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Abstract

Endomorphism monoids of ω-categorical structures are rich algebraic-topological objects,
joining a semigroup (given by the composition operation) with a Polish topology (the
topology of pointwise convergence defined via the evaluation at elements of the domain),
with the additional compatibility property that the operation is continuous with respect to
the topology. This thesis centers around the following question:

How much information about the topology of pointwise convergence can be
reconstructed from the algebraic semigroup structure?

More precisely, we ask in which aspects an arbitrary topology (potentially with some addi-
tional purely topological properties) for which the composition operation shall be continu-
ous needs to resemble the topology of pointwise convergence.
For the first level of reconstruction, we consider another natural topology on endo-

morphism monoids, namely the so-called Zariski topology induced within the monoid by
(non-)solutions to equations. For all concrete endomorphism monoids of ω-categorical
structures on which the Zariski topology has been analysed thus far, it was shown to co-
incide with the topology of pointwise convergence. Regarding our central question, this
yields that any Hausdorff semigroup topology on those endomorphism monoids can be
reconstructed to be finer than the topology of pointwise convergence. We establish two sys-
tematic reasons for the two topologies to agree, formulated in terms of the model-complete
core of the structure, as well as give an example of an ω-categorical structure on whose
endomorphism monoid the topology of pointwise convergence and the Zariski topology
differ.
For various endomorphism monoids of ω-categorical structures, an even higher level of

reconstruction is attained: the topology of pointwise convergence sometimes turns out to
be the unique Polish semigroup topology – in other words, the topology can be uniquely
reconstructed from the semigroup structure if we restrict to Polish topologies. This problem
was unsolved for the endomorphism monoid of the rational numbers with the non-strict
order (so the semigroup of increasing maps on the rational numbers). We develop new
techniques to prove that the topology of pointwise convergence is indeed the only Polish
topology turning this semigroup into a topological one, and show why previous methods
are insufficient for this matter.
Finally, we consider the class of countably infinite homogeneous graphs and analyse which

of these have endomorphism monoids such that the topology of pointwise convergence is
the unique Polish semigroup topology. We solve this problem for all previously untreated
homogeneous graphs, with a single exception for which we provide partial results.





Kurzfassung

Endomorphismenmonoide von ω-kategorischen Strukturen bilden durch Kombination ei-
ner Halbgruppe (Verknüpfungsoperation) mit einer Polnischen Topologie (die Topologie
der punktweisen Konvergenz, definiert durch Auswertung bei Elementen der Grundmen-
ge) reichhaltige algebraisch-topologische Objekte, die die zusätzliche Kompatibilitätseigen-
schaft aufweisen, dass die Operation bezüglich der Topologie stetig ist. Diese Dissertation
beschäftigt sich mit der folgenden Frage:

Wieviel Information über die Topologie der punktweisen Konvergenz kann aus
der algebraischen Halbgruppenstruktur rekonstruiert werden?

Genauer fragen wir, in welcher Hinsicht eine beliebige Topologie (von der wir möglicherweise
zusätzliche rein topologische Eigenschaften annehmen), für die die Verknüpfungsoperation
stetig ist, der Topologie der punktweisen Konvergenz ähneln muss.

Für die erste Stufe an Rekonstruktion betrachten wir eine andere natürliche Topologie
auf Endomorphismenmonoiden, nämlich die sogenannte Zariski-Topologie, die innerhalb
des Monoids durch (Nicht-)Lösungen von Gleichungen definiert wird. Für alle Endomor-
phismenmonoide ω-kategorischer Strukturen, für die die Zariski-Topologie bisher konkret
analysiert wurde, hat sich gezeigt, dass sie mit der Topologie der punktweisen Konvergenz
übereinstimmt. In Hinblick auf unsere zentrale Frage liefert dies die Rekonstruktionsaus-
sage, dass auf diesen Endomorphismenmonoiden jede Hausdorffsche Halbgruppentopologie
automatisch feiner sein muss als die Topologie der punktweisen Konvergenz. Wir geben
zwei systematische, aus dem modellvollständigen Kern2 der zugrundeliegenden Struktur
abgeleitete Bedingungen an, unter denen die beiden Topologien stets übereinstimmen. Au-
ßerdem geben wir ein Beispiel einer ω-kategorischen Struktur an, sodass sich die beiden
Topologien auf ihrem Endomorphismenmonoid unterscheiden.
Für verschiedenste Endomorphismenmonoide ω-kategorischer Strukturen gilt sogar ei-

ne höhere Stufe an Rekonstruktion: Manchmal stellt sich die Topologie der punktweisen
Konvergenz nämlich als einzige Polnische Halbgruppentopologie heraus – anders formuliert
kann die Topologie eindeutig aus der Halbgruppenstruktur rekonstruiert werden, wenn man
sich auf Polnische Topologien einschränkt. Dieses Problem war für das Endomorphismen-
monoid der rationalen Zahlen mit der schwachen Ordnung (also für die Halbgruppe der
wachsenden Funktionen auf den rationalen Zahlen) noch ungelöst. Wir entwickeln neue
Techniken, um zu zeigen, dass die Topologie der punktweisen Konvergenz die einzige Pol-
nische Halbgruppentopologie auf diesem Monoid ist, und beweisen außerdem, wieso die
bisherigen Methoden nicht zur Lösung geeignet waren.
Abschließend beschäftigen wir uns mit der Klasse der abzählbar unendlichen homogenen

Graphen und analysieren, welche von ihnen ein Endomorphismenmonoid haben, auf dem

2englisch: model-complete core



die Topologie der punktweisen Konvergenz die einzige Polnische Halbgruppentopologie ist.
Wir lösen dieses Problem für alle bisher unbehandelten homogenen Graphen mit einer
einzigen Ausnahme, für die wir partielle Ergebnisse zeigen.
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Academy of Sciences (ÖAW) via the DOC fellowship that was awarded me as well as
the Austrian Science Fund (FWF) via my supervisor’s projects P32337 and I5948.
Finally, I am indepted to my parents, in particular my mother, and my sister for their
emotional support in sharing the ups and downs during my doctoral studies.





Contents

1 Introduction 1

2 General preliminaries 7
2.1 Structures, homomorphisms, embeddings, automorphisms . . . . . . . . . . 7

2.2 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 ω-categoricity, homogeneity, transitivity and algebraicity . . . . . . . . . . . 9

2.4 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Model-complete cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Unique Polish Property and automatic continuity . . . . . . . . . . . . . . . 13

2.7 Pseudo-Property X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Back&Forth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Zariski topology on endomorphism monoids 19
3.1 Tools & Notions: structures with mobile core and a technical condition . . . 19

3.2 Two sets of sufficient conditions . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Finite cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Cores without algebraicity . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Definitions, notation and preliminary properties . . . . . . . . . . . 24

3.3.2 Proof strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.3 Proof details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 The semigroup of increasing functions on the rational numbers has a unique
Polish topology 33
4.1 Tools & Notions: notation; more on automatic continuity and Back&Forth 33

4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Proof strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 The rich topology has Pseudo-Property X . . . . . . . . . . . . . . . . . . . 39

4.4.1 Generic surjections, generic injections, sparse injections and basic
formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.2 Proving Proposition 4.3.4 . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.3 Proving the Sandwich Lemma 4.4.11 . . . . . . . . . . . . . . . . . . 45

4.4.4 Proving the Preconditioning Lemma 4.4.12 . . . . . . . . . . . . . . 47

4.4.5 Proving the Variation Lemma 4.4.13, special cases . . . . . . . . . . 49

4.4.6 Proving the Variation Lemma 4.4.13, full . . . . . . . . . . . . . . . 59

4.5 Reduction of the rich to the pointwise topology . . . . . . . . . . . . . . . . 62

4.5.1 Reductions T0123 ⇝ T01cls23opn ⇝ T024 . . . . . . . . . . . . . . . . . 62

i



Contents

4.5.2 Reduction T024 ⇝ T023opn . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.3 Reduction T023opn ⇝ T03opn . . . . . . . . . . . . . . . . . . . . . . . 73
4.5.4 Reduction T03opn ⇝ T0 = Tpw . . . . . . . . . . . . . . . . . . . . . . 77

5 Endomorphism monoids of homogeneous graphs 79
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 ∂Fn and Kω,n do not have UPP . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Kk,ω has UPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Open problem: Kω,ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography 91

ii



1 Introduction

For an arbitrary set A, the space AA of all self-maps of A is equipped with several inter-
esting kinds of structure; we focus on an algebraic one and topological ones. On the one
hand, AA carries the composition operation ◦ of functions which forms a monoid structure
(semigroup structure with a neutral element). On the other hand, a canonical topology
on AA is given by the product topology where each copy of A is endowed with the discrete
topology. In this topology, a sequence (fn)n∈N converges to f if and only if for each a ∈ A,
the sequence (fn(a))n∈N is eventually constant with value f(a). It will be referred to as the
topology of pointwise convergence, or pointwise topology for short, and has several interest-
ing properties: if A is countable, it most importantly turns out to be a Polish (completely
metrisable and second countable) topology. Furthermore, the two structures are compatible
in the sense that the composition operation is continuous as a function ◦ : AA ×AA → AA

with respect to the pointwise topology, where AA × AA carries the product topology. We
say that the pointwise topology is a semigroup topology and that AA together with the
pointwise topology is a topological semigroup. Clearly, the algebraic structure restricts
to all subsemigroups of AA which in turn can be equipped with the respective subspace
topologies. If the subsemigroup is a Gδ subset of AA with respect to the pointwise topol-
ogy, then it forms a Polish semigroup itself. The most prominent examples of such Gδ

subsemigroups are Sym(A), the space of all permutations of A, as well as – more generally
– the automorphism group Aut(A) and the endomorphism monoid End(A) of any given
(model-theoretic) structure A with domain A. In the first two cases, the algebraic structure
is even a group and the topology is a group topology, meaning that the inversion map on
the group is also continuous. For an ω-categorical structure (defined e.g. in [Hod97]), the
group Aut(A) and semigroup End(A) encode structural information about A, in general,
however, not from the abstract (semi-)group alone but only if additional data is used: if A′

is another ω-categorical structure, then A and A′ are bi-interpretable by first-order formulas
if and only if Aut(A) and Aut(A′) are isomorphic as topological groups ([AZ86]); and –
whenever neither A nor A′ have constant endomorphisms – A and A′ are bi-interpretable
by the more restricted existential positive formulas if and only if the richer objects End(A)
and End(A′) are isomorphic as topological semigroups ([BJ11]).

At this point, it is natural to ask how much topological information is already contained
in the abstract algebraic structure, i.e. how much information about a topology can be re-
constructed from the knowledge that it is compatible with a given algebraic structure. This
problem has been studied from various angles and for many classes of algebraic structures
over the years, using techniques from several areas of mathematics. Particular interest
has been given to additional requirements on the topology, for instance that the topology
be Polish or Hausdorff. We give two examples. Concerning vector spaces, it is a folklore
result in functional analysis that the finite dimensional R-vector space Rn carries a unique

1



1 Introduction

Hausdorff vector space topology1, namely the standard Euclidean topology. However, its
additive group does carry multiple Hausdorff – even Polish – group topologies already for
n = 1: the groups (R,+) and (R2,+) are algebraically isomorphic (consider them as addi-
tive groups of vector spaces over Q of equal dimension) but R and R2 equipped with the
Euclidean topologies are not homeomorphic. Hence, if we pull back the Euclidean topology
on R2 to R via the isomorphism (R,+) → (R2,+), we obtain a Polish group topology
different from the Euclidean topology on (R,+). Note that this construction requires the
axiom of choice (to find the algebraic isomorphism (R,+) → (R2,+)). This is not a co-
incidence since Solovay [Sol70] and Shelah [She84] showed the consistency of ZF (without
choice) with the fact that any Polish group has a unique Polish group topology.
Returning to subsemigroups of AA, one can ask for reconstruction results of the following

shape:

On the Polish (semi-)group S ⊆ AA, the pointwise topology is the unique Polish
(semi-)group topology.

(hereafter: S has the Unique Polish Property or UPP for short)

For the class of groups, UPP has been extensively studied; examples include the full sym-
metric group Sym(A) ([Gau67] combined with [Las91]) and the automorphism group of
the random (di-)graph ([HHLS93] combined with [KR07]). Additionally, Aut(Q,≤) – ex-
plicitly: the space of all increasing permutations of Q – also has UPP ([RS07] combined
with [Las91]). Recent years brought results in the realm of semigroups as well; it was shown
in [EJM+] that the full transformation monoid AA has UPP. Furthermore, the endomor-
phism monoids of the random graph, the random digraph and the equivalence relation with
countably many equivalence classes of countably infinite size turn out to have UPP as well,
see [EJM+23]. One notices that the examples from these lists either contain only bijective
functions (the groups) or contain both non-injective and non-surjective functions. This is
essential for UPP to hold: by constructions given in [EJM+], both the monoid Inj(A) of
all injective functions on A and the monoid Surj(A) of all surjective functions on A carry
multiple Polish semigroup topologies.
The papers [EJM+] and subsequently [EJM+23] show uniqueness of Polish semigroup

topologies in two natural steps:

(1) Show that the pointwise topology is coarser than any Polish semigroup topology.

(2) Show that the pointwise topology is finer than any Polish semigroup topology.

Usually, the second step takes considerably more work than the first step.
For the purpose of Step (1), the authors of [EJM+] transferred a notion from the theory

of topological groups to the realm of semigroups, namely the so-called Zariski topology (or
sometimes verbal topology), see [Bry77, DT18, Mar50]; roughly speaking, the closed sets in
this topology are given by solution sets to identities in the language of semigroups. Hence,
the Zariski topology is an object associated to the algebraic (semi-)group structure. Con-
sidering End(A) as an abstract semigroup, the Zariski topology can thus be regarded as an

1A topology T on Rn is called a vector space topology if it is a group topology with respect to addition
and if the scalar multiplication (λ, x) .→ λx is continuous as a map (R, TEucl)× (Rn, T ) → (Rn, T ); note
that the scalar field R is to carry the standard Euclidean topology.

2



“internal” object. The pointwise topology, in contrast, is defined from the evaluations at
elements of the domain of A and is thus an “external” object with respect to the abstract
semigroup structure of End(A) – precisely speaking, the pointwise topology is associated to
the semigroup action of End(A) on A. As it turns out, the Zariski topology is necessarily
coarser than any Hausdorff semigroup topology on a given semigroup. In particular, the
pointwise topology on End(A) is always finer than the Zariski topology. If one manages to
show that the Zariski topology on End(A) even coincides with the pointwise topology for
some structure A, one can draw two conclusions: on an abstract level, the pointwise topol-
ogy can also be understood as an “internal” object with respect to the abstract semigroup
structure, thus giving another type of reconstruction statement; on a more concrete level,
the pointwise topology then indeed is the coarsest (in particular) Polish semigroup topology
on End(A), completing Step (1). This method was successfully used both in [EJM+] and
in [EJM+23].

Step (2), on the other hand, is accomplished by means of lifting from a subset, usually
(but not necessarily) the automorphism group, to the endomorphism monoid. To this end,
the crucial instrument of Property X was introduced in [EJM+] which enables to under-
stand the pointwise topology on End(A) by looking at the pointwise topology on e.g. Aut(A)
as well as the composition operation: Property X means that a given endomorphism s can
be decomposed in the form s = gaf with fixed endomorphisms f, g and an automorphism a
in such a way that for any neighbourhood V of a with respect to the pointwise topology
within the automorphism group, the set of composites gVf is a neighbourhood of s with
respect to the pointwise topology within the endomorphism monoid.

The main aim of this thesis is to extend and shed some more light on the techniques
behind both Step (1) and Step (2).

To begin with, we consider Step (1) in more detail and remark that in each instance,
the proof that the Zariski topology coincides with the pointwise topology has not been
particularly systematic but tuned to the specific situation being considered, based on two
sets of rather technical sufficient conditions established in [EJM+] and the ad hoc notion
of so-called arsfacere structures introduced in [EJM+23] for which these conditions always
hold. This raises the following problem:

Question A1. Are there systematic reasons for equality of the topologies, in other words
general and more structural properties to require for A which yield that our two topologies
on End(A) coincide?

Furthermore, for each ω-categorical structure A explicitly considered thus far, it was
possible to show that the pointwise topology and the Zariski topology on End(A) coincide,
leading to the authors of [EJM+23] asking the following question:

Question A2 ([EJM+23, Question 3.1]). Is there an ω-categorical relational structure A
such that the topology of pointwise convergence on End(A) is strictly finer than the Zariski
topology?

We establish two new sets of sufficient conditions on a structure A under which the
Zariski topology and the pointwise topology on End(A) coincide – so, in particular, under
which the pointwise topology is the coarsest Polish semigroup topology on End(A). To this

3



1 Introduction

end, we give a new application of so-called model-complete cores which have proved to be
a helpful tool not only in the algebraic theory of constraint satisfaction problems [BOP18]
but also – of independent purely mathematical interest – in the universal algebraic study of
polymorphism clones of ω-categorical structures [BKO+17, BP16] as well as in the Ramsey-
theoretic analysis of ω-categorical structures [Bod15].
We show in particular that for a transitive ω-categorical structure without algebraicity

(standard properties of structures) such that the model-complete core of the structure is
either finite or has no algebraicity itself, the Zariski topology and the pointwise topology on
its endomorphism monoid coincide. These two cases leave a middle ground open – namely
structures whose model-complete core is infinite but has algebraicity. Thus, this is where
a positive answer to Question A2 could be found. And indeed, we give an example of
an ω-categorical structure for which the pointwise topology on the endomorphism monoid
is strictly finer than the Zariski topology. Being transitive as well as homogeneous in a
finite relational language, this structure shows that even these additional standard well-
behavedness assumptions are insufficient to guarantee that the two topologies coincide.
This indicates that the structure of the model-complete core really contains the systematic
reason for the two topologies to be equal.
Next, we turn to a more detailed investigation of Step (2): the technique exhibited

in [EJM+] as well as [EJM+23] uses the notion of automatic continuity – this means that
for a given fixed (semi-)group (S, T ) and any (semi-)group (H,O) from a certain class of
(semi-)groups, every algebraic homomorphism S → H is automatically continuous with
respect to T and O. As it turns out, if the endomorphism monoid in question equipped
with the pointwise topology has automatic continuity with respect to the class of Polish
semigroups, Step (2) can be immediately deduced to hold. As mentioned above, Property X
is an instrument to connect the endomorphism monoid and e.g. the automorphism group;
more precisely, it allows to lift automatic continuity from e.g. the automorphism group to
the endomorphism monoid. This technique, however, encounters a road block when the
endomorphism monoid does not satisfy automatic continuity (which does not necessarily
imply that UPP fails). If in this situation the automorphism group of the structure does
have automatic continuity, we can conclude that Property X cannot hold. An example
for this behaviour is given by the endomorphism monoid of the rational numbers equipped
with the usual non-strict order; explicitly, these are the increasing maps on Q. We therefore
ask the following question:

Question B. Does the endomorphism monoid of ⟨Q,≤⟩ have UPP?

As it turns out, Step (1) works smoothly; however, as described above, Step (2) cannot
be performed by known techniques. Nevertheless, we show that the endomorphism monoid
of ⟨Q,≤⟩ has UPP by developing a threefold generalisation of the technique involving
Property X in order to tackle Step (2). Most importantly, we consider topologies that are
finer than the pointwise topology in intermediate steps, showing that the monoid endowed
with a finer topology does have a form of Property X – evidently, we subsequently have
to reduce from that richer topology to the pointwise topology in an additional step; this is
not necessary in the previous proofs using Property X. Second, we also need to generalise
Property X itself in two ways, leading to what we call Pseudo-Property X.

Finally, we apply our techniques to the following problem:

4



Question C ([EJM+23, Question 5.4]). The endomorphism monoids of which homogeneous
graphs have a unique Polish topology?

By a classification result due to Lachlan and Woodrow [LW80], the class of homogeneous
(countably infinite, loopless, symmetric) graphs consists of the random graph and four
countably infinite families of graphs, namely the random Kn-free graphs (n ≥ 3); their
dual graphs; the irreflexive equivalence relations with at most countably many equivalence
classes of at most countably infinite but equal size; and their dual graphs (which turn out
to be the complete k-partite graphs (k ≥ 1 or k countably infinite) on parts of at most
countably infinite but equal size). The random graph as well as the first and third family
were already treated in [EJM+23]. We consider the second and fourth family and show
for each of these graphs whether their endomorphism monoids have UPP or automatic
continuity – with a single exception which has withstood our attacks, namely the complete
infinite-partite graph on parts of countably infinite size with regard to UPP. Along the way,
we also give an application of Pseudo-Property X with respect to subsets other than the
automorphism group.
This thesis is structured as follows: Chapter 2 contains the relevant definitions and

known results which we will use in the sequel; in particular, we formally define the Zariski
topology as well as our notion of Pseudo-Property X. In Chapter 3, we provide the suffi-
cient conditions for the Zariski topology and the pointwise topology to coincide and give
our counterexample with differing topologies. Chapter 4 is devoted to the proof that the
endomorphism monoid of the rational numbers has UPP. Finally, we consider homogeneous
graphs in Chapter 5. The chapters 3 and 4 are based on the articles [PS23a] and [PS23b],
respectively.

5





2 General preliminaries

In the present chapter, we collect notions and known facts from various areas which will be
necessary for this thesis. We consider structures and compatible functions in Section 2.1, the
pointwise topology and Zariski topology in Section 2.2, standard model-theoretic notions
in Section 2.3, graphs (in particular homogeneous ones) as a special case of these notions in
Section 2.4, model-complete cores in Section 2.5, the Unique Polish Property and automatic
continuity in Section 2.6, Pseudo-Property X in Section 2.7, and finally the Back&Forth
method in Section 2.8.

2.1 Structures, homomorphisms, embeddings, automorphisms

Notation 2.1.1. For a function f : A → B between arbitrary sets A,B and a tuple
ā = (a1, . . . , an) in A, we denote the tuple (f(a1), . . . , f(an)) of evaluations by f(ā) for
notational simplicity. Note that in contrast to some related works (like [EJM+, EJM+23]),
we denote the evaluation of the function f at the element a by f(a) and write compositions
of functions from right to left, i.e. fg := f ◦ g := (a ,→ f(g(a))).

A (relational) structure A = ⟨A, (Ri)i∈I⟩ is a domain A (in the following always finite
or countably infinite) equipped with mi-ary relations Ri ⊆ Ami . If no misunderstandings
can arise, we will not strictly distinguish between the structure A and its domain A. The
indexed set {Ri : i ∈ I} of relation symbols (where the symbol Ri shall also contain the
information about the arity mi) is called the language of A. If B is another structure in
the same language, i.e. B = ⟨B, (Si)i∈I⟩ where Si also has arity mi, we call a function
f : A → B a homomorphism and write f : A → B if f is compatible with all Ri and Si,
i.e. if ā ∈ Ri implies f(ā) ∈ Si. A homomorphism f : A → A is called an endomorphism
of A. We denote the set of all endomorphisms of A by End(A); it forms a monoid with
the composition operation and the neutral element idA. An embedding of A into B is an
injective homomorphism f : A → B which is additionally compatible with the complements
of Ri and Si, equivalently if f(ā) ∈ Si also implies ā ∈ Ri. The set of all self-embeddings
of A, i.e. of all embeddings of A into A, is denoted by Emb(A); it also forms a monoid.
An isomorphism between A and B is a surjective embedding from A into B. The set
of all automorphisms of A, i.e. of all isomorphisms between A and itself, is denoted by
Aut(A); it forms a group with the composition operation, the neutral element idA and the
inversion operation. In the special case that A is the structure without any relations, the
endomorphism monoid is the full transformation monoid AA, the self-embedding monoid
is the set Inj(A) of all injective maps A → A, and the automorphism group is the set
Sym(A) of all permutations on A. A weakening of isomorphic structures is given by the
following notion: Two structures A and B are called homomorphically equivalent if there
exist homomorphisms g : A → B and h : B → A.
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2 General preliminaries

If C ⊆ A, then the induced substructure C of A on C is the structure with domain C
where each relation Ri is replaced by Ri ∩ Cmi . If f : A → B is a homomorphism, we will
in a slight abuse of notation denote the substructure of B induced on f(A) by f(A).

2.2 Topologies

We endow AA with the pointwise topology :

Definition 2.2.1. The product topology on AA where each copy of A carries the discrete
topology will be called the topology of pointwise convergence or pointwise topology for
brevity, denoted by Tpw.
On any subset of AA, in particular on End(A),Emb(A),Aut(A), Inj(A), Sym(A), a nat-

ural topology is given by the subspace topology of the pointwise topology, also denoted by
Tpw (or Tpw|End(A) et cetera if misunderstandings are possible).

The name ist derived from the following fact: A sequence (fn)n∈N in AA converges to
some f ∈ AA if and only if for every argument a ∈ A, the sequence of evaluations (fn(a))n∈N
converges to f(a) with respect to the discrete topology on A, i.e. if it is eventually constant
with value f(a). Explicitly, a basis for the pointwise topology is given by the sets{

f ∈ AA : f(ā) = b̄
}
, ā, b̄ finite tuples in A.

If A is countable, it is a folklore fact that the pointwise topology on AA (as well as
on End(A),Emb(A),Aut(A), Inj(A), Sym(A)) is Polish (second countable and completely
metrisable) as a (Gδ-subspace topology of a) countable product of Polish topologies. More
precisely, End(A),Emb(A), Inj(A) are even closed in AA while Aut(A) is closed in Sym(A)
which in turn is a non-closed Gδ-subset of A

A. As can be easily seen, the composition opera-
tion ◦ : AA×AA → A is continuous with respect to this topology; hence, the pointwise topol-
ogy is a semigroup topology and AA (as well as End(A),Emb(A),Aut(A), Inj(A), Sym(A))
is a topological semigroup. On Aut(A) and Sym(A), the inversion operation is continous
with respect to the pointwise topology, yielding a so-called group topology or topological
group.

In Chapter 3, we will need to consider the topological closure of Aut(A) with respect
to the pointwise topology within AA (or, equivalently, within End(A) or Emb(A) since
the latter are themselves closed in AA) which we will call the “Tpw-closure of Aut(A)” for
brevity. We remark that for an ω-categorical structure A (see Definition 2.3.1), this closure
consists precisely of the so-called elementary self-embeddings of A (see [Hod97]).
We will make frequent use of the left and right translations, defined on any semigroup S

as follows:

Definition 2.2.2. Given a fixed t ∈ S, let

λt : S → S, λt(s) := ts

ρt : S → S, ρt(s) := st

denote the left and right translation on S by t, respectively.
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If S is a topological semigroup, then λt and ρt are continuous maps for any t ∈ S.
Now we define the Zariski topology. For notational simplicity, we restrict to monoids.

Definition 2.2.3. Let S be a monoid.

(i) For k, ℓ ∈ N, ℓ < k, and for p0, . . . , pk, q0, . . . , qℓ ∈ S as well as φ(s) := pkspk−1s . . . sp0
and ψ(s) := qℓsqℓ−1s . . . sq0 (if ℓ = 0, then ψ(s) = q0 for all s ∈ S), we define

Mφ,ψ := {s ∈ S : φ(s) ̸= ψ(s)} .

(ii) The Zariski topology on S, denoted by TZariski, is the topology generated by all
sets Mφ,ψ. Explicitly, the basic open sets are the finite intersections of sets Mφ,ψ.

In general, the Zariski topology need not be a Hausdorff topology or a semigroup topol-
ogy, but suitable weakenings do hold. On the one hand, it always satisfies the first sep-
aration axiom: every singleton set {s0} is TZariski-closed (pick φ(s) = s = 1s1, where 1
denotes the neutral element of S, and ψ(s) = s0). On the other hand, the left and right
translations λt and ρt (where t ∈ S is fixed) are continuous with respect to the Zariski
topology: To see this, take arbitrary φ(s) := pkspk−1s . . . sp0 and ψ(s) := qℓsqℓ−1s . . . sq0
as above and note that λ−1

t (Mφ,ψ) = Mφ̃,ψ̃ where φ̃(s) := (pkt)s(pk−1t)s . . . s(p1t)s(p0) and

ψ̃(s) := (qℓt)s(qℓ−1t)s . . . s(q1t)s(q0); similarly for ρt.
By a straightforward argument, the Zariski topology is coarser than any Hausdorff semi-

group topology T on S: One has to show that Mφ,ψ is T -open. If s ∈ Mφ,ψ, then
φ(s) ̸= ψ(s), so there exist U, V ∈ T with φ(s) ∈ U , ψ(s) ∈ V and U ∩ V = ∅ since
T is Hausdorff. Then O := φ−1(U) ∩ ψ−1(V ) is a T -open set (by continuity of the semi-
group operation) such that s ∈ O ⊆ Mφ,ψ.

Notation 2.2.4. In the sequel, we will have to distinguish multiple topologies on the same
set; whenever the topology is not clear from the context, we will write (S, T ) for the space
S endowed with the topology T .

2.3 ω-categoricity, homogeneity, transitivity and algebraicity

Definition 2.3.1. A countably infinite structure A is ω-categorical if A is the only count-
ably infinite model of its first-order theory, i.e. if any countably infinite structure (in the
same language as A) which satisfies the same first-order sentences as A is isomorphic to A.

Several important properties of a structure A can be defined from the canonical group
action of Aut(A) by evaluation on An for n ≥ 1 which we write as Aut(A) ↷ An. We
will consider the (pointwise) stabiliser of a set Y ⊆ A (usually finite), that is Stab(Y ) :=
{α ∈ Aut(A) : α(y) = y for all y ∈ Y }. For a tuple ā ∈ An, we further define the orbit
of ā under the action, Orb(ā) := {α(ā) : α ∈ Aut(A)}, as well as the Y -relative orbit
Orb(ā;Y ) := {α(ā) : α ∈ Stab(Y )} where Y ⊆ A.

By the characterisation theorem due to Engeler, Ryll-Nardzewski and Svenonius (see for
instance [Hod97]), a countable structure A is ω-categorical if and only if for each n ≥ 1,
the action Aut(A) ↷ An has only finitely many orbits. We say that A is a transitive
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2 General preliminaries

structure if the action Aut(A) ↷ A has a single orbit. The structure A is said to have
no algebraicity if for any finite Y ⊆ A and any element a ∈ A \ Y , the Y -relative orbit
Orb(a;Y ) is infinite. Finally, we say that A is a homogeneous structure if any finite partial
isomorphism m : ā ,→ b̄ on A can be extended to an automorphism α ∈ Aut(A). It is easy
to see that a countably infinite homogeneous structure in a finite (relational) language,
i.e. A = ⟨A, (Ri)i∈I⟩ with I finite, is automatically ω-categorical.

In the sequel, an important property of ω-categorical structures without algebraicity will
be the existence of “almost identical” embeddings/endomorphisms which can be obtained
using a standard compactness argument.

Lemma 2.3.2 ([EJM+23, Lemma 3.6]). Let A be an ω-categorical structure without al-
gebraicity. Then for every a ∈ A, there are f, g in the Tpw-closure1 of Aut(A) such that
f |A\{a} = g|A\{a} and f(a) ̸= g(a).

If f and g are as in the previous lemma, then for any s ∈ End(A) we note that a ∈ Im(s)
if and only if fs ̸= gs. This yields the following fact which will be essential in Chapter 3.

Lemma 2.3.3 (contained in [EJM+, Proof of Lemma 5.3]). Let A be an ω-categorical
structure without algebraicity. Then for every a ∈ A, the set {s ∈ End(A) : a ∈ Im(s)} is
open in the Zariski topology on End(A).

2.4 Graphs

We will use the following naming convention:

Definition 2.4.1. A relational structure G = (G,E) with a single binary relation (the so-
called edge relation E ⊆ G2) is called a directed graph (or digraph for short) if the relation
is loopless, i.e. (x, x) /∈ E for all x ∈ G.
If the relation is symmetric, i.e. if (x, y) ∈ E implies (y, x) ∈ E for all x, y ∈ G, then G

is plainly called a graph.
For a graph G = (G,E), the dual graph ∂G is the graph on the same domain obtained

by “exchanging edges and non-edges”, formally ∂G = (G,E′) where

xE′ y :⇔ x//E y and x ̸= y.

In the sequel, we will work with several special graphs:

Definition 2.4.2. Let k, n ≥ 1.

(i) Kn denotes the complete graph on n vertices, explicitly Kn = (G,E) with |G| = n,
and xE y :⇔ x ̸= y. Similarly, Kω = (N, E) with xE y :⇔ x ̸= y denotes the
complete graph on countably many vertices.

(ii) Kk,n denotes the complete k-partite graph on parts of size n, explicitly Kk,n = (G,E)
with G := {1, . . . , k} × X for |X| = n, and (i, x)E (j, y) :⇔ i ̸= j. Similarly, Kk,ω,
Kω,n and Kω,ω are defined with domains G := {1, . . . , k} × N, G := N × X (for

1See the remarks preceding Definition 2.2.2.
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|X| = n), and G := N× N, respectively, called the complete k-partite graph on parts
of countably infinite size, the complete infinite-partite graph on parts of size n and
the complete infinite-partite graph on parts of countably infinite size.

We identify Kk,1 with Kk as well as Kω,1 with Kω.

(iii) Ek,n denotes the irreflexive equivalence relation with k equivalence classes of size n,
explicitly Ek,n = (G,E) with G := {1, . . . , k} ×X for |X| = n, and (i, x)E (j, y) :⇔
i = j and x ̸= y. Analogously to the above, we define Ek,ω, Eω,n and Eω,ω, the
irreflexive equivalence relation with k equivalence classes of countably infinite size,
the irreflexive equivalence relation with countably many equivalence classes of size n
and the irreflexive equivalence relation with countably many equivalence classes of
countably infinite size, respectively.

Note that Ek,n = ∂Kk,n, Ek,ω = ∂Kk,ω, Eω,n = ∂Kω,n and Eω,ω = ∂Kω,ω.

(iv) The random graph is the Fräıssé limit (see [Hod97]) of the class of all finite graphs, so
the unique (up to isomorphism) countably infinite homogeneous graph which contains
all finite graphs as subgraphs.

(v) For n ≥ 3, we say that a graph G is Kn-free if it does not contain a copy of Kn as a
subgraph. The random Kn-free graph is the Fräıssé limit of the class of all Kn-free
graphs, so the unique (up to isomorphism) countably infinite homogeneous Kn-free
graph which contains as finite subgraphs precisely the finite Kn-free graphs. We also
write Fn for the random Kn-free graph.

The random graph as well as the random Kn-free graph can be characterised by so-
called extension properties (see for instance [Hod97, Theorem 6.4.4] for the former): First,
a countably infinite graph (G,E) is (isomorphic to) the random graph if for all disjoint
sets A,B ⊆ G, there exists y /∈ A ∪ B such that y has an edge to all elements of A and a
non-edge to all elements of B – this also shows that the random graph is (isomorphic to)
its own dual graph. Second, a countably infinite Kn-free graph (G,E) is (isomorphic to)
the random Kn- free graph if for all disjoint sets A,B ⊆ G such that the induced graph
on A does not contain a copy of2 Kn−1, there exists y /∈ A ∪B such that y has an edge to
all elements of A and a non-edge to all elements of B.

