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Abstract
In this work, a robotic 3D reconstruction system is developed for an experimental setup
at TU Wien. This setup consists of a 3D camera, a seven-axis collaborative robot and
two linear axes.

On the one hand, the developed reconstruction system can scan objects from manually
predefined views. An automatic sequence optimization is presented to minimize the
duration of the reconstruction process. Furthermore, an autonomous mode of operation is
developed. For this purpose, a novel view planning algorithm is presented that determines
suitable views based on an iteratively refined geometric approximation of the object to
be scanned. Concepts of sequence optimization are revisited to select the next best view.
The view planning algorithm eliminates the need to specify views manually, enabling a
reconstruction of unknown objects with minimal human interaction.

Simulation studies demonstrate the suitability of the implemented algorithms. In
addition, the developed reconstruction system is tested on an existing robotic system
without linear axes to validate this work in experiments. It is shown that the proposed
view planning algorithm is capable of scanning unknown objects with high accuracy.
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Kurzzusammenfassung
In dieser Arbeit wird ein robotergestütztes 3D Rekonstruktionssystem für einen experimen-
tellen Aufbau an der TU Wien entwickelt. Dieser Aufbau besteht aus einer Tiefenkamera,
einem siebenachsigen kollaborativen Roboter und zwei Linearachsen.

Einerseits können mit dem entwickelten Rekonstruktionssystem Objekte von zuvor
manuell definierten Kameraposen gescannt werden. Hierfür wird eine automatische
Reihenfolgeoptimierung vorgestellt, um die Dauer des Rekonstruktionsprozesses zu mi-
nimieren. Des Weiteren wird ein autonomer Betriebsmodus entwickelt. Dazu wird ein
neuartiger View Planning-Algorithmus präsentiert, der geeignete Kameraposen anhand
einer iterativ verbesserten geometrischen Approximation des zu scannenden Objekts wählt.
Konzepte der Reihenfolgeoptimierung werden wieder aufgegriffen, um die nächstbeste
Kamerapose zu selektieren. Der View Planning-Algorithmus eliminiert die Notwendigkeit,
Kameraposen manuell festzulegen und ermöglicht somit eine Rekonstruktion unbekannter
Objekte mit minimaler menschlicher Interaktion.

Simulationsstudien demonstrieren die Eignung der implementierten Algorithmen. Dar-
über hinaus wird das entwickelte Rekonstruktionssystem an einem bestehenden robotischen
System ohne Linearachsen getestet, um diese Arbeit in Experimenten zu validieren. Es
zeigt sich, dass der vorgeschlagene View Planning-Algorithmus in der Lage ist, unbekannte
Objekte mit hoher Genauigkeit zu erfassen.
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1 Introduction
Digital three-dimensional (3D) models of physical objects are of interest in various fields
such as medicine, archaeology, architecture, or manufacturing [1–4]. Developments over
the last decade led to affordable 3D sensing devices [5] and paved the path for new
applications, for instance in fashion or augmented reality [6, 7]. It is desirable to create 3D
models in a time-efficient and reproducible manner, which motivates the use of industrial
robots. In this thesis, a robot-assisted reconstruction system is developed for a new robotic
system at TU Wien.

Figure 1.1 depicts a visualization of the planned robotic system which forms the basis of
this work. It is composed of the seven-axis collaborative robot Kuka LBR iiwa 14 R820
equipped with the depth camera Photoneo MotionCam-3D M. The robot manipulator
is mounted headlong on two linear axes, which enable the movement of the robot’s
base within the workcell. Thus, the total number of Degrees of Freedom (DoF) of this
mechanical setup is nine. This configuration increases the available workspace of the robot
and offers the possibility to move the camera around the object to be scanned.

1.1 Related Work
Automated reconstruction systems proposed in the literature essentially differ in the way
how views for the 3D sensing device are planned and realized. A simple approach is to
keep the sensor static and rotate the object of interest with a turntable [8]. In [9], an
additional DoF in form of a cylindrical scanner is considered. Objects of complex shape
cannot be fully reconstructed with such mechanical configurations. Thus, the scanning
device was mounted on industrial robots in later works.

The RoboScan system presented in [10] uses the robot ABB IRB 4400 with six axes
in combination with a turntable. The main motivation for this work was to mitigate
three bottlenecks in human-assisted 3D reconstruction, namely the selection of views, the
positioning of the scanner, and the alignment of the captured scans. The first bottleneck is
tackled by a view planning algorithm that automatically detects unsampled regions after
an initial coverage phase. For this initial coverage, only a bounding volume enclosing the
object is required. The latter bottleneck, i. e. the alignment of scans, is eliminated because
the robot is calibrated and thus the pose of the scanner can be accurately determined by
the measured joint angles. A disadvantage of RoboScan is that motions for the robot are
planned on dedicated hardware. Hence, the system cannot be easily extended by linear
axes or otherwise adapted.

The aim of [11] was to develop an automated system for the reconstruction of cultural
heritage. A system composed of the industrial robot Fanuc LRMate 200i with six DoF,
a linear axis, and a turntable is presented. With the linear axis, it is possible to lift
the robot to scan objects of a maximum height of 2.5 m. The work was influenced by
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Depth camera

Seven-axis robot
Linear axis 1

Linear axis 2

Figure 1.1: Robotic system composed of a collaborative robot mounted on two linear axes.
The end-effector is a depth camera to scan physical objects on the table.

RoboScan, but a custom algorithm for planning motions was implemented to overcome
the limitations on the extensibility of RoboScan. However, this algorithm is very specific
and may not find a feasible path for more complicated environments. Especially, this is
problematic for this thesis because no turntable is used and thus the cylindrical setup like
in [11] is not available. Also, the view planning algorithm is tailored to the application of
cultural heritage preservation where the scanning range of the sensing device is typically
much smaller than the object to be scanned.

In [12, 13], a system to reconstruct objects for reverse engineering is considered. A
hardware setup similar to RoboScan is used, but the robot does not have to stop for
scanning. The novelty is the ability to scan along curved paths. Another system with
a 6-DoF robot in combination with a turntable is found in [14]. It tackles the problem
of view planning by classifying the scans into well visible and barely visible and then
calculating the next best view based on the barely visible views. More recently, [15]
proposed a robotic system for the application of inspection – also using a 6-DoF robot
and a turntable. This publication presents a procedure consisting of the three phases
exploration, scan and rescan. The objective is to perform the inspection in a time-efficient
way by starting with a rough model for view planning and to increase the quality at a
later stage if necessary. Paths for the robot are planned on a hemisphere centered at the
turntable.

All these works have the objective of an automated reconstruction process in common.
Their primary focus is on the selection of good views for the 3D sensing device. However, a
reconstruction system consists of several additional required components, e. g. for planning
motions and aligning scans. The development of this foundation for the given robotic
system is the aim of this work, which is made more precise in the following.
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1.2 Aim of this Work
The biggest difference between the work presented in this thesis and the works mentioned
in Section 1.1 is the mechanical setup. In this work, the total DoF is nine, whereas most
of the publications discussed previously consider robotic systems with seven DoF. Also,
no turntable is used to rotate the object, i. e. the robot has to move around the object to
perform a full scan. This imposes additional challenges for the positioning of the camera.
Thus, the problem of planning collision-free paths for the robot is solved first.

Next, a reconstruction pipeline is to be developed which takes care of the alignment
of scans and reconstructs the surface of the object. To start with, a list of desired
camera views is assumed as given. The functionality is extended by an optional sequence
optimization, which tries to shorten the duration of the scanning process. These concepts
may be applied in a more general context, e. g. for the inspection of an object.

A further objective of this work is to provide a means to perform an object reconstruction
with minimal human interaction. To this end, a view planning algorithm for scanning
unknown objects is proposed. This eliminates the need to set views manually. It is based
on an ellipsoidal approximation of the object. The approximation is obtained from an
initial scan and then refined iteratively during reconstruction. Concepts of sequence
optimization are revisited to select the next best view. Only a bounding volume of the
object is assumed to be known to avoid collisions.

Finally, the operability of the developed reconstruction system is to be demonstrated in
an experimental setup. For this purpose, the system is implemented utilizing the existing
infrastructure of the robotic system. Prototypical scenarios are considered for validation
of the proposed reconstruction system.

1.3 Thesis Outline
Chapter 2 introduces key concepts and methods applied in this thesis. The first part is
concerned with view planning, followed by a discussion of motion planning. Further aspects
of moving the camera by the robot are considered before an explanation of the actual
object reconstruction process is given. Next, Chapter 3 describes the deployed software
libraries and gives an overview of the system’s implementation. Subsequently, Chapter 4
presents simulation studies that demonstrate the applicability of the selected algorithms.
In Chapter 5, the developed reconstruction system is validated in an experimental setup.
Finally, Chapter 6 concludes this thesis with a summary and a discussion of the obtained
results. An outlook on possible future work is given.



2 Concept
This chapter presents the key elements of the developed reconstruction system from a
conceptual perspective. The sections are organized in an order that tries to follow the
steps involved in the process of creating a 3D model of a physical object. To get an
overview, Figure 2.1 shows flow charts of two possible modes of operation.

list of views

optimize sequence
& plan motions

move robot

scan object

enough
scans?

align scans

reconstruct surface

no

yes

(a) Model-based mode.

initial scan

plan views

select view &
plan motion

move robot

scan object

align scan

enough
scans?

reconstruct surface

no

yes

(b) Non-model-based mode.

Figure 2.1: Two modes of operation for the developed reconstruction system: (a) Views
are specified in advance, (b) Views are planned during execution.

For the first variant, depicted in Figure 2.1a, views for the camera are specified in
advance. This is applicable for scanning objects where an initial 3D model is available.
Correspondingly, this mode of operation is called the model-based mode. Because the
views are determined before execution, it is possible to optimize the sequence in which the
scans are made. After the computation of appropriate motions, the robot executes a part
of the planned path and the camera scans the object. These steps repeat until enough
scans have been made. Finally, the scans are aligned and the surface of the scanned object
is reconstructed.
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Figure 2.2: Definition of world frame W and camera frame C.

To scan unknown objects without an initial 3D model, an alternative mode of operation
is developed, called the non-model-based mode. The corresponding flow chart is illustrated
in Figure 2.1b. Here, the reconstruction process starts with an initial scan. Views are
planned and selected iteratively to react to new information gained during the scanning
process. The remaining processing steps of the non-model-based mode are analogous to
the model-based variant, except that scans are aligned in each iteration for planning views
in the next iteration.

2.1 View Planning
Due to the limited field of view of a depth camera and self-occlusions of the physical object,
it is necessary to make multiple scans from distinct views. The process of determining
this set of views is called view planning. In the literature, approaches to view planning
have been proposed which try to choose the views in a somehow optimal way. They can
be classified in whether or not an initial 3D model of the object exists [16]. Our proposed
method addresses both of these cases. Examples of model-based and non-model-based view
planning are [17] and [18], respectively. This distinction is reflected in the model-based
and non-model-based mode introduced previously. Therefore, these modes are discussed
separately after presenting basic coordinate frames.

