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Chapter 1

English abstract

The study of the electronic structure for solid state systems is central for understanding
novel physical phenomena of interacting systems and for unlocking future material proper-
ties. The road to the qualitative and quantitative understanding of these condensed matter
systems is however not without its challenges. Interacting electrons imply a steep combi-
natorial scaling of the solution space, thus requiring the need of exponentially increasing
computational resources for the exact resolution of the behavior of interacting electrons.
In this context, Density Functional Theory (DFT) remains the most successful practical
method offering a delicate balance between computational resources and accuracy of the
results for systems up to several thousands of atoms. The achievements of DFT notwith-
standing, it fails to deliver consistently accurate outcomes for some physical properties
in simple systems. Truncated coupled cluster theory seeks to offer systematically accu-
rate ground-state energies at a moderate computational cost for weakly-correlated systems
composed of some tens of atoms.
Defects in solids present an attractive breeding ground for testing electronic structure
theories due to their resemblance to a molecule embedded in an effective crystal field.
Additionally, properties of extended systems are highly influenced by both the type and
concentration of defects embedded within them. This dependence of bulk material prop-
erties on the defect electronic structure is also given by the dynamics and spectrum of the
electronic excited state manifold of the defects. Therefore, a robust and accurate methodol-
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ogy perform both ground-state and excited-state calculations of the electrons in solid-state
defects is of paramount importance for both practical applications and theoretical devel-
opment.
In this thesis, we implement, develop and apply coupled cluster based methodologies to
calculate the ground state and excited states of defects embedded in solids. These excited
states are based on the Equation Of Motion Coupled Cluster (EOM-CC) corpus of theories.
Our implementation of EOM-CC theory is applied to study F -centers in alkaline earth
oxides employing a periodic supercell approach with plane wave basis set and the Projector
Augmented Wave (PAW) theory.
The second part of this thesis deals with a different challenge, namely the basis set prob-
lem. All wavefunctions inherit from the Coulomb interaction sharp features at coalescence
points, these features are called cusps. In order to resolve these cusps, one needs to devote
effort both in treating many body correlation and refining the basis set employed in the
many body correlation. In this domain, we present a basis set correction scheme for the
coupled cluster singles and doubles (CCSD) method. We test this approach on the Uniform
Electron Gas (UEG) and on a series of molecular systems where we show the effectiveness
of the scheme.
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Chapter 2

Deutsche Zusammenfassung

Die Untersuchung der elektronischen Struktur von Festkörpersystemen ist von zentraler
Bedeutung für das Verständnis neuartiger physikalischer Phänomene von wechselwirkenden
Systemen und für die Erschließung künftiger Materialeigenschaften. Der Weg zum qual-
itativen und quantitativen Verständnis dieser Systeme aus kondensierter Materie ist je-
doch nicht frei von Herausforderungen. Wechselwirkende Elektronen implizieren eine steile
kombinatorische Skalierung des Lösungsraums und erfordern daher exponentiell steigende
Rechenressourcen für die exakte Beschreibung des Verhaltens der wechselwirkenden Elek-
tronen. In diesem Zusammenhang ist die Dichtefunktionaltheorie (DFT) nach wie vor
die erfolgreichste praktische Methode, die ein Gleichgewicht zwischen Rechenaufwand und
Genauigkeit der Ergebnisse für Systeme mit bis zu mehreren Tausend Atomen bietet.
Ungeachtet der Errungenschaften der DFT liefert sie für einige physikalische Eigenschaften
in einfachen Systemen keine gleichbleibend genauen Ergebnisse. Die sogenannte Coupled
Cluster Theorie (CC) versucht, systematisch genauere Grundzustandsenergien zu mod-
eraten Rechenkosten für schwach korrelierte Systeme zu liefern, die aus einigen Dutzend
Atomen bestehen.
Defekte in Festkörpern sind nützlich für die Überprüfung elektronischen Strukturtheorien,
da sie einem in ein effektives Kristallfeld eingebetteten Molekül ähneln. Darüber hinaus
werden die Eigenschaften von ausgedehnten Systemen stark beeinflusst von der Art und
Konzentration der in ihnen vorhandenen Defekte. Diese Abhängigkeit der Eigenschaften
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von Festkörpern von der elektronischen Defektstruktur ist auch durch die Dynamik und das
Spektrum der elektronischen angeregten Zustandsmannigfaltigkeit der Defekte gegeben.
Daher ist eine robuste Methodik erforderlich, die akkurate Grundzustands- und Anre-
gungszustandenergien der Elektronen in Festkörperdefekten liefert.
In dieser Arbeit implementieren, entwickeln und verwenden wir CC basierte Methoden zur
Berechnung der Grundzustand- und angeregter Zustandsenergie von in Festkörpern einge-
betteten Defekten. Die Berechnung dieser angeregten Zustände basiert auf der Equation
Of Motion Coupled Cluster (EOM-CC) Theorie. Unsere Implementierung der EOM-CC-
Theorie wird zur Untersuchung von F -Zentren in Erdalkalioxiden verwendet. Die Meth-
ode basisert auf einem periodischen Superzellenansatz mit Ebenenwellenbasisfunktionen
in Kombination mit der Projector Augmented Wave (PAW) Methode.
Der zweite Teil der Arbeit befasst sich mit einer anderen Herausforderung, nämlich dem Ba-
sissatzkonvergenzproblem. Alle Wellenfunktionen erben von der Coulomb-Wechselwirkung
einen Knick am Koaleszenzpunkt, diese Knicks werden Cusps genannt. Um diese Cusps
aufzulösen muss man sich sowohl mit der Behandlung der Vielkörperkorrelation als auch
mit der Verfeinerung des in dieser Korrelation verwendeten Basissatzes beschäftigen. In
diesem Bereich, stellen wir ein Verfahren zur Korrektur des Basissatzes für die Coupled
Cluster Singles and Doubles (CCSD) Methode vor. Wir testen diesen Ansatz an dem ho-
mogenen Elektronengas und an einer Reihe von molekularen Systemen, wo wir die Wirk-
samkeit des Schemas zeigen.
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Part II

Theoretical introduction
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In this section we will present some of the main methodologies used throughout the text
and in the presented publications.
Although we try to make its presentation as self-contained as possible, a thorough theo-
retical introduction is outside the scope of this thesis and we refer to other complementary
works like [173, 78, 125].
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Chapter 3

Second quantization

3.1 One-body functions as orbitals

Most of this work is written in the language of second quantization. The algebra of the
second quantization is based on the set of objects of one-body operators F1 = {ĉi | i ∈ I},
a map † : F → F and a vacuum state | , where F is the many-body Fock space and †
is the dagger super-operator [189]. Additionally, I is a suitable index set that defines the
quantum mechanical representation of the particles in their one-body representation.
Every element in F1 represents the destruction of an electron, whereas F†

1 = {x̂† | x̂ ∈ F1}
represents the creation of a particle. Note that formally x̂† is just a helpful notation for
the function application †(x̂).
The size of the set F1 can be infinite, however in practice it is finite, i.e., it will be given by
the size of the one-body functions that we are considering in each system. These one-body
wave functions are commonly referred to as orbitals.
To motivate this rather abstract discussion we consider the following example. Let SPD =

{φnlm | n, l,m ∈ Z} be the set of orbitals that solve the Schrödinger equation for the
Hydrogen atom.
Accordingly, in this case I = Z3 with the well-known n, l,m constraints and

F1 = {ĉnlm | n, l,m ∈ Z} .
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We can obtain the set of orbitals SPD from F1 by the following projection

ϕnlm (r) = r| ĉ†nlm | .

Analogously one can define a basis of orbitals based on a plane wave representation or on
a possibly discrete real-space representation.

3.2 Operator representation

We will use a notation for operators that is similar to the covariant and contravariant
notation in the context of relativistic theories. This notation facilitates reading and writing
of complicated expressions but bears not the same connotations as in said theories, since
we do not concern ourselves with metric properties.
As it is often done in the literature, we define a notation akin to the Einstein Notation,
for instance, the following operator definition

Ô =
a1···au a1···ad

oa1···aua1···ad ĉ
†
a1 · · · ĉ†au ĉa1 · · · ĉad

= oa1···aua1···ad ĉ
a1 · · · ĉau ĉa1 · · · ĉad

showcases the main conventions that we are going to use throughout the text. We will
sum over repeated indices and the indices belonging to creation operators will be placed in
the super-index part of the tensor coefficient expression. Thus, in this last expression for
Ô we have u creation operators and d annihilation operators, which are placed as super-
index and sub-index respectively in the coefficient tensor name o and also in the one-body
operators ĉ, i.e., ĉk = ĉ†k.
Additionally, the concept of the n-bodyness of an operator is of relevance. A one-body
wavefunction is represented by the Hilbert space vector

|p = ĉp |

where | is the already mentioned vacuum state. An operator Ô1 having a one-body char-
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acter can be defined as an operator for which there exist |p and |q for which p| Ô1 |q = 0.
As it is readily seen, this definition depends highly on the choice of | object. A one-body
operator is one that only allows for such elements different from 0. Most one-body opera-
tors in this text will conserve the particle number operator N̂ and will have the following
form:

Ô1 = opq ĉ
pĉq.

This definition of one-body operators admits a simple generalization to n-body operators.
Thus, N̂ conserving two-body operators have the form

Ô2 = opqrs ĉ
pĉq ĉsĉr

and an N̂ conserving n-body operator is thus given by

Ôn = op1···pns1···sn ĉ
p1 · · · ĉpn ĉsn · · · ĉs1 .

Notice that this definition does discriminate between operators that might have mixed
n-bodyness. Specifically, operators such as ĉa or ĉpĉq + ĉpĉq ĉsĉr have a one-body and
two-body character but are not purely one-body or two-body. Nevertheless, we are only
interested in developing a sound working definition of this concept.
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Chapter 4

The electronic many-body
problem

The electronic many-body problem, as already stated in the introduction, consists in com-
puting observables of a system of electrons. These observables might be the ground-state
energy, photo-luminescence spectra, critical temperatures and a host of other properties.
Of course a way of calculating these properties comes about by solving the many-electron
Schrödinger equation, thus obtaining the wavefunction of the system. With this wave-
function, one can go about to calculate all physical observables. Methodologies that find
approximations to the wavefuncion of the system directly are fittingly called Wavefunction
based methods.
In the language that we have hitherto introduced, the electronic Hamiltonian can be written
as

Ĥ = hpq ĉ
pĉq +

1

4
V pq
rs ĉ

pĉq ĉsĉr (4.1)

where the one-body operator coefficients hpq are given by the kinetic energy of the electrons
and the electron-nucleus interaction coulombic potential. This is, in terms of the orbitals
ψp and ψq we can write

hpq = −1

2

∞
ψ†
p (r)∇2ψq (r) dr −

I∈Ions

∞
ψ†
p (r)

ZI

|r − RI |ψq (r) dr
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where Ions is the set of ions of the system, RI is the position of the I-th ion and ZI its
atomic charge. Throughout this work we employ atomic units (me = h̄ = 1) unless stated
otherwise.
Furthermore, the electron-electron interaction V pq

rs is given by

V pq
rs =

∞

0

∞

0
ψ†
p (r1)ψr (r1)

1

|r1 − r2|ψ
†
q (r2)ψs (r2) dr2dr1 (4.2)

It is worth noting that whenever q = r and q = s then V pq
pq represents the coulombic

interaction of two charge densities ρp and ρq, i.e.,

V pq
pq =

∞

0

∞

0

|ρp (r1)|2 |ρq (r2)|2
|r1 − r2| dr2dr1 (4.3)
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Chapter 5

Hartree-Fock approximation

One of the most straightforward approximations to solve the Schrödinger equation for the
electronic wavefunction of the Hamiltonian (4.1) is the Hartree-Fock approximation.
It consists in finding the best approximation to the electronic wavefunction that can be
represented by a single Slater determinant, oftentimes denoted as |0 [71, 72, 53, 54].
A single Slater determinant containing N electrons in the orbital basis {ĉa} can be written
like

|Ψi1...iN = ĉi1 · · · ĉiN | (5.1)

where we have defined implicitly the Slater determinant Ψi1...iN composed of N orbitals.
We can easily calculate the energy of a determinant making use of the zero-temperature
and single-reference Wick’s theorem [191, 131, 61]. In this context, the energy of Ψi1...iN

is given by computing the expectation value of (4.1), i.e.

EΨi1...iN
= E1

Ψi1...iN
+ E2

Ψi1...iN
= Ψi1...iN | Ĥ |Ψi1...iN (5.2)

where the one-body part for the energy is given by

E1
Ψi1...iN

= | ĉiN . . . ĉi1f
p
q ĉ

pĉq ĉ
i1 . . . ĉiN | (5.3)

= C {ĉi, ĉp} C ĉq, ĉ
j δ (i, j ∈ {i1 . . . iN}) δijfp

q (5.4)
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where the δ(. . .) functions pose restrictions for the indices, in this case, that the i and j

indices have to be one of the occupied electronic indices. Likewise, we have introduced
implicitly the Wick contraction operator C {a, b} [191] which in this work is given by the
difference between the product operator and its normal order, i.e.,

C â, b̂ = | âb̂− âb̂ | .

From now on we will consider our orbital basis ĉp to be orthonormal. Thus, in this case
one finds that

C ĉp, ĉ
q = δqp

and all further combinations are zero.
It is customary to use different letters for different types of states. In this work we use the
following index conventions for the operators ĉ and their scalar tensors:

Table 5.1: Index conventions.
Indices Interpretation
p, q . . . general indices
a, b . . . h virtual indices
i, j . . . o occupied indices

The HF equations are found applying a variational ansatz with respect to the system
orbitals ϕp(r) = r| ĉp | , i.e., one takes the Lagrange function

L[i1 . . . iN ] = Ψi1...iN | Ĥ |Ψi1...iN + ϵpq ( p |q − δpq)

where the last term represents the orthonormality conditions of the orbital set {ϕp}. One
thus obtains the extremal points by solving the Euler-Lagrange equations for this problem
in terms of the orbitals ϕp.
The well-known resulting expressions are a set of coupled linear equations where the equa-
tions depend on the solutions to be constructed. Therefore, a self-consistent approach is
mostly taken for solving the equations, where a starting guess for the equations is provided,
and after solving the problem another set of equations from the solution is computed. The
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process is continued until convergence of relevant quantities, for instance energy and elec-
tron density.
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Chapter 6

Density functional theory

Arguably the most successful theoretical framework in materials science is the Density
Functional Theory.
Thomas and shortly after Fermi devised a simple non-relativistic method to calculate
atomic fields and atomic properties from a purely theoretical model [177, 51]. In order to
calculate an approximation for the total potential in an atom they viewed the system of
electrons as forming a homogeneous cloud surrounding it. Thus, each electron is governed
by the simple Hamiltonian

1

2
p2 − vTF

where vTF is generated by a combination of the effective Hartree-like interaction of the
electrons and the nuclear potential. Since they Pauli exclusion principle had been included
in this framework, the energy of the system in this TF can be written in modern terms
like

ETF[n] = Φ| T̂ + V̂ne + V̂H |Φ

where using the functional derivative in terms of the electron density r → n(r) one can
write

vTF(r) =
δ

δn(r) V̂ne + V̂H [n]

It is worth noting explicitly that both the energy coming from both V̂ne and V̂H is a direct
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functional of the electron density r → n(r).
Some refinements were made throughout the years by including Fock exchange and electron-
electron correlation [120, 42]. However, the most general result came by the help of a formal
theorem about the general relationship of the exact ground state density of a many-body
electron system and its Hamiltonian [85]:

1. The ground-state density determines the Hamiltonian up to an additive constant:

nG −→ Ĥ, E[n] = ΨG[n]| Ĥ[n] |ΨG[n]

2. The minimization of E[n] gives the exact ground-state energy EG and density nG.

Here
Ĥ = T̂ + V̂ne + V̂H + V̂xc

and V̂xc is known as the exchange-correlation operator. The existence of this operator
is hinted indirectly by said theorem and provides the fermionic and coulombic electronic
correlation to the system, in an exact fashion.
This theorem, albeit strikingly powerful, does not deliver a constructive algorithm to in-
stantiate neither the energy functional n → E[n] nor the complete operator functional
n → Ĥ[n]. In particular, V̂xc is not known or only known numerically in the simplest cases
[130].
Kohn and Sham developed a practical scheme in order to render the formal Density Func-
tional Theory (DFT) theory implementable in practical situations [104, 103]. The Kohn-
Sham DFT theory uses a one-body equation for the orbitals not unlike the HF equations

1

2
p2 + vne + vH + vxc ϕi = ϵiϕi

where vxc represents formally the suitable spatial representation of the operator Vxc, i.e.,

vxc(r) =
δVxc[n]

δn(r) .