These special graphs essentially constitute all countably infinite homogeneous graphs:

Theorem 2.4.3 ([LW80]). Any countably infinite homogeneous graph is isomorphic to one
of the following:

(1) the random graph

(2) the random Kn-free graph Fn for some n ≥ 3

(3) the dual of Fn for some n ≥ 3

(4) Kk,ω, Kω,n or Kω,ω for some k, n ≥ 1 (a complete multipartite graph)

2This restriction ascertains that the conditions do not enforce a copy of Kn.
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2 General preliminaries

(5) Ek,ω, Eω,n or Eω,ω for some k, n ≥ 1 (an irreflexive equivalence relation with classes
of equal size)

In order to describe the automorphism group and endomorphism monoid of some of these
graphs, the following notation will be useful in Chapters 3 and 5.

Notation 2.4.4. Let X be a set and let I be an index set. If τ : I → I and if si : X → X
for each i ∈ I, then

Uτ
i∈I si shall denote the self-map of I ×X defined by

U
i∈I

τsi :

{
I ×X → I ×X

(i, x) ,→ (τ(i), si(x))

For τ : I → I and s : X → X, we further set τ ⋉ s :=
Uτ

i∈I s.

2.5 Model-complete cores

Definition 2.5.1. A structure C is called a model-complete core if the endomorphism
monoid End(C) coincides with the Tpw-closure of the automorphism group Aut(C).
In the case that C is ω-categorical, this means that any endomorphism of C is an ele-

mentary self-embedding; if C is finite, this means End(C) = Aut(C).

Every ω-categorical structure has a homomorphically equivalent model-complete core
structure:

Theorem 2.5.2 (originally [Bod07, Theorem 16], alternative proof in [BKO+19, Theo-
rem 5.7]). Let A be an ω-categorical structure. Then there exists a model-complete core C
such that A and C are homomorphically equivalent. Moreover, C is either ω-categorical or
finite and uniquely determined (up to isomorphism).

Because of the uniqueness result, C is commonly referred to as the model-complete core
of A. We will repeatedly use the following simple property of model-complete cores:

Lemma 2.5.3. Let A be an ω-categorical structure and let C be its model-complete core.
Then any homomorphism f : C → A is an embedding.

Proof. If g : A → C denotes the homomorphism existing by homomorphic equivalence,
then gf is an endomorphism of C and thus contained in the Tpw-closure of Aut(C), in
particular a self-embedding. This is only possible if f is an embedding.

This lemma in particular applies to the homomorphism h : C → A yielded by homomor-
phic equivalence. Replacing C by its isomorphic copy h(C), we will subsequently assume
that C is a substructure of A. Note that depending on the structure A, it can but need not
be possible to pick the homomorphism g : A → C to be surjective. For instance, the model-
complete core of the random graph is the complete graph on countably many vertices, and
any bijection from the random graph to the complete graph is a surjective homomorphism.
On the other hand, if A is given by the rational numbers Q extended by two elements ±∞,

equipped with the canonical strict order, then the model-complete core of A is precisely
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⟨Q, <⟩ which cannot coincide with any homomorphic image of A since such an image would
have a greatest and a least element. If the model-complete core of A is finite, however, any
homomorphism g : A → C is surjective, as can be seen by viewing g as an endomorphism
of A and applying the following lemma we will also use later on:

Lemma 2.5.4. If the model-complete core of an ω-categorical structure A is finite of size n,
then the image of any endomorphism of A has size at least n.

Proof. If s ∈ End(A), then s(A) is homomorphically equivalent to A. Hence, s(A) and A
have the same model-complete core which can therefore be regarded as a substructure
of s(A).

2.6 Unique Polish Property and automatic continuity

Definition 2.6.1. Let S ≤ AA be a sub(-semi-)group of AA which is Gδ with respect
to Tpw (so that (S, Tpw) is a Polish (semi-)group). We say that S has the Unique Polish
Property (abbreviated by UPP) if the pointwise topology is the only Polish (semi-)group
topology on S.

We refer to the Introduction (Chapter 1) for examples of UPP and continue by consider-
ing a non-example in more detail, namely the monoid of self-embeddings of an ω-categorical
structure A which turns out to carry an additional Polish semigroup topology. The follow-
ing fact will be crucial in the proof of Polishness:

Lemma 2.6.2 ([Kec94, Proof of Theorem 1.2]). Let (X, T ) be a Polish space and let
{Fn : n ∈ N} be a countable set of closed subsets of X. Then the topology generated by
T ∪ {Fn : n ∈ N} is again a Polish topology on X.

Example 2.6.3 ([EJM+23, Proposition 5.1 and the discussion afterwards]). Let A be an
ω-categorical structure with domain A. Then Emb(A) does not satisfy UPP (note that
this encompasses the semigroup Inj(A) mentioned in the Introduction if A is taken to
be the structure without relations). We define T ′ to be the topology generated by Tpw
together with the sets Ob := {s ∈ Emb(A) : b /∈ Im(s)}, b ∈ A, and claim that T ′ is a
Polish semigroup topology on Emb(A) different from Tpw.

By Lemma 2.6.2, the topology T ′ is Polish – note that Ob is closed with respect to the
pointwise topology since Emb(A)\Ob =

U
a∈A {s ∈ Emb(A) : s(a) = b}. To see that T ′ is a

semigroup topology, it remains to show the following (since Tpw is a semigroup topology): if
s, t ∈ Emb(A) such that st ∈ Ob, i.e. b /∈ Im(st), there exist T ′-neighbourhoods V and W of
s and t, respectively, such that VW ⊆ Ob. If b /∈ Im(s), we set V := Ob and W := Emb(A).
If on the other hand b ∈ Im(s), say b = s(a), then a cannot be contained in Im(t). Setting
V := {s̃ ∈ Emb(A) : s̃(a) = b} and W := Oa, we claim that VW ⊆ Ob – this follows from
s̃−1{b} = {a} for all s̃ ∈ V which crucially uses that Emb(A) consists of injective functions.
Finally, T ′ differs from Tpw: The automorphism group Aut(A) is clearly T ′-closed while

there always exists a non-surjective embedding in the Tpw-closure of Aut(A) (see [BPP17,
Proof of Corollary 10]).

A crucial tool for verifying UPP turns out to be automatic continuity as discussed
e.g. in [BPP21, EJM+, EJM+23, Her98, HHLS93, KR07, Las91, PS20, RS07, Tru89]:
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Definition 2.6.4. Let S be a (semi-)group and let T be a topology on S (which need
not be a (semi-)group topology). Given a class K of topological (semi-)groups, we say
that (S, T ) has automatic continuity with respect to K if for any (H,O) ∈ K, all algebraic
homomorphisms S → H are continuous as maps (S, T ) → (H,O).

This notion can be used to show that a given topology T on S is finer than any Pol-
ish semigroup topology on S: if (S, T ) has automatic continuity with respect to the class
of Polish semigroups, then for any Polish semigroup topology T ′ on S, the identity map
considered as a function id: (S, T ) → (S, T ′) must be continuous which yields T ′ ⊆ T .
In [EJM+] as well as [EJM+23], UPP is obtained for the examples mentioned in the Intro-
duction (Chapter 1) by showing that the respective semigroup together with the pointwise
topology has automatic continuity.

Given a topological group, one could apply Definition 2.6.4 in two different ways: one
may wonder whether the topological group has automatic continuity with respect to the
class of groups with some topological property (e.g. second countability), or whether it has
automatic continuity with respect to the class of semigroups with the same property. As
it turns out, we will be able to neglect this difference in the sequel because of the following
fact (which we formulate in a slightly less general way for the sake of simplification):

Proposition 2.6.5 ([EJM+, Proposition 4.1]). Let G be a topological group. Then G has
automatic continuity with respect to the class of second countable topological semigroups
if and only if G has automatic continuity with respect to the class of second countable
topological groups.

We will show in Chapter 4 that the endomorphism monoid of ⟨Q,≤⟩ with the pointwise
topology does not have automatic continuity which will turn out to be the reason why we
need a more sophisticated approach. At this point, we state the technical result we will
use, reformulating it to match our terminology:

Proposition 2.6.6 ([BPP17, Proposition 9]). Let M be a Tpw-closed submonoid of AA for
a countable set A. Suppose that M contains a submonoid N such that

(1) N is not Tpw-closed in M ;

(2) composing any element of M with an element outside N yields an element outside N .

Then (M, Tpw) does not have automatic continuity with respect to the full transformation
monoid AA, equipped with the pointwise topology (in particular with respect to the class of
Polish semigroups).

2.7 Pseudo-Property X

We now introduce our generalisation of Property X in its most general form so that all our
applications of this method in Chapters 4 and 5 are suitable special cases of this “umbrella
definition”.

14



2.7 Pseudo-Property X

Definition 2.7.1. Let S be a monoid with neutral element 1S endowed with a topol-
ogy3 T , let m ≥ 1 and let D(1), . . . , D(m) ⊆ S be subsets of S endowed with topolo-
gies TD(1) , . . . , TD(m) . Then (S, T ) has Pseudo-Property X (of length m) with respect to
(D(1), TD(1)), . . . , (D(m), TD(m)) if the following holds: For all s ∈ S there exist elements

es, h
(1)
s , . . . , h

(m+1)
s ∈ S and a

(1)
s ∈ D(1), . . . , a

(m)
s ∈ D(m) such that

(i) es is left-invertible in S, i.e. there exists p ∈ S such that pes = 1S .

(ii) ess = h
(m+1)
s a

(m)
s h

(m)
s a

(m−1)
s . . . a

(1)
s h

(1)
s .

(iii) For all V (1) ∈ TD(1) , . . . , V (m) ∈ TD(m) with a
(i)
s ∈ V (i), there exists U ∈ T with s ∈ U

such that
esU ⊆ h(m+1)

s V (m)h(m)
s V (m−1) . . . V (1)h(1)s .

If D(1) = · · · = D(m) =: D and TD(1) = · · · = TD(m) =: TD, we say that (S, T ) has
Pseudo-Property X of length m with respect to (D, TD).
Remark 2.7.2. Pseudo-Property X of length m can thus be verified as follows: Given

s ∈ S, we find suitable es, h
(1)
s , . . . , h

(m+1)
s ∈ S with es left-invertible and devise a method

to write ess = h
(m+1)
s a

(m)
s h

(m)
s a

(m−1)
s . . . a

(1)
s h

(1)
s (where a

(i)
s ∈ D(i)) in such a way that

for arbitrary TD(i)-neighbourhoods V (i) of a
(i)
s , there exists a T -neighbourhood U of s

such that our method applied to any s̃ ∈ U yields ã(i) ∈ V (i) (not just ã(i) ∈ D(i)) with

ess̃ = h
(m+1)
s ã(m)h

(m)
s ã(m−1) . . . ã(1)h

(1)
s . Thus, this neighbourhood U must be small enough

to ensure two properties: first, it must encode enough information about s to make sure that

the same auxiliary elements es, h
(1)
s , . . . , h

(m+1)
s can be used for s̃; second, it must ascertain

that s̃ is “close enough” to s so that the resulting elements ã(i) are “close enough” to a
(i)
s .

Note the following equilibrium at the heart of Pseudo-Property X: Increasing the length m,
it becomes easier to decompose a large class of elements s in the desired form. However,
there are more conditions ã(i) ∈ V (i) to be taken care of, potentially interacting with each
other and yielding a more complex situation.

The notation X instead of X refers to the arbitrary number m of elements a
(i)
s ∈ D(i)

on the right hand side, while the term “Pseudo” refers to the composition with the left-
invertible element es on the left hand side, see [BP16, GJP19, BP20]. Thus, the “tradi-
tional” Property X mentioned in the Introduction (Chapter 1) corresponds in our termi-
nology to Property X of length 1 (without “Pseudo”).

We will apply Pseudo-Property X via the following proposition which generalises parts
of [EJM+, Theorem 3.1]:

Proposition 2.7.3. Let S be a monoid endowed with a topology T and let D(1), . . . , D(m)

be subsets of S endowed with topologies TD(1) , . . . , TD(m). If (S, T ) has Pseudo-Property X
with respect to (D(1), TD(1)), . . . , (D(m), TD(m)), then the following statements hold:

(i) If (H,O) is a topological semigroup and φ : S → H is a homomorphism such that the
restrictions φ|D(i) are continuous as maps φ|D(i) : (D(i), TD(i)) → (H,O), then φ is
continuous as a map φ : (S, T ) → (H,O).

3Note: (S, T ) need not be a topological semigroup!
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(ii) If K is a class of topological semigroups and if all D(i) are semigroups such that
(D(i), TD(i)) has automatic continuity with respect to K, then (S, T ) also has automatic
continuity with respect to K.

Proof. Since (i) immediately implies (ii), we only prove the former.
We denote the neutral element of S by 1S . Without loss of generality, φ is surjective.

Therefore, H can be assumed to be a monoid with neutral element φ(1S). Let O ∈ O
and s ∈ S such that φ(s) ∈ O. We need to find U ∈ T such that s ∈ U and φ(U) ⊆
O. By Pseudo-Property X, there exist es, h

(1)
s , . . . , h

(m+1)
s ∈ S with es left-invertible and

a
(1)
s ∈ D(1), . . . , a

(m)
s ∈ D(m) such that

ess = h(m+1)
s a(m)

s h(m)
s a(m−1)

s . . . a(1)s h(1)s

and such that for arbitrary V (1) ∈ TD(1) , . . . , V (m) ∈ TD(m) with a
(i)
s ∈ V (i), there exists

U ∈ T with s ∈ U satisfying

esU ⊆ h(m+1)
s V (m)h(m)

s V (m−1) . . . V (1)h(1)s .

Denote the left inverse of es by p. The left translations

λφ(es) : (H,O) → (H,O) and λφ(p) : (H,O) → (H,O)

are continuous (since O is a semigroup topology). Further,

λφ(es) : (H,O) → (φ(es)H,O|φ(es)H) and λφ(p) : (φ(es)H,O|φ(es)H) → (H,O)

form inverse maps because φ(p) is a left inverse of φ(es) – here we use that H is a monoid
with neutral element φ(1S). Thus, λφ(es) : (H,O) → (φ(es)H,O|φ(es)H) is a homeomor-
phism and we obtain φ(es)O = λφ(es)(O) = P ∩ φ(es)H for some P ∈ O. Consequently,

φ(h(m+1)
s )φ(a(m)

s )φ(h(m)
s )φ(a(m−1)

s ) . . . φ(a(1)s )φ(h(1)s ) = φ(es)φ(s) ∈ P ∩ φ(es)H.

Using that the map (b(1), . . . , b(m)) ,→ φ(h
(m+1)
s )b(m)φ(h

(m)
s )b(m−1) . . . b(1)φ(h

(1)
s ) is contin-

uous with respect to O (since O is a semigroup topology) yields sets W (i) ∈ O such that

φ(a
(i)
s ) ∈ W (i) and

φ(h(m+1)
s )W (m)φ(h(m)

s )W (m−1) . . .W (1)φ(h(1)s ) ⊆ P.

By the assumed continuity of φ|D(i) : (D(i), TD(i)) → (H,O), the sets V (i) := φ|−1
D(i)(W

(i))

are contained in TD(i) . Thus, we can invoke Pseudo-Property X to obtain a set U ∈ T such
that s ∈ U and

esU ⊆ h(m+1)
s V (m)h(m)

s V (m−1) . . . V (1)h(1)s .

Applying φ, we conclude

φ(es)φ(U) ⊆ φ(h(m+1)
s )W (m)φ(h(m)

s )W (m−1) . . .W (1)φ(h(1)s ) ⊆ P,

and thus φ(es)φ(U) ⊆ P ∩ φ(es)H = φ(es)O. Multiplying with φ(p) from the left, we
obtain φ(U) ⊆ O as desired.
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2.8 Back&Forth

2.8 Back&Forth

In Chapter 4, we will repeatedly use the “Back&Forth” method, see for instance [Hod97].

Definition 2.8.1. Let X and Y be countably infinite structures in the same language and
let S be a set of finite partial homomorphisms from X to Y.

(i) S is a Forth system between X and Y if for all m ∈ S and all x ∈ X with x /∈ Dom(m),
there exists m′ ∈ S such that m′ extends m and x ∈ Dom(m′).

(ii) S is a Back system between X and Y if for all m ∈ S and all y ∈ Y with y /∈ Im(m),
there exists m′ ∈ S such that m′ extends m and y ∈ Im(m′).

(iii) S is a Back&Forth system between X and Y if it is both a Back system and a Forth
system.

Iteratively extending finite partial homomorphisms so that their domains exhaust the
entire structure X (Forth) or in an alternating fashion so that their domains and images
exhaust X and Y, respectively (Back&Forth), one obtains the following folklore result:

Lemma 2.8.2. Let X and Y be countably infinite structures in the same language.

(i) If S is a Forth system between X and Y which is closed under restriction, then any
m ∈ S can be extended to a total homomorphism s : X → Y such that every finite
restriction of s is contained in S. In particular, if S consists of injective finite partial
homomorphisms, then s can be picked to be injective as well.

(ii) If S is a Back&Forth system between X and Y which is closed under restriction, then
any m ∈ S can be extended to a total and surjective homomorphism s : X → Y such
that every finite restriction of s is contained in S. In particular, if S consists of finite
partial isomorphisms, then s can be picked to be an automorphism.

We will also employ the following variant.

Definition 2.8.3. Let X and Y be countably infinite structures in the same language and
let A ⊆ X as well as C ⊆ Y. Let further S be a set of finite partial homomorphisms from
X to Y.

(i) S is an (A,C)-Back system between X and Y if the following holds:

For all m ∈ S and all4 y ∈ C, there exists m′ ∈ S such that m′ extends m and
∃x ∈ A ∩Dom(m′) : m′(x) = y.

(ii) S is an (A,C)-Back&Forth system between X and Y if it is both an (A,C)-Back
system and a Forth system.

Lemma 2.8.4. Let X and Y be countably infinite structures in the same language and let
A ⊆ X as well as C ⊆ Y. If S is an (A,C)-Back&Forth system between X and Y, then any
m ∈ S can be extended to a total homomorphism s : X → Y such that

∀y ∈ C : s−1{y} ∩A ̸= ∅.
4Note: Contrary to “Back” from above, y ∈ Im(m) is in general possible!
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2 General preliminaries

Proof. The argument proceeds in almost the same way as a standard Back&Forth con-
struction: Instead of applying a Back step to all elements of Y \ Im(m), one applies an
(A,C)-Back step to all elements of C (even if they are contained in Im(m)).
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3 Zariski topology on endomorphism
monoids

We start by introducing structures with mobile core, a weakening of the standard notion
of transitive structures, as well as formulating a technical condition from [EJM+] for the
Zariski topology and the pointwise topology on a semigroup of transformations to be equal
(Section 3.1). In Section 3.2, we address Question A1 and give two new sets of sufficient
conditions on a structure A, expressed in terms of the model-complete core, which imply
that the Zariski topology and the pointwise topology on End(A) coincide. Section 3.3
provides an example of an ω-categorical structure such that the two topologies on its
endomorphism monoid differ, thus answering Question A2.

3.1 Tools & Notions: structures with mobile core and a technical
condition

Definition 3.1.1. Let A be an ω-categorical structure. Then A is said to have a mobile
core if any element of A is contained in the image of an endomorphism into the model-
complete core. Explicitly, for any a ∈ A, there ought to exist a substructure C of A and
g ∈ End(A) with the following properties:

(i) C is a model-complete core homomorphically equivalent to A,

(ii) a ∈ g(A) ⊆ C.

Note that structures with mobile core are a weakening of transitive structures (as intro-
duced in Section 2.3): Let A be transitive, let C be its model-complete core with homomor-
phism g : A → C, and let a0 ∈ A be a fixed element. If a ∈ A is arbitrary, then transitivity
yields α ∈ Aut(A) such that α(g(a0)) = a. Hence, .C := α(C) is an isomorphic copy of C
with homomorphism g̃ := αg : A → .C such that a ∈ g̃(A) ⊆ .C. In fact, it suffices to assume
that A is weakly transitive, i.e. that for all a, b ∈ A there exists s ∈ End(A) with s(a) = b
– replacing α in the above argument by s, we still obtain that s(C) is an isomorphic copy
of C by Lemma 2.5.3.

On the other hand, there exist non-transitive structures which have a mobile core, for
instance the disjoint union of two transitive structures where each part gets named by an
additional unary predicate (to ascertain that the parts are invariant under any automor-
phism). Finally, the structure ⟨Q ∪ {±∞}, <⟩ mentioned after Lemma 2.5.3 does not have
a mobile core: The element +∞ cannot be contained in any copy of the model-complete
core ⟨Q, <⟩.
Further, we will use the following technical condition from [EJM+]:
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3 Zariski topology on endomorphism monoids

Lemma 3.1.2 ([EJM+, Lemma 5.3]). Let X be an infinite set and let S be a subsemigroup
of XX such that for every a ∈ X there exist α, β, γ1, . . . , γn ∈ S for some n ∈ N such that
the following hold:

(i) α|X\{a} = β|X\{a} and α(a) ̸= β(a)

(ii) a ∈ Im(γi) for all i ∈ {1, . . . , n};
(iii) for every s ∈ S and every x ∈ X \ {s(a)}, there is i ∈ {1, . . . , n} so that Im(γi) ∩

s−1(x) = ∅.
Then the Zariski topology of S is the pointwise topology.

We remark that (i) corresponds to Lemma 2.3.2 and that the proof proceeds by con-
structing the generating sets of the pointwise topology from the sets {s ∈ S : a ∈ Im(s)}
exhibited in Lemma 2.3.3.

3.2 Two sets of sufficient conditions

This section is devoted to our answer to Question A1: we state and show our sufficient
conditions for the pointwise topology and the Zariski topology to coincide.

3.2.1 Our results

Theorem A1. Let A be an ω-categorical structure without algebraicity which has a mobile
core. Then the Zariski topology on End(A) coincides with the pointwise topology if one of
the following two conditions holds:

(i) EITHER the model-complete core of A is finite,

(ii) OR the model-complete core of A is infinite and does not have algebraicity.

The cases (i) and (ii) will be treated separately in Subsections 3.2.2 and 3.2.3, respec-
tively. Before we get to the proofs, we show how Theorem A1 can be used to easily
verify that the Zariski topology and the pointwise topology coincide on the endomor-
phism monoids of a multitude of example structures. Some of them have been treated
in [EJM+23], but our result applies to many other structures which have not yet been
considered, e.g. the random Kn-free graph or its dual graph as well as the complete multi-
partite graphs on parts of countably infinite size.

Corollary 3.2.1. Let A be one of the following structures:

(i) ⟨Q,≤⟩
(ii) the random reflexive partial order

(iii) the equivalence relation with either finitely or countably many equivalence classes of
countable size

(iv) the random reflexive (di-)graph
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3.2 Two sets of sufficient conditions

(v) the random reflexive Kn-free graph for n ≥ 3

(vi) Kk,ω for k ≥ 1 (the complete k-partite graph with parts of countably infinite size)

(vii) ⟨Q, <⟩

(viii) the random strict partial order

(ix) the random tournament

(x) Ek,ω and Eω,ω (the irreflexive equivalence relation with either finitely or countably
many equivalence classes of countably infinite size)

(xi) the random irreflexive (di-)graph

(xii) the random irreflexive Kn-free graph

(xiii) the dual graph of the random irreflexive Kn-free graph

(xiv) Kω,ω (the complete infinite-partite graph with parts of countably infinite size)

Then the pointwise topology and the Zariski topology on End(A) coincide. In particular,
the pointwise topology is the coarsest Hausdorff semigroup topology on End(A).

Remark 3.2.2. With a different proof, the corollary also holds for Kω,n and Eω,n (n ≥ 1)
for which Theorem A1 is not applicable since these structures have algebraicity – see
Proposition 5.1.2.

Proof. It is immediate that all structures in (i)-(xiv) are ω-categorical structures without
algebraicity which are transitive (in particular, they have a mobile core); we note explicitly
that this statement for (xiii) immediately follows from the corresponding fact for (xii) since
a graph and its dual graph have the same automorphism group. For (i)-(v), the model-
complete core of A is merely a single point with a loop. For (vi), the model-complete core
of A is the complete graph on k vertices. Thus, the model-complete core is finite in (i)-(vi).
For (vii) and (xii), the structure A is already a model-complete core, so the model-complete
core of A is just A itself. For (viii) and (ix), the model-complete core of A is the structure
⟨Q, <⟩. For (x), (xi), (xiii) and (xiv), the model-complete core of A is the complete graph on
countably many vertices. Summarising, the model-complete core of A has no algebraicity
in (vii)-(xiv).

In any case, Theorem A1 applies and yields the desired conclusion.

3.2.2 Finite cores

First, we consider the case that A has a finite model-complete core.

Proposition 3.2.3. Let A be an ω-categorical structure without algebraicity which has a
mobile core. If the model-complete core of A is finite, then the Zariski topology on End(A)
coincides with the pointwise topology.
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3 Zariski topology on endomorphism monoids

Proof. We show that the Tpw-generating sets {s ∈ End(A) : s(a) = b}, a, b ∈ A, are TZariski-
open by proving that they are TZariski-neighbourhoods of each element.

Let s0 ∈ End(A) such that s0(a) = b. Since A has a mobile core, there exist a copy C of
the model-complete core of A and g ∈ End(A) such that a ∈ g(A) ⊆ C. By Lemma 2.5.4,
we know that g(A) = C. We set n = |C| and write g(A) = {a1, . . . , an} where a1 = a.
Applying Lemma 2.3.3, we obtain that the set

V := {s ∈ End(A) : s0(a1), . . . , s0(an) ∈ Im(s)} =
n∩

j=1

{s ∈ End(A) : s0(aj) ∈ Im(s)}

is open in the Zariski topology. Since the translation ρg : s ,→ sg on End(A) is continuous
with respect to the Zariski topology, the preimage

U := ρ−1
g (V ) = {s ∈ End(A) : s0(a1), . . . , s0(an) ∈ Im(sg)}

is TZariski-open as well. Again by Lemma 2.5.4, the images of the endomorphisms s0g
and sg (for arbitrary s ∈ End(A)) must both have n elements. Hence, the images s0(ai)
are pairwise different and, further,

U = {s ∈ End(A) : Im(sg) = {s0(a1), . . . , s0(an)}} .

The crucial observation is that Ug = {sg : s ∈ U} is a finite set: Any element sg is deter-
mined by the ordered tuple (s(a1), . . . , s(an)). Since the unordered set {s(a1), . . . , s(an)}
is fixed for s ∈ U , there are only finitely many (at most n!, to be precise) possibilities for
the ordered tuple.

Consequently, the set M := {sg : s ∈ U, s(a) ̸= b} is finite as well. We define

O := U ∩
∩
t∈M

{s ∈ End(A) : sg ̸= t} ∈ TZariski

and claim that O = {s ∈ End(A) : s ∈ U, s(a) = b}, subsequently giving

s0 ∈ O ⊆ {s ∈ End(A) : s(a) = b}

as desired. If s ∈ U with s(a) = b, then we take z ∈ A with g(z) = a and note sg(z) =
s(a) = b ̸= t(z) for all t ∈ M . Conversely, if s ∈ U but s(a) ̸= b, then t := sg ∈ M , so
s /∈ O – completing the proof.

3.2.3 Cores without algebraicity

Now we consider structures A whose model-complete cores do not have algebraicity. This
assumption will come into play via the following observation:

Lemma 3.2.4. Let B be a countably infinite structure without algebraicity and let b ∈
B. Then there exist f, h in the Tpw-closure of Aut(B) such that f(b) = b = h(b) and
f(B)∩h(B) = {b} (so there exist two copies of B within B which only have b in common).
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3.2 Two sets of sufficient conditions

Proof. We enumerate B = {bn : n ∈ N} where b0 = b. First, we recursively construct
automorphisms αn, βn ∈ Aut(B), n ∈ N, such that

αn+1|{b0,...,bn} = αn|{b0,...,bn} and βn+1|{b0,...,bn} = βn|{b0,...,bn},
as well as αn({b0, . . . , bn}) ∩ βn({b0, . . . , bn}) = {b}

for all n ∈ N. We start by setting α0 = β0 := idB. If αn and βn are already defined, we
put Y := αn({b0, . . . , bn}) as well as Z := βn({b0, . . . , bn}). Since B has no algebraicity,
the relative orbits Orb(αn(bn+1);Y ) and Orb(βn(bn+1);Z) are infinite, so we can find an
element cn+1 ∈ Orb(αn(bn+1);Y ) which is not contained in Z and then find an element
dn+1 ∈ Orb(βn(bn+1);Z) which is not contained in Y ∪ {cn+1}. Taking γ ∈ Stab(Y ) with
γ(αn(bn+1)) = cn+1 as well as δ ∈ Stab(Z) with δ(βn(bn+1)) = dn+1, and setting αn+1 :=
γαn as well as βn+1 := δβn completes the construction. Finally, we set f := limn∈N αn

and h := limn∈N βn; these maps are contained in the Tpw-closure of Aut(B) and have the
desired properties.

Proposition 3.2.5. Let A be an ω-categorical structure without algebraicity which has a
mobile core. If the model-complete core of A is infinite and does not have algebraicity, then
the Zariski topology on End(A) coincides with the pointwise topology.

Proof. We check the assumptions of Lemma 3.1.2.

Since A is ω-categorical without algebraicity, property (i) follows from Lemma 2.3.2.

For properties (ii) and (iii), we fix a ∈ A, set n = 2 and construct γ1, γ2 ∈ End(A).
Since A has a mobile core, there exist a copy C of the model-complete core of A and
g ∈ End(A) such that a ∈ g(A) ⊆ C. Since C has no algebraicity, there exist f, h : C → C
in the Tpw-closure of Aut(C) such that f(a) = a = h(a) and f(C) ∩ h(C) = {a} by
Lemma 3.2.4. Using the homomorphism g : A → C, we set γ1 := fg and γ2 := hg,
considered as endomorphisms of A. Then a ∈ Im(γi), i.e. (ii) holds. Suppose now that
for some s ∈ End(A) and x ∈ A, we have Im(γi) ∩ s−1{x} ̸= ∅ for i = 1, 2. In order to
prove (iii), the goal is to show x = s(a). We rewrite to obtain the existence of xi ∈ A
with sfg(x1) = sγ1(x1) = x = sγ2(x2) = shg(x2). As a homomorphism from C to A, the
restriction s|C : C → A is an embedding by Lemma 2.5.3, in particular injective. Hence,

fg(x1) = hg(x2) ∈ f(C) ∩ h(C) = {a},

yielding x = sfg(x1) = s(a) as desired.

Remark 3.2.6. Careful inspection of the proof of Proposition 3.2.5 shows that the assump-
tion of A having no algebraicity is only used in order to apply Lemma 2.3.2 to obtain
property (i) in Lemma 3.1.2. Thus, the proposition also applies to a structure with alge-
braicity that has a mobile core such that its model-complete core has no algebraicity, as
long as one can – by some other means – verify property (i) (explicitly, for any element
a ∈ A, there need to exist f, g ∈ End(A) such that f |A\{a} = g|A\{a} and f(a) ̸= g(a)).
This observation will prove useful in Chapter 5.
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3 Zariski topology on endomorphism monoids

3.3 Counterexample

In this section, we answer Question A2, giving an example of an ω-categorical (even ho-
mogeneous in a finite language) and transitive structure without algebraicity such that
the Zariski topology on its endomorphism monoid does not coincide with the pointwise
topology. By our results in Section 3.2, the model-complete core of this structure must be
infinite and have algebraicity. Informally speaking, we take a complete graph on count-
ably many vertices where each point has as fine structure a complete bipartite graph on
countably many vertices, see Figure 3.1 below.

3.3.1 Definitions, notation and preliminary properties

We start by formally introducing our structure, henceforth called G, and giving some
notation. Differing slightly from the general Definition 2.4.2, it will turn out convenient to
denote K2,ω, the complete bipartite graph on parts of countable size, as follows: We write
the domain as K2,ω := A+1 ∪̇ A−1 where A+1 and A−1 are the (countably infinite) parts,
so that the edge relation can be written as EK2,ω := A−1 ×A+1 ∪A+1 ×A−1.

Definition 3.3.1. Let G denote the following structure over the language of two binary
relations: We set G := N×K2,ω (countably many copies of K2,ω) and define the relations
as follows:

(i, x)EG
1 (j, y) :⇔ i ̸= j,

(i, x)EG
2 (j, y) :⇔ i = j and xEK2,ω y.

This means that the set of copies of K2,ω forms a complete graph with respect to E1 and
that each copy {i} ×K2,ω of K2,ω is indeed a copy of the graph K2,ω (with respect to E2);
see Figure 3.1 below.

Note that an endomorphism s of K2,ω acts as a permutation on the set {A+1, A−1} of

parts since two (E
K2,ω

2 -connected) elements from different parts of K2,ω cannot be mapped
to the same part ofK2,ω – we either have s(A+1) ⊆ A+1 and s(A−1) ⊆ A−1 or s(A+1) ⊆ A−1

and s(A−1) ⊆ A+1.

Definition 3.3.2. For s ∈ End(K2,ω), we put sgn(s) ∈ {+1,−1} to be the sign of the
permutation induced by s on {A+1, A−1}. Explicitly, this means that s(Ae) ⊆ Ae·sgn(s) for
e = ±1. As a slight abuse of notation, we will refer to sgn(s) as the sign of s.

Clearly, we have sgn(st) = sgn(s) sgn(t) for s, t ∈ End(K2,ω). As a tool, we define two
very simple endomorphisms of K2,ω.

Notation 3.3.3.

(i) In the sequel, a+1 ∈ A+1 and a−1 ∈ A−1 shall denote fixed elements.

(ii) We define c+1 ∈ End(K2,ω) and c−1 ∈ End(K2,ω) to be the unique endomorphisms
of K2,ω with image {a+1, a−1} and sign +1 and −1, respectively. So c+1 is constant
on Ae with value ae and c−1 is constant on Ae with value a−e for e = ±1.
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3.3 Counterexample

Figure 3.1: The structure G: complete graph on countably many vertices (dashed) where
each point has a complete bipartite graph on countably many vertices as fine
structure (solid).

We now use Notation 2.4.4 to give an explicit description of the automorphisms and
endomorphisms of G.

Lemma 3.3.4.

(i) End(G) =
{Uτ

i∈N si : τ ∈ Inj(N), si ∈ End(K2,ω)
}
.

(ii) Aut(G) =
{Uσ

i∈N αi : σ ∈ Sym(N), αi ∈ Aut(K2,ω)
}
.

Remark 3.3.5. Lemma 3.3.4 exactly expresses that End(G) and Aut(G) are the (unre-
stricted) wreath products of End(K2,ω) with Inj(N) and Aut(K2,ω) with Sym(N), respec-
tively, by the canonical actions of Inj(N) and Sym(N) on N.

