted formula. Already computing one answer set is NP-hard and computing an
aggregate of over all of them can be even harder, depending on the chosen aggregate,
which in our setting corresponds to the addition of the semiring. There has, however,
been a lot of research on different approaches that can be used to overcome this hardness
in an effort to provide an efficient implementation [Fie+11; Fie+15; MJ10; Vla+16;
RS11]. While these approaches differ significantly in their details, they usually follow a
similar overall workflow.

In this section, we give a broad overview of both the shared workflow and the differences
between the approach to arrive at a solution. Especially, we investigate the conditions
under which each of the approaches is likely to succeed. This is interesting, on the one
hand, from a user perspective, as it can allow one to make an informed choice for a tool,
depending on the conditions satisfied by the instances at hand. On the other hand, it
useful for us to make an informed decision which of the approaches we deem to have the
most potential for AASC in general allowing us to use it as the basis for our work.

4.4.1 Overall Workflow

A schema of the general pipeline that is usually shared between different solvers is
shown in Figure 4.3. Many steps are optional and different solvers use different paths
through this pipeline. Usually, solvers accept possibly non-ground programs Π with some
additional annotations for the algebraic measure. Often, this program is then grounded,
resulting in a propositional program, which is simplified in the next step. Afterwards,
the actual AASC starts, by converting the program into an equivalent tractable circuit
representation C via some form of knowledge compilation (KC). In the last step, the result
is obtained by evaluation over the circuit C. Before we go into more details, we would

162

4.4. Solving AASC Problems

Π

Grounding

Π

Simplification

Π

Cycle Breaking

Π

Clark’s Completion

C

Knowledge Compilation

C

Evaluation

r

Figure 4.3: Schema of the overall workflow of existing solvers for the evaluation of AASC
problems.

like to note that in some solvers these steps are intertwined instead of being executed
one after the other.

We focus on the knowledge compilation step. First, there has already been a lot of
work on the other steps of the pipeline: Fierens, Van den Broeck, Renkens, Shterionov,
Gutmann, Thon, Janssens, and De Raedt [Fie+15] showed that for probabilistic infer-
ence with ProbLog programs, it is sufficient to restrict oneself to the relevant ground
part of the program, which can significantly reduce the size of the problem. Tsamoura,
Gutiérrez-Basulto, and Kimmig [TGK20] went even further and used the magic set
technique [Ban+86] to identify the relevant part during grounding, thus, eliminating the
need to even produce the remaining irrelevant part in this phase. Additionally, Shteri-
onov [Sht15] [Sht15, Chapter 3] thoroughly investigated a wide range of simplifications
for probabilistic logic programs that were shown to lead to significantly improved solving
times on many benchmark sets.

Second, we argue that the knowledge compilation step has the largest potential for
improvement and is likely to lead to the biggest effect. Due to these reasons, we focus on
the knowledge compilation step, as we assume its investigation to be the most fruitful.

4.4.2 Knowledge Compilation
The idea behind knowledge compilation is the following: while certain problems, such
as AASC, are hard on general logical theories, there are so called tractable circuit
representations, where this is not the case. Before we discuss different possible strategies
that are currently employed to compile programs into tractable circuit representations,

163

4. Efficient Algebraic Answer Set Counting

we recall the different circuit classes that are commonly used in the area of probabilistic
logic programming.

A very simple circuit class is the MODS representation.

Definition 135 (MODS). A logical theory T over propositional variables V is a MODS
theory, if it is of the form �

I⊆V,I|=T

�
v∈I

v ∧
�

v∈V\I
¬v,

i.e., if it is a disjunction of its models, where each model is represented by the conjunction
of its true literals.

Clearly, given a theory T in MODS representation tasks like probabilistic inference are
possible in polynomial time in the size of the input T . However, the example of MODS
also has obvious downsides: converting a program Π into an equivalent propositional
theory T in MODS representation can result in a theory whose size is exponential in
the one of Π, since we need one disjunct in T for every answer set of Π. Thus, the size
guarantee for the MODS representation of a program is rather weak, if it has many
answer sets.

Corollary 136 (Size of MODS). Let Π be an answer set program. The smallest MODS
representation of Π has size Θ(|AS(Π)| · |A(Π)|).
Example 46. Consider the CNF

C = a ∨ b ∨ c ∧ ¬c ∨ d.

It can be represented in MODS as follows:

C ≡

a ∧ b ∧ c ∧ d
∨ a ∧ b ∧ ¬c ∧ d
∨ a ∧ b ∧ ¬c ∧ ¬d
∨ a ∧ ¬b ∧ c ∧ d
∨ a ∧ ¬b ∧ ¬c ∧ d
∨ a ∧ ¬b ∧ ¬c ∧ ¬d
∨ ¬a ∧ b ∧ c ∧ d
∨ ¬a ∧ b ∧ ¬c ∧ d
∨ ¬a ∧ b ∧ ¬c ∧ ¬d
∨ ¬a ∧ ¬b ∧ c ∧ d

There are also other more intricate tractable circuit representation, which may be
exponentially smaller and more importantly allow for size guarantees with respect to
structural parameters such as treewidth.

One of the most prominent tractable circuit representations is sd-DNNF. It is a special
case of negation normal form (NNF) [Dar04]. The latter is a rooted directed acyclic

164

4.4. Solving AASC Problems

∨
∧

c ∧
d ∧

∨
a ¬a

∨
¬bb

∧
¬c ∧

∨
d ¬d

∨
∧

a ∨
b ¬b

∧
b∨

a ¬a

Figure 4.4: An sd-DNNFs for C = a ∨ b ∨ c ∧ ¬c ∨ d.

graph in which each leaf node is labeled with either a literal, “true”, or “false”, and
each internal node is labeled with a conjunction ∧ or disjunction ∨. For any node n in
an NNF graph, Vars(n) denotes all variables in the subgraph rooted at n. In abuse of
notation, we refer by n also to the formula represented by the graph n. sd-DNNF in
NNF that satisfies the following additional properties (D), (d), and (s):

Decomposability (D): Vars(ni) ∩ Vars(nj) = ∅ for any two children ni and nj of an
and-node.

Determinism (d): ni ∧ nj is logically inconsistent for any distinct children ni and nj

of an or-node.

Smoothness (s): Vars(ni) = Vars(nj) for any two children ni and nj of an or-node.

Example 47 (cont.). The NNF in Figure 4.4 is an sd-DNNF and equivalent to C. We
observe that for each and-node, labeled ∧ in the figure, the sets of variables that occur for
the different children are disjoint. The NNFs of the form a ∨ ¬a are necessary for the
circuit to be smooth. Notably, in this sd-DNNF the NNF a ∨ ¬a occurs twice. This is
not necessary as NNFs can be DAGs. Thus, we could also point two arrows to the same
NNF a ∨ ¬a.

A big selling point of sd-DNNFs is the fixed-parameter-tractability (FPT) result that
gives a guarantee on the size and time needed to construct it.

Theorem 137 (Size of sd-DNNF [OD14]). Let C be a CNF and (T, χ) a tree decomposition
of PRIM(C), the primal graph of C, with width k. Then there is an equivalent sd-DNNF
of size O(2k|C|), which can be constructed in time O(2kpoly(|C|)) from C and (T, χ).

This theorem even holds for a more restricted class of sd-DNNFs, namely Sentential
Decision Diagrams (SDD).

165

4. Efficient Algebraic Answer Set Counting

0

1

2

c

d

a b

Figure 4.5: A (right-linear) vtree for the SDD in Figure 4.4.

Definition 138 (Vtree, SDD [Dar11]). Let V be a finite set of propositional variables. A
vtree for V is a rooted binary tree T = (V, E, troot), whose leaves are labeled by variables
from V in a one-to-one manner. Given t ∈ V , we denote by Vars(t) the set of labels of
leafs that occur in T below t.

An SDD is a d-DNNF C such that every and-node of C has exactly two children, and
there exists a vtree T such that for each and-node n = n1 ∧ n2 there exists a vertex t in
T with children t1 and t2 such that Vars(ni) ⊆ Vars(ti), i = 1, 2.

Example 48 (cont.). The sd-DNNF is in fact also an SDD for the CNF C. This is
witnessed by the vtree displayed in Figure 4.5.

To the best of our knowledge, it is unknown whether for each sd-DNNF C an equivalent
SDD C ′ of size polynomial in |C| exists, meaning that it may be possible that sd-
DNNFs can be much smaller than SDDs for some propositional theories. However, their
structuredness gives us other additional possibilities. Given two SDDs C1, C2 that are
structured by the same vtree T , there is an operator apply, which computes an SDD C3
that is equivalent to C1 ∧ C2 (or C1 ∨ C2) and structured by T in polynomial time in
the size of C1 and C2 [Dar11]. This allows us to compile an SDD for a Boolean circuit
without introducing auxiliary variables for the and-nodes and or-nodes (as it usually
happens, when we apply the Tseitin Transformation to the circuit to obtain a CNF).
This strategy allows for a different size guarantee.

Theorem 139 (Size of SDD [BS17]). Let C be a Boolean circuit and (T, χ) be a tree
decomposition of C with width k. Then there is an equivalent SDD of size

O

22(k+2)2k+1+1+1 · |Vars(C)|

.

Importantly, the size of the circuit here is linear in the number of input variables of the
Boolean circuit C, rather than the size of the CNF of Theorem 137. On the other hand,
the dependency on the treewidth k is triple exponential, rather than single exponential.

It is not clear whether this is necessary. In fact, Amarilli, Capelli, Monet, and Senel-
lart [Ama+20] were able to obtain a size upper bound of O

�
24(k+1) · |Vars(C)|

that is

constructive, with time bound O
�
25k · |Vars(C)|

, by dropping the requirements that

vtrees are binary and that and-nodes should only have two children.

166

4.4. Solving AASC Problems

Another similar class that also features an apply operator is that of Binary Decision
Diagrams (BDD). They can be defined as a special case of SDDs2.

Definition 140 (BDD [Ake78]). A BDD is an SDD that is structured by a right-linear
vtree T , meaning that for every non-leaf node of T it holds that its left child is a variable.

Example 49 (cont.). Since the vtree in Figure 4.5 is right-linear, the SDD in Figure 4.4
is also a BDD.

Intuitively, the restriction on the vtree to be right-linear takes away our possibility to
decompose problems of the form C = C1 ∧ C2, where C1 and C2 are CNFs that do not
share variables, into the two subproblems C1 and C2. For SDDs and sd-DNNFs we can
solve them independently and obtain a solution for the whole CNF C. Accordingly,
BDDs come with a weaker FPT result than SDDs and sd-DNNFs.

Theorem 141 (Size of BDDs I [FPV05]). Let C be a CNF and (T, χ) be a path
decomposition of PRIM(C), the primal graph of C, with width k. Then there is an
equivalent BDD of size O(2k|C|), which can be constructed in time O(2kpoly(|C|)) from
C and (T, χ).

Note that here the guarantee is only given in terms of pathwidth instead of treewidth,
which is a weaker parameter.

As with SDDs, we have a separate result for the compilation of Boolean circuits of
bounded pathwidth.

Theorem 142 (Size of BDDs II [JS12; Ama+20]). Let C be a Boolean circuit and (T, χ)
be a path decomposition of C with width k. Then there is an equivalent BDD of size
O(2(k+2)·2k+2 · |Vars(C)|), which can be constructed in time O(2(k+2)·2k+2 · poly(|C|)) from
C and (T, χ).

Here in contrast to the same result for SDDs the dependency on the parameter k is double
exponential rather than triple exponential. Arguably, pathwidth is a weaker parameter
than treewidth, however only by at most a logarithmic factor in the number of vertices
of the given graph [KS93]. In addition, since every BDD can be interpreted as an SDD,
we also have the same guarantee for SDDs. Again, to the best of our knowledge it is not
known whether the double exponential bound is tight [Ama+20].

This short summary of different circuit classes and known results that guarantee efficient
compilation can serve us as a basis for judging different knowledge compilation based
approaches to AASC. Of course, we still need to keep in mind that these theoretical
guarantees may not be optimal, especially not on every instance, and that the Big-O
notation hides constant factors. Furthermore, the practical efficiency also depends on
how well engineered the used knowledge compilers are. Apart from this, these theoretical

2Strictly speaking these BDDs are known as Ordered BDDs (OBDDs)

167

4. Efficient Algebraic Answer Set Counting

results are only used by some knowledge compilers practically, meaning that we may
even end up with worse performance. Thus, these results should not be taken as the sole
basis for choosing a knowledge compilation strategy but can at least serve as an indicator
from the theoretical perspective.

4.4.3 Different Approaches to the Knowledge Compilation Step
In this section, we compare the different approaches to the knowledge compilation step in
the overall pipeline of AASC based on the theoretical guarantees from above. Note that
this is not a complete discussion in the sense that every possible approach is discussed.
Instead, we only discuss approaches for which an implementation exists. Nevertheless,
we still include approaches even when their current implementation does not make use of
the FPT-guarantees explicitly.

Program to MODS This approach is used by LPMLN [LY17] and plingo [Hah+22].
By Corollary 136, we know that this means we need to consider each model once. Of
course, finding models of a program is NP-hard but in practice this does not seem to lead
to problems. When enumerating the answer sets as it is the case in LPMLN and plingo,
the size guarantee is used explicitly. In fact, it is not even necessary to keep all the
answer sets but it is sufficient to extract a value from each answer set and then discard
it. Thus, this strategy is promising, when there are “few” answer sets3 but becomes
infeasible quickly, since the linear dependency on the number of answer sets cannot be
avoided.

Dynamic Programming This approach is used by dynasp [Fic+17], which is currently
specialized on counting the number of answer sets rather than probabilistic reasoning or
even general AASC. The following result is the basis for the implementation.

Theorem 143 ([Fic+17]). Let Π be a ground program and let (T, χ) be a tree decompo-
sition of the primal dependency graph of Π with width k. Then it is possible, assuming
constant time semiring additions and multiplications, to perform AASC over Π in time
O(22k+1 |T |).

Since dynasp is based on dynamic programming over the tree decomposition, the guarantee
is used explicitly.

CNF to sd-DNNF This approach has been widely considered and is for example
available in ProbLog [MJ10; Fie+11]. Here, we can use the guarantees of Theorem 137,
which are both in terms of size as well as time and have the lowest (i.e. single exponential)
dependency on the treewidth of the primal graph of the input formula. In fact, in the
context of CNFs the result is not only of theoretical interest, quite on the contrary, recent

3Millions of answer sets still seem to be easily feasible.

168

4.4. Solving AASC Problems

results showed that using them as a primary means of guiding the variable selection
during model counting is also highly beneficial in practice [KJ21].

However, this assumes that we are given a CNF of low treewidth. A priori it is unclear
whether a program of low treewidth also leads to a CNF suitable for compilation of low
treewidth. We will discuss this in depth in Sections 4.5 and 4.6.

Ground Acyclic Program to SDD This is the current standard approach in the
implementation of ProbLog [Fie+15]. Here, we do not first translate the program into a
CNF via Clark’s Completion but interpret the program as a Boolean circuit and obtain
an SDD that represents the truth of the extensional atoms in terms of only the input
variables. In the case of probabilistic inference, these are the probabilistic facts. Here, we
obtain a triple exponential upper bound in terms of treewidth on the size of the smallest
SDD via Theorem 139 or a double exponential upper bound in terms of the path width
via Theorem 142. These upper bounds are not explicitly used in the implementation of
ProbLog, which employs the apply operator on SDDs to build the SDDs in a bottom up
manner, along the Boolean circuit. In order to keep the SDDs small, dynamic reordering
of the vtree can be applied heuristically.

Recall that Theorem 137 also holds for compiling CNFs to SDDs [Dar11]. Thus, we
could also make use of its guarantees, given that we can obtain a CNF of small treewidth
from a Boolean circuit of small treewidth. On the one hand, this would lead to a single
exponential instead of a triple exponential dependency on the treewidth for the worst
case guarantee. On the other hand, it would also come with a higher remaining factor
that uses the size of the CNF instead of the number of input variables.

Ground Program to SDD This approach is called TP -compilation [Vla+16] and is
also available in the implementation of ProbLog. Since the program is not necessarily
acyclic we cannot see it as a Boolean circuit. Thus, we cannot use Theorem 139 directly
to obtain guarantees. However, the theorem in fact also holds when there exists a circuit
that defines the same Boolean function as the program [BS17]. Thus, we have the same
theoretical guarantees here as for the acyclic case. Practically, these guarantees are not
used either since the apply operator is employed for compilation in a similar manner
as before. Here, we need to make multiple passes over the program structure, which
intuitively can be seen as a cyclic version of a Boolean circuit, until convergence of the
SDDs.

Program to BDD This approach is used by the PITA system [RS11]. A theoretical
guarantee can again be derived by Theorem 142. While the program is again not
guaranteed to be acyclic, the theorem holds for any Boolean circuit that defines the
Boolean function specified by the program [FPV05]. Thus, the worst case guarantee here
is equal or worse to the one in the previous case, since we only compile to BDD and not
to SDD, which encompasses BDD as a special case. As with ProbLog, the guarantees
are not used explicitly, since BDDs are built in a bottom-up manner by empolying the

169

4. Efficient Algebraic Answer Set Counting

apply operator for BDDs. The BDDs can be dynamically minimized during compilation
by heuristically adapting the variable ordering on the fly.

Ground Program to sd-DNNF Last but not least it is important to mention the
strategy of Aziz, Chu, Muise, and Stuckey [Azi+15]. They modified the knowledge
compiler Dsharp to work on inputs that correspond to normal answer set programs. In
their approach, they did not take care of acyclicity before but during compilation by
adding so called loop formulas [LZ04], which are clauses that prohibit cyclic derivations.
This approach seems promising, since it does not need to blow up the size of the encoding
with all potentially necessary acyclicity constraints but adds them only when needed.
There is a downside to it however. Loop formulas as introduced by Lin and Zhao [LZ04]
may span a whole SCC of the dependency graph of the program.4 Thus, the primal
graph of the CNF for Clark’s Completion and all loop formulas of a program Π contains
a clique for each SCC of DEP(Π). Since an SCC can potentially span large parts of the
program, this may increase the treewidth drastically compared to the treewidth of the
original program. Apart from that, not only the treewidth may suffer: we may end up
with exponentially many additional clauses in the size of the largest SCC [LR06]. This
version of Dsharp was removed from the ProbLog implementation, presumably for the
above reasons.

Summary Summing up, we see that there is a wide range of different approaches to
Knowledge Compilation or more generally solving AASC problems, each coming with
different FPT guarantees that are only partially explicitly used. Mostly, the guarantees are
exponential in a structural parameter associated with the formula that is to be compiled.
The only exception is the approach of the solvers LPMLN [LY17] and plingo [Hah+22]
that enumerate all the models.

The most promising theoretical results are known for the compilation of CNFs to sd-
DNNFs. Furthermore, the recent work of Korhonen and Järvisalo [KJ21] showed that
one can achieve performance improvements by using the latter explicitly. This begs the
question whether and how we can convert programs of low treewidth into CNFs of low
treewidth, in order to fruitfully exploit these recent advancements.

4.5 Clark’s Completion
A crucial step in the translation of programs to CNF formulas is the well-known Clark’s
Completion [Fag94]. While it is defined on general programs, it is only guaranteed to
lead to an equivalent CNF, when the program it was applied to does not have cycles
in its positive dependence graph. The traditional, most well-known version of Clark’s
Completion does not allow for bounds on the treewidth of the resulting CNF in terms of
the treewidth of the primal graph of the original program. There has, however, already

4They usually contain even more variables, however already this is devastating for Knowledge
Compilation.

170

4.5. Clark’s Completion

been work by Hecher [Hec22] that does imply such bounds. In the following, we first
discuss the original version of Clark’s Completion and its limitations as well as the
modifications by Hecher [Hec22]. After that we show that even Hecher’s [Hec22] version
allows for further improvements and introduce an extended version for which we can
obtain better bounds.

The idea behind Clark’s Completion is the following: if we have an atom a that is in the
head of the rules r1, . . . , rn, then a is only included in a stable model if we are forced to
derive it due to one of these rules. More formally, the definition is as follows:

Definition 144 (Clark’s Completion). Let Π be a normal answer set program. Then
Clark’s Completion of Π is defined as the propositional formula

ClarkProp(Π) =
�

a∈A(Π)
a ↔

�
r∈Πa

�
l∈B(r)

l,

where for an atom a ∈ A(Π), we let Πa = {r ∈ Π | H(r) = a}.

For convenience reasons, we also introduce Clark(Π) as the CNF

�
a∈A(Π)

¬a ∨
�

r∈Πa

forcedr ∧
�

r∈Πa

a ∨ ¬forcedr

 ∧

�
r∈Π

forcedr ∨
�

l∈B(r)
¬l ∧

�
l∈B(r)

¬forcedr ∨ l

 ,

where forcedr for r ∈ Π is an auxiliary variable such that intuitively forcedr is true iff
every literal in the body of r is satisfied, which is ensured by the second line.

Formally, we obtain:

Lemma 145. Let Π be an answer set program. Then (i) every model I of ClarkProp(Π)
can be uniquely extended to a model I ′ of Clark(Π) by assigning forcedr to true, if
I ′ |= B(r) and to false, otherwise, and (ii) for every model I of Clark(Π) the interpretation
I ′ = I ∩ A(Π) is a model of ClarkProp(Π).

The way we use Clark’s Completion is to translate programs into equivalent propositional
formulas. The following gives a sufficient condition for this to work.

Theorem 146 ([Fag94]). Let Π be a normal answer set program. If the dependency
graph DEP(Π) of Π is acyclic, then every model of ClarkProp(Π) is an answer set of Π
and vice versa.

171

4. Efficient Algebraic Answer Set Counting

4.5.1 Primal Tree Decomposition Guidance
For now, we disregard the acyclicity requirement of Clark’s Completion and consider
only the change in treewidth as a result of applying Clark’s Completion. Unfortunately,
as the following example shows, we cannot give treewidth guarantees for Clark(Π) in
terms of the treewidth of Π.

Example 50 (Treewidth Bounds I). Consider the program Πn consisting of rules

r1 : a ← b1, . . . , rn : a ← bn

The treewidth of PRIM(Πn) is 1, since the only edges are for the form (a, bi), which means
that PRIM(Πn) is a tree. On the other hand, the CNF version of Clark’s Completion of
Πn contains the following clauses to model the truth of the atom a:

¬a ∨
n�

j=1
forcedrj

, a ∨ ¬forcedri
, for i = 1, . . . , n

forcedri
∨ ¬bi, ¬forcedri

∨ bi, for i = 1, . . . , n.

Due to the clause ¬a ∨ �n
i=1 forcedri

, the primal graph of Clark(Πn) contains a clique of
size n + 1. Therefore, the treewidth of Clark(Πn) is n.

This is a problem, if we want to use the treewidth of the CNF we obtain from Clark’s
Completion to bound the time needed to solve an AASC instance. However, this problem
can be avoided by introducing further auxiliary variables that intuitively save partial
results and thus limit the dependence of the variables among each other.

Example 51 (cont.). Consider instead of the set of clauses from Example 50 the following
alternative clauses:

¬a ∨ partn, a ∨ ¬partn (4.6)
¬parti ∨ bi ∨ parti−1, parti ∨ ¬bi, parti ∨ ¬parti−1 for i = 1, . . . , n (4.7)
¬part0. (4.8)

Here, parti for i = 0, 1, . . . , n are auxiliary variables. Intuitively, parti is responsible for
storing a partial result. Namely, parti is true iff one of b1, . . . , bi is true and consequently
there is a reason to derive a from one of the first i rules. This is ensured by the
clauses in (4.8) and (4.7). Indeed, as part0 is false, so part1 ↔ b1 holds as well as
parti ↔ parti−1 ∨ bi for i = 1, . . . , n. Finally, the clauses in (4.6) ensure that a is true
iff any of the (first n) rules fires by ensuring that it a is equivalent to partn.

While the primal graph of this CNF has treewidth 2 which is higher than the one of
PRIM(Πn) that has treewidth 1, it is independent of n, in contrast to the treewidth of
Clark(Πn).

172

4.5. Clark’s Completion

The idea of the previous example is formalized as PClark(Π, T , tr) a revised definition
of ClarkProp(Π) given by Hecher [Hec22] that uses a tree decomposition T with root tr
of the primal graph of Π for guiding the Clark Completion. It leads to the following
guarantee:

Theorem 147 ([Hec22]). Given a normal answer set program Π and a tree decomposition
T = (T, χ) of PRIM(Π) with width k and root tr , the CNF PClark(Π, T , tr) can be
constructed in time linear in |Π| + |T | and satisfies that

(i) every model of ClarkProp(Π) can be uniquely extended to a model of PClark(Π, T , tr),

(ii) the size of PClark(Π, T) is in O(k|Π|), and

(iii) the treewidth of PRIM(PClark(Π, T , tr)) is at most 3(k + 1).

Intuitively, we can avoid a higher increase in treewidth by avoiding long clauses introduced
by large disjunctions a1 ∨ · · · ∨ an. For this, we apply the Tseitin transformation
to obtain multiple shorter clauses that correspond to a1 ∨ a2 ∨ part1, part1 ↔ a3 ∨
part2, . . . , partn−3 ↔ an−1 ∨ an.

We do not spell out PClark(.), as we will give a further improved version. Notably,
Clark’s Completion may also introduce large conjunctions, which we also wish to avoid if
they artificially increase the treewidth.

4.5.2 Incidence Tree Decomposition Guidance
We have seen that we can use a tree decomposition of the primal graph of a program to
limit the increase in the treewidth during translation to CNF that is caused by many
rules that have the same atom in the head. Another factor that can lead to artificially
high treewidth are long rules:

Example 52 (Treewidth Bounds II). Consider the program Πn with the single rule

r : a ← b1, . . . , bn.

The treewidth of PRIM(Πn) is n, since it is a clique on n+1 vertices. Thus, Theorem 147
guarantees us a CNF of treewidth at most 3(n + 1). In this case, this upper bound is not
helpful, since already the usual version of Clark’s Completion results in the following
clauses to model the truth of atom a:

a ∨ ¬forcedr, ¬a ∨ forcedr,

forcedr ∨
n�

i=1
¬bi,

n�
i=1

(¬forcedr ∨ bi) .

The primal graph of this CNF also has treewidth n, which is better than our upper bound.

173

4. Efficient Algebraic Answer Set Counting

a b1

. . .bn

a b1 . . . bn

r

Figure 4.6: The primal graph (left) and the incidence graph of the program Πn from
Example 53.

We can avoid the long clauses by using the following propositional formula instead:

a ↔ b1 ∧ part1,

parti ↔ bi+1 ∧ parti+1, for i = 1, . . . , n − 3,

partn−2 ↔ bn−1 ∧ bn.

The treewidth of the primal graph of the corresponding CNF is 2 and therefore independent
of n.

As previously, we see that we can decrease the treewidth of the CNF resulting from
Clark’s Completion by introducing auxiliary variables. The difference here is that we
introduce them for conjunctions instead of disjunctions. Unfortunately, as we have
also seen in the example, a tree decomposition of the primal graph of the program is
unlikely to help us: it also assigns a high treewidth to the program even if it has a simple
representation.

We overcome this problem by considering the incidence graph of the program instead of
the primal graph.

Example 53 (cont.). The incidence graph of Πn in Example 52 is shown in Figure 4.6;
as it is a tree, it has treewidth 1.

Definition 148 (Incidence Tree Decomposition-guided Clark’s Completion). Let Π be a
normal answer set program and T = (T, χ) a tree decomposition of INC(Π) with root tr .
Then IClark(Π, T , tr) the Incidence Tree Decomposition-guided Clark’s Completion of Π
with respect to (T, χ) and root tr is defined as the propositional formula

uptoa
t ↔

�
t′∈children(t),a∈χ(t′)

uptoa
t′ ∨

�
r∈χ(t),H(r)=a

forcedr (4.9)

for t ∈ T, a ∈ χ(t)
a ↔ uptoa

t′ (4.10)
for t, t′ ∈ T, a ∈ χ(t′) \ χ(t), t′ ∈ children(t)

a ↔ uptoa
tr (4.11)

for a ∈ χ(tr)

174

4.5. Clark’s Completion

uptor
t ↔

�
t′∈children(t),r∈χ(t′)

uptor
t′ ∧

�
b∈χ(t),b∈B(r)

b (4.12)

for t ∈ T, r ∈ χ(t)
forcedr ↔ uptor

t′ (4.13)
for t, t′ ∈ T, r ∈ χ(t′) \ χ(t), t′ ∈ children(t)

forcedr ↔ uptor
tr (4.14)

for r ∈ χ(tr)

The basic intuition here is the same as with the original CNF version of Clark’s Completion,
i.e., we introduce additional variables that are defined as equivalent to subformulas. The
variables of the form uptoa

t for t ∈ T and a ∈ A(Π) intuitively capture whether a is derived
by any of the rules that occur in χ(t) or χ(t′) for a descendant t′ of t. This is ensured in
(4.9). Then in (4.10) and (4.11) we ensure that the atom a holds if it was derived by
any rule, by checking whether it was derived in the bag of the tree decomposition that
contains it and is closest to the root (which may be the root). Similarly, the atoms of
the form uptor

t for t ∈ T and r ∈ Π intuitively capture whether the all the body atoms
of r that occur in χ(t) or χ(t′) for all descendants t′ of t are satisfied due to (4.12).
Accordingly, in (4.13) and (4.14) we ensure that forcedr holds iff all the body atoms of r
are satisfied, by checking whether uptor

t holds in the unique bag t ∈ T such that r ∈ χ(t)
and t does not have any ancestors that contain r.

This leads to the following result as desired:

Theorem 149. Given a normal answer set program Π and a tree decomposition T = (T, χ)
of INC(Π) with width k and root tr , the CNF IClark(Π, T , tr) can be constructed in time
linear in |Π| + |T | and satisfies that

(i) every model of ClarkProp(Π) can be uniquely extended to a model of IClark(Π, T , tr),

(ii) the size of IClark(Π, T) is in O(k|Π|), and

(iii) the treewidth of PRIM(IClark(Π, T , tr)) is at most 3(k + 1).

Proof (Sketch, for the full proof see Appendix C.1). Roughly, we construct a new tree
decomposition by adding for each node t ∈ T with vertices χ(t) the atoms uptox

t for each
x ∈ χ(t) and forcedr for r ∈ χ(t). Then we are interested in the cardinality of the set

(χ(t) \ {r | r ∈ χ(t) ∩ Π}) ∪ {forcedr | r ∈ χ(t) ∩ Π} ∪ {uptox
t | x ∈ χ(t)},

which is 2(k + 1). However, this does not cover the clauses in (4.12) and (4.9). We
can assume w.l.o.g. that every node t ∈ T has at most 2 children (e.g. by introducing
duplicates of t) and add uptox

t′ for every child t′ of t to naively achieve an upper bound of
4(k + 1). By instead using in the new tree decomposition copies (t, 1), . . . , (t, |χ(t)| + 1)
of t for each t ∈ T and processing the clauses in (4.12) and (4.9) one by one, we achieve

175

4. Efficient Algebraic Answer Set Counting

the upper bound of 3(k + 1). Assuming χ(t) = {x1, . . . , x|χ(t)|}, we start with the bag
(t, |χ(t)| + 1) that contains uptox|χ(t)|

t , x, uptox
t1 , and uptox

t2 for the children t1, t2 of t and
all x ∈ χ(t). Then, we define χ′(t, i) for i = 1, . . . , |χ(t)| as

{uptoxi−1
t } ∪ χ′(t, i + 1) \ {uptoxi

t , uptoxi
t1 , uptoxi

t2 }.

This means that we start with bag (t, |χ(t)| + 1) of size 3(k + 1) + 1 and decrease the size
of the following bags by 2 in each step, resulting in a width of at most 3(k + 1).

Recall that a graph of primal treewidth k has incidence treewidth less or equal to
k + 1. Thus, in the worst case the guarantees of Theorem 149 only differ from those of
Theorem 147 by a constant factor. However, since incidence treewidth may be arbitrarily
smaller than primal treewidth, the guarantees with respect to incidence treewidth can
be much better. The latter can also be seen in Example 53, where we consider a family
of programs with constant incidence treewidth but unbounded primal treewidth. Thus,
Theorem 149 broadens the range of cases, where we can fruitfully use CNF-translation
followed by algebraic model counting on the CNF for algebraic answer set counting.

In order to solve AASC with knowledge compilation via a version of Clark’s Completion,
we however first need to ensure that the resulting CNF preserves the models of the
original program bijectively.

4.6 Cycle Breaking
Recall that Clark’s Completion is only guaranteed to capture the answer sets of a program
if the program is acyclic. Thus, for a program with a cyclic dependency graph, we first
need to make some further effort to ensure that Clark’s Completion will be correct. This
process is commonly referred to as cycle breaking and transforms a program Π into a
program C(Π).

There has been a lot of work on cycle breaking both in the ASP community [LZ03; Jan04;
Hec22] for translations to SAT as well in the probabilistic reasoning community [MJ10]
specifically for weighted model counting. The basic idea of cycle breaking is to modify
the program in such a way that afterwards the models of the Clark Completion and
the modified program are the same. In the context of general AASC, it is moreover
important that the answer sets before and after cycle breaking are in a specific one-to-one
relationship. Formally, the cycle breaking needs to be faithful:

Definition 150 (Faithfulness). A cycle breaking C(.) is faithful (for Π), if:

(i) |AS(Π)| = |AS(C(Π))|, and

(ii) AS(Π) = {I ∩ A(Π) | I ∈ AS(C(Π))}.

As expected, faithfulness guarantees that we can perform AASC over the program
obtained by cycle breaking without changing the result.

176

4.6. Cycle Breaking

Lemma 151 (Faithfulness Implies Query Invariance). Let µ = ⟨Π, α, R⟩ be a measure
and let C(.) be a faithful cycle breaking for Π. Then for µ′ = ⟨C(Π), α, R⟩ it holds that
µ(a) = µ′(a) for every a ∈ A(Π).

The proof of this lemma can be found in Appendix C.2.

The translations of Lin and Zhao [LZ03] and Hecher [Hec22] do not satisfy this requirement
for all program, as they serve to check the existence of an answer set.

In contrast, the two cycle breakings of Janhunen and Niemelä [JN11] and Mantadelis
and Janssens [MJ10] are faithful for all programs. In fact, both have been considered in
the context of probabilistic reasoning. Janhunen and Niemelä’s [JN11] was considered
for the implementation of Problog (cf. [Fie+11]) and Mantadelis and Janssens’ [MJ10] is
still part of the standard Problog implementation.

In this section, our aim is to find a cycle breaking that will result in good AASC-per-
formance. As mentioned before, our main criterion here is whether we can bound the
increase of the treewidth. However, of course also the increase in program size and
insights regarding the semantic complexity are relevant for us. In the following, we thus
first analyze the state of the art of faithful cycle breakings. Afterwards we introduce
a novel cycle breaking called TP -Unfolding, which we use in our implementation, and
argue that it has favorable properties.

4.6.1 Necessity of Cycle Breaking
Before we consider existing cycle breakings, we first motivate the need for it by giving an
example program, where the models of Clark’s Completion do not align with the stable
models.

Example 54. Consider again the program Πsm from the running example.

{st(1)} ← {st(2)} ← {st(3)} ←
{inf(3, 1)} ← {inf(1, 2)} ← {inf(2, 3)} ←

sm(1) ← st(1) sm(1) ← inf(3, 1), sm(3)
sm(2) ← st(2) sm(2) ← inf(1, 2), sm(1)
sm(3) ← st(3) sm(3) ← inf(2, 3), sm(2)

Recall that {a} ← is short for the two rules a ← not na and na ← not a. Thus, each of the
stress and influence atoms, contribute the following equivalences to Clark’s Completion,
respectively:

st(i) ↔ ¬nst(i) ninf(i, j) ↔ ¬inf(i, j)
nst(i) ↔ ¬st(i) inf(i, j) ↔ ¬ninf(i, j)

Without any additional constraints, this means that we can choose the truth values of st(i)
and inf(i, j) arbitrarily as long we assign nst(i) and ninf(i, j) the negation, respectively.

177

4. Efficient Algebraic Answer Set Counting

Since this is the intended behavior of choice constraints, we see that Clark’s Completion
works as expected here. On the other hand, for the smokes atoms, we obtain the following
equivalences

sm(i) ↔ st(i) ∨ (inf(j, i) ∧ sm(j)),

where i + 1 ≡ j mod 3. I.e. i smokes iff i is stressed or j influences i and j smokes.
Under the stable model semantics, we can only derive that any person smokes if at least
one person is stressed. However, for Clark’s Completion there is a model, where every
person smokes but nobody is stressed, namely

{sm(1), sm(2), sm(3), nst(1), nst(2), nst(3), inf(3, 1), inf(1, 2), inf(2, 3)}.

While this is also a model of Πsm it is not stable, since the strict subset

{nst(1), nst(2), nst(3), inf(3, 1), inf(1, 2), inf(2, 3)}

is also a model of Πsm.

The previous example clearly shows that the problem with Clark’s Completion on general
problem is caused by cyclic derivations. Cyclic derivations are those that use that an
atom a is true to derive that a is true.

4.6.2 The MJ(.) Cycle Breaking [MJ10]
The strategy of Mantadelis and Janssens’ [MJ10] cycle breaking MJ(.) to avoid such
cyclic derivations is to introduce copies aF of an atom a for F ⊆ A(Π) that intuitively
capture derivations of a that do not positively use any atom from F . Then we can use
the atom a{b} in a derivation of b from a, even if a and b are in a cyclic dependency.
Naturally, introducing a copy aF for every subset F ⊆ A(Π) is undesirable as it would
lead to an exponential number of atoms.

In order to avoid this whenever possible, the cycle breaking MJ(.) makes use of two ideas.
Firstly, it uses the fact that sometimes the derivations for a that do not use atoms from
F or F ′ align. Then it does not make sense to introduce two separate atoms aF , aF ′ and
one can use one of them for both cases. Second, if every derivation for b uses the atoms
in F ⊆ A(Π) before using the atom a, then no atom a{b} will be created but only an
atom aF ∪{b}.

We illustrate the idea behind MJ(.) on our running example.

Example 55 (cont.). First consider the rules for the guesses of the stressed and influences
predicate.

{st(1)} ← {st(2)} ← {st(3)} ←
{inf(3, 1)} ← {inf(1, 2)} ← {inf(2, 3)} ←

178

4.6. Cycle Breaking

Here, we do not need to change anything, since these atoms are not involved in any cycles.
Next, we consider the remaining atoms in the rules

sm(1) ← st(1) sm(1) ← inf(3, 1), sm(3)
sm(2) ← st(2) sm(2) ← inf(1, 2), sm(1)
sm(3) ← st(3) sm(3) ← inf(2, 3), sm(2)

Here, sm(1), sm(2) and sm(3) are in a cyclic dependency. We first consider sm(1). Due
to the cycle, we cannot use all derivations of sm(3) to derive sm(1) using the rule

sm(1) ← inf(3, 1), sm(3).

Instead, we introduce a copy sm(3){sm(1)} of the atom sm(3) that captures all derivations
of sm(3) that do not make use of sm(1):

sm(1) ← st(1) sm(1) ← inf(3, 1), sm(3){sm(1)}

Similarly, in order to capture all derivations of sm(3) from inf(2, 3), sm(2) using the rule

sm(3) ← inf(2, 3), sm(2)

we create a copy sm(2){sm(1),sm(3)} of the atom sm(2) that captures all derivations of
sm(2) that use neither sm(1) nor sm(3):

sm(3){sm(1)} ← st(3) sm(3){sm(1)} ← inf(2, 3), sm(2){sm(1),sm(3)}

Finally, to capture the derivations of sm(2) that use neither sm(1) nor sm(3) we use the
rule

sm(2){sm(1),sm(3)} ← st(2).

Here, we cannot use the rule

sm(2) ← inf(1, 2), sm(1)

since it would make use of sm(1).

The derivations for sm(2) and sm(3) are handled analogously to those of sm(1) using the
following rules:

sm(2) ← st(2) sm(2) ← inf(1, 2), sm(1){sm(2)}
sm(1){sm(2)} ← st(1) sm(1){sm(2)} ← inf(3, 1), sm(3){sm(2),sm(1)}

sm(3){sm(2),sm(1)} ← st(3)
sm(3) ← st(3) sm(3) ← inf(2, 3), sm(2){sm(3)}

sm(2){sm(3)} ← st(2) sm(2){sm(3)} ← inf(1, 2), sm(1){sm(3),sm(2)}
sm(1){sm(3),sm(2)} ← st(1)

179

4. Efficient Algebraic Answer Set Counting

Note that here we only used the second idea of Mantadelis and Janssens’ [MJ10] cycle
breaking, e.g. by not creating an atom sm(1){sm(3)} since every derivation of sm(3) that
uses sm(1) also uses sm(2). The first idea does not apply here, since the derivations for
sm(1) without {sm(2)} and without {sm(3), sm(2)} differ (and similarly for the derivations
of sm(2), sm(3)).

This brings us to the question of how the treewidth changes when we apply this cycle
breaking. The strategy in Theorem 149 was intuitively to add every copy of an atom to
every bag in a tree decomposition that contains that atom. If we do the same with every
copy aF for an atom a and F ⊆ A(Π), we only get an upper-bound that is exponential
in the number of atoms of Π. We may do slightly but not significantly better as the
following two theorems show.

We first recall that a simple cycle in a directed graph G is a (directed) path in G from a
vertex v ∈ V (G) to v such that the only vertex that is visited twice is v.

Theorem 152. Let Π be a normal answer set program of treewidth k such that the
largest strongly connected component of DEP(Π) has size s and any strongly connected
component of DEP(Π) has at most c directed simple cycles. Then the treewidth of MJ(Π)
is in O(k · s · c).

As in Theorem 149, we add all copies of a to every bag that contains atom a to obtain
the desired result.

Proof. Let (T, χ) be a tree decomposition of PRIM(Π). Then (T, χ′), where

χ′(t) = χ(t) ∪ {aF | F ⊆ A(Π), aF ∈ A(MJ(Π))}

is a tree decomposition of MJ(Π). This follows from the fact that (T, χ) is a tree
decomposition of the original program and since for every rule

rc = aF ← b1F1 , . . . , bnFn , not c1, . . . , not cm

in MJ(Π) there is a rule

r = a ← b1, . . . , bn, not c1, . . . , not cm

in Π. From the definition of χ′ it follows that rc ∈ χ′(t) iff r ∈ χ(t). Therefore, every
rule is contained completely in some bag as required.

This upper bound is not very helpful, since the strongly connected components of
DEP(Π) can be large and can have exponentially many directed simple cycles in their
size. Unfortunately, we cannot do much better.

Theorem 153. There is a family of programs (Πn)n∈N such that

180

4.6. Cycle Breaking

1. DEP(Πn) has exactly one simple cycle,

2. the treewidth of Πn is bounded by a constant (independent of n),

3. the number of atoms and rules of Πn is linear in n, and

4. the treewidth of MJ(Πn) grows linearly with n.

Proof (Sketch, for the full proof see Appendix C.2). We define a family of programs as
follows

Πn ={{v(i)} ←| i = 1, . . . , n}∪
{{e(i, j)} ←| i, j = 1, . . . , n, i + 1 ≡ j mod n}∪
{in(i) ← v(i) | i = 1, . . . , n}∪
{in(i) ← e(i, j), in(j) | i, j = 1, . . . , n, i + 1 ≡ j mod n}.

Intuitively, Πn takes the directed graph over n vertices with arcs

(1, 2), (2, 3), . . . , (n − 1, n), (n, 1),

thus inducing exactly one cycle 1, 2, . . . , n, 1. Then it guesses a random subset of its
vertices (v(i)) and arcs (e(i, j)). All vertices are kept such that v(i) holds or the edge of
the predecessor is present e(i, j) and the vertex j was kept. In other words, the latter
means that all vertices on maximal paths of guessed edges, whose starting vertex was
guessed are also kept.

1.-3. can be easily verified. To show 4., we show that PRIM(MJ(Πn)) has a graph minor
such that every vertex has at least degree n. From this it follows that the treewidth
of PRIM(MJ(Πn)) is at least n by employing standard results from the treewidth
literature [KBvH01; Bod98].

We see that the cycle breaking MJ(.) does not have desirable properties when it comes
to treewidth.

4.6.3 The JN(.) Cycle Breaking [JN11]
We continue with the second cycle breaking JN(.) due to Janhunen and Niemelä [JN11].
The previous strategy was to capture partial derivations explicitly by introducing auxiliary
atoms leading to an acyclic and answer set preserving program. The cycle breaking
JN(.) introduced in this work instead leaves the original program untouched but adds
constraints that ensure each true atom can be derived. For this, it makes use of level
rankings [Nie08]. Intuitively, the levels of atoms specify in which order they can be used
in a derivation, i.e., when the level of atom a is lower than that of atom b, then we can
use a rule that has b in the head and a in the body to derive b. It was shown that it is
possible to characterize the answer sets of a program in terms of Clark’s Completion in

181

4. Efficient Algebraic Answer Set Counting

combination with level ranking constraints. Furthermore, by adding constraints on the
level ranking we obtain a one-to-one correspondence [Nie08].

We illustrate the idea behind JN(.) on our running example and refer the interested
reader to [JN11] for details.

Example 56 (cont.). As already mentioned, we keep the original set of rules untouched.
That is JN(Π) = Π ∪ Π′, where Π′ contains additional rules that specify level ranking
constraints.

The level ranking constraints for Πsm are as follows. As before, the guesses of the stressed
and influences predicates do not require additional rules. More generally, atoms a that
can only be derived from rules whose positive body atoms are not in a cycle with a do not
require level ranking constraints.

Thus, we only need to take care of the following rules:

sm(1) ← st(1) sm(1) ← inf(3, 1), sm(3)
sm(2) ← st(2) sm(2) ← inf(1, 2), sm(1)
sm(3) ← st(3) sm(3) ← inf(2, 3), sm(2)

For sm(1), this leads to the following additional rules:

just(sm(1)) ← st(1) (4.15)
just(sm(1)) ← inf(3, 1), sm(3), lt(sm(3), sm(1)) (4.16)

← sm(1), not just(sm(1)) (4.17)
next(sm(1)) ← st(1) (4.18)
next(sm(1)) ← inf(3, 1), sm(3), succ(sm(3), sm(1)) (4.19)

← sm(1), not next(sm(1)) (4.20)

Here, we introduce the following new atoms in order to model the level ranking constraints:

• just(sm(1)) means that sm(1) is justified, i.e., there is a rule that is applicable also
when taking into account level rankings.

• lt(sm(3), sm(1)) means that sm(3) is at a lower level than sm(1). In this case sm(3)
can be used in a derivation of sm(1).

• next(sm(1)) means that sm(1) is at the next level compared to some atom that is
used to derive it. I.e., there is a rule with sm(1) in the head and an atom in the
body that is exactly one level lower than that of sm(1). E.g., in (4.19) we derive
next(sm(1)) when we can derive sm(1) from inf(3, 1) and sm(3) and the level of
sm(1) is equal to 1 plus the level of sm(3).

• succ(sm(3), sm(1)) means that the level of sm(3) is exactly one level lower than
the level of sm(1).

182

4.6. Cycle Breaking

The atoms of the form just(a) and next(a) are defined by the given rules. For the other
auxiliary atoms of the form succ(b, a) and lt(b, a) we still need to add definitions based
on the levels associated with the atoms a and b. To model the level of an atom a, we
use atoms that act as a binary counter that represents the level. I.e., if the SCC of
the dependency graph of the program that contains a has size n, we introduce atoms
bin(a, i) that are guessed via rules {bin(a, i)} ← for i = 0, . . . , ⌈log2(n)⌉. Then for a
given interpretation I of these atoms the level of a is given by

⌈log2(n)⌉"
i=0

�
2i if bin(a, i) ∈ I,
0 otherwise.

Using this correspondence, we can define the atoms succ(b, a) and lt(b, a) in terms of
the binary counter atoms of a and b. Note that in order to obtain a faithful translation,
we additionally need to ensure that the level of atoms is minimal, as otherwise it is not
unique. For details, we refer to the original paper [JN11].

This brings us to the question of treewidth guarantees that we can give for JN(Π). In
contrast to MJ(Π), we do not need information about the number of simple cycles for
this.

Theorem 154. Let Π be a normal answer set program of treewidth k such that the largest
strongly connected component of DEP(Π) has size s. Then the treewidth of JN(Π) is in
O(k2 + k log2(s)).

As with Theorem 149 the idea here is to take an existing tree decomposition of optimal
width k and add to each bag all auxiliary atoms that are related to the atoms in the bag.
For the proof see Appendix C.2.

We point out that the quadratic dependency on the treewidth k can actually be avoided
by modifying Janhunen and Niemelä’s [JN11] definition of cycle breaking. For this,
observe that the quadratic dependency stems from the inclusion of lt(b, a) and succ(b, a)
for every a, b ∈ χ(t) in the new bag χ′(t). If we instead define one atom lt(b, a, r) and
succ(b, a, r) per rule r such that head(r) = a and b ∈ body(r), we do not need to include
all such atoms in the same bag but can handle them in different bags. It follows that
there is a cycle breaking with a treewidth upper bound in O(k log2(s)). In fact, we
observed that the implementation of JN(.) in lp2lp2 does exactly this, meaning that it
comes with a treewidth upper bound of O(k log2(s)).

We see that JN(.) gives better guarantees than MJ(.), since k log2(s) grows slower
asymptotically than k · s · c even when c = 1. However, it uses a binary counter for the
encoding of the level ranking. While this provides very good asymptotic size guarantees,
both in terms of the resulting program and its treewidth, binary encodings can sometimes
have negative effects on the practical performance of SAT solvers [Bjö11] and can result
in much slower performance than encodings of a larger asymptotic size.

183

4. Efficient Algebraic Answer Set Counting

4.6.4 TP-Unfolding
We have seen that the current cycle breakings either come with weak upper bounds on the
treewidth or have good upper bounds but use an encoding that can lead to impairments
of the practical performance of SAT solvers and therefore also of knowledge compilers.

We want to avoid both drawbacks as far as possible. For this, we take a closer look at
dependency graphs of programs and introduce cbs(G) a novel parameter, the component-
boosted backdoor size of a digraph. Intuitively, cbs(.) (defined later in Definition 160)
provides a more fine grained measure of directed cyclicity. More importantly, we can
exploit it in TP -Unfolding, our new cycle breaking, which leads to the following guarantees:

Theorem 155. For any factorized measure µ = ⟨Π, α, R⟩, we can construct in polynomial
time in the size of Π given access to an NP-oracle a factorized measure µ′ = ⟨Π′, α, R⟩
with an acyclic program Π′ such that

(i) for all a ∈ A(Π) it holds that µ(a) = µ′(a),

(ii) the treewidth of Π′ is at most k · cbs(DEP(Π)), where k is the treewidth of Π, and

(iii) the size of Π′ is at most cbs(DEP(Π)) · |Π|.

Here, the increase of the treewidth and the program is bounded by cbs(DEP(Π)). Thus,
this factor only depends on the dependency graph of Π and its cyclicity, rather than the
number of atoms in the program or the size of the largest SCC of cbs(DEP(Π)).

As the name says, TP -Unfolding is related to another approach for AASC called TP -
compilation [Vla+16]. Intuitively, the idea of TP -compilation is to capture the derivations
of atoms by iteratively compiling SDDs that are increasingly precise approximations
thereof. For this, we take at each step all rules r1, . . . , rm in Π such that head(ri) = a
for some atom a ∈ A(Π). Then, we first conjoin the SDDs that represent the derivations
of the body atoms of each rule ri. By disjoining the resulting SDDs for each rule ri, we
get a better approximation of the derivations of a.