In practice however, vxc is approximated by a choice of functional form. Kohn-Sham DFT
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is however not the only formulation or solving technique for the wider DFT landscape, but
represents indeed the most successful and most promising tool for the routine calculation
of properties of molecules and extended systems [118, 119, 153, 39, 105, 65, 142].
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Chapter 7

Many-body methods

Considering a single Slater determinant as an approximation for the exact electronic wave-
function has severe shortcomings.
The most important limitation of a single-determinant is the fact that the inter-electron
correlation is missing. Of course, due to the nature of Slater determinants, a certain kind
of correlation is always present, namely the fermionic correlation. In other words, the
probability of finding two electrons at the same point in space with the same spin is zero
for any determinant.
In order to go beyond fermionic correlation, a direct approach entails including more and
more determinants in the representation of the wavefunction. Exactly which determinants
are included in the wavefunction is the subject of many-body wavefunction-based theories.
Certainly, the problem becomes intractable very soon if one considers the sizes of the
Hilbert spaces involved. Namely, let us consider that we have an orbital space of size M ,
i.e.,

{ĉ1, . . . , ĉM}

and considering N electrons, we can distribute N electrons over M orbitals in

M !

(M −N)!N !

which represents the size of the many-body electronic Hilbert space.
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As a means of an illustrative example, let us consider the size of the Hilbert space in ter-
abytes (TB) if we consider a modest quantity of virtual orbitals per occupied, for instance
10.

Table 7.1: Size of Hilbert space for some chosen number of electrons considering 10 virtual
orbitals per occupied orbital.

N M Size of Hilbert Space (TB)
10 100 2.52e+02
20 200 2.35e+16

Table 7.1 is quite telling. For a modest number of electrons the memory required to
store a single vector in the Hilbert space becomes so large that it does not fit a single
supercomputing node at the time of this writing. However, for a given system not all the
vectors in the Hilbert space are going to contribute in the energies or processes that one
is interested in. Thus, one of the main goals of many-body electronic structure theory
involves designing methods to sample the Hilbert space in a way that is efficient and
accurate, without incurring in the cost of storing all the vectors in the Hilbert space.
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Chapter 8

Configuration interaction

The most straightforward approach to solving the Schrödinger equation within a given
basis would be fully diagonalizing the Hamilton operator Ĥ.
The full N -electron Hilbert space can be generated by electron-number conserving excita-
tion operators

{τ̂µ} = 1, ĉaĉi, ĉaĉbĉj ĉi, ĉaĉbĉcĉk ĉj ĉi, . . .

acting on the Hartree-Fock determinant |0 , where we have defined implicitly the notation
τ̂µ to denote a general excitation operator.
Using this notation, a general vector in the many-body Hilbert space can be generated
using operators having the following form

Ψ̂i = cµi τ̂µ (8.1)

which is a general linear combination of wave operators that will generate determinants
once they act upon the reference determinant.
Akin to the HF equations formulation, we can also use a formal Lagrangian operator L̂ in
order to find the working equations, i.e.

L̂ = ciµc
ν
i τ̂

µĤτ̂ν + λij ciµc
ν
j τ̂

µτ̂ν − δij
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where the parameter space is simply

{cµi , ciµ, λij} .

Notice that we have added the orthonormality condition through the λij parameters as
usual in these contexts. Thus,

∂

∂ckξ
L̂ = δikδµξc

ν
i τ̂

µĤτ̂ν + δikδµξλijc
ν
j τ̂

µτ̂ν

= cνk τ̂
ξĤτ̂ν + λkjc

ν
j τ̂

ξ τ̂ν

= τ̂ ξ cνkĤτ̂ν + λkjc
ν
j τ̂ν

= 0

which assuming that a suitable rotation of the many-body basis renders the matrix λkj

diagonal, i.e., λkj = δkjλj , entails the usual eigenvalue equation

Ĥcνk τ̂ν + λkc
ν
k τ̂ν = 0.

As we have already discussed in table 7.1, storing the whole vector is indeed only feasible for
the smallest systems. A common way around this limitation is restricting the excitation
order in the linear µ expansion in (8.1). This approach truncates the excitation order
and diagonalizes the Hamilton operator Ĥ in a subspace of {τ̂}. These class of methods
are classified acccording to their truncation order. For instance, restricting the linear
expansion to singles and doubles excitations is denoted as Configuration interaction Singles
and Doubles (CISD). This explicit expansion thus reads

Ψ̂ = C01̂ + Ca
i ĉ

aĉi + Cab
ij ĉ

aĉbĉj ĉi

and the eigenvalue equation acts in the singles and doubles excitation manifold. Even
though this parametrization seems to solve many of the size explosion problems that the
Hilbert space naturally creates, there are some major drawbacks to this approach. One of
the main drawbacks is the lack of size-consitency of these truncated theories.
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This is a central fact also in the application of coupled-cluster theories to solids and big
molecules. Thus, we find it fitting to expand further on this topic. We say that a method
is size-consistent if it can deliver additive energies for systems composed of non-interacting
parts. As an example, let us consider two water molecules, one on Earth and the other
on Mars. It is readily seen that they can not possibly be correlated by means of the
electromagnetic force. Therefore, if we should calculate the energy of the system composed
by these two molecules, the result should be the sum of the two isolated energies. Indeed,
using a truncated CI methodology will give us all excitations up to a given truncation
order o. In order to have the same accuracy in the isolated systems, we should recover the
excitations to order o in a separable way. This however is not possible in the truncated
CI approach due to non-vaninishing unconnected diagrams [133, 173, 196]. Nevertheless,
efforts have been made to palliate this shortcoming, as in the quadratic CI theory [140]
where additional terms are added to the linear ansatz presented in order to render the
theory size-consistent. Other theories like Coupled Cluster, have this property formally
ingrained in the explicit ansatz.
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Chapter 9

Perturbation theories

Already in the early days of quantum mechanics it was clear that the exact solution of
the Schrödinger equation is well beyond our technical capabilities. Thus, an attempt was
made following the ideas of Rayleigh to develop a perturbative method for the solution of
the quantum wave equation [157]. This general framework is therefore known as Rayleigh-
Schrödinger perturbation theory.
This theory consists in solving a part of the Hamiltonian that is tractable and consider the
rest as a perturbation. By series expansion of the energy and wavefunction one can find
concrete expressions for the energy and wavefunction.
Let Ĥ be the original Hamiltonian and let

Ĥ = Ĥ0 + Ĥ1

where Ĥ1 is the perturbing term and Ĥ0 the reference system that one considers solved.
The main result for the energy and eigenstate expansion is given by the following equation

λn Ĥ0 − E0 |n + Ĥ − Ĥ0 − E1 |n− 1 −
n−2

m=0

En−m |m = 0, n ∈ N (9.1)

where we have used an explicit sum for sake of clarity, and λ is a coupling-strength param-
eter. Here, En is the n-th order correction to the energy and |n is the n-order correction
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for the eigenstate of Ĥ. The cases where n ∈ {1, 2} correspond to the well-known first
order and second order perturbation theory, respectively.
Møller and Plesset [129] used this formalism to make a choice of Ĥ0 and therefore Ĥ1.
Namely, they chose as Ĥ0 to be the one body interaction of the Hartree-Fock theory, i.e,
the Fock operator F̂ . In this framework therefore the perturbation Ĥ1 is given by Ĥ − F̂ .
This partitioning of the problem entails an important form of the second-order correlation
energy which reads as

E2 =
1

4
abij

V ab
ij V ij

ab − V ab
ji V

ij
ab

ϵi + ϵj − ϵa − ϵb
(9.2)

where the denominator is simply the difference between the zeroth expectation value E0 of
the Fock operator F̂ and the expectation value of a doubly excited determinant ĉaĉbĉj ĉi |0 .
This theory thus presented is known as MP2 and has seen much success in molecular and
solid-state systems [68, 52, 155]. Møller-Plesset theories are size-consistent and typically
applied up to third order, from which the accuracy starts to vary wildly with system and
with order.
Already quite early other partitions of the perturbation have been studied. For instance,
instead of considering a denominator composed of diagonal elements of the Hartree-Fock
energies, one can in principle consider other kind of terms. In the so-called Epstein-Nesbet
perturbation theory, diagonal terms of the full Hamiltonian are considered in lieu of the
single-particle energies, which can be seen as a repartitioning of the full Hamiltonian [132,
49, 57].
Finally, the MP family of methods has been shown to be a divergent series in some systems
such as the Neon atom [33]. Recent studies however suggest that this pathological behavior
can be tamed. Partitioning the Hamiltonian in an optimal way renders the series better
behaved in terms of convergence speed and divergence of the long tail of the series [92].
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Chapter 10

Coupled cluster methods

In this section we will discuss the main characteristics of the coupled cluster methodology.
All the methodologies we have seen thus far suffer from several shortcomings such as lack
of dynamic correlation, size-consistency issues, or divergent behavior.
The coupled cluster family of methods strives to achieve a reasonable compromise in sorting
out these shortcomings by elegantly choosing an ansatz that represents size-consistency
from the outset [112, 35, 134, 10].

10.1 Ground state coupled cluster

The coupled cluster ansatz comes in exponential form

|ΨCC = eT̂ |0 (10.1)

where |0 is commonly the HF determinant or any other single determinant[41]. This
determinant is generally known as the reference. The cluster operator T̂ is given by a sum
of many-body excitation operators starting from first order, i.e.

T̂ = tµτ̂µ = tai ĉ
aĉi + tabij ĉ

aĉbĉj ĉi + tabcijk ĉ
aĉbĉcĉk ĉj ĉi + . . .

where the operator expansion would go on up to the total number of electrons N .
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It is worth noting that in contrast to the CI approaches, a truncation in the cluster operator
T̂ to order o does not result in an ansatz where the excitations only go up to order o, rather
to order ok where k is a natural number such that ok ≤ N . Indeed, this observation comes
from the fact that formally for operators

eT̂ =
1

!n
T̂n.

While Configuration Interaction (CI) and Coupled Cluster (CC) are not order by order
equivalent, they are nevertheless exact theories in the limit of full inclusion of the excitation
operators up to the number of electrons. It is thus readily seen, that for a given truncation
order always the CI type truncation is included in the CC ansatz. In this sense, up to
second order, the relation is

Ca
i = tai (10.2)

Cab
ij =

1

2
tai t

b
j + tabij . (10.3)

Furthermore, terms exceeding the doubles are included through the exponential super-
operator from the point of view of the CI expansion, since terms like T̂1T̂2 or T̂ 3

1 form part
of the triples coefficients Cabc

ijk in respective CI expansion.
Additionally, there are many ways of understanding the consequences of this exponential
ansatz. In dealing with time-independent systems, it is somewhat natural to use the
time-independent perturbation theory as outlined by Møller and Plesset. In this context,
Brueckner conjectured [26, 27] that for the case of nuclear matter with many particles in a
one-body self-consistent field the perturbation series converged and no unlinked diagrams
played a role in the total correlation energy. Goldstone in turn generalized these ideas in
a diagrammatic methodology [62] for closed-shell fermionic systems, recovering the results
of Brueckner as a natural consequence of his framework. The diagram expansion of CC
does not contain connected diagrams, which in the case of the energy coincides with being
linked [122, 25].
The exponential ansatz has also the consequence that the parameters to be optimized, i.e.,
tµ appear in a non-linear way in the description of the wavefunction. It is in principle pos-
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sible to minimize the energy E variationally through the optimization of the tµ amplitudes
as in the CI case, i.e., optimize the expression

E[tµ] =
ΨCC| Ĥ |ΨCC
ΨCC|ΨCC

=
0| eT̂ †

ĤeT̂ |0
0| eT̂ †eT̂ |0

. (10.4)

Methods using this Variational Coupled Cluster (VCC) approach have been shown to be
superior in quality as the traditional approaches that we will introduce in the following [14,
147, 116]. This is partially due to the strict variational property of being an upper-bound
to the true ground-state energy. However, it is in most cases computationally unattractive
in comparison to the more straightforward implementations of the traditional approaches.
Further approaches exist, such as the bivariational approach of Arponen [7, 4] which makes
possible the calculations of further electronic properties but incur in a noticeable increase
in the complexity of the equations through the consideration of double-linked diagrams.
Traditional coupled cluster methods obtain the t-amplitudes in a projective, iterative fash-
ion. Starting from the Schrödinger equation

ĤeT̂ |0 = EeT̂ |0

we can multiply by e−T̂ on both sides, and we obtain an equation involving the similarity
transformed Hamiltonian

H̄ = e−T̂ ĤeT̂ (10.5)

that reads
H̄ |0 = E |0 . (10.6)

The many-body determinantal space is given by

H = |0 , |ai , ab
ij , abc

ijk , abcd
ijkl , . . .

= |0 , ĉaĉi |0 , ĉaĉbĉj ĉi |0 , ĉaĉbĉcĉk ĉj ĉi |0 , ĉaĉbĉcĉdĉlĉk ĉj ĉi |0 , . . . ,

41



we can now project equation (10.6) onto the space H and obtain a series of equations

0| H̄ |0 = E (10.7)
a
i | H̄ |0 = 0 (10.8)

ab
ij H̄ |0 = 0 (10.9)
abc
ijk H̄ |0 = 0

. . . = 0

which then entail a series of non-linear coupled equations. One can readily write the equa-
tions using the rules of Wick’s theorem [191, 131] using the single reference determinant as
a new vacuum. The connectedness of the tensor contractions comes about by the similarity
transformation. Indeed, H̄ can be written with the help of the BCH identity as

H̄ = H + [H,T ] +
1

2!
[[H,T ], T ] +

1

3!
[[[H,T ], T ], T ] + · · ·

where in every instance of the appearing commutator disconnected terms get canceled
[126]. Therefore, all terms appearing in H̄ are connected.
In order to understand how we can solve these equations, let us look at the doubles equa-
tions (10.9) and investigate some relevant terms. In a spin-orbital basis, the doubles
equations can be written as

0 = V ab
ij − V ba

ij

− fm
i tabmj + fm

j tabmi − f b
e t

ea
ij + fa

e t
eb
ij

+Rab
ij

where Rab
ij represents all the rest terms that include linear and non-linear terms coupling

t-amplitudes of different orders with V pq
rs .

