
Leveraging problem-independent hyper-heuristics for real-world
test laboratory scheduling

Florian Mischek
Nysret Musliu

fmischek@dbai.tuwien.ac.at
musliu@dbai.tuwien.ac.at

Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling, DBAI, TU Wien
Vienna, Austria

ABSTRACT
The area of project scheduling problems has seen a tremendous
amount of different problem variations. Traditionally, each prob-
lem variant requires custom solution approaches in order to pro-
duce high-quality solutions. Developing and tuning these meth-
ods is an expensive process that may have to be repeated as soon
as the requirements or problem structures change. On the other
hand, research into hyper-heuristics has produced general heuristic
problem-solving techniques that were developed to achieve good
results on multiple diverse problem domains. They work with a
set of comparatively simple low-level heuristics and dynamically
adapt themselves to each new problem variant. In this paper, we
investigate hyper-heuristic approaches for a real-world industrial
test laboratory scheduling problem and develop a new problem
domain for the HyFlex hyper-heuristic framework. We propose a
diverse portfolio of low-level heuristics that can be dynamically
selected during the search process by hyper-heuristics to solve
the problem. We evaluate and compare the performance of several
problem-independent hyper-heuristics on this domain and show
that they are able to match, and sometimes even exceed, the perfor-
mance of state-of-the-art solution techniques that were developed
and tuned specifically for this problem.

CCS CONCEPTS
• Mathematics of computing → Combinatorial optimization;
• Applied computing → Industry and manufacturing; • Com-
puting methodologies → Planning and scheduling; • Theory
of computation → Optimization with randomized search
heuristics.

KEYWORDS
Hyper-heuristics, HyFlex, Test Laboratory Scheduling

ACM Reference Format:
Florian Mischek and Nysret Musliu. 2023. Leveraging problem-independent
hyper-heuristics for real-world test laboratory scheduling. In Genetic and
Evolutionary Computation Conference (GECCO ’23), July 15–19, 2023, Lisbon,

GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0119-1/23/07.
https://doi.org/10.1145/3583131.3590354

Portugal.ACM, NewYork, NY, USA, 9 pages. https://doi.org/10.1145/3583131.
3590354

1 INTRODUCTION
Project scheduling problems appear in countless different variants
across many areas. The quality of such schedules can have a tremen-
dous impact on costs, time, service quality, and employee wellbeing.
At the same time, the typically large number of activities to schedule
and complex constraints makes manual scheduling time-consuming
and error-prone even for experts, indicating the need for automated
solutions. Here, the large variety in requirements between different
settings or even across different instances of otherwise similar set-
tings poses a big challenge, as solution methods are often specific
to a single problem formulation. Adapting methods to new variants
frequently requires expensive development work and tuning.

One such variant is a complex real-world project scheduling
problem that arises in industrial test laboratories. The Test Labo-
ratory Scheduling Problem (TLSP) was first introduced in [15]. It
is an extension of the well-studied Resource-Constrained Project
Scheduling Problem (RCPSP), where the solver has to group atomic
tasks into larger units called jobs in addition to scheduling those
jobs. Further aspects include several additional constraints, some
of which are unique to the TLSP such as the requirement that some
tasks have to be performed by the same employees, and a non-
standard objective function which is a combination of multiple
individual objectives.

Different solutionmethods have been proposed for the TLSP.Mis-
chek and Musliu [14, 15] described metaheuristic approaches, using
a combination of different neighborhood structures. Initially re-
stricted to a subproblem with a fixed and predetermined task group-
ing, these methods were later extended to the full TLSP [17, 18].
For both problem versions, Simulated Annealing (SA) found the
best results. An exact approach using Constraint Programming
(CP) was proposed by Danzinger et al. [10, 11], based on an earlier
model for the subproblem [12]. That work also includes a Very
Large Neighborhood Search (VLNS), which repeatedly solves re-
stricted subproblems consisting of one or a small number of projects,
while the rest of the schedule remains fixed. Finally, Geibinger et al.
[13] developed another exact solution method based on Constraint
Answer-set Programming (CASP). While the CP and CASP solvers
provide good solutions for small instances, their performance is not
competitive on larger and practically sized instances compared to
heuristic approaches like SA and VLNS. Both SA and VLNS are de-
ployed in an industrial test laboratory, where they are successfully
used to create and update the work schedules of the lab [10].

321

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0003-1166-3881
https://orcid.org/0000-0002-3992-8637
https://doi.org/10.1145/3583131.3590354
https://doi.org/10.1145/3583131.3590354
https://doi.org/10.1145/3583131.3590354
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583131.3590354&domain=pdf&date_stamp=2023-07-12

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Florian Mischek and Nysret Musliu

Something all previously proposed heuristic solution approaches
have in common is that they underwent extensive parameter tun-
ing based on the characteristics of the available benchmarking
instances. On the one hand, this tuning enabled them to find high-
quality solutions for these and similar instances. On the other hand,
tuning is time-consuming and the resulting configuration may not
be a good fit for future instances with different properties or poten-
tial newly arising variants of the problem.

In this paper, we follow a different approach: We investigate the
use of problem-independent hyper-heuristics to solve the TLSP,
which are a class of high-level heuristic problem solving techniques
that are able to automatically adapt to new and unseen problem
domains. Towards this end, we develop a new problem domain
for the HyFlex hyper-heuristics framework, which is the de-facto
standard framework for selection hyper-heuristics in the literature.
Besides efficient implementations of several other components,
such as instance and solution representation, we propose a diverse
portfolio of modular low-level heuristics for the TLSP. This allows
us to employ several state-of-the-art hyper-heuristics on the new
TLSP domain. We perform a thorough evaluation of these hyper-
heuristics and compare their results to those of the best available
problem-specific approaches (SA and VLNS). Our experimental
results show that even without any kind of problem-specific tuning,
hyper-heuristics are able to compete with and sometimes even
improve upon the best problem-specific methods.

The paper is structured as follows: In the next section, we pro-
vide an overview of hyper-heuristics in general and the HyFlex
framework, followed by a description of the TLSP in Section 3. We
introduce a new HyFlex problem domain based on the TLSP in Sec-
tion 4, which also includes a description of the low-level heuristic
portfolio. Our experimental evaluation of several state-of-the-art
hyper-heuristics on this domain is described in Section 5, including
a comparison with other problem-specific algorithms for the TLSP.
Finally, we give concluding remarks in Section 6.