2.1.1 Coordinate Frames
To express the camera’s view to the object of interest, two coordinate frames, the world
frame W and the camera frame C, are introduced. Whereas the object may be placed
arbitrarily in the world W , the camera is usually fixed to the camera frame C as illustrated
in Figure 2.2. The image sensor coincides with the origin of C and the direction of view is
aligned with the z-axis. Relative to the captured image, the camera frame’s x- and y-axis
point to the right and bottom, respectively.
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ϑ

ϕ
α

r
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y

z

C x

y

z

f

Figure 2.3: Geometric relation between frames W and C. The camera’s pose relative to
W is determined by f and r as well as the angles ϕ, ϑ, and α.

The geometric relation between the frames W and C is expressed by means of a
homogeneous transformation HC

W . In general, a homogeneous transformation HY
X describes

the position and orientation of the coordinate frame Y in the coordinates of X and can
be written as

HY
X =

�
RY

X dY
X

0 1

�
. (2.1)

In this expression, the orthogonal rotation matrix RY
X ∈ SO(3) represents the orientation

of Y and dY
X ∈ R3 denotes the position of its origin. The last row of HY

X is such that
homogeneous transformations can be applied successively with intermediate frames, i. e.

HZ
X = HY

X HZ
Y . (2.2)

2.1.2 Model-Based Mode
The actual planning of views based on an initial 3D model is not treated in this thesis.
Rather, the interface to the model-based mode of the developed reconstruction system is
a list of desired views for the camera. This list may be specified by hand. To this end,
the following geometric representation of views is adopted, see Figure 2.3. The camera’s
position is given in sphere coordinates (r, ϑ, ϕ) relative to a focus point f ∈ R3. Because
the camera points toward the focus point f , its orientation is already partially defined.
The remaining degree of freedom is the rotation of the camera around its z-axis, given by
the angle α. By varying the angles ϕ, ϑ, and α while keeping f and r fixed, views around
an object can be specified intuitively. This is the reason for utilizing this representation
also for the user interface of the reconstruction system, see Section 3.3.

2.1.3 Non-Model-Based Mode
The non-model-based mode plans views during the scanning process. In this work, a novel
view planning algorithm is proposed, which is based on an ellipsoidal approximation of
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Figure 2.4: Estimated ellipsoid with frame E . A point p on the surface determines the
pose of the camera frame C.

the object to be scanned. This ellipsoid is estimated iteratively starting with an initial
scan. After each subsequent scan, the estimate is improved as more information about the
object is gained. The algorithm terminates when a desired number of N scans has been
made. Only a bounding volume of the object is assumed to be known to avoid collisions.
The following text describes the algorithm in more detail.

Ellipsoid. The starting point of the view planning algorithm is an initial scan of the
object. An ellipsoid is computed that encompasses the observed part of the object. For the
following explanation, a new coordinate frame, called the ellipsoid frame E , is introduced.
This frame E , illustrated in Figure 2.4, is located at the center of the ellipsoid and aligned
with its principal axes. The surface of the ellipsoid is then given by the expression

f(x, y, z) = x2

e2
1

+ y2

e2
2

+ z2

e2
3

− 1 = 0, (2.3)

where e1, e2, and e3 denote the extent of the ellipsoid in x-, y-, and z-direction, respectively.

From Surface to Pose. Given a point p =
�
x y z

�T
on the surface of the ellipsoid

and the corresponding normal

n = ∇f = 2
�

x
e2

1

y
e2

2

z
e2

3

�T
, (2.4)

the position of the camera relative to E is set to

dC
E = p + dc

n
�n� . (2.5)

Here, the parameter dc > 0 denotes the desired distance of the camera to the ellipsoid, see
Figure 2.4. In addition to the position dC

E , the orientation of the camera is defined. The
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W
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y

z

infeasible
completed
planned
active

Figure 2.5: Views distributed on the ellipsoid. They are classified into infeasible, completed,
and planned views. The active view is selected for the next scan.

rotation matrix RC
E is chosen such that the z-axis of C points in the negative direction of

n, i. e. the camera is directed to the object, and the x-axis of C is perpendicular to the
z-axis of W, i. e. the camera is positioned horizontally.

Sampling the Surface. To determine a suitable point p on the ellipsoid, the surface
is sampled, depicted in Figure 2.5. Let A denote the set of all previous valid samples.
A valid sample p is computed by first randomly generating a set B of M preliminary
samples. For each of these preliminary samples s, the cost function

c(s) =
�

p�∈A

1
�s − p��2

E + σ
(2.6)

with regularization term σ > 0 and norm �·�E (defined below) is evaluated. This cost
function c(s) penalizes preliminary samples in the vicinity to previous valid samples and
can be interpreted as an artificial potential field ensuring a good distribution of views.
The preliminary sample s with smallest c(s) is then selected as next valid sample,

p = arg min
s∈B

{c(s)}. (2.7)

The norm �·�E is defined as

�p�E =
�

x2

e2
1

+ y2

e2
2

+ z2

e2
3

. (2.8)

This is equivalent to transforming the ellipsoid to a sphere and then calculating the
Euclidean distance of points. Thus, the resulting cost is independent of the ratio of the
quantities e1, e2, and e3.
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Planned Poses. For each valid sample p, the corresponding camera pose HC
E(p) is

determined as described previously. Depending on whether the pose HC
E(p) is feasible for

the robot or not, it is inserted in the set Hp of the planned poses or in the set Hi of the
infeasible poses. In any case, the corresponding sample p is added to the set A of all valid
samples. When N − |Hc| feasible poses have been found, where |Hc| denotes the number
of completed scans, the algorithm proceeds as follows.

Selecting a Pose. A pose within the set Hp of planned poses is chosen for the next scan.
This is done by selecting the pose that is “closest” to the current robot configuration to
ensure a fast scanning process. More details on this aspect are given in Section 2.3.3.
Thereafter, the object is scanned and a new ellipsoid is estimated. The selected pose, also
called the active pose, is then added to the set Hc of the completed poses.

From Pose to Surface. The estimate of the ellipsoid changes every iteration as new
information about the object becomes available. Therefore, the completed and infeasible
poses do not fit the new ellipsoid anymore. This is relevant for the set A, which governs
the distribution of the following samples. The discrepancy is resolved by calculating
the points on the new ellipsoid’s surface that are closest to the positions of the poses in
Hc ∪ Hi. For this purpose, the algorithm presented in [19] is applied. The computed
nearest points constitute the new set A for the next iteration.

Table 2.1 summarizes the described view planning algorithm.

2.2 Motion Planning
The goal of motion planning is to find a collision-free path for the robot to fulfil its task. In
the context of this thesis, a fundamental task for the robot is to move the camera to desired
poses in its workspace. Such high-level goal specifications serve as input to planning
algorithms, which compute the needed movements for each individual joint. Robots with
high DoF, like the system considered in this work, are particularly challenging for motion
planning. In addition, obstacles in the robot’s workspace further complicate the problem
to be solved.

In the following, the motion planning problem is introduced. Subsequently, fundamental
concepts of motion planning are explained and an overview of existing approaches is given.
After selecting a suitable class of motion planning algorithms, an appropriate mathematical
model of the robot is presented and aspects of collision checking are mentioned. Finally,
the execution of time-parameterized paths is discussed.

2.2.1 Robot Configurations
The joint positions qi, i = 1, . . . , n of a robot with n DoF are summarized in the vector

q =
�
q1 q2 · · · qn

�T
, (2.9)

which is also called the robot configuration. In its basic formulation, the goal of motion
planning is to find a collision-free path from a start configuration qs to a goal configura-
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Hc ← {}
Hi ← {}
make initial scan
estimate ellipsoid
while |Hc| < N

A ← {}
for every HC

E ∈ Hc ∪ Hi

find p on the ellipsoid’s surface that is closest to dC
E of HC

E
A ← A ∪ {p}

Hp ← {}
while |Hp| < N − |Hc|

B ← sample M points on ellipsoid’s surface
for every s ∈ B

calculate cost of s based on A
p ← s ∈ B with smallest cost c(s)
A ← A ∪ {p}
if HC

E(p) is feasible for the robot
Hp ← Hp ∪ {HC

E}
else

Hi ← Hi ∪ {HC
E}

select a HC
E ∈ Hp (see Section 2.3.3)

move camera and make scan
estimate new ellipsoid
Hc ← Hc ∪ {HC

E}

Table 2.1: Procedure of the view planning algorithm for the non-model-based mode.

tion qg. For this thesis, the concrete goal configuration qg is of minor importance. Rather,
a pose goal for the camera, i. e. a desired transformation HC

W is of interest. The considered
robotic system has nine DoF and thus exhibits a redundancy in the 3D Cartesian space
of dimension six. Due to this redundancy, there is generally an infinite number of goal
configurations qg that lead to a given transformation HC

W . Finding configurations q for
a prescribed HC

W(q) is referred to as inverse kinematics problem. Essentially, the goal
configuration qg for motion planning can be set to any solution of the inverse kinematics
problem.

2.2.2 Planning Algorithms
A fundamental concept in motion planning is the notion of the configuration space [20],
denoted by X . It can be considered as a special state space that comprises the set
of all possible robot configurations q. Due to obstacles in the robot’s workspace and
possible self-collision, a subset Xobs ⊂ X , called the obstacle region, corresponds to invalid
robot configurations. The other part Xfree = X \ Xobs of X , which contains the valid
configurations, is called the free space.
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q1

q2

qs

qg

Xfree

Xobs

Xobs

Xobs

Xobs q1q1

q2

q2

Figure 2.6: Illustration of a configuration space X for a manipulator with two joints. A
possible path from start configuration qs to goal configuration qg is indicated
by a dashed line.

Figure 2.6 illustrates this concept for a two-dimensional configuration space X , related to
an imaginary manipulator with two joints q1 and q2. The set X of all possible configurations
q is defined by the lower and upper joint limits, which restrict q1 and q2 to q1 ≤ q1 ≤ q1
and q2 ≤ q2 ≤ q2, respectively.

With the notion of the configuration space X , the motion planning problem can be
formulated as finding a path in the free configuration space Xfree from start configuration
qs to goal configuration qg [21]. Except for simple cases, the free space Xfree has a complex
shape, which is hard to calculate explicitly [22]. This is why many planning algorithms
resort to implicit representations.

Early algorithms relying on implicit representations of the free space Xfree made use
of artificial potential fields [23]. These approaches are suitable for online planning,
where obstacles are not known beforehand. However, the robot may get stuck in a local
minimum of the potential field. Also, in this context, geometric information of the robot’s
environment is available, which is why offline planners can be used.

A central idea is to utilize a discretization of the configuration space [24]. Algorithms
using this concept can be classified in combinatorial and sampling-based approaches [21].
Examples of combinatorial algorithms are planning via cell decomposition [25] and plan-
ning via retraction [26, 27]. Combinatorial algorithms provide the strong guarantee of
completeness, meaning that they succeed if a solution exists and report failure otherwise
in finite time. However, they are often impractical due to their computational complexity.