We use a similar idea to iteratively capture increasingly more derivations of atoms, but
in a different way. Namely, we introduce at each step a new atom a(i) that represents the
set of derivations of a that are currently captured. Intuitively, these new atoms a(i) are
similar to the atoms aF introduced by Mantadelis and Janssens’ [MJ10] cycle breaking,
since both capture a subset of the derivations of a. However, the captured subsets of
derivations are different, which allows us to obtain better theoretical guarantees for
TP -Unfolding.

TP -Unfolding, which takes as input a program Π and an unfolding sequence s ∈ A(Π)∗,
which is a list of atoms s1 . . . sn, with si ∈ A(Π), is described in Algorithm 2. Intuitively,
where the immediate consequence operator TP [vEK76] checks if an atom a follows from
previously derived atoms, TP -Unfolding introduces copies of all rules that derive a from

184

4.6. Cycle Breaking

Algorithm 2 TP-Unfold(Π, s)
Input A program Π and an unfolding sequence s ∈ A(Π)∗.
Output An acyclic program Π′.

1: last = {a .→ ⊥ | a ∈ A(Π)}
2: cnt = {a .→ 0 | a ∈ A(Π)}
3: Π′ = {r ∈ Π, H(r) = ⊥}
4: for i = 1, . . . , len(s) do
5: if isLastOccurrence(si, i, s) then
6: head = si

7: else
8: head = s

cnt(si)+1
i

9: for r ∈ Π, si = H(r) do
10: B+

new = {last(b) | b ∈ B+(r)}
11: Π′ = Π′ ∪ {head ← B+

new, B−(r)}
12: last(si) = head
13: cnt(si) = cnt(si) + 1
14: return Π′

previously considered atoms. For this, we iterate over the unfolding sequence s = s1 . . . sn,
considering si at the ith step (line 4). As the head atom of the rule-copies we take a new
copy s

cnt(si)+1
i or the original atom si depending on whether si occurs again in si+1 . . . sn

(see lines 5-8). The positive body atoms are replaced by the last copy made of them (line
10) and the negative atoms in B−(r) are left as they are. After copying all rules with si

in the head, we update the last copy of si and increase the counter storing the number of
copies (lines 12, 13).

We consider the effect of TP -Unfolding on the program from our running example.

Example 57 (cont’d). First, recall that choice constraints {a} ← are a shorthand for
a ← not na and na ← not a. We compute TP-Unfold(Πsm, s) using the unfolding
sequence

s = sguessssmokes

sguess = st(1)nst(1) . . . st(3)nst(3)inf(3, 1)ninf(3, 1) . . . inf(2, 3)ninf(2, 3)
ssmokes = sm(1)sm(2)sm(3)sm(1)sm(2)

and obtain:

185

4. Efficient Algebraic Answer Set Counting

{st(1)} ← {st(2)} ← {st(3)} ←
{inf(3, 1)} ← {inf(1, 2)} ← {inf(2, 3)} ←

sm(1)1 ← st(1) sm(1)1 ← inf(3, 1), ⊥
sm(2)1 ← st(2) sm(2)1 ← inf(1, 2), sm(1)1

sm(3) ← st(3) sm(3) ← inf(2, 3), sm(2)1

sm(1) ← st(1) sm(1) ← inf(3, 1), sm(3)
sm(2) ← st(2) sm(2) ← inf(1, 2), sm(1)

We observe that TP-Unfold(., s) is faithful for Πsm.

The output of TP-Unfold(Π, s) is always an acyclic program, however, the faithfulness
for Π depends on s. To ensure that TP-Unfold(., s) is faithful, it is enough to iterate
over all variables n = |A(Π)| + 1 times, since every derivation in Π can only take
n steps. However, as we have seen in the previous example, it can be sufficient to
use much fewer steps. This is because the number of times a variable needs to be
considered in an unfolding sequence depends on the positive dependencies involving
it: e.g. st(i), i = 1, . . . , 3 does not positively depend on any variable and can thus be
considered once before all other variables and never again afterwards.

We give a sufficient condition for faithfulness. Notably, our condition abstracts away
the actual program Π and is based on a structural property of the digraph unfolding of
DEP(Π).

Definition 156 (Digraph Unfolding). Let G be a digraph and let s ∈ V (G)∗ be an
unfolding sequence. Let cnt(a, s) = |{j | sj = a}| be the number of occurrences of a in the
unfolding sequence s, then the unfolding UF(G, s) of G with respect to s is the digraph U
such that

(i) V (U) = {ai | 1 ≤ i ≤ cnt(a, s) }, and

(ii) (bi, aj) ∈ E(U) if (b, a) ∈ E(G), cnt(a, s1 . . . sk) = j for some k and cnt(b, s1 . . . sk) =
i > 0.

The idea is that the digraph unfolding of DEP(Π) with respect to s ∈ A(Π)∗ is the
dependency graph of the unfolded program TP-Unfold(Π, s). Therefore, the vertices
are the copies of the atoms (see lines 6,8) and there is an edge (bi, aj) if bi is the last
copy of an atom that is used to derive aj , i.e. the j-th occurrence of a in s (see lines
10,11). Formally:

Lemma 157. Let Π be an answer set program and s ∈ A(Π)∗ be an unfolding sequence.
Then UF(DEP(Π), s) = DEP(TP-Unfold(Π, s)) (when identifying a with acnt(a,s)).

For the proof see Appendix C.2.

186

4.6. Cycle Breaking

sm(1)1 sm(2)1 sm(3)

sm(1) sm(2)

st(1) st(2) st(3)

inf(3, 1) inf(1, 2) inf(2, 3)

Figure 4.7: Dependency Graph of TP-Unfold(Πsm, s).

Example 58 (cont’d). The dependency graph of TP-Unfold(Πsm, s) is given in Fig-
ure 4.7. It is acyclic and corresponds to UF(DEP(Πsm), s) as expected.

Using Lemma 157, we can provide a sufficient condition for faithfulness.

Theorem 158. Let Π be an answer set program and s ∈ A(Π)∗ be an unfolding sequence.
If for every simple directed path π = (a1, . . . , an) in DEP(Π) some directed path πc =
(ac1

1 , . . . , acn
n) in UF(DEP(Π), s) exists, then TP-Unfold(., s) is faithful for Π.

Proof. Let Π be an answer set program, s an unfolding sequence that satisfies the
precondition of the theorem, and I ⊆ A(Π). We know that for all s the reduct
TP-Unfold(Π, s)Iext for Iext ∩ A(Π) = I is TP-Unfold(Π, s)I as the rules added
in line 11 use the original negative body B−(r), which only uses atoms from A(Π). Hence
we can consider TP-Unfold(Π, s)I , which has a unique minimal model. We see that if
TP-Unfold(Π, s) has an answer set Iext equal to I on A(Π), then it is the only such
answer set.

By the same argument we see, that taking the reduct w.r.t. I and TP -Unfolding commute:
TP-Unfold(Π, s)I = TP-Unfold(ΠI , s). Since I is an answer set iff it is a minimal
model of the reduct ΠI , it remains to show that a ∈ A(Π) is derivable from ΠI iff it is
derivable from TP-Unfold(ΠI , s). Since both programs are positive, a is derivable iff it
has an SLD tree. W.l.o.g. we can assume an SLD tree such that every path from the
root to a leaf iS simple. However, we know that s preserves all simple paths and since
the paths in every SLD tree correspond to paths in DEP(Π), we know there exists a
corresponding SLD-tree in TP-Unfold(ΠI , s).

Note that we can prove a similar result for TP -compilation, which reaches a fixed point
iff TP-Unfold(., s) is faithful for Π.

This theorem gives us a sufficient condition for an unfolding sequence s to lead to
faithfulness of TP-Unfold(., s) with respect to a program Π. Notably, the condition

187

4. Efficient Algebraic Answer Set Counting

does not depend on the actual program itself but only on its dependence graph and its
unfolding with respect to s.

We are not only interested in faithfulness but we also care about the treewidth increase
caused by unfolding. We can bound this increase as follows:

Lemma 159. Let Π be an answer set program with treewidth k and s ∈ A(Π)∗ be an
unfolding sequence. If every variable a ∈ A(Π) occurs at most m times in s, then the
treewidth of TP-Unfold(Π, s) is less or equal to k · m.

Proof (Sketch, for the full proof see Appendix C.2). We know that during unfolding we
introduce at most m − 1 copies a1, . . . , am−1 of a variable a ∈ A(Π). Now, let (T, χ) be
a tree decomposition for PRIM(Π) of width k. Then (T, χ′), where

χ′(t) = χ(t) ∪ {aj | 1 ≤ j ≤ m − 1, a ∈ χ(t)}

is a tree decomposition of TP-Unfold(Π, s), and |χ′(t)| ≤ |χ(t)| · m ≤ k · m.

We remark that the converse of this Lemma does not hold.

There is another relevant observation that we need to keep in mind when it comes
to knowledge compilation later on. While the guarantee generally only gives us an
exponential upper bound in terms of treewidth, we actually know that this upper bound
is too pessimistic. Consider the following scenario: if we introduce m copies a, a1, . . . , am−1
of a variable a using TP -Unfolding, then we have a monotonic relation between the truth
values of the copies. That is, if ai is true in a stable model I of the program and j > i,
then also aj must be true in I. Thus, restricted to the variables a, a1, . . . , am−1, there
are actually at most m different assignments that can be extended to a stable model. It
follows that for the variables in a bag χ′(t) of the tree decomposition that we constructed
in the proof of Lemma 159 only mk = 2k·log2(m) different assignments can be extended
to a stable model. We thus believe that knowledge compilation has better performance
than Theorem 137 guarantees.

Motivated by Lemma 159 and Theorem 158, we say that an unfolding sequence s is
a path-preserving m-unfolding sequence (for digraph G), if for every simple (directed)
path π = (a1, . . . , an) in G there is a (directed) path πc = (ac1

1 , . . . , acn
n) in UF(G, s) and

every variable a ∈ V (G) occurs at most m times in s. Naturally, we are interested in
path-preserving m-unfolding sequences for small m.

Since also Lemma 159 does not access the actual program itself but only its dependency
graph and the unfolding sequence, we can abstract away the program and search for path-
preserving m unfolding sequences on digraphs directly. As we do not want to do a blind
search, we instead consider backdoors [FS15] and generalize them to component-boosted
backdoors into acyclicity because we can give guarantees for the maximum necessary m
based on them. Backdoors have already been considered in the context of ASP [FS15].
Usually, the notion of a backdoor for a digraph G is a vertex set S, such that G\S satisfies

188

4.6. Cycle Breaking

some desirable property. For us this property is (directed or undirected) acyclicity of
G \ S, since we can find a suitable unfolding sequence when given S in either case.

Both the backdoor size of a digraph and its generalization to component-boosted backdoor
size intuitively measure the cyclicity of the given digraph by asking how many vertices
need to be “cut out” in order for the remaining digraph to be (almost) acyclic. When
a parameter value is low, an unfolding sequence s exists such that TP-Unfold(., s) is
faithful and every variable occurs only a few times in s.

Definition 160 (Backdoor, Component-boosted Backdoor). Let G be a digraph. Then
bs(G), the backdoor size of G is

min{|S| | S ⊆ V (G), G \ S is a polyforest or acyclic},

where a polyforest is graph that has no undirected cycles.

Furthermore, cbs(G), the component-boosted backdoor size of G, is

(i) 1, if G is acyclic (which includes V (G) = ∅),

(ii) 2, if G is a polytree, i.e., a connected polyforest,

(iii) max{cbs(C) | C ∈ SCC(G)}, if G is cyclic but not strongly connected,

(iv) min{cbs(G \ S) · (|S| + 1) | S ⊆ V (G), S ̸= ∅} otherwise.

As the name suggests, cbs adds component-boosting to a specific variant of backdoors. A
related parameter is elimination distance [GHN04]. However, for elimination distance
the removal set S in (iv) may only contain 1 element and results in cost cbs(G \ S) + 1.
Thus, the elimination distance to acyclic digraphs and polytrees is bounded iff cbs(.) is
bounded, but naïvely, we can only assert that if the elimination distance is k then cbs(.)
is less or equal to 2k.

The main difference compared to the backdoor size is that component-boosted backdoor
size additionally takes into account that G \ S may consist of separate SCCs that can be
handled recursively. We can therefore bound cbs(.) in terms of bs(.) as follows:

Lemma 161. Let G be a digraph. Then cbs(G) ≤ 2 · (bs(G) + 1).

Proof. If G is acyclic, then

cbs(G) = 1 ≤ 2 = 2 · (0 + 1).

If G is a polytree, then
cbs(G) = 2 ≤ 2 = 2 · (0 + 1).

189

4. Efficient Algebraic Answer Set Counting

If G is cyclic and strongly connected, let S∗ be a set of vertices such that |S∗| = bs(G)
and G \ S∗ is a polyforest or acyclic. Then

cbs(G) = min{cbs(G \ S) · (|S| + 1) | S ⊆ V (G), S ̸= ∅}
≤ cbs(G \ S∗) · (|S∗| + 1)
≤ 2 · (bs(G) + 1).

If G is cyclic but not strongly connected, then

cbs(G) = max{cbs(C) | C ∈ SCC(G)}.

Let S∗ be a set of vertices such that |S∗| = bs(G) and G \ S∗ is a polyforest or acyclic.
For each C ∈ SCC(G) it holds that C \ S∗ is a polyforest of acyclic, thus bs(C) ≤ bs(G).
From the fact that each C is either acyclic, a polytree, or cyclic and strongly connected,
it follows by the previous three cases that cbs(C) ≤ 2 · (bs(C) + 1) ≤ 2 · (bs(G) + 1).

Example 59 (cont’d). Consider the dependency graph DEP(Πsm) in Figure 4.1a. It is
strongly connected and not a polytree, therefore cbs(DEP(Πsm)) is given by case (iv)

min{cbs(DEP(Πsm) \ S)(|S| + 1) | S ⊆ V (DEP(Πsm)), S ̸= ∅}.

We see that if we take away any Si = {sm(i)}, i = 1, . . . , 3, then DEP(Πsm)\Si is acyclic.
It follows that cbs(DEP(Πsm)) ≤ cbs(DEP(Πsm) \ Si) · (|Si| + 1) = 2. Since we need to
remove at least one element, this is also a lower bound and hence cbs(DEP(Πsm)) = 2.

In this example the upper bound given by the backdoor size and component-boosted
backdoor size align. However, for larger, more complex graphs cbs(.) can be much smaller
than the upper bound guaranteed by backdoor size.

With the definition of the component-boosted backdoor size in mind, we state the main
result of this section.

Theorem 155. For any factorized measure µ = ⟨Π, α, R⟩, we can construct in polynomial
time in the size of Π given access to an NP-oracle a factorized measure µ′ = ⟨Π′, α, R⟩
with an acyclic program Π′ such that

(i) for all a ∈ A(Π) it holds that µ(a) = µ′(a),

(ii) the treewidth of Π′ is at most k · cbs(DEP(Π)), where k is the treewidth of Π, and

(iii) the size of Π′ is at most cbs(DEP(Π)) · |Π|.

Of course it is somewhat undesirable that we need access to an NP-oracle for the
construction. However, this is unavoidable, since computing cbs(.) is NP-hard.

Theorem 162. The problem of checking whether cbs(G) ≤ k given a digraph G and
k ∈ N in the input is NP-complete.

190

4.6. Cycle Breaking

v1

v2 v3

v4 v5

v1
1

v1
2 v1

3

v1
4 v1

5

v2
1

v2
2 v2

3

v2
4 v2

5

Figure 4.8: A polytree G with root v1 (left) and the unfolding UF(G, spostspre), where
spost = v4v5v2v3v1, spre = v1v3v2v5v4 (right).

Proof (Sketch, for the full proof see Appendix C.2). NP-membership is easy to see by a
guess and check algorithm.

For NP-hardness, we use a reduction from SAT by constructing a digraph G such that
its backdoor size is k iff the SAT instance is solvable. Then we modify the digraph in
such a manner that backdoor size and component-boosted backdoor size are equal to
obtain the desired result.

We will see later on that luckily the NP-hardness does not cause any problems in practice.

To prove Theorem 155, we show that every digraph G has some path-preserving cbs(G)-
unfolding sequence, using structural induction on the definition of cbs(.).

Lemma 163. Let G be an acyclic digraph. Then there exists a path-preserving 1-unfolding
sequence. For case (i), we obtain:

Proof. Let s be an unfolding sequence where every a ∈ V (G) occurs exactly once and
which obeys a topological ordering of G. Then UF(G, s) is equal to G (modulo variable
renaming) and therefore path-preserving.

Next, we consider case (ii), where G is a polytree.

Lemma 164. For every polytree G there exists a path-preserving 2-unfolding sequence s.

Proof. As G is a polytree, the corresponding undirected graph Gtree is a tree with some
arbitrarily chosen root. Let spost, spre ∈ V (G)∗ be sequences such that every vertex
occurs in spost and spre after all its descendants and ancestors in Gtree, respectively. Then
the concatenation spostspre of spost and spre, is a path-preserving 2-unfolding sequence of
G, as depicted in Figure 4.8.

191

4. Efficient Algebraic Answer Set Counting

In case (iii), which is the first recursive one, we assume that G is cyclic but not strongly
connected. Here, we divide the problem into one subproblem for each SCC of G and
obtain a global solution by combining the solutions for the subproblems.

Lemma 165. Let G be a cyclic but not strongly connected digraph, and for each C ∈
SCC(G) let sC ∈ V (C)∗ be a path-preserving cbs(C)-unfolding sequence for C. Then
some path-preserving cbs(G) = maxC∈SCC(G) cbs(C)-unfolding sequence for G exists.

Proof. Let Gcon be the condensation of G, i.e. V (Gcon) = SCC(G) and (C, C ′) ∈ E(Gcon)
if there exist v ∈ V (C), v′ ∈ V (C ′) such that (v, v′) ∈ E(G). Since Gcon is acyclic we can
assume a topological order (C1, . . . , Cn) of Gcon to be given. Consider, s = sC1 . . . sCn ,
the concatenation of the unfolding sequences for the SCCs in the chosen topological order.
It is a path-preserving unfolding sequence for G since for every directed simple path in G
that contains a, b ∈ V (G) it holds that if a ∈ Ci and b ∈ Cj such that i < j then a must
occur after b. Therefore, as the sequences sCi per component are path-preserving, we
know that the whole sequence is path-preserving. Furthermore, since V (Ci) ∩ V (Cj) = ∅
for i ̸= j and sCi ∈ V (Ci)∗, it is clear that the maximum number of times a vertex
a ∈ V (G) occurs in s is bounded by maxC∈SCC(G) cbs(C) = cbs(G).

Last but not least, we consider case (iv), the second recursive case. Here, G is strongly
connected but not a polytree. We remove a set S ⊆ V (G) of “problematic” vertices such
that the component-boosted backdoor size of the rest, i.e., cbs(G\S), is small and handle
S and G \ S separately.

Lemma 166. Let G be a strongly connected digraph, S ⊆ V (G) and sr ∈ V (G \ S)∗ a
path-preserving mr-unfolding sequence. Then there exists a path-preserving mr(|S| + 1)-
unfolding sequence for G.

Proof. Let S = {a1, . . . , a|S|}. We define sS = a1 . . . a|S| and s = (srsS)|S|sr, i.e.,
s ∈ V (G)∗ is the sequence obtained by iterating |S| times over the sequence srsS and
finally concatenating sr. Then s is an mr(|S| + 1)-unfolding sequence, as every a ∈ S
occurs exactly |S| ≤ mr(|S| + 1) times, and every a ∈ V (G \ S) occurs at most mr times
in sr and at most mr(|S| + 1) times in general.

Furthermore, s is path-preserving: every simple directed path π in G uses k ≤ |S| vertices
from S and thus π = π1, ai1 , π2, ai2 , . . . , aik

, πk, where πi is a simple directed path in G\S.
Consider Figure 4.9, which sketches UF(G, s) and the path π. As sr is path-preserving
for G \ S, we know that we can walk π1 in UF(G \ S, sr), then go to a1 ∈ S, walk the
path π2 in UF(G \ S, sr) and so on.

192

4.7. Implementation

UF(G \ S, sr)

π1
S

a1

. . .

. . .

. . .

π|S|

UF(G \ S, sr)

a|S|

S
π|S|+1

UF(G \ S, sr)

Figure 4.9: Sketch of UF(G, s) and a path π through it, for the second recursive case, as
in the proof of Lemma 166.

4.7 Implementation
In the previous sections, we discussed the general pipeline for solving AASC problems,
and we considered for different aspects such as the knowledge compilation, the cycle
breaking and the Clark Completion which options are available and which theoretical
guarantees we can give for them. In the following, these theoretical considerations will
serve as a basis for the choices we make when implementing our approach to solving
AASC problems in our open-source solver aspmc5.

As other available solvers, aspmc follows the general pipeline given in Figure 4.3. In
contrast to some of them, aspmc does not skip any of its steps. In the following, we
discuss the implementation aspects of each of the steps both technically and in relation
to the theoretical results discussed above.

4.7.1 Input Specification

For the inputs we do not allow general algebraic measures but restrict ourselves to
the fragment of programs that can be specified similarly to ProbLog syntax. From an
implementation perspective, it would also be easily possible to accept algebraic measures
in their general form, however we did not deem this necessary, since Theorem 131 shows
that this is not a restriction in terms of expressivity. We chose this syntax, since it
already well-known from ProbLog and allows ProbLog, aspmc, and PITA to be used
interchangeably.

More formally, we allow programs consisting of rules that are either standard normal
ASP rules, or rules of the form

r1 :: a1; . . . ; rk :: ak : - b1, . . . , bn, not c1, . . . , not cm. (4.21)

Here, r1, . . . , rk are semiring values over the specified semiring and all ai, bj , and cl are
atoms. By default, the probabilistic semiring P is assumed, other semirings can be given
as an input argument, specifying either one of the standard semirings that is included

5aspmc can be installed as a python package from https://pypi.org/project/aspmc/ for
easy use and its source code can be downloaded from https://github.com/raki123/aspmc/ for
development purposes.

193

https://pypi.org/project/aspmc/
https://github.com/raki123/aspmc/

4. Efficient Algebraic Answer Set Counting

in aspmc or a non-standard semiring that is specified as a python module, which is
dynamically loaded based in its name.

A rule of the form (4.21) specifies that if the body is satisfied, then we can derive up
to one of the atoms a1, . . . , ak. Then, if we use the rule to derive ai then the rule
contributes a factor of ri to the weight of the model. If the body of the rule is satisfied
but none of the atoms a1, . . . , ak are derived by it, then the rule contributes a factor of
negate(r1⊕ . . . ⊕rk) to the weight of the model. Here, negate is a function defined by the
semiring module. E.g., for the probabilistic semiring it makes sense to define negate(p)
as 1 − p in order to ensure that the overall probability mass defined by a program is 1.
Another generally applicable option is to specify negate(r) as e⊕ to ensure that exactly
one of the ai is derived if the body of the rule is satisfied, since otherwise the weight of
the corresponding model is zero.

Furthermore, atom queries are specified immediately within the program via statements
of the form

query(a).
for an atom a. A program can contain multiple such statements, which then are each
evaluated as the weight of all answer sets such that a holds.

We want to stress that the rule only contributes a factor ri, if it was used to derive ai,
rather than if its body is satisfied and ai is true. This has important implications, such
as the following:

Example 60 (Two Possible Derivations). Consider the following program over the
probability semiring P:

0.5 :: a. 0.5 :: a. query(a).

This program specifies that there are two independent ways to derive a and we are
interested in the weight of the answer sets such that a holds. We can derive a either only
via the first rule, only via the second rule, via both rules or not at all. Each of these
possibilities leads to an answer set with probability 0.25. Thus, the result of the query for
a is 0.75. Clearly, the program

0.5 :: a. query(a).

would instead only lead to a result of 0.5.

This behavior may seem unintuitive at first glance, however, it makes much more sense
when we interpret rules of the form 4.21 as a possible reason that can cause ai. If the
rule always contributed a weight ri, when ai and its body hold, then the program

a. 0.5 :: a. query(a).

would lead to a query result of 0.5 although clearly a has a 100% probability of being
true in a randomly selected answer set.

194

4.7. Implementation

We allow non-ground programs, which may even have variables in the place of semiring
values but do not go into the details here for simplicity.

In order to parse programs that are specified using the above syntax, we wrote our own
parser in python using the parser generator lark [17], which is able to generate an LL
parser on the fly given its specification as a grammar. The generation on the fly is
important, as we need to incorporate parsing of semiring values dynamically based on
the semiring we use.

4.7.2 Grounding & Simplification
After parsing the possibly non-ground input specification, we need to ground the program
in a first step. There exist a variety of grounding engines for programs already, for
example, in ProbLog or clingo. Neither of them accept exactly the same kind of programs
as we do, nevertheless, we were still able to exploit the grounding capabilities of clingo,
instead of reinventing the wheel. For this, we restructure the parsed input as follows.

Standard ASP rules are kept as they are. A rule of the form

r = r1 :: a1; . . . ; rk :: ak : - b1, . . . , bn, not c1, . . . , not cm.

is transformed into the set of rules

guess(r) : - b1, . . . , bn, not c1, . . . , not cm.

a1 : - b1, . . . , bn, not c1, . . . , not cm, alg(id, 1, var(r), a1, r1).
. . .

ak : - b1, . . . , bn, not c1, . . . , not cm, alg(id, k, var(r), ak, rk).

where guess(r) is

alg(id, 1, var(r), a1, r1); . . . ; alg(id, k, var(r), ak, rk); alg(id, k + 1, var(r), n, n).

Here, an atom of the form alg(id, i, var(r), ai, ri) for i = 1, . . . , k is true, when the rule
with id id is used to derive the atom ai with weight ri, instantiated with the variables in
var(r). Thus, the first rule states for each of the instantiations of the variables var(r) of r
that if the body holds, then we may derive one of the atoms ai. If alg(id, k+1, var(r), n, n)
is true, then none of the atoms are supposed to be derived.

The remaining rules then implement that if the body holds and the atom
alg(id, i, var(r), ai, ri) is set to true, then ai is derived.

If the semiring is the probabilistic semiring, we in addition apply some further opti-
mizations of the ProbLog solver. Since they are described in detail in Appendix B of
[DK15], we do not discuss them here and only note that they seem to be beneficial for
performance but do not trivially generalize to other semirings.

Notably, clingo not only grounds programs but performs basic simplifications, such as
removing atoms that are stated as facts from the bodies of rules. Apart from this, the

195

4. Efficient Algebraic Answer Set Counting

only additional simplification that we perform after grounding is that we omit rules
whose head atom occurs positively in the body. There are other simplifications that one
could apply, such as the restriction of the program to its relevant ground part or the
replacement of algebraic atoms a with weight e⊕ by the constraints : - a.. The former has
so far only been considered for probabilistic reasoning and is implemented in ProbLog.
We did not implement the restriction to the relevant ground part yet, however if this
capability is desired, ProbLog can be used as a preprocessor. We leave generalized and
possibly extended preprocessing for future work.

4.7.3 Cycle Breaking
Recall that the three approaches to eliminate cycles that we considered in Section 4.6
have the following properties:

• MJ(.) is implemented in ProbLog, has a treewidth upper bound of O(k · s · c),
where k is the original treewidth s is the size of the largest SCC of the dependency
graph and c is the maximum number of simple cycles in an SCC of the dependency
graph.

• JN(.), which has been considered for ProbLog [Fie+11] (an implementation is
available online [06]) comes instead with a treewidth upper bound of O(k log(s)).

• Our TP -Unfolding algorithm has a treewidth upper bound of O(k · cbs(DEP(Π))),
where cbs(.) is a structural parameter that intuitively measures the cyclicity of the
dependency graph DEP(Π) of the program Π.

Judging by the treewidth guarantee alone, it suggests itself to use JN(.), since its
treewidth increase scales logarithmically with the size of the largest SCC. Thus, unless
the program dependency graph DEP(Π) is rather sparse, we expect that cbs(DEP(Π))
supersedes log2(s). However, as we mentioned above, JN(.) uses binary counters in the
encoding, which may impact negatively the performance during solving.

Furthermore, Fierens et al.’s [Fie+11] comparison of MJ(.) and JN(.) provides additional
interesting aspects to take into consideration. They found that on small programs MJ(.)
produces significantly smaller CNFs than JN(.), while JN(.) leads to much smaller
CNFs on larger programs. This suggests that MJ(.) allows for faster inference on small
programs. Furthermore, they found that only very few programs seem to be large enough
to make JN(.) profitable, meaning that knowledge compilation is feasible in principle and
JN(.) yields better results. While the state of the art in knowledge compilation has seen
significant improvements since 2011, we expect that both binary counters and significant
size differences still will play a role in addition to treewidth.

This brings us to the TP -Unfolding approach. It is an improvement upon MJ(.) both in
terms of the size of the encoding, which is at most quadratic with a small constant factor,
and in terms of the treewidth, which is at most linear in the size of the largest SCC S even

196

4.7. Implementation

if S is fully connected. We thus expect that TP -Unfolding significantly outperforms both
MJ(.) and JN(.), even when using the current state of the art Knowledge Compilers.

In order to perform TP -Unfolding by Algorithm 2, we need a path preserving unfolding
sequence s though. We have shown that based on a small component-boosted backdoor,
which is guaranteed to exist if cbs(.) is small, we can compute a good such sequence s.
However, computing this parameter exactly is NP-hard (see Theorem 162). While the
backdoor size is also NP-hard to compute, there exist efficient solver for it. Thus, we
restrict ourselves to computing a (small) backdoor into polytrees for every SCC S of
DEP(Π), i.e., a subset B ⊂ S such that no undirected cycle in DEP(Π) lies in S \ B.

Note that a backdoor into polytrees is a Feedback Vertex Set (FVS). Computing a FVS
is a well studied problem and there are many open source solvers available due to the
2016 edition of PACE [Del+16]. We use the implementation [KP18b] of Kiljan and
Pilipczuk [KP18a], who re-implemented many of the participating algorithms under a
permissive license. We run the exact version of the solver using a fixed timeout of 30
seconds to try to obtain an optimal backdoor B. If the answer is not produced within the
timeout, we run the heuristic version of the solver to obtain an approximation quickly.

4.7.4 Clark’s Completion
After performing TP -Unfolding, the resulting program is tight, i.e., its dependency graph
is acyclic. Therefore, we can apply Clark’s Completion on it to receive a CNF that we
can then compile in the next step. Here, we again have three possible options:

• Clark(.), which does not admit any treewidth guarantees;

• PClark(.), i.e., Hecher’s [Hec22] primal tree decomposition guidance, which admits
a treewidth guarantee of 3(k + 1) if k is the treewidth of the tree decomposition of
PRIM(Π) in use;

• IClark(.), i.e., our novel incidence tree decomposition guidance, which admits a
treewidth guarantee of 3(k + 1) if k is the treewidth of the used tree decomposition
of INC(Π) in use.

Based on the treewidth guarantees alone, it is suggestive to always use IClark(.). However,
while it has the best worst case guarantees, it is not guaranteed that the obtained CNF
always has the lowest treewidth out of the three. While the resulting treewidth cannot
become much higher than that of a CNF obtained by Clark(.) or PClark(.), it may be as
high or slightly higher and lead to a slightly larger CNF.

We therefore implemented all three versions of Clark’s Completion and allow for a
selection via input parameters, which we will use to compare the different strategies
below.

In order to apply the tree decomposition guided versions PClark(.) and IClark(.) of
Clark’s Completion, we need access to tree decompositions of PRIM(Π) and INC(Π).

197

4. Efficient Algebraic Answer Set Counting

Generating optimal tree decompositions is expensive but there exist several good heuristic
solvers such as flow-cutter [HS18], tamaki-2017 [Tam19], and htd [AMW17]. We use
flow-cutter since it performed very well in the PACE competition of 2017 regarding
the heuristic computation of treewidth, achieving the best average approximation ratio
and the best maximum approximation ratio of all solvers [Str17]. Furthermore, it has a
permissive open source license that allows for combining it with closed source code such
as c2d (version 2.20). Whenever we generate tree decompositions, we use a given timeout
from the input. We wait until a tree decomposition has been found and the timeout has
passed, whichever happens later. Then we use the best tree decomposition found. This
means that on large graphs we may supersede the given timeout.

After Clark’s Completion, we extend the resulting CNF with annotations denoting the
semiring in use, and the weights of literals over the semiring.

4.7.5 Knowledge Compilation
For the knowledge compilation step, there is a wide range of tools available that compile
to different tractable circuit representations, such as

• to BDDs, e.g., [Lin99; Som12]

• to SDDs, e.g., [Dar11], and

• to d-DNNFs, e.g., [Dar04; LM17; Mui+12; OD15].

We focus on the compilers for d-DNNFs, as they tend to have the best worst-case
guarantees in terms of treewidth. Furthermore, they also usually perform well on the
related tasks of model counting and weighted model counting as seen in the Model
Counting Competition 2020 [FHH21].

More specifically, we implemented the knowledge compilation step for solvers that are
recent or ranked high in the 2021 edition of the weighted model counting track of the
Model Counting Competition 2021[Joh21]. We focus on this track, as we are interested
in the performance of the actual compilation. The unweighted track could possibly
have skewed results as preprocessing that is not applicable to weighted can lead to
significant performance improvements. The solvers sharpSAT-TD [KJ21], d4 [LM17],
and c2d [Dar04] finished top three in the weighted model counting track, miniC2D [OD15]
is a recent knowledge compiler, which is why we also included it.

Notably, whereas c2d, miniC2D, and d4 allow for knowledge compilation by default,
this is not the case for sharpSAT-TD, which was originally a solver conceived only for
(weighted) model counting. Thus, we modified sharpSAT-TD to enable its usage for
knowledge compilation. This turned out to be rather easy: since sharpSAT-TD was
designed to be extensible to general semirings, we could exploit the idea of the arithmetic
circuit semiring from Section 4.3.1. Specifically, in our implementation we used d-DNNF
nodes as semiring elements and combined them in a conjunctive/disjunctive manner

198

4.7. Implementation

whenever sharpSAT-TD multiplied/added two values. Not only does this lead to an
algebraic circuit but to a d-DNNF, which is moreover smooth6.

Apart from sharpSAT-TD, we also performed a minor modification in d4. Namely,
by default d4 does not produce smooth d-DNNFs, which leads to an increase in the
evaluation time. For this reason, we made minor modifications to the part of the source
code of d4 that writes d-DNNFs, to ensure their smoothness d-DNNFs. Notably, the
necessary information was already present meaning that we could keep our modifications
to a minimum7. The source code of c2d and miniC2D were left unmodified.

The exact input arguments that we use for the different knowledge compilers can be
found in D.1. Most settings are rather standard, however, we should mention that for
c2d and miniC2D we supply custom dtrees and vtrees, respectively, which determine the
order in which variables are decided during compilation.

We chose to generate custom dtrees and vtrees, since Korhonen and Järvisalo [KJ21]
showed that the performance of c2d and miniC2D benefits from it. Namely, they used the
fact that, for a given tree decomposition, we can generate dtrees and vtrees that give us a
performance guarantee8 of O(2k · k · |C|c), where k is the width of the tree decomposition,
|C| is the size of the CNF, and c is some constant. This guarantee can be achieved by first
deciding all variables in the root of the tree decomposition and proceeding recursively
for the children [KJ21]. Both c2d and miniC2D were shown to solve significantly more
instances using this strategy than when using the standard settings [KJ21]. We provide
details regarding how we generate dtrees and vtrees in D.2, which only insignificantly
differs from Korhonen and Järvisalo’s [KJ21] method. The tree decompositions used in
this step are again generated using flow-cutter [HS18] using a timeout given in the input.

4.7.6 Evaluation
Given a (smooth) d-DNNF, the evaluation procedure is rather standard. We initialize
the weights of the literals using the weight labels of our extended CNF format. Then, we
parse the d-DNNF line by line and interpret it as an arithmetic circuit by combining the
inputs to AND gates via multiplication and the inputs to OR gates via addition. The
result we obtain at the root node of the d-DNNF then corresponds to the final result of
our query. This step is well-known and well-understood, which is why we do not go into
details here but refer the interested reader to [KVD17].

6Source code of the modified version: https://github.com/raki123/sharpsat-td; For the
original: https://github.com/Laakeri/sharpsat-td.

7Source code of the modified version: https://github.com/raki123/d4; For the original:
https://github.com/crillab/d4.

8Strictly speaking, it is not clear whether this is only a guarantee for miniC2D but also for c2d at
least in the way that we as well as Korhonen and Järvisalo [KJ21] generate dtrees and run c2d. This
is because c2d has an optimization built in that skips deciding variables whose “turn” it would usually
be, if these variables are not necessary to decompose the current CNF into separate components. This
optimization can be turned off using the input option “force” of c2d. However, this seems to only degrade
the overall performance.

199

https://github.com/raki123/sharpsat-td
https://github.com/Laakeri/sharpsat-td
https://github.com/raki123/d4
https://github.com/crillab/d4

4. Efficient Algebraic Answer Set Counting

The only additional comment in order regards the evaluation of non-smooth d-DNNFs as
produced by miniC2D, since not all variables are guaranteed to occur in every branch of
the d-DNNF, which can lead to wrong results during naive evaluation as described above.
The only case in which a literal may not occur in a branch is if both values are accepted
in the branch. E.g. for the program {a} ← the empty NNF is a valid d-DNNF. If the
variable a does not occur in a branch, we need to multiply the value of the branch by the
sum of the weights of a and ¬a. Naively, this is easily possible by tracking the assigned
and unassigned variables that occur below each node but costly. However, given that
we know the vtree that the CNF was compiled with, we can do this more efficiently by
keeping track of which vtree node a d-DNNF node belongs to and multiplying its weight
by the corresponding factor when we notice that variables are missing.

4.8 Experimental Evaluation
In order to evaluate the impact of our theoretical results in practice, we performed an
extensive experimental evaluation. Furthermore, we compared the performance of our
solver aspmc to state of the art solvers on probabilistic inference instances. All results
and benchmarks can be found online.9

4.8.1 Questions & Hypotheses

The first question we consider addresses the properties of the encodings that different
cycle breakings result in.

Q1. CNF Encodings How do the cycle breakings MJ(.), JN(.) and TP -Unfolding(.)
differ in terms of size and treewidth (upper bound) of the final CNF encoding?

We expect that TP -Unfolding is almost always better than MJ(.) with respect to both
aspects (see Section 4.6.4). Furthermore, we expect that for small-sized and medium-sized
programs, TP -Unfolding results in lower CNF sizes than JN(.), but yields larger sizes
for bigger programs due to the asymptotic guarantee. In terms of treewidth, we expect
that JN(.) leads to lower treewidth unless the given program has only very minor cyclic
positive dependencies, which means a very small component-boosted backdoor size.

Second, we are interested in finding the best configuration of options to use for aspmc.
While we always use TP -Unfolding for cycle breaking, we still have to decide which
version of Clark’s Completion to apply and which knowledge compiler to use.

Q2.1. Variants of Clark’s Completion Does tree decomposition-guidance of Clark’s
Completion provide a benefit compared to unguided Clark’s Completion?

9github.com/raki123/aspmc_benchmarks/tree/aspmc_results

200

https://github.com/raki123/aspmc_benchmarks/tree/aspmc_results

4.8. Experimental Evaluation

Q2.2. Effect of Knowledge Compiler Which knowledge compiler leads to the best
AASC performance?

For Q2.1, we anticipate that tree decomposition-guidance can only decrease the perfor-
mance, if the treewidth of the CNF obtained with guidance is the same or slightly higher
than the one obtained without guidance. Even then, the decrease should be marginal.
However, when the guidance has a positive impact on the treewidth of the resulting CNF,
we naturally expect a performance increase.

Regarding Q2.2, it seems reasonable to assume that sharpSAT-TD performs best,
followed by d4, and c2d since they were the top three solvers on the weighted model
counting track of the Model Counting Competition 2021. miniC2D did not participate.
With Q2.2 we want to find out, whether this translates to the same performance when we
perform knowledge compilation first and then evaluate rather than performing weighted
model counting immediately within the solver.

Last but not least, given the overall best configuration for AASC with aspmc from the
results of the previous questions, we want to compare our solver with the state of the art
software in probabilistic logic programming.

Q3. Overall Performance Does aspmc provide a significant performance increase
compared to the state of the art solvers for probabilistic logic programming?

We expect this to be the case, since the pipeline that uses knowledge compilation of
CNFs comes with the best performance guarantees. Furthermore, we anticipate our cycle
breaking and Clark’s Completion to exhibit better solving capacity than other approaches
that compile CNF to sd-DNNF. On top of that, we use the state of the art knowledge
compilers for CNF to sd-DNNF, which have seen significant performance improvements
in recent years.

4.8.2 Setup
Benchmark Instances We use probabilistic logic programming instances for all
questions, divided into four sets of instances:

• Smokers [Fie+15] For programs with varying levels of positive cyclic dependencies,
we use the well-known smokers example (see Example 39) with varying extensions
of the input predicates person and friend. We generated the benchmarks ourselves
using the Barbàsi-Albert graph model [AB01], which is known to generate so
called scale-free graphs that resemble typical networks in real life. For each vertex
in the graph, we add one person and for each edge (v, v′) we add friend(v, v′)
to the input. We used varying graph sizes (n = 3, . . . , 49) and vertex degrees
(m = 2, . . . , min(n − 1, 10)) leading to graphs of varying density (namely, (n − 1) · m
edges).

201

4. Efficient Algebraic Answer Set Counting

• Near Tree Additionally, we introduce what we call near tree instances: a new
cyclic benchmark set concerning reachability on almost trees. To generate the
programs, we used as ingredients a directed graph G and the base program

r(s).
0.1 :: trap(Y) : - p(X, Y).

r(Y) : - p(X, Y).
1/d(X) :: p(X, s1(X)); . . . ; 1/d(X) :: p(X, sd(X)) : - r(X), not trap(X).

Here, d(X) is the number of outgoing arcs of X in G, and the vertices s1(X), . . . ,
sd(X) are the immediate descendants. We obtain the final program by replacing
the variables X, Y with constants corresponding to the vertices of G.
This program models that we reach (denoted by r(.)) the starting vertex s and, at
each vertex v that we reach, decide uniformly at random which outgoing arc we
include in our path (denoted by p(., .)). If we include the arc (v, w), then we reach
the vertex w. However, we only include an arc, if we do not get trapped (denoted
by trap(.)) at v.
As for the digraph G, we used two parameters n, k ∈ N to generate it as follows.
We first generated a random tree of size n using the python library networkx, where
each arc in the tree is bidirectional. Then, we added k vertices and connected them
to each of the n original vertices in the tree bidirectionally. Finally, we added one
vertex as the goal vertex, with incoming arcs from each of the k additional vertices.
As the start s we use the root of the tree.
These graphs are almost trees in the sense that (i) their treewidth is approximately
min(k, n)10 and (ii) its component-boosted backdoor size is 2 · k, since we obtain a
(poly)tree after removing the k added vertices.
We use one instance for each combination of n = 10, 20, . . . , 100 and k = 1, 2, . . . , 5.

• Growing Heads & Growing Negated Bodies [Sht+14] The synthetic bench-
mark sets of growing heads (gh) and growing negated bodies (gnb) compare the
difficulty of reasoning in the presence of long heads such as

p1 :: a1; . . . ; pi :: ai : - ai+1.

and long negated bodies

0.5 :: ai : - not ai+1, . . . , not an−1, an.

Here the length of the heads and negated bodies varies from 1 to 25 and 1 to 200
(after 50 only in steps of 10), respectively.
Both gh and gnb only feature acyclic programs.

10Observe that every vertex in the graph has at least degree min(n, k), which is known to imply
treewidth ≥ min(n, k).

202

4.8. Experimental Evaluation

• Blood [Sht+14] The blood benchmark set consists of 100 instances, which compute
probabilities of blood types given the blood types of ancestors. Also the blood
benchmarks are all acyclic; they have vastly varying sizes but treewidth at most 10.

Benchmark Platform We ran all solvers on a cluster of 12 nodes, each equipped
with two Intel Xeon E5-2650 CPUs with 2.2 GHz and access to 256 GB shared RAM
under Ubuntu 16.04.1 LTS powered on kernel 4.4.0-139 with no hyperthreading operating
Python 3.7.6. Per instance, we set a memory limit of 32GB and a time limit of 1800 secs
on a single core.

Solvers Compared We compare a variety of solvers from probabilistic logic program-
ming, as well as different configurations of our own solver. Namely, we include

• LPMLN [LY17] version 1.1: LPMLN performs probabilistic reasoning by enumeration
of all stable models. plingo [Hah+22] is an alternative solver with the same strategy
that however only exhibits slightly better performance [Hah+22].

• ProbLog [Fie+15] version 2.1.0.42: ProbLog uses the MJ(.) cycle breaking followed
by knowledge compilation. It supports different circuit classes for compilation. We
include compilation of CNF to sd-DNNF using either Dsharp [Mui+12] (denoted
“+ Dsharp”) or c2d (denoted “+ c2d”) as knowledge compilers, and of the acyclic
programs to SDD using PySDD [Mee18; Dar+17] (denoted “-k sdd).

• PITA [RS11] version 4.5.0 using the Prolog engine swipl version 8.5.1: PITA
compiles cyclic programs to BDD using the CuDD package version 3.0.0 [Som12].

• lp2lp2 [JN11] version 1.23: lp2lp2 performs the JN(.) cycle breaking. The input
options “-g” and “-l” ensure a bijective correspondence between stable models.
Here, we do not perform probabilistic inference, as the weights get lost during cycle
breaking. Instead we use sharpSAT-TD afterwards to compile the resulting CNF
into an sd-DNNF to count its models.

• aspmc (our solver) version 1.0.7. We always use the input option “-dt 10” to specify
that tree decompositions should be computed with a timeout of ten seconds.

To vary the version of Clark’s Completion that we use, we specify “-g none”, “-g
ors”, or “-g both” to use unguided, primal tree decomposition guided or incidence
tree decomposition guided Clark’s Completion.

To specify the knowledge compiler we use “-k c2d”, “-k miniC2D”, “-k d4”, or
“-k sharpsat-td” to use c2d version 2.20, miniC2D version 1.0.0, d4 from https:
//github.com/raki123/d4, or our modified version of sharpSAT-TD from
https://github.com/raki123/sharpsat-td.

Comparisons

203

https://github.com/raki123/d4
https://github.com/raki123/d4
https://github.com/raki123/sharpsat-td

4. Efficient Algebraic Answer Set Counting

Q1. CNF Encodings We produce a CNF using the different cycle breaking algorithms
of aspmc, ProbLog, and lp2lp2 and extract the size of the encoding (i.e., number of
clauses) as well as decent treewidth upper bounds from the first tree decomposition found
by flow-cutter.

Notably, since the CNF encodings all use Clark’s Completion, the differences in the size
of the encoding and treewidth are due to the cycle breaking implemented by the solver.
Therefore, we restrict our comparison here to the smokers and the near tree benchmark
sets, which contains the instances where cycle breaking is necessary. Furthermore, we
only consider instances whose number of clauses was less than 25000 and whose treewidth
upper-bound was less than 200, which includes all solved instances apart from very few
outliers.

Recall that the asymptotic size guarantees tell us that large enough instances JN(.) is
better than TP -Unfolding, which in turn is better than MJ(.). We assume that the
instances, where this kicks in, are so large that knowledge compilation is bound to fail,
regardless of the encoding. Consequently, we also take into account the runtime of the
instances such that we can establish the properties of the encoding on the instances
relevant to us, i.e., those that are in principle solvable using the given cycle breaking.

Q2.1. Variants of Clark’s Completion Here, we want to ensure that effects on
performance for different versions of Clark’s Completion results from the exploitation of
a lower treewidth in the decision heuristic of the knowledge compiler. Since d4’s decision
heuristic is not based on tree decompositions and sharpSAT-TD uses a secondary
heuristic in combination with the tree decomposition, there is no guarantee that variables
are only decided based on the order entailed by the tree decomposition. On the other
hand, for c2d and miniC2D, we always specify an input dtree/vtree such that the variables
are decided in the order corresponding to the tree decomposition. Therefore, we ran
aspmc with varying versions of Clark’s Completion and c2d respectively miniC2D as
knowledge compiler for this question.

Q2.2. Effect of Knowledge Compiler To test the performance of the different
knowledge compilers, we ran aspmc with the best performing version of Clark’s Completion
from Q2.1.

Q3. Overall Performance For the general comparison, we include all solvers and
configurations listed above, while for aspmc we use only the best performing Clark
Completion.

4.8.3 Results & Discussion
Q1. CNF Encodings The results for this experiment are shown in Figure 4.10, which
contains one XY-plot for TP -Unfolding, JN(.), and MJ(.) in Figures 4.10a, 4.10b, and
4.10c, where the runtime is color-coded. We note that in almost all cases a light green

204

4.8. Experimental Evaluation

0 25 50 75 100 125 150 175 200

treewidth

0

5000

10000

15000

20000

25000

n
u
m

b
e
r

o
f

c
la

u
s
e
s

200

400

600

800

1000

1200

1400

1600

1800

ru
n
ti

m
e
 i
n
 s

e
c
o
n
d
s

(a) Numbers of clauses, treewidth upper bounds, and average
runtime, when using TP -Unfolding (i.e., aspmc) for cycle
breaking.

0 25 50 75 100 125 150 175 200

treewidth

0

5000

10000

15000

20000

25000

n
u
m

b
e
r

o
f

c
la

u
s
e
s

200

400

600

800

1000

1200

1400

1600

1800

ru
n
ti

m
e
 i
n
 s

e
c
o
n
d
s

(b) Numbers of clauses, treewidth upper bounds, and average
runtime, when using JN(.) (i.e., lp2lp2) for cycle breaking.

data point not only indicates a high running time, close to 1800 seconds, but even that
the instances represented by that data point all timed out.

As expected, we see that for MJ(.) very few CNF encodings are in the range of 0 to
25000 clauses and 0 to 200 treewidth upper-bound compared to TP -Unfolding and JN(.),
and even fewer are solvable within the time limit shown by the colors of the data points.
Both TP -Unfolding and JN(.) have significantly more CNF encodings within the plotted
range including also many more solved instances. Interestingly however, the distribution

205

4. Efficient Algebraic Answer Set Counting

0 25 50 75 100 125 150 175 200

treewidth

0

5000

10000

15000

20000

25000

n
u
m

b
e
r

o
f

c
la

u
s
e
s

200

400

600

800

1000

1200

1400

1600

1800

ru
n
ti

m
e
 i
n
 s

e
c
o
n
d
s

(c) Numbers of clauses, treewidth upper bounds, and average
runtime, when using MJ(.) (i.e., ProbLog) for cycle breaking.

Figure 4.10: The number of clauses, treewidth upper-bounds, and average runtimes of
CNF encodings produced by different cycle breaking algorithms on the smokers and tree
benchmark set. Restricted to instances, where the CNF encoding has less than 25000
clauses and a treewidth upper-bound less than 200. For each instance we round the
number of clauses down to the next multiple of 1000 and round the treewidth upper-bound
down to the next multiple of 10. We group the instances with the same (rounded) values
and add one data point to the plot. Here, the size corresponds to the number of instances
in the group and the color corresponds to the average runtime of the instances in the
group.

varies significantly between TP -Unfolding and JN(.):

• The resulting CNFs from JN(.) often have many more clauses than those from TP -
Unfolding. This matches the experimental results of Fierens, Van den Broeck, Thon,
Gutmann, and De Raedt [Fie+11], who made similar observations for MJ(.) and
JN(.) on small instances. However, while for MJ(.) this effect only occurs for small
instances, we observe this effect more consistently for TP -Unfolding. Here, the better
asymptotic guarantees of JN(.) do not take effect on the instances that can be solved
after TP -Unfolding or JN(.)
• The treewidth upper-bound is often lower for JN(.) than for TP -Unfolding. We thus
suspect that while the constant factors in the size and treewidth guarantee that comes
with TP -Unfolding are both small, only the constant factor for the treewidth guarantee
that comes with JN(.) is small.
• For low treewidth upper-bounds and low numbers of clauses the instance density is
higher for TP -Unfolding than for JN(.). This is again explained by small constant factors

206

4.8. Experimental Evaluation

in the size and treewidth guarantees.
• TP -Unfolding leads to a solution for significantly more instances, namely 119 vs. 66
for JN(.). We especially highlight here that TP -Unfolding produces some CNF encodings
with treewidth upper-bound above 100, which however are solved quickly (indicated by
the blue color of the data points). This is not entirely surprising, since for TP -Unfolding
we expected11 the actual performance to supersede the guarantees entailed by treewidth.
And, as we already mentioned, the binary counters that JN(.) uses may also have a
negative impact on performance.