2 HYPER-HEURISTICS
Hyper-heuristics are a class of high-level problem solving tech-
niques that operate over a portfolio of so-called low-level heuristics
(LLHs). Instead of directly moving through the space of potential
candidate solutions to a problem, hyper-heuristics instead select
and apply these LLHs to one or a population of solutions. This
indirection enables hyper-heuristics to have a high degree of adapt-
ability and generality, as switching out the available LLHs can
allow a hyper-heuristic to solve a completely different problem.
Most hyper-heuristics also include adaptive components, which au-
tomatically adjust their behaviour towards LLHs that are beneficial
for the current problem, instance, or even state of the search. For the
purpose of this work, we consider only selection hyper-heuristics,
for which the available LLHs are given as a discrete set of operators,
in contrast to generation hyper-heuristics which try to generate
new LLHs from basic algorithmic components [6].

Research on hyper-heuristics experienced a big boost in 2011
due to the Cross-Domain Heuristics Search Challenge 2011 (CHeSC
2011) [5], an international competition where participants had to
develop hyper-heuristics that could perform well on multiple dif-
ferent domains. Specifically, the submitted hyper-heuristics were

evaluated on the maximum satisfiability problem (MaxSAT), bin
packing (BP), the flow-shop problem (FS), personnel scheduling
(PS), the travelling salesman problem (TSP) and vehicle routing
(VRP), six diverse and well-studied academic problem domains. Of
these, the first four domains where announced in advance, while
the TSP and VRP domains were hidden from the competitors un-
til the final evaluation. Similarly, the hyper-heuristics were also
evaluated at least in part on previously unknown instances. This
required participants to develop hyper-heuristics that would work
well on different problems, but also generalize to unseen instances
and even completely new problems.

In total, there were 20 competing hyper-heuristics submitted for
the challenge. They were scored based on their relative rank on
each instance, inspired by the Formula 1 scoring scheme [5].

The competition was won by Mısır et al. [19]. Their algorithm
AdapHH (sometimes also referenced as GIHH) combines several
adaptive mechanisms: A subset of active LLHs with promising per-
formance characteristics is managed and periodically updated using
an adaptive dynamic heuristic set (ADHS) strategy. At each itera-
tion, one of the active LLHs is selected and applied to the current
solution with probabilities based on their previous performance.
The search parameters of each LLH are maintained by a separate
component employing a reward-penalty scheme. Alternatively, the
algorithm may choose to apply a pair of LLHs in direct succession,
if that pair has proved successful earlier in the run (relay hybridisa-
tion). The acceptance of the resulting solution is determined by an
Adaptive iteration limited list-based threshold accepting (AILLA)
mechanism, which can also decide to restart the search from from
a new randomly generated initial solution if necessary.

All hyper-heuristics for the competition had to be implemented
in the software framework HyFlex [20], which was developed for
the competition. One important concept in HyFlex is the domain
barrier, which guarantees the problem-independence of the hyper-
heuristics. It is visualized in Figure 1. All problem-specific infor-
mation of a domain, such as instance and solution representation,
objective function, or LLHs, is hidden from the hyper-heuristic.
The hyper-heuristic only knows the number and a high-level type
of each available LLH, as well as the current objective value of
each solution in memory. It interacts with the problem domain by
instructing it to apply one of the LLHs (ℎ𝑖) to a solution (𝑠 𝑗) and
store the result in memory (𝑠𝑘). The problem domain then returns
the new objective value of the solution (𝑓 (𝑠𝑘))1.

The LLHs are partitioned into four types:

Mutation (MU) operators apply random changes to a candi-
date solution, without regard for objective values.

Ruin-and-recreate (RR) operators destroy a part of a solu-
tion and attempt to rebuild or repair it afterwards.

Local search (LS) heuristics attempt to improve the solution,
typically via small and iterative changes. While finding such
an improvement is not guaranteed, the resulting solution
will never be worse than the original.

Crossover (CO) operators combine two solutions to produce
a new solution that contains assignments of both parents.

1Note that the solution 𝑠𝑘 itself is not provided to the hyper-heuristic to ensure that it
cannot gain any problem-specific information from the solution’s structure.

322

Problem-independent hyper-heuristics for real-world TLSP GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Hyper-heuristic

Select low-level heuristic
i to apply to a solution j
and store result in k

Determine acceptance /
rejection of result

Problem domain

Instance representation

Low-level heuristics h1, . . . , hn

Solution memory s1, . . . , sm

Objective function f(s)

Domain barrier

hi, sj , sk

f(sk)

Figure 1: Structure of HyFlex. The domain barrier separates
hyper-heuristics from the problem domain implementations
and hides problem-specific information. Figures source: [16].

The hyper-heuristic has to select both parents, instead of
only one solution as for the other operators.

In addition, LLHs can support either of two numerical parameters.
The depth of search (DoS) parameter is intended to determine the
number of steps performed by incremental improvement heuristics,
while the intensity of mutation (IoM) parameter affects the strength
of the perturbations applied by bothmutation and ruin-and-recreate
heuristics. Both parameters take values between 0.0 and 1.0, which
can be set by the hyper-heuristic.

Since 2011, HyFlex has become the de-facto standard framework
for selection hyper-heuristics. Several authors have developed new
hyper-heuristics, such as FS-ILS [1], GEP-HH [21], MCTS-HH [22],
QHH [7], FI [9], TS-ILS [3], and many more. Something most suc-
cessful hyper-heuristics have in common, including all those men-
tioned above, is that they include some sort of adaptive component
to adjust their behavior according to the performance of the LLHs
on the current instance. Often, these components borrow concepts
from online machine learning strategies, such as reinforcement
learning [6, 7]. Many of the top hyper-heuristics also follow the
general structure of iterated local search (ILS), alternating cycles
of diversification and intensification, or perturbation and search
[1, 3, 7].

Other authors have extended HyFlex with additional problem do-
mains, including the knapsack problem (KP), quadratic assignment
problem (QAP), and maximum-cut problem (MAC) [2].

3 PROBLEM STATEMENT
The TLSP is an extension of the Resource-Constrained Project
Scheduling Problem (RCPSP). We give here a summary of the prob-
lem description, the full formal definition is provided as supplemen-
tary material and can also be found in [15].

In the TLSP, the goal is to find a schedule for multiple projects,
each containing several tasks. Each task requires different kinds
of resources (employees, workbenches, and several types of equip-
ment) and must be executed in one of several modes, which affects
both its duration and its resource requirements. Further, only a
subset of all units of a resource is suitable for performing any
particular task. Additional constraints include release dates and
deadlines, precedence constraints between tasks of a project, fixed
assignments, restrictions on which tasks can be grouped together

into a job, and finally linked tasks, which are sets of tasks that must
all be assigned the same employees.

