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Verification of neural networks meets PLC code:
An LHC cooling tower control system at CERN
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Abstract. In the last few years, control engineers have started to use
artificial neural networks (NNs) embedded in advanced feedback control
algorithms. Its natural integration into existing controllers, such as pro-
grammable logic controllers (PLCs) or close to them, represents a chal-
lenge. Besides, the application of these algorithms in critical applications
still raises concerns among control engineers due to the lack of safety
guarantees. Building trustworthy NNs is still a challenge and their veri-
fication is attracting more attention nowadays. This paper discusses the
peculiarities of formal verification of NNs controllers running on PLCs.
It outlines a set of properties that should be satisfied by a NN that is in-
tended to be deployed in a critical high-availability installation at CERN.
It compares different methods to verify this NN and sketches our future
research directions to find a safe NN.

Keywords: Verification of neural networks · PLCs · Control system.

1 Introduction

Programmable logic controllers (PLCs) are widely used in the process industry.
In critical industrial installations, where a failure in the control system could have
dramatic consequences, PLCs are used to control and protect industrial plants.
This is mainly due to their hardware robustness, communication capabilities,
their modularity, but also the simplicity of PLC programming compared with
other programmable devices, giving them a high-reliability characteristic.

Using neural networks (NNs) as controllers is not novel [34], but it has seen
exponential growth over the last years due to the increase in computation power
(e.g., [28]). NNs are fast, they can operate in non-linear domains, and there is no
need to know the dynamics of the systems as long as data are available. However,
control engineers are still reluctant to use them in critical industrial installations
due to the lack of safety, stability and robustness guarantees.

Whereas it is possible to prove certain properties in classic controllers (like
efficiency, monotonicity, stability, robustness, etc.) and their behavior can be
explained, it is not yet the complete case for NN-based controllers.

https://orcid.org/0000-0002-8044-0385
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2 I. D. Lopez-Miguel et al.

The goal of this paper is to analyze and compare different approaches to
formally verify a NN for critical applications encoded in a PLC program. We
will specifically focus on PLC code running on Siemens SIMATIC S7 PLCs.
This paper makes special emphasis on the type of safety guarantees (verifica-
tion properties) for this specific domain and the limitations of each verification
method. The approaches are tested in an ongoing work for a NN-based controller
for a cooling tower of the Large Hadron Collider (LHC) at CERN. The used NN
is not the final version to be deployed in production, but this verification work
will help us to find the appropriate one.

The main contributions of this paper can be summarized as follows:

– Provision of different properties that can be verified for a NN-based controller
that is implemented on a PLC.

– Verification of a NN-based controller directly on PLC code using PLCverif.
– Verification of the same NN-based controller using a state-of-the-art NN

verifier, nnenum, and using a state-of-the-art SMT solver, Z3.
– Comparison of the different techniques.
– Application of the previous methods in a real case study of a safety-critical

system at CERN.

2 Background

2.1 Verification of NNs

Over the last years, the verification of NNs has raised its popularity due to
the increasing number of applications of NNs in critical systems4. Robustness,
especially against adversarial attacks, as well as reachability have been some of
the main topics that have been targeted. Overapproximation of the activation
functions and encoding the neural network as a mixed integer linear program
[6], symbolic interval propagation [32,33], and SMT encoding [9] are some of the
approaches to verify this type of properties.

Since neural networks can be used as feedback controllers, different reacha-
bility properties shall be checked. A wide variety of approaches exists, such as
using a MILP encoding [2], modeling the systems with a neural network [8], and
including perturbations [1].

The Verification of Neural Networks COMpetition (VNN-COMP) [24], shows
the existance of many efficient tools like nnenum [3], VeriNet[16] or α,β-CROWN
[35]. Normally, these tools are not very flexible, i.e., they only accept one type of
activation function, one predefined architecture type, and a specific data type.