Proof (of Lemma 3.3.4). It is straightforward to see that the maps
Uτ

i∈N si in (i) andUσ
i∈N αi in (ii) form endomorphisms and automorphisms, respectively. Thus, (ii) follows

immediately from (i) since
Uτ

i∈N si can only be bijective if τ ∈ Sym(N) and si ∈ Aut(K2,ω).

To show (i), we first note that for any s ∈ End(K2,ω) and any two elements (i, x), (i, y) ∈
G in the same copy ofK2,ω, the images s(i, x) and s(i, y) are also contained in the same copy
of K2,ω: Either x, y are connected in K2,ω in which case s(i, x) and s(i, y) are EG

2 -connected
and therefore contained in the same copy, or x, y are both connected in K2,ω to a common
element z in which case s(i, x) and s(i, y) are both EG

2 -connected to s(i, z) and therefore
contained in the same copy. Setting τ(i) to be the index of this copy, i.e. s(i, x), s(i, y) ∈
{τ(i)}×K2,ω, we obtain that s can be written as

Uτ
i∈N si for some functions si : K2,ω → K2,ω.

By compatibility of s with EG
1 , the map τ needs to be injective. Further, the maps si are

endomorphisms of K2,ω since s is compatible with EG
2 .
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3 Zariski topology on endomorphism monoids

The representation in (ii) readily yields the following properties of G by means of lifting
from Sym(N) and Aut(K2,ω):

Lemma 3.3.6. G is ω-categorical, homogeneous, transitive and has no algebraicity.

Proof. We start by showing that G is homogeneous which will also yield the ω-categoricity
since G has a finite language. Let ā = (a1, . . . , an) and b̄ = (b1, . . . , bn) be tuples in G
and let m : ā ,→ b̄ be a finite partial isomorphism. Writing ak = (ik, xk) and bk = (jk, yk),
we note that ik and iℓ coincide if and only if jk and jℓ coincide (for otherwise, either m
or m−1 would not be compatible with EG

1 ). Hence, the map ik ,→ jk is a well-defined
finite partial bijection and can thus easily be extended to some σ ∈ Sym(N) (in other
words, the structure with domain N and without any relations is homogeneous). Further,
if ik1 = . . . = ikN =: i, then mi : xk1 ,→ yk1 , . . . , xkN ,→ ykN is a finite partial isomorphism
of K2,ω since m is a finite partial isomorphism with respect to EG

2 . The graph K2,ω is
homogeneous, so mi extends to αi ∈ Aut(K2,ω). Setting αi = idK2,ω for all i such that
no xk is contained in the i-th copy of K2,ω and putting α :=

Uσ
i∈N αi ∈ Aut(G), we obtain

an extension of m.

Next, observe that G is transitive: given a, b ∈ G, the map a ,→ b is a finite partial
isomorphism since neither EG

1 nor EG
2 contain any loops. Thus, homogeneity yields α ∈

Aut(G) with α(a) = b.

Finally, G does not have algebraicity since K2,ω does not have algebraicity: For a finite
set Y ⊆ G and a = (i0, x0) ∈ G \ Y , we set Yi0 := {y ∈ K2,ω : (i0, y) ∈ Y } ̸∋ x0 and note
that OrbG(a;Y ) encompasses the infinite set {i0} × OrbK2,ω(x0;Yi0) as witnessed by the

automorphisms
UidN

i∈N αi where αi0 ∈ StabK2,ω(Yi0) and αi = idK2,ω for i ̸= i0.

Remark 3.3.7. An alternative construction of G is as a first-order reduct of the free superpo-
sition (see [Bod15], this is a type of construction to combine two structures with different
signatures in a “free” way) of K2,ω with Eω,ω. Since both structures are transitive and
have no algebraicity, the superposition structure has the same properties which are then
inherited by G since a first-order reduct can only have additional automorphisms.

To simplify the presentation, we additionally define a few notational shorthands concern-
ing endomorphisms of G:

Notation 3.3.8.

(i) For p =
Uξ

i∈N pi ∈ End(G), we define p̃ := ξ ∈ Inj(N).

(ii) Given p0, . . . , pk ∈ End(G) and φ(s) := pkspk−1s . . . sp0, s ∈ End(G), we define
φ̃(τ) := p̃kτ p̃k−1τ . . . τ p̃0, τ ∈ Inj(N).

3.3.2 Proof strategy

The goal of Section 3.3 is to prove the following:

Theorem A2. On the endomorphism monoid of the structure G, the pointwise topology is
strictly finer than the Zariski topology.
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Remark 3.3.9. Before we go into the details of the proof, let us remark that the structure G
needs to have an infinite model-complete core which has algebraicity in order to have a
chance of satisfying Theorem A2 – for otherwise, Theorem A1 would apply.
The model-complete core of K2,ω is just the graph consisting of a single edge, as witnessed

for instance by the substructure induced on {a+1, a−1} and the homomorphism c+1 : K2,ω →
{a+1, a−1}. We claim that the model-complete core of G is the complete graph on countably
many vertices where each point has as fine structure a single edge, i.e. the substructure C
of G induced on C := N× {a+1, a−1} ⊆ G; see Figure 3.2.
Similarly to the proof of Lemma 3.3.4, one easily checks that (here, c±1 are considered

as self-maps of {a+1, a−1})

End(C) =

{U
i∈N

τγi : τ ∈ Inj(N), γi ∈ {c+1, c−1}
}
,

Aut(C) =

{U
i∈N

σγi : σ ∈ Sym(N), γi ∈ {c+1, c−1}
}
.

Thus, any endomorphism is locally interpolated by an automorphism, and C is indeed a
model-complete core. Additionally, G and C are homomorphically equivalent – an example
of a homomorphism G → C is given by

UidN
i∈N c+1 (where c+1 is considered as a map defined

on K2,ω).
Finally, C has algebraicity: any automorphism of C which stabilises Y := {(0, a+1)} also

stabilises a := (0, a−1), so the Y -relative orbit of a is finite.

Figure 3.2: The model-complete core of G: complete graph on countably many vertices
(dashed) where each point has a single edge (solid) as fine structure.

In order to show Theorem A2, we will prove that TZariski-open sets on End(G) cannot
determine the sign of the components si of s =

Uτ
i∈N si, in other words decide whether the
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3 Zariski topology on endomorphism monoids

functions si switch the two parts of K2,ω or not. On the other hand, Tpw|End(G)-open sets
can determine the sign of finitely many components, thus showing Tpw|End(G) ̸= TZariski.
More precisely, we will prove that if a TZariski-generating set Mφ,ψ contains idN⋉c+1, then
it also contains τ ⋉ c−1 for all elements τ of a “big” subset of Inj(N) – where “big” means
either “Tpw|Inj(N)-open neighbourhood of idN” (if the terms φ and ψ have equal lengths; see
Lemmas 3.3.10 and 3.3.11) or “Tpw|Inj(N)-dense and open set” (if the terms φ and ψ have
different lengths; see Lemma 3.3.12).

Our (almost trivial) first lemma analogously holds in a more general setting. Since we
only apply it in case of terms of equal lengths, we formulate it in the present form.

Lemma 3.3.10.

(i) Let k ≥ 1 and let ξ0, . . . , ξk, θ0, . . . , θk ∈ Inj(N) as well as φ̃(τ) := ξkτξk−1τ . . . τξ0
and ψ̃(τ) := θkτθk−1τ . . . τθ0, τ ∈ Inj(N).

If φ̃(idN) ̸= ψ̃(idN), then Mφ̃,ψ̃ =
{
τ ∈ Inj(N) : φ̃(τ) ̸= ψ̃(τ)

}
is a Tpw|Inj(N)-open

neighbourhood of idN.

(ii) Let k ≥ 1 and let p0, . . . , pk, q0, . . . , qk ∈ End(G) as well as φ(s) := pkspk−1s . . . sp0
and ψ(s) := qksqk−1s . . . sq0, s ∈ End(G). Assume φ̃(idN) ̸= ψ̃(idN) (using the
shorthand from Notation 3.3.8).

Then there exists a Tpw|Inj(N)-open neighbourhood U of idN such that τ ⋉ t ∈ Mφ,ψ =
{s ∈ End(G) : φ(s) ̸= ψ(s)} for all τ ∈ U and t ∈ End(K2,ω). In particular, τ⋉c−1 ∈
Mφ,ψ for all τ ∈ U .

The second lemma really requires the terms to be of equal length.

Lemma 3.3.11. Let k ≥ 1 and let p0, . . . , pk, q0, . . . , qk ∈ End(G) as well as φ(s) :=
pkspk−1s . . . sp0 and ψ(s) := qksqk−1s . . . sq0, s ∈ End(G).

Assume φ(idN⋉c+1) ̸= ψ(idN⋉c+1) but φ̃(idN) = ψ̃(idN).

Then there exists a Tpw|Inj(N)-open neighbourhood U of idN such that τ ⋉ c−1 ∈ Mφ,ψ =
{s ∈ End(G) : φ(s) ̸= ψ(s)} for all τ ∈ U .

Finally, we formulate a result for terms of different lengths.

Lemma 3.3.12.

(i) Let ℓ < k and let ξ0, . . . , ξk, θ0, . . . , θℓ ∈ Inj(N) as well as φ̃(τ) := ξkτξk−1τ . . . τξ0
and ψ̃(τ) := θℓτθℓ−1τ . . . τθ0, τ ∈ Inj(N).

Then Mφ̃,ψ̃ =
{
τ ∈ Inj(N) : φ̃(τ) ̸= ψ̃(τ)

}
is Tpw|Inj(N)-dense and open.

(ii) Let ℓ < k and let p0, . . . , pk, q0, . . . , qℓ ∈ End(G) as well as φ(s) := pkspk−1s . . . sp0
and ψ(s) := qℓsqℓ−1s . . . sq0, s ∈ End(G).

Then there exists a Tpw|Inj(N)-dense and open set V such that τ ⋉ t ∈ Mφ,ψ =
{s ∈ End(G) : φ(s) ̸= ψ(s)} for all τ ∈ V and t ∈ End(K2,ω). In particular, τ⋉c−1 ∈
Mφ,ψ for all τ ∈ V .
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We first demonstrate how these auxiliary statements are used and prove Theorem A2
before showing the statements themselves in Subsection 3.3.3.

Proof (of Theorem A2 given Lemmas 3.3.10, 3.3.11 and 3.3.12). Our goal is to show that
any TZariski-open set O containing idN⋉c+1 also contains τ ⋉ c−1 for some τ ∈ Inj(N). This
implies in particular that the Tpw-open set {s ∈ End(G) : s(0, a+1) = (0, a+1)} cannot be
TZariski-open, proving TZariski ̸= Tpw.
It suffices to consider TZariski-basic open sets O, i.e. O =

∩
h∈H Mφh,ψh

∋ idN⋉c+1 for
some finite set H. If the terms φh and ψh have equal length, we apply Lemma 3.3.10
or 3.3.11 to find a Tpw|Inj(N)-open neighbourhood Uh of idN such that τ ⋉ c−1 ∈ Mφh,ψh

for
all τ ∈ Uh. If φh and ψh have different lengths, we instead apply1 Lemma 3.3.12 to find
a Tpw|Inj(N)-dense and open set Vh such that τ ⋉ c−1 ∈ Mφh,ψh

for all τ ∈ Vh. Intersecting
the respective sets Uh and Vh thus obtained yields a Tpw-open neighbourhood U of idN and
a Tpw|Inj(N)-dense and open set V such that τ ⋉ c−1 ∈ Mφh,ψh

for all τ ∈ U whenever φh

and ψh have equal length and such that τ⋉c−1 ∈ Mφh,ψh
for all τ ∈ V whenever φh and ψh

have different lengths. The intersection U ∩ V is nonempty; for any τ ∈ U ∩ V we have
τ ⋉ c−1 ∈ Mφh,ψh

for all h ∈ H, i.e. τ ⋉ c−1 ∈ O. This concludes the proof.

Remark 3.3.13. A slight refinement of this proof even shows that the Zariski topology
on End(G) is not Hausdorff since idN⋉c+1 and idN⋉c−1 cannot be separated by open sets:
By the proof, a given basic open set around idN⋉c+1 contains τ ⋉ c−1 provided that τ
is an element of the intersection of a certain Tpw|Inj(N)-open neighbourhood of idN and a
Tpw|Inj(N)-dense open set. The same idea similarly (but with an easier proof in the analogue
of Lemma 3.3.11) yields that a given basic open set around idN⋉c−1 contains τ ′ ⋉ c−1

provided that τ ′ is an element of the intersection of another Tpw|Inj(N)-open neighbourhood
of idN and another Tpw|Inj(N)-dense open set. The intersection of these four sets is nonempty,
so the basic open sets around idN⋉c+1 and idN⋉c−1 contain a common element (namely
τ ⋉ c−1 for a certain τ ∈ Inj(N)).

The preceding remark suggests the following refinement of Question A2:

Question 3.3.14. Is there an ω-categorical (transitive?) relational structure A such that
there exists a Hausdorff (even Polish?) semigroup topology on End(A) which is not finer
than the topology of pointwise convergence?

3.3.3 Proof details

In this subsection, we prove Lemmas 3.3.10, 3.3.11 and 3.3.12 in sequence.

Proof (of Lemma 3.3.10).
(i). The setMφ̃,ψ̃ ⊆ Inj(N) is open with respect to Tpw|Inj(N) since φ̃ and ψ̃ are continuous

with respect to Tpw|Inj(N).
(ii). Set U := Mφ̃,ψ̃ and note that if u := φ(τ ⋉ t) and v := ψ(τ ⋉ t), then ũ = φ̃(τ) ̸=

ψ̃(τ) = ṽ, so u ̸= v.

The second lemma requires more work.

1If ψh is longer than φh, we exchange these two terms.
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Proof (of Lemma 3.3.11). We start by fixing some notation. We first write pj =
Uξj

i∈N pj,i,

qj =
Uθj

i∈N qj,i (so ξj = p̃j , θj = q̃j) and δ := φ̃(idN) = ψ̃(idN). Further, we define
Ξj := ξjξj−1 . . . ξ0 as well as Θj := θjθj−1 . . . θ0, j = 0, . . . , k. In particular, Ξk = Θk = δ.
Let the two (distinct, by assumption) functions φ(idN⋉c+1) and ψ(idN⋉c+1) differ at the
point (h, x) ∈ G. Further, set e ∈ {−1,+1} such that x ∈ Ae and choose any x′ ∈ A−e.

In the course of the proof, we will require the explicit expansions of the compositions in
φ(idN⋉c±1) and ψ(idN⋉c±1):

φ(idN⋉c±1) =
U
i∈N

δpk,Ξk−1(i)c±1pk−1,Ξk−2(i) . . . c±1p0,i

ψ(idN⋉c±1) =
U
i∈N

δqk,Θk−1(i)c±1qk−1,Θk−2(i) . . . c±1q0,i.

We proceed in two steps – first, we show that idN⋉c−1 ∈ Mφ,ψ; second, we extend this
to τ ⋉ c−1 for all τ in an appropriately constructed Tpw|Inj(N)-open neighbourhood of idN.

(1). idN⋉c−1 ∈ Mφ,ψ: We compare φ(idN⋉c±1) and ψ(idN⋉c±1) at (h, x) as well
as (h, x′). In order to simplify notation, we define2

m := sgn(pk−1,Ξk−2(h)) · sgn(pk−2,Ξk−3(h)) · . . . · sgn(p0,h)
n := sgn(qk−1,Θk−2(h)) · sgn(qk−2,Θk−3(h)) · . . . · sgn(q0,h).p := pk,Ξk−1(h).q := qk,Ξk−1(h)

and conclude

[φ (idN⋉c+1)](h, x) =
(
δ(h), .p(ame)

)
, [φ (idN⋉c−1)](h, x) =

(
δ(h), .p(ame(−1)k)

)
[ψ (idN⋉c+1)](h, x) =

(
δ(h), .q(ane)), [ψ (idN⋉c−1)](h, x) =

(
δ(h), .q(ane(−1)k)

)
[φ (idN⋉c+1)](h, x

′) =
(
δ(h), .p(a−me)

)
, [φ (idN⋉c−1)](h, x

′) =
(
δ(h), .p(a−me(−1)k)

)
[ψ (idN⋉c+1)](h, x

′) =
(
δ(h), .q(a−ne)

)
, [ψ (idN⋉c−1)](h, x

′) =
(
δ(h), .q(a−ne(−1)k)

)
If {.p(a+1), .p(a−1)

} ̸= {.q(a+1), .q(a−1)
}
,

then φ(idN⋉c−1) and ψ(idN⋉c−1) cannot coincide on both (h, x) and (h, x′), so idN⋉c−1 ∈
Mφ,ψ as claimed.

In case of {.p(a+1), .p(a−1)
}
=

{.q(a+1), .q(a−1)
}
,

we distinguish further: If m = n, then [φ(idN⋉c+1)](h, x) ̸= [ψ(idN⋉c+1)](h, x) shows

.p(a+1) = .q(a−1) as well as .p(a−1) = .q(a+1)

2m and n count how many times the fixed functions (except for the outermost ones) involved in evaluating
φ(idN ⋉c±1) and ψ(idN ⋉c±1) switch the parts of the h-th copy of K2,ω.
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which leads to3 [φ(idN⋉c−1)](h, x) ̸= [ψ(idN⋉c−1)](h, x), so idN⋉c−1 ∈ Mφ,ψ as claimed.
If on the other hand m = −n, then we analogously obtain.p(a+1) = .q(a+1) as well as .p(a−1) = .q(a−1)

and [φ(idN⋉c−1)](h, x) ̸= [ψ(idN⋉c−1)](h, x), so idN⋉c−1 ∈ Mφ,ψ as claimed.
(2). There exists a Tpw|Inj(N)-open neighbourhood U ⊆ Inj(N) of idN such that τ ⋉ c−1 ∈

Mφ,ψ for all τ ∈ U : One immediately checks that for arbitrary t ∈ End(K2,ω), the map
χt : Inj(N) → End(G), χt(τ) := τ⋉t is continuous with respect to Tpw|Inj(N) and4 Tpw|End(G).
Since Mφ,ψ is open with respect to Tpw|End(G), the preimage U := χ−1

c−1
(Mφ,ψ) ⊆ Inj(N) is

open with respect to Tpw|Inj(N). By (1), the set U contains idN – completing the proof.

Finally, we show the third lemma.

Proof (of Lemma 3.3.12).
(i). We have to prove that for two tuples z̄, w̄ of the same length such that w̄ does not

contain the same value twice (since we are working in Inj(N)), the intersection

{τ ∈ Inj(N) : τ(z̄) = w̄} ∩Mφ̃,ψ̃

is nonempty. The idea behind the proof is to find an element x0 ∈ N and inductively
construct a partial injection .τ which extends z̄ ,→ w̄ such that the values

[φ̃(.τ)](x0) = ξk.τξk−1.τ . . . .τξ0(x0) and [ψ̃(.τ)](x0) = θℓ.τθℓ−1.τ . . . .τθ0(x0)
are welldefined (i.e. ξ0(x0) ∈ Dom(.τ), ξ1.τξ0(x0) ∈ Dom(.τ) et cetera) and [φ̃(.τ)](x0) ̸=
[ψ̃(.τ)](x0). This gives τ(z̄) = w̄ and τ ∈ Mφ̃,ψ̃ for any τ ∈ Inj(N) extending .τ .

More precisely, we will define (not necessarily distinct) elements x0, . . . , xk, x
′
0, . . . , x

′
k ∈ N

and y0 . . . , yℓ, y
′
0, . . . , y

′
ℓ ∈ N such that

(1) x0 = y0.

(2) x′j = ξj(xj) for all j = 0, . . . , k.

(3) y′j = θj(yj) for all j = 0, . . . , ℓ.

(4) .τ defined by z̄ ,→ w̄, (x′0, . . . , x′k−1) ,→ (x1, . . . , xk), (y
′
0, . . . , y

′
ℓ−1) ,→ (y1, . . . , yℓ) is a

welldefined5 partial injection.

(5) x′k ̸= y′ℓ. (This will crucially depend on the assumption ℓ < k.)

We first pick x0 = y0 ∈ N such that x′0 := ξ0(x0) /∈ z̄ and y′0 := θ0(y0) /∈ z̄; this is possible
since the set ξ−1

0 (z̄) ∪ θ−1
0 (w̄) of forbidden points is finite by injectivity of ξ0 and θ0. Note

that x′0 and y′0 are not necessarily different (in particular, ξ0 = θ0 is possible).
Suppose 1 ≤ i ≤ ℓ and that x0, . . . , xi−1, x

′
0, . . . , x

′
i−1 as well as y0, . . . , yi−1, y

′
0, . . . , y

′
i−1

are already defined such that (1)-(4) hold (with i − 1 in place of both k and ℓ). We ab-
breviate Xi−1 := {x0, . . . , xi−1}, X ′

i−1 := {x′0, . . . , x′i−1} and Yi−1 := {y0, . . . , yi−1}, Y ′
i−1 :=

{y′0, . . . , y′i−1}. Pick xi, yi /∈ w̄ ∪Xi−1 ∪ Yi−1 such that x′i := ξi(xi) /∈ z̄ ∪X ′
i−1 ∪ Y ′

i−1 and
y′i := θi(yi) /∈ z̄ ∪X ′

i−1 ∪Y ′
i−1 with the additional property that6 xi and yi are chosen to be

3Here we use that φ and ψ have equal lengths (or more precisely: lengths of equal parity).
4Caution! We briefly consider the pointwise topology on End(G) instead of the Zariski topology.
5This means that if e.g. x′

0 = y′
0, then x1 = y1.

6This ensures that .τ is welldefined and injective.
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distinct if and only if x′i−1 and y′i−1 are distinct (to obtain a welldefined partial injection
in (4)). As with the construction of x0 above, this is possible by finiteness of the forbidden
sets.
If ℓ+1 ≤ i ≤ k and if x0, . . . , xi−1, x

′
0, . . . , x

′
i−1 as well as y0, . . . , yℓ, y

′
0, . . . , y

′
ℓ are already

defined such that (1)-(4) hold (with i− 1 in place of k), then we again abbreviate Xi−1 :=
{x0, . . . , xi−1}, X ′

i−1 := {x′0, . . . , x′i−1} and Yℓ := {y0, . . . , yℓ}, Y ′
ℓ := {y′0, . . . , y′ℓ}. Analo-

gously to the previous step, we pick xi /∈ w̄∪Xi−1∪Yℓ such that x′i := ξi(xi) /∈ z̄∪X ′
i−1∪Y ′

ℓ .
Note that in the final step i = k, we are picking xk such that7 x′k /∈ z̄ ∪ X ′

k−1 ∪ Y ′
ℓ . In

particular, we require x′k ̸= y′ℓ, i.e. (5).
(ii). The set V := Mφ̃,ψ̃ ⊆ Inj(N) is Tpw|Inj(N)-dense by the first statement and clearly

Tpw|Inj(N)-open. For τ ∈ V , we set u := φ(τ ⋉ c−1) as well as v := ψ(τ ⋉ c−1) and note that

ũ = φ̃(τ) ̸= ψ̃(τ) = ṽ. This yields τ ⋉ c−1 ∈ Mφ,ψ as desired.

7At this point, it is crucial that ℓ < k since we would never enter the second phase ℓ + 1 ≤ i ≤ k of the
construction otherwise (more precisely, if ℓ were equal to k, we would have to determine x′

k at the same
time as y′

ℓ and could not make sure that they are different).
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4 The semigroup of increasing functions on
the rational numbers has a unique Polish
topology

This chapter is devoted to answering Question B positively: we show that the endomor-
phism monoid of ⟨Q,≤⟩ has UPP. In Section 4.1, we introduce some useful notation and
revisit automatic continuity as well as the Back&Forth method in the context of ⟨Q,≤⟩.
Section 4.2 provides an overview of the situation and relates our question to prior work.
We proceed by presenting the proof strategy more thoroughly in Section 4.3. The details
of the proof are then contained in Sections 4.4 and 4.5.

4.1 Tools & Notions: notation; more on automatic continuity
and Back&Forth

We start by defining some notational shorthands.

Notation 4.1.1. We set

MQ := End(Q,≤) = {f : Q → Q | f increasing} ,
GQ := Aut(Q,≤) = {f : Q → Q | f bijective, (strictly) increasing} .

Additionally, it will be useful to embed Q into the real numbers R. Consequently, we will
allow intervals with irrational boundary points as well. Differing from standard notation,
we only consider the rational points in this interval, unless explicitly mentioned otherwise:

Notation 4.1.2. For γ1, γ2 ∈ R ∪ {±∞}, we put (γ1, γ2) := {q ∈ Q : γ1 < q < γ2}. If
s ∈ MQ, we will denote s((−∞, γ)) by s(−∞, γ) et cetera to avoid lengthy typesetting. In
the same spirit, we will write sup Im(s) as sup s and inf Im(s) as inf s.

Finally, we abbreviate I := R \Q.

Intervals will be distinguished as follows:

Definition 4.1.3. An interval is called rational if its boundary points are contained in
Q ∪ {±∞}, and irrational if its boundary points are contained in I ∪ {±∞}.
Next, we apply the notion of automatic continuity (see Definition 2.6.4) to MQ as well

as GQ. As it turns out, (MQ, Tpw) does not have automatic continuity while (GQ, Tpw)
satisfies a very strong version. We begin with the negative result which is a straightforward
application of Proposition 2.6.6:
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Proposition 4.1.4. (MQ, Tpw) does not have automatic continuity with respect to the class
of Polish semigroups.

Proof. We set M := MQ as well as

N := {f ∈ MQ : inf f = −∞ and sup f = +∞}
and check the assumptions of Proposition 2.6.6. Clearly, N is a submonoid of M . If we
define fn ∈ MQ by

fn(x) :=

{
0, −n < x < n

x, x ≤ −n or x ≥ n

we have fn ∈ N but the sequence (fn)n∈N converges with respect to the pointwise topology,
namely to the constant function with value 0 – which is not in N . Hence, N is not
Tpw-closed. Finally, if g ∈ M and f /∈ N , e.g. Im(f) ⊆ [u,+∞), then Im(fg) ⊆ [u,+∞)
and Im(gf) ⊆ [g(u),+∞), so fg, gf /∈ N .
By Proposition 2.6.6, the topological semigroup (MQ, Tpw) does not have automatic

continuity with respect to the class of Polish semigroups.

On the other hand, GQ with the pointwise topology does have automatic continuity by
the following result due to Rosendal and Solecki (which we reformulate to fit our notation).

Theorem 4.1.5 ([RS07, Corollary 5] combined with the remarks before [RS07, Corol-
lary 3]). (GQ, Tpw) has automatic continuity with respect to the class of second countable
topological groups.

Explicitly, this means: If (H,O) is a second countable topological group, then any group
homomorphism φ : (GQ, Tpw) → (H,O) is continuous. By Proposition 2.6.5, the notions
of automatic continuity with respect to the classes of second countable topological groups
and second countable topological semigroups are equivalent, so we obtain:

Proposition 4.1.6. (GQ, Tpw) has automatic continuity with respect to the class of sec-
ond countable topological semigroups, explicitly: If (H,O) is a second countable topological
semigroup, then any semigroup homomorphism (GQ, Tpw) → (H,O) is continuous.

Finally, we use the technique of Back&Forth to find an answer to the following question:
given s, f ∈ MQ, under which conditions does there exist a map s′ ∈ MQ such that
s = fs′?

Lemma 4.1.7. Let s, f ∈ MQ such that Im(s) ⊆ Im(f).

(i) Any finite partial increasing map m0 from Q to Q satisfying s(p) = fm0(p) for all
p ∈ Dom(m0) can be extended to s′ ∈ MQ with s = fs′.

(ii) Additionally suppose that for each w ∈ Im(f) the preimage f−1{w} is an irrational
interval. Then any finite partial increasing injective map m0 from Q to Q satisfying
s(p) = fm0(p) for all p ∈ Dom(m0) can be extended to an injective s′ ∈ MQ with
s = fs′.

Proof. The proofs of both statements are almost parallel: one verifies that the system S
of all finite partial increasing [for (ii): strictly increasing] maps m from Q to Q satisfying
s(p) = fm(p) for all p ∈ Dom(m) is a Forth system and applies Lemma 2.8.2.
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4.2 Overview

As mentioned in the Introduction (Chapter 1), Question B cannot be answered using known
techniques: since (MQ, Tpw) does not have automatic continuity but (GQ, Tpw) does, the
monoid MQ equipped with the pointwise topology cannot satisfy Property X (or even
Pseudo-Property X) with respect to the group (GQ, Tpw) by Proposition 2.7.3(ii). Further,
the monoid does not fall into the regime of the known counterexamples either – in particular,
Example 2.6.3 does not apply: MQ cannot be represented as a self-embedding monoid
(it contains non-injective functions). On the other hand, Example 2.6.3 does encompass
End(Q, <) = Emb(Q,≤), so if we were to replace MQ = End(Q,≤) by End(Q, <) in
Question B, the resulting question would have a simple (negative) answer.
The main goal of the present chapter is to show the following theorem:

Theorem B. The pointwise topology is the unique Polish semigroup topology on MQ.

It can be readily seen that the pointwise topology on MQ coincides with the Zariski
topology, yielding that Tpw is coarser than any Polish semigroup topology on MQ (Step (1)
from the Introduction), see also Corollary 3.2.1. The essence of our strategy to prove
the converse direction (Step (2) from the Introduction) and thus Theorem B is to find a
finer topology (which turns out to be neither Polish nor a semigroup topology) on MQ,
the so-called rich topology Trich, with the following two properties: On the one hand,
the rich topology needs to be sufficiently fine that MQ equipped with the rich topology
satisfies Pseudo-PropertyX with respect to (GQ, Tpw) which gives that any Polish semigroup
topology is contained in Trich; on the other hand, the rich topology needs to be sufficiently
coarse that any Polish semigroup topology T with Tpw ⊆ T ⊆ Trich can be shown to indeed
coincide with the pointwise topology. The latter reduction property is new and does not
play a role in the previous proofs from [EJM+] and [EJM+23].

Examining our proof more closely, we in fact show a stronger result: We do not apply
the full power of Polishness to prove that a Polish semigroup topology T on MQ coincides
with the pointwise topology. Instead, we only use that T is a semigroup topology which is
second countable, Hausdorff and regular, as well as that a countable intersection of dense
open sets is dense, i.e. that (MQ, T ) is a Baire space (the conclusion of Baire’s Category
Theorem holds). By Urysohn’s metrisation theorem (see e.g. [Wil70]), a second countable
space is metrisable if and only if it is Hausdorff and regular, so we can reformulate our result
in the following form: The pointwise topology is the unique second countable metrisable
Baire semigroup topology on MQ. Comparing with [EJM+23], most examples treated
there (in particular, all examples listed in the Introduction) do not need full Polishness
either; the results instead yield that the respective pointwise topologies are the unique
second countable Hausdorff semigroup topologies. Hence, no regularity or completeness-
type assumptions are necessary for these structures. For MQ, we additionally need that
the topology is regular and Baire, namely in the new reduction from the rich topology to
the pointwise topology which does not occur in [EJM+23].
A notion related to UPP that has been considered over the years is automatic homeo-

morphicity as studied e.g. in [BEKP18, BPP17, BTVG17, EH90, PP16, PP18]:

Definition 4.2.1. Let S ≤ AA be a sub(-semi-)group of Sym(A) (or AA) which is closed
with respect to the pointwise topology on Sym(A) (or AA). We say that S has automatic
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4 The semigroup of increasing functions on the rational numbers has a unique Polish topology

homeomorphicity if any algebraic isomorphism from S to another closed sub(-semi-)group T
of Sym(A) (or AA) is indeed a homeomorphism between the respective pointwise topologies
on S and T .

This property clearly is a weakening of UPP; it can be paraphrased as “unique pointwise-
like semigroup topology”. The paper [BTVG17] considered automatic homeomorphicity
for transformations on the rational numbers; we quote the following:

Theorem 4.2.2 ([BTVG17, Theorems 2.6 and 4.5]). Both End(Q,≤) and End(Q, <) have
automatic homeomorphicity.

These results allow two interesting conclusions: On the one hand, they provide some
evidence backing the conjecture that End(Q,≤) might have UPP. On the other hand, they
show that this cannot be taken for granted – while End(Q, <) has automatic homeomorphi-
city, we have already argued that it does not have UPP by an application of Example 2.6.3.
Consequently, the topology exhibited via this example is a “proper” Polish topology which
is not pointwise-like, i.e. it cannot be represented as a pointwise topology on some closed
submonoid of AA.

4.3 Proof strategy

As outlined in Section 4.2, we have to enrich the topology on MQ in order to make Pseu-
do-Property X with respect to (GQ, Tpw) possible. To motivate, consider s ∈ MQ which
is “unbounded on both sides”, i.e. inf s = −∞ and sup s = +∞. Using the notation
from Definition 2.7.1 and applying Remark 2.7.2, we strive for a representation of the

form ess = h
(m+1)
s a

(m)
s h

(m)
s a

(m−1)
s . . . a

(1)
s h

(1)
s with es left-invertible and a

(i)
s ∈ GQ. In par-

ticular, es has to be unbounded on both sides as well, thus so too is the right hand side

h
(m+1)
s a

(m)
s h

(m)
s a

(m−1)
s . . . a

(1)
s h

(1)
s and consequently each h

(i)
s . For any V (i) ⊆ GQ, the set

h
(m+1)
s V (m)h

(m)
s V (m−1) . . . V (1)h

(1)
s therefore only contains functions which are unbounded

on both sides. Hence, any set U such that esU ⊆ h
(m+1)
s V (m)h

(m)
s V (m−1) . . . V (1)h

(1)
s must

consist of such functions. Thus, in any topology on MQ which yields Pseudo-Property X,
the set of all functions which are unbounded on both sides must have nonempty interior.
Similar reasonings apply to the remaining kinds of “boundedness behaviour”.

We define several types of subsets of MQ:

Definition 4.3.1.

(0) O
(0)
x,y := {s ∈ MQ : s(x) = y}; (pointwise)

x, y ∈ Q

(1) O
(1)
I,J := {s ∈ MQ : s(I) ⊆ J}; (generalised pointwise)

I = (−∞, p) and either J = (−∞, q] or J = (−∞, q) OR

I = (p,+∞) and either J = [q,+∞) or J = (q,+∞) for p, q ∈ Q
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(1cls) O
(1)
I,J := {s ∈ MQ : s(I) ⊆ J}; (generalised pointwise,

I = (−∞, p) and J = (−∞, q] OR closed image constraint)

I = (p,+∞) and J = [q,+∞) for p, q ∈ Q

(2) O
(2)
LU := {s ∈ MQ : inf s ∈ L, sup s ∈ U}; (boundedness types)

L = R or L = {−∞} AND U = R or U = {+∞}
Explicitly, these are the following four sets:

O
(2)
R,R := {s ∈ MQ : inf s ∈ R, sup s ∈ R} (bounded-bounded)

O
(2)
−∞,R := {s ∈ MQ : inf s = −∞, sup s ∈ R} (unbounded-bounded)

O
(2)
R,+∞ := {s ∈ MQ : inf s ∈ R, sup s = +∞} (bounded-unbounded)

O
(2)
−∞,+∞ := {s ∈ MQ : inf s = −∞, sup s = +∞} (unbounded-unbounded)

(3) O
(3)
K := {s ∈ MQ : Im(s) ∩K = ∅}; (avoiding)

K = [q1, q2] or K = [q1, q2) or

K = (q1, q2] or K = (q1, q2) for q1, q2 ∈ Q ∪ {±∞}, q1 ≤ q2

(3opn) O
(3)
K := {s ∈ MQ : Im(s) ∩K = ∅}; (avoiding, open constraint)

K = (q1, q2) for q1, q2 ∈ Q ∪ {±∞}, q1 < q2

We mention explicitly that the sets formed analogously to type 1 but with closed in-
tervals I are already encompassed by type 0, i.e. the pointwise topology. For instance, if
I = (−∞, p] and J = (−∞, q] or J = (−∞, q), then

{s ∈ MQ : s(I) ⊆ J} =
U
y∈J

{s ∈ MQ : s(p) = y} ∈ Tpw.