Sampling-based algorithms [21, 28] take samples in the configuration space X and
evaluate whether the corresponding configurations are in a collision or not. A search in
the configuration space is performed to find a sequence of samples that connects the start
configuration qs with the goal configuration qg. There are different strategies for how
samples are selected. Often, probabilistic sampling techniques are used because they have
shown good performance.

An advantage of sampling-based algorithms may be the fact that collision checking
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is treated as a black box, i. e. it can be separated from the actual planning algorithm.
Thus, the specific representation of obstacles is not that critical as for combinatorial
planning algorithms. However, the strong guarantee of completeness needs to be relaxed for
sampling-based algorithms. Randomized sampling-based algorithms are called probabilistic
complete. This means that if a solution exists, the probability of success converges to one
with sufficiently long runtime. Apart from the weaker guarantee on finding a solution, the
class of sampling-based algorithms is highly efficient and well suited for high-dimensional
problems. Therefore, sampling-based algorithms will be applied in this thesis.

It is worth mentioning that sampling-based motion planners often output a path that
needs to be smoothed in a post-processing step. More recent approaches to motion
planning incorporate dynamics and try to directly compute good paths or trajectories by
means of optimization-based techniques. Covariant Hamiltonian Optimization for Motion
Planning (CHOMP) [29], for example, uses an objective functional composed of two parts.
One part penalizes proximity to obstacles whereas the complementary part penalizes
undesired dynamical properties of the trajectory. The method proposed in [30] is similar
to CHOMP, but uses another optimization method and evaluates collisions differently.

2.2.3 Kinematic Robot Model
The mathematical model presented here, which is used by the sampling-based planning
algorithms, is purely kinematic. Dynamics are considered at a later stage, when the
time-parameterized motion plan is executed, to be discussed in Section 2.2.5.

Figure 2.7 shows a visualization of the Kuka LBR iiwa 14 R820 mounted on the two
linear axes, along with the coordinate frames Li, i = 1, . . . , 9 of the serial chain of links.
Starting at the top, the first two joint positions q1 and q2 correspond to the prismatic
joints of the linear axes. The following joint positions q3, . . . , q9 are related to the seven
revolute joints of the Kuka LBR iiwa 14 R820, whose axes coincide with the z-axes of
the frames L3, . . . , L9. At the end of the serial chain, the camera is mounted on the
robot’s flange, expressed by the fixed transformation HC

L9
. By applying transformations

successively, the pose of each link can be expressed in the inertial world frame W. For
example, the transformation for the camera frame C is obtained as

HC
W(q) = HL1

W (q1)HL2
L1

(q2) · · · HL9
L8

(q9)HC
L9

. (2.10)

2.2.4 Collision Checking
For collision checking, the kinematic model of the robot is augmented with geometric
properties of the links. Since sampling-based algorithms possibly need to evaluate the
collision state for a large number of samples, the computation time of a single collision
check has a great impact on the overall performance of motion planning. To facilitate
fast collision checks, it is desirable to model the links with simple objects, also called
primitive shapes. However, a compromise needs to be made between a simple geometric
shape and an accurate model that does not artificially restrict the freedom of movement.
In this work, the links of the collaborative robot are modeled as capsules. A capsule is
the union of two spheres with a cylinder in between. This is shown in Figure 2.8 for a
link of the Kuka LBR iiwa 14 R820. By increasing the radius of the spheres, a safety
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Figure 2.7: Drawing of the robotic system together with the coordinate frames of the links.
Homogeneous transformations between successive links are illustrated with
arrows.

distance can be realized, i. e. that the robot keeps a minimum distance to obstacles. All
other components of the physical setup, i. e. linear axes, table, camera, etc. are modeled
as boxes. Again, a safety distance is realized by intentionally choosing the side length
larger than the actual dimensions of the physical object.

2.2.5 Trajectory Execution
In this thesis, a trajectory tracking controller is deployed to let the robot execute the
planned motions. For this purpose, the paths computed during motion planning are first
parameterized in time. More details regarding this aspect are given in Chapter 3. This
section briefly describes the robot model and the control law used to execute trajectories
on the robotic system.

Dynamic Robot Model

For motion planning, a kinematic model of the robotic system augmented with geometric
properties of the links suffices to apply sampling-based planning algorithms. However,
to execute the planned trajectories, a model considering the dynamics of the system
is needed. In this work, the existing dynamic model of the Kuka LBR iiwa 14 R820
is extended to incorporate the linear axes. The dynamic model is derived using the
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(a) (b)

Figure 2.8: A link of the Kuka LBR iiwa 14 R820: (a) Actual geometric shape, (b) Capsule
around the link used for collision checking.

Lagrangian formalism [31] and can be written in the form

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (2.11)

with the positive definite mass matrix M(q), the Coriolis matrix C(q, q̇), the vector of
gravitational forces g(q) and the generalized external forces τ .

Control Law

The control law is based on the computed torque [32]

τ c = M(q)v + C(q, q̇)q̇ + g(q), (2.12)

where v denotes a new system input. With the error

eq = q − qd (2.13)

between measured joint positions q and desired joint positions qd, the new input v is
calculated according to

v = q̈d − K0eq − K1ėq − KI

	 t

0
eq(ξ) dξ. (2.14)

In this equation, K0, K1 and KI are positive definite diagonal matrices. The stiffness
and damping of the error dynamics can be adjusted with K0 and K1, respectively. The
integral term with the matrix KI accumulates the error eq over time to eliminate a static
control deviation.

2.3 Sequence Optimization
The previous section introduced motion planning, which tries to find a feasible path for
the robot to reach a desired camera pose. Generally, the task is to move the camera to
multiple poses for scanning, which is the topic of this section. Here, a distinction between
model-based and non-model-based mode is made because their starting point is different.
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In the case of the model-based mode, the desired camera poses are specified in advance.
A key observation is that individual scans are independent of each other, i. e. the order in
which they are made does not influence the quality of the reconstruction. Therefore, the
initial sequence may be reordered to optimize the system’s performance in some sense. A
survey on sequence optimization in the field of robotics is found, for example, in [33]. In
this thesis, the problem of finding an optimal sequence is modeled as a Traveling Salesman
Problem (TSP) [34].

For the non-model-based mode, the camera poses are determined during reconstruction,
i. e. they are not known beforehand. Multiple camera poses are planned in each iteration
and one of them is selected for the next scan. One possibility is to select the camera pose
that is closest to the current robot configuration in some sense. This can be solved with
the same concepts that are used for sequence optimization and is therefore also treated in
this section.

In the following, the TSP is formulated in the context of this thesis. Then, the applied
algorithm to approximately solve the TSP is briefly described. Next, the concepts of
sequence optimization are specialized to the non-model-based mode. Finally, a possible
distance metric is presented, which is used in this thesis.

2.3.1 Traveling Salesman Problem
Given a set of m camera poses, the goal is to visit each pose exactly once while minimizing
an appropriate additive distance metric c. Examples of possible distance metrics are the
total time needed to complete the route or the energy consumption during the execution
of the trajectory.

Figure 2.9 depicts an example in form of a weighted graph G with m = 4 vertices.
Vertex q0 visualizes the start configuration of the robot. The remaining m vertices are
inverse kinematics solutions qi, i = 1, . . . , m corresponding to the desired m camera poses.
Each edge represents a path connecting a pair of robot configurations. Costs associated
with the edges are denoted by cij with i = 0, . . . , m − 1 and j = i + 1, . . . , m. In this
simple example, the sequence which minimizes the total cost is (q3, q1, q2, q4), leading to
a total cost of

c = c03 + c13 + c12 + c24 = 7. (2.15)
Three challenges arise with this problem:

1. Generally, there are multiple solutions for the configurations qi due to the redundancy
of the robotic system. In this context, a particular set of solutions qi must be selected
before solving the TSP. This choice has a substantial influence on the weighted
graph and thus on the solution of the TSP. Variants of the TSP exist where multiple
solutions of the inverse kinematics problem can be incorporated into the problem
formulation [35].

2. For general distance metrics, the cost associated with an edge depends on the specific
course of the path, not only the start and the end. Therefore, the path needs to be
planned before its cost can be computed. However, motion planning for high DoF is
a time-consuming task and the number of edges grows with O(m2). This leads to a
considerable number of planning requests for a few dozens of scans.
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Figure 2.9: Example of the TSP represented as a weighted graph. The optimal route is
highlighted.

3. If a specific set of inverse kinematics solutions qi has been selected and costs cij for
the edges have been computed, it remains to actually solve the TSP. It is known that
the TSP is NP-hard [34]. This motivates the use of algorithms that approximate
the solution of the TSP.

2.3.2 Approximation Algorithm
The applied approximation algorithm [36] assumes that the time needed to compute a
minimum spanning tree T of the graph G is negligible compared to planning a path. The
procedure is summarized in Table 2.2 and explained in the following.

First, a complete graph G is created with a set of vertices {q0, . . . , qm}. Edges are
inserted, but no motion plan is computed yet. Since the paths for the robot are therefore
not known, the weights of the edges are initialized with lower bounds on the exact costs.
Correspondingly, the edges are called non-exact. As an optional step, which is not part of
the original algorithm [36], the graph G may be optimized (discussed later on). Then, the
main loop of the algorithm is executed. A minimum spanning tree T is calculated and its
cost is stored in the variable κ. The algorithm proceeds with an inner loop:

• As long as the cost of T stays below βκ, where β > 1 is a parameter, the algorithm
repeatedly picks a non-exact edge e in T . A corresponding motion plan is computed
and the cost of e (and T ) is updated. The edge e is then called exact.

• If the cost of T becomes greater than βκ, the computation of a minimum spanning
tree is done again.

If all edges are exact, the algorithm performs a preorder traversal of T , i. e. it lists the
vertices of T in depth-first order. This is the final sequence and determines the order in
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create complete graph G
for every edge e in G

calculate lower bound on c(e)
mark e as non-exact

optimize graph G (optional)
repeat

T ← minimum spanning tree of G
κ ← c(T )
while c(T ) ≤ βκ

if all edges in T are exact
P ← preorder traversal of T
return paths corresponding to P

else
pick a non-exact edge e in T
plan path corresponding to e
update cost of e
mark e as exact

Table 2.2: Procedure of the (modified) algorithm [36].

which the computed motion plans are returned. Under the assumption that the distance
metric satisfies the triangle inequality, the cost of the computed sequence is at most 2β
as large as the cost of the exact solution of the TSP. The parameter β influences the
number of planning requests. By increasing β, fewer planning requests are made because
the condition c(T ) ≤ βκ is more likely satisfied.

As mentioned in Section 2.3.1, the solution of the TSP greatly depends on the chosen set
of robot configurations. To come up with a reasonably good choice of inverse kinematics
(IK) solutions, the following optional step is performed (“optimize graph” in Table 2.2).
The procedure is shown in Table 2.3 and starts with the graph G. It is tried to improve the
graph G by repeatedly iterating over the vertices and calculating new inverse kinematics
(IK) solutions. If the new graph Gnew leads to a lower cost of the preorder traversal, the
graph G is replaced by Gnew. Otherwise, the counter k is incremented. If the heuristic to
improve G fails too often, the algorithm terminates and returns G. This behavior can be
adjusted with the parameter kmax ∈ N.