If during the NN verification, one finds a problem, it is necessary to repair it.
For example, in [5] they re-train the neural network guided by the counterexam-
ples until reaching a safe network. Other approaches do not reuse the training
data [17]. However, this is an open research topic and there is no clear way to
repair neural networks. Besides, when an engineer finds a counterexample, it
helps them to better understand the behavior of the system [12].
4 For a complete overview of this topic, please see [18].
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Verification of Neural Networks meets PLC code 3

2.2 PLCverif

PLCverif5 is a plugin-oriented tool that allows the formal verification of PLC
programs [22,31,7]. It has been used to verify various safety-critical programs
[12,10,11]. In PLCverif, different requirement specification methods can be used.
Moreover, different formal verification tools can be integrated. The PLCverif
verification workflow consists of five main steps, as shown in figure 1:

PLC program
parser

Requirement
representation

CFA
reductions

Model
checkers

Reporting
PLC program

User requirement

Verification
report(s)

Fig. 1: Formal verification workflow of PLCverif

Init

loop_start

end
main_call

call_end

EoC

main_function()

[false] in1 := nondet of bool
in2 := nondet of bool
in3 := nondet of bool

l31

i:=0

l35

l32

l33

l34

l37

l38

j:=0

[j <= frst_lyr_neurons - 1]

temp :=
(temp + frst_lyr_out[j] *
scnd_lyr_weights/Data[j][i])

j := (j + 1)
i := (i + 1)

temp := 0.0

CALL: MAX(
IN: IN1 := 0.0,
IN2 := (temp +
scnd_lyr_bias/Data[i]),

OUT: scnd_lyr_out[i] :=
RET_VAL)

[! (j <= frst_lyr_neurons - 1)]

...... l40

[i <= scnd_lyr_neurons - 1]

[! (i <= scnd_lyr_neurons - 1)]

Fig. 2: CFA–Main PLC cycle. Fig. 3: CFA–Part of a NN.

1. PLC program parser. The PLC program is parsed and translated into a
control flow-based representation, producing a so-called Control Flow Au-
tomata (CFA) [4]. Figure 2 shows a PLC cycle represented as a CFA, which
calls its main function in every cycle (figure 3). This main function expresses
as a CFA a part of a feedforward NN with ReLU functions (listing 1.1).

2. Requirement representation. The PLCverif user describes precisely the
requirement to be checked in a natural manner. Thanks to the CFA repre-
sentation, different types of properties can be included.

3. CFA reductions. The CFA is reduced to speed up the verification process.
4. Model checkers. A state-of-the-art model checker is executed.
5. Reporting. The results are given to the user in a human-readable manner.

5 PLCverif is publicly available under https://gitlab.com/plcverif-oss.

https://gitlab.com/plcverif-oss
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4 I. D. Lopez-Miguel et al.

1 scnd_lyr_neurons := 8;
2 FOR i := 0 TO scnd_lyr_neurons - 1 DO
3 FOR j := 0 TO frst_lyr_neurons - 1 DO
4 temp := temp + frst_lyr_out[j] * scnd_lyr_weights.Data[j, i];
5 END_FOR;
6 scnd_lyr_out[i]:=MAX(IN1:=0,IN2:=(temp+scnd_lyr_bias.Data[i])); temp:=0;
7 END_FOR;

Listing 1.1: First hidden layer processing of the NN for the LHC cooling tower.

3 Case study: the LHC cooling towers controls

At CERN, large-scale chilled water cooling facilities are installed at various lo-
cations along the LHC site to meet the cooling requirements of different clients
(e.g chillers, cryogenics, air handling units, etc). Among various components of
a large-scale cooling facility, induced draft cooling towers (IDCTs) are employed
to cool the incoming hot water by rejecting the excess heat into the atmosphere.
The typical arrangement of an IDCT involves the water entering the IDCT from
the top and the ambient air enters from the bottom. The main components of an
IDCT includes a fan, distribution system, spray nozzles, fill (packing), and col-
lection basin. The cooled water is collected in the shared water collection basin
before being supplied to different clients. Figure 4 shows multiple IDCTs with a
shared water collection basin [15].

⋯⋯⋯

Bypass valve

Ventilation and

showering valve

T
ct1
out

Incoming 

hot water

Tout Tout

Tout

cb cb

ctn

Fig. 4: Multiple induced draft cooling towers with a shared water collection basin.

The working principle of an IDCT is mainly based on simultaneous heat and
mass transfer taking place between the hot water and the (cool) ambient air.
Depending on the cooling requirement and ambient air temperature, an IDCT
can be operated in different operational modes namely: ventilation, showering,
and bypass. In the ventilation and showering mode, the bypass valve remains off
and the hot water is sprayed downwards through spray nozzles. In the showering
mode, the fan remains off and the cooling of the hot water takes place through
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Verification of Neural Networks meets PLC code 5

a natural draft. The mathematical model of the outlet water temperature under
different operational modes is proposed in [19][29]. Moreover, a switched sys-
tem representation is presented in [14] to compactly represent the dynamics in
different operational modes of the IDCT.

