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Abstract
We present an implementation of spin–orbit coupling (SOC) for density functional theory band structure calculations that makes

use of Gaussian basis sets. It is based on the explicit evaluation of SOC matrix elements, both the radial and angular parts. For all-

electron basis sets, where the full nodal structure is present in the basis elements, the results are in good agreement with well-estab-

lished implementations such as VASP. For more practical pseudopotential basis sets, which lack nodal structure, an ad-hoc increase

of the effective nuclear potential helps to capture all relevant band structure variations induced by SOC. In this work, the non-rela-

tivistic or scalar-relativistic Kohn–Sham Hamiltonian is obtained from the CRYSTAL code and the SOC term is added a posteriori.

As an example, we apply this method to the Bi(111) monolayer, a paradigmatic 2D topological insulator, and to mono- and multi-

layer Sb(111) (also known as antimonene), the former being a trivial semiconductor and the latter a topological semimetal featuring

topologically protected surface states.
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Introduction
The topological character of topological materials (mostly insu-

lators but also non-insulators) in most relevant cases originates

from relativistic corrections that cannot be neglected in the

Hamiltonian of heavy elements, more specifically from

spin–orbit coupling (SOC). Such materials are usually charac-

terized by non-zero topological invariants that can be either
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computed simply from the parity of the Bloch wave functions in

centrosymmetric crystals or from other more involved imple-

mentations in non-centrosymmetric systems [1-6]. Topological

materials typically feature a band inversion. In a gedanken ex-

periment, one can imagine tuning the SOC at will. As the SOC

is increased from zero towards its nominal value, it pushes up

the valence band while bringing down the conduction band of

the imaginary SOC-free material. In this process, the gap closes

and reopens again, giving rise to the non-zero topological

invariant.

The essential features of the band structure of topological mate-

rials (at least the elemental ones) can be obtained from the tight-

binding (TB) model where the Hamiltonian is built through a

Slater–Koster [7] atomic parametrization. These models, how-

ever, are usually restricted to the description of valence elec-

trons, implicitly by assuming a minimal basis set of spd orbitals.

The SOC is included by adding the matrix elements of the

 operator where λ is taken as an atomic parameter [8]. Al-

though the simplicity of TB modeling is appealing, this method

is obviously restricted to a limited set of problems. TB parame-

ters are available for most elemental materials [9], but not in

general for all compound materials (which is the case of most

topological insulators). The versatility of this model is also

limited by the sensitivity of the TB parameters to the specific

structural variations which also needs to be parametrized [10].

On the opposite side of sophistication, the electronic structure

of topological materials can be evaluated through density func-

tional theory (DFT). According to the type of basis sets, DFT

codes fall into two broad categories: those making use of plane-

waves and those using localized orbitals. Arguably, the most

reliable implementations of SOC can be found in the code

FLEUR [11] and also in codes such as Vienna Ab initio Simula-

tion Package [12] (VASP) or QuantumEspresso [13,14] (QE),

all of them employing plane-waves for the interstitial or valence

electrons, while approaching the core electrons differently.

Since localized orbitals are convenient for a number of reasons,

for instance for quantum transport calculations [15,16], a

Kohn–Sham Hamiltonian obtained from plane-wave DFT codes

may be transformed into a TB-like Hamiltonian by changing to

a basis of Wannier functions [17,18]. While the results of this

transformation can be accurate, they are not straightforward to

carry out. On the other hand, self-consistent implementations of

SOC for codes using localized orbitals for valence electrons are,

however, much less common [19,20].