The results match the expectations that we had for the different cycle breakings. When
MJ(.) results in a solution, then the CNF encoding is usually small. However, even in
this case we may reach relatively high treewidth upper bounds and as a consequence,
solve very few instances. JN(.) results in (relatively) large CNF encodings on which
knowledge compilation is still feasible, presumably because it has considerably lower
treewidth upper bounds than MJ(.) as guaranteed by Theorem 154. TP -Unfolding is
somewhere in between: successfully evaluated instances can reach remarkable CNF sizes
and still be solved. At the same time, they can have higher treewidth upper bounds than
the ones coming from JN(.); combined with medium CNF sizes, this seems to be less of
an issue than for the other encodings. We attribute this to the arguably lower hardness of
the encoding obtained by TP -Unfolding compared to JN(.). While this results in a worse
asymptotic scaling, it apparently leads to a smaller CNF size on instances that can still
be solved by knowledge compilation in principle. We suspect that this in combination
with the lower “semantic complexity” (i.e., lack of binary counters) is the cause for the
performance improvement of TP -Unfolding compared to the other cycle breakings.

Q2.1. Variants of Clark’s Completion Recall that we compare the differences
in performance caused by Clark(.), PClark(.), and IClark(.), the different versions of
Clark’s Completion, when using c2d and miniC2D with a tree decomposition-guided
variable order for knowledge compilation. The results are shown in Figure 4.11, where
Clark(.), PClark(.), and IClark(.) are denoted by “-n”, “-o”, and “-b”, respectively. We
see that both for c2d and miniC2D Clark(.) is outperformed by PClark(.) and IClark(.).
Especially, IClark(.) exhibits a significant performance increase compared to Clark(.).

We noticed that while tree decomposition guidance is beneficial for the overall performance,
this is not so clear cut for the runtime of individual instances that Figure 4.12 shows.
We see that IClark(.) mostly leads to better performance, especially for c2d but to a
lesser extent also for miniC2D. However, in both cases, there are also some instances
that are solved slower using IClark(.) than using Clark(.). We assume this is because
IClark(.) yields more general worst case guarantees but may lead to an increase in CNF
size and treewidth by a constant factor compared to Clark(.) when the high treewidth is
inherent rather than due to translation issues that are addressed by tree decomposition
guidance (i.e., rules with long bodies or many rules with the same head). In this case,

11Recall the observation after Lemma 159

207

4. Efficient Algebraic Answer Set Counting

50 75 100 125 150 175 200 225 250 275
number of instances

0

200

400

600

800

1000

1200

1400

1600

1800

w
al

l c
lo

ck
 ti

m
e

[s
]

aspmc -c sharpsattd
aspmc -b sharpsattd
aspmc -b c2d
aspmc -o c2d
aspmc -n c2d
aspmc -b d4
aspmc -b minic2d
aspmc -o minic2d
aspmc -n minic2d

Figure 4.11: Cactus plot of the results for selected aspmc configurations over all benchmark
instances, ordered (top is better) by the number of solved instances.

the performance naturally suffers a bit. This matches the intuition that we get from the
scatter plots in Figure 4.12. While sometimes no guidance leads to better performance,
the gain is somewhat limited.

Nevertheless, we chose to add an additional configuration to aspmc in order to test whether
we can counter this phenomenon. The idea is that we only use guidance if it is expected
to provide a benefit. To estimate the latter, we compute an approximate prediction for
the treewidths of the CNFs obtained by all three versions of Clark’s Completion and
use the version with the lowest value. We included the runtime of this configuration of
aspmc in Figure 4.11 together with the knowledge compiler sharpSAT-TD as “aspmc -c
sharpsattd”. While it has higher runtime than “aspmc -b sharpsattd” on many instances, it
indeed solves a few more instances. Therefore, we chose to include it for sharpSAT-TD.

Q2.2. Effect of Knowledge Compiler Apart from Clark’s Completion, also the
knowledge compiler used to obtain a tractable circuit representation has an effect on the
performance. The results of the comparison of such compilers are given in Figure 4.11.
Here, we see that sharpSAT-TD leads to the best performance as expected; c2d and d4
have worse performance but both outperform miniC2D significantly. Interestingly, c2d
solves more instances than d4 although d4 performed better in the weighted track of the
2021 model counting competition. We suspect the comparatively poor performance of
miniC2D results as it produces SDDs with a fixed vtree, while all other solvers produce
sd-DNNFs. This means that variables always need to occur in the same order in every
branch of the produced circuit, which lowers the benefit of unit propagation in the solver.

Given the findings of Q2.1 and Q2.2, we conclude that configuration “aspmc -c sharpsattd”,

208

4.8. Experimental Evaluation

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

aspmc -b minic2d

0

200

400

600

800

1000

1200

1400

1600

1800

as
pm

c
-n

 m
in

ic
2d

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

aspmc -b c2d

0

200

400

600

800

1000

1200

1400

1600

1800

as
pm

c
-n

 c
2d

Figure 4.12: Scatter plots comparing the runtimes of individual files computed by
configuration “-b” (incidence guiding), compared to “-n” (no guiding) for miniC2D (left)
and c2d (right).

i.e., dynamically choosing which version of Clark’s Completion to apply based on approx-
imations of the treewidth of the resulting CNF in combination with sharpSAT-TD as
knowledge compiler, is the most promising configuration for aspmc.

Q3. Overall Performance Having established the best configuration for aspmc, we
investigated the overall performance of aspmc compared to other solvers for probabilistic
inference. The results are summarized in Figure 4.13.

We observe that aspmc’s best configuration (“aspmc -c sharpsattd”) has by far the
best overall performance of all solvers with 259 solved instances. But also the other
configurations, except the one that uses miniC2D performed very well, with 251 (“aspmc
-b sharpsattd”), 241 (“aspmc -b c2d”), and 206 (“aspmc -b d4”) solved instances. ProbLog
solved 224 instances when using c2d as the knowledge compiler (“ProbLog + c2d”),
however interestingly it only solved 120 and 119 instances when Dsharp (“ProbLog +
Dsharp”) and PySDD (“ProbLog-k sdd”) are used, respectively.

The next best performing approach was lp2lp212, which solved 213 instances - only 7
more than “aspmc -b d4”. lp2lp2 and “aspmc -b d4” are followed by PITA, which solved
154 instances, thus beating “aspmc -b minic2d”, which only solved 148 instances. Last
but not least, LPMLN solved 24 instances.

It is unsurprising that LPMLN solved the least instances, since it explicitly enumerates
all the models. For probabilistic inference on ProbLog programs this quickly becomes

12The results for lp2lp2 must be taken with a grain of salt, since model counting over an sd-DNNF is
slightly easier than evaluating multiple probabilistic queries over an sd-DNNF.

209

4. Efficient Algebraic Answer Set Counting

50 100 150 200 250
number of instances

0

200

400

600

800

1000

1200

1400

1600

1800

w
al

l c
lo

ck
 ti

m
e

[s
]

aspmc -c sharpsattd
aspmc -b sharpsattd
aspmc -b c2d
problog + c2d
lp2lp2
aspmc -b d4
pita
aspmc -b minic2d
problog + Dsharp
problog -k sdd
lpmln

Figure 4.13: Cactus plot of the results for selected solver configurations over all benchmark
instances, ordered (top is better) by the number of solved instances.

infeasible, since the number of answer sets it needs to consider is exactly 2F , where F is
the number of probabilistic facts of the program.

Similarly, it was expected that aspmc solved the most instances, due to our advancements
of cycle breaking and Clark’s Completion combined with the high efficiency of modern
knowledge compilers.

The results of ProbLog in comparison to the other solvers are surprising. In Q1, we
found that JN(.) outperforms MJ(.) on many instances but has worse performance than
TP -Unfolding on the relevant instances. Thus, one may expect that the different cycle
breakings determine the performance on cyclic instances and that on acyclic instances the
performance mostly depends on the knowledge compiler. Here, we however see that this
is not the case. While aspmc solves more instances than lp2lp2 and ProbLog, lp2lp2
solves less instances overall, even though it uses the likely best knowledge compiler (i.e.
sharpSAT-TD) and solves more cyclic instances.

Additionally, using c2d instead of Dsharp for compilation in ProbLog seems to have
a huge positive impact on the performance; while a positive effect was not completely
unexpected, the extent was surprising.

The relation of the performance of ProbLog’s compilation to SDDs (“ProbLog -k sdd”)
and PITA, however, may come as a surprise. The latter uses bottom up compilation to
BDDs, whereas the former performs bottom up compilation to SDDs, which have strictly
better theoretical guarantees than BDDs. However, BDDs may already be good enough;
in this case a more complex representation using SDDs may come with unnecessary
overhead. Furthermore, neither implementation uses the theoretical guarantees explicitly
by computing a vtree/variable order e.g. from a tree decomposition. Instead, PITA’s

210

4.8. Experimental Evaluation

BDD library CUDD [Som12] uses dynamic variable reordering to speed up compilation.
While PySDD also has a similar feature, its usage has been disabled in ProbLog for
probabilistic inference.13 The fact that ProbLog does not solve any of the blood instances,
which have a simple structure that could be exploited, using option “-k sdd” but solves
some (resp. all of them) when compiling to sd-DNNF with Dsharp (resp. c2d), as can be
observed in Table 4.1. Apart from that, PITA does not use the same idea for handling
cyclic dependencies as ProbLog, which may also contribute to the improved performance
on cyclic instances.

This covers the overall performance comparison of the different solvers. We consider in
more detail the performance on the different benchmark sets, shown in Table 4.1. Mostly,
the results per benchmark set are reflected by the general performance already. However,
we want to highlight some interesting findings separately.

Especially an explanation of the high overall performance of “ProbLog + c2d” is of interest
here, given the relatively poor performance on cyclic instances. We see immediately that
the high performance comes from the blood and gnb sets. Not only does “ProbLog +
c2d” solve the most instances here, it is also noticeably faster than other configurations.
While it also solves the most instances on the gh set, we see that there is a tie with aspmc
here.

One may think that merely the use of c2d as a compiler causes the performance. However,
on the cyclic benchmark sets “ProbLog + Dsharp” actually solves slightly more instances
than “ProbLog + c2d”. Additionally, we see that also “aspmc-b c2d” did not solve as
many instances on the blood and gnb data sets as “ProbLog + c2d”. Hence, there is
likely an additional different reason for the performance.

We investigated ProbLog more closely and found that while its Clark Completion is
standard (i.e. corresponding to Clark(.)), it makes use of a manifold of preprocessing
techniques on the program level, in order to reduce the size of the program representation
before Clark’s Completion is applied [Sht15; Fie+15]. We therefore compared the CNF
sizes produced by ProbLog, lp2lp2, and aspmc to see if there were significant differences
on the gnb and blood sets.

The results are given in Section 4.8.3. We indeed see a significant difference in the sizes
of the CNFs produced by the different tools. While aspmc and lp2lp2 behave similarly,
ProbLog’s encodings are much smaller due to its program level preprocessing capabilities.
The smaller size and the usage of c2d as a knowledge compiler indeed reasonably explain
why ProbLog is so much faster on these instances. Especially the blood instances have
low treewidth and thus the performance bottle neck is not the complicated structure (as
it is e.g. for the smokers instances) but the size of the encoding.

Apart from that, let us closely look at using aspmc with d4. We note that even though
the performance is not extremely high in general, it performs best on the benchmark
sets gnb and tree. We attribute this to the fact that d4 uses a different heuristic for the

13At least this is what we found when inspecting the source code of ProbLog.

211

4. Efficient Algebraic Answer Set Counting

0 20 40 60 80 100

instance number

0

25000

50000

75000

100000

125000

150000

175000

200000
n
u
m

b
e
r

o
f

c
la

u
s
e
s

aspmc

lp2lp2

problog

(a)

0 25 50 75 100 125 150 175 200

instance number

0.2

0.4

0.6

0.8

1.0

1.2

1.4

n
u
m

b
e
r

o
f

c
la

u
s
e
s

1e6

aspmc

lp2lp2

problog

(b)
Figure 4.14: Numbers of clauses of the CNF produced by aspmc, lp2lp2 and ProbLog on
(a) the blood benchmarks and (b) the gnb benchmarks.

selection of variables during compilation than those of the other compilers, which are all
primarily tree decomposition guided. However, while this seems to help for gnb and tree,
on the blood benchmark set a tree decomposition guided heuristic seems much better.
Here, d4 only solves 29 instances, whereas aspmc with sharpSAT-TD solves more than
70. This makes sense, since the maximum treewidth upper-bound for blood was only 10,
which is rather low for an acyclic instance.

Next, we take a closer look at the cyclic instances, i.e., the smokers and tree benchmark
sets. Here, PITA turns out to be the best non-aspmc based approach, solving 74 instances
overall. While “aspmc -c sharpsattd” solves significantly more instances, namely 119,
this is still better than lp2lp2, which solved 66 instances even though compilation is
performed with sharpSAT-TD. Also ProbLog only solved 55, 31, and 32 instances, in
its configurations “-k sdd”, “+ Dsharp”, and “+ c2d”, respectively.

Summing up, we observe that on all benchmark sets except for blood a configuration of
aspmc performed best or second best. Second, we saw that ProbLog performs very well in
the acyclic case. However, this is not due to a better strategy for knowledge compilation
or Clark’s Completion but due to its advanced preprocessing capabilities. Considering
the preprocessing techniques of ProbLog for aspmc is thus interesting and desirable, which
which however is non-trivial and goes beyond the scope of this work.

Nevertheless, this supports the claim that combining our significant improvements for
cycle breaking, Clark’s Completion, and the knowledge compilation step in one solver
together with ProbLog’s preprocessing techniques will result in even better performance
on both cyclic and acyclic instances. Thus, this work brings us significantly closer to a
scaleable approach for probabilistic inference.

212

4.8. Experimental Evaluation

Table 4.1: Results of the overall comparison of the different solvers and configurations.
The columns show the solver, the sum of solved instances on the benchmark set, the
maximum treewidth (upper bound) of a solved instance, followed by the number of
solved instances in different ranges of treewidth upper bounds. The last two columns
show the number of instances solved by this solver only and the total time spent on
the benchmark set. Boldface highlights best values.

tw range group
solver # max(tw) 0-10 10-20 >20 unique time[h]

growing negated body
problog + c2d 64 191 9 10 45 5 2.15
aspmc -b d4 59 141 9 10 40 0 4.33
aspmc -c sharpsattd 59 141 9 10 40 0 4.88
aspmc -b sharpsattd 58 131 9 10 39 0 4.92
lp2lp2 56 121 9 10 37 0 5.66
problog + Dsharp 53 81 9 10 34 0 7.09
problog -k sdd 52 71 9 10 33 0 6.68
aspmc -b c2d 51 61 9 10 32 0 8.54
pita 50 61 9 10 31 0 10.42
aspmc -b minic2d 24 25 9 10 5 0 21.18
lpmln 6 7 6 0 0 0 29.51

blood
problog + c2d 100 10 100 0 0 13 4.27
lp2lp2 75 10 75 0 0 0 22.11
aspmc -c sharpsattd 73 10 73 0 0 0 23.48
aspmc -b c2d 68 10 68 0 0 0 22.34
aspmc -b sharpsattd 67 10 67 0 0 0 21.18
aspmc -b d4 29 10 29 0 0 0 39.56
pita 14 10 14 0 0 0 43.85
aspmc -b minic2d 11 10 11 0 0 0 46.87
problog + Dsharp 9 10 9 0 0 0 46.06
problog -k sdd 0 0 0 0 0 0 50.5
lpmln 0 0 0 0 0 0 50.5

near tree
aspmc -b d4 22 53 1 6 15 3 15.68
aspmc -c sharpsattd 19 50 1 6 12 0 16.37
aspmc -b c2d 18 50 1 5 12 0 16.49
aspmc -b sharpsattd 16 50 1 4 11 0 17.17
aspmc -b minic2d 16 50 1 5 10 0 17.48
problog + Dsharp 13 50 1 4 8 0 18.67
problog + c2d 13 50 1 4 8 0 18.96

Continued on next page

213

4. Efficient Algebraic Answer Set Counting

Table 4.1: Detailed results of the overall comparison. (Continued)
tw range group

solver # max(tw) 0-10 10-20 >20 unique time[h]
pita 10 36 1 5 4 0 20.62
lp2lp2 9 29 1 5 3 0 21.63
problog -k sdd 3 13 1 2 0 0 23.52
lpmln 0 0 0 0 0 0 25.0

smoker
aspmc -b sharpsattd 92 7 92 0 0 3 131.76
aspmc -c sharpsattd 90 7 90 0 0 2 131.3
aspmc -b c2d 88 7 88 0 0 1 132.84
aspmc -b minic2d 82 7 82 0 0 0 136.44
aspmc -b d4 81 7 81 0 0 0 135.97
pita 64 6 64 0 0 0 144.34
lp2lp2 57 6 57 0 0 0 147.89
problog -k sdd 52 6 52 0 0 0 149.38
problog + Dsharp 29 4 29 0 0 0 160.45
problog + c2d 28 4 28 0 0 0 160.59
lpmln 12 3 12 0 0 0 168.75

growing head
problog + c2d 19 21 8 10 1 1 3.54
aspmc -c sharpsattd 18 21 9 8 1 0 4.18
aspmc -b sharpsattd 18 19 9 9 0 0 4.47
pita 16 18 8 8 0 0 4.56
lp2lp2 16 17 9 7 0 0 4.72
problog + Dsharp 16 18 8 8 0 0 4.75
aspmc -b c2d 16 17 9 7 0 0 4.97
aspmc -b minic2d 15 16 9 6 0 0 5.15
aspmc -b d4 15 16 9 6 0 0 5.16
problog -k sdd 12 14 8 4 0 0 6.53
lpmln 6 8 6 0 0 0 9.98

Σ
aspmc -c sharpsattd 259 141 182 24 53 2 180.22
aspmc -b sharpsattd 251 131 178 23 50 3 179.51
aspmc -b c2d 241 61 175 22 44 1 185.18
problog + c2d 224 191 146 24 54 19 189.51
lp2lp2 213 121 151 22 40 0 202.01
aspmc -b d4 206 141 129 22 55 3 200.71
pita 154 61 96 23 35 0 223.8
aspmc -b minic2d 148 50 112 21 15 0 227.13

Continued on next page

214

4.9. Discussion

Table 4.1: Detailed results of the overall comparison. (Continued)
tw range group

solver # max(tw) 0-10 10-20 >20 unique time[h]
problog + Dsharp 120 81 56 22 42 0 237.03
problog -k sdd 119 71 70 16 33 0 236.6
lpmln 24 8 24 0 0 0 283.75

4.9 Discussion
We first provide an overall summary and then we turn to issues for future work.

4.9.1 Summary & Findings
We considered the knowledge compilation step that is usually used in order to solve
Algebraic Answer Set Counting (AASC) problems, revealing interesting new insights. Its
incorporation into the AASC solver aspmc led to significant performance improvements,
especially on instances with positive cyclic dependencies.

First, we considered a variety of different approaches to the knowledge compilation step.
For the target representation MODS exploited in enumeration-based approaches, we
consider each answer set exactly once, resulting in high efficiency for “few” answer sets
but insurmountable intractability otherwise. Interestingly, most of the currently available
worst case guarantees for the other, more succinct tractable circuit representations are
based on the same kind of structural parameters. For compilation to sd-DNNFs and
SDDs, we can derive from Theorems 137, 139 and 149 upper bounds in terms of the
treewidth of a Boolean circuit representing the program. This applies regardless of
whether compilation proceeds in a bottom up (using the apply operator for SDDs) or top
down manner (using a knowledge compiler for CNFs). Similarly to SDDs, BDDs have
performance guarantees in terms of the pathwidth of a Boolean circuit representing the
program, for both bottom up and top down compilation.

There exist, however, vast differences in the quality of the guarantees. These different
guarantees favor top down compilation to sd-DNNF unless the given program is much
larger than the number of inputs to a Boolean circuit representing the program. Apart
from that, the theoretical guarantees for SDDs seem to be better than those for BDDs,
especially since every BDD can be represented as an SDD. Arguably, SDDs also come at
an overhead incurred by their potentially smaller sizes. Nevertheless, one would expect
SDDs to perform better than BDDs for bottom up compilation.

Second, given our preference for top down compilation to sd-DNNFs, we investigated
how programs can be favorably translated to CNFs for compilation afterwards. For the
customary steps in such a translation, i.e., cycle breaking and Clark Completion, we
provided advancements.

215

4. Efficient Algebraic Answer Set Counting

For Clark’s Completion, Hecher [Hec22]’s idea of guiding it with a tree decomposition
in PClark(.) limits the increase of the treewidth to a factor of three compared to the
primal treewidth of the program. We instead provided the same result for the incidence
treewidth of the program using IClark(.), which may result in even better guarantees.
For cycle breaking, we analyzed the approaches MJ(.) [MJ10] and JN(.) [JN11], providing
novel result showing upper bounds on the treewidth increase incurred by both translations.
Here, we found guarantees for MJ(.) that are rather weak: Theorem 152 only gives
a guarantee that grows linear in the number of simple positive cycles in the program
and the number of atoms that are in positive cyclic dependencies. While this upper
bound may not be tight, the lower bounds of Theorem 153 show that there is a family
(Πn)n∈N of programs with constant treewidth and exactly one simple positive cycle such
that the treewidth of (MJ(Πn))n∈N grows at least linearly in the size of the program.
The guarantees of Theorem 154 for JN(.) on the other hand are rather strong, leading
only to an increase by at most a logarithmic factor in the size of the largest SCC
of the positive dependency graph DEP(Π) of the program Π. Nevertheless, previous
experimental results revealed that large constant factors in the size bound for JN(.)
limit the effectiveness of JN(.) for probabilistic reasoning on instances that are not large
enough for the asymptotic guarantees to kick in [Fie+11]. We therefore introduced a new
cycle breaking called TP -Unfolding. While the latter may lead to a linear increase of the
treewidth in the size of the largest SCC of DEP(Π) this may be avoided in many cases,
unless DEP(Π) is highly dense. To achieve this, we introduced the component-boosted
backdoor size cbs(.), which intuitively measures the distance to directed or undirected
acyclicity, similar to parameters such as elimination distance [GHN04]. We used cbs(.)
in Theorem 155 to bound both the size increase of the program and treewidth, notably
with low constant factors.
The implementation of the theoretical advancements in the AASC solver aspmc proved
to be successful. The in-depth experimental evaluation confirmed our hypotheses on
the effectiveness of the different approaches to cycle breakings, showing that while TP -
Unfolding can lead to higher treewidth upper bounds than JN(.), the latter together
with the lower CNF size and presumably lower “semantic complexity” are still sufficient
to allow for improved efficiency in the compilation step. Overall we see that in the cyclic
setting, MJ(.), JN(.), and TP -Unfolding solved 44, 66, and 119 instances, respectively,
when cycle breaking is followed by CNF conversion and compilation to sd-DNNF.
Also investigating Clark’s Completion paid off: both c2d and miniC2D solve the largest
number of instances, if we use the incidence guided version of Clark’s Completion.
Last but not least, we see most of our assumptions on the relationship between the
various knowledge compilation techniques confirmed. That is, the compilation of CNFs to
sd-DNNFs provides very good performance, as long as the MJ(.) cycle breaking is avoided.
Unsurprisingly, the enumeration-based approach of LPMLN struggles on the probabilistic
inference benchmark sets that we considered: they always have exponentially many
answer sets in the number of probabilistic facts. Previous work however showed that for
programs that have a complicated structure but not many answer sets, enumeration can

216

4.9. Discussion

be beneficial [EHK21]. While different explanations seem possible, the exact cause of the
low performance of bottom up compilation to SDD compared to bottom up compilation
to BDDs remains somewhat mysterious.

Summing up, our work not only improves the performance of probabilistic inference, and
as such AASC evaluation beyond that, but also sheds light on why some approaches
work better than others based on a solid theoretical analysis.

4.9.2 Outlook

While our theoretical considerations of the different knowledge compilation approaches
give some intuition on when and why they should be successful, the non-aligning empirical
results make a further investigation desirable. In particular, the fact that PITA’s bottom
up compilation to BDDs outperforms ProbLog’s bottom up compilation to SDDs. Possible
differences in the way positive cyclic dependencies are handled may explain some of
the differences but not the poor performance of this variant of ProbLog on the blood
benchmark set. That ProbLog’s implementation uses a randomly generated vtree and no
dynamic variable ordering, whereas the BDD implementation of PITA employs dynamic
variable reordering may be a possible factor of the performance difference. It seems
plausible that dynamic variable reordering for SDDs is more expensive than for BDDs and
thus disabled. However, it would be interesting to explore possibilities to generate a vtree
using the structure of a Boolean circuit representing the program. This seems possible
based on a tree decomposition of the Boolean circuit, given results such as Theorem 139.
However, for bottom up compilation we are unaware of work in this direction.

Apart from this, preprocessing on the program level before cycle breaking is an interesting
yet unexplored topic in the context of general AASC. The only simplifications aspmc
currently uses are those that occur while clingo grounds the instance. In contrast, ProbLog
and PITA employ a wide range of simplifications: identifying relevant ground parts of
the program [Fie+15], program level size optimizations [Sht15], and using zero/one
probabilities [RS11]. As we have seen, they can have a significant impact on evaluation.

While aspmc still solved the most instances overall, we can expect another significant
performance boost by combining such preprocessing techniques and the advancements of
aspmc. However, these simplifications are geared towards ProbLog programs and not all
of them trivially generalize to AASC setting, where a more general class of programs
(e.g., non-stratified ones) is allowed. It would be interesting to adopt them to the AASC
setting, and possible find new techniques, especially since preprocessing in the context of
model counting can have significant benefits [LM14].

An open question is also whether the double exponential upper bound of answer set
counting in terms of treewidth k, proven in [JPW09], is tight when using treewidth as the
only parameter. For checking whether some answer set exists, we know a 2O(k log(k)) · |Π|
upper bound that cannot be substantially improved under the Strong Exponential Time
Hypothesis [Hec22], but for answer set counting the gap remains.

217

4. Efficient Algebraic Answer Set Counting

Besides the aforementioned points that focus on AASC specifically, there are two open
problems relevant in a bigger picture. First, many preprocessing techniques on CNFs
that contribute to the success of propositional model counters do not trivially generalize
to the weighted/algebraic setting. It would be interesting to see whether and how we
can achieve an efficient such generalization. Second, it would be interesting to see
whether compilation of acyclic programs can deliver faster knowledge compilation given
low incidence treewidth. Our technique using the incidence-guided version of Clark’s
Completion guarantee an upper bound of O(23k · |Π|) on the time needed for model
counting; however, recent work showed that model counting on a CNF C parameterized
by incidence treewidth is feasible in O(2k · poly(|C|)) worst case time [SS20].

218

CHAPTER 5
Conclusion

We conclude our work by discussing how far the goals set initially in the introduction
regarding a general framework, theoretical analysis, and empirical evaluation were
achieved in their respective chapters. Additionally, we point out some open issues and
possible future directions.

5.1 Conclusion
Algebraic LARS as a General Framework In order to obtain a general framework
that combines stream reasoning with quantitative reasoning both over the set of models
as well as during the construction of models, we introduced Algebraic LARS.

Algebraic LARS intuitively corresponds to the integration of following three extensions
of ASP:

(i) Algebraic Measures,

(ii) Algebraic Constraints, and

(iii) LARS.

Here, (i) allows us to perform reasoning over the set of models of a logical theory by
employing the abstract algebraic structure of semirings to parameterize quantitative
reasoning in a form of Weighted Logic. We saw that algebraic measures are not only
general enough, to capture a wide range of other extensions, e.g., for probabilistic
reasoning and preferential reasoning, but that we can faithfully incorporate the semantics
of previous works. That is, we can interpret programs of previous extensions by translation
to algebraic measures and obtain a conservative extension of the semantics.

219

5. Conclusion

We observed a similar effect for (ii), which allows us to integrate intricate non-ground
constraints over quantities in the specification of programs. For this, we again successfully
made use of semirings to parameterize the numerical computation. Apart from that, we
employed a weighted version of Here-and-There Logic to make sure that the semantics of
algebraic constraints can match the non-monotonicity that is present in other extensions in
this direction. Also here, we showed that many of the previous constructs for quantitative
constraints can be easily embedded in a conservative manner into our formalism.

Finally, to integrate (iii), the stream reasoning framework by Beck, Dao-Tran, and
Eiter [BDE18], and (i) and (ii) properly, we had to ensure that their capabilities carry
over to the temporal domain. Due to the definition of both algebraic measures and
algebraic constraints in terms of Weighted (Here-and-There) Logic over semirings, this
proved to be rather easy even though lengthy task. We thus consider Algebraic LARS to
be a fully fledged framework for general quantitative stream reasoning with appropriate
semantics that has all the desiderata stated in the introduction.

Theoretical Results Apart from the introduction of the different algebraic frameworks,
we also analyzed their theoretical properties. Here, we proved a variety of different result,
including non-trivial safety conditions for the variables in algebraic constraints, restrictions
to ensure that programs with algebraic constraints are finitely ground, as well as the
characterization of Weighted Automata in terms of a fragment of Algebraic LARS.

Mostly however, we focused on the complexity of different reasoning tasks in the context
of fragments of Algebraic LARS. We found that even restricted to ASP, i.e., without
temporal reasoning, algebraic constraints can easily introduce undecidability for model
existence and strong equivalence. At least model checking stays feasible in PSPACE
given reasonable restrictions on the used semirings. Surprisingly, in the propositional
case algebraic constraints do not make any of the aforementioned tasks harder than for
disjunctive ASP. We also considered the complexity of different types of queries with
Algebraic LARS measures and found that unsurprisingly there is a strong connection to
counting problems.

The connection to counting problems was especially interesting to study depending on
the semiring parameter. As the first such work, we started an in depth consideration of
the complexity of counting over semirings. Leading to a family of novel complexity classes
NP(R) that characterize the complexity exactly. Interestingly, the power of NP(R)
seems to depend on the chosen semiring. We showed different flavors of this connection
through a series of results that connect NP(R) to well-known classical computational
complexity classes. Notably, these results are not only relevant for the evaluation of
algebraic measures and algebraic constraints but also for many other semiring frameworks,
which we show to be NP(R)-complete or NP(R)-hard.

Efficient Implementation in aspmc Even though already a prototypical implementa-
tion of Algebraic LARS would have been interesting to play around with, we decided to
instead focus on one particular aspect, namely algebraic measure evaluation for ASP. We

220

5.2. Open Issues

made this choice since it allowed us to invest enough time to provide aspmc, an efficient
well-thought-out implementation that significantly outperforms the current state of the
art solvers in probabilistic reasoning in the cyclic benchmark setting.

In order to develop aspmc, we dove deep into the fields of knowledge compilation and Fixed
Parameter Tractability (FPT). Here, we analyzed different strategies for the knowledge
compilation step that is usually performed in order to evaluate algebraic measures. Based
on results from FPT, we found that the most promising approach is likely the translation
of programs into propositional formulas, followed by knowledge compilation to the sd-
DNNF tractable circuit representation. Additionally, this strategy is promising since
there had been recent improvements in the performance of knowledge compilation tools
in this setting.

Due to our assumption that is beneficial to first translate programs into propositional
formulas, we then considered the properties of different existing translations such that
we can use that translation which can be compiled the easiest. For both typical steps in
such a translation, i.e., cycle breaking and Clark’s Completion, we engineered improved
algorithms geared towards efficient knowledge compilation.

Our implementation of these advanced methods, together with the efficiency of knowledge
compilation tools for propositional formulas in aspmc, allow us to solve significantly more
cyclic instances from probabilistic logic programming, with at least similar if not better
performance on the non-cyclic ones.

5.2 Open Issues
Arguably, the biggest issue with Algebraic LARS is its high complexity. Already the
evaluation of algebraic measures in the context of ASP has troubles scaling to big instances
unless they are very well structured. Thus, an analysis of tractable fragments would be
of high interest here. Apart from this, we only implemented a small part of the whole
power of Algebraic LARS. It would be interesting to see how the whole framework, or at
least other fragments such as LARS or even just ASP with algebraic constraints could be
implemented efficiently.

Another implementation related question is how the efficiency of algebraic measure evalu-
ation could further be improved. Here, a promising angle are preprocessing methods that
simplify the program structure of the algebraic measure. While current implementations
already have such techniques, they are usually restricted to probabilistic logic programs
instead of the whole algebraic setting. Additionally, there are many techniques from
model counting for propositional formulas that might be transferable, even though not
trivially.

Also the theoretical side of counting over semirings still left some open questions. These
include the question of the complexity of higher level counting problems over multiple
semirings, the matter the descriptive complexity in the semiring setting, and the possibility
of obtaining additional stronger results given more restrictions on the semiring.

221

5. Conclusion

Connecting practice and theory, a proper usage of the theoretical guarantees, based on
the properties of a given semiring, in practice is still lacking. While our theoretical results
hint at the fact that this should be possible, it is not clear how well this can work in
practice and how current solvers for existing problems should be integrated.

While Algebraic LARS is a satisfactory framework for quantitative stream reasoning,
using LARS as the basis for temporal reasoning was not the only option. Considering
other options such as Temporal or Metric Equilibrium Logic would be interesting to
explore.

222

APPENDIX A
Full Proofs: General Quantitative

Stream Reasoning

A.1 Encoding Provenance of Non-ground Positive Datalog
Programs

�→ Theorem 26
For provenance, we define a translation of a positive datalog program Π = {r1, . . . , rm}
as follows. First, we discuss terminology. For each predicate q in Π we introduce the
following predicates.

• pq(Y , V, L, i, Z), which stores the value V of the provenance of q(Y) using any
derivation that uses exactly L leaf nodes, uses the rule ri last and the global
variables in ri that do not occur in the head of ri had the value Z.

• pq(Y , V, L, i), which stores the value V of the provenance of q(Y) using any deriva-
tion that uses exactly L leaf nodes, uses the rule ri last and the global variables in
ri that do not occur in the head of ri took any value.

• pq(Y , V, L), which stores the value V of the provenance of q(Y) using any derivation
that uses exactly L leaf nodes and uses any rule ri last.

• pq(Y , V), which stores the value V of the provenance of q(Y).

• dq(Y , L, i, Z), which asserts that there is a derivation of q(Y) using exactly L leaf
nodes that uses the rule ri last and the global variables in ri that do not occur in
the head of ri had the value Z.

223

A. Full Proofs: General Quantitative Stream Reasoning

• dq(Y , L, i), which asserts that there is a derivation of q(Y) using exactly L leaf
nodes that uses the rule ri last and the global variables in ri that do not occur in
the head of ri took any value.

• dq(Y , L), which asserts that there is a derivation of q(Y) using exactly L leaf nodes
that uses any rule ri.

Let
ri = r(Y) ← q1(X1), . . . , qn(Xn)

be some rule with index i, where w.l.o.g. n > 1 (we can always add a new extensional
atom e() with provenance e⊗. We add the following rules to our translation T (Π):

pr(Y , V, L, i, Z) ←pq1(X1, V1, L1), . . . , pqn(Xn, Vn, Ln), L =N L1 + . . . + Ln, (A.1)
V =R V1 ∗ . . . ∗ Vn (A.2)

dr(Y , L, i, Z) ←pq1(X1, V1, L1), . . . , pqn(Xn, Vn, Ln), L =N L1 + . . . + Ln (A.3)
pr(Y , V, L, i) ←dr(Y , L, i, Z), V =R pr(Y , V ∗, L, i, Z∗) ∗ V ∗ (A.4)

dr(Y , L, i) ←dr(Y , L, i, Z) (A.5)

Here Z = %n
i=1 Xi \ Y , i.e. the global variables of ri that do not occur in its head.

Further, for every predicate q in Π we add the rules

pr(Y , V, L) ← dr(Y , L, I), V =R pr(Y , V ∗, L, I∗) ∗ V ∗ (A.6)
dr(Y , L) ← dr(Y , L, I) (A.7)
pr(Y , V) ← dr(Y , L), V =R pr(Y , V ∗, L∗) ∗ V ∗ (A.8)

This translation works as follows. The last rule sums up the value of each derivation
tree to obtain the final provenance, whereas the previous rules calculate the provenance
of less and less restricted derivation trees. Therefore, there is at least one answer set I
such that pr(Y , V) ∈ I iff the provenance of r(Y) is V . On the other hand, since these
rules are also all positive, there is exactly one answer set. The following results shows
the correctness of the translation.

Theorem 26 (Provenance Encoding). Given a positive datalog program Π there is an AC-
program T (Π) that computes the provenance semantics over the ω-continuous semiring
R in the following sense. Let D be an edb and r(x) a query result of D ∪ Π with semiring
provenance v. Then the unique equilibrium model I of T (Π) ∪ {pe(x, v, 1) ←| (e(x), v) ∈
D} contains pr(x, v′) iff v′ = v. Where the predicates of the form ps(x, v, y) correspond
to original predicates s, with semiring label v and potential auxiliary parameters y.

Proof. Let I be the unique equilibrium model of T (Π) ∪ {pe(x, v, 1) ←| (e(x), v) ∈ D}.
We proceed by induction on the number L of leaf nodes that are used in the derivation
tree, to show that our construction is correct and the predicates indeed behave as

224

A.1. Encoding Provenance of Non-ground Positive Datalog Programs
�→ Theorem 26

they should according to their description, which among other things implies that
v is the provenance of the query result r(x) iff the unique equilibrium model I of
T (Π) ∪ {pe(x, v, 1) ←| (e(x), v) ∈ D} contains pr(x, v). In the proof we only consider the
predicates for the values of the provenance in detail. The correctness of the derivability
predicates dr(Y , L[, i, Z]) follows analogous reasoning since the rules for derivability are
just simplified versions of the rules for the provenance values.

The case L = 0 is impossible, since we always use at least one leaf node in each derivation.

The case L = 1 occurs exactly when r(Y) is a leaf node. Since edb predicates do not occur
in heads of rules in Π, the only rules we have to consider are of the form pe(x, v, 1) ←.
Here, the claim holds.

Assume the claim holds for all L′ < L.

Consider the rule (A.2). For the body to be satisfied,we need that pq1(X1, V1, L1), . . . ,
pqn(Xn, Vn, Ln) are contained in I. Since Li > 0, L = L1 + · · · + Ln and n > 1, we
know that Li < L and therefore the claim holds for pq1(X1, V1, L1), . . . , pqn(Xn, Vn, Ln).
Therefore, pqi(xi, vi, li) ∈ I iff vi is the provenance of qi(xi) using any derivation that
uses exactly li leaf nodes. Let us denote by dtreeℓ(qi(xi)) the set of all derivation trees τ
for qi(xi) that use exactly ℓ leaf nodes, and by leaves(τ) the set of leaf nodes in the tree
τ . Then

vi =
�

τ∈dtreeli
(qi(xi))

�
t∈leaves(τ)

R(t). (A.9)

Then for v = v1 ⊗ · · · ⊗ vn, and l = l1 + · · · + ln we have that pr(y, v, l, i, z) is in I iff for
i = 1, . . . , n the atoms pqi(xi, vi, li) are in I. This however means that for i = 1, . . . , n
the equation (A.9) holds. Therefore v is the value

v1⊗ . . . ⊗vn =
�

τ∈dtreel1 (q1(x1))

�
t∈leaves(τ)

R(t) ⊗ · · · ⊗
�

τ∈dtreeln (qn(xn))

�
t∈leaves(τ)

R(t).

We use that for every combination of derivations τ1, . . . , τn respectively for q1(x1), . . . , qn(xn)
there is a derivation of r(y) using the rule ri last, where the global variables that do not
occur in the head of ri have the value z. According to the distributive law, assuming
that last(τ) denotes the last rule in derivation tree τ and that gvar(ri) denotes the value
of the global variables in rule ri that do not occur in the head of ri, we obtain that

v = v1⊗ . . . ⊗vn =
�

τ∈dtreel(r(y)), ri=last(τ), gvar(ri)=z

�
t∈leaves(τ)

R(t).

It follows that rule (A.2) ensures that the predicates of the form pr(Y , V, L, i, Z) satisfy
our claim (for L).

Next for rule (A.4). Here, we simply aggregate over the global variables in ri that do not
occur in the head of ri.

225

A. Full Proofs: General Quantitative Stream Reasoning

The head atom pr(Y , V, L, i) should describe the value V of the provenance of r(Y) using
any derivation that uses exactly L leaf nodes and uses rule ri last. This value is given by�

τ∈dtreeL(r(x)), ri=last(τ)

�
t∈leaves(τ)

R(t),

which is equal to �
z

�
τ∈dtreel(r(x)), ri=last(τ), gvar(ri)=z

�
t∈leaves(τ)

R(t).

We know that according to the previous rule (A.2), the predicate pr(Y , V, L, i, Z) encodes
exactly the inner sum. Since rule (A.4) performs the outer sum, it follows that rule (A.4)
ensures that the predicates of the form pr(Y , V, L, i) satisfy our claim (for L).

Next, the rule (A.6) aggregates over the different rules that were used last to derive r(x)
using l leaf nodes. The argumentation is analogous to the one for the last rule (A.4),
where we aggregated over z instead of the rule index i like here.

Overall, the inductive proof of the correctness of the rules specifying the predicates
pr(Y , V, L[, i, Z]) succeeds, since all the predicates are correctly defined for L given that
predicates are well defined for L′ < L.

Last but not least we consider the last rule (A.8) which should produce the final result.
According to the definition of provenance for datalog programs in [GKT07], the label v
of the query result r(x) is

v =
�

τ∈dtree(r(x))

�
t∈leaves(τ)

R(t),

where dtree(r(x)) is the set of all derivation trees for r(x) and R(t) is the provenance of
the leaf t. We reformulate this equation as follows:

v =
�

τ∈dtree(r(x))

�
t∈leaves(τ)

R(t) =
�
l≥0

�
τ∈dtreel(r(x))

�
t∈leaves(τ)

R(t);

since pr(x, v′, l) ∈ I iff v′ = �
τ∈dtreel(r(x))

�
t∈leaves(τ) R(t), we obtain

v =
�
l≥0

�
pr(x,v′,l)∈I

v′.

As due to rule (A.8), we have pr(x, v) ∈ I iff

v =
�
l≥0

�
pr(x,v′,l)∈I

v′,

we obtain that pr(x, v) ∈ I. This concludes the proof.

226

A.2. Domain Independence and Safety
�→ Theorem 29 and 31

A.2 Domain Independence and Safety
�→ Theorem 29 and 31
We proof Theorem 29 via the following lemma:

Lemma A.2.1 (Support Independence). Let σ1, σ2 be semiring signatures, Iw be a
pointed σi-HT-interpretation (i = 1, 2) and α be a weighted σi-formula (i = 1, 2) that is
syntactically domain independent w.r.t. variable x. Then

{ξ ∈ r1(s(x)) | �α(ξ)�σ1
R (Iw) ̸= e⊕} = {ξ ∈ r2(s(x)) | �α(ξ)�σ2

R (Iw) ̸= e⊕}.

Proof. We give a proof using structural induction on the syntactically domain independent
formula α. In the following let Iw some pointed HT-interpretation and σ1, σ2 semiring
signatures that contain all the constants of α and Iw

• Case α = k:
This formula contains no local variables, therefore the equality is trivially fulfilled.

• Case α = ϕ(x):
The given formulas are all range restricted. For range restricted formulas it is known,
that they are domain independent (see for example [Dem92]), which implies that when
they are seen as weighted formulas, their support does not depend on the signature.

• Case α = ¬⊕β(x):
The semantics of ¬⊕β is the inverse of the semantics of β w.r.t. ⊕, which is e⊕ iff the
semantics of β is e⊕. Therefore we have

{ξ ∈ r1(s(x)) | �¬⊕β(ξ)�σ1
R (Iw) ̸= e⊕}

={ξ ∈ r1(s(x)) | �β(ξ)�σ1
R (Iw) ̸= e⊕}

={ξ ∈ r2(s(x)) | �β(ξ)�σ2
R (Iw) ̸= e⊕}

={ξ ∈ r2(s(x)) | �¬⊕β(ξ)�σ2
R (Iw) ̸= e⊕}.

• Case α = ¬⊗β(x):
The semantics of ¬⊗β is the inverse of the semantics of β w.r.t. ⊗ or e⊕ if the
semantics of β is e⊕. Therefore we have on the one hand that

�β(ξ)�σi
R (I) = e⊕ ⇒ �¬⊗β(ξ)�σi

R (I) = e⊕.

Furthermore, we have for the other direction that

�¬⊗β(ξ)�σi
R (I) = e⊕ ⇒ �β(ξ)�σi

R (I) = e⊕ ∨ �β(ξ)�σi
R (I) ⊗ e⊕ = e⊗

The second disjunct implies that e⊕ = e⊗ since e⊕ annihilates R. Therefore since
∀r ∈ R : e⊗ ⊗ r = r holds we have that ∀r ∈ R : e⊕ ⊗ r = e⊕ = r, meaning our
semiring has exactly one element, namely e⊕. Therefore we have

�¬⊗β(ξ)�σi
R (I) = e⊕ ⇒ �β(ξ)�σi

R (I) = e⊕

227

A. Full Proofs: General Quantitative Stream Reasoning

So we know that the semantics of ¬⊗β is e⊕ iff the semantics of β is e⊕ and as in the
previous case we obtain

{ξ ∈ r1(s(x)) | �¬⊗β(ξ)�σ1
R (Iw) ̸= e⊕}

={ξ ∈ r1(s(x)) | �β(ξ)�σ1
R (Iw) ̸= e⊕}

={ξ ∈ r2(s(x)) | �β(ξ)�σ2
R (Iw) ̸= e⊕}

={ξ ∈ r2(s(x)) | �¬⊗β(ξ)�σ2
R (Iw) ̸= e⊕}.

• Case α = ¬¬α1(x):
We know that {ξ ∈ r1(s(x)) | �¬¬α1(ξ)�σ1

R (Iw) ̸= e⊕} is equal to
{ξ ∈ r1(s(x)) | �α1(ξ)�σ1

R (Iw) ̸= e⊕}. Therefore this case follows immediately from the
inductive hypothesis for α1(x).

• Case α = α1(x) + α2(x):
Assume that there is

ξ ∈ r2(s(x)) \ r1(s(x)) s.t. �α1(ξ) + α2(ξ)�σ2
R (Iw) ̸= e⊕},

then we know that

�α1(ξ)�R(I) ̸= e⊕ or �α2(ξ)�R(I) ̸= e⊕

and further that ξ ̸∈ D2, since σ1, σ2 are semiring signatures. Then it however holds
that

ξ ∈ {ξ ∈ r2(s(x)) | �α1(ξ)�σ2
R (Iw) ̸= e⊕} \ {ξ ∈ r1(s(x)) | �α1(ξ)�σ1

R (Iw) ̸= e⊕}

or

ξ ∈ {ξ ∈ r2(s(x)) | �α2(ξ)�σ2
R (Iw) ̸= e⊕} \ {ξ ∈ r1(s(x)) | �α2(ξ)�σ1

R (Iw) ̸= e⊕}.

This is impossible due to the induction hypothesis for α1(x) and α2(x). Analogously
we can show that

{ξ ∈ r1(s(x)) | �α1(ξ)+α2(ξ)�σ1
R (Iw) ̸= e⊕}\{ξ ∈ r2(s(x)) | �α1(ξ)+α2(ξ)�σ2

R (Iw) ̸= e⊕}

is empty, and therefore that

{ξ ∈ r2(s(x)) | �α1(ξ) + α2(ξ)�σ2
R (Iw) ̸= e⊕}

={ξ ∈ r1(s(x)) | �α1(ξ) + α2(ξ)�σ1
R (Iw) ̸= e⊕}.

• Case α = α1(x) ∗ α2:
First note that:

{ξ ∈ r1(s(x)) | �α1(ξ) ∗ α2�σ1
R (Iw) ̸= e⊕} ⊆ {ξ ∈ r1(s(x)) | �α1(ξ)�σ1

R (Iw) ̸= e⊕}

228

A.3. Strong Equivalence Using Finite Programs
�→ Theorem 33

We use the induction hypothesis on α1(x) to obtain the equality:

{ξ ∈ r1(s(x)) | �α1(ξ) ∗ α2�σ1
R (Iw) ̸= e⊕}

={ξ ∈ {ξ ∈ r1(s(x)) | �α1(ξ)�σ1
R (Iw) ̸= e⊕} | �α1(ξ) ∗ α2�σ1

R (Iw) ̸= e⊕}
={ξ ∈ {ξ ∈ r2(s(x)) | �α1(ξ)�σ2

R (Iw) ̸= e⊕} | �α1(ξ) ∗ α2�σ2
R (Iw) ̸= e⊕}

={ξ ∈ r2(s(x)) | �α1(ξ) ∗ α2�σ2
R (Iw) ̸= e⊕}

• Case α = α1 ∗ α2(x):
works analogously to the one above.

• Case α = α1(x) ∗ ϕ(X ′), where X
′ ⊆ {x}:

works analogously to the one above.

The proof for more than one local variable works analogously.

Theorem 29 (Formula Domain Independence). If a formula α(X) over semiring R is
syntactically domain independent w.r.t. X, then αΣ = ΣX α(X) is domain independent.

Proof. When we evaluate α(X) we take the sum over supp⊕(α(X), Iw). Due to the
previous lemma we know that the support is invariant under changing the domain.
Further, we know that for a given assignment of the local variables the semantics is
independent of the domain. Therefore, the semantics is invariant under changing the
domain for syntactically domain independent formulas.

A.3 Strong Equivalence Using Finite Programs
�→ Theorem 33
Theorem 33 (Strong Equivalence). For any Π1, Π2 programs, Π1 ≡s Π2 iff Π1 has the
same HT-models, i.e. satisfying pointed HT-interpretations, as Π2.

Proof. We have two directions to prove. Based on the idea of [LPV01].

(⇒) We prove this direction using contraposition, that is we assume that we have
two programs Π1, Π2 s.t. for some HT-interpretation (IH , IT) it holds that (w.l.o.g.)
(IH , IT , H) |= Π1 and (IH , IT , H) ̸|= Π2. Next we show that there exists a program ∆
s.t. Π1 ∪ ∆ and Π2 ∪ ∆ have different answer sets.

The program ∆ consists of the following rules, where G is the set of predicates that occur
in Π1 ∪ Π2:

repairp(X1, . . . , Xn) ← ⊤ =B ¬¬repairp(X1, . . . , Xn), (A.10)
for p ∈ G with arity n.

p(X1, . . . , Xn) ← repairp(X1, . . . , Xn), (A.11)

229

A. Full Proofs: General Quantitative Stream Reasoning

for p ∈ G with arity n.
fillp,q(X1, . . . , Xn, Y1, . . . , Ym) ← ⊤ =B ¬¬fillp,q(X1, . . . , Xn, Y1, . . . , Ym), (A.12)

for p,q ∈ G with arities n, m.
p(X1, . . . , Xn) ← q(Y1, . . . , Ym), fillp,q(X1, . . . , Xn, Y1, . . . , Ym), (A.13)

for p,q ∈ G with arities n, m.

