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Kurzfassung

Seit mehr als drei Jahrzehnte haben Cyber-Täuschungen gezeigt, wie Angreifer entdeckt,
analysiert und getäuscht werden können. Eines der Probleme, das die Forscher in dieser
Zeit zu lösen versuchten, war die Automatisierung und Orchestrierung der Täuschungs-
systeme, um die Komplexität für den Benutzer zu minimieren und die Akzeptanzrate von
Cyber-Täuschungen zu erhöhen. Darüber hinaus muss die Forschung die Echtheit der
Täuschung bewahren, damit die Angreifer nicht misstrauisch werden und ihre Interaktion
mit dem System abbrechen. Diese Eigenschaften sind besonders schwer in komplexen
Cloud-Umgebungen zu erreichen, die sich im Laufe des Tages schnell verändern. Eine
Lösung für diese Eigenschaften ist die Verwendung von Function-Hooks. Obwohl Function-
Hooks im Bereich der Malware-Erkennung und -Täuschung erforscht werden, bestehen
im Bereich des Cloud Computing noch Forschungslücken.

In dieser Arbeit analysieren wir Function-Hooks in Bezug auf Shared Libraries für
HTTP-Täuschung in Cloud-Umgebungen. Im Detail haben wir die Umgebungsvariable
LD_PRELOAD und ihre Möglichkeit, eine benutzerdefinierte Binärdatei bei Prozessstart
zu laden, um Shared-Library Methoden zu überschreiben, analysiert. Auf der Grundlage
der vorhandenen Literatur haben wir einen Prototyp entwickelt, der zwei Täuschungsme-
thoden einführt, um HTTP-Antworten zu täuschen. Nach der Bereitstellung in einem
Cluster kann sich unser Prototyp in neu erstellte Ressourcen innerhalb eines Produk-
tionssystems einschleusen. Die Täuschungselemente können während der Laufzeit des
Produktionssystems durch Änderung einer globalen Konfigurationsdatei modifiziert und
deaktiviert werden. Schlussendlich haben wir eine Leistungsbewertung durchgeführt,
die zeigte, dass unser Täuschungsprototyp zu einer durchschnittlich 6,72% langsameren
Antwortzeit führte, wenn er aktiviert war, und zu 1,58%, wenn er deaktiviert war.
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Abstract

For over three decades, cyber deception has shown how adversaries can get detected,
analysed, and deceived. Throughout this time, one of the problems researchers tried to
address was the automation and orchestration of the deception systems to minimize the
user’s complexity and increase the adoption rate of cyber deception. In addition, research
must still preserve the deception’s genuineness so that attackers do not get suspicious
and stop their interaction with the system. Such attributes are especially hard to achieve
within complex cloud environments, which have rapid changes throughout the day. One
solution to address those attributes is by using function hooks. Even though hooks are
explored in the area of malware detection and deception, research gaps still exist in the
area of cloud computing.

In this work, we analyse function hooking of shared libraries for HTTP deception inside
cloud environments. In more detail, we analysed the LD_PRELOAD environment
variable and its possibility to preload a custom binary file to hook shared library methods.
Based on existing literature, we created a prototype to inject two deception tactics to
make HTTP responses deceptive. Once deployed to a cluster, our prototype can inject
itself into newly created resources inside a production system. The deceptive elements can
be modified and deactivated during the runtime of the production system by modifying
a global configuration file. Finally, we conducted a performance evaluation showing
that our deception prototype resulted in an average of 6.72% slower response time with
activated deception elements and 1.58% with deactivated deception elements.
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CHAPTER 1
Introduction

For over three decades, cyber deception techniques have been utilised to detect, analyse,
and deceive attackers. Even if the attackers know that deceptive elements exist in a
system, those deceptive elements still impact the attacker’s behaviour [1]. One of the
most commonly known deception techniques is the honeypot, which tries to mimic a
whole system or protocol and uses comprehensive monitoring to analyse all interactions.
Contrary to that, honeytokens are decoy data, like credentials, that will be detected
when used. Deception techniques usually do not interact with the actual application
itself. Therefore, they are hidden from the average user and can generate solid indicators
for malicious behaviour.

Despite the variety of existing developed techniques, the adoption in real-world appli-
cations still needs to be improved. As stated by Lance Spitzner, cyber deception was
not held back by the concept but by the technology [2]. To tackle this problem, recent
solutions try to automate and orchestrate the deployment as well the lifecycle of the
deception itself, reducing setup and maintenance costs [3]. Specifically for HTTP-based
deception inside a cloud environment, common techniques are based on honeypots [4]
or proxies [5, 6]. A downside of such approaches is that they are outside the container,
making it hard to put deceptive elements inside a production system.

An established method to address the adaptation of a system inside the OS is function
hooking [7]. Even though different operating systems offer different hooking capabilities,
most have shared libraries. Hooking shared library is already a used concept for malware
identification and malware deception [8], but to our best knowledge, no research evaluated
hooking the shared library specifically for deception inside a cloud environment.
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1. Introduction

Figure 1.1: Example how an HTTP response can be made deceptive.

1.1 Contribution
This thesis investigates the modification of shared libraries inside a Kubernetes cluster
for a cyber deception use case. Figure 1.1 demonstrates the two deceptive methods we
aimed to implement. The methods are called status code tampering and version trickery,
as presented by Fraunholz et al. [6]. Additionally, we add the requirement that the
administrator of the deception system can specify an endpoint on which the status code
tampering will be active to showcase that the system can link a specific request to its
response.

We expect that tracing through multiple methods is not trivial since applications may use
methods of the shared library in different ways (for example, sending a payload in one vs
multiple requests) or even use different methods (for example, send vs write method).
Therefore, we first analyse how a Java and a Python application use the shared library.
Those languages are selected since they are both well-used for backend applications,
have existed for over 20 years, have a well-supported community, and related libraries,
language interpreters, and compilers are open source.

Secondly, we use the knowledge gained from the first step to implement a simple
LD_PRELOAD deception system. The system’s goal is to deploy it once, and af-
terwards, the deception is automated for newly created services. The deceptive elements
are demonstrated in Figure 1.1 as described at this section’s beginning.

Finally, we will conduct a performance evaluation for our prototype to get insight into
the amount of overhead that is introduced by our system. We expect to see a similar
overhead as protocolled in the hooking review done by Lopez et al. [7].

This thesis is guided by the following research questions:

1. How can a socket connection in Linux be traced by injecting shared libraries?

2. What are architectural trade-offs when designing a deception system with
LD_PRELOAD?

3. How does the deception system with LD_PRELOAD affect the performance of the
original applications?

2



1.2. Structure of the Thesis

1.2 Structure of the Thesis
The rest of this thesis is structured as follows: First, Chapter 2 provides the background
in cloud computing, function hooking, and cyber deception. Secondly, Chapter 3 ac-
knowledges the related work of this thesis. Then, Chapter 4 introduces the methodology
for the three research questions. Afterwards, each research question is addressed in its
own chapter, starting with Chapter 5, which analyses how socket connection can be
traced. The architectural trade-offs of a deception system with LD_PRELOAD are then
discussed in Chapter 6 before concluding a performance evaluation in Chapter 7. Finally,
Chapter 8 concludes this thesis.
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CHAPTER 2
Background

In order to understand the chapters later on, some prior knowledge is needed. Therefore,
this chapter gives an overview of the most important concepts for this thesis. Starting
with Section 2.1, the concepts of cloud computing and Kubernetes are explained. Section
2.2 explains the layers of a computer system, and the function hooking is a possibility
with a special focus on LD_PRELOAD. The last section, Section 2.3, states what cyber
deception is as well as its taxonomy.

2.1 Cloud Computing
One of the most used definitions for cloud computing is provided by NIST [9], which
defines a cloud with three service models, four deployment methods, and five essential
characteristics. Subsection 2.1.1 explains the service models in more detail since they are
essential to understanding what layers we have to manage inside the cloud. Afterwards,
we will elaborate on the essential characteristics in Subsection 2.1.2 to understand which
characteristic a prototype designed for cloud computing has to support. Conversely,
deployment models impose no influential factors for deception in this thesis and are,
therefore, not further explained. Lastly, we explain in Subsection 2.1.3 the major
components of Kubernetes we used for developing our prototype.

2.1.1 Service Model

"As a service" refers to the various services offered by a cloud service provider (CSP).
Examples of CSP are Amazon Web Services (AWS), Google Cloud, and Microsoft Azure.
These services are provided over the internet instead of having the resources on a server
on-site, also often called on-premises. Less costs, better scalability, and fewer personal
resources needed for maintenance are often seen as advantages by the consumers of CSPs.
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Figure 2.1: Most common as-a-service offerings compared to on-premises solutions [10].

NIST defines the three most known services available in cloud computing: Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).
Guided by the description of Rountree and Castrillo [10], we created Figure 2.1 that
summarizes the difference between those services. The rest of this subsection will go into
the details of the services.

Infrastructure as a Service

IaaS provides the infrastructure for running an operating system in the cloud. On the
one hand, IaaS excludes all physical engagement needed to provide software services
compared to an on-premises solution. On the other hand, it still enables the consumer
to choose the operating system running on the server and the infrastructure software
and application. Compared to PaaS and SaaS, IaaS offers the most flexibility by only
managing the physical servers with networking, storage, power supply, and physical
access.

Example: Amazon Elastic Compute Cloud (EC2) and Google Compute Enginge (GCE)

Platform as a Service

On top of IaaS, PaaS additionally offers the operating system (OS) layer as well as
the infrastructure software. It includes essential tools and services like development
frameworks, databases, application hosting, and application management tools. This
allows developers to focus on the coding and application logic part rather than managing
servers and software components.

Example: AWS Elastic Beanstalk, Google App Engine and Azure’s App Service
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2.1. Cloud Computing

Software as a Service

Lastly, SaaS offers applications with all the underlying layers to scale the application
depending on consumer needs. Instead of purchasing and installing software locally, users
access it through a web browser, making it cost-effective and convenient. SaaS eliminates
the need for software maintenance, updates, and hardware infrastructure management,
as the SaaS provider handles these responsibilities. Example: Dropbox, Microsoft (Office)
365 and Gmail

2.1.2 Characteristics

NIST defined the five characteristics [9] to point out distinctive attributes that have
been fulfilled by the service offered by a provider to call itself a CSP. Those essential
characteristics are explained below with the functional requirement for an additional
newly built feature, like a deception system, in mind.

On-demand self-service

As the name suggests, on-demand self-service describes the ability of the consumer to
request a service without the CSP having to manually provide access to resources like a
processor or network storage. This has the advantage of the consumer’s ability to quickly
acquire new services within seconds rather than minutes or hours. At the same time, the
CSP has the advantage of automating user management, and the administrators only
have to focus on the availability of the service rather than being in charge of thousands
of service requests.

Considering a new feature within an existing cloud service, these characteristics imply
that the feature must either be a fixed part of an existing service or be made available
with a fully automated process to be on-demand self-service.

Resource pooling

Resource pooling refers to having multiple resources grouped to serve multiple consumers.
Physical resources like a CPU or GPU are split virtually into multiple resources to achieve
this. Hence, the resources can be "leased" by a consumer until they no longer need them.
CSP primarily uses virtualization technology to pool a server, a whole data centre, or
even parts of a country together and offer it to consumers. With that, the CSP has the
advantage of freely organizing resources and balancing them across the available physical
resources to balance their usage. Then, fewer physical resources are needed in total, and
the price a consumer has to pay can be reduced.

For a newly implemented feature, this must be considered within its architectural design
since, for example, a computing unit does not have to be at the same geographical
location as the storage resources needed for the processing. This can have a significant
impact on performance. Of course, CSP can offer guarantees that specific resources are

7



2. Background

geographically close together, but this typically affects the price of the service and hence
has an economic impact on the feature itself.

Rapid elasticity

Instead of providing new services like the on-demand self-service, Rapid elasticity provides
more resources to a service when needed and freeing up resources if they are not needed.
Therefore, rapid elasticity can also be seen as "on-demand self-resources". This essential
feature provided by CSP is becoming economically attractive due to the resource pooling
characteristics. The process of elastically changing the resources is mostly automated.
Because many services experience spikes in usage during a specific time of the day or
the year, this characteristic reassures consumers about such cases since the maximum
resources they can access often appear unlimited.

A new feature has to be designed in a way that it can scale upwards and downwards as
needed. This can impose rudimentary changes within the architecture of a feature.

Measured service

Since services and resources are primarily used on-demand within a cloud environment,
pricing is also mainly on a pay-per-use basis. To make costs transparent, CSP monitors
the system and uses different measurement systems to evaluate consumer usage. This
measurement can, for example, be done on an hourly usage basis of computing units or
network connection per minute.

As a result, one must consider if introducing a new metric for a new feature is applicable
or if it is better to charge with an existing measurement. Finding the right metrics
can be difficult, and using existing resources rather than creating new cost plans is
better manageable by the CSP and the consumer. For example, when introducing a new
algorithm to process specific data within a more extensive system, it can be better to
charge based on processor utilization of the whole system rather than creating a new
metric for the usage of the specific algorithm.

Broad network access

Broad network access within cloud computing implies that consumer should be able to
access their resources no matter the capability of a device (e.g., smartphones, laptops,
and workstations) or the device’s operating system (e.g., Android and IOS). To achieve
this, a heterogeneous client platform is needed. Additionally, a thin client platform is
often preferred over a fat client since consumers might need a higher network connection
or computing resources on their devices to use them.