For the sake of this analysis, let us suppose that we are dealing with Hartree-Fock orbitals
such that the one-body matrix f is diagonal, i.e.: fp

q = ϵpδpq. In this case, we readily
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obtain

0 = V ab
ij − V ba

ij

− ϵit
ab
ij − ϵjt

ab
ij + ϵbt

ab
ij + ϵat

ab
ij

+Rab
ij

and taking the t-amplitudes as a common term, we obtain the equation

tabij (ϵi + ϵj − ϵa − ϵb) = V ab
ij − V ba

ij +Rab
ij tai , t

ab
ij , t

abc
ijk , . . .

where we have written the explicit dependence of Rab
ij on the t-amplitudes. This equa-

tion is key for solving effectively the non-linear equations, since we can choose as a first
approximation to set tµ = 0 for all t-amplitudes appearing in Rab

ij . We can therefore ap-
proximate the doubles amplitudes tabij in the next step by solving for it in equation (10.1),
thus obtaining:

tabij =
V ab
ij − V ba

ij

ϵi + ϵj − ϵa − ϵb

which correspond to the doubles amplitudes that appear in the MP2 theory.
Thus, following this procedure it is possible to retrieve a recursive set of diagrams up to
infinite order. Surely, in general a truncation is put in place, where the orders in the
t-amplitudes are restricted as well as the projections in the many-body space. Since the
T̂ operator is fermionic and thus the amplitudes tabij are antisymmetric within the upper
and lower indices, it is straightforward to understand why given the definition of V ab

ij ,
the object V ab

ij − V ba
ij appears time and again. This object is called the antisymmetrized

coulomb integrals and one often denotes them by W ab
ij .

For reference, we provide the singles equations that result from purely applying Wick’s
theorem and that was implemented in our code [59, 83]:
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0 = f b
i

− fk
i t

b
kf

b
c + tci − tclW

lb
ic f

k
d + tdbki

+
1

2
tcblmW lm

ic +
1

2
tcdmiW

mb
cd

− tci t
b
lf

l
c − tbkt

d
mW km

id − tci t
d
mWmb

cd

− 1

2
tcblmtfi W

lm
cf − 1

2
tcdmit

b
nW

mn
cd

+ tcbli t
e
nW

ln
ce − tci t

b
l t

e
nW

ln
ce

together with the doubles equations
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0 = W cd
ij

− tcmWmd
ij + tdmWmc

ij + tejW
cd
ie − teiW

cd
je

− fm
i tcdmj + fm

j tcdmi − fd
e t

ec
ij + f c

e t
ed
ij

+
1

2
tcdmnW

mn
ij + tecnjW

nd
ie − tednjW

nc
ie − tecniW

nd
je + tedniW

nc
je

+
1

2
tefij W

cd
ef

+ tcmtdnW
mn
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c
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d
nW

nc
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c
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je − tei t

d
nW
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f
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cd
ef
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f
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f
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f tfcij t
d
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f tfdij t
c
m
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1

2
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g
jW
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tcdmnt

g
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mn
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d
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ie + tednjt

c
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d
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f
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− tecnjt
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tedij t
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2
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fd
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1
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tefij t

cd
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2
tcmtdnt

gh
ij W

mn
gh

− tdmtfo t
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ij W

mo
fh + tcmtfo t

hd
ij W

mo
fh + tei t

f
j t

c
ot

d
pW

op
ef

10.2 Equation of motion coupled cluster

The usual formulation of single reference coupled cluster theory is essentially a theory for
the ground state. Indubitably, one is in general not only interested in the ground state
but in excited states. The main approach of the Equation Of Motion (EOM) is to improve
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on top of the coupled cluster ground state |ΨCC by obtaining several excited states |Ψi .
For this, the methodology relies on the general equation of motion framework to obtain
excited states. This framework can be used also to obtain excited states for other theories
such as Random Phase Approximation (RPA) or HF [151, 152].
In this EOM framework, one can define a linear excitation operator that delivers us the
excited states

|Ψi = R̂i |Ψgs .

where |Ψgs = |ΨCC is the solution of the ground state coupled-cluster calculation.
Being R̂ a linear excitation operator, it acquires the following familiar form

R̂ = rµτ̂µ

where µ, as before, is an index denoting a charge-neutral particle-hole excitation as in the
CCSD case.
The name equation of motion is motivated by the following consideration, since |Ψi is
the i-th excited state, we can write

Ĥ |Ψi = ĤR̂i |Ψgs = Ei |Ψi = EiR̂i |Ψgs

but also since |Ψgs is the ground state,

R̂Ĥ |Ψgs = R̂Egs |Ψgs = EgsR̂ |Ψgs

and subtracting these two equations we obtain therefrom

[Ĥ, R̂] |Ψgs = (Ei − Egs)R̂ |Ψgs = ∆EiR̂ |Ψgs (10.10)

which is reminiscent to the equation of motion for operators in the Heisenberg picture.
Now we restrict the choice of the ground state to be a solution for the coupled cluster
equations, i.e., |Ψgs = eT̂ |0 , where |0 is a single Slater determinant with a virtual and
an active space which we will mostly consider to be a HF determinant, but can in principle
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involve any other kind of orbitals.
Now let us rewrite equation 10.10 in terms of the vacuum state |0 :

[Ĥ, R̂i]e
T̂ |0 = (Ei − Egs)e

T̂ |0

Now we can use the fact that any two τ̂µ and τ̂ν operators commute as long as they include
the same amount of hole indices and particle indices and they only create particle-hole
pairs. This lemma implies that R̂i and eT̂ commute [R̂i, e

T̂ ] = 0, videlicet, T̂ and R̂i excite
and annihilate in the same partition of the orbital space. This in turn entails

[Ĥ, R̂i]e
T̂ = ĤeT̂ e−T̂ R̂ie

T̂ − R̂ie
T̂ e−T̂ ĤeT̂

= eT̂ e−T̂ ĤeT̂ R̂i − R̂ie
−T̂ ĤeT̂

= eT̂ [H̄, R̂i]

where we have factored in the similarity transformed Hamiltonian H̄. In consequence, we
arrive at the following form of the equation of motion for the linear operator R̂i and its
energy Ei

[H̄, R̂i] |0 = (Ei − Egs)R̂i |0 = ∆EiR̂i |0 (10.11)

The commutator here has the same effect as in the ground state coupled cluster case, it
removes disconnected contractions from the Wick normal products. Therefore, the equality
in (10.11) is equivalent to

H̄R̂i
c
|0 = ∆EiR̂i |0 , ∆Ei = Ei − Egs (10.12)

which is the final defining equation for EOM-CC.
As we have seen, EOM-CC can be interpreted as diagonalizing the similarity transformed
Hamiltonian just as Full Configuration Interaction (FCI) diagonalizes the original Ĥ Hamil-
tonian. Since truncated CI diagonalization violates the size-extensivity in such a way that
for large enough systems the correlation energy contributed by the method becomes arbi-
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trarily small, it is expedient to ask the same question for the EOM-CC method. It is thus
worthwhile discussing notable differences between truncated CI and EOM-CC methods.
Firstly, it is intuitively understandable that the main culprits for the size-extensivity vio-
lation of a method have to do with unconnected terms in the energy expression [73, 133,
197, 196]. In fact, equation (10.12) is identical in overall form to a CI approach when
restricting the equations only to connected terms. Since the EOM-CC equations do not
contain such disconnected terms we can expect that the size-extensivity error be manage-
able at least. This is indeed the case. In order to gain a bit more intuition we further
discuss the similarities between linear response CC and EOM.
In linear response CC, given a temporal disturbance of the many body Hamiltonian Ĥ

Ĥ(t) = Ĥ + V̂ e−iωt + V̂ †e+iωt

one makes use of the linear Ansatz

T̂ (t) = T̂ + R̂e−iωt + R̂†e+iωt

which represents the linear response of the system. The Ansatz solution remains an expo-
nential, albeit dependent on time, |Ψgs(t) = eT̂ (t) |0 , this ensures for every t and trun-
cation size-consistency. Inserting this time-dependent amplitude into the time-dependent
Schrödinger equation and keeping the lowest order we recover the expression

e−T̂ ĤeT̂ R̂|0 = (ECC + ω)R̂|0

which is identical to our EOM equation (10.12). Consequently, this means that the equa-
tions of EOM can be interpreted as the first order of a size-consistent theory, and can be
expected to suffer less from size-consistency issues than a bare truncated CI. This is of
course altogether due to the use of a similarity transformed Hamiltonian instead of the
bare electronic Hamiltonian.
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10.3 Addition of perturbative triples

When dealing with coupled cluster theories, going one order further in the truncation of the
t-amplitudes incurs a steep increase of computational scaling by two orders of magnitude.
However, it is highly desirable to include a higher level of correlation even if only in an
approximate way, be it in many body perturbation theory [111] or in coupled cluster
theories [143].
CCSD, reinterpreted as a many body resummation theory, contains all terms appearing in
third-order MP (MP) and beyond these. Coupled cluster with singles, doubles and triples
excitations (CCSDT) on the other hand, does not contain all diagrams from fourth-order
MP (MP) but contains even a bigger class of diagrams than CCSD [183, 12].
Perturbative triple excitations (CCSD(T)) is a theory that includes the effect of triple
excitations in CC in a non-iterative way [144], this is, the inclusion of these triple excita-
tions is done in a one-shot fashion and includes a balanced family of fifth-order diagrams.
CCSD(T) is very accurate for systems in thermochemistry inasmuch as it delivers consis-
tently highly accurate results for a large set of molecules as compared with other many-body
correlation methods [160, 43, 145].
There are several ways to motivate the main expression of the CCSD(T) energy. Let us
first look at the expression for the MP2 correlation energy:

∆E(MP2) = 1

E0 − Eµ
0| V̂ |µ µ| V̂ |0

we have the reference determinant |0 and an arbitrary excited determinant |µ . In practice
however, |µ is restricted to the space of double excited determinants since the coulomb
interaction V̂ is a two body operator and the only elements that can contribute in this
sum are excitation states of the form ab

ij that give rise to matrix elements V ab
ij and its

complex conjugate. Formally, we can conceive the case where we have a CCSD state |Ψ
as a reference state, where as before

|Ψ = exp tai ĉ
aĉi + tabij ĉ

aĉbĉj ĉi |0 = cµτ̂µ

where we have written also the expanded version of the exponential in order to write next
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the state |Ψ as a CI linear ansatz with coefficients cµ.
Formally, by replacing |0 by |Ψ in the expression for the ∆(MP2) energy we obtain

∆E =
c†νcµ

E0 − Eτ
ν| V̂ |τ τ | V̂ |µ .

Please note that the denominator of the expression is included ad-hoc, since the actual
denominator of the perturbation given from a direct application of Rayleigh-Schrödinger
perturbation theory should involve expectation values of the reference state |Ψ . In prin-
ciple ν and µ should run over all possible determinants, from singles to the number of
electrons N since they are expanding the reference state |Ψ , which on account of the
exponential ansatz spans the whole determinant space.
Given that the computational framework is based on a CCSD theory, one restricts the
space of ν, µ to singles and doubles excitations. Within this context, contractions where
τ belongs to the singles and doubles manifold represent diagrams that are already in-
cluded in the iterative CCSD equations. Certainly, this method remains in the scope of
adding corrections related to triples substitutions and therefore τ it is restricted to triples
excitations.
It is important to note that some perturbative triples terms are already present in the
CCSD correlation energy. This certainly the case since the exponential ansatz induces
terms in the cabcijk coefficients of the form tai t

bc
jk, which are effectively coupling with the

triple excitation manifold. It can even be shown that the leading terms in energy caused
by the restriction of µ and ν to singles excitations pertain to this class of terms [140].
Therefore, one chooses to remove the singles from the µ and ν altogether and add them as
a separate term.
With this in mind the, when we make use of the pertinent notation the final expression
reads
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∆E(CCSD(T)) =
cµ

E0 − Eτ
c†ν′ ν ′ + c†ν ν| V̂ |τ τ | V̂ |µ

= cAB
IJ

c†dl
d
l + c†efmn

ef
mn V̂ abc

ijk
abc
ijk V̂ AB

IJ

ϵi + ϵj + ϵk − ϵa − ϵb − ϵc

This expression can be also understood from the point of view of the diagonalization of
the similarity transformed Hamiltonian H̄ [167]. It can be motivated that this expression
is near to the first order in perturbation to the energy difference

EFCI − ECCSD.

This result motivates and reinforces the interpretation that this addition to the energy
corrects the CCSD energy rather than being overly biased on correcting the HF reference
energies, like the CCSD energy.
In conclusion, even though no rigorous derivation of the functional form of the CCSD(T)
is available, its usefulness remains hitherto uncontested within its respective domain of
applicability.
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Chapter 11

Electronic cusp

11.1 Orbital representation

Up to this point, the orbitals ϕp have been treated as general functions. However, they are
an essential degree of freedom to improve the quality of the calculation results in quantum
chemical calculations.
In the simple case of the Hydrogen atom, the one-electron Schrödinger equation leads to
radial functions of the form

ϕ(r) = Ce−αr

where C and α are constants. This simple system exemplifies quite faithfully a general
problem. Namely, around the origin of the function there is a discontinuity of the deriva-
tive, which makes the approximation of this orbital by functions which are typically C∞,
challenging in practical terms. These approximating functions are typically Gaussian type
functions

ϕ(r) = Ce−αr2

in the case of molecular systems and plane waves in extended systems
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ϕG(r) = CeiG·r.

In figure 11.1 we can see an elementary depiction of these orbitals.
Clearly, in order to represent a purely exponential orbital we will need infinitely many
Gaussian orbitals and even more plane waves. Since this behavior of the orbital is specially
important for electrons that are near the nucleus and not so active in the chemical processes,
a common way around this problem in molecular systems is the usage of basis sets that are
optimized to account for the effect of the core electrons in the coefficients of the valence
electrons. Thus, one evades the problem of the localised core orbitals altogether. This
approach is often refereed to as frozen core.
In the case of plane wave basis sets, pseudo-potentials are used that account for said
difficulty of plane waves to represent sharp features of core electrons [77]. In this context,
several methodologies exist which construct the effective potential in different ways [159].
The HF program used in this work as a starting point for periodic calculations, VASP [110],
uses the projector augmented wave (PAW) approximation [19, 20], which maps both the
orbitals and the operators to pseudised representations that ensure the smoothness of the
orbitals in the whole space. This palliates part of the basis set convergence problem in the
case of extended systems.