The solver has to determine a partition of the tasks into jobs, and
then assign a mode, discrete time slots, and resources to each job.
The properties and requirements of a job are determined by those of
the tasks it contains. Within a job, tasks are executed sequentially,
but their order is not defined2. As a result, the job must fulfill the
requirements of all tasks for its whole duration, which is the sum of
the durations of its contained tasks plus an additional setup time. For
example, resource requirements of a job are the maximum required
number among all its tasks for each resource type, and the set of
available resource units that can be assigned is the intersection of
the available units of its tasks. Similarly, an execution mode can be
assigned to a job only if that mode is available for all its tasks.

The quality of a feasible schedule is determined as a linear com-
bination of several objectives: In contrast to typical variants of
RCPSP, we do not aim to minimize the makespan, but instead the
total duration of each project, from the start of its first job to the
end of its last scheduled job. Other objectives include minimizing
the number of jobs, the number of different employees assigned to
each project, and the assignment of non-preferred employees to
jobs. Finally, the last objective aims to finish each job already by
a certain target date, which is typically several time slots before
the deadline. The relative weights of these objectives depend on
the preferences and goals of individual laboratories in practice. In
line with previous work, we have used uniform weights of 1 for the
purpose of our evaluations. This makes our results comparable to
those of previously described methods.

4 HYPER-HEURISTIC PROBLEM DOMAIN
MODEL

To enable problem-independent hyper-heuristics to work on the
TLSP, we needed to provide several problem-specific components.
Here, the goal was to use flexible and modular components, such
that they can easily be switched out and supplemented to deal with
variations of the TLSP. Previously published solution approaches
for the TLSP (e.g. [11, 17]) serve to provide inspirations and baseline
implementations for useful building blocks towards this goal. A
more detailed description of our problem domain implementation
is provided as supplemental material.

For instance and solution representation, we reused the data
structures developed for themetaheuristic approaches in [17]. These
also provide us with methods to evaluate the objective function,
including efficient delta evaluation after applying changes. Initial
candidate solutions are created by first grouping tasks into as few
jobs as possible, and then assigning random modes, time slots, and
resources to the jobs.

Regarding the solution evaluation, we had to make a further
adjustment to ensure compatibility with the HyFlex framework,
which assumes that candidate solutions produced by construction
heuristics and LLHs are always feasible. For the TLSP, finding any
feasible solution is already an NP-hard problem, so we cannot
guarantee this property. While both construction heuristics and
all LLHs respect grouping constraints, time windows, precedence

2This allows tasks within a job to be freely reordered during the actual execution of
the schedule, increasing the flexibility and robustness of the schedule

323

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Florian Mischek and Nysret Musliu

Table 1: Comparison of LLHs in different problem domains.

Domain Source MU RR LS CO Total

MaxSAT [5] 4 1 2 2 9
BP [5] 3 2 2 1 8
FS [5] 5 2 4 3 14
PS [5] 1 3 4 3 11
TSP [5] 5 1 6 3 15
VRP [5] 4 2 4 2 12

KP [2] 5 2 6 3 16
QAP [2] 2 3 2 2 9
MAC [2] 2 3 3 2 10

TLSP 6 2 13 3 24

constraints, mode and resource availability as well as resource
requirement constraints, the linked tasks and single assignment
constraints can be violated. We allow such infeasible candidate
solutions during search, but add a high penalty of 10000 for each
remaining conflict. This provides a strong incentive for the hyper-
heuristic to prioritize the search for feasible solutions at first and
nearly guarantees that feasible solutions are evaluated as better
than any infeasible ones3.

4.1 Low-level heuristics
The portfolio of LLHs is the most important part of the problem
domain. For most successful hyper-heuristics to work well, we
need a selection of LLHs of each of the four types, with variety
both in their complexity and the affected aspects of a solution.
This enables hyper-heuristics to detect and apply the most useful
LLHs for each instance and at any given moment in the search. In
total, we developed 6 mutation operators, 13 local search heuristics,
2 ruin-and-recreate operators, and 3 crossovers (see Table 1 for a
comparison with other HyFlex problem domains). The high number
of operators compared to the other domains is explained by the
TLSP’s real-world complexity, with multiple aspects handled by
different operators.

The first six domains are from the original competition [5], while
the LLH portfolios for KP, QAP, and MAC were introduced in [2].
The mutation (MU) operators apply random changes to a given
schedule:

Random mode move Randomly changes the assigned mode
of a job to different one. Replacement modes can be selected
only if this would not introduce conflicts regarding prece-
dences or time windows. If this changes the number of re-
quired employees, randomly chosen employees are added or
removed.

Random timeslot move Randomly moves a job to a different
time slot.

Random resource move Randomly replaces a single work-
bench, employee, or device assigned to a job by a different
one.

3This is particularly true for the instances in our benchmark set, where objective
values of feasible solutions rarely reach above 7000

Random regrouping move Performs a single random move
that alters the task grouping. This can be either a transfer
of a task to a new job, merging two existing jobs into, or
splitting off a subset of a job’s tasks into a new job. If this
move changes the resource requirements of any involved
job, resources are added or removed randomly. Otherwise,
existing time slot, mode, and resource assignments are kept
if possible.

Randomize A larger mutation that selects a subset of all
projects and randomizes the assignments of all jobs, leaving
only the grouping intact. The IoM parameter determines the
fraction of projects randomized.

Random walk Performs multiple moves of a random walk
procedure, using a combination of all scheduling and re-
grouping neighborhoods employed by the first four LLHs.
The number of moves is proportional to the DoS parameter,
with a maximum of 100 moves at DoS = 1.0.

The ruin-and-recreate (RR) operators all follow the same prin-
ciple: They delete assignments from a subset of all jobs and then
greedily restore them one job at a time. The order in which the
assignments will be restored is always the same: First, fixed assign-
ments are added, then projects are selected in order of increasing
release date of their earliest task. Within a project, jobs are selected
in an arbitrary topological order.

Greedy reconstruct (multiple projects) Affects all jobs in a
subset of all projects. Leaves the task grouping unaffected.

Greedy regrouping (single project) Affects all jobs of a sin-
gle project, including their task grouping. A new grouping
of tasks into jobs is also built greedily, assigning tasks to
existing matching jobs wherever this is possible without
conflict.