Similar to previous characteristics, this impacts a feature at an architectural level the
most.
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2.1. Cloud Computing

2.1.3 Kubernetes Overview
Kubernetes1 (also known as K8s) is one of the most popular systems for deploying
and managing cloud applications at a scale. Kubernetes is supported by most vendors
with services like Amazon Elastic Kubernetes Service (EKS), Google Kubernetes Engine
(GKE) and Azure Kubernetes Service (AKS). Those services often leverage the IaaS
service of the CSP to run a Kubernetes cluster. Kubernetes clusters establish a platform
with components that allow the management of applications. For example, we used EKS
to create a Kubernetes cluster and an EC2 instance to run the computational load of the
cluster.

Kubernetes leverages containers to deploy and manage applications. Kubernetes leverages
containers to deploy and manage applications. With the system layers of Rountree and
Castrillo [10] in mind, a VM would include the OS layer and everything upwards, making
it a good use case for IaaS. The difference between container and virtual machines (VM)
is that VMs virtualize a whole hardware layers machine, whereas container virtualizes on
top of the OS. Being lightweight makes containers better suited for running microservice
applications on a larger scale.

The rest of this subsection describes the main components of Kubernetes that we used
for this thesis. Figure 2.2 represents an overview of the components. The components
are explained as follows:

1. Starting with the smallest deployable compute unit in Kubernetes, namely Pods.
Each Pod has a unique IP address inside a cluster and can contain one or more
containers. Containers within a Pod share the same network and, therefore, can
reach each other with localhost. A sidecar container can be used to enhance the
functionality of the main container. Use cases for it is monitoring, caching or SSL
termination
Resources within Kubernetes are described and deployed with a manifest file,
typically written in YAML. Pods can be deployed with their own manifest or
created and managed by a Deployment. Deployments have the advantage of
leveraging mechanisms like ReplicaSet to ensure that there are always a certain
number of Pods of an application up and running. If a Pod shuts down for an error
or any other reason, this would get automatically detected. The ReplicaSet would
then start a new Pod to meet the minimum number of Pods requirement defined
within the Deployment.

2. Deployments run inside a namespace. A namespace enables to isolate resources
inside a cluster. Within a namespace, the resources must be unique. For example,
when a ReplicaSet starts three Pod named test-application, it will add a different
hash to each Pod name to make it unique. Different namespaces get automatically
created during cluster initialization. The most important one is the kube-system
namespace, which contains objects created by the Kubernetes system. Examples of

1https://kubernetes.io/
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Figure 2.2: An overview of Kubernetes components that are relevant to this thesis. The
enumerated components are explained within Subsection 2.1.3.

objects inside this namespace are the kube-dns and kube-proxy Pod for managing
network names and access across multiple nodes.
The node is a physical machine or VM that runs the Pod. A typical cluster contains
multiple nodes. The assignment of the Pod to a node and the general management
is controlled by the control plane (see Enumeration 4). A namespace can span
over multiple nodes, and a node typically has multiple namespaces. It is important
that namespaces are not bound to nodes but span across the whole cluster. Some
resources, like a Service, do not run or are bound to a specific node but exist within
a namespace.

3. A Service is an option to enable communication with the Pods within a cluster.
Pods are typically labelled, which the Service can then use to identify which Pods
are related to it. The Service knows which of the Pods are healthy and available.
Each node has a kube-dns or kube-proxy Pod for name resolving. To access a specific
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2.1. Cloud Computing

Service, the URL looks as follows: <service-name>.<namespace>.svc.cluster.local
A Ingress can be defined to forward a request from outside the cluster to a service,
which then forwards the request to a specific pod.

4. The control plane represents the core of Kubernetes. It manages the cluster and
resources like the nodes. The control plane can reside on the same machine as a
node but mostly run on a separate VM.
The kube-apiserver is a Pod and the core of the control plane. It manages
the container lifecycle and acts as an entry point to the Kubernetes system. For
example, when a developer deploys resources like a Deployment or a Service, the
kube-apiserver is the Pod that creates those new resources.

5. Operators are software extensions of Kubernetes that apply the operator pattern.
Operators are using custom resources to automate tasks that a human normally
would have to perform. The custom resource used within this thesis is the mu-
tating webhook configuration (MVC), and it is used to modify a configuration
before it gets deployed. The MVC can define certain conditions and an address to
a webhook. An example of a condition: The manifest has to specify that a Pod is
created within a namespace called "deception". Before the kube-apiserver deploys
a manifest file, it will send the manifests to the webhook if the MVC condition
applies.
The webhook, also called mutating admission webhook, is a simple service that
processes incoming requests with manifests and responds with a list of changes or
with the info that no changes have to be applied. The webhook itself runs inside a
container.

6. Kubernetes clusters aims to manage compute resources for a cloud environment,
but not storage resource. A PersistentVolume (PV) can be used for the cluster
to access persistent storage. A PV is a cluster resource just like a node. PVs can
be manually created by the cluster administrator, also known as static PVs, or
the administrator provides storage classes so that the PVs can get dynamically
generated as needed, also known as dynamic PVs.
Kubernetes does not manage the underlying storage of a PV. Therefore, a different
service has to be used for persistent storage. There are different services available
for Amazon: Elastic Block Store (EBS), Simple Storage Service (S3) and Elastic
File System (EFS). When considering those services, one must consider a PV’s
access modes. The access modes relate to the node usage and are ReadWriteOnce,
ReadOnlyMany or ReadWriteMany. During the development of our prototype,
we chose EFS since it supports ReadWriteMany and enables file access with the
Network File System (NFS) protocol, which makes it easier to administrate our
shared object and configuration files.
Pods can access the storage of a PV via a PersistentVolumeClaim (PVC).
PVCs are created within a namespace, and multiple pods can use a PVC as long
as they are in the same namespace. Only one PVC can be bound to a single PV
and vice versa.
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2. Background

2.2 Function Hooking
The term function hooking describes the process of adjusting the behaviour of a function
inside the application, the OS or any other software component. In Subsection 2.2.1,
we give an overview of the different layers an application has to pass with its network
connection. Additionally, we discuss each layer’s capability to trace or modify a payload.
Subsection 2.2.2 then focuses on using the LD_PRELOAD for hooking into the traffic of
applications.

2.2.1 System layers and Hooking Capabilities

For this thesis, we want to create a cyber deception system that modifies HTTP responses.
When looking at a response inside a cluster, the response has to travel through several
layers on the device until it reaches its destination, as depicted in Figure 2.3. We choose
those layers based on what parts are manageable by us as a consumer of an IaaS offering.
Similar to the layers presented by Rountree and Castrillo [10], we have the application
layer, the infrastructure software renamed as a runtime layer and the Operating System
(OS) represented split into the kernel and the shared libraries. As presented in previous
Sections, the traffic of a container can be tunnelled through a sidecar container that
acts as a proxy, adding an optional layer until the response reaches its destination. The
destination can be another service inside the cluster or an external user. The rest of this
subsection will shortly introduce each layer and its capabilities to add new functionality
with minimal interactions needed to deploy it, as we are trying to do.

The first layer is the application itself. Functionality can be added to this layer within
the source code or the binary. The latter is hard to achieve since different languages
store the binary data in different formats. On the other side, adding a framework within
the source code might be more straightforward, but this would need experts in the source
code to implement the framework, which would still take longer to implement compared
to the other layers. Hence, it is hard to use the application for deception as a service.

The runtime, also known as runtime environment, manages the application lifecycle.
Examples of the runtime environment are the Java Virtual Machine (JVM) for Java or
the Common Language Runtime (CLR) for Microsoft’s .NET Framework. Hooks at the
runtime layer can be generated with tools like Java Reflection as presented by Li et al.
[11]. This method’s downside is that it still needs to be compiled with the source code.

The shared library is the first layer that does not need the recompilation of the whole
application. Shared libraries are used for commonly used cases like socket connection to
be supplied as a compiled library once and serve multiple applications without including
the shared library in every application. Examples of shared libraries are shared objects
(.so files) on Linux or dynamic-linked libraries (.dll files) on Windows. Lopez et al. [7]
explores different hooking approaches for Windows, Linux, macOS, iOS, and Android.
The most relevant method for this thesis is using the LD_PRELOAD environment
variable as described in more detail in Subsection 2.2.2. Important to add here is that the
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Device Context

Application Runtime
(JVM, CLR)

Shared Library
(.so, .dll) Kernel

Response
DestinationProxy

Response from Application

Figure 2.3: Layers of which an application’s response must pass until it reaches its
destination. The device context describes the layers that can access local resources like
files (with the help of the kernel).

application has to link the shared libraries dynamically rather than statically. Otherwise,
hooking with methods like the LD_PRELOAD variable is not possible.

The kernel layer, as a core part of the OS, manages access to the machines in general,
including access to hardware resources. A prominent example specifically for cloud
environments is Extended Berkeley Packet Filter (eBPF) as presented by Soldani et al.
[12]. The big difference between the previously mentioned methods and the kernel layer
is that containerisation occurs on top of the kernel. This means that each application
has to be hooked, except for the kernel, since each EC2 instance has one kernel shared
by all containers.

Lastly, we consider the proxy as a possibility to change network traffic. A typical use
case for sidecar proxies in cloud environments is within a service mesh [13]. Service
mash enables developers to separate communications in a dedicated infrastructure layer.
Contrary to the kernel, a sidecar proxy has to be deployed for each container where the
network traffic should be modified. An additional downside of proxy is that there is, in
general, less information about the application and its system available. For example,
if the application encrypts its traffic, the proxy would have no reasonable possibility of
adjusting or even identifying the payload.

2.2.2 Hooking with LD_PRELOAD
LD_PRELAOD is an environment variable used by the dynamic linker of Linux to
preload a shared library before all other shared libraries. The value of LD_PRELOAD
has to be the shared library name of the library that should be preloaded. The shared
library will be loaded at the starting phase of a process, meaning that modification of
the shared library file (.so file) or the variable itself has no effect when the process has
already started. The rest of this subsection showcases LD_PRELOAD with an example.

We created a small demo to overwrite the response of the Python service. Listing 2.1
represents the code of our shared library, and we named the compiled library "overwrite-
send.so". The code itself defines a method send in line 7, which has the same name
and arguments as the send method defined in libc2. The first line of the method (line
9) will retrieve the original libc send method pointer by calling the dynamic linking
loader (dlsym method). We do this to call the original send method directly instead of

2https://linux.die.net/man/7/libc
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implementing the send functionality ourselves. We then check in line 11 if the buffer
contains the string "Hello World". If so, we call and return the original send method with
our custom "Overwritten!" string. Otherwise, we will forward the original parameters.

To test this, we created Hello-World Python service (Listing 2.2) that responds with
the string "Hello World!" if a request was sent to http://localhost/. We then set
LD_PRELOAD with the command:

export LD_PRELOAD="./overwrite-send.so"
Since we used a relative path, we have to start the Python service in the same directory
as our .so file. After we start the Python service and send a request, the Python service
will call our hooked method, which results in "Overwritten!" being sent in the response.

Listing 2.1: overwrite-send.c: Overwrites all send calls that contain "Hello World".

1 #include <string.h>
2 #include <sys/types.h>
3 #include <dlfcn.h>
4

5 ssize_t (*libc_send)(int, const void *, size_t, int);
6

7 ssize_t send(int sockfd, const void *buf, size_t len,
8 int flags){
9 libc_send = dlsym(RTLD_NEXT, "send");

10

11 if (strstr(buf, "Hello World") != NULL) {
12 return libc_send(sockfd, "Overwritten!\r\n", 15, flags);
13 }
14

15 return libc_send(sockfd, buf, len, flags);
16 }

Listing 2.2: test-app.py: simple flask demo service that response with "Hello World!".

1 from flask import Flask
2 app = Flask(__name__)
3

4 @app.route("/")
5 def index():
6 return "Hello World!\n"
7 app.run(port=80)
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2.3 Cyber Deception
Cyber deception refers to techniques to mislead attackers into interacting with simulated
data, services or devices. Numerous studies showed that such deception techniques can
detect, deceive and delay attackers [1, 14, 15]. For this thesis, we consider three of the
deception techniques as relevant: the honeypot, honeytokens and their combination called
tripwires.

One of the most known techniques for cyber deception is the honeypot. To describe it
with Lance Spitzners [16] words: "A honeypot is a security resource whose value lies in
being probed, attacked, or compromised". A honeypot often mimics a service or system,
and many implementations are publicly available [17]. For example, a honeypot can
implement the Secure Shell Protocol (SSH). SSH typically enables remote access to a
system and is, therefore, a coveted resource for hackers. If an attacker connects to the SSH
honeypot, he or she will only find a fake system with fake resources. Additionally, when
one interacts with the honeypot, those interactions will be logged, and the administrator
can use those logs to learn more about the attackers and their behaviour.

Contrary to the honeypot, honeytokens are fake digital entities without any compute
resources [18]. Examples of honeytokens can be real-looking credentials, documents or
database entries. Like honeypots, the production system does not use honeytoken, and
their purpose is only to attract attackers’ attention. Since they have no computing part,
honeytokens need an additional system for log interactions with it or mechanisms that
detect when honeytokens, like fake credentials, are used.