11.2 Electron-electron cusp

In section 11.1 we have discussed the fact that the choice of orbitals can hinder greatly the
quality of the actual orbital representation electrons. This analysis however remains in the
one-body picture of the problem.
There is however another central limitation in the representation of electronic wavefunc-
tions that arises when we consider a system with more than one electron.
A pedagogical and somewhat simplified illustration of the physical intuition of the electron-
electron cusp starts by considering the classical gravitational interaction between two point-
like planets. Figure 11.2 illustrates this case schematically. Since the classical gravitational
law also follows the r−2 law, we can safely use this case for illustrative purposes. Let us
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ℓ

Figure 11.2: Schematic representation of two objects subjected to a attracting force F.

suppose that the bodies have a small velocity towards each other when they are separated
by a distance ℓ which should be large enough (on the order of several thousands millions
of kilometers). In the isolated system composed by both bodies, their total energy is a
constant of motion. This energy is composed by their kinetic energy and their gravitational
interaction through the Kℓ−1 potential, where K is a constant. Whenever they are as close
as 1Å, the force F, following the r−2 power law, takes on ever-increasing values, and with
it the kinetic energy increases in the same measure. Certainly, since the potential energy
decreases in the same fashion but with a different sign, the total energy of the system stays
constant. However, in terms of a classical intuition, it is not quite physical to accept that
the kinetic energy actually becomes infinite. Indeed, planets are not point particles and
their relative distances are never infinitesimally valued.
Quantum mechanics however allows for the interpretation that two electrons can be at
the very same position at the same time, provided they exhibit a different spin degree of
freedom. With this somewhat deceiving intuition, one finds that these electrons can in fact
reach infinite velocities. This fact is imprinted in the Kato cusp condition for the electron-
electron interaction [96, 97]. Indeed, the singularity of the coulomb potential is cancelled by
the momentum operator acting on the many-electron wavefunction Ψ(r1, . . . , rN ) as the i-th
electron approaches the j-th electron. In fact, these kinds of singularities described by Kato
are the only ones exhibited by electronic non-relativistic many-body Born-Oppenheimer
systems. Therefore, Ψ is everywhere else throughout the configuration space continuous
and allowing for continuous derivatives [97].
For two electron systems, the cusp condition is readily found by inserting Ψ(r1, r2) into the
two-electron Schrödinger equation, letting r12 decrease towards zero and finding a relation
that cancels the 1/r12 singularity of the electron-electron Coulomb interaction potential.
In the simple case of a singlet wave function Ψ (where the radial part is symmetric), one
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finds
∂Ψ

∂r12 r12→0

=
1

2
Ψ(r12 → 0).

For a more general N -electronic singlet wave function the derivative at rij has in general
a directional dependence in the neighbourhood of the coalescence point rij → 0 and the
mathematically correct expression is

lim
rij→0

1

4π

∂Ψ

∂rij
dΩ =

1

2
Ψ(rij → 0),

where the integral integrates over the solid angle domain. For more details about this
procedure we refer to the literature [78, 115, 84].
An important consequence of the cusp is that at the coalescence point rij → 0 the wave
function Ψ has the following form

Ψ(. . . , ri, . . . , rj , . . .) ∝ rijη(r1, . . . , r̂i, . . . , r̂j , . . . , rN )

where η is a function not depending on ri or rj in an infinitesimal neighborhood of rij → 0.
As in the case of the orbital representation of the sharp core exponential features, we
encounter again the difficulty of representing this sharp feature in said vicinity. However,
in this case we are not able directly to create a pseudo-potential to take care of these
intricate features for us, since the sharpness of the feature is dependent on the dynamic
correlation between all electron pairs. One can however tackle this problem from the point
of view of the basis set and introduce rij dependent basis functions that have the cusp
rij-dependence ingrained in their Ansatz form. These approaches are often referred to as
explicitly correlated theories such as f12 or r12 [107, 176, 175, 106, 8, 18].
In passing we note that similar relations exist for the interaction between the electrons and
the nuclei. For our purposes however this is of no relevance.

11.3 MP2 in the Complete Basis Set limit

As a first relevant example of a theory tackling the basis set size convergence problem we
discuss briefly an approach in order to obtain converged correlation energies in MP2.
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In (9.2) we wrote the energy expression of MP2 using a basis of spin-orbitals. A common
technique to factorize the energy denominator is by taking the Laplace transform

1

ϵa + ϵb − ϵi − ϵj
=

∞

0
e−t(ϵa+ϵb−ϵi−ϵj)dt.

The previous equality allows replacing a part of the contraction by a numerical integral,
which given the nature of the exponential decay of the integrand, it mostly requires around
10 points in a suitable integration grid [3, 192]
In extended systems, by further decomposing the Coulomb integrals V ab

ij into a tensor
contraction such as

V ab
ij = ΓaG

i ΓbG
j

†

one can further reduce the naive scaling of O(N5) into a quartic scaling in terms of the
contraction variable length NG [156].
Alternatively in molecular systems, linear scaling methods have been developed that take
advantage of local correlation domanins in molecules in order to tame the scaling fo the
method [158].
Reducing the computational resources needed to obtain converged results with respect to
the basis set size thus enables treating systems with more accuracy.
In particular, such methodologies can be used to develop new methodologies for different
methods. These new methods base their results on the soundness of the original techniques.

11.4 Diagrammatic decomposition of the CCSD correlation
energy

The CCSD equations can be understood by decomposing its terms in meaningful group-
ings of contractions. Their definition comes about by considering the topology of their
contracted inidices. When written in a pictorial form by means of Goldstone diagrams an
immediate intuitive meaning is bestowed upon them [62, 150, 6, 126, 113].
A way of identifying their meaningfulness is by interpreting the different contractions in
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terms of existing approximations for the energy or the wave function. Additionally, the
coupled cluster approach can be understood as an infinite resummation of many-body
perturbation theory diagrams. In this sense, some perturbative theories and resummation
techniques can be recovered in the framework of its equations.
Taking this into account, we will briefly discuss how the RPA fits into the CC framework.
The RPA was first developed by Macke [124] and soon after by Pines and Bohm [139, 139,
22, 23] in their seminal works. As already shown in (10.1), the amplitude equations in
coupled cluster consist of a series of terms involving contractions of the Coulomb integrals
V pq
rs and the t-amplitudes tµ. A common approach to explore the accuracy and flexibility

of these equations is by truncating the excitation degree of the t-amplitudes, giving rise
to the truncated CC methods CCSD, CCSDT, etc. Alternatively, terms can be selectively
left out, giving rise to approaches such as distinguishable coupled cluster [98] or a host of
other approximations [32, 117, 138].
In order to recover the diagrammatics of the RPA, we consider non-antisymmetrized
Coulomb integrals V pq

rs together with the following contractions

0 = V cd
ij (11.1)

− fm
i tcdmj + fm

j tcdmi − fd
e t

ec
ij + f c

e t
ed
ij (11.2)

+ tceikV
kd
ej (11.3)

− tedniV
np
eg tgcpj + tecniV

np
eg tgdpj (11.4)

where we have only kept contractions with particle-hole bubbles. Starting from a diagonal
one-body representation of the problem where fp

q ∝ δpq , the iterative procedure creates
RPA like terms which in the case of convergence agree with the RPA energy for parts of
CC energy expression. This approach for solving for the CC amplitudes is termed direct
ring coupled cluster [81, 69].
The same process can be done with the MP2 channel where only the V cd

ij term is included
in the doubles. The process is however terminated in the first iterative step, giving rise
to the MP2 energy expression. Another notable channel is the ppl channel, wherein the
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relevant terms are

0 = V cd
ij (11.5)

− fm
i tcdmj + fm

j tcdmi − fd
e t

ec
ij + f c

e t
ed
ij (11.6)

+ V cd
ef t

ef
ij . (11.7)

Performing an iterative procedure in some of these channels alone is in some cases reward-
ing. For instance, it is known that in the high-density limit of the uniform electron gas, i.e.
when rs → 0 the RPA approach just outlined becomes exact [24, 5, 56]. For real systems or
intermediate regions in the UEG however there is in general a complex interplay between
the different channels.
It is important to stress that replacing CCSD converged t-amplitudes tµ into the RPA, ppl
or MP2 channels will give different contributions to the correlation energy. This fact begs
the question of how every contribution depends on the basis set size used for computing
it.
It can be shown that most of the additional correlation energy that comes from increasing
the basis set size comes from the MP2 and ppl channels and their magnitudes are of
comparable absolute value but with an opposite sign [89]. Furthermore, the ppl terms
of the CCSD equations are the most expensive ones to compute. We have previously
discussed that methods exist and can be developed to lower the computational cost of
MP2 calculations through various techniques. We can therefore motivate a method to
approximate the ppl correlation energy from the MP2 by simply exploiting the relation
between the MP2 and ppl channels. The interested reader can find more details in our
publication [89].

11.5 The focal-point basis set correction

The rest of this chapter will present the focal-point basis set correction developed in [87]
for the CCSD and CCSD(T) methods.
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1. Overview

The scheme is based on employing frozen natural orbitals (FNOs) and diagrammat-
ically decomposed contributions to the electronic correlation energy that dominate
the basis set incompleteness error (BSIE). As discussed in our work [89], the BSIE
of the CCSD correlation energy is dominated by the MP2 perturbation energy and
the particle-particle ladder term. Here, we derive a simple approximation to the
BSIE of the particle-particle ladder term that effectively corresponds to a rescaled
pair-specific MP2 BSIE, where the scaling factor depends on the spatially averaged
correlation hole depth of the coupled-cluster and first-order pair wavefunctions. The
evaluation of the derived expressions is simple to implement in any existing code.
We will analyse the UEG and motivate therein the approach taken. Furthermore,
we apply the method to coupled-cluster theory calculations of atoms and molecules
using FNOs.

2. The pair-specific decomposed PPL correlation energy in the CBS limit In this section
we introduce a correction to the BSIE of the CCSD correlation energy. The CCSD
correlation energy of a spin-restricted system is given by

ECCSD
c =

ij ab

T ab
ij (2 ij|V |ab − ji|V |ab ) (11.8)

where the first term is the so-called direct diagram and the negative term is the
exchange diagram. T ab

ij is computed from the CCSD singles (tai ) and doubles tabij

amplitudes as T ab
ij = tabij + tai t

b
j . tai and tabij are obtained by solving the corresponding

amplitude equations [12, 34, 13].

For the sake of clarity, let us note in passing that the notation |pq denotes a non-
antisymmetrized state of two electrons created directly from the Dirac vacuum, i.e.,

r1r2|pq = ϕp(r1)ϕq(r2)

and it does not denote a Slater determinant. Consequently, in this notation the
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integrals V ij
ab become

ij|V |ab = V ij
ab = dr1dr2

ϕ†
i (r1)ϕa(r1)ϕ†

j(r2)ϕb(r2)
|r1 − r2| . (11.9)

Next, we employ the diagrammatic decomposition of the CCSD correlation energy
discussed previously that is obtained by substituting the doubles amplitude in (11.8)
with corresponding contributions from the right hand side of the converged amplitude
equation, which is given by

∆ab
ij t

ab
ij = ab|V |ij

driver/mp2

+
cd

ab|V |cd T cd
ij

ppl

+ · · ·
rest

(11.10)

wherein ∆ab
ij = ϵi+ϵj−ϵa−ϵb are the one-electron energy differences in the Hartree–

Fock approximation. This yields the following correlation energy contributions [89]

ECCSD
c = Emp2 + Eppl + Erest, (11.11)

where Emp2 corresponds to the MP2 correlation energy

Emp2 =
ij ab

W ij
ab ab|V |ij (11.12)

and the particle-particle ladder term is defined as

Eppl =
ij ab

W ij
ab

cd

ab|V |cd T cd
ij . (11.13)

We note that Emp2 was referred to as Edriver in previous related works [90, 163]. W ij
ab

is given by

W ij
ab =

2 ij|V |ab − ji|V |ab
ϵi + ϵj − ϵa − ϵb

(11.14)
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and it is the diagrams that close the CCSD correlation energy expression.

For the sake of brevity, we define Erest such that it contains all remaining contribu-
tions to the CCSD correlation energy.

As discussed previously, the BSIE of the CCSD correlation energy is dominated by
the BSIE in Emp2 and Eppl [89].

The following discussion is based on the premise that the finite virtual orbital man-
ifold is spanned by a set of canonical orbitals that needs to be augmented with
additional virtual orbitals to reach the complete basis set (CBS) limit, while the
occupied orbitals are fully converged to the CBS limit regardless of the approxima-
tions used in the virtual orbital space. This situation closely resembles ab initio
calculations employing re-canonicalized frozen natural orbitals [174]. We choose the
following index labels for occupied and virtual spatial orbitals

i, j, k, . . . occupied states
a, b, c, . . . virtual states in finite basis
α, β, γ, . . . augmented virtual states
A, B, C, . . . union of all virtual states.

The union of all virtual states spans the complete virtual orbital manifold. We stress
that there is a difference in our notation compared to F12 literature, where α is the
union of virtual states inside or outside the conventional orbital space.

The particle-particle ladder term Eppl defined by Eq. (11.13) can also be expressed
as

ϵAij = Ψ
(1)
ij V Ψcc

ij , (11.15)

where
Ψ

(1)
ij =

ab

W ij
ab ab| , (11.16)

and
Ψcc

ij =
cd

T cd
ij |cd . (11.17)
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Herein Ψ
(1)
ij refers to the linearized first order wavefunction whereas Ψcc

ij resembles
a coupled-cluster pair wavefunction. In practice, these wavefunctions are calculated
employing a finite virtual orbital basis set. Consequently, the ppl term only couples
wavefunctions with the same occupied pair index. We note that the exponential
CCSD pair wavefunction ansatz cannot be expressed by Ψcc

ij only but also depends
explicitly on the HF wavefunction and other polynomials of single and double am-
plitudes not included in the definition of Ψcc

ij .

We formally define the CBS limit of the linearized first-order and coupled-cluster-like
pair wavefunction by

Ψ
(1)-cbs
ij = Ψ

(1)
ij + δ

(1)
ij (11.18)

and
Ψcc-cbs

ij = Ψcc
ij + δcc

ij , (11.19)

respectively. δ
(1)
ij and δcc

ij are defined such that they correct for the BSIE in

the respective parent wavefunctions Ψ
(1)
ij and Ψcc

ij . Following the notation of this
article, the latter are obtained from a virtual basis set a. Already in 1985, Kutzelnigg
discussed that the conventional expansion, using products of one-electron states,
can not represent the wavefunction accurately at regions where the interelectronic
distance approaches zero [114]. Thus, for increasing one-electron basis set sizes, the
contribution of δ

(1)
ij and δcc

ij will largely be localized to the cusp region at small
interelectronic distances. Substituting the above BSIE corrections into Eq. (11.15),
yields the following contributions to the ppl energy in the CBS limit:

ϵBij = δ
(1)
ij V Ψcc

ij (11.20)

ϵCij = Ψ
(1)
ij V δcc

ij (11.21)

ϵDij = δ
(1)
ij V δcc

ij . (11.22)

63



Consequently, the CBS limit formally reads

Eppl-cbs =
ij

ϵAij + ϵBij + ϵCij + ϵDij . (11.23)

This work outlines an efficient approximation to Eppl−cbs. To this end, we analyse
ϵBij and ϵCij and provide suitable approximations for them in the following sections.
We disregard ϵDij since it is of second-order in the BSIE of the pair wavefunctions (δ).
We recall that ϵAij is evaluated in the conventional coupled-cluster calculation using
the finite basis set.

3. Coupling of δ
(1)
ij to Ψcc

ij

We now turn to the expression for ϵBij and employ the resolution of the identity (RI)

ϵBij =
αβ

δ
(1)
ij αβ αβ V Ψcc

ij

+
aβ

δ
(1)
ij aβ aβ V Ψcc

ij

+
αb

δ
(1)
ij αb αb V Ψcc

ij .

(11.24)

The above equation can be interpreted as the coupling of the change of the first-
order wavefunction to |Ψcc

ij . Due to δ
(1)
ij ab = 0, only projectors that involve

at least one state from the augmented virtual basis have to be included in the RI.
The orbitals ϕα, and ϕβ are strongly oscillating in space, i.e., they bear large wave
number and/or high angular momentum number. In contrast, |Ψcc

ij is expected to
be much smoother. Following fundamental ideas of scattering theory, we replace the
complicated scattering problem with a much simpler one, by means of the following
approximation

Ψcc
ij =

cd

T cd
ij |cd ≈ |ij gcc

ij , (11.25)
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where |ij is a mean-field state constructed from the Hartree–Fock orbitals of the
occupied pair i and j. We stress that the left-hand-side and right-hand-side of Eq.
(11.25) are orthogonal. However, this approximation is only used in the context of
evaluation of matrix elements in expressions such as Eq. (11.24), which include the
Coulomb interaction.