In most currently available implementations, including those

using localized orbitals basis sets, the SOC is effectively intro-

duced through pseudopotentials [19,20]. Here, we propose a

different route, employing the actual shape of the basis func-

tions. In particular we present an implementation of SOC for

DFT calculations based on Gaussian-type localized basis sets,

attempting to bridge the gap between the simplicity of TB

Hamiltonians with their one-parameter implementation of SOC

and the accuracy and transferability of a DFT-level description

of the band structure. We make use of the non-relativistic (or

scalar relativistic) Kohn–Sham Hamiltonian, here obtained

using the CRYSTAL code [21-23], to which we add the SOC a

posteriori. The matrix elements are explicitly evaluated for both

radial and angular parts of the basis elements, by using the

screened nuclear potential. For the radial part, we rely on the

actual analytical expressions of the Gaussian-type basis ele-

ments, as employed in codes such as CRYSTAL, Gaussian [24],

Nwchem [25], etc. Among the available basis sets, all-electron

(AE) basis sets [26], featuring the full nodal structure of the

orbitals and able to properly capture SOC effects, might not be

well designed for band structure calculation of solids in general

or appear inefficient due to their computational cost. Here we

show that when AE basis sets work properly at the band struc-

ture level in calculations without SOC, accurate results can be

obtained from our proposed implementation. Alternatively,

basis sets using effective core potentials or pseudopotentials,

which reproduce better band structures and are computationally

less demanding, lack nodal structure near the nucleus. This has

prompted us to modify the nuclear potential through a fitting

multiplicative factor to effectively model the SOC effect. Im-

portantly, despite the fact that we are dealing with different

types of orbitals of different shells, only a single parameter is

needed since the relative values of the matrix elements are prop-

erly captured.

As possibly relevant examples, we have chosen to apply our

implementation to Sb and Bi, which are prototypical topolog-

ical materials where SOC plays a crucial role. Despite being

elemental, they present a broad range of behaviors. While bulk

Bi is a trivial semimetal, a Bi(111) monolayer is a 2D topolog-

ical insulator (TI) [27]. Sb few-layers in the (111) direction,

typically for more than ≈7 layers, behave as a 3D topological

semimetal, while the Sb(111) monolayer is a trivial indirect-gap

semiconductor. In order for our SOC implementation to be of

practical use, it should capture these trivial/non-trivial topolog-

ical transitions and give the most faithful representation of the

electronic band structure for any number of layers. This

includes the presence of helical and topologically protected

edge or surface states. For comparison, and as a reliable refer-

ence, we make use of the band structures obtained from the

well-established plane-wave code VASP. In general, we find a

very satisfactory agreement between the band structures calcu-

lated by our approach for both AE (without parameters),

pseudopotential (single parameter) basis sets, and the VASP

results, proving ours to be a practical a posteriori implementa-
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tion of SOC once a standard non-relativistic or scalar rela-

tivistic DFT calculation based on localized orbitals has been

performed.

Methodology
Gaussian basis sets
The accuracy of electronic structure calculations is limited, not

only by functional, but also by the basis set used to expand the

wave functions. When working with localized basis sets, it is

crucial to choose a large enough number of elements or a set of

properly chosen ones. Typically, the basis functions are

centered on atoms, and are so called ”atomic orbitals”. Two

types of atomic orbital functions are typically employed in mo-

lecular orbital calculations, namely, Slater type orbitals (STOs)

and Gaussian type orbitals (GTOs). Slater [7] introduced STOs

as basis functions due to their similarity with the eigenfunc-

tions of the hydrogen atom. They possess an exponential decay

at long range and Kato’s cusp [28] condition at short range.

Their general definition is

(1)

where N is the normalization constant. The radial part is charac-

terized by the principal quantum number n and the exponent ζ

while the angular part is given by the spherical harmonics

which are orthogonal to the radial part and characterized by l

and m, the azimuthal and magnetic quantum numbers, respec-

tively. The ζ parameter, is variationally optimized with respect

to the total energy of each atom. STOs have the advantage of a

direct physical interpretation and are thus naturally good basis

for molecular orbitals. However, from a computational point of

view, STOs are not competitive. In practice, the radial part of

STOs is approximated by a linear combination of GTOs (or

primitives). Spherical GTOs were proposed by Boys [29] with a

radial part defined as

(2)

where the exponent α determines the extension of the function.

Huzinaga [30] has illustrated that it is adequate to consider

n = l + 1 and hence optimized GTO basis sets use 1s functions

to represent all s-type orbitals, 2p functions for p-type, etc.

Despite the computational benefits, GTOs have two major

disadvantages, namely, they do not have a cusp at the nucleus

and they fall off to zero too rapidly for large radius. However,

these shortcomings can be overcome by considering linear com-

binations of GTOs to form contracted Gaussian-type orbitals

(CGTOs):

(3)

Here each primitive, as defined in Equation 2, is normalized on

its own (Ni) and the whole contracted function has an overall

normalization constant (N0). The coefficients di and exponents

αi determine the radial shape of the CGTO. A large enough

number of primitives with coefficients di of different signs can

reproduce the expected atomic nodal behavior of wave func-

tions near the nucleus. Introducing the nodal structure in the

basis sets turns out to be irrelevant for most band structure

calculations and increases the computational effort, significant-

ly. However, as we will show in the next section, for the calcu-

lation of SOC, the exact behavior of the wave functions near the

core is required.