Tripwires are a combination of a honeypot and a honeytoken which injects lures (i.e.,
honeytokens) in a system that can be used to interact with decoys (i.e., honeypots) [19].
For this thesis we set the focus on injecting lures automatically and we leave the decoy
implementation for future work.
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CHAPTER 3
Related Work

This chapter introduces related literature that has similar approaches or influenced us
in creating this thesis. Section 3.1 describes different literature on malware detection
and deception inside Windows systems, which we consider similar to Linux systems like
containers in cloud infrastructure. Section 3.2 addresses additional relevant deception
literature focusing on cloud computing.

3.1 Deception as a Service for Malware
Apart from microservices, deception is also used for malware detection and deception on
Windows. Alsaleh et al. [20] developed gExtractor, a tool that extracts malware traces
of Windows’s system (kernel level) and library (shared library level) API calls. Addition-
ally, it uses those traces to generate deception parameters in the form of environment
variables, enabling the automation of a deception system. They validated their claims
by using honeytokens in the form of file transfer protocol (FPT) passwords to mislead
cryptocurrency and credential-stealing malware as well as different ransomware.

Sajid et al. present DodgeTron [21], which builds up on gExtractor and extends it with
a machine-learning approach to support real-time deception orchestration. The authors
also introduce deception playbooks as a term to impose certain deception schemes for
certain malware types. Their deception schemes include fake resources like registry
entries and files. With DodgeTron, the authors could automatically deceive 869 out of
953 malware they tested, with a few seconds needed to classify the malware categories.
Their analysis to identify new malware types took 27.7 minutes on average.

Islam et al. [3] created CHIMERA that further adapts malware identification using a
global adversary tactics and techniques knowledge base. Additionally, they extended
the deception playbooks by using an open-source hooking library for Windows called
EasyHook [22]. EasyHook is also a hooking method based on the shared library layer,
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but in contrast to preloading shared libraries with LD_PRELOAD, EasyHook allows the
hooking during the runtime of a process. CHIMERA uses hooks to forward malicious
processes to what they call a honey factory (HF). The HF has various deceptive tools,
like honey tokens, fake web pages and honey-patches. They evaluated their system by
running various malware on it, and they proposed that their system take a maximum
of 15 milliseconds to decide a deception strategy for detected malware. Including the
decision for the strategy, CHIMERA took a maximum of 47 seconds for the deception
deployment and orchestration, which they argue is low compared to the time it takes the
malware to exploit a vulnerability.

The latest system presented by Sajid et al. is called symbSODA [23]. SymbSODA
contains a client application to trace and inject DLLs, similar to what our prototype is
doing with the shared libraries. However, symbSODA also contains a server application
which communicates with the clients. The server can create HF as needed, enabling the
deception system to be offered as a service. Deception as a service with symbSODA
contains a centralized server with a deception playbook and the HFs managed by the
cloud service provider. Customers can create custom deception schemes for the deception
playbook or use default schemes. They then install the symbSODA client on different
Windows environments, and the client will connect to the server to successfully deceive
malware.
To evaluate the performance overhead introduced by symbSODA, the author compared
malware response time with symbSODA deployed on a test system against the test
system without deception capabilities. Four different malware types were selected, which
performed between 13 and 126 seconds without deception. With the deception system,
the generated performance overhead was between 7% and 15%.

3.2 Microservice Deception

As presented by Soldani et al. [12], extended Berkeley Packet Filter (eBPF) is a technology
used for observability and security inside Kubernetes. The eBPF system is based on
the kernel layer and, therefore, only has to be installed once per VM to trace all pods
running on it. Like LD_PRELOAD, eBPF uses function hooking to inject code into the
system.
One application that is using eBPF is Pixie1. Similar to this thesis, Pixie can trace HTTP
traffic by overwriting send and recv calls, but they achieve that on the Kernel layer. They
also support HTTPS tracing, which is impossible in the kernel since encryption happens
in the application layer. Most applications do not implement the TLS encryption on their
own but rather use libraries like OpenSSL. Moreover, OpenSSL uses a shared library to
enable applications to dynamically link it. As presented by Nano [24], Pixie uses this fact
to its advantage by hooking the SSL_write and SSL_read method of OpenSSL in the
shared library layer in the same way we did for the send and read method in this thesis.

1https://px.dev
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We can achieve similar HTTPS support for our prototype in this way, even though the
identification of the file descriptor is not trivial, as mentioned by Nano.

The tripwire framework proposed by Kahlhofer et al. [19] proposes an orchestration
model with tripwires for cloud environments. The tripwires are composed of lures and
decoys. The lures can be resources like fake credentials to register at a decoy system like
a fake service. The authors propose using function hooking to inject such lures or even
decoys.

Faunholz et al. [6] created a deception as a service system called Cloxy. The system
can manipulate HTTP responses with nine different deceptive elements, out of which we
included two for this thesis. Cloxy is a reverse proxy supporting HTTP at its current
implementation. However, it can also use HTTPS if the system fully implements the
underlying proxy technology. Their approach is about eight times slower, with most
overhead introduced through the proxy. They claim that compared to the proxy without
deception, the proxy with version trickery does not generate further delay, and only
advanced method like obfuscating JavaScript code increases the overhead by a factor of
1.78.

Reti et al. [25] presented a prototype that modifies the HTML code of the HTTP response
payload if the request contained a honeytoken. The author used the libnetfilter_queue
library to achieve this. This library provides an interface for userspace programs to
communicate and modify network packages inside the kernel. Like Pixie, execution inside
the kernel limits the libnetfilter_queue technique to unencrypted traffic since additional
userspace hooks are needed to intercept encrypted communications like HTTPS.

Araujo et al. [26] introduced the term honey-patches in their prototype called RedHerring.
Honey-patches are patches that fix a vulnerability in a service by redirecting exploits to
a honeypot with an unpatched version of the service. Patches are made directly in the
source code, and therefore, they are at the application layer. The authors use a reverse
proxy to orchestrate the deception and create new honeypot containers with the previous
service state for malicious requests. They measured the round-trip times of malicious
requests and concluded with an overhead of about 250 milliseconds.

Araujo and Taylor [27] used just-in-time patching to update a running production
application. They compile their patches into a shared library, which they link with
a special hooking agent during runtime. Their performance evaluation of the RTT
concluded an overhead between -20% and +10% with the performance improvements
arise due to optimizations that the JIT compiler can do in larger patches.

Apart from various systems that add or inject payloads into production systems, there is
plenty of literature for honeypots inside cloud environments. For example, Priya and
Chakkaravarthy [4] run eight containerized honeypots on multiple VMs at Microsoft
Azure Cloud, and Alyas et al. [28] propose a model to integrate and manage honeypots
in a multi-cloud platform environment.
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CHAPTER 4
Methodology

This chapter establishes the fundamental concept for this thesis. We first define the three
research questions (RQs). Afterwards, each RQ is addressed in its own section. Finally,
we address threats to validity, potential limitations, and challenges.

4.1 Research Questions
This thesis investigates the usage of hooking shared libraries for cyber deception inside
cloud environments by injecting deceptive code modules into specific shared libraries
related to the HTTP response. Three research questions were defined to split the topic
into the fundamental concept, a proof of concept, and a performance evaluation. The
first RQ documents the technical interaction between an application and a shared library
inside a Linux OS. The second RQ generates a proof of concept for embedding deceptive
elements into a cloud environment. Finally, the third RQ focuses on the performance
overhead introduced by the LD_PRELOAD approach. The RQs are defined as follows:

1. How can socket communication in Linux be traced by injecting code with shared
libraries?

2. What are architectural trade-offs when designing a deception system with
LD_PRELOAD?

3. How does the deception system with LD_PRELOAD affect the performance of the
original applications?
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4.2 Understanding Libc

RQ1: How can socket communication in Linux be traced by injecting code with shared
libraries?

Despite the standardized definition of socket connections within the Linux man pages1,
applications still have different options for using it. For example, the man page states the
following possible methods for communication when the socket type is SOCK_STREAM:
"Once connected, data may be transferred using read(2) and write(2) calls or some
variant of the send(2) and recv(2) calls.". Therefore, this research question should
answer the usage of specific technologies.

We present the results of RQ1 in Chapter 5. Further, we differentiate Java and Python
to understand which methods must be overwritten for the respective language. The
differences between those languages will also outline the possible development overhead
that must be considered when supporting multiple languages with the same code base.

We use the following steps to comprehend the interaction of the mentioned languages
with libc:

1. We create and preload a simple shared library to print a log line when a specified
libc method gets called and then call the original shared method. This is used to
trace and verify which library methods are called.

2. On the application side, we implement a minimal "Hello World" REST service.
This enables us to debug the application to find where the native method calls are.

3. Additionally, we do a static code analysis of the JDK and CPython, which should
give support during the debug sessions and enable us to document the findings
without the need to run an application.

Since stepping into the native code while debugging a managed application is not trivial,
the above steps should reduce the risk of missing or misinterpreting code fragments. For
the development of the simple shared library, Devcontainers2 with the openjdk:17-bullseye
image where used. We used the Ubuntu 22.04.3 LTS version on WSL for the dynamic
code analysis. On Ubuntu, IntelliJ and PyCharm are used for debugging the technologies.
For Java, we selected the latest LTS version 17.0.8+7 of the Eclipse Temurin build of
OpenJDK3 and for Python we used the default version of the apt-get manager, which
was 3.10.6-14. For the static code analysis, the equivalent versions we took the open
source repositories from OpenJDK repository5 as well as for Python repository6.

1https://linux.die.net/man/2/socket
2https://code.visualstudio.com/docs/devcontainers/containers
3https://adoptium.net/temurin/releases/?version=17
4https://packages.ubuntu.com/source/kinetic/python3-defaults
5https://github.com/openjdk/jdk/tree/jdk-17+8
6https://github.com/python/cpython/tree/v3.10.6
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4.3 Proof of Concept: Deception System

RQ2: What are architectural trade-offs when designing a deception framework with
LD_PRELOAD?

After specifying the shared methods needed for tracing and modifying HTTP calls in
Chapter 5, we created a proof of concept (PoC) for a deception system. There are
different ways with different trade-offs of achieving that. RQ2 will highlight some of the
obstacles we encountered using LD_PRELOAD and describe the path we took for this
thesis.

We present the use cases and the expected functionality in the first subsection. Afterwards,
we define to which extent we will document the findings in Chapter 6.

4.3.1 Requirements for the Deception System

The main goal is to manipulate the HTTP response header of an application to advertise
potential weaknesses or vulnerabilities. The two changes (visualised in Figure 1.1) are
known as the status code tampering and version trickery technique, defined by Fraunholz
et al. [6]. This thesis uses the term wire to indicate the deceptive techniques. As the
name wire (derived from tripwire) implies, those changes intend to trick an attacker into
interacting with the system in a certain way, which an intrusion detection system can
later detect.

We name the first change response-code wire, which can set an application’s original
HTTP response code to a new value, known as status code tampering. Since this would
easily break applications if applied to all endpoints, applying the status code change
only to responses for requests of specific paths must be possible. For example, an
unimplemented "/admin" path could be returning a 200 status code with this wire, which
can irritate attackers and their tools. This requirement includes a functional component
that tracks incoming requests, determines the path, and preserves the state until the
corresponding response message is sent.

The second change is named HTTP-header wire , and it changes the value of an HTTP
attribute. If the "Server" attribute is chosen, it is equivalent to the version trickery
technique, but it is also possible to overwrite different attributes. The specific attribute,
as well as its new value, should be configurable. Changing, for example, the value of
the "Server" attribute to "Apache/1.0.3" could lead an attacker to exploit vulnerabilities
of this version like CVE-2016-44697. The configuration of the wires should be centrally
controllable for better manageability. Additionally, changes in the wire configuration
should be processed without restarting the whole system. This requirement on runtime
updates serves the purpose of enabling more flexibility. We argue that this flexibility allows

7https://nvd.nist.gov/vuln/detail/CVE-2016-4469
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the system to be managed by an autonomous system like SODA [8]. This requirement
also aligns with the tripwire framework proposed by Kahlhofer et al. [19].

Since we propose the deception for cloud environments, we considered the range in which
the deception will be active. For example, the test bench should not have any additional
system that could affect the test results. Therefore, we set the scope to a single predefined
namespace. All resources that are deployed within this namespace will be injected with
the LD_PRELOAD prototype, whereas deployments in other namespaces are unaffected
by the PoC. Creating and setting a dedicated namespace for external applications also
eases the deployment, compared to manually labelling all deployments that should be
affected.

4.3.2 Documentation of the PoC
To answer RQ2, the architectural decision and their trade-offs will be pointed out. This
should cover and explain the following requirements:

• What are the options to hook shared libraries in cloud environments?

• What are the options for externally updating the state of a preloaded shared library?

– Explain used YAML configuration, also called honeYAML, to specify the
wires.

• How to trace incoming requests throughout different shared library methods with
as little performance overhead as possible?

Further, we discuss the design decisions for this PoC.

4.4 Performance Overhead Benchmarking
RQ3: How does the deception framework with LD_PRELOAD affect the performance of

the original applications?

Performance not only matters from the user perspective, where long loading time might
be a reason to leave the website, but also from the developer and commercial perspectives,
where less request throughput might imply upscaling resources and, with that, adds
additional complexity and costs to the equation. Moreover, considering the deceptive use
case, an attacker might unmask deceptive traces due to the longer delay introduced by the
deception system. Therefore, a deception system must have as few negative performance
implications as possible.