The local search (LS) heuristics mostly perform one or several
moves of a local search procedure with different neighborhoods.
Those search heuristics that allow worsening moves return the
best solution found at any point during the search, not necessarily
the last solution. Three different search heuristics are considered:
Hill climbing selects the locally best move across all jobs, which is
expensive but also guarantees to find local improvements if they
exist. MinConflict selects a random job and applies the best possible
move for that job. This scales well with increasing numbers of jobs,
but may miss potential improvements in unselected jobs. Finally,
stochastic hill climbing performs random moves and uses the Me-
tropolis criterion to decide whether to accept them: Improvements
or solutions of equal quality are always accepted, while worsening
moves may still be accepted with probability 𝑒−Δ/𝑇 , where Δ is
the difference in objective value and 𝑇 is a fixed parameter called
temperature. At higher temperatures, worse solutions are accepted
with higher probability.

Hill climbing (mode, timeslot) Selects the best change in
either mode or time slot for any job at each move.

Hill climbing (resources) Selects the best change of a single
assigned resource unit for any job at each move.

Hill climbing (JobOpt) Selects the best (re-)assignment of
mode, time slot and all resources for any job at each move.
This corresponds to the changes available in the JobOpt
neighborhood of [17].

324

Problem-independent hyper-heuristics for real-world TLSP GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Hill climbing (regrouping) Selects the best regrouping op-
tion for any job at each move, with the same options as for
the Random regrouping move LLH.

MinConflict (mode, timeslot) Selects the best change in ei-
ther mode or time slot for a randomly chosen job at each
move.

MinConflict (resources) Selects the best change of a single
assigned resource unit for a randomly chosen job at each
move.

MinConflict (JobOpt) Selects the best (re-)assignment ofmode,
time slot and resources for any job at each move.

MinConflict (regrouping) Selects the best regrouping option
for a randomly chosen job at each move.

Stochastic hill climbing (high temperature) Performs a large
number of random moves, using the Metropolis acceptance
criterion at a temperature of 100. Possible moves include
all options for reassignments of mode, time slot and re-
sources, as well as the regrouping options described earlier.
The weight of hard constraint violations is set to 50 for the
purpose of theMetropolis criterion. At this high temperature,
moves that add no more than one or two hard constraint
violations will likely be accepted.

Stochastic hill climbing (low temperature) Performs ran-
dom moves with the Metropolis acceptance criterion as the
previous operator, but at a temperature of 5. At this low
temperature, only moves that do not result in additional
constraint violations have a realistic chance to be accepted.

Stochastic hill climbing (minimal temperature) Performs
random moves with the Metropolis acceptance criterion as
the previous two operators, but at a temperature of 1. At this
minimal temperature, moves are unlikely to be accepted if
they increase the penalty at all, although there is a chance
for very small increases.

All the above LLHs use the DoS parameter to determine the number
of moves performed in a single LLH application. Those using hill
climbing perform at most 100 moves at DoS = 1.0, those following
the MinConflict-based search perform at most 500 moves and those
based on stochastic hill climbing perform up to 50000 moves (as
selecting random moves can be done very fast).

The remaining two local search heuristics follow a different
structure:

Single project CP Uses a Constraint Programming solver to
find the optimal solution for a single, randomly chosen
project, while the rest of the schedule is kept fixed. The
CP model used is the one described in [11]. If the optimum
cannot be found within a given time, the best solution found
is returned instead. The available time is determined by the
DoS parameter, with a maximum of 30s at DoS = 1.0. As a
CP solver, we used Chuffed [8].

Job-wise greedy Iterates over all jobs and replaces each job’s
assignments with the locally best ones, relative to the current
assignment of all other jobs. Jobs are ordered according to
their project’s earliest release date, and within a project in
an arbitrary topological order.

Incorporating the Single project CP required extending theHyFlex
framework itself due to the call to the external CP solver, which the

timekeeping module was not equipped to handle correctly. Our ex-
tension allows problem domains to keep track of time spent waiting
on external processes in addition to their own processing time.

Finally, the crossover operators take two parent schedules as
input and produce as offspring a new schedule that contains assign-
ments of both parents.

Random project Randomly selects for each project whether
the offspring should take the assignments of the first or the
second parent schedule.

Single point Randomly selects a time slot. Assignments for
all projects starting before that point are taken from the first
parent, the remaining assignments are taken from the second
parent.

Two point Randomly selects two time slots. Assignments for
all projects starting before the first or after the second slot
are taken from the first parent, the remaining assignments
are taken from the second parent.

The LLHs described above were newly developed for the TLSP
problem domain, although some reuse components of previously
published methods. In particular, the MU operators (except Ran-
domize) as well as the Hill climbing, MinConflict, and Stochastic hill
climbing LS operators use the neighborhood relations described
in [17], while the Single project CP operator uses the CP model
described in [11], as mentioned.

5 EVALUATION
We evaluated our implementation on a set of state-of-the-art hyper-
heuristics available for HyFlex: We compare TS-ILS [3]4 and FS-ILS
[1]5, the first and third place hyper-heuristics6 of a recent compari-
son [16], plus RL, a hyper-heuristic based on reinforcement learning
described in that paper7. The authors of TS-ILS also published a
new hyper-heuristic just this year, EA-ILS [4]8, which was not yet
available for the previous comparison. Finally, we also included
AdapHH [19]9, the competition winner of 2011.

The selected hyper-heuristics were run on a benchmark server
with 224GB RAM and two AMDOpteron 6272 Processors each with
a frequency of 2.1GHz and 16 logical cores (the same machine used
for the evaluation of SA and VLNS [10, 17]). Each hyper-heuristic
was executed 15 times on each of the 33 benchmark instances used
in [17], with a timeout of 10 minutes per run. This instance set
consists of 30 randomly generated instances of various sizes and
properties, plus 3 real-world instances taken from our industrial
partner. Notably, we did not perform any problem-specific tuning
or adaptation for any of the evaluated hyper-heuristics.

The results of these evaluations are listed in Table 2. For compar-
ison we also included results of the current state-of-the-art solvers
for the TLSP, SA [17] and VLNS [10] 10.

4Source code: https://github.com/dubystev/Synergy-HH
5Source code: https://github.com/Steven-Adriaensen/FS-ILS
6Source code of the second place hyper-heuristic, GEP-HH [22], was not available, so
we could not run it on the new domain.
7Source code: https://gitlab.tuwien.ac.at/florian.mischek/hyper-heuristics-public
8Source code: https://github.com/dubystev/Synergy-HH
9Source code obtained via personal communication
10Results for VLNS with a timeout of 10 minutes were also taken from [17]. That
evaluation included only 5 runs of VLNS.