Intuitively repairp(X1, . . . , Xn) guesses some tuple (X1, . . . , Xn) for predicate p such that
the atom p(X1, . . . , Xn) should definitely be satisfied.

Similarly, fillp,q(X1, . . . , Xn, Y1, . . . , Ym) guesses some values (X1, . . . , Xn) and (Y1, . . . , Ym)
for the predicates p and q, respectively, such that if p(X1, . . . , Xn) is satisfied then also
q(Y1, . . . , Yn) should be satisfied.

Consider now the interpretation

I∗ = IT ∪ {repairp(x1, . . . , xn) | p(x1, . . . , xn) ∈ IH} (A.14)
∪ {fillp,q(x1, . . . , xn, y1, . . . , ym) | p(x1, . . . , xn), q(y1, . . . , yn) ∈ IT \ IH}.

(A.15)

Then we have that (IH , I∗, H) |= Π1 ∪ ∆, therefore I∗ is not an equilibrium model of
Π1 ∪ ∆. However for Π2 we have that (I∗, I∗, H) |= Π2 ∪ ∆. Furthermore, consider now
some interpretation I ′ ⊆ I∗ s.t. (I ′, I∗, H) |= Π2 ∪ ∆. Due to the included repairs, we
know that at least IH ⊆ I ′. Moreover, we know that this inclusion is strict even when
we consider only the predicates occurring in Π1 ∪ Π2, since (IH , IT , H) ̸|= Π2. Therefore,
due to the fills we have to include all the predicates from IT . It follows that I ′ = I∗ and
therefore that I∗ is an equilibrium model of Π2 ∪ ∆.

(⇐) Assume that Π1 has the same HT-models as Π2 and consider for an arbitrary program
∆ the HT-models of Π1 ∪ ∆ and Π2 ∪ ∆. Those are exactly the HT-models (IH , IT) s.t.

(IH , IT , H) |= Π1 and (IH , IT , H) |= ∆,

which is however equivalent to

(IH , IT , H) |= Π2 and (IH , IT , H) |= ∆

since Π1 and Π2 have the same HT-models. Since the HT-models of Π1 ∪ ∆ and Π2 ∪ ∆
are the same, we also know that the equilibrium models I are the same, since it follows
that

(I, I, H) |= Π1 ∪ ∆ and ∀I ′ ⊊ I : (I ′, I, H) ̸|= Π1 ∪ ∆
⇐⇒ (I, I, H) |= Π2 ∪ ∆ and ∀I ′ ⊊ I : (I ′, I, H) ̸|= Π2 ∪ ∆.

230

A.4. Complexity of Reasoning with AC-Programs
�→ Theorem 37

A.4 Complexity of Reasoning with AC-Programs
�→ Theorem 37
We first prove, as an auxiliary lemma, that we can evaluate variable free weighted formulas
over efficiently encoded semirings in polynomial time.

Lemma A.4.2 (Complexity of evaluation). Let R = (R, ⊕, ⊗, e⊕, e⊗) some semiring
and e : R → N some encoding function s.t. R is efficiently encoded by e.

Then for a quantifier-free weighted formula over R and pointed HT-interpretation Iw, we
can calculate e(�α�R(Iw)) in polynomial time.

Proof. The proof is by structural induction on the formula α, with induction invariant
that t(α) the time needed is in O(Nn), where N is the size of the input, n ∈ N is a
constant not depending on the input. Further, s(α) the size of the representation of the
obtained value, i.e. ∥�α�R(Iw)∥, is in O(N).‘

• Base Cases:

– α = e(k): Then one can evaluate the expression by simply returning e(k).
This is feasible in polynomial time. The size of the output is linear in the size
of the input.

– α = ϕ: We simply check if Iw |= ϕ and return e⊕ or e⊗ accordingly. This is
possible in polynomial time since ϕ is quantifier-free and the size of the output
is also bounded by a constant.

We have shown the invariant for all formulae up to a certain structural complexity.

• Induction Step:

– α = β1 → β2: We know that for βi the invariant holds, therefore we can
check in time bounded polynomially in the size of the formula, whether�βi�R(Iw) = e⊕ and output e⊕ or e⊗ accordingly. The size of the output is
again bounded by a constant.

– α = β1 + β2: We know that the invariant holds for β1, β2. Further t(α) =
t(β1) + t(β2) + x, where x is the time needed for addition of the results for β1
and β2. We know that x is polynomial in s(β1) + s(β2), which we know to
be in O(N). Therefore x ∈ O(N l), where l is the degree of the polynomial
bounding the time needed to add two numbers. It follows that t(α) ∈ O(Nn).
For s(α) we can see that

s(α) = ∥�α�R(Iw)∥
≤ ∥�β1�R(Iw)∥ + ∥�β2�R(Iw)∥ + C

And therefore s(α) ∈ O(N).

231

A. Full Proofs: General Quantitative Stream Reasoning

– α = β1 ∗β2: The proof works analogously to the proof for the case α = β1 +β2.
– α = −β: We know that the invariant holds for β. Further t(α) = t(β) + x,

where x is the time needed for inversion of the result for β. We know that x
is polynomial in s(β), which we know to be in O(N). Therefore x ∈ O(N l),
where l is the degree of the polynomial bounding the time needed to invert a
number. It follows that t(α) ∈ O(Nn). For s(α) we can see that

s(α) = ∥�α�R(Iw)∥
≤ ∥�β�R(Iw)∥ + C

And therefore s(α) ∈ O(N).
– α = β−1: The proof works analogously to the proof for the case α = −β.

Theorem 37 (Ground Complexity). For variable-free programs over efficiently encoded
semirings

• MC and (propositional) SE are co-NP-complete, and

• SAT is Σp
2-complete.

Proof. The hardness parts are inherited from the complexity of the respective problems
for disjunctive logic programs [Dan+01; Lin02]: The disjunctive logic programming rule

a1 ∨ · · · ∨ an ← b1, . . . , bm, ¬c1, . . . , ¬ck

is strongly equivalent to the AC-rule

1 =B a1 + . . . + an ← b1, . . . , bm, ¬c1, . . . , ¬ck.

The memberships follow from the possibility of applying guess and check algorithms.
We only need that given (IH , IT) and algebraic constraint k ∼R α, we can decide
in polynomial time whether IH |= k ∼R α. This is possible since we know that R is
efficiently encoded: We only need to perform polynomially many additions, multiplications
and inversions which each take polynomial time as Theorem A.4.2.

A.5 Equivalence of the Expressiveness of LARS Measures
and Weighted Automata

�→ Theorems 64 and 65
Theorem 64 (Reduction of Weighted Automata to LARS Measures). Given a weighted
automaton A over a finite alphabet A and semiring R, there exists a LARS measure
µ = ⟨Π, α, R⟩, s.t.

∀w ∈ A∗ : ∥A∥(w) = µ(Π, τ(w)),

232

A.5. Equivalence of the Expressiveness of LARS Measures and Weighted Automata
�→ Theorems 64 and 65

where τ(w) is a translation from words w to pairs of data streams and time points, defined
by

τ(w) =
��

[0, |w|], t .→
�

{wt+1} if t < |w|
∅ otherwise

�
, 0

�

Proof. In the following we use the window functions next and prev, which reduce the
current stream to the next and previous time point, respectively.

Let Π consist of the rules

← ✸

 �
q∈Q

¬q ∨
�

q,q′∈Q,q ̸=q′
q ∧ q′

✷

�
q∈Q

q ←

Further let α = α1 ∗ α2 ∗ α3, where

α1 =✸Σq∈Q ⊞prev ✷⊥ ∗ q ∗ λ(q),
α2 =✷Σq,q′∈Q,a∈Aq ∗ a ∗ ⊞next✸q′ ∗ δ(a)q,q′ ,

α3 =✸Σq∈Q ⊞next ✷⊥ ∗ q ∗ γ(q).

Since the data streams we consider are of the form τ(w) for a word w ∈ A∗, the program
Π has exactly those streams as answer streams, s.t. at every time point it holds, that
there are is exactly one q ∈ Q and one a ∈ A, s.t. q, a are satisfied, except at the last
time point of the stream, where no a ∈ A is satisfied and exactly one q ∈ Q is satisfied.

For such an answer stream S we write q : T → Q, a : T \ {max{t ∈ T}} → A, the
functions, that return those q’s and a’s.

We then get that

µ(S, τ(w)) =�α�R(S, 0)
=�α1�R(S, 0) ⊗ �α2�R(S, 0) ⊗ �α3�R(S, 0).

We simplify each term αi:

�α1�R(S, 0) =�✸Σq∈Q ⊞prev ✷⊥ ∗ q ∗ λ(q)�R(S, 0)

=
�
t∈T

�
q∈Q

�
e⊗ t = 0
e⊕ otherwise.

⊗

�
e⊗ q = q(t)
e⊕ otherwise.

⊗ λ(q)

=λ(q(0)),�α2�R(S, 0) =
�
✷Σq,q′∈Q,a∈Aq ∗ a ∗ ⊞next✸q′ ∗ δ(a)q,q′

�
R (S, 0)

=
�
t∈T

�
q,q′∈Q,a∈A

�
q ∗ a ∗ ⊞next✸q′ ∗ δ(a)q,q′

�
R (S, t)

233

A. Full Proofs: General Quantitative Stream Reasoning

=
|T |−1�
t=0

�
q,q′∈Q,a∈A

�
δ(a)q,q′ q = q(t), t ̸= |T | − 1, a = a(t), q′ = q(t + 1)
e⊕ otherwise.

=
|T |−2�
t=0

δ(a(t))q(t),q(t+1)

�α3�R(S, 0) =
�
✸Σq∈Q ⊞next ✷⊥ ∗ q ∗ γ(q)

�
R (S, 0)

=
�
t∈T

�
q∈Q

�
⊞next✷⊥ ∗ q ∗ γ(q)

�
R (S, t)

=
�
t∈T

�
q∈Q

�
e⊗ t = |T | − 1
e⊕ otherwise.

⊗

�
e⊗ q = q(t)
e⊕ otherwise.

⊗ γ(q)

=γ(q(|T | − 1)

So α1 gives us the contribution of the initial state, α2 the contribution of the path
between the initial and final state, w.r.t. to the word a, and α3 gives the contribution of
the final state. So overall α gives us the weight of the path represented by the stream S:

�α�R (S, 0) = λ(q(0)) ⊗
|T |−2�
t=0

δ(a(t))q(t),q(t+1) ⊗ γ(q(|T | − 1)

Now let w ∈ A∗. All the possible answer streams S, that are also interpretation streams
of τ(w)1 are those answer streams such that a = w.

Then if we sum over all interpretation answer streams we get the sum over all paths

µ(Π, τ(w)) =
�

S∈AS(Π,τ(w)1,0)
�α�R(S, 0)

=
�

S∈AS(Π,τ(w)1,0)
λ(q(0)) ⊗

|T |−2�
t=0

δ(a(t))q(t),q(t+1) ⊗ γ(q(|T | − 1)

=
�

S∈AS(Π,τ(w)1,0)
λ(q(0)) ⊗

|T |−2�
t=0

δ(w(t))q(t),q(t+1) ⊗ γ(q(|T | − 1)

=
�

q:[0,|w|]→Q

λ(q(0)) ⊗
|T |−2�
t=0

δ(w(t))q(t),q(t+1) ⊗ γ(q(|T | − 1)

= λ ⊗ δ(w) ⊗ γ

Theorem 65 (Reduction of LARS Measures to Weighted MSO). Let ⟨Π, α, R⟩ be a
restricted LARS measure over a semiring R. Then there exists a restricted weighted MSO
formula Ψ over R, s.t.

∀D, t : µ(Π, D, t) = �Ψ�R(σ(D, t)),

234

A.5. Equivalence of the Expressiveness of LARS Measures and Weighted Automata
�→ Theorems 64 and 65

where for a data stream D and time point t, σ(D, t) = (σ1(D, t), σ2(D, t)) s.t. σ1 is
the word that the weighted MSO formula is interpreted over and σ2 corresponds to the
assignments of free variables in Ψ. That is,

σ1(D, t)i ={a | a ∈ v(i) ∩ HB(Π)ϵ},

σ2(D, t)(x0) =t for the non-quantified first-order variable x0,

σ2(D, t)(A) ={t ∈ N | a ∈ v(t)} for MSO variables A.
σ2((T, v), t)(T) =T for MSO variable T .

We start by introducing the translation f and showing that it is faithful.

Definition A.5.3 (Translation from LARS to MSO). Let f : LARSw × (W ∪ N)∗ →
MSO(R, A) be defined recursively by

f(k, O) =k

f(a, O) =
� �

s∈2Aϵ ,a∈s P
r(O)
s (xi(O)) a ∈ Aϵ

xi(O) ∈ Ar(O) otherwise.

f(¬a, O) =
� �

s∈2Aϵ ,a∈s ¬P
r(O)
s (xi(O)) a ∈ Aϵ

¬xi(O) ∈ Ar(O) otherwise.
f(α ∗ β, O) =f(α, O) ∧ f(β, O)

f(α + β, O) =f(α, O) ∨ f(β, O)
f(✸α, O) =∃xi(O)+1.f(α, (O, i(O) + 1)) ∧ xi(O)+1 ∈ T r(O)

f(✷α, O) =∀xi(O)+1.
�
f(α, (O, i(O) + 1)) ∧ xi(O)+1 ∈ T r(O)

∨ xi(O)+1 ̸∈ T r(O)

f(⊞ϖα, O) =∃P (r(O),ϖ) : T (ϕϖ(P r(O), P (r(O),ϖ), xi(O)))∧
∃T (r(O),ϖ) : T (ψϖ(T r(O), T (r(O),ϖ), xi(O))) ∧ f(α, (O, ϖ))

where i(O) is the maximum integer in O and r(O) is the sequence O reduced to the entries
that are in W . We set T ϵ = T and P ϵ = P (v).

For a weighted LARS formula α we define its translation to weighted MSO by

f(α) = f(α, ϵ).

Faithfulness is proven as invariance under translation:

Lemma A.5.4 (Invariance of the formal power series under translation). Let α be some
weighted LARS formula over semiring R. Then

∀S, t : �α�R(S, t) = �f(α)�R(σ(S, t)),

where σ(S, t) = (σ1(S, t), σ2(S, t)) is defined as above.

235

A. Full Proofs: General Quantitative Stream Reasoning

Proof. We prove our lemma by structural induction on α.
Case α ∈ {a, ¬a, k}:

√
.

Case α ∈ {α1 ∗ α2, α1 + α2}:
√

by inductive hypothesis.
Due to the similarities between weighted MSO and weighted LARS a translation for
most logical operators in LARS is straight forward. Difficulties only occur, when we have
quantification with ✷,✸, since we then only want to quantify over the times/positions in
the word, that are within the substream given by the window operator. This is achieved
by putting restrictions on the quantified variables by using the MSO variables T r(O).
In the case of universal quantification we need to make sure that we obtain e⊗, when we
quantify over an empty set of time points.

Additionally, we require a translation from unweighted LARS to unweighted MSO.

Lemma A.5.5 (LARS programs and regular languages). Let Π some LARS program
using only MSO-definable window functions, then there exists an MSO formula Φ such
that for all data streams D for ΦΠ it holds that if S is an interpretation stream of D,
then

∀t ∈ T : S ∈ AS(Π, D, t) ⇐⇒ σ(S, t) |=MSO ΦΠ

where σ is defined as in Lemma A.5.4 and |=MSO is satisfaction w.r.t. MSO semantics.

Proof. Given an unweighted rule r = α ← β1, . . . , βn, ¬βn+1, . . . , ¬βn+m, we define its
second order translation by

f(r) = f(α) ∨ ¬f(β1) ∨ · · · ∨ ¬f(βn+m).

This translation is extended to programs Π via

f(Π) =
�

r∈Π
f(r).

Now let f ′(Π) the same translation except that every monadic second order variable A is
replaced with A′ whenever it occurs in the body of a rule. Then

ΦΠ(A) := f(Π) ∧ ∀A′
1. . . . ∀A′

k.¬f ′(Π) ∨ ¬(A′
1, . . . , A′

k) < (A1, . . . , Ak)

is an unweighted MSO formula characterizing if an assignment to the MSO variables
Ai corresponds to an answer stream of Π, similarly to what was done in [EG97].
(A′

1, . . . , A′
k) < (A1, . . . , Ak) defined as in [EG97] is true iff A corresponds to a stream

that is a strict substream of the stream corresponding to A′.

Therefore if S is an interpretation stream of D it holds that

S ∈ AS(Π, D, t) ⇐⇒ σ(S, t) |=MSO ΦΠ

for an arbitrary time point t.

236

A.5. Equivalence of the Expressiveness of LARS Measures and Weighted Automata
�→ Theorems 64 and 65

Since we want to have a weighted MSO formula in the end, we need to translate the
obtained unweighted MSO formula into a weighted one. For this, we can use previous
work of Droste and Gastin [DG07].

Definition A.5.6 (Recognizable Power Series, Recognizable Step Function [DG07]). A
formal power series ϕ : A∗ → R is recognizable if there exists a weighted automaton A,
s.t.

∀w ∈ A∗ : ∥A∥(w) = ϕ(w).

Furthermore, ϕ is a recognizable step function if

ϕ =
n�

i=1
ki✶Li ,

for recognizable languages Li ⊆ A∗.

Lemma A.5.7 (Classical MSO in weighted MSO [DG07]). For each unweighted MSO
formula ϕ there exists a weighted MSO formula T (ϕ), s.t.

�T (ϕ)� = ✶L(ϕ),

where L(ϕ) is the regular language defined by ϕ and ✶L(ϕ) is equal to e⊗ for all words
w ∈ L(ϕ) and equal to e⊕ otherwise.

With these ingredients given, we can finally proceed with the original proof.

Proof of Theorem 65. Let ΦΠ be the MSO formula constructed in Lemma A.5.5. If we
interpret ΦΠ as a weighted formula it is not restricted and therefore not necessarily rec-
ognizable, nor does it necessarily have semantics corresponding to the boolean semantics.
However, if we replace ΦΠ by T (ΦΠ) both of the above conditions hold. We know that
T (ΦΠ) captures the boolean semantics, according to Lemma A.5.7 and we further know
that since L(ΦΠ) is recognizable language (in the unweighted context) it is also true, that
✶L(ΦΠ), which is the semantics of T (ΦΠ), is recognizable [DG07](Lemma 2.1 b)).

Then since α is recognizable, f(α) is also recognizable. It follows, according to [DG07]
(Lemma 4.2), that T (Φ)(A) ∧ f(α) is also recognizable and therefore also ∃A.T (Φ)(A) ∧
f(α), by [DG07] (Lemma 4.3).

Therefore, there exists a weighted automaton A that recognizes it. What is left to show
is that

∀D, t : µ(Π, D, t) = ∥A∥(σ(D, t)),

holds for this automaton. We use the fact proven in Lemma A.5.4, that

∀S, t : �α�R(S, t) = �f(α)�R(σ(S, t)).

237

A. Full Proofs: General Quantitative Stream Reasoning

Since σ is a bijection between the combination of a streams and time points, and MSO
assignments we have that for all D, t

µ(Π, D, t) =
�

S∈AS(Π,D,t)
�α�R(S, t)

=
�

S∈AS(Π,D,t)
�f(α)�R(σ(S, t))

=
�

S interpretation stream of D

�T (ΦΠ)(A) ∧ f(α)�R(σ(S, t))

Instead of summing over the streams that are interpretation streams we can equivalently
sum over all possible assignments to the second order variables A. This however is
equivalent to quantifying A existentially:

µ(Π, D, t) =�∃A.T (ΦΠ)(A) ∧ f(α)�R(σ(D, t))
=∥A∥(σ(D, t))

A.6 Computational Complexity of LARS Measures Over
Propositional Variables

�→ Lemma 67 and Theorem 68
Lemma 67 (FPSpace(poly)-hardness). Let Q = (2N, min, ∪,N, ∅), where the minimum
is taken w.r.t. to the order ≻, where X ≻ Y holds iff

∃n ∈ X : (∀n′ < n : n′ ∈ X ⇐⇒ n′ ∈ Y) ∧ n ∈ X \ Y.

That is, X ≻ Y iff the smallest number that X and Y disagree on is in X.

The problem EVAL-wLARS over Q is FPSpace(poly)-hard.

Proof. We reduce the problem QBF-sat-search of finding a satisfying assignment for the
free variables of a QBF formula ϕ, given that it is satisfiable to EVAL-wLARS over
semiring Q. Since it is know that QBF-sat-search is FPSpace(poly)-complete [HSH12],
this suffices.
Let

Φ = Q1x1 . . . Qnxnϕ(x1, . . . , xn, y1, . . . , ym)
some QBF formula with free variables y1, . . . , ym. We construct the input for EVAL-
wLARS over semiring Q as follows:

α =✸⊞set:y1 . . .✸⊞set:ym

m�
i=1

(¬yi ∨ (yi ∧ {i})) ∧ α′(y1, . . . , ym)

238

A.6. Computational Complexity of LARS Measures Over Propositional Variables
�→ Lemma 67 and Theorem 68

α′ =W1 ⊞set:x1 . . . Wn ⊞set:xn ϕ(x1, . . . , xn, y1, . . . , ym)
S =({0, 1}, x .→ {x1, . . . , xn, y1, . . . , ym})
t =0

Somewhat similarly to the proof of PSPACE hardness of model checking in [BDE18].
The window function set : z for some propositional variable z is defined by

set : z((T, v), t) = (T, v′),

v′(j) =
�

v(j) \ {z} if t = 0,
v(j) if t ̸= 0.

Further

Wi =
�

✸ if Qi = ∃,
✷ if Qi = ∀.

We can argue analogously to Beck, Dao-Tran, and Eiter [BDE18], that using W⊞set:z we
can model quantification over the possible boolean values of the variable z. Therefore if
we evaluate the first part of α we get

�α�R(S, t)

= min
y∈{0,1}m

�
m�

i=1
(¬yi ∨ (yi ∧ {i})) ∧ α′(y1, . . . , ym)

�
R

(S, 0)

= min
y∈{0,1}m

{i ∈ {1, . . . , m} | yi = 1}

∪ �
α′(y1, . . . , ym)

�
R (S, 0).

If α′ is satisfied by the given assignment y, we can see that α′ evaluates to ∅, otherwise
it evaluates to N. Therefore we obtain

�α�R(S, t)

= min
y∈{0,1}m

�
{i ∈ {1, . . . , m} | yi = 1} if |= α′(y),
N otherwise.

Therefore we obtain N as the result iff none of the assignments satisfy α′. Otherwise we
get a set I ⊆ {1, . . . , m}, s.t. for the vector y(I) given by

y(I)i =
�

1 if i ∈ I,
0 if i ̸∈ I.

it holds that α′(y(I)) is satisfied and there is no set I ′ ⊆ {1, . . . , m} s.t. I ≻ I ′ and
α′(y(I ′)) is satisfied. That means among other things, that y(I) is a satisfying assignment
for Φ. We can therefore reduce QBF-sat-search to EVAL-wLARS over semiring Q.

239

A. Full Proofs: General Quantitative Stream Reasoning

Theorem 68 (Complexity of Evaluation I). Let R be a fixed semiring that is efficiently
encoded by e, and let k ∈ N be a fixed constant. Then for any weighted LARS formula α
over R s.t. qdepth(α) ≤ k, we can calculate �α�R(S, t) in polynomial time in the size of
α and S.

Proof. Proof by structural induction on the formula α, with induction invariant that t(α)
the time needed is in O(Nn·(k+1)), where N is the size of the input, n ∈ N is a constant
not depending on the input and k is the quantifier nesting depth. Further, s(α) the size
of the representation of the obtained value, i.e. ∥�α�R(S, t)∥e, is in O(N · Nk).‘

Base Cases:

• α = e(k): Then one can evaluate the expression by simply returning e(k). This is
feasible in polynomial time. The size of the output is linear in the size of the input.

• α = p: We simply check if p ∈ v(t) and return e⊕ or e⊗ accordingly. This is possible
in constant time and the size of the output is also bounded by a constant.

We have shown the invariant for all formulae up to a certain structural complexity.

Induction Step:

• α = ¬β: We know that for β the invariant holds, therefore we can check in time
bounded polynomially in the size of the formula and exponentially in the quantifier
nesting depth, whether �β�R(S, t) = e⊕ and output e⊕ or e⊗ accordingly. The size
of the output is again bounded by a constant.

• α = β1 + β2: We know that the invariant holds for β1, β2. Further t(α) =
t(β1)+ t(β2)+x, where x is the time needed for addition of the results for β1 and β2.
We know that x is polynomial in s(β1) + s(β2), which we know to be in O(Nk+1).
Therefore x ∈ O(N (k+1)·l, where l is the degree of the polynomial bounding the
time needed to add two numbers. It follows that t(α) ∈ O(Nn·k). For s(α) we can
see that

s(α) = ∥�α�R(S, t)∥e

≤ p(1) max(∥�β1�R(S, t)∥e, ∥�β2�R(S, t)∥e)

And therefore s(α) ∈ O(Nk+1).

• α = β1 ∗ β2: The proof works analogously to the proof for the case α = β1 + β2.

• α = −β: Follows immediately from the induction hypothesis for β and efficient
encodedness.

• α = β−1: Follows immediately from the induction hypothesis for β and efficient
encodedness.

240

A.6. Computational Complexity of LARS Measures Over Propositional Variables
�→ Lemma 67 and Theorem 68

• α = @t′β: Follows immediately from the induction hypothesis for β evaluated at t′.

• α = ✸β: The quantifier nesting depth of α is one higher than that of β. Therefore,
we need to show that if t(β) ∈ O(Nn·(k+1)) and s(β) ∈ O(Nk+1), then t(α) ∈
O(Nn·(k+2)) and s(α) ∈ O(Nk+2). We start with the second statement.

s(α) ≤ p(N) max
t∈T

∥�β�R(S, t)∥e

Therefore, s(α) ∈ O(Nk+2). The first statement can be proven similarly to the
case for the connective +: We have to evaluate β for all t ∈ T and sum up the
results. The time needed to perform all evaluations is in O(Nn·k+1). The time
needed to sum up all the values is polynomial in the size of the values, which do
increase in size, but for every sum it holds that the values are in O(Nk+2), so
t(α) ∈ O(N (k+2)·l+1) and therefore t(α) ∈ O(N (k+2)·(l+1)).

• α = ✷β: The proof works analogously to the proof for the case α = ✸β.

• α = ⊞ϖβ: The evaluation of ϖ is feasible in polynomial time. The claim follows
immediately from the induction hypothesis for β evaluated using ϖ(S, t) instead of
S. The derived bounds are sufficient, since ϖ(S, t) needs to be a substream of S.

• α = ▷β: The claim follows immediately from the induction hypothesis for β
evaluated using S∗ instead of S.

If k is now a constant, then we derived that the evaluation can be performed in polynomial
time in the size of the formula and the interpretation.

241

APPENDIX B
Full Proofs: Complexity of

Counting over Semirings

B.1 Prefix Normal Form
�→ Lemma 81
Lemma 81 (Prefix Normal Form). For every ΣBF α over a semiring R there exists a
ΣBF β over R such that

(i) β = Σv1 . . . Σvnγ, where γ is quantifier free,

(ii) β can be constructed from α in polynomial time, and

(iii) �α�R(∅) = �β�R(∅), i.e., α and β evaluate to the same value.

Proof. Let α be a ΣBF over semiring R. We show that we can always push out the sum
quantifiers.
Let α = (Σvα1) ∗ α2. W.l.o.g. we can assume that α2 does not contain v. Then

�α�R(∅) = �(Σvα1) ∗ α2�R(∅)
= �Σvα1�R(∅)⊗�α2�R(∅)
= (�α1�R({v})⊕�α�R({¬v})) ⊗�α2�R(∅)

Since addition distributes over multiplication and α2 does not contain v, we get

�α�R(∅) = �α1�R({v})⊗�α2�R(∅)⊕�α1�R({¬v})⊗�α2�R(∅)
= �α1�R({v})⊗�α2�R({v})⊕�α1�R({¬v})⊗�α2�R({¬v})
= �α1 ∗ α2�R({v})⊕�α1 ∗ α2�R({¬v})

243

B. Full Proofs: Complexity of Counting over Semirings

= �Σv(α1 ∗ α2)�R(∅)

So we can choose β = Σv(α1 ∗ α2).
Let α = α1 ∗ (Σvα2). This case works analogously to the previous one.
Let α = (Σvα1) + α2. Then β = Σv(α1 + α2 ∗ v) has the following semantics w.r.t. ∅

�β�R(∅) = �Σv(α1 + α2 ∗ v)�R(∅)
= �α1 + α2 ∗ v�R({v})⊕�α1 + α2 ∗ v�R({¬v})
= �α1 + α2�R({v})⊕�α1�R({¬v})
= �α1�R({v})⊕�α1�R({¬v})⊕�α2�R({v})

Since w.l.o.g. v does not occur in α2 we have

�β�R(∅) = �α1�R({v})⊕�α1�R({¬v})⊕�α2�R({v})
= �Σvα1�R(∅)⊕�α2�R(∅)
= �(Σvα1) + α2�R(∅)

So we can choose β = Σv(α1 + α2 ∗ v).
The case α = α1 + Σxα2 works analogously.
This shows that we can always push the Σ quantifier to the top in polynomially many
steps in the number of occurrences of ∗, + in α. Furthermore, as we only add ∗v to
the formula at most once for every combination of Σ and + in α, the size of β is also
polynomial in α.

B.2 NP(R)-completeness and Karp reducibility
We prove NP(R)-completeness of SAT(R) and show that SAT(R), SumProd(R), AMC,
SCSP and ΣFO-Eval(R) are Karp-reducible to one another.

B.2.1 NP(R)-completeness of SAT(R)
�→ Theorem 88
Theorem 88. SAT(R) is NP(R)-complete w.r.t. Karp s-reductions for every commuta-
tive semiring R.

Proof. Containment follows from Algorithm 1 and Proposition B.2.1.

For hardness we generalize the Cook-Levin Theorem. So let M = (R, R′, Q, Σ, ι, ⊔, δ) be
a polynomial time SRTM and x ∈ (Σ ∪ R)∗ be the input for which we want to compute
the output of M .

We define the following propositional variables:

244

B.2. NP(R)-completeness and Karp reducibility

• Ti,j,k, which is true if tape cell i contains symbol j at step k of the computation.

• Hi,k, which is true if the M ’s read/write head is at tape cell i at step k of the
computation.

• Qq,k, which is true if M is in state q at step k of the computation.

Furthermore, we need the following semiring values

• ri, which is the ith semiring value of the input x, and

• {rs+1, . . . , rm} = R′, which are the constant semiring values that M has access to.
Here, s is the number of semiring values in x.

Since M is a polynomial time SRTM, we can assume the existence of a polynomial p
such that p(n) bounds the number of transitions of M on any input of length n.

Given a finite set I and a family (βi)i∈I of weighted formulas, we use the following
shorthand:

Σi∈Iβi =
�

e⊕ if I = ∅
βi∗ + Σi∈I\{i∗}βi if i∗ ∈ I

.

Note that this is well defined, since I is finite and addition is commutative and associative.

We define a weighted QBF ΣT ΣH ΣQ α, where ΣT, ΣH, and ΣQ correspond to
the (sum) quantification of all variables Ti,j,k, Hi,k, and Qq,k, respectively, and α is the
product (i.e. connected with ∗) of the following subformulas

1. Ti,j,0
Variable ranges: 0 ≤ i < n
For each tape cell i that initially contains symbol j ∈ Σ or j = r when it contains
the semiring value r.

2. Ti,⊔,0
Variable ranges: −p(n) ≤ i < 0 or n ≤ i ≤ p(n)
Each tape cell i outside of the ones that contain the input contains ⊔.

3. Qι,0
The initial state of M is ι.

4. H0,0
The initial position of the head is 0.

5. ¬Ti,j,k + Ti,j,k ∗ ¬Ti,j′,k
Variable ranges: −p(n) ≤ i ≤ p(n), j ∈ Σ ∪ {r1, . . . , rs}, 0 ≤ k ≤ p(n)
There is at most one symbol per tape cell.

245

B. Full Proofs: Complexity of Counting over Semirings

6. Σj∈Σ∪{ri1 ,...,rim }Ti,j,k

Variable ranges: −p(n) ≤ i ≤ p(n), 0 ≤ k ≤ p(n)
There is at least one symbol per tape cell.

7. ¬Ti,j,k + Ti,j,k ∗ ¬Ti,j′,k+1 + Ti,j,k ∗ Ti,j′,k+1 ∗ Hi,k

Variable ranges: −p(n) ≤ i ≤ p(n), j ̸= j′ ∈ Σ ∪ {r1, . . . , rs}, 0 ≤ k < p(n)
Tape remains unchanged unless written.

8. ¬Qq,k + Qq,k ∗ ¬Qq′,k
Variable ranges: q ̸= q′ ∈ Q, 0 ≤ k ≤ p(n)
There is at most one state at a time.

9. ¬Hi,k + Hi,k ∗ ¬Hi′,k
Variable ranges: i ̸= i′, −p(n) ≤ i ≤ p(n), −p(n) ≤ i′ ≤ p(n), 0 ≤ k ≤ p(n)
There is at most one head position at a time.

10. ¬Hi,k + Hi,k ∗ ¬Qq,k + Hi,k ∗ Qq,k ∗ ¬Ti,σ,k+
Hi,k ∗ Qq,k ∗ Ti,σ,k ∗ Σ((q,σ),(q′,σ′),d,r)∈δ′Hi+d,k+1 ∗ Qq′,k+1 ∗ Ti,σ′,k+1 ∗ r

Variable ranges: −p(n) ≤ i ≤ p(n), 0 ≤ k < p(n) and q ∈ Q, σ ∈ Σ ∪ {ri1 , . . . , rim}
s.t. there exist q′, σ′, d, r s.t. ((q, σ), (q′, σ′), d, r) ∈ δ.
Possible transitions at computation step k when head is at position i with their
respective weight.
Here, we use

δ′ = {((q, σ), (q′, σ′), d, r) ∈ δ | σ, σ′ ∈ Σ ∪ {r1, . . . , rm}}

since we only need to take into account the transitions for letters from the alphabet
Σ, the semiring values {r1, . . . , rs} in the input and the constants {rs+1, . . . , rm}.
With this restriction |δ′| is finite and therefore the size of the sum is bounded by a
constant that only depends on the SRTM.

11. ¬Hi,k + Hi,k ∗ ¬Qq,k + Hi,k ∗ Qq,k ∗ ¬Ti,σ,k

+Hi,k ∗ Qq,k ∗ Ti,σ,k ∗ Hi,k+1 ∗ Qq,k+1 ∗ Ti,σ,k+1
Variable ranges: −p(n) ≤ i ≤ p(n), 0 ≤ k < p(n) and q ∈ Q, σ ∈ Σ ∪ {r1, . . . , rm}
s.t. there do not exist q′, σ′, d, r s.t. ((q, σ), (q′, σ′), d, r) ∈ δ.
The machine computation has ended. This is included so that when the machine
has reached a final state it stays the same until k reaches p(n).

In order to prove correctness, i.e., that the value of M on x is equal to �ΣT ΣH ΣQ α�R(∅),
we prove two claims.

(i) For each interpretation I of the variables Ti,j,k, Hi,k, Qq,k for −p(n) ≤ i ≤ p(n), 0 ≤
k < p(n) and q ∈ Q such that I does not correspond to a computation path of M
on x, it holds that �α�R(I) = e⊕.

246

B.2. NP(R)-completeness and Karp reducibility

(ii) For each interpretation I of the variables Ti,j,k, Hi,k, Qq,k for −p(n) ≤ i ≤ p(n), 0 ≤
k < p(n) and q ∈ Q such that I corresponds to a computation path π of M on x

along configurations cπ
1

r(π1)→ . . .
r

(πn(π)−1)

→ cπ
n(π) it holds that

�α�R(I) = �
π′, s.t.cπ

i =cπ′
i

r(π′
1)⊗ . . . ⊗r

(π′
n(π′)−1)

.

If both claims hold, then it follows that �ΣT ΣH ΣQ α�R(∅) is equal to the sum of�α�R(I) over all interpretations I such that I corresponds to a computation path. For
each of them, we know that the weight of the path is the product of the weights of the
taken transitions, according to (ii). Since the value of M on x is equal to the sum of the
weights of the paths, this implies correctness of the reduction.

We proceed to prove the claims. For this, we first generally show that the added
subformulas 1. to 11. enforce their given purpose.

For 1. to 4. this is clear: In order for �α�R(I) to be unequal to e⊕, the variables need to
be included in the interpretation.

5. and 6. together ensure that at each time step there is exactly one symbol in each tape
cell. So assume that Ti,j,k and Ti,j′,k are in I. Then

�¬Ti,j,k + Ti,j,k ∗ ¬Ti,j′,k�R(I) = e⊕⊕e⊕ = e⊕,

and so �α�R(I) = e⊕. Assume alternatively that there are i, k such that for no j the
variable Ti,j,k is in I. Then

�Σj∈Σ∪{r1,...,rs}Ti,j,k�R(I) = e⊕.

7. ensures that the tape remains unchanged unless written, i.e., unless the head is at
position i at step k the value of the tape cell i stays the same. So assume that Hi,k is
not in I but Ti,j,k and Ti,j′,k for j ̸= j′ are in I. Then

�¬Ti,j,k+Ti,j,k∗¬Ti,j′,k+1+Ti,j,k∗Ti,j′,k+1∗Hi,k�R(I) = e⊕⊕(e⊗⊗e⊕)⊕(e⊗⊗e⊗⊗e⊕) = e⊕.

8. ensures that there is at most one state at a time by analogous reasoning to 5.

9. ensures that there is at most one head position at a time by analogous reasoning to 5.

10. models the possible transitions at computation step k when the head is at position i
including their respective weights, if there is a possible transition for the given state and
tape cell entry. Otherwise, this subformula is not added but the one in 11. is. So assume
that Hi,k, Qq,k, Ti,σ,k ∈ I. Then the value of the subformula is

�¬Hi,k + Hi,k ∗ ¬Qq,k + Hi,k ∗ Qq,k ∗ ¬Ti,σ,k�R(I)⊕�Hi,k ∗ Qq,k ∗ Ti,σ,k ∗ Σ((q,σ),(q′,σ′),d,r)∈δ′Hi+d,k+1 ∗ Qq′,k+1 ∗ Ti,σ′,k+1 ∗ r�R(I)

247

B. Full Proofs: Complexity of Counting over Semirings

= e⊕⊕e⊗⊗�Σ((q,σ),(q′,σ′),d,r)∈δ′Hi+d,k+1 ∗ Qq′,k+1 ∗ Ti,σ′,k+1 ∗ r�R(I)
= �Σ((q,σ),(q′,σ′),d,r)∈δ′Hi+d,k+1 ∗ Qq′,k+1 ∗ Ti,σ′,k+1 ∗ r�R(I)

This means that the expression evaluates to the sum of all weights of the transitions we
take. Note that in order for two transitions ((q, σ), (q′

1, σ′
1), d1, r1), ((q, σ), (q′

2, σ′
2), d2, r2)

to be different at least one of q′
1 ≠ q′

2, σ′
1 ≠ σ′

2, d1 ̸= d2 or r1 ̸= r2 needs to hold. If
q′

1 ̸= q′
2, σ′

1 ̸= σ′
2 or d1 ̸= d2 then one of 5., 8., or 9. is falsified. Thus, in this case, we can

take multiple transitions if they differ in the weights only. On the other hand, we must
take at least one transition, since otherwise the whole sum evaluates to e⊕. It follows
that we transition to exactly one new configuration to obtain a non-zero value for α.
In that case, we have Hi+d,k+1, Qq′,k+1, Ti,σ′,k+1 ∈ I for the corresponding transition(s)
((q, σ), (q′, σ′), d, r) ∈ δ′ and

�Σ((q,σ),(q′,σ′),d,r)∈δ′Hi+d,k+1 ∗ Qq′,k+1 ∗ Ti,σ′,k+1 ∗ r�R(I) = �
((q,σ),(q′,σ′),d,r)∈δ′r.

11. models that if at computation step k when the head is at position i there is no possible
transition for the given state q and tape cell entry σ, then the head position, state and
tape cell entries stay the same. Otherwise, this subformula is not added but one in 10. is.
So assume that Hi,k, Qq,k, Ti,σ,k ∈ I. Then the value of the subformula is

�¬Hi,k + Hi,k ∗ ¬Qq,k + Hi,k ∗ Qq,k ∗ ¬Ti,σ,k�R(I)⊕�Hi,k ∗ Qq,k ∗ Ti,σ,k ∗ Hi,k+1 ∗ Qq,k+1 ∗ Ti,σ,k+1�R(I)
= e⊕⊕e⊗⊗�Hi,k+1 ∗ Qq,k+1 ∗ Ti,σ,k+1�R(I)

This means that the expression evaluates to e⊗, if Hi,k+1, Qq,k+1, Ti,σ,k+1 ∈ I and
evaluates to e⊕, otherwise. Thus, the formula enforces the desired constraint: if we are
in a configuration without further transitions we stay in it until the time limit p(n) is
reached. Notably, this does not influence the weight, since we always obtain a factor of
e⊗.

Putting things together, we see that 8. and 10./11. together ensure that there is exactly
one state at each time. Similarly, 9. and 10./11. together ensure that there is exactly one
head position at each time. This together with the constraints associated originally with
1. to 11. show that the desired claims and therefore also the theorem hold.

Proposition B.2.1. The sum, using ⊕, of the results of all execution paths for a call to
EvalR(α, I) is equal to �α�R(I).

Proof. We proceed by structural induction on α.

• Case α = k:
The algorithm returns k, therefore the statement is true.

• Case α = l, l ∈ {v, ¬v}:
The algorithm returns e⊕, e⊗ when l is false or true w.r.t. I, therefore the statement
is true.

248

B.2. NP(R)-completeness and Karp reducibility

• Case α = α1 + α2:
The algorithm nondeterministically returns EvalR(α1, I) or EvalR(α2, I). By
the induction hypothesis, we know that the sum of all the execution paths of
EvalR(αi, I) is equal to �αi�R(I). Since we guess i ∈ {1, 2} nondeterministically
EvalR(α, I) has all the execution paths of EvalR(α1, I) and EvalR(α2, I) and
therefore the sum of all values produced by execution paths of EvalR(α, I) is
equal to �α2�R(I)⊕�α2�R(I) = �α�R(I).

• Case α = α1 ∗ α2:
The algorithm returns one of the results of the execution paths of EvalR(α1, I)
multiplied by one of the results of the execution paths of EvalR(α2, I). By the in-
duction hypothesis, we know that the sum of all the execution paths of EvalR(αi, I)
is equal to �αi�R(I). For EvalR(α, I), we have one nondeterministic execution path
for every combination of nondeterministic execution paths of EvalR(αi, I), i = 1, 2
since the nondeterministic choices are made independently. Therefore, if the results
of the execution paths of EvalR(αi, I) are k

(i)
1 , . . . , k

(i)
ni we see that the sum of all

the execution paths of EvalR(α, I) is

n1�
j1=1

n2�
j2=1

k
(1)
j1 ⊗k

(1)
j2

By using distributivity, we obtain that this is equal to

n1�
j1=1

k
(1)
j1 ⊗

n2�
j2=1

k
(1)
j2

 =
n1�

j1=1
k

(1)
j1 ⊗

n2�
j2=1

k
(1)
j2

IH= �α1�R(I)⊗�α2�R(I) = �α1 ∗ α2�R(I).

• Case α = Σv α:
Works analogously to case α = α1 + α2.

B.2.2 Complexity of SAT(R), SumProd(R), AMC, Algebraic Measure
Evaluation, SCSP, ΣFO-Eval(R), mrg(F), Datalog Semiring
Provenance

�→ Theorems 90, 93 to 96 and 100
For the Karp-reducibility between SAT(R), SumProd(R), AMC, Algebraic Measure
Evaluation, SCSP, ΣFO-Eval(R), mrg(F), we do not prove interreducibility between
two problems at a time but prove it by using the strategy visualized in Figure B.1.

Theorem B.2.2. For every commutative semiring R it holds that each of the following
problems can be reduced to one another using Karp s-reductions:

249

B. Full Proofs: Complexity of Counting over Semirings

SAT(R)

AMC

SumProd(R)

SCSP

ΣFO-Eval(R)

mrg(F)

AtomEval(R)
&
OverallEval(R)

Figure B.1: Karp s-reductions that are proven to show Theorems 90, 93 to 96 and 100.
P → Q means that a Karp s-reduction from P to Q is given.

• SAT(R),

• ΣFO-Eval(R),

• Computing blevel(P) of an SCSP P over R,

• SumProd(R),

• Algebraic measure querying over R,

• AMC over R, and

• Computing mrg(F) for a semiring-labeled CNF F over R.

Proof. Karp s-reducibility is transitive, therefore it suffices to prove

• SAT(R) is Karp s-reducible to ΣFO-Eval(R)

• ΣFO-Eval(R) is Karp s-reducible to computing blevel(P) of an SCSP P over R
• Computing blevel(P) of an SCSP P over R is Karp s-reducible to SumProd(R)

• SumProd(R) is Karp s-reducible to AMC over R
• AMC over R is Karp s-reducible to SAT(R)

• AMC over R is Karp s-reducible to mrg(F) over R
• mrg(F) over R is Karp s-reducible to AMC over R
• SAT(R) is Karp s-reducible to algebraic measure querying over R

250

B.2. NP(R)-completeness and Karp reducibility

• AtomEval(R) and OverallEval(R) are Karp s-reducible to SAT(R)

This gives us that as desired

Corollary B.2.3. Theorems 90, 93 to 96 and 100 hold.

Proof. We proved in Theorem 88 that SAT(R) is NP(R)-complete. It follows from Theo-
rem B.2.2 and Lemma 87 that also all other problems are NP(R)-complete. Additionally,
Karp s-reducibility is shown in Theorem B.2.2.

We proceed to prove the Karp s-reducibilities in the order specified in the above Theorem.

Lemma B.2.4. SAT(R) is Karp s-reducible to ΣFO-Eval(R)

Proof. Let α be a ΣBF over R with variable v1, . . . , vn. We choose σ as the triple ⟨{⊥, ⊤},
{t(.)}, {xv1 , . . . , xvn}⟩ and I = {t(⊤), ¬t(⊥)}. Then we replace every propositional
variable v in α by t(xv), which symbolizes that v has truth value ⊤, and every quantifier
Σv with the corresponding first order quantifier Σxv. For the resulting ΣFO formula β,
it is easy to see that �α�R(∅) = �β�R(I)

since the semantics are analogously defined.

Lemma B.2.5. ΣFO-Eval(R) is Karp s-reducible to computing blevel(P) of an SCSP
P over R

This lemma is the one that contains the most difficult steps, since it requires reducing
arbitrary combinations of sums and products to a sum of product.

We first prove some general structural assumptions that we can make about ΣFO formulas:

Lemma B.2.6. For every ΣFO weighted formula α over a commutative semiring R,
domain D and interpretation I we can construct in polynomial time in α, D, I a ΣFO
weighted formula β = Σx1 . . . Σxnγ, where γ is quantifier free, over R and an interpreta-
tion I ′ such that �α�σ

R(I) = �β�σ
R(I ′).

Proof. Let α be a ΣFO weighted formula over semiring R, D be a domain and I be an
interpretation. We show that we can always push out the sum quantifiers.
Let α = (Σxα1) ∗ α2. W.l.o.g. we can assume that α2 does not contain x. Then

�α�σ
R(I) = �(Σxα1) ∗ α2�σ

R(I)

251

B. Full Proofs: Complexity of Counting over Semirings

= �Σxα1�σ
R(I)⊗�α2�σ

R(I)
= (�d∈D�α1{x .→ d}�σ

R(I)) ⊗�α2�σ
R(I)

Since addition distributes over multiplication and α2 does not contain x, we get

�α�σ
R(I) = �

d∈D (�α1{x .→ d}�σ
R(I)⊗�α2{x .→ d}�σ

R(I)
= �

d∈D�(α1 ∗ α2){x .→ d}�σ
R(I)

= �Σx(α1 ∗ α2)�σ
R(I)

So we can choose β = Σx(α1 ∗ α2) and I ′ = I.
Let α = α1 ∗ (Σxα2). This case works analogously to the previous one.
Let α = (Σxα1) + α2. We choose some d ∈ D, a new predicate symbol pd∗ with arity
one and define I ′ = I ∪ {pd∗(d∗)}. Then β = Σx(α1 + (α2 ∗ pd∗(x))) has the following
semantics w.r.t I ′:

�β�σ
R(I ′) = �Σx(α1 + (α2 ∗ pd∗(x)))�σ

R(I ′)
= �

d∈D�(α1 + (α2 ∗ pd∗(x))){x .→ d}�σ
R(I ′)

= �
d∈D�α1{x .→ d}�σ

R(I ′)⊕�(α2 ∗ pd∗(x)){x .→ d}�σ
R(I ′)

= �
d∈D�α1{x .→ d}�σ

R(I ′)⊕
� �α2{x .→ d}�σ

R(I ′) d = d∗

e⊕ otherwise.

Since pd∗ is a new predicate that does not occur in α, we can remove it from I ′

�β�σ
R(I ′) = �

d∈D�α1{x .→ d}�σ
R(I)⊕

� �α2�σ
R(I) d = d∗

e⊕ otherwise.
= (�d∈D�α1{x .→ d}�σ

R(I)) ⊕�α2�σ
R(I)

= �Σxα1�σ
R(I)⊕�α2�σ

R(I)
= �(Σxα1) + α2�σ

R(I)

So we can choose β = Σx(α1 + (α2 ∗ pd∗(x))), I ′ = I ∪ {pd∗(d∗)}.
The case α = α1 + (Σxα2) works analogously.
This shows that we can always push the Σ quantifier to the top in polynomially many
steps in the number of occurrences of ∗ and + in α. Since we only need to add one
predicate pd∗ to handle all the disjunctions, the size of the interpretation only increases
polynomially. Last but not least, we only add ∗pd∗(x) to the formula at most once for
every combination of Σ and + in α, the size of β is also polynomial in α.

Lemma B.2.7. For every ΣFO weighted formula α over a commutative semiring R,
finite domain D, and interpretation I, then we can construct in polynomial time a ΣFO
weighted formula β over R such that in every subformula Σxγ the variable x occurs in γ
and �α�σ

R(I) = �β�σ
R(I).

252

B.2. NP(R)-completeness and Karp reducibility

Proof. Let α be a ΣFO weighted formula over semiring R, D be a domain, and I be an
interpretation. We iteratively replace every subformula Σxγ where γ does not contain x
of α by a formula with the same semantics w.r.t. D and I.
So let Σxγ be a weighted formula where γ does not contain x. It has the semantics

�Σxγ�σ
R(I) = �

d∈D�γ{x .→ d}�σ
R(I)

= �
d∈D (e⊗⊗�γ�σ

R(I))
= (�d∈De⊗) ⊗�γ�σ

R(I)
= (�d∈D�e⊗�σ

R(I)) ⊗�γ�σ
R(I)

= �e⊗ + . . . + e⊗�σ
R(I)⊗�γ�σ

R(I)
= �(e⊗ + . . . + e⊗) ∗ γ�σ

R(I).

So we can replace Σxγ by (e⊗ + . . . + e⊗) ∗ γ without changing the semantics of the
formula. This is further possible in polynomial time and the resulting formula only
increases in size polynomially in |D|. This stays true, when we iteratively perform the
replacement for all such quantifiers Σx.