This section defines the setup used for the evaluation presented in Chapter 7. An
overview of the test bench (TB) and system under test (SUT) is presented within the
first subsection before the different variables leading to the individual benchmark result
are described in the other subsections.
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4.4.1 Test Bench and System Under Test

The test bench (TB) is the system that executes a benchmark by sending and measuring
the system’s response time under test (SUT). The metric to test the performance is the
round-trip time (RTT), the millisecond it takes from the TB to send the HTTP request
until the TB receives the HTTP response message. The TB is implemented as a Python
Locust8 container. The benchmarks are based on the survey on function hooking from
Lopez et al. [7]. One benchmark within the survey contained four rounds in which each
round conducted file manipulations on 10,000 files. At first, this thesis oriented on the
survey by having 40,000 requests for the evaluation with the alternation of adding 10,000
requests up front as a warm-up phase to account for possible web caching. The warm-up
requests will be excluded in the evaluation phase. As described in more detail in the
evaluation in Chapter 7, this resulted in erroneous data. To overcome this problem,
we analysed the warm-up similar to Kahlhofer et al. [29]. The outcome was that the
requests were quadrupled, resulting in 200,000 total requests, with 40,000 requests for
warm-up for each specific SUT configuration. In addition, the TB container and the SUT
containers affected by the benchmark are redeployed before each benchmark to minimize
any risk of caching before the benchmark has started.

We evaluated three settings considering the different SUT configurations, resulting in 24
benchmarks. The following settings are explained in more detail in the next subsections:

• Three different states of the LD_PRELOAD prototype (Subsection 4.4.2)

• Two different SUT scenarios, each containing two different endpoints forming a
total of four use cases (Subsection 4.4.3)

• Two different server environments (Subsection 4.4.4)

4.4.2 LD_PRELOAD state and Control Group

Considering the LD_PRELOAD system, we labelled three different separations for the
benchmark’s evaluation :

• w/o wires: This is the control group. We deploy the SUT as intended without any
additional shared library.

• w/ wires=f: We deploy the application with a shared library injected, but the wires
are set to false.

• w/ wires=t: We deploy the application with a shared library injected, and the
wires are set to true.

8https://locust.io/
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The main objective of the benchmark is to evaluate if the deception system introduces
significant performance overhead. Therefore, we separated the SUT by creating an
environment where the application is deployed as intended (= w/o wires) and one where
the deception is active (= w/ wires=t). Active, in this case, means that we deploy
the application with the shared library and with the wires set to true. We perform
this by deploying the same application into two different namespaces, where one of the
namespaces has the deception system running.

In addition to the two separations, we added a third option where the shared library is
deployed, but the wires are set to false (= w/ wires=f). We have to inject our shared
library at the beginning if we want the deceiving element later on since a shared library
is preloaded when the process is started. This option is expected to only introduce a
small overhead compared to the control group since this option only adds a simple check
and then directly links to the original syscalls. Nevertheless, comparing a deactivated
deception against the control group leads to the not-skippable overhead for a deception
system based on LD_PRELOAD being assessed. Conversely, when comparing the SUT
with wires deactivated versus activated, the performance overhead of the specifically
implemented wires can be assessed. Those performance differences can significantly differ
depending on the intended goal and the optimization of the wires.

4.4.3 Use-Cases Coverage

The use cases consist of an average- and a worst-case scenario with two different endpoints
benchmark each. These are labelled within the evaluation as follows:

• /admin (average-case SUT)

• /tools.descartes.teastore.webui/ or /home/ (average-case SUT)

• /benchmark Java or just Java (worst-case SUT)

• /benchmark Python or just Python (worst-case SUT)

It is important to note that the slash at the end of /tools.descartes.teastore.webui/ is
essential to address the main page at the TeaStore SUT. Otherwise, a 404 page is shown.

To better understand the performance overhead inside the cloud environment, the micro-
service reference application TeaStore[30, 31] was chosen. Additionally, we created a new
custom benchmark to compare the overhead between a Python and Java application in
an isolated environment. Therefore, logical operations similar to [7] were created.

A detailed specification of the two use cases with their endpoints is listed in the following
subsections.

26



4.4. Performance Overhead Benchmarking

Average-Case: TeaStore

TeaStore9 is a reference application for benchmarking microservices. Their out-of-the-box
support for running Locust is limited to running the TB locally. Therefore, we used the
official Locust Docker image10 for the benchmarks to be able to deploy the TB within a
cluster. Deploying the TB inside a container promotes better reproducibility and enables
testing services inside a cluster without using an Ingress to excess the endpoints. In
general, adding more complexity to the TCP connection distance also adds more noise to
the results [29]. This would happen when testing over the World Wide Web and entering
the cluster with an Ingress versus testing directly inside a cluster. The TB container
is deployed within the deception namespace. In contrast, the SUT is deployed inside
the benchmark-deception-sut-with and benchmark-deception-sut-without namespace,
depending on whether the SUT is deployed with or without the LD_PRELOAD variable
set. With that structure in mind, the TB can access an SUT via the cluster DNS.

For the TeaStore, we present the honeYAML configuration in Listing 4.1. The configura-
tion is based on the deceptive HTTP response introduced by Figure 1.1. To test this
deceptive use case, the TB will request the /admin path, and the deception system will
overwrite its response with a 200 status code instead of the 404 status code. Additionally,
the "Server" attribute will be set to an old and vulnerable version of Apache.

The second use case is the path /tools.descartes.teastore.webui/, which is the main page
of the TeaStore. This request also interacts with the other containers of the TeaStore.
Such behaviour resembles a typical request on a webpage and will display the impact of
the deception when only overwriting the server header.

Worst-Case: Custom SUT

Even though TeaStore is a comprehensive micro-service reference application, its com-
ponents are all implemented with Java. Hence, to compare the relative performance
differences between Java and Python, two custom SUTs were used. The TB setup and
testing modality stay the same as with the average-case SUT.

Linux treats file operations similarly to HTTP requests in the sense that both use the
same read and write method from libc for communicating over a socket. Therefore,
local file manipulation still negatively impacts the response time introduced through
the deception system. We used file manipulation for the functionality of the worst-case
SUT. Hence, we created a custom SUT similar to the benchmarks done by Lopez et
al., [7]. Considering the concrete functionality, the tasks are inherited from Lopez et
al., except that the execution sequence was changed. Instead of processing 10,000 files
simultaneously, only one file gets manipulated for each HTTP request sent to an endpoint
of the application. The endpoint is located at the path /benchmark and will accept
POST requests with a "message" attribute as content. The TB will sequentially request

9https://github.com/DescartesResearch/TeaStore/tree/master
10https://hub.docker.com/r/locustio/locust
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the endpoint 200,000 times and always send the message "Benchmark nr. i", where the
index of the current call will be sent instead of "i". The following tasks will be executed
after the endpoint is requested:

• Create a temporary file.

• Write the request message to the file and close the file.

• Open the file, log the first line of the file, and close the file.

• Delete the file.

Compared to the average-case scenario, the wires for the worst-case scenario are modified
as highlighted in Listing 4.1. First, the response-code wire is set to "203" to overwrite
the otherwise sent "200 OK" status code on the /benchmark endpoint. Secondly, the
http-header wire is changed to overwrite the "Date" header attribute since the Java
implementation has no "Server" attribute per default, which could impact the performance.

Listing 4.1: Average-case honeYAML
1 honeywire:
2 kind: response −code
3 enabled: true
4 name: s tatus −code−admin−path
5 d e s c r i p t i o n : Returns @value i n s t e a d o f

the o r i g i n a l s t a t u s code when @path
i s r e q u e s t e d

6 o p e r a t i o n s :
7 - op: r e p l a c e −status −code
8 value : 200
9 c o n d i t i o n :

10 - path: /admin
9 ---

10 honeywire:
11 kind: http−header
12 enabled: true
13 name: http−header−s e r v e r −r e p l a c e
14 d e s c r i p t i o n : Changes the Server

a t t r i b u t e o f @key to @value i f the
key e x i s t s .

15 o p e r a t i o n s :
16 - op: r e p l a c e −i n p l a c e
19 key: Server
20 value : "Apache/1.0.3"

Listing 4.2: Worst-case honeYAML
honeywire:

kind: response −code
enabled: true
name: s tatus −code−admin−path
d e s c r i p t i o n : Returns @value i n s t e a d o f

the o r i g i n a l s t a t u s code when @path
i s r e q u e s t e d

o p e r a t i o n s :
- op: r e p l a c e −status −code

value : 203
c o n d i t i o n :

- path: /benchmark
---
honeywire:

kind: http−header
enabled: true
name: http−header−s e r v e r −r e p l a c e
d e s c r i p t i o n :Changes the Server a t t r i b u t e

o f @key to @value i f the key
e x i s t s .

o p e r a t i o n s :
- op: r e p l a c e −i n p l a c e

key: Date
value : "Sun, 01 Jan 2023 11:55:00

GMT"

4.4.4 Server Environments
For the server environment, two different hardware systems are chosen:

• Amazon Web Services (AWS)
with a t3.medium EC2 instance.

• Virtual Machine (VM)
running on-premises with four logical cores.
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We proposed our PoC for the cloud environment and used Kubernetes for the deploy-
ment. Kubernetes was chosen as the technology since it is the most popular platform
for cloud-native workloads. Amazon Elastic Kubernetes Service (EKS), the managed
implementation of Kubernetes by AWS, was chosen because there were already existing
resources and prior knowledge, resulting in faster development of the PoC. Considering
the hardware resources, we chose two t3.medium instances of Amazon’s Elastic Compute
Cloud (EC2). Those instances have two virtual cores with 4 GB of RAM. Due to the
way EKS handles networking, those instances are capable of running a total of 17 pods11

per instance. This is important since the deployment needs at least 14 pods for the
TeaStore benchmark. Seven pods are used for running TeaStore itself (i.e., auth, db,
image, persistence, registry, webui, and recommender service), in addition to two used for
the test bench and the deception operator and five general purposed pods necessary for
running the node (aws-node, CoreDNS, kube-proxy, efs-csi-controller and efs-csi-node).
We chose EFS to provide the PoC resources since it enables access from different EC2
instances to enable centralized management of the honeYAML file. Additionally, it is
a file system capable of using locks on files, which the PoC leverages to prevent race
conditions while updating the honeYAML file.

Since cloud environments have higher variance [32], the benchmarks are also run at an on-
premises virtual machine (VM). The VM is managed by VSphere12 and has the following
characteristics: Intel Xeon E5-2680 v3 with 4 out of the 12 cores used, 64GB RAM,
100 with Ubuntu 22.04.3 LTS. Initially, we used Docker for running the benchmarks.
However, during the evaluation phase, we replaced Docker with the local Kubernetes
cluster Kind13 version 0.20.0 to reduce HTTP traffic noise, which is described in more
detail in Section 7.1. An SSH connection was established to connect and run the tests,
and port 8089 was forwarded to access the Test Bench from the local PC.

4.5 Threats to Validity
This section presents the threats to validity guided by the validity categories of Wohlin et
al. [33]. In more detail, the following subsections discuss construct, internal and external
validities.

4.5.1 Construct Validity
Construct validity addresses whether the conducted tests answer the research questions
appropriately. The PoC was designed to give insight into the performance of the
LD_PRELOAD prototype for deceptive purposes. For this scenario, we chose two types
of wires that overwrite HTTP headers to represent a deceptive task. This representation
resembles a limited part of possible deceptive techniques. Different techniques might

11https://github.com/awslabs/amazon-eks-ami/blob/master/files/eni-max-pods.
txt

12https://www.vmware.com/products/vsphere.html
13https://kind.sigs.k8s.io/

29

https://github.com/awslabs/amazon-eks-ami/blob/master/files/eni-max-pods.txt
https://github.com/awslabs/amazon-eks-ami/blob/master/files/eni-max-pods.txt
https://www.vmware.com/products/vsphere.html
https://kind.sigs.k8s.io/


4. Methodology

need more or less processing resources and memory, which can significantly impact the
measured performance overhead.

Considering the benchmark, we ran our setup within a single node on a VM and AWS.
In order to better generalise our statement, the benchmarks should be performed on
multiple nodes, repeated more than once and performed on further cloud environments
as stated by Papadopoulos et al. [32]. Especially, running benchmarks on one provider
does not apply to other providers, as shown by Leitner and Cito [34].

4.5.2 Internal Validity
The internal validity addresses concerns about the conclusion being affected by factors
other than the study. The length of each of our 24 benchmarks ranges from about five
to about 37 minutes, and the AWS tests were conducted within a day, whereas the VM
tests were conducted the following day. Therefore, we can not eliminate possible daily
patterns as detected by Iosup et al. [35]. Even though newer studies could not replicate
those patterns, they still showed that the performance of EC2 instances, as we use them,
are highly variable [34]. Different performances depending on the EC2 instance could
also impact the relative performance overhead of our prototype.

4.5.3 External Validity
The external validity addresses concerns to which point the findings of this thesis can be
generalised. We considered two use cases with two different endpoints each to extend
the generalizability of our result. Nevertheless, these endpoints had an overall simple
functionality, so the result can not be applied to more complex endpoints. Additionally,
we mainly tested on Java Spring applications, with only one endpoint being on a Python
Flask endpoint. Therefore, our results might differentiate from other languages and
libraries.
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CHAPTER 5
Tracing with Libc

This chapter focuses on resolving the question, "How can socket communication in Linux
be traced by injecting code with shared libraries?" (RQ1). For this, Section 5.1 introduces
the first steps of building a shared library with the concept of tracing in mind. After
the basics of the shared library construction are created, the focus will be to analyse
the communication between a Java application and the shared libraries in Section 5.2.
Similarly, Section 5.3 examines a Python application. Section 5.4 then draws a conclusion
and outlines the support for tracing languages other than Java and Python.