325

https://github.com/dubystev/Synergy-HH
https://gitlab.tuwien.ac.at/florian.mischek/hyper-heuristics-public
https://github.com/dubystev/Synergy-HH

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Florian Mischek and Nysret Musliu

Table 2: Results for the five evaluated hyper-heuristics on the TLSP problem domain, plus results for SA [17] and VLNS [10],
under a time limit of 10 minutes. For each hyper-heuristic, the table lists the number of feasible solutions found (Feas), the
average objective value among feasible solutions (Avg), and the best solution found (Best). The best objective value found by
any method within this time limit for each instance is marked in bold.

RL FS-ILS TS-ILS EA-ILS AdapHH SA VLNS
Feas Avg Best Feas Avg Best Feas Avg Best Feas Avg Best Feas Avg Best Feas Avg Best Feas Avg Best

1 15/15 57.0 57 15/15 57.0 57 15/15 57.0 57 15/15 57.0 57 15/15 57.0 57 15/15 58.0 58 5/5 57.0 57
2 15/15 71.0 71 15/15 71.0 71 15/15 71.0 71 15/15 71.0 71 15/15 71.0 71 15/15 72.4 72 5/5 71.0 71
3 15/15 141.7 141 15/15 141.1 141 15/15 141.3 141 15/15 144.3 141 15/15 141.0 141 15/15 156.1 147 5/5 141.0 141
4 15/15 102.1 101 15/15 103.0 101 15/15 103.3 102 15/15 104.0 101 15/15 101.2 101 15/15 114.5 103 5/5 101.0 101
5 15/15 285.1 281 15/15 284.5 281 15/15 292.9 287 15/15 296.5 286 15/15 282.0 280 15/15 303.3 296 5/5 242.2 240
6 15/15 148.3 141 15/15 147.9 143 15/15 158.8 155 15/15 158.0 152 15/15 144.5 140 15/15 165.1 157 5/5 140.0 140
7 15/15 304.1 292 15/15 302.2 298 15/15 314.9 304 15/15 309.9 305 15/15 306.1 297 15/15 300.9 296 5/5 287.0 283
8 15/15 298.9 290 15/15 298.1 296 15/15 309.3 301 15/15 309.4 300 15/15 295.7 291 15/15 302.4 292 5/5 284.6 283
9 15/15 478.5 454 15/15 452.1 437 15/15 476.0 452 15/15 464.7 442 15/15 457.7 434 15/15 470.6 456 5/5 442.2 429
10 15/15 634.5 556 15/15 584.0 556 15/15 633.5 584 15/15 624.3 581 15/15 589.9 549 15/15 566.5 551 5/5 590.2 547
11 15/15 914.5 868 15/15 913.2 872 15/15 966.1 909 15/15 966.6 898 15/15 878.7 843 15/15 938.4 912 5/5 860.8 840
12 15/15 689.3 656 15/15 689.5 670 15/15 719.1 701 15/15 728.5 706 15/15 666.5 655 15/15 675.8 666 5/5 660.6 653
13 15/15 330.5 324 15/15 328.0 320 15/15 334.7 330 15/15 334.6 325 15/15 331.3 318 15/15 338.2 327 5/5 311.8 309
14 15/15 425.4 415 15/15 423.5 415 15/15 438.9 432 15/15 437.9 426 15/15 417.3 414 14/15 420.4 418 5/5 415.0 412
15 15/15 1366.2 1115 14/15 1330.6 1235 15/15 1341.1 1259 15/15 1431.3 1253 15/15 1183.3 1082 15/15 1063.5 1014 5/5 1106.2 1025
16 10/15 1305.4 1251 14/15 1266.9 1227 15/15 1336.0 1286 15/15 1339.6 1275 15/15 1220.5 1172 13/15 1236.7 1216 5/5 1184.4 1175
17 15/15 1289.9 1177 15/15 1216.7 1141 15/15 1248.5 1207 15/15 1265.9 1220 15/15 1198.3 1145 15/15 1185.3 1140 5/5 1166.6 1150
18 15/15 1560.3 1412 14/15 1540.9 1469 15/15 1585.5 1505 14/15 1630.4 1495 15/15 1441.9 1389 15/15 1527.4 1500 5/5 1482.2 1436
19 9/15 2487.1 2131 11/15 2418.5 2224 13/15 2482.3 2277 10/15 2787.1 2391 14/15 2155.6 2075 14/15 2239.9 2133 5/5 2419.2 2350
20 6/15 2741.8 2512 7/15 2651.6 2502 4/15 2754.8 2473 4/15 3014.3 2786 13/15 2359.4 2265 15/15 2489.7 2391 5/5 2986.6 2955
21 7/15 727.7 627 13/15 713.0 656 15/15 769.9 677 15/15 733.0 668 14/15 658.7 612 15/15 673.9 632 5/5 596.8 570
22 15/15 832.1 766 15/15 821.4 786 15/15 838.3 811 15/15 856.9 800 15/15 760.3 736 15/15 784.6 755 5/5 775.0 763
23 9/15 2599.9 2178 10/15 2436.1 2200 11/15 2808.9 2557 8/15 2705.6 2528 13/15 2201.3 2025 12/15 2167.7 2070 0/5 - -
24 11/15 2116.4 2016 12/15 2119.4 1981 15/15 2279.5 2084 8/15 2300.4 2071 14/15 1996.9 1921 15/15 1869.3 1807 0/5 - -
25 8/15 3716.4 2765 5/15 3410.8 3215 9/15 3650.0 3180 5/15 3560.6 3491 14/15 2703.9 2583 10/15 2897.6 2601 0/5 - -
26 6/15 3278.8 2945 3/15 3189.0 3014 7/15 3288.3 3127 3/15 3593.0 3198 9/15 2999.2 2861 13/15 2971.3 2809 5/5 3345.4 3109
27 12/15 2662.1 2195 13/15 2546.8 2387 13/15 2811.9 2499 12/15 3005.1 2451 13/15 2451.3 2281 15/15 2124.3 2017 5/5 2750.6 2473
28 12/15 2667.4 2477 14/15 2572.4 2530 13/15 2745.5 2608 13/15 2787.4 2548 15/15 2416.8 2310 15/15 2516.5 2468 5/5 2407.2 2372
29 0/15 - - 0/15 - - 2/15 4494.0 4361 1/15 5767.0 5767 5/15 4402.0 4010 10/15 4358.5 3965 0/5 - -
30 1/15 6746.0 6746 1/15 5655.0 5655 0/15 - - 1/15 6124.0 6124 2/15 5432.0 5219 14/15 5104.1 4989 0/5 - -

Lab1 0/15 - - 0/15 - - 1/15 4298.0 4298 0/15 - - 0/15 - - 4/15 3558.0 3511 5/5 4080.8 3923
Lab2 0/15 - - 0/15 - - 0/15 - - 0/15 - - 0/15 - - 1/15 2811.0 2811 5/5 2896.8 2779
Lab3 2/15 2753.0 2738 0/15 - - 1/15 2974.0 2974 0/15 - - 1/15 2653.0 2653 3/15 2616.7 2606 5/5 2687.4 2646

Table 3: Percentage of feasible solutions found by each hyper-
heuristic within 10 minutes, as well as SA and VLNS.