3.1 Control design for the cooling towers

The primary objective of the cooling tower control design is to keep the outlet
water temperature within strict limits ensuring the requirements of the down-
stream clients while utilizing the minimum amount of energy. The energy-optimal
operation of the cooling towers requires the simultaneous determination of the
best operational mode and optimal fan speed which poses a challenging control
design problem.

The MPC (model predictive control) framework provides a structured way
of designing the energy optimal control for the cooling towers. The main idea
behind MPC is to utilize the model of the system to predict future process behavior
and minimize a given cost index subject to different physical and operational
constraints. It is based on solving a finite horizon-constrained optimal control
problem at each sampling instant, resulting in the so-called receding horizon
control [30]. Despite the advantages provided in terms of performance and energy
optimization, the memory and computational resources required restrict their
applicability to resource-constrained embedded hardware.

3.2 Approximate MPC using neural networks

In order to overcome the memory and computational requirements, approximate
MPC is becoming a popular choice [27]. The approximate MPC requires lower
memory and computational resources while preserving the performance of the
controller. The idea of using a neural network to approximate the solution of a
MPC has its origins in [25]. However, the efficacy of such techniques has been
recently demonstrated for controlling nonlinear multiple-input multiple-output
(MIMO) systems [13,26]. Depending on the size of the neural networks, the
neural network controller can significantly reduce the computational times and
memory requirement to traditional techniques and can be effectively deployed on
resource-constrained embedded hardware, such as a PLC. However, the behavior
of such controllers must be thoroughly investigated in terms of safety, stability,
and robustness to be deployed in the production environment.

The preliminary version of the NN consists of 4 hidden layers with 8 neurons
per layer. It combines a classification problem for the mode selection and a
regression problem for the fan speed calculation. This is an initial version of the
NN and will be improved in subsequent work.

4 Verification of a NN-based controller on a PLC

Different properties with respect to the previously mentioned NN that approxi-
mates a MPC will be verified using different methods.
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6 I. D. Lopez-Miguel et al.

4.1 Properties to verify

1. Operational modes reachability. Is there a combination of inputs (mea-
surements from sensors) that reach mode Mi? This property is analyzed for
the three previously introduced modes. Each of the counterexamples gives
a combination of inputs that leads to each mode. If there would not be a
counterexample for a certain mode, it would mean that mode is never going
to be selected by the system, which is possibly an error in the design.

2. Fan speed reachability. Is there a combination of inputs that reach a
certain range of the fan speed [vmin, vmax]? Different ranges are analyzed:
[0, 20), [20, 60), [60, 80), and [80, 100]. A counterexample gives a combination
of inputs that leads to a fan speed in those ranges.

3. Fan speed constraint satisfaction. In ventilation mode, the fan should
always operate within the desired range [60% - 100%], which can be verified.
That is, is there a combination of inputs that leads to a fan speed lower
than 60% or bigger than 100% when the mode is ventilation? If there is a
counterexample, this could mean there is a problem in the network since the
behavior is different than expected.

4. Monotonicity. If the mode is ventilation and all the temperatures increase,
is the mode changing? It is expected that if all the temperatures increase,
the mode remains at ventilation. A counterexample would show a case in
which the temperatures increase and the mode is not ventilation.

5. Softmax overflow. Is there a combination of inputs that leads to a negative
value of any of the outputs of the softmax layer of the modes? By definition of
the softmax, since the exponential functions are always positive, the output
of all the softmax layers should be always positive. If it is negative, it means
there was an overflow in one of the components of the softmax formula.

6. Robustness. If the inputs are slightly changed, does the selected mode
change? The counterexamples given by this property show the borders be-
tween the selection of the different modes. This could help the control engi-
neer better understand if the controller is behaving as expected.

4.2 Verification of a NN with PLCverif

In order to tell PLCverif which variables should be non-deterministic so that
the model checker explores all their possible values, we need to include those
as input variables (VAR_INPUT) as shown in Listing 1.2. Instead of following the
approach from [21], input variables are defined as integers but divided by 10 so
that the input to the neural network has one decimal place.