Evaluation of SOC matrix elements
The output Hamiltonian and overlap matrices of the CRYSTAL

code, ignoring broken spin-symmetry solutions, are the same

for up and down spin electrons. SOC is considered to be a

purely intra-atomic interaction. Rigorous approximations to the

full relativistic Dirac–Kohn–Sham Hamiltonian, which

decouple the electronic part from the positronic part, yield to

lowest order a SOC correction of the form  (see, e.g.,

[31] for a nice overview of a fairly extensive topic) which

mixes orbital angular momentum (m) and spin (σ) quantum

numbers. Since the angular and radial parts of the wave func-

tions are orthogonal, SOC matrix elements between different

CGTOs can be straightforwardly evaluated as

(4)

where  acts on the spin degree of freedom and the spheri-

cal harmonics, while the radial contribution can be obtained

from

(5)

Here Ri(r) is the radial part of the i-th atomic CGTO (built as

described in the previous section) and Veff(r) is the effective

screened nuclear potential that electrons actually feel. Here we

are not concerned with the rigorous discussion concerning the

approximations that lead to Equation 5 and the origin of Veff

(for details see [31]). It suffices to say that, intuitively, the

potential must be of the form Z/r very close to the core and be-

have as 1/r far apart. For the case of an isolated atom, it has
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been shown that making use of the unscreened nuclear poten-

tial will result in an over estimation of SOC splittings. A simple

model has also been suggested for screened nuclear potential,

which includes the screening by adding an orbital dependent

charge term (placed at the origin) to the bare nuclear potential

[32]. The effective potential can also be extracted from an

atomic DFT calculation. Here, we explored both possibilities

and found no significant differences.

A correct electronic band structure in solids requires an accu-

rate description of chemical bondings and hence, enough varia-

tional flexibility in the valence region. On the other hand, since

the main contribution to the SOC matrix elements stems from

the vicinity of the nucleus, a correct description of orbitals is

also essential near the core. AE basis sets specifically designed

for the latter purpose are common in atomic physics and molec-

ular chemistry. While they can capture the full nodal structure

of the orbitals, it is, however, unclear how well they perform

when it comes to the band structure of solids, which is our main

concern here. Our results indicate that, when AE basis sets band

structures are in good agreement with those of plane-wave

calculations before including SOC (which might not be always

the case), fairly accurate results can be obtained after including

SOC. We have also found out that a proper renormalization of

the effective potential makes even pseudopotential basis sets

(without nodal structure) suitable for band structure calcula-

tions where SOC plays an important role.

Results and Discussion:
Elemental topological Materials, Sb and
Bi 2D Crystals
Antimonene
Antimonene, a term generically used for Sb(111) in 2D form,

has been recently added to the growing library of 2D crystals.

Its recent isolation and characterization [33], is bringing this

material into the focus of the research community. Several DFT

studies on this material have predicted a number of exciting

physico-chemical properties, including a tunable band gap with

potential applications in optoelectronics [34-37], low thermal

conductance with low electrical resistivity for energy genera-

tion through thermoelectricity [38], and exotic topological fea-

tures under strain [39-41]. However, it was not until last year

that few experimental works brought all those expectations

closer to reality [33]. It was demonstrated that it is possible to

isolate few or even single stable layers of antimonene, in

ambient conditions. Moreover, new procedures such as liquid

exfoliation and epitaxial growth methods were reported.

Theoretical works on antimonene can be divided into two cate-

gories. The most recent publications refer to monolayer anti-

monene (or occasionally bilayer antimonene) and can be found

in the context of new 2D crystals. Other works, which go a few

years back in time, refer to few-layered (FL) antimonene (or

Sb(111) thin films), and can be found in the context of 3D TIs

[1]. The physical properties of antimonene evolve quite drasti-

cally from mono- to few-layer cases, and each deserves a sepa-

rate discussion.