2.3.3 View Selection
For the non-model-based mode, a single view needs to be selected out of the planned views
in each iteration. One possibility is to select the view that is closest (in some sense) to the
current robot configuration. This can be achieved with a specialization of the concepts
discussed previously.

In particular, the algorithm in Table 2.4 is applied for view selection. It uses the same
concept of exact and non-exact edges as the algorithm [36], but instead of a complete
graph G, a tree T is created. The tree T has vertex q0 as its root and all other vertices
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T ← minimum spanning tree of G
P ← preorder traversal of T
k ← 0
repeat

for every vertex q ∈ {q1, . . . , qm}
Gnew ← G
replace vertex q in Gnew by new IK solution
update lower bounds of edges in Gnew
Tnew ← minimum spanning tree of Gnew
Pnew ← preorder traversal of Tnew
if c(Pnew) < c(P )

G ← Gnew
P ← Pnew
k ← 0

else
k ← k + 1
if k > kmax

return G

Table 2.3: Procedure used to optimize G for the algorithm in Table 2.2.

are leaves. This reflects the fact that only the next view needs to be selected instead of
determining a route. Like the algorithm in Table 2.2, the edges are initialized with lower
bounds on c and marked as non-exact. Then, similarly to the optional step in Table 2.2,
the tree T may be optimized (discussed later on). Now, the task is to plan paths and
look for the one that minimizes the distance metric. To this end, the main loop of the
algorithm is executed. It terminates when an exact edge with the lowest cost has been
determined.

Table 2.5 shows the algorithm for the optional optimization of T . Basically, the structure
is the same as for the graph optimization algorithm in Table 2.3. The algorithm iteratively
updates the inverse kinematics (IK) solution for each vertex in {q1, . . . , qm} and checks
whether the total cost of the tree is reduced. Again, the parameter kmax determines the
maximum number of unsuccessful trials.

2.3.4 Distance Metric
It is desirable to minimize the total duration of the scanning process. Therefore, the
distance metric applied in this thesis is the duration tp of the planned trajectory. In
the following, a lower bound on the duration tp, denoted by tp, is derived under the
assumption of acceleration limits amax,i and velocity limits vmax,i for the robot’s joints
i = 1, . . . , n. The lower bound tp is needed by the algorithms described in Section 2.3.2
and Section 2.3.3 to initialize the weights of non-exact edges.
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create tree T with root q0 and leaves {q1, . . . , qm}
for every edge e in T

calculate lower bound on c(e)
mark e as non-exact

optimize tree T (optional)
repeat

pick edge e with lowest cost
if edge e is exact

return path of e
else

plan path corresponding to e
update cost of e
mark e as exact

Table 2.4: Procedure of the algorithm for view selection.

k ← 0
repeat

for every vertex q ∈ {q1, . . . , qm}
Tnew ← T
replace vertex q in Tnew by new IK solution
update lower bound of corresponding edge in Tnew
if c(Tnew) < c(T )

T ← Tnew
k ← 0

else
k ← k + 1
if k > kmax

return T

Table 2.5: Procedure used to optimize T for the algorithm in Table 2.4.
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Figure 2.10: Acceleration a(t) and velocity v(t) to travel the distance Δs in minimum
time t. (a) Velocity v stays below the limit vmax, (b) Velocity limit vmax is
attained.

Single joint. First, a single joint of the robotic system is considered. All other joints
are disregarded for the moment. Let Δs denote the absolute difference between the start
and goal position of this joint. Figure 2.10 shows the acceleration and velocity profiles
to travel this distance in minimal time t. Depending on the length of Δs, the velocity
limit vmax may be attained or not, see Figure 2.10b and Figure 2.10a, respectively. The
traveled distance corresponds to the area under the velocity profile.

In the case of Figure 2.10a, where the velocity limit vmax is not attained, the lower
bound t is found by calculating

Δs

2 =
	 t/2

0
amaxt dt = amaxt2

8 , (2.16)

which is equivalent to

t = 2
�

Δs

amax
. (2.17)

Geometric considerations for the case where the velocity limit vmax is attained, illustrated
in Figure 2.10b, lead to the expression

Δs = (t − ta)vmax =
�

t − vmax
amax



vmax, (2.18)

which can be reformulated as
t = Δs

vmax
+ vmax

amax
. (2.19)

This yields the lower bound t for a single joint

t =

2
�

Δs
amax

if Δs < v2
max

amax
Δs

vmax
+ vmax

amax
otherwise.

(2.20)
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(a) (b)

Figure 2.11: An RGBD image consists of (a) a color image and (b) depth information.

Multiple joints. For n joints, the individual lower bounds are denoted by ti, i = 1, . . . , n.
The joint with the greatest lower bound is the bottleneck and thus determines the total
lower bound tp for the path. This is expressed by

tp = max{t1; t2; . . . ; tn}. (2.21)

2.4 Object Reconstruction
The previous sections were concerned with the task of moving the camera to desired
views. Now, the transition to the actual object reconstruction is made. To start with,
the following text describes how data on the geometric properties of a physical object is
obtained. Thereafter, further necessary processing steps are explained. Many illustrations
in this and the following sections make use of the YCB object and model dataset [37].

2.4.1 Data Acquisition
The data for building a 3D model is acquired using an RGBD camera. Such devices
create two pieces of data, a color image (RGB) of the object’s texture and a depth image
(D), which encodes the distance of the object to the image plane. This is illustrated in
Figure 2.11, where darker parts of the depth image correspond to regions that are closer
to the image plane.

Color & Depth. Although the color image is not a precondition for surface reconstruction,
it is nevertheless useful. For example, the algorithm in [38] utilizes the color information
for local registration, to be discussed in Section 2.4.2. Each pixel in the depth image
encodes the distance of the corresponding 3D point to the image plane. Two important
technologies for measuring depth are time-of-flight and structured light. With the principle
of time-of-flight, the depth is calculated based on the time difference between emitting and
receiving radiation. In contrast, the method of structured light uses triangulation to infer
the depth. A projector illuminates the object with a special pattern whose reflected version
is captured by a camera. This approach is pursued by the Photoneo MotionCam-3D M,
which is used in this work.
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Figure 2.12: Application of fiducial markers for global registration.

Point Clouds. A point cloud P is a set of three-dimensional points p ∈ R3. The
algorithms applied in this work rely on data in form of point clouds, which is why the
RGBD data must first be converted.

2.4.2 Scan Registration
The point clouds acquired from different views are given in their respective camera frame
C, corresponding to the pose where the scan was made. To create a full model of a
physical object, the scans need to be aligned in a common coordinate frame M. Finding
the appropriate transformations HC

M to achieve this is a fundamental task in the process
of reconstruction, known as registration. Ordinarily, the procedure of registration is
divided into two steps. The first step is global registration, which results in a rough initial
alignment of the scans. Afterward, local registration tries to refine the initial alignment to
increase the quality of the reconstruction.

Global Registration

Each joint of the considered robotic system is equipped with a sensor to measure its
current position. Due to noise and other inaccuracies, only distorted versions q̃ of the real
joint positions q are available. Based on these measurements q̃ and the transformation
HC

W(q), known from the kinematic model of the robot, an estimate of the camera’s pose
in the world frame W can be easily determined by evaluating HC

W(q̃). Applying the
corresponding transformation to each point cloud leads to an initial alignment of the
scans. However, due to the serial chain of sensors, measurement errors may sum up.
Additionally, deviations between the kinematic model of the robot and the real system
affect the quality of pose estimation. Such deviations can be mitigated by calibrating
the robot. However, the robot used in this thesis is not calibrated, which possibly leads
to unsatisfactory results. This is why an alternative approach for global registration is
considered next.
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(a) (b) (c)

Figure 2.13: Examples of ArUco markers: (a) 4 × 4 bits, (b) 5 × 5 bits, (c) 6 × 6 bits.

(a) (b)

Figure 2.14: Two examples of marker boards: (a) ArUco board, (b) ChArUco board.

By use of fiducial markers, the pose of the camera relative to a new fixed coordinate
frame, called the marker frame M, can be estimated directly without measuring any joint
position. This concept is illustrated in Figure 2.12. The markers are placed near the object
in such a way that at least some of them are visible from the camera’s view. A special
pattern of the markers enables their detection in the RGBD image and subsequently the
estimation of HC

M. Thus, the scans can be aligned in the common marker frame M.
An overview of many state-of-the-art marker patterns and their performance is given
in [39]. ArUco markers [40] provide great flexibility in generating patterns and are also
implemented in OpenCV [41], which is why they are applied in this thesis.

Figure 2.13 depicts some examples of ArUco markers. They are chosen from predefined
dictionaries, i. e. sets of markers with a common number of bits. In addition to the choice
of the dictionary, the side length lm of the marker can be chosen. It should be large
enough such that the marker is clearly visible in the image.

Because of possible occlusions and partial views, it is necessary to use multiple markers.
Instead of estimating the pose of each marker individually, the markers can be combined to
a whole board, also called a bundle, which then acts as a single marker for pose estimation.
An example of an ArUco board is shown in Figure 2.14a, where the individual markers
are arranged in a 3 × 3 grid. A variant of an ArUco board, a so-called ChArUco board, is
depicted in Figure 2.14b. It is a mixture of a chessboard and ArUco board, hence the
name. The corners in the chessboard pattern enable a very accurate pose estimation.
Therefore, a ChArUco board will be used in this work.

The marker frame M associated with a ChArUco board is defined as illustrated in
Figure 2.12. Its origin is located at the lower-left corner of the board. The z-axis of M is
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perpendicular to the marker board, whereas the x- and y-axis are aligned with the bottom
and left edge, respectively.

The estimation of the transformation HC
M by means of a ChArUco board consists of

the following steps, which correspond to the procedure shown in Figure 2.15.

1. The starting point is an image where the marker board is visible, depicted in
Figure 2.15a. For the purpose of illustration, only the ChArUco board without any
object to be scanned is shown. Additionally, the camera matrix and the distortion
coefficients of the camera need to be known.

2. Then, the ArUco markers on the board are detected in the image. Figure 2.15b
visualizes detected markers with a green border. Due to the partial view, not every
marker is detected successfully. For example, the marker on the bottom is not fully
visible.

3. Next, corners of the chessboard pattern between two successfully detected markers
are interpolated. This is illustrated in Figure 2.15c with green indicators.

4. The last step is to actually estimate the pose of the camera relative to the marker,
i.e. the transformation HC

M. This estimation is based on the interpolated corners
and the knowledge that they are arranged in a plane. Figure 2.15d depicts an axis
cross corresponding to the estimated pose.

Local Registration

The aim of local registration is to refine the initial alignment obtained by global registration.
Often, a variant of the Iterative Closest Point (ICP) algorithm is used to align a pair of
scans, which is discussed first. The extension to locally register the whole set of scans is
presented afterward.