We will make use of this fact in Section 4.5.
The types of sets defined above yield a template for constructing topologies.

Definition 4.3.2. If M ⊆ {0, 1, 1cls, 2, 3, 3opn}, then TM is the topology generated by
the sets of the types occurring in M . We further define the rich topology Trich := T0123;
explicitly, this is the topology generated by

Tpw ∪
{
O

(1)
I,J : I = (−∞, p), J ∈ {(−∞, q], (−∞, q)}, p, q ∈ Q

}
∪
{
O

(1)
I,J : I = (p,+∞), J ∈ {[q,+∞), (q,+∞)}, p, q ∈ Q

}
∪
{
O

(2)
R,R, O

(2)
−∞,R, O

(2)
R,+∞, O

(2)
−∞,+∞

}
∪
{
O

(3)
K : K ∈ {[q1, q2], [q1, q2), (q1, q2], (q1, q2)}, q1, q2 ∈ Q ∪ {±∞}, q1 ≤ q2

}
.

If x1, . . . , xn, y1, . . . , yn ∈ Q, it will be convenient to abbreviate O
(0)
x̄,ȳ :=

∩n
i=1O

(0)
xi,yi .

37



4 The semigroup of increasing functions on the rational numbers has a unique Polish topology

Remark 4.3.3. We note that T02, i.e. the topology generated by Tpw together with the
boundedness types, “almost” is an alternative topology on MQ satisfying our requirements.
It is immediate that T02 is a second countable Hausdorff semigroup topology. Further, it

is regular since the boundedness types O
(2)
R,R, O

(2)
−∞,R, O

(2)
R,+∞, O

(2)
−∞,+∞ are clopen in T02,

thus it is metrisable by Urysohn’s metrisation theorem (see e.g. [Wil70]). However, the
topology T02 is not completely metrisable, for otherwise the closed (in particular Gδ) sub-

set O
(2)
R,R equipped with the subspace topology (which coincides with the pointwise topology)

would be completely metrisable as well and thus a Baire space. As a contradiction, the

sets On :=
{
s ∈ O

(2)
R,R : sup s > n

}
, n ∈ N, are dense and open in O

(2)
R,R but have empty

intersection.

With this terminology, we can formulate our main technical results.

Proposition 4.3.4. (MQ, Trich), the endomorphism monoid equipped with the rich topol-
ogy, has Pseudo-Property X of length 2 with respect to (GQ, Tpw).

Let us note that we deem it unlikely that MQ equipped with any meaningful topology
could have Pseudo-PropertyX of length 1 (so Pseudo-PropertyX) with respect to (GQ, Tpw)
since it is only the second automorphism which gives us enough flexibility and control over
discontinuity points (see Definition 4.4.1 for this notion).

Proposition 4.3.5. Let T be a Polish semigroup topology on the monoid MQ such that
Tpw ⊆ T ⊆ Trich. Then T = Tpw.

Before we get to their proofs, let us comment on how Theorem B follows from these
results.

Proof (of Theorem B given Propositions 4.3.4 and 4.3.5). Let T be a Polish semigroup to-
pology on MQ. By Corollary 3.2.1(i), we know that the pointwise topology is the coarsest
Hausdorff semigroup topology on MQ = End(Q,≤), so we obtain Tpw ⊆ T . On the
other hand, we note that (GQ, Tpw) has automatic continuity with respect to the class of
second countable topological semigroups by Proposition 4.1.6. Combining Proposition 4.3.4
with Proposition 2.7.3(ii) yields that (MQ, Trich) has automatic continuity with respect to
the class of second countable topological semigroups as well. Since (MQ, T ) is second
countable, the identity map id: (MQ, Trich) → (MQ, T ) is therefore continuous, in other
words T ⊆ Trich. By Proposition 4.3.5, we finally conclude T = Tpw.
The proofs of Propositions 4.3.4 and 4.3.5 are the subject of Sections 4.4 and 4.5, respec-

tively.
In the former section, we will find generic maps e, f, g, h ∈ MQ (with e left-invertible)

so that the compositions fahbg for a, b ∈ GQ exhaust the maps es for a great variety of
s ∈ MQ. Further, we will – roughly speaking – analyse how the compositions fahbg change
with varying a, b ∈ GQ. Some of the complexity arises from the requirement that a, b be
automorphisms.
The latter section has a different flavour in that we can allow maps to vary within MQ,

yielding less intricate constructions. Nonetheless, most (but not all) intermediate results
can be reformulated as – albeit easier – Property X-type statements, namely with respect
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4.4 The rich topology has Pseudo-Property X

to the entire semigroup MQ (equipped with different topologies) instead of GQ. One major
exception (Proposition 4.5.20) crucially employs regularity of the topology T in combination
with Polishness and cannot be reformulated as a (Pseudo-)Property X-type statement, for
good reason: if the proof of Proposition 4.3.5 just consisted of a series of such statements,
we could start from Proposition 4.3.4 and repeatedly apply Proposition 2.7.3 to show
that (MQ, Tpw) has automatic continuity with respect to the class of second countable
topological semigroups, contradicting Proposition 4.1.4.

4.4 The rich topology has Pseudo-Property X

This section is devoted to proving Proposition 4.3.4. With Remark 2.7.2 in mind, we want
to find a decomposition ess = fsashsbsgs of a given s ∈ MQ with es, fs, gs, hs ∈ MQ
and as, bs ∈ GQ as well as a Trich-neighbourhood U of s such that for any s̃ ∈ U , we can
similarly decompose ess̃ = fsãhsb̃gs with ã, b̃ ∈ GQ and the same maps es, fs, gs, hs. Given
Tpw-neighbourhoods V and W of as and bs, respectively, we additionally have to make sure
that U can be taken small enough that for any s̃ ∈ U , we can pick ã ∈ V and b̃ ∈ W . This
means that ã and as need to have the same behaviour on a given finite set, as do b̃ and bs.

We will proceed in three steps. First, we will derive “compatibility conditions” such
that ess can be written in the form fsasιs. These conditions exhibit such a tight connection
between s and ιs that U can never force ess̃ to satisfy these conditions for all s̃ ∈ U and
a fixed ιs. In a second step, we will therefore expand ιs in the form ιs = hsbsgs for fixed
gs, hs ∈ MQ and varying bs ∈ GQ, yielding indeed ess = fsashsbsgs. For s̃ ∈ U , it turns out
that we can pick ι̃ = hsb̃gs which is compatible with ess̃ to obtain ess̃ = fsãι̃ = fsãhsb̃gs.
All the while, we have to make sure that ã and as as well as b̃ and bs coincide on given
finite sets, resulting in a third major step.

4.4.1 Generic surjections, generic injections, sparse injections and basic
formulas

Definition 4.4.1. Let s ∈ MQ. We set

Cont(s) := {γ ∈ R : sup s(−∞, γ) = inf s(γ,+∞)}
Dc(s) := {γ ∈ R : sup s(−∞, γ) < inf s(γ,+∞)} ,

the sets of continuity points and discontinuity points of s, respectively. Additionally, we
write DcI(s) := Dc(s) ∩ I for notational simplicity. Finally, we extend s to an increasing
map s̄ : R → R by setting s̄(γ) := sup s(−∞, γ) for all γ ∈ I.

We will frequently use the notion of limit points in the following sense:

Definition 4.4.2. Let A ⊆ Q and γ ∈ R. We say that γ is a limit point of A if γ is
contained in the closure of A \ {γ} with respect to the standard topology on R. The set of
all limit points of A will be denoted by LP(A). If s ∈ MQ, we will abbreviate LP(Im(s))
as LP(s) for better readability.

We collect a few easy facts:
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4 The semigroup of increasing functions on the rational numbers has a unique Polish topology

Lemma 4.4.3. Let s ∈ MQ.

(i) Dc(s) is at most countable.

(ii) If s is injective and LP(s) ⊆ I, then Q ⊆ Dc(s) and s̄(I) ⊆ I. In fact, sup s(−∞, q) <
s(q) < inf s(q,+∞) for all q ∈ Q. Additionally, (R \ Im(s̄)) ∩ I is topologically dense
in R.

(iii) If b ∈ GQ, then Dc(b) = ∅ and b̄ : R → R is a strictly increasing bijection with b̄(I) ⊆ I.
Additionally, any increasing extension β of b to a set M ⊆ R coincides with b̄|M .

We define three kinds of generic maps in MQ.

Definition 4.4.4.

(i) A map f ∈ MQ is called a generic surjection if it is surjective and for each q ∈ Q,
the preimage f−1{q} is an irrational interval, i.e. f−1{q} = (rq, tq) for rq, tq ∈ I.

(ii) A map g ∈ MQ is called a generic injection if it is injective and unbounded-
unbounded with DcI(g) = ∅ and LP(g) ⊆ I.

(iii) A map h ∈ MQ is called a sparse injection if it is injective, DcI(h) is topologically
dense in R and LP(h) ⊆ I.

It is an easy observation that such maps really exist.

Lemma 4.4.5.

(i) For every A ⊆ Q, there exists a map f ∈ MQ with Im(f) = A such that the
f -preimages of single elements are irrational intervals. In particular, there exists
a generic surjection.

(ii) For every finite or countably infinite A ⊆ I and every boundedness type O
(2)
LU , there

exists an injective map ι ∈ O
(2)
LU which satisfies Dc(ι) = A ∪̇Q as well as LP(ι) ⊆ I.

(iii) There exists a generic injection in MQ.

(iv) There exists a sparse injection in MQ of any boundedness type.

Proof.
(i). We put M := A × Q and set <M to be the lexicographic order on M where the

first component is the significant one. Define π : M → Q by π(w, q) := w. Since (M,<M )
is countably infinite and densely ordered without greatest or least element, there exists an
order isomorphism α : Q → M . Setting f := π ◦ α, we obtain a map as desired.

(ii). We only consider the case O
(2)
LU = OR,+∞; the others are treated analogously. Put

M := (A ∪̇Q ∪̇ {−∞})×Q

and set <M to be the lexicographic order on M where the first component is the significant
one. Define j : Q → M by j(x) := (x, 0). Since (M,<M ) is countably infinite and densely
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4.4 The rich topology has Pseudo-Property X

ordered without greatest or least element, there exists an order isomorphism β : M → Q.
Setting ι := β ◦ j ∈ MQ, we obtain a map as desired.

(iii). Setting A = ∅ as well as O
(2)
LU = O

(2)
−∞,+∞ and using (ii), we obtain a generic

injection.
(iv). Setting A ⊆ I to be a countably infinite topologically dense set and using (ii), we

obtain a sparse injection with any boundedness type.

Another useful notion is given by the generalised inverse of maps in MQ.

Definition 4.4.6. Let s ∈ MQ and y ∈ Q. Define1 sL(y) := sup s−1(−∞, y) ∈ R ∪ {±∞}
and sR(y) := inf s−1(y,+∞) ∈ R ∪ {±∞}. If sL(y) and sR(y) coincide, we define s†(y) :=
sL(y) = sR(y) (the generalised inverse of s at y).

The following observations are easily deduced directly from the definitions.

Lemma 4.4.7.

(i) Let s ∈ MQ. If y ∈ Im(s) and if x ∈ Q is the only s-preimage of y, then s†(y) = x.

(ii) Let s ∈ MQ be injective. Then s†(y) is a welldefined real number for all elements
y ∈ (inf s, sup s).

(iii) Let g ∈ MQ be a generic injection. Then g†(y) ∈ Q for all y ∈ Q. In particular, g
is left-invertible in MQ with left inverse g†. Moreover, for all rational intervals J
with boundary points q1 and q2 in Q∪{±∞}, the preimage g−1(J) is again a rational
interval with boundary points2 g†(q1) and g†(q2).

(iv) Let g ∈ MQ be a generic injection. Then the translation λg : s ,→ gs is continuous as
a map3 (MQ, Trich) → (MQ, Trich).
(combine the Tpw-continuity of λg with (iii) and the fact that s and gs have the same
boundedness type since g is unbounded-unbounded)

As mentioned in the introduction of Section 4.4, we will derive compatibility conditions
such that ess = fsasιs for maps s, es, fs, ιs ∈ MQ and as ∈ GQ. It will be convenient to
consider a slightly more general situation and aim for σ = πaι; this will then be applied
for π = fs and σ := ess, and later on for σ̃ := ess̃. Again by the introductory remarks, we
will need to make sure that the function a maps x̄ ,→ ȳ for given tuples x̄, ȳ.

First, we reformulate our problem in model-theoretic language. As a starting point, note
that σ = πaι is equivalent to the fact that a(ι(q)) ∈ π−1{σ(q)} for all q ∈ Q. Since π is
increasing, the preimage π−1{σ(q)} is an interval. Thus, if σ(q) = σ(q′) for some q, q′ ∈ Q,
then not only do ι(q) and ι(q′) have to be mapped to the same interval, but all points
between ι(q) and ι(q′) have to be as well. This motivates the following definition:

Definition 4.4.8.

1We put sup ∅ := −∞ and inf ∅ := +∞.
2Note, however, that e.g. g−1[q1, q2] need not be closed.
3Since Trich is not a semigroup topology – a fact on which most of Section 4.5 hinges – this cannot be
taken for granted and depends on the genericity of g.
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4 The semigroup of increasing functions on the rational numbers has a unique Polish topology

(i) Let {Pq : q ∈ Q} be a set of unary relation symbols and define the language L by4

L := {<} ∪ {Pq : q ∈ Q}.
(ii) Let σ, π, ι ∈ MQ. For q ∈ Q, we set

PA
q := convex hull of ι(σ−1{σ(q)})

PB
q := π−1{σ(q)}

and define L-structures A =
<
Q, <, (PA

q )q∈Q
>
and B =

<
Q, <, (PB

q )q∈Q
>
. If σ, π, ι are

not clear from the context, we will write A(σ, π, ι) and B(σ, π, ι).

In the sequel, L, A and B will always denote the objects just defined. Note that a sur-
jective L-homomorphism a : A → B is automatically contained in GQ and satisfies σ = πaι.
Thus, our aim is to construct a surjective L-homomorphism extending a given map x̄ ,→ ȳ.
We will do so using the Back&Forth method, see Subsection 2.8.

Definition 4.4.9. A formula ψ(z̄) over L is called basic if it is one of the formulas

(i) Pq(zi), q ∈ Q

(ii) zi < zj

(iii) Lq(zi) :↔ ∃u : u < zi ∧ Pq(u), q ∈ Q

(iv) Rq(zi) :↔ ∃u : u > zi ∧ Pq(u), q ∈ Q

For a basic formula ψ(z̄) and a tuple x̄ in A, we write A |= ψ(x̄) if x̄ satisfies the formula ψ(z̄)
in A; we analogously define B |= ψ(ȳ). If m is a (potentially partial) map from A to B,
then m is said to preserve ψ(z̄) if A |= ψ(x̄) implies B |= ψ(m(x̄)) for all tuples x̄ in the
domain of m.

Note that basic formulas contain only existential and no universal quantifiers, so total
homomorphisms A → B always preserve all basic formulas. In the following, we will work
with partial maps from A to B preserving all basic formulas, either extending maps without
losing that property or analysing when a given map indeed preserves all basic formulas.

4.4.2 Proving Proposition 4.3.4

The crucial technical results necessary for the proof of Proposition 4.3.4 are three lem-
mas, one for each of the steps mentioned in the introduction of Section 4.4: the Sandwich
Lemma 4.4.11, the Preconditioning Lemma 4.4.12 and the Variation Lemma 4.4.13. In
this subsection, we formulate them and demonstrate how they are used to show Proposi-
tion 4.3.4. For proofs of the three lemmas, we refer to the following subsections. We start
by fixing some notation for the sake of brevity:

Definition 4.4.10. We say that σ, π, ι ∈ MQ are compatible if

(a) σ ∈ MQ satisfies LP(σ) ⊆ I,
4Note: < instead of ≤!
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(b) π ∈ MQ is a generic surjection,

(c) ι ∈ MQ is injective with LP(ι) ⊆ I, has the same boundedness type as σ and satisfies
DcI(ι) = DcI(σ).

Lemma 4.4.11 (Sandwich Lemma). Let σ, π, ι ∈ MQ be compatible.
Then the following statements hold:

(i) The set of all finite partial L-homomorphisms m from A to B preserving all basic
formulas is a Back&Forth system.

(ii) There exists a ∈ GQ such that σ = πaι. Indeed, if m is a finite partial L-homo-
morphism from A to B preserving all basic formulas, there exists a ∈ GQ extending
m such that σ = πaι.

Referring back to the overview presented in the introduction of Section 4.4, we can now
precisely state why our approach requires aiming for Pseudo-Property X of length 2: to
apply the Sandwich Lemma 4.4.11, we need that σ = ess and ι have the same irrational
discontinuity points, so the irrational discontinuity points of s and ι need to be closely
connected. Since no Trich-neighbourhood U can encode DcI(s), we cannot use a fixed
map ι for all s̃ in U . Thus, we need to adapt ι to s̃. We will write ι = hbg, where b varies
in GQ and g, h ∈ MQ are fixed elements. As it will turn out, it is crucial that we are very
free in stipulating finite pointwise behaviour not only of b on Q but also of the extension b̄
on I.

Lemma 4.4.12 (Preconditioning Lemma). Let g ∈ MQ be a generic injection, let h ∈ MQ
be a sparse injection and let A ⊆ I be finite or countably infinite5. Then there exists b ∈ GQ
such that ι := hbg satisfies DcI(ι) = A as well as LP(ι) ⊆ I, namely any b ∈ GQ with
b̄−1(DcI(h))∩ Im(ḡ) = ḡ(A). The boundedness type of ι coincides with the boundedness type
of h.
Moreover, suppose that z̄ and w̄ are tuples in Q, that z̄′ and w̄′ are tuples in (R\Im(ḡ))∩I

and DcI(h), respectively, and that z̄′′ and w̄′′ are tuples in ḡ(A) and DcI(h), respectively.
If the partial map sending z̄ ,→ w̄, z̄′ ,→ w̄′ and z̄′′ ,→ w̄′′ is strictly increasing, then b ∈ GQ
can be picked so that b̄ extends this map.

Combining the Preconditioning Lemma 4.4.12 (putting A = DcI(ess), see the proof of
Proposition 4.3.4 below) with the Sandwich Lemma 4.4.11, we can show that σ := ess can
be written in the form πasι = fsashsbsgs with as, bs ∈ GQ if π = fs is a generic surjection,
gs and es are generic injections and hs is a sparse injection with the same boundedness
type as s – note in particular that the choice of the maps es, fs, gs, hs only depends on the
boundedness type of s. For the remaining part of Pseudo-Property X, we have to prove
the following: If as(x̄) = ȳ as well as bs(z̄) = w̄, there is a Trich-neighbourhood U of s such
that for all s̃ ∈ U one can write ess̃ = fsãhsb̃gs, where ã, b̃ ∈ GQ with ã(x̄) = ȳ as well as
b̃(z̄) = w̄. By the Preconditioning Lemma 4.4.12, we could find b̃ ∈ GQ with b̃(z̄) = w̄ such
that σ̃ := ess̃, fs, ι̃ := hsb̃gs are compatible. Thus, the Sandwich Lemma 4.4.11 would yield
ã ∈ GQ with ess̃ = fsãhsb̃gs – however, this automorphism ã need not satisfy the condition

5When applying this lemma, we will put either A = Dc(ess) or A = Dc(ess̃).
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ã(x̄) = ȳ. To improve upon this strategy, the final statement of the Sandwich Lemma 4.4.11
suggests we construct b̃ in such a way that the finite partial map defined by x̄ ,→ ȳ preserves
all basic formulas when considered as a map from A(σ̃, fs, ι̃) to B(σ̃, fs, ι̃).

Lemma 4.4.13 (Variation Lemma). Let σ, f, g, h ∈ MQ and a, b ∈ GQ such that σ =
fahbg, where LP(σ) ⊆ I, f is a generic surjection, g is a generic injection, h is a sparse
injection with the same boundedness type as σ, and finally b̄−1(DcI(h))∩Im(ḡ) = ḡ(DcI(σ)).
Let further x̄, ȳ, z̄, w̄ be tuples in Q such that a(x̄) = ȳ and b(z̄) = w̄.
Then there exists a Trich-neighbourhood O of σ such that the following holds:

For any σ̃ ∈ O with LP(σ̃) ⊆ I, there exist tuples z̄∗ and w̄∗ in Q and tu-
ples z̄′ and w̄′ in (R \ Im(ḡ))∩ I and DcI(h), respectively, and tuples z̄′′ and w̄′′

in ḡ(DcI(σ̃)) and DcI(h), respectively, such that

❼ the finite partial map z̄ ,→ w̄, z̄∗ ,→ w̄∗, z̄′ ,→ w̄′, z̄′′ ,→ w̄′′ is strictly
increasing,

❼ if b̃ ∈ GQ satisfies b̃(z̄) = w̄, b̃(z̄∗) = w̄∗, ¯̃b(z̄′) = w̄′, ¯̃b(z̄′′) = w̄′′ and is such
that σ̃, f, ι̃ := hb̃g are compatible, then x̄ ,→ ȳ preserves all basic formulas
when considered as a finite partial map from A(σ̃, f, ι̃) to B(σ̃, f, ι̃).

Combining these results, we can prove that MQ equipped with the rich topology has
Pseudo-Property X of length 2 with respect to (GQ, Tpw):
Proof (of Proposition 4.3.4 given Lemmas 4.4.11, 4.4.12 and 4.4.13). Let s ∈ MQ. We
follow the strategy outlined in Figure 4.1. First, we construct a decomposition ess =
fsashsbsgs.

We use Lemma 4.4.5 to find a generic injection es ∈ MQ, a generic surjection fs ∈ MQ, a
generic injection gs ∈ MQ and a sparse injection hs ∈ MQ with the same boundedness type
as s. By Lemma 4.4.7(iii), the map es is left-invertible. Since es is unbounded-unbounded,
σ := ess has the same boundedness type as s (and as hs) and satisfies LP(σ) ⊆ LP(es) ⊆ I.
Applying the Preconditioning Lemma 4.4.12 with A = DcI(σ), we obtain bs ∈ GQ such that
ιs := hsbsgs is compatible with σ and fs, namely bs ∈ GQ with b̄−1

s (DcI(h)) ∩ Im(ḡs) =
ḡs(DcI(σ)). Using the Sandwich Lemma 4.4.11, we obtain as ∈ GQ such that

ess = σ = fsasιs = fsashsbsgs.

This proves conditions (i) and (ii) in the definition of Pseudo-Property X.
For condition (iii), let V,W ⊆ GQ be open sets in the pointwise topology on GQ with

as ∈ V and bs ∈ W . We need to find U ∈ Trich with s ∈ U such that esU ⊆ fsV hsWgs.
By shrinking the sets if necessary, we can assume that V = {ã ∈ GQ : ã(x̄) = ȳ} and W ={
b̃ ∈ GQ : b̃(z̄) = w̄

}
for tuples x̄, ȳ, z̄, w̄ in Q. We apply the Variation Lemma 4.4.13 for

σ = fsashsbsgs to obtain a Trich-neighbourhood O of σ with the following property: If
s̃ ∈ MQ is such that σ̃ := ess̃ ∈ O, there exist tuples z̄∗ and w̄∗ in Q and tuples z̄′ and w̄′

in (R \ Im(ḡ)) ∩ I and DcI(h), respectively, and tuples z̄′′ and w̄′′ in ḡ(DcI(σ̃)) and DcI(h),
respectively, such that z̄ ,→ w̄, z̄∗ ,→ w̄∗, z̄′ ,→ w̄′, z̄′′ ,→ w̄′′ is strictly increasing and,

additionally, if b̃ ∈ GQ satisfies b̃(z̄) = w̄, b̃(z̄∗) = w̄∗, ¯̃b(z̄′) = w̄′, ¯̃b(z̄′′) = w̄′′ and is such that
σ̃, f, ι̃ := hb̃g are compatible, then x̄ ,→ ȳ preserves all basic formulas when considered as a
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finite partial map from A(σ̃, fs, ι̃) to B(σ̃, fs, ι̃). Given such s̃ ∈ MQ, the Preconditioning
Lemma 4.4.12 with A = DcI(σ̃) as well as z̄∪ z̄∗ and w̄∪w̄∗ in place of z̄ and w̄, respectively,
yields b̃ ∈ GQ with the above properties. Hence, x̄ ,→ ȳ preserves all basic formulas
when considered as a finite partial map from A(σ̃, fs, ι̃) to B(σ̃, fs, ι̃), and the Sandwich
Lemma 4.4.11 gives ã ∈ GQ with ã(x̄) = ȳ and ess̃ = fsãι̃ = fsãhsb̃gs ∈ fsV hsWgs.

In other words, setting U := λ−1
es (O) gives esU ⊆ fsV gsWhs as desired. Noting that U

is a Trich-neighbourhood of s by Lemma 4.4.7(iv) finishes the proof.

gs

generic injection

bs

Step 1:
Preconditioning
Lemma 4.4.12

b̃

Step 4:
Preconditioning
Lemma 4.4.12,
b̃ satisfies
z̄ .→ w̄ and the
additional
conditions

hs

sparse injection

as

Step 2:
Sandwich
Lemma 4.4.11

ã

Step 5:
Sandwich
Lemma 4.4.11,
ã satisfies
x̄ .→ ȳ

fs

generic surjection

ess

ess̃

Step 3: Variation Lemma 4.4.13 ⇝ conditions on ess̃
Step 3: for fixed s̃: additional conditions on b̃ such that the Sandwich Lemma 4.4.11 applies

Given: x̄, ȳ, z̄, w̄
with as(x̄) = ȳ,
with bs(z̄) = w̄

Goal: ã, b̃ ∈ GQ
with ã(x̄) = ȳ,
with b̃(z̄) = w̄

Figure 4.1: Illustration of the proof of Proposition 4.3.4.

4.4.3 Proving the Sandwich Lemma 4.4.11

The proof of the Sandwich Lemma 4.4.11 requires two additional auxiliary facts.

Since π is a generic surjection, the preimages π−1{z} have neither a greatest nor a least
element. This implies the following simple yet crucial interpretation of the formulas Pq(z),
Lq(z) and Rq(z) in B:

Lemma 4.4.14. Let π ∈ MQ be a generic surjection. Then the following holds for all
q, y ∈ Q:

(i) B |= Pq(y) if and only if σ(q) = π(y).

(ii) B |= Lq(y) if and only if σ(q) ≤ π(y).

(iii) B |= Rq(y) if and only if σ(q) ≥ π(y).
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In particular, B |= Pq(y) implies B |= Lq(y) as well as B |= Rq(y).

The following straightforward lemma intuitively means that our definition of PA
q is the

“correct” one:

Lemma 4.4.15. Let σ, π, ι ∈ MQ. For all q, q′ ∈ Q, we have

PA
q ∩ PA

q′ ̸= ∅ ⇔ PA
q = PA

q′ ⇔ σ(q) = σ(q′) ⇔ PB
q = PB

q′ ⇔ PB
q ∩ PB

q′ ̸= ∅.
Now we can prove the Sandwich Lemma 4.4.11:

Proof (of the Sandwich Lemma 4.4.11). Since the second statement follows by combining
the first statement with Lemma 2.8.2 to obtain a surjective L-homomorphism a : A → B
extending m, we only have to show (i). We will verify that the set of all finite partial
L-homomorphisms m from A to B preserving all basic formulas has the Forth property and
the Back property. Let m be such a homomorphism.
Forth. Given x ∈ A\Dom(m), we need to find y ∈ B\Im(m) such that the extension m′

of m by x ,→ y is a finite partial L-homomorphism preserving all basic formulas. We will
use the following general strategy: We first identify the desired position of y with respect
to the predicates Pq, Lq, Rq, and then employ the fact that m preserves all basic formulas
to find y such that m and x ,→ y are additionally order-compatible.

Let ā = (a1, . . . , an) be an ascending enumeration of Dom(m) and let b̄ := m(ā). Since m
is strictly increasing, b̄ is an ascending enumeration of Im(m). Setting a0 := −∞ and
an+1 := +∞ as well as b0 := −∞ and bn+1 := +∞, there exists an index i0 ∈ {0, . . . , n}
such that ai0 < x < ai0+1. We distinguish two cases:
Case 1 (∃q0 ∈ Q : x ∈ PA

q0): Since π is a generic surjection (property (b) of compatibility),
it suffices to find y with

σ(q0) = π(y) and bi0 < y < bi0+1;

note that even though we do not know whether x satisfies Lq0 and Rq0 in A, the element y
certainly satisfies Lq0 and Rq0 in B, see Lemma 4.4.14. Applying that m preserves Rq0

and Lq0 , one obtains π(bi0) ≤ σ(q0) ≤ π(bi0+1) via Lemma 4.4.14 which yields the existence
of y with the desired properties (by property (b) of compatibility, the preimage π−1{σ(q0)}
does not have a greatest or least element).
Case 2 (∄q ∈ Q : x ∈ PA

q ): In this case, we have J− := {q ∈ Q : A |= Lq(x)} =
ι−1(−∞, x) as well as J+ := {q ∈ Q : A |= Rq(x)} = ι−1(x,+∞), and further Q = J− ∪̇ J+
where the common boundary point of J− and J+ is ι†(x); note that J± could be empty, in
which case ι†(x) = ±∞. Similarly to Case 1, it suffices to find y with (for J− = ∅, we put
supσ(J−) = −∞; analogously for J+ = ∅)

supσ(J−) ≤ π(y) ≤ inf σ(J+) and bi0 < y < bi0+1.

This is accomplished by verifying

supσ(J−) < inf σ(J+) (4.1)

π(bi0) ≤ inf σ(J+) (4.2)

supσ(J−) ≤ π(bi0+1) (4.3)

∃u0 ∈ Q : max(supσ(J−), π(bi0)) ≤ u0 ≤ min(inf σ(J+), π(bi0+1)). (4.4)
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If u0 is as in (4.4), there exists y ∈ π−1{u0} with bi0 < y < bi0+1. Any such y has the
desired properties.
By our assumption for the current case, the element x is in a “gap” of A; the inequal-

ity (4.1) expresses that there exists a matching “gap” of B. To verify, one distinguishes
by ι†(x) and applies convenient parts of the properties (a) and (c) of compatibility: If
ι†(x) = −∞, i.e. J− = ∅ and J+ = Q, then ι is bounded below, so σ is bounded below
by property (c) of compatibility, yielding (4.1). For ι†(x) = +∞, one argues analogously.
If J− has a greatest element q, observe that σ(J+) consists of elements strictly greater
than σ(q). Use LP(σ) ⊆ I (property (a) of compatibility) combined with Lemma 4.4.15
to see that inf σ(J+) is either contained in σ(J+) or irrational. Conclude σ(q) < inf σ(J+)
which yields (4.1). If J+ has a least element, one argues analogously. It remains to consider
the case that ι†(x) ∈ R and neither J− nor J+ has a greatest or least element, respectively.
Then ι†(x) ∈ I and, since x /∈ LP(ι) by property (c) of compatibility, also ι†(x) ∈ Dc(ι).
Another application of property (c) of compatibility yields ι†(x) ∈ Dc(σ) and thus (4.1).
The inequalities (4.2) and (4.3) are clear since m preserves all basic formulas, the in-

equality (4.4) is immediate from the previous ones.
Back. Given y ∈ B\ Im(m), we need to find x ∈ A\Dom(m) such that the extension m′

of m by x ,→ y is a finite partial L-homomorphism preserving all basic formulas. We
proceed similarly to the Forth step.
As before, let ā = (a1, . . . , an) be an ascending enumeration of Dom(m) and let b̄ := m(ā)

be the corresponding ascending enumeration of Im(m). We again set a0 := −∞ and
an+1 := +∞ as well as b0 := −∞ and bn+1 := +∞, and define the index i0 ∈ {0, . . . , n}
such that bi0 < y < bi0+1. We further set I− := σ−1(−∞, π(y)), I := σ−1{π(y)} and
I+ := σ−1(π(y),+∞). If x satisfies

sup ι(I−) < x < inf ι(I+) and ai0 < x < ai0+1,

then m′ extending m by x ,→ y preserves all basic formulas since supq∈I− PA
q = sup ι(I−)

by Lemma 4.4.15 (and analogously for I+). If I ̸= ∅, note that even though we cannot
predict whether x will be contained in PA

q or will be below or above PA
q for one (and thus

for all) q ∈ I, the element y satisfies Pq as well as Lq, Rq in B.
One finds the desired element x by verifying

sup ι(I−) < inf ι(I+) (4.5)

ai0 < inf ι(I+) (4.6)

sup ι(I−) < ai0+1 (4.7)

and picking any x with max(sup ι(I−), ai0) < x < min(inf ι(I+), ai0+1). Using the proper-
ties (a) and (c) of compatibility, the inequality (4.5) follows just as (4.1) did in the Forth
step. For the inequality (4.6), observe that ai0 < ι(q) for all q ∈ I+ (for otherwise, m would
not preserve Pq and Rq) and that inf ι(I+) is either contained in ι(I+) or irrational. The
same argument yields the inequality (4.7).

4.4.4 Proving the Preconditioning Lemma 4.4.12

To find b, we use a Back&Forth strategy.
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Proof (of the Preconditioning Lemma 4.4.12). Combining the facts that g is continuous at
all irrational points (by definition), that ḡ(I) ⊆ I (by Lemma 4.4.3(ii)) and that any b̄ for
b ∈ GQ is continuous at all irrational points (by Lemma 4.4.3(iii)), we obtain that bg will
always be continuous at all irrational points as well. Thus,

DcI(hbg) = ḡ−1
(
b̄−1(Dc(h)) ∩ ḡ(I)

)
∩ I.

If we use that ḡ(I), b̄(I) ⊆ I, we conclude

DcI(hbg) = ḡ−1
(
b̄−1(DcI(h)) ∩ Im(ḡ)

)
∩ I.