HH % feasible
RL 0.73
FS-ILS 0.75
TS-ILS 0.79
EA-ILS 0.74
AdapHH 0.83

SA 0.88
VLNS 0.85

The five hyper-heuristics managed to find feasible solutions for
between 73% (RL) and 83% (AdapHH) of all runs, as shown in Table 3.
Despite being proposed already in 2011, AdapHH clearly managed
to find solutions of better quality in general than the other more
recent hyper-heuristics (see Figure 2) in addition to finding the
most feasible solutions.

The three real-world instances seem to be particularly hard to
solve across all methods except VLNS, and particularly so for the
evaluated hyper-heuristics. According to an analysis of these in-
stances in [17], an important factor in making them more challeng-
ing to solve than the randomly generated instances of comparable
size seems to be inclusion of employee vacations and other ab-
sences. Modeled as additional blocker tasks with a fixed employee

RL FS_ILS TS_ILS EA_ILS AdapHH

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

P
e

n
a

lt
y

(r
e

la
ti
ve

 t
o

 b
e

s
t)

Figure 2: Comparison between results of different hyper-
heuristics on the TLSP problem domain. Results for each
instance were scaled by the best result achieved on that in-
stance.

and time slot assignment (and no other resources required), these
absences split the available periods of each employee into several
smaller fragments, making it more difficult to fit the remaining
tasks around the blocker tasks. Given that VLNS uses a CP solver
to produce the initial (already feasible) solution, it is not impacted
as much by these more tightly constrained instances.

326

Problem-independent hyper-heuristics for real-world TLSP GECCO ’23, July 15–19, 2023, Lisbon, Portugal

The comparison with SA and VLNS is shown in Figure 3. Even
without any problem-specific tuning, AdapHH was able to find so-
lutions that match the quality of those produced by the specialised
algorithms, although it did find slightly fewer feasible solutions.
AdapHH managed to find the best known solutions under that time
limit for 13 instances, 8 of which are better than the best results
produced by SA and VLNS. After scaling the objective value of each
feasible solution by the best objective value found for that instance,
median results for AdapHH, SA, and VLNS are 1.043, 1.068, and
1.022, respectively. Overall, AdapHH produced better results than
SA (one-sided Wilcoxon rank-sum test, 𝑈 = 70159, 𝑝 < 10−8),
though it is beaten by VLNS (𝑈 = 24151.5, 𝑝 = 0.002). Looking
at small (≤ 20 projects) instances separately, one can see that SA
struggles with finding the best solution on small instances, strength-
ening the advantage of AdapHH on those instances (𝑈 = 16825,
𝑝 < 10−14). Conversely, VLNS falls behind on larger instances to
the point where it is overtaken by AdapHH (𝑈 = 4440, 𝑝 = 0.048).

5.1 Usage of low-level heuristics
Finally, we also investigated the use of the different LLHs we in-
troduced for the TLSP. For this purpose, we logged the number of
calls to each LLH made by AdapHH during a single run over all
instances. The results are displayed in Figure 4. While this distri-
bution of course depends on the behavior of the hyper-heuristic,
particularly with respect to difference between different LLH types,
we can still gain some interesting insights from it. Overall, AdapHH
clearly favored fast LLHs over slower and more expensive ones.
This affects mostly LS heuristics, except for LS:OneByOneGreedy
and to a lesser extent MinConflict with the two smaller neighbor-
hoods, but can also be seen in the MU heuristics where those that
change only a single assignment are used more often.

An interesting difference can also be seen between large and
small instances: The weaker MU operators (MU:Random[Mode/
Timeslot/Resource]Move) were chosen far more often on small
instances. A potential reason for this behavior is that smaller per-
turbations are already sufficient to reach new areas of the solution
space on these instances, while stronger perturbations destroy too
large parts of a solution. On larger instances on the other hand,
AdapHH placed more emphasis on LS heuristics, particularly those
that can be applied quickly, and the RR:Regroup operator. We ob-
served that in general, runtimes of each operator increase with
instance size, although some scale faster than others, particularly
those that have to examine all jobs in each iteration. Accordingly,
fewer operators can be applied within the time limit for large in-
stances, while the number of potential sites for local improvements
increases. This allows a larger number of initially successful LS ap-
plications and by the time the solution quality reaches local optima
that would require more exploration to allow further improvements,
the time limit is already reached.

This trend can also be observed when looking at the percentage
of successful applications of each LLH (Figure 5), i.e. those that
resulted in a new best solution for the run. As expected, most
improvements were found by LS and RR heuristics, particularly
those searching more complex neighborhoods. Here it can be seen
that success probabilities are consistently higher on larger instances,
indicating that the search on smaller instances spends most of its

time in regions of the search space that are already close to optimal,
such that further improvements are difficult to find.

6 CONCLUSIONS
In this paper we have investigated the use of problem-independent
hyper-heuristics to solve a real-world industrial project scheduling
problem. To be able to apply general purpose hyper-heuristics to
this problem, we proposed a new problem domain for the TLSP as
an extension to the well-known hyper-heuristic framework HyFlex.
In doing so, we developed a diverse portfolio of LLHs of all four
types supported by HyFlex, which have different characteristics
and affect different aspects of the problem. They can be selected
and applied by hyper-heuristics during the search in order to find
high-quality solutions.

We experimentally evaluated our approach on five state-of-the-
art hyper-heuristics. In particular the hyper-heuristic AdapHH, the
winner of the CheSC 2011 hyper-heuristics competition, proved to
be very successful on this new problem domain. Also compared to
the currently best problem-specific algorithms for the TLSP, SA and
VLNS, AdapHH could provide very good solutions, including 13
best known solutions for the given time limit. Moreover, it achieved
this level of performance on instances of all available sizes, while
both SA and VLNS excel only on particularly large, respectively
small instances.

