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ABSTRACT
Secure communication protocols such as TLS 1.3 or QUIC are doing

the heavy lifting in terms of security of today’s Internet. These

modern protocols provide modes that do not need an interactive

handshake, but allow to send cryptographically protected data with

the first client message in zero round-trip time (0-RTT). While

this helps to reduce communication latency, the security of such

protocols in terms of forward security is rather weak.

In recent years, the academic community investigated ways of

mitigating this problem and achieving full forward security and

replay resilience for such 0-RTT protocols. In particular, this can be

achieved via a so-called Puncturable Key Encapsulation Mechanism

(PKEM). While the first such schemes were too expensive to be

used in practice, Derler et al. (EUROCRYPT 2018) proposed a vari-

ant of PKEMs called Bloom Filter Key Encapsulation Mechanism

(BFKEM). Unfortunately, these primitives have only be investigated

asymptotically and no real benchmarks were conducted. Dallmeier

et al. (CANS 2020) were the first to study their practical applica-

tion within the QUIC protocol. They build upon a specific BFKEM

instantiation and conclude that while it comes with significant

computational overhead, its practical use is feasible, especially in

applications where the increased CPU and memory load can be

tolerated.

In this paper, we revisit their choice of the concrete BFKEM in-

stantiation and show that by relying on the concept of Time-based

BFKEMs (TB-BFKEMs), also introduced by Derler et al. (EURO-

CRYPT 2018), one can combine the advantages of having compu-

tational efficiency and smaller key sizes. We thereby investigate

algorithmic as well as conceptual optimizations with various trade-

offs and conclude that our approach seems favorable for many

practical settings. Overall, this extends the applicability of 0-RTT

protocols with strong security in practice.

CCS CONCEPTS
• Security and privacy→ Public key (asymmetric) techniques.

KEYWORDS
0-RTT key exchange, QUIC, TLS, Bloom Filter Key Encapsulation

Mechanism

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CCSW ’23, November 26, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0259-4/23/11.

https://doi.org/10.1145/3605763.3625246

ACM Reference Format:
Christian Göth, Sebastian Ramacher, Daniel Slamanig, Christoph Striecks,

Erkan Tairi, and Alexander Zikulnig. 2023. Optimizing 0-RTT Key Exchange

with Full Forward Security. In Proceedings of the 2023 Cloud Computing
Security Workshop (CCSW ’23), November 26, 2023, Copenhagen, Denmark.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3605763.3625246

1 INTRODUCTION
Forward security is an essential security feature of utmost practical

relevance as it mitigates the consequences of secret-key leakage.

Most prominently known from key-exchange (KE) protocols, for-

ward security evolves secret-key material over time with the result

that, e.g., in the KE setting, older sessions stay secure once a newer

key is leaked. Consequently, “store-now-decrypt-later” attacks be-

come more difficult. Looking at practical applications, over 99% of

Internet sites
1
offer at least some form of forward security. More-

over, such a feature is included in numerous products from large

companies such as Apple
2
, Cloudflare

3
, Google

4
, and Microsoft

5
.

The cryptographic literature has a long body of research on

the topic of forward security. Besides interactive key-exchange

protocols (such as TLS 1.3, QUIC, hybrid KE, or ratcheting) [13,

18, 25, 32, 41], the feature is researched in further areas such as

public-key encryption [14, 31], digital signatures [5, 26], search on

encrypted data [12], updatable cryptography [43], mobile Cloud

backups [19], proxy cryptography [23], new approaches to Tor [36],

and distributed key management [24], among others.

Our focus will be on forward security of KE protocols and in

particular of zero round-trip time (0-RTT) KE protocols. In such

protocols, encrypted data can be sent immediately with the first

message from the client to the server. This is highly desirable in

practice as it combines strong forward security guarantees with

significantly reduced latency of communication. Latter property

is of utmost importance in many applications in particular the

Internet.
6
However, a naive realization, i.e., taking the receivers

public key and already encrypting payload in the first message

would not provide forward security. Commonly used key exchange

protocols that achieve a strong form of forward security (or, “full

forward security”) still require one round-trip. Only after the two

shares have been exchanged, the shared key can be derived and

thus a forward-secure channel be established. Hence, the initiator

1
Due to Qualys SSL Labs, https://www.ssllabs.com/ssl-pulse/, accessed in Sept. 2023.

2
https://support.apple.com/en-my/guide/security/sec100a75d12/web

3
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details

4
https://security.googleblog.com/2011/11/protecting-data-for-long-term-with.html

5
https://azure.microsoft.com/de-de/blog/tlsssl-cipher-suite-enhancements-and-

perfect-forward-secrecy

6
https://blog.cloudflare.com/introducing-0-rtt/
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needs to wait for the responder’s key share before being able to

send the first encrypted message.

Consequently and as we will discuss soon, commonly deployed

0-RTT protocols only provide a reduced form of forward security.

This is undesirable and thus forward security has received quite

some attention over the last years [16, 21, 22, 33] as it helps to

significantly reduce the latency while achieving strong security

guarantees and replay protection.

0-RTT protocols in practice. One protocol that has been de-

signed with a focus on 0-RTT is QUIC [40], which is standardized

as RFC 9000 by the IETF [35]. Omitting many technical details, the

part relevant to 0-RTT and forward security is that it implements

a custom cryptographic protocol based on Diffie-Hellman (DH).

Essentially, the very first connection of a client to a server requires

a 1-RTT KE, during which a medium-lived (typically two days) DH

share 𝑔𝑠 of the server is authentically delivered to the client. On

every subsequent connection, 𝑔𝑠 is used as a static DH share of the

server with a fresh ephemeral share 𝑔𝑥 of the client to initiate a

0-RTT key exchange, i.e., use a symmetric key derived from 𝑔𝑥𝑠

to encrypt payload already with the first message. The important

point is that the server re-uses the share 𝑔𝑠 for all sessions within

the lifetime of the medium-lived static DH share. Consequently,

an attacker which obtains the secret 𝑠 (which needs to be kept by

the server in this time window, e.g., for two days) can break the

confidentiality of all sessions that have used 𝑔𝑠 . Consequently, only

a weak form of forward security can be achieved [37]. Moreover,

without additional application-layer countermeasures there is also

no inherent replay protection (cf. [18]).

The probably most well-known protocol, the Transport-Layer

Security (TLS) protocol, as one of the major innovations in its ver-

sion 1.3 [39] has also introduced a 0-RTT feature. Again omitting

many technical details, the idea is that the client and the server in

their very first connection perform a full (non 0-RTT) TLS hand-

shake. From the shared secret obtained during this handshake, they

then can derive a so-called resumption secret, which will be used

in later sessions. The client simply stores this secret whereas the

server then later on resuming a session needs to retrieve it from

somewhere. There are two different modes, i.e., session caches (the

client stores a lookup key to the secret in a database at the server)

and session tickets (the resumption key is encrypted using a server

long-term key and is outsourced to the client). Every subsequent

connection can then use a 0-RTT handshake, where the client in

its first message will either include the lookup key (session caches)

or the encrypted session ticket (session tickets) together with a DH

share 𝑔𝑥 . Additionally, the client can send payload data encrypted

with a key derived from the resumption secret and some public

client random value. The server can then also send an ephemeral

DH share 𝑔𝑠 , so that further on 𝑔𝑥𝑠 can be used to encrypt payload

and only the initial data in the first message is solely protected by

the resumption secret.

When using session caches, the server can at any point delete

the resumption key and one can achieve forward security as well

as replay protection. However, the 0-RTT part of all sessions that

use the same resumption key can be broken once this secret leaks.

Hence, in order to achieve full forward security, one essentially falls

back to non-0-RTT modes. Alternatively, if session tickets are used,

an attacker compromising the long-term key used to encrypt the

resumptions keys can break forward security completely. Moreover,

the use of session tickets is also generally vulnerable to replay

attacks. We will subsequently not consider protocols with session

resumptions and refer the reader to a more in-depth discussion of

forward security in such protocols and solutions to these problems

to [3, 4].

0-RTT protocols via puncturable encryption. In [33], Günther

et al. observed that with puncturable encryption (PE) [29] or, more

precisely, puncturable key encapsulation mechanisms (PKEMs),

one can realize 0-RTT KE with full forward security and inherent

replay protection – something not known to be feasible before. In

a PKEM, one can puncture the secret key used to the decrypt a

ciphertext in a way, that the punctured secret key can no longer de-

crypt such a ciphertext. Consequently, one can thus obtain forward

security and puncturing the key also provides replay protection.

This new approach requires that the client already knows the pub-

lic key of the server before establishing the connection. In the

context of latency-sensitive applications such as the Internet of

Things (IoT), we observe that often clients communicate only with

a pre-configured server. Therefore, the public key of the server

can already be deployed during provisioning of the devices. In

case where this is not possible, only during the first connection

between a client and the server, a non-0-RTT key exchange has

to be performed. The client will receive the public key during this

connection and can store it for future use.

Practicality of puncturable key encapsulation. A huge draw-

back of the aforementioned PKEM by Günther et al. is that the

puncturing efficiency is far away from what can be tolerated in

a practical setting. Derler et al. [21, 22] proposed a variant of PE

called Bloom Filter Key Encapsulation (BFKEM) that achieves very

efficient puncturing by tolerating a non-negligible correctness er-

ror, something that is perfectly acceptable for the application in

forward-secure 0-RTT KE. Their conventional BFKEM construction

thereby trades efficiency for quite large secret keys. Besides, they

propose a notion of time-based BFKEM (TB-BFKEM) that combines

the advantages of having efficient puncturing and smaller keys at

the cost of a somewhat more expensive interval puncturing, i.e.,

switching from one time period to the other. But even this interval

puncturing is still orders of magnitude faster then the puncturing

of the construction by Günther et al. Unfortunately, all these works

only provide asymptotic comparison of efficiency and, thus, it is

unclear how such schemes perform in practice.