Pairwise Registration. For pairwise local registration, two point clouds, the source point
cloud Ps in coordinate frame S and the target point cloud Pt in coordinate frame T , are
given. The goal is to find a transformation HS

T to align Ps to Pt, starting from an initial
guess for HS

T . An ICP algorithm tackles this problem by iteratively performing two steps:

1. A correspondence set K = {(ps, pt)} with ps ∈ Ps and pt ∈ Pt based on the
transformed source point cloud Ps(HS

T ) and target point cloud Pt is calculated.

2. Then, an error function ε(HS
T , K) is minimized with respect to HS

T . The found
transformation HS

T is the starting point for the next iteration.

The error function used by the point-to-point ICP algorithm [42] is

ε(HS
T , K) =

�
(ps,pt)∈K

���pt − ps(HS
T )

���2
, (2.22)
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(a) (b)

(c) (d)

Figure 2.15: Steps to estimate the transformation HC
M: (a) Original image, (b) Detected

ArUco markers, (c) Interpolated ChArUco corners, (d) Estimated pose.

where ps(HS
T ) stands for the point ps ∈ Ps, transformed with HS

T . In contrast, the
point-to-plane ICP algorithm [43] requires the normal vector nt of each point pt ∈ Pt to
minimize the error function

ε(HS
T , K) =

�
(ps,pt)∈K



(pt − ps(HS

T )) · nt

�2
. (2.23)

In [44], it is shown that the point-to-plane ICP algorithm converges faster than the
point-to-point ICP algorithm. Furthermore, the registration result can be more accurate,
as is demonstrated in the following example.

Figure 2.16 shows the alignment of two point clouds, colored in red and green. The
initial alignment produced by the pose estimation with a ChArUco board, as discussed
previously in Section 2.4.2, is illustrated in Figure 2.16a. It is clearly visible that the two
point clouds are not perfectly aligned. The application of the point-to-point ICP algorithm
leads to the finer alignment depicted in Figure 2.16b. Compared to that, the point-to-plane
ICP algorithm performs noticeably better, which can be seen in Figure 2.16c. Therefore,
the point-to-plane ICP algorithm will be used in this work.

Full Registration. With the ICP algorithms discussed above, a pair of point clouds is
registered. However, in general, a set of more than two scans must be aligned to each
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(a) (b) (c)

Figure 2.16: Illustration of local registration: (a) Initial alignment after global registration
and results of (b) point-to-point and (c) point-to-plane ICP registration.

other. The applied method for registering the whole set of scans is based on the approach
of [45], which uses ICP registration in combination with pose graph optimization. In this
context, the vertices of the pose graph correspond to point clouds and the edges represent
transformations between them. The applied algorithm assumes a classification of edges
into odometry edges and loop closure edges. In this work, the classification is done as
follows.

The size of the correspondence set K is calculated for each pair of globally registered
point clouds. Figure 2.17 illustrates an example with five point clouds P0, . . . , P4 where
the weights of the edges are set to the respective size |K|. Because of sequence optimization
and view planning, it is not guaranteed that consecutive point clouds have a large overlap.
Hence, a maximum spanning tree is calculated to determine point clouds with maximum
possible overlap. The edges contained in the maximum spanning tree are considered
odometry edges, whereas all other edges are classified as loop closure edges.

Then, each edge of the pose graph is initialized with a transformation. For odometry
edges, the initial transformation is obtained by pairwise registration of the corresponding
point clouds with the point-to-plane ICP algorithm. In contrast, loop closure edges are
initialized with the identity transformation, i. e. the relative alignment of the corresponding
point clouds remains as computed in the global registration step. Finally, pose graph
optimization is performed with the Levenberg–Marquardt algorithm to determine
the ultimate transformations for local registration.

2.4.3 Surface Reconstruction
The result of the registration step discussed previously is a set of aligned point clouds,
which needs to be integrated for further processing. To this end, the point clouds are first
unified and then down-sampled. The down-sampling is done using a regular voxel grid to
reduce the point density in overlapping regions.

After the integration step, the obtained point cloud is prepared for surface reconstruc-
tion. Algorithms for this purpose have to deal with imperfections, for instance noise
and missing data [46]. The Poisson surface reconstruction method [47] is capable of
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Figure 2.17: Example of a pose graph with five point clouds. A maximum spanning tree
constituting the odometry edges is highlighted. All other edges are considered
loop closure edges.

interpolating data in regions where no points are available. In contrast to other algorithms,
for example the ball-pivoting algorithm [48], it produces smooth surfaces by solving a
regularized optimization problem. This motivates the application of the Poisson surface
reconstruction method in this thesis.



3 Implementation
Based on the discussion of the underlying concepts in Chapter 2, this chapter gives an
overview of the reconstruction system’s implementation. The existing infrastructure to
execute trajectories on the robotic system at TU Wien uses the Robot Operating System
(ROS) [49], more specifically the distribution Melodic Morenia. ROS is an open-source
project and offers software libraries to build robot applications. Thus, this platform is
also utilized for this thesis. It facilitates the communication between programs by means
of messages and services. Messages are a form of asynchronous communication, whereas
services are based on a request-response scheme. Furthermore, a parameter server is
available to share parameters among programs.

The organization of the reconstruction system implemented in ROS is shown in Figure 3.1.
Arrows represent communication channels based on the three schemes mentioned before.
Building blocks belonging to each other are consistently colored. This leads to four groups,
namely motion planning, object reconstruction, user interface, and automatic mode. In
this order, the following sections describe the functionality of the components within these
groups in more detail.

Motion Planning (MoveIt)

Automatic Mode User Interface

Object Reconstruction

Script Manager

Sequence Optimizer

View Planner

Motion Plan-
ning Plugin

Object Recon-
struction Panel

Planning Pipeline Trajectory Exe-
cution Manager

Registration
Pipeline

Surface
Reconstruction

Robot Model

Planning
Parameters

Automation
Script

Reconstructed
Object

Reconstruction
Parameters

Robot
Interface

Camera
Interface

Figure 3.1: Overview of the reconstruction system’s implementation.
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3.1 Motion Planning
To facilitate the application of existing motion planning algorithms and to aid research
in this field, software packages for motion planning have been developed. One example
is the OpenRAVE project [50], which offers all required components to implement and
solve specific motion planning problems. In contrast, another approach is taken by the
Open Motion Planning Library (OMPL) [51]. It focuses on sampling-based algorithms
and makes a clear separation to other necessary functionality like collision checking. This
design choice makes it easy to integrate OMPL with other front-ends and libraries and
led to wide usage.

MoveIt [52], an open-source project initially developed at Willow Garage, is a motion
planning framework that integrates OMPL and uses it as its standard motion planning
library. A large community actively contributes to MoveIt and it has been used on
over 126 robots. It provides motion planning capabilities to ROS and is therefore ideally
suited for this thesis. The following paragraphs refer to the upper part of Figure 3.1 and
describe the main components of MoveIt along with the steps needed to implement the
considered robotic system. Further information about MoveIt can be found, for example,
in [53].

Robot Model. The model of the robotic system for motion planning involves the kine-
matic and geometric properties of the links and joints. On startup, MoveIt loads this
information in form of a Unified Robot Description Format (URDF) file [54], which uses
XML syntax to describe the robot. In this work, a URDF file incorporating frame, linear
axes, collaborative robot, depth camera, and table was created, see Figure 3.2. To each
visual object in this figure, there is an associated collision object of simplified shape as
explained in Section 2.2.4. Additionally, MoveIt uses a second file, called the Semantic
Robot Description Format (SRDF) file [55], to complement the robot model with planning
information. For example, the joints for which a motion plan is computed are listed in it.
This file is automatically generated at the end of the configuration in MoveIt’s setup
assistant.

Planning Parameters. In several configuration files, planning parameters for MoveIt
can be adjusted. Examples are the default motion planner or soft limits for the joints.
As will be motivated in Section 4.1, the motion planner deployed in this thesis is the
RRT-connect algorithm [56]. Soft limits for the revolute joints are set to 10°.

Planning Pipeline and Trajectory Execution Manager. A core component of MoveIt
is the planning pipeline. It performs collision checking and accesses the planning library,
which is OMPL by default. Other libraries can be used by means of plugins. Planned
paths are time-parameterized in a postprocessing step and handed over to the trajectory
execution manager, also belonging to MoveIt. For this thesis, the time-parameterization
method was changed to the time-optimal trajectory generation algorithm [57]. This
algorithm outputs differentiable trajectories, which are needed for execution on the real
system.
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Figure 3.2: Visualization of the robotic system including the linear axes. It is defined by
means of a URDF file to be used in MoveIt.

Robot Interface. The trajectory planned in MoveIt is sent to the robot interface in
form of a ROS message. Instead of using the real robotic system, the Gazebo simulation
environment [58] may be deployed. It is able to interface with ROS and thus allows an
almost seamless transition between real hardware and simulation. To use it in this context,
the URDF file was extended with properties regarding the dynamics of the system, e. g.
the mass and moments of inertia of each link.

3.2 Object Reconstruction
In this section, the lower part of Figure 3.1, responsible for object reconstruction, is
explained. In contrast to the motion planning part, which is primarily based on MoveIt,
the object reconstruction is self-developed and deploys the software libraries OpenCV [41]
and Open3D [59]. These are powerful open-source projects that implement numerous
algorithms related to computer vision and object reconstruction.

Camera Interface. When a scan is triggered, the reconstruction system obtains the
RGBD image data from the camera interface. This component depends on whether
real hardware or Gazebo is used. In the first case, the API of Photoneo is deployed
to directly fetch data from the Photoneo MotionCam-3D M. Otherwise, i. e. when a
simulation is performed in Gazebo, the data is generated by a depth camera plugin. This
enables the possibility to scan objects virtually. Hence, the whole developed reconstruction
system can be operated in simulation, which is a great advantage when testing possible
future extensions.
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Registration Pipeline. The input to the registration pipeline is an RGBD image obtained
from the camera interface. First, the camera pose is estimated with OpenCV based on a
ChArUco board, according to the description in Section 2.4.2. If this way of pose estimation
fails, e. g. when no markers are detected, an estimate based on the measured joint positions
is computed. The following processing steps make use of Open3D, starting with the
conversion of the RGBD image to a point cloud. The point cloud is then transformed with
the estimated pose for global registration. To remove undesired components contained in
the point cloud, e. g. the surface of the table, the point cloud is automatically cropped
with a bounding box. This bounding box is defined before the reconstruction process
starts (see also Section 3.3). Multiple scans are locally registered based on pose graph
optimization as discussed in Section 2.4.2.

Surface Reconstruction and Reconstructed Object. The last step is to fuse the scans
and reconstruct the object’s surface, also utilizing Open3D’s functionality. To this end,
the point clouds are combined and down-sampled. Consistently oriented normal vectors
are computed and the Poisson surface reconstruction algorithm is applied as explained
in Section 2.4.3. This way, a triangle mesh of the scanned object is obtained, which can
be saved on the computer in PLY file format.

Reconstruction Parameters. It is possible to specify the used marker board and other
processing parameters in configuration files. These files are loaded by the reconstruction
system on startup.