The scaling factor gcc
ij is chosen such that the spatially averaged correlation hole

depths of the correlated wavefunction and its mean-field approximation are equated
after projection onto the occupied space of the same electron pair:

cd

T cd
ij ij|δ(r12)|cd = ij|δ(r12)|ij gcc

ij . (11.26)

The appearing integrals are defined in an analogous manner to Eq. (11.9) but with
the Coulomb kernel replaced by the Dirac delta function δ(r12). When using Gaussian
basis functions, this requires only minor modifications of the original integral routines
(see [1]). From the above equation, we obtain an explicit expression for the pair-
specific correlation hole depth scaling factor given by

gcc
ij =

cd T
cd
ij ij|δ(r12)|cd
ij|δ(r12)|ij . (11.27)

For the sake of brevity in the following paragraphs, we introduce a projection oper-
ator ĝij that yields an approximate mean-field state when applied to any correlated
electron pair state, such that

|ij gcc
ij = ĝij Ψcc

ij . (11.28)

To get a better understanding of the above approximation, we now inspect the explicit
expression for ϵBij of a singlet state, which is given by

δij |V |ψij = dr12d r12δ̃∗ij(r12, r̄12)
1

|r12| ψ̃ij(r12, r̄12). (11.29)
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Here, the electron-pair functions δij and ψij have been transformed to a real-space
representation in r12 = r1 − r2 and r̄12 = r1 + r2. Because δ̃ij is largely localized
around the cusp region, it effectively screens the Coulomb kernel at large interelec-
tronic distances |r12|. ϵBij is therefore dominated by contributions from short inter-
electronic distances. Moreover, ψ̃ij is a smooth function in the cusp region compared
to δ̃ij , suggesting that

ψ̃ij(r12, r̄12) ≈ ψ̃ij(r12 = 0, r̄12) (11.30)

is a reasonable approximation. ψ̃ij(0, r̄12) is the correlation hole depth as a function of
r̄12. The central approximation of this work is based on employing a mean field ansatz
for ψ̃ij(0, r̄12) that is obtained by projecting ψ̃ij(0, r̄12) onto a corresponding zeroth-
order mean-field wave function and ensuring that the spatially averaged correlation
depths of the mean-field ansatz and ψ̃ij agree. This is achieved using the pair-specific
projection operator ĝij defined in Eq. (11.28).

Using the mean-field approximation described above, i.e. operator ∆̂ij , ϵBij can be
approximated as follows

ϵBij = δ
(1)
ij V Ψcc

ij ≈ δ
(1)
ij V ij

∆ϵ
(2)
ij

gcc
ij

(11.31)

where ∆ϵ
(2)
ij refers to the pair-specific BSIE correction of the MP2 correlation energy.

Thus, we have shown that the ϵBij contribution to the ppl term can be approximated
using ∆ϵ

(2)
ij times a scaling factor that depends on the spatially averaged correlation

hole depth of Ψcc
ij .

4. Coupling of δccij to Ψ
(1)
ij We now focus on the coupling between the first-order

wavefunction and the BSIE correction to Ψcc
ij . Using once more the RI we write Eq.

(11.21) in the following way
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ϵCij =
CD

Ψ
(1)
ij V CD CD δcc

ij

≈
CD

Ψ
(1)
ij ĝ†ijV CD CD δcc

ij

=g
(1)
ij

CD
ij|V |CD CD δcc

ij .

(11.32)

In the above equation, we have approximated the first-order state by a mean-field
state that exhibits an identical spatially averaged correlation hole depth. Further-
more, the exact expression for δcc

ij is not accessible, as we do not intend to solve the
coupled-cluster equations in the large basis set. Moreover, we note that cd|δcc

ij = 0,
which is in contrast to the BSIE of the first-order state, where cd|δ(1)

ij = 0. There-
fore, we approximate the orbital representation of δcc

ij including only the dominant
contributions (driver and ppl) in the complete basis set limit of the amplitude equa-
tions as defined by Eq. (11.10):

CD δcc
ij ≈ CD δ

(1)
ij

(I)

⊕
γζ V Ψcc

ij

ϵi + ϵj − ϵγ − ϵζ

(II)

⊕
cζ V Ψcc

ij

ϵi + ϵj − ϵc − ϵζ

(III)

⊕
γd V Ψcc

ij

ϵi + ϵj − ϵγ − ϵd

(IV)

⊕
CD V δcc

ij

ϵi + ϵj − ϵC − ϵD
⊕ · · ·

(11.33)

The direct sum notation is used to emphasize the fact that γ is a subset of C. In
the following we consider only those terms defined by (I)− (IV) because they are of
zeroth-order in δ · V , while the rest is O(δ · V ).

We now turn to the contributions of the terms defined by (I)− (IV) to ϵCij . Inserting
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(I) from Eq. (11.33) into the last line of Eq. (11.32) yields

ϵCij(I) = g
(1)
ij ∆ϵ

(2)
ij . (11.34)

To account for the contributions of (II) − (IV) to ϵCij , we again approximate Ψcc
ij

using the mean-field ansatz defined by Eq. (11.28).

Inserting the resulting approximations into the last line of Eq. (11.32) yields

ϵCij(II − IV) = g
(1)
ij ∆ϵ

(2)
ij gcc

ij . (11.35)

Therefore, our final approximation to Eq. (11.21) is given by

ϵCij ≈ ϵCij(I) + ϵCij(II − IV) = ∆ϵ
(2)
ij g

(1)
ij + g

(1)
ij gcc

ij , (11.36)

which corresponds again to ∆ϵ
(2)
ij scaled by a factor that depends on the correlation

hole depths of Ψcc
ij and Ψ

(1)
ij .

We note that a corresponding BSIE correction in MP3 theory would have to include
ϵCij(I) only. However, in CCSD theory the BSIE of |Ψcc

ij is not well approximated
using δ

(1)
ij . Therefore ϵCij(II − IV) accounts for the change of δ

(1)
ij due to the most

important ppl coupling terms linear in |Ψcc
ij . The coupling strength of these terms

is on the order of gcc
ij and needs to be included to attain high accuracy.

5. The pair-specific PPL basis-set correction We now summarize the final approximation
to the BSIE correction of the ppl energy:

ϵBij + ϵCij ≈ ∆ϵ
(2)
ij gcc

ij + g
(1)
ij + g

(1)
ij gcc

ij . (11.37)

We stress that the contribution of ϵDij defined in Eq. (11.22) has been neglected
because it is not of leading order in δ. We arrive at the following approximate CBS
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limit expression of the ppl energy:

Eps-ppl = Eppl +
ij

∆ϵ
(2)
ij gcc

ij + g
(1)
ij + g

(1)
ij gcc

ij

∆ps-ppl

. (11.38)

At this point, we note again that in the above expression the pair-specific correlation
hole depth scaling factors gcc

ij and g
(1)
ij are computed in a finite basis set, whereas

∆ϵ
(2)
ij refers to the BSIE correction of the pair-specific MP2 correlation energy.

11.6 Finite size effects

In extended systems, an additional problem in practical calculations is the size of the
simulation cell. An extended system is supposed to be macroscopic in size, but this limit
can only be reached in model systems and not in realistic atomistic simulations. Therefore,
studying and characterizing the behaviour of properties such as the energy with respect
to the system size is of paramount importance. Several techniques are used throughout
the literature in order to obtain finite size corrections, from simple extrapolations of the
energies to extrapolations of the electronic transition structure factor [178, 66, 121].
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Part III

Defects in solids
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This chapter is an adaptation of the publication found in [59].
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Chapter 12

Introduction

DFT [104, 85] using approximate exchange and correlation energy density functionals
is arguably the most successful ab initio approach to compute materials properties. Its
application goes beyond ground state properties by providing a reference or starting point
for methods that treat excited-state phenomena explicitly.
In this context, theories such as Time-Dependent Density Functional Theory (TD-DFT)
[136, 153] and the GW approximation [76] are widely-used to tackle excited states in
molecules and solids [161, 63]. Nonetheless, they often suffer from a strong dependence
on the DFT reference calculation. In the case of TD-DFT results depend strongly on the
choice of the approximate exchange and correlation density functional. Similarly, so-called
non-selfconsistent G0W0 quasiparticle energies depend strongly on the Kohn-Sham orbital
energies, whereas fully self-consistent GW calculations are not as often performed and do
not necessarily improve upon the accuracy compared to G0W0 [67]. To compute charge
neutrality preserving optical absorption energies from the electron addition and removal
energies obtained in the GW framework, it is necessary to account for the exciton binding
energy. Excitonic effects are often approximated using the Bethe-Salpeter equation (BSE)
[154]. We note that despite the high level of accuracy and efficiency of GW BSE calculations
[148], many choices and approximations have to be made in practice that are difficult to
justify in a pure ab initio framework. Therefore, it seems worthwhile to explore alternative
methods that are less dependent on DFT approaches.
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CC [37, 38, 35] formulations are widely-used in the field of molecular quantum chemistry
for both the ground state and excited states via the EOM-CC formalism [168].
Ground state CC theories such as CCSD and CCSD(T) [144, 167] have become one of
the most successful methods in molecules in terms of their systematically improvable ac-
curacy and computational efficiency. Likewise, EOM-CC methods are routinely applied
to molecular systems with great success [169, 11, 137, 187, 91]. However, we stress that
the computational cost of CC theories is significantly larger than that of Green’s function
based methods mentioned above. Nonetheless, several studies have focused on making use
of these wavefunction methods also in solids to study ground and excited state properties
[66, 60, 127].
While EOM type methods are well understood and benchmarked in finite systems, this is
less so for periodic systems, where ongoing efforts are made towards applications in solids.
Previous applications of EOM type methods have focused on electronic band structures
using the Ionization Potential EOM-CC (EOM-CC) and Electron Attachment EOM-CC
(EOM-CC) extensions [127, 60, 141, 60, 128] as well as its Electron Excitation EOM-
CC (EOM-CC) extensions [95, 188], all of which are based on Gaussian basis sets. For
local phenomena, such as defect excitation energies, several studies have been performed
employing cluster models of the periodic structures [179, 166]. One of the main challenges
in these calculations is to achieve a good control over the finite basis set and system size
errors, which is often achieved using extrapolation techniques.
In this chapter, we study excited state properties of point defects in solids, computed
on the level of EE-EOM-CC. Understanding impurities in solids is important for both
theoretical and practical reasons. Lattice defects affect bulk properties of the host crystal
and both the understanding of ground and excited-state properties is essential for these
systems [58, 184]. Here, we focus on color centers in the alkaline earth oxide crystals
MgO, CaO and SrO in the rock salt structure. Removing an oxygen atom from these
systems results in so-called F -centers that can be filled by 2 (F 0), 1 (F+) or 0 (F 2+)
electrons. The corresponding one-electron states are stabilized by the Madelung potential
of the crystal and their electron density is in general localized in the cavity formed by
the oxygen vacancy. These defects are typically produced by neutron irradiation [149] or
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additive colorization [46]. Much effort has been made to elucidate the exact mechanism of
the luminescence of F -centers in MgO, CaO and SrO [15, 171]. The ground and excited
state properties of these vacancies are of importance for a wide range of technological
applications including color center lasers. Furthermore, vacancies of oxides are of general
importance for understanding their surface chemistry and related properties.
In this chapter we will concentrate on the diamagnetic F 0-center. The trapped electrons
can be viewed as a pseudo-atom embedded in a solid, where the optical absorption and
emission between ground and low-lying excited states is characterized by the electron
transfer between 1s into 2s or 2p one-electron states. Initial theoretical studies of these
defects were already performed in the 1960s and 1970s using effective Hamiltonians [99, 195,
194]. Modern ab initio studies of the F 0 center in MgO have employed cluster approaches
in combination with quantum chemical wavefunction based methods [166], fully periodic
supercell approaches in combination with the GW -BSE approach [146, 180] or Quantum
Monte Carlo calculations [50]. In this chapter we seek to employ a periodic supercell
approach and a novel implementation of EE-EOM-CCSD theory using a plane wave basis
set. In addition to the F -center in MgO, we will also study F -centers in CaO and SrO.
We note that EE-EOM-CCSD theory is exact for ground and excited states of two electron
systems and is therefore expected to yield very accurate results for the F 0 center in alkaline
earth oxides. We will discuss different techniques to correct for finite basis set and supercell
size errors and demonstrate that EE-EOM-CCSD theory can be used to compute accurate
absorption and emission energies compared to experiment without the need for adjustable
parameters and the ambiguity caused by the choice of the starting point.
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Chapter 13

Benchmark results

Figure 13.1: Geometry of neutral F -center in MgO. Red and orange spheres correspond to
oxygen and magnesium atoms, respectively. The yellow isosurface was computed from the
localized electronic states in the band gap of MgO that originates from the two trapped
electrons. δ measures the displacement along the A1g vibrational mode with the Mg atoms
out of their equilibrium position in the bulk structure and was deliberately chosen larger
for this figure to emphasize the effect of lattice relaxation.

Here, all EE-EOM-CCSD calculations of defective supercells employ a HF reference. The
HF calculations are performed using the Vienna ab initio simulation package (VASP) [109]
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and a plane wave basis set in the framework of the projector augmented wave (PAW)[19]
method. The energy cutoff for the plane wave basis set is 900eV. The defect geometries
have been relaxed on the level of DFT PBE, starting from a defective geometry with
the corresponding equilibrium lattice constant (MgO: 4.257Å, CaO: 4.831Å, SrO: 5.195Å)
keeping the lattice vectors and volume fixed.
In this chapter we study defective 2×2×2, 3×3×3 and 4×4×4 fcc supercells containing 15,
53, and 127 atoms, respectively. The oxygen vacancy results in an outward relaxation of
the alkaline earth atoms away from the cavity created by the oxygen vacancy. This outward
relaxation strongly overlaps with the vibrational mode A1g and is illustrated in Fig.13.1.
While the DFT PBE calculations have been carefully checked for convergence with respect
to the k-point mesh used to sample the first Brillouin zone, all HF and post-HF calculations
employ the Γ-point approximation.
We have implemented UCCSD and EE-EOM-CCSD in the Coupled Cluster For Solids
(CC4S) code that was previously employed for the study of various ground state properties
of periodic systems [66, 86]. The employed Coulomb integrals and related quantities were
calculated in a completely analogue manner. Our UCCSD implementation is based on
the intermediate amplitudes approach of Stanton et al. [170]. On the other hand, our
EE-EOM-CCSD implementation uses intermediates for the similarity transformed Hamil-
tonian e−T̂ ĤeT̂ from Stanton et al.[168] and Shavitt et al.[162]. We use the Cyclops Tensor
Framework (CTF) [164] for the implemented computer code, which enables an automated
parallelization of the underlying tensor contractions.