Integration of PKEM into QUIC. In a recent work, Dallmeier

et al. [18] discuss the integration of one particular instantiation of

BFKEM from [21] based on the identity-based broadcast encryption

(IBBE) scheme by Delerablée [20] into QUIC (see Figure 1 for an

illustration of their implementation).

While their concrete choice of the primitives allows to achieve

constant-size ciphertexts and keeping the public and secret keys

reasonably small, it is computationally expensive and does not

allow for many trade-offs. As a consequence, a natural question is

whether one can do better in terms of trade-offs that are interesting

for practical applications.

Open questions. Unfortunately, besides the work by Dallmeier

et al. [18], so far there are only asymptotic comparisons between

 

56



Optimizing 0-RTT Key Exchange with Full Forward Security CCSW ’23, November 26, 2023, Copenhagen, Denmark

Client Server

(sk, pk) ← KGen(1𝜆 ,𝑚, 𝑘 )
Request pk

−−−−−−−−−−−−−→

Verify signature

pk, 𝜎 (pk)
←−−−−−−−−−−−−−

(𝐶,K) ← Enc(pk) 𝐶−−−−−−−−−−−−−→ K = Dec(sk,𝐶 )
sk = Punc(sk,𝐶 )

0-RTT data−−−−−−−−−−−−−→

Figure 1: Simplified QUIC handshake protocol as implemented in
Dallmeier et al. [18]. KGen computes the server’s secret and public
keys (sk, pk) based on the Bloom-filter parameter𝑚 and 𝑘 , Enc en-
capsulates the session key K on the client side,Dec decapsulates such
key on the server’s side, while Punc punctures the sk on the retrieved
ciphertext𝐶 . Moreover, 𝜎 (pk) reflects the server’s signature on the
public key using a long-term signing key (which has only to be sent
if pk is not known to the client yet). Using K, data can be sent in
0-RTT while achieving forward security and replay protection.

different constructions and in particular between BFKEMs and TB-

BFKEMs. Consequently, it is not entirely clear how good these

schemes for parameters of practical interest perform in practice. In

doing so, we want to explore different paths for optimizing the use

of (TB)-BFKEM by 𝑖) looking at the underlying concept of a Bloom

Filter and 𝑖𝑖) exploring different design approaches and trade-offs.

Moreover, we want to provide an implementation that uses various

different optimization and provide extensive benchmarks. This can

guide practitioners for making the optimal choices when knowing

the constraints of a given application scenario.

Our contribution. Our contribution in this paper is threefold.

First, we revisit the use and parametrization of the Bloom filter

in (TB-)BFKEMs. Thereby, we show a number of positive results

and in particular:

• Make encapsulation and decapsulation more efficient and

ciphertexts smaller. We can reduce the number 𝑘 of hash

functions for the Bloom filter if we allow for a small increase

of the secret-key size (scaling in𝑚). For example, reducing

𝑘 by 45% while increasing𝑚 only by 15% (cf. Section 3.2).

• Reduce the secret key size exponentially (in 𝑡 ) while keep-

ing runtimes low and, in particular, independent of 𝑡 (cf.

Section 4.2).

• Further reduce the secret key size by using a ternary instead

of binary tree (cf. Section 4.3).

• Further reduce the secret key size by using all nodes instead

of just the leaf nodes in the tree (cf. Section 4.4).

Besides the above results, we also investigate some paths that either

do not lead to improvements or would require schemes that are

not yet available from the literature. We looked at probabilistic

puncturing. Unfortunately, such a puncturing approach introduces

a false-negative probability and the key size can only be reduced by

a factor of (1−𝑞) where 𝑞 is essentially the false-negative probabil-

ity (which needs to be kept very low). Moreover, we investigated

whether in a TB-BFKEM we can directly manage the secret keys in

a binary tree using a hierarchical identity-based encryption (HIBE)

scheme [10, 27, 34]. This would only work for HIBE schemes with

constant-size secret keys and where the constant is at most 2. Un-

fortunately, to best of our knowledge, we are not aware of any such

HIBE scheme. Due to the lack of space, we report those negative

findings in more detail in Appendix A.

Second, we provide an optimized C implementation of a TB-

BFKEM from the Boneh-Boyen-Goh (BBG) HIBE [10] where we

provide a number of optimizations. In particular, we use a common

and highly performant strongly secure one-time signature scheme

(i.e., the EdDSA scheme) for the compiler to achieve security against

chosen-ciphertext attacks. Moreover, we implement algorithmic

measures for performance improvement such as parallelization as

well as the use of small pre-computation tables to improve key

generation and interval puncturing.

Third, we provide exhaustive benchmarking as well as a compar-

ison with the BFKEM instantiation in context of QUIC by Dallmeier

et al. [18]. We show that with TB-BFKEM one can overcome the

need to switch public keys every two days. In particular, we can

obtain a secret key size that is comparable but smaller to the imple-

mentation due to Dallmeier et al. And with the same performance

characteristics, our TB-BFKEM approach can easily scale the num-

ber of puncturings to support key lifetimes of multiple months or to

support significantly more connections per second. We remark that

we our comparison is only at the BFKEM level and for a comparison

of (TB)-BFKEM based key 0-RTT exchange with the 0-RTT version

provided by QUIC, we refer the reader to [18].

2 PRELIMINARIES
In this section, we provide our notation and the building blocks.

Notation. For 𝑛 ∈ N, let [𝑛] := {1, . . . , 𝑛}, and let 𝜆 ∈ N be the

security parameter. For a finite set S, we denote by 𝑠←$ S the

process of sampling 𝑠 uniformly from S. For an algorithm 𝐴, let

𝑦←$ 𝐴(𝑥) be the process of running 𝐴 on input 𝑥 with access to

uniformly random coins and assigning the result to 𝑦. We say an

algorithm 𝐴 is probabilistic polynomial time (PPT) if the running

time of 𝐴 is polynomial in 𝜆. A function 𝑓 is negligible if its ab-

solute value is smaller than the inverse of any polynomial (i.e., if

∀𝑐∃𝑘0∀𝜆 ≥ 𝑘0 : |𝑓 (𝜆) | < 1/𝜆𝑐 ).

2.1 Bloom Filters
ABloomfilter (BF) [8] is a probabilistic data structure for the approx-

imate set membership problem. It allows a succinct representation

𝑇 of a set S of elements from a large universe U. For elements

𝑠 ∈ S a query to the BF always answers 1 (“yes”), i.e., its false-

negative probability is 0. Ideally, a BF would always return 0 (“no”)

for elements 𝑠 ∉ S, but the succinctness of the BF comes at the cost

that for any query to 𝑠 ∉ S the answer can be 1, too, but only with

small probability (the false-positive probability or fpp).

We will only be interested in the original construction of Bloom

filters [8] and omit a general abstract definition. Instead, we describe

the construction from [8] directly. For a general definition we refer

to [38].

Definition 2.1 (Bloom Filter). A Bloom filter BF for set U con-

sists of algorithms BF = (BFGen,BFUpdate,BFCheck), which are

defined as follows.

BFGen(𝑚,𝑘): This algorithm takes as input two integers𝑚,𝑘 ∈
N. It first samples 𝑘 universal hash functions 𝐻1, . . . , 𝐻𝑘 ,
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where 𝐻 𝑗 : U → [𝑚], defines 𝐻 := (𝐻 𝑗 ) 𝑗∈[𝑘 ] and 𝑇 := 0
𝑚
,

and outputs (𝐻,𝑇 ).
BFUpdate(𝐻,𝑇 ,𝑢): Given 𝐻 = (𝐻 𝑗 ) 𝑗∈[𝑘 ] , 𝑇 ∈ {0, 1}𝑚 , and

𝑢 ∈ U, this algorithm defines the updated state 𝑇 ′ by first

assigning𝑇 ′ := 𝑇 . Then, it sets𝑇 ′ [𝐻 𝑗 (𝑢)] := 1 for all 𝑗 ∈ [𝑘],
and finally returns 𝑇 ′.

BFCheck(𝐻,𝑇 ,𝑢): Given 𝐻 = (𝐻 𝑗 ) 𝑗∈[𝑘 ] , 𝑇 ∈ {0, 1}𝑚 , and

𝑢 ∈ U, this algorithm returns a bit 𝑏 :=
∧

𝑗∈[𝑘 ] 𝑇 [𝐻 𝑗 (𝑢)].

Bounded false-positive probability. The probability that an

element which has not yet been added to the Bloom filter is erro-

neously “recognized” as being contained in the filter can be made

arbitrarily small, by choosing𝑚 and 𝑘 adequately, given (an upper

bound on) the size of S.
More precisely, let S = (𝑠1, . . . , 𝑠𝑛) ∈ U𝑛

be any vector of

𝑛 elements of U. Then for any 𝑠∗ ∈ U \ S, the false positive

probability 𝜇 is bounded by

𝜇 := Pr
[
BFCheck(𝐻,𝑇𝑛, 𝑠∗) = 1

]
≤

(
1 − 𝑒−

(𝑛+1/2)𝑘
𝑚−1

)𝑘
, (1)

where (𝐻,𝑇0) ←$ BFGen(𝑚,𝑘), 𝑇𝑖 = BFUpdate(𝐻,𝑇𝑖−1, 𝑠𝑖 ) for 𝑖 ∈
[𝑛], and the probability is taken over the random coins of BFGen.
See Goel and Gupta [28] for a proof of this bound.