3.3 User Interface
The user interface of the reconstruction system is based on Rviz [60], a visualization
application for ROS. As illustrated in the middle of Figure 3.1, the user interface is
composed of MoveIt’s motion planning plugin and a newly developed Rviz panel for
object reconstruction, called the object reconstruction panel. Therein, it is possible to
access the functionality of the reconstruction system. The object reconstruction panel
consists of several tabs that are explained in the following.

Plan. By means of the plan tab, depicted in Figure 3.3, the camera can be positioned.
To this end, the representation of poses as introduced in Section 2.1.2 is applied. Hence,
the desired camera pose is determined by adjusting the focus point f , radius r, azimuth
angle ϕ, polar angle ϑ, and angle α. It is possible to specify the camera pose relative to
the world frame W or relative to the marker frame M. Once a pose is defined, a path
can be planned and executed by switching to the motion planning plugin of MoveIt.
Moreover, the plan tab allows adding a bounding box. This bounding box is set to avoid
collisions with the object to be scanned. Additionally, it is used to crop the obtained
point cloud, i. e. to separate the object from the environment.

Scan and Register. Figure 3.4a shows the scan tab of the object reconstruction panel.
It allows to connect to the depth camera and to trigger scans manually. Furthermore,
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Figure 3.3: Plan tab of the object reconstruction panel in Rviz.

scans can be displayed and colored for visualization. Within the register tab, illustrated
in Figure 3.4b, scans can be registered with the local registration methods discussed in
Section 2.4.2. If pairwise registration is desired, the source point cloud has to be selected
first. Then, the transformation is obtained by defining a target point cloud and clicking
on Get Transformation. Moreover, it is possible to perform a full registration by clicking
on Multiway Registration.

(a) Scan tab. (b) Register tab.

Figure 3.4: Tabs of the object reconstruction panel for (a) connecting to the depth camera
and triggering scans and for (b) registering the fragments.
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(a) Reconstruct tab. (b) Automate tab.

Figure 3.5: Tabs of the object reconstruction panel for (a) exporting the reconstruction
and for (b) starting an autonomous scan or a script.

Reconstruct and Automate. Registered scans can be combined and down-sampled in
the tab for reconstruction, see Figure 3.5a. This tab is also used to export point clouds
and to export a mesh, i. e. to start the Poisson surface reconstruction algorithm.

Furthermore, the user interface allows starting a whole reconstruction process instead
of triggering commands manually (see also Section 3.4). For this purpose, the automate
tab shown in Figure 3.5b is accessed. There are two possibilities to start a reconstruction
process. On the one hand, it is possible to choose a script, which contains predefined views.
This corresponds to the model-based mode introduced at the beginning of Chapter 2.
Alternatively, an autonomous reconstruction is performed with the non-model-based mode.
This mode deploys the view planning algorithm explained in Section 2.1.3. To this end,
the robot has to be moved to a position for the initial scan. Then, the autonomous
reconstruction is started by specifying the distance dc of the camera to the estimated
ellipsoid and the desired number of scans.

3.4 Automatic Mode
The purpose of the self-developed automatic mode is to be able to perform an object
reconstruction with minimal user interaction. This part of the system interfaces with
the motion planning and object reconstruction functionalities in the same way as the
user interface by utilizing ROS messages and services. The components belonging to the
automatic mode are highlighted in green, see Figure 3.1.

Automation Script and Script Manager. For the model-based mode, desired views are
specified in advance. To this end, automation scripts are used, which are files written
in XML syntax. Elements for moving the robot, triggering scans, registering scans,
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etc. were defined in an XML Schema file. Automation scripts allow great flexibility
because commands can be executed in arbitrary order. Furthermore, it is possible to use
Xacro [61] to define custom macros. The script manager parses an automation script,
validates it, and delegates the included commands to the motion planning and object
reconstruction components.

Sequence Optimizer. Optionally, the loaded automation script may be preprocessed by
the sequence optimizer before the reconstruction process starts. The sequence optimizer is
implemented based on the discussion in Section 2.3 and hands over the optimized sequence
as well as the planned paths to the script manager.

View Planner. The view planner is relevant for the non-model-based mode, i. e. to
perform an autonomous reconstruction. This ROS node implements the algorithm proposed
in Section 2.1.3. Given the desired number of scans and the distance dc of the camera
to the ellipsoid’s surface, it starts with an initial scan. To estimate the ellipsoid in each
iteration, a bounding box of the partially observed object is calculated in Open3D. The
dimensions of this bounding box are then scaled by a factor of

√
3 to obtain the extent of

the desired ellipsoid. Due to this scaling, the ellipsoid encompasses the bounding box and
thus the partially observed object. To select the next best view, the view planner accesses
the services offered by the sequence optimizer, see also Section 2.3.3.



4 Simulations
This chapter presents simulation studies of the developed reconstruction system. In
Section 4.1, various motion planning algorithms are tested for a typical planning request.
A suitable algorithm is identified, which is then used to plan motions for all further
simulations and experiments. Next, a reconstruction of an object with given views
is performed in Section 4.2. This is to analyze aspects of registration and surface
reconstruction. Subsequently, Section 4.3 revisits the scenario of Section 4.2 to demonstrate
the capabilities of the implemented sequence optimization. Finally, the proposed view
planning algorithm is applied in Section 4.4. This serves to illustrate an autonomous
object reconstruction.

4.1 Motion Planning Algorithms
The goal of this section is to identify a sampling-based motion planning algorithm that is
well suited for the considered robotic system. To this end, the benchmarking facilities of
MoveIt are used [62], which provide an infrastructure to define planning problems, run
algorithms, and compare their performance.

4.1.1 Benchmark Problem
Figure 4.1 shows the planning problem to be solved. The joint positions of the robot’s
start state (colored in green) and its goal state (colored in orange) are given in Table 4.1.
A cube of side length 0.3 m is placed on top of the table as a collision object. Such
a scenario, where the robot has to find its way to the other side of the table, occurs
frequently during the reconstruction of objects.

OMPL is MoveIt’s standard planning library and comprises the most common sampling-
based algorithms. At the time of writing, 23 algorithms of OMPL are available in MoveIt,
which are all applied to the same planning problem mentioned before. The allowed planning
time is set to 5 s. If this timeout is exceeded, the planning problem is considered not
solved.

Joint q1 q2 q3 q4 q5 q6 q7 q8 q9

Start state −1 m 0 m 0° 0° 0° 0° 0° 0° 0°
Goal state 0.01 m −0.33 m −86° −93° −37° −80° −82° −49° −116°

Table 4.1: Joint positions of the robot’s start and goal state for benchmarking motion
planning algorithms.
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Figure 4.1: Scenario for benchmarking various motion planning algorithms. Start and
goal state are colored in green and orange, respectively. A collision object is
placed on the table.
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Figure 4.2: Statistics on the path plan time of four motion planning algorithms for the
benchmark scenario depicted in Figure 4.1.

4.1.2 Comparison
An important performance criterion of a planning algorithm is its ability to quickly
solve a planning problem, given a solution exists. Based on this criterion, the following
evaluation focuses on four algorithms that performed best in this benchmark, namely the
ProjEST [63], RRT [64], BiEST [63], and RRT-connect [56] algorithm. Other criteria
for comparing planning algorithms are, for example, the length or the smoothness of the
found solution.

The computation of 1000 planning requests per algorithm was performed with an
8×1.8 GHz Intel Core i7 and 8 GB of RAM. In Figure 4.2, box plots of the path plan time
are shown on a logarithmic scale. The algorithms BiEST and RRT-connect performed
noticeably better than ProjEST and RRT. For the RRT algorithm, the longer path plan
time also decreases the rate of success to 98.5 %. In contrast, the ProjEST, the BiEST, and
the RRT-connect algorithm were able to solve all planning requests successfully. Based on
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Figure 4.3: A path from start configuration (green) to goal configuration (orange) planned
by the RRT-connect algorithm.

these results, the RRT-connect algorithm is selected for the following simulations and all
further experiments.

A path planned with the RRT-connect algorithm for this benchmark scenario is il-
lustrated in Figure 4.3. Note that MoveIt also performs some post-processing steps
to simplify and smooth the path computed by the RRT-connect algorithm. The time-
parameterized version of the processed path, i. e. the obtained trajectory, is depicted in
Figure 4.4.
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Figure 4.4: Trajectory obtained by time-parameterizing the path illustrated in Figure 4.3.
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Figure 4.5: Scenario for reconstructing an object with 24 scans. Views 1 − 12 and 13 − 24
are illustrated as red and blue points, respectively. The start configuration is
colored in green. A collision object is placed on the table.

4.2 Object Reconstruction
The quality of the obtained 3D model is strongly influenced by the alignment of the
scans. This motivates the following simulation, where the methods of Section 2.4.2 and
Section 2.4.3 are demonstrated. In particular, the performance of global registration
with a ChArUco board is analyzed. Furthermore, some characteristics of the surface
reconstruction are illustrated.

4.2.1 Scenario
The scenario for analyzing the quality of registration is illustrated in Figure 4.5. The start
configuration is again colored in green and given in Table 4.1. Gazebo is deployed to
place the object, in this case a power drill of the YCB model set [37], on the table and
simulate the depth camera by means of a plugin. The green cube of side length 0.3 m on
the table is used as a collision object for the motion planner as well as a bounding box to
crop the obtained point cloud. This way, the power drill can be separated from the rest of
the environment.

The task is to move the camera to 24 pose goals i = 1, . . . , 24 arranged around the
object. They are given in the world frame W by fi =

�
0 0 0.78 m

�T
, ri = 0.6 m, αi = 0,

and the angles

ϕi = 30°(i − 1), i = 1, . . . , 24 (4.1a)

ϑi =
�

70° for i = 1, . . . , 12
50° for i = 13, . . . , 24.

(4.1b)

This representation of pose goals was explained in Section 2.1.2. The expressions in
(4.1) constitute two full cycles around the object in steps of 30° with two different polar
angles.
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Scans 1 to 12 Scans 13 to 24
Scan d / mm θ / ° Scan d / mm θ / °

1 1.638 0.087 38 13 1.595 0.074 63
2 1.486 0.087 48 14 1.493 0.081 89
3 1.411 0.096 66 15 1.549 0.086 82
4 1.445 0.086 66 16 1.592 0.090 64
5 1.428 0.091 53 17 1.575 0.079 99
6 1.511 0.087 65 18 1.603 0.077 24
7 1.667 0.088 19 19 1.594 0.078 66
8 1.510 0.085 25 20 1.618 0.072 44
9 1.448 0.089 96 21 1.617 0.072 27
10 1.395 0.096 36 22 1.594 0.091 05
11 1.434 0.094 85 23 1.522 0.090 00
12 1.488 0.084 69 24 1.564 0.076 07

Table 4.2: Translation error d and rotation error θ between actual camera pose and the
estimate obtained with a ChArUco board.

A ChArUco board composed of 11 × 7 squares is used to estimate the camera pose. The
squares of the ChArUco board are 35 mm long and the ArUco markers within the board
have a side length of 25 mm. With this design, the marker board fits on an A3 paper
and can be easily printed, which is relevant for the experiments in Chapter 5. For this
simulation, the ChArUco board was placed in Gazebo and a calibration of the virtual
depth camera was performed prior to the 24 scans.