Hence, it is sufficient to construct b in such a way that

b̄−1(DcI(h)) ∩ Im(ḡ) = ḡ(A); (4.8)

if we set ι := hbg, then LP(ι) ⊆ LP(h) ⊆ I and ι has the same boundedness type as h since
both g and b are unbounded-unbounded.
To fulfil (4.8), note first that there exists a countable set D ⊆ (R \ Im(ḡ)) ∩ I which is

topologically dense in R: by Lemma 4.4.3(ii), the set (R \ Im(ḡ)) ∩ I is topologically dense
in R, so it suffices to pick D to be topologically dense in (R \ Im(ḡ)) ∩ I (which is possible
since the latter is a subset of a separable metric space and therefore separable itself). In
doing so, we can make sure that D contains all entries of z̄′.

Instead of directly constructing a map b : Q → Q which satisfies (4.8), we will find an
order isomorphism β : Q ∪̇ (ḡ(A) ∪D) → Q ∪̇DcI(h) satisfying

β(Q) = Q and β(ḡ(A) ∪D) = DcI(h) as well as

β(z̄) = w̄ and β(z̄′) = w̄′, β(z̄′′) = w̄′′

Setting b := β|Q then yields the map as in (4.8) since b̄|Q∪̇(ḡ(A)∪D) = β by uniqueness of
the increasing extension (see Lemma 4.4.3(iii)) and therefore

b̄−1(DcI(h)) ∩ Im(ḡ) = (ḡ(A) ∪D) ∩ Im(ḡ) = ḡ(A).

To obtain β, we show that the system S of all finite partial order isomorphisms m from
Q ∪̇ (ḡ(A) ∪D) to Q ∪̇DcI(h) such that

m
(
Q ∩Dom(m)

)
= Q ∩ Im(m) and m

(
(ḡ(A) ∪D) ∩Dom(m)

)
= DcI(h) ∩ Im(m)

is a Back&Forth system – by Lemma 2.8.2, the finite partial order isomorphism defined by
z̄ ,→ w̄, z̄′ ,→ w̄′ and z̄′′ ,→ w̄′′ (which is a member of S) can then be extended to a map β
with the desired properties. For the Back step, suppose m ∈ S and γ /∈ Im(m). Let γ′′ be
the greatest element of Im(m)∩(−∞, γ) (or −∞ if no such element exists) and, dually, let γ′

be the least element of Im(m)∩ (γ,+∞) (or +∞ if no such element exists). If γ ∈ Q, pick6

δ ∈ (m−1(γ′′),m−1(γ′))R∩Q; if γ ∈ DcI(h), pick δ ∈ (m−1(γ′′),m−1(γ′))R∩(ḡ(A)∪D) – by
topological density of Q and ḡ(A)∪D ⊇ D in R, this is always possible. Then the extension
of m by δ ,→ γ is an element of S as well. For the Forth step, one argues analogously.
6(m−1(γ′′),m−1(γ′))R refers to the interval of all real numbers between m−1(γ′′) and m−1(γ′).
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4.4.5 Proving the Variation Lemma 4.4.13, special cases

In a series of lemmas, we first consider the cases that can occur in the special situation
that x̄ and ȳ consist of a single element. In Subsection 4.4.6, we will then amalgamate
these special cases to a full proof. We will always consider the same setup:

Notation 4.4.16. We say that (∗) holds if we are in the following situation:

(a) σ, σ̃ ∈ MQ satisfy LP(σ),LP(σ̃) ⊆ I and have the same boundedness type,

(b) f ∈ MQ is a generic surjection,

(c) g ∈ MQ is a generic injection,

(d) h ∈ MQ is a sparse injection with the same boundedness type as σ and σ̃,

(e) a ∈ GQ,

(f) b ∈ GQ satisfies b̄−1(DcI(h)) ∩ Im(ḡ) = ḡ(DcI(σ)),

(g) σ = fahbg, so a preserves all basic formulas as a map from A(σ, f, ι) to B(σ, f, ι),
where ι := hbg.

To simplify the arguments, we reformulate the property of preserving all basic formulas
central to the Sandwich Lemma 4.4.11.

Lemma 4.4.17. Let σ, π, ι ∈ MQ such that π is a generic surjection. Then the map x ,→ y
preserves all basic formulas when considered as a finite partial map from A to B if and only
if the following two conditions hold:

σ
(
ι−1(−∞, x]

) ⊆ (−∞, π(y)] and σ
(
ι−1[x,+∞)

) ⊆ [π(y),+∞). (4.9)

Proof. Assume first that (4.9) holds. Since the finite partial map in question has a one-
element domain and image, we do not have to consider formulas of the form zi < zj . If
A |= Pq(x) for some q ∈ Q, then there exist q′, q′′ ∈ Q such that ι(q′′) ≤ x ≤ ι(q′) and
σ(q′′) = σ(q) = σ(q′). By (4.9), we obtain σ(q) = σ(q′′) ≤ π(y) ≤ σ(q′) = σ(q), so y ∈ PB

q .

If A |= Lq(x) for some q ∈ Q, there exists u ∈ PA
q such that u < y. By the previous

argument we have σ(q) = π(u) ≤ π(y), so B |= Lq(y) (see Lemma 4.4.14). Finally, if
A |= Rq(x) for some q ∈ Q, we argue analogously.

Now assume that x ,→ y preserves all basic formulas as a finite partial map from A to B.
We only show σ

(
ι−1(−∞, x]

) ⊆ (−∞, π(y)]. Let q ∈ ι−1(−∞, x], i.e. ι(q) ≤ x. If ι(q) = x,
then x ∈ PA

q , so y ∈ PB
q by assumption and thus σ(q) = π(y). If ι(q) < x, then x ∈ LA

q , so

y ∈ LB
q and thus σ(q) ≤ π(y) (see Lemma 4.4.14).

After these preparations, we can state and prove the series of auxiliary lemmas.

Lemma 4.4.18 (see Figure 4.2). Let σ, σ̃, f, g, h, a, b such that (∗) holds. Let further x, y ∈
Q such that a(x) = y.

Suppose that x /∈ (inf h, suph). Then one of the following two cases occurs:

49



4 The semigroup of increasing functions on the rational numbers has a unique Polish topology

(1) (i) Im(h) ⊆ (−∞, x) and Im(σ) ⊆ (−∞, f(y)].

(ii) If
Im(σ̃) ⊆ (−∞, f(y)], i.e. Im(σ̃) ∩ (f(y),+∞) = ∅,

then for any b̃ ∈ GQ, the map x ,→ y preserves all basic formulas as a finite
partial map from A(σ̃, f, ι̃) to B(σ̃, f, ι̃) where ι̃ := hb̃g.

(2) (i) Im(h) ⊆ (x,+∞) and Im(σ) ⊆ [f(y),+∞).

(ii) If
Im(σ̃) ⊆ [f(y),+∞), i.e. Im(σ̃) ∩ (−∞, f(y)) = ∅,

then for any b̃ ∈ GQ, the map x ,→ y preserves all basic formulas as a finite
partial map from A(σ̃, f, ι̃) to B(σ̃, f, ι̃) where ι̃ := hb̃g.

g b

b̃

h a f

x y
f(y)

Im(h)
Im(σ) Im(σ̃)

Figure 4.2: Illustration of Lemma 4.4.18, Case (1).

Proof. Our assumption x /∈ (inf h, suph) implies that either h(r) ≤ x for all r ∈ Q or
h(r) ≥ x for all r ∈ Q. Since h is injective, Im(h) cannot have a greatest or least element.
Thus, either Im(h) ⊆ (−∞, x) or Im(h) ⊆ (x,+∞). We only treat the former case which
corresponds to (1).

(i). We have to show that Im(σ) ⊆ (−∞, f(y)] – this follows directly from Lemma 4.4.17
by noting ι−1(−∞, x] = g−1(b−1(h−1(−∞, x])) = Q.
(ii). With the same argument as in (i), observe ι̃−1(−∞, x] = Q and ι̃−1[x,+∞) = ∅.

Thus, the statement follows by another application of Lemma 4.4.17.

Lemma 4.4.19 (see Figure 4.3). Let σ, σ̃, f, g, h, a, b such that (∗) holds. Let further x, y ∈
Q such that a(x) = y.

Suppose that x ∈ (inf h, suph) with7 r := h†(x) ∈ Q, and set p := b−1(r) as well as
I− := ι−1(−∞, x] and I+ := ι−1[x,+∞). Then the following holds:

7Note that this encompasses the case x ∈ Im(h) and in particular x ∈ Im(ι).
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(i) I− and I+ are rational intervals with σ(I−) ⊆ (−∞, f(y)] and σ(I+) ⊆ [f(y),+∞).

(ii) If

σ̃ (I−) ⊆ (−∞, f(y)] and σ̃ (I+) ⊆ [f(y),+∞),

then for any b̃ ∈ GQ with b̃(p) = b(p) (= r), the map x ,→ y preserves all basic formulas
as a finite partial map from A(σ̃, f, ι̃) to B(σ̃, f, ι̃) where ι̃ := hb̃g.

g b

b̃

h a f

x y
f(y)

p
r = b(p) = b̃(p) h(r)

inf h(r,+∞)

I− =
ι−1(−∞, x]

ι̃−1(−∞, x]

I+ =
ι−1[x,+∞)

ι̃−1[x,+∞)

σ(I−)

σ(I+)

σ̃(I−)

σ̃(I+)

Figure 4.3: Illustration of Lemma 4.4.19.

Proof.

(i). Since r = h†(x) ∈ Q, we know that h−1(−∞, x) and h−1(x,+∞) are rational
intervals, both with boundary point r. Hence, the intervals h−1(−∞, x] and h−1[x,+∞)
also have boundary point r (if x ∈ Im(h), the intervals become closed; otherwise, they do
not change). By b ∈ GQ, the preimages b−1(h−1(−∞, x]) and b−1(h−1[x,+∞)) are rational
intervals as well, both with boundary point p = b−1(r). Finally, I− = g−1(b−1(h−1(−∞, x]))
and I+ = g−1(b−1(h−1[x,+∞))) are rational intervals by applying Lemma 4.4.7(iii).

The inclusions σ(I−) ⊆ (−∞, f(y)] and σ(I+) ⊆ [f(y),+∞) follow from Lemma 4.4.17.

(ii). We claim that ι̃−1(−∞, x] = ι−1(−∞, x] = I− and ι̃−1[x,+∞) = ι−1[x,+∞) = I+;
the statement then follows by another application of Lemma 4.4.17. To this end, it suffices
to note that b̃−1(h−1(−∞, x]) coincides with b−1(h−1(−∞, x]) since they have the same
structure (open/closed) as h−1(−∞, x] and the same boundary point, namely b̃−1(r) = p =
b−1(r). Analogously, b̃−1(h−1[x,+∞)) coincides with b−1(h−1[x,+∞)).

Lemma 4.4.20 (see Figures 4.4 and 4.5). Let σ, σ̃, f, g, h, a, b such that (∗) holds. Let
further x, y ∈ Q such that a(x) = y.

Suppose that x ∈ (inf h, suph) with γ := h†(x) ∈ I and q := ι†(x) ∈ Q. Then one of the
following four cases occurs:
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(1) (i) g(q) < b̄−1(γ) < inf g(q,+∞). Additionally, there exist u, v ∈ Q such that
g(q) < u < v < inf g(q,+∞) and hb(u) < x < hb(v). Finally, σ(q) ≤ f(y) and
σ(q,+∞) ⊆ [f(y),+∞).

(ii) If
σ̃(q) = σ(q) and σ̃(q,+∞) ⊆ [f(y),+∞),

then for any b̃ ∈ GQ with b̃(u) = b(u) and b̃(v) = b(v), the map x ,→ y preserves
all basic formulas as a finite partial map from A(σ̃, f, ι̃) to B(σ̃, f, ι̃) where ι̃ :=
hb̃g.

(2) (i) g(q) < b̄−1(γ) = inf g(q,+∞). Additionally, there exists u ∈ Q such that
g(q) < u < inf g(q,+∞) and hb(u) < x. Finally, σ(q) ≤ f(y) and σ(q,+∞) ⊆
[f(y),+∞) as well as b̄−1(γ) ∈ (R \ Im(ḡ)) ∩ I and γ ∈ DcI(h).

(ii) If
σ̃(q) = σ(q) and σ̃(q,+∞) ⊆ [f(y),+∞),

then for any b̃ ∈ GQ with b̃(u) = b(u) and
¯̃
b(b̄−1(γ)) = b̄(b̄−1(γ)) = γ (so

¯̃
b−1(γ) = b̄−1(γ)), the map x ,→ y preserves all basic formulas as a finite partial
map from A(σ̃, f, ι̃) to B(σ̃, f, ι̃) where ι̃ := hb̃g.

(3) (i) sup g(−∞, q) < b̄−1(γ) < g(q). Additionally, there exist u, v ∈ Q such that
sup g(−∞, q) < u < v < g(q) and hb(u) < x < hb(v). Finally, σ(−∞, q) ⊆
(−∞, f(y)] and σ(q) ≥ f(y).

(ii) If
σ(−∞, q) ⊆ (−∞, f(y)] and σ̃(q) = σ(q),

then for any b̃ ∈ GQ with b̃(u) = b(u) and b̃(v) = b(v), the map x ,→ y preserves
all basic formulas as a finite partial map from A(σ̃, f, ι̃) to B(σ̃, f, ι̃) where ι̃ :=
hb̃g.

(4) (i) sup g(−∞, q) = b̄−1(γ) < g(q). Additionally, there exists v ∈ Q such that
sup g(−∞, q) < v < g(q) and x < hb(v). Finally, σ(−∞, q) ⊆ (−∞, f(y)] and
σ(q) ≥ f(y) as well as b̄−1(γ) ∈ (R \ Im(ḡ)) ∩ I and γ ∈ DcI(h).

(ii) If
σ(−∞, q) ⊆ (−∞, f(y)] and σ̃(q) = σ(q),

then for any b̃ ∈ GQ with b̃(v) = b(v) and
¯̃
b(b̄−1(γ)) = b̄(b̄−1(γ)) = γ (so

¯̃
b−1(γ) =

b̄−1(γ)), the map x ,→ y preserves all basic formulas as a finite partial map from
A(σ̃, f, ι̃) to B(σ̃, f, ι̃) where ι̃ := hb̃g.

Proof. First of all, note that ι†(x) is welldefined since x ∈ (inf h, suph) which coincides
with (inf ι, sup ι) by the unboundedness on either side of both g and b. Since γ = h†(x) is
irrational and h is injective, x cannot be contained in Im(h), in particular not in Im(ι). In
any case, we have h−1(−∞, x] = h−1(−∞, x) = (−∞, γ) and h−1[x,+∞) = h−1(x,+∞) =
(γ,+∞). The cases (1) and (2) correspond to ι(q) < x, in other words ι−1(−∞, x] =
(−∞, q] and ι−1[x,+∞) = (q,+∞), while the cases (3) and (4) correspond to ι(q) > x, in
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g b

b̃

h a f

x y
f(y)

q

g(q)

b−1(γ)

inf g(q,+∞)

u

v

γ

b(u) = b̃(u)

b(v) = b̃(v)

σ(q) = σ̃(q)

ι−1(−∞, x] ι̃−1(−∞, x]

ι−1[x,+∞) ι̃−1[x,+∞)

σ(q,+∞)
σ̃(q,+∞)

Figure 4.4: Illustration of Lemma 4.4.20, Case (1).

other words ι−1(−∞, x] = (−∞, q) and ι−1[x,+∞) = [q,+∞). We only treat the former
cases. Since LP(h) ⊆ I, the point x cannot be a limit point of h, so we have suph(−∞, γ) <
x < inf h(γ,+∞) and γ ∈ DcI(h). Additionally, x < inf ι(q,+∞) by the same argument.
If ι(q) < x, we obtain bg(q) < γ ≤ inf bg(q,+∞), i.e. g(q) < b̄−1(γ) ≤ inf g(q,+∞). The
first two cases are distinguished by checking whether the latter inequality is strict or not.

(1) g(q) < b̄−1(γ) < inf g(q,+∞).

(i). Take any u, v ∈ Q with g(q) < u < b̄−1(γ) < v < inf g(q,+∞) to satisfy
g(q) < u < v < inf g(q,+∞) and hb(u) < x < hb(v). The remaining statements
follows from Lemma 4.4.17: σ(q) ∈ σ(−∞, q] = σ

(
ι−1(−∞, x]

) ⊆ (−∞, f(y)] and
σ(q,+∞) = σ

(
ι−1[x,+∞)

) ⊆ [f(y),+∞).

(ii). We use b̃(u) = b(u) and b̃(v) = b(v) to verify the conditions in Lemma 4.4.17.
Note that h−1(−∞, x] ⊆ (−∞, b(v)) and h−1[x,+∞) ⊆ (b(u),+∞), so that

ι̃−1(−∞, x] = g−1(b̃−1(h−1(−∞, x])) ⊆ g−1(−∞, v) = (−∞, q] and

ι̃−1[x,+∞) = g−1(b̃−1(h−1[x,+∞))) ⊆ g−1(u,+∞) = (q,+∞)

which yields

σ̃
(
ι̃−1(−∞, x]

) ⊆ σ̃(−∞, q] ⊆ (−∞, σ̃(q)] = (−∞, σ(q)] ⊆ (−∞, f(y)] and

σ̃
(
ι̃−1[x,+∞)

) ⊆ σ̃(q,+∞) ⊆ [f(y),+∞).

(2) g(q) < b̄−1(γ) = inf g(q,+∞).

(i). Take any u ∈ Q with g(q) < u < b̄−1(γ) to satisfy g(q) < u < inf g(q,+∞)
and hb(u) < x. The statements σ(q) ≤ f(y) and σ(q,+∞) ⊆ [f(y),+∞) follow
just as in (1). We have already argued that γ ∈ DcI(h), so it remains to show
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g b

b̃
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inf g(q,+∞) =
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b(u) = b̃(u)
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ι−1(−∞, x] ι̃−1(−∞, x]

ι−1[x,+∞) ι̃−1[x,+∞)

σ(q,+∞)
σ̃(q,+∞)

Figure 4.5: Illustration of Lemma 4.4.20, Case (2).

b̄−1(γ) ∈ (R \ Im(ḡ)) ∩ I. We know that γ is irrational, so b̄−1(γ) is as well by
Lemma 4.4.3(iii). Additionally, b̄−1(γ) = inf g(q,+∞) cannot be contained in Im(ḡ)
since g is injective.

(ii). Similarly to (1), we use b̃(u) = b(u) and
¯̃
b−1(γ) = b̄−1(γ) to verify the conditions

in Lemma 4.4.17. Observe h−1(−∞, x] = (−∞, γ) and h−1[x,+∞) ⊆ (b(u),+∞), so
that

ι̃−1(−∞, x] = g−1(−∞,
¯̃
b−1(γ)) = ι−1(−∞, x] = (−∞, q] and

ι̃−1[x,+∞) ⊆ g−1(u,+∞) = (q,+∞),

which yields σ̃(ι̃−1(−∞, x]) ⊆ (−∞, f(y)] and σ̃(ι̃−1[x,+∞)) ⊆ [f(y),+∞) as in (1).

In the remaining case that x ∈ (inf h, suph) and both h†(x) and ι†(x) are irrational,
we take a similar but somewhat more involved route in that the automorphisms b̃ ∈ GQ
we are picking do not simply mimic the behaviour of b on sufficiently many elements.
Instead, we redefine b̃ on certain crucial points which are tuned to the specific σ̃ being
considered. In doing so, we have to make sure that our desired redefinition does not violate
the condition for b̃ on finitely many points given by Pseudo-Property X and the previous
auxiliary lemmas. We split our treatment of this problem into two subcases.

Lemma 4.4.21 (see Figure 4.6). Let σ, σ̃, f, g, h, a, b such that (∗) holds. Let further x, y ∈
Q such that a(x) = y.

Suppose that x ∈ (inf h, suph) with γ := h†(x) ∈ I and δ := ι†(x) ∈ I. Additionally,
suppose that f(y) ∈ Im(σ). Let z̄ and w̄ be tuples in Q and let z̄′ and w̄′ be tuples in
(R \ Im(ḡ)) ∩ I and DcI(h), respectively, such that b(z̄) = w̄ and b̄(z̄′) = w̄′. Assume
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that z̄ ∪ z̄′ contains both an element greater and less than ḡ(δ). Put z− and z+ to be
the greatest entry of z̄ ∪ z̄′ less than ḡ(δ) and the least entry of z̄ ∪ z̄′ greater than ḡ(δ),
respectively, and put w− and w+ to be the corresponding entries of w̄ ∪ w̄′. Then one of
the following two cases occurs8:

(1) (i) There exist q, q′ ∈ Q such that q < q′ < δ and z− < g(q) < g(q′) < ḡ(δ) < z+ as
well as σ(q) = σ(q′) = f(y); further, γ = b̄(ḡ(δ)) and w− < γ < w+.

(ii) If
σ̃(q) = σ(q) = f(y) and σ̃(q′) = σ(q′) = f(y),

and if ũ, ṽ, û, v̂ ∈ Q satisfy g(q) < ũ < ṽ < g(q′) as well as w− < û < γ <
v̂ < w+, then the finite partial map z̄ ,→ w̄, z̄′ ,→ w̄′ and ũ ,→ û, ṽ ,→ v̂ is
strictly increasing. Additionally, for any b ∈ GQ such that b̄(z̄) = w̄, b̄(z̄′) = w̄′

and b(ũ) = û, b(ṽ) = v̂, the map x ,→ y preserves all basic formulas as a finite
partial map from A(σ̃, f, ι̃) to B(σ̃, f, ι̃) where ι̃ := hb̃g.

(2) (i) There exist q, q′ ∈ Q such that δ < q < q′ and z− < ḡ(δ) < g(q) < g(q′) < z+ as
well as σ(q) = σ(q′) = f(y); further, γ = b̄(ḡ(δ)) and w− < γ < w+.

(ii) If
σ̃(q) = σ(q) = f(y) and σ̃(q′) = σ(q′) = f(y),

and if ũ, ṽ, û, v̂ ∈ Q satisfy g(q) < ũ < ṽ < g(q′) as well as w− < û < γ <
v̂ < w+, then the finite partial map z̄ ,→ w̄, z̄′ ,→ w̄′ and ũ ,→ û, ṽ ,→ v̂ is
strictly increasing. Additionally, for any b ∈ GQ such that b̄(z̄) = w̄, b̄(z̄′) = w̄′

and b(ũ) = û, b(ṽ) = v̂, the map x ,→ y preserves all basic formulas as a finite
partial map from A(σ̃, f, ι̃) to B(σ̃, f, ι̃) where ι̃ := hb̃g.
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x y

f(y) = σ(q)

f(y) = σ(q′)

= σ̃(q)

= σ̃(q′)
δ
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q′

z−

z+

g(q)

g(q′)

ḡ(δ)

ũ

ṽ

w−

w+

γ

û

v̂

ι−1(−∞, x]

ι−1[x,+∞)

ι̃−1(−∞, x]

ι̃−1[x,+∞)

σ̃(ι̃−1[x,+∞))

σ̃(ι̃−1(−∞, x])

Figure 4.6: Illustration of Lemma 4.4.21, Case (1).

8It is possible that both cases occur simultaneously; it this happens, pick one of them arbitrarily.
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Proof. As in the proof of Lemma 4.4.20, the generalised inverse ι†(x) is welldefined and x
cannot be contained in Im(h), in particular Im(ι). Additionally, we have h−1(−∞, x] =
h−1(−∞, x) = (−∞, γ) and h−1[x,+∞) = h−1(x,+∞) = (γ,+∞) as well as ι−1(−∞, x] =
ι−1(−∞, x) = (−∞, δ) and ι−1[x,+∞) = ι−1(x,+∞) = (δ,+∞). This also yields that
b̄(ḡ(δ)) = γ. By Lemma 4.4.17, we conclude9

σ(−∞, δ) = σ
(
ι−1(−∞, x]

) ⊆ (−∞, f(y)] and

σ(δ,+∞) = σ
(
ι−1[x,+∞)

) ⊆ [f(y),+∞).

Since f(y) ∈ Im(σ) and since δ is irrational, this is only possible if σ is locally constant
with value f(y) either below or above δ (or both). These two situations form the cases (1)
and (2), respectively. We only treat the former option.

(i). By our preparatory reasoning, there exist q, q′ ∈ Q with q < q′ < δ and σ(q) =
σ(q′) = f(y). The number ḡ(δ) is irrational by Lemma 4.4.3(ii), and obviously not an
element of R \ Im(ḡ). Thus, ḡ(δ) cannot be contained in z̄ ∪ z̄′. Consequently, γ = b̄(ḡ(δ))
cannot be contained in w̄ ∪ w̄′, and we conclude w− < γ < w+ from z− < ḡ(δ) < z+. Since
δ ∈ I = Cont(g), we can pick q, q′ close enough to δ to ascertain z− < g(q) < g(q′) < ḡ(δ) <
z+.

(ii). By the definitions of z− and z+ and the fact that z̄ ,→ w̄, z̄′ ,→ w̄′ is strictly
increasing, the finite partial map z̄ ,→ w̄, z̄′ ,→ w̄′ and ũ ,→ û, ṽ ,→ v̂ is strictly increasing.
For the second statement, we check the assumptions of Lemma 4.4.17. Note that

ι̃−1(−∞, x] = g−1(b̃−1(−∞, γ)) ⊆ g−1(−∞, ṽ) ⊆ (−∞, q′] and

ι̃−1[x,+∞) = g−1(b̃−1(γ,+∞)) ⊆ g−1(ũ,+∞) ⊆ [q,+∞),

so

σ̃
(
ι̃−1(−∞, x]

) ⊆ σ̃(−∞, q′] ⊆ (−∞, σ̃(q′)] = (−∞, σ(q′)] = (−∞, f(y)] and

σ̃
(
ι̃−1[x,+∞)

) ⊆ σ̃[q,+∞) ⊆ [σ̃(q),+∞) = [σ(q),+∞) = [f(y),+∞).

Our final auxiliary lemma treats the second subcase of the situation that x ∈ (inf h, suph)
and h†(x), ι†(x) ∈ I.

Lemma 4.4.22 (see Figure 4.7). Let σ, σ̃, f, g, h, a, b such that (∗) holds. Let further x, y ∈
Q such that a(x) = y.

Suppose that x ∈ (inf h, suph) with γ := h†(x) ∈ I and δ := ι†(x) ∈ I. Additionally,
suppose that f(y) /∈ Im(σ). Let z̄ and w̄ be tuples in Q and let z̄′ and w̄′ be tuples in
(R \ Im(ḡ)) ∩ I and DcI(h), respectively, such that b(z̄) = w̄ and b̄(z̄′) = w̄′. Assume
that z̄ ∪ z̄′ contains both an element greater and less than ḡ(δ). Put z− and z+ to be
the greatest entry of z̄ ∪ z̄′ less than ḡ(δ) and the least entry of z̄ ∪ z̄′ greater than ḡ(δ),
respectively, and put w− and w+ to be the corresponding entries of w̄ ∪ w̄′. Then the
following holds:

9Note that we cannot express σ̃(−∞, δ) ⊆ (−∞, f(y)] and σ̃(δ,+∞) ⊆ [f(y),+∞) using the rich topology
from Definition 4.3.2 since δ is irrational. This is one of the reasons why we need to redefine b̃ instead
of transferring the behaviour of b at sufficiently many points.
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(i) σ†(f(y)) = δ and δ ∈ DcI(σ). Additionally, γ ∈ DcI(h) and γ = b̄(ḡ(δ)). Further,
z− < ḡ(δ) < z+ as well as w− < γ < w+. Finally, σ

(
g−1(−∞, z−]

) ⊆ (−∞, f(y))
and σ

(
g−1[z+,+∞)

) ⊆ (f(y),+∞).

If z± and w± are rational, then I− := g−1(−∞, z−] and I+ := g−1[z+,+∞) are
rational intervals.

(ii) If z± and w± are rational and if

Im(σ̃) ∩ {f(y)} = ∅ and σ̃(I−) ⊆ (−∞, f(y)) and σ̃(I+) ⊆ (f(y),+∞),

then – setting H̃− := σ̃−1(−∞, f(y)] = σ̃−1(−∞, f(y)) and H̃+ := σ̃−1[f(y),+∞) =
σ̃−1(f(y),+∞) – we have sup g(H̃−) < z+ as well as z− < inf g(H̃+). Further, there
exists ρ̃ ∈ ((R \ Im(ḡ)) ∩ I) ∪ ḡ(DcI(σ̃)) such that z− < ρ̃ < z+ and g(H̃−) ⊆ (−∞, ρ̃)
as well as g(H̃+) ⊆ (ρ̃,+∞). The finite partial map z̄ ,→ w̄, z̄′ ,→ w̄′ and ρ̃ ,→ γ is

strictly increasing and, additionally, for any b̃ ∈ GQ such that b̃(z̄) = w̄,
¯̃
b(z̄′) = w̄′

and
¯̃
b(ρ̃) = γ, the map x ,→ y preserves all basic formulas as a finite partial map from

A(σ̃, f, ι̃) to B(σ̃, f, ι̃) where ι̃ := hb̃g.
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σ̃(H̃−)

σ̃(H̃+)

Figure 4.7: Illustration of Lemma 4.4.22.

Proof. As in the proof of Lemma 4.4.21, the generalised inverse ι†(x) is welldefined and x
cannot be contained in Im(h), in particular Im(ι).
Additionally, h−1(−∞, x] = h−1(−∞, x) = (−∞, γ) and h−1[x,+∞) = h−1(x,+∞) =

(γ,+∞) as well as ι−1(−∞, x] = ι−1(−∞, x) = (−∞, δ) and ι−1[x,+∞) = ι−1(x,+∞) =
(δ,+∞). We again conclude b̄(ḡ(δ)) = γ. Combining Lemma 4.4.17 with f(y) /∈ Im(σ), we
obtain σ(−∞, δ) ⊆ (−∞, f(y)) as well as σ(δ,+∞) ⊆ (f(y),+∞) which yields δ = σ†(f(y))
and

σ
(
g−1(−∞, z−]

) ⊆ σ
(
g−1(−∞, ḡ(δ))

) ⊆ (−∞, f(y)) as well as

σ
(
g−1[z+,+∞)

) ⊆ σ
(
g−1(ḡ(δ),+∞)

) ⊆ (f(y),+∞).
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(i). We know that f(y) ∈ Q cannot be a limit point of σ, so supσ(−∞, δ) < f(y) <
inf σ(δ,+∞), in particular δ ∈ DcI(σ). Using LP(h) ⊆ I in the same fashion, we obtain
γ ∈ DcI(h). The remaining statements z− < ḡ(δ) < z+ as well as w− < γ < w+ follow just
as in the proof of Lemma 4.4.21.

Finally, if z± and w± are rational, then the intervals I− := g−1(−∞, z−] and I+ :=
g−1[z+,+∞) are rational by Lemma 4.4.7(iii).

(ii). We have Q = H̃− ∪̇ H̃+, so sup H̃− = inf H̃+. By our assumption on σ̃, we know
that I− ∩ H̃+ = ∅, so inf g(H̃+) ≥ z−. In fact, this inequality is strict since inf g(H̃+) is
either contained in g(H̃+) or irrational by LP(g) ⊆ I. One argues analogously to show
sup g(H̃−) < z+. To find ρ̃, we distinguish whether sup H̃− = inf H̃+ is rational or irra-
tional.

Case 1 (q̃ := σ̃†(f(y)) = sup H̃− = inf H̃+ ∈ Q): We conclude sup g(H̃−) < inf g(H̃+)
from Lemma 4.4.3(ii). Combined with sup g(H̃−) < z+ and z− < inf g(H̃+), this implies

max
(
sup g(H̃−), z−

)
< min

(
inf g(H̃+), z+

)
. Any irrational ρ̃ between these two numbers

satisfies the requirements – note that ρ̃ is contained in R \ Im(ḡ) by injectivity of g.

Case 2 (δ̃ := σ̃†(f(y)) = sup H̃− = inf H̃+ ∈ I): We obtain sup g(H̃−) = ḡ(δ̃) =
inf g(H̃+) since δ̃ ∈ Cont(g), so z− < ḡ(δ̃) < z+. Since σ̃(−∞, δ̃) ⊆ (−∞, f(y)) and
σ̃(δ̃,+∞) ⊆ (f(y),+∞) and since f(y) ∈ Q cannot be a limit point of σ̃, we conclude
δ̃ ∈ DcI(σ̃). Hence, we set ρ̃ := ḡ(δ̃).

By construction, the finite partial map z̄ ,→ w̄, z̄′ ,→ w̄′ and ρ̃ ,→ γ is strictly increasing.
For the preservation statement, we verify the conditions in Lemma 4.4.17. Note that

ι̃−1(−∞, x] = g−1(−∞, ρ̃) = Q \ g−1(ρ̃,+∞) ⊆ Q \ g−1(g(H̃+)) = H̃− and

ι̃−1[x,+∞) = g−1(ρ̃,+∞) = Q \ g−1(−∞, ρ̃) ⊆ Q \ g−1(g(H̃−)) = H̃+,

so

σ̃
(
ι̃−1(−∞, x]

) ⊆ σ̃(H̃−) ⊆ (−∞, f(y)) and

σ̃
(
ι̃−1[x,+∞)

) ⊆ σ̃(H̃+) ⊆ (f(y),+∞).

Remark 4.4.23. Examining the last proof more closely, one observes that we never used
a(x) = y other than via the inclusion of intervals from Lemma 4.4.17. Hence, we in fact
proved the following slightly stronger statement which will be useful when amalgamating
the auxiliary lemmas:

Let σ, σ̃, f, g, h, a, b such that (∗) holds. Let further x, y ∈ Q such that

σ
(
ι−1(−∞, x]

) ⊆ (−∞, f(y)] and σ
(
ι−1[x,+∞)

) ⊆ [f(y),+∞).

Suppose that x ∈ (inf h, suph) with γ := h†(x) ∈ I and δ := ι†(x) ∈ I. Additionally, suppose
that f(y) /∈ Im(σ). Let z̄ and w̄ be tuples in Q and let z̄′ and w̄′ be tuples in (R \ Im(ḡ))∩ I
and DcI(h), respectively, such that b(z̄) = w̄ and b̄(z̄′) = w̄′. Assume that z̄ ∪ z̄′ contains
both an element greater and less than ḡ(δ). Put z− and z+ to be the greatest entry of z̄ ∪ z̄′

less than ḡ(δ) and the least entry of z̄∪z̄′ greater than ḡ(δ), respectively, and put w− and w+

to be the corresponding entries of w̄ ∪ w̄′. Then the following holds:
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(i) σ†(f(y)) = δ and δ ∈ DcI(σ). Additionally, γ ∈ DcI(h) and γ = b̄(ḡ(δ)). Further,
z− < ḡ(δ) < z+ as well as w− < γ < w+. Finally, σ

(
g−1(−∞, z−]

) ⊆ (−∞, f(y))
and σ

(
g−1[z+,+∞)

) ⊆ (f(y),+∞).

If z± and w± are rational, then I− := g−1(−∞, z−] and I+ := g−1[z+,+∞) are
rational intervals.