5.1 Tracing with Shared Methods
We have to know which specific methods relate to an HTTP connection before we can
hook those methods. Despite the socket man page presenting a good overview of a
method’s functionality, it does not specify which languages use it. Therefore, we discuss
how the tool strace can be utilized to identify the shared library methods that correlate
with HTTP requests. The second subsection describes how we created a small shared
library based on the strace results to track the HTTP request throughout the methods.

5.1.1 Strace
The OS tool strace1 can be used for monitoring system calls of specified processes. As an
example, a Test.java file was created that implemented a simple "Hello World" REST
endpoint with the Java net.httpserver2 library. The command to start and trace the
application looks as follows: strace -f -o strace_log.txt Java Test.java.
Option -f is for following forks (typically occurs for every new incoming request), and
option -o FILE to log the traces into a file instead of stdout. After starting the application,

1https://linux.die.net/man/1/strace
2https://github.com/openjdk/jdk/blob/jdk-17%2B7/src/jdk.httpserver/share/

classes/com/sun/net/httpserver/HttpServer.java
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we sent a request to the endpoint and stopped the application again. In this case, the
resulting log file had about 37,000 lines. We summarized the most important traces in
Listing 5.1. To find those traces, we started by searching for distinct keywords. The
keyword "HTTP" is a good start, appearing only in four lines out of the 37,000. The
first line was related to a meta information check on the net.httpserver library. The
second line was naming the process or threat name, and the last two results were the
actual read (line 35292) and write (line 36487) call resulting from the HTTP request.
As seen in lines 35290-35292, the original call of read spans over two separated loglines
with a gettid call in between. The read as well as the gettid are unfinished, meaning
that the call itself takes some time in which another process or threat is called a method.
The first read logline mentions in its first argument FD 7. This FD has to be created
at some point with an accept call, and with that, one can track back the connection to
its creation. By searching with the keyword "accept" and looking for the response of
the accept methods to be 7, logline 35256 was found. As with the transition from the
read and write calls to accept, one can track additional methods with the first accept
parameter. This parameter is the original socket FD, and the methods involved are
socket, bind, listen, and getsockname. With that in mind, one could gain additional
information about a connection. For example, the used port 8080 of the application is
mentioned within the bind attributes.

Listing 5.1: Log investigation with strace
// Line number out o f about 37000 s t r a c e l o g l i n e s was added manually .

Then s t r a c e logged proce s s ID , func t i on name , func t i on
parameter and return value .

30787 : 18333 socke t (AF_INET, SOCK_STREAM, IPPROTO_IP) = 5
. . .
31175 : 18333 bind (5 , { sa_family=AF_INET, s in_port=htons (8080) ,

sin_addr=inet_addr ( " 0 . 0 . 0 . 0 " ) } , 16 <u n f i n i s h e d . . . >
. . .
31183 : 18333 l i s t e n (5 , 50 <u n f i n i s h e d . . . >
31187 : 18333 <. . . l i s t e n resumed >) = 0
. . .
31199 : 18333 getsockname (5 , <u n f i n i s h e d . . . >
31203 : 18333 <. . . getsockname resumed>{sa_family=AF_INET,

s in_port=htons (8081) , sin_addr=inet_addr ( " 0 . 0 . 0 . 0 " ) } ,
[28 − >16]) = 0

. . .
35256 : 18422 accept (5 , { sa_family=AF_INET, s in_port=htons (34084

) , sin_addr=inet_addr ( " 1 2 7 . 0 . 0 . 1 " ) } , [28 − >16]) = 7
. . .
35290 : 18422 read (7 , <u n f i n i s h e d . . . >
35291 : 18346 g e t t i d ( <u n f i n i s h e d . . . >
35292 : 18422 <. . . read resumed >"GET / HTTP/1.1\ r \nUser−Agent :

Post " . . . , 8192) = 201
. . .
36487 : 18422 wr i t e (7 , "HTTP/1 .1 200 OK\ r \nDate : Mon, 21 A " . . . ,

76 <u n f i n i s h e d . . . >
36494 : 18422 <. . . wr i t e resumed >) = 76
. . .
36502 : 18422 wr i t e (7 , " He l l o world ! <br> This i s a t e s t " . . . ,

38 <u n f i n i s h e d . . . >
36510 : 18422 <. . . wr i t e resumed >) = 38

32



5.1. Tracing with Shared Methods

5.1.2 Shared Library
After the methods used by the technology were found with strace, a shared library can
be created for tracing specific HTTP requests. If one considered a simple approach
for logging as explained in the method hooking background, one would generate much
noise in the form of unimportant loglines. This might still be sufficient for simple Java
applications. However, when using frameworks like Spring Boot3 for Java or Flask4

for Python, the loglines can increase dramatically to a few thousand just for starting
the application. As one can imagine, this can dramatically decrease performance. In
the case of a spring boot application we tested, this resulted in a startup time increase
from initially ∼6 seconds without LD_PRELOAD to ∼50 seconds with LD_PRELOAD,
making debugging sessions unfeasible. The main reasons for the noise are the read and
write method calls used for file interaction, like reading ELF files.

An uncomplicated solution to minimize noise is preserving a context generated by different
shared methods inside global variables. This context can then be checked when different
shared methods are called to decide if the method call is useful or just noise. The
preserved context used within this thesis can be split into the following methods:

• __libc_start_main(): This method will always be called before a process
starts. The main objective is to initialize any necessary things for the execution
environment. An example of such a thing can be initialize threading, call main
methods, or the exit method after the main method is finished. Therefore, this
method is ideal to initialize the resources needed for a deception system. In addition,
this method’s parameters include the argv arguments of the CLI command. This
means one can filter out for different tools, for example, comparing if the first
argument (argv[0]) is "java" or "python".

• bind(): The bind method assigns an address to a socket referred to by an FD.
This behaviour can be used to mark a specific FD when the application binds a
particular address, such as a specific IP address, protocol or port. Based on that,
the accept method then knows if a new connection is relevant based on whether
the bind method marks the FD.

• accept(): Within the accept method, a new connection will initialized for an
incoming request. This includes creating a new socket and a new file descriptor.
The accept method can be used to mark specific TCP connections by saving newly
created FD. With the parameters of the accept method, additional information
related to the connection type can be tracked, for example, the address families
like AF_INET (IPv4) and AF_INET6 (IPv6).

• read(): With the read method, the application can read the information a client
sends, for example, the request header. Therefore, information about parameters

3https://spring.io/projects/spring-boot
4https://flask.palletsprojects.com/en/2.3.x/
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like the requested endpoint or the request method (like GET or POST) can be
acquired.

• write(): The write method is used on the application side to answer the client.
The write method contains the response header and body from the application.

• close(): When an FD is closed, the close method will be called either from the
client or application side. If information about the FD is saved inside the global
variables, this method can be used to free those resources to mitigate false positives
inside the log data.

5.2 Java Code Analysis
As we described in the previous section, our trace analysis resulted in a ldpreload.so a
prototype that overwrites specified shared methods to log certain aspects throughout
a TCP connection. We specified "java" as the second parameter apart from setting the
absolute path of our generated ldpreload.so file as the first parameter of LD_PRELOAD.
This enabled us only to load the shared library if we started a Java debugging session.
Hence, we did not make use of the __libc_start_main() to filter out processes that are
unrelated to our analysis.

When starting the net.httpserver application and making a request with curl, the following
logs are generated:

bind(4) : 0 → accept(4) : 8 → read(8) : 201 → write(8) : 76 →
write(8) : 38 → read(8) : 0 → close(8) : 0

The first word is the method name, followed by the traced FD within the brackets. The
value after the colon is the return value of the original shared method. With the →, we
depict that some time passes until the following log line is generated. For the bind and
close methods, the return value is either zero or one, depending on whether the method
succeeded. The accept returns the FD of a new connection. Lastly, the read and write
methods return the bytes read or written.

As we expected, the accept method opens the FD 8 based on the previously bound FD 4.
Afterwards, the request exchange happens with the read() and write() methods. The
double-write operation is due to the nature of net.httpserver has separate commands
for sending the header and response body. The return values of the read() and write()
methods are the bytes received and sent, respectively. What stands out is the read
operation with 0 bytes read before the FD got closed. If the request was sent from a
browser, this read() call would not appear anymore.

Java uses the Java Native Interface (JNI) to enable the Java Virtual Machine (JVM)
to communicate with native methods like socket operation. The net.httpserver library,
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for example, uses Net5 class to call the native bind method (line 555) and the accept
method (line 592) through JNI. We found that the UnixNativeDispatcher6 class is used
to call the native read (line 465) and write (line 470) method. We used these methods as
a starting point for investigation.

Considering the zero bytes read by the read(8):0 trace, we debugged the read call further,
checked for error flags and used an additional log line of attributes within the shared
library. We found that the end-of-file (EOF) flag was set inside the JDK7 resulting in
the connection being closed later on8. This is expected behaviour if the client shuts down
the connection [36].

When we analysed a Spring Boot application running with Tomcat, the findings about
the logs were similar, except only one write() call occurs. There is only one write() call
due to the response header and body being sent together. Even through Spring boot as
well as net.httpserver using the same IOUtil.java class for the connection, the Tomcat
server passes a SocketDispatcher9 class instead of UnixNativeDispatcher, which uses the
shared libraries differently.

We also tried a request from a Chromium-based browser, and the result stayed the same,
except the second read() had a return value of minus one. We analysed the reason for
that by printing the errno number that appeared within the shared library, and it showed
an "EAGAIN or EWOULDBLOCK" according to the read() man page. This is another
way a socket connection can be terminated, as analysed by Zhuang et al. [37].

This finding concludes that different traces might be seen even for the same language
since the programmers decide what and how the shared methods are called. Most calls
will eventually be called over similar libraries and, therefore, offer similar call behaviour,
but a programmer is not forbidden to implement the socket connection themselves.
Theoretically, all permutations of the available socket methods and their call order are
possible.

5.3 Python Code Analysis
We analysed the Python application in the same way as described in the previous section
and identified that Python with Flask calls different methods for communicating over
sockets:

5https://github.com/openjdk/jdk/blob/jdk-17%2B8/src/java.base/share/
classes/sun/nio/ch/Net.java

6https://github.com/openjdk/jdk/blob/jdk-17%2B8/src/java.base/unix/
classes/sun/nio/fs/UnixNativeDispatcher.java

7https://github.com/openjdk/jdk/blob/jdk-17%2B8/src/jdk.httpserver/share/
classes/sun/net/httpserver/Request.java#L288

8https://github.com/openjdk/jdk/blob/jdk-17%2B8/src/jdk.httpserver/share/
classes/sun/net/httpserver/ServerImpl.java#L669

9https://github.com/openjdk/jdk/blob/jdk-17%2B8/src/java.base/unix/
classes/sun/nio/ch/SocketDispatcher.java
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bind(4) : 0 → accept4(4) : 5 → recv(5) : 77 → send(5) : 174 → send(5) : 38 →
recv(5) : 0 → close(5) : 0

Through logging, we noticed that Python uses accept4() instead of accept(), recv()
instead of read() and send() instead of write(). The difference between those three cases
is that one method has an additional flag attribute that can be set to adjust the method
behaviour for some cases. From the logical side, Python’s recv() and send() method calls
behave in the same way the net.httpserver calls do. They send the header and body of
the response separated and receive a zero return value from the recv() method before the
connection is closed.

During our analysis, we found the following:

• The socketserver.py file10 calls the bind() method in line 466, the _accept() method
in line 499 and the sendall() method in line 826.

• The server.py file11 calls the readline() in line 400.

• The mentioned calls do not directly call the libc method but instead call the Python
implementation of the shared methods. In case of accept() call from socketserver.py
the _accept() from socketmodule.c file12 will be called. The _accept() then
specifies in in line 4909 that an _accept() call from python will be directed to
the sock_accept() which then calls the sock_accept_impl() (line 2729) to decide
then based on a preprocessor directive (line 2685) if the accept() or the accept4()
original method of libc is called.

• Similar to the accept() method, the sendall() method gets resolved into one or more
libc send() calls and the readline() method is resolved to libc recv() calls13 that we
traced with our ldpreload.so.

5.4 Discussion and Outlook
For addressing RQ1, we discuss the findings of the Java and Python analysis, as sum-
marised in Figure 5.1 and go into the implication of each of the shared methods. After-
wards, we will give an outlook on how those findings can be applied to other languages.

No matter the language or tool used for starting an application, the __libc_start_main
method will always be called. Based on the CLI arguments of this method, it is possible to
identify the language or tool of the starting process. This can be useful to set functionality
accordingly.

10https://github.com/python/cpython/blob/v3.10.6/Lib/socketserver.py
11https://github.com/python/cpython/blob/v3.10.6/Lib/http/server.py
12https://github.com/python/cpython/blob/v3.10.6/Modules/socketmodule.c
13https://docs.python.org/3.10/library/socketserver.html?highlight=

socketserver#module-socketserver
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Figure 5.1: The called method from the Java and Python application, respectfully. A
custom library (custom_library.so) in between can trace and manipulate parameters
depending on the overwritten method.

Example scenario: One wants to create a custom shared library to trace arbitrary appli-
cations. For this, the Python application would need a different implementation than a
Java application. Both implementations can be compiled to a shared library, and the
__libc_start_main method then decides during runtime which implementation should
be used based on the CLI arguments.