The similarity transformed Hamiltonian is a non-Hermitian operator and therefore left
and right eigenvectors differ in general. The diagonalization of the similarity transformed
Hamiltonian is done using a generalized Davidson solver [82, 28]. This solver enables the
calculation of EE-EOM-CCSD energies by approximating the left eigenvector space by the
right eigenvector space. For the initial guess of the eigenvectors, we use the one-body HF
excitation energies and corresponding Slater determinants. The UCCSD and EE-EOM-
CCSD calculations have been performed using only a small number of active HF orbitals
around the Fermi energy of the employed supercells. Most occupied orbitals at low energies
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are frozen and the same applies to all unoccupied orbitals above a certain cutoff energy.
The following sections summarize the benchmarks of the implemented EE-EOM-CCSD
code and investigate the convergence behavior of the computed excitation energies with
respect to the number of active orbitals as well as system size.

13.1 Orbital basis convergence of excited states
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Figure 13.2: Occupied and virtual HF energy levels. The red levels correspond to defect
states and the corresponding isosurfaces of the charge densities are depicted.

All presented findings in this section have been obtained for the F -center in MgO. How-
ever, the corresponding findings for CaO and SrO are qualitatively identical unless stated
explicitly.
We first seek to investigate the character of the employed HF orbitals and the convergence
of the computed excitation energies with respect to the canonical orbital basis set size.
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The HF orbitals have been computed for a defective 2×2×2 MgO supercell containing 15
atoms. Figure 13.2 depicts the energy levels around the Fermi energy and isosurfaces of
charge densities computed for the defect states. The occupied state with the highest one-
electron energy corresponds to the occupied defect state and its orbital energy is located in
the gap of the bulk crystal. Its charge density is well localized in the cavity created by the
oxygen vacancy. In the thermodynamic limit (big supercells or dense k-meshes), the direct
and fundamental gap of pristine MgO is 15.5 eV on the level of HF theory [68], which is
significantly larger than the experimental gap of about 7.8 eV. The neglect of correlation
effects in HF theory overestimates band gaps for a wide range of simple semiconductors
and insulators. The orbital ordering between defect and bulk states depicted in Fig.13.2
is qualitatively identical to the one observed for CaO and SrO. However, we stress that
in contrast to MgO, CaO and SrO exhibit an indirect band gap with a conduction band
minimum at the Brillouin zone boundary.
We note that the supercells investigated in this work contain up to 127 atoms, corre-
sponding to more than 1000 valence electrons. The computational cost of EE-EOM-CCSD
theory scales as O(N6), where N is some measure of the system size. In particular, the
cost for some of the most important tensor algebraic operations scales as O(N4

vN
2
o ) and

O(N2
vN

4
o ), where No and Nv refer to the number of occupied and virtual orbitals, re-

spectively. Additionally, the memory footprint of our implementation scales as O(N4).
Due to the steep scaling of the computational cost, an explicit treatment of all electrons
on the level of EE-EOM-CCSD becomes intractable and renders it necessary to freeze a
large fraction of the occupied and virtual HF states. In the following we will investigate
the convergence of the computed excitation energies with respect to the number of active
virtual and occupied states.
We first investigate the convergence of EE-EOM-CCSD excitation energies with respect
to the virtual orbital basis set. Among the 61 occupied spatial HF orbitals we keep only
the four orbitals active with the highest energy. Furthermore, we only investigate many-
electron excited states with rai excitation amplitudes that correspond to a significant charge
transfer from the occupied s-like defect state to the virtual p-like defect states as illustrated
in Fig.13.2. Fig.13.3 depicts the convergence of the EE-EOM-CCSD excitation energies
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Figure 13.3: Basis set extrapolation of lowest EE-EOM-CCSD excitation energies corre-
sponding to excitations of the F -center defect in MgO. All computed energies have been
fitted against 1/(Nv + No), where Nv and No is the number of virtual and occupied or-
bitals used. The lower and higher excitation energies correspond to a singlet-triplet and a
singlet-singlet transition, respectively. This extrapolation has been obtained for a supercell
composed of eight Mg and seven O atoms.
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that we assign to local excitations of the F -center. In passing we note that EE-EOM-
CCSD theory predicts a number of excited states that describe electronic excitations with
charge transfer from the defect to bulk states, which will not be explored in this work. The
electronic ground state of the neutral F -centers studied in this work is a singlet state. The
lower and higher excitation energies shown in Fig.13.3 correspond to a singlet-triplet and
singlet-singlet transition energy, respectively. We observe for both excitation energies a
1/(Nv +No) convergence to the complete basis set limit. This behavior is not unexpected
and agrees with the convergence of ground state energies. Furthermore, we note that a
similar convergence was observed for EE-EOM-CCSD exciton energies of bulk materials
[188] and for excitation energies of the cytosine molecule [108]. We note that it might seem
advantageous to replace HF virtual orbitals with a different type of orbitals; for example,
natural orbitals, to accelerate the convergence. However, we have found that these orbitals
will mostly accelerate the convergence of the ground state energy, introducing large basis
set incompleteness errors in the convergence of excitation energies. In this work we will
employ a 1/(Nv + No) extrapolation to approximate excitation energies in the complete
basis set limit of all systems.
Fig.13.4 shows the employed basis set extrapolation for identical transitions in a larger
4×4×4 supercell. We note that the slope of the excitation energy extrapolation is signifi-
cantly steeper compared to the 2×2×2 supercell shown in Fig.13.3. This can be attributed
to the smaller number of virtual orbitals relative to the complete basis set size for the given
plane wave cutoff energy. Therefore we ignore the first 4 points in the extrapolation for all
systems in the 4×4×4 supercell. In the case of CaO and SrO, the basis set convergence of
the excitation energies is qualitatively identical, and we employ the same orbital basis set
sizes in all extrapolations.
We now investigate the convergence of the EE-EOM-CCSD excitation energies with respect
to the number of active occupied orbitals, keeping a virtual orbital basis set consisting of
10 unoccupied orbitals and employing a 2×2×2 supercell only. Figure 13.5 depicts the
convergence of the lowest defect excitation energy (singlet-triplet transition) with respect
to the size of the active occupied orbital space. The horizontal axis at the bottom shows
the number of active occupied orbitals. The horizontal axis at the top of Fig.13.5 shows
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Figure 13.4: Basis set extrapolation of lowest EE-EOM-CCSD excitation energies corre-
sponding to excitations of the F -center defect in MgO using a 4×4×4 supercell. The fit
has been performed ignoring the first four data points. States, energies and fit are to be
interpreted as in Fig.13.3.

81



Figure 13.5: Convergence of the EE-EOM-CCSD excitation energy for the singlet-triplet
transition in the F -center of MgO with respect to the number of inactive/frozen occupied
orbitals in the EE-EOM-CCSD calculation. For the employed supercell the HF, calculations
have been performed using 61 occupied and 10 virtual orbitals. The top horizontal axis
shows the lowest HF energy of the included active occupied orbital relative to the occupied
defect state. All orbitals with a lower energy have not been included in the respective EE-
EOM-CCSD calculation.
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the corresponding lowest HF orbital energy. Our findings demonstrate that the excita-
tion energy increases with respect to the number of active occupied orbitals and is well
converged to within a few meV using more than about 25 occupied orbitals. However,
a comparison between the converged result and a minimal active occupied orbital space,
consisting of the occupied defect orbital only, reveals that such a truncation introduces
excitation energy errors of about 120 meV. We note that one-electron states with relative
energies below −50 eV exhibit Mg 2p and 2s character and are therefore expected to be
negligible for the computed excitation energies. From the above findings we conclude that
the excitations studied in the present work exhibit a significantly larger error from the
virtual orbital basis truncation than from the occupied orbital basis truncation. Due to
the computational cost of EE-EOM-CCSD calculations we will therefore extrapolate the
excitation energy to the complete basis set limit while using only 4 occupied orbitals.

13.2 System size convergence of excitation energies

Table 13.1: Convergence of the F -center’s excitation energies in MgO, CaO and SrO
for increasing supercell size. TDL corresponds to the extrapolated thermodynamic limit
estimate of the respective excitation energies assuming a 1/N convergence and employing
the energies of the 2×2×2 and 4×4×4 supercells. Here N stands for a measure of the
system size. In this case, the number of electrons is used. All energies in eV units.

System Supercell 3T 1T

MgO 2×2×2 7.009 8.522
3×3×3 4.866 6.571
4×4×4 4.038 5.646
TDL 3.660 5.281

CaO 2×2×2 3.224 3.338
3×3×3 2.951 4.025
4×4×4 2.081 3.157
TDL 1.936 3.134

SrO 2×2×2 2.324 2.413
3×3×3 2.404 3.155
4×4×4 1.332 2.351
TDL 1.206 2.343
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Having discussed basis set convergence of the computed EE-EOM-CCSD excitation en-
ergies, we now turn to the discussion of their convergence with respect to supercell size.
Excitation energies are intensive quantities. However, their convergence with respect to
system size can sometimes be extraordinarily slow. We have computed the F -center’s
singlet-triplet and singlet-singlet transition energies for three different supercell sizes con-
taining 15, 53 and 127 atoms. Table 13.1 lists the computed excitation energies for all
systems using different supercell sizes. The excitation energies have been obtained using 4
active occupied orbitals only and extrapolating to the complete basis set limit as discussed
in the previous sections.
We note that the excitation energies converge monotonously for MgO with increasing
supercell size, but show some non-monotonic behaviour for the other two systems studied.
This can be explained by the fact that CaO and SrO exhibit a conduction band minimum
at the Brillouin zone boundary. The electronic states at the conduction band minimum
are therefore only accounted for when using supercells that are constructed from even-
numbered multiples of the fcc unit cell. Neglecting these important states around the
Fermi energy leads to a significant overestimation of the excitation energies for the excited
singlet states as can be seen by comparing the results obtained for the 3×3×3 supercell to
findings for the 2×2×2 and 4×4×4 supercells.
Here, we seek to remove the remaining finite size errors of the excitation energies by
performing an extrapolation to the infinite system size limit assuming a 1/N convergence,
where N is the total number of electrons in each supercell. This approach is in agreement
with procedures that are applied to ground state energy calculations [66, 121]. For the
sake of consistency we employ only 2×2×2 and 4×4×4 supercells for the extrapolation for
all three studied systems.
Our findings show that the excitation energies decrease significantly with increasing su-
percell size in the case of MgO. Changing the supercell size from a 2×2×2 to a 4×4×4
cell results in a lowering of the excitation energies by almost 3 eV. This relatively slow
convergence is expected to originate from strongly delocalized excited defect states of the
neutral F -center in MgO. We note in passing that the excitation energies of the F -centers
in CaO and SrO exhibit a significantly faster convergence with respect to system size. We
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attribute this behavior to a more localized character of the excited F -center in CaO and
SrO compared to MgO that might be explained by the significantly smaller size of the
cavity formed by the oxygen vacancy in MgO compared to CaO or SrO.
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Chapter 14

Results and discussions

In this chapter we describe the photochemical process of absorption and emission in the
F -center of alkaline earth oxides. We first discuss the energies of the electronically excited
defect states as a function of the atomic displacements along the A1g vibrational mode in
MgO to introduce the emission model. Next, we present our results for the absorption and
emission of the F -center in MgO, where problems in the interpretation of the experimen-
tally observed luminescence band are discussed additionally. We end this chapter with a
discussion of the results for CaO and SrO.

14.1 Absorption and emission process in F -centers

Our analysis of the emission process is based on a Franck-Condon [55, 40] description of
the defect. This is a common approach to treat emission processes in solids and molecules
[194, 123, 2].
Figure 14.1 shows the configuration coordinate diagram along an approximate A1g vibra-
tional mode for the most important EE-EOM-CCSD excited states and the UCCSD ground
state singlet 1ACC. We approximate the atomic displacement along the A1g mode by in-
creasing the outward displacement of the alkaline earth atoms as depicted in Fig. 13.1, and
keeping all other atomic positions of the employed 4×4×4 supercell fixed. The configura-
tion curve has been computed only for MgO but serves as a qualitatively identical model
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Figure 14.1: Configuration curve along the phonon A1g mode for the excited states of the
F -center in MgO own in Fig. 13.1). 1ACC curve represents the singlet UCCSD ground
state e upper curves depict the EE-EOM-CCSD excited states. lines represent EE-EOM-
CCSD states that do not play a role for scussion, but are included for completeness. The
energies presented are energy differences between the excited energies and the UCCSD
energy. calculation was done for a 4×4×4 containing 127 atoms, 4 active electrons and 64
virtual orbitals.
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for CaO and SrO. Within this picture, the absorption is given by the optically allowed
transition of 1ACC → 1T at the ground state geometry in Fig. 14.1.
Taking into account the Franck-Condon approximation, once the F -center is in the excited
singlet state, a relaxation of the atoms along the 1A1g vibrational mode sets off which could
induce a crossing in the configuration curve with the excited triplet state 3T . Luminescence
is then achieved through the transition 3T → 1ACC. From the above discussion and the fact
that the minimum of the 3T state is close to the minimum of the ground state, we conclude
that the absorption and emission energies can therefore be well approximated using the
energy differences computed in the equilibrium structure of the electronic ground state for
the F -center.

14.2 MgO

The F -center in MgO was first discovered by Wertz et al. [190] in its positively charged
variant (F+-center) by electron spin resonance measurements, showing a strong localization
of the electrons in oxygen vacancies. A host of experimental results followed and with
it a better understanding of the absorption and luminescence mechanisms [36, 80, 184].
Experimental and theoretical studies have shown that the Mg atoms relax in an outward
direction from the vacancy [182, 70].
By using a semi-empirical model, Kemp and Neeley [99] predicted an optical absorption
energy of 4.73 eV in good agreement with experimental findings of 4.95 eV [36, 79]. The
luminescence band of the F+ center was measured at around 3.15 eV [30] while for the F 0

center a luminescence of 2.4 eV was predicted from temperature dependent measurements
of the absorption spectrum in conjunction with a simplified Huang-Rhys model approach
[79].
Using EE-EOM-CCSD in combination with the outlined extrapolation techniques yields
an absorption and emission energy of 5.2 eV and 3.66 eV, respectively. Previous many-
body ab initio calculations using GW -BSE [146], quantum Monte Carlo [50] methods
and CASPT2 [166] agree with our results for both absorption and emission to within
about 0.4 eV as summarized in Table 14.1. The calculated absorption energies are in
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Table 14.1: Obtained results from this work for the absorption and emission energies of
the F -centers in MgO, CaO and SrO. The EE-EOM-CCSD results are extrapolated to the
complete basis set and infinite supercell size limit in order to allow for a direct comparison
between theory and experiment. The GW gaps do not correspond to optical excitation
energies but are included for comparison. All energies are in eV units.