We need one more auxiliary lemma:

Lemma B.2.8. For each clause a1 ∨ a2 ∨ a3, where ai is a literal over the variables
vs, s ∈ S we can construct a constraint ca1∨a2∨a3 = ⟨def , con⟩ s.t. def (d1, d2, d3) = e⊗ if
d1, d2, d3 is a satisfying assignment of a1 ∨ a2 ∨ a3.

Proof. We can do this as follows.

def (d1, d2, d3) =

������
e⊗

d1, d2, d3 ∈ {⊥, ⊤},
∃i : (ai = vs ∧ di = ⊤)
∨(ai = ¬vs ∧ di = ⊥)

e⊕ otherwise.

(B.1)

con is simply the set of variables that occur in a1 ∨ a2 ∨ a3.

Proof of Lemma B.2.5. So let α be a ΣFO weighted formula over R and domain D that
is to be evaluated using interpretation I.

We use Lemmas B.2.6 and B.2.7 to ensure that α the input formula is of the form

Σx1 . . . Σxnβ

for some quantifier free β, that contains every variable xi, i = 1, . . . , n. We define
P = ⟨C, {s, x1, . . . , xn}⟩ inductively on the structure of β s.t.

(ΠC) ⇓{x1,...,xn}= ⟨def , {x1, . . . , xn}⟩,

253

B. Full Proofs: Complexity of Counting over Semirings

and for all (d1, . . . , dn) ∈ Dn it holds that

def (d1, . . . , dn) = �β{xi .→ di}�σ
R(I)

whereas for all (d1, . . . , dn) ∈ Dn \ Dn (remember that D is the domain of the ΣFO
formula and D is the domain of the SCSP) it holds that

def ′(d1, . . . , dn) = e⊕.

Then

blevel(P) = (ΠC) ⇓∅
= (ΠC) ⇓{x1,...,xn}⇓∅
= ⟨def , {x1, . . . , xn}⟩ ⇓∅
= �

(d1,...,dn)∈Dndef ′(d1, . . . , dn)
= �

(d1,...,dn)∈Dndef ′(d1, . . . , dn)
= �

(d1,...,dn)∈Dn�β{xi .→ di}�σ
R(I)

= �Σx1 . . . Σxnβ�σ
R(I)

= �α�σ
R(I)

So let I be an interpretation and D a domain. We first define the domain D of the
constraint system as D := D ∪ {⊤, ⊥}
Definition B.2.9 (Subformulas). Let α a quantifier free weighted formula. Then S(α)
the set of subformulas of α indexed by position p ∈ {0, 1} × {.0, .1}∗ is S0(α), where Si(α)
for i = 0, 1 is defined using induction on the structure of the formula as follows:

• Case α ∈ {p(x⃗), ¬p(x⃗), k}: Then Si(α) = {(i, α)} for i = 0, 1.

• Case α = α1 + α2 or α = α1 ∗ α2: Then Si(α) = {(i, α)} ∪ {(i.r, β) | (r, β) ∈
S0(α1)} ∪ {(i.r, β) | (r, β) ∈ S1(α2)} for i = 0, 1.

We assert (in the following referred to as (*)) that for values d⃗ ∈ Dk, for which we do not
fix the value def (d⃗), it is zero, i.e., def (d⃗) = e⊕. We define P using S(β). Intuitively, the
strategy is as follows: For each indexed subformula of (s, γ) we add a variable vs that
determines whether the subformula should be included in the computation. Then for
atomic subformulas we add a constraint that has the value of the atomic formula if it is
included. For complex subformula α1 ∗ α2, resp. α1 + α2 we add constraints that ensure
that if the subformula should be included, then also α1 and α2, resp. α1 xor α2 have to
be included.

Formally, we add the following constraints:

254

B.2. NP(R)-completeness and Karp reducibility

• For each (s, k) ∈ S(β) s.t. k ∈ R:
Add the constraint that evaluates to k when the variable vs has value ⊤ and
evaluates to e⊗ otherwise. We add the constraint set

C(s,k) ={c(s,k)}
c(s,k) =⟨{⊤ .→ k, ⊥ .→ e⊗}, {vs}⟩

• For each (s, p(x⃗)) ∈ S(β):
We can see p(x⃗) as a constraint on the variables in x⃗ that evaluates to e⊗ when
p(σ(x⃗)) ∈ I for the assignment σ of the variables var(x⃗) in x⃗ and e⊕ otherwise.
This however only happens when the variable vs has value ⊤, otherwise the value
is e⊗. As a consequence we add the constraint set

C(s,p(x⃗)) = {c(s,p(x⃗))}
c(s,p(x⃗)) = ⟨{(⊤, d1, . . . , dk) .→ e⊗ | p(x⃗){xi .→ di} ∈ I, di ∈ D}

∪ {(⊤, d1, . . . , dk) .→ e⊕ | p(x⃗){xi .→ di} ̸∈ I, di ∈ D}
∪ {(⊥, d1, . . . , dk) .→ e⊗ | di ∈ D},

{vs} ∪ var(x⃗)⟩

• For each (s, ¬p(x⃗)) ∈ S(β):
Analogously with e⊗ and e⊕ swapped. We add the constraint set

C(s,¬p(x⃗)) = {c(s,¬p(x⃗))}
c(s,¬p(x⃗)) = ⟨{(⊤, d1, . . . , dk) .→ e⊕ | p(x⃗){xi .→ di} ∈ I, di ∈ D}

∪ {(⊤, d1, . . . , dk) .→ e⊗ | p(x⃗){xi .→ di} ̸∈ I, di ∈ D}
∪ {(⊥, d1, . . . , dk) .→ e⊗ | di ∈ D},

{vs} ∪ var(x⃗)⟩

• For each (s, α) ∈ S(β), α = α1 ∗ α2:
Then we know that (s.0, α1), (s.1, α2) ∈ S(β). We require that for vs, vs.0, vs.1 the
following relation holds:

vs → (vs.0 ∧ vs.1)
¬vs → (¬vs.0 ∧ ¬vs.1)

We can rewrite them in 3CNF as follows

(¬vs ∨ vs.0) ∧ (¬vs ∨ vs.1)
(vs ∨ ¬vs.0) ∧ (vs ∨ ¬vs.1).

Then using Lemma B.2.8 (where a2 = a3 is possible) we add the constraint set

C(s,α) = {c¬vs∨vs.0 , c¬vs∨vs.1 , cvs∨¬vs.0 , cvs∨¬vs.1}.

255

B. Full Proofs: Complexity of Counting over Semirings

• For each (s, α) ∈ S(β), α = α1 + α2:
Then we know that (s.0, α1), (s.1, α2) ∈ S(β). We require that for vs, vs.0, vs.1 the
following relation holds:

vs → (vs.0 ∧ ¬vs.1 ∨ ¬vs.0 ∧ vs.1)
¬vs → (¬vs.0 ∧ ¬vs.1)

We can rewrite them in 3CNF as follows

(¬vs ∨ vs.0 ∨ vs.1) ∧ (¬vs ∨ ¬vs.0 ∨ ¬vs.1)
(vs ∨ ¬vs.0) ∧ (vs ∨ ¬vs.1).

Then using Lemma B.2.8 we add the constraint set

C(s,α) = {c¬vs∨vs.0∨vs.1 , c¬vs∨¬vs.0∨¬vs.1 , cvs∨¬vs.0 , cvs∨¬vs.1}.

• We further need to assert that s0, i.e. the variable specifying whether the root node
will be included in the computation, is true: We add it again using Lemma B.2.8
(with a1 = a2 = a3 = v0)

cv0 .

So overall the constraint problem P is given as

⟨
$

(s,α)∈S(β)
C(s,α) ∪ {cv0}, {vs | (s, α) ∈ S(β)} ∪ {x1, . . . , xn}⟩.

This is feasible to construct in polynomial time in the size of β.

We prove the correctness of the approach by structural induction on β. We use the
induction invariant that for

(Π %
(s,α)∈S(β) C(s,α)) ⇓{v0,x1,...,xn}= ⟨def , {v0, x1, . . . , xn}⟩,

and for all d1, . . . , dn ∈ D

def (d0, . . . , dn) =

��
�β{xi .→ di}�σ

R(I) d0 = ⊤
e⊗ d0 = ⊥
e⊕ otherwise.

holds.

• β = k, k ∈ R:
Then P = ⟨⟨{⊤ .→ k} ∪ {⊥ .→ e⊗}, {v0}⟩, {v0}⟩. We know

(ΠC) ⇓v0= ⟨⟨{⊤ .→ k, ⊥ .→ e⊗}, {v0}⟩.

256

B.2. NP(R)-completeness and Karp reducibility

Then due to Assertion (*)

def (d0) =

��
k d = ⊤

e⊗ d = ⊥
e⊕ otherwise.

=

��
�β�σ

R(I) d0 = ⊤
e⊗ d0 = ⊥
e⊕ otherwise.

• β = p(x⃗):
Then

P = ⟨{⟨{(⊤, d1, . . . , dk) .→ e⊗ | p(x⃗){xi .→ di} ∈ I, di ∈ D}
∪ {(⊤, d1, . . . , dk) .→ e⊕ | p(x⃗){xi .→ di} ̸∈ I, di ∈ D}
∪ {(⊥, d1, . . . , dk) .→ e⊗ | di ∈ D},

{v0} ∪ var(x⃗)⟩} ∪ {cv0},

{v0} ∪ var(x⃗)⟩.

Let
(ΠC) ⇓{v0}∪var(x⃗)= ⟨def , {v0, x1, . . . , xn}⟩,

and d1, . . . , dn ∈ D. Then

def (d0, d1, . . . , dn) =

������
e⊗ d0 = ⊤, p(x⃗){xi .→ di} ∈ I
e⊕ d0 = ⊤, p(x⃗){xi .→ di} ̸∈ I
e⊗ d0 = ⊥,
e⊕ otherwise.

=

��
�β�σ

R(I) d0 = ⊤
e⊗ d0 = ⊥
e⊕ otherwise.

• β = ¬p(x⃗):
Then

P = ⟨{⟨{(⊤, d1, . . . , dk) .→ e⊗ | p(x⃗){xi .→ di} ̸∈ I, di ∈ D}
∪ {(⊤, d1, . . . , dk) .→ e⊕ | p(x⃗){xi .→ di} ∈ I, di ∈ D}
∪ {(⊥, d1, . . . , dk) .→ e⊗ | di ∈ D},

{v0} ∪ var(x⃗)⟩} ∪ {cv0},

{v0} ∪ var(x⃗)⟩.

Let
(ΠC) ⇓{v0}∪var(x⃗)= ⟨def , {v0, x1, . . . , xn}⟩,

257

B. Full Proofs: Complexity of Counting over Semirings

and d1, . . . , dn ∈ D. Then

def (d0, d1, . . . , dn) =
�
d∈D

������
e⊗ d0 = ⊤, p(x⃗){xi .→ di} ̸∈ I
e⊕ d0 = ⊤, p(x⃗){xi .→ di} ∈ I
e⊗ d0 = ⊥,
e⊕ otherwise.

=

��
�β�σ

R(I) d0 = ⊤
e⊗ d0 = ⊥
e⊕ otherwise.

• β = β1 ∗ β2:
Then

⟨
$

(s,α)∈S(β)
C(s,α), {vs | (s, α) ∈ S(β)} ∪ {x1, . . . , xn}⟩

= ⟨
$

(s,α)∈S0(β1)
C(0.s,α) ∪

$
(s,α)∈S1(β2)

C(1.s,α) ∪ C(0,β),

{v0.s | (s, α) ∈ S0(β1)} ∪ {v1.s | (s, α) ∈ S1(β2)} ∪ {v0} ∪ var(β1) ∪ var(β2)⟩

Now if we let the constraint problems defined for β1, β2 be Pi = ⟨Ci, coni⟩, we can
see that (modulo appropriate renaming of the variables of the form vs)

⟨
$

(s,α)∈S(β)
C(s,α), {vs | (s, α) ∈ S(α)} ∪ {x1, . . . , xn}⟩

= ⟨C1 ∪ C2 ∪ C(0,β),

con1 ∪ con2 ∪ {v0}⟩

Using the induction hypothesis we get that

(ΠCi) ⇓{v0.i,var(βi)}= ⟨def i, {v0.i} ∪ var(βi)⟩,

and for d1, . . . , dn ∈ D

def i(d0, . . . , dni) =

��
�βi{xi .→ di}�σ

R(I) d0 = ⊤
e⊗ d0 = ⊥
e⊕ otherwise.

Then for
(ΠC) ⇓{v0,var(β)}= ⟨def , {v0} ∪ var(β)⟩,

we see that

def (d0, . . . , dn)
=

�
d⃗∈Dcon1∪con2

�
⟨def c,conc⟩∈C1∪C2∪C(0,β)

def c(d⃗ ↓con
conc

)

258

B.2. NP(R)-completeness and Karp reducibility

=
�

d⃗∈Dcon1∪con2

�
⟨def c,conc⟩∈C1∪C2def c(d⃗ ↓con

conc
)⊗

������
e⊗

d0, dv0.0 , dv0.1 ∈ {⊥, ⊤},
d0 → (dv0.0 ∧ dv0.1)
∧¬d0 → (¬dv0.0 ∧ ¬dv0.1)

e⊕ otherwise.

=
�

d⃗∈Dcon1∪con2

��
�

⟨def c,conc⟩∈C1∪C2def c(d⃗ ↓con
conc

) d0 = dv0.0 = dv0.1 = ⊤,�
⟨def c,conc⟩∈C1∪C2def c(d⃗ ↓con

conc
) d0 = dv0.0 = dv0.1 = ⊥,

e⊕ otherwise.

=
�

d⃗∈Dcon1∪con2

������������

�
⟨def c,conc⟩∈C1def c(d⃗ ↓con

conc
)

d0 = dv0.0 = dv0.1 = ⊤,⊗�
⟨def c,conc⟩∈C2def c(d⃗ ↓con

conc
)�

⟨def c,conc⟩∈C1def c(d⃗ ↓con
conc

)
d0 = dv0.0 = dv0.1 = ⊥,⊗�

⟨def c,conc⟩∈C2def c(d⃗ ↓con
conc

)
e⊕ otherwise.

=
�

d⃗1∈Dcon1

�
d⃗2∈Dcon2

��������������������

�
⟨def c,conc⟩∈C1def c(d⃗1 ↓con

conc
) d0 = dv0.0

⊗�
⟨def c,conc⟩∈C2def c(d⃗2 ↓con

conc
)

=

dv0.1= ⊤,�
⟨def c,conc⟩∈C1def c(d⃗1 ↓con

conc
) d0 = dv0.0

⊗�
⟨def c,conc⟩∈C2def c(d⃗2 ↓con

conc
)

=
dv0.1= ⊥,

e⊕ otherwise.

=
�

dv0.0 ,dv0.1 ∈D

��������������������

�
d⃗1∈Dcon1\{v0.0}

�
⟨def c,conc⟩∈C1def c(d⃗1 ↓con

conc
) d0 = dv0.0

⊗ �
d⃗2∈Dcon2\{v0.1}

�
⟨def c,conc⟩∈C2def c(d⃗2 ↓con

conc
)

=
dv0.1= ⊤,�

d⃗1∈Dcon1\{v0.0}
�

⟨def c,conc⟩∈C1def c(d⃗1 ↓con
conc

) d0 = dv0.0

⊗ �
d⃗2∈Dcon2\{v0.1}

�
⟨def c,conc⟩∈C2def c(d⃗2 ↓con

conc
)

=

dv0.1= ⊥,

e⊕ otherwise.

=

��
def 1(⊤, d1, . . . , dn1) ∗ def 2(⊤, d1, . . . , dn2) d0 = ⊤,
def 1(⊥, d1, . . . , dn1) ∗ def 2(⊥, d1, . . . , dn2) d0 = ⊥,

e⊕ otherwise.

=

��
�β1{xi .→ di}�σ

R(I)⊗�β2{xi .→ di}�σ
R(I) d0 = ⊤,

e⊗ d0 = ⊥,
e⊕ otherwise.

=

��
�(β1 ∗ β2){xi .→ di}�σ

R(I) d0 = ⊤,
e⊗ d0 = ⊥,
e⊕ otherwise.

• β = β1 + β2:
Then

⟨
$

(s,α)∈S(β)
C(s,α), {vs | (s, α) ∈ S(β)} ∪ {x1, . . . , xn}⟩

259

B. Full Proofs: Complexity of Counting over Semirings

= ⟨
$

(s,α)∈S0(β1)
C(0.s,α) ∪

$
(s,α)∈S1(β2)

C(1.s,α) ∪ C(0,β),

{v0.s | (s, α) ∈ S0(β1)} ∪ {v1.s | (s, α) ∈ S1(β2)} ∪ {v0} ∪ var(β1) ∪ var(β2)⟩

Now if we let the constraint problems defined for β1, β2 be Pi = ⟨Ci, coni⟩, we can
see that (modulo appropriate renaming of the variables of the form vs)

⟨
$

(s,α)∈S(β)
C(s,α), {vs | (s, α) ∈ S(α)} ∪ {x1, . . . , xn}⟩

= ⟨C1 ∪ C2 ∪ C(0,β),

con1 ∪ con2 ∪ {v0}⟩

Using the induction hypothesis we get that

(ΠCi) ⇓{v0.i,var(βi)}= ⟨def i, {v0.i} ∪ var(βi)⟩,

and for d1, . . . , dn ∈ D

def i(d0, . . . , dni) =

��
�βi{xi .→ di}�σ

R(I) d0 = ⊤
e⊗ d0 = ⊥
e⊕ otherwise.

Then

def (d0, . . . , dn)
=

�
d⃗∈Dcon1∪con2

�
⟨def c,conc⟩∈C1∪C2∪C(0,β)

def c(d⃗ ↓con
conc

)

=
�

d⃗∈Dcon1∪con2

�
⟨def c,conc⟩∈C1∪C2def c(d⃗ ↓con

conc
)⊗

������
e⊗

d0, dv0.0 , dv0.1 ∈ {⊥, ⊤},
d0 → (dv0.0 xor dv0.1)
∧¬d0 → (¬dv0.0 ∧ ¬dv0.1)

e⊕ otherwise.

=
�

d⃗∈Dcon1∪con2

��������

�
⟨def c,conc⟩∈C1∪C2def c(d⃗ ↓con

conc
) d0 = dv0.1 = ⊤, dv0.0 = ⊥,�

⟨def c,conc⟩∈C1∪C2def c(d⃗ ↓con
conc

) d0 = dv0.0 = ⊤, dv0.1 = ⊥,�
⟨def c,conc⟩∈C1∪C2def c(d⃗ ↓con

conc
) d0 = dv0.0 = dv0.1 = ⊥,

e⊕ otherwise.

=
�

d⃗1∈Dcon1

�
d⃗2∈Dcon2

��������������������������

�
⟨def c,conc⟩∈C1def c(d⃗1 ↓con

conc
) d0 = dv0.1 = ⊤

⊗�
⟨def c,conc⟩∈C2def c(d⃗2 ↓con

conc
) and dv0.0 = ⊥,�

⟨def c,conc⟩∈C1def c(d⃗1 ↓con
conc

) d0 = dv0.0 = ⊤
⊗�

⟨def c,conc⟩∈C2def c(d⃗2 ↓con
conc

) and dv0.1 = ⊥,�
⟨def c,conc⟩∈C1def c(d⃗1 ↓con

conc
) d0 = dv0.0

⊗�
⟨def c,conc⟩∈C2def c(d⃗2 ↓con

conc
)

=

dv0.1= ⊥,

e⊕ otherwise.

260

B.2. NP(R)-completeness and Karp reducibility

=
�

dv0.0 ,dv0.1 ∈D

����������������������������

�
d⃗1∈Dcon1\{v0.0}

�
⟨def c,conc⟩∈C1def c(d⃗1 ↓con

conc
) d0 = dv0.1 = ⊤

⊗ �
d⃗2∈Dcon2\{v0.1}

�
⟨def c,conc⟩∈C2def c(d⃗2 ↓con

conc
) and dv0.0 = ⊥,�

d⃗1∈Dcon1\{v0.0}
�

⟨def c,conc⟩∈C1def c(d⃗1 ↓con
conc

) d0 = dv0.0 = ⊤
⊗ �

d⃗2∈Dcon2\{v0.1}
�

⟨def c,conc⟩∈C2def c(d⃗2 ↓con
conc

) and dv0.1 = ⊥,�
d⃗1∈Dcon1\{v0.0}

�
⟨def c,conc⟩∈C1def c(d⃗1 ↓con

conc
) d0 = dv0.0

⊗ �
d⃗2∈Dcon2\{v0.1}

�
⟨def c,conc⟩∈C2def c(d⃗2 ↓con

conc
)

=

dv0.1= ⊥,

e⊕ otherwise.

=

������
def 1(⊤, d1, . . . , dn1)⊗def 2(⊥, d1, . . . , dn2)

d0 = ⊤,⊕def 1(⊥, d1, . . . , dn1)⊗def 2(⊤, d1, . . . , dn2)
def 1(⊥, d1, . . . , dn1)⊗def 2(⊥, d1, . . . , dn2) d0 = ⊥,

e⊕ otherwise.

=

��
�β1{xi .→ di}�σ

R(I)⊗e⊗⊕e⊗⊗�β2{xi .→ di}�σ
R(I) d0 = ⊤,

e⊗ d0 = ⊥,
e⊕ otherwise.

=

��
�(β1 + β2){xi .→ di}�σ

R(I) d0 = ⊤,
e⊗ d0 = ⊥,
e⊕ otherwise.

Now that we know that the induction invariant holds, i.e., for

(Π %
(s,α)∈S(β) C(s,α)) ⇓{v0,x1,...,xn}= ⟨def , {v0, x1, . . . , xn}⟩,

and d1, . . . , dn ∈ D

def (d0, . . . , dn) =

��
�β{xi .→ di}�σ

R(I) d0 = ⊤
e⊗ d0 = ⊥
e⊕ otherwise.

it remains to show that for

(Π %
(s,α)∈S(β) C(s,α) ∪ {cv0}) ⇓{x1,...,xn}= ⟨def ′, {x1, . . . , xn}⟩,

and for all d1, . . . , dn ∈ D
def ′(d1, . . . , dn) = �β{xi .→ di}�σ

R(I).

This is because

def ′(d1, . . . , dn) = �
d0∈Ddef (d0, . . . , dn)⊗�

⟨def c,conc⟩∈{cv0 }def c(d⃗ ↓con
conc

)

=
�

d0∈D

��
�β{xi .→ di}�σ

R(I) d0 = ⊤
e⊗ d0 = ⊥
e⊕ otherwise.

⊗
�

e⊗ d0 = ⊤,
e⊕ otherwise.

=
�

d0∈D

� �β{xi .→ di}�σ
R(I) d0 = ⊤

e⊕ otherwise.

= �β{xi .→ di}�σ
R(I).

261

B. Full Proofs: Complexity of Counting over Semirings

Lemma B.2.10. Computing blevel(P) of an SCSP P over R is Karp s-reducible to the
problem SumProd(R).

Proof. Let P = ⟨C, con⟩ be some SCSP over ⟨R, D, V ⟩. Recall that

blevel(P) = (Π⟨def ,con′⟩∈C ⟨def , con′⟩) ⇓∅
= �

d⃗∈Dcon

�
⟨def ,con′⟩∈Cdef (d⃗ ↓con

con′)

We therefore choose the SumProd(R)-instance with variables X1, . . . , Xn, where n =
|con| and functions {def | ⟨def , con⟩ ∈ C}. Then the value of this SumProd(R)-instance
is equal to blevel(P).

Lemma B.2.11. SumProd(R) is Karp s-reducible to AMC over R

Proof. Assume we are given a SumProd(R)-instance over variables X1, . . . , Xn, functions
f1, . . . , fm with inputs Y⃗1, . . . , Y⃗m and domain D. We construct the AMC-instance as
follows.

We add the variables

• vi,d for each i = 1, . . . , n and d ∈ D, where vi,j is true if Xi takes values d

• v
j,d⃗

for each j = 1, . . . , m and d ∈ DYj , where v
j,d⃗

is true if the input to the function
fj is equal to d⃗

We define α by setting

• α(vi,d) = α(¬vi,d) = e⊗

• α(v
j,d⃗

) = fj(d⃗) and α(¬v
j,d⃗

) = e⊗

We define T as the propositional theory containing the following formulas

• ¬vi,d ∨ ¬vi,d′ for each i = 1, . . . , n and d ̸= d′ ∈ D

• �
d∈D vi,d for each i = 1, . . . , n

• v
j,d⃗

↔ �
Xi∈Y⃗j

v
i,d⃗Xi

for each j = 1, . . . , m and d⃗ ∈ DY⃗j

262

B.2. NP(R)-completeness and Karp reducibility

Then every satisfying interpretation I of T corresponds to one assignment of the variables
Xi to domain values di. Furthermore, for each such I the variables v

j,d⃗
tell us which

input the function fj gets.

Since we sum up �
v∈Iα(v) for each satisfying interpretation I and for each such I it

holds that �m
j=1α(v

j,d⃗
) = �m

j=1fj(d⃗), we see that A(T) over R is exactly the value of
the SumProd(R)-instance.

Lemma B.2.12. AMC over R is Karp s-reducible to SAT(R).

Proof. Let the AMC-instance be over variables v1, . . . , vn, theory T and weight function
α.

W.l.o.g. we can assume that the theory T consists of a single propositional formula
ϕ (otherwise we simply take their conjunction). We apply the Tseitin transformation
[Tse83] to ϕ and obtain a 3CNF ψ with additional variables x1, . . . , xm s.t. each satisfying
assignment of ϕ is uniquely extendable to a satisfying assignment of ψ. Furthermore,
each satisfying assignment of ψ is a satisfying assignment of ϕ when restricted to the
variables v1, . . . , vn.

Recall that by Lemma 106, for each clause l1 ∨ l2 ∨ l3 it holds that

I |= l1 ∨ l2 ∨ l3 ⇐⇒ �l1 + ¬l1 ∗ l2 + ¬l1 ∗ ¬l2 ∗ l3�R(I) = e⊗
I ̸|= l1 ∨ l2 ∨ l3 ⇐⇒ �l1 + ¬l1 ∗ l2 + ¬l1 ∗ ¬l2 ∗ l3�R(I) = e⊕.

So we can proceed as follows: in ψ we replace every clause l1 ∨ l2 ∨ l3 by l1 + ¬l1 ∗ l2 +
¬l1 ∗ ¬l2 ∗ l3 and subsequently every ∧ by ∗. We call the resulting formula β and see that

I |= ψ ⇐⇒ �β�R(I) = e⊗
I ̸|= ψ ⇐⇒ �β�R(I) = e⊕

Therefore, the ΣBF γ defined as

Σv1 . . . ΣvnΣx1 . . . Σxmβ ∗ Πn
i=1(vi ∗ α(vi) + ¬vi ∗ α(¬vi))

fulfills
A(T) = �γ�R(∅).

Lemma B.2.13. AMC over R is Karp s-reducible to mrg(F) over R and vice versa.

Proof. We first reduce AMC over R to mrg(F) over R. Assume we are given an AMC-
instance (T, α) over a commutative semiring R and variables V . W.l.o.g., we can assume

263

B. Full Proofs: Complexity of Counting over Semirings

that T is a CNF C1 ∧ · · · ∧ Cn. If this was not the case, we could apply the Tseitin-
transformation and extend α to the added variables by letting α(l) = e⊗ for each of their
literals l. We construct a semiring-weighted CNF F as

F = FT ∪ F+ ∪ F−, where
FT = {(C1, e⊕), . . . , (Cn, e⊕)},

F+ = {(¬v, α(v)) | v ∈ V},

F− = {(v, α(¬v)) | v ∈ V}.

Then

mrg(F) = �
I∈Int(F)ϕF (I)

= �
I|=T ϕF+∪F−(I)

= �
I|=T

�
v∈V

�
α(v) I ̸|= ¬v
e⊗ otherwise.

⊗�

v∈V

�
α(¬v) I ̸|= v

e⊗ otherwise.

= �
I|=T

�
v∈V

�
α(v) I |= v
e⊗ otherwise.

⊗�

v∈V

�
α(¬v) I |= ¬v

e⊗ otherwise.

= �

I|=T

�
v∈Iα(v)⊗�

v ̸∈Iα(¬v)
= A(T).

We see that the result of the marginalization problem of F over R is equal to A(T), the
algebraic model count of the instance (T, α). Since we can construct F in polynomial
time from (T, α), this shows that the AMC over R is Karp s-reducible to mrg(F) over R.

Next, we reduce mrg(F) over R to AMC over R. Assume we are given a semiring-labeled
CNF F = {(C1, w1), . . . , (Cn, wn)}. Consider the following AMC instance with theory T
and labeling function α such that

T =
n�

i=1
Ci ↔ ci

α(l) =
�

wi if l = ¬ci,
e⊗ otherwise. ,

where c1, . . . , cn are distinct variables that do not occur in F . Then

A(T) = �
I|=T

�
v∈Iα(v)⊗�

v ̸∈Iα(¬v)
= �

I|=T

�
ci ̸∈Iα(¬ci)

= �
I

�
i, s.t. I̸|=Ci

wi

= mrg(F).

Since we can construct (T, α) in polynomial time from F , this shows that the mrg(F)
over R is Karp s-reducible to AMC over R.

264

B.2. NP(R)-completeness and Karp reducibility

Lemma B.2.14. OverallEval(R) is Karp s-reducible to SAT(R) and vice versa.

Proof. We first note that we can Karp s-reduce OverallEval(R) and AtomEval(R)
to one another. For this, consider an algebraic measure µ = ⟨Π, α, R⟩. Then the overall
weight query µ(Π) has the same result as the query µ′(a) for the atom a that does not
occur in Π, where µ′ is the measure ⟨Π ∪ {a ←}, α, R⟩. On the other hand, the query
µ(a) for an atom a ∈ A(Π) has the same result as the overall weight query µ′(Π ∪ {← a}),
where µ′ = ⟨Π ∪ {← a}, α, R⟩. We can, thus, proceed by proving the claim for overall
weight queries and obtain the same result for queries for an atom.

We first reduce SAT(R) to OverallEval(R). So, w.l.o.g., let α be a ΣBF formula
of the form α = Σa1Σa2 . . . Σanβ, where β is Σ-free. Consider the algebraic measure
µ = ⟨Π, β, R⟩, where Π = {{ai} ←| i = 1, . . . , n}. Then the answer sets of Π are equal to
the subsets of {a1, . . . , an} and accordingly

µ(Π) = �
I⊆{a1,...,an}�β�R(I) = �α�R(∅).

For the other direction, consider an algebraic measure µ = ⟨Π, α, R⟩. It is a well known
fact [JN11] that for Π there exists a propositional theory T with auxiliary variables from
a set X such that there is a bijection f from the answer sets of Π to Models(T), the set
of satisfying assignments of T , such that for each answer set I ∈ AS(Π) it holds that
f(I) ∩ A(Π) = I. I.e., the answer set I and the satisfying assignment f(I) agree on the
original variables. Thus, it holds that

µ(Π) = �
I∈AS(Π)�α�R(I)

= �
I∈AS(Π)�α�R(f(I))

= �
I∈Models(T)�α�R(I),

where the second equality is due to the fact that the auxiliary variables do not occur in
X.

We use the fact we showed in the proof of Lemma B.2.12 that for a propositional theory
T there exists a weighted formula β using auxiliary variables from a set Y such that
there is a bijection f from satisfying assignments of T to the interpretations I of β with�β�R(I) ̸= e⊕, such that for each model I ∈ Models(T) it holds that �β�R(I) = e⊗ and
f(I) ∩ A(T) = I, where A(T) denotes the set of propositional variables in T .

Thus, we obtain the following equalities:

µ(Π) = �
I∈Models(T)�α�R(I)

= �
I∈Models(T)�β ∗ α�R(f(I))

= �
I⊆A(T)∪Y �β ∗ α�R(I)

= �Σa1 . . . ΣanΣx1 . . . ΣxmΣy1 . . . Σykβ ∗ α�R(∅),

where {a1, . . . , an} = A(Π), X = {x1, . . . , xm} and Y = {y1, . . . , yk}. Since the latter is
a ΣBF formula, we are done.

265

B. Full Proofs: Complexity of Counting over Semirings

B.3 Relation to classical complexity classes
B.3.1 FPSpace(poly)-membership of SAT(R) for efficiently encoded

semirings
�→ Proposition 103
Proposition 103 (FPSpace(poly) Upper-Bound). If e(R) is an efficiently encoded
commutative semiring, then SAT(e(R)) is in FPSpace(poly).

Proof. We have seen that SAT(e(R)) is Karp s-reducible to SumProd(e(R)), therefore
it is sufficient to prove FPSpace(poly)-membership for SumProd(e(R)).

Assume we are given a SumProd(e(R))-instance and a domain D as a set of variables
X1, . . . , Xn and functions f1, . . . , fm with input vectors Y⃗1, . . . , Y⃗m consisting of variables
from X1, . . . , Xn. The value of this instance is then given by

a = �
x1,...,xn∈D

�m
i=1fi(y⃗i).

We can bound ∥a∥e by using that e(R) is efficiently encoded.

∥a∥e = ∥�
x1,...,xn∈D

�m
i=1fi(y⃗i)∥e

≤ p(log2 |D|n) max
x1,...,xn∈D

∥�m
i=1fi(y⃗i)∥e

≤ p(n log2 |D|) max
x1,...,xn∈D

p(m) max
i=1,...,m

∥fi(y⃗i)∥e

≤ p(n log2 |D|)p(m) max
x1,...,xn∈D

max
i=1,...,m

∥fi(y⃗i)∥e

Therefore, the size of the result a and consequently also all intermediate results are
bounded polynomially in the size of the input. We see that we at least have enough
space to store all the results and intermediate results. Furthermore, we know that
multiplication and addition are in FP and therefore also in FPSpace(poly). Last but
not least, iterating over all the assignments of values di ∈ D to variables Xi is also
possible in polynomial space.

B.3.2 NP, #P, GapP, OptP-completeness of SAT(B), SAT(N),
SAT(Z), SAT(Rmax,+)

�→ Theorem 104
Theorem 104. For (R, C) = (B, NP), (N, #P), (Z, GapP), (Rmax,+, OptP) and the
binary representation bin of the integers, SAT(bin(R)) is C-complete w.r.t. Karp reduc-
tions.

Proof. Membership is not hard to see:

• SAT(bin(B)) is SAT;

266

B.3. Relation to classical complexity classes

• SAT(bin(N)) can be solved in #P by simulating Algorithm 1, where instead of
returning k we generate k accepting paths;

• SAT(bin(Z)) can be solved in GapP by simulating Algorithm 1, where instead
of returning k we generate k accepting and zero rejecting paths if k ≥ 0 and zero
accepting and |k| rejecting paths, otherwise;

• SAT(bin(Rmax,+)) can be solved in OptP by simulating Algorithm 1, exactly as
it is.

.

For C-hardness, we consider the following reductions

• SAT(bin(B)) is SAT;

• We can reduce #SAT to SAT(bin(N)) as follows.
Let ϕ be the propositional formula, whose satisfying assignments we want to count.
We apply the Tseitin transformation [Tse83] to ϕ and obtain a 3CNF ψ with
additional variables x1, . . . , xm s.t. each satisfying assignment of ϕ is uniquely
extendable to a satisfying assignment of ψ. Furthermore, for each satisfying
assignment of ψ is a satisfying assignment of ϕ when restricted to the original
variables v1, . . . , vn.
Recall that by Lemma 106, for each clause l1 ∨ l2 ∨ l3 it holds that

I |= l1 ∨ l2 ∨ l3 ⇐⇒ �l1 + ¬l1 ∗ l2 + ¬l1 ∗ ¬l2 ∗ l3�R(I) = e⊗
I ̸|= l1 ∨ l2 ∨ l3 ⇐⇒ �l1 + ¬l1 ∗ l2 + ¬l1 ∗ ¬l2 ∗ l3�R(I) = e⊕.

So we can proceed as follows: in ψ we replace every clause l1 ∨ l2 ∨ l3 by l1 + ¬l1 ∗
l2 + ¬l1 ∗ ¬l2 ∗ l3 and subsequently every ∧ by ∗. The resulting formula β fulfills

I |= ψ ⇐⇒ �β�R(I) = e⊗
I ̸|= ψ ⇐⇒ �β�R(I) = e⊕

Therefore, the semantics of the ΣBF defined as

Σv1 . . . ΣvnΣx1 . . . Σxmβ

is exactly the number of satisfying assignments of ϕ.

• Recall that for an n×n matrix A with entries aij ,the permanent is given by

"
σ∈Sn

n!
i=1

aiσ(i),

267

B. Full Proofs: Complexity of Counting over Semirings

where Sn is the set of permutations of the numbers 1, . . . , n. We reduce computing
the permanent of a given integer matrix A, which is well-known to be #P-complete
[Val79], to SAT(bin(Z)) as follows.
We use variables vij , which are true when we include the value aij in the current
product. We construct a weighted QBF α s.t. �α�Z(I) = e⊗ if the variables vij ∈ I
correspond to a permutation and e⊕ otherwise.
We define α as the product of the following weighted formulas

– ¬vij + vij ∗ ¬vij′ for each i = 1, . . . , n and j ̸= j′ = 1, . . . , n (include at most
one element per row)

– vi1 + . . . + vin for each i = 1, . . . , n (include at least one element per column)
– ¬vij + vij ∗ ¬vi′j for each i ̸= i′ = 1, . . . , n and j = 1, . . . , n (include at most

one element per column)

Then the semantics of the ΣBF

Σa11 . . . Σannα ∗ Πn
i,j=1(vij ∗ aij + ¬vij)

is exactly the permanent of A.

• We can reduce LexMaxSAT to SAT(bin(Rmax,+)) as follows. Let ϕ be the
propositional formula whose maximum satisfying assignments we want to know.
We again as in the proof of #P-hardness for SAT(bin(N)) obtain the formula β s.t.

I |= ψ ⇐⇒ �β�R(I) = e⊗
I ̸|= ψ ⇐⇒ �β�R(I) = e⊕

Then the semantics of the ΣBF

Σv1 . . . ΣvnΣx1 . . . Σxmβ ∗ Πn
i=1(vi ∗ 2n−i + ¬vi)

is the bitstring representing the maximum satisfying assignment of ϕ respectively
−∞ if there is none.

B.3.3 Results for classes of semirings
Reducibility via epimorphisms
�→ Theorem 111

Theorem 111. Let ei(Ri), i = 1, 2 be two encoded commutative semirings, such that

1. there exists a polynomial time computable epimorphism f : e1(R1) → e2(R2), and

268

B.3. Relation to classical complexity classes

2. for each e2(r2) ∈ e(R2) one can compute in polynomial time e1(r1) s.t. f(e1(r1)) =
e2(r2) from e2(r2).

Then SAT(e2(R2)) is counting-reducible to SAT(e1(R1)).

Proof. Let the assumptions of the theorem be given. Furthermore, let α be a SAT(e2(R))-
instance. We can compute �α�e2(R)(∅) as follows.

First we replace every occurrence of a value e2(r2) with a value e1(r1) s.t. f(e1(r1)) =
e2(r2). This is possible in polynomial time. The resulting ΣBF β is a SAT(e1(R1))-
instance. We now compute �β�e1(R1)(∅). Then we only need to apply f to the result and
have the solution �α�e2(R)(∅). This is possible in polynomial time with one oracle call to
SAT(e1(R1)).

Since we only need to solve one SAT(e1(R1))-instance and do not require any infor-
mation about the original instance to obtain the final solution from the solution of the
SAT(e1(R1))-instance we have a counting-reduction.

Hardest Semirings
�→ Lemma 112

Lemma 112 (Hardest Semirings). There exists an encoding e∗ for

1. N≤o[(xi)∞];

2. Zp[(xi)∞];

3. N≤o × Zp[(xi)∞];

4. N[(xi)∞]

such that for any commutative efficiently encoded commutative semiring e(R) that is in
addition

1. periodic with periodicity 1;

2. periodic with periodicity p ≥ 2 and offset 0;

3. periodic with periodicity p ≥ 2 and offset o > 0;

4. not periodic

it holds that SAT(e(R)) is counting reducible to

1. SAT(e∗(N≤o[(xi)∞]));

269

B. Full Proofs: Complexity of Counting over Semirings

2. SAT(e∗(Zp[(xi)∞]));

3. SAT(e∗(N≤o × Zp[(xi)∞]));

4. SAT(e∗(N[(xi)∞])), respectively.

Proof. As the encoding function e∗ we take the function that encodes a monomial by
representing the coefficient and index of each variable in binary and each exponent in
unary. Furthermore, a polynomial is encoded as the list of the encodings of its monomials
with non-zero coefficients. Then we can define an epimorphism f by letting

f

 "
i⃗∈N∗

a⃗ix
i0
0 · · · · · x

i|⃗i|
|⃗i|

 := �
i⃗∈N∗,ij ̸=0⇒bin(ij)∈e(R)a⃗i ·

�
bin(0)i0⊗ . . . ⊗bin(|⃗i|)i|⃗i|

.

For this definition to make sense, recall that e maps to {0, 1}∗ and therefore e(R) ⊆ {0, 1}∗.
Since we can assume w.l.o.g. that for all values r ∈ R it holds that e(r) ∈ {0, 1}∗ has a 1
as the first letter, it follows that for some ij ∈ N it holds that bin(ij) ∈ e(R). Therefore,
the right-hand side of the definition is always a value in e(R).

The idea of this definition is that we identify xij with the value that bin(ij) represents in
e(R). Then we can perform any calculation over e∗(S[(xi)∞]) with S = N≤o,Zp,N≤o ×
Zp,N, depending on the periodicity and offset of R, by using the variables as placeholders
for the actual values. Finally, we can obtain the actual value over e(R) using f . Note,
that the sum only considers exponent vectors i⃗ ∈ N∗ where any exponent ij of xj is equal
to zero, when bin(ij) is not in e(R) to ensure that f is well defined.

The check whether bin(ij) is in e(R) may be expensive. Therefore, f is not necessarily
polynomial time computable over the whole semiring e∗(S[(xi)∞]). We consider instead
e∗(S ′), where S ′ = S[{xi | bin(i) ∈ e(R)}]. Then, evaluating f over e∗(S ′) takes
polynomial time in the size of the encoding of the input since e(R) is efficiently encoded.

It is easy to see that the second condition of Theorem 111 is satisfied, since we can map
bin(n) ∈ e(R) to e∗(xn), which is obviously contained in e∗(S ′).

Thus, we can apply Theorem 111 to show that SAT(e(R))) is counting reducible to
SAT(e∗(S ′)). Since e∗(S′) is a subset of e∗(S[(xi)∞] it follows that SAT(e(S ′))) is
counting reducible to SAT(e∗(S[(xi)∞])). Since counting reducibility is transitive, we
are done.

Impossibility results for Polynomial Semirings
�→ Theorems 113, 114, 116 and 117

Theorem 113. Let R = N[(xi)∞] (resp. R = B[(xi)∞]). If there is an encoding function
e for R s.t.

1) ∥�α�R(∅)∥e is polynomial in the size of α,

270

B.3. Relation to classical complexity classes

2) we can extract the binary representation of the coefficient n ∈ N (resp. b ∈ B) of
xj1

i1 ...xjm
im

from e(r) in time polynomial in ∥r∥e, and

3) ∥xi∥e is polynomial in i,

then #P ⊆ FP/poly (resp. NP ⊆ P/poly).

For the proof we use the following theorem due to Cadoli, Donini, and Schaerf [CDS96].

Theorem B.3.15. Let Π be an NP-complete problem, and let Π = %
n∈N Πn, where

Πn = {π ∈ Π | |π| = n}. Moreover, let [P, F, V] be a problem we want to compile, divided
into fixed part F and varying part V . Suppose that there exists a polynomial p such that,
for each n > 0, there exists an fn ∈ F with the following properties:

1. |fn| < p(n);

2. for all π ∈ Πn, there exists a vπ ∈ V such that:

a) vπ can be computed from π in polynomial time;
b) ⟨fn, vπ⟩ is a “yes” instance of P iff π is a “yes” instance of Π.

With the above hypothesis, if [P, F, V] is compilable, then NP ⊆ P/poly.

The proof can be found in [CDS96] and can be extended to a proof for an analogous
statement resulting in #P ⊆ FP/poly.

Proof of Theorem 113. We use Theorem B.3.15 with the following [P, F, V]: P , the
problem we consider, is checking for a monomial V = xj1

i1 ...xjn
in

whether the corresponding
coefficient in �α�N[(xi)∞](∅) is unequal to zero. The fixed part F is given by the ΣBF α
over the semiring e(N[(xi)∞]). We assume the encoding e of the polynomials is one that
satisfies the precondition of Theorem 113.

We want to show that [P, F, V] can be used to solve a #P-complete problem Π as in the
precondition of Theorem B.3.15. As Π we choose #3SAT. We know that when for π ∈ Π
it holds that |π| ≤ n then π can contain at most n different variables. W.l.o.g. we can
assume that the variables that are used are a1, . . . , an. Let C1, . . . , Ck be all the three
literal clauses constructible from a1, . . . , an; clearly k is polynomial in n.

We choose fn = αn.

αn =Σc1 . . . ΣckΣa1 . . . ΣanΠk
i=1(C ′

i ∗ ci ∗ e(xi) + ¬ci)

where Ci = l1 ∨ l2 ∨ l3 is replaced by C ′
i = l1 +¬l1 ∗ l2 +¬l1 ∗¬l2 ∗ l3. Since k is polynomial

in n and ∥xi∥e is polynomial in i, we know that αn and therefore fn is of polynomial size
in n.

271

B. Full Proofs: Complexity of Counting over Semirings

Given π ∈ Π with |πn| we know that all the clauses are three literal clauses using only
the variables a1, . . . , an. W.l.o.g. we can assume that every variable is used at least
once, otherwise we can simply add ai ∨ ai ∨ ai for each variable that is not used without
changing the number of satisfying assignments. Therefore, the set C(π) of clauses in π is
a subset of the clauses C1, . . . , Ck, i.e., C(π) = {Ci1 , . . . , Cim} where 1 ≤ ij < ij+1 ≤ k
for j = 1, . . . , m − 1. Then the coefficient of xi1 · · · · · xim in �αn�N[(xi)∞](∅), which is

�Σa1 . . . ΣanΠm
j=1C ′

ij
�N[(xi)∞](∅),

is equal to the number of satisfying assignments of π. Since we can extract the binary rep-
resentation of the coefficient in polynomial time from the encoded value e(�αn�N[(xi)∞](∅)),
this would imply that #P ⊆ FP/poly.

For B[(xi)∞] we use the same setting, except that we use 3SAT and then the coefficient
of xi1 · · · · · xim is equal to whether the 3SAT-instance is satisfiable.

Theorem 114. Let R = N[x] (resp. R = B[x]). If there is an encoding function e for R
s.t.

1) ∥�α�R(∅)∥e is polynomial in the size of α,

2) we can extract the binary representation of the coefficient n ∈ N (resp. b ∈ B) of xi

from e(r) in time polynomial in ∥r∥e, and

3) ∥xi∥e is polynomial in log2(i),

then #P ⊆ FP/poly (resp. NP ⊆ P/poly).

Proof. We proceed as in the proof of Theorem 113, this time however we use fn = αn

where

αn =Σc1 . . . ΣckΣa1 . . . ΣanΠk
i=1C ′

i ∗ ci ∗ e(x2i) + ¬ci,

vn =x2i1 +···+2im
.

Theorem 115. If #P ⊆ FP/poly (resp. NP ⊆ P/poly), then there exist encodings e∞
and e1 for N[(xi)∞] and N[x] (resp. B[(xi)∞] and B[x]) such that the preconditions 1) -
3) of Theorems 113 and 114 are satisfied.

Proof (sketch). For simplicity, we only consider the case where #P ⊆ FP/poly and
argue for the existence of an encoding e∞ for N[(xi)∞] that satisfies the preconditions of
Theorem 113. The proofs for the other cases use similar ideas.

The idea is as follows: First, we choose a basic encoding e of N[(xi)∞], where (i) coefficients
are encoded in binary, (ii) exponents are encoded in binary, (iii) variables indices are

272

B.3. Relation to classical complexity classes

encoded in unary, and (iv) monomials are encoded as tuples consisting of their coefficient
plus a list of the variables together with their exponents. Finally, (v) polynomials are
encoded as lists of their monomials with non-zero coefficients.

Clearly, this encoding does not satisfy condition 1). However, importantly it does satisfy
condition 3). Before we continue, recall that given a SAT(e(N[(xi)∞]))-instance α and
a monomial e(xj1

i1 ...xjn
in

), it is possible to compute the coefficient of the monomial in�α�e(N[(xi)∞])(∅) in #P. Assuming that #P ⊆ FP/poly, it is also possible in FP/poly.
Then, let A be an advice oracle that returns the polynomial size advice string A(n) that
can be used to solve any such coefficient query of input size n. Now we consider the
representation of a polynomial p in N[(xi)∞] as

(β, A(|(β, maxmon(β))|), A(|(β, maxmon(β))| − 1), . . . , A(0)),

where

1. β is a SAT(e(N[(xi)∞]))-instance such that �β�e(N[(xi)∞])(∅) = e(p),

2. maxmon(β) is the monomial of maximum size encoding that has a non-zero
coefficient in �β�N[(xi)∞](∅), and

3. |(β, maxmon(β))| denotes the size of the string that encodes the pair.

The size of the representation is polynomial in ∥β∥e, since

• maxmon(β) is polynomial in ∥β∥e

• |A(n)| is polynomial in n and, therefore,

• |A(n)| is polynomial in ∥β∥e for n ≤ |(β, maxmon(β))| and, therefore, also

• all |(β, maxmon(β))| advice strings A(i) concatenated are polynomial in ∥β∥e.

Consequently, there is a representation of the solution �α�e(N[(xi)∞])(∅) of any instance α
of SAT(e(N[(xi)∞])) whose size is polynomial in the size of α. Namely we can simply
take

(α, A(|(α, maxmon(α))|), A(|(α, maxmon(α))| − 1), . . . , A(0)).
Furthermore, given this representation of �α�e(N[(xi)∞])(∅), we can obtain the binary
representation of any coefficient of any monomial in polynomial time in the size of the
representation, due to the presence of the advice strings.

Last but not least, for xi, the representation

(e(xi), A(|(e(xi), e(xi))|), . . . , A(0))

is polynomial in i, since ∥xi∥e is polynomial in i. Thus, we have a representation of
the polynomials that satisfies all three conditions. However, we need an encoding and

273

B. Full Proofs: Complexity of Counting over Semirings

therefore cannot allow multiple representations of the same value but we must choose
exactly one. This is easily fixed though, by choosing that representation of p that has
the shortest ΣBF formula α, breaking ties using the lexicographical ordering. We can
verify that this only makes representations smaller and use this encoding as e∞.

Theorem 116. Let R ≠ T be a commutative semiring. If there is an encoding function
e for R[(xi)∞] s.t.

1) ∥�α�R[(xi)∞](∅)∥e is polynomial in the size of α,

2) we can extract the encoding e(r′) ∈ e(R) of the coefficient of xj1
i1 ...xjn

in
from e(r) in

time polynomial in ∥r∥e, and

3) ∥xi∥e is polynomial in i,

then either NP ⊆ P/poly or ModpP ⊆ P/poly for some p ∈ N.

Theorem 117. Let R ≠ T be a commutative semiring. If there is an encoding function
e for R[x] s.t.

1) ∥�α�R[x](∅)∥e is polynomial in the size of α,

2) we can extract the encoding e(r′) ∈ e(R) of the coefficient of xi from e(r) in time
polynomial in ∥r∥e, and

3) ∥xi∥e is polynomial in log2(i),

then either NP ⊆ P/poly or ModpP ⊆ P/poly for some p ∈ N.