Monolayer antimonene
Figure 1 presents the DFT band structure of a single layer

of antimonene without SOC, in the framework of the

Perdew–Burke–Ernzerhof local density approximation [42] to

the functional for different basis sets. Panel (a) shows the

results using the VASP [12] package. Calculations are per-

formed with a plane-wave cutoff of 400 eV on a 15 × 15 × 1

Monkhorst–Pack k-point mesh. For structural relaxation, all

atoms are allowed to relax until atomic forces are smaller than

0.01 eV/Å.

In agreement with previous studies for free standing anti-

monene [43], we obtain an in plane lattice constant of the

relaxed structure a = 4.12 Å and a buckling height h = 1.64 Å.

Panels (b) and (c) show the band structure obtained with

CRYSTAL using two standard AE basis sets properly

converged in the number of elements. The former is based on

relativistically contracted atomic natural orbitals [44,45] (ANO)

and the latter belongs to the family of well-tempered basis sets

[46] (WTBS). Examples of (the radial part of) basis elements

from these two basis sets are shown in Figure 2a. For the sake

of simplicity in the discussions and since no significant differ-

ences have been found, the same lattice structure (relaxed with

VASP in presence of SOC) and same functional has been used

in all band structure calculations. When compared to the VASP

results, ANO bands turn out not too satisfactory at the high

symmetry Γ point where the ordering of degenerate and non-

degenerate bands is not reproduced. For other k-points across

the Brillouin zone the results are comparatively better. The

WTBS results shown in (c) manifest a significant improvement,

particularly for the conduction bands, although the ordering of

the valence bands is still not the correct one at the Γ point. Inter-

estingly, we have found out that a combination of both ANO

and WTBS basis sets [panel (d)] improves the band structure to

the point of making it essentially similar to the VASP result.

Here we have complemented the WTBS basis with additional

valence orbitals from the ANO basis set. Adding this flexibility

to the basis, even the flat valence band falls below the degen-

erate ones at the Γ point. This band structure corresponds to that

of a semiconductor with an indirect gap, as previously reported

[34]. The use of a hybrid functional such as HSE06 [37] will

certainly increase the value of the gap, but we are not concerned

with this issue here.
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Figure 1: Comparison between different calculations of the band structure of monolayer antimonene as obtained from (a) VASP and CRYSTAL with
different basis sets: (b) ANO, (c) WTBS, and (d) WTBS+ANO (see text for details). The lattice structure relaxed with VASP has been considered for all
cases and SOC has not been included in the calculations.

Figure 2: Radial probability density of two selected elements of the AE
and small-core basis sets used in the calculations. (a) Solid blue curve
corresponds to the 5p shell of the WTBS while the dashed black repre-
sents the 6p (virtual) shell in the ANO basis set (see text). (b) Same as
in (a), the last partially occupied and the first empty (virtual) shell of the
small-core pseudopontential basis set (see text), showing the lack of
nodal structure required, in principle, for an appropriate SOC calcula-
tion.

Figure 3 shows the band structure obtained with CRYSTAL

using three different pseudopotential basis sets. From (a) to (c)

the quality of the basis set is improved. Starting from the bands

obtained with a large effective core (46 electrons) and a

minimal 4 element basis set [sp3] [47,48] [shown in panel (a)],

we first increase the number of valence basis elements to 8

[2s2p3] [49] [see panel (b)], and then decrease the number of

effective core electrons down to 28, while keeping a large 23

element basis set for the valence electrons [4s3p32d5] [50]

Figure 3: Comparison between different calculations of the band struc-
ture of monolayer antimonene as obtained from CRYSTAL with differ-
ent pseudopotential basis sets: (a) large-core (46 electrons) and
minimal basis set, (b) large- core as in (a) but a larger basis set, and
(c) small-core and large basis set (see text for details). The lattice
structure relaxed with VASP has been used for all cases and SOC was
not included in the calculations.

[panel (c)]. Figure 2b shows the radial part of the last two

p-orbitals (or p-type CGTOs) in this third basis set. As can be

observed, the nodal structure near the origin is absent. The

shorter radial extension when compared to the corresponding

orbital-like AE CGTOs (in particular for the one labeled 6p) is

due to the fact that one cannot naively make a one-to-one corre-

spondence between atomic orbitals and these basis elements.