Classical choice of parameters. Suppose we are given an upper

bound 𝑛 on the number of elements inserted into the Bloom filter,

and an upper bound 𝑝 on the false-positive probability for this

number of elements that we can tolerate. Our goal is to determine

the size𝑚 of the Bloom filter and the number 𝑘 of hash functions

to achieve a false positive probability of 𝜇 ≤ 𝑝 with respect to 𝑛.

Using inequality Equation (1) the choice of

𝑚 :=

⌈−(𝑛 + 1/2) (log
2
𝑝 + 1)

ln 2

⌉
+ 1 and 𝑘 := ⌊ (𝑚 − 1) ln 2

𝑛 + 1/2 ⌋,

yields the desired bound 𝜇 ≤ 2
−𝑘 ≤ 𝑝 on the false-positive proba-

bility of the Bloom filter.

2.2 (Hierarchical) Identity-Based Encryption
We present the basic definition of HIB-KEMs.

Definition 2.2. A 𝑙-level hierarchical identity-based key encap-

sulation scheme (HIB-KEM) with identity space D≤𝑙 , ciphertext
space C, and key spaceK consists of the following four algorithms:

HIBGen(1𝜆) : Takes as input a security parameter and outputs

a key pair (mpk, sk𝜀 ). We say that mpk is the master public

key, and sk𝜀 is the level-0 secret key.
HIBDel(sk ®𝑑 ′ , 𝑑) : Takes as input secret key sk ®𝑑 ′ and 𝑑 ∈ D,

and outputs a secret key sk ®𝑑 ′ |𝑑 . (We refer to | as concatena-
tion.)

HIBEnc(mpk, ®𝑑) : Takes as input the master public key mpk
and an identity

®𝑑 ∈ D≤𝑙 and outputs a ciphertext𝐶 ∈ C and

a key K ∈ K .
HIBDec(sk ®𝑑 ,𝐶) : Takes as input a secret key sk ®𝑑 and a cipher-

text 𝐶 , and outputs a value K ∈ K ∪ {⊥}, where ⊥ is a

distinguished error symbol.

Correctness for HIB-KEM. We require that for all 𝜆 ∈ N, for all
(mpk, sk𝜀 ) ←$ HIBGen(1𝜆), for all𝑑 ∈ D, for all sk ®𝑑 ′ |𝑑 ←

$ HIBDel(

sk ®𝑑 ′ , 𝑑), for all
®𝑑 ∈ D≤𝑙 , for all (𝐶,𝐾) ←$ HIBEnc(mpk, ®𝑑), we have

that HIBDec(sk ®𝑑 ,𝐶) = 𝐾 holds.

In the following, we want to present different variants of HIBEs
which we will later consider for our schemes according to their

parameter sizes.

Boneh-Boyen (BB). The firstHIBEwewant to take a look at is the
one presented in [9]. Here aHIBE secret key on level 𝑘 contains 𝑘+2
group elements and thus the secret key grows with the depth of an

identity. Also Enc getsmore expensivewhen the depth of an identity

is increased as it needs to perform basically 𝑘 + 2 exponentiations
with a resulting ciphertext of 𝑘 + 2. The algorithm Dec computes

𝑘 + 1 pairings and 𝑘 exponentiations.

Boneh-Boyen-Goh (BBG). The BBG HIBE [10] has the opposite

behavior compared to the previous one concerning secret key sizes.

The private key shrinks with the depth of an identity i.e. a key

on level 𝑘 in a HIBE of depth 𝑙 contains 2 + 𝑙 − 𝑘 group elements.

We note that decryption takes only 2 pairings and 𝑒 (𝑔1, 𝑔2) can
be pre-computed for encryption and therefore no pairing needs

to be computed for encryption. One of the main advantages is the

constant size of ciphertexts for identities on different levels.

Hybrid scheme (BBG-H). The work in [10] also presents a com-

bination of the previous two HIBE schemes. This construction aims

to combine those two for a given parameter 𝜔 ∈ [0, 1]. By this one

can achieve secret key sizes of O(𝑙𝜔 + 𝑙1−𝜔 ) and ciphertexts of size
O(𝑙𝜔 ) for a HIBE of depth 𝑙 .

Lattice based HIBE. It is also possible to construct lattice-based
HIBEs. A construction with relatively short ciphertext and secret

keys is presented in [2]. TheirHIBE in the random oracle model has

ciphertext sizes of O(𝑛𝑙2) and secret key sizes of O(𝑘𝑛2𝑙2) where
𝑛 denotes the security parameter.

7
One important point to notice

is that especially sizes of secret keys of identities with increasing

depth become huge very soon.

3 IMPROVING BLOOM-FILTER KEMS
In this section, we provide improvements for Bloom-Filter KEMs

(BFKEMs). We start with recalling the formal model and properties.

3.1 Formal Model and Properties of BFKEM
Definition 3.1 (BFKEM). ABloom Filter key encapsulation scheme

(BFKEM) with key spaceK is a tuple (KGen, Enc, Punc,Dec) of PPT
algorithms:

KGen(1𝜆,𝑚, 𝑘) : Takes as input a security parameter 𝜆, param-

eters𝑚 and 𝑘 , and outputs a secret and public key (sk, pk)
(we assume that K is implicit in pk, and that pk is implicit

in sk).
Enc(pk) : Takes as input a public key pk, and outputs a cipher-

text 𝐶 and a symmetric key K.
Punc(sk,𝐶) : Takes as input a secret key sk and a ciphertext

𝐶 , and outputs an updated secret key sk′.
Dec(sk,𝐶) : Takes as input a secret key sk and a ciphertext

𝐶 , and deterministically computes and outputs a symmetric

key K or ⊥ if decapsulation fails.

7
Note that in the previously mentioned HIBEs based on bilinear maps we are talk-

ing about the number of group elements and therefore do not mention the security

parameter explicitly in the asymptotic behavior of ciphertext and key sizes.
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Correctness. We start by defining correctness of a BFKEM scheme.

Basically, here one requires that a ciphertext can always be decap-

sulated with unpunctured secret keys. However, we allow that if

punctured secret keys are used for decapsulation then the probabil-

ity that the decapsulation fails is bounded by some non-negligible

function in the scheme’s parameters𝑚,𝑘 .

Definition 3.2 (Correctness). We require that the following holds

for all 𝜆,𝑚, 𝑘 ∈ N and any (sk, pk) ←$ KGen(1𝜆,𝑚, 𝑘).
For any (arbitrary interleaved) sequence of invocations of

sk𝑗+1←$ Punc(sk𝑗 ,𝐶 𝑗 ),

where 𝑗 ∈ {1, . . . , 𝑛}, sk1 := sk, and (𝐶 𝑗 ,K𝑗 ) ←$ Enc(pk), it holds
that

Pr
[
Dec(sk𝑛+1,𝐶∗) ≠ 𝐾∗

]
≤

(
1 − 𝑒−

(𝑛+1/2)𝑘
𝑚−1

)𝑘
+ 𝜖 (𝜆),

where (𝐶∗,K∗) ←$ Enc(pk) and 𝜖 (·) is a negligible function in 𝜆.

The probability is over the random coins of KGen, Punc, and Enc.

The bound

(
1 − 𝑒−

(𝑛+1/2)𝑘
𝑚−1

)𝑘
is motivated by the bound achiev-

able by Bloom filters, cf. Equation (1).

Extended correctness. In [21], the definition of extended correct-

ness is provided. In the following, we will only need to define the

formal notion of Impossibility of false-negatives. We require that the

following holds for all 𝜆,𝑚, 𝑘, 𝑛 ∈ N and any (sk, pk) ←$ KGen(1𝜆,
𝑚, 𝑘).

For any (arbitrary interleaved) sequence of invocations of

sk𝑗+1←$ Punc(sk𝑗 ,𝐶 𝑗 )

where 𝑗 ∈ {1, . . . , 𝑛}, sk1 := sk, and (𝐶 𝑗 ,K𝑗 ) ←$ Enc(pk), it holds
that

Dec(sk𝑛+1,𝐶 𝑗 ) = ⊥ for all 𝑗 ≤ 𝑛. (2)

Construction. We will not provide the construction here since it

can be found in [21]. But we do want to recall the coarse idea of the

construction and asymptotic parameter sizes as well as runtimes.

The secret key contains𝑚 identity-based encryption (IBE) secret

keys for each identity 𝑖 ∈ [𝑚] and therefore grows linearly in the

size of parameter𝑚. For encapsulation, the algorithm randomly

creates a “unique” (with overwhelming probability) ciphertext com-

ponent from which 𝑘 identities are deterministically computed by

applying each of the 𝑘 hash functions of the Bloom filter. Each of

these identities is now used for encrypting the same key 𝐾 with

the underlying IBE scheme. Thus, the ciphertext consists of the ran-

domly created ciphertext component and 𝑘 IBE encryptions sharing

the same randomness. The Puncturing of a secret key on a specific

ciphertext only deletes the IBE secret keys of the corresponding 𝑘

identities and is very efficient. Decapsulation Dec needs to perform
at most 𝑘 Bloom-filter checks and (in case at least one of the secret

keys has not already been deleted) one IBE decryption.

It is important to emphasize that it is possible to construct a

BFKEM from any IBE [16]. In the following, we will only focus on

the BFKEM based on hashed Boneh-Franklin IBE [21].