1 VAR_INPUT
2 in_lyr_0, in_lyr_1, in_lyr_2 : Int; // non−deterministic
3 END_VAR
4 BEGIN // one decimal place
5 in_lyr[0]:=in_lyr_0/10; in_lyr[1]:=in_lyr_1/10; in_lyr[2]:=in_lyr_2/10;

Listing 1.2: PLC code for the input variables.
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Verification of Neural Networks meets PLC code 7

Since the input variables have a limited possible range (temperatures), we
can tell CBMC not to explore all the possible values and assume they are in a
given range as shown in Listing 1.3. This is done for all the inputs.

1 i n s t a n c e . input_layer_0 = nondet_int16_t ( ) ;
2 __CPROVER_assume( i n s t a n c e . input_layer_0 >=200 &&
3 i n s t a n c e . input_layer_0 <=250) ;

Listing 1.3: C code for CBMC to limit the range of the input variables.

Listing 1.4 shows how the previous properties can be encoded in PLC code
so that they can be verified with PLCverif. Notice that property 6 has included
the variable max_mode_prev_cycle from the previous cycle, which is defined as
a temporary variable. This value is retained at the end of the cycle by adding
an extra assignment after the assertions.

1 //#ASSERT NOT max_mode=0 : modesReachability0; // same for the other modes
2 //#ASSERT NOT (speed_layer_output[0]>=0 AND speed_layer_output[0]<20):

fan_speed_reachability_0_20; // same for the other ranges
3 //#ASSERT max_mode=0 AND (speed_layer_output[0]>1 OR speed_layer_output

[0]<0.6): fan_speed_constraint_satisfaction;
4 //#ASSERT NOT (in0>23.6 AND in1>23.0 AND in2>14.1 AND max_mode!=2) :

monotonicity;
5 //#ASSERT NOT (modes_nn[0]<0 OR modes_nn[1]<0 OR modes_nn[2]<0):overflow;
6 //#ASSERT NOT (max_mode_prev_cycle!=max_mode) : robustness;

Listing 1.4: Translation of the properties into assertions.

Listing 1.5 shows the command to unwind the loops of the neural network 9
times (the maximum number of layers and of neurons in a layer is 8), and the
global loop of the PLC cycle 2 times. The unwinding of 2 times of this loop is
necessary to verify properties across 2 consecutive cycles.

1 cbmc neuralNetwork_prop7.c −−unwind 9 −−unwindset VerificationLoop.0:2

Listing 1.5: Command to execute CBMC unwinding the loops of the neural
network 9 times, and the loop of the PLC cycle 2 times.

4.3 Verification of a NN using other methods

NN verifier. It was decided to use nnenum [3] since it is the best fully open-source
neural network verifier according to the VNN-COMP (Report)[24] and due to
its simplicity. It was needed to manually translate the NN weights given in the
PLC code to the .nnet format in order to finally transform it to ONNX. Since the
original NN had softmax functions in the output layers, they had to be ignored
as nnenum cannot handle them. Furthermore, the original NN had to be split
into two according to the different outputs (mode and fan speed) since nnenum
only accepts NNs with one output. This led to the impossibility of verifying the
properties in which both outputs are involved. In addition to nnenum, VeriNet
[16] and α, β-CROWN [35] were tested without success due to compatibility and
reproducibility issues.

https://arxiv.org/pdf/2212.10376.pdf
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8 I. D. Lopez-Miguel et al.

SMT solver. Due to the numeric nature of the NN, an SMT solver (Z3 [23]) was
used. According to the SMTcompetition, Z3 is one of the best and is open-source.
All the loops were unwinded and the Python API for Z3 was used.

Exhaustive testing. Another possibility is to test every single combination of
the inputs. Since we are limiting the number of possible input values by using
integers and the number of inputs is small, this option was feasible.

5 Empirical results

All the previously presented properties were verified using the described different
methods. Table 1 shows the results from these experiments. Since the first two
properties are composed of more than one property, the mean and the standard
deviation from those cases are shown. Clearly, nnenum is the fastest one since it
is designed to work with NNs. PLCverif is the one with the lowest performance
but it is the only one in which we can express all properties. Z3 is in the middle
way between PLCverif and nnenum. A more detailed comparison of the different
methods is presented in the next subsection 5.1.

time (s)
property PLCverif Z3 nnenum cex. found

modes reachability 4932±5908 454±88 < 1 yes
fan speed reachability 6162±5909 1741±1588 < 1 yes

fan speed constraint satisfaction 2469 1049 - yes
monotonicity 144 727 < 1 yes

softmax overflow 11 - - no
robustness 3517 2820 - yes

Table 1: Results with the three approaches. Mean and standard deviation when
different properties were checked. “-” means that it is not possible to verify that
property with that method.