The bind or getsockname as well as the close method are used by the Java and the
Python application. Since the man page does not specify alternative functions for those
methods, we assume that those functions will be used for all languages.

According to the man page, there are two ways of accepting an incoming request: with
the accept or the accept4 method. The difference between those two methods is that
accept4 has an additional flag attribute. If the flags attribute is zero, the accept4 behaves
the same as an accept call. Hence, all accept calls can be forwarded to the accept4
implementation within the ldpreload.so so that only the accept4 method needs to be
maintained.

The main obstacles when tracing multiple languages are the requests and responses. Java
application uses the read and write, whereas Python application uses recv and send.
When looking at the man page, there are several other possible methods like recvmmsg,
sendmmsg or sendfile. Those functions have different arguments and different behaviour,
making support and maintenance for supporting multiple languages harder. In addition,
no standardised protocol exists that requires specific methods. For example, when trying

37



5. Tracing with Libc

to inject deceptive tokens into a socket response, the response can be split and sent into
multiple write calls, but it does not have to be.

This concludes how tracing socket connection can be performed. When creating a shared
library, we suggest starting by supporting one specific application and iterative adapting
the shared library to new applications or languages afterwards. We advise generating
extensive tests to check if a language is fully supported with major server technologies
and language libraries.
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CHAPTER 6
Deception System Orchestration

After we outlined the hooking options with LD_PRELOAD in Chapter 5, we created a
PoC which is publicly available at GitHub1. This chapter introduces the main architectural
options encountered during development to answer RQ2: "What are architectural trade-
offs when designing a deception system with LD_PRELOAD?"

Beginning with Section 6.1, an introduction is presented on how the LD_PRELOAD
system can be automatically injected into arbitrary containers by utilizing a Kubernetes
operator. After this, Section 6.2 will point out different options for updating the state
of our PoC with a Kubernetes deployment in mind. Lastly, Section 6.3 will apply the
architectural pattern from Section 6.1 and Section 6.2 onto the shared methods identified
in Chapter 5. This section explains in detail what assumptions we made for the PoC and
which architecture we chose with the performance of the shared library in mind.

6.1 Cloud Adaptation of LD_PRELOAD
For this subsection, we introduce options to distribute a custom-made shared library
throughout Kubernetes. We name the shared library deception.so and we explain the
technical details in Section 6.3.

To offer an LD_PRELOAD system across a cluster, each container that should be decep-
tive needs to have the deception.so file mounted and the LD_PRELOAD environment
variable set. Due to the nature of the loading process of shared libraries, this must be
done before a container’s main process has started. To solve this problem, the Kubernetes
deployment (e.g., YAML file) configuration or the container image (e.g., Dockerfile)
configuration can be adapted. The latter would include that the image’s configuration
and source are available so it can be rebuilt. Additionally, rebuilding the images can be

1https://github.com/dynatrace-research/ld-preload-deception
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a complex task. One needs to create and maintain multiple build registries, depending
on how many different images and LD_PRELOAD versions one needs, and this does not
even include the performance and time resources needed for rebuilding the images.

Instead of manipulating the image itself, changing the deployment can be easily achieved
with Kubernetes operators. Operators can automate tasks within Kubernetes by using
custom resources. One of those resource types is a mutating webhook, which can modify
a deployment configuration before it is applied in a cluster. The mutating webhook is a
service running on a container that processes configuration over a specified endpoint and,
hence, can be arbitrarily programmed. In the case of an LD_PRELOAD system, the
webhook can be programmed to set the environment variable and mount the deception.so.
Further, the webhook gets the original YAML configuration and can apply the deception
system only in a specified area. For example, the area can be a namespace or a specific
label on a pod or container.

We depicted a simplified overview of the cluster architecture with the mentioned operator
in place in Figure 6.1. The Figure contains the following parts that must be deployed
before an arbitrary container can be made deceptive:

• Operator consisting of:

– Mutating webhook configuration.
– Container processing mutating admission webhooks.

• Static or Dynamic provisioned files.
Note: Dynamic provisioning needs the operator to manage the files.

– Persistent volume (PV) and Persistent volume claim (PVC) for the containers.
– The operator (only needed if the operator actively manages the provisioning,

which is necessary if the provisioning is dynamic).

The first part of the operator is the mutating webhook configuration, and this
configuration is deployed so the Kubernetes control plane sends mutating admission
webhooks before creating any resource. Apart from the configuration specifying the
endpoint and the API that should be called, it also specifies the scope of when to call
it. The scope is defined based on rules and other matching options with which one can
trigger the webhook on specific conditions. For example, setting the rules "operations" to
"CREATE" and "resources" to "pods" will only call the webhook if a prod gets created.
With that, rules are elementary for an LD_PRELOAD use case since setting environment
variables or mounting files is not supported by every Kubernetes resource. Hence, some
resources would not be created at all. Optionally matching options like "objectSelector",
"namespaceSelector", and "matchConditions" can further restrict the scope based on
things like namespace, resource labels, or deployment parameters. This can be useful for
a deception system when the exact scope is well-known and does not change often.
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K8s Cluster K8s Provisioning:
Static or Dynamic

Operator

Abitrary
Container PVC

PVC Files

setting
LD_PRELOAD

mounting 
PVC

Figure 6.1: Operator including the deception system before the container gets created.
Additionally, the Operator has the potential to manage the provisioning when provided
with a PVC (orange).

The second part for the operator is the container processing mutating admission
webhooks. This container can be deployed with a pod or a deployment configuration
and, due to its flexibility, is taking a central role in managing the deception system.
Contrary to the mutating webhook configuration, there are no predefined attributes
for restricting the scope. Instead, the container is a simple API service created with
an arbitrary language, and the scope definition is more flexible by being defined pro-
grammatically. The container can also expose an endpoint for editing attributes used
for narrowing the scope. With that, a scope change is possible without redeploying the
operator. Nevertheless, this would only apply to newly created resources, and already
existing ones would need to be redeployed.
A simple implementation of the API service is processing the deployment of an incoming
webhook request by adding the LD_PRELOAD variable and mounting the deception.so
with the PVC. An advanced system can differentiate between incoming deployments and
mount different deception.so explicitly designed for a particular deployment. If the API
service connects with a PVC to the provisioning itself, it could also be recompiling the
deception.so, as elaborated in the next section.

Lastly, the provisioned files have to be accessible for the cluster so that the operator
can mount them. This can either be done statically or dynamically. Compared to static
provisioning, dynamic provisioning further automates the deployment by having more
complexity within the operator. Hence, the dynamic approach is more time-consuming
upfront.
When provisioned statically, the cluster administrator has to allocate PV and manually
copy the files needed for the deception to the provisioning. The operator can then
reference the provisioning with a PVC matching the exact PV. The provisioning can
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also be dynamic to minimize the manual steps further, meaning that a PVC can claim a
certain space if it stays within a specified memory size. For the dynamic allocation, the
operator needs to have the deceptive file locally to copy it to the dynamically provisioned
folder. Therefore, the operator would need its own PVC to access the provisioned folder.
Independent of the kind of provisioning, it is important to consider the access mode sup-
ported by the underlying provisioning service. The access modes limit access to only one
pod, one node, or multiple nodes, depending on where and how many containers must be
served. Therefore, one has to check beforehand which access modes are supported by the
provisioning service. For this reason, we selected Amazon EFS since the ReadWriteMany
access mode to access a resource from multiple nodes at once is available.

6.2 External Systems State Updates
Since LD_PRELAOD is loaded before the process starts, updating the state while the
process runs is not straightforward. Therefore, we elaborate on how the state can be
managed within the deception.so and what needs to be changed during runtime within
Subsection 6.2.1. Subsection 6.2.2 then considers an alternative approach by relaxing the
constraint of runtime updates and letting the operator manage the deception system.

6.2.1 Internal And External State Management
We developed a state management system to allow external changes during the runtime.
The different parts of the architecture within the deception are depicted in Figure 6.2
and will be explained in this subsection.

Starting with the main hook (abbreviated for __libc_start_main), the functionality of
the deception.so gets triggered. Here, we differentiate the main method from the other
methods mentioned in Chapter 5 due to it being the only method that is called exactly
once and before each other call. Therefore, the main hook can be used to initialize
resources that are later needed. The hook of the other methods can read things like the
wire specification from the global state to deceive its parameter accordingly. Besides
that, both hook types call the original shared library method from libc and return the
value to the application.

When we talk about the global state, we understand the global variable within a process.
They play a central role in externally updating the deception. It is important to note
that we split the global state into three different categories:

• During before or at compilation:
Either using fixed compiled C macros2 or setting constant global variables.

• During runtime by internal methods:
The state will be modified and used by the shared methods but is not modifiable

2https://gcc.gnu.org/onlinedocs/cpp/Macros.html
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Figure 6.2: State management within deception.so. Compiled made modifiable during
runtime (orange)

externally. For example, the methods save specific file descriptors (FD) to trace
HTTP connections.

• During runtime with external resources:
The state is externally modifiable during runtime by using a thread within the
shared library. The shared method themselves will only read the state but not
update it.

Since most shared methods are invocated from the application, updating an external
state within those methods would greatly reduce performance due to the synchronous-
ness of the operation and the potential parallelization when methods get called within
different threads. To overcome those challenges, we created a single thread to manage
the externally modifiable part of the global state. Since the main hook will be called for
each process on a system, it is important to put an appropriate filter in place so that the
thread gets only generated for processes that should be deceived.
Depending on the external resources, the thread can use a pull or a push-based commu-
nication channel. Apart from ensuring that no race condition is introduced by updating
the global state, the thread might also have to lock out for race conditions introduced
while reading from external resources.

External resources can be integrated in various ways that strongly impact the com-
plexity of the resource as well as the thread. An example of a simple integration can be
a text file that describes the state of attributes. The file can be mounted by the operator
together with the deception.so. The thread can then periodically read the configuration
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from the local system and update the internal state. A more complex solution might use
an external API accessible over TCP, which, in contrast, would imply that all the hooks
can exclude this connection from being deceptive.

6.2.2 Recompilation
One place that was not considered until now is how to maintain and update the deception
system, especially with offering the deception as a SaaS solution in mind. Therefore,
this subsection discusses how maintenance and updating the system can be achieved by
enhancing the operator’s capabilities, as mentioned briefly in Section 6.1.

In contrast to SaaS solutions offerings like office tools or cloud storage, part of the
deception cannot be offered over a website. For example, the operator or the deception
must be deployed inside the consumer’s infrastructure. Therefore, a differentiation must
be made on what parts can be managed by the cloud service provider (CSP) and what
parts must be available on the consumer side.

In the case of the operator, publishing the mutating webhook configuration and redeploy-
ing the container is inevitable. However, the CSP can offer the container image prebuilt
over an image repository, reducing consumer expenses. The process of automatically
updating based on an image repository is also supported by Kubernetes tools like Argo
CD3, further decreasing the maintenance on the consumer side.

For the provisioned resources like the deception.so, maintenance depends on whether
the operator manages the files. For example, when static provisioning is chosen and the
operator does not manage the deception.so, the system administrator must upload and
update the deception.so manually. If the operator can access the resources, it can again
be programmatically enhanced to update them. Therefore, the resources either already
exist in the operator container image or the operator connects to an external API to
derive the resources. The latter enables the CSP to compile the deception.so and send
the operator the files to initialize or update the resources on the consumer side. With
that, a consumer only needs to install an operator within a cluster to get deception as a
service.

Updating the deception.so in an already existing process is still impossible due to
LD_PRELOAD loading the files before the process starts. In this case, the operator
can again be enhanced with privileges to modify the cluster and use the Kubernetes
function to gracefully terminate and recreate all pods. Not redeploying pods without the
deception system would require the operator to keep track of all the relevant deployments,
but the operator can track these deployments. The operator must look at the incoming
request sent from the Kubernetes control plane and conduct a lookup for the deployment
that initiated the pod deployment with the pod configuration sent with the request.

By relaxing the constraint of runtime update, the thread within the deception.so could
be removed as a hole, and the operator could process the external resources. If a change

3https://argoproj.github.io/cd/
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occurs, the operator will issue a recompilation through the API of the CSP or recompile
the deception.so itself if provided with the source code. Afterward, the operator would
roll out the changes without the consumer having to interact with the system.
Choosing recompilation and redeploying instead of having a dedicated thread for checking
updates would have the drawback that the deception.so could not be updated externally.
At the same time, a potentially malicious TCP connection is active, but it would still
be able to react to a multi-step attack [38]. A multi-step attack is an attack that spans
different actions and interactions with a system to eventually find and use one or multiple
vulnerabilities in those systems. By letting the operator compile different deceptive
elements, LD_PRELOAD can create a deception framework like the one proposed by
Kahlhofer et al.[19].

6.3 Trade-Offs within LD_PRELOAD Systems

To wrap up RQ2, this section discusses the design decisions for our PoC. The first
subsection starts by describing the configuration format used to update the wires. The
second subsection builds up on Chapter 5 and explains which filter methods we used in
the shared methods. Finally, the last subsection discusses how the PoC preserves the
characteristics of the cloud.

6.3.1 HoneYAML Configuration

The wires represent the individual traps placed to deceive the attacker. As shown in
Figure 6.1, the decision was made to use a simple YAML definition to represent the wires
state as introduced by Kahlhofer et al. [39]. This configuration is called honeYAML.