4.2.2 Evaluation
Because the ground truth is available in simulation, the error between the actual camera
pose and the one estimated with the ChArUco board can be calculated. In the following,
the error is expressed in terms of two numbers. The first one is the Euclidean distance
d between the origins of the estimated and actual camera frame, i. e. it represents the
translative part. The second quantity is the angle θ corresponding to an axis-angle
representation of the rotation error. Table 4.2 lists these quantities for all 24 scans. On
average, the estimate is only shifted by 1.532 mm and rotated by 0.0853°.

The effect of this estimation error on the point cloud is shown in Figure 4.6a. A good
initial alignment is achieved, but distortions are visible. After local registration, the point
cloud in Figure 4.6b is obtained, where the alignment is noticeably refined. For example,
the writings on the power drill are legible, which is not the case in Figure 4.6a. This
shows that the applied registration methods are well suited to align the scans.

Some parts of the power drill are not captured, depicted in Figure 4.7a. This figure
shows regions of the power drill that are difficult to scan because of geometric limitations.
However, if missing areas are small enough, the Poisson surface reconstruction algorithm
is able to interpolate incomplete data, see Figure 4.7b.



4 Simulations 4.2 Object Reconstruction 40

(a) Globally registered point. (b) Locally registered point.

Figure 4.6: The good initial alignment obtained by pose estimation with the ChArUco
board is refined by local registration with the point-to-plane ICP algorithm.

(a) Point cloud. (b) Reconstructed surface.

Figure 4.7: Interpolation effect of Poisson surface reconstruction.
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4.3 Sequence Optimization
If multiple pose goals are given in advance, sequence optimization can be applied. In
this section, the performance of sequence optimization is compared to the case without
sequence optimization in terms of the total duration of the trajectory, denoted by tp. This
quantity comprises the duration of each individual trajectory between a pair of pose goals,
but not the time required to trigger and process scans.

4.3.1 Scenario
The sequence optimization is tested for the same scenario as in Section 4.2, i. e. 24 scans
are performed at the poses defined in (4.1). Figure 4.5 depicts this scenario.

4.3.2 Evaluation
The following discussion considers three cases. In case A, no sequence optimization is
performed, i. e. the trajectory is planned for the initial order of the pose goals given
in (4.1). Case B is based on sequence optimization with parameter β = 1.5 (see Table 2.2
in Section 2.3.2), but without the graph optimization according to Table 2.3. This
preprocessing step is then added in case C with parameter kmax = 120.

Figure 4.8 depicts the empirical cumulative distribution function F (tp) of the total
trajectory duration tp for each of the three cases mentioned before. This diagram is based
on 500 runs per case and shows the performance gain achieved with sequence optimization
and the preprocessing step described in Section 2.3.2. The duration tp roughly ranges
from 80 s to 220 s. One reason for this great variation is that the pose goals are arranged
densely around the object. Thus, the duration tp is mainly influenced by situations where
the robot has to “unwrap” itself to get out of joint limits, which takes much longer than
a direct movement. The goal of sequence optimization is to reorder the poses such that
these situations occur less often.

Table 4.3 summarizes the average duration tp and the average number of planning
requests nreq obtained in this simulation. For case A, nreq = 24 because the trajectory
is planned sequentially for all 24 pose goals. With sequence optimization, this number
slightly increases to 27.40 due to β = 1.5. By decreasing β, the average duration tp can
be further reduced at the cost of more planning requests.

This simulation demonstrates that the average duration tp for this benchmark scenario
can be reduced by 10.18 % for case B with little overhead. With the heuristic for graph

Case tp nreq

A 141.81 s 24.00
B 127.37 s 27.40
C 120.33 s 26.99

Table 4.3: Summary of the average duration tp and the average number of planning
requests nreq for all three cases.
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Figure 4.8: Empirical cumulative distribution function of the trajectory’s duration tp for
three cases: (A) no sequence optimization, (B) sequence optimization without
graph optimization and (C) sequence optimization with graph optimization.

optimization described in Section 2.3.2, an additional performance gain is achieved. Here,
the average duration tp is reduced by 15.15 % compared to case A. One has to consider
that the initial pose goals were already given in a “natural” order. In other cases, where
an unsorted list of pose goals is given, sequence optimization is even more useful.

4.4 View Planning
In Section 4.2 and Section 4.3, views were defined in advance to perform an object
reconstruction. This is applicable, for instance, to perform an inspection of known objects.
Next, the proposed view planning algorithm of Section 2.1.3 is demonstrated in simulation.
With this algorithm, it is possible to scan unknown objects autonomously. This eliminates
the need to specify views manually. The algorithm only requires an initial scan to start
reconstruction.

4.4.1 Scenario
The scenario for reconstruction is depicted in Figure 4.9. The configuration of the robot
for the initial scan is colored in green. A virtual collision box is placed on the table to
avoid collisions between robot and object. The task for the view planning algorithm is
to scan the unknown object with 16 scans at a distance of dc = 0.55 m to the estimated
ellipsoid.
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Figure 4.9: Scenario for demonstrating the proposed view planning algorithm. The config-
uration for the initial scan is colored in green. A collision object is placed on
the table to avoid collisions with the object to be scanned.

4.4.2 Evaluation
Figure 4.10 shows selected iterations of the reconstruction procedure with the partially
scanned object. The estimated bounding box and the overlaid ellipsoid with distributed
views on its surface are depicted. For this illustration, the color scheme of Figure 2.5 is
used to distinguish infeasible, completed, and planned views as well as the active view, i. e.
they are respectively colored in red, green, blue, and yellow. In addition, the grid of the
marker board is illustrated for easier size comparison, together with the corresponding
marker frame M (see also Figure 2.12).

At the beginning of the first iteration, shown in Figure 4.10a, only the back part of the
power drill is visible. Thus, the initial ellipsoid does not enclose the whole object. In the
second iteration, depicted in Figure 4.10b, a very good geometric approximation of the
object is already obtained. Hence, the ellipsoid changes only marginally when proceeding
in the third iteration, see Figure 4.10c. The final ellipsoid with the completed views is
illustrated in Figure 4.10d. A good distribution of views is achieved. Due to the great
redundancy of the mechanical setup with linear axes, it is possible to scan the object from
a wide variety of views. Infeasible views occur only at the bottom of the object, where
the camera would collide with the table.



4 Simulations 4.4 View Planning 44

(a) First iteration. (b) Second iteration.

(c) Third iteration. (d) Last iteration.

Figure 4.10: Selected iterations demonstrating the view planning algorithm for the power
drill ( infeasible views, completed views, planned views, active view).



5 Experiments
In this chapter, experiments conducted to validate the developed reconstruction system
are shown. First, the experimental setup is discussed and the process of robot-camera
calibration is briefly explained. This calibration forms the basis of the results in the
remainder of this chapter. Then, the alignment of scans with measured joint angles is
compared to the alignment with a ChArUco board. Finally, the reconstruction of several
objects with the non-model-based mode is presented. In particular, the proposed view
planning algorithm is demonstrated and the quality of the scans is analyzed.

5.1 Experimental Setup
Robot and Camera. Unfortunately, the robotic system including the linear axes is not
available at the time of writing. Thus, this work is validated in an experimental setup
without linear axes. Figure 5.1a depicts this setup, where the base of the Kuka LBR iiwa
14 R820 is fixed to the ceiling. Hence, the total DoF is only seven instead of nine. To be
able to scan objects from all sides, they are placed directly under the robot. Figure 5.1b
shows how the Photoneo MotionCam-3D M is mounted on the robot’s flange. This
self-developed mounting was produced with a 3D printer.

(a) (b)

Figure 5.1: Experimental setup. (a) Kuka LBR iiwa 14 R820 without linear axes. The
total DoF is seven instead of nine. (b) 3D-printed part for mounting the
Photoneo MotionCam-3D M on the robot’s flange.

Marker Board. A ChArUco board composed of 11 × 7 squares is used to estimate the
camera pose for the following experiments. The squares of the ChArUco board are 35 mm
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Computer 1, Microsoft Windows

Computer 2, Ubuntu

TwinCAT EtherCAT

ROS Melodic PhoXi Control

Figure 5.2: Communication setup for robot and depth camera. Computer 1 is used to
control the robot. The reconstruction system is installed on computer 2, which
is connected to the depth camera.

long and the ArUco markers within the board have a side length of 25 mm. To ensure a
flat surface, the marker board is printed on an aluminum composite panel. Note that the
robot-camera calibration explained below was done with another marker pattern to be
able to apply Photoneo’s calibration software.

Communication. The system is operated with two computers, illustrated in Figure 5.2.
On the first machine, the real-time automation software Beckhoff TwinCAT is installed,
which is used to control the robot. The second computer executes the reconstruction
software in a ROS environment. Commands for the robot are sent to computer 1 via
TwinCAT’s ADS protocol. In addition, Photoneo PhoXi Control is executed on
computer 2 to communicate with the depth camera.

Robot-Camera Calibration. The homogeneous transformation

HC
W = HL9

W HC
L9

(5.1)

is of interest for two reasons. First, it is needed for motion planning to move the camera to
desired views. Second, HC

W is required to align scans based on the measured joint angles
when pose estimation with the marker board fails. Whereas HL9

W is known from CAD
data of the robot, the transformation HC

L9
is not known exactly. Thus, a robot-camera

calibration was performed prior to the experiments.
Photoneo offers the Robot-Camera Calibration Tool for this purpose. A special

marker pattern provided by Photoneo was printed in A4 format and placed in a static
position on the table. Twelve scans were performed at arbitrary poses around Photoneo’s
marker pattern. For each scan, the end-effector’s pose was determined by evaluating
HL9

W (q̃) at the measured joint angles q̃. Together with the estimated camera pose based
on the marker board, the unknown transformation HC

L9
was determined.
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(a) Mustard bottle. (b) Alignment with markers. (c) Alignment with joint angles.

Figure 5.3: (a) Scanned mustard bottle with comparison of the alignment (b) based on
pose estimation with the marker board and (c) based on measured joint angles.

5.2 Initial Alignment
The purpose of this section is to compare the alignment of scans based on pose estimation
with the ChArUco board to the alignment based on the measured joint angles, see also
the discussion in Section 2.4.2. This initial alignment is necessary to apply the local
registration algorithm presented in Section 2.4.2.

To compare the alignment achieved with both methods, twelve scans of the mustard
bottle depicted in Figure 5.3a were made. The camera was moved in steps of 30° around
the object at a distance of about 0.6 m. Note that not only the first joint of the collabo-
rative robot (corresponding to q3 in Figure 2.7) was moved. Instead, a wide variety of
robot configurations was chosen. This is important when validating the homogeneous
transformation HC

W .
By estimating the camera pose based on the marker board, a tight initial alignment

is achieved, see Figure 5.3b. In comparison, Figure 5.3c shows the same scans, but
this time aligned based on the measured joint angles. Misalignments are clearly visible.
However, considering that the robot is not calibrated, this is a remarkable performance.
The advantage of this method is that no marker board is necessary. Nevertheless, for
the following experiments, the marker board is prioritized and the alignment based on
measured joint angles is used as a fallback when pose estimation fails.