Except for the results using the minimal basis set, where the

ordering of the bands is not the correct one (keeping in mind

that the lattice parameters are the same for all calculations), the
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results of the other two calculations are fairly satisfactory. In

particular, the small-core basis set bands in Figure 3c match

nicely those obtained with VASP in Figure 1a. The slight

discrepancies between the bands in Figure 1a and Figure 3c on

one hand and the bands in Figure 1d on the other can be due to

the use of pseudopotentials in the former two or to an inaccu-

rate closure relation of the AE basis set in the latter. We will not

address this issue any further here. Finally, we stress that our

proposed implementation is not restricted to any specific

Gaussian-type basis set. As an advantage when compared to,

e.g., TB calculations, it can capture the SOC effect for more

flexible and larger basis sets when a minimal basis does not

give satisfactory results in a band structure calculation, as is the

case shown in Figure 3a.

Now that we have verified that we can obtain essentially the

same band structure with two different DFT codes and three dif-

ferent basis sets (plane waves, AE, and pseudopotential ones),

we add SOC. Figure 4 shows the band structure obtained with

VASP [panel (a)] and with our proposed implementation,

applied to the WTBS+ANO basis set [panel (b)] and to the

small core pseudopotential basis set [panel (c)]. The AE basis

set bands share all the features of the VASP bands, except a

slightly larger gap which originates from the calculations with-

out SOC. For the pseudopotential basis set, as discussed above,

we have increased the effective nuclear potential by a factor of

65 (for this specific basis set) that makes the bands look as

similar as possible to those in panel (a). As can be seen, these

last bands, tuned by a single parameter, are essentially indistin-

guishable from the VASP bands. As can be observed, the

sizable SOC of Sb changes the previous band structure calcu-

lated without SOC considerably, removing degeneracies, but

not in a qualitative manner. The changes are, however, not so

trivial for few-layered antimonene as shown in the next section.

Figure 4: Comparison between different calculations of the band struc-
ture of monolayer antimonene including SOC: (a) VASP code, (b) AE
basis set (WTBS+ANO), and (c) small-core pseudopotential basis set.
As a reference, thin gray curves indicate the bands before adding
SOC. The same lattice structure relaxed with VASP has been used for
all cases.

Multilayer antimonene
As an elemental bulk material, Sb appears to be a topological

semi-metal due to an inversion of the ”natural” bulk band order

[1]. Despite the absence of a bulk gap, its non-zero topological

invariant guarantees that antimony features protected topolog-

ical surface states (TSS), although coexisting with bulk bands at

the Fermi energy [51-54]. Sb(111) in thin film form could

become, in principle, a 3D (TI) if quantum confinement opened

a gap in the bulk bands. However, for sufficiently thin films, the

TSS situated on opposite surfaces can get coupled which

degrades or even destroys the TSS exotic properties such as

their expected protection against backscattering. Ultimately, a

single Sb(111) layer or monolayer antimonene even becomes a

trivial semiconductor, as discussed in the previous section.

Previous calculations have shown that the decoupling of the

TSS requires a minimum of 7 layers [54,55]. In between the

semiconductor monolayer and the 7-layered antimonene a

crossover occurs, where claims of the existence of a 2D topo-

logical insulator have also been reported, but we do not pursue

the investigation of this issue here [55]. When TSS are decou-

pled and the gap at the Dirac point closes down, the Fermi

energy crosses the Dirac cone above the Dirac point, but also

crosses 6 surface state pockets and 3 bulk pockets (see, e.g.,

[51]).

It has been shown that multilayer antimonene with hexagonal

structure, prefers ABC stacking and is more stable than other

allotropes for thicknesses larger than 3 layers [43]. In the

relaxed structure of 9 layer antimonene, the lattice constant is

a = 4.27 Å and the intra- and interlayer distances are h = 1.52 Å

and d = 3.68 Å, respectively. In Figure 5 we show the band

structure of 9 layers of antimonene including SOC, as obtained

with the small-core pseudopotential basis set and the same en-

hancement factor as in the previous section. The results

compare rather well down to any practical detail with those re-

ported in the literature. In the inset of Figure 5 we show that the

spin texture of the surface Dirac cone states around the Γ point

and of the states in the nearby pockets, comes out as expected

[51,56]. This provides further evidence that not only the band

structure is reproduced at first glance, but also the wave func-

tions are properly evaluated. This non-trivial example illus-

trates the practicality of our proposed single-parameter imple-

mentation, when AE basis sets are computationally demanding.