System Method Absorption Emission
MgO EE-EOM-CCSD 5.28 3.66

Exp. [193] 5.0 2.4
QMC. [50] 5.0(1) 3.8(1)
CASPT2 [166] 5.44 4.09
G0W0@LDA0-BSE. [146] 4.95 3.4
G0W0@LDA0 [146] 5.4
G0W0@PBE [180] 4.48
GW0@PBE [180] 4.71
GW@PBE [180] 5.20

CaO EE-EOM-CCSD 3.13 1.93
Exp. [17, 16] 3.02 1.93
Exp. [193] 3.1 2.05 – 2.01
TDDFT@B3LYP [29] 3.52 2.1
G0W0@PBE [180] 3.20
GW0@PBE [180] 3.53
GW@PBE [180] 3.87

SrO EE-EOM-CCSD 2.34 1.2
Exp.[193] 2.4
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good agreement with experimental measurements of 5.0 eV. We note, however, that the
GW results (excluding the exciton binding energy) obtained for different levels of self-
consistency and DFT references exhibit a significant variance ranging from 4.48 eV to
5.4 eV. Consequently, GW -BSE absorption energies are strongly dependent on the DFT
reference. Furthermore, we stress that a direct comparison of the computed emission
energies between the quantum chemical approaches (EE-EOM-CCSD and CASPT2) and
QMC or GW is complicated by the fact that the latter approaches do not consider the
emission process of the de-excitation from the excited triplet states. Instead, the emission
energies computed using QMC and GW -BSE correspond to the decay from the excited
singlet state in its relaxed geometry along the A1g mode. Nonetheless, from the results
shown in Fig. 14.1, we conclude that these different emission energies are expected to agree
to within the errors made by other approximations.
The measured experimental emission at 2.4 eV [46] and its interpretation is the topic of
an ongoing debate. Initially, this peak has been attributed to the F -center and common
interpretations have ranged from a singlet-singlet transition to a 3T1u → 1A1g transition
[195, 193]. However, it was first suggested by Edel et al. [46, 47, 45] that this band results
from a recombination process similar to recombination processes in semiconductors. Edel
and coworkers argue that the three-electron vacancy F− recombines with the F+-center.
Rinke et al. [146] have suggested that the 2.4 eV emission is produced when electrons in
the defect orbitals recombine with the valence holes that can be produced by intense UV
light irradiation. The creation of these holes is possibly also related to the concentration
of H− impurities that are commonly present in MgO samples, especially when these have
been thermochemically reduced [64, 31, 93, 149, 172].
The presence of H− impurities in MgO could account for the long-lived luminescence
through a hopping mechanism of the electrons from H− to H− impurities until they en-
counter an F -center. However, it is not immediately clear from the ab initio calculations
thus far if these states are orbital and spin triplets or otherwise as has been proposed in
experimental evidence and symmetry arguments [193]. It has been noticed, however, that
the strength of the 2.4 eV band is temperature dependent as well as F -center and H−

concentration dependent [172].
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Typically, neutron irradiation produces mainly F+-centers while electron irradiation or
additive colorization induces mainly F -centers [46]. Rinke et al. argue that given the fact
that the position of the absorption band for the F and F+ centers are almost identical,
it is to be expected that this is also the case for the emission. Even though similar
luminescence peaks for these centers have been predicted in Ref. [146], no substructure in
the emission band can be observed experimentally (unlike in the absorption band). Here,
we propose a different interpretation of this observation. We suggest that the F -center
does not in fact luminesce. Indeed, modern theoretical computations seem to agree on
the fact that the 2.4 eV band does not belong to the F -center luminescence process. We
stress that all theoretical results for the emission energy summarized in Table 14.1 range
from 3.4 eV to 4.09 eV. Moreover, there is a strong photoconversion from F into F+-
centers [94], suggesting that before the F -center has a chance to luminesce, a conversion
into F+ happens followed by an absorption of the F+-center since the absorption band
for it is similar to the F -band. Our calculations show that the excitation energy for the
singlet state in the F -center of MgO converges very slowly with respect to the system size,
indicating that the optically excited state is significantly more delocalized than the ground
state. This could make a photoconversion into F+ significantly more likely and therefore
corroborates our interpretation.

14.3 CaO and SrO

Historically, one of the best studied F -centers in the alkaline earth oxides is the one in CaO
[195]. The identification of the F -center’s charged state is made easier by the fact that,
unlike for MgO, the absorption band is different for the F and F+ centers. Furthermore,
we note that the lattice constant of CaO is significantly larger than for MgO, which leads
to a reduced confinement of the trapped charges and shifts the absorption band to lower
energies. Early theoretical and experimental investigations have interpreted the 2.0 eV
emission band to be a transition from a spin and orbital triplet 3T1u into the ground
state singlet 1A1g [48, 17, 195]. However, a 1T1u → 1A1g transition is also possible at a
slightly higher energy. In general, the CaO luminescence mechanism has been found to
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be a combination of a singlet-singlet and a triplet-singlet transition which are activated at
different temperatures [17, 16]. Since the excited triplet state lies slightly below in energy
from the excited singlet state, there is a population conversion at temperatures of around
600 K. Namely, at low temperatures up to 300 K one measures a transition at around 1.98
eV, whereas as the temperature increases the excited singlet gets populated and a much
more rapid luminescence gets gradually triggered at around 2 eV [17, 16].
Using EE-EOM-CCSD in combination with the outlined extrapolation techniques yields an
absorption and emission energy of 3.13 eV and 1.93 eV for the F -center in CaO, respectively.
To the best of our knowledge only one TD-DFT result can be found in literature for this
system, predicting an absorption and emission energy of 3.52 eV and 2.1 eV, respectively.
Table 14.1 also summarizes two different experimental estimates, showing that the EE-
EOM-CCSD and TDDFT@B3LYP calculations agree with experiment to within 0.1 eV and
0.5 eV, respectively. We note again that GW results for the absorption energy obtained
for different levels of self-consistency shows a significant variance ranging from 3.2 eV to
3.87 eV and can not be compared directly to experiment due to the neglect of the exciton
binding energy.
We note that our quantum chemical results have been obtained using periodic boundary
conditions, whereas previous calculations have been carried out using a cluster model
approach [166, 29].
Finally, we turn to the discussion of the F -center in SrO. This system exhibits an even larger
lattice constant and the absorption and emission energies are shifted to even lower energies
compared to MgO and CaO. However, the F -center in SrO is qualitatively very similar
to the CaO case, and the agreement of EE-EOM-CCSD in both cases with experimental
values is excellent. To the best of our knowledge, there exist only experimental estimates
of the absorption energy with about 2.4 eV, whereas no measurements for the emission
band are known to the authors. We report the results for the singlet-triplet absorption
1ACC → 3T and triplet-singlet emission 3T → 1T in the infinite supercell size limit in
Table 14.1. We hope that this prediction will be verified experimentally in the future.
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Part IV

Basis set corrections for coupled
cluster
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The contents of this chapter are slightly adapted from the publication Focal-point ap-
proach with pair-specific cusp correction for coupled-cluster theory [87].

94



Chapter 15

Application to the two-electron
gas

In order to assess the presented approximations, we first study a particularly simple model
system – the three-dimensional UEG. The details of this model are described for instance
in [163]. For the here performed analysis it is enough to study only two electrons in
a homogeneous positive background. The virtual HF states are plane-waves having the
following form

ϕa(r) =
1√
Ω
eika·r, (15.1)

with HF eigenvalues being

ϵa =
1

2
k2a −

1

Ω

4π

k2a
. (15.2)

Using a restricted HF reference, the ground state is thus a singlet with ki = 0 and therefore
ϕi is simply a constant function. Notice that the eigenenergies are ordered with respect
to the length of the corresponding momentum vector. The unit cell volume is given by Ω.
This simplifies the four-index integrals to

ii V ab̄ =
1

Ω

4π

k2a
δka+kb,0. (15.3)
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Table 15.1: BSIEs for the two-electron UEG with rs = 3.5 a.u.. Reference energies are
obtained from a calculation with 30046 virtuals. Referred to exact (ex.) is the evaluation
of Eq.(15.6) for the converged amplitudes using 30046 virtuals and using Nv orbitals in
the finite basis. Estimates (est.) are evaluated using Eqs.(11.31) and (11.36). The BSIE
of the rest term is given in the last column and calculated between results obtained with
Nv and 30046 virtual orbitals. All energies are given in mH.

Nv ϵB ϵC ϵD ∆Erest

ex. est. ex. est. ex.
26 0.582 0.560 0.255 0.262 0.178 -0.065
56 0.343 0.332 0.157 0.162 0.076 -0.049
122 0.171 0.166 0.079 0.083 0.027 -0.029
250 0.087 0.084 0.047 0.043 0.010 -0.015
514 0.043 0.043 0.021 0.022 0.004 -0.008

Consequently, the MP2 energy expression contains only a single sum

Emp2 =
a

ii|V |aā
ϵi + ϵi − ϵa − ϵā

aā|V |ii . (15.4)

We use the notation ā for the virtual orbital with momentum vector −ka. The ppl energy
expression reads

Eppl =
a

ii|V |aā
ϵi + ϵi − ϵa − ϵā c

aā|V |cc̄ T cc̄
ii . (15.5)

In a finite basis set calculation the number of virtual basis functions Nv has to be truncated.
For the UEG model system, this is typically done by introducing a cutoff wave vector kf

and considering only virtual states with |ka| < kf. Following the ideas of the theoretical
introduction, we introduce a second cutoff kF specifying the augmented virtual states α,
with kf ≤ |kα| < kF. Hence, we can write the following four contributions to the total ppl
energy
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ϵAii =
a

ii|V |aā
ϵi + ϵi − ϵa − ϵā c

aā|V |cc̄ tcc̄ii

ϵBii =
α

ii|V |αᾱ
ϵi + ϵi − ϵα − ϵᾱ c

αᾱ|V |cc̄ tcc̄ii

ϵCii =
a

ii|V |aā
ϵi + ϵi − ϵa − ϵā γ

aā|V |γγ̄ tγγ̄ii

ϵDii =
α

ii|V |αᾱ
ϵi + ϵi − ϵα − ϵᾱ γ

αᾱ|V |γγ̄ tγγ̄ii .

(15.6)

We stress that one important feature of the UEG model consists in the fact, that enlarging
the basis set does not alter the occupied and virtual orbitals. We now examine the proposed
approximations numerically. We choose the union of all virtual states to be a very large
number of 30046 states, which can be considered a good approximation to the CBS limit
for the present system. In the following we gradually increase the number of virtual states
in the finite basis and evaluate the approximate expressions for ϵBii and ϵCii in Eqs. (11.31)
and (11.36) and compare them to the exact result in Eq. (15.6). The results for increasing
numbers of virtual states are given in Table (15.1). The contribution of ϵBii is roughly twice
as large as ϵCii.
We find that both energy contributions can be approximated with remarkable accuracy
using the presented expressions. Although the approximations made for ϵBii and ϵCii differ,
we can not observe any significant differences in the accuracy of both terms. The term ϵDii,
for which no approximation was introduced, converges considerably faster, when compared
to the other two contributions ϵBii and ϵCii. Hence, the BSIE of the ppl contribution can be
reduced by a large portion successfully. It appears that the remaining deviation is roughly
in the same order of magnitude as the rest contribution. Therefore, it is a reasonable
approximation to neglect both contributions from ϵDii and ∆Erest.
For the above analysis, we have employed the fully converged CCSD amplitudes expanded
in a basis of 30046 virtual states.
The amplitudes have been partitioned according to the cutoff kf into sets corresponding
to tαᾱii and taāii , which have been used to compute ϵBii and ϵCii.
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However, in practice and for the following benchmark systems, we employ only CCSD
amplitudes that have been calculated using a finite virtual orbital basis set. However,
we find only small differences between the results when using (i) virtual and augmented
virtuals and (ii) only virtuals in finite basis amplitudes.
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Chapter 16

Computational details

In the following sections we present results obtained for a set of benchmark systems includ-
ing 107 molecules and atoms. We employ aug-cc-pVXZ basis sets for first-row elements
and aug-cc-pV(X+d)Z basis sets for second-row elements [44, 100]. These basis sets will
be denoted as AVXZ throughout this work. We obtained the reference energies using the
quantum chemistry package PSI4 [135]. We have modified the code such that the Eppl con-
tribution is extracted from the calculation as described in [88]. For the CBS limit estimates
we use AV5Z and AV6Z energies and the extrapolation formula EX = ECBS + a/X3, with
the basis set cardinal number X. This formula is used to get CBS estimates of all three
individual terms: Emp2, Eppl, and Erest. We use unrestricted Hartree–Fock orbital func-
tions and corresponding CCSD implementations for all open-shell systems. All correlation
energy calculations in this work used the frozen core approximation.
In addition, (F12*) calculations are performed using TURBOMOLE [181, 9, 8, 75] and
the AVDZ, AVTZ, and AVQZ basis sets. We employ default settings, however, we use
the RI basis aug-cc-pV5Z developed by Hättig [74] in all calculations. We note that these
large RI basis sets are employed for all types of auxiliary functions in the TURBOMOLE
implementation, i.e. $cbas, $jkbas, and $cabs. All results in the main text employ
γ = 1.0 in the parametrization of the correlation factor. Further results using a different
γ parameter can be found in the supplement information.
The derived approximate BSIE corrections to the ppl term were computed using our
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own coupled-cluster code cc4s, LIBINT2 [185] and CTF [164]. In these calculations, the
Hartree–Fock ground state wave function was obtained with the NWChem package [186]
and interfaced to cc4s as described in [59]. We stress that the employed basis set correction
defined by Eq. (11.38) depends on the pair specific MP2 BSIE correction ∆ϵ

(2)
ij and the

correlation hole depth scaling factors gccij /g
(1)
ij .

These terms need to be computed using a consistent set of occupied orbitals. In practice
this is complicated for states that belong to a degenerate set, which allows for arbitrary
unitary rotations among the degenerate subspace. This is particularly problematic for
the way the estimate for ∆ϵ

(2)
ij is obtained in this work, as it involves the results from

separate MP2 calculations with different basis sets. In this work, we avoid arbitrary unitary
rotations among degenerate sets of orbitals by introducing point charges far away from the
molecules and atoms that break corresponding symmetries, lifting all possibly problematic
degeneracies. These point charges are sufficiently far away to ensure that all computed
correlation energies change by a numerically negligible small amount.

 0  20  40  60  80  100
Nv/No

AVDZ
AVTZ
AVQZ
AV5Z

Figure 16.1: Distribution of the number of virtual orbitals per occupied for all 107 studied
systems when employing an atom-centered AVXZ basis set. Gaussian function was used
to smear the data.
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For the newly introduced basis set correction scheme we construct frozen natural orbitals
(FNOs) on the level of second-order perturbation theory [165, 101, 174]. We truncate the
virtual space used for the CCSD calculations by choosing only Nv FNOs with the largest
occupation number, where Nv = Xno × max (No,α, No,β) with Xno ∈ [12, 16, 20, 24, 28, 32].
No,α and No,β refer to the number of occupied spin-up and spin-down orbitals, respectively.
We stress that we use large basis sets (AVQZ and AV5Z) for the construction of FNOs.
Therefore, the number of virtual orbitals, Nv, is defined differently than for conventional
quantum chemical calculations. In conventional calculations with atom-centered basis sets,
the total number of orbitals is independent of the number of occupied orbitals but depends
only on the atomic species for a chosen basis set. Yet, we seek to compare the BSIEs of
correlation energies calculated using both approaches. To provide an estimate for which
cardinal number in the AVXZ basis set family corresponds on average to which number of
virtual orbitals per occupied orbital, Fig. 16.1 depicts Nv/No for all studied atomic and
molecular systems employing conventional AVXZ (X=D,T,Q,5) basis sets. We find that
AVDZ and AVTZ roughly correspond to Xno = 12 and Xno = 20, respectively. Later, it
will be numerically verified that our choice of fixed number of virtuals per occupied leads
to a well-balanced energy description for different reactants.
We have calculated the correlation energies of in total 107 molecules and atoms. Thereupon
we evaluated 26 closed-shell reaction energies (REc), 39 open-shell reaction energies (REo),
44 atomization energies (AE), 16 electron affinities (EA), and 22 ionization potentials (IP).
This benchmark set is a subset of the one studied by Knizia et al. [102]. We had to
exclude a number of molecules from their benchmark set as some of the molecules have
been too large to be treated with our workflow. For some other molecules, we were not
able to converge to a common HF ground state with neither of the three packages NWChem,
TURBOMOLE, and PSI4. These molecules have also been excluded from our benchmark. A
detailed list of the calculated molecules and corresponding reactions can be found in the
supplementary information of [87].
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Chapter 17

Results

This chapter presents results for molecular systems and is organized as follows. In section
17.1 we assess the convergence of the diagrammatically decomposed CCSD correlation en-
ergy contributions, confirming that the BSIEs in the total energy are dominated by the
MP2 and ppl terms. In section 17.2 we show that this behavior persists for most quan-
tities computed from the total energies including reaction energies, atomization energies,
ionization potentials and electron attachment energies.
In addition, we explore the accuracy of the derived approximate correction to the BSIE of
the ppl term for all investigated quantities. In section 17.3 we assess the accuracy of the
corrected total CCSD energies and related quantities using two practical settings for the
introduced focal-point approach and the respective BSIE corrections to the ppl term. These
settings correspond to natural orbital basis set sizes that are similar to AVDZ and AVTZ
basis sets. The obtained results are compared to conventional CCSD and CCSD(F12*)
approaches. Section 17.4 discusses our findings for the (T) and (T*) correlation energy
contributions using FNOs.