5.3 View Planning
In this section, the proposed view planning algorithm of the non-model-based mode is
demonstrated. For this purpose, three objects depicted in Figure 5.4 are scanned with
distance parameter dc = 0.55 m. The motion planner assumes that the objects fit on the
marker board to avoid collisions. Other assumptions regarding the geometric properties
of the objects are not necessary.

The figures in the following subsections show the partially scanned object with an
estimated bounding box. Furthermore, the overlaid ellipsoid with distributed views on its
surface is illustrated. Again, the color scheme of Figure 2.5 is used to distinguish infeasible,
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(a) Mustard. (b) Toy. (c) Wood block.

Figure 5.4: Objects selected to demonstrate the proposed view planning algorithm. The
generated meshes are depicted in the second row.

completed, and planned views as well as the active view, i. e. they are respectively colored
in red, green, blue, and yellow. In addition, the grid of the marker board is depicted
for easier size comparison, together with the corresponding marker frame M (see also
Figure 2.12).

5.3.1 Mustard Bottle
Figure 5.4a shows the first object, which is reconstructed with 16 scans. It is a mustard
bottle from the YCB object and model dataset [37]. After the first iteration, depicted in
Figure 5.5a, the estimated ellipsoid is still very narrow because only a small part of the
object is captured. Infeasible views occur mainly on the lower part of the ellipsoid because
here the camera would collide with the table. Therefore, the planned views are primarily
found on the upper part of the ellipsoid. Furthermore, the object cannot be scanned
directly from above because the object is placed below the robot, see Figure 5.1a. After
the second iteration, illustrated in Figure 5.5b, a part of the mustard bottle’s front side is
already captured. It increases significantly after the third iteration, see Figure 5.5c. Finally,
Figure 5.5d shows the scenario after the last iteration. The view planning algorithm was
able to capture the unknown object while achieving a good distribution of views. This is
also reflected in the computed mesh, which is illustrated in the second row of Figure 5.4a.
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(a) First iteration. (b) Second iteration.

(c) Third iteration. (d) Last iteration.

Figure 5.5: Selected iterations demonstrating the view planning algorithm for the mustard
bottle, see Figure 5.4a ( infeasible views, completed views, planned views,

active view).
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(a) First iteration. (b) Second iteration.

(c) Third iteration. (d) Last iteration.

Figure 5.6: Selected iterations demonstrating the view planning algorithm for the toy, see
Figure 5.4b ( infeasible views, completed views, planned views, active
view).

5.3.2 Toy
Next, the child’s toy from Figure 5.4b is reconstructed with 24 scans. After the first
iteration, a large part of the object is already captured. This is depicted in Figure 5.6a.
The associated ellipsoid approximates the object very well. Unlike the mustard bottle,
this object is flat, which results in many sampled views being above the object. However,
since the object is placed directly below the robot, a lot of these views are infeasible.
Ultimately, only a narrow strip remains for the planned views, which can also be seen
in Figure 5.6b and Figure 5.6c. This is a result of the limited workspace of the robot
because linear axes are not available. In the simulation with linear axes, see Section 4.4,
such limitations were not observed. Nevertheless, the feasible views are evenly distributed
around the object, as Figure 5.6d shows.

The generated mesh is depicted in Figure 5.4b. Especially at the bottom of the object
and between the cyan and violet blocks, the mesh exhibits extrapolation effects. Apart
from this, the rest of the object is reconstructed very well.

5.3.3 Wood Block
The last object in this section is the wood block depicted in Figure 5.4c, which is
reconstructed with 16 scans. The motivation for scanning this object is to find out how the
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(a) First iteration. (b) Second iteration.

(c) Third iteration. (d) Last iteration.

Figure 5.7: Selected iterations demonstrating the view planning algorithm for the wood
block, see Figure 5.4c ( infeasible views, completed views, planned views,

active view).

view planning algorithm copes with an initial scan from a very unfavorable position. To do
this, the wood block is scanned frontally from the face, so initially only a two-dimensional
point cloud is visible.

Even after the first iteration, shown in Figure 5.7a, no new information about the
depth of the object is available. After the second iteration, illustrated in Figure 5.7b, the
ellipsoid minimally widens and a view at the top of the ellipsoid is selected for the next
scan. As depicted in Figure 5.7c, this results in a scan capturing the top of the wood
block. Accordingly, the computed ellipsoid captures most of the wood block and allows
planning views from the sides. Figure 5.7d shows the last iteration where the wood block
is already fully scanned. It can be seen that the bounding box estimated by Open3D is
twisted with respect to the wood block. Hence, the corresponding ellipsoid is larger than
necessary. However, the view planning algorithm was able to deal with the challenging
initial scan.
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(a) Physical object. (b) Point cloud.
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(c) Deviation to reference model.

Figure 5.8: Evaluation of the scanned mustard bottle.

5.4 Quality Analysis
This section is dedicated to the analysis of the accuracy that can be achieved with
the developed reconstruction system. For this purpose, three objects are scanned and
compared with their available 3D reference models. The comparison is performed by
means of the program CloudCompare [65], an open-source project. Specifically, signed
distances between the triangle mesh of the reference model and the point cloud obtained
from the reconstruction system are calculated. This point cloud is the result of the
locally registered and integrated scans before applying Poisson surface reconstruction,
see Section 2.4.2 and Section 2.4.3 for details.

The following figures show respectively the physical object, the obtained point cloud,
and a histogram of the calculated deviation to the reference model. The ordinate of the
histogram is scaled so that the area under the plot is normalized. In order to establish a
link between histogram and point cloud, both representations are consistently colored.

5.4.1 Mustard Bottle
As a first object, a mustard bottle from the YCB object and model dataset [37] is scanned
and compared to its reference model. Figure 5.8 shows the physical object, the obtained
point cloud, and the corresponding histogram of the deviations to the 3D model. The
mean distance to the 3D model is 0.61 mm and the distribution has a standard deviation
of 1.04 mm. It should be noted here that this benchmark object is nonrigid and may
have deformed over time. Especially in the middle area of the mustard bottle, there
are significant deviations of about 3 mm. Despite this broad distribution, approximately
51.6 % of the values lie in the interval ±0.6 mm, which is quite reasonable.

5.4.2 Orange Juice
The second object is an orange juice carton available in the Household Objects for Pose
Estimation (HOPE) dataset [66] from Nvidia. It is also a nonrigid benchmark object. As
Figure 5.9 shows, the distribution of deviations is much narrower than for the mustard
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(a) Physical object. (b) Point cloud.
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Figure 5.9: Evaluation of the scanned orange juice.

(a) Physical object. (b) Point cloud.
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Figure 5.10: Evaluation of the scanned bunny.

bottle. The standard deviation is 0.63 mm and the mean is 0.26 mm. In this case, about
68.1 % of the values lie in the interval ±0.6 mm. Stronger deviations occur mainly at the
bottom and in the area of the fold. About 96 % of the surface was captured.

5.4.3 Bunny
The previous two objects are deformable and therefore do not exactly match their reference
model. Next, a professionally 3D-printed bunny is scanned and compared with its CAD
model. Figure 5.10 depicts the corresponding evaluation. The deviation has a mean value
of −0.2 mm and a standard deviation of 0.38 mm. Like for the orange juice, negative
deviations occur primarily at the bottom of the bunny. About 49.4 % of the values lie in
the interval ±0.2 mm. Taking the accuracy of 0.25 mm of the Photoneo MotionCam-3D
M into account, this is a very good result. The obtained point cloud covers about 95 %
of the bunny’s surface. This is mostly due to the missing underside of the bunny’s chin,
which is hard to capture without placing the bunny on a pedestal.

Table 5.1 summarizes the mean and standard deviation for all of the discussed objects.
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Object µ σ

Mustard Bottle 0.61 mm 1.04 mm
Orange Juice 0.26 mm 0.63 mm
Bunny −0.20 mm 0.38 mm

Table 5.1: Summary of the deviation to the 3D reference model for all three scanned
objects, expressed by mean µ and standard deviation σ.

The reconstruction of the bunny matches best to its reference model. Considering the
fact that the bunny is also the most reliable object (because it is rigid), this highlights
the remarkable precision achieved with the developed reconstruction system.



6 Conclusions and Outlook
This thesis dealt with the development of a robotic 3D reconstruction system. It was
implemented in ROS, which makes it easily extensible. Simulation studies and experiments
were conducted to validate this work. Several core components were treated, such as
motion planning, sequence optimization, view planning, and object reconstruction. These
components are now revisited and summarized.

6.1 Conclusions
The robotic system including the linear axes was implemented in MoveIt to utilize
existing sampling-based motion planning algorithms. In a simulation study for a designed
benchmark scenario, the RRT-connect algorithm was identified to be well suited for the
given robotic system.

If multiple pose goals for scanning an object are known in advance, the possibility of
sequence optimization arises. This was tackled as a Traveling Salesman Problem (TSP)
and an algorithm proposed in the literature was implemented to solve it approximately.
In a simulation, the performance was examined for a specific benchmark problem. The
total duration of the trajectory was reduced with only little computation overhead. A
further improvement was achieved by applying a heuristic to find good inverse kinematics
solutions prior to the approximate solution of the TSP.

To scan unknown objects with minimal user interaction, the reconstruction system was
extended by a novel view planning algorithm. It eliminates the need to specify views
manually and only requires an initial scan to reconstruct objects autonomously. The
proposed view planning algorithm is based on a geometric approximation of the object
as an ellipsoid. This approximation is refined iteratively during execution. Views are
distributed on the ellipsoid’s surface by means of random sampling in combination with an
artificial potential field. Concepts of sequence optimization were specialized to select the
next best view. Experiments demonstrated that this view planning algorithm can cope
even with very unfavorable initial scans. Difficulties in finding feasible robot configurations
were observed in the experiments, which is due to the limited workspace of the 7-DoF
robot and the necessary distance of the camera to the ellipsoid’s surface.

For global registration of scans, a marker board was applied. As the experiments showed,
a tight initial alignment can be achieved with this method. Furthermore, another approach
based on the measured joint angles was tested in an experiment. With a robot-camera
calibration, a satisfactory initial registration was obtained even though the robot itself
was not calibrated. To refine the initial alignment of scans, an approach using a variant of
the ICP algorithm in combination with pose graph optimization is used. A comparison of
the resulting point cloud with a reference model was done for several objects. Especially
for the 3D-printed bunny, a remarkable accuracy was achieved.
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6.2 Outlook
Unfortunately, this work could not be validated on the whole robotic system with nine
DoF. Therefore, the next step will be to test the reconstruction system in an experimental
setup including the linear axes. Due to the increased workspace, this also results in
improvements for the proposed view planning algorithm. Moreover, a height-adjustable
table is available, which was not utilized for this work. A further step can therefore be to
incorporate this additional DoF into the system as well.

With this extended system, it is to be analyzed how accurate the alignment of scans is
based on the measured joint positions. It may be possible to dispense with the marker
board altogether if high precision is not required. This would offer substantial advantages
because the restriction regarding the visibility of markers is eliminated.
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