3.2 Non-Classical Choice of Bloom-Filter
Parameters

In Section 2.1, we have shown the classical choice of Bloom-filter

parameters 𝑘 and𝑚 for given values of 𝜇 and 𝑛. In the following

section, we want to take a look at a different choice for those

parameters in order to improve aspects of our BFKEM.

Note that the presented classical choice essentially means (inde-

pendent of𝑚) for the number of hash functions that 𝑘 ≈ − log
2
(𝑝).

For the following considerations, we will only choose values of 𝑝 =

2
−𝑒

with 𝑒 ∈ N and therefore we can just assume 𝑘 = 𝑒 = − log
2
𝑝 .

Choosing larger values for 𝑘 . We stick to the setting of given

values 𝑛 and 𝑝 and we get to choose𝑚 and 𝑘 . While not changing

the classical value of𝑚, we do want to consider choosing a larger

number of hash functions, i.e., 𝑘 > − log
2
𝑝 . We already know that

regarding the fpp after exactly 𝑛 inserts, we will not perform better

by this non-optimal choice. But it is still interesting to look at the

behavior of the fpp after 𝛼 < 𝑛 inserts. As it has already been

mentioned in [21, 22], the fpp is overwhelmingly low if only a

fraction of the 𝑛 elements have been added to the Bloom filter. We

now want to focus on the behavior at the upper half of insertions,

i.e., 𝑛/2 < 𝛼 < 𝑛. Let us look at the following example to be more

precise. Given the parameters 𝑛 = 2
20

and 𝑝 = 2
−11

, the optimal

choice of parameters would be𝑚 ≈ 2
24

and 𝑘 = 11. In Figure 2a,

we visualize the evolution of the fpp after 𝛼 ∈ [𝑛/2, 𝑛] inserts for
𝑘 = 11 as well as parameters 𝑘 > 11.

We can conclude that we do get an improvement of a lower

fpp for a certain range of inserts. But these improvements are

only marginal since they are reached at levels where the current

fpp is already much lower than our desired upper bound 𝑝 . In

addition, we lose our upper bound when choosing larger values

of 𝑘 . Moreover, for a BFKEM, a larger value of 𝑘 means worse

performance for encapsulation and decapsulation, and typically

also larger ciphertexts. Thus, we can conclude that a larger value of

𝑘 , the gains are insignificant and outweigh by their disadvantages.

Choosing smaller values for 𝑘 . Now one can ask whether choos-

ing smaller values of𝑘 could be helpful. Taking the same parameters

as above, in Figure 2b, we plot the fpp for 𝑘 = 11 as well as parame-

ters 𝑘 < 11.

We can immediately see that for smaller values of 𝑘 , we do

not only lose the upper bound on the fpp after 𝑛 inserts but it

also behaves worse after only 𝛼 < 𝑛 inserts. However, we gain

a lower runtime for the encapsulation/decapsulation and smaller

ciphertexts as mentioned above and in this case it could be worth it

to not keep the parameter𝑚 fixed but increase it for lower values

of 𝑘 , i.e., trading better performance against higher key size. For a

given upper bound 𝑝 on the fpp, we take another look at inequality

Equation (1) and after some manipulations, we can state that this

inequality holds for

𝑚𝑘 ≥ 1 −
(𝑛 + 1

2
)𝑘

ln(1 − 𝑘
√
𝑝) .

Of course this 𝑚𝑘 is bigger than the optimal choice of 𝑚 if 𝑘 <

− log
2
(𝑝).

Figure 3, we can see how much bigger the bloom filter size𝑚𝑘 is

in percentage compared to the optimal choice of𝑚. It is interesting

to observe how we only need to increase the size of𝑚 by around
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(b) 𝑘 ≤ 11

Figure 2: fpp after 𝛼 inserts for 𝑛 = 2
20, 𝑝 = 2

−11,𝑚 ≈ 2
24 and

different values of 𝑘 .
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Figure 3: Comparison of needed Bloom filter sizes for 𝑛 =

2
20, 𝑝 = 2

−11.

15%when we reduce the number of hash functions to 6 and thereby

nearly halve the cost for encapsulation and the size of ciphertexts.

Now that we have determined the suitable choice of𝑚𝑘 in order to

achieve the upper bound 𝑝 for the fpp, we should not ignore the

fact that the behavior of the fpp is different before 𝑛 inserts.

Figure 4 illustrates that we still get a higher fpp before 𝑛 inserts

for smaller 𝑘 even if we increase the size of the bloom filter, 𝑚.

One has to take that into consideration when using the presented

strategy. But we can conclude that this strategy can be a reasonable

choice when one wants to achieve a better performance and can

accept a slightly bigger key size.
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Figure 4: fpp after 𝛼 inserts for 𝑛 = 2
20, 𝑝 = 2

−11 and different
values of 𝑘 with the corresponding𝑚𝑘 .

4 TIME-BASED BLOOM-FILTER KEMS
The ideas presented so far do not provide a huge impact on the

desired reduction of key-sizes. Consequently, we take a closer look

at the optimization potential for time-based BFKEMs (TB-BFKEMs)

and note that the previous finding can also be applied in this set-

ting. In this approach, ciphertexts are associated with time slots

and one assumes loosely synchronized clocks between sender and

receiver of a ciphertext. Besides the trivial approach of designing

a TB-BFKEM by assigning an individual key-pair for each time

slot, the main advantage of the TB-BFKEM in [21] is to achieve a

logarithmic reduction of the secret key by using a time-tree based
on HIBEs.

8
In particular, one can use 2

𝑡
time slots (and their cor-

responding secret keys) while only needing a time-tree of depth 𝑡 .

In the following, we want to take a closer look at the behavior of

key-sizes with a focus on the question if we can indeed accomplish

a logarithmic reduction of the key-size when using the time-based

approach.

4.1 Model and Construction of TB-BFKEM
We stick to the notations used in [21] and present the definition of

TB-BFKEM.

Definition 4.1 (TB-BFKEM). A puncturable forward-secret key

encapsulation (TB-BFKEM) scheme is a tuple of the following PPT
algorithms:

KGen(1𝜆,𝑚, 𝑘, 𝑡 ′) : Takes as input a security parameter 𝜆, pa-

rameters𝑚 and 𝑘 for the Bloom filter, and a parameter 𝑡 ′

specifying the number of time slots. It outputs a secret and

public key (sk, pk), where we assume that the key-space K
is implicit in pk and that pk is implicit in sk.

Enc(pk, 𝜏) : Takes as input a public key pk and a time slot 𝜏

and outputs a ciphertext 𝐶 and a symmetric key K.
PuncCtx(sk, 𝜏,𝐶) : Takes as input a secret key sk, a time slot

𝜏 , a ciphertext 𝐶 and outputs an updated secret key sk′.
Dec(sk, 𝜏,𝐶) : Takes as input a secret key sk, a time slot 𝜏 , a

ciphertext 𝐶 and deterministically computes and outputs a

symmetric key K or ⊥ if decapsulation fails.

8
Another aspect worth mentioning is that we also achieve a form of additional delayed

forward secrecy between intervals, as the usage of different time slots counters message

suppression attacks.
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PuncInt(sk, 𝜏) : Takes as input a time slot 𝜏 and a secret key

sk for any time slot ≤ 𝜏 , and outputs an updated secret key

sk′ for the time slot 𝜏 + 1.

For formal definitions of security and correctness we refer the

reader to [21] as we do not require it for our further treatment here.

Intuition of the construction. For the detailed description of

our TB-BFKEM construction, we refer once again to [21]. The idea

of the construction is to use a tree of depth 𝑡 + 1 with 𝑡 ′ := 2
𝑡

level-𝑡 nodes each representing one of the 𝑡 ′ time slots. Each of

those nodes has a fixed number𝑚𝑡 of children representing the

Bloom filter of this time slot which makes this tree represent a

(𝑡 + 1)-level HIB-KEM with identity space {0, 1}𝑡 × [𝑚𝑡 ]. This al-
lows us not only to puncture the secret key on specific ciphertexts

by deleting BF-keys but we can also puncture time intervals by

traversing the 𝑡-th level of the tree from left to right. Since almost

all algorithms are basically derived from the known ones of afore-

mentioned BFKEM and HIB BFKEM schemes, we will only focus

on the PuncInt algorithm.

PuncInt(sk, 𝜏) : Given a secret key sk = (𝑇, skBloom, sktime) for
time interval 𝜏 ′ ≤ 𝜏 , the time puncturing algorithm proceeds as

follows. First, it resets the Bloom filter by setting 𝑇 := 0
𝑚
. Then it

uses the key delegation algorithm to first compute sk𝜏 . This key
can be computed from the keys contained in sktime, because sk is a

key for time interval 𝜏 ′ ≤ 𝜏 . Then it computes

sk𝜏 |𝑑 ←$ HIBDel(sk𝜏 , 𝑑) for all 𝑑 ∈ [𝑚],

and redefines skBloom := (sk𝜏 |𝑑 )𝑑∈[𝑚] . Finally, it updates sktime by

computing the HIB-KEM secret keys associated to all right-hand
siblings of nodes that lie on the path from node 𝜏 to the root and

adds the corresponding keys to sktime. Then it deletes all keys from

sktime that lie on the path from 𝜏 to the root.

Offline interval puncturing. Note that puncturing between

time intervals may become relatively expensive. Depending on the

choice of Bloom-filter parameters, in particular on 𝑚, this may

range between 2
15

and 2
25

HIBKEM key delegations. However,

the main advantage of TB-BFKEMs over previous constructions

of puncturable encryption is that these computations must not

be performed “online”, i.e., during puncturing, but can actually be

computed separately (for instance, parallel on a different computer,

or when a server has low workload, etc.).