Proof of Theorem 116 and 117. As in the proof of Theorem 105, we use that for any
non-trivial commutative semiring e(R) it holds that either

1. k · e(e⊗) = e(e⊕) implies k = 0 or

2. e(⟨e⊗⟩) ≡ Zp for some p ∈ N.

In the first case we can derive NP ⊆ P/poly, in the second ModpP ⊆ P/poly from the
preconditions of the theorems.

To prove this, we can reuse the ΣBFs from the proofs of Theorem 113 and Theorem 114
for Theorem 116 and 117, respectively. The size restrictions are given as before. Apart
from that, we only need to use that Modp3CNF is ModpP-complete.

Then, we can see as before that we can read off the solution of any (Modp)3CNF-instance
of size at most n as a coefficient of �αn�e(R[(xi)∞)(∅). Here, we note again, that as in
the proof of Theorem 105 we only need to recognize a fixed set of values - which is
possible in constant time - to derive the result of the (Modp)3CNF-instance from the
coefficient.

274

B.3. Relation to classical complexity classes

Lemma 118. If ModpP ⊆ P/poly for p ∈ N, p > 1, then NP ⊆ P/poly.

Proof. We make use of the following problem:

Problem: Unique-SAT
Input: A propositional formula ϕ with at most one satisfying assignment.
Output: True, if ϕ is satisfiable, otherwise false.

Note that this is a promise problem: the input is guaranteed to have at most one satisfying
assignment, if this is not the case any output, including non-termination are allowed.
It follows, that for any p ∈ N, p > 1 we can solve Unique-SAT in ModpP by asking
whether the number of satisfying assignments of the input is not equivalent to zero
modulo p.

Valiant and Vazirani [VV86] showed that NP ⊆ RPUnique-SAT. Furthermore, recall that
RP is the class of languages L for which there exists a polynomial time non-deterministic
Turing machine M such that if x ∈ L then at least half of the computation paths of
M(x) accept and if x ̸∈ L then none of the computation paths accept. Intuitively, the
definition of RP is more restrictive than that of BPP because if a computation path of
the RP-machine M that recognizes L accepts on x, we know that x ∈ L, whereas for
a BPP-machine, this means that x ∈ L is likely but not necessarily the case. Indeed,
RP ⊆ BPP, since if L is in RP due to NTM M , then we can prove it is also in BPP by
executing M twice independently on a given input x.

Using these insights, it follows that NP ⊆ RPUnique-SAT ⊆ BPP Unique-SAT. Since
Unique-SAT is in ModpP for any p ∈ N, p > 1, we can replace the Unique-SAT-oracle
with a ModpP-oracle and obtain NP ⊆ BPP ModpP.

It remains to show that BPP ModpP ⊆ P/poly follows from ModpP ⊆ P/poly. We
already know that BPP ⊆ P/poly [BG81] with an argument based on machine simulation.
If ModpP ⊆ P/poly holds, we then obtain BPP ModpP ⊆ PP/poly/poly. To prove the
result, it thus remains to show that PP/poly/poly ⊆ P/poly.

Consider a language L that is in PP/poly/poly and solved by a polynomial time machines
M with advice oracle AM , where M uses a further oracle that is evaluated by a polynomial
time machine O that uses and advice oracle AO. Given that PP = P, we can combine
M and O into a single polynomial time machine MC and only need to make sure that
we can supply it with the advice from both AM and AO. The latter is, however, easily
achieved. First note that since M takes polynomial time the queries posed to O are all
of polynomial size p(n) in the size n of the input to M . Thus, given input x of size n, we
can use the following polynomial size advice for MC :

(AM (n), AO(p(n)), AO(p(n) − 1), . . . , AO(0)).

This is still polynomial in n and we have both the necessary advice for the part of M
and of O.

275

B. Full Proofs: Complexity of Counting over Semirings

Possibility results for R[(xi)k]
�→ Theorem 119

Theorem 119. Let e(R) be a commutative semiring that is efficiently encoded. Then
SAT(e(R[(xi)k])) is FPNP(e(R))

∥ -complete for metric reductions, if we extend e to R[(xi)k]
by representing polynomials as lists of monomials with exponents in unary and coefficients
encoded by e.

Proof. Let α be some ΣBF over e(R[(xi)k]). We can bound the number of monomials in�α�e(R[(xi)k])(∅) by the monomials that occur in α. Let n be the maximum exponent ei

occurring in the monomials xe1
1 . . . xek

k in α that have a nonzero coefficient. Furthermore,
let m be the number of monomials in α with nonzero coefficients. Then we know that for
all monomials xe1

1 . . . xek
k in �α�e(R[(xi)k])(∅) with nonzero coefficients it holds that ei ≤ nm

since every product can only have m factors, where each factor has at most exponent
n. Therefore, the number of monomials with nonzero coefficients in �α�e(R[(xi)k])(∅) is
bounded by (nm)k. Since k is a constant and n and m are polynomial in the size of
the input since the exponents are encoded in unary, we know that there are at most
polynomially many monomials in �α�e(R[(xi)k])(∅) with nonzero coefficients. Finding each
of their coefficients is possible with a call to a NP(e(R))-oracle that is independent of
the other calls. This shows that SAT(e(R[(xi)k])) is in FPNP(e(R))

∥ .

For FPNP(e(R))
∥ -hardness, it is sufficient to show that we can obtain the answers to poly-

nomially many NP(e(R))-queries by a metric reduction to solving one SAT(e(R[(xi)k]))-
instance. Since SAT(e(R)) is NP(e(R))-complete, we may assume that we have poly-
nomially many SAT(e(R))-instances α1, . . . , αn and moreover that each αi in prefix
normal form with the same quantifier prefix Σv1 . . . Σvm. We then construct the following
SAT(e(R[(xi)k]))-instance β:

Σv1 . . . Σvm α1 ∗ e(x1) + . . . + αn ∗ e(xn
1).

The coefficient of xi
1 is then the solution of αi. As β is constructible in time polynomial

in the size of α1, . . . , αn, we have the desired metic reduction, which opmpletes the
proof.

Possibility results for commutative finitely generated semirings
�→ Theorem 122

Theorem 122. Let e(R) be an efficiently encoded commutative semiring that is generated
by {r1, . . . , rk}. Suppose every r ∈ R is of the form r = �n

i=1ai · �k
j=1r

ei,j

j for some
ai, ei,j ∈ N such that

• max{ei,j , log2(ai), n} is polynomial in ∥r∥e, and

• we can obtain ai, ei,j from e(r) in polynomial time.

276

B.3. Relation to classical complexity classes

If e(R) is

1. periodic with periodicity 1;

2. periodic with periodicity p ≥ 2 and offset 0;

3. periodic with periodicity p ≥ 2 and offset o > 0;

4. not periodic;

then SAT(e(R)) is in

1. FPNP
∥ ;

2. FPModpP
∥ ;

3. FPModpP∪NP
∥ ;

4. FP#P
∥ ;

respectively.

Proof. Let α a ΣBF over e(R). We can transform α into a ΣBF β over bin(S[(xi)k]),
where the binary encoding of the natural numbers bin is extended to the polynomials by
representing polynomials as lists of monomials with exponents in unary and coefficients
encoded by bin and S is

1. N≤o,

2. Zp,

3. Zp × N≤o,

4. N

if e(R) is, respectively,

1. periodic with periodicity 1 and offset o

2. periodic with periodicity p ≥ 2 and offset 0

3. periodic with periodicity p ≥ 2 and offset o > 0

4. not periodic.

277

B. Full Proofs: Complexity of Counting over Semirings

The transformation works by replacing every value e(r) ∈ e(R) that occurs in α by

bin

 n"
i=1

ai

mi!
j=i

x
ei,j

j

when

e(r) = �n
i=1ai

�mi
j=ie(rj)ei,j .

Recall that when k = 0, i.e., e(R) is already generated by the empty set, these equations
collapse to

bin
�

n"
i=1

ai · 1
�

and
e(r) = �n

i=1ai · e⊗

since we take the neutral element of multiplication as the value of an empty product.

During the above transformation, we only need to check whether ai is in S and replace
ai by an equivalent value if not. Namely, if S = N≤o, we use the minimum of ai and
o, if S = Zp, we use the unique integer n in {0, . . . , p − 1} such that ai ≡ n mod p, if
S = Zp × N≤o, we use (n, m), where n is the unique integer in {0, . . . , p − 1} such that
ai ≡ n mod p and m is the minimum of ai and o, otherwise, S = N in which case we
know that ai ∈ N. We can obtain the above expression in polynomial time. Hence, the
size of β is also polynomial in the input.

Theorem 119 tells us, that SAT(bin(S[(xi)k])) satisfies the desired complexity assertion.
Furthermore, given �β�bin(S[(xi)k])(∅) we can compute �α�e(R)(∅) in polynomial time. This
can be seen as follows. Let

�β�S[(xi)k](∅) =
n"

i1,...,ik=1
ai

k!
j=1

x
e

i,j

j .

Then we know that �α�R(∅) = �n
i1,...,ik=1

�a
i

v=1
�k

j=1r
e

i,j

j .

Since the size of the representation of �β�bin(S[(xi)k])(∅) is polynomial, also the number of
monomials in �β�bin(S[(xi)k])(∅) is polynomial. Therefore, we can calculate the values of
all the “monomials” e(�k

j=1r
e

i,j

j) in polynomial time.

To compute
e(�a

i
v=1

�k
j=1r

e
i,j

j)

first consider the binary representation c⌈log2(a
i
)⌉ . . . c0 ∈ {0, 1}∗ of ai. We know that

e(�a
i

v=1
�k

j=1r
e

i,j

j) = �⌈log2(a
i
)⌉

t=0 ct · e(�2t

v=1
�k

j=1r
e

i,j

j). (B.2)

278

B.3. Relation to classical complexity classes

Thus, we can proceed by first iteratively computing

e(�2t

v=1
�k

j=1r
e

i,j

j) = e(�2t−1
v=1

�k
j=1r

e
i,j

j)⊕e(�2t−1
v=1

�k
j=1r

e
i,j

j)

for t = 1, . . . , ⌈log2(ai)⌉. This is possible in ⌈log2(ai)⌉ steps, where each of them takes
polynomial time and leads to a result that is polynomial in size, since e(R) is efficiently
encoded.

After having computed these values, we can plug them into Equation (B.2) and evaluate
it. This is again possible in polynomial time, and leads to a result that is polynomial in
size, since e(R) is efficiently encoded. For the same reason, summing up all the values
e(�a

i
v=1

�k
j=1r

e
i,j

j) over i is also possible in polynomial time and leads to a polynomial-size
result.

From metric-reducibility to SAT(S[(xi)k]) and Theorem 119, it follows that SAT(e(R))
is in FPFPC

∥ . The latter class is equal to FPC
∥ , which complete the proof.

B.3.4 Derived results
�→ Theorem 123
Theorem 123. Let S = N,Z,Q. For Sn, n ∈ N, the semiring S over multiple dimensions,
we have that SAT(bin(S)n) is FP#P

∥ -complete with respect to metric reductions, where
bin(Q) represents r ∈ Q as pair (bin(p), bin(q)) such that p/q = r, p ∈ Z, q ∈ N and the
greatest common divisor of |p| and q is 1.

Proof. For S = N and S = Z we see that Sn is finitely generated by {e1, . . . , en} and
{e1, . . . , en, (−1, . . . , −1)}, respectively, where ei is the vector whose jth entry is 0 if j ̸= i
and 1 if i = j. Furthermore, every number m = (m1, . . . , mn) ∈ S can be represented as
a sum

m =
n"

i=1

|mi|"
j=1

�
ei if mi ≥ 0,

(−1, . . . , −1)ei if mi < 0.

such that log2(mi) is polynomial in ∥m∥bin. Therefore, the preconditions of Theorem 122
are satisfied and we obtain that SAT(bin(S)n) is in FP#P

∥ .

For S = Q, this strategy does not apply completely analogously since Q is not finitely
generated. However, we can apply a very similar strategy as follows.

Consider a SAT(bin(Q)n)-instance α. Let bin(p1/q1), . . . , bin(pm/qm) ∈ bin(Q) be the
entries of the weight vectors in α. Furthermore, let l be the least common multiple of
q1, . . . , qm. Then we can replace these values by polynomials from bin(N[(xi)2]) by using

poly(pi, qi) =
�

bin(pil/qix2) if pi ≥ 0,
bin(|pi|l/qix1x2) if pi < 0.

for bin(pi/qi). Note that when we replace x1 by −1 and x2 by 1/l, we get the original value
again. The same still holds after addition and multiplication, that is, f : bin(N[(xi)2]) →

279

B. Full Proofs: Complexity of Counting over Semirings

bin(Q), p(x1, x2) .→ p(−1, l) is a homomorphism. In fact, when we restrict the codomain of
f to bin(⟨1/l, −1⟩, it is even an epimorphism, which is moreover computable in polynomial
time.

Thus, we can metrically reduce SAT(bin(Q)n) to SAT(bin(N[(xi)2])n). However, the
semiring bin(N[(xi)2])n is finitely generated, by {ei, eix1, eix2 | i = 1, . . . , n} and satisfies
the preconditions of Theorem 122. Thus, SAT(bin(N[(xi)2)n) and consequently also
SAT(bin(Q)n) is in FP#P

∥ .

Regarding hardness, note that already SAT(bin(N)) is FP#P
∥ -hard with respect to metric

reductions: Given n SAT(bin(N))-instances I1, . . . , In we can compute the value of the
SAT(bin(N))-instance αn = I1 ∗ bin(2k) + . . . + In ∗ bin(2k∗n), where k is such that
2k > �Ii�bin(N)(∅) for all i. Such a k can be found and is polynomial in the size of
the instances. Due to the choice of k we can understand the result of αn as a list of
the results of Ii in binary representation. From the FP#P

∥ -hardness it immediately
follows, that SAT(bin(S)n) is even FP#P

∥ -complete with respect to metric reductions for
S = N,Z,Q.

280

APPENDIX C
Full Proofs: Efficient Algebraic

Answer Set Counting

C.1 Proofs Regarding Clark’s Completion
�→ Theorem 149
Theorem 149. Given a normal answer set program Π and a tree decomposition T = (T, χ)
of INC(Π) with width k and root tr , the CNF IClark(Π, T , tr) can be constructed in time
linear in |Π| + |T | and satisfies that

(i) every model of ClarkProp(Π) can be uniquely extended to a model of IClark(Π, T , tr),

(ii) the size of IClark(Π, T) is in O(k|Π|), and

(iii) the treewidth of PRIM(IClark(Π, T , tr)) is at most 3(k + 1).

Proof. We can assume w.l.o.g. that every node t ∈ T has at most 2 children and that T
has at most |Π| nodes. Otherwise, we transform the tree decomposition into an equivalent
one, where this is the case. This is possible in linear time in |T | [Klo94].

In order to obtain a CNF we express every equivalence aux ↔ �
x∈X in Definition 148

by the clauses ¬aux ∨ �
x∈X x and aux ∨ ¬x for x ∈ X. Similarly, for aux ↔ �

x∈X we
use the clauses aux ∨ �

x∈X ¬x and ¬aux ∨ x for x ∈ X.

For 1. first recall that the Tseitin transformation has the desired property. Then observe
that the given translation partially applies the Tseitin transformation on the formula

a ↔
�

r∈Π,head(r)=a

�
l∈body(r)

l

281

C. Full Proofs: Efficient Algebraic Answer Set Counting

for every a ∈ A(Π). Since Clark’s Completion is the conjunction of the above formula
for every a ∈ A(Π), this proves the desired claim.

2. follows immediately from Definition 148. We introduce one auxiliary atom forcedr

for every rule in Π and one auxiliary atom uptox
t for every combination x, t such that

x ∈ χ(t). Last but not least, observe that we have at most six equivalences for each pair
x, t such that x ∈ χ(t). Furthermore, each of these equivalences involves at most k + 2
variables, since every node has at most two children. Thus, the clauses corresponding to
the equivalences have at most k + 2 atoms and there are at most 6 ∗ (k + 2)2 many of
them for each node t ∈ T . Since |T | ≤ |Π|, we are done.

In order to prove 3. we construct a tree decomposition T ′ = (T ′, χ′) of PRIM(C) from
the given tree decomposition of INC(Π). Namely, we assume that χ(t) = {xt

1, . . . , xt
|χ(t)|}

and use T ′ = (V ′, E′), where

V ′ = {(t, i) | t ∈ T, i = 1, . . . , |χ(t)|}
E′ = {((t, i + 1), (t, i)) | t ∈ V, i = 1, . . . , |χ(t)| − 1}

∪ {((t, 1), (t′, |χ(t′)|)) | (t, t′) ∈ E}

and

χ′(t, i) =χ(t) ∩ A(Π) ∪ {forcedr | r ∈ χ(t)}
∪ {upto

xt
j

t′ | t′ ∈ children(t), xt
j ∈ χ(t′), j ≥ i} ∪ {upto

xt
j

t | j ≤ i}.

Then it holds that

|χ′(t, i)| = |χ(t) ∩ A(Π)| + |{forcedr | r ∈ χ(t)}|
+ |{upto

xt
j

t′ | t′ ∈ children(t), xt
j ∈ χ(t′), j ≥ i}| + |{upto

xt
j

t | j ≤ i}|
≤ |χ(t)| + 2(k + 1 − i + 1) + i

≤ 3(k + 1) + 1.

Therefore, the width of T ′ is less or equal to 3(k + 1). Furthermore, T ′ is a tree
decomposition of PRIM(C), since for each equivalence in Definition 148 there is a bag
that contains all the variables that occur in it.

C.2 Proofs Regarding Cycle Breaking
�→ Lemmas 151, 157, 159, Theorems 153, 155, 154, 162
Lemma 151 (Faithfulness Implies Query Invariance). Let µ = ⟨Π, α, R⟩ be a measure
and let C(.) be a faithful cycle breaking for Π. Then for µ′ = ⟨C(Π), α, R⟩ it holds that
µ(a) = µ′(a) for every a ∈ A(Π).

Proof. Recall that a cycle breaking C(.) is faithful (for Π), if:

282

C.2. Proofs Regarding Cycle Breaking
�→ Lemmas 151, 157, 159, Theorems 153, 155, 154, 162

• |AS(Π)| = |AS(C(Π))| and,

• AS(Π) = {I ∩ A(Π) | I ∈ AS(C(Π))}.

Let C(.) be a faithful cycle breaking (for Π). Then we can define a bijective map f
between AS(Π) and AS(C(Π)), such that for each interpretation I ⊆ A(Π) the answer
set f(I) of C(Π) satisfies I = A(Π) ∩ f(I).

Now let a ∈ A(Π). We know that µ′(a) is the sum of �α�A(f(I)) over all answer sets
f(I) of Π, since f is bijective. Since α contains only variables in A(Π) it holds that�α�A(f(I)) = �α�A(f(I) ∩ A(Π)). However, I = f(I) ∩ A(Π) = I is guaranteed to be
an answer set of Π. This implies that µ′(a) = µ(a).

Theorem 153. There is a family of programs (Πn)n∈N such that

1. DEP(Πn) has exactly one simple cycle,

2. the treewidth of Πn is bounded by a constant (independent of n),

3. the number of atoms and rules of Πn is linear in n, and

4. the treewidth of MJ(Πn) grows linearly with n.

Proof. For this, we define

Πn ={{v(i)} ←| i = 1, . . . , n}
∪ {{e(i, j)} ←| i, j = 1, . . . , n, i + 1 ≡ j mod n}
∪ {in(i) ← v(i) | i = 1, . . . , n}
∪ {in(i) ← e(i, j), in(j) | i, j = 1, . . . , n, i + 1 ≡ j mod n}.

Intuitively, Πn takes the directed graph over n vertices with arcs

(1, 2), (2, 3), . . . , (n − 1, n), (n, 1),

thus inducing exactly one cycle 1, 2, . . . , n, 1. Then it guesses a random subset of it. All
vertices are kept such that v(i) holds or the edge of the predecessor is present e(i, j) and
the vertex j was kept.

For all n it holds that DEP(Πn) has exactly one simple cycle, namely

in(1), in(2), . . . , in(n), in(1).

In order to prove that the treewidth of PRIM(Πn) is bounded by a constant, we define
a tree decomposition (Tn, χn) as follows:

Tn = (Vn, En),

283

C. Full Proofs: Efficient Algebraic Answer Set Counting

Vn = {ti | i = 1, . . . , n},

En = {(ti, ti+1) | i = 1, . . . , n − 1},

χn(ti) =

��
{v(i), nv(i), in(i), in(i + 1), if i = 1, . . . , n - 1,
e(i, i + 1), ne(i, i + 1), in(1)}

{v(n), nv(n), in(n), in(1), e(n, 1), ne(n, 1)} if i = n.

First note that (Tn, χn) is a tree decomposition of PRIM(Π), since every rule is contained
in a bag completely and every subgraph of Tn induced by taking only those vertices ti

whose bag contains an atom a is connected. Furthermore, the width of (Tn, En) is 6 and
therefore bounded by a constant independent of n.

It remains to show that the treewidth of PRIM(MJ(Πn)) grows linearly with n. For
this, we first construct the program MJ(Πn):

{{{v(i)} ←| i = 1, . . . , n}
∪ {{e(i, j)} | i, j = 1, . . . , n, i + 1 ≡ j mod n}
∪ {in(i)F ← v(i) | i = 1, . . . , n, F ∈ chi}
∪ {in(i)F ← e(i, j), in(j)F ∪{in(i)} | i, j = 1, . . . , n, i + 1 ≡ j mod n, F ∈ chi},

where chi denotes the set of chains of atoms that can be used to derive in(i), given by

{∅,{in(i − 1)}, {in(i − 1), in(i − 2)}, . . . ,

{in(i − 1), . . . , in(1), in(n), . . . , in(i + 1)}}.

Then the primal graph of MJ(Πn) contains at least the following edges:

1. {in(i)F , in(j)F ∪{in(i)}} for i, j = 1, . . . , n and F ∈ chi such that i + 1 ≡ j mod n
and in(j) ̸∈ F , and

2. {in(i)F , e(i, j)} for i, j = 1, . . . , n and F ∈ chi such that i + 1 ≡ j mod n and
in(j) ̸∈ F .

In order to show lower bounds on the width of every tree decomposition of the primal
graph, we need the following two facts:

Min Degree Lower Bound [KBvH01] The treewidth of a graph G is at least its
smallest node degree, i.e.,

min
v∈V (G)

|{v′ | {v, v′} ∈ E(G)}|.

Minor Monotonicity [Bod98] Given a graph G, the treewidth of any graph minor
G′ of G, i.e. a graph obtained from G by deleting vertices or edges or by contracting
edges, is at most as high as the treewidth of G.

284

C.2. Proofs Regarding Cycle Breaking
�→ Lemmas 151, 157, 159, Theorems 153, 155, 154, 162

This means that it is sufficient to show that there is a graph minor of the primal graph
of Πn such that the minimum degree of a vertex in it is in Ω(n).

We proceed as follows. First, we contract all the edges of the first form. Since, we have
for each i = 1, . . . , n an edge sequence

{in(i)∅, in(i + 1){in(i)}},

{in(i + 1){in(i)}, in(i + 2){in(i),in(i+1)}},

. . . ,

{in(i − 2)F , in(i − 1)F ∪{in(i−2)}}

that we contract, the vertex res(i) resulting from contracting it has neighbors

{e(i′, j′) | i′, j′ = 1, . . . , n, i′ ̸= i, i′ + 1 ≡ j′ mod n}

due to the second kind of edges.

Similarly, e(i, i + 1) for i = 1, . . . , n − 1 has neighbors {res(i′) | i′ ̸= i + 1}. Thus, if we
remove every other vertex that is not of the form res(i) or e(i, j), then every vertex in
the remaining graph minor has at least n − 1 neighbors. From the min-degree lower
bound it follows that the primal graph of MJ(Πn) has treewidth at least n − 1.

Theorem 154. Let Π be a normal answer set program of treewidth k such that the largest
strongly connected component of DEP(Π) has size s. Then the treewidth of JN(Π) is in
O(k2 + k log2(s)).

Proof. Let (T, χ) be an optimal tree decomposition of PRIM(Π). We can modify it to
be a tree decomposition of PRIM(JN(Π)), resulting in (T ′, χ′), where

T ′ =T,

χ′(t) =χ(t) ∪ {next(a), just(a) | a ∈ χ(t)} ∪
$

a∈χ(t)
bin(a)

∪{lt(b, a), succ(b, a) | a, b ∈ χ(t), lt(b, a) ∈ A(JN(Π))}.

Here, bin(a) refers to the set of variables that are used to encode the binary counter for
a ∈ A(Π). For each a ∈ A(Π) there are at most ⌈log2(s)⌉ such variables.

Observe that the width upper bound holds, since

|χ′(t)| = |χ(t)| + |{next(a), just(a) | a ∈ χ(t)}| +
"

a∈χ(t)
|bin(a)|

+ |{lt(b, a), succ(b, a) | a, b ∈ χ(t), lt(b, a) ∈ A(JN(Π))}|
≤ k + k + k⌈log2(s)⌉ + k2

The last expression is in O(k2 + k log2(s)), as claimed.

285

C. Full Proofs: Efficient Algebraic Answer Set Counting

It remains to show that (T ′, χ′) is a tree decomposition of PRIM(JN(Π)). This follows
form the fact that (T, χ) is a tree decomposition of PRIM(Π). Therefore, for every rule
r ∈ Π there exists a bag t ∈ T such that head(r) ∪ body(r) ⊆ χ(t). In JN(Π) we only add
rules that are based on an original rule r ∈ Π, meaning that they only use atoms from
r or auxiliary atoms that are related to atoms in r. I.e., when an additional rule uses
any of next(a), just(a), lt(b, a) or succ(b, a) then both a and b must occur in r. Since
we defined χ′(t) in such a way that it includes all auxiliary atoms that are related to
the atoms in χ(t) this means all additional rules derived from a rule r are completely
contained in χ′(t), when r is completely contained in χ(t).

Lemma 157. Let Π be an answer set program and s ∈ A(Π)∗ be an unfolding sequence.
Then UF(DEP(Π), s) = DEP(TP-Unfold(Π, s)) (when identifying a with acnt(a,s)).

Proof. We proof this lemma by induction on the length of s. If |s| = 0, then the program
TP-Unfold(Π, s) contains only constraints and thus DEP(TP-Unfold(Π, s)) is the
empty digraph. On the other hand, UF(DEP(Π), s) is also equal to the empty digraph.

Next, we prove the induction step. Assume the lemma holds for all s of length up to n.
Now let s = s′sn+1 an unfolding sequence of length n + 1. Then TP-Unfold(Π, s) is
equal to the union of TP-Unfold(Π, s′) and the rules that were added in the n + 1-th
iteration (modulo renaming of s

cnt(sn+1)
n+1 to sn+1). Thus we can apply the induction

hypothesis and obtain that

DEP(TP-Unfold(Π, s′)) = UF(DEP(Π), s′).

We now consider the additional rules that were added in the n+1-th iteration. Then

V (DEP(TP-Unfold(Π, s))) = V (DEP(TP-Unfold(Π, s′))) ∪ {s
cnt(sn+1)
n+1 }

= V (UF(DEP(Π), s′)) ∪ {s
cnt(sn+1)
n+1 }

= V (UF(DEP(Π), s)).

Furthermore, the edges that are added to the dependency graph after the n + 1-th
iteration are of the form (b, sn+1) for (b, sn+1) ∈ E(DEP(Π)), since we only add rules
that derive sn+1 and because we only add rule copies (see line 10). On the other hand,
if (1) (b, sn+1) ∈ E(DEP(Π)) and (2) b occurred in s′, then we add an edge (b, sn+1) as
(1) implies that there is a rule that uses b to derive sn+1 and (2) implies that a copy of
the rule is added that has b in the body (as last(b) = b). This exactly correspond to the
edges that we define to be in E(UF(DEP(Π), s)) for k = n + 1.

Theorem 155. For any factorized measure µ = ⟨Π, α, R⟩, we can construct in polynomial
time in the size of Π given access to an NP-oracle a factorized measure µ′ = ⟨Π′, α, R⟩
with an acyclic program Π′ such that

(i) for all a ∈ A(Π) it holds that µ(a) = µ′(a),

286

C.2. Proofs Regarding Cycle Breaking
�→ Lemmas 151, 157, 159, Theorems 153, 155, 154, 162

(ii) the treewidth of Π′ is at most k · cbs(DEP(Π)), where k is the treewidth of Π, and

(iii) the size of Π′ is at most cbs(DEP(Π)) · |Π|.

For the proof we use the following auxiliary lemma.

Lemma 159. Let Π be an answer set program with treewidth k and s ∈ A(Π)∗ be an
unfolding sequence. If every variable a ∈ A(Π) occurs at most m times in s, then the
treewidth of TP-Unfold(Π, s) is less or equal to k · m.

Proof. We know that for each variable a ∈ A(Π) we introduce at most m − 1 copies
a1, . . . , am−1 during unfolding. Now, let (T, χ) be an optimal tree decomposition for Π.
We take (T, χ′), where

χ′(t) = χ(t) ∪ {aj | 1 ≤ j ≤ m − 1, a ∈ χ(t)}.

Recall line 11 of Algorithm 2, which is the only line where rules are added to the output
program Π′. We see that for each such rule head ← B+

new, B−(r) added at the iteration
where we consider si, it holds that head is either a copy of si or si itself. The same holds
for the atoms in B+

new. For B−(r) we even only have the original atoms.

The first condition for (T, χ′) to be a tree decomposition is easily seen to be true. We
know that (T, χ) is a tree decomposition for PRIM(Π), therefore, every atom a ∈ A(Π)
is in χ(ta). Accordingly, since A(TP-Unfold(Π, s)) only contains the original atoms a
or copies ai we know that a, ai ∈ χ(ta).

Next we must check that for every edge {x, y} in the primal graph of TP-Unfold(Π, s)
there is a node t such that x, y ∈ χ′(t). Again, we know that for every edge {x, y} ∈
E(Π) there is a node tx,y such that x, y ∈ χ(tx,y). Furthermore, we know that there
is an edge between x and y if they both occur in the same rule. Since the rules
in TP-Unfold(Π, s) are all copies of rules with copies of atoms, we know that if
{x, y} ∈ E(PRIM(TP-Unfold(Π, s))), where the original atom of x and y are a and b
respectively, then {a, b} ∈ E(PRIM(Π)). It follows that x, y ∈ χ′(ta,b).

Last but not least, since the subgraphs induced by removing all bags that do not contain
a variable a are trees in the original tree decomposition, this also holds for the new tree
decomposition. Thus, (T, χ′) is a tree decomposition of TP-Unfold(Π, s).

Further, it is easy to see that |χ′(t)| ≤ |χ(t)| · m ≤ k · m.

Theorem 162. The problem of checking whether cbs(G) ≤ k given a digraph G and
k ∈ N in the input is NP-complete.

Proof. NP-membership is easy to see by a guess and check algorithm.

For NP-hardness, we use a reduction from SAT, i.e., checking whether a CNF C has a
satisfying assignment. We assume w.l.o.g. that C does not have any empty clauses. We

287

C. Full Proofs: Efficient Algebraic Answer Set Counting

construct a digraph G with two vertices vx and v¬x for each variable x ∈ V ars(C) and
its negation ¬x and one vertex vC for each clause C. Then we add arcs to include a cycle
between vx and v¬x for every variable x, in addition to one cycle vl1 . . . vlnvC for each
clause C = l1 ∨ . . . vn ∈ C.

Claim I: Let N = |V ars(C)|. There exists a subset S ⊆ V (G) such that G \ S is acyclic
of size N iff the original CNF was satisfiable.

This can be seen as follows: Every subset S ⊆ V (G) such that G \ S is acyclic must
have a size of at least N , since for each variable we need to at least include x or ̸ x in S.
Since we additionally have a cycle vl1 . . . vlnvC for each clause C = l1 ∨ . . . vn ∈ C every
satisfying assignment I to C corresponds to a set

SI = {vl | I |= l, l = x, ¬x, x ∈ V ars(C)}

that satisfies G \ SI is acyclic. And additionally for every S of size N (implying that S
only contains vertices of the form vx, v¬x) such that G \ S is acyclic, it holds that

IS = {x ∈ V ars(C) | vx ∈ S}

is a satisfying assignment to C. This proves the claim.

However, cbs(G) does not ask for the minimum size of a backdoor S such that G \ S is
acyclic. We can however force every minimum solution for cbs(G) to be of that form by
performing an additional modification on G. Namely, we add vertices extra1, . . . , extraN

and arcs (vx, extrai), (extrai, v¬x) for every i ∈ {1, . . . , N} and x ∈ V ars(C). An example
is shown in Figure C.1. Observe that Claim I still holds for the modified graph, since
every added cycle uses both vx and v¬x, thus, removing either of them suffices.

Claim II: Let GC denote constructed graph. cbs(GC) ≤ N + 1 iff C is satisfiable.

By proving this claim the reduction is completed. We already know that if C is satisfiable,
then some set S exists such that GC \ S is acyclic and thus by case (i) and (iv) of the
definition of cbs(.) we have cbs(GC) = N+1, as desired. Assume now that cbs(GC) ≤ N+1.
As C contains no empty clauses, GC is cyclic, strongly connected, and not a polytree
(due to the extra vertices and arcs). Thus, we are in case (iv) of the definition of cbs(.)
meaning we compute it by choosing S ⊆ V (GC) and multiplying cbs(GC \ S) by (|S| + 1);
hence |S| ≤ N . Consider now the following three observations:

1. for {vx, v¬x} and {vy, v¬y} to lie in different SCCs of GC \ S without using vertices
of the from {vx, v¬x, vy, v¬y} for x, y ∈ V ars(C), S needs to be at least of size N
since it needs to include all vertices extrai for i = 1, . . . , N ;

2. for GC \ S to be a polytree and |S| ≤ N , the set S needs to include at least N ; and

3. for GC \ S to be acyclic and |S| ≤ N , the set S needs to include vx or v¬x for each
x ∈ V ars(X).

288

C.2. Proofs Regarding Cycle Breaking
�→ Lemmas 151, 157, 159, Theorems 153, 155, 154, 162

x1

¬x1

x2

¬x2

x3

¬x3

extra1 extra2 extra3

C1

C2

C3

Figure C.1: The digraph GC constructed in the proof of Theorem 162 for the CNF
C = {C1, C2, C3} with C1 = x1 ∨ x2, C2 = ¬x2 ∨ ¬x3, and C3 = x1 ∨ ¬x3. Note that the
edges between xi (resp. ¬xi) and extraj are by intent drawn in an overlapping manner
to improve readability.

This means that we either need to remove a set S such that GC \ S is cyclic but not
strongly connected or a set S of size N such that GC \ S is acyclic. The latter would
imply that C is satisfiable and the former is impossible, since due to (1.) we would need S
of size at least N to obtain N different SCCs and using a set of size k to obtain less than
k + 1 different SCCs is not helpful, since analogous observations hold for the obtained
SCCs.

289

APPENDIX D
Implementation Details

D.1 Knowledge Compilation Settings
We use the different solvers for knowledge compilation as follows:

d4 For d4, we simply used standard settings adding only the input arguments “-dDNNF”,
to ensure that we obtain a d-DNNF as output, “-out=file_name.nnf”, to ensure that
the d-DNNF is saved in the desired output file, and “-smooth”, to activate our minor
modification that ensures the resulting d-DNNF is smooth.

sharpSAT-TD For sharpSAT-TD, we set the argument “-decot”, i.e., the time used
by sharpSAT-TD to compute a tree decomposition based on the corresponding input
argument to aspmc. The other arguments are set as follows:

• “-decow”, specifies the importance of the tree decomposition guidance. We set it to
100.

• “-dDNNF”, is a new option that we added, and specifies that we want to use
sharpSAT-TD as a knowledge compiler.

• “-tmpdir”, simply specifies the temporary directory that sharpSAT-TD should
use. We use “/tmp/”.

• “-cs”, denotes the maximum size of the cache in megabyte. We fix it to “3500”.

• “-dDNNF_out”, specifies the filename that the d-DNNF should be written to. We
set it to the name of a new temporary file.

291

D. Implementation Details

Without the argument “-dDNNF_out” our modified version of sharpSAT-TD prints
the d-DNNF it compiles to stdout. This allows us to perform knowledge compilation
and evaluation simultaneously. While we implemented this feature in aspmc it should
only lead to a speed up by a factor of up to two and is not included in the empirical
evaluation.

c2d For c2d, we set the following input arguments:

• “-smooth_all”, specifies that the final output d-DNNF should be smooth.

• “-reduce”, specifies that c2d should perform possible reduction steps before out-
putting the final d-DNNF.

• “-dt_in”, specifies the input dtree that should be used to guide the variable selection
of c2d. While this is an optional argument, we chose to provide a dtree that we
generated ourselves.

• “-cache_size”, specifies the maximum size of the cache, which we set to “3500”.

The other input arguments (apart from the CNF to compile) are not used.

miniC2D For miniC2D, we set the following input arguments:

• “-v”, specifies the input vtree that defines the order in which variables are decided
by miniC2D. Similarly to the dtree argument of c2d, this argument is optional but
we chose to provide a vtree that we generated ourselves.

• “-s”, specifies the maximum size of the cache. We set it to “3500”.

The other input arguments (apart from CNF to compile) are not used.

292

D.2. Dtree and Vtree Generation

D.2 Dtree and Vtree Generation

Algorithm 3 TD_to_dtree(C, td)
Input A CNF C and a tree decomposition td of PRIM(C).
Output A dtree for C that corresponds to td.

1: td_node_to_clauses = {} # at which td node the clause should be handles
2: last_td_node = {} # at which td node each variable occurs last
3: idx = 0
4: bag_idx = list(td)
5: for bag in td.bag_iter() do
6: clauses[bag] = []
7: bag.idx = idx
8: for a in bag.vertices do
9: last_td_node = idx

10: idx += 1
11: # set where each clause should be handled
12: for i,c in enumerate(cnf.clauses) do
13: idx = min([last_td_node[abs(b)] for b in c])
14: td_node_to_clauses[bag_idx[idx]].append(i)
15: dtree_idx = [None for _ in range(td.bags)]
16: for bag in td.bag_iter() do
17: cur_dtree = None
18: for child in bag.children do
19: child_dtree = dtree_idx[child.idx]
20: if cur_dtree == None then
21: cur_dtree = child_dtree
22: else
23: if child_dtree != None then
24: cur_dtree = Dtree(right = cur_dtree, left = child_tree)
25: for i in td_node_to_clauses[bag] do
26: if cur_dtree == None then
27: cur_dtree = Dtree(val = i)
28: else
29: cur_dtree = Dtree(right = cur_dtree, left = Dtree(val = i))
30: # remember the final dtree for this bag
31: dtree_idx[bag.idx] = cur_dtree
32: return dtree_idx[td.get_root().idx]

We describe shortly how we generate dtrees and vtrees from a tree decomposition in
such a way that the variables are decided in order of minimum distance from the root of
the tree decomposition. Our strategy only slightly differs from that of Korhonen and
Järvisalo [KJ21] [KJ21]. Dtrees describe not the order in which variables are processed

293

D. Implementation Details

but the order in which clauses are processed, which implicitly specifies multiple orders in
which the variables can be processed.

The algorithm to generate a dtree from a tree decomposition td for a CNF C is given in
Algorithm 3. The general idea is that each clause of C has to occur exactly once in the
dtree. Then for a dtree to correspond to a tree decomposition td, we want to first handle
all the clauses whose variables occur in the root of td, remove them from the CNF and
recurse for each of the children of the root on the remaining clauses, adding one subdtree
for each child. Practically, it is expensive to check for each clause whether it is contained
in the current bag of the tree decomposition. Instead, Algorithm 3 first checks (in lines
1-12) for each variable in C, which bag of the tree decomposition is the last in post-order
traversal to contain it. This tells us that the index of the last bag in post-order to contain
all the variables of a clause c is the minimum index over all variables (line 15). Then we
want to handle clause c at this bag (line 16). Finally, we build the dtree from bottom
up by traversing the tree decomposition again in post-order. Here, we first combine the
dtrees of the children of the current bag (lines 22-27) before we add the clauses that need
to be added at the current bag (lines 29-33). After processing the current bag, we store
the corresponding dtree in a map from bags to dtrees. Then the final dtree is the one
that the root of the tree decomposition maps to.

The algorithm to generate a vtree from a tree decomposition works similarly; the only
difference is that we directly work on variables instead of clauses.

294

List of Figures

1.1 (Some of the) directions that ASP was extended along. 3
1.2 Multiple extensions 2.i and 3.j along the directions 2. and 3. 7
1.3 “Questionmarks” that need to be filled in. 7
1.4 The research questions and their division into subquestions. 11
1.5 Overall structure of the generalization and faithfulness results. Vertices

correspond to frameworks that have the capabilities added by each edge
pointing to them. Dashed edges indicate previous work of other authors that
we know of, solid arrows correspond to a contribution in our work (novel or
improved extension in this direction). 14

2.1 Different streams S1, S2 that extend a data stream D in the metro connections
example. 68

2.2 Rules of the final program for the metro connections example. 78

3.1 A computation tree over N. Each transition c
r→ c′ is annotated with its

weight r and each configuration c is annotated with its value v(c). 105
3.2 Epimorphisms f : R1 → R2 between semirings, indicated by arrows R1 → R2.

Relation of complexity classes C and semirings R, indicated by dotted lines
C R. 128

4.1 Different graphs associated with the running example program Πsm for sim-
plicity restricted to non-choice rules (i.e., with rules of the form {stress(x)} ←
etc.). 150

4.2 An optimal tree decomposition of the graph in Figure 4.1b. Each vertex is
labeled by the vertices in the corresponding bag. 151

4.3 Schema of the overall workflow of existing solvers for the evaluation of AASC
problems. 163

4.4 An sd-DNNFs for C = a ∨ b ∨ c ∧ ¬c ∨ d. 165
4.5 A (right-linear) vtree for the SDD in Figure 4.4. 166
4.6 The primal graph (left) and the incidence graph of the program Πn from

Example 53. 174
4.7 Dependency Graph of TP-Unfold(Πsm, s). 187
4.8 A polytree G with root v1 (left) and the unfolding UF(G, spostspre), where

spost = v4v5v2v3v1, spre = v1v3v2v5v4 (right). 191

295

4.9 Sketch of UF(G, s) and a path π through it, for the second recursive case, as
in the proof of Lemma 166. 193

4.10 The number of clauses, treewidth upper-bounds, and average runtimes of CNF
encodings produced by different cycle breaking algorithms on the smokers
and tree benchmark set. Restricted to instances, where the CNF encoding
has less than 25000 clauses and a treewidth upper-bound less than 200. For
each instance we round the number of clauses down to the next multiple of
1000 and round the treewidth upper-bound down to the next multiple of 10.
We group the instances with the same (rounded) values and add one data
point to the plot. Here, the size corresponds to the number of instances in
the group and the color corresponds to the average runtime of the instances
in the group. 206

4.11 Cactus plot of the results for selected aspmc configurations over all benchmark
instances, ordered (top is better) by the number of solved instances. . . . 208

4.12 Scatter plots comparing the runtimes of individual files computed by configu-
ration “-b” (incidence guiding), compared to “-n” (no guiding) for miniC2D
(left) and c2d (right). 209

4.13 Cactus plot of the results for selected solver configurations over all benchmark
instances, ordered (top is better) by the number of solved instances. . . . 210

4.14 Numbers of clauses of the CNF produced by aspmc, lp2lp2 and ProbLog on
(a) the blood benchmarks and (b) the gnb benchmarks. 212

B.1 Karp s-reductions that are proven to show Theorems 90, 93 to 96 and 100.
P → Q means that a Karp s-reduction from P to Q is given. 250

C.1 The digraph GC constructed in the proof of Theorem 162 for the CNF C = {C1,
C2, C3} with C1 = x1 ∨x2, C2 = ¬x2 ∨¬x3, and C3 = x1 ∨¬x3. Note that the
edges between xi (resp. ¬xi) and extraj are by intent drawn in an overlapping
manner to improve readability. 289

296

List of Tables

2.1 Constructs expressible in ASP(AC) and how they are expressed in other
formalisms. 51

1 Detailed results of the overall comparison. 213

297

List of Algorithms

1 An SRTM algorithm for SAT(R) . 104
2 TP-Unfold(Π, s) . 185
3 TD_to_dtree(C, td) . 293

299

Bibliography

[06] ASP Tools. https://research.ics.aalto.fi/software/asp/
lp2sat/. 2006.

[17] Lark - a parsing toolkit for Python. https://github.com/lark-
parser/lark. 2017.

[AB01] Réka Albert and Albert-László Barabási. „Statistical mechanics of complex
networks“. In: CoRR cond-mat/0106096 (2001). url: http://arxiv.
org/abs/cond-mat/0106096.

[AF13] Mario Alviano and Wolfgang Faber. „The Complexity Boundary of An-
swer Set Programming with Generalized Atoms under the FLP Semantics“.
In: Logic Programming and Nonmonotonic Reasoning, 12th International
Conference, LPNMR 2013, Corunna, Spain, September 15-19, 2013. Pro-
ceedings. Ed. by Pedro Cabalar and Tran Cao Son. Vol. 8148. Lecture Notes
in Computer Science. Springer, 2013, pp. 67–72. doi: 10.1007/978-3-
642-40564-8_7. url: https://doi.org/10.1007/978-3-642-
40564-8_7.

[AF18] Mario Alviano and Wolfgang Faber. „Aggregates in Answer Set Program-
ming“. In: Künstliche Intell. 32.2-3 (2018), pp. 119–124. doi: 10.1007/
s13218-018-0545-9. url: https://doi.org/10.1007/s13218-
018-0545-9.

[Agu+13] Felicidad Aguado, Pedro Cabalar, Martıń Diéguez, Gilberto Pérez, and
Concepción Vidal. „Temporal equilibrium logic: a survey“. In: Journal of
Applied Non-Classical Logics 23.1-2 (2013), pp. 2–24.

[Agu+17] Felicidad Aguado, Pedro Cabalar, Martıń Diéguez, Gilberto Pérez, and
Concepción Vidal. „Temporal equilibrium logic with past operators“. In:
Journal of Applied Non-Classical Logics 27.3-4 (2017), pp. 161–177.

[Ake78] Sheldon B. Akers. „Binary decision diagrams“. In: IEEE Transactions on
computers 27.06 (1978), pp. 509–516.

[AL15] Mario Alviano and Nicola Leone. „Complexity and compilation of GZ-
aggregates in answer set programming“. In: Theory Pract. Log. Program.
15.4-5 (2015), pp. 574–587. doi: 10.1017/S147106841500023X. url:
https://doi.org/10.1017/S147106841500023X.

301

https://research.ics.aalto.fi/software/asp/lp2sat/
https://research.ics.aalto.fi/software/asp/lp2sat/
https://github.com/lark-parser/lark
https://github.com/lark-parser/lark
http://arxiv.org/abs/cond-mat/0106096
http://arxiv.org/abs/cond-mat/0106096
https://doi.org/10.1007/978-3-642-40564-8_7
https://doi.org/10.1007/978-3-642-40564-8_7
https://doi.org/10.1007/978-3-642-40564-8_7
https://doi.org/10.1007/978-3-642-40564-8_7
https://doi.org/10.1007/s13218-018-0545-9
https://doi.org/10.1007/s13218-018-0545-9
https://doi.org/10.1007/s13218-018-0545-9
https://doi.org/10.1007/s13218-018-0545-9
https://doi.org/10.1017/S147106841500023X
https://doi.org/10.1017/S147106841500023X

[Alf98] Jorge L. Ramıŕez Alfonsıń. „On Variations of the Subset Sum Problem“.
In: Discret. Appl. Math. 81.1-3 (1998), pp. 1–7. doi: 10.1016/S0166-
218X(96)00105- 9. url: https://doi.org/10.1016/S0166-
218X(96)00105-9.

[Ama+20] Antoine Amarilli, Florent Capelli, Mikaël Monet, and Pierre Senellart.
„Connecting Knowledge Compilation Classes and Width Parameters“. In:
Theory Comput. Syst. 64.5 (2020), pp. 861–914. doi: 10.1007/s00224-
019-09930-2. url: https://doi.org/10.1007/s00224-019-
09930-2.

[AMR20] Marcelo Arenas, Martin Mu~ noz, and Cristian Riveros. „Descriptive Com-
plexity for Counting Complexity Classes“. In: Log. Methods Comput. Sci.
16.1 (2020). doi: 10.23638/LMCS-16(1:9)2020. url: https://doi.
org/10.23638/LMCS-16(1:9)2020.

[AMW17] Michael Abseher, Nysret Musliu, and Stefan Woltran. „htd - A Free, Open-
Source Framework for (Customized) Tree Decompositions and Beyond“. In:
Integration of AI and OR Techniques in Constraint Programming - 14th
International Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017,
Proceedings. Ed. by Domenico Salvagnin and Michele Lombardi. Vol. 10335.
Lecture Notes in Computer Science. Springer, 2017, pp. 376–386. doi:
10.1007/978-3-319-59776-8_30. url: https://doi.org/10.
1007/978-3-319-59776-8_30.

[AV91] Serge Abiteboul and Victor Vianu. „Generic Computation and Its Com-
plexity“. In: Proceedings of the 23rd Annual ACM Symposium on The-
ory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA. Ed. by
Cris Koutsougeras and Jeffrey Scott Vitter. ACM, 1991, pp. 209–219. doi:
10.1145/103418.103444. url: https://doi.org/10.1145/
103418.103444.

[AW93] Eric Allender and Klaus W. Wagner. „Counting Hierarchies: Polynomial
Time and Constant Depth Circuits“. In: Current Trends in Theoretical
Computer Science - Essays and Tutorials. Ed. by Grzegorz Rozenberg and
Arto Salomaa. Vol. 40. World Scientific Series in Computer Science. World
Scientific, 1993, pp. 469–483. doi: 10.1142/9789812794499_0035. url:
https://doi.org/10.1142/9789812794499_0035.

[Azi+15] Rehan Abdul Aziz, Geoffrey Chu, Christian J. Muise, and Peter James
Stuckey. „Stable Model Counting and Its Application in Probabilistic Logic
Programming“. In: Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA. Ed. by
Blai Bonet and Sven Koenig. AAAI Press, 2015, pp. 3468–3474. url: http:
//www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/
9709.

302

https://doi.org/10.1016/S0166-218X(96)00105-9
https://doi.org/10.1016/S0166-218X(96)00105-9
https://doi.org/10.1016/S0166-218X(96)00105-9
https://doi.org/10.1016/S0166-218X(96)00105-9
https://doi.org/10.1007/s00224-019-09930-2
https://doi.org/10.1007/s00224-019-09930-2
https://doi.org/10.1007/s00224-019-09930-2
https://doi.org/10.1007/s00224-019-09930-2
https://doi.org/10.23638/LMCS-16(1:9)2020
https://doi.org/10.23638/LMCS-16(1:9)2020
https://doi.org/10.23638/LMCS-16(1:9)2020
https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.1145/103418.103444
https://doi.org/10.1145/103418.103444
https://doi.org/10.1145/103418.103444
https://doi.org/10.1142/9789812794499_0035
https://doi.org/10.1142/9789812794499_0035
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9709
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9709
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9709

[AZZ17] Vernon Asuncion, Yan Zhang, and Heng Zhang. „Polynomially Bounded
Logic Programs with Function Symbols: A New Decidable“. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 31. 2017.

[Bac+20] Fahiem Bacchus, Jeremias Berg, Matti Järvisalo, and Ruben Martins, eds.
MaxSAT Evaluation 2020: Solver and Benchmark Descriptions. English.
Vol. B-2020-2. Department of Computer Science Report Series B. Finland:
Department of Computer Science, University of Helsinki, 2020.