17.1 Total energies

We begin the analysis of the molecular systems by presenting results for the basis set errors
of the diagrammatically decomposed correlation energy contributions for 107 molecules
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-40 -20  0  20  40  60
BSIE (kJ/mol)

ΔE ppl

ΔE ps-ppl

ΔE mp2

ΔE rest

Figure 17.1: Distribution of the basis set incompleteness error (BSIE) of various investi-
gated energy channels (MP2, ppl and rest) including the corrected ppl energy (∆Eps-ppl)
for 107 studied systems. The energies were calculated using 16 frozen natural orbitals per
occupied orbital and are referenced to [56] values. The same Gaussian function was used
to smear the data points.
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and atoms. Fig. 17.1 depicts the BSIEs of the ppl (∆Eppl), MP2 (∆Emp2) and rest
(∆Erest) contributions. Furthermore, the BSIEs of the ppl energies corrected according
to Eq. (11.38) are also depicted (∆Eps-ppl). The BSIEs are estimated using reference
values obtained from a [56] extrapolation. The correlation energies are evaluated using a
Hartree–Fock reference wave function and 16 FNOs per occupied orbital to approximate
the virtual orbital manifold. This basis set size is on average between AVDZ and AVTZ,
as can be seen in Fig. 16.1. For the construction of the FNOs, the one-particle reduced
density matrix at the level of MP2 was calculated in an AV5Z basis set. Our findings show
that MP2 energies calculated using 16 FNOs per occupied orbital exhibit by far the largest
BSIEs when compared to the other contributions. In contrast to MP2, Erest is significantly
better converged. This analysis reveals that Erest can already be well approximated using
a smaller number of natural orbitals than required for Eppl and Emp2. However, adding the
basis set correction to Eppl as defined in Eq. (11.38), significantly reduces the remaining
BSIE such that ∆Eps-ppl becomes comparable to ∆Erest for all studied systems. This
demonstrates impressively that the approximation derived in the theoretical introduction
can transfer its accuracy from the uniform electron gas model system to real atoms and
molecules.

17.2 Energy differences

More decisive than well converged total energies is the question of how the proposed correc-
tion scheme works for energy differences. Therefore, we analyse the BSIEs for the different
channels (Eppl, Emp2, and Erest) for REc, REo, and AEs. The results are summarized in
Table 17.1 for increasing numbers of FNOs as well as for the basis sets AVDZ-AV6Z. The
MP2 contribution shows the largest BSIE followed by the ppl contribution. This is in
accordance with the findings for the total energies, discussed in the previous section. We
stress that only in the case of REc, the BSIE of Erest and Eppl is of comparable magnitude.
Furthermore, we note that the computed errors using FNOs for some systems become
larger again or do not reduce significantly for Xno > 24. We attribute this behavior to not
sufficiently well converged FNOs. When approaching Xno > 24, one would require even
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bigger basis sets than the employed AV5Z for the construction of the FNOs. Generally, it
is not expected that the errors are significantly smaller than when using all possible virtual
orbitals in the AV5Z basis set.
Especially for the large basis sets, the BSIE of the rest contribution is remarkably small;
the rms deviation for AV5Z is only around 0.3 kJ/mol and lower. A similar high accuracy
can be attained when using only a comparably small number of 20 FNOs per occupied
orbital, which achieves rms deviations of around 0.5 kJ/mol for the reaction energies and
1 kJ/mol for atomization energies.
For REo and AEs the ppl contribution converges significantly slower with respect to the
basis set size compared to Erest. Furthermore, the BSIE cannot be diminished considerably
with a finite number of FNOs. This behavior changes when taking the proposed correction
into account. Compared to the uncorrected ppl contribution, the BSIE of the corrected
ppl contribution is reduced by a factor of four and more, when using only 20 FNOs per
occupied or less. For REc the correction has no significant effect.
In summary, rms deviations of the rest contributions (∆Erest) and corrected ppl (∆Eps-ppl)
contributions are on the scale of 1 kJ/mol when using 20 FNOs per occupied orbital.
Reaching a similar accuracy by employing conventional basis set calculations would require
a [34] extrapolation.
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17.3 Benchmarking a practical focal-point approach

Based on the findings in the previous sections we now define and assess a practical focal-
point approach to compute total CCSD energies. For an even-tempered composition we
combine extrapolated MP2 energies with CCSD calculations employing FNOs. We intro-
duce the following two compositions:

EFPa =Emp2([34]) + Erest(12) + Eppl(12)

=Eccsd(12)− Emp2(12) + Emp2([34])
(17.1)

and

EFPb =Emp2([45]) + Erest(20) + Eppl(20)

=Eccsd(20)− Emp2(20) + Emp2([45]).
(17.2)

Emp2(Xno), Eccsd(Xno), Erest(Xno) and Eppl(Xno) refer to the corresponding correlation en-
ergy contributions calculated employing Xno FNOs per occupied orbital. Emp2([34]) and
Emp2([45]) refer to MP2 correlation energies obtained from a [34] and [45] extrapolation,
respectively. For the first ansatz (EFPa) we construct the FNOs using an AVQZ calcula-
tion, whereas for the second ansatz (EFPb) the AV5Z basis set is used. In this section we
will explore benchmark results obtained using both approaches with and without the in-
troduced ∆ps-pplcorrection that depends on the respective pair-specific extrapolated MP2
energies and correlation hole depths. The corresponding BSIEs are summarized in Table
17.2.
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The uncorrected focal-point approaches EFPa and EFPb yield only satisfying BSIEs for the
closed-shell reaction energies. Here, FPa achieves the quality of the [34] result, although
the CCSD calculation is performed with a significantly smaller virtual space of only 12
FNOs per occupied orbital. For the open-shell reactions and other properties, the focal-
point method performs significantly worse with rms deviations between 3-12 kJ/mol and
a maximum error of around 25 kJ/mol.
The focal-point approaches including the ∆ps-ppl correction yield significantly more con-
sistent BSIEs for all studied energy differences. The rms deviations are 1.5-3 kJ/mol and
around 1 kJ/mol for FPa and FPb, respectively. For the FPb+∆ps-ppl approach the
maximum deviation is below 4 kJ/mol for all considered reactions.
We note that for the closed-shell reactions the corrected focal-point results show larger rms
deviations and larger maximum errors than the uncorrected variants. We attribute this
to fortuitous error cancellation between the individual energy contributions to the CCSD
correlation energy. This is only visible when the ∆ps-ppl-correction is insignificant as it is
the case for the closed-shell reaction energies (see Sec. 17.2). Correcting for the BSIE in
the ppl term, reduces this error compensation, causing slightly larger BSIEs for closed-shell
reaction energies. However, the results for REc obtained including the ∆ps-ppl correction
are of comparable size to open-shell reactions and other properties.
The extrapolation using the AVDZ and AVTZ basis sets shows large maximum errors of
up to 30 kJ/mol and the rms deviation ranges from 3 to 10 kJ/mol. The [34] extrapolation
yields satisfying results with rms deviations of around 2 kJ/mol, for IPs and EAs already
below 1 kJ/mol. Although the [45] extrapolation yields the best statistical results, a CCSD
calculation with the large AV5Z basis set is only possible for small systems. We stress that
more sophisticated extrapolation techniques were already tested for the original version
of the employed benchmark set. Results can be found in the supplement of Ref. [102].
Knizia et al. conclude that “[…] in our benchmark set there are only few systems where
using either extrapolation scheme makes a noteworthy difference”. Thus, the corrected
FPa ansatz is to be preferred over [23] extrapolation and the corrected FPb seems to be
superior compared with the [34] extrapolation. We stress that in both cases larger HF and
MP2 calculations have to be performed in order to obtain the final result.
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For comparison, CCSD(F12*) results are also given for three different basis sets. The F12
results obtained using the AVQZ basis set reach almost the quality of the [45] extrapolation,
with rms deviations well below 1 kJ/mol. For the (F12*)@AVTZ results, the rms deviations
are only around 1.5 kJ/mol, whereas (F12*)@AVDZ yields results that show rms deviations
with about 3-5 kJ/mol. We note that (F12*)@AVTZ yields results with smaller rms
deviations than the [34] extrapolation.
We note that the size of the virtual space in the CCSD calculation for (F12*)@AVDZ
and FPa+∆ps-ppl is similar. The same is true for (F12*)@AVTZ and FPb+∆ps-ppl.
However, the FPa and FPb approaches require HF and MP2 calculations using the AVQZ
and AV5Z basis sets, respectively. Therefore, the entire computational cost of the proposed
focal-point approaches depends strongly on the efficiency of the employed HF and MP2
algorithms. Further statistical analysis of the test set using HF and conventional CCSD is
provided in the supplementary information.

17.4 Perturbative triples contribution

Having assessed the introduced focal-point approach for the CCSD method, we now turn
to the discussion of BSIEs in the perturbative triples contribution to the CCSD(T) energies
calculated using FNOs. In addition to the conventional approach of computing the (T)
contribution, we will also explore the (T*) approximation, which approximates the CBS
limit of (T) by rescaling the finite basis set result with a factor estimated on the level
of MP2 theory as outlined in Ref. [102]. In this work, the scaling factor corresponds to
Emp2([45])/Emp2(Xno). The results are summarized in Table 17.3. The rms deviations for
the AVDZ are 2-8 kJ/mol and even with the corrected values, denoted as (T*), the errors
are within the range of 2-3 kJ/mol. With increasing cardinal numbers the deviations
reduce considerably. AVQZ results show deviations of up to 1 kJ/mol, reducing even
further for the (T*) correction where they do not surpass 0.5 kJ/mol. As it is apparent
from the presented data, the usage of FNOs together with the (T*) ansatz seems to be
highly effective. Already 12 FNOs per occupied orbital suffice to reduce the rms deviations
to 0.7 kJ/mol and lower. When using 20 FNOs instead, this deviation reduces smoothly
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Table 17.3: BSIE of the (T) contribution to closed-shell reaction (REc), open-shell reac-
tions (REo), atomization energies (AEs), ionization potentials (IPs), and electron affinities
(EAs). Shown are the rms deviations to the [56] reference.

REc (kJ/mol) REo (kJ/mol) AEs (kJ/mol) IPs (kJ/mol) EAs (kJ/mol)
(T) (T*) (T) (T*) (T) (T*) (T) (T*) (T) (T*)

Xno=12 0.914 0.522 1.925 0.456 2.881 0.633 0.808 0.387 1.378 0.710
Xno=16 0.583 0.385 1.175 0.316 1.765 0.350 0.522 0.252 0.877 0.415
Xno=20 0.418 0.265 0.808 0.255 1.336 0.259 0.381 0.177 0.679 0.333
Xno=24 0.292 0.203 0.616 0.227 0.989 0.236 0.298 0.122 0.506 0.207
Xno=28 0.268 0.183 0.487 0.241 0.824 0.209 0.260 0.110 0.421 0.166
Xno=32 0.206 0.233 0.397 0.244 0.699 0.192 0.223 0.092 0.364 0.129
AVDZ 1.976 3.231 5.176 3.216 8.176 2.826 3.139 2.364 4.330 2.676
AVTZ 1.055 0.823 1.485 0.997 2.165 0.450 0.862 0.432 1.275 0.566
AVQZ 0.509 0.269 0.667 0.433 0.913 0.153 0.366 0.185 0.571 0.277
AV5Z 0.270 0.135 0.303 0.231 0.425 0.087 0.179 0.088 0.296 0.151
AV6Z 0.157 0.078 0.191 0.134 0.246 0.049 0.103 0.050 0.171 0.087
[23] 0.888 - 0.705 - 0.570 - 0.232 - 0.170 -
[34] 0.255 - 0.188 - 0.133 - 0.066 - 0.121 -
[45] 0.035 - 0.088 - 0.093 - 0.024 - 0.040 -

below 0.35 kJ/mol.
We stress that computing the (T*) scaling factor using a [56] extrapolation instead of [45]
extrapolation has almost no effect (0.05 kJ/mol in the rms BSIEs).
Considering the findings for the BSIEs listed in Tabs. 17.2 and 17.3 in combination, shows
that it is possible to obtain CCSD(T) correlation energy estimates of REc, REo, AEs, IPs
and EAs with a root-mean-square deviation from the CBS limit below 4 kJ/mol using 12
FNOs per occupied orbital only. Employing 20 FNOs per occupied orbital reduces the rms
BSIE to around 1 kJ/mol for all computed energy differences. A detailed summary of all
computed energies and BSIEs can be found in the supplement information.
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Part V

Summary and conclusions
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Quantum material science has the potential to become an increasingly vital part of the
engineering landscape of the future. It could open the door to the tailoring of material
properties guided by a deep understanding of the quantum mechanical description of the
material. The inherent combinatorial scaling of the many-body problem precludes an ex-
act solution of the wavefunction of the system, rendering its exact quantum mechanical
description unattainable. DFT is considered as the most successful theoretical framework
since it circumvents the problem of dimensionality by instead framing the many-body prob-
lem around the electronic three-dimensional density. Notwithstanding the overwhelming
success of approximate DFT, limits exist to the applicability of modern state-of-the-art
exchange-correlation functionals[21].
Accurate quantum chemical theories such as coupled cluster can assist in providing insight
in the limitations of approaches such as approximate theories. This thesis attests to the
fact that routine coupled cluster calculations are possible for a variety of systems ranging
from defects embedded in solids to molecules and the uniform electron gas.
This thesis has been structure in three main parts. First, we presented a concise overview
of the theoretical corpus needed to grasp the main pillars of ab initio many-body physics.
The focal-point basis set correction for CCSD is also introduced in this section in order to
set the stage for the last part of this thesis.
In the second part of the thesis, we present calculations of the F -center in the alkaline
earth oxides crystals MgO, CaO and SrO. The excellent agreement with experiment and
past theoretical works shows that computing excited states of simple solid state defects is
indeed attainable within the framework of EE-EOM-CCSD. This study opens the door for
further study of other defects embedded in semiconductors where weak correlation is to
be expected.
The third part of this thesis is concerned with basis set corrections analyzing the electron-
electron cusp. This tackles a hindrance in any quantum mechanical calculation where a
basis set is used, namely the basis set incompleteness error. We present results making
use of FNOs for a range molecules showing a rapid convergence of the BSIE for open-shell
reaction energies, atomization energies, electron affinities and ionization potentials.
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