Our results clearly show that general and problem-independent
hyper-heuristics, using an appropriate set of modular and comple-
mentary LLHs, can compete with specialised methods even without
any problem-specific tuning.

Of particular note is that due to the constraints of the HyFlex
framework, each run of a hyper-heuristic started out without any
knowledge of problem domain or LLH performance characteristics,
a major drawback compared to previous approaches which include
problem-specific knowledge already in their design and tuning.
Storing the information gained during earlier runs and using it to
boost hyper-heuristic performance on repeated runs on the same
problem domain could lead to even better results.

In the future, we also intend to build upon these results by analyz-
ing the impact of individual LLHs on the performance of different
hyper-heuristics, as well as their interaction with each other and
the parameter values chosen by hyper-heuristics for those LLHs.
This includes an investigation of the suitability of the LLH portfo-
lio for similar project scheduling problems, including potentially
additional operators to deal with new aspects of those problems.

We also plan to integrate our problem domain implementa-
tion into the existing real-world scheduling system, so that hyper-
heuristics can be used in practice next to the existing solution
methods.

ACKNOWLEDGMENTS
The financial support by the Austrian Federal Ministry for Digi-
tal and Economic Affairs, the National Foundation for Research,
Technology and Development and the Christian Doppler Research
Association is gratefully acknowledged.

REFERENCES
[1] Steven Adriaensen, Tim Brys, and Ann Nowé. 2014. Fair-Share ILS: A Simple

State-of-the-Art Iterated Local Search Hyperheuristic. In Proceedings of the 2014

327

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Florian Mischek and Nysret Musliu

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

P
e
n
a
lt
y

(r
e
la

ti
ve

 t
o
 b

e
s
t)

RL AdapHH SA VLNS

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

RL AdapHH SA VLNS

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

RL AdapHH SA VLNS

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

All Small Large

Figure 3: Comparison of results for the RL and AdapHH hyper-heuristics with those achieved by SA [17] and VLNS [10]. Results
for each instance were scaled by the best result achieved on that instance. Results are shown separately for all instances, for
small (≤ 20 projects) instances only, and for large (> 20 projects) instances only.

M
:R

an
do

m
M

od
eM

ov
e

M
:R

an
do

m
Ti

m
es

lot
M

ov
e

M
:R

an
do

m
Res

ou
rc

eM
ov

e

M
:R

an
do

m
Reg

ro
up

M
ov

e

M
:R

an
do

m
ize

M
:R

an
do

m
W

alk

LS
:C

lim
bM

od
eT

im
es

lot

LS
:C

lim
bR

es
ou

rc
es

LS
:C

lim
bJ

ob
op

t

LS
:C

lim
bR

eg
ro

up

LS
:M

inC
on

flic
tT

im
e

LS
:M

inC
on

flic
tR

es
ou

rc
e

LS
:M

inC
on

flic
tJo

bo
pt

LS
:M

inC
on

flic
tR

eg
ro

up

LS
:S

HCHigh

LS
:S

HCLo
w

LS
:S

HCM
in

LS
:S

ing
leP

ro
jec

tC
P

LS
:O

ne
ByO

ne
Gre

ed
y

RR:R
eb

uil
d

RR:R
eg

ro
up

CO:P
ro

jec
t

CO:S
ing

leP
oin

t

CO:T
woP

oin
t

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

all

small

large

%
 o

f A
pp

lic
at

io
ns

Figure 4: Relative usage of each LLH by AdapHH. Shown are average statistics over all instances, only small instances, or only
large instances.

M
:R

an
do

m
M

od
eM

ov
e

M
:R

an
do

m
Ti

m
es

lot
M

ov
e

M
:R

an
do

m
Res

ou
rc

eM
ov

e

M
:R

an
do

m
Reg

ro
up

M
ov

e

M
:R

an
do

m
ize

M
:R

an
do

m
W

alk

LS
:C

lim
bM

od
eT

im
es

lot

LS
:C

lim
bR

es
ou

rc
es

LS
:C

lim
bJ

ob
op

t

LS
:C

lim
bR

eg
ro

up

LS
:M

inC
on

flic
tT

im
e

LS
:M

inC
on

flic
tR

es
ou

rc
e

LS
:M

inC
on

flic
tJo

bo
pt

LS
:M

inC
on

flic
tR

eg
ro

up

LS
:S

HCHigh

LS
:S

HCLo
w

LS
:S

HCM
in

LS
:S

ing
leP

ro
jec

tC
P

LS
:O

ne
ByO

ne
Gre

ed
y

RR:R
eb

uil
d

RR:R
eg

ro
up

CO:P
ro

jec
t

CO:S
ing

leP
oin

t

CO:T
woP

oin
t

0

0.1

0.2

0.3

0.4

0.5

0.6

all

small

large

S
uc

ce
ss

 p
ro

ba
bi

lit
y

Figure 5: Success probability of each LLH by AdapHH. A successful application is defined as one that directly results in a new
best solution. Shown are average statistics over all instances, only small instances, or only large instances.

328

Problem-independent hyper-heuristics for real-world TLSP GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Annual Conference on Genetic and Evolutionary Computation (Vancouver, BC,
Canada) (GECCO ’14). Association for Computing Machinery, New York, NY,
USA, 1303–1310. https://doi.org/10.1145/2576768.2598285

[2] Steven Adriaensen, Gabriela Ochoa, and Ann Nowé. 2015. A benchmark set
extension and comparative study for the HyFlex framework. In 2015 IEEE Congress
on Evolutionary Computation (CEC). 784–791. https://doi.org/10.1109/CEC.2015.
7256971

[3] Stephen A. Adubi, Olufunke O. Oladipupo, and Oludayo O. Olugbara. 2021. Con-
figuring the Perturbation Operations of an Iterated Local Search Algorithm for
Cross-domain Search: A Probabilistic Learning Approach. In 2021 IEEE Con-
gress on Evolutionary Computation (CEC). 1372–1379. https://doi.org/10.1109/
CEC45853.2021.9504841

[4] Stephen A. Adubi, Olufunke O. Oladipupo, and Oludayo O. Olugbara. 2022.
Evolutionary Algorithm-Based Iterated Local Search Hyper-Heuristic for Combi-
natorial Optimization Problems. Algorithms 15, 11 (2022). https://www.mdpi.
com/1999-4893/15/11/405

[5] Edmund K. Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Barry
McCollum, Gabriela Ochoa, Andrew J. Parkes, and Sanja Petrovic. 2011. The Cross-
Domain Heuristic Search Challenge – An International Research Competition.
In Learning and Intelligent Optimization, Carlos A. Coello Coello (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 631–634.