[Ban+86] F Bancilhon, D Maier, Y Sagiv, and JD Ullman. „Magic sets and other
strange ways to implement logic programs," in proceedings of The ACM Sym-
posium on Principles of Database Systems“. In: Cambridge, Massachusetts,
March (1986), pp. 24–26.

[BD20] Vaishak Belle and Luc De Raedt. „Semiring programming: A semantic
framework for generalized sum product problems“. In: Int. J. Approx. Reason.
126 (2020), pp. 181–201. doi: 10.1016/j.ijar.2020.08.001. url:
https://doi.org/10.1016/j.ijar.2020.08.001.

[BDE16] Harald Beck, Minh Dao-Tran, and Thomas Eiter. „Equivalent Stream Rea-
soning Programs“. In: Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA,
9-15 July 2016. Ed. by Subbarao Kambhampati. IJCAI/AAAI Press, 2016,
pp. 929–935. url: http://www.ijcai.org/Abstract/16/136.

[BDE18] Harald Beck, Minh Dao-Tran, and Thomas Eiter. „LARS: A Logic-based
framework for Analytic Reasoning over Streams“. In: Artif. Intell. 261
(2018), pp. 16–70. doi: 10.1016/j.artint.2018.04.003. url:
https://doi.org/10.1016/j.artint.2018.04.003.

[BDP09] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. „Solving #SAT
and Bayesian Inference with Backtracking Search“. In: J. Artif. Intell.
Res. 34 (2009), pp. 391–442. doi: 10.1613/jair.2648. url: https:
//doi.org/10.1613/jair.2648.

[Bec14] Harald Beck. „Towards a Logic-Based Framework for Analyzing Stream
Reasoning“. In: Proceedings of the 3rd International Workshop on Ordering
and Reasoning Co-located with the 13th International Semantic Web Confer-
ence (ISWC 2014), Riva del Garda, Italy, October 20th, 2014. Ed. by Irene
Celino, Óscar Corcho, Daniele Dell’Aglio, Emanuele Della Valle, Markus
Krötzsch, and Stefan Schlobach. Vol. 1303. CEUR Workshop Proceedings.
CEUR-WS.org, 2014, pp. 11–22. url: http://ceur-ws.org/Vol-
1303/paper_3.pdf.

[BEF17] Harald Beck, Thomas Eiter, and Christian Folie. „Ticker: A system for
incremental ASP-based stream reasoning“. In: Theory and Practice of Logic
Programming 17.5-6 (2017), pp. 744–763.

303

https://doi.org/10.1016/j.ijar.2020.08.001
https://doi.org/10.1016/j.ijar.2020.08.001
http://www.ijcai.org/Abstract/16/136
https://doi.org/10.1016/j.artint.2018.04.003
https://doi.org/10.1016/j.artint.2018.04.003
https://doi.org/10.1613/jair.2648
https://doi.org/10.1613/jair.2648
https://doi.org/10.1613/jair.2648
http://ceur-ws.org/Vol-1303/paper_3.pdf
http://ceur-ws.org/Vol-1303/paper_3.pdf

[BEK21] Loris Bozzato, Thomas Eiter, and Rafael Kiesel. „Reasoning on Multirela-
tional Contextual Hierarchies via Answer Set Programming with Algebraic
Measures“. In: Theory Pract. Log. Program. 21.5 (2021), pp. 593–609. doi:
10.1017/S1471068421000284. url: https://doi.org/10.1017/
S1471068421000284.

[BG81] Charles H. Bennett and John Gill. „Relative to a Random Oracle A, PA !=
NPA != co-NPA with Probability 1“. In: SIAM Journal on Computing 10.1
(1981), pp. 96–113. doi: 10.1137/0210008. url: https://doi.org/
10.1137/0210008.

[BG92] Richard Beigel and John Gill. „Counting Classes: Thresholds, Parity, Mods,
and Fewness“. In: Theor. Comput. Sci. 103.1 (1992), pp. 3–23. doi: 10.
1016/0304-3975(92)90084-S. url: https://doi.org/10.1016/
0304-3975(92)90084-S.

[BGR09] Chitta Baral, Michael Gelfond, and J. Nelson Rushton. „Probabilistic rea-
soning with answer sets“. In: Theory Pract. Log. Program. 9.1 (2009), pp. 57–
144. doi: 10.1017/S1471068408003645. url: https://doi.org/
10.1017/S1471068408003645.

[Bis+99] Stefano Bistarelli, Ugo Montanari, Francesca Rossi, Thomas Schiex, Gérard
Verfaillie, and Hélène Fargier. „Semiring-Based CSPs and Valued CSPs:
Frameworks, Properties, and Comparison“. In: Constraints An Int. J. 4.3
(1999), pp. 199–240. doi: 10.1023/A:1026441215081. url: https:
//doi.org/10.1023/A:1026441215081.

[Bjö11] Magnus Björk. „Successful SAT Encoding Techniques“. In: J. Satisf. Boolean
Model. Comput. 7.4 (2011), pp. 189–201. doi: 10.3233/sat190085. url:
https://doi.org/10.3233/sat190085.

[BL10] Michael Bartholomew and Joohyung Lee. „A Decidable Class of Ground-
able Formulas in the General Theory of Stable Models“. In: Principles of
Knowledge Representation and Reasoning: Proceedings of the Twelfth Inter-
national Conference, KR 2010, Toronto, Ontario, Canada, May 9-13, 2010.
Ed. by Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczynski. AAAI
Press, 2010. url: http://aaai.org/ocs/index.php/KR/KR2010/
paper/view/1375.

[Blo+14] Marjon Blondeel, Steven Schockaert, Dirk Vermeir, and Martine De Cock.
„Complexity of fuzzy answer set programming under Łukasiewicz semantics“.
In: Int. J. Approx. Reason. 55.9 (2014), pp. 1971–2003. doi: 10.1016/
j.ijar.2013.10.011. url: https://doi.org/10.1016/j.ijar.
2013.10.011.

[BLR00] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. „Enhancing Dis-
junctive Datalog by Constraints“. In: IEEE Trans. Knowl. Data Eng. 12.5
(2000), pp. 845–860. doi: 10.1109/69.877512. url: https://doi.
org/10.1109/69.877512.

304

https://doi.org/10.1017/S1471068421000284
https://doi.org/10.1017/S1471068421000284
https://doi.org/10.1017/S1471068421000284
https://doi.org/10.1137/0210008
https://doi.org/10.1137/0210008
https://doi.org/10.1137/0210008
https://doi.org/10.1016/0304-3975(92)90084-S
https://doi.org/10.1016/0304-3975(92)90084-S
https://doi.org/10.1016/0304-3975(92)90084-S
https://doi.org/10.1016/0304-3975(92)90084-S
https://doi.org/10.1017/S1471068408003645
https://doi.org/10.1017/S1471068408003645
https://doi.org/10.1017/S1471068408003645
https://doi.org/10.1023/A:1026441215081
https://doi.org/10.1023/A:1026441215081
https://doi.org/10.1023/A:1026441215081
https://doi.org/10.3233/sat190085
https://doi.org/10.3233/sat190085
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1375
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1375
https://doi.org/10.1016/j.ijar.2013.10.011
https://doi.org/10.1016/j.ijar.2013.10.011
https://doi.org/10.1016/j.ijar.2013.10.011
https://doi.org/10.1016/j.ijar.2013.10.011
https://doi.org/10.1109/69.877512
https://doi.org/10.1109/69.877512
https://doi.org/10.1109/69.877512

[BLR97] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. „Strong and Weak
Constraints in Disjunctive Datalog“. In: Logic Programming and Nonmono-
tonic Reasoning, 4th International Conference, LPNMR’97, Dagstuhl Castle,
Germany, July 28-31, 1997, Proceedings. Ed. by Jürgen Dix, Ulrich Fur-
bach, and Anil Nerode. Vol. 1265. Lecture Notes in Computer Science.
Springer, 1997, pp. 2–17. doi: 10.1007/3-540- 63255- 7_2. url:
https://doi.org/10.1007/3-540-63255-7_2.

[Blu98] Lenore Blum. Complexity and real computation. Springer, 1998. isbn: 0387982817.
url: https://www.worldcat.org/oclc/37004484.

[BMR01] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. „Semiring-based
contstraint logic programming: syntax and semantics“. In: ACM Trans.
Program. Lang. Syst. 23.1 (2001), pp. 1–29. doi: 10.1145/383721.
383725. url: https://doi.org/10.1145/383721.383725.

[BMR97] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. „Semiring-based
Constraint Logic Programming“. In: Proceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 97, Nagoya, Japan,
August 23-29, 1997, 2 Volumes. Morgan Kaufmann, 1997, pp. 352–357. url:
http://ijcai.org/Proceedings/97-1/Papers/055.pdf.

[Bod98] Hans L Bodlaender. „A partial k-arboretum of graphs with bounded treewidth“.
In: Theoretical computer science 209.1-2 (1998), pp. 1–45.

[Bre+15] Gerhard Brewka, James P. Delgrande, Javier Romero, and Torsten Schaub.
„asprin: Customizing Answer Set Preferences without a Headache“. In:
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA. Ed. by Blai Bonet and Sven
Koenig. AAAI Press, 2015, pp. 1467–1474. url: http://www.aaai.org/
ocs/index.php/AAAI/AAAI15/paper/view/9535.

[BRS18] Stefano Bistarelli, Fabio Rossi, and Francesco Santini. „A novel weighted
defence and its relaxation in abstract argumentation“. In: Int. J. Approx.
Reason. 92 (2018), pp. 66–86. doi: 10.1016/j.ijar.2017.10.006.
url: https://doi.org/10.1016/j.ijar.2017.10.006.

[BS17] Simone Bova and Stefan Szeider. „Circuit Treewidth, Sentential Decision,
and Query Compilation“. In: Proceedings of the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2017, Chicago, IL, USA, May 14-19, 2017. Ed. by Emanuel Sallinger,
Jan Van den Bussche, and Floris Geerts. ACM, 2017, pp. 233–246. doi:
10.1145/3034786.3034787. url: https://doi.org/10.1145/
3034786.3034787.

[BSS89] Lenore Blum, Mike Shub, and Steve Smale. „On a theory of computation and
complexity over the real numbers: NP - completeness, recursive functions and
universal machines“. In: Bulletin (New Series) of the American Mathematical

305

https://doi.org/10.1007/3-540-63255-7_2
https://doi.org/10.1007/3-540-63255-7_2
https://www.worldcat.org/oclc/37004484
https://doi.org/10.1145/383721.383725
https://doi.org/10.1145/383721.383725
https://doi.org/10.1145/383721.383725
http://ijcai.org/Proceedings/97-1/Papers/055.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9535
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9535
https://doi.org/10.1016/j.ijar.2017.10.006
https://doi.org/10.1016/j.ijar.2017.10.006
https://doi.org/10.1145/3034786.3034787
https://doi.org/10.1145/3034786.3034787
https://doi.org/10.1145/3034786.3034787

Society 21.1 (1989), pp. 1–46. doi: bams/1183555121. url: https:
//doi.org/.

[Büc60] J. Richard Büchi. „Weak Second-Order Arithmetic and Finite Automata“.
In: Mathematical Logic Quarterly 6.1-6 (1960), pp. 66–92. doi: 0.1002/
malq.19600060105.

[Cab+18] Pedro Cabalar, Roland Kaminski, Torsten Schaub, and Anna Schuhmann.
„Temporal Answer Set Programming on Finite Traces“. In: Theory Pract. Log.
Program. 18.3-4 (2018), pp. 406–420. doi: 10.1017/S1471068418000297.
url: https://doi.org/10.1017/S1471068418000297.

[Cab+19] Pedro Cabalar, Roland Kaminski, Philip Morkisch, and Torsten Schaub.
„telingo= ASP+ time“. In: International Conference on Logic Programming
and Nonmonotonic Reasoning. Springer. 2019, pp. 256–269.

[Cab+20a] Pedro Cabalar, Martin Dieguez, Torsten Schaub, and Anna Schuhmann.
„Towards metric temporal answer set programming“. In: Theory and Practice
of Logic Programming 20.5 (2020), pp. 783–798.

[Cab+20b] Pedro Cabalar, Jorge Fandinno, Torsten Schaub, and Philipp Wanko. „A
Uniform Treatment of Aggregates and Constraints in Hybrid ASP“. In:
Proceedings of the 17th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2020, Rhodes, Greece, September 12-18,
2020. Ed. by Diego Calvanese, Esra Erdem, and Michael Thielscher. 2020,
pp. 193–202. doi: 10.24963/kr.2020/20. url: https://doi.org/
10.24963/kr.2020/20.

[Cab+20c] Pedro Cabalar, Jorge Fandinno, Torsten Schaub, and Philipp Wanko. „An
ASP Semantics for Constraints Involving Conditional Aggregates“. In: ECAI
2020 - 24th European Conference on Artificial Intelligence, 29 August-8
September 2020, Santiago de Compostela, Spain, August 29 - September 8,
2020 - Including 10th Conference on Prestigious Applications of Artificial
Intelligence (PAIS 2020). Ed. by Giuseppe De Giacomo, Alejandro Catalá,
Bistra Dilkina, Michela Milano, Senén Barro, Alberto Bugarıń, and Jérôme
Lang. Vol. 325. Frontiers in Artificial Intelligence and Applications. IOS
Press, 2020, pp. 664–671. doi: 10.3233/FAIA200152. url: https:
//doi.org/10.3233/FAIA200152.

[Cab+22] Pedro Cabalar, Martıń Diéguez, Torsten Schaub, and Anna Schuhmann.
„Metric temporal answer set programming over timed traces“. In: Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning.
Springer. 2022, pp. 117–130.

[Cab11] Pedro Cabalar. „Functional answer set programming“. In: Theory Pract. Log.
Program. 11.2-3 (2011), pp. 203–233. doi: 10.1017/S1471068410000517.
url: https://doi.org/10.1017/S1471068410000517.

306

https://doi.org/bams/1183555121
https://doi.org/
https://doi.org/
https://doi.org/0.1002/malq.19600060105
https://doi.org/0.1002/malq.19600060105
https://doi.org/10.1017/S1471068418000297
https://doi.org/10.1017/S1471068418000297
https://doi.org/10.24963/kr.2020/20
https://doi.org/10.24963/kr.2020/20
https://doi.org/10.24963/kr.2020/20
https://doi.org/10.3233/FAIA200152
https://doi.org/10.3233/FAIA200152
https://doi.org/10.3233/FAIA200152
https://doi.org/10.1017/S1471068410000517
https://doi.org/10.1017/S1471068410000517

[Cal+08a] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone.
„Computable Functions in ASP: Theory and Implementation“. In: Logic
Programming, 24th International Conference, ICLP 2008, Udine, Italy,
December 9-13 2008, Proceedings. Ed. by Maria Garcia de la Banda and
Enrico Pontelli. Vol. 5366. Lecture Notes in Computer Science. Springer,
2008, pp. 407–424. doi: 10.1007/978-3-540-89982-2_37. url:
https://doi.org/10.1007/978-3-540-89982-2_37.

[Cal+08b] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone.
„Computable functions in ASP: Theory and implementation“. In: Interna-
tional Conference on Logic Programming. Springer. 2008, pp. 407–424.

[Cas+14] Julien Cassaigne, Vesa Halava, Tero Harju, and François Nicolas. „Tighter
Undecidability Bounds for Matrix Mortality, Zero-in-the-Corner Problems,
and More“. In: CoRR abs/1404.0644 (2014). arXiv: 1404.0644. url:
http://arxiv.org/abs/1404.0644.

[CD14] Pedro Cabalar and Martıń Diéguez. „Strong Equivalence of Non-Monotonic
Temporal Theories“. In: Principles of Knowledge Representation and Rea-
soning: Proceedings of the Fourteenth International Conference, KR 2014,
Vienna, Austria, July 20-24, 2014. Ed. by Chitta Baral, Giuseppe De Gi-
acomo, and Thomas Eiter. AAAI Press, 2014. url: http://www.aaai.
org/ocs/index.php/KR/KR14/paper/view/7954.

[CDS96] Marco Cadoli, Francesco M. Donini, and Marco Schaerf. „Is Intractability
of Nonmonotonic Reasoning a Real Drawback?“ In: Artif. Intell. 88.1-2
(1996), pp. 215–251. doi: 10.1016/S0004-3702(96)00009-4. url:
https://doi.org/10.1016/S0004-3702(96)00009-4.

[CKS01] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity classifica-
tions of Boolean constraint satisfaction problems. Vol. 7. SIAM monographs
on discrete mathematics and applications. SIAM, 2001. isbn: 978-0-89871-
479-1.

[CM20] Fábio Gagliardi Cozman and Denis Deratani Mauá. „The joy of Probabilistic
Answer Set Programming: Semantics, complexity, expressivity, inference“.
In: Int. J. Approx. Reason. 125 (2020), pp. 218–239. doi: 10.1016/j.
ijar.2020.07.004. url: https://doi.org/10.1016/j.ijar.
2020.07.004.

[CNR22] Angelos Charalambidis, Christos Nomikos, and Panos Rondogiannis. „Strong
Equivalence of Logic Programs with Ordered Disjunction: A Logical Per-
spective“. In: Theory Pract. Log. Program. 22.5 (2022), pp. 708–722. doi:
10.1017/S1471068422000242. url: https://doi.org/10.1017/
S1471068422000242.

307

https://doi.org/10.1007/978-3-540-89982-2_37
https://doi.org/10.1007/978-3-540-89982-2_37
https://arxiv.org/abs/1404.0644
http://arxiv.org/abs/1404.0644
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7954
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7954
https://doi.org/10.1016/S0004-3702(96)00009-4
https://doi.org/10.1016/S0004-3702(96)00009-4
https://doi.org/10.1016/j.ijar.2020.07.004
https://doi.org/10.1016/j.ijar.2020.07.004
https://doi.org/10.1016/j.ijar.2020.07.004
https://doi.org/10.1016/j.ijar.2020.07.004
https://doi.org/10.1017/S1471068422000242
https://doi.org/10.1017/S1471068422000242
https://doi.org/10.1017/S1471068422000242

[CPV09] Pedro Cabalar, David Pearce, and Agustıń Valverde. „A Revised Concept
of Safety for General Answer Set Programs“. In: Logic Programming and
Nonmonotonic Reasoning, 10th International Conference, LPNMR 2009,
Potsdam, Germany, September 14-18, 2009. Proceedings. Ed. by Esra Erdem,
Fangzhen Lin, and Torsten Schaub. Vol. 5753. Lecture Notes in Computer
Science. Springer, 2009, pp. 58–70. doi: 10.1007/978-3-642-04238-
6_8. url: https://doi.org/10.1007/978-3-642-04238-6_8.

[CV07] Pedro Cabalar and Gilberto Pérez Vega. „Temporal Equilibrium Logic: A
First Approach“. In: Computer Aided Systems Theory - EUROCAST 2007,
11th International Conference on Computer Aided Systems Theory, Las
Palmas de Gran Canaria, Spain, February 12-16, 2007, Revised Selected
Papers. Ed. by Roberto Moreno-Dıáz, Franz Pichler, and Alexis Quesada-
Arencibia. Vol. 4739. Lecture Notes in Computer Science. Springer, 2007,
pp. 241–248. doi: 10.1007/978-3-540-75867-9_31. url: https:
//doi.org/10.1007/978-3-540-75867-9_31.

[Dan+01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. „Com-
plexity and expressive power of logic programming“. In: ACM Comput. Surv.
33.3 (2001), pp. 374–425. doi: 10.1145/502807.502810. url: https:
//doi.org/10.1145/502807.502810.

[Dar+17] Adnan Darwiche, Pierre Marquis, Dan Suciu, and Stefan Szeider. „PySDD“.
In: Recent Trends in Knowledge Compilation (Dagstuhl Seminar 17381).
Vol. 7(9). 2017, pp. 81–82. doi: 10.4230/DagRep.7.9.62. url: https:
//doi.org/10.4230/DagRep.7.9.62.

[Dar04] Adnan Darwiche. „New Advances in Compiling CNF into Decomposable
Negation Normal Form“. In: Proceedings of the 16th Eureopean Conference
on Artificial Intelligence, ECAI’2004, including Prestigious Applicants of
Intelligent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004. Ed. by
Ramón López de Mántaras and Lorenza Saitta. IOS Press, 2004, pp. 328–
332.

[Dar11] Adnan Darwiche. „SDD: A New Canonical Representation of Propositional
Knowledge Bases“. In: IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain,
July 16-22, 2011. Ed. by Toby Walsh. IJCAI/AAAI, 2011, pp. 819–826.
doi: 10.5591/978-1-57735-516-8/IJCAI11-143. url: https:
//doi.org/10.5591/978-1-57735-516-8/IJCAI11-143.

[dCSW20] Cassio P. de Campos, Georgios Stamoulis, and Dennis Weyland. „A struc-
tured view on weighted counting with relations to counting, quantum com-
putation and applications“. In: Inf. Comput. 275 (2020), p. 104627. doi:
10.1016/j.ic.2020.104627. url: https://doi.org/10.1016/j.
ic.2020.104627.

308

https://doi.org/10.1007/978-3-642-04238-6_8
https://doi.org/10.1007/978-3-642-04238-6_8
https://doi.org/10.1007/978-3-642-04238-6_8
https://doi.org/10.1007/978-3-540-75867-9_31
https://doi.org/10.1007/978-3-540-75867-9_31
https://doi.org/10.1007/978-3-540-75867-9_31
https://doi.org/10.1145/502807.502810
https://doi.org/10.1145/502807.502810
https://doi.org/10.1145/502807.502810
https://doi.org/10.4230/DagRep.7.9.62
https://doi.org/10.4230/DagRep.7.9.62
https://doi.org/10.4230/DagRep.7.9.62
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://doi.org/10.1016/j.ic.2020.104627
https://doi.org/10.1016/j.ic.2020.104627
https://doi.org/10.1016/j.ic.2020.104627

[DD20] Vincent Derkinderen and Luc De Raedt. „Algebraic Circuits for Decision
Theoretic Inference and Learning“. In: ECAI 2020 - 24th European Con-
ference on Artificial Intelligence, 29 August-8 September 2020, Santiago de
Compostela, Spain, August 29 - September 8, 2020 - Including 10th Con-
ference on Prestigious Applications of Artificial Intelligence (PAIS 2020).
Ed. by Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilkina, Michela
Milano, Senén Barro, Alberto Bugarıń, and Jérôme Lang. Vol. 325. Frontiers
in Artificial Intelligence and Applications. IOS Press, 2020, pp. 2569–2576.
doi: 10.3233/FAIA200392. url: https://doi.org/10.3233/
FAIA200392.

[Del+03] Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Nicola Leone, and Gerald
Pfeifer. „Aggregate Functions in Disjunctive Logic Programming: Semantics,
Complexity, and Implementation in DLV“. In: IJCAI-03, Proceedings of
the Eighteenth International Joint Conference on Artificial Intelligence,
Acapulco, Mexico, August 9-15, 2003. Ed. by Georg Gottlob and Toby
Walsh. Morgan Kaufmann, 2003, pp. 847–852. url: http://ijcai.org/
Proceedings/03/Papers/122.pdf.

[Del+16] Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Chris-
tian Komusiewicz, and Frances A. Rosamond. „The First Parameterized
Algorithms and Computational Experiments Challenge“. In: 11th Interna-
tional Symposium on Parameterized and Exact Computation, IPEC 2016,
August 24-26, 2016, Aarhus, Denmark. Ed. by Jiong Guo and Danny Her-
melin. Vol. 63. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016, 30:1–30:9. doi: 10.4230/LIPIcs.IPEC.2016.30. url: https:
//doi.org/10.4230/LIPIcs.IPEC.2016.30.

[Dem92] Robert Demolombe. „Syntactical Characterization of a Subset of Domain-
Independent Formulas“. In: J. ACM 39.1 (1992), pp. 71–94. doi: 10.
1145/147508.147520. url: https://doi.org/10.1145/147508.
147520.

[DG07] Manfred Droste and Paul Gastin. „Weighted automata and weighted logics“.
In: Theor. Comput. Sci. 380.1-2 (2007), pp. 69–86. doi: 10.1016/j.tcs.
2007.02.055. url: https://doi.org/10.1016/j.tcs.2007.02.
055.

[DHK05] Arnaud Durand, Miki Hermann, and Phokion G. Kolaitis. „Subtractive
reductions and complete problems for counting complexity classes“. In:
Theor. Comput. Sci. 340.3 (2005), pp. 496–513. doi: 10.1016/j.tcs.
2005.03.012. url: https://doi.org/10.1016/j.tcs.2005.03.
012.

[DK15] Luc De Raedt and Angelika Kimmig. „Probabilistic (logic) programming
concepts“. In: Mach. Learn. 100.1 (2015), pp. 5–47. doi: 10.1007/s10994-
015-5494-z. url: https://doi.org/10.1007/s10994-015-
5494-z.

309

https://doi.org/10.3233/FAIA200392
https://doi.org/10.3233/FAIA200392
https://doi.org/10.3233/FAIA200392
http://ijcai.org/Proceedings/03/Papers/122.pdf
http://ijcai.org/Proceedings/03/Papers/122.pdf
https://doi.org/10.4230/LIPIcs.IPEC.2016.30
https://doi.org/10.4230/LIPIcs.IPEC.2016.30
https://doi.org/10.4230/LIPIcs.IPEC.2016.30
https://doi.org/10.1145/147508.147520
https://doi.org/10.1145/147508.147520
https://doi.org/10.1145/147508.147520
https://doi.org/10.1145/147508.147520
https://doi.org/10.1016/j.tcs.2007.02.055
https://doi.org/10.1016/j.tcs.2007.02.055
https://doi.org/10.1016/j.tcs.2007.02.055
https://doi.org/10.1016/j.tcs.2007.02.055
https://doi.org/10.1016/j.tcs.2005.03.012
https://doi.org/10.1016/j.tcs.2005.03.012
https://doi.org/10.1016/j.tcs.2005.03.012
https://doi.org/10.1016/j.tcs.2005.03.012
https://doi.org/10.1007/s10994-015-5494-z
https://doi.org/10.1007/s10994-015-5494-z
https://doi.org/10.1007/s10994-015-5494-z
https://doi.org/10.1007/s10994-015-5494-z

[DKT07] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. „ProbLog: A Prob-
abilistic Prolog and Its Application in Link Discovery“. In: IJCAI 2007,
Proceedings of the 20th International Joint Conference on Artificial Intelli-
gence, Hyderabad, India, January 6-12, 2007. Ed. by Manuela M. Veloso.
2007, pp. 2462–2467. url: http://ijcai.org/Proceedings/07/
Papers/396.pdf.

[DM02] Adnan Darwiche and Pierre Marquis. „A Knowledge Compilation Map“. In:
J. Artif. Intell. Res. 17 (2002), pp. 229–264. doi: 10.1613/jair.989.
url: https://doi.org/10.1613/jair.989.

[dMF13] Eduardo Menezes de Morais and Marcelo Finger. „Probabilistic Answer Set
Programming“. In: Brazilian Conference on Intelligent Systems, BRACIS
2013, Fortaleza, CE, Brazil, 19-24 October, 2013. IEEE Computer Society,
2013, pp. 150–156. doi: 10.1109/BRACIS.2013.33. url: https:
//doi.org/10.1109/BRACIS.2013.33.

[DPV20] Jeffrey M. Dudek, Vu Phan, and Moshe Y. Vardi. „ADDMC: Weighted
Model Counting with Algebraic Decision Diagrams“. In: The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 2020,
pp. 1468–1476. url: https://ojs.aaai.org/index.php/AAAI/
article/view/5505.

[EG97] Thomas Eiter and Georg Gottlob. „Expressiveness of stable model semantics
for disjunctive logic programs with functions“. In: The Journal of Logic
Programming 33.2 (1997), pp. 167–178.

[EGL16] Esra Erdem, Michael Gelfond, and Nicola Leone. „Applications of Answer
Set Programming“. In: AI Mag. 37.3 (2016), pp. 53–68. doi: 10.1609/
aimag.v37i3.2678. url: https://doi.org/10.1609/aimag.
v37i3.2678.

[EGS05] Jason Eisner, Eric Goldlust, and Noah A. Smith. „Compiling Comp Ling:
Weighted Dynamic Programming and the Dyna Language“. In: HLT/EMNLP
2005, Human Language Technology Conference and Conference on Empir-
ical Methods in Natural Language Processing, Proceedings of the Confer-
ence, 6-8 October 2005, Vancouver, British Columbia, Canada. The As-
sociation for Computational Linguistics, 2005, pp. 281–290. url: https:
//aclanthology.org/H05-1036/.

[EHK21] Thomas Eiter, Markus Hecher, and Rafael Kiesel. „Treewidth-Aware Cycle
Breaking for Algebraic Answer Set Counting“. In: Proceedings of the 18th
International Conference on Principles of Knowledge Representation and
Reasoning, KR 2021, Online event, November 3-12, 2021. Ed. by Meghyn
Bienvenu, Gerhard Lakemeyer, and Esra Erdem. 2021, pp. 269–279. doi:

310

http://ijcai.org/Proceedings/07/Papers/396.pdf
http://ijcai.org/Proceedings/07/Papers/396.pdf
https://doi.org/10.1613/jair.989
https://doi.org/10.1613/jair.989
https://doi.org/10.1109/BRACIS.2013.33
https://doi.org/10.1109/BRACIS.2013.33
https://doi.org/10.1109/BRACIS.2013.33
https://ojs.aaai.org/index.php/AAAI/article/view/5505
https://ojs.aaai.org/index.php/AAAI/article/view/5505
https://doi.org/10.1609/aimag.v37i3.2678
https://doi.org/10.1609/aimag.v37i3.2678
https://doi.org/10.1609/aimag.v37i3.2678
https://doi.org/10.1609/aimag.v37i3.2678
https://aclanthology.org/H05-1036/
https://aclanthology.org/H05-1036/

10.24963/kr.2021/26. url: https://doi.org/10.24963/kr.
2021/26.

[EHK23] Thomas Eiter, Markus Hecher, and Rafael Kiesel. „aspmc: New Frontiers in
Algebraic Answer Set Counting“. In: to appear (2023).

[EIK09] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. „Answer
set programming: A primer“. In: Reasoning Web International Summer
School. Springer. 2009, pp. 40–110.

[Eis02] Jason Eisner. „Parameter Estimation for Probabilistic Finite-State Trans-
ducers“. In: Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA.
ACL, 2002, pp. 1–8. doi: 10.3115/1073083.1073085. url: https:
//aclanthology.org/P02-1001/.

[Eit+04] Thomas Eiter, Wolfgang Faber, Michael Fink, Gerald Pfeifer, and Stefan
Woltran. „Complexity of Model Checking and Bounded Predicate Arities for
Non-ground Answer Set Programming“. In: Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Ninth International Conference
(KR2004), Whistler, Canada, June 2-5, 2004. Ed. by Didier Dubois, Christo-
pher A. Welty, and Mary-Anne Williams. AAAI Press, 2004, pp. 377–387.
url: http://www.aaai.org/Library/KR/2004/kr04-040.php.

[Eit+07] Thomas Eiter, Wolfgang Faber, Michael Fink, and Stefan Woltran. „Com-
plexity results for answer set programming with bounded predicate arities
and implications“. In: Ann. Math. Artif. Intell. 51.2-4 (2007), pp. 123–165.
doi: 10.1007/s10472-008-9086-5. url: https://doi.org/10.
1007/s10472-008-9086-5.

[Eit+08] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schind-
lauer, and Hans Tompits. „Combining answer set programming with de-
scription logics for the semantic web“. In: Artificial intelligence 172.12-13
(2008), pp. 1495–1539.

[Eit+13a] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl.
„Liberal Safety Criteria for HEX-Programs“. In: Twenty-Seventh AAAI
Conference (AAAI 2013), July 14–18, 2013, Bellevue, Washington, USA.
Ed. by Marie desJardins and Michael Littman. Bellevue, Washington, USA:
AAAI Press, July 2013, pp. 267–275. url: http://www.aaai.org/ocs/
index.php/AAAI/AAAI13/paper/view/6209.

[Eit+13b] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl.
„Liberal safety for answer set programs with external sources“. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 27. 2013, pp. 267–275.

[Eit+16] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl.
„Domain expansion for ASP-programs with external sources“. In: Artificial
Intelligence 233 (2016), pp. 84–121.

311

https://doi.org/10.24963/kr.2021/26
https://doi.org/10.24963/kr.2021/26
https://doi.org/10.24963/kr.2021/26
https://doi.org/10.3115/1073083.1073085
https://aclanthology.org/P02-1001/
https://aclanthology.org/P02-1001/
http://www.aaai.org/Library/KR/2004/kr04-040.php
https://doi.org/10.1007/s10472-008-9086-5
https://doi.org/10.1007/s10472-008-9086-5
https://doi.org/10.1007/s10472-008-9086-5
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6209
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6209

[EK20a] Thomas Eiter and Rafael Kiesel. „ASP(AC): Answer Set Programming
with Algebraic Constraints“. In: Theory Pract. Log. Program. 20.6 (2020),
pp. 895–910. doi: 10.1017/S1471068420000393. url: https://doi.
org/10.1017/S1471068420000393.

[EK20b] Thomas Eiter and Rafael Kiesel. „Weighted LARS for Quantitative Stream
Reasoning“. In: ECAI 2020 - 24th European Conference on Artificial Intelli-
gence, 29 August-8 September 2020, Santiago de Compostela, Spain, August
29 - September 8, 2020 - Including 10th Conference on Prestigious Applica-
tions of Artificial Intelligence (PAIS 2020). Ed. by Giuseppe De Giacomo,
Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Alberto
Bugarıń, and Jérôme Lang. Vol. 325. Frontiers in Artificial Intelligence and
Applications. IOS Press, 2020, pp. 729–736. doi: 10.3233/FAIA200160.
url: https://doi.org/10.3233/FAIA200160.

[EK21] Thomas Eiter and Rafael Kiesel. „On the Complexity of Sum-of-Products
Problems over Semirings“. In: Thirty-Fifth AAAI Conference on Artifi-
cial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Ap-
plications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium
on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021. AAAI Press, 2021, pp. 6304–6311. url: https:
//ojs.aaai.org/index.php/AAAI/article/view/16783.

[EK23] Thomas Eiter and Rafael Kiesel. „Semiring Reasoning Frameworks in AI
and Their Computational Complexity“. In: J. Artif. Intell. Res. 77 (2023),
pp. 207–293. doi: 10.1613/jair.1.13970. url: https://doi.org/
10.1613/jair.1.13970.

[EOS19] Thomas Eiter, Paul Ogris, and Konstantin Schekotihin. „A distributed ap-
proach to LARS stream reasoning (system paper)“. In: Theory and Practice
of Logic Programming 19.5-6 (2019), pp. 974–989.

[EPS04] Islam Elkabani, Enrico Pontelli, and Tran Cao Son. „Smodels with CLP and
Its Applications: A Simple and Effective Approach to Aggregates in ASP“.
In: Logic Programming, 20th International Conference, ICLP 2004, Saint-
Malo, France, September 6-10, 2004, Proceedings. Ed. by Bart Demoen
and Vladimir Lifschitz. Vol. 3132. Lecture Notes in Computer Science.
Springer, 2004, pp. 73–89. doi: 10.1007/978-3-540-27775-0_6. url:
https://doi.org/10.1007/978-3-540-27775-0_6.

[ES22] Thomas Eiter and Patrik Schneider. „A Qualitative Temporal Extension of
Here-and-There Logic“. In: Logic Programming and Nonmonotonic Reason-
ing - 16th International Conference, LPNMR 2022, Genova, Italy, Septem-
ber 5-9, 2022, Proceedings. Ed. by Georg Gottlob, Daniela Inclezan, and
Marco Maratea. Vol. 13416. Lecture Notes in Computer Science. Springer,
2022, pp. 159–176. doi: 10.1007/978-3-031-15707-3_13. url:
https://doi.org/10.1007/978-3-031-15707-3_13.

312

https://doi.org/10.1017/S1471068420000393
https://doi.org/10.1017/S1471068420000393
https://doi.org/10.1017/S1471068420000393
https://doi.org/10.3233/FAIA200160
https://doi.org/10.3233/FAIA200160
https://ojs.aaai.org/index.php/AAAI/article/view/16783
https://ojs.aaai.org/index.php/AAAI/article/view/16783
https://doi.org/10.1613/jair.1.13970
https://doi.org/10.1613/jair.1.13970
https://doi.org/10.1613/jair.1.13970
https://doi.org/10.1007/978-3-540-27775-0_6
https://doi.org/10.1007/978-3-540-27775-0_6
https://doi.org/10.1007/978-3-031-15707-3_13
https://doi.org/10.1007/978-3-031-15707-3_13

[Fag74] Ronald Fagin. „Generalized first-order spectra and polynomial-time recog-
nizable sets“. In: Complexity of computation 7 (1974), pp. 43–73.

[Fag94] François Fages. „Consistency of Clark’s completion and existence of stable
models“. In: Journal of Methods of logic in computer science 1.1 (1994),
pp. 51–60.

[Fal+18] Andreas A. Falkner, Gerhard Friedrich, Konstantin Schekotihin, Richard
Taupe, and Erich Christian Teppan. „Industrial Applications of Answer
Set Programming“. In: Künstliche Intell. 32.2-3 (2018), pp. 165–176. doi:
10.1007/s13218-018-0548-6. url: https://doi.org/10.1007/
s13218-018-0548-6.

[FD16] Abram L. Friesen and Pedro M. Domingos. „The Sum-Product Theorem:
A Foundation for Learning Tractable Models“. In: Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016. Ed. by Maria-Florina Balcan and Kil-
ian Q. Weinberger. Vol. 48. JMLR Workshop and Conference Proceed-
ings. JMLR.org, 2016, pp. 1909–1918. url: http://proceedings.mlr.
press/v48/friesen16.html.

[Fer11] Paolo Ferraris. „Logic programs with propositional connectives and ag-
gregates“. In: ACM Trans. Comput. Log. 12.4 (2011), 25:1–25:40. doi:
10.1145/1970398.1970401. url: https://doi.org/10.1145/
1970398.1970401.

[FFK94] Stephen A. Fenner, Lance Fortnow, and Stuart A. Kurtz. „Gap-Definable
Counting Classes“. In: J. Comput. Syst. Sci. 48.1 (1994), pp. 116–148. doi:
10.1016/S0022-0000(05)80024-8. url: https://doi.org/10.
1016/S0022-0000(05)80024-8.

[FFP10] Sergio Flesca, Filippo Furfaro, and Francesco Parisi. „Querying and repairing
inconsistent numerical databases“. In: ACM Trans. Database Syst. 35.2
(2010), 14:1–14:50. doi: 10.1145/1735886.1735893. url: https:
//doi.org/10.1145/1735886.1735893.

[FHH21] Johannes Klaus Fichte, Markus Hecher, and Florim Hamiti. „The Model
Counting Competition 2020“. In: ACM J. Exp. Algorithmics 26 (2021), 13:1–
13:26. doi: 10.1145/3459080. url: https://doi.org/10.1145/
3459080.

[Fic+17] Johannes K Fichte, Markus Hecher, Michael Morak, and Stefan Woltran.
„DynASP2. 5: Dynamic programming on tree decompositions in action“. In:
International Symposium on Parameterized and Exact Computation (IPEC).
Vol. 89. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017,
17:1–17:13.

313

https://doi.org/10.1007/s13218-018-0548-6
https://doi.org/10.1007/s13218-018-0548-6
https://doi.org/10.1007/s13218-018-0548-6
http://proceedings.mlr.press/v48/friesen16.html
http://proceedings.mlr.press/v48/friesen16.html
https://doi.org/10.1145/1970398.1970401
https://doi.org/10.1145/1970398.1970401
https://doi.org/10.1145/1970398.1970401
https://doi.org/10.1016/S0022-0000(05)80024-8
https://doi.org/10.1016/S0022-0000(05)80024-8
https://doi.org/10.1016/S0022-0000(05)80024-8
https://doi.org/10.1145/1735886.1735893
https://doi.org/10.1145/1735886.1735893
https://doi.org/10.1145/1735886.1735893
https://doi.org/10.1145/3459080
https://doi.org/10.1145/3459080
https://doi.org/10.1145/3459080

[Fie+11] Daan Fierens, Guy Van den Broeck, Ingo Thon, Bernd Gutmann, and
Luc De Raedt. „Inference in probabilistic logic programs using weighted
CNF’s“. In: Proceedings of the Twenty-Seventh Conference on Uncertainty
in Artificial Intelligence. 2011, pp. 211–220.

[Fie+15] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov,
Bernd Gutmann, Ingo Thon, Gerda Janssens, and Luc De Raedt. „Infer-
ence and learning in probabilistic logic programs using weighted Boolean
formulas“. In: Theory Pract. Log. Program. 15.3 (2015), pp. 358–401. doi:
10.1017/S1471068414000076. url: https://doi.org/10.1017/
S1471068414000076.

[Fin11] Michael Fink. „A general framework for equivalences in Answer-Set Pro-
gramming by countermodels in the logic of Here-and-There“. In: The-
ory Pract. Log. Program. 11.2-3 (2011), pp. 171–202. doi: 10.1017/
S1471068410000542. url: https://doi.org/10.1017/S1471068410000542.

[FL05] Paolo Ferraris and Vladimir Lifschitz. „Weight constraints as nested ex-
pressions“. In: Theory Pract. Log. Program. 5.1-2 (2005), pp. 45–74. doi:
10.1017/S1471068403001923. url: https://doi.org/10.1017/
S1471068403001923.

[FL10] Paolo Ferraris and Vladimir Lifschitz. „On the stable model semantics
of first-order formulas with aggregates“. In: Proceedings of International
Workshop on Nonmonotonic Reasoning (NMR). 2010.

[FLP04] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. „Recursive Aggregates
in Disjunctive Logic Programs: Semantics and Complexity“. In: Logics
in Artificial Intelligence, 9th European Conference, JELIA 2004, Lisbon,
Portugal, September 27-30, 2004, Proceedings. Ed. by José Júlio Alferes
and Jo~ ao Alexandre Leite. Vol. 3229. Lecture Notes in Computer Science.
Springer, 2004, pp. 200–212. doi: 10.1007/978-3-540-30227-8_19.
url: https://doi.org/10.1007/978-3-540-30227-8_19.

[FMW19] Wolfgang Faber, Michael Morak, and Stefan Woltran. „Strong Equivalence
for Epistemic Logic Programs Made Easy“. In: The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Inno-
vative Applications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI
Press, 2019, pp. 2809–2816. doi: 10.1609/aaai.v33i01.33012809.
url: https://doi.org/10.1609/aaai.v33i01.33012809.

[FPL11] Wolfgang Faber, Gerald Pfeifer, and Nicola Leone. „Semantics and com-
plexity of recursive aggregates in answer set programming“. In: Artif. Intell.
175.1 (2011), pp. 278–298. doi: 10.1016/j.artint.2010.04.002.
url: https://doi.org/10.1016/j.artint.2010.04.002.

314

https://doi.org/10.1017/S1471068414000076
https://doi.org/10.1017/S1471068414000076
https://doi.org/10.1017/S1471068414000076
https://doi.org/10.1017/S1471068410000542
https://doi.org/10.1017/S1471068410000542
https://doi.org/10.1017/S1471068410000542
https://doi.org/10.1017/S1471068403001923
https://doi.org/10.1017/S1471068403001923
https://doi.org/10.1017/S1471068403001923
https://doi.org/10.1007/978-3-540-30227-8_19
https://doi.org/10.1007/978-3-540-30227-8_19
https://doi.org/10.1609/aaai.v33i01.33012809
https://doi.org/10.1609/aaai.v33i01.33012809
https://doi.org/10.1016/j.artint.2010.04.002
https://doi.org/10.1016/j.artint.2010.04.002

[FPV05] Andrea Ferrara, Guoqiang Pan, and Moshe Y. Vardi. „Treewidth in Verifi-
cation: Local vs. Global“. In: Logic for Programming, Artificial Intelligence,
and Reasoning, 12th International Conference, LPAR 2005, Montego Bay,
Jamaica, December 2-6, 2005, Proceedings. Ed. by Geoff Sutcliffe and Andrei
Voronkov. Vol. 3835. Lecture Notes in Computer Science. Springer, 2005,
pp. 489–503. doi: 10.1007/11591191_34. url: https://doi.org/
10.1007/11591191_34.

[FS15] Johannes Klaus Fichte and Stefan Szeider. „Backdoors to tractable answer
set programming“. In: Artif. Intell. 220 (2015), pp. 64–103. doi: 10.1016/
j.artint.2014.12.001. url: https://doi.org/10.1016/j.
artint.2014.12.001.

[Gan+22] Robert Ganian, Eun Jung Kim, Friedrich Slivovsky, and Stefan Szeider.
„Sum-of-Products with Default Values: Algorithms and Complexity Results“.
In: J. Artif. Intell. Res. 73 (2022), pp. 535–552. doi: 10.1613/jair.1.
12370. url: https://doi.org/10.1613/jair.1.12370.

[Geb+11] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski,
Torsten Schaub, and Marius Schneider. „Potassco: The Potsdam answer set
solving collection“. In: Ai Communications 24.2 (2011), pp. 107–124.

[Geb+14] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
„Clingo = ASP + Control: Preliminary Report“. In: CoRR abs/1405.3694
(2014). arXiv: 1405.3694. url: http://arxiv.org/abs/1405.3694.

[Geb+15] Martin Gebser, Amelia Harrison, Roland Kaminski, Vladimir Lifschitz,
and Torsten Schaub. „Abstract gringo“. In: Theory Pract. Log. Program.
15.4-5 (2015), pp. 449–463. doi: 10.1017/S1471068415000150. url:
https://doi.org/10.1017/S1471068415000150.

[GHN04] Jiong Guo, Falk Hüffner, and Rolf Niedermeier. „A Structural View on
Parameterizing Problems: Distance from Triviality“. In: Parameterized and
Exact Computation, First International Workshop, IWPEC 2004, Bergen,
Norway, September 14-17, 2004, Proceedings. Ed. by Rodney G. Downey,
Michael R. Fellows, and Frank K. H. A. Dehne. Vol. 3162. Lecture Notes
in Computer Science. Springer, 2004, pp. 162–173. doi: 10.1007/978-3-
540-28639-4_15. url: https://doi.org/10.1007/978-3-540-
28639-4_15.

[Gil77] John Gill. „Computational Complexity of Probabilistic Turing Machines“.
In: SIAM J. Comput. 6.4 (1977), pp. 675–695. doi: 10.1137/0206049.
url: https://doi.org/10.1137/0206049.

[GJ79] Michael R Gary and David S Johnson. Computers and Intractability: A
Guide to the Theory of NP-completeness. 1979.

315

https://doi.org/10.1007/11591191_34
https://doi.org/10.1007/11591191_34
https://doi.org/10.1007/11591191_34
https://doi.org/10.1016/j.artint.2014.12.001
https://doi.org/10.1016/j.artint.2014.12.001
https://doi.org/10.1016/j.artint.2014.12.001
https://doi.org/10.1016/j.artint.2014.12.001
https://doi.org/10.1613/jair.1.12370
https://doi.org/10.1613/jair.1.12370
https://doi.org/10.1613/jair.1.12370
https://arxiv.org/abs/1405.3694
http://arxiv.org/abs/1405.3694
https://doi.org/10.1017/S1471068415000150
https://doi.org/10.1017/S1471068415000150
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1137/0206049
https://doi.org/10.1137/0206049

[GKT07] Todd J. Green, Gregory Karvounarakis, and Val Tannen. „Provenance
semirings“. In: Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 11-13, 2007,
Beijing, China. Ed. by Leonid Libkin. ACM, 2007, pp. 31–40. doi: 10.1145/
1265530.1265535. url: https://doi.org/10.1145/1265530.
1265535.

[GL88] Michael Gelfond and Vladimir Lifschitz. „The Stable Model Semantics
for Logic Programming“. In: Logic Programming, Proceedings of the Fifth
International Conference and Symposium, Seattle, Washington, USA, August
15-19, 1988 (2 Volumes). Ed. by Robert A. Kowalski and Kenneth A. Bowen.
MIT Press, 1988, pp. 1070–1080.

[GM95] Erich Grädel and Klaus Meer. „Descriptive complexity theory over the real
numbers“. In: Proceedings of the Twenty-Seventh Annual ACM Symposium
on Theory of Computing, 29 May-1 June 1995, Las Vegas, Nevada, USA.
Ed. by Frank Thomson Leighton and Allan Borodin. ACM, 1995, pp. 315–
324. doi: 10.1145/225058.225151. url: https://doi.org/10.
1145/225058.225151.

[GMD13] Laura Giordano, Alberto Martelli, and Daniele Theseider Dupré. „Reasoning
about actions with temporal answer sets“. In: Theory and Practice of Logic
Programming 13.2 (2013), pp. 201–225.

[Goo99] Joshua Goodman. „Semiring Parsing“. In: Comput. Linguistics 25.4 (1999),
pp. 573–605.

[GP03] Georg Gottlob and Christos H. Papadimitriou. „On the complexity of single-
rule datalog queries“. In: Inf. Comput. 183.1 (2003), pp. 104–122. doi:
10.1016/S0890-5401(03)00012-9. url: https://doi.org/10.
1016/S0890-5401(03)00012-9.

[Gre99] Sergio Greco. „Dynamic Programming in Datalog with Aggregates“. In:
IEEE Trans. Knowl. Data Eng. 11.2 (1999), pp. 265–283. doi: 10.1109/
69.761663. url: https://doi.org/10.1109/69.761663.

[GT17] Todd J. Green and Val Tannen. „The Semiring Framework for Database
Provenance“. In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2017, Chicago, IL,
USA, May 14-19, 2017. Ed. by Emanuel Sallinger, Jan Van den Bussche, and
Floris Geerts. ACM, 2017, pp. 93–99. doi: 10.1145/3034786.3056125.
url: https://doi.org/10.1145/3034786.3056125.

[Hah+22] Susana Hahn, Tomi Janhunen, Roland Kaminski, Javier Romero, Nicolas
Rühling, and Torsten Schaub. „Plingo: A System for Probabilistic Reasoning
in Clingo Based on LP MLN “. In: Lecture Notes in Computer Science
13752 (2022). Ed. by Guido Governatori and Anni-Yasmin Turhan, pp. 54–
62. doi: 10.1007/978-3-031-21541-4_4. url: https://doi.org/
10.1007/978-3-031-21541-4_4.

316

https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/225058.225151
https://doi.org/10.1145/225058.225151
https://doi.org/10.1145/225058.225151
https://doi.org/10.1016/S0890-5401(03)00012-9
https://doi.org/10.1016/S0890-5401(03)00012-9
https://doi.org/10.1016/S0890-5401(03)00012-9
https://doi.org/10.1109/69.761663
https://doi.org/10.1109/69.761663
https://doi.org/10.1109/69.761663
https://doi.org/10.1145/3034786.3056125
https://doi.org/10.1145/3034786.3056125
https://doi.org/10.1007/978-3-031-21541-4_4
https://doi.org/10.1007/978-3-031-21541-4_4
https://doi.org/10.1007/978-3-031-21541-4_4

[Hec22] Markus Hecher. „Treewidth-aware reductions of normal ASP to SAT -
Is normal ASP harder than SAT after all?“ In: Artif. Intell. 304 (2022),
p. 103651. doi: 10.1016/j.artint.2021.103651. url: https:
//doi.org/10.1016/j.artint.2021.103651.

[Her90] Ulrich Hertrampf. „Relations Among Mod-Classes“. In: Theor. Comput. Sci.
74.3 (1990), pp. 325–328. doi: 10.1016/0304-3975(90)90081-R. url:
https://doi.org/10.1016/0304-3975(90)90081-R.