Listing 6.1: HoneYAML example that overwrites the "Server" response
header and the status code when the /admin path is called.
honeywire:

kind: response −code
enabled: true
name: s tatus −code−admin−path
d e s c r i p t i o n : Returns @value i n s t e a d o f the o r i g i n a l s t a t u s code when

@path i s r e q u e s t e d
o p e r a t i o n s :

- op: r e p l a c e −status −code
value : 200
c o n d i t i o n :

- path: /admin
---
honeywire:

kind: http−header
enabled: true
name: http−header−s e r v e r −r e p l a c e
d e s c r i p t i o n : Changes the Server a t t r i b u t e o f @key to @value i f the

key e x i s t s .
o p e r a t i o n s :

- op: r e p l a c e −i n p l a c e
key: Server
value : "Apache/1.0.3"
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To update the configuration in the PoC, the consumer must manually change and save the
file within the provisioning. We want to mention that the honeYAML can be managed
by a service which offers a user interface for the consumer to make it more intuitive.
However, this was not done in this thesis since it does not impact the PoC performance
evaluation conducted in the next chapter.

For the wires it is possible to modify the following attributes:

• kind: The current PoC supports two different honewire types: "response-code" and
"http-header".

• enabled: Either true for having the wire active or false if the wire should not be
injected.

• operations: replace-status-code: The response-code wire can be specified with a value
and a path attribute. During an HTTP connection, the HTTP response code will
be overwritten by the string set in the value parameter if the requested resource’s
path contains a substring equal to the specified path parameter. Depending on the
defined value attribute, the status code will be adjusted in length.

• operations: replace-inplace: The http-header wire offers a in-place string replace-
ment. This means that the length of the original HTTP response attribute will be
preserved. If the string provided at the value attribute is shorter, it will get padded
with spaces. If the string is longer, it will get truncated.

6.3.2 Global State Management
Based on the findings of Chapter 5, Figure 6.3 was created to explain how the PoC is
intercepting incoming requests by hooking the deception.so. The specific method and
their usage of the global state are explained as follows:

1. __libc_start_main: As the main method will be processed for each process created,
it is necessary to heavily filter requests only to run more extensive logic if needed.
The string values that the PoC supports are "java", "python", and "python3". Those
values are saved as a constant array within the global variables to filter out based
on the first array entry within the argv parameter of the method. This input
parameter resembles the CLI tool that was executed to start the process. It is fine
if the values are just a sub-path of the input parameter (e.g., /usr/lib/java/java)
to allow calling the tools by their relative or absolute path. In addition, the string
comparison does not need to be case-sensitive. If the first parameter matches one
of the supported tools, the PoC will initialize the global state and start the threads
for updating the wires. During the initialization phase of the global state, a lookup
for all original libc methods is performed, and their references are saved into the
state to avoid multiple lookups during process runtime for each incoming or file
manipulation.

46



6.3. Trade-Offs within LD_PRELOAD Systems

processing
single
request

user

start up phase 

application.comlibc  deception.so

__libc_start_main()Python, Java

bind FD bind(), getsockname()

save Con. FD

request
endpoint

connect(application.com:8080)

accept(), accept4()

filter path read(), recv()

write(application.com:8080/admin)

write(), send()

close()

overwrite header

free up resources

read(<responsebody>)

1

2

3

4

5

6
close connection

Figure 6.3: Example how an HTTP response can be made deceptive.

The first filter for all other hooks always checks if the global variables are initialized.
If not, the hooks will immediately call and return the original libc method, to no
further misspend time on checking other filters.

2. bind or getsockname: When the application starts, the port will be bound to an
FD. This behaviour is used to filter out connections that should not be deceived.
For this, an assumption was made that the application only serves content worth
deceiving over a single port. For the PoC the ports 5000 and 8080 are saved again in
a constant array within the global variables. If different ports should be supported,
they can simply be added to the array, and after recompiling the PoC, requests
based on these new ports can be deceptive. Important to note is that the ports
address the port published by the process itself (e.g., targetPort when specified in
a Kubernetes container YAML), which can vary from the port that a user accesses
due to rerouting through proxies and services.
In addition to filtering out unwanted calls of the method itself, bind or getsockname
will also save the FD that can be linked to the traced port within the global state.

47



6. Deception System Orchestration

This FD is used for the accept method for filtering in the next bullet point.

3. accept or accept4 : As mentioned in the previous bullet point, the accept methods
will filter out incoming requests that are not based on a specific port, tagged by
the FD via the bind or getsockname method. Additionally, these methods filter out
requests that are not based on IPv4 or IPv6. // Apart from that, this method also
saves the newly defined FD for handling the incoming request. An active HTTP
connection will get tracked inside the global state within a constant-sized array
acting as a hash table to prohibit race conditions during an FD’s usage time and
optimize performance. The PoC uses the fact that the FDs are unique within a
process to just set the value of array[FD] to true. Due to the benchmark being
conducted sequentially, an array size of 1000 is sufficient.
The accept methods are the first method mentioned that will be called multiple
times through the process lifetime. Therefore, it also checks if the wires inside the
global state are currently not updated. If this is true, the global state will track
that a method reads the variable to avoid race conditions. Before the methods
return, the count will be reduced again. To avoid draining updates, a separate
write flag prohibits new read access while an update is pending. The deception will
be skipped if the global state is in this update phase. This functionality also holds
for the next two bullet points directly below that are exchanging the data.

4. read or recv: If the incoming FD was tagged within one of the accept methods, the
read or recv method checks if the response-code wire is set and the path specified
within the wire matches the incoming requested resource. Regardless of whether
the path fits or not, an object protocolling the type of the request will be allocated.
Besides setting a flag if the path is a match, this object initializes an index needed
later. The object is referenced in an additional size constant-sized array at the
index of the FD, similar to what is done within the accept method. The object is
necessary since it will be used within the read or send method in the next bullet
point.

5. write or send: This method will get the response body as input and can now
implant the deceiving elements based on the information the read method tracks.
Since the Python implementation tested in Chapter 5 called the send method once
for the response header and response body each, the index initialized in the read or
recv method will indicate if the method was called the first time and therefore have
to overwrite the header.

6. close: The close method will simply free all resources of the FD that are allocated
throughout the connection lifetime.

6.3.3 Cloud Adaption
Considering the architecture presented in Section 6.1, the PoC only takes static pro-
visioning without any interaction between the operator and the provisioning. This
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simplification of the PoC was made since it will not impact the performance of actively
deceived requests when the configuration is not changed. The provisioned files consist of
the deception.so and the honeyaml.yaml, both mounted to a container. The thread within
the deception.so (as depicted in Figure 6.2) then checks periodically if the honeYAML
file is updated (i.e., file has new last modified date) and if so, will put a read lock on the
file for processing the data.

Since the PoC is proposed for a cloud environment, one must consider how the prototype
applies to the cloud characteristics. Those characteristics have to hold when a CSP
provides deception as a service, as presented by [8]. For offering deception as a service,
it is important to differ to what extent the operator is implemented. In more detail,
the characteristics of the PoC are presented in this thesis, as well as the advanced
proof of concept (advanced PoC) that can use the operator to update the deception.so.
// Beginning with the characteristic on-demand self-service, the consumer must
not require human interaction on the CSP side but must set up at least the operator
independently. After the operator is set up correctly, this characteristic is fulfilled for the
current PoC as well as the advanced PoC
For resource pooling, one has to consider which part are located at the CSP offering
deception as a service. For example, the honeYAML configuration per se can not be
shared between multiple consumers. However, the CSP can allocate one persistent storage
containing multiple different folders, each containing a single consumer’s information. The
operator itself has to be allocated by the consumers cluster. However, the recompilation
can be outsourced to the CSP. Therefore, the resource pooling would work well by having
a single API where an operator of the consumers can request a specific compilation of
the deception.so.
Considering rapid elasticity, the current PoC has two parts that could generate
scalability issues. The first is the operator. Since it is only processing configuration files,
this should not generate any bottleneck until a high volume of permanent pod creation
occurs. To scale even through that, the operator deployment can scale up with more
pods. The second issue that could occur is because of the honeYAML file. It has to be
ensured that the provisioning can handle multiple node access. Compared to the current
PoC, the advanced PoC would most likely support multiple pods within the operator
deployment due to the added processing needs. Apart from that, the advanced PoC is
capable of rapid elasticity.
Specific metrics have to be defined to allow the PoC, and the advanced PoC for that
matter, to be a measured service. For example, the responses are currently producing
a local log if they get deceived. Instead of logging it locally, the information could be
sent back to the CSP for generating statistics. This characteristic can be fulfilled but
would need advanced evaluation from business analysts.
Lastly, the Broad network access can be fulfilled by the PoC and the advanced PoC by
providing the services at multiple different availability zones of infrastructure provider.
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CHAPTER 7
Performance Evaluation

A performance evaluation is presented in this chapter to conclude the evaluation of
the capabilities introduced by LD_PRELOAD. This chapter addresses RQ3: "How
does the deception system with LD_PRELOAD affect the performance of the original
applications?". The setup of the benchmark, including the test bench (TB) and the
system under test (SUT) with the different specifications, are outlined in Section 4.4. The
artefacts created throughout the performance evaluation can be accessed on GitHub1.

The rest of this chapter is split into two sections. Section 7.1 discusses adaptions to the
TB to mitigate evaluation errors by the first benchmark runs. Afterwards, the benchmark
results of the remodelled benchmarks are presented and discussed in Section 7.2.

7.1 Benchmark Design Flaws
We acknowledge that the initial benchmark had several flaws. The detailed analysis for
identifying those flaws is presented in Appendix A. This section will shortly present the
resulting adaptation.

The original purpose benchmark described in Section 4.4 resulted in the following
adaptation:

• Using a local cluster (Kind) instead of Docker.
Our VM deployment measured significantly higher variance when using Docker.
Therefore, we switched to Kind, which stabilised the round-trip time (RTT) and
made it better comparable to the AWS deployments since most of the deployment
configurations (YAML file) can be used for both types of deployments.

1https://github.com/dynatrace-research/ld-preload-deception/tree/main/
benchmark/evaluation
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• SUT are redeployed before each benchmark.
We saw no warm-up phase on the deployments where w/ wires=f are set. This
is because we turned off the wires during runtime at our w/ wires=t deployment,
resulting in the SUT already being warmed up.

• After analysing the lag plots, we found that 10,000 requests were insufficient for the
warm-up phase. Therefore, we multiplied the warm-up and total request count by
four, resulting in 40,000 requests for the warm-up phase and 200,000 total requests.

After each benchmark run we still occasionally encountered latency anomalies within
the VM benchmarks. As recommended by [29], we monitored the SUT and could not
recognise any limits inside the VM. Therefore, we think the reasons are other VMs
running on the same CPU, also known as "noisy neighbours" [40]. Out of five affected
benchmarks, the anomalies at VM Python w/o wires and the VM Python w/ wires=t
benchmark had a significantly negative performance impact. For this reason we rerun
those two benchmarks.

7.2 Results and Discussion
This section will present and interpret the data resulting from the second benchmark as
explained in Section 7.1. The results of the 24 benchmarks are summarized in Table 7.1.
Based on this table, the relative differences from the configurations w/ wires=f and w/
wires=t to the baseline w/o wires were concluded in Table 7.2. The relative differences
were calculated with the formula (withWires − baseline)/baseline ∗ 100%. The median
value will be chosen for comparison during the interpretation because it is more stable
against outliers than the average value.

As a reference application for benchmarking microservices, we chose TeaStore to represent
an average use case. The results of this SUT are discussed in Subsection 7.2.1. Addition-
ally, a custom SUT was created for Java and Python to compare those two languages.
These results are discussed in Subsection 7.2.2. A final discussion about the results and
what they might bring for future LD_PRELOAD prototypes is given in subsection 7.2.3.

7.2.1 TeaStore
The TeaStore SUT represents a reference system for a cloud environment. With this SUT
we want to see how a proof of concept system performs within an "average" microservice
system. Figure 7.1 depicts the boxplots of each run.