The code to run these experiments can be found in [20], as well as the results
of their executions with the counterexamples. The experiments were done using
CBMC 5.10, the Docker image of nnenum as of commit cf7c0e7, and the Python
API of Z3 version 4.12.1.0. They were run on an AMD Ryzen 7 2700X at 4 GHz
with 48GB RAM memory, running Ubuntu 20.4.

The results from exhaustive testing are not presented in the table since all the
properties were checked simultaneously. We built our own testing infrastructure
in Python, and the execution time for 51·41·131 = 273921 tests (all combinations
of the inputs) was 288 seconds.

The counterexamples given by PLCverif have been tested in the original
PLC code to make sure the counterexamples were not spurious. This has been
done using the integrated simulator S7-PLCSIM Advanced in the TIA portal

https://smt-comp.github.io/2022/results.html
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Verification of Neural Networks meets PLC code 9

PLC programming environment. As an example, the counterexample given by
nnenum for property 3 is shown in Figure 5. The three inputs corresponding
to the three temperatures are forced to the values given by the counterexam-
ple and the expected output values for the fan speed and the operation modes
(ventilation, showering, and bypass) are checked. The simulation shows that the
counterexample is real and the problem exists in the NN.

Fig. 5: Fan speed constraint satisfaction: Counterexample tested in S7-PLCSIM
Advanced.

5.1 Comparison of the different approaches

Table 2 compares the different methods that were used. By using PLCverif, one
can express more complex properties, such as the ones over time cycles. There
is also no restriction on the architecture of the NN and the verification is done
on the final model that will be deployed. Besides, there is no need to translate
the NN to run a verification case. However, performance is low since it was not
designed for this purpose. Nevertheless, since it is plug-in based, integrating an
SMT solver such as Z3 without using a model checker could improve this issue.

performance scalability expressiveness same types? plug-and-play?
PLCverif low low high yes yes
nnenum very high high low no no

Z3 medium medium low no no
Testing high6 very low medium no no

Table 2: Comparison of different methods to verify a NN.

On the other hand, nnenum is the opposite of PLCverif. That is, its perfor-
mance was the best but it is not flexible, the type of properties that can be
expressed is limited, the data types differ from the ones of a PLC, and a manual
translation from the PLC code to ONNX is needed.

The verification with Z3 is in the middle way, where the performance is better
than PLCverif, but worse than nnenum. As well, its expressiveness is worse than
with PLCverif but better than with nnenum. Finally, the performance of testing
6 For this particular example due to the limited number of inputs and their values.
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10 I. D. Lopez-Miguel et al.

was excellent in this particular example. It also gives all the counterexamples and
it is relatively flexible. However, it will become unfeasible after a small increase
in the number of variables or their possible values due to the exponential growth
of the search space. This is independent of the NN architecture. PLCverif and
Z3, on the contrary, suffer due to the NN architecture complexity.

6 Conclusions and future work

Different approaches to verify the ongoing work of a NN running on a PLC that
will approximate a MPC for a real installation at CERN have been analyzed.
Given the empirical results and the process to obtain them, the ideal approach
would be to verify as much as possible with PLCverif. Once it becomes unfeasible
due to performance issues, a NN verifier should be used. Finally, especially for the
NN verifier due to the discrepancy in data types, the results should be checked
using, for example, a simulator to avoid spurious counterexamples.

It is extremely important to verify a NN that will be deployed in a critical
system to be sure that it will behave as expected. Verification can help with this
endeavor and should be done together as part of the training of the NN until a
safe NN is reached. This process will also help the control engineers to better
understand the NN behavior as a feedback controller.

To the best of our knowledge, this is the first attempt to verify a neural
network controller encoded on a PLC program. This initial study will help us to
find a NN that satisfies the properties shown in this paper and new ones. Other
future research directions include the analysis of how counterexamples can help
improve the NN and the verification of closed-loop system properties.
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