(ii) If z± and w± are rational and if

Im(σ̃) ∩ {f(y)} = ∅ and σ̃(I−) ⊆ (−∞, f(y)) and σ̃(I+) ⊆ (f(y),+∞),

then – setting H̃− := σ̃−1(−∞, f(y)] = σ̃−1(−∞, f(y)) and H̃+ := σ̃−1[f(y),+∞) =
σ̃−1(f(y),+∞) – we have sup g(H̃−) < z+ as well as z− < inf g(H̃+). Further, there
exists ρ̃ ∈ ((R \ Im(ḡ)) ∩ I) ∪ ḡ(DcI(σ̃)) such that z− < ρ̃ < z+ and g(H̃−) ⊆ (−∞, ρ̃)
as well as g(H̃+) ⊆ (ρ̃,+∞). The finite partial map z̄ ,→ w̄, z̄′ ,→ w̄′ and ρ̃ ,→ γ is

strictly increasing and, additionally, for any b̃ ∈ GQ such that b̃(z̄) = w̄,
¯̃
b(z̄′) = w̄′

and
¯̃
b(ρ̃) = γ, we have

σ̃
(
ι̃−1(−∞, x]

) ⊆ (−∞, f(y)] and σ̃
(
ι̃−1[x,+∞)

) ⊆ [f(y),+∞),

where ι̃ := hb̃g.

4.4.6 Proving the Variation Lemma 4.4.13, full

Finally, we amalgamate the special cases.

Proof (of the Variation Lemma 4.4.13). We construct O as an intersection of Trich-sub-
basic open sets, i.e. of sets of the types 0, 1, 2, 3.
By adding to the intersection O the condition that σ̃ has the same boundedness type as h

(type 2), we can ascertain that (∗) holds. Considering that x̄ ,→ ȳ automatically preserves
the formulas zi < zj since a(x̄) = ȳ and that all the other basic formulas are unary, it
suffices to pick the automorphism b̃ ∈ GQ in such a way that the map x ,→ y preserves all
basic formulas for each corresponding pair x, y in x̄, ȳ.

First, we treat those corresponding pairs x, y in x̄, ȳ for which

(a) x /∈ (inf h, suph) OR

(b) x ∈ (inf h, suph) with h†(x) ∈ Q OR

(c) x ∈ (inf h, suph) with h†(x) ∈ I and ι†(x) ∈ Q.

Applying Lemmas 4.4.18, 4.4.19 and 4.4.20 each yields a finite intersection of sets of
types 0, 1, 2, 3 and additional conditions of the form b̃(z) = w = b(z) for z, w ∈ Q or
¯̃
b(z′) = w′ = b̄(z′) for z′ ∈ (R \ Im(ḡ)) ∩ I and w′ ∈ DcI(h) under which x ,→ y always pre-
serves all basic formulas as a finite partial map from A(σ̃, f, ι̃) to B(σ̃, f, ι̃) where ι̃ := hb̃g.
We add the sets of types 0, 1, 2, 3 to the intersection O, we add the points z and w to z̄∗

and w̄∗, respectively, and we add the points z′ and w′ to z̄′ and w̄′, respectively. Summaris-
ing, we obtain that if σ̃ is contained in the set O constructed thus far and if b̃(z̄∗) = w̄∗
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and b̃(z̄′) = w̄′, then x ,→ y preserves all basic formulas for each corresponding pair x, y
with one of the three properties (a)-(c).
It remains to consider those corresponding pairs x, y in x̄, ȳ for which

(d) x ∈ (inf h, suph) with γ := h†(x) ∈ I and δ := ι†(x) ∈ I.

Put z− and z+ to be the greatest entry of z̄ ∪ z̄∗ ∪ z̄′ less than ḡ(δ) and the least entry
of z̄ ∪ z̄∗ ∪ z̄′ greater than ḡ(δ), respectively, and put w− and w+ to be the corresponding
entries of w̄∪ w̄∗ ∪ w̄′. As a first step, Lemmas 4.4.21 and 4.4.22 yield that z− < ḡ(δ) < z+
(as well as w− < γ < w+) and γ = b̄(ḡ(δ)). Hence, we can find rationals ẑ−, ẑ+ ∈ Q such
that z− < ẑ− < ḡ(δ) < ẑ+ < z+. We add ẑ± to z̄∗ and ŵ± := b(ẑ±) to w̄∗. In this way, we
can assume that z± and w± are always rational for each corresponding pair x, y.

If x1, y1 and x2, y2 are two such pairs (without loss of generality, let x1 < x2) and if

γ1 := h†(x1) < γ2 := h†(x2),

we enrich z̄∗ and w̄∗ even further: putting δ1 := ι†(x1) and δ2 := ι†(x2), we know that

b̄(ḡ(δ1)) = γ1 < γ2 = b̄(ḡ(δ2))

by Lemmas 4.4.21 and 4.4.22, and hence ḡ(δ1) < ḡ(δ2). If we pick z̃, w̃ ∈ Q such that

ḡ(δ1) < z̃ < ḡ(δ2) and w̃ := b(z̃), (4.10)

then γ1 < w̃ < γ2. We add z̃ to z̄∗ and w̃ to w̄∗. If z±,1, w±,1, z±,2, w±,2 denote the values10

z±, w± for x1, y1 and x2, y2, respectively, we obtain z+,1 ≤ z̃ ≤ z−,2 and w+,1 ≤ w̃ ≤
w−,2. Distinguishing cases, we conclude that whichever combination of Lemmas 4.4.21
and 4.4.22 applies to x1, y1 and x2, y2, the resulting conditions on b̃ will be compatible,
i.e. strictly increasing. By way of example, consider the case that x1, y1 fall into the scope
of Lemma 4.4.21 and x2, y2 fall into the scope of Lemma 4.4.22. Then we are required to
pick

ũ, ṽ, û, v̂ ∈ Q and ρ̃ ∈ ((R \ Im(ḡ)) ∩ I) ∪ ḡ(DcI(σ̃))

with (in particular)

z−,1 < ũ < ṽ < z+,1 ≤ z−,2 < ρ̃ < z+,2 and w−,1 < û < v̂ < w+,1 ≤ w−,2 < γ2 < w+,2.

Thus, for any ũ, ṽ, û, v̂, ρ̃ we could pick, the finite partial map z̄ ,→ w̄, z̄∗ ,→ w̄∗, z̄′ ,→ w̄′,
ũ ,→ û, ṽ ,→ v̂ and ρ̃ ,→ γ2 is automatically strictly increasing.

Finally, we treat the possibility that

h†(x1) = h†(x2).

We will show that we can reduce to a single application of Lemma 4.4.21, Lemma 4.4.22
or Remark 4.4.23. First, let x1, y1 and x2, y2 and x3, y3 be three corresponding pairs with
x1 < x2 < x3 (and consequently y1 < y2 < y3) but h

†(x1) = h†(x2) = h†(x3). Then

h−1(−∞, x1] = h−1(−∞, x2] = h−1(−∞, x3] and

h−1[x1,+∞) = h−1[x2,+∞) = h−1[x3,+∞),

10They are necessarily rational!
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so

ι̃−1(−∞, x1] = ι̃−1(−∞, x2] = ι̃−1(−∞, x3] and

ι̃−1[x1,+∞) = ι̃−1[x2,+∞) = ι̃−1[x3,+∞)

for all ι̃ = hb̃g we could pick in the sequel. It is immediate from Lemma 4.4.17 that we can
drop x2, y2 from x̄, ȳ; more precisely: if x1 ,→ y1 and x3 ,→ y3 preserve all basic formulas,
then so does x2 ,→ y2. Hence, we can assume that x̄, ȳ contains only two corresponding
pairs x1, y1 and x2, y2 with h†(x1) = h†(x2). If additionally f(y1) = f(y2), we can drop
one of the pairs from x̄, ȳ and apply Lemma 4.4.21 or 4.4.22 to the remaining one. If on
the other hand f(y1) < f(y2), we apply Lemma 4.4.17 to x1 ,→ y1 and x2 ,→ y2 as finite
partial maps from A to B to obtain

σ
(
ι−1(−∞, x1]

) ⊆ (−∞, f(y1)] and σ
(
ι−1[x1,+∞)

) ⊆ [f(y2),+∞).

Since ι−1(−∞, x1] and ι−1[x1,+∞) partition the whole of Q (note that x1 /∈ Im(ι)), this
implies Im(σ) ∩ (f(y1), f(y2)) = ∅. We add the condition

Im(σ̃) ∩ (f(y1), f(y2)) = ∅ (type 3)

to the intersection O and pick ŷ ∈ Q such that f(y1) < f(ŷ) < f(y2). Then

σ
(
ι−1(−∞, x1]

) ⊆ (−∞, f(ŷ)] and σ
(
ι−1[x1,+∞)

) ⊆ [f(ŷ),+∞).

Applying Remark 4.4.23 to the pair x1, ŷ one obtains

σ̃
(
ι̃−1(−∞, x1]

) ⊆ (−∞, f(ŷ)] and σ̃
(
ι̃−1[x1,+∞)

) ⊆ [f(ŷ),+∞)

under suitable conditions on σ̃ and b̃ (see below). By our choice of ŷ, since ι̃−1[x2,+∞) =
ι̃−1[x1,+∞) and since Im(σ̃)∩(f(y1), f(y2)) = ∅, Lemma 4.4.17 yields that this is equivalent
to x1 ,→ y1 and x2 ,→ y2 both preserving all basic formulas.

To complete the proof, we apply either Lemma 4.4.21, Lemma 4.4.22 or Remark 4.4.23
(the latter only if we use the reduction from two instances of Lemmas 4.4.21 or 4.4.22 to a
single instance of Remark 4.4.23 as derived above) to each corresponding pair x, y in x̄, ȳ
satisfying (d). This yields additional sets of types 0, 1, 2, 3 and additional tuples ζ̄∗, η̄∗

in Q, ζ̄ ′ in (R \ Im(ḡ))∩ I, ζ̄ ′′ in ḡ(DcI(σ̃)) and η̄′, η̄′′ in DcI(h) such that for all these pairs
x, y, the map x ,→ y preserves all basic formulas as a finite partial map from A(σ̃, f, ι̃) to
B(σ̃, f, ι̃) where ι̃ := hb̃g, whenever σ̃ is contained in the the additional sets and b̃ ∈ GQ

satisfies b̃(z̄) = w̄, b̃(z̄∗) = w̄∗, ¯̃b(z̄′) = w̄′ as well as b̃(ζ̄∗) = η̄∗, ¯̃b(ζ̄ ′) = η̄′, ¯̃b(ζ̄ ′′) = η̄′′. We
add the additional sets to the intersection O and add the tuples ζ̄∗, η̄∗ to z̄∗, w̄∗, the tuples
ζ̄ ′, η̄′ to z̄′, w̄′ and the tuples ζ̄ ′′, η̄′′ to z̄′′, w̄′′, respectively. Note that the resulting finite
partial map z̄ ,→ w̄, z̄∗ ,→ w̄∗, z̄′ ,→ w̄′, z̄′′ ,→ w̄′′ is strictly increasing: different entries
of the new tuples ζ̄∗, ζ̄ ′, ζ̄ ′′, η̄∗, η̄′, η̄′′ cannot interfere with each other since the generalised
inverses h†(x) are pairwise distinct and since we added the elements z̃ and w̃ from (4.10)
to z̄∗ and w̄∗.

If σ̃ ∈ O and if b̃ ∈ GQ satisfies b̃(z̄) = w̄, b̃(z̄∗) = w̄∗, ¯̃b(z̄′) = w̄′, ¯̃b(z̄′′) = w̄′′, then
by our previous construction of z̄∗, z̄′, w̄∗, w̄′, the finite partial map x ,→ y preserves all
basic formulas as a map from A(σ̃, f, ι̃) to B(σ̃, f, ι̃) not only for for each pair x, y with
property (d) but also for each pair x, y with one of the properties (a)-(c) – thus completing
the proof.
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4.5 Reduction of the rich to the pointwise topology

The aim of this section is to prove Proposition 4.3.5. We will argue in several steps, each
having the following general form:

Notation 4.5.1. If Ta and Tb are topologies on MQ with Tpw ⊆ Ta, Tb, then Ta ⇝ Tb shall
denote the following statement11:

Let T be a Polish semigroup topology on MQ such that Tpw ⊆ T ⊆ Ta.
Then T ⊆ Tb.

We will require an additional auxiliary type of subsets of MQ which encompasses type 3
(see Definition 4.3.1).

Definition 4.5.2.

(4) O
(4)
A := {s ∈ MQ : Im(s) ⊆ A} for A ⊆ Q (restricting)

The proof will proceed along the following route:

Trich = T0123 4.5.6⇝ T01cls23opn 4.5.9⇝ T024 4.5.12⇝ T023opn 4.5.20⇝ T03opn 4.5.23⇝ T0 = Tpw
Proof (of Proposition 4.3.5 given Lemmas 4.5.6, 4.5.9, 4.5.12, 4.5.20 and 4.5.23).
Let T be a Polish semigroup topology on MQ with Tpw ⊆ T ⊆ Trich = T0123. By
Lemma 4.5.6, we know that Tpw ⊆ T ⊆ T01cls23opn . Analogously, we apply Lemmas 4.5.9,
4.5.12, 4.5.20 and 4.5.23 in sequence to finally conclude Tpw ⊆ T ⊆ Tpw, i.e. T = Tpw as
claimed.

4.5.1 Reductions T0123 ⇝ T01cls23opn ⇝ T024

For the first two reductions, we will need to determine the image of T0123-basic open (and
in particular T01cls23opn-basic open) sets under a suitable left translation λf . This requires
a canonical representation of basic open sets in T0123 and T01cls23opn which will later be also
applied to T023opn-basic open sets.

Definition 4.5.3. Let O ̸= ∅ be a T0123-basic open (or T01cls23opn-basic open or T023opn-basic
open) set, i.e.

O =
n∩

i=1

O(0)
xi,yi ∩

m∩
j=1

O
(1)
Ij ,Jj

∩
~m∩

k=1

O
(1)

Ĩk,J̃k
∩O

(2)
LU ∩

N∩
ℓ=1

O
(3)
Kℓ

(4.11)

where Ij = (−∞, pj) and Ĩk = (p̃k,+∞) for pj , p̃k ∈ Q. We call the representation (4.11)
stratified if

(S1) ∀i = 1, . . . , n− 1: xi < xi+1 (then automatically, yi ≤ yi+1 since O ̸= ∅)
(S2) ∀j = 1, . . . ,m− 1: pj < pj+1 and Jj ⊆ Jj+1

11In many (but not all!) applications of this notation, we will have Tb ⊆ Ta.
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(S3) ∀k = 1, . . . , .m− 1: p̃k < p̃k+1 and J̃k ⊇ J̃k+1

(S4) ∀ℓ = 1, . . . , N − 1: supKℓ ≤ infKℓ+1 and (infKℓ, supKℓ+1) \ (Kℓ ∪Kℓ+1) ̸= ∅

(S5) ∀j = 1, . . . ,m ∀i = 1, . . . , n : pj ≤ xi ⇒ yi /∈ Jj

(S6) ∀k = 1, . . . , .m ∀i = 1, . . . , n : p̃k ≥ xi ⇒ yi /∈ J̃k

(S7) ∀j = 1, . . . ,m ∀ℓ = 1, . . . , N : (Jj ∩Kℓ ̸= ∅ ⇒ ∃t ∈ Jj : t > Kℓ)

(S8) ∀k = 1, . . . , .m ∀ℓ = 1, . . . , N : (J̃k ∩Kℓ ̸= ∅ ⇒ ∃t ∈ J̃k : t < Kℓ)

Lemma 4.5.4. Any T0123-basic open set O has a stratified representation.

The same holds for a T01cls23opn-basic open set, where the resulting representation again
consists of sets of types 0, 1cls, 2 and 3opn.

The same holds for a T023opn-basic open set, where the resulting representation again
consists of sets of types 0, 2 and 3opn.

Proof. We start with any representation

O =
n∩

i=1

O(0)
xi,yi ∩

m∩
j=1

O
(1)
Ij ,Jj

∩
~m∩

k=1

O
(1)

Ĩk,J̃k
∩O

(2)
LU ∩

N∩
ℓ=1

O
(3)
Kℓ

and turn it into a stratified one in several steps, one for each item in Definition 4.5.3.

(S1). Rearrange the xi in increasing order.

(S2). Rearrange the pj in increasing order; if pj = pj+1, drop the larger set of Jj

and Jj+1. If Jj is not a subset of Jj+1, then Jj+1 ⊆ Jj and O
(1)
Ij ,Jj

∩ O
(1)
Ij+1,Jj+1

can be

replaced by O
(1)
Ij+1,Jj+1

.

(S3). Analogously to (S2).

(S4). Rearrange the Kℓ by increasing order of infKℓ.

If supKℓ > infKℓ+1 or if (infKℓ, supKℓ+1) ⊆ Kℓ ∪ Kℓ+1, then Kℓ ∪ Kℓ+1 is again an

interval and O
(3)
Kℓ

∩O
(3)
Kℓ+1

can be replaced by O
(3)
Kℓ∪Kℓ+1

.

(S5). If pj ≤ xi and yi ∈ Jj , then O
(0)
xi,yi ∩O

(1)
Ij ,Jj

can be replaced by O
(0)
xi,yi .

(S6). Analogously to (S5).

(S7). If Jj ∩ Kℓ ̸= ∅ but no element of Jj is greater than Kℓ, then Jj \ Kℓ is again a

rational interval and O
(1)
Ij ,Jj

∩O
(3)
Kℓ

can be replaced by O
(1)
Ij ,Jj\Kℓ

∩O
(3)
Kℓ

.

(S8). Analogously to (S7).

If all intervals Jj and J̃k are closed and all intervalsKℓ are open, then so are the respective
intervals in the representation we obtain after going through (S1)-(S8), proving the second
statement.

If additionally no sets of type 1cls occur, then the representation will only contains sets
of types 0, 2 and 3opn since the above procedure never generates sets of type 1 if there are
none in the original set.
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Now we can provide the result about images of basic open sets under certain left transla-
tions (which can be seen as a generalisation of Lemma 4.1.7). Its proof is somewhat techni-
cal, but the main idea is very straightforward: if f, s′ ∈ MQ and if s′ satisfies s′(−∞, p) ⊆
(−∞, q), then one might be led to believe that necessarily fs′(−∞, p) ⊆ (−∞, f(q)). How-
ever, in general only the conclusion fs′(−∞, p) ⊆ (−∞, f(q)] is true, namely if the preimage
f−1{f(q)} contains not only q but also elements less than q. This can be ensured by re-
quiring that f−1{f(q)} is an irrational interval. Indeed, if f is also surjective, then any s
with s(−∞, p) ⊆ (−∞, f(q)] can be rewritten as s = fs′ where s′(−∞, p) ⊆ (−∞, q). An
analogous fact holds for sets of type 3 – if s′ avoids [u, v], then fs′ in general only avoids
(f(u), f(v)) and, conversely, if f is surjective with f−1{f(u)}, f−1{f(v)} irrational and if s
avoids (f(u), f(v)), then s can be rewritten as s = fs′ where s′ avoids [u, v]. Combining
these facts for the building blocks of (stratified representations of) basic open sets requires
thorough bookkeeping.

Lemma 4.5.5. Let O ̸= ∅ be a nonempty T0123-basic open set with stratified representation

O =

n∩
i=1

O(0)
xi,yi ∩

m∩
j=1

O
(1)
(−∞,pj),Jj

∩
~m∩

k=1

O
(1)

(p̃k,+∞),J̃k
∩O

(2)
LU ∩

N∩
ℓ=1

O
(3)
Kℓ

.

Define

qj := sup Jj , q̃k := inf J̃k, uℓ := infKℓ and vℓ := supKℓ.

Let further f ∈ MQ be unbounded-unbounded such that for all w ∈ Im(f), the preimage
f−1{w} is an irrational interval. Then (putting f(±∞) := ±∞) we have

λf (O) = {s : Im(s) ⊆ Im(f)} ∩
n∩

i=1

O
(0)
xi,f(yi)

∩

m∩
j=1

O
(1)
(−∞,pj),(−∞,f(qj)]

∩
~m∩

k=1

O
(1)
(p̃k,+∞),[f(q̃k),+∞) ∩O

(2)
LU ∩

N∩
ℓ=1

O
(3)
(f(uℓ),f(vℓ))

.

Proof. The inclusion “⊆” is immediate, so we deal only with “⊇”.

Take s ∈ MQ such that Im(s) ⊆ Im(f) and

s ∈
n∩

i=1

O
(0)
xi,f(yi)

∩
m∩
j=1

O
(1)
(−∞,pj),(−∞,f(qj)]

∩
~m∩

k=1

O
(1)
(p̃k,+∞),[f(q̃k),+∞) ∩O

(2)
LU ∩

N∩
ℓ=1

O
(3)
(f(uℓ),f(vℓ))

.

(4.12)
We want to find s′ ∈ O such that s = fs′. The latter statement is equivalent to the assertion
s′(s−1{w}) ⊆ f−1{w} for all w ∈ Im(s). Since Im(s) ⊆ Im(f), we have f−1{w} ̸= ∅ for
all w ∈ Im(s). Note that if one takes s′|s−1{w} to be an increasing map s−1{w} → f−1{w}
independently for each w ∈ Im(s), their union will be increasing as well since s−1{w1} <
s−1{w2} and f−1{w1} < f−1{w2} for all w1 < w2. Additionally requiring s′ ∈ O amounts
to the following properties:

(i) ∀i = 1, . . . , n : s′(xi) = yi
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(ii) s′ ∈ O
(2)
LU

(iii) ∀j = 1, . . . ,m ∀w ∈ Im(s) : s′
(
s−1{w} ∩ (−∞, pj)

) ⊆ Jj ∩ f−1{w}
(iv) ∀k = 1, . . . , .m ∀w ∈ Im(s) : s′

(
s−1{w} ∩ (p̃k,+∞)

) ⊆ J̃k ∩ f−1{w}
(v) ∀ℓ = 1, . . . , N ∀w ∈ Im(s) : s′

(
s−1{w}) ∩Kℓ = ∅

To simplify the proof, we replace (i) by:

(vi) ∀i = 1, . . . , n ∀w ∈ Im(s) : s′
(
s−1{w} ∩ (−∞, xi)

) ⊆ (−∞, yi] ∩ f−1{w}
(vii) ∀i = 1, . . . , n ∀w ∈ Im(s) : s′

(
s−1{w} ∩ (xi,+∞)

) ⊆ [yi,+∞) ∩ f−1{w}
If we find s′ satisfying (ii)-(vii), then we can redefine s′(xi) := yi to obtain s′ ∈ O – by (vi)
and (vii), the resulting map will still be an element of MQ; and since O ̸= ∅, mapping
xi ,→ yi cannot contradict (ii)-(v).
As a first step, we show that the statements in (ii)-(vii) are already implied by the

requirement s′(s−1{w}) ⊆ f−1{w} for many values w. If w < f(qj), then f−1{w} ⊆ Jj ,
so (iii) automatically holds for w < f(qj) and (vi) for w < f(yi); a dual argument yields (iv)
for w > f(q̃k) and (vii) for w > f(yi). Finally, if w < f(uℓ) or w > f(vℓ), then (v) is
automatically satisfied as well since f−1{w} ∩Kℓ = ∅.

Using (4.12), we obtain that (ii)-(vii) hold for many more values w. For instance, (iii)
holds for w > f(qj): since s(−∞, pj) ⊆ (−∞, f(qj)], we have s−1{w} ∩ (−∞, pj) = ∅.
Similarly, (vi) holds for w > f(yi), (iv) holds for w < f(q̃k) and (vii) holds for w < f(yi).
In (v), we do not have to consider f(uℓ) < w < f(vℓ) since Im(s) ∩ (f(uℓ), f(vℓ)) = ∅.
Finally, since f is unbounded-unbounded, any function s′ with s = fs′ has the same
boundedness type as s, i.e. (ii) is automatically satisfied as well.
Collecting the previous arguments and additionally reformulating (v), it suffices to as-

certain the following properties (instead of (ii)-(vii)):

(iii’) ∀j = 1, . . . ,m : s′
(
s−1{f(qj)} ∩ (−∞, pj)

) ⊆ Jj ∩ f−1{f(qj)}
(iv’) ∀k = 1, . . . , .m : s′

(
s−1{f(q̃k)} ∩ (p̃k,+∞)

) ⊆ J̃k ∩ f−1{f(q̃k)}
(v’) ∀ℓ = 1, . . . , N : s′

(
s−1{f(uℓ)}

) ⊆ f−1{f(uℓ)} \Kℓ and

∀ℓ = 1, . . . , N : s′
(
s−1{f(vℓ)}

) ⊆ f−1{f(vℓ)} \Kℓ

(vi’) ∀i = 1, . . . , n : s′
(
s−1{f(yi)} ∩ (−∞, xi)

) ⊆ (−∞, yi] ∩ f−1{f(yi)}
(vii’) ∀i = 1, . . . , n : s′

(
s−1{f(yi)} ∩ (xi,+∞)

) ⊆ [yi,+∞) ∩ f−1{f(yi)}
We replace O by

n∩
i=1

O
(1)
(−∞,xi),(−∞,yi]

∩O
(1)
(xi,+∞),[yi,+∞) ∩

m∩
j=1

O
(1)
(−∞,pj),Jj

∩
~m∩

k=1

O
(1)

(p̃k,+∞),J̃k
∩O

(2)
LU ∩

N∩
ℓ=1

O
(3)
Kℓ

,

(4.13)
observing that this representation is still stratified (up to adding the elements xi to the
sets {p1, . . . , pm} as well as {p̃1, . . . , p̃~m} and rearranging).
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Since we have

s ∈ {
s′ : Im(s′) ⊆ Im(f)

} ∩
n∩

i=1

O
(1)
(−∞,xi),(−∞,f(yi)]

∩O
(1)
(xi,+∞),[f(yi),+∞)∩

m∩
j=1

O
(1)
(−∞,pj),(−∞,f(qj)]

∩
~m∩

k=1

O
(1)
(p̃k,+∞),[f(q̃k),+∞) ∩O

(2)
LU ∩

N∩
ℓ=1

O
(3)
(f(uℓ),f(vℓ))

,

we can, without loss of generality, subsume (vi’) and (vii’) in (iii’) and (iv’) so that we only
have to deal with (iii’)-(v’).

If we can find an increasing map satisfying (iii’)-(v’), then any extension s′ of that
map satisfying s′(s−1{w}) ⊆ f−1{w} for w ̸= f(qj), f(q̃k), f(uℓ), f(vℓ) (j = 1, . . . ,m;
k = 1, . . . , .m; ℓ = 1, . . . , N) will be an element of MQ for which (ii)-(vii) hold – thus
completing the proof.

Since the f -preimages of single elements are assumed to be irrational intervals, the right
hand sides in (iii’)-(v’) are nonempty12: the preimage f−1{f(qj)} in (iii’) is an irrational
interval which contains qj , so qj must be contained in the interior of f−1{f(qj)}; we conclude
Jj∩f−1{f(qj)} ≠ ∅. For the other items, we argue analogously, noting in (v’) that uℓ and vℓ
are limit points not only of Kℓ but also of Q \Kℓ.

In the remainder of the proof, we will use that the representation of O is stratified to
show that combinations of (iii’)-(v’) are not contradictory, either. This could only happen
if they are making statements about the same s-preimage, i.e. if the f -images of some of
the points qj , q̃k, uℓ, vℓ coincide. For each

w ∈ {f(q1), . . . , f(qm), f(q̃1), . . . , f(q̃~m), f(u1), . . . , f(uN ), f(v1), . . . , f(vN )},

we will define s′ on s−1{w}.
We first show that we can find an image s′(z) satisfying (iii’)-(v’) for each indivdual

z ∈ s−1{w}. If f(qj) = f(qj+1), then Jj ∩ f−1{f(qj)} ⊆ Jj+1 ∩ f−1{f(qj+1)} by (S2).
Therefore, it suffices to consider the least j such that z ∈ (−∞, pj) (if such a j exists)
and fulfil s′(z) ∈ Jj – the other conditions of the same type will then be automatically
satisfied. Analogously, it is enough to consider the greatest k such that z ∈ (p̃k,+∞) (if
it exists). For given z, we can thus reduce (iii’) and (iv’) to a single condition of the
respective types (if they occur at all). Therefore, we need to map z to the intersection
of f−1{w} and a combination of Jj and J̃k and

∩ℓ2
ℓ=ℓ1

Q \ Kℓ which respectively occur
if z ∈ (−∞, pj) ∧ f(qj) = w and z ∈ (p̃k,+∞) ∧ f(q̃k) = w and f(vℓ1) = f(uℓ1+1) =
f(vℓ1+1) = . . . , f(uℓ2) = w (and possibly f(uℓ1) = w or f(vℓ2) = w as well – we do not
know whether the chain f−1{w}∩({uℓ : ℓ = 1, . . . , N}∪{vℓ : ℓ = 1, . . . , N}) begins and ends
with an element u∗ or v∗!). We distinguish cases by the types of sets actually occurring
and show that this intersection is always nonempty13:

❼ We have already argued that f−1{w}∩Jj ̸= ∅ ≠ f−1{w}∩J̃k and f−1{w}∩Q\Kℓ ̸= ∅.
12This is the first half of the main observation behind the lemma!
13This is the second half of the main observation behind the lemma!
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❼ If the sets Q \ Kℓ occur for ℓ = ℓ1, . . . , ℓ2, then f−1{w} ∩ ∩ℓ2
ℓ=ℓ1

Q \ Kℓ ̸= ∅, since
f−1{w} ⊆ Uℓ2

ℓ=ℓ1
Kℓ combined with (S4) would yield f−1{w} ⊆ Kℓ for some ℓ, con-

tradicting the previous item.

❼ If both Jj and J̃k occur, then Jj ∩ J̃k ̸= ∅ since s(z) ∈ Jj ∩ J̃k by s ∈ O. Therefore,
q̃k ≤ qj and sup(Jj ∩ J̃k) = qj as well as inf(Jj ∩ J̃k) = q̃k. We know that both qj
and q̃k are contained in the interval f−1{w}, whence f−1{w}∩Jj ∩ J̃k = Jj ∩ J̃k ̸= ∅.

❼ If Jj and
∩ℓ2

ℓ=ℓ1
Q \ Kℓ occur, then f−1{w} ∩ Jj ∩

∩ℓ2
ℓ=ℓ1

Q \ Kℓ = ∅ would imply

f−1{w} ∩ Jj ⊆ Kℓ for some ℓ, again via (S4). We pick any r ∈ f−1{w} ∩ Jj ̸= ∅,
and thus r ∈ Kℓ. By (S7), there exists t ∈ Jj such that t > Kℓ. In particular,
t ∈ [r, qj ] ⊆ f−1{w} which yields the contradiction t ∈ f−1{w} ∩ Jj but t /∈ Kℓ.

❼ If J̃k and
∩ℓ2

ℓ=ℓ1
Q \Kℓ occur, one argues analogously.

❼ If both Jj and J̃k as well as
∩ℓ2

ℓ=ℓ1
Q \ Kℓ occur, we again derive a contradiction

from f−1{w} ∩ Jj ∩ J̃k ∩ ∩ℓ2
ℓ=ℓ1

Q \ Kℓ = ∅. As in the previous cases, (S4) yields

∅ ≠ f−1{w} ∩ Jj ∩ J̃k ⊆ Kℓ for some ℓ. By (S7), there exists t ∈ Jj such that t > Kℓ.
Increasing t if necessary, one obtains the contradiction t ∈ Jj ∩ J̃k = f−1{w}∩Jj ∩ J̃k
but t /∈ Kℓ.

Finally, we combine our arguments for each individual z ∈ s−1{w} to a definition of s′ on
the whole of s−1{w}. We define an equivalence relation ∼ on s−1{w} by putting z ∼ z′ if
and only if z and z′ are contained in the same intervals of the shapes (−∞, pj) and (p̃k,+∞).
Clearly, there are only finitely many ∼-equivalence classes. Let z1, . . . , zM be a system of
representatives of these equivalence classes which we assume to be arranged in increasing
order. By the previous part of our proof, we can pick images s′(z1), . . . , s′(zM ) ∈ f−1{w}
such that (iii’)-(v’) hold, where s′(z1), . . . , s′(zM ) are in increasing order – the latter is
possible by (S2) and (S3). Defining s′ on the equivalence class represented by zh to be the
constant function with value s′(zh), we obtain an increasing function s′ : s−1{w} → f−1{w}
such that (iii’)-(v’) hold.

Now we can prove the first two reductions.

Lemma 4.5.6. It holds that T0123 ⇝ T01cls23opn.
Proof. Let O ∈ T ⊆ T0123. We show that O is a T01cls23opn-neighbourhood of every element
of O.
Take s ∈ O and, using Lemma 4.4.5, pick a generic surjection f . Since Im(s) ⊆ Q =

Im(f), there exists s′ ∈ MQ such that s = fs′ = λf (s
′) by Lemma 4.1.7(i). Therefore,

s′ ∈ λ−1
f (O) where this set is T -open by continuity of λf . In particular, λ−1

f (O) ∈ T0123, so
there exists

O′ = O
(0)
x̄,ȳ ∩

m∩
j=1

O
(1)
Ij ,Jj

∩
m̃∩
k=1

O
(1)

Ĩk,J̃k
∩O

(2)
LU ∩

N∩
ℓ=1

O
(3)
Kℓ

(4.14)

such that s′ ∈ O′ ⊆ λ−1
f (O). We conclude s = λf (s

′) ∈ λf (O
′) ⊆ O. By Lemma 4.5.4,

we can assume the representation (4.14) to be stratified. Since Im(f) = Q, Lemma 4.5.5
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asserts that λf (O
′) is a T01cls23opn-basic open set, so O is indeed a T01cls23opn-neighbourhood

of s.

Remark 4.5.7. We can reformulate the proof of Lemma 4.5.6 as follows: We show that
(MQ, T01cls23opn) has Property X with respect to (MQ, T0123), using the decomposition
s = fs′ idQ for a fixed generic surjection f , the fixed map idQ and varying s′. Applying
Proposition 2.7.3(i) to the map id: (MQ, T0123) → (MQ, T ) – which is continuous since
T ⊆ T0123, note also that (MQ, T ) is a topological semigroup – yields the continuity of
id : (MQ, T01cls23opn) → (MQ, T ), so T ⊆ T01cls23opn .
The second reduction is a slightly more involved application of Lemma 4.5.5, picking

both f and s′ in a more thoughtful way (tuned to the specific s being considered) by the
following construction.

Lemma 4.5.8. Let s, f ∈ MQ with Im(f) = (−∞, inf s)∪Im(s)∪(sup s,+∞) and such that
the preimages f−1{w} are irrational intervals, i.e. f−1{w} = (rw, tw) for all w ∈ Im(f),
where rw, tw ∈ I. Then there exists s′ ∈ MQ such that s = fs′ and the following hold for
all p ∈ Q:

(i) If sup s′(−∞, p) < s′(p) then sup s′(−∞, p) = rs(p).

(ii) If inf s′(p,+∞) > s′(p) then inf s′(p,+∞) = ts(p).