[6] Edmund K Burke, Matthew R Hyde, Graham Kendall, Gabriela Ochoa, Ender Öz-
can, and John R Woodward. 2019. A classification of hyper-heuristic approaches:
revisited. In Gendreau, M., Potvin, JY. (eds) Handbook of Metaheuristics.and In-
ternational Series in Operations Research Management Science, vol 272. Springer,
Cham., 453–477. https://doi.org/10.1007/978-3-319-91086-4_14

[7] Shin Siang Choong, Li-Pei Wong, and Chee Peng Lim. 2018. Automatic design of
hyper-heuristic based on reinforcement learning. Information Sciences 436-437
(2018), 89–107. https://doi.org/10.1016/j.ins.2018.01.005

[8] Geoffrey Chu. 2011. Improving combinatorial optimization. Ph. D. Dissertation.
University of Melbourne, Australia. http://hdl.handle.net/11343/36679

[9] Chung-Yao Chuang. 2020. CombiningMultiple Heuristics: Studies on Neighborhood-
base Heuristics and Sampling-based Heuristics. Ph. D. Dissertation. Carnegie
Mellon University.

[10] Philipp Danzinger, Tobias Geibinger, David Janneau, Florian Mischek, Nysret
Musliu, and Christian Poschalko. 2022. A System for Automated Industrial Test
Laboratory Scheduling. ACM Transactions on Intelligent Systems and Technology
(2022). https://doi.org/10.1145/3546871

[11] Philipp Danzinger, Tobias Geibinger, Florian Mischek, and Nysret Musliu. 2020.
Solving the Test Laboratory Scheduling Problem with Variable Task Grouping.
In International Conference on Planning and Scheduling (ICAPS) 2020.

[12] Tobias Geibinger, Florian Mischek, and Nysret Musliu. 2019. Investigating Con-
straint Programming for Real World Industrial Test Laboratory Scheduling. In
Proceedings of the Sixteenth International Conference on the Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research (CPAIOR
2019).

[13] Tobias Geibinger, Florian Mischek, and Nysret Musliu. 2021. Constraint Logic
Programming for Real-World Test Laboratory Scheduling. Proceedings of the
AAAI Conference on Artificial Intelligence 35, 7 (May 2021), 6358–6366. https:
//ojs.aaai.org/index.php/AAAI/article/view/16789

[14] Florian Mischek and Nysret Musliu. 2018. A Local Search Framework for In-
dustrial Test Laboratory Scheduling. In Proceedings of the 12th International
Conference on the Practice and Theory of Automated Timetabling (PATAT-2018),
Vienna, Austria, August 28–31, 2018. 465–467.

[15] Florian Mischek and Nysret Musliu. 2021. A local search framework for industrial
test laboratory scheduling. Annals of Operations Research 302 (2021), 533–562.
https://doi.org/10.1007/s10479-021-04007-1

[16] Florian Mischek and Nysret Musliu. 2022. Reinforcement Learning for Cross-
Domain Hyper-Heuristics. In Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022,
Luc De Raedt (Ed.). ijcai.org, 4793–4799. https://doi.org/10.24963/ijcai.2022/664

[17] Florian Mischek, Nysret Musliu, and Andrea Schaerf. 2021. Local Search Ap-
proaches for the Test Laboratory Scheduling Problem with Variable Task Group-
ing. Journal of Scheduling (2021). https://doi.org/10.1007/s10951-021-00699-2

[18] Florian Mischek, Nysret Musliu, and Andrea Schaerf. 2022. Local Search Neigh-
borhoods for Industrial Test Laboratory Scheduling with Flexible Grouping. In
Proceedings of the 13th International Conference on the Practice and Theory of
Automated Timetabling (PATAT-2022).

[19] MustafaMısır, Katja Verbeeck, PatrickDeCausmaecker, andGreet Vanden Berghe.
2012. An Intelligent Hyper-Heuristic Framework for CHeSC 2011. In Learning and
Intelligent Optimization, Youssef Hamadi and Marc Schoenauer (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 461–466.

[20] Gabriela Ochoa, Matthew Hyde, Tim Curtois, Jose A. Vazquez-Rodriguez, James
Walker, Michel Gendreau, Graham Kendall, Barry McCollum, Andrew J. Parkes,
Sanja Petrovic, and Edmund K. Burke. 2012. HyFlex: A Benchmark Framework
for Cross-Domain Heuristic Search. In Evolutionary Computation in Combina-
torial Optimization, Jin-Kao Hao and Martin Middendorf (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 136–147.

[21] Nasser R. Sabar, Masri Ayob, Graham Kendall, and Rong Qu. 2015. Automatic
Design of a Hyper-Heuristic Framework With Gene Expression Programming
for Combinatorial Optimization Problems. IEEE Transactions on Evolutionary
Computation 19, 3 (2015), 309–325. https://doi.org/10.1109/TEVC.2014.2319051

[22] Nasser R. Sabar and Graham Kendall. 2015. Population based Monte Carlo tree
search hyper-heuristic for combinatorial optimization problems. Information
Sciences 314 (2015), 225–239. https://doi.org/10.1016/j.ins.2014.10.045

329

https://doi.org/10.1145/2576768.2598285
https://doi.org/10.1109/CEC.2015.7256971
https://doi.org/10.1109/CEC.2015.7256971
https://doi.org/10.1109/CEC45853.2021.9504841
https://doi.org/10.1109/CEC45853.2021.9504841
https://www.mdpi.com/1999-4893/15/11/405
https://www.mdpi.com/1999-4893/15/11/405
https://doi.org/10.1007/978-3-319-91086-4_14
https://doi.org/10.1016/j.ins.2018.01.005
http://hdl.handle.net/11343/36679
https://doi.org/10.1145/3546871
https://ojs.aaai.org/index.php/AAAI/article/view/16789
https://ojs.aaai.org/index.php/AAAI/article/view/16789
https://doi.org/10.1007/s10479-021-04007-1
https://doi.org/10.24963/ijcai.2022/664
https://doi.org/10.1007/s10951-021-00699-2
https://doi.org/10.1109/TEVC.2014.2319051
https://doi.org/10.1016/j.ins.2014.10.045

	Abstract
	1 Introduction
	2 Hyper-heuristics
	3 Problem statement
	4 Hyper-heuristic problem domain model
	4.1 Low-level heuristics

	5 Evaluation
	5.1 Usage of low-level heuristics

	6 Conclusions
	Acknowledgments
	References