Remark on CCA Security. We can add another HIBE level to

obtain IND-CCA security via the CHK transform [15] in the stan-

dard model, and thus to avoid random oracles if required. We note,

however, that one cannot straightforwardly apply the CHK trans-

form in a black-box way, but needs to take care that all 𝑘 HIB-KEM
ciphertexts 𝐶 𝑗 , 𝑗 ∈ [𝑘] need to use the same verification key of

the strong one-time signature used to sign the overall ciphertext.

A reasonable choice for the signature scheme is Schnorr [42] or

EdDSA [6, 7] or to even use the MAC-based compiler in [11].

4.2 Key Sizes and Runtimes
In the following, wewant to focus on the scenario of a given amount

of puncturings that we want to perform in a given period of time

(e.g. 𝑛 = 2
18

puncturings in one day). In the original BFKEM setting,

we would need a BF size of around𝑚 = 1.44 log
2
(1/𝑝)𝑛 yielding a

size of the secret key in the order of𝑚. In our example, we could

choose 𝑝 = 2
−11

and get a value of𝑚 ≈ 2
22
. For this fixed number

of 𝑛 resp.𝑚, we want to analyze different choices of 𝑡 in order to

split the day into 2
𝑡
time slots each one allowing for 𝑛𝑡 = 𝑛/2𝑡

puncturings reducing the BF size to𝑚𝑡 =𝑚/2𝑡 .9

Key sizes. We need to emphasize that for the following considera-

tions we instantiate our BFKEM with the hashed Boneh-Franklin

IBE and the TB-BFKEM with the BBG HIBE. The reason for the

latter is as follows. If we keep the number of time intervals at a

reasonable low value, we still have a decent number of BF keys𝑚𝑡

that we need to store at least in the beginning of each time slot.

In order to reduce the total size of the secret key, we are therefore

interested in using a HIBE in which the HIBE keys are as small as

possible for a high level 𝑘 of the corresponding node. Thus, the

chosen BBG HIBE promises the best reduction of the secret-key

size among all HIBEs presented in Section 2.2.

The maximum number of keys has to be stored at the beginning

of the first time slot – namely one level-𝑘 key for each 𝑘 ∈ {1, . . . , 𝑡}
and𝑚𝑡 level-𝑡+1 keys. Using the fact that for BBG of depth 𝑙 , level-𝑘

HIBE keys consist of 2 + 𝑙 − 𝑘 group elements, this collection of

keys gives us a total number of group elements as

𝑡∑︁
𝑘=1

2 + (𝑡 + 1) − 𝑘 + 2𝑚𝑡 =
1

2

𝑡2 + 5

2

𝑡 + 𝑚

2
𝑡−1 .
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Figure 5: Maximal number of group elements in secret key
for 𝑛 = 2

18 puncturings and 𝑝 = 2
−11 using BBG.

In Figure 5, one can see the evolution of this expression in 𝑡 for

specific values of 𝑛 and 𝑝 . For 𝑡 = 0 we are in the classical BFKEM
setting, where the maximal key just consists of the𝑚 = 2

22
group

elements. After that, the key size decreases (and is even halved in

the beginning as one can observe by comparison with the dashed

line) until 𝑡 reaches a value between 18 and 19 and from there on,

the key size is slightly increasing. Since the minimizing value 𝑡𝑚𝑖𝑛 is

hard to determine analytically in the general case, we just mention

that computing this minimizer for reasonable values of𝑚 yields

values ranging from log
2
(𝑚) − 5 to log

2
(𝑚) − 3. We can see that for

such values of 𝑡 the Bloom filter has a size of only 2
3
to 2

5
which is

rather problematic for practical applications. Firstly, the interval

puncturing has to be invoked too often and, secondly and more

problematic, in the 0-RTT KE application, it requires a very good

9
Notice that for simplicity we assume a partitioning of the time period such that the

puncturings are distributed evenly among the intervals.
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estimate on how many puncturings happen per unit time so that

the multiple clients know which time interval will be the valid one.

So we can take as a result that the expression is strictly decreasing

for reasonable values of 𝑡 – observing that for small values of 𝑡 it is

nearly reducing by half when adding one more layer to the time

tree.

Runtimes. We now want to analyze for the algorithms of the

TB-BFKEM how their runtimes behave for different values of 𝑡 .

Encryption performs a total of 𝑘 HIB-KEM key encapsulations

for HIB-KEM identities of level 𝑡 + 1 as well as a key and signature

generation for the one-time signature scheme. For BBG, each of

those needs to compute 𝑡 + 2 multiplications and 3 exponentiations,

and we can precompute the values of ℎ
𝐻 (0)
𝑗

and ℎ
𝐻 (1)
𝑗

for each

𝑗 = 1, . . . , 𝑡 once and store them for example in the public key. This

increases the public key by 2𝑡 group elements but also helps to make

the encryption linearly dependent on 𝑡 only in the multiplications.

Ciphertext puncturing consists only of updating the BF and

deleting elements from the secret key.

Decryption performs at most 𝑘 membership checks in the Bloom

Filter and oneHIB-KEM key decapsulation plus the one-time signa-

ture verification. For BBG this consists of 2 pairings, 1 computation

of an inverse and 3 multiplications so the runtime is basically inde-

pendent of 𝑡 .

The Puncturing between time intervals is probably the most

interesting algorithm to analyze regarding its runtime for variable

values of 𝑡 .10 In the worst case we need to do 2 key delegations

for each of the 𝑡 levels in the time tree and we always perform

another𝑚𝑡 key delegations for the Bloom filter keys on the last

level. We want to take a closer look at the cost of a key delegation

on a specific level. We need to remark that we always do at least

two key delegations from any level 𝑘 − 1 key sk𝑘−1 – either to

both siblings sk𝑘−1 |0 and sk𝑘−1 |1 or to all of the Bloom filter keys

in the case 𝑘 = 𝑡 + 1. We realize in BBG that the computation of

the product ℎ
𝐻 (𝐼1 )
1

· · ·ℎ𝐻 (𝐼𝑘−1 )
𝑘−1 only needs to be performed once

for all children of the node with identity (𝐼1, . . . , 𝐼𝑘−1). As already
mentioned, we can assume that the values ℎ

𝐻 (0)
𝑗

and ℎ
𝐻 (1)
𝑗

for

each 𝑗 = 1, . . . , 𝑡 have been precomputed and we do not need to

perform those exponentiations. In total for any 𝑘 = 1, . . . , 𝑡 +1 a key
delegation from any level 𝑘 − 1 key to a level 𝑘 key takes 5 + 𝑡 − 𝑘
exponentiations.

It is important to note that for different time intervals 𝜏 the

PuncInt(sk, 𝜏) needs to perform different key delegations on dif-

ferent levels in the time tree. The most effort has to be done when

𝜏 = 𝑡 ′/2 − 1 which is exactly the moment when PuncInt(sk, 𝜏)
makes the transition from the left subtree to the right subtree. Al-

most as in the algorithm KGen here we have to do 2 key delegations

from each level 𝑘 − 1 to 𝑘 for 𝑘 = 2, . . . , 𝑡 (and additionally𝑚𝑡 key

delegations from level 𝑡 to 𝑡 + 1).
Finally, we want to compute the maximal number of exponenti-

ations for PuncInt(sk, 𝜏) (so for the case 𝜏 = 𝑡 ′/2 − 1) which sums

10
Anyways one still needs to keep in mind that these computations can be performed

separately.

up to

𝑡∑︁
𝑘=2

5 + 𝑡 − 𝑘 + 4𝑚𝑡 =
1

2

𝑡2 + 7

2

𝑡 − 4 + 4𝑚𝑡 .

Recalling our results from the beginning of this section where

we computed the number of group elements in sk, we can conclude

that for reasonably small choices of 𝑡 the term 4𝑚𝑡 = 𝑚/2𝑡−2 is
dominating. So again we basically get a reduction by the factor

2 in the number of exponentiations when the value of 𝑡 is incre-

mented. In Table 1 we summarize the above made computations

Table 1: Number of operations for algorithms in TB-BFKEM
with BBG.

Algorithm Exponentiations Pairings other

Enc 3𝑘 0 O(𝑡𝑘)
PuncCtx 0 0 O(𝑘)
Dec 1 2 O(𝑘)
PuncInt 𝑚

2
𝑡−2 + 1

2
𝑡2 + O(𝑡) 0 O( 𝑚

2
𝑡−2 + 𝑡2)

and observations.

4.3 Different Arities of the Time Tree
So far, we have only considered time trees of arity 2 since this is

the most natural choice also by providing the number of each time

slot 𝜏 in its binary representation. Still it is interesting if we can

gain any improvements by changing the arity of the time tree to 3

or even higher.

Binary vs ternary. If we want to compare a binary tree of depth 𝑡

to a ternary tree of depth 𝑠 , we need to make sure that 𝑡 ≈ log
2
(3)𝑠 .

This leads to a similar size of Bloom filters𝑚/2𝑡 ≈𝑚/3𝑠 meaning

that the size of Bloom filter keys to be stored should be basically the

same for both trees. The interesting part to look at is the overhead

of keys that need to be stored in the time tree in the worst case. We

recall that for a binary tree of depth 𝑡 the total number of group

elements was given by

𝑓2 (𝑡) =
𝑡∑︁

𝑘=1

2 + (𝑡 + 1) − 𝑘 =
1

2

𝑡2 + 5

2

𝑡 .