When looking at the w/ wires=t benchmarks, the overhead is visually distinguishable for
all benchmarks. At the relative comparison between the w/ wires=t and w/o wires, it
is visible that the /admin use-case introduces more significant overhead (VM: 10.53%,
AWS: 7.65%) than the /home/ use-cases (VM: 7.06%, AWS: 3.50%). These are the
consequences of the /admin endpoint having near non-processing time since the requested
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min max median average relative

VM, /admin, w/o wires 1.15 248.51 2.92 3.26 -

VM, /admin, w/ wires=f 1.29 219.00 2.92 3.25 -0.04%

VM, /admin, w/ wires=t 1.43 229.03 3.23 3.58 10.53%

AWS, /admin, w/o wires 0.82 128.34 1.06 1.31 -

AWS, /admin, w/ wires=f 0.82 168.94 1.10 1.35 3.25%

AWS, /admin, w/ wires=t 0.86 141.11 1.14 1.40 7.65%

VM, /home/, w/o wires 4.41 5051.83 8.98 9.61 -

VM, /home/, w/ wires=f 4.29 170.00 9.06 9.71 0.95%

VM, /home/, w/ wires=t 4.28 5156.84 9.61 10.35 7.06%

AWS, /home/, w/o wires 2.51 183.13 3.32 3.89 -

AWS, /home/, w/ wires=f 2.48 200.17 3.29 3.96 -1.08%

AWS, /home/, w/ wires=t 2.59 219.37 3.44 4.12 3.50%

VM, Java, w/o wires 2.24 54.54 3.94 4.20 -

VM, Java, w/ wires=f 2.15 128.17 4.21 4.50 6.82%

VM, Java, w/ wires=t 2.39 5284.45 4.47 4.86 13.60%

AWS, Java, w/o wires 1.09 24.11 1.41 1.54 -

AWS, Java, w/ wires=f 1.09 30.44 1.43 1.55 1.13%

AWS, Java, w/ wires=t 1.14 32.99 1.48 1.62 5.12%

VM, Python, w/o wires 7.26 140.72 10.96 11.32 -

VM, Python, w/ wires=f 6.31 228.54 11.15 11.49 1.68%

VM, Python, w/ wires=t 7.70 138.03 11.37 11.74 3.76%

AWS, Python, w/o wires 2.53 38.73 3.25 3.79 -

AWS, Python, w/ wires=f 2.50 46.68 3.24 3.79 -0.08%

AWS, Python, w/ wires=t 2.59 83.81 3.33 3.85 2.52%

Table 7.1: Results of the 24 benchmarks. The Teastore SUT (/admin and /home/
configuration) is also visualized in the form of boxplots by Figure 7.1. The custom SUT
(Java and Python) are depicted in Figure 7.2. Relative overhead (of median) compared
to the w/o wires configuration.

w/o wires w/ wires=f

Minimum -1.08% 2.52%

Maximum 6.82% 13.60%

Average 1.58% 6.72%

Table 7.2: Average of the relative performance overhead of w/o wires compared to wires=f
and wires=t, as presented in Table 7.1.
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Figure 7.1: Boxplot of the 12 benchmarks conducted with TeaStore as SUT.

endpoint is not implemented. Contrary to that /home/ calls different services and
processes their responses. When designing deceptive wires, one has to consider
that the deception system has greater relative overhead at endpoints with
less processing time.

As expected, the w/ wires=f benchmarks introduce near to no overhead compared to
w/o wires. We expected the overad of w/ wires=f is neglectable, as indicated by
the negative numbers for w/ wires=f, like VM /admin with -0.04%.
The benchmark result of AWS /admin w/ wires=f is an exception to our expectations.
This benchmark is not visibly different by much in the boxplots. However, when we
look at the relative overhead of 3.25%, it is significantly higher than the equivalent VM
benchmark, which had only -0.04%. This result arises due to the /admin endpoint having
near to no processing time, and the overall processing time in AWS is the smallest out of
all our tests. Therefore, the overhead of the deception system is more visible.
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7.2. Results and Discussion
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Figure 7.2: The boxplots with the six benchmarks per graphic conducted on the custom-
created SUT specifically designed with Java (left) and Python (right).

7.2.2 Custom SUT

The custom test SUTs were created to compare Java and Python within a similar workload
setting. To our surprise, the performance for finishing those tasks differs significantly. As
seen in 7.2, the Java boxplots (left figure) range from 1 to 6 milliseconds, whereas the
Python boxplots (right figure) range from 2 to 14 seconds. We will now go into more
detail of the results.

Surprisingly, the VM Java results with 6.82% at w/ wires=f and with 13.60% at wires=t
resembles the largest performance overhead out of all benchmarks in their categories.
When looking at the Java w/ wires=t configuration, the VM (13.60%) also took over
double the relative time compared to the AWS (5.12%). In contrast, the other benchmarks
stayed about double the performance or below. Apart from a small performance spike
in w/ wires=t, nothing special stood out in the VM Java lag plots analysis. However,
we argue that the low maximum number for w/o wires (54.54 milliseconds) compared
to w/ wires=f (128.17 milliseconds) and w/ wires=t (5256.59 milliseconds) could be an
indicator that the w/o wires had an exceptionally well-going run, whereas the other two
configurations had an average to wors run.

Comparing Pythons overhead (VM 3.76%, AWS 2.52%) against Javas overhead (VM
13.60%, AWS 5.12%), the deception significantly impacts the performance of the Java
benchmarks more. Considering the results of TeaStore, we argue that the programming
language itself does not introduce this difference but rather the Java program, the
used framework or the runtime itself through its optimizations. When looking at the
median baseline, the Python application took more than double the time to complete
the task compared to the Java application. Overall, we found that endpoints that
need less processing time, either through less processed complexity or better
optimization, have more impact than the chosen language.
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7. Performance Evaluation

7.2.3 Final Discussion And Outlook
To conclude the benchmark results, we took the average of performance overheads. The
overhead for w/ wires=f is 1.58%, and for w/ wires=t, 6.72% on average. It is worth
noting that the performance of the presented PoC can be improved further by setting
more parts of the global state during compile-time by recompilation of the PoC as
discussed in Subsection 6.2.2. We further acknowledge that performance improvements
can be leveraged using appropriate data structures like hash maps instead of arrays.
Hence, those numbers do not represent the full potential of our LD_PRELOAD PoC.

Nevertheless, having a 6.72% performance overhead per request can lead to attackers
gasping a potential deception being in place and can directly affect the generated costs.
For example, when a service is insufficient, additional resources must be allocated. The
argument can be brought up that wires are only active for a handful of services. Hence,
the overall cost can be minimized. Still, those granular adjustments create additional
complexity, leading to a generally high upfront cost to create deception as a service.

Finally, the above results show that LD_PRELOAD can be used for deception within
cloud environments and can provide deception as a service. Nevertheless, one has to keep
in mind that it is either necessary to optimize the system appropriately or to create a
rich feature set to customize which deployment should be made deceptive to make the
solution feasible in practice. Both parts create much complexity, so we advise future
work to compare the LD_PRELOAD option with other possible options.
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CHAPTER 8
Conclusion

This study investigates hooking shared libraries for cyber deception inside cloud environ-
ments.

We started with analysing to what extent socket connections can be traced to answer
RQ1. We concluded that the major shared method needed for socket communication can
be tracked and linked together by one shared library without requiring extensive adaption
to support a broad spectrum of applications. Only reading and writing data with a socket
can have multiple implementations in libc with small adaptations in their arguments and
functionalities, as we saw when comparing a Python with a Java application. Therefore,
development with the LD_PRELOAD approach requires iterative advancement for
supported technologies and extensive testing.

For RQ2, we developed a proof of concept shared library to inject wires within HTTP-
response messages. We encountered multiple trade-offs when designing such PoC with
LD_PRELOAD. The main decision one has to consider is the capabilities of the system
to update itself versus the amount of performance overhead introduced by the system.
The system update itself can be further separated into updating the whole shared library
binary by a Kubernetes operator and updates during the runtime, which requires a
built-in mechanism within the binary.

Finally, we conducted 24 benchmarks to evaluate the performance overhead introduced
by our PoC to answer RQ3. Compared with a baseline system without our PoC, we
predicted that the median increase was about 1.58% on average when we injected the
PoC and deactivated the wires. However, deactivating the wires means that no deceptive
tokens get injected. When we activated the wires, the median increased by 6.72% on
average. This concluded that more performance optimisation would be necessary for our
PoC.
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8. Conclusion

For future work, we encourage researchers to extend our system further. We want
to highlight the following possible enhancements:

• We consider that the next step is to further automate our deception system by
extending the operator to build shared libraries as needed. This can also minimize
the performance overhead of the wires and the system in general.

• Speaking of wires, we implemented only two types of wires. Therefore, the next
step could be to implement additional deceptive wires. Existing vulnerabilities and
their exploits can guide the use case for those wires.

• We argue that implementing multiple different wires can also enable managing
them automatically. Not only would such automation match with the proposed
deception system by Kahlhofer et al. [19], but it also resembles what state-of-the-art
deception systems like SODA [8] are already capable of.

• A general evaluation of different layers, like runtime modules for specific languages,
kernel patches with eBPF or a proxy solution within the same pod, can help
researchers in the future to decide which technologies best fit their use cases.
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APPENDIX A
Benchmark Flaws

The initial proposed setup had flaws, considering the low request count and warm-up
number, as well as the SUT management throughout testing and the Docker deployment
within the VM. Section A.1 will address these flaws occurring in the initial benchmark
suite. After that, we rerun the benchmarks and the deficiencies of the second benchmark
were corrected. Still, some virtual machine (VM) instances had high maximum response
time in their benchmarks. In total, five out of the 24 benchmarks were affected, and
we rerun two of them. A detailed description of how external factors influence the
benchmarks at the VM and why we rerun those two tests are described in Section A.2.

A.1 Benchmark Suite 1
After the first benchmark suite, the first results looked distrustful. This distrustfulness
was mainly because the boxplot of the SUT with wires set to false is equally or even
faster than on the system without any deception injected in all instances. Therefore, a lag
plot analysis was conducted where the problems can be seen. Figure A.1 represents the
initial VM results of the benchmark with SUT set to /home/ with wires=f. The primary
analysis was guided by the /home/ SUT since it was the most complex request with
multiple communications with other services that had to be done by the SUT. Hence,
the most noticeable warm-up was to be expected. However, as seen in the figure, no
warm-up was visible. This was most likely because the wires were set to false during
runtime without the SUT being restarted. Therefore, the SUT was already warm-up
during the previous run, where the wires were set to true.

Benchmark alteration: SUT are redeployed before each benchmark.

Another thing noticeable within Figure A.1 is that the round-trip time (RTT) spread
between four and 500 milliseconds occurs too regularly, and the spread itself should not
be that big. This behaviour was only noticeable in the VM benchmarks. We reasoned
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A. Benchmark Flaws
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Figure A.1: Lagplot of the first benchmark suit run where configurations of w/ wires=f
showed no warm-up.
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Figure A.2: Lagplot analyse, after switching to Docker instead of Kind and redeploying
w/ wires=f configuration before testing and running a total of 200,000 instead of 50,000
tests.

that this is because the container is deployed with docker, and the network is rerouted
over localhost, which introduces considerable network overhead and delays.

Benchmark alteration: For the VM, a local cluster (Kind) is used to reduce the test
variance and make the setup better comparable to the cloud benchmarks.

Apart from the previously mentioned flaws, the defined warm-up phase of 10,000 requests
was insufficient for some of the other analysed lag plots. Therefore, the improvements
mentioned above were implemented, and the configuration of VM, /home/, and wires=f
false was tested again but with 200,000 requests instead of 50,000. In the resulting
lag plot depicted in Figure A.2, it can be empirically observed that the RTT stabilizes
between the 30,000 and 35,000 RTT mark.

Benchmark alteration: The warm-up and total request count are multiplied by four to
40,000 and 200,000 requests, respectively, to mitigate the impact created during caching
initialization.
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A.2. Benchmark Suite 2

As seen in Figure A.2, the maximum RTT after a warm-up phase of 40,000 was around
100 milliseconds, and the frequency of such relatively slow requests was significantly lower
than in Figure A.1. This behaviour indicates that the deployment in Kind stabilizes the
RTT. The warm-up with wires=f configuration is also visible and comparable to other
analysed lag plots. Last but not least, no benchmark showed a destabilized RTT after
40,000 requests.

A.2 Benchmark Suite 2
After the second run, the results of the benchmarks mainly looked as expected, except
for five VM runs. Those test runs have significantly higher maximum RTTs. Therefore,
we conducted a lag plot analysis to verify why the spikes occurred.

As mentioned above, only the VM runs were affected, suggesting that the error might be
related to the VM itself. Two effected benchmark configurations had the deception set
to w/o wires, and three to w/ wires=t. Therefore, we assumed that the error does not
correlate with the deception system or the benchmark system but rather with external
factors such as other VMs sharing the CPU with our VM. The high maximum value
occurred due to performance spikes at all benchmarks. We looked at the lag plots with
an additional line representing the rolling mean of 2,000 entries for the inspection. Those
rolling mean spikes lasted for around 4,000 requests, concluding that the spike affected
only 2,000 requests. The performance decrease of the RTT was from 50-100%. Therefore,
those spikes only increased the average performance minimally, with the median staying
stable.

Out of the five benchmarks, two with the Python SUT configuration looked different.
The first benchmark w/o wires shows a significant increase in the RTT at the end, as
visible in Figure A.3. The affected area is about 30,000 out of 160,000 requests, with the
average RTT double compared to the requests sent before the spike. Since the VM for
the benchmark allocates only four out of the twelve cores of the CPU, the assumption
was made that this behaviour is due to a heavy load occurring at a different VM that
uses the same CPU.
The second benchmark w/ wires=t is depicted in Figure A.4. Within the figure, we saw
that the RTT after the first spike had not returned to the RTT before the spike. This
implies that this benchmark’s median and average will be increased by about one second.

The benchmark of the repeated tests compared to their initial results are shown in
Table A.1. The new tests are considered as a baseline since the old datasets introduced
a performance overhead through their spikes. Hence, we used the formula (initial −
rerun)/rerun ∗ 100% to calculate the difference. For the configuration w/o wires, the
median with spikes was slightly better at -1.09%, but the average performance worsened
by 17.05%. For the configuration w/ wires=t, the spikes worsened the median by 10.20%
and the average by 10.65%. Only the rerun benchmarks are considered in the next
section.
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Figure A.3: VM spikes impacting around 30,000 entries.
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Figure A.4: VM spike distorting the median.

min max median average

VM Python w/o wires 3.93 958.94 10.84 13.25

VM Python w/ wires=t 6.32 5256.59 12.53 12.99

Rerun: VM Python w/o wires 7.26 140.72 10.96 11.32

Rerun: VM Python w/ wires=t 7.7 138.03 11.37 11.74

Table A.1: Comparison of rerun benchmarks conducted due to significant performance
spices.
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