[HS18] Michael Hamann and Ben Strasser. „Graph Bisection with Pareto Optimiza-
tion“. In: ACM J. Exp. Algorithmics 23 (2018). doi: 10.1145/3173045.
url: https://doi.org/10.1145/3173045.

[HSH12] François Hantry, Lakhdar Saı̈s, and Mohand-Said Hacid. „On the Com-
plexity of Computing Minimal Unsatisfiable LTL formulas“. In: CoRR
abs/1203.3706 (2012). arXiv: 1203.3706. url: http://arxiv.org/
abs/1203.3706.

[IP01] Russell Impagliazzo and Ramamohan Paturi. „On the Complexity of k-SAT“.
In: J. Comput. Syst. Sci. 62.2 (2001), pp. 367–375. doi: 10.1006/jcss.
2000.1727. url: https://doi.org/10.1006/jcss.2000.1727.

[Jan04] Tomi Janhunen. „Representing Normal Programs with Clauses“. In: Proceed-
ings of the 16th Eureopean Conference on Artificial Intelligence, ECAI’2004,
including Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia,
Spain, August 22-27, 2004. Ed. by Ramón López de Mántaras and Lorenza
Saitta. IOS Press, 2004, pp. 358–362.

[JN11] Tomi Janhunen and Ilkka Niemelä. „Compact Translations of Non-disjunctive
Answer Set Programs to Propositional Clauses“. In: Logic Programming,
Knowledge Representation, and Nonmonotonic Reasoning - Essays Dedicated
to Michael Gelfond on the Occasion of His 65th Birthday. Ed. by Marcello
Balduccini and Tran Cao Son. Vol. 6565. Lecture Notes in Computer Science.
Springer, 2011, pp. 111–130. doi: 10.1007/978-3-642-20832-4_8.
url: https://doi.org/10.1007/978-3-642-20832-4_8.

[Joh21] Markus Hecher Johannes K. Fichte. Model Counting Competition 2021.
https://mccompetition.org. 2021.

[JPW09] Michael Jakl, Reinhard Pichler, and Stefan Woltran. „Answer-Set Program-
ming with Bounded Treewidth“. In: IJCAI 2009, Proceedings of the 21st
International Joint Conference on Artificial Intelligence, Pasadena, Califor-
nia, USA, July 11-17, 2009. Ed. by Craig Boutilier. 2009, pp. 816–822. url:
http://ijcai.org/Proceedings/09/Papers/140.pdf.

[JS12] Abhay Kumar Jha and Dan Suciu. „On the tractability of query compilation
and bounded treewidth“. In: 15th International Conference on Database
Theory, ICDT ’12, Berlin, Germany, March 26-29, 2012. Ed. by Alin
Deutsch. ACM, 2012, pp. 249–261. doi: 10.1145/2274576.2274603.
url: https://doi.org/10.1145/2274576.2274603.

317

https://doi.org/10.1016/j.artint.2021.103651
https://doi.org/10.1016/j.artint.2021.103651
https://doi.org/10.1016/j.artint.2021.103651
https://doi.org/10.1016/0304-3975(90)90081-R
https://doi.org/10.1016/0304-3975(90)90081-R
https://doi.org/10.1145/3173045
https://doi.org/10.1145/3173045
https://arxiv.org/abs/1203.3706
http://arxiv.org/abs/1203.3706
http://arxiv.org/abs/1203.3706
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1007/978-3-642-20832-4_8
https://doi.org/10.1007/978-3-642-20832-4_8
https://mccompetition.org
http://ijcai.org/Proceedings/09/Papers/140.pdf
https://doi.org/10.1145/2274576.2274603
https://doi.org/10.1145/2274576.2274603

[JT95] Birgit Jenner and Jacobo Torán. „Computing Functions with Parallel Queries
to NP“. In: Theor. Comput. Sci. 141.1&2 (1995), pp. 175–193. doi: 10.
1016/0304-3975(94)00080-3. url: https://doi.org/10.1016/
0304-3975(94)00080-3.

[KBvH01] Arie M. C. A. Koster, Hans L. Bodlaender, and Stan P. M. van Hoesel.
„Treewidth: Computational Experiments“. In: Electron. Notes Discret. Math.
8 (2001), pp. 54–57. doi: 10.1016/S1571-0653(05)80078-2. url:
https://doi.org/10.1016/S1571-0653(05)80078-2.

[KJ21] Tuukka Korhonen and Matti Järvisalo. „Integrating Tree Decompositions
into Decision Heuristics of Propositional Model Counters (Short Paper)“.
In: 27th International Conference on Principles and Practice of Constraint
Programming, CP 2021, Montpellier, France (Virtual Conference), October
25-29, 2021. Ed. by Laurent D. Michel. Vol. 210. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, 8:1–8:11. doi: 10.4230/LIPIcs.
CP.2021.8. url: https://doi.org/10.4230/LIPIcs.CP.2021.8.

[KL80] Richard M. Karp and Richard J. Lipton. „Some Connections between
Nonuniform and Uniform Complexity Classes“. In: Proceedings of the 12th
Annual ACM Symposium on Theory of Computing, April 28-30, 1980, Los
Angeles, California, USA. Ed. by Raymond E. Miller, Seymour Ginsburg,
Walter A. Burkhard, and Richard J. Lipton. ACM, 1980, pp. 302–309.
doi: 10.1145/800141.804678. url: https://doi.org/10.1145/
800141.804678.

[KL82] R. Karp and R. J. Lipton. „Turing machines that take advice“. In: L’Enseign.
Math. Vol. 28. 1982.

[Klo94] Ton Kloks. Treewidth, Computations and Approximations. Vol. 842. Lecture
Notes in Computer Science. Springer, 1994. isbn: 3-540-58356-4. doi: 10.
1007/BFb0045375. url: https://doi.org/10.1007/BFb0045375.

[KNR16] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. „FAQ: Questions
Asked Frequently“. In: Proceedings of the 35th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS 2016, San
Francisco, CA, USA, June 26 - July 01, 2016. Ed. by Tova Milo and Wang-
Chiew Tan. ACM, 2016, pp. 13–28. doi: 10.1145/2902251.2902280.
url: https://doi.org/10.1145/2902251.2902280.

[KP18a] Krzysztof Kiljan and Marcin Pilipczuk. „Experimental Evaluation of Pa-
rameterized Algorithms for Feedback Vertex Set“. In: 17th International
Symposium on Experimental Algorithms, SEA 2018, June 27-29, 2018,
L’Aquila, Italy. Ed. by Gianlorenzo D’Angelo. Vol. 103. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 12:1–12:12. doi: 10.
4230/LIPIcs.SEA.2018.12. url: https://doi.org/10.4230/
LIPIcs.SEA.2018.12.

318

https://doi.org/10.1016/0304-3975(94)00080-3
https://doi.org/10.1016/0304-3975(94)00080-3
https://doi.org/10.1016/0304-3975(94)00080-3
https://doi.org/10.1016/0304-3975(94)00080-3
https://doi.org/10.1016/S1571-0653(05)80078-2
https://doi.org/10.1016/S1571-0653(05)80078-2
https://doi.org/10.4230/LIPIcs.CP.2021.8
https://doi.org/10.4230/LIPIcs.CP.2021.8
https://doi.org/10.4230/LIPIcs.CP.2021.8
https://doi.org/10.1145/800141.804678
https://doi.org/10.1145/800141.804678
https://doi.org/10.1145/800141.804678
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.4230/LIPIcs.SEA.2018.12
https://doi.org/10.4230/LIPIcs.SEA.2018.12
https://doi.org/10.4230/LIPIcs.SEA.2018.12
https://doi.org/10.4230/LIPIcs.SEA.2018.12

[KP18b] Krzysztof Kiljan and Marcin Pilipczuk. Feedback Vertex Set Experiments.
https://github.com/karek/FeedbackVertexSet-Experiments.
2018.

[Kre88] Mark W. Krentel. „The Complexity of Optimization Problems“. In: J. Com-
put. Syst. Sci. 36.3 (1988), pp. 490–509. doi: 10.1016/0022-0000(88)
90039-6. url: https://doi.org/10.1016/0022-0000(88)90039-
6.

[KS92] Michael Kifer and V. S. Subrahmanian. „Theory of Generalized Annotated
Logic Programming and its Applications“. In: J. Log. Program. 12.3&4
(1992), pp. 335–367. doi: 10.1016/0743-1066(92)90007-P. url:
https://doi.org/10.1016/0743-1066(92)90007-P.

[KS93] Ephraim Korach and Nir Solel. „Tree-width, path-width, and cutwidth“. In:
Discrete Applied Mathematics 43.1 (1993), pp. 97–101.

[KTK22] Rafael Kiesel, Pietro Totis, and Angelika Kimmig. „Efficient Knowledge
Compilation Beyond Weighted Model Counting“. In: Theory Pract. Log.
Program. 22.4 (2022), pp. 505–522. doi: 10.1017/S147106842200014X.
url: https://doi.org/10.1017/S147106842200014X.

[KVD11] Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. „An Algebraic
Prolog for Reasoning about Possible Worlds“. In: Proceedings of the Twenty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco,
California, USA, August 7-11, 2011. Ed. by Wolfram Burgard and Dan
Roth. AAAI Press, 2011, pp. 209–214. url: http://www.aaai.org/
ocs/index.php/AAAI/AAAI11/paper/view/3685.

[KVD17] Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. „Algebraic
model counting“. In: J. Appl. Log. 22 (2017), pp. 46–62. doi: 10.1016/j.
jal.2016.11.031. url: https://doi.org/10.1016/j.jal.2016.
11.031.

[KW08] Jürg Kohlas and Nic Wilson. „Semiring induced valuation algebras: Exact
and approximate local computation algorithms“. In: Artif. Intell. 172.11
(2008), pp. 1360–1399. doi: 10.1016/j.artint.2008.03.003. url:
https://doi.org/10.1016/j.artint.2008.03.003.

[Lad89] Richard E. Ladner. „Polynomial Space Counting Problems“. In: SIAM
J. Comput. 18.6 (1989), pp. 1087–1097. doi: 10.1137/0218073. url:
https://doi.org/10.1137/0218073.

[Leo+06] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob,
Simona Perri, and Francesco Scarcello. „The DLV system for knowledge
representation and reasoning“. In: ACM Trans. Comput. Log. 7.3 (2006),
pp. 499–562. doi: 10.1145/1149114.1149117. url: https://doi.
org/10.1145/1149114.1149117.

319

https://github.com/karek/FeedbackVertexSet-Experiments
https://doi.org/10.1016/0022-0000(88)90039-6
https://doi.org/10.1016/0022-0000(88)90039-6
https://doi.org/10.1016/0022-0000(88)90039-6
https://doi.org/10.1016/0022-0000(88)90039-6
https://doi.org/10.1016/0743-1066(92)90007-P
https://doi.org/10.1016/0743-1066(92)90007-P
https://doi.org/10.1017/S147106842200014X
https://doi.org/10.1017/S147106842200014X
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3685
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3685
https://doi.org/10.1016/j.jal.2016.11.031
https://doi.org/10.1016/j.jal.2016.11.031
https://doi.org/10.1016/j.jal.2016.11.031
https://doi.org/10.1016/j.jal.2016.11.031
https://doi.org/10.1016/j.artint.2008.03.003
https://doi.org/10.1016/j.artint.2008.03.003
https://doi.org/10.1137/0218073
https://doi.org/10.1137/0218073
https://doi.org/10.1145/1149114.1149117
https://doi.org/10.1145/1149114.1149117
https://doi.org/10.1145/1149114.1149117

[Lie14] Yuliya Lierler. „Relating constraint answer set programming languages
and algorithms“. In: Artif. Intell. 207 (2014), pp. 1–22. doi: 10.1016/
j.artint.2013.10.004. url: https://doi.org/10.1016/j.
artint.2013.10.004.

[Lie22] Yuliya Lierler. „Strong Equivalence and Program Structure in Arguing
Essential Equivalence between Logic Programs“. In: Theory Pract. Log.
Program. 22.3 (2022), pp. 335–366. doi: 10.1017/S1471068421000545.
url: https://doi.org/10.1017/S1471068421000545.

[Lif08] Vladimir Lifschitz. „What Is Answer Set Programming?“ In: Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008,
Chicago, Illinois, USA, July 13-17, 2008. Ed. by Dieter Fox and Carla P.
Gomes. AAAI Press, 2008, pp. 1594–1597. url: http://www.aaai.org/
Library/AAAI/2008/aaai08-270.php.

[Lif16] Vladimir Lifschitz. „Intelligent Instantiation and Supersafe Rules“. In: Tech-
nical Communications of the 32nd International Conference on Logic Pro-
gramming, ICLP 2016 TCs, October 16-21, 2016, New York City, USA.
Ed. by Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos.
Vol. 52. OASIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016,
7:1–7:14. doi: 10.4230/OASIcs.ICLP.2016.7. url: https://doi.
org/10.4230/OASIcs.ICLP.2016.7.

[Lif21] Vladimir Lifschitz. „Here and There with Arithmetic“. In: Theory Pract. Log.
Program. 21.6 (2021), pp. 735–749. doi: 10.1017/S1471068421000338.
url: https://doi.org/10.1017/S1471068421000338.

[Lin02] Fangzhen Lin. „Reducing Strong Equivalence of Logic Programs to Entail-
ment in Classical Propositional Logic“. In: Proceedings of the Eights Inter-
national Conference on Principles and Knowledge Representation and Rea-
soning (KR-02), Toulouse, France, April 22-25, 2002. Ed. by Dieter Fensel,
Fausto Giunchiglia, Deborah L. McGuinness, and Mary-Anne Williams.
Morgan Kaufmann, 2002, pp. 170–176.

[Lin99] Jørn Lind-Nielsen. BuDDy: A binary decision diagram package. http:
//sourceforge.net/projects/buddy/. 1999.

[LL09] Yuliya Lierler and Vladimir Lifschitz. „One More Decidable Class of Finitely
Ground Programs“. In: Logic Programming, 25th International Conference,
ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Proceedings. Ed. by
Patricia M. Hill and David Scott Warren. Vol. 5649. Lecture Notes in
Computer Science. Springer, 2009, pp. 489–493. doi: 10.1007/978-3-
642-02846-5_40. url: https://doi.org/10.1007/978-3-642-
02846-5_40.

[LLP08] Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. „A Reductive Semantics
for Counting and Choice in Answer Set Programming.“ In: AAAI. 2008,
pp. 472–479.

320

https://doi.org/10.1016/j.artint.2013.10.004
https://doi.org/10.1016/j.artint.2013.10.004
https://doi.org/10.1016/j.artint.2013.10.004
https://doi.org/10.1016/j.artint.2013.10.004
https://doi.org/10.1017/S1471068421000545
https://doi.org/10.1017/S1471068421000545
http://www.aaai.org/Library/AAAI/2008/aaai08-270.php
http://www.aaai.org/Library/AAAI/2008/aaai08-270.php
https://doi.org/10.4230/OASIcs.ICLP.2016.7
https://doi.org/10.4230/OASIcs.ICLP.2016.7
https://doi.org/10.4230/OASIcs.ICLP.2016.7
https://doi.org/10.1017/S1471068421000338
https://doi.org/10.1017/S1471068421000338
http://sourceforge.net/projects/buddy/
http://sourceforge.net/projects/buddy/
https://doi.org/10.1007/978-3-642-02846-5_40
https://doi.org/10.1007/978-3-642-02846-5_40
https://doi.org/10.1007/978-3-642-02846-5_40
https://doi.org/10.1007/978-3-642-02846-5_40

[LM14] Jean-Marie Lagniez and Pierre Marquis. „Preprocessing for Propositional
Model Counting“. In: Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada.
Ed. by Carla E. Brodley and Peter Stone. AAAI Press, 2014, pp. 2688–
2694. url: http://www.aaai.org/ocs/index.php/AAAI/AAAI14/
paper/view/8264.

[LM17] Jean-Marie Lagniez and Pierre Marquis. „An Improved Decision-DNNF
Compiler“. In: Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, Au-
gust 19-25, 2017. Ed. by Carles Sierra. ijcai.org, 2017, pp. 667–673. doi:
10.24963/ijcai.2017/93. url: https://doi.org/10.24963/
ijcai.2017/93.

[LOR10] Javier Larrosa, Albert Oliveras, and Enric Rodrıǵuez-Carbonell. „Semiring-
Induced Propositional Logic: Definition and Basic Algorithms“. In: Logic
for Programming, Artificial Intelligence, and Reasoning - 16th International
Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised Se-
lected Papers. Ed. by Edmund M. Clarke and Andrei Voronkov. Vol. 6355.
Lecture Notes in Computer Science. Springer, 2010, pp. 332–347. doi:
10.1007/978-3-642-17511-4_19. url: https://doi.org/10.
1007/978-3-642-17511-4_19.

[LPV01] Vladimir Lifschitz, David Pearce, and Agustıń Valverde. „Strongly equivalent
logic programs“. In: ACM Trans. Comput. Log. 2.4 (2001), pp. 526–541.
doi: 10.1145/383779.383783. url: https://doi.org/10.1145/
383779.383783.

[LPV07] Vladimir Lifschitz, David Pearce, and Agustıń Valverde. „A Characterization
of Strong Equivalence for Logic Programs with Variables“. In: Logic Program-
ming and Nonmonotonic Reasoning, 9th International Conference, LPNMR
2007, Tempe, AZ, USA, May 15-17, 2007, Proceedings. Ed. by Chitta Baral,
Gerhard Brewka, and John S. Schlipf. Vol. 4483. Lecture Notes in Computer
Science. Springer, 2007, pp. 188–200. doi: 10.1007/978-3-540-72200-
7_17. url: https://doi.org/10.1007/978-3-540-72200-7_17.

[LR06] Vladimir Lifschitz and Alexander A. Razborov. „Why are there so many
loop formulas?“ In: ACM Trans. Comput. Log. 7.2 (2006), pp. 261–268. doi:
10.1145/1131313.1131316. url: https://doi.org/10.1145/
1131313.1131316.

[LTT99] Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. „Nested Ex-
pressions in Logic Programs“. In: Ann. Math. Artif. Intell. 25.3-4 (1999),
pp. 369–389. doi: 10.1023/A:1018978005636. url: https://doi.
org/10.1023/A:1018978005636.

321

http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8264
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8264
https://doi.org/10.24963/ijcai.2017/93
https://doi.org/10.24963/ijcai.2017/93
https://doi.org/10.24963/ijcai.2017/93
https://doi.org/10.1007/978-3-642-17511-4_19
https://doi.org/10.1007/978-3-642-17511-4_19
https://doi.org/10.1007/978-3-642-17511-4_19
https://doi.org/10.1145/383779.383783
https://doi.org/10.1145/383779.383783
https://doi.org/10.1145/383779.383783
https://doi.org/10.1007/978-3-540-72200-7_17
https://doi.org/10.1007/978-3-540-72200-7_17
https://doi.org/10.1007/978-3-540-72200-7_17
https://doi.org/10.1145/1131313.1131316
https://doi.org/10.1145/1131313.1131316
https://doi.org/10.1145/1131313.1131316
https://doi.org/10.1023/A:1018978005636
https://doi.org/10.1023/A:1018978005636
https://doi.org/10.1023/A:1018978005636

[LTW17] Joohyung Lee, Samidh Talsania, and Yi Wang. „Computing LPMLN using
ASP and MLN solvers“. In: Theory Pract. Log. Program. 17.5-6 (2017),
pp. 942–960. doi: 10.1017/S1471068417000400. url: https://doi.
org/10.1017/S1471068417000400.

[LW16] Joohyung Lee and Yi Wang. „Weighted Rules under the Stable Model
Semantics“. In: Principles of Knowledge Representation and Reasoning:
Proceedings of the Fifteenth International Conference, KR 2016, Cape Town,
South Africa, April 25-29, 2016. Ed. by Chitta Baral, James P. Delgrande,
and Frank Wolter. AAAI Press, 2016, pp. 145–154. url: http://www.
aaai.org/ocs/index.php/KR/KR16/paper/view/12901.

[LY17] Joohyung Lee and Zhun Yang. „LPMLN, Weak Constraints, and P-log“. In:
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
February 4-9, 2017, San Francisco, California, USA. Ed. by Satinder Singh
and Shaul Markovitch. AAAI Press, 2017, pp. 1170–1177. url: http:
//aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14547.

[LZ03] Fangzhen Lin and Jicheng Zhao. „On Tight Logic Programs and Yet Another
Translation from Normal Logic Programs to Propositional Logic“. In: IJCAI-
03, Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence, Acapulco, Mexico, August 9-15, 2003. Ed. by Georg Gottlob
and Toby Walsh. Morgan Kaufmann, 2003, pp. 853–858. url: http://
ijcai.org/Proceedings/03/Papers/123.pdf.

[LZ04] Fangzhen Lin and Yuting Zhao. „ASSAT: computing answer sets of a logic
program by SAT solvers“. In: Artif. Intell. 157.1-2 (2004), pp. 115–137. doi:
10.1016/j.artint.2004.04.004. url: https://doi.org/10.
1016/j.artint.2004.04.004.

[Man+21] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas De-
meester, and Luc De Raedt. „Neural probabilistic logic programming in
DeepProbLog“. In: Artif. Intell. 298 (2021), p. 103504. doi: 10.1016/
j.artint.2021.103504. url: https://doi.org/10.1016/j.
artint.2021.103504.

[Mat96] Yuri Matiyjasevich. Hilbert’s tenth problem: what can we do with Diophantine
equations? English version of a talk given by the author. Available at http:
//logic.pdmi.ras.ru/~yumat/personaljournal/H10history/
H10histe.pdf. 1996.

[Mee00] Klaus Meer. „Counting problems over the reals“. In: Theor. Comput. Sci.
242.1-2 (2000), pp. 41–58. doi: 10.1016/S0304-3975(98)00190-X.
url: https://doi.org/10.1016/S0304-3975(98)00190-X.

[Mee18] Wannes Meert. PySDD: Python package for Sentential Decision Diagrams
(SDD). https://github.com/wannesm/PySDD. 2018.

[Men21] Stefan Mengel. Counting, Knowledge Compilation and Applications. 2021.
url: https://tel.archives-ouvertes.fr/tel-03611336.

322

https://doi.org/10.1017/S1471068417000400
https://doi.org/10.1017/S1471068417000400
https://doi.org/10.1017/S1471068417000400
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12901
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12901
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14547
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14547
http://ijcai.org/Proceedings/03/Papers/123.pdf
http://ijcai.org/Proceedings/03/Papers/123.pdf
https://doi.org/10.1016/j.artint.2004.04.004
https://doi.org/10.1016/j.artint.2004.04.004
https://doi.org/10.1016/j.artint.2004.04.004
https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.1016/j.artint.2021.103504
http://logic.pdmi.ras.ru/~yumat/personaljournal/H10history/H10histe.pdf
http://logic.pdmi.ras.ru/~yumat/personaljournal/H10history/H10histe.pdf
http://logic.pdmi.ras.ru/~yumat/personaljournal/H10history/H10histe.pdf
https://doi.org/10.1016/S0304-3975(98)00190-X
https://doi.org/10.1016/S0304-3975(98)00190-X
https://github.com/wannesm/PySDD
https://tel.archives-ouvertes.fr/tel-03611336

[MJ10] Theofrastos Mantadelis and Gerda Janssens. „Dedicated Tabling for a Prob-
abilistic Setting“. In: Technical Communications of the 26th International
Conference on Logic Programming, ICLP 2010, July 16-19, 2010, Edin-
burgh, Scotland, UK. Ed. by Manuel V. Hermenegildo and Torsten Schaub.
Vol. 7. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010,
pp. 124–133. doi: 10.4230/LIPIcs.ICLP.2010.124. url: https:
//doi.org/10.4230/LIPIcs.ICLP.2010.124.

[MR15] Eleni Mandrali and George Rahonis. „Weighted First-Order Logics over
Semirings“. In: Acta Cybern. 22.2 (2015), pp. 435–483. doi: 10.14232/
actacyb.22.2.2015.13. url: https://doi.org/10.14232/
actacyb.22.2.2015.13.

[Mui+12] Christian Muise, Sheila A McIlraith, J Christopher Beck, and Eric I Hsu.
„Dsharp: fast d-DNNF compilation with sharpSAT“. In: Canadian Confer-
ence on Artificial Intelligence. Springer. 2012, pp. 356–361.

[Nie08] Ilkka Niemelä. „Stable models and difference logic“. In: Ann. Math. Artif.
Intell. 53.1-4 (2008), pp. 313–329. doi: 10.1007/s10472-009-9118-9.
url: https://doi.org/10.1007/s10472-009-9118-9.

[NL15] Juan Carlos Nieves and Helena Lindgren. „Possibilistic nested logic programs
and strong equivalence“. In: Int. J. Approx. Reason. 59 (2015), pp. 1–19.
doi: 10.1016/j.ijar.2015.01.004. url: https://doi.org/10.
1016/j.ijar.2015.01.004.

[NM14] Matthias Nickles and Alessandra Mileo. „Web Stream Reasoning Using
Probabilistic Answer Set Programming“. In: Web Reasoning and Rule Sys-
tems - 8th International Conference, RR 2014, Athens, Greece, September
15-17, 2014. Proceedings. Ed. by Roman Kontchakov and Marie-Laure
Mugnier. Vol. 8741. Lecture Notes in Computer Science. Springer, 2014,
pp. 197–205. doi: 10.1007/978-3-319-11113-1_16. url: https:
//doi.org/10.1007/978-3-319-11113-1_16.

[NM15] Matthias Nickles and Alessandra Mileo. „A System for Probabilistic In-
ductive Answer Set Programming“. In: Scalable Uncertainty Management
- 9th International Conference, SUM 2015, Québec City, QC, Canada,
September 16-18, 2015. Proceedings. Ed. by Christoph Beierle and Alex
Dekhtyar. Vol. 9310. Lecture Notes in Computer Science. Springer, 2015,
pp. 99–105. doi: 10.1007/978-3-319-23540-0_7. url: https:
//doi.org/10.1007/978-3-319-23540-0_7.

[NSS99] Ilkka Niemelä, Patrik Simons, and Timo Soininen. „Stable Model Semantics
of Weight Constraint Rules“. In: Logic Programming and Nonmonotonic
Reasoning, 5th International Conference, LPNMR’99, El Paso, Texas, USA,
December 2-4, 1999, Proceedings. Ed. by Michael Gelfond, Nicola Leone,
and Gerald Pfeifer. Vol. 1730. Lecture Notes in Computer Science. Springer,

323

https://doi.org/10.4230/LIPIcs.ICLP.2010.124
https://doi.org/10.4230/LIPIcs.ICLP.2010.124
https://doi.org/10.4230/LIPIcs.ICLP.2010.124
https://doi.org/10.14232/actacyb.22.2.2015.13
https://doi.org/10.14232/actacyb.22.2.2015.13
https://doi.org/10.14232/actacyb.22.2.2015.13
https://doi.org/10.14232/actacyb.22.2.2015.13
https://doi.org/10.1007/s10472-009-9118-9
https://doi.org/10.1007/s10472-009-9118-9
https://doi.org/10.1016/j.ijar.2015.01.004
https://doi.org/10.1016/j.ijar.2015.01.004
https://doi.org/10.1016/j.ijar.2015.01.004
https://doi.org/10.1007/978-3-319-11113-1_16
https://doi.org/10.1007/978-3-319-11113-1_16
https://doi.org/10.1007/978-3-319-11113-1_16
https://doi.org/10.1007/978-3-319-23540-0_7
https://doi.org/10.1007/978-3-319-23540-0_7
https://doi.org/10.1007/978-3-319-23540-0_7

1999, pp. 317–331. doi: 10.1007/3-540-46767-X_23. url: https:
//doi.org/10.1007/3-540-46767-X_23.

[OCD16a] Umut Oztok, Arthur Choi, and Adnan Darwiche. „Solving PPPP-Complete
Problems Using Knowledge Compilation“. In: Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Fifteenth International Con-
ference, KR 2016, Cape Town, South Africa, April 25-29, 2016. Ed. by
Chitta Baral, James P. Delgrande, and Frank Wolter. AAAI Press, 2016,
pp. 94–103. url: http://www.aaai.org/ocs/index.php/KR/KR16/
paper/view/12910.

[OCD16b] Umut Oztok, Arthur Choi, and Adnan Darwiche. „Solving PPPP-Complete
Problems Using Knowledge Compilation“. In: Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Fifteenth International Con-
ference, KR 2016, Cape Town, South Africa, April 25-29, 2016. Ed. by
Chitta Baral, James P. Delgrande, and Frank Wolter. AAAI Press, 2016,
pp. 94–103. url: http://www.aaai.org/ocs/index.php/KR/KR16/
paper/view/12910.

[OD14] Umut Oztok and Adnan Darwiche. „On Compiling CNF into Decision-
DNNF“. In: Principles and Practice of Constraint Programming - 20th
International Conference, CP 2014, Lyon, France, September 8-12, 2014.
Proceedings. Ed. by Barry O’Sullivan. Vol. 8656. Lecture Notes in Computer
Science. Springer, 2014, pp. 42–57. doi: 10.1007/978-3-319-10428-
7_7. url: https://doi.org/10.1007/978-3-319-10428-7_7.

[OD15] Umut Oztok and Adnan Darwiche. „A Top-Down Compiler for Sentential
Decision Diagrams“. In: Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015. Ed. by Qiang Yang and Michael J. Wooldridge.
AAAI Press, 2015, pp. 3141–3148. url: http://ijcai.org/Abstract/
15/443.

[PE20] Danh Le Phuoc and Thomas Eiter. „An Adaptive Semantic Stream Reason-
ing Framework for Deep Neural Networks“. In: Proceedings of the CIKM
2020 Workshops co-located with 29th ACM International Conference on
Information and Knowledge Management (CIKM 2020), Galway, Ireland,
October 19-23, 2020. Ed. by Stefan Conrad and Ilaria Tiddi. Vol. 2699.
CEUR Workshop Proceedings. CEUR-WS.org, 2020. url: http://ceur-
ws.org/Vol-2699/paper09.pdf.

[Pea06] David Pearce. „Equilibrium logic“. In: Ann. Math. Artif. Intell. 47.1-2
(2006), pp. 3–41. doi: 10.1007/s10472-006-9028-z. url: https:
//doi.org/10.1007/s10472-006-9028-z.

324

https://doi.org/10.1007/3-540-46767-X_23
https://doi.org/10.1007/3-540-46767-X_23
https://doi.org/10.1007/3-540-46767-X_23
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12910
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12910
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12910
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12910
https://doi.org/10.1007/978-3-319-10428-7_7
https://doi.org/10.1007/978-3-319-10428-7_7
https://doi.org/10.1007/978-3-319-10428-7_7
http://ijcai.org/Abstract/15/443
http://ijcai.org/Abstract/15/443
http://ceur-ws.org/Vol-2699/paper09.pdf
http://ceur-ws.org/Vol-2699/paper09.pdf
https://doi.org/10.1007/s10472-006-9028-z
https://doi.org/10.1007/s10472-006-9028-z
https://doi.org/10.1007/s10472-006-9028-z

[PET21] Danh Le Phuoc, Thomas Eiter, and Anh Lê Tuán. „A Scalable Reasoning
and Learning Approach for Neural-Symbolic Stream Fusion“. In: Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 2021, pp. 4996–
5005. url: https://ojs.aaai.org/index.php/AAAI/article/
view/16633.

[PV04] David Pearce and Agustıń Valverde. „Towards a First Order Equilibrium
Logic for Nonmonotonic Reasoning“. In: Logics in Artificial Intelligence,
9th European Conference, JELIA 2004, Lisbon, Portugal, September 27-30,
2004, Proceedings. Ed. by José Júlio Alferes and Jo~ ao Alexandre Leite.
Vol. 3229. Lecture Notes in Computer Science. Springer, 2004, pp. 147–160.
doi: 10.1007/978-3-540-30227-8_15. url: https://doi.org/
10.1007/978-3-540-30227-8_15.

[PV06] David Pearce and Agustin Valverde. „Quantified Equilibrium Logic and
the First Order Logic of Here-and-There“. In: Technical Report MA-06-02
(2006).

[PV08] David Pearce and Agustıń Valverde. „Quantified Equilibrium Logic and
Foundations for Answer Set Programs“. In: Logic Programming, 24th In-
ternational Conference, ICLP 2008, Udine, Italy, December 9-13 2008,
Proceedings. Ed. by Maria Garcia de la Banda and Enrico Pontelli. Vol. 5366.
Lecture Notes in Computer Science. Springer, 2008, pp. 546–560. doi:
10.1007/978-3-540-89982-2_46. url: https://doi.org/10.
1007/978-3-540-89982-2_46.

[RC22] Victor Hugo Nascimento Rocha and Fábio Gagliardi Cozman. „A Credal
Least Undefined Stable Semantics for Probabilistic Logic Programs and
Probabilistic Argumentation“. In: Proceedings of the 19th International
Conference on Principles of Knowledge Representation and Reasoning, KR
2022, Haifa, Israel. July 31 - August 5, 2022. Ed. by Gabriele Kern-Isberner,
Gerhard Lakemeyer, and Thomas Meyer. 2022, pp. 309–319. url: https:
//proceedings.kr.org/2022/31/.

[Red17] Christoph Redl. „Extending answer set programs with interpreted functions
as first-class citizens“. In: International Symposium on Practical Aspects of
Declarative Languages. Springer. 2017, pp. 68–85.

[Ron+18] Alessandro Ronca, Mark Kaminski, Bernardo Cuenca Grau, Boris Motik,
and Ian Horrocks. „Stream Reasoning in Temporal Datalog“. In: Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. Ed. by Sheila

325

https://ojs.aaai.org/index.php/AAAI/article/view/16633
https://ojs.aaai.org/index.php/AAAI/article/view/16633
https://doi.org/10.1007/978-3-540-30227-8_15
https://doi.org/10.1007/978-3-540-30227-8_15
https://doi.org/10.1007/978-3-540-30227-8_15
https://doi.org/10.1007/978-3-540-89982-2_46
https://doi.org/10.1007/978-3-540-89982-2_46
https://doi.org/10.1007/978-3-540-89982-2_46
https://proceedings.kr.org/2022/31/
https://proceedings.kr.org/2022/31/

A. McIlraith and Kilian Q. Weinberger. AAAI Press, 2018, pp. 1941–1948.
url: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/16182.

[RS11] Fabrizio Riguzzi and Terrance Swift. „The PITA System for Logical-Probabilistic
Inference“. In: Latest Advances in Inductive Logic Programming, ILP 2011,
Late Breaking Papers, Windsor Great Park, UK, July 31 - August 3, 2011.
Ed. by Stephen H. Muggleton and Hiroaki Watanabe. Imperial College Press
/ World Scientific, 2011, pp. 79–86. doi: 10.1142/9781783265091_0010.
url: https://doi.org/10.1142/9781783265091_0010.

[RS18] Fabrizio Riguzzi and Theresa Swift. „A survey of probabilistic logic pro-
gramming“. In: Declarative Logic Programming: Theory, Systems, and Ap-
plications. Ed. by Michael Kifer and Yanhong Annie Liu. ACM / Morgan
& Claypool, 2018, pp. 185–228. doi: 10.1145/3191315.3191319. url:
https://doi.org/10.1145/3191315.3191319.

[Sht+14] Dimitar Shterionov, Joris Renkens, Jonas Vlasselaer, Angelika Kimmig,
Wannes Meert, and Gerda Janssens. „The Most Probable Explanation for
Probabilistic Logic Programs with Annotated Disjunctions“. In: Inductive
Logic Programming - 24th International Conference, ILP 2014, Nancy,
France, September 14-16, 2014, Revised Selected Papers. Ed. by Jesse Davis
and Jan Ramon. Vol. 9046. Lecture Notes in Computer Science. Springer,
2014, pp. 139–153. doi: 10.1007/978-3-319-23708-4_10. url:
https://doi.org/10.1007/978-3-319-23708-4_10.

[Sht15] Dimitar Shterionov. „Design and Development of Probabilistic Inference
Pipelines“. PhD thesis. KU Leuven, 2015.

[SI96] Richard Edwin Stearns and Harry B. Hunt III. „An Algebraic Model for
Combinatorial Problems“. In: SIAM J. Comput. 25.2 (1996), pp. 448–476.
doi: 10.1137/S0097539793243004. url: https://doi.org/10.
1137/S0097539793243004.

[Skr+22] Arseny Skryagin, Wolfgang Stammer, Daniel Ochs, Devendra Singh Dhami,
and Kristian Kersting. „Neural-Probabilistic Answer Set Programming“. In:
Proceedings of the 19th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2022, Haifa, Israel. July 31 - August
5, 2022. Ed. by Gabriele Kern-Isberner, Gerhard Lakemeyer, and Thomas
Meyer. 2022, pp. 463–473. url: https://proceedings.kr.org/2022/
48/.

[SM73] Larry J. Stockmeyer and Albert R. Meyer. „Word Problems Requiring
Exponential Time: Preliminary Report“. In: Proceedings of the 5th Annual
ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin,
Texas, USA. Ed. by Alfred V. Aho, Allan Borodin, Robert L. Constable,
Robert W. Floyd, Michael A. Harrison, Richard M. Karp, and H. Raymond

326

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16182
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16182
https://doi.org/10.1142/9781783265091_0010
https://doi.org/10.1142/9781783265091_0010
https://doi.org/10.1145/3191315.3191319
https://doi.org/10.1145/3191315.3191319
https://doi.org/10.1007/978-3-319-23708-4_10
https://doi.org/10.1007/978-3-319-23708-4_10
https://doi.org/10.1137/S0097539793243004
https://doi.org/10.1137/S0097539793243004
https://doi.org/10.1137/S0097539793243004
https://proceedings.kr.org/2022/48/
https://proceedings.kr.org/2022/48/

Strong. ACM, 1973, pp. 1–9. doi: 10.1145/800125.804029. url:
https://doi.org/10.1145/800125.804029.

[SNS02] Patrik Simons, Ilkka Niemelä, and Timo Soininen. „Extending and im-
plementing the stable model semantics“. In: Artif. Intell. 138.1-2 (2002),
pp. 181–234. doi: 10.1016/S0004-3702(02)00187-X. url: https:
//doi.org/10.1016/S0004-3702(02)00187-X.

[Som12] Fabio Somenzi. „CUDD: CU decision diagram package release 2.5.0“. In:
University of Colorado at Boulder (2012).

[SS16] Amit Sharma and Sunil Kr Singh. „One Way Functions–Conjecture, Status,
Applications and Future Research Scope“. In: International Journal of
Computer Applications 153.8 (2016).

[SS20] Friedrich Slivovsky and Stefan Szeider. „A Faster Algorithm for Proposi-
tional Model Counting Parameterized by Incidence Treewidth“. In: Theory
and Applications of Satisfiability Testing - SAT 2020 - 23rd International
Conference, Alghero, Italy, July 3-10, 2020, Proceedings. Ed. by Luca Pulina
and Martina Seidl. Vol. 12178. Lecture Notes in Computer Science. Springer,
2020, pp. 267–276. doi: 10.1007/978-3-030-51825-7_19. url:
https://doi.org/10.1007/978-3-030-51825-7_19.

[Str17] Ben Strasser. „Computing Tree Decompositions with FlowCutter: PACE
2017 Submission“. In: CoRR abs/1709.08949 (2017). arXiv: 1709.08949.
url: http://arxiv.org/abs/1709.08949.

[Tai95] SATO Taisuke. „A statistical learning method for logic programs with
distribution semantics“. In: Proceedings of the 12th international conference
on logic programming. Citeseer. 1995, pp. 715–729.

[Tam19] Hisao Tamaki. „Positive-instance driven dynamic programming for treewidth“.
In: J. Comb. Optim. 37.4 (2019), pp. 1283–1311. doi: 10.1007/s10878-
018-0353-z. url: https://doi.org/10.1007/s10878-018-
0353-z.

[TGK20] Efthymia Tsamoura, Vıćtor Gutiérrez-Basulto, and Angelika Kimmig. „Be-
yond the Grounding Bottleneck: Datalog Techniques for Inference in Proba-
bilistic Logic Programs“. In: The Thirty-Fourth AAAI Conference on Artifi-
cial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020. AAAI Press, 2020, pp. 10284–10291. url:
https://ojs.aaai.org/index.php/AAAI/article/view/6591.

[TKR23] Pietro Totis, Angelika Kimmig, and Luc De Raedt. „smProbLog: Stable
Model Semantics in ProbLog for Probabilistic Argumentation“. In: (2023).
arXiv: 2304.00879 [cs.AI].

327

https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029
https://doi.org/10.1016/S0004-3702(02)00187-X
https://doi.org/10.1016/S0004-3702(02)00187-X
https://doi.org/10.1016/S0004-3702(02)00187-X
https://doi.org/10.1007/978-3-030-51825-7_19
https://doi.org/10.1007/978-3-030-51825-7_19
https://arxiv.org/abs/1709.08949
http://arxiv.org/abs/1709.08949
https://doi.org/10.1007/s10878-018-0353-z
https://doi.org/10.1007/s10878-018-0353-z
https://doi.org/10.1007/s10878-018-0353-z
https://doi.org/10.1007/s10878-018-0353-z
https://ojs.aaai.org/index.php/AAAI/article/view/6591
https://arxiv.org/abs/2304.00879

[Tod89] Seinosuke Toda. „On the Computational Power of PP and +P“. In: 30th
Annual Symposium on Foundations of Computer Science, Research Triangle
Park, North Carolina, USA, 30 October - 1 November 1989. IEEE Computer
Society, 1989, pp. 514–519. doi: 10.1109/SFCS.1989.63527. url:
https://doi.org/10.1109/SFCS.1989.63527.

[Tse83] G. S. Tseitin. „On the Complexity of Derivation in Propositional Calculus“.
In: Automation of Reasoning: 2: Classical Papers on Computational Logic
1967–1970. Berlin, Heidelberg: Springer Berlin Heidelberg, 1983, pp. 466–
483. isbn: 978-3-642-81955-1. doi: 10.1007/978-3-642-81955-1_28.
url: https://doi.org/10.1007/978-3-642-81955-1_28.

[Val79] Leslie G. Valiant. „The Complexity of Enumeration and Reliability Prob-
lems“. In: SIAM J. Comput. 8.3 (1979), pp. 410–421. doi: 10.1137/
0208032. url: https://doi.org/10.1137/0208032.

[Van+10] Guy Van den Broeck, Ingo Thon, Martijn van Otterlo, and Luc De Raedt.
„DTProbLog: A Decision-Theoretic Probabilistic Prolog“. In: Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010,
Atlanta, Georgia, USA, July 11-15, 2010. Ed. by Maria Fox and David Poole.
AAAI Press, 2010, pp. 1217–1222. url: http://www.aaai.org/ocs/
index.php/AAAI/AAAI10/paper/view/1695.

[VDB09] Joost Vennekens, Marc Denecker, and Maurice Bruynooghe. „CP-logic:
A language of causal probabilistic events and its relation to logic pro-
gramming“. In: Theory Pract. Log. Program. 9.3 (2009), pp. 245–308. doi:
10.1017/S1471068409003767. url: https://doi.org/10.1017/
S1471068409003767.

[vEK76] Maarten H. van Emden and Robert A. Kowalski. „The Semantics of Predicate
Logic as a Programming Language“. In: J. ACM 23.4 (1976), pp. 733–742.
doi: 10.1145/321978.321991. url: https://doi.org/10.1145/
321978.321991.

[Vla+14] Jonas Vlasselaer, Joris Renkens, Guy Van den Broeck, and Luc De Raedt.
„Compiling probabilistic logic programs into sentential decision diagrams“.
In: Proceedings Workshop on Probabilistic Logic Programming (PLP). 2014,
pp. 1–10.

[Vla+16] Jonas Vlasselaer, Guy Van den Broeck, Angelika Kimmig, Wannes Meert,
and Luc De Raedt. „Tp-compilation for inference in probabilistic logic
programs“. In: International Journal of Approximate Reasoning 78 (2016),
pp. 15–32.

[VMD14] Guy Van den Broeck, Wannes Meert, and Adnan Darwiche. „Skolemization
for Weighted First-Order Model Counting“. In: Principles of Knowledge
Representation and Reasoning: Proceedings of the Fourteenth International
Conference, KR 2014, Vienna, Austria, July 20-24, 2014. Ed. by Chitta
Baral, Giuseppe De Giacomo, and Thomas Eiter. AAAI Press, 2014. url:

328

https://doi.org/10.1109/SFCS.1989.63527
https://doi.org/10.1109/SFCS.1989.63527
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1137/0208032
https://doi.org/10.1137/0208032
https://doi.org/10.1137/0208032
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1695
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1695
https://doi.org/10.1017/S1471068409003767
https://doi.org/10.1017/S1471068409003767
https://doi.org/10.1017/S1471068409003767
https://doi.org/10.1145/321978.321991
https://doi.org/10.1145/321978.321991
https://doi.org/10.1145/321978.321991

http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/
8012.

[VV86] Leslie G. Valiant and Vijay V. Vazirani. „NP is as Easy as Detecting
Unique Solutions“. In: Theor. Comput. Sci. 47.3 (1986), pp. 85–93. doi:
10.1016/0304-3975(86)90135-0. url: https://doi.org/10.
1016/0304-3975(86)90135-0.

[Wag86] Klaus W. Wagner. „The Complexity of Combinatorial Problems with Suc-
cinct Input Representation“. In: Acta Informatica 23.3 (1986), pp. 325–356.
doi: 10.1007/BF00289117. url: https://doi.org/10.1007/
BF00289117.

[Wal+19] Przemyslaw Andrzej Walega, Bernardo Cuenca Grau, Mark Kaminski, and
Egor V. Kostylev. „DatalogMTL: Computational Complexity and Expressive
Power“. In: Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019.
Ed. by Sarit Kraus. ijcai.org, 2019, pp. 1886–1892. doi: 10.24963/ijcai.
2019/261. url: https://doi.org/10.24963/ijcai.2019/261.

[Wal+21] Przemyslaw Andrzej Walega, David J. Tena Cucala, Egor V. Kostylev,
and Bernardo Cuenca Grau. „DatalogMTL with Negation Under Stable
Models Semantics“. In: Proceedings of the 18th International Conference on
Principles of Knowledge Representation and Reasoning, KR 2021, Online
event, November 3-12, 2021. Ed. by Meghyn Bienvenu, Gerhard Lakemeyer,
and Esra Erdem. 2021, pp. 609–618. doi: 10.24963/kr.2021/58. url:
https://doi.org/10.24963/kr.2021/58.

[Wan+21] Bin Wang, Jun Shen, Shutao Zhang, and Zhizheng Zhang. „On the Strong
Equivalences for LPMLN Programs“. In: Log. Methods Comput. Sci. 17.1
(2021). url: https://lmcs.episciences.org/7122.

[YIL20] Zhun Yang, Adam Ishay, and Joohyung Lee. „NeurASP: Embracing Neural
Networks into Answer Set Programming“. In: Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020.
Ed. by Christian Bessiere. ijcai.org, 2020, pp. 1755–1762. doi: 10.24963/
ijcai.2020/243. url: https://doi.org/10.24963/ijcai.
2020/243.

329

http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/8012
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/8012
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1007/BF00289117
https://doi.org/10.1007/BF00289117
https://doi.org/10.1007/BF00289117
https://doi.org/10.24963/ijcai.2019/261
https://doi.org/10.24963/ijcai.2019/261
https://doi.org/10.24963/ijcai.2019/261
https://doi.org/10.24963/kr.2021/58
https://doi.org/10.24963/kr.2021/58
https://lmcs.episciences.org/7122
https://doi.org/10.24963/ijcai.2020/243
https://doi.org/10.24963/ijcai.2020/243
https://doi.org/10.24963/ijcai.2020/243
https://doi.org/10.24963/ijcai.2020/243

	Abstract
	Kurzfassung
	Contents
	Introduction
	Declarative Programming with Answer Set Programming
	Extensions of ASP
	State of the Art

	Problem Statement
	Approach
	Research Questions

	Contributions and Thesis Structure

	General Quantitative Stream Reasoning
	Preliminaries
	Model Level Quantitative Reasoning
	Algebraic Measures
	Relation to Similar Formalisms

	Truth Level Quantitative Reasoning
	Preliminaries
	ASP(AC): ASP with Algebraic Constraints
	Language Aspects
	Relation to Similar Formalisms
	Complexity
	Summary & Open Issues

	Combining Stream Reasoning and Quantitative Reasoning
	LARS
	Algebraic LARS
	Relation to Weighted MSO and Automata
	Computation and Complexity
	Conclusion

	Complexity of Counting over Semirings
	Introduction
	Preliminaries
	Semiring Paradigm
	Semiring Complexity Classes and a Complete Problem
	Weighted Quantified Boolean Formulas and SAT(R)
	Semiring Turing Machines and NP(R)

	Completeness Results for Semiring Frameworks
	Sum-Of-Products Problems
	Algebraic Constraints
	Semiring-based Constraint Satisfaction Problems
	Algebraic Model Counting
	Algebraic Measures
	Datalog Semiring Provenance
	Semiring-induced Propositional Logic
	Other Frameworks

	Relation to Well-Known Complexity Classes
	Encoding Semirings
	Results for Specific Semirings
	Results for Classes of Semirings

	Related Works
	Discussion
	Conclusion

	Efficient Algebraic Answer Set Counting
	Preliminaries
	Logic Programming

	Algebraic Answer Set Counting
	Applications
	#P-hard Problems
	OptP-hard Problems
	Harder Problems

	Solving AASC Problems
	Overall Workflow
	Knowledge Compilation
	Different Approaches to the Knowledge Compilation Step

	Clark's Completion
	Primal Tree Decomposition Guidance
	Incidence Tree Decomposition Guidance

	Cycle Breaking
	Necessity of Cycle Breaking
	The MJ(.) Cycle Breaking [MJ10]
	The JN(.) Cycle Breaking [Janhunen and Niemelä, 2011]
	Tp-Unfolding

	Implementation
	Input Specification
	Grounding & Simplification
	Cycle Breaking
	Clark's Completion
	Knowledge Compilation
	Evaluation

	Experimental Evaluation
	Questions & Hypotheses
	Setup
	Results & Discussion

	Discussion
	Summary & Findings
	Outlook

	Conclusion
	Conclusion
	Open Issues

	Full Proofs: General Quantitative Stream Reasoning
	Encoding Provenance of Non-ground Positive Datalog Programs: Theorem 26
	Domain Independence and Safety: Theorem 29 and 31
	Strong Equivalence Using Finite Programs: Theorem 33
	Complexity of Reasoning with AC-Programs: Theorem 37
	Equivalence of the Expressiveness of LARS Measures and Weighted Automata: Theorems 64 and 65
	Computational Complexity of LARS Measures Over Propositional Variables: Lemma 67 and Theorem 68

	Full Proofs: Complexity of Counting over Semirings
	Prefix Normal Form: Lemma 81
	NP(R)-completeness and Karp reducibility
	NP(R)-completeness of SAT(R): Theorem 88
	Complexity of SAT(R), SumProd(R), AMC, Algebraic Measure Evaluation, SCSP, FO-Eval(R), mrg(F), Datalog Semiring Provenance: Theorems 90, 95, 96, 94, 93 and 100

	Relation to classical complexity classes
	FPSpace(poly)-membership of SAT(R) for efficiently encoded semirings: Proposition 103
	NP, #P, GapP, OptP-completeness of SAT(B), SAT(N), SAT(Z), SAT(R(max,+)): Theorem 104
	Results for classes of semirings
	Derived results: Theorem 123

	Full Proofs: Efficient Algebraic Answer Set Counting
	Proofs Regarding Clark's Completion: Theorem 149
	Proofs Regarding Cycle Breaking: Lemmas 151, 157, 159, Theorems 153, 155, 154, 162

	Implementation Details
	Knowledge Compilation Settings
	Dtree and Vtree Generation

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