For a ternary tree the worst case also occurs in the first time slot

where 2 level 𝑘 keys need to be stored on each level 𝑘 = 1, . . . , 𝑠

leading to a total amount of group elements of

𝑓3 (𝑠) =
𝑠∑︁

𝑘=1

2 · (2 + (𝑠 + 1) − 𝑘) = 𝑠2 + 5𝑠 .

Using the assumption 𝑡 = log
2
(3)𝑠 we would like to determine

for which values of 𝑠 the overhead of one method is bigger than

the other.

𝑓2 (𝑡) ≥ 𝑓3 (𝑠)

⇔ 𝑠 ≥
5 − 5

2
log

2
(3)

1

2
log

2
(6) − 1

≈ 3.55

We can see that for values of 𝑠 ≥ 4 respectively 3
𝑠 ≥ 81 we get

a lower overhead of group elements that we need to store in the

time tree.
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Ternary vs 4-ary. Now we want to investigate whether we can

reduce the overall key size even more if we increase the arity. If

we compare a 4-ary tree of depth 𝑟 with a ternary tree of depth 𝑠

we should ensure that 𝑠 ≈ log
3
(4)𝑟 . Since in the 4-ary case on each

level 𝑘 for 𝑘 = 1, . . . , 𝑟 we need to store 3 HIBE keys, the overhead

is given by

𝑓4 (𝑟 ) =
𝑟∑︁

𝑘=1

3 · (2 + (𝑟 + 1) − 𝑘) = 3

2

𝑟2 + 15

2

.

Performing the same computations as above we can conclude

that 𝑓3 (𝑠) ≥ 𝑓4 (𝑟 ) only for values of 𝑟 greater or equal to 14. Since

this corresponds to a total number of time slots of at least 4
14 = 2

28
,

we can conclude that in current realistic scenarios a 4-ary tree

probably offers no advantages compared to a ternary tree.

Concrete example. We can conclude that for a choice of at least 81

time slots in TB-BFKEM, the usage of ternary trees is basically the

best choice regarding maximal key sizes. In the following we want

to look at an example with concrete instantiations of parameters

and find out how big the difference between the number of group

elements is for binary and ternary trees. Let us assume we want

to do 2
23

puncturings in a given time period with a maximal fpp

𝑝 = 2
−11

. This leads to an optimal choice for𝑚 of about 2
27

and

𝑘 = 11. Choosing a rather high number of time intervals of 2
19

for

the binary tree respectively 3
12

for the ternary tree yields a Bloom

filter size of 256 respectively 253. For the overhead, we can compare

𝑓2 (19) = 228 and 𝑓3 (12) = 204 showing that using the ternary tree

gives a reduction by 24 group elements to be stored in the case that

the key size is maximal.

Average key size. It is easy to see that the average number of

overhead group elements that need to be stored, is exactly one half

for the binary as well as the ternary tree. For example in the case

of the binary tree, this comes from the fact that for a random time

slot 𝜏 and any 𝑘 ∈ {1, . . . , 𝑡} the probability is 0.5 that one level-𝑘

HIBE secret key needs to be stored. Thus, we can conclude that the

ternary tree also is to be preferred concerning the average case.

4.4 Using all Nodes Instead of Only Leafs
So far, we have only dealt with the approach of interpreting each

of the 2
𝑡
leaf nodes

11
with one time slot. Thus, one could wonder

what to save if also the inner nodes, e.g., using an ordering as in

[26] which can easily be adapted to the ternary case, as time slots

and delegating Bloom filter keys from those keys of identities are

shorter than 𝑡 . For the binary case, we can double the number of

time intervals from 2
𝑡−1

using only leaves to almost 2
𝑡
using all

nodes. For the ternary case, we obtain an increase from 3
𝑠−1 = 3

𝑠

3

to almost
3
𝑠

2
time slots when using all nodes. This corresponds to

an increase of a factor of
3

2
.

5 IMPLEMENTATION AND OPTIMIZATIONS
Based on the findings above, we have implemented TB-BFKEM
from Derler et al. [21, 22] using the BBG HIBE [10] based on the

11
Of course, they are only leaves in the binary tree of size 𝑡 (the time-tree), but each of

them has𝑚𝑡 children – representing the Bloom filter.

bilinear pairing library relic
12

in C. Our implementation is available

on Github.
13
.

Parallelization. Note that during key generation and puncturing,

all calls toHIBDel are independent. Hence, they can be performed in

parallel without any dependencies on earlier evaluations. Similarly,

during encryption the individual ciphertexts are independent of

each other. For all three operations, the implementation hence

extensively employs OpenMP [17] to saturate all available CPU

cores.

sOTS Instantiation. As we require pairings, one possible choice
for the strong one-time signature scheme is the one from Groth [30].

But as any other sEUF-CMA secure signature scheme also satisfies

the preconditions, we opted for EdDSA [6, 7]. Public keys and

signature sizes are thus significantly more compact and highly

optimized implementations of EdDSA are available in popular and

widely used libraries. We have based our integration of EdDSA on

libsodium.
14

Tree implementation. To validate the theoretical results regard-

ing the arity choice of tree for the management of the time epochs,

our tree implementation supports a fixed arity set during compile

time. In our implementation, we use every node of the tree. Hence,

instead of putting all time epochs into the leaf nodes, we also put

them into the intermediate nodes. Note however, this requires that

special care needs to be taken when deriving the keys for the Bloom

filter to perform domain separation between the keys stored in the

Bloom filter and those handling the time epochs.

Pre-computations. Key derivation from BBG as used during key

generation and puncturing in the time-based BFKEM requires an

extensive amount of exponentiations of a small set of generators.

To speed up these operations, we use relic’s pre-computation mech-

anisms for more efficient exponentiations. Note that this efficiency

gain comes at the cost of increased memory usage.

6 EVALUATION
For the following evaluation, we fixed some of the parameters of

the bloom filter. Specifically, the false positive probability was set

to 𝑝 = 0.001 and thereby having a fixed number of 𝑘 = 10 hash

functions.

Benchmark results. We performed extensive benchmarks for

the practical validation of our results. The benchmarks were per-

formed using relic version 0.6.0 and GCC version 12 on Ubuntu

22.04 running on an Intel Core i7-1265U with 32 GB of RAM. For

each algorithm, we conducted the benchmarks by first running a

warm up phase and then measuring 50 evaluations. The results

are depicted in Figures 6 and 7 and represent the average of the

measurements.

From these figures, we can observe that both key generation and

secret key sizes greatly benefit from smaller bloom filters which are

enabled by using ternary time trees and larger tree depths. Indeed,

comparing for example the configuration supporting 8.1 million

overall puncturings with ternary trees and a depth of 4, is as fast

as a configuration supporting 1.6 million puncturings in a binary

tree with a depth of 4. Also for smaller number of puncturings, we

12
https://github.com/relic-toolkit/relic

13
https://github.com/ait-crypto/bfe-bf

14
https://libsodium.gitbook.io/doc/
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Figure 6: Runtime performance of KGen for TB-BFKEM with
tree arity 𝑎 and depth 𝑑 , and IBBE-BFKEM from [18] as the
bloom filter size increases.
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Figure 7: Secret key sizes of TB-BFKEM with tree arity 𝑎 and
depth 𝑑 , and IBBE-BFKEM from [18] as the bloom filter size
increases.

can observe similar numbers. Thereby, the measured key sizes of

the concrete implementation validate our findings from Section 4.3

The runtime costs for ciphertext puncturing, PuncCtx, are negli-
gible is since the implementation of this function corresponds to

an index calculation and clearing of a small area of memory. For

PuncInt, note that similar to the performance of KGen, runtime is

dominated by deriving keys stored in the bloom filter. The runtime

observed for PuncCtx thus coincides with the one from KGen up

to a small additive factor.

The runtime performance of Enc of TB-BFKEM depends linearly

on 𝑘 . The size of the bloom filter and the arity of the tree has no

impact on the performance. The average was measured at 10 ms

for all instances. For Dec, the runtime was observed with numbers

between 7 and 8 ms.

Non-classical parameter choices. Finally, we also evaluated the

non-classical choices of bloom filter parameters as discussed in

Section 3.2. Our implementation confirms the trade-off between

secret key and ciphertext sizes. At the cost of increasing the size of

the secret key by about 20%, the size of ciphertext can be halved.

If Enc is evaluated in a linear fashion, the runtime of Enc is also
reduced by the same factor. However, as our implementation fully

parallelizes Enc and the benchmarking system supports the con-

current processing of more threads than 𝑘 , almost no differences in

the Enc runtime would be observable. To see the effect in Table 2,

we thus limited the parallelism.

Table 2: Enc runtime and secret key sk and ciphertext C sizes
(as factors of 𝑘 = 10) for non-classical choices for the bloom
filter. Bloom filter parameters: 𝑛 = 50000, 𝑝 = 0.001 and hash
functions 𝑘 .

𝑘 Enc sk size C size

5 0.84x 1.20x 0.51x

6 0.90x 1.10x 0.61x

7 0.92x 1.04x 0.71x

8 0.96x 1.02x 0.81x

9 0.98x 1.00x 0.90x

10 1.00x 1.00x 1.00x

Comparison with IBBE-BFKEM [18]. Figures 6 and 7 also in-

clude the numbers from the IBBE-BFKEM implementation
15

of [18]

evaluated on the same benchmark system. Note that key generation

and secret key sizes are on par with a ternary tree configuration

with a depth of 3. With higher depths, our approach can support a

significantly larger number of puncturings with a secret keys that

are more compact and where key generation is more efficient. Enc
of the IBBE-BFKEM implementation averages at around 6 ms and

Dec averages at around 10 ms. Here, the picture is the opposite of

the TB-BFKEM implementation. The sum of both runtimes – which

is of importance for authenticated key exchange protocols – is for

both implementations at around 16 to 18 ms.