Bi(111) monolayers
A monolayer of Bi(111) was one of the first 2D crystals pre-

dicted to be a 2D TI [27] and with actual chances to be experi-

mentally isolated and characterized. However, only a few

reports have confirmed the non-trivial topological character of

this material [57-60]. Having seen the trivial bands of anti-

monene monolayer changing to nontrivial in multilayers, the
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Figure 5: Band structure of 9 layers, ABC stacking Sb(111) films as
obtained from small core pseudopotential basis. The spin texture
around the Γ point is presented in the inset.

band inversion of Bi(111) is addressed in this section. Using

different DFT packages, a wide range of structural parameters

have been reported for Bi(111). Being aware of the sensitivity

of the band structure to the exact atomic structure and for the

sake of comparison we use a lattice constant a = 4.33 Å and a

buckling height h = 1.74 Å as reported in a similar VASP calcu-

lation [61]. Figure 6 shows the band structure of Bi(111) mono-

layer, as obtained from VASP (dashed black), and that calcu-

lated with a small-core pseudopotential basis set (solid blue), as

obtained with our implementation. Starting from very similar

band structures without SOC (a), the proposed implementation

of SOC gives a band structure in close resemblance with the

one obtained from VASP (b) (the multiplicative factor needed

to increase the nuclear potential is 120 in case of this specific

basis set). Increasing the multiplicative factor of our implemen-

tation from zero to two intermediate values (for example 70 and

100), as shown in the inset of Figure 6a, one can follow the

evolution of the band structure from trivial to nontrivial bands

and the ”Mexican hat” shaped valence band in Figure 6b. The

band inversion at the Γ point is evident. However, this visual

evidence is not sufficient to prove that this system is a topolog-

ical insulator and a calculation of the Z2 number demonstrates

that this is case.

Regardless of the shortcomings of tight binding method which

led us towards this implementation of SOC, here, we want to

compare the order of magnitude of tight binding SOC parame-

ters with our SOC correction. In TB implementation, only one

multiplicative parameter serves as the radial correction of SOC

and this factor is much smaller than our multiplicative factors.

The TB parameter entirely replaces the actual evaluation of the

radial integral in Equation 5. However, our multiplicative factor

Figure 6: Band structure of a Bi(111) monolayer, obtained from VASP
(dashed black) and small core pseudopotential basis set (solid blue)
(a) without and (b) with SOC. Inset of panel (a) shows closing (blue)
and reopening (black) of the gap with two parameter values of 70 and
100, respectively. Inset of panel (b), using the final parameter value of
120, is the same bands zoomed in near the Γ point showing the simi-
larity of the inverted bands compared to the VASP result.

is used to correct the radial integral which we actually perform

for all matrix elements. The large numbers that we report come

about because the radial matrix elements can be very small due

to the lack of nodal structure of the basis elements, but, in the

end, the correction parameter that accompanies the angular part

for the valence orbitals will be in the same order of magnitude

as what is reported for similar tight binding models.

Conclusion
We have presented an implementation of SOC suitable for DFT

band structure calculations based on CGTOs basis sets. We

evaluate both angular and radial part of the SOC relativistic

correction to the Hamiltonian, considering the spherical

harmonics and CGTOs as the angular and radial part of the

basis functions, respectively. The evaluated SOC term is then

added after a standard non-relativistic (or scalar relativistic)

self-consistent calculation. We have shown that if the AE band

structure is in good agreement with plane-wave bands without

SOC, when our implementation is applied, it can reproduce the

band structure obtained from the VASP code (used as a refer-

ence) to our satisfaction. Although we have only tested it in the

cases of antimonene and Bi(111), we see no reason why it

should not work for other elemental and compound materials,

since it is essentially first-principles and SOC is an intra-atomic

correction. We have also shown that a simple modification (by

a multiplicative factor) of the effective nuclear potential makes

this implementation applicable for pseudopotential basis sets

which lack nodal structure. Remarkably, the results obtained in

this last manner fit even better those obtained with plane-waves

and the VASP code. In contrast to standard TB implementa-

tions where the SOC parameter acts on the valence orbitals of a

minimal basis set, our method does not consider any pre-
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assumptions for the basis elements. Note that using GTOs as

basis elements, the so-called valence orbital might be split into

two or more basis elements to improve the quality of the band

structure. Our proposed approach is a practical way of includ-

ing SOC to standard DFT non-relativistic band structure calcu-

lations based on localized basis sets.
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