Proof. Defining s′ as the union of order isomorphisms between s−1{w} and either [z, z′] or
(rw, z

′] or [z, tw) or (rw, tw) where z and z′ are fixed elements of f−1{w} – depending on
the order type of s−1{w} – we obtain a map with the following properties:

(a) s = fs′

(b) ∀w ∈ Im(s) :
(
s−1{w} has no greatest element ⇒ sup s′(s−1{w}) = tw

)
and14

∀w ∈ Im(s) :
(
s−1{w} has no least element ⇒ inf s′(s−1{w}) = rw

)
(c) ∀w ∈ Im(s) : s′|s−1{w} is continuous15

We only show (i), the second assertion follows analogously. Assuming sup s′(−∞, p) < s′(p),
we distinguish two cases:
Case 1 (s(−∞, p) has a greatest element): We set w := max s(−∞, p). Then there

exists p0 < p such that s|(p0,p) ≡ w. Observe first that s(p) > w, i.e. p is the supremum
of s−1{w} but not a greatest element – for otherwise (p0, p] ⊆ s−1{w}, so (c) would yield
sup s′(−∞, p) = s′(p). By (b), we have sup s′(s−1{w}) = tw. Since sup s′(−∞, p) =
sup s′(s−1{w}), it remains to show tw = rs(p), equivalently (w, s(p))∩ Im(f) = ∅. It suffices
to note that (w, s(p)) ∩ Im(s) = ∅ and that Im(f) \ Im(s) and the convex hull of Im(s) are
disjoint by choice of Im(f).

Case 2 (s(−∞, p) does not have a greatest element): For each p′ < p, there exists p′′

such that p′ < p′′ < p and s(p′) < s(p′′) ≤ s(p). We have s′(p′′) ∈ f−1{s(p′′)} and thus

sup s′(−∞, p) ≥ s′(p′′) ≥ inf f−1{s(p′′)} = rs(p′′) ≥ ts(p′).

14In other words: s′ exhausts f−1{w} whenever possible.
15Note: If s−1{w} has e.g. a greatest element, this does not mean that s′ is continuous at that point but

rather that s′ is left-continuous there.
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Hence, sup s′(−∞, p) ≥ supp′<p ts(p′). We claim that supp′<p ts(p′) ≥ rs(p). The oppo-
site would yield f(q) ∈ (

sup s(−∞, p), s(p)
)
for any q ∈ (

supp′<p ts(p′), rs(p)
)
. However,(

sup s(−∞, p), s(p)
) ∩ Im(f) = ∅ with the same reasoning as in Case 1.

On the other hand, s′(p′) ≤ ts(p′) < rs(p) for each p′ < p since s(p′) < s(p), so
sup s′(−∞, p) ≤ rs(p).

For our reduction, we take into account the following two observations: on the one

hand, if s′ ∈ O
(1)
(−∞,p),(−∞,q] and s′(p) ≤ q, then O

(1)
(−∞,p),(−∞,q] can be replaced by O

(0)
p,s′(p);

compare with (S5). On the other hand, if r := sup s′(−∞, p) ∈ I, then no set of the form

O
(1)
(−∞,p),(−∞,q] with q ∈ Q (!) containing s′ can prohibit that sup s̃′(−∞, p) > r for some

s̃′ ∈ O
(1)
(−∞,p),(−∞,q].

Lemma 4.5.9. It holds that T01cls23opn ⇝ T024.

Proof. Let O ∈ T ⊆ T01cls23opn . We show that O is a T024-neighbourhood of every element
of O.

Take s ∈ O and, using Lemma 4.4.5, pick f ∈ MQ such that

Im(f) = (−∞, inf s) ∪ Im(s) ∪ (sup s,+∞)

and all the preimages f−1{w} are irrational intervals, i.e. f−1{w} = (rw, tw) for all
w ∈ Im(f), where rw, tw ∈ I (note that rw = −∞ or tw = +∞ is impossible since f
is unbounded-unbounded). By Lemma 4.5.8, there exists s′ ∈ MQ satisfying s = fs′ and
the following for all p ∈ Q:

(i) If sup s′(−∞, p) < s′(p) then sup s′(−∞, p) = rs(p).

(ii) If inf s′(p,+∞) > s′(p) then inf s′(p,+∞) = ts(p).

Similarly to the proof of Lemma 4.5.6, we use s = fs′ = λf (s
′), the T -continuity of λf and

the assumption T ⊆ T01cls23opn to obtain a T01cls23opn-basic open set

O′ = O
(0)
x̄,ȳ ∩

m∩
j=1

O
(1)
(−∞,pj),(−∞,qj ]

∩
m̃∩
k=1

O
(1)
(p̃k,+∞),[q̃k,+∞) ∩O

(2)
LU ∩

N∩
ℓ=1

O
(3)
(uℓ,vℓ)

(4.15)

such that s ∈ λf (O
′) ⊆ O. We additionally use Lemma 4.5.4 and assume that the rep-

resentation (4.15) is stratified. If we have s′(pj) ≤ qj for some j ∈ {1, . . . ,m}, then

s′ ∈ O
(0)
pj ,s′(pj) ⊆ O

(1)
(−∞,pj),(−∞,qj ]

and we replace O
(1)
(−∞,pj),(−∞,qj ]

in (4.15) by O
(0)
pj ,s′(pj).

We proceed analogously if s′(p̃k) ≥ q̃k. By rerunning the stratification procedure from
Lemma 4.5.4, we again obtain a stratified representation. In our situation of (S7) and (S8)
already holding, the proof of Lemma 4.5.4 never adds new sets of type 1. Hence, we can
assume that

s′(pj) > qj for all j and s′(p̃k) < q̃k for all k. (4.16)
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Lemma 4.5.5 yields

λf (O
′) = {s̃ : Im(s̃) ⊆ Im(f)} ∩O

(0)
x̄,f(ȳ)∩

m∩
j=1

O
(1)
(−∞,pj),(−∞,f(qj)]

∩
~m∩

k=1

O
(1)
(p̃k,+∞),[f(q̃k),+∞) ∩O

(2)
LU ∩

N∩
ℓ=1

O
(3)
(f(uℓ),f(vℓ))

. (4.17)

From (4.16) and s′ ∈ O′, we obtain sup s′(−∞, pj) ≤ qj < s′(pj) for all j as well as
inf s′(p̃k,+∞) ≥ q̃k > s′(p̃k) for all k. By (i) and (ii), we conclude sup s′(−∞, pj) = rs(pj)
for all j and inf s′(p̃k,+∞) = ts(p̃k) for all k. Therefore, qj ≥ rs(pj) for all j and q̃k ≤ ts(p̃k)
for all k. Since the left hand sides of these inequalities are rational numbers while the right
hand sides are irrational, we even obtain qj > rs(pj) for all j and q̃k < ts(p̃k) for all k. In
other words, we have f(qj) ≥ s(pj) for all j and f(q̃k) ≤ s(p̃k) for all k. Consequently, we
can replace the sets of type 1 in (4.17) by sets of type 0, similarly to the above: we set

P := {s̃ : Im(s̃) ⊆ Im(f)} ∩O
(0)
x̄,f(ȳ) ∩O

(0)
p̄,s(p̄) ∩O

(0)~p,s(~p) ∩O
(2)
LU ∩

N∩
ℓ=1

O
(3)
(f(uℓ),f(vℓ))

where p̄ = (p1, . . . , pm), .p = (.p1, . . . , .p~m) to obtain s ∈ P ⊆ λf (O
′) ⊆ O.

Putting

A := Im(f) ∩Q \
NU
ℓ=1

(f(uℓ), f(vℓ)),

we see that

P = O
(0)
x̄,f(ȳ) ∩O

(0)
p̄,s(p̄) ∩O

(0)~p,s(~p) ∩O
(2)
LU ∩O

(4)
A

is a T024-(basic) open set. Hence, O is indeed a T024-neighbourhood of s, as claimed.

Remark 4.5.10. We can reformulate the proof of Lemma 4.5.9 as follows: We show that
(MQ, T024) has Property X with respect to (MQ, T01cls23opn), again using the decompo-
sition s = fs′ idQ – this time for a fixed map f with Im(f) = (−∞, inf s) ∪ Im(s) ∪
(sup s,+∞) whose preimages of single points are irrational intervals, the fixed map idQ
and varying s′. As in Remark 4.5.7, we apply Proposition 2.7.3(i) to the continous map
id: (MQ, T01cls23opn) → (MQ, T ) to obtain T ⊆ T024.

4.5.2 Reduction T024 ⇝ T023opn

For the next statement, we again aim at showing that a T -open set is a T023opn-neighbour-
hood of its elements. Instead of directly doing this for all elements, we start by restricting
to injective elements – this special case contains the bulk of the work. The main observation

behind it is an analysis of “products” of the form O
(0)
z̄,z̄◦O(4)

A if z̄ = (z1, . . . , zn) is a tuple in Q
and A is densely ordered (which is connected to g being injective). Clearly, if (zi, zj)∩A = ∅,
then no element of O

(0)
z̄,z̄ ◦ O

(4)
A can hit (zi, zj) – yielding a condition of type 3opn instead

of 4. As it turns out, this is the only obstruction to points in the image.
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Lemma 4.5.11. Let T be a semigroup topology on MQ such that T ⊆ T024. Then any
injective endomorphism g ∈ MQ has a neighbourhood basis consisting of T023opn-open sets.

Proof. Given an injective endomorphism g, let O be any T -open neighbourhood of g.
We use continuity of the composition map. Since g = idQ ◦g ∈ O, there exist T -

neighbourhoods V1 of idQ and V2 of g such that V1 ◦ V2 ⊆ O. By assumption, T ⊆ T024,
hence there exist T024-basic open sets U1, U2 such that idQ ∈ U1 ⊆ V1 and g ∈ U2 ⊆ V2.

Note that a T024-basic open set containing idQ has the form O
(0)
z̄,z̄∩O(2)

−∞,+∞ for a tuple z̄ in Q
– sets of type 4 cannot occur. We can assume that U2 has the form U2 = O

(0)
x̄,ȳ∩O

(2)
LU ∩O

(4)
A ,

where A is a densely ordered set (for otherwise, replace A by Im(g)).
We obtain

g ∈
(
O

(0)
z̄,z̄ ∩O

(2)
−∞,+∞

)
◦
(
O

(0)
x̄,ȳ ∩O

(2)
LU ∩O

(4)
A

)
⊆ V1 ◦ V2 ⊆ O. (4.18)

The lemma will be proved once we find a T023opn-open set P with

g ∈ P ⊆
(
O

(0)
z̄,z̄ ∩O

(2)
−∞,+∞

)
◦
(
O

(0)
x̄,ȳ ∩O

(2)
LU ∩O

(4)
A

)
.

Since (4.18) remains valid if we expand the tuple z̄, we can assume that the elements listed
in ȳ are contained in z̄. We write z̄ = (z1, . . . , zn) where the elements zi shall be sorted
in ascending order. Adding additional elements z± to z̄ if necessary, we can assume that
z1 = z− < inf A if A is bounded below and that zn = z+ > supA if A is bounded above.
To simplify notation, we set z0 := −∞ as well as zn+1 := +∞. Further, we define

M0 :=
{
(i, j) ∈ {0, . . . , n+ 1}2 : i < j, (zi, zj) ∩A = ∅} ,

M1 :=
{
(i, j) ∈ {0, . . . , n+ 1}2 : i < j, |(zi, zj) ∩A| = 1

}
.

Note that {(zi, zj) : (i, j) ∈ M0} always contains (−∞, z−) if A is bounded below and
(z+,+∞) if A is bounded above. For (i, j) ∈ M1, define wi,j such that (zi, zj)∩A = {wi,j}.
Expanding the tuple z̄ once more, we can assume that the elements wi,j are also contained
in z̄. Defining M0 and M1 from this expanded tuple, we obtain M1 = ∅. For each pair
(i, j), the set (zi, zj)∩A is thus either empty or it contains at least two elements – in which
case it contains an infinite densely ordered set. We claim that

g ∈ P := O
(0)
x̄,ȳ ∩O

(2)
LU ∩

∩
(i,j)∈M0

O
(3)
(zi,zj)

⊆
(
O

(0)
z̄,z̄ ∩O

(2)
−∞,+∞

)
◦
(
O

(0)
x̄,ȳ ∩O

(2)
LU ∩O

(4)
A

)
; (4.19)

note that Im(g) ∩ (zi, zj) ⊆ A ∩ (zi, zj) = ∅ for all (i, j) ∈ M0.

To prove the set inclusion in (4.19), the crucial step is to find f ∈ O
(0)
z̄,z̄ ∩ O

(2)
−∞,+∞ such

that
∀q ∈ Q \

U
(i,j)∈M0

(zi, zj) : f
−1{q} ∩A ̸= ∅. (4.20)

This will be accomplished via a Back&Forth strategy, distinguishing whether A is bounded
or unbounded above and below. In the following, we will consider the case that A is
bounded below and unbounded above; the other cases are treated analogously. We will
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first find an increasing map φ : [z−,+∞) → [z−,+∞) such that (4.20) holds with φ in
place of f (note that Q \ U

(i,j)∈M0
(zi, zj) = [z−,+∞) \ U

(i,j)∈M0
(zi, zj)). To this end,

we consider the following property of a finite partial increasing map m from [z−,+∞) to
[z−,+∞):

(+) For any q ∈ Q \U(i,j)∈M0
(zi, zj) and all u, u′ ∈ Dom(m) with u < u′, if

m(u) < q < m(u′), then (u, u′) ∩A is an infinite densely ordered set16.

Setting C := Q \U(i,j)∈M0
(zi, zj), we claim that the system of all finite partial increasing

maps m from [z−,+∞) to [z−,+∞) satisfying (+) is an (A,C)-Back&Forth system (see
Definition 2.8.3). In order to simplify notation, we formally add the elements +∞,−∞ to
both Dom(m) and Im(m).

(A,C)-Back: Given q ∈ C, we set u− := max {u ∈ Dom(m) : m(u) < q} and further
u+ := min {u ∈ Dom(m) : q < m(u)}; since we added ±∞ to the domain and image of m,
these elements are welldefined17. We claim that (u−, u+)∩A is an infinite densely ordered
set. Note that u− ̸= −∞ since q ∈ C ⊆ [z−,+∞). If u+ is finite as well, our claim follows
from condition (+), and if u+ = +∞, it follows from A being unbounded above. Taking
p ∈ (u−, u+) ∩ A such that both (u−, p) ∩ A and (p, u+) ∩ A are infinite densely ordered
sets, we obtain that the extension m′ of m by m′(p) := q is an increasing map which still
satisfies condition (+).
Forth: Given p ∈ Q \ Dom(m), we set u− := max {u ∈ Dom(m) : u < p} and18 u+ :=

min {u ∈ Dom(m) : p < u}. We distinguish cases:
Case 1 (both (u−, p) ∩ A and (p, u+) ∩ A are infinite densely ordered): Pick any q ∈ Q

with m(u−) ≤ q ≤ m(u+).
Case 2 ((u−, p)∩A is infinite densely ordered, but (p, u+)∩A is not): Pick q := m(u+).
Case 3 ((u−, p)∩A is not infinite densely ordered, but (p, u+)∩A is): Pick q := m(u−).
Case 4 (neither (u−, p)∩A nor (p, u+)∩A are infinite densely ordered): Pick any q ∈ Q

with m(u−) ≤ q ≤ m(u+).
Observe that the extension m′ of m by m′(p) := q is an increasing map which still satisfies
condition (+); for Case 4, we see that (u−, u+)∩A is not infinite densely ordered – since (+)
holds, (u−, u+) ∩ A is never considered as a set of the form (u, u′) ∩ A in condition (+),
even less so (u−, p) ∩A and (p, u+) ∩A.

Since M1 = ∅, we know that m defined by z̄ ,→ z̄ satisfies (+). Thus, Lemma 2.8.4 yields
φ : [z−,+∞) → [z−,+∞) with φ(z̄) = z̄ and

∀q ∈ C = Q \
U

(i,j)∈M0

(zi, zj) : φ
−1{q} ∩A ̸= ∅.

Extending φ to a total map f by setting f(q) := q for q ∈ (−∞, z−), this finishes the

definition of f ; by design, f ∈ O
(0)
z̄,z̄ . Since C is unbounded above, f must be as well.

Moreover, f is obviously unbounded below, yielding f ∈ O
(0)
z̄,z̄ ∩O

(2)
−∞,+∞ as desired.

16equivalently: This intersection contains at least two elements.
17Note: There might exist elements u of Dom(m) in between u− and u+, necessarily with m(u) = q. As

can be seen from the proof, these elements can be neglected since they cannot prevent that an extension
of m with image q is increasing.

18Here, there can never exist elements u of Dom(m) in between u− and u+!
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Using f , we can finally prove (4.19). Let s ∈ O
(0)
x̄,ȳ ∩ O

(2)
LU ∩ ∩

(i,j)∈M0
O

(3)
(zi,zj)

. We will

prove s ∈
(
O

(0)
z̄,z̄ ∩O

(2)
−∞,+∞

)
◦
(
O

(0)
x̄,ȳ ∩O

(2)
LU ∩O

(4)
A

)
by finding h ∈ O

(0)
x̄,ȳ ∩O

(2)
LU ∩O

(4)
A such

that s = fh. The latter equality can be certainly satisfied by picking, for each

q ∈ Im(s) ⊆ Q \
U

(i,j)∈M0

(zi, zj) ⊆ Im(f),

any element pq ∈ f−1{q} ≠ ∅ and defining h by h(c) := ps(c). Because of (4.20), the
elements pq can be chosen in A, thus yielding Im(h) ⊆ A. For the entries yi of ȳ, we can
pick pyi = yi since f(ȳ) = ȳ – note that ȳ has been added to z̄, that the entries are pairwise

different since g is injective and that yi ∈ A (by g(x̄) = ȳ). Thus, s(x̄) = ȳ implies h ∈ O
(0)
x̄,ȳ.

Since f ∈ O
(2)
−∞,+∞, the boundedness type of h is the same as the boundedness type of s

which in turn is the same as the boundedness type of g. Hence, h ∈ O
(2)
LU and we conclude

h ∈ O
(0)
x̄,ȳ ∩O

(2)
LU ∩O

(4)
A . Therefore

s = fh ∈
(
O

(0)
z̄,z̄ ∩O

(2)
−∞,+∞

)
◦
(
O

(0)
x̄,ȳ ∩O

(2)
LU ∩O

(4)
A

)
,

thus proving (4.19) and, consequently, the lemma.

Lemma 4.5.12. It holds that T024 ⇝ T023opn.
Proof. Let O ∈ T . We show that O is a T023open-neighbourhood of every element of O.
Take s ∈ O. We claim that for any generic surjection f ∈ MQ (which exists by

Lemma 4.4.5), there is some injective g ∈ MQ such that s = fg: Since Im(s) ⊆ Q = Im(f)
and since the preimages f−1{w} are irrational intervals, Lemma 4.1.7(ii) applies and yields
an injective g ∈ MQ as desired.
We use continuity of the translation map λf . Since λf (g) = s ∈ O, there exists

a T -neighbourhood V of g such that λf (V ) ⊆ O. By Lemma 4.5.11, there exists a
T023opn-basic open set U such that g ∈ U ⊆ V ; we assume U to be stratified via Lemma 4.5.4.
Hence, s ∈ λf (U) ⊆ O. Using Lemma 4.5.5, we obtain that λf (U) is a T023opn-basic open
set which proves the lemma.

Remark 4.5.13. We can combine Lemmas 4.5.11 and 4.5.12 and reformulate the proof of
T024 ⇝ T023opn as follows: We show that (MQ, T023opn) has Property X of length 2 with
respect to (MQ, T024), using the decomposition s = f idQ idQ g idQ where the first, third
and fifth position are fixed and the second and fourth position are varying, subsequently
yielding s̃ = ff̃ idQ h̃ idQ. As in Remarks 4.5.7 and 4.5.10, we apply Proposition 2.7.3(i) to
the continous map id: (MQ, T024) → (MQ, T ) to obtain T ⊆ T023opn .

4.5.3 Reduction T023opn ⇝ T03opn

In our next reduction, we eliminate the sets of type 2, i.e. the boundedness types, from the
upper bound. Compared to our previous reductions, this requires a different approach; we
use the regularity of the given topology T in a crucial way. The main observation is the

following: if O is T -open and s ∈ O, there exists a T -open set P such that s ∈ P ⊆ P
T ⊆ O,
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4 The semigroup of increasing functions on the rational numbers has a unique Polish topology

where P
T

denotes the topological closure of P with respect to T . Our proof essentially

amounts to showing that taking this topological closure eliminates the sets O
(2)
LU from P –

this corresponds to O
(2)
LU being topologically dense. It is easy to see that O

(2)
LU is dense with

respect to the pointwise topology; however, this set is obviously not dense with respect to
T023opn . Hence, independently of the above sketch, it can also be seen as an important step

in showing T = Tpw that indeed O
(2)
LU is dense with respect to T as well. This will depend

on the Polishness of T . We start with a variant of Lemma 4.5.8.

Lemma 4.5.14. Let s, f ∈ MQ and q ∈ Q \ Im(s) such that Im(f) = Im(s) ∪̇ {q} where
the preimages f−1{w} are irrational intervals, i.e. f−1{w} = (rw, tw) for all w ∈ Im(f),
where rw, tw ∈ I ∪ {±∞}. Then the following hold:

(1) Suppose there is p ∈ Q such that sup s(−∞, p) = max s(−∞, p) < q < s(p).
Then there exists s′ ∈ MQ such that s = fs′ and sup s′(−∞, p) = rq ∈ I.

(2) Suppose that sup s = max s < q.
Then there exists s′ ∈ MQ such that s = fs′ and sup s′ = rq ∈ I.

(3) Suppose that q < min s = inf s.
Then there exists s′ ∈ MQ such that s = fs′ and inf s′ = tq ∈ I.

Proof. One picks s′ ∈ MQ with

(a) s = fs′

(b) ∀w ∈ Im(s) :
(
s−1{w} has no greatest element ⇒ sup s′(s−1{w}) = tw

)
and

∀w ∈ Im(s) :
(
s−1{w} has no least element ⇒ inf s′(s−1{w}) = rw

)
(c) ∀w ∈ Im(s) : s′|s−1{w} is continuous

and argues as in Case 1 of the proof of Lemma 4.5.8 with q in place of s(p). The boundary
points rq (for (1),(2)) and tq (for (3)) are finite since there exist elements in Im(f) which
are below q and above q, respectively.

Next, we show that the set Surj(Q) of all surjective elements of MQ is dense with respect
to our given Polish semigroup topology T with Tpw ⊆ T ⊆ T023opn – this uses Polishness in
an essential way and is another step in matching T to Tpw.
Lemma 4.5.15. Let T be a Polish semigroup topology on MQ such that Tpw ⊆ T ⊆ T023opn.
(i) For each q ∈ Q, the set Mq := {s ∈ MQ : q ∈ Im(s)} is T -dense.

(ii) The set Surj(Q) of surjective endomorphisms on Q is T -dense.

Proof.
(i). Let O ∈ T be open and nonempty; we have to show O∩Mq ̸= ∅. Since T ⊆ T023opn ,

the set O contains a nonempty T023opn-basic open set; we write

∅ ≠ O
(0)
x̄,ȳ ∩O

(2)
LU ∩

N∩
ℓ=1

O
(3)
(uℓ,vℓ)

⊆ O
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which we assume to be a stratified representation, see Lemma 4.5.4. If q is contained in ȳ,
then any s ∈ O has q in its image, so we assume the contrary. Distinguishing by the position
of q relative to ȳ = (y1, . . . , yn) and (u1, v1, . . . , uN , vN ) and by the required boundedness

type O
(2)
LU , one easily constructs (by a piecewise definition) a map s ∈ O possibly together

with a rational p ∈ Q such that sup s(−∞, p) = max s(−∞, p) < q < s(p) (if Q\UN
ℓ=1(uℓ, vℓ)

contains elements less and elements greater than q) or sup s = max s < q (if Q\UN
ℓ=1(uℓ, vℓ)

contains only elements less than q) or q < min s = inf s (if Q \UN
ℓ=1(uℓ, vℓ) contains only

elements greater than q). We use Lemma 4.4.5 to find f ∈ MQ with Im(f) = Im(s) ∪̇ {q}
and f−1{w} = (rw, tw) for all w ∈ Im(f), where rw, tw ∈ I ∪ {±∞}. By Lemma 4.5.14,
there exists s′ ∈ MQ such that s = fs′ and sup s′(−∞, p) = rq ∈ I or sup s′ = rq ∈ I or
inf s′ = tq ∈ I. Applying continuity of the translation map λf at s′ as well as T ⊆ T023opn ,
we obtain a T023opn-basic open set

O′ = O
(0)
x̄′,ȳ′ ∩O

(2)
L′U ′ ∩

N ′∩
ℓ=1

O
(3)
(u′

ℓ,v
′
ℓ)

such that s′ ∈ O′ and s ∈ λf (O
′) ⊆ O. In particular, Im(s′) ⊆ Q \ UN

ℓ=1(u
′
ℓ, v

′
ℓ) =: A′,

so either rq or tq is a limit point of A′. Since rq and tq are irrational while the boundary
points of A′ are rational, either rq or tq must in fact be contained in the interior of A′.
Thus, A′ ∩ f−1{q} = A′ ∩ (rq, tq) ̸= ∅; we pick z′ in this intersection.

Similarly to our construction of s, we distinguish by the positition of z′ relative to

ȳ′ = (y′1, . . . , y′n′) and (u′1, v′1, . . . , u′N ′ , v′N ′) and by the required boundedness type O
(2)
L′U ′ to

find a map s̃′ ∈ O′ with z′ ∈ Im(s̃′). We obtain s̃ := λf (s̃
′) = fs̃′ ∈ O and q ∈ Im(s̃),

i.e. s̃ ∈ O ∩Mq ̸= ∅.
(ii). For each q ∈ Q, the set Mq = {s ∈ MQ : q ∈ Im(s)} is T -open since Tpw ⊆ T .

By (i), it is also T -dense. Since T is a Polish topology, Baire’s Category Theorem applies
and yields the T -density of Surj(Q) =

∩
q∈QMq.

By definition, any T023opn-open set can be represented as a union of sets of the form

O
(0)
x̄,ȳ ∩O

(2)
LU ∩

N∩
ℓ=1

O
(3)
(uℓ,vℓ)

.

If we rearrange to separate the T02-interior from the “proper” type 3opn portion, we obtain
the following alternative notation which will prove to be very helpful:

Notation 4.5.16. Setting

A := O
(2)
−∞,+∞ B := O

(2)
−∞,R C := O

(2)
R,+∞ D := O

(2)
R,R,

we can rewrite any T023opn-open set O as

O = (OA∩A)∪(OB∩B)∪(OC∩C)∪(OD∩D)∪
U
i∈I

(O
(0)

x̄(i),ȳ(i)
∩O

(2)

L(i),U(i) ∩
N(i)∩
ℓ=1

O
(3)

(u
(i)
ℓ ,v

(i)
ℓ )

)
where OA, OB, OC , OD ∈ Tpw, x̄(i), ȳ(i) are tuples in Q, N (i) ≥ 1 and u

(i)
ℓ , v

(i)
ℓ ∈ Q.
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Note that the sets OA, OB, OC , OD could in general be empty even if O is nonempty.
However, for O ∈ T ⊆ T023opn , one uses the previous lemma to prove:

Lemma 4.5.17. Let T be a Polish semigroup topology on MQ such that Tpw ⊆ T ⊆ T023opn,
and let O ∈ T be nonempty. Then O ⊆ OA

T
. In particular, OA ̸= ∅.

Proof. Aiming for a contradiction, we assume O ⊈ OA
T
. Thus, denoting the complement

of OA
T

by
(
OA

T )c
, we know that O ∩

(
OA

T )c
is a nonempty T -open set. However,

O
(3)

(u
(i)
ℓ ,v

(i)
ℓ )

∩ Surj(Q) = ∅ and (B ∪ C ∪D) ∩ Surj(Q) = ∅ imply

O ∩
(
OA

T )c ∩ Surj(Q) = OA ∩A ∩
(
OA

T )c ∩ Surj(Q) ⊆ OA ∩
(
OA

T )c
= ∅,

which contradicts Lemma 4.5.15(ii).

With this result, we can attain an important intermediate step already hinted at in our
proof outline in the introductory remarks to Subsection 4.5.3.

Lemma 4.5.18. Let T be a Polish semigroup topology on MQ such that Tpw ⊆ T ⊆ T023opn.
Then any nonempty O ∈ T has nonempty Tpw-interior. Consequently, a subset of MQ is

T -dense if and only if it is Tpw-dense; in particular, every boundedness type O
(2)
LU is T -

dense.

Proof. By regularity, there exists a nonempty P ∈ T such that P
T ⊆ O and therefore

PA ∩A
T ⊆ O. Since A ⊇ Surj(Q) is T -dense by Lemma 4.5.15(ii) and PA is T -open, we

obtain PA ∩A
T

= PA
T

from elementary topology. Thus, PA ⊆ PA ∩A
T ⊆ O and the

Tpw-interior of O contains the set PA which is nonempty by Lemma 4.5.17.
That any T -dense set is Tpw-dense follows from Tpw ⊆ T . For the converse, assume

that M is Tpw-dense and let O be nonempty and T -open. Since the Tpw-interior of O is
nonempty, it has nonempty intersection with M , in particular M ∩O ̸= ∅.
Next, we use the previous results to show that taking the topological closure with respect

to T eliminates the boundedness types from open sets. This is the crucial technical step in
the proof of our reduction.

Lemma 4.5.19. Let T be a Polish semigroup topology on MQ such that Tpw ⊆ T ⊆ T023opn.
Let further O

(0)
x̄,ȳ ∩O

(2)
LU ∩∩N

ℓ=1O
(3)
(uℓ,vℓ)

̸= ∅ be a nonempty T023opn-basic open set. Then

O
(0)
x̄,ȳ ∩O

(2)
LU ∩

N∩
ℓ=1

O
(3)
(uℓ,vℓ)

T

= O
(0)
x̄,ȳ ∩

N∩
ℓ=1

O
(3)
(uℓ,vℓ)

.

Proof. The inclusion “⊆” follows from O
(0)
x̄,ȳ ∩

∩N
ℓ=1O

(3)
(uℓ,vℓ)

being Tpw-closed, in particular
T -closed.
For the other inclusion “⊇”, take s ∈ O

(0)
x̄,ȳ ∩

∩N
ℓ=1O

(3)
(uℓ,vℓ)

and consider a T -open set O

containing s. We have to show O
(0)
x̄,ȳ ∩O

(2)
LU ∩∩N

ℓ=1O
(3)
(uℓ,vℓ)

∩O ̸= ∅. Pick f ∈ MQ such that
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4.5 Reduction of the rich to the pointwise topology

Im(f) = Q\
(UN

ℓ=1(uℓ, vℓ)
)
⊇ Im(s). By continuity of the translation map λf , the preimage

λ−1
f (O) is T -open. Lemma 4.1.7(i) yields a map s′ ∈ MQ such that s = fs′. We conclude

from Tpw ⊆ T that the intersection ∅ ≠ λ−1
f (O)∩O

(0)
x̄,s′(x̄) ∋ s′ is T -open. By Lemma 4.5.18,

the boundedness type O
(2)
LU is T -dense, therefore there exists s̃′ ∈ λ−1

f (O) ∩O
(0)
x̄,s′(x̄) ∩O

(2)
LU .

We define s̃ := fs̃′ = λf (s̃
′) and claim

s̃ ∈ O
(0)
x̄,ȳ ∩O

(2)
LU ∩

N∩
ℓ=1

O
(3)
(uℓ,vℓ)

∩O

which will complete the proof. We only argue s̃ ∈ O
(2)
LU , the rest is straightforward. If −∞

occurs among the uℓ, then L = R since O
(0)
x̄,ȳ ∩ O

(2)
LU ∩ ∩N

ℓ=1O
(3)
(uℓ,vℓ)

̸= ∅. Further, s̃ is

bounded below since s̃ ∈ ∩N
ℓ=1O

(3)
(uℓ,vℓ)

. If on the other hand −∞ is not contained among

the uℓ, then f is unbounded below, so s̃ is unbounded below if and only if s̃′ is unbounded
below which occurs if and only if L = {−∞}. Arguing analogously for upper bounds, we

conclude s̃ ∈ O
(2)
LU .

Lemmas 4.5.18 and 4.5.19 finally enable us to show our reduction:

Lemma 4.5.20. It holds that T023opn ⇝ T03opn.
Proof. Let O ∈ T . We show that O is a T03opn-neighbourhood of every element of O.

Take s ∈ O. By regularity, there exists P ∈ T such that s ∈ P ⊆ P
T ⊆ O. Since

T ⊆ T023opn , there exists a T023opn-basic open set

U = O
(0)
x̄,ȳ ∩O

(2)
LU ∩

N∩
ℓ=1

O
(3)
(uℓ,vℓ)

such that s ∈ U ⊆ P , in particular s ∈ U
T ⊆ O. By Lemma 4.5.19, the T -closure of U is

O
(0)
x̄,ȳ ∩

∩N
ℓ=1O

(3)

(u
(i)
ℓ ,v

(i)
ℓ )

. Hence, O is indeed a T03opn-neighbourhood of s.

Remark 4.5.21. As already stated in the concluding remarks of Section 4.3, the reduc-
tion T023opn ⇝ T03opn is the only one whose proof cannot be reformulated as a (Pseu-
do-)Property X-type statement. Starting from Proposition 4.3.4 and applying Propo-
sition 2.7.3 along the route Trich = T0123 ⇝ T01cls23opn ⇝ T024 ⇝ T023opn , we obtain
that (MQ, T023opn) has automatic continuity with respect to the class of second countable
topological semigroups. However, we cannot continue on to T03opn . Thus, the reduction
T023opn ⇝ T03opn is indeed fundamentally different.

4.5.4 Reduction T03opn ⇝ T0 = Tpw

In our final reduction, we eliminate the sets of type 3opn. The technique resembles those
of Subsections 4.5.1 and 4.5.2, albeit with crucial involvement of the T -density of Surj(Q)
shown in Subsection 4.5.3. The following easy observation gives an idea as to why this is
important.
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4 The semigroup of increasing functions on the rational numbers has a unique Polish topology

Lemma 4.5.22. Let T be a Polish semigroup topology on MQ such that T ⊆ T03opn. Let
further O ∈ T and let f ∈ O be surjective. Then O is a Tpw-neighbourhood of f , in other
words, there exists P ∈ Tpw such that f ∈ P ⊆ O.

Proof. With the same spirit as in Notation 4.5.16, we can write

O = Opw ∪
U
i∈I

(O
(0)

x̄(i),ȳ(i)
∩

N(i)∩
ℓ=1

O
(3)

(u
(i)
ℓ ,v

(i)
ℓ )

) ,

where Opw ∈ Tpw, x̄(i), ȳ(i) are tuples in Q, N (i) ≥ 1 and u
(i)
ℓ , v

(i)
ℓ ∈ Q. Since none of the

sets O
(0)

x̄(i),ȳ(i)
∩ ∩N(i)

ℓ=1 O
(3)

(u
(i)
ℓ ,v

(i)
ℓ )

can contain surjective functions, f has to be contained in

P := Opw.

Lemma 4.5.23. It holds that T03opn ⇝ T0 = Tpw.
Proof. Let O ∈ T . We show that O is a Tpw-neighbourhood of every element of O.
Take s ∈ O. By T -continuity of the composition map ◦ and since s◦ idQ ∈ O, there exist

T -open sets U and V such that s ∈ U , idQ ∈ V and U ◦ V ⊆ O. Using Lemma 4.5.22,
we can shrink V and assume that V is Tpw-open; shrinking further we can even take V

to be Tpw-basic open, so V = O
(0)
x̄,x̄. The set U ∩ O

(0)
x̄,s(x̄) is a nonempty T -open set. By

Lemma 4.5.15(ii), the surjective functions form a T -dense set, so there exists a function

f ∈ U ∩O
(0)
x̄,s(x̄) ∩ Surj(Q).

We claim that f ◦O(0)
x̄,x̄ = O

(0)
x̄,f(x̄) (= O

(0)
x̄,s(x̄)). The inclusion “⊆” is clear; for the converse

inclusion “⊇”, we argue as follows: given s̃ ∈ O
(0)
x̄,f(x̄), the finite partial map m defined by

x̄ ,→ x̄ satisfies s̃(p) = fm(p) for all p ∈ Dom(m). Since f is surjective, we can apply
Lemma 4.1.7(i) to find s̃′ ∈ MQ such that s̃′(x̄) = x̄ and s̃ = fs̃′, thus proving the claim.

We obtain
s ∈ O

(0)
x̄,s(x̄) = f ◦O(0)

x̄,x̄ ⊆ U ◦ V ⊆ O,

showing that O is indeed a Tpw-neighbourhood of s, as desired.

Remark 4.5.24. We can reformulate the proof of Lemma 4.5.23 as follows: We show that
(MQ, Tpw) has Property X of length 2 with respect to (MQ, T03opn), using the decom-
position s = idQ s idQ idQ idQ where the first, third and fifth position are fixed and the
second and fourth position are varying, subsequently yielding s̃ = idQ f idQ s̃′ idQ. As
in Remarks 4.5.7, 4.5.10 and 4.5.13, we apply Proposition 2.7.3(i) to the continous map
id: (MQ, T03opn) → (MQ, T ) to obtain T ⊆ Tpw. Observe that the existence of f requires
the density statements from the previous reduction (which were shown using Polishness).
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5 Endomorphism monoids of homogeneous
graphs

We continue the programme of studying Question C, i.e. analysing homogeneous graphs
with regard to whether their endomorphism monoids have UPP and arrive at an almost
complete answer to this question. In Section 5.1, we present the previous status of this
question as well as formulate our results. The subsequent sections are devoted to the
respective proofs, considering the dual of the random Kn-free graph ∂Fn as well as the
complete infinite-partite graph with parts of finite (equal) size Kω,n in Section 5.2, the
complete k-partite graph with parts of countably infinite size Kk,ω in Section 5.3 and,
finally, discussing partial results about the complete infinite-partite graph with parts of
countably infinite size Kω,ω in Section 5.4.

5.1 Overview

To recap the classification theorem of homogeneous graphs (Theorem 2.4.3), a homogeneous
graph G is isomorphic to one of the following:

(1) the random graph

(2) the random Kn-free graph Fn for some n ≥ 3

(3) the dual of Fn for some n ≥ 3

(4) Kk,ω, Kω,n or Kω,ω for some k, n ≥ 1 (a complete multipartite graph)

(5) Ek,ω, Eω,n or Eω,ω for some k, n ≥ 1 (an irreflexive equivalence relation with classes
of equal size)

We first collect some facts about the endomorphism monoids and automorphism groups for
a selection of these structures. In this chapter, we always work with the representations
from Definition 2.4.2 and use Notation 2.4.4.

Lemma 5.1.1.

(i) End(Kk,ω) =
{Uσ

i=1,...,k si : σ ∈ Sym(k), si : N → N
}
,

Aut(Kk,ω) =
{Uσ

i=1,...,k αi : σ ∈ Sym(k), αi ∈ Sym(N)
}

(ii) End(Kω,n) ⊋
{Uτ

i∈N si : τ ∈ Inj(N), si : {1, . . . , n} → {1, . . . , n}},
Aut(Kω,n) =

{Uσ
i∈N αi : σ ∈ Sym(N), αi ∈ Sym(n)

}
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5 Endomorphism monoids of homogeneous graphs

(iii) End(Kω,ω) ⊋
{Uτ

i∈N si : τ ∈ Inj(N), si : N → N
}
,

Aut(Kω,ω) =
{Uσ

i∈N αi : σ ∈ Sym(N), αi ∈ Sym(N)
}

Proof. We proceed very similarly to the proof of Lemma 3.3.4. First, all the maps from
above are easily seen to be endomorphisms and automorphisms of the respective structures.
Second, we note that since the graph relation connects the parts of the graph, any endo-
morphism has to map elements from different parts (i.e. a ∈ {i} ×X and b ∈ {j} ×X for
i ̸= j where X = {1, . . . , n} or X = N) to different parts. For the graph Kk,ω with finitely
many parts, this implies that elements from the same part need to be mapped to the same
part as well which yields (i) with the same argument as in Lemma 3.3.4.
In general, however, this conclusion is not true; for instance, the map s : N×X → N×X

defined by

s(i, x) :=

��
(0, x), i = 0, x even

(1, x), i = 0, x odd

(i+ 1, x), i ≥ 1

where X = {1, . . . , n} or X = N is an endomorphism of Kω,n and Kω,ω, respectively.
Finally, automorphisms α of Kω,n and Kω,ω do need to preserve the parts since α−1 is an
endomorphism as well. All in all, this gives (ii) as well as (iii).

In order to analyse which of these graphs have endomorphism monoids satisfying UPP,
we start by checking whether the pointwise topology on these monoids is the coarsest Polish
semigroup topology – this turns out to be true for all of them.

Proposition 5.1.2. Let G be a homogeneous graph. Then the Zariski topology on End(G)
coincides with the pointwise topology. In particular, the pointwise topology is the coarsest
Polish semigroup topology on End(G).

Proof. The graphs from (1)-(3) as well as Kk,ω,Kω,ω and Ek,ω,Eω,ω are contained in Corol-
lary 3.2.1. For Kω,n, Theorem A1 is not directly applicable since this structure has alge-
braicity. Using Lemma 5.1.1(ii), we can, however, find for arbitrary a = (i0, x0) in the
domain Kω,n := N × {1, . . . , n} of Kω,n endomorphisms f and g such that f |Kω,n\{a} =

g|Kω,n\{a} and f(a) ̸= g(a): we pick f =
UidN

i∈N fi and g =
UidN

i∈N gi where fi = gi = id{1,...,n}
for i ̸= i0 and1 fi0 |{1,...,n}\{x0} = gi0 |{1,...,n}\{x0} as well as fi0(x0) ̸= gi0(x0). Since Kω,n

is clearly transitive such that its model-complete core (the complete graph on countably
many vertices) has no algebraicity, Remark 3.2.6 applies and yields the desired conclusion.
Finally, Eω,n was treated in [EJM+23, Proposition 3.10] with a tailoured approach – note

that Eω,n also has algebraicity but has a very specific form, namely the disjoint union of
countably many copies of a finite structure.

The previous proposition implies that the only way for UPP to fail on the endomorphism
monoid of a homogeneous graph is the existence of a Polish semigroup topology which is
strictly finer than the pointwise topology. In this case, the endomorphism monoid cannot
have automatic continuity with respect to the class of Polish semigroups (in particular
with respect to the class of second countable topological semigroups). Combining the

1Note that fi0 and gi0 need not be injective.
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5.1 Overview

results from [EJM+23] with our contributions, we almost arrive at a complete answer to
Question C, that is a classification of all endomorphism monoids of homogeneous graphs
with regard to UPP; see also Table 5.1.

Theorem C. The following homogeneous graphs have an endomorphism monoid which
satisfies UPP:

(1) the random graph

(4a) Kk,ω for some k ≥ 1

(5a) Eω,n for some n ≥ 1

In fact, the respective endomorphism monoids have automatic continuity with respect to the
class of second countable topological semigroups.

The following homogeneous graphs have an endomorphism monoid which violates UPP (in
particular, does not have automatic continuity with respect to the class of second countable
topological semigroups):

(2) the random Kn-free graph Fn for some n ≥ 3

(3) the dual of Fn for some n ≥ 3

(4b) Kω,n for some n ≥ 1

(5b) Ek,ω for some k ≥ 1 as well as Eω,ω

Finally, the endomorphism monoid of Kω,ω does not have automatic continuity with respect
to the class of second countable topological semigroups.

Structure random graph Fn ∂Fn Kk,ω Kω,n Kω,ω Ek,ω Eω,n Eω,ω

UPP ✓ ✗ ✗ ✓ ✗ ??? ✗ ✓ ✗

AC ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Table 5.1: Summary of Theorem C
(AC means “automatic continuity with respect to the class of second countable
topological semigroups”)

Proof. The random graph, the random Kn-free graph Fn for some n ≥ 3 as well as the
graphs Ek,ω,Eω,n,Eω,ω for some k, n ≥ 1 have been treated in [EJM+23]. We will con-
sider the remaining graphs in the next subsections, starting with ∂Fn and Kω,n in Propo-
sition 5.2.1, continuing with Kk,ω in Proposition 5.3.1 and ending on Kω,ω in Proposi-
tion 5.4.1.
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5 Endomorphism monoids of homogeneous graphs

5.2 ∂Fn and Kω,n do not have UPP

Proposition 5.2.1. The endomorphism monoids End(∂Fn) and End(Kω,n) do not sat-
isfy UPP.

We exhibit Polish semigroup topologies on End(∂Fn) and End(Kω,n) which are strictly
finer than the respective pointwise topologies. Our construction generalises Example 2.6.3
(which was tailoured to injective maps) to functions whose preimages of single points have
bounded size.

Definition 5.2.2. Let m ≥ 1.

(i) A map s : A → A is called m-almost injective if
||s−1{b}|| ≤ m for all b ∈ A.

(ii) Let S ≤ AA be a semigroup of AA consisting of m-almost injective maps. For D ⊆ A
with |D| ≤ m and b ∈ A, we define

O(D, b) :=
{
s ∈ S : s−1{b} = D

}
.

(In the case D = ∅, this means O(∅, b) := {s ∈ S : b /∈ Im(s)}.)
Further, we set Tm to be the topology on S generated by Tpw as well as all the sets
O(D, b) for D ⊆ A with |D| ≤ m and b ∈ A.

Note that it would suffice to consider |D| ≤ m−1: since S consists of m-almost injective
functions, the set O(D, b) for D = {a1, . . . , am} is already contained in Tpw as O(D, b) =
{s ∈ S : s(a1) = · · · = s(am) = b}. In particular, this implies that if S consists of injective
maps (so if m = 1), then Tm coincides with the topology T ′ constructed in Example 2.6.3.
With similar arguments to this example, we can obtain the following statements which will
readily yield Proposition 5.2.1:

Proposition 5.2.3. Let m ≥ 1 and let S ≤ AA be a Tpw-closed subsemigroup of AA

consisting of m-almost injective maps. Then Tm is a Polish semigroup topology on S.
Further, if S contains the automorphism group of an ω-categorical structure, then Tm is
strictly finer than Tpw, so S does not have UPP.

Proof. We first show that Tm is a semigroup topology. Since Tpw is a semigroup topology,
it suffices to verify the following: if s, t ∈ S such that st ∈ O(D, b) for some D ⊆ A with
|D| ≤ m and b ∈ A, there exist Tm-neighbourhoods V and W of s and t, respectively,
such that VW ⊆ O(D, b). This is straightforward by putting V := O(s−1{b}, b) and
W :=

∩
a∈s−1{b}O(t−1{a}, a) (if s−1{b} = ∅, we set W := S); note that

U
a∈s−1{b} t

−1{a} =

(st)−1{b} = D.
Next, we show that Tm is Polish by inductive application of Lemma 2.6.2. Setting

Tm[−1] := Tpw for notational convenience, we recursively define Tm[k] for k = 0, . . . ,m to
be the topology generated by

Tm[k − 1] ∪ {O(D, b) : D ⊆ A with |D| = m− k and b ∈ A} .
Then Tm = Tm[m]. By the argument directly preceding this proposition, we have Tm[0] =
Tpw which is Polish since S is assumed to be Tpw-closed. If we already know that Tm[k− 1]
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5.3 Kk,ω has UPP

is Polish, then it suffices to argue that the (countably many) sets O(D, b) for D ⊆ A
with |D| = m − k and b ∈ A are Tm[k − 1]-closed and apply Lemma 2.6.2. Writing
D = {a1, . . . , am−k}, we have

O(D, b) =
{
s ∈ S : s(a1) = · · · = s(am−k) = b and

||s−1{b}|| ≤ m− k
}
.

Observing that {s ∈ S : s(a1) = · · · = s(am−k) = b} is closed (even clopen) in Tpw and that{
s ∈ S :

||s−1{b}|| > m− k
}
=

U
D′⊆A

|D′|≥m−(k−1)

O(D′, b)

is open in Tm[k − 1] yields the desired closedness of O(D, b) with respect to Tm[k − 1].

Finally, by the same argument as in Example 2.6.3, the topology Tm is strictly finer
than Tpw if S contains the automorphism group of an ω-categorical structure A: while the
group Aut(A) is Tm-closed, there exists a non-surjective map in the Tpw-closure of Aut(A)
(see [BPP17, Proof of Corollary 10]); since S is closed, this map is also contained in S (and
therefore in the Tpw-closure of Aut(A) within S).

Proof (of Proposition 5.2.1). Given Proposition 5.2.3, we only have to find a number m
such that End(∂Fn) and End(Kω,n) consist of m-almost injective maps. Since both graphs
have no loops, the preimage of a single point under an endomorphism must be an inde-
pendent set, i.e. a set whose elements are not connected to each other by any edges. An
independent set of size k in ∂Fn corresponds to a copy of Kk in Fn, so we know that
k ≤ n − 1 =: m. Similarly, an independent set in Kω,n must be contained in a single part
of the graph, so we know that its size is at most n =: m.

5.3 Kk,ω has UPP

Proposition 5.3.1. The endomorphism monoid End(Kk,ω) has UPP. Moreover, it has
automatic continuity with respect to the class of second countable topological semigroups.

Our proof consists of an application of Pseudo-Property X with a different flavour than
in [EJM+23] or in Chapter 4, namely with respect to several (different) subsemigroups
of End(Kk,ω) rather than with respect to the automorphism group. To this end, we

will use the description End(Kk,ω) =
{Uσ

i=1,...,k si : σ ∈ Sym(k), si : N → N
}

exhibited in

Lemma 5.1.1(i).

Definition 5.3.2. For j = 1, . . . , k, we set

D(j) :=

 U
i=1,...,k

id{1,...,k}si : sj : N → N and si = idN for all i ̸= j

 .

Further, we define the canonical map χ(j) : NN → D(j) by h ,→ Uid{1,...,k}
i=1,...,k si where sj := h

and si := idN for i ̸= j.
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5 Endomorphism monoids of homogeneous graphs

Lemma 5.3.3. The canonical map χ(j) is a homeomorphism (NN, Tpw) → (D(j), Tpw). In
particular, (D(j), Tpw) has automatic continuity with respect to the class of second countable
topological semigroups.

Proof. It is straightforward that χ(j) is a semigroup isomorphism, so it remains to consider
the topologies.

We first show that χ(j) is continuous. Let O be a nonempty basic open subset in the
pointwise topology on D(j), i.e.

O =
{
s ∈ D(j) : s(ℓm, xm) = (ℓ′m, ym) for m = 1, . . . , n

}
.

Since D(j) consists of maps of the form
Uid{1,...,k}

i=1,...,k si and since O ̸= ∅, we have ℓm = ℓ′m for
all m = 1, . . . , n. For the same reason, xm = ym for all m such that ℓm ̸= j. Therefore, we
can write

O =
{
s ∈ D(j) : s(j, xm) = (j, ym) for m = 1, . . . , n

}
because the condition s(ℓ, x) = (ℓ, x) for x ∈ N and ℓ ̸= j automatically holds for all
s ∈ D(j) and can thus be dropped from the definition of O. We obtain

(χ(j))−1(O) =
{
h ∈ NN : h(xm) = ym for m = 1, . . . , n

}
which is (basic) open in the pointwise topology on NN. This proves the continuity of χ(j).

To show that (χ(j))−1 is continuous as well, we proceed similarly (but more simply): If

P = {h ∈ ωω : h(xm) = ym for m = 1, . . . , n}

is basic open in the pointwise topology on NN, then

χ(j)(P ) =
{
s ∈ D(j) : s(j, xm) = (j, ym) for m = 1, . . . , n

}
which is (basic) open in the pointwise topology on D(j).

Finally, the full transformation monoid NN equipped with the pointwise topology has
automatic continuity with respect to the class of second countable topological semigroups
by [EJM+, Theorem 5.4]. This translates to D(j) via χ(j).

After this preparation, we can show that End(Kk,ω) has UPP.

Proof (of Proposition 5.3.1). We prove that (End(Kk,ω), Tpw) satisfies Property X with
respect to (D(1), Tpw|D(1)), . . . , (D(k), Tpw|D(k)). By Proposition 2.7.3(ii) and Lemma 5.3.3,
we then obtain that (End(Kk,ω), Tpw) has automatic continuity with respect to the class
of second countable topological semigroups. In particular, the pointwise topology is the
finest Polish semigroup topology on End(Kk,ω). On the other hand, it is the coarsest Polish
semigroup topology on End(Kk,ω) by Proposition 5.1.2. All in all, the pointwise topology
is the unique Polish semigroup topology on End(Kk,ω) which will complete the proof.
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5.4 Open problem: Kω,ω

To obtain Property X, we use the following decomposition: Any s =
Uσ

i=1,...,k si ∈
End(Kk,ω) can be rewritten as

s =

( U
i=1,...,k

σ idN

) ◦
( U

i=1,...,k

id{1,...,k}sin

) ◦ · · · ◦
( U

i=1,...,k

id{1,...,k}si1

)
where sij = si for i = j and sij = idN otherwise. We put g

(k+1)
s :=

Uσ
i=1,...,k idN as well as

g
(j)
s := idKk,ω

and a
(j)
s :=

Uid{1,...,k}
i=1,...,k sij ∈ D(j) for j = 1, . . . , k which gives

s = g(k+1)
s a(k)s g(k)s a(k−1)

s . . . a(1)s g(1)s .

It remains to consider open subsets V (1) ∈ Tpw|D(1) , . . . , V (k) ∈ Tpw|D(k) of D(1), . . . , D(k)

with a
(j)
s ∈ V (j) and find an open subset U ∈ Tpw of End(Kk,ω) with the property that

s ∈ U ⊆ g
(k+1)
s V (k)g

(k)
s V (k−1) . . . V (1)g

(1)
s . We claim that

U := g(k+1)
s V (k)g(k)s V (k−1) . . . V (1)g(1)s

is already an open set with respect to the pointwise topology on End(Kk,ω). Assuming that
the sets V (j) are basic open in the pointwise topology, we can write

V (j) =
{
s̃ ∈ D(j) : s̃(j, x(j)m ) = (j, y(j)m ) for m = 1, . . . , n(j)

}
by the same argument as in the proof of Lemma 5.3.3 where, without loss of generality,
n(j) ≥ 1. Then

V (k)g(k)s V (k−1) . . . V (1)g(1)s

=

s̃ =
U

i=1,...,n

id{1,...,n} s̃i : s̃(j, x
(j)
m ) = (j, y(j)m ) for m = 1, . . . , n(j), j = 1, . . . , k


=

{
s̃ ∈ End(Kk,ω) : s̃(j, x

(j)
m ) = (j, y(j)m ) for m = 1, . . . , n(j), j = 1, . . . , k

}
where the second equality follows from the fact that n(j) ≥ 1 for all j = 1, . . . , k. Finally,
we obtain

U = g(k+1)
s V (k)g(k)s V (k−1) . . . V (1)g(1)s

=
{
s̃ ∈ End(Kk,ω) : s̃(j, x

(j)
m ) = (σ(j), y(j)m ) for m = 1, . . . , n(j), j = 1, . . . , k

}
which yields that U is open in the pointwise topology as desired.

5.4 Open problem: Kω,ω

We close this chapter with a discussion of Kω,ω.
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Proposition 5.4.1. The automorphism group Aut(Kω,ω) has automatic continuity with
respect to the class of second countable topological semigroups.
However, the endomorphism monoid End(Kω,ω) does not have automatic continuity with

respect to the class of Polish semigroups.

The core of our proof for the automorphism group is another application of Property X,
this time within Aut(Kω,ω) with respect to suitable subsets, while the proof for the endo-
morphism monoid is a direct application of Proposition 2.6.6. For the former, we will use
the description Aut(Kω,ω) =

{Uσ
i∈N αi : σ ∈ Sym(N), αi ∈ Sym(N)

}
from Lemma 5.1.1(iii).

Definition 5.4.2. We define the following subsets of Aut(Kω,ω):

Dfix :=
{UidN

i∈N αi : αi ∈ Sym(N)
}
, Dperm :=

{Uσ
i∈N idN : σ ∈ Sym(N)

}
.

Similar arguments as in Lemma 5.3.3 yield the following:

Lemma 5.4.3. The canonical maps χfix : (Sym(N), Tpw) → (Dfix, Tpw), σ ,→ Uσ
i∈N idN as

well as χperm : (Sym(N)N, T N
pw) → (Dperm, Tpw), (αi)i∈N ,→ UidN

i∈N αi (where T N
pw denotes the

product topology on Sym(N)N) are homeomorphisms.

While automatic continuity is readily seen to be preserved under finite products2 of
monoids (in particular finite powers), this is unclear for the case of infinite powers. How-
ever, we can make use of a stronger concept called ample generics that is preserved under
countable products.

Definition 5.4.4. Let (G, T ) be a topological group and let n ≥ 1. We say that ḡ =
(g1, . . . , gn) ∈ Gn is a generic n-tuple if the orbit of ḡ with respect to the diagonal conju-
gation action of G on Gn is comeagre in Gn with respect to the product topology on Gn,
explicitly if the set {

(hg1h
−1, . . . , hgnh

−1) : h ∈ G
} ⊆ Gn

is comeagre.
The group (G, T ) is said to have ample generics if there exist generic n-tuples in G for

all n ≥ 1.

Having ample generics is a sufficient condition for automatic continuity:

Theorem 5.4.5 ([KR07, Theorem 1.10] combined with the remarks before [RS07, Corol-
lary 3]). If (G, T ) is a Polish group which has ample generics, then it has automatic con-
tinuity with respect to the class of second countable topological groups.

The automorphism groups of some ω-categorical structures were shown to have auto-
matic continuity via ample generics, for instance the random graph [HHLS93, Hru92]. On
the other hand, the automorphism group of the rational numbers does not have ample
generics [KR07] (even though it has automatic continuity, see Theorem 4.1.5). Another
positive example is the full symmetric group; for later reference:

2The argument is essentially contained in the proof of Proposition 5.3.1 – one shows that a product of m
monoids satisfies Property X of length m with respect to the canonical copies of the single monoids
within the product.
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Theorem 5.4.6 ([HHLS93, Section 3]). The symmetric group Sym(A) on a countably
infinite set A has ample generics.

As mentioned above, having ample generics is preserved under countable products:

Lemma 5.4.7. Let (Gi, Ti), i ∈ N, be topological groups each containing generic n-tuples.
Then (

∏
i∈NGi,

∏
i∈N Ti) also contains a generic n-tuple. In particular, if all the groups

(Gi, Ti) have ample generics, then (
∏

i∈NGi,
∏

i∈N Ti) does as well.

Proof. For the sake of notational simplicity, set G :=
∏

i∈NGi and T :=
∏

i∈N Ti.
Let ḡi = (gi1, . . . , gin) be a generic n-tuple in Gi, i.e. its orbit under the diagonal

conjugation action

Oi :=
{
(hgi1h

−1, . . . , hginh
−1) : h ∈ Gi

}
is comeagre in Gn

i . We write

Gn
i \Oi =

U
k∈N

Mik

for nowhere dense sets Mik ⊆ Gn
i . Putting ḡ := ((gi1)i∈N, . . . , (gin)i∈N) ∈ Gn, we claim

that ḡ is a generic n-tuple in G. The orbit of ḡ under the diagonal conjugation action of G
is O :=

∏
i∈NOi, so we have to show that O is comeagre in Gn. For Aj ⊆ Gn

j , we define

Xj(Aj) :=
{
((g′i1)i∈N, . . . , (g

′
in)i∈N) ∈ Gn : (g′j1, . . . , g

′
jn) ∈ Aj

}
and note that

Gn \O =
U
i∈N

Xi(G
n
i \Oi) =

U
i,k∈N

Xi(Mik).

Thus, the proof is completed if the sets Xi(Mik) are shown to be nowhere dense in (Gn, T n).

Writing P
O

for the topological closure of a set P with respect to a topology O, it suffices

to observe that Xi(Mik)
T n

= Xi(Mik
T n
i ) has empty T n-interior since the set Mik

T n
i of its

i-th components has empty T n
i -interior.

Combining the previous results, we obtain automatic continuity for the subsets Dfix

and Dperm.

Lemma 5.4.8. Both Dfix and Dperm have automatic continuity with respect to the class
of second countable topological groups.

Proof. By Theorem 5.4.6, the symmetric group Sym(N) has ample generics, so the prod-
uct Sym(N)N does as well by Lemma 5.4.7.

Theorem 5.4.5 yields that both Sym(N)N and Sym(N) have automatic continuity with re-
spect to the class of second countable topological groups which translates toDfix andDperm

via χfix and χperm by Lemma 5.4.3.

After this preparation, we can show that automatic continuity holds for Aut(Kω,ω) and
fails for End(Kω,ω).
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Proof (of Proposition 5.4.1). For the first statement, we show that (Aut(Kω,ω), Tpw) sat-
isfies Property X of with respect to (Dfix, Tpw|Dfix

), (Dperm, Tpw|Dperm) via the following
decomposition: Any α =

Uσ
i∈N αi ∈ Aut(Kω,ω) can be rewritten as

α =

(U
i∈N

σ idN

)
◦
(U

i∈N

idNαi

)
= g(3)α a(2)α g(2)α a(1)α g(1)α

where g
(1)
α = g

(2)
α = g

(3)
α := idAut(Kω,ω) as well as a

(1)
α :=

UidN
i∈N αi ∈ Dfix and a

(2)
α :=Uσ

i∈N idN ∈ Dperm. It remains to consider open subsets V (1) ∈ Tpw|Dfix
and V (2) ∈

Tpw|Dperm of Dfix and Dperm with a
(1)
α ∈ V (1), a

(2)
α ∈ V (2) and find an open subset U ∈ Tpw

of End(Kω,ω) such that α ∈ U ⊆ g
(3)
α V (2)g

(2)
α V (1)g

(1)
α . As in the proof of Proposition 5.3.1,

the set U := g
(3)
α V (2)g

(2)
α V (1)g

(1)
α = V (2)V (1) turns out to be open: we can assume V (1)

and V (2) to be basic open in the pointwise topology, so we can write

V (1) =
{
α̃ ∈ Dfix : α̃(jm, zm) = (jm, ym) for m = 1, . . . , n(1)

}
V (2) =

{
α̃ ∈ Dperm : α̃(ℓm, xm) = (ℓ′m, xm) for m = 1, . . . , n(2)

}
which yields

U = V (2)V (1) =
{
α̃ ∈ Aut(Kω,ω) : α̃(jm, zm) = α(jm, zm) for m = 1, . . . , n(1) and

α̃(ℓm, xm) = α(ℓm, xm) for m = 1, . . . , n(2)
}

as desired. Finally, Proposition 2.7.3(ii) combined with Lemma 5.4.8 yields that Aut(Kω,ω)
has automatic continuity with respect to the class of second countable topological groups
which is equivalent to automatic continuity with respect to the class of second countable
topological semigroups by Proposition 2.6.5.
For the second statement, we apply Proposition 2.6.6. Thus, we have to find a sub-

monoid N of End(Kω,ω) which is not closed with respect to the pointwise topology such
that composing an element of End(Kω,ω) with an element outside N yields an element
outside N . Setting N :=

{Uσ
i∈N si : σ ∈ Sym(N), si : N → N

}
, i.e. N shall contain the en-

domorphisms which preserve the parts of Kω,ω and whose images additionally intersect all
parts, it is immediate that N is a submonoid of End(Kω,ω). Further, N is not closed with
respect to the pointwise topology: if σn ∈ Sym(N), n ∈ N, are permutations converging
to a non-surjective map τ /∈ Sym(N), then the endomorphisms

Uσn
i∈N idN ∈ N converge toUτ

i∈N idN /∈ N . Finally, composing an element of End(Kω,ω) with an element outside N
yields an element outside N which can be seen by distinguishing cases as follows. Let
s /∈ N and t ∈ End(Kω,ω). If s misses one of the parts, say the m-th, then st clearly misses
the same part while ts misses the part (or parts) to which t maps the m-th part (since t
has to map elements from different parts to elements from different parts). On the other
hand, if s does not preserve one of the parts, say s({m} × N) intersects both {i} × N and
{j} × N, then ts does not preserve the m-th part either, while st admits two possibilities:
either Im(t) intersects both s−1({i} ×N) and s−1({j} ×N) (then there necessarily exists a
single k such that t({k}×N) intersects both preimages) in which case st does not preserve
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the k-th part, or Im(t) does not intersect s−1({i}×N) or s−1({j}×N) in which case stmisses
the i-th or the j-th part, respectively. Proposition 2.6.6 now yields the conclusion.

The only missing item toward a complete answer of Question C is thus given by the
following problem:

Question 5.4.9. Does the endomorphism monoid of Kω,ω have UPP?

We note that the difficulty in this question arises from the fact that endomorphisms
of Kω,ω need not preserve the parts of the graph, in other words that they can “split” parts
of the graph to multiple parts. Just like NN has Property X with respect to Sym(N), the
submonoid M :=

{UidN
i∈N si : σ ∈ Sym(N), si : N → N

}
≤ End(Kω,ω) has Property X with

respect to Aut(Kω,ω); by Proposition 5.4.1, it thus has automatic continuity with respect
to the class of second countable topological semigroups. Further, the submonoid N :={Uσ

i∈N si : σ ∈ Sym(N), si : N → N
} ≤ End(Kω,ω) of non-splitting endomorphisms which hit

all the parts of the graph (used already in the proof of the second part of Proposition 5.4.1)
can also be seen to have automatic continuity with respect to the class of second countable
topological semigroups as it has PropertyX with respect to (Dperm, Tpw|Dperm), (M, Tpw|M ).
On the other hand, the finer Polish topology on Inj(N) exhibited in Example 2.6.3 can be
lifted to the submonoid

{Uτ
i∈N si : τ ∈ Inj(N), si : N → N

} ≤ End(Kω,ω) of all non-splitting
endomorphisms which not necessarily hit all the parts of the graph. However, this finer
topology does not yield a suitable finer topology on all of End(Kω,ω) since it loses the
property of being a semigroup topology as soon as splitting endomorphisms come into
play.
By Proposition 5.4.1, Question 5.4.9 bears many similarities to Question B about the

rational numbers ⟨Q,≤⟩. Equipped with the pointwise topology, End(Kω,ω) cannot satisfy
Pseudo-Property X with respect to (GQ, Tpw). If the answer to Question 5.4.9 is positive,
any proof involving Pseudo-Property X thus requires an auxiliary rich topology as in
Chapter 4.

Finally, in analogy to Remark 4.3.3, we have discovered a topology which “almost” is an
alternative topology satisfying our requirements:

Example 5.4.10. Using the projection map π1 : N×N → N, (i, x) ,→ i, we define, for every
s ∈ End(Kω,ω) and i ∈ N, the set Si(s) := π1(s({i}×N)) of parts of the graph hit by s from
the i-th part. Further, we define the splitting number ps :=

∑
i∈N(|Si(s)| − 1) ∈ N ∪ {∞}

(so ps counts how many “surplus” parts are hit by s via splitting; for example if s splits
one part into two parts, another one into five and maps all the other parts to a single part,
then ps = 1+ 4 = 5) as well as the missing number qs := |N \ π1(Im(s))| ∈ N∪ {∞} (so qs
counts how many parts of the graph are missed by s). It is straightforward to verify that
the sum rs := ps + qs ∈ N ∪ {∞} is compatible with the composition in the sense that
rst = rs + rt for all s, t ∈ End(Kω,ω).
Thus, setting Pk := {s ∈ End(Kω,ω) : rs = k} for all k ∈ N∪{∞}, the topology T ′ gener-

ated by Tpw together with the sets Pk, k ∈ N∪{∞}, is a semigroup topology. It clearly is sec-
ond countable Hausdorff and, since all Pk are clopen in T ′, also regular. Hence, T ′ is metris-
able, again by Urysohn’s metrisation theorem. However, T ′ is not completely metrisable
by a similar argument to Remark 4.3.3: The set X := {s ∈ End(Kω,ω) : ps = 0, qs = ∞} is
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5 Endomorphism monoids of homogeneous graphs

Tpw-closed in P∞, so T ′-closed in End(Kω,ω). Therefore, equipped with the subspace topol-
ogy (which coincides with the pointwise topology), it would be completely metrisable as well
and thus a Baire space. As a contradiction, the sets On := {s ∈ X : s hits the n-th part}
are dense and open in X but have empty intersection.

Just like the boundedness types used in Remark 4.3.3 were part of the rich topology
for End(Q,≤), we suspect that because of their compatibility with the composition opera-
tion, the sets Pk exhibited in Example 5.4.10 could play an important role in either a rich
topology for End(Kω,ω) or in a hypothetical finer topology on End(Kω,ω).

90



Bibliography

[AZ86] Gisela Ahlbrandt and Martin Ziegler. Quasi-finitely axiomatizable totally cat-
egorical theories. Annals of Pure and Applied Logic, 30(1):63–82, 1986.

[BEKP18] Manuel Bodirsky, David Evans, Michael Kompatscher, and Michael Pinsker.
A counterexample to the reconstruction of ω-categorical structures from their
endomorphism monoids. Israel Journal of Mathematics, 224(1):57–82, 2018.

[BJ11] Manuel Bodirsky and Markus Junker. ℵ0-categorical structures: interpretations
and endomorphisms. Algebra Universalis, 64(3-4):403–417, 2011.

[BKO+17] Libor Barto, Michael Kompatscher, Miroslav Oľsák, Trung Van Pham, and
Michael Pinsker. The equivalence of two dichotomy conjectures for infinite
domain constraint satisfaction problems. In Proceedings of the 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science – LICS’17, 2017.

[BKO+19] Libor Barto, Michael Kompatscher, Miroslav Oľsák, Trung Van Pham, and
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