Now let us consider a bloom filter with 𝑛 = 60
2 · 24 · 2 = 172800

expected punctures as recommended in [18]. This parameter choice

supports a connection per second for two full day which corre-

sponds to the interval required to achieve forward security in the

QUIC implementation that Dallmeier et al. evaluated. Consequently,

it also requires the key pair to be regenerated and recertified at

least once a day. If we consider more practical lifetimes of keys,

e.g., three months as common when using Let’s Encrypt [1], we

require 60
2 · 24 · 90 = 7776000 puncturings. With a ternary tree and

depth of 4, TB-BFKEM with a bloom filter supporting 𝑛 ≈ 100000

puncturings would suffice to satisfy these constraints. With this

tree configuration and daily interval puncturings, the secret keys

are smaller than those of the IBBE-BFKEM configuration yet we

are able to support a significantly larger timespan without the need

to switch public keys every day.

Note also, that beside the ability to stretch the key lifetime by

increasing the depth of the tree, our approach also allows us to

look at other trade-offs. Indeed, by increasing the depth of the

tree, we are also able to decrease the size of the bloom filter while

supporting the same number of overall puncturings. Thereby, the

secret key size decreases and the runtime performance of KGen and

PuncInt improves. More concretely, consider 𝑛 = 50000 which re-

duces secret key sizes and the runtime of KGen and PuncInt by half
in comparison to the case above. Assuming hourly interval punctur-

ings, such a choice supports 13 connections per second. Combined

15
Note that the implementations use different hash functions in the bloom filter

which affects the overall performance numbers. The implementation is available at

https://gitlab.com/buw-itsc/fs0rtt.
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with a ternary tree with a depth of 4, the configuration supports

13 connections per second for two days. Thus, with a smaller key

and faster key generation than IBBE-BFKEM, TB-BFKEM supports

more puncturings in the same timeframe.

With such a configuration, we can also consider choosing a non-

optimal 𝑘 . Setting 𝑘 = 5 allows us to reduce the ciphertext size by

halve and also improves the runtime on the client side. While the

secret key size would increase, it is still smaller than a IBBE-BFKEM

supporting the same number of puncturings which requires up to

370MB. With TB-BFKEM and 𝑘 = 5, the secret key is less than half

the size with 161MB.

7 CONCLUSION
In this work, we revisit the use of Bloom-Filter Key Encapsula-

tion Mechanisms (BFKEMs) to implement 0-RTT key exchange

with full forward security and replay protection. Our work is moti-

vated by its first practical implementation by Dallmeier et al. [18]

within the QUIC protocol and their choice to use a BFKEM based

on the identity-based broadcast encryption (IBBE) scheme by Del-

erablée [20]. In particular, we investigate the use of time-based

BFKEM (TB-BFKEM) as an alternative BFKEM approach which

can be based on any hierarchical identity-based encryption (HIBE)

scheme. In doing so, we explore conceptual optimizations on the

underlying Bloom filter, the realization of the time-tree and investi-

gate the trade-offs when instantiating the TB-BFKEM based on the

Boneh-Boyen-Goh (BBG) HIBE [10].

Moreover, we explore potential optimizations and trade-offs

within a concrete implementation of the scheme. Specifically, we

show that the additional degree of freedom of the TB-BFKEM re-

lated to the time intervals allows us to support significantly more

overall puncturings with the same secret key size or to reduce the

secret key size by halve. At the same time, our analysis of non-

optimal choices for the number of hash functions also enables us to

reduce the costs for clients while still keeping the secret key sizes

on the server smaller than in the case of IBBE-BFKEM.
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A NEGATIVE RESULTS
A.1 Probabilistic Puncturing
We recall (cf. Section 3.1) that a BFKEM allows a non-negligible

correctness error being essentially identical to the fpp of the Bloom

filter.

In the following we want to consider a new idea of puncturing

ciphertexts that would be suitable for another kind of applications

where we can even tolerate the possibility of false-negatives. In this

scenario with a certain probability a ciphertext can be decrypted

although the secret key has already been punctured on this cipher-

text and therefore the decryption should not be successful We need

to realize that we weaken the forward security of the BFKEM by

allowing for false-negatives. In both strategies discussed below we

will delete entries of the secret key only with a certain probability

in order to be able to perform more puncturings.

First strategy. We use essentially the same model as in the original

BFKEM, but adapt the Puncturing algorithm using a new parameter

𝑞 which denotes the probability of not Puncturing on a ciphertext:

Punc′ (sk,𝐶, 𝑞) : With probability 1 − 𝑞 perform Punc(sk,𝐶).
We do not achieve the Impossibility of false-negatives according

to Equation (2) anymore by choosing this algorithm. For 𝑞 > 0 there

is a false-negative probability 𝜈 > 0 for the event ofDec(𝑠𝑘𝑛+1,𝐶) ≠
⊥ for a randomly chosen 𝑗 ≤ 𝑛. We want to find out the value of 𝜈

for given values of 𝑞, 𝑘 and 𝑛.

As in the definition of Impossibility of false-negatives Equa-

tion (2) we consider the tuple 𝑆 = (𝐶1, . . . ,𝐶𝑛) of all ciphertexts
generated by Enc(𝑝𝑘). By 𝑆− we denote those elements of 𝑆 where

in Punc′ (sk,𝐶 𝑗 , 𝑞) the algorithm Punc(sk,𝐶 𝑗 ) has not been per-

formed.

Using this notation we get

𝜈 = Pr(Dec(𝑠𝑘𝑛+1,𝐶 𝑗 ) ≠ ⊥)
= Pr(BFCheck(𝐻,𝑇 ,𝐶 𝑗 [0]) = 0 ∧𝐶 𝑗 ∈ 𝑆−)
= Pr(𝐶 𝑗 ∈ 𝑆−) · Pr(BFCheck(𝐻,𝑇 ,𝐶 𝑗 [0] = 0) |𝐶 𝑗 ∈ 𝑆−)

≥ 𝑞 · (1 − 2−𝑘 ) .

Assuming a realistically high choice of 𝑘 in order to achieve a

maximal fpp of at most 10
−2

we have created a pretty tight lower

bound for 𝜈 and therefore can approximate 𝜈 ≈ 𝑞. Before evaluating
the meaning of these results let us look at the second strategy of

probabilistic puncturing.

Second strategy. In this approach we can describe the puncturing

in an informal way as

Punc′ (sk,𝐶, 𝑞) : Given a ciphertext 𝐶 :=

(
𝑔𝑟
1
, (𝐸 (𝑦 𝑗 ) ⊕ K) 𝑗∈[𝑘 ]

)
and secret key sk = (𝑇, (sk[𝑖])𝑖∈[𝑚] ), the algorithm first updates

the Bloom filter according to𝑇 ′ = BFUpdate′ (𝐻,𝑇 ,𝑔𝑟
1
, 𝑞). Then the

keys sk[𝑖] of indices 𝑖 that have been set to 1, are now deleted from

the secret key sk.
This is almost identical to the original puncturing apart from

using a different algorithm for updating the BF defined by

𝐵𝐹𝑈𝑝𝑑𝑎𝑡𝑒′ (𝐻,𝑇 ,𝑢, 𝑞) : Given 𝐻 = (𝐻 𝑗 ) 𝑗∈[𝑘 ] ,𝑇 ∈ {0, 1}𝑚 and

𝑢 ∈ U, this algorithm defines the updated state𝑇 ′ by first assigning
𝑇 ′ := 𝑇 . Then, it sets𝑇 ′ [𝐻 𝑗 (𝑢)] := 1 with probability 1−𝑞 for each
𝑗 ∈ [𝑘] and finally returns 𝑇 ′.
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Again it is interesting to determine the false-negative probability

𝜈 .

𝜈 = Pr(Dec(𝑠𝑘𝑛+1,𝐶 𝑗 ) ≠ ⊥)
= Pr(BFCheck(𝐻,𝑇 ,𝐶 𝑗 [0]) = 0)
= 1 − Pr(BFCheck(𝐻,𝑇 ,𝐶 𝑗 [0]) = 1)
= 1 − Pr(∀𝑖 ∈ [𝑘] : 𝐻𝑖 (𝐶 𝑗 [0]) = 1) .

Defining𝑈 (𝐶 𝑗 ) := {𝑙 ∈ [𝑘] : 𝐻𝑙 (𝐶 𝑗 [0]) updated during BFUpdate′}
we can rewrite this as

= 1 − ©­«
∑︁

𝐼⊆[𝑘 ]
Pr(𝑈 (𝐶 𝑗 ) = 𝐼 ∧ ∀𝑙 ∈ 𝐼 : 𝐻𝑙 (𝐶 𝑗 [0]) = 1)ª®¬

= 1 − ©­«
∑︁

𝐼⊆[𝑘 ]
Pr(𝑈 (𝐶 𝑗 ) = 𝐼 ) · Pr(∀𝑙 ∈ 𝐼 : 𝐻𝑙 (𝐶 𝑗 [0]) = 1|𝑈 (𝐶 𝑗 ) = 𝐼 )

ª®¬
= 1 − ©­«

∑︁
𝐼⊆[𝑘 ]

(1 − 𝑞) |𝐼 | · 𝑞𝑘−|𝐼 | ·
(
1 − 𝑒−

(1−𝑞)𝑘𝑛
𝑚

)𝑘−|𝐼 |ª®¬
= 1 −

(
𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
(1 − 𝑞)𝑘−𝑖𝑞𝑖 ·

(
1 − 𝑒−

(1−𝑞)𝑘𝑛
𝑚

)𝑖 )
.

Computational results for reasonable values of 𝑘 show that this

value of 𝜈 is at least three times higher than the one in the first

strategy. It is easy to see that in both strategies (given a fixed value of

𝑞) 𝑛 puncturings correspond to (1−𝑞)𝑛 puncturings in the original

strategy concerning inserts that are made into the Bloom filter.

Therefore the size of the secret key which grows in the order of𝑚

can also be reduced by a factor of (1 − 𝑞). As both strategies lead

to the same benefit the first strategy should be preferred because

of its lower fnp.

Unfortunately even for the first strategy the value of 𝑞 can only

be chosen really low since it almost directly determines the false-

negative probability. If we want to allow for a fnp of at most 10
−2
,

meaning that 1 out of 100 ciphertexts can be decrypted although

it should not, the size of the secret key reduces by only 1%. This

example shows that for any reasonably small choice of the fnp, the

benefit of a reduced key-size is only at a small level in both of the

presented strategies.

A.2 Key Management Using Binary Trees
In the following we want to look at another way of storing the

group elements in the secret key. As mentioned in Section 3.1 we

are focusing on the BFKEM based on hashed Boneh-Franklin IBE.
For hashed Boneh-Franklin IBE the secret keys consist of exactly

one group element for each identity. Thus we originally store𝑚

group elements one by one and the size of the secret key grows

linearly in the size of𝑚 i.e. linearly in the size of the number of

puncturings 𝑛. In order to significantly reduce the key-size we

should be looking for a data structure that allows us to store the

elements of sk in a sublinear way.

Intuition of theConstruction. The idea is based on using a 𝑙-level
hierarchical identity-based key encapsulation scheme (HIB-KEM)

with identity space {0, 1}𝑙 in order to build a 𝑙-level HIB BFKEM.
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Figure 8: The first hash function maps to the identity 001.
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Figure 9: The second hash function maps to the identity 111.

KGen instantiates a Bloom filter of size𝑚 = 2
𝑙 16

with 𝑘 hash

functions. It then runs (mpk, sk𝜖 ) ←$ HIBGen(1𝜆) to generate a

key pair.

Enc does initially the same as the basic BFKEM Enc i. e. it ran-
domly creates a ciphertext component and determines 𝑘 identities

from this. Then it performs 𝑘 HIBE encryptions of the same key 𝐾

using each of the identities.

Punc of the secret key on a ciphertext deterministically com-

putes the 𝑘 identities generated by the ciphertext component. Then

for each of the 𝑘 identities it computes the HIB-KEM secret keys

associated to all siblings of nodes that lie on the path from the

corresponding leaf node to the root until it reaches a node whose

key is part of the sk and adds these to the sk. Then it deletes the key

of the node, where it stopped such that it is not possible to delegate

the key of the initial identity anymore.

Figures 8 and 9 illustrate this algorithm applied to the initial

secret key sk𝜀 by a small example with 8 leaf nodes and 𝑘 = 2 hash

functions.

Dec checks similarly to the original BFKEM Dec for at most

𝑘 identities if the corresponding secret key can be delegated and

(in this case) delegates this specific key and performs one HIBE
Decryption.

Remark. Notice that the level-𝑙 keys needed for Dec have to be

delegated first along the way of decrypting several ciphertexts

and that during the process of puncturing there are more new

keys (of level < 𝑙) to be stored than keys to be deleted. This way

intuitively the size of the secret key gets bigger as we puncture

more ciphertexts in contrast to our original BFKEM.
17

Since we

want to achieve a method of managing the secret key in sublinear

16
For the purpose of simplicity we assume for the rest of this Section that the size

of𝑚 is a power of 2 given as𝑚 = 2
𝑙
. Also we will start indexing at 0 in order to

represent the𝑚 Bloom filter indices as 𝑙 -bit binary strings. This way we will interpret

each identity as a leaf node of a binary tree with depth 𝑙 .
17
In the standard BFKEM the puncturing only consists of the deletion operation.

Therefore the size of the secret key decreases monotonically with each puncturing.
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size, we want to take a closer look at the growth of the secret key

in HIB-BFKEM depending on the number of puncturings. Before

taking into consideration the fact that HIBE-keys are of different

size on the different levels we are going to take a first look at only

the number of total HIBE-keys that need to be stored. We will also

differ between the number of puncturings and the number of inserts
into the tree – where one puncturing consists of 𝑘 inserts.

Best Case. It is easy to see that in the best case the leaf nodes of

the binary tree are traversed from e.g. left to right. Starting with

an insert at (the binary representation of) 0 and continuing with

1, 2 etc. one can show inductively that a maximum number of 𝑙 − 1
HIBE-keys is never exceeded namely by having always at most one

key on each level 1 ≤ 𝑘 ≤ 𝑙 . Since we assume the puncturings/

inserts to be uniformly random, the Best Case in which we can

choose the order of the inserted leaf nodes is not too relevant and

thus we do not go further into details here.

Worst Case. Although the same holds true for the worst case, it is

still worth determining the maximum size that the secret key can

reach at all. An immediate upper bound for the maximum number

of HIBE-keys is given by 2𝑚 − 1 = 2
𝑙+1 − 1 which is exactly the

number of nodes in a perfect binary tree of depth 𝑙 . If we aim for

computing a stricter upper bound, we should look for an order of

inserts that maximizes the secret key. In order to do so we choose

the order in a sort of greedy way – such that the number of HIBE-

keys added at each step is maximal. Starting at any random leaf

node (e.g. 0) we consider its corresponding subtree of depth 𝑙 − 1
and call it 𝑇

(1)
1

. For the next insert we choose any leaf node (e.g.

𝑚 − 1) of the other remaining subtree 𝑇
(2)
1

of depth 𝑙 − 1. Now we

consider the subtrees 𝑇
(1)
2

and 𝑇
(2)
2

of depth 𝑙 − 2 each containing

one of the two chosen leaf nodes. There are 2 more subtrees of

depth 𝑙 − 2. From both we can choose one more leaf node for our

next two inserts. Continuing like this we get 4 more inserts from

the subtrees of depth 𝑙 − 3 that have not been reached so far.

After 2
𝑑
inserts for 𝑑 ∈ {0, . . . , 𝑙 − 2} we have added one leaf

node in every subtree of depth 𝑙 −𝑑 and after that process the secret

key consist of

𝑙 − 1 +
𝑑−1∑︁
𝑖=0

2
𝑖 (𝑙 − 2 − 𝑖)

=2𝑑 (𝑙 − 𝑑) − 1
HIBE keys. For 𝑑 = 𝑙 − 2 this gives us the number of HIBE keys

after𝑚/4 inserts, which is exactly𝑚/2 − 1.
Average Case. We now know that on average the maximal size of

the secret key lies in between log
2
(𝑚) − 1 and𝑚/2 − 1. As a first

step we want to find out the expected value for the random variable

𝑁𝑖 denoting the growth
18

of the secret key during the 𝑖-th insert.

At first we define for 𝑘 = 1, . . . , 𝑙 the events

𝐴
(𝑖 )
𝑘

:=∀𝑗 = 1, . . . , 𝑖 − 1 : 𝑠𝑖 [: 𝑘] ≠ 𝑠 𝑗 [: 𝑘]
where 𝑠 𝑗 [: 𝑘] denotes the first 𝑘 bits of the 𝑗-th insert.

Using

Pr(𝐴(𝑖 )
𝑘
∩ ¬𝐴(𝑖 )

𝑘−1)
𝐴
(𝑖 )
𝑘−1⊆𝐴

(𝑖 )
𝑘

= Pr(𝐴(𝑖 )
𝑘
) − Pr(𝐴(𝑖 )

𝑘−1)

18
Note that this growth can also be negative.

we can compute

E(𝑁𝑖 ) =
𝑙∑︁

𝑘=1

(𝑙 − 1 − 𝑘)Pr(𝐴(𝑖 )
𝑘
∩ ¬𝐴(𝑖 )

𝑘−1)

=

𝑙∑︁
𝑘=1

(𝑙 − 1 − 𝑘)
(
Pr(𝐴(𝑖 )

𝑘
) − Pr(𝐴(𝑖 )

𝑘−1)
)

=

𝑙∑︁
𝑘=1

(𝑙 − 1 − 𝑘)
(
( 2

𝑘 − 1
2
𝑘
)𝑖−1 − ( 2

𝑘−1 − 1
2
𝑘−1 )

𝑖−1
)
.

With these values for each insert 𝑖 we can simply compute the

expected value of the number of HIBE-keys in the secret key after

𝑁 inserts by

E(𝑆𝑁 ) = 1 +
𝑁∑︁
𝑖=1

E(𝑁𝑖 ) .
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Figure 10: Expected number ofHIBE-keys after variable num-
ber of inserts for two different depths 𝑙 of binary trees

In Figure 10 the development of the expected size of the secret

key is shown. It is interesting to see that in both cases for different

depths of the binary tree the secret key contains a maximal number

of HIBE-keys of approximately 0.39𝑚.

Concerning the reduction of the secret key size this result seems

to be promising at first sight. But one would need for example a

HIBE with keys of constant size – if there existed a HIBE where a

key on each level consists of at most 2 group elements, we would

get a reduction in the key-size of at least 22%. When taking into

account the size of keys in currently used HIBEs (c.f. Section 2.2) it

shows that this construction is unrealistic until now and we do not

succeed yet by using this